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Abstract

Ultracold quantum gases constitute a powerful and versatile tool to experimentally
explore quantum many-body physics. This thesis presents an original contribu-
tion to the quantum simulation of gauge theories with ultracold atoms, which has
evolved into a thriving research field during the last years.

Gauge theories form the basis of our modern understanding of nature, with appli-
cations ranging from high energy to condensed matter physics. A subclass formed
by topological gauge theories plays a key role in the effective description of certain
strongly correlated materials. An important example is the fractional quantum
Hall effect, where the topological Chern-Simons theory can provide an effective
single-particle description for some of the filling factors. A simpler toy model
which already provides access to the key properties of topological gauge theories
is the one-dimensional chiral BF theory obtained from Chern-Simons theory after
dimensional reduction. This thesis reports on the quantum simulation of the chiral
BF theory in an ultracold gas of bosonic potassium atoms, establishing ultracold
quantum gases as a resource for the quantum simulation of topological gauge the-
ories.

As a first step, we establish the theoretical framework necessary for the quantum
simulation of the chiral BF theory. We start by deriving an encoded Hamiltonian
for this gauge theory in which the gauge degrees of freedom are eliminated via
the local symmetry constraint. The encoding results in a system with only matter
particles that have local but unconventional chiral interactions. We continue by
showing that these chiral interactions can be realized in a Raman-dressed Bose-
Einstein condensate (BEC) with unbalanced interactions by deriving an effective
single-component Hamiltonian from a microscopic view in momentum space.

Subsequently, we present the implementation of the different ingredients necessary
to realize the chiral BF theory in our experiment. In a first series of experiments,
we study the effects of coherent coupling on the effective collisional properties
of the system. To this end, we employ radio-frequency to couple two internal
states with unequal interaction in a 39K BEC. We measure the effective scattering
length of the system as a function of the coupling field parameters. Moreover, we
use the coherent coupling as an interaction control tool and quench the effective
interactions from repulsive to attractive values. Afterwards, we turn to the imple-
mentation of Raman coupling and characterize the modifications in the dispersion
of Raman-dressed atoms at the single particle level.



Finally, we demonstrate the realization of the chiral BF theory by combining Ra-
man coupling and unbalanced interactions in a BEC of 3°K. We probe the chiral
interactions arising in the system and observe the formation of chiral bright solitons
which dissolve as soon as their propagation direction is inverted. Moreover, we use
the local symmetry constraint of the theory to reveal the BF electric field through
measurements on the matter field alone, and show that it leads to an asymmet-
ric expansion of the condensate. Our experiments establish chiral interactions as
a novel resource for quantum simulation experiments and pave the way towards
implementing topological gauge theories in higher dimensions with ultracold atoms.



Resumen

Los gases cuanticos ultrafrios constituyen una herramienta poderosa y versatil para
explorar experimentalmente la fisica cuantica de muchos cuerpos. Esta tesis pre-
senta una contribucién original a la simulacién cuantica de las teorias gauge con
atomos ultrafrios, que se ha convertido en un floreciente campo de investigacién
durante los dltimos afos.

Las teorias gauge constituyen la base de nuestra comprensiéon moderna de la natu-
raleza, con aplicaciones que van desde la fisica de alta energia hasta la de materia
condensada. Una subclase formada por las teorias gauge topoldgicas desempeiia
un papel clave en la descripcidén efectiva de ciertos materiales fuertemente cor-
relacionados. Un ejemplo importante es el efecto Hall cuadntico fraccionario, en
el que la teoria topolégica de Chern-Simons puede proporcionar una descripcion
efectiva de una sola particula para algunos de los factores de relleno. Un modelo
mas sencillo que ya proporciona acceso a las propiedades clave de las teorias gauge
topoldgicas es la teoria BF quiral unidimensional obtenida a partir de la teoria de
Chern-Simons tras la reduccién dimensional.

Esta tesis reporta sobre la simulacién cuantica de la teoria BF quiral en un gas ul-
trafrio de &tomos bosénicos de potasio, estableciendo los gases cuanticos ultrafrios
como un recurso para la simulacién cuantica de teorias gauge topolégicas. Como
primer paso, establecemos el marco tedrico necesario para la simulaciéon cuantica
de la teoria BF quiral. Comenzamos derivando un Hamiltoniano codificado para
esta teoria gauge en la que los grados de libertad gauge se eliminan a través de
la restriccion de simetria local. La codificacién da como resultado un sistema
con sblo particulas de materia que tienen interacciones quirales locales pero no
convencionales. Continuamos mostrando que estas interacciones quirales pueden
realizarse en un condensado de Bose-Einstein (BEC) con acoplamiento Raman y
con interacciones desequilibradas, derivando un Hamiltoniano efectivo de una solo
componente desde una visién microscépica en el espacio de momentos. Posteri-
ormente, presentamos la implementacion de los diferentes ingredientes necesarios
para realizar la teoria BF quiral en nuestro experimento.

En una primera serie de experimentos, estudiamos los efectos del acoplamiento
coherente sobre las propiedades colisionales efectivas del sistema. Para ello, em-
pleamos radiofrecuencia para acoplar dos estados internos con interaccién desigual
en un condensado de potasio-39. Medimos la longitud de dispersion efectiva del



sistema en funcién de los parametros del campo de acoplamiento. Ademas, uti-
lizamos el acoplamiento coherente como herramienta de control de la interaccién
y cambiamos siibitamente las interacciones efectivas desde valores repulsivos hasta
atractivos.

Posteriormente, pasamos a la implementacién del acoplamiento Raman y caracter-
izamos las modificaciones en la dispersién de los &tomos con acoplamiento Raman
a nivel de una sola particula. Finalmente, demostramos la realizacién de la teoria
BF quiral combinando el acoplamiento Raman vy las interacciones desequilibradas
en un BEC de potasio-39. Investigamos las interacciones quirales que surgen en
el sistema y observamos la formacién de solitones brillantes quirales que se dis-
uelven en cuanto se invierte su direccién de propagacién. Ademas, utilizamos la
restriccion de simetria local de la teoria para revelar el campo eléctrico BF a través
de mediciones en el campo de la materia solamente, y mostramos que conlleva a
una expansién asimétrica del condensado. Nuestros experimentos establecen las
interacciones quirales como un recurso novedoso para los experimentos de sim-
ulacién cuéntica y establecen las bases para la implementacién de teorias gauge
topoldgicas en dimensiones superiores con atomos ultrafrios.
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1 Introduction

Ultracold quantum gases are a versatile testbed for simulating complex
many-body physics in a quantum simulator approach. One important re-
search direction of the field is the simulation of gauge theories, a theoretical
concept crucial for the description of nature. A broad class, important in
high energy physics, describes the coupling between matter and dynami-
cal gauge fields. However gauge theories emerging in certain condensed
matter systems, as in fractional quantum Hall states, belong to a different
class where the gauge fields are of topological nature.

This chapter introduces gauge theories, motivates the simulation of gauge
theories with ultracold quantum gases and describes the experimental ad-
vances of the field in the realization of dynamical and topological gauge
theories, which is precisely the topic of this work. We conclude the chapter
by outlining the aim and structure of this thesis.



1 Introduction

In the last years we have witnessed an immense quest towards a programmable
quantum computer®?. Not only research institutions, but also major telecommu-
nication companies entered the race to build the first scalable and fault-tolerant
computer with quantum supremacy. One application of a quantum computer will
be the modelling of complex quantum many-body systems where the interatomic
interactions lead to collective phenomena on the quantum level. The precise evo-
lution of such condensed matter systems cannot be calculated nowadays as the
computational power of any classical supercomputer in the world is not sufficient.
Therefore these strongly correlated quantum systems including high T, supercon-
ductors, fractional quantum Hall states and frustrated spin systems often remain
poorly understood.

Despite all promising progress, a universal quantum computer within the next
decade is still out of reach. However, there exists a different solution for this prob-
lem, namely instead of calculating one can simulate the system of interest with
a special purpose analogue quantum computer, a device commonly referred to as
quantum simulator. To this end a well-controlled quantum system can be employed
which is effectively described by the Hamiltonian of the condensed matter system
we want to study. The idea of using quantum hardware to mimic the behaviour of
complex quantum systems was envisioned by Feynman3 and his quantum simulator
approach can be realized on many different platforms, ranging from trapped ions*,
superconducting qubits® to ultracold quantum gases®’
this thesis.

, on which we will focus in

In a dilute atomic gas, the distance between particles is much larger than the range
of the interatomic interaction potential and the interactions can be well encapsu-
lated in a single parameter, the scattering length, making a simple microscopic
theoretical description possible. Moreover, degenerate gases offer an outstanding
experimental control: the external trapping potential can easily be modified, the
interaction between atoms tuned or the dimensionality effectively reduced. There-
fore ultracold quantum gases constitute an ideal candidate to study the evolution
of complex condensed matter systems and also to realize parameter regimes which
are otherwise inaccessible in nature. They have already been successfully employed
to tackle open problems of condensed matter physics®”. For example, the interac-
tion control over different orders of magnitude allowed the investigation of different
regimes of superfluidity in fermionic gases where the interactions were tuned from
the strongly to the weakly interacting limit and the crossover between a molecular
Bose-Einstein condensate and BCS state was observed®. The outstanding control
of the external trapping potential enabled the realization of the prominent Hub-
bard model by confining bosonic or fermionic atoms in optical lattices, so quantum
phase transitions like the bosonic superfluid to Mott transition could be explored?.
In combination with recent established single site resolution, this also allowed the
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simulation of quantum magnetism with fermions'®. Moreover, ultracold atoms in
effectively one and two dimensions were realized, unlocking the possibility to reach
e.g. the Tonks-Girardeau gas!! or to study quasi-long-range order, e.g. the BKT
12 Last but not least, ultracold gases are also extremely well isolated
from the environment, which makes the investigation of out of equilibrium physics,
e.g. the quantum dynamics after a quench of a system parameter possible!3:14,

transition

Over the last years, a big quest of the research community is the quantum simu-
lation of gauge theories'>19, which form the basis of our modern understanding
of nature as they e.g describe the interactions of fundamental particles. However,
they can be investigated theoretically only within certain limitations, making a
quantum simulation beneficial.

This thesis contributes to the research field of degenerate gases as platform to
simulate effective gauge theories emerging in strongly-correlated systems. In the
remaining part of this chapter, we will introduce gauge theories in general and
summarize recent advances in their simulation before describing more concretely
the thesis goal and the outline of this thesis.

1.1 Gauge theories

Gauge theories are field theories emerging from local symmetry constraints or equiv-
alently local conservation laws in the system. They describe a matter and a gauge
field, minimally coupled to matter, and dictate the interaction between gauge par-
ticles and matter particles to ensure the system fulfils invariance with respect to
its defining symmetry in every point in space and time. In the next paragraph, we
will illustrate this concept and the connection between symmetries, conservation
laws and gauge theories. To this end, we follow the seminal publication of R.
Mills in Ref. [20] and as an example recall his derivation of the prototypical gauge
theory of electromagnetism which naturally unfolds when enforcing locally charge
conservation.

Every symmetry of a physical system corresponds to a conservation law and vice
versa, this is known as Noether theorem. Let us consider one operator A with
observable A and the Hamiltonian operator A. With ¥ the state vector of the
system, the expectation value of A is (W| A|W) and the expectation value of H is
the energy of the system. The unitary transformation generated by Ais given by
v Y= exp(—iAA) ¥ with A a real parameter of arbitrary value. The Hamil-

tonian operator generates time displacements via ¥(t) = exp(—iFlt) v(0). If the

two operators commute, so [/2\ /:I] = 0, the expectation value of A is invariant
under the transformation generated by H and vice versa. This statement actually
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implies that (W|A|W) is a constant over time, i.e. it is a conserved quantity.
Moreover, because H is invariant under the transformations generated by A this
operator represents a symmetry of the system. Hence, an operator describing a
system's symmetry has a conserved expectation value and a conserved quantity
implies a particular symmetry of the system. An example for this relation is a
system with translational symmetry where the corresponding conserved quantity is
the momentum.

We now turn to the link between conservation laws or equivalently symmetries and
gauge theories. As an example we investigate in the following the conservation law
of the electric charge Q. Its operator @ generates transformations of the form

W(x) = ¥ (x) = exp(—ined) ¥(x) ~ (1 — ined) ¥(x) (1.1)

where W describes a particle with charge ne and @ is an arbitrary parameter.
The invariance of a system under this global symmetry is trivial as any physical
observable involves terms of ¥* and V¥, such that a global phase factor cancels.
However, the situation changes drastically if the symmetry has to be fulfilled locally.
In this case, 6 is a function of position x, so the transformation generated by Q
differs at each point and leads to a local phase factor which is not trivial. Hence,
terms with a derivative of ¥ will not be invariant under this transformation as they
transform as

AV (x) — O W(x) = —inebB(x)dy W(x) — ine(80(x)) ¥ (x), (1.2)

with a new second term with respect to the previous case of 6 # 6(x) for the global
transformation. In order to restore invariance under the local transformation, we
have to introduce a new invariant derivative D, which has to take the form

Dy = 8, + ineA, (1.3)

where A, has to fulfil
Ay — A, = Ay + 9.0(x) (1.4)

under the transformation. In the following, w = 0,...d where u = 0 represents
the time component and 1,...d the spatial components. In the way we defined
the covariant derivative in eq. (1.3) and (1.4), A, leads to invariance under the
symmetry transformation and we refer to it as gauge potential. The so defined
covariant derivative and gauge potential A, actually are the vector potential of
electromagnetism, minimally coupled to matter.

In order to obtain the full field theory, we need to construct the corresponding
Lorentz- and gauge invariant Lagrangian density. If the Lagrangian density Lmatter
for the matter field alone is known, we just have to replace the standard derivatives
therein with the covariant derivative and add an invariant term to the Lagrangian

4
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density which makes the gauge potential dynamically active.
Assuming a non-relativistic bosonic matter field, the Lagrangian density for the
matter field alone is in dimension of 3 + 1 spacetime

1
Lonatter = i W*W + %w*vzw— V(p). (1.5)

where we have set the reduced Planck constant A, the speed of light ¢ and the
electron charge e to 1. m is the mass of the matter particle and the dot denotes
the time derivative, e.g. ¥ = do V¥, and V/(p) are the matter-matter interactions,
which depend only on the matter density p. If we replace the standard derivatives
with the covariant ones, we have i W* W — A% and (V*(V — iA)2W)/(2m). In the
Lagrangian density this is equivalent to %w*vw — AuJ" where the time com-
ponent of the current is simply the density, JO = p = \lll\z and the three spatial
components are given by J = [(V*(V — iA)¥ — Y(V + iA)¥*)] /(2mi). Here,

spatial vectors are denoted in bold and with the index up, so (A)' = A’ = —A;.

In order to obtain non trivial field equations for the gauge field, we need to supple-
ment the Lagrangian density with a term involving derivatives of A,. In electro-
magnetism, the gauge field is dynamically active by itself, so we need derivates to
second order. Note that there also exist gauge theories which are not dynamical
but topological and where derivatives to first order are sufficient, see below. The
only combination of the derivatives which maintains the gauge invariance is

Fuw = 0,A, — O4A, (1.6)

as a gauge transformation generated by Q results in two cross derivatives of
which cancel. This gauge invariant combination is the well known electromagnetic
field tensor. We further account for the desired Lorentz invariance by forming the
scalar product of Fy,. Then the total Lagrangian density reads

1
Ly = _ZFWFW — AuM + Latter- (1.7)

where a scaling factor % was introduced. Eq.(1.7) is the well-known Lagrangian
density for electromagnetism. Applying the Euler Lagrange equations yield the
equations of motion for the matter and the gauge field. One obtains the familiar
Maxwell equations for the gauge field and in particular Gauss law

V .E=p, (1.8)

where (E)' = —F% is the electric field generated by the gauge potential. The
Gauss law describes the coupling between matter and gauge field and as long at
it is fulfilled, gauge invariance is preserved.

In summary, just imposing the symmetry of charge conservation locally yields a
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fully-determined field theory which describes the familiar gauge potential of elec-
tromagnetism minimally coupled to the matter field and determines the interaction
between gauge and matter particles via the Gauss law.

In the following, we will also refer to the here presented field theory of electro-
magnetism as Maxwell theory and for the quantum version use the term quantum
electrodynamics (QED).

Gauge theories are classified by their underlying symmetries. In our example of
electromagnetism, the system is invariant under all symmetry transformations giv-
ing a complex (and local) phase factor (see eq.(1.2)), which form a symmetry
group on a circle, the unitary group of degree 1. Therefore electromagnetism is
classified as U(1) gauge theory. Because all operators within the group commute,
i.e. the order in which they are applied is irrelevant, we further specify it as abelian
U(1) gauge theory.

So far we have only considered one example: electromagnetism which describes
the electromagnetic interactions between fermions mediated by photons. In a sim-
ilar fashion as outlined above, one obtains gauge theories for the electroweak or
strong interaction. In fact, gauge theories are a fundamental concept in high en-
ergy physics and describe all interactions between elementary particles, which are
mediated by gauge bosons.

However, gauge theories also play a crucial part outside the physics of the standard
model. General relativity can be viewed as gauge theory?! with a tensor gauge
field obtained by the requirement of local invariance under arbitrary curvilinear
coordinate transformations. Another example is Kitaev's toric code for quantum
computation, which is a gauge theory of Z, symmetry?2. Moreover, gauge theories
emerge as powerful effective descriptions of strongly-correlated condensed matter
systems which still defy our understanding. For instance, abelian U(1) and 2,
lattice gauge theories capture the behaviour of certain quantum spin liquids 2324
and fractional quantum Hall states can be described by a Ul gauge theory, the
Chern-Simons theory, for several filling factors.

In summary, gauge theories are important in a variety of physical fields, ranging
from high energy, relativity to condensed-matter. Unfortunately, their computa-
tion can be extremely challenging in the strong coupling limit, which is e.g. the
regime relevant for quantum chromodynamics (QCD) in particle physics or for the
emergent gauge theory describing spin ice in condensed-matter physics. Classi-
cal numerical methods like quantum Monte Carlo are partially successful and can
predict some equilibrium properties, but usually fail to describe e.g. out of equi-
librium phenomena as the thermalization after heavy-ion collisions®®. A quantum
simulation of gauge theories and their dynamics could overcome this limitation.
Moreover, there are also gauge theories that constitute effective single-particle de-
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scriptions of strongly-correlated many-body systems, describing adequately their
phenomenology. In this case, a quantum simulation would allow the experimen-
tal investigation of properties arising in such strongly correlated systems without
the need to engineer those directly. In this way e.g. anyonic excitations could
be explored without the challenging task to implement a fractional quantum Hall
system. Therefore, the realization of gauge theories in a quantum simulator is
highly desirable.

1.2 Simulation of gauge theories

The last years have seen an increased effort towards the simulation of gauge theories
with digital and analogue quantum simulators'>™1°. Here, we will focus mainly on
their realization with ultracold quantum gases, but we will also give examples from
trapped ions and superconducting qubits when relevant.

Most of recent efforts of simulating gauge theories have focused on abelian gauge
theories with U(1) gauge invariance akin to quantum electrodynamics (QED).
QED is a prototypical example of a dynamical gauge theory. These gauge theories
constitute an important class as most gauge theories in nature are of this kind. In
this class, the gauge fields are dynamical entities and have propagating solutions
even in the absence of matter.

To simulate a dynamical gauge theory one has a priori to realize experimentally
a system with a minimum of two different species which represent matter and
gauge particles and in addition engineer the interactions between those such that
they fulfil gauge invariance. The dynamics of matter and gauge particles is linked,
which is very challenging to achieve. For simplicity, most experiments until now
have focused on the realization of dynamic gauge theories akin to QED either in
system systems of minimalistic size which constitute the first building block for
scaling up their implementation and/or in one dimension, where the simulation is
greatly simplified as the gauge field cannot have its own dynamics.

There have been many proposal about how to simulate dynamical gauge theories,
experimentally three different approaches were so far employed which differ in how
the gauge invariance is maintained:

e Encoding. This approach can be used in one dimension, where QED looses its
dynamical character. Here, the electric field has only one component which
is aligned with the single physical dimension of the system and no magnetic
fields appear. For the gauge field to be dynamical photons would need to
propagate in the orthogonal direction, which does not exist. Consequently,
the gauge field does not have its own dynamics, i.e. it has no propagating
degrees of freedom in vacuum.
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In this case, one can use the local symmetry constrain, e.g. for QED the
Gauss law (see eq. (1.8)), to eliminate the gauge field degrees of freedom
and express the gauge field solely in terms of the matter field.

This approach of encoding was used in ion-trapped quantum computers
where a lattice one-dimensional version of QED - the Schwinger model - was
implemented?”. A building block of the same model was simulated with the
IBM quantum computer based on superconduting qubits®2.

25,26

o FEnergy penalties. In this scheme gauge invariance is ensured by making states
which do not fulfil the gauge symmetry energetically inaccessible. Recently,
it was successfully employed by fine-tuning of Bose-Hubbard parameter in an
ultracold optical lattice system?%30 where it allowed the implementation of

a one-dimensional extended U(1) lattice gauge theory. The simulated theory

is as quantum-link model akin to QED, so the gauge field is quantized and

truncated to a spin 1/2. Interestingly, Rydberg chain experiments3!, where
the Rydberg blockade strongly suppressed symmetry breaking processes, can

be interpreted as a version of the same model32. Building blocks of Z,

33,34

lattice gauge theories with ultracold atoms in optical lattices were also

demonstrated with the energy penalty approach.

e Symmetry approach. In this method a symmetry or equivalently a conser-
vation law is employed so only processes which preserve gauge invariance
are allowed. Following this idea, a building block of U(1) lattice gauge the-
ory3® in an ultracold atomic gas using angular momentum conservation was

implemented.

Although the described experiments constitute a remarkable progress, these ap-
proaches are difficult to further scale up and hence simulating QED as well as
strongly coupled gauge theories in higher dimensions remains an open challenge.

Apart from the dynamical gauge theories, in nature there exists a specific subclass
of gauge theories which is of topological nature. Here the gauge field is fully linked
to the matter and cannot propagate in the absence of it. However, topological
gauge fields are not just trivial background potentials which can be eliminated by
an appropriate choice of the wavefunction's phase factor as their interaction with
matter strongly modifies the properties of the system. Topological gauge theories
play an important role in condensed-matter physics where they emerge as effective
low-energy description of certain strongly-correlated systems30-38,

A prime example of topological field theory is the Chern-Simons gauge theory often
used to describe two-dimensional fractional quantum Hall states. The fractional
quantum Hall effect occurs for a strongly interacting electron gas confined on a
two-dimensional plane and subjected to a strong external magnetic field. The Hall
conductance in such systems was found to be quantized and as function of the
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magnetic field shows a series of plateaus at fractional values of h/(e’v) with filling
factor v of fractional value. Remarkably, the excitations of the system have frac-
tional charge and anyonic exchange statistics. The Chern-Simons theory provides
a simple and appealing effective single-particle description of the key features of
fractional quantum Hall systems3°. The effective description builds upon Wilczek's
idea of flux attachment, where each strongly interacting particle is replaced by a
weakly interacting composite particle carrying an integer number of flux quanta
from the external magnetic field. The Chern-Simons theory governs the coupling
between matter and the magnetic field generated by the flux tubes. It is an Abelian
U(1) gauge theory where the local symmetry constraint ensures the flux attach-
ment. According to it, the vector potential that is minimally coupled to matter
has a complex density dependence so that the Chern-Simons magnetic field scales
linearly with the matter density. We will further discuss this gauge theory in chap-
ter 2.

The simulation of Chern-Simons theory and in general of topological gauge the-
ories is simpler compared to dynamical gauge theories. As the gauge fields do
not have propagating degrees of freedom in the absence of matter even beyond
one spatial dimension, the approach of encoding can always be employed and the
theory can be reformulated with solely matter degrees of freedom. However, this
is done at the expense of introducing unusual and very often non-local interactions
between the particles. Thus, a gauge theory formulation is more natural and the
simulation of such effective theories provides further insights into the description
of the system.

Simulating Chern-Simons theory with engineered quantum systems requires the
implementation of specific density-dependent artificial magnetic fields. Recent ex-
periments have realized an important step in this direction by engineering density-
dependent vector potentials in lattice systems, where they are equivalent to an
imaginary tunneling amplitude which depends on the sum of the particle occu-
pation in the adjacent lattice sites. These so-called density-dependent Peierls
phases were implemented on different experimental platforms, including ultracold
atoms*%4! superconducting qubits*?, and Rydberg atoms*3. However, in all de-
scribed experiments, no attempts were made to implement the required local sym-
metry constraints needed to promote a density-dependent gauge field to a gauge
theory. The goal of this thesis is to fill in this gap.

1.3 Aim and outline of this thesis

This thesis explores a degenerate gas of bosonic potassium for the simulation of
topological gauge theories. The prototypical example, the Chern-Simons theory,
is too demanding for an immediate experimental realization. This motivates us to
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investigate theoretically end experimentally one of the simplest topological gauge
theories available, the so-called chiral BF theory, which is a one-dimensional re-
duction of Chern-Simons theory in the continuum***8. Our goal is to exploit the
chiral BF theory as toy model for the quantum simulation of topological gauge
theories with ultracold atoms, making it play a role similar to the Schwinger model
in the quantum simulation of QED.

An important difference to previous experiments is that we consider directly a
gauge theory in the continuum, instead of focusing on a lattice formulation of it.
This has two key advantages. First, it directly gives access to the continuous limit,
removing discretization artefacts associated to the lattice. And second, since the
formulation of Chern-Simons theory in the lattice is considerably more involved
than in the continuum®®™1, it prepares the path for its future implementation in

our system.

For the simulation of the chiral BF theory, the approach of encoding can be em-
ployed, so the use of one single species which represents the matter particles is
sufficient. However, it requires the engineering of unusual interactions which are
chiral in nature. The term chiral might be ambiguous. Here and in the following,
we adopt the convention established in Refs. [44—48] and refer to interactions as
chiral if atoms moving in one direction have different collisional properties com-
pared to atoms moving in the opposite directions. These chiral interactions can
be implemented by combining the following two ingredients: first, interaction con-
trol obtained with coherent coupling in a Bose-Einstein condensate with unequal
intrastate interactions. And second, the locking of momentum and internal state
introduced by Raman coupling: optical coherent coupling via a two-photon pro-
cess.

The encoded Hamiltonian of the chiral BF theory can equivalently be described in
terms of a minimally coupled gauge potential which linearly depends on density.
Hence, simulating the chiral BF theory implies the engineering of either chiral in-
teractions or a density-dependent vector potential with A x p-

In this thesis we investigate the encoded Hamiltonian of the chiral BF theory.
Building upon the proposal from the Ohberg group in Ref. [52], we theoretically
show that a Bose-Einstein condensate with two Raman-coupled internal states
with unbalanced intrastate interaction strengths can effectively be described by
the encoded Hamiltonian of this gauge theory on the quantum level, and this in
a parameter regime that is realistic for our experiment. We further present an ex-
perimental realization of the chiral BF gauge theory in a Bose-Einstein condensate
of 39K by engineering chiral interactions. To this end we will proceed as follows:

e In chapter 2 we introduce the Chern-Simons gauge theory and demonstrate
the difference between dynamical and topological gauge theories by compar-

10
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ing the field theory of electromagnetism to the Chern-Simons theory. Af-
terwards, we derive the chiral BF gauge theory as one possible dimensional
reduction of the Chern-Simons theory. From the Lagrangian we derive an
Hamiltonian with an encoding similar to that of Refs.25-27 for the Schwinger
model, where the gauge field is eliminated in terms of the matter field using
the local symmetry constraint of the theory. We show that the Hamiltonian
features chiral interactions or equivalently a vector potential which depends
linearly on density. We comment on the properties of the chiral BF theory
from a gauge theory perspective.

In chapter 3 we outline the approach we follow to encode the chiral BF
gauge theory in our experimental system. It is based on the combination
of Raman coupling and unbalanced intrastate interaction strengths in the
coupled states of a 3°K Bose-Einstein condensate (BEC)®2. We derive the
effective Hamiltonian from a microscopic perspective, which allows us to
map the experimental system to the BF theory for experimentally realistic
parameters.

After introducing the theoretical framework, in chapter 4 we describe the
main characteristics of our experimental apparatus which are relevant for
the work described in this thesis. Afterwards, we study the first main ex-
perimental ingredient for simulating the BF theory: the interaction control
in a BEC of 39K using coherent coupling between two internal states with
different intrastate interaction strengths. To describe the concept, in this
chapter we focus on the simplest situation of rf-coupling.

In chapter 5 we turn to the second key ingredient, the implementation of
Raman coupling between two internal states of the BEC, which leads to a
locking of the spin composition of the system and the momentum of the
particles. In this chapter we detail its experimental implementation. In
particular, we find the settings for magnetic field, internal states and Raman
wavelength that minimize the effect of magnetic field fluctuations and the
atomic loss due to inelastic scattering from the Raman beams.

In chapter 6 we explore Raman-coupled BECs without interactions. We
present our experiments to observe the signatures of the modified dispersion
relation due to the Raman coupling at the single particle level.

In chapter 7 we combine the interaction control and Raman coupling in
a BEC of 3K and report on the experimental simulation of the chiral BF
gauge theory. In our measurements we observe its defining properties: chiral
solitons and the back-action between matter and gauge field as required by
the local symmetry constraint.

11
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e In chapter 8 we conclude this thesis by summarizing our work, present an
outlook to the horizon of this field and outline the possible next research
directions with our specific experimental setup as opened up by the work

presented in this thesis.

12



2 Chern-Simons and BF gauge theory

This chapter introduces the chiral BF gauge theory as one dimensional
reduction of the topological Chern-Simons gauge theory which emerges in
the effective description of fractional quantum Hall states. We derive the
equations of motion for the matter and BF gauge field from the Lagrangian
density. Based on the topological nature of the theory, we eliminate the
gauge field in terms of the matter field and obtain an encoded Hamilto-
nian which is local and describes a bosonic matter field featuring chiral
interaction or equivalently coupled to a vector potential linear in density.

13
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The chiral BF theory is a possible dimensional reduction of U(1) Chern-Simons
theory and constitutes one of the simplest examples of topological field theory 4448
As discussed in chapter 1, topological field theories are very particular types of
gauge theories. They describe the coupling of matter fields to gauge fields that
do not have propagating degrees of freedom in vacuum. Instead, their dynamics
is linked to that of matter through the local symmetry constraint of the theory,
which also ensures its gauge invariance. In this chapter, we start by reviewing the
prototypical example of topological gauge theories - the Chern Simons theory - and
compare it to the well-known dynamical gauge theory of electromagnetism. We
then introduce the chiral BF theory, obtained by reducing Chern-Simons theory
from two to one spatial dimensions and supplementing the resulting Lagrangian
with a chiral boson term#0=%  Afterwards, we derive an encoded Hamiltonian for
the chiral BF theory which could be realized on quantum simulators. Finally, we
discuss its signatures as observable in possible experiments.

The content of this chapter is part of our manuscript "Encoding a one-dimensional
topological field theory in a Raman-coupled Bose-Einstein condensate", which is
prepared for submission and for which | am co-author. We here recall the main parts
of this publication without major modifications, and extend certain discussions.
The presented work is an experiment-theory collaboration between our group (Craig
Chisholm, Dr. Elettra Neri, Dr. Ramén Ramos and myself, under the guidance of
Prof. Leticia Tarruell), and Prof. Alessio Celi from UAB.

2.1 Maxwell and Chern-Simons gauge theory in
comparison

Historically, the Chern-Simons gauge theory was specifically constructed as de-
scription for anyons - particles with fractional statistics3®. A different physical
origin for the Chern-Simons theory is the dimensional reduction of electromag-
netism from 3 + 1 dimensional spacetime to 2 + 1 dimensions. Therefore we start
with the Lagrangian of Maxwell theory as derived in chapter 1 and review its main
features as dynamical gauge theory. We then introduce Maxwell-Chern-Simons
theory as generalization in 2 + 1 dimension. Afterwards, we concentrate on pure
Chern-Simons theory and point out how it relates to the description of anyons and
fractional quantum Hall systems. Finally, we derive the equations of motion from
the Lagrangian in an analogous way to the case of Maxwell theory.

2.1.1 Maxwell theory.

We have already considered the U(1) abelian field theory of electromagnetism, i.e.
Maxwell theory, as example of a prototypical dynamical gauge theory in the previous

14
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chapter 1. For completeness, we recall its Lagrangian density (see eq. (1.7))

1
EM - _ZFLLI/FHV - /4HJu + ﬁmattery (21)

with the matter field ¥, which we take to be non-relativistic and bosonic, minimally
coupled to a U(1) gauge field A, with u = 0..d, where i = 0 denotes the time
and u = 1,2, 3 the spatial components x,y,z. Moreover,the current is defined by
SO =p=w"V, and J = [V (V — iA)¥ — ((V + iA)¥*) W] /(2mi), where m is
the mass of the matter particles, and Fy, = 0 A, — 0, A is the electromagnetic
field tensor. The term Lpatter is the Lagrangian density for the matter field alone,
as previously defined in eq. (1.5). Here and in the following repeated indices are
summed, indices are raised and lowered with the mostly negative Minkowski metric,
spatial vectors are denoted in bold and with the index up. We have also set the
reduced Planck constant £, the speed of light ¢, the vacuum permittivity €g, the
vacuum permeability (g and the electron charge e to 1.

53,54 and

To clarify the content of the theory, we here follow Faddeev and Jackiw
rewrite the Lagrangian density in first order formalism, i.e. in a form analogous to

the Legendre transform of a Hamiltonian density

L :AO(V-E—p)—EA'—%(EanBz)

C (2.2)
+ iV U (V — iAW — V(p).
2m
To do so, we introduced the electric and magnetic fields E = (E)i = —F0 —
_(Ai + 9;A%) and B = (B)i = (V x A)i = —%eiijjk, where €7k is the Levi-

Civita symbol. Moreover, we used E? = A°V - E — EVA?, where we have omitted
the total derivative V (A%E) because it does not contribute to the action. In this
form of the Lagrangian density, the term —E - A has the desired symplectic form
for the gauge field that will allow us to rewrite the Lagrangian in canonical form
(see next section).

Eq. (2.2) does not contain terms of the form 9, A°, and therefore A° plays the role
of a Lagrangian multiplier. It enforces the local symmetry constraint of the theory
ensuring its gauge invariance. Concretely, it imposes

V .-E=p, (2.3)

which is the Gauss law.

The equations of motion for the matter and gauge fields are simply

o1 . dV(p)
U+ —(V—iAPv - —y=
i +2m(V iA) a0 0

15
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V.-E
V-B=0, VXE+B=0. (2.4)

For the gauge field we obviously recover Maxwell's equations. They show that,
in the absence of matter, only the transverse (divergenceless) part of the gauge
field has propagating solutions: the electromagnetic waves. In tensor form, they
correspond to the solutions of 0,F* = 0 (plus O, Fo + Oy Fop + 05 Fuw = 0) 55
that, as we will see below, is very different from the in vacuum equation of motion
encountered in topological gauge theories. For d = 2 or 3, the gauge field is thus
dynamical, making electromagnetism a dynamical gauge theory. In one spatial
dimension d = 1, however, no transverse electric field nor magnetic fields appear
and thus in vacuum the gauge field has no dynamics.

2.1.2 Chern-Simons theory

When restricting the dynamics of electromagnetism from 3 spatial dimensions to an
infinite plane, the most general Lagrangian which fulfils the same gauge invariance
is given by

1 1
»CMCS = _ZF}W'EWJ - ApJu + EeijAsz/o + ['matterv (2-5)

for a non-relativistic and bosonic matter field and where now nu = 0, 1,2 denote
the time and the two spatial dimensions. Due to the dimensional reduction, the
electric field E and vector potential A have two spatial components. The magnetic
field has now only one spatial component that is perpendicular to the system's
plane, that is, aligned with the Z direction. In eq. (2.5), we have an additional
term scaling with 1/(4k) in comparison to the Lagrangian electromagnetism (2.1)
in 3 + 1 dimensional spacetime. The coefficient x of the gauge field term is
the so-called Chern-Simons level. This term leads to effectively massive photons
with mass 1/(2k). Therefore, the photons cease to propagate for large mass and
the fields E, B are decaying exponentially with the distance from charge sources.
However, as the term includes the electromagnetic field tensor which depends on
the derivative of the gauge field A, this one can still take large value away from
the sources.

In the following, we focus on the particular case in which no external fields are
applied. Hence, we drop the Maxwell term and only consider a matter field ¥
minimally coupled to the Chern-Simons gauge field A, that is “internal”, i.e. self-
generated by the system. This theory is called pure Chern-Simons theory or in
the following just Chern-Simons theory. As electromagnetism it is an U(1) abelian
gauge theory, but instead of being dynamical, it is of topological nature. The pure
Chern-Simons theory for a non-relativistic and bosonic matter field is also known

16
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as Jackiw-Pi model®®57 and its Lagrangian density reads
1
ECS = EGHVUAHFVU - /4}1../u + cmatter- (26)

As we did above for electromagnetism, we separate the A® term from the La-
grangian. We then obtain the Lagrangian density

Lcs = —A° E+p _ 1A ><A+iw*u'f+iw*(v—fA)2w— V(p).
K 2K 2m
(2.7)

From the Lagrangian multiplier we again obtain the the local symmetry constraint
of the theory, i.e. the equivalent to the Gauss law for electromagnetism. In the
case of Chern-Simons theory, it is

B = —kp, (2.8)
so the Chern-Simons magnetic field B is proportional to the matter density.

By integrating eq. (2.8), we find that the flux ® = [ d°xB at the position of the
source and the total charge Q = fdzxp are related via

¢ =—krQ. (2.9)

Now we can understand what was described only qualitatively in the previous chap-
ter: the local symmetry constraint fulfilled by the Chern-Simons term causes every
charged particle to carry a magnetic flux. The Chern-Simons level x indicates the
number of flux tubes, i.e. the quanta of the magnetic field, that are attached
to each matter particle. Therefore, the local symmetry constraint is known as
flux attachment because it highlights the fact that B is given by the flux tubes
attached to the matter particles®®. From the concept of flux attachement two
points follow. First, Chern-Simons theory causes statistical transmutation, i.e. ef-
fectively changes the statistics of the particles coupled to it. The particles with
the attached flux tubes can be considered as new composite particles. Imagine
we have two of those composite particles in a plane. When transporting one on
a closed contour around the other enclosing the flux ® = —kQ, it picks up a
geometric phase of exp(iQ®) = exp(—ikQ?), as in the Aharonov-Bohm effect.
Therefore, an exchange of these composite particles would lead to a phase fac-
tor of exp(—i/fQ2/2), where k and thus the phase factor can take any arbitrary
value which is a defining property of anyons. Hence, bosons/fermions coupled to
a Chern-Simons field, i.e carrying a flux described by the Chern-Simons theory,
can be anyons. For the specific values of kK = m, kK = 27 we obtain fermions and
bosons, respectively.

Second, the mechanism of flux attachement becomes relevant in the effective

17
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description of fractional quantum Hall systems. There, the strongly interacting
electrons of the original system, which are subjected to an external magnetic
field perpendicular to the two-dimensional plane, can equivalently be described
by weakly-interacting effective particles composed out of electrons with an integer
number of flux quanta from the external field attached to them®. Remarkably,
the peculiar properties of fractional quantum Hall states become natural in terms
of such composite bosons with attached flux tubes. For instance, the fractional
transverse conductance plateaus simply correspond to the filling of the composite
particle’s Landau levels, and the quasi-particles’ anyonic character emerges from
the Aharonov-Bohm phases that are picked up upon exchange of flux tubes3? as
outlined above. Chern-Simons theory is the field theory describing the coupling of
the matter particles to the magnetic field generated by the flux tubes.Therefore,
the flux attachement makes the Chern-Simons theory play a key role in the de-
scription of fractional quantum Hall states.

We now turn to the equations of motion of the Chern-Simons theory. In the ab-
sence of matter, the equation of motion for the gauge field is F,, = 0, which
is locally trivial. Thus, the existence of solutions for A, that are globally non
trivial only depends on the topology of the space. This is very different to electro-
magnetism where we have propagating solutions already in the vacuum (namely
OuF" =0 and 9y Fuo + Oy Fopy + Oy Fu = 0°°).

In the presence of matter, the Chern-Simons field acquires non-trivial dynamics.
This can be seen by explicitly writing the equations of motion for the matter and

gauge fields
L 1 A dVi(p)
E—-xkZxJ=0
B+ kp=0, (2.10)

with Z the unit vector along the z direction. The equation for the electric field,
combined with the continuity equation for the matter field dopp + V - J =0, is
equivalent to the equation of motion for the magnetic field. Thus, one sees that
the flux attachment condition is simultaneously the equation of motion of the
gauge field and the local symmetry constraint of the theory. This is a property of
topological gauge theories, i.e theories that do not have independent propagating
degrees of freedom for the gauge field, and is analogous to what happens for
electrodynamics in one dimension.

2.2 Chiral BF theory

In the 90's, Refs. [44,45] introduced a possible reduction of Chern-Simons theory
from two to one spatial dimension that could conserve its main topological features.

18
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This theory is obtained from the Jackiw-Pi model of eq. (2.6) by removing the
dependence in the y spatial coordinate setting Ay = ml3, where B is a new bosonic
field. Making the additional replacements A0 — A0 mB2/2 and ¥ — mk, the
Lagrangian density becomes

1
ﬁBF = ﬂBEHVFHV - lun"l + »Cmatter: (211)

with i = 0,1. Due to the form of the gauge field term (which replaces the
Chern-Simons form e**? A, F,,, see eq. (2.6)) this model receives the name of BF
theory. Because it does not include any derivative of B, the equation of motion
of the gauge field is F,, = 0 even in the presence of matter. This means that
in this one-dimensional problem the B and A, fields can be completely decoupled
from matter, eliminating them from the problem by a phase redefinition of V.
The matter-matter interactions would then be solely determined by V, making the
theory trivial. Refs. [44—-48] therefore add to the theory a kinetic term for the gauge
field, which is of the form BB’ and of strength A. Here and in the following, the
prime indicates the spatial derivative, e.g. B’ = 0;B. This so-called chiral boson
term explicitly breaks the Galilean invariance and is the simplest non-relativistic
combination that endows the system with chiral dynamics, so the behaviour of the
edges of the original 2D system is reproduced. The resulting model is the so-called
chiral BF theory, whose Lagrangian density reads

A -

1
Lepr = 5 B Fuy + 5 5 BB = AJ* = V(p). (2.12)

K2
Alternatively, we can specify the electromagnetic field tensor in components and
obtain when neglecting global spatial derivatives

B’ B . A
Legr = A ( - p) — —A+ BB
K K 2K
. 1
A A =L G iAW — V(p). (2.13)
m
Here, the vector potential A is now a scalar as in d = 1 it has only one component.
From eq. (2.13) we readily identify the local symmetry constraint of the chiral BF
theory
B' = kp, (2.14)

which is the equivalent to the flux attachment condition in Chern-Simons theory
or the Gauss law in electromagnetism.

The equations of motion for the matter and gauge fields read

o1 . dV(p)
U4+ (0, —iAPY - Ly =
/ +2m(81 / ) dp 0
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B+k)J=0 B —kp=0
A .

E-Z2B =0 (2.15)

K

where the electric field E and the spatial part of the current

J = [V*(01 — iA)V — ((01 + IA)¥*) W] /(2mi) are indicated as scalars because

in d = 1 they have only one component.

As in the Chern-Simons case, the first of these equations describes the motion of
matter coupled to a gauge potential A, and the two equations in the second line
can be combined to yield the continuity equation for the matter field dgp+091J = 0.
The last equation is the equation of motion of the “electromagnetic” field tensor,
which can be rewritten as Fp; = E = Ap. Thus, we see that at the classical level
the local symmetry constraint is equivalent to E = Ap or A = —Ap + J1 A with
arbitrary function A which only depends on the spatial coordinate.

In conclusion, we see that despite its simplicity the chiral BF theory already contains
the main features of a topological field theory. It can thus be used as toy model
to benchmark their quantum simulation with quantum gases. However, to achieve
this we need to formulate it in Hamiltonian form.

2.3 Derivation of an encoded Hamiltonian for the chiral
BF theory

In this section, we tackle the problem of deriving a quantum Hamiltonian for the
chiral BF theory that is amenable to quantum simulation with ultracold atoms.
Since the theory is subjected to the local constraint eq. (2.14) and the relation
between A and B and the conjugate momenta of A and B, —B/x and A\B'/(2x?)
is singular, i.e. it cannot be inverted, it is not straightforward to perform the
Legendre transform of eq. (2.13). To deal with the constrained system, we apply
the first-order approach due to Faddeev and Jackiw®3°* It allows one to sep-
arate the dynamics from the local gauge symmetry constraints by progressively
eliminating the dependent fields at the level of the Lagrangian. In this way, we
avoid the complex Dirac treatment of constraints®®%°. We end up with a Hamil-
tonian involving only the physical degrees of freedom of the system, and where the
matter-dependent gauge degrees of freedom have been eliminated using the local
symmetry constraint. That is, a Hamiltonian that has an encoded form similar to
the one exploited to simulate the Schwinger model?>%7.

Since the Faddeev-Jackiw approach is not commonly used in quantum simulation,
we first apply it to Maxwell's theory and show the emergence of the Gauss law and
of Coulomb’s Hamiltonian. We then perform an analogous consistent elimination
for the chiral BF theory, obtaining the local symmetry constraint eq. (2.14) and
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the encoded Hamiltonian.

In both cases, the elimination of the matter-dependent gauge field produces a non-
trivial interaction for the matter field: an infinite-range Coulomb interaction in the
case of electromagnetism, and an anomalous chiral interaction term in the chiral
BF theory. The implementation of the encoded Hamiltonian in an experimental
system reduces then to the engineering of the corresponding emerging interaction
term.

2.3.1 Maxwell theory

The starting point of the Faddeev-Jackiw approach is the Lagrangian of the system
in first-order form, i.e. eq. (2.2) in the case of Maxwell theory. There, the electric
field of the system can be decomposed in longitudinal (i.e. stemming from the
gradient of a function) and transverse (i.e. divergenceless) parts E = E_ +ET, and
the Gauss law then used to express the longitudinal part in terms of the matter
field EL. = V(V™2p). Here V~2p is simply minus the electrostatic potential.
By substituting in the Lagrangian and decomposing also the vector potential in
longitudinal and transverse parts, A = AL + AT, we find up to total derivatives

Ly =—E7-Ar+ iV V¥4 pV 3(V-A)

Loy (V—iA)? ¥ —V(p). (2.16)

2 2 2

1
2
Here, we have exploited that the inverse Laplacian can be integrated by parts
like the other differential operators, [d3rfV~2g = [d3r V~2f g. The expression
eq. (2.16) shows that the transverse components of the gauge field and the matter
field are the dynamical degrees of freedom of the theory: the pairs (AT, —ET)
and (¥, i¥*) are equivalent to position and momentum of a mechanical system,
(g, p). While the first two terms in eq. (2.16) have the canonical form pg, the third
term does not because there is no momentum field conjugated to A_. This simply
reflects the fact that the longitudinal component of the gauge field is not physical.
The key point of the Faddeev-Jackiw treatment is that such non-canonical terms
can always be removed by field redefinitions.

Indeed, if we redefine the matter field through the gauge transformation ¥ =
exp[iV™2(V - AL)]| ¢, we obtain

VW 4+ pV3(V-A) = i¢*¢ and

1 * : 2 _ 1 *y72
V(TSI Y = VR, (2.17)
where in the second expression we have used that V~2(V - AL) = f_ implies

V-A = Vzﬁ_, and thus A = V1.
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2 Chern-Simons and BF gauge theory

Substituting this into eq. (2.16), the Lagrangian density takes the canonical form
Ly = —E7 - AT +i¢*d — HES (2.18)

and we can read off the encoded Hamiltonian density
1 1
HE = 5 (BT — oV 2p+ B%) — 0" (V — iA7)* ¢, (2.19)

which is nothing else than Coulomb’s Hamiltonian. Interestingly, this result has
been derived without assuming any gauge choice.

The derivation above is valid also when we restrict ourselves to two or one spatial
dimensions. In d = 1, there is no traverse component and the Hamiltonian simply
contains the kinetic term of matter and the Coulomb interaction, which is of infinite
range as £, = [dxp and thus —pV~2p = ([dxp)?. It has precisely the same
form as the interaction term in the lattice Hamiltonian of the Schwinger model
after encoding?’, where the integral of the density is replaced by the sum of the
charges (represented as spins by a Jordan-Wigner transformation) over the sites of
the lattice. It is the experimental implementation of such exotic interaction term
that makes the realization of the encoded Hamiltonian difficult, a challenge that
was successfully tackled with trapped ions?>?%. In d > 1, encoded formulations
of the Maxwell lattice gauge theory Hamiltonians that exploit the electromagnetic
duality have been proposed® 04 while link model dual formulations have been
investigated in Refs. [65,66].

2.3.2 Chiral BF theory

We now apply the Faddeev-Jackiw procedure to the Lagrangian of the chiral BF
model eq. (2.11) in order to derive the corresponding encoded Hamiltonian. Since
only the matter field enters canonically in the Lagrangian density, this is the dy-
namical field, as the BF equations of motion eq. (2.15) also indicate.

In order to consistently formulate the theory in Hamiltonian form, separating the
dynamics from the constraints, we start by redefining the matter field as

X t A
V= exp [/ (/ dy Ay, t) +/ 4t'A(0, ¥) ~ 2~ B0, t))] v, (2.20)
X0 to k
where xg and ty are specific values of the space and time coordinates. This gauge

transformation, which is similar to the one performed in Ref. [48] on the equations
of motion, allows us to rewrite the Lagrangian (up to total derivatives) in the form

~ B/ A . A 5 -k 1 *
EcBF = AO </€ — p) — ﬂB(XO’ t)p + @BB/ + ’Tb ¢ + %w w// - V(p),
(2.21)
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2.3 Derivation of an encoded Hamiltonian for the chiral BF theory

with the Lagrange multiplier A° = — f;; dy Foi(y, t). We thus see that the effect of
the gauge transformation eq. (2.20) is to separate the dynamical part of the gauge
field, proportional to the bosonic gauge field B, from the “trivial” part represented
by the Lagrange multiplier Ao. The latter imposes the constraint B/ = Kp or,
equivalently, ;
B(x,t) = ﬁ/ dy p(y. t) + B(xo. t), (2.22)
X
which as we explained in section 2.2, is the local symmetry constraint of the chiral
BF theory. To derive the encoded Hamiltonian, we replace the symmetry constraint
eq. (2.22) in eq. (2.21), obtaining a Lagrangian where the gauge field has been
completely eliminated and only the matter field appears

X
Lor = iV (ao ~i5 [yt r)) Ut et — V(). (223)
X0 m
However, the resulting expression is non-local, and thus not easily amenable to
quantum simulation. Moreover, the canonical quantization of eq. (2.23) would
lead to a quantum field that is not bosonic. This was to be expected, since in
two spatial dimensions Chern-Simons theory is a field theory for anyons, and its
one-dimensional reduction, the chiral BF theory, was originally constructed as a
possible model for anyons in a line**4>. Indeed, although in the original papers
the quantum mechanical model proposed as microscopic realization of the theory
was not correct*6=48 the chiral BF theory has been subsequently shown to be the
field theory corresponding to the Kundu model, a well-defined microscopic model

for linear anyons, in the regime of weak interactions®’.

Our final step to derive an encoded Hamiltonian suitable for the quantum simula-
tion of the chiral BF theory is to remove the non-locality of eq. (2.23) by performing
the Jordan-Wigner transformation

Y = exp [/2 /XOX dy p(y, t)] ¢, (2.24)

after which the matter field ¢ is again bosonic. This yields the local Lagrangian
density

Lo = i) — e (2.25)
from which we read off a Hamiltonian density that is canonical and can be quan-
tized

= Lo (e o) o4 Vi
BF = om” \TH T 2

1 * 1 A v
= 56"+ 5Ip+ V(p) (2.26)
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2 Chern-Simons and BF gauge theory

Here J = (qﬁ*d)’ - ¢*/¢> /(2mi) is the spatial current for the non-relativistic boson

¢ and V includes now a positive cubic term, V(p) = V(p) + X\2p>/(8m). Thus,
the encoded model corresponds to that of a bosonic field with effective chiral and
three-body interactions besides the original ones

2

: A A
Hine = Hi™ + Hime + V(p) = EJP + 87mp3 + V(p). (2.27)

For small values of A, the three-body term ’H?ﬁ o A% becomes negligible, and the
encoded model reduces to that of a bosonic field with additional chiral interactions
Hicrt‘tira' o A. Therefore, and similarly to the Maxwell case, the elimination of the
gauge field through the local symmetry constraint produces an interaction in the
encoded Hamiltonian, which in the case of the chiral BF theory is not Coulomb-
like but dominantly of current-density form. This interaction is chiral and breaks
Galilean invariance as the chiral BF theory before the encoding does. For local-
ized wavepackets, it is equivalent to a density-density term with a coupling that
changes with the velocity of the wavepacket itself (see section 2.4 for further de-
tails). Conversely, a non-relativistic boson displaying a current-density interaction
is described by a chiral BF theory, i.e. we can measure all the observables of the

latter in the former.

The encoded Hamiltonian eq. (2.26) provides a simple prescription for obtaining
the quantum chiral BF theory, since it is sufficient to normal order it to have a
second-quantized Hamiltonian operator#”#8. Through the local constraint, we can
then determine the expectation value of all the observables. For instance, the ex-
pectation value of the electric field of the chiral BF theory before encoding can be
obtained by measuring the time derivative of the expectation value of the density
<E> = /\<,6) Note that an analogous strategy was used to determine the electric
field when simulating the encoded Schwinger model with trapped ions?%7.

Interestingly, the chiral interaction in eq. (2.26) can alternatively be interpreted
as the coupling of the matter field ¢ to a density-dependent vector potential
A = —Xp/2. Indeed, it was precisely this property of the encoded theory that
inspired the first theoretical proposal for its implementation in a Raman-coupled
BEC with imbalanced interactions®2. However, note that this vector potential A of
the encoded Hamiltonian is not equal to the gauge potential of the chiral BF theory
A = —)\p which we inferred from the equation of motion of the "electromagnetic”
field tensor, see eq. (2.15).
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2.4 Properties of a chiral BEC from a gauge theory perspective

2.4 Properties of a chiral BEC from a gauge theory
perspective

Chiral BECs have been predicted to display a number of unconventional properties,
including the existence of chiral solitons®?:%870  density-dependent persistent cur-
rents and anomalous expansion dynamics>? =73,
and peculiar vortex patterns’*">. Previous works from the group of Prof. Ohberg
group viewed these properties as a result of the current-density interaction term
of eq. (2.27) or, equivalently, of the coupling of the matter field to the density-
dependent gauge potential of the encoded Hamiltonian A. Here, we show that the

, unconventional collective modes

correspondence to the underlying chiral BF gauge theory provides a more intuitive
interpretation of these results. Specifically, we review the main observables of the
chiral BF theory that can be accessed by performing measurements on a chiral
BEC, and discuss their potential experimental observation.

2.4.1 Chiral solitons.

One of the defining properties of the chiral BF theory is the existence of chiral
soliton solutions for the matter field*6=*8. We first shortly introduce solitons and
afterwards detail how chiral solitons arise as solution of the encoded Hamiltonian
of the chiral BF theory.

Solitons are stationary solutions for a condensate in effectively one dimension and
propagate without dispersion, i.e. without modifying their shape”®. Bose-Einstein
condensates in effectively one dimension can exhibit two different types of solitons:
dark and bright solitons. Dark solitons exist in BECs with repulsive interactions.
They manifest themselves as dip in the condensate density and are accompanied
by an abrupt change of its phase’”"®. In contrast, bright solitons can arise in
BECs with attractive interactions and constitute a self-bound wavepacket, or in
other words a density peak”®. In this thesis, we will focus on bright solitons.

In order to understand better how bright solitons arise, we briefly review the energy
of the ground state of a BEC in an external trapping potential V, with attractive
interaction strength g < 0 and without Raman coupling. We assume that the
trapping potential V strongly confines the transversal dynamics and allows the
evolution along an unconfined (or very weakly confined) in x-direction, so V =
mw?r?/2 with radial trapping frequency w, and negligible trapping frequency wy
in x-direction. Following Ref. [80], its static properties are governed by the time-
independent Gross-Pitaevskii equation

h2
no = (—v2 + V4 gp) ) (2.28)
2m
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2 Chern-Simons and BF gauge theory

with the chemical potential 1. Here, we have not set 4 to 1. The energy of the
system is given by E = [ d3rE with energy density

&= gkin + Etrap + gint
= V2P +Vp+ 5,02.
2m 2

We can obtain the stable solutions of the system by minimizing the energy defined
by eq. (2.29). To this end we follow a variational approach and take a Gaussian
Ansatz for the wavefunction: ® = /N/(73/4\/oc2) exp(—x?/(202) — r?/(20?)),
where the variational parameter are the longitudinal and radial widths o, and o,.
With this Ansatz we find for the energy®®

1 [/2a? a2 1202 as Na
E(ox,0,) = Nhw, |~ [ =he h°>+ r 4 __“ho % 2.30
(0.7) ' [4 < o? o2 4 a2 21020, aho (2:30)

with harmonic oscillator length ah, = \/h/mw, and scattering length a defined by
g = 4rh?a/m. In eq. (2.30) we identify the dimensionless ratio

N|al
n=—_——

2.31
- (2.31)

as relative measure between the contributions from interactions on the one hand
and kinetic and trapping effects on the other hand. Whereas for > 1 interactions
dominate, they can safely be neglected for n < 1.

For a BEC with attractive interactions (g < 0), the ratio n determines whether
there exists a stable solution for the condensate. For 1 > 1 the system will collapse
as the energy in eq. (2.30) has no minimum as also observed experimentally81783,
However, a condensate can have a stable solution for attractive interaction if the
dispersion caused by quantum pressure g, o (1/02 +1/02) in the trap compen-
sates the attractive non-linearity &nt o< 1/(0?0x). In this case a bright soliton
is formed. The variational Ansatz presented above predicts that a local minimum
only exists below a critical value of 7. 8984 similarly to what happens for a BEC in a
three-dimensional trap®. For the waveguide geometry as considered in this thesis,
the value is . = 0.776. The variational calculation is known to overestimate the
stability of the soliton®, numerical calculations give a value of 7. ~ 0.6278%8
The collapse criterion shows that solitons can only exist if the interaction energy
gp ~ gN/aﬁ0 is smaller than the transversal trapping energy hw,. Thus, solitons
can only form in quasi one dimensional geometries.

We now turn to chiral solitons. These are self-bound wavepackets of the matter
field that propagate without dispersion only when moving along one direction. On
the contrary, wavepackets with the opposite centre of mass momentum cannot
form solitons and spread. Thus, chiral solitons are collective excitations of the
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2.4 Properties of a chiral BEC from a gauge theory perspective

one-dimensional system and can be seen as “particles” which only exist for a given
propagation direction.

Chiral solitons are solutions of the classical equation of motion for the matter field
of the encoded BF Hamiltonian eq. (2.26), which is an effective one-dimensional

extended Gross-Pitaevskii equation of the form 652
o h? . A\
ih¢ = ~3m (0x — /.A)2 o+ <gp + 2J> o, (2.32)

where we have neglected the external transverse trapping potential V. Here,
and to simplify the comparison with the available literature, we use the same
notation as in section 2.3 but restoring A. The vector potential A of the encoded
Hamiltonian is density-dependent and thus cannot be removed by a standard gauge
transformation. However, by performing a non-local transformation, i.e. a Jordan-
Wigner transformation of form ¢ = exp(—iffOO dx.A) ¢, we can eliminate A
from the kinetic term. We then obtain

. h2
ihe = _%df’ +(gp+ hA\J)®. (2.33)

If we consider a matter wavepacket of centre of mass momentum k and group
velocity v = hk/m, the current reads J = phk/m = pv. Then, eq. (2.33)
becomes completely analogous to the usual Gross-Pitaevskii equation in eq. (2.28)
but with § = g + AMi?kp/m. The additional momentum-dependent part of the
coupling constant corresponds to the chiral interaction term of the matter field
in the encoded theory anhtira' = Mh2p?k/2m, see section 2.3. When & < 0, the
system supports a bright soliton solution. If the condensate at rest has g > 0,
reversing its group velocity will yield a repulsively interacting system (& > 0) where
no soliton solutions exist®?, as we indeed observed experimentally (see chapter 7).
Thus, the bright soliton solution of eq. (2.33) is chiral, and constitutes the many-
body analogue of edge states in quantum Hall systems. It directly reflects the
chirality of the underlying gauge theory, which can be traced back to the self-dual

term BB’ of the chiral BF model before encoding, eq. (2.21).

2.4.2 Electric field.

In its encoded form, the chiral BF theory involves only matter fields. However, the
relation between the gauge and matter classical fields derived in section 2.3 trans-
lates into a relation between the expectation values of the corresponding quantum
fields. Specifically, one has (E) = A(p) and can therefore determine the BF elec-
tric field by measuring the temporal evolution of the matter density 5. Changes in
the matter density induce an electric force that acts back into the chiral BEC and
endows it with rich dynamics, especially when the system is confined in a harmonic
trap.
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2 Chern-Simons and BF gauge theory

For instance, Refs. [71-73] showed that the current-density term of the eGPE
eq. (2.32) leads to a coupling of the monopole and dipole collective modes of the
system, eventually leading to chaotic dynamics. Here, we interpret this coupling in
terms of the induced BF electric field. Indeed, in a chiral BEC, the compression of
the gas due to the excitation of the breathing mode generates a synthetic electric
field. The corresponding electric force displaces the centre of mass of the cloud and
excites the dipole mode. Thus, the coupling of the monopole and dipole modes is
a direct manifestation of the back action between matter and gauge fields.

An even stronger manifestation of the BF electric field is the distortion of the den-
sity profile of the cloud upon expansion of the chiral BEC into an optical waveguide,
an effect that we study in chapter 7 experimentally following the theoretical pre-
diction of Ref. [52]. In this situation, the density of the gas drops in the centre
of the cloud and increases on its edges, leading to an inhomogeneous distribution
of electric forces. These forces skew the density profile of the chiral BEC, which
develops an asymmetric shape during the expansion.

2.5 Conclusion

In this chapter we illustrated the differences between dynamical and topological
gauge theories by analysing the Lagrangian of electromagnetism and Chern-Simons
theory. Afterwards, we introduced a prototypical version of a topological gauge
theory: the chiral BF theory constructed in Ref. [44—47]. The theory is obtained
from a dimensional reduction of the Abelian Ul Chern-Simons theory and supple-
mented with a chiral boson term. We explicitly derived the Hamiltonian from the
constrained Lagrangian by applying the Faddev-Jackiw formalism®3°*. In the en-
coded Hamiltonian, all gauge field degrees of freedom are eliminated and expressed
through the matter degrees of freedom by the local symmetry constraint of the
theory. This encoding approach as we have chosen is analogous to the encoding of
the Schwinger model implemented in trapped ion digital quantum simulators?:31.
Whereas the encoding in the Schwinger model leads to long range interactions,
local but chiral interactions are introduced in the case of the chiral BF theory. In
the end, we summarized the proposed properties of BECs with such chiral inter-
actions. We focused on chiral solitons and the modified expansion dynamics and
discussed how the latter one can be used to extract the gauge fields of the chiral
BF theory.
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3 Approach to simulate the chiral BF
theory in a Bose-Einstein condensate

This chapter presents our approach for realising the chiral BF theory in a
Bose-Einstein condensate based on effective interactions which are chiral
in nature. We engineer those by combining optical coherent coupling via
two Raman beams and state dependent interactions. We first focus on
single particle effects of the Raman-coupled condensate and establish a
description for a Raman-coupled BEC in momentum space. Afterwards
we derive an effective one-component Hamiltonian for the whole system
including interactions. We show that the effective Hamiltonian describes
chiral interactions and for certain parameters corresponds to the encoded
Hamiltonian of the chiral BF theory derived in the previous chapter.
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3 Approach to simulate the chiral BF theory in a Bose-Einstein condensate

In this section, we establish a theoretical description for a two-component Bose-
Einstein condensate with interactions, subjected to an external magnetic field and
optically coupled via two counter-propagating Raman beams. After introducing
the basics of the Raman coupling in section 3.1, we focus in section 3.2.1 and
3.2.2 on single particle effects introduced by the Raman coupling. We review the
Raman-dressed dispersion relation in the dressed state picture and the commonly
used series expansion of the lower dispersion branch around zero momentum which
allows to interpret the Raman-dressed atoms as particles with an effective mass
and subjected to a synthetic static gauge potential. Afterwards in section 3.3,
we include interactions in the Raman-coupled states into the description and in-
troduce a series expansion around a generic value of the momentum. From this
and following our manuscript "Encoding a one-dimensional topological field the-
ory in a Raman-coupled Bose-Einstein condensate", we derive an effective single-
component Hamiltonian and investigate how it maps to the Hamiltonian of the
chiral BF theory.

3.1 Raman coupling scheme

In our experiment, we start with a Bose Einstein-condensate subjected to a ho-
mogenous external field B in a harmonic trap. We then coherently couple two
hyperfine sub-levels o = {|]), [1)} of the ground-state manifold, which are sepa-
rated by an energy hwy, as illustrated in the left panel of Fig. 3.1. For the coherent
coupling, we employ two counter-propagating Raman laser beams with wavelength
Ar and slightly different frequencies wy, wp with Aw = w; — wy and wavevectors
ki, ko, respectively. The setup is sketched in Fig. 3.1 on the right. Each sin-
gle Raman beam is off-resonant to any atomic transition. If the frequencies of
the two Raman beams are chosen such that Aw = wp, the two-photon detuning
do = Aw — wp is zero and the transition between the coupled states |]),[1) is
resonantly driven.

In the resonant case, we can understand the Raman coupling in the following in-
tuitive way: the atoms in state ||) get excited to a virtual intermediate level by
absorbing a photon with frequency w; from the first Raman beam and fall into
the ||) state by subsequent stimulated emission of a photon with frequency wy in
the second counter-propagating laser beam. In this A-type coupling, the change of
the internal spin state is locked to a momentum transfer from the Raman beams.
Thus the internal state dictates the momentum of the atom and vice versa. The
momentum transfer is the difference between the Raman wavevectors ki and k».
In the case of a system’s geometry as shown in Fig. 3.1, i.e. counter-propagating
Raman beams along the x-direction, the momentum transfer is maximized and
equals twice the Raman recoil momentum kg = 27 /AR
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— @ <<

Figure 3.1: Raman two-photon coupling scheme. Left: two levels |]), |1), sepa-
rated in energy by fuwyg, are coupled by two Raman lasers via a higher virtual level.
The Raman beams have frequencies wq, wy and couple the states with two-photon
coupling strength 2z. Right: The Raman beams are counter-propagating along
é., have orthogonal polarization and wavevectors ki,k», respectively. The magnetic
field is applied along the é,-axis. For counter-propagating beams, each spin transfer
is accompanied with a momentum change of twice the recoil momentum kg.

3.2 Description of single particle effects in a
Raman-dressed BEC

In the following, we only consider the specific system’s geometry shown in Fig. 3.1,
which is the one that is experimentally implemented in this thesis.

3.2.1 Raman coupling in the dressed state picture

In this section, we investigate the Hamiltonian of a two-component BEC subjected
to Raman coupling in momentum space to obtain its eigenstates and the energy-
momentum relation. As introduced in section 3.1, the two coupled internal states
always differ in momentum by 2kr due to the momentum transfer from the Raman
photons. Therefore it is convenient to work in the quasi-momentum frame, where
the basis is composed out of o € {||, kx — kr) , |T, kx + kr)}. Here, ks is the
quasi-momentum along x-direction of the particle in the Raman-dressed dispersion
relation. In the following, we omit the momenta and just refer to the states as ||)

and |1).

We consider the combined atom-Raman light Hamiltonian In the frame rotating
at Aw®"®_ In the basis of [1),|]) and in momentum space, the single-particle
Hamiltonian (kinetic energy and Raman coupling) are described by

N d3k ~ ~
Blin — / Byt 2 P ) Hidn 2 () (3.1)

01,02
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3 Approach to simulate the chiral BF theory in a Bose-Einstein condensate

with the field operator gZ;I,(k) (do(k)) which creates (annihilates) a particle in state
|o) and Hiin.0y,0, denoting a matrix element of

e — (;ﬁn(ki + (ke kp)?) = hoo/2 hi2g/2 ) |
hQ2Rr/2 I (k12 + (ke — kr)?) + hdo/2
(3.2)
Here k is the momentum perpendicular to the x-direction, which is not affected
by the Raman coupling. From Hamiltonian (3.2) it is evident that the Raman light
splits the energy levels by the detuning %idg and couples them by hQ2r.

The single photon recoil energy of the Raman beams, namely Egr = h%k3/2m,
defines the natural energy unit of the system. Itis Egx/h = 8.2 kHz and Eg/h = 8.6
kHz for 'K and 3°K, the two potassium isotopes we use in our experiment. In
the remaining part of this chapter, we express energies and momenta in units of
Er and kg, respectively. Moreover, we set Eg, kg and h to unity. Then we have
ki, =k kg =k, ke = k kg = k. and for the energies h%k? /2m = k ?Eg = k 2
and similarly i2k2/2m = k2Er = k2. In the following we omit the apostrophes
and obtain for the Hamiltonian matrix in these dimensionless units:

(K A+ (ke +1)% = 6o/2 Qr/2
Hiin = < + /2 0 K24 (ke f 12 + 50/2> . (3.3)

The bare states o € {|1),|{)} are not eigenstates of matrix (3.3). However, the
matrix can be diagonalized by a basis rotation to the dressed basis ¢4 (kyx) =
Yo Ut o(ky)9o(ky) defined by the unitarity transformation:

sin 0(kx) —cose(kx))

Ulk) = <cos@(kx) sin 0(ky) (34)

The two new eigenstates |—), |+) fulfil H|£) = &4 |&) and are a superposition of
the bare states. We refer to them as lower and higher dressed state respectively.
The matrix entries of U are a function of the mixing angle 8 and can be expressed
as sin() = % 1 — P and cos(f) = % 1+ P, respectively. The polarization P
indicates the spin composition of the system. For a value of P = —1 the atom is in
state |}), for P = +1 in state |1). At P = 0 the atom is in a 50/50 superposition
between |1) and ||). For a given ratio of detuning to coupling strength, the
polarization is determined by the quasi-momentum, because the Raman beams
couple the spin to momentum. More precisely, the polarization can be expressed
as P = 5/_(~2R with the generalized detuning S(kx) = 0o — 4k, and generalized

Rabi frequency Qr(kx) = /0% + 62(ky), where detuning and coupling strength
in their generalized form are functions of the quasi-momentum. The special case
of P =0 occurs at § = 0, so for ky, = do/4 or in the case of o = 0 and k, = 0.

It is important to notice that the momentum dependence of § is a characteristic
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of coherent coupling via Raman beams. For a coherent coupling realized without
momentum transfer, e.g. with radio-frequency as we investigate in section 4.2.2,

the generalized detuning reduces to d(ky) = 0 = dp. Subsequently we have
Qr(ke) = Qr = /2% + 3 and the polarization is constant for all values of k.

For the Raman-dressed system, the single particle eigenenergies corresponding to
Hamiltonian (3.3) are

1~
Ex(ky) + k3, with (k) = k2 +1+ 552 (k) (3.5)

for |+) ,|—) respectively. In analogy to particles in lattice potentials, the dispersion
relations £+ are commonly called energy bands.

In all of our experiments, we load the atoms into the lower dressed band and the
energy gap f)R(kx) is larger than all other energy scales and therefore prevents
collisions which excite atoms occupying the ground-state to the upper dressed
state. Therefore, we limit the description of our system to the lower dressed state
|—) and only investigate the lower energy band £_.

3.2.2 Effective gauge potential and mass of Raman-dressed atoms

The Raman coupling leads to a synthetic vector potential and a modified effective
mass of the atoms, as further outlined below.

The connection between atom-light interactions and an effective gauge potential
was first pointed out by R. Dum and M. Olshanii in Ref. [89] and P.M. Visser
and G. Nienhuis in Ref. [90]. Subsequently, concrete experimental schemes for
ultracold quantum gases were proposed °*=2° and the progress of the field reviewed
in Refs. [87,88,96]. These results are obtained in position space and in the adiabatic
approximation, which is valid for large coupling strengths. We here briefly retrace
the conceptual idea, following the review of Prof. Dalibard in Ref. [96]. We
consider atoms moving in a laser field with generalized coupling strength 2. The
state of the systems for different times t is W(r, t) = > cp(r, t) |Wn(r)) with the
probability amplitudes c,(r, t) to find an atom at position r in the internal state
|W,(r)) and the index n runs over all eigenstates of the system. The internal
states are just the dressed states |—) |+) in position space, which are position-
dependent as the mixing angle 6 depends on _(~2R(r) and in position space the
states in addition depend on the laser phase. We now consider the time evolution
when the position r is varying in time. We assume that the change is adiabatic,
i.e. atoms follow adiabatically the eigenstate in which they were initially prepared,
ie. W(r, t)=c/(r, t)|W(r)), if ¥(r,0)=|W(r)). In this case, one can derive the

33
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following time evolution for the parameter ¢(r, t) from the Schrédinger equation:

I.acl(g:t) = (k= A/(r))?

Qr(r(t
- ’?(2()) V| ar 1), (3.6)
where we have used the dimensionless units of this chapter and V is a scalar
potential. Moreover, we have defined

A(r) = I(W(OIV¥(r)), (3.7)

which is the so-called Berry connection and arises due the implicit time depen-
dence of the state: 0;W(r,t) = O:ci(r, t) |Wi(r)) + c(r, t)k [V ¥(r)). Eq. (3.6)
has the same structure as the Schrédinger equation of a charged particle coupled
to the vector potential of electromagnetism. Therefore A(r) can be identified with
an effective vector potential. Its name Berry connection points to the fact that
atoms under the influence of the vector potential A;(r) pick up a geometric phase
Pgeom(T) x fOT kA,(r)dt = § Aj(r)dr when completing a contour in position
space in time T. The geometric phase does not depend on the time T but only
on the trajectory of the atom. This is equivalent to the Berry phase acquired by
neutral atoms with magnetic moment slowly moving in an external applied inhomo-
geneous magnetic field®’. Therefore, the atom-light interaction in this adiabatic
approximation leads to an effective gauge potential of geometric origin.

However, the synthetic gauge potential can also be understood in momentum
space. This approach, that was first formulated by Prof. Spielman in Ref. [94],
has proven to be very successful and is the one more commonly used to describe
the experiments. Here, we follow this approach and review how the synthetic gauge
potential and in addition an effective mass arises in terms of the energy-momentum
relation £_ of the lower Raman-dressed state which is strongly modified due to
the Raman coupling.

Let us first investigate how the dispersion depends on the coupling field param-
eters (2g and Jdg. The dispersion relation for the lower dressed state for 6 = 0
and various coupling strengths is depicted in the left panel of Fig. 3.2. At low
coupling strength, namely 2z < 4, the dispersion exhibits a double-well structure.
With increasing 2g, the two wells start to merge. At 2g = 4, the dispersion
has a flat regime, more precisely 9°£_/9%k, = 0 at k. = 0. For larger coupling
strengths with 2z > 4, the dispersion relation develops a single minimum. In all
our experiments, we work in the single minimum regime with 2z > 4, on which we
will concentrate in the following. Above a certain coupling strength, the adiabatic
approximation in position space as introduced previously holds. In this regime, the
dispersion is parabolic, so the effective mass becomes equal to the real mass of
the atoms. In our experimental system, the adiabatic approximation starts to be
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3.2 Description of single particle effects in a Raman-dressed BEC

valid at values of 2g ~ 85, where the corrections due to the non-parabolic shape
of the dispersion are below 5%.

We now consider the case of non-zero detuning in the very large Rabi coupling
limit. The right panel of Fig. 3.2 shows the dispersion £_ in the large coupling
limit at 2 = 100 and different values of the two-photon detuning Jg. For values
of 09 < 0 (dp > 0), the minimum of the dispersion kmin gets shifted to positive
(negative) values of quasi-momentum k.

In Fig. 3.3 we show the energy-momentum relations for both dressed states for our
typical experimental coupling strength 2z = 4.5 and the case §o = —1.2. The
dashed lines indicate the energies of the bare states in the quasi-momentum frame.
The colour encodes the previously introduced spin polarization P: green represents
an atom in state |}) (P = —1), blue an atom in state [1) (P = +1).

For these parameters, namely away from the strong coupling limit and dg # O,
the dispersion relation gets modified in two manners. First, the minimum of the
dispersion is shifted as described previously. As we outline further below, the shift
can be interpreted as synthetic vector potential acting on the atoms. Second, the
dispersion relation becomes non-parabolic. This is described by the momentum-
dependent curvature of the modified dispersion relation, which is 9%£/0k?. Analo-
gously to the parabola of the free particle case, we define the effective mass m*(ky)

Qr =100
_44 —— 5y = 0.0 .
== == §p= 36.4 I
_46 LR 60= -36.4 I
| /
“ -agfy /o
% /7’
-50 ’ /7’
\ ’0 / '0.
=52} Nl
-2 0 2
Kx

Figure 3.2: Raman-dressed dispersion for different parameter of the coupling field.
Left: dispersion of the lowest dressed state |—) for 5o = 0 and different values of
the Raman coupling strength 2g. Right: dispersion of |—) for 2z = 100 and three
values of the detuning. Energies and frequencies ({2g, do) are given in dimensionless
units of Eg and Eg/h, respectively.
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3 Approach to simulate the chiral BF theory in a Bose-Einstein condensate

with m*(ky) = 2(0?€/0k?)~1 in dimensionless units. We obtain

-1
2
QR

2% (ky)

m*(ky) = (3.8)

In contrast to the free particle case, the curvature and thus effective mass is not
constant, but rather a function of the momentum k. In section 6.3, we study the
effect of the Raman induced effective mass m*(ky) on the expansion dynamics of
a condensate, similarly as done in the work by the group of Prof. Engels®.

A convenient description for the lower energy band in the single minimum regime
but away from the parabolic limit is given by the expansion of £_ around k, = 0,
as first introduced by Prof. Spielman in Ref. [94]. To lowest order in 1/£2 and
second order in k,, we find

260 4

1~
E_ m~k2+1—-Z0Qr(0)+ x——ke — =—— k2 3.9
2O 50 Br0) 39)

~ 1 )
_ [ _12r(0) > b 2 2 — 2:(0)
B <QR(0) - 4> (kx 4 — sz(0)> t—s W (3.10)

where W = —(52(2r(0) — 4))/((4 — 2r(0))22&(0)) is a constant energy term.

10—

Figure 3.3: Energy-momentum relation for the two Raman-dressed states |+) , |—)
for a typical experimental setting with {2z = 4.5 and dg = —1.2.The colour encodes
the spin polarization P. The dashed lines are the energies of the bare states in the
quasi-momentum frame |}),[1). The dotted line indicates the minimum of the
energy band.
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3.2 Description of single particle effects in a Raman-dressed BEC

From the expansion in eq. (3.10), we can deduce the following changes for atoms
in the Raman-dressed dispersion:

e The minimum of the Raman-dressed dispersion, which is defined as

0E_ | Ok| k=, = 0. (3.11)
is shifted as previously investigated qualitatively. From eq. (3.10) it is evident
that 5

0
Kmin = —=——. 3.12
™4 - Qg(0) (3.12)
which implies kpin = 0 for g = 0.
e The atoms have an effective (dimensionless) mass m§ = QQFO()O)4. Note that
2(0)—

in contrast to the effective mass m*(k,) defined in eq. (3.8), m is not a
function of the quasi-momentum. Instead, it is the evaluation of m*(ky)
at k, = 0 and small values of detuning dg. In the large coupling limit, the
effective mass approaches 1, which implies the Raman-dressed dispersion
becomes parabolic as in the free particle case. This is precisely the regime
of the adiabatic approximation in position space.

e The energy of an atom is shifted by the constant contributions 1 — 2z(0)/2
and W respectively.

Expanding the energy up to second order in k, is only a good approximation for
an expansion point close to the minimum of the dispersion. We have performed
the expansion around k, = 0 and therefore eq. (3.10) is only valid for small values
of detuning, as kmin = 0 only for §p = 0.

Expressing the expansion with the newly introduced parameters knyi, and mg gives

kx_ kmin 2
( 2.

E =
ms 2

+ W, (3.13)

which has a similar structure as we found in the adiabatic approximation in position
space, see eq. (3.6). The dimensionless Hamiltonian describing the gauge field Ag
of electromagnetism has the form H = (k, — Ag)?, where the charge e has been
set to 1. A comparison to eq.(3.13) shows that the shift of the minimum can
be associated with an effective static vector gauge potential: kmin = Ap. Thus,
the atoms in the Raman-dressed dispersion can be described as synthetic particles
with a larger effective mass mg and subjected to a synthetic static vector potential
Ao = Kmin = 00/ (4 — fZR(O)). This gauge potential is bounded by the momentum
difference of the bare states: —1 < Ap < +1 and its strength can be tuned by
the easily controllable Raman light field parameters 2z and dg. Its experimental
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3 Approach to simulate the chiral BF theory in a Bose-Einstein condensate

investigation was pioneered by the group of Prof. Spielman®* in Refs. [99-102].

The scalar potential W can also be expressed in terms of the vector potential Ag.
By direct substitution we obtain for it W = —A3/m.

3.3 Full effective single-component Hamiltonian

In the previous paragraphs we have investigated Raman coupling at the single
particle level, i.e. considered a system described by H = Hyj, + Hraman. However,
the full Hamiltonian consists out of a kinetic and an interaction part:

Fl — I:Ikin + FIRaman + Flintv (314)

where we have neglected any trapping potential for simplicity. The third term
I:Iint captures the intra- and interspin interactions in the system in the absence of
Raman coupling, and which are microscopically described by contact potentials,
parametrized by the dimensionless coupling constants g;,,; where o;,0; € {], 1}.
As we will see in the remaining part of the chapter, including interactions is the
crucial ingredient to endow the synthetic vector potential with an appropriate den-
sity dependence and engineer the chiral BF model in its encoded form. To this end,
we will derive an effective single-component form of the full Hamiltonian (3.14).

In the adiabatic approximation as introduced for eq. (3.6), an effective descrip-
tion for the interacting system in the lower dressed state was first established by
the Ohberg group in Ref. [52]. The authors consider H in position space and
treat the interaction part as small perturbation. By applying perturbation the-
ory to first order they derive the dressed states |xi) = ‘X$)> + ‘X$)> where

’thl)> = ot gTTpi ‘XSF)> admixes the two dressed states with a magnitude
depending on the difference of the interaction strengths and the density p+ of the
dressed states. Because these formulas were derived under the assumption that the
coupling strength is the dominant energy scale, only the dressed state under con-
sideration is occupied: p_ = 0 or py = 0. By projecting onto the perturbed lowest
dressed state |x_), they obtain an effective Hamiltonian, in the dimensionless units
of this chapter given by:
.~ 2 R &

e~ (k= Apfrpe(nt)])” + Wt =5+ S (3.15)
with W a scalar potential contribution and g = (g, + g+ + 2g1)/4. The
Hamiltonian A describes a system which behaves as if subjected to a vector
potential AL = Ag = A, minimally coupled to the momentum. In addition to
the standard static vector potential Ag = —V¢/2 with the gradient of the Ra-
man laser phase ¢, this vector potential has a density-dependent contribution
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3.3 Full effective single-component Hamiltonian

A, =Vo(g,, — gr1)p+(r)/802r. As explained in chapter 3, the minimal coupling
to a density-dependent vector potential is key for the experimental realization of
the chiral BF theory in its encoded form, and therefore the proposal of the Oh-
berg group in Ref. [52] paves the way for the exploitation of Raman-coupled BECs
towards this goal. However, the single-component effective description derived in
Ref. [52] is valid only in the limit of extremely large coupling strengths, for our
experimental system we would need 2 = 85 Eg. Such conditions are unfeasible in
our experimental system, due to severe heating of the atomic cloud by the Raman
light with consequent atom losses (see chapter 5).

Here, we present a novel effective single-component description for the interact-
ing 1D Raman-coupled system which is able to reveal a more accessible regime
of Raman parameters where the minimal coupling to a density-dependent vector
potential is still preserved. In contrast to the approach of Ref. [52], this description
is developed in the momentum space and along the lines of Spielman’s work and
in particular of his series expansion as introduced in the previous section. This
description was developed in collaboration with Prof. Alessio Celi and our ex-
perimental team formed by Prof. Leticia Tarruell, Craig Chisholm, Dr. Elettra
Neri and Dr. Ramén Ramos and myself. It is also the subject of the manuscript
"Encoding a one-dimensional topological field theory in a Raman-coupled Bose-
Einstein condensate”, currently in preparation for submission. Below we follow in
major parts our manuscript and report in detail on the derivation of the effective
single component Hamiltonian.

3.3.1 Derivation in momentum space

For each of the two contributions I:lkin and /:Iint of Hamiltonian (3.14), we obtain
a single-component description by working in second quantization in momentum
space and restricting the creation and annihilation operators to the lower dressed
state. Furthermore, for both contributions, we perform a series expansion around
a generic value of the quasi-momentum k. Afterwards we recombine both contri-
butions into one full effective Hamiltonian.

Low momentum expansion for the kinetic part

The kinetic part corresponds to the Hamiltonian in eq. (3.3), i.e. describes the
free particle dispersion along y- and z- direction and the single particle effects of
the Raman coupling along the x-axis, and was investigated in section 3.2.1. We
derive a single-component description by defining in momentum space:

3
Plesan = [ a0 (- (k) + L1 (W) (3.16)
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3 Approach to simulate the chiral BF theory in a Bose-Einstein condensate

with £_ the energy of the lower dressed state. Our previous expansion of £_, see
eq. 3.13, was obtained from an expansion around k, = 0 and is only valid for small
values of detuning §p and quasi-momenta k, around zero. In this section we want
to obtain a more general description and therefore perform an expansion of the
energy momentum relation £_ of the lowest dressed state around a general value
of k.

For atoms of an ultracold atomic cloud with centre of mass momentum close to kg
along the x-axis, we can recast the momentum along the Raman coupling direction
as k, = ko + g, with g < 1, accounting for any centre of mass momentum away
from kg and the momentum spread. By substituting this in eq. 3.5, we have for
the energy of the lowest dressed state

1 -
E_(ke) =1+ Kk + kT +2qko + ¢* + 5 SR (ko)f (u). (3.17)
with f(u \/1 —8u(8/2r) + 1612 and u = q/(2r(ko)). With a Taylor expan-
sion around u = 0, we obtain for this function
/ 1 1 2 ]. 111 3 4
f(u)=1f(0)+f (0)u+ f (0)u” + 6f 0)u” + O(u™), (3.18)

taking the expansion parameter u up to the third order into account. Inserting this
expansion in the single particle energy gives

E_(k) =P +eM 1 @4 B L o(g

d(ko) 2% 5 d(ko) 123 7
5(ko)+2qko+q +2— q—4—= qg-— 16— +O( )
_QR(kO) 23(ko) Q5(k0)

(3.19)

(n

where 5,) denotes the contribution of n-th order in g. We will use this abbrevi-
ation in chapter 7 when estimating the validity of eq. (3.19) for our experimental
parameters.

Analogously as in the previous section, we can rewrite this equation in terms of an

effective mass which now is determined by ko:

-1
402

mi=|1-=F (3.20)
23(ko)

and obtain for the lowest dressed energy band the same structure as in eq. (3.13):

(g — Ao)
ko

E_(ky) = E_(ko) + + W+ 0(q"). (3.21)
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3.3 Full effective single-component Hamiltonian

Where we have introduced the static gauge potential

S(ko) (ko) R2R ,
Br (ko) Sﬁ,%(ko)">’ (322

Ao = —m*,zo (ko +

and the scalar energy contribution W = —Ag/mio. For small values of de-
tuning and for kg = 0 we recover m; = mg and Ag = —my8(0)/23(0) =
do/ (4— fZR(O)) to second order in g. Hence, these equations agree with the
result from the common expansion around ko = 0 (eq. 3.13 in the previous sec-
tion). However, now the parameters mj , Ag and W depend on the momentum
ko. To third order in g, Ag acquires a momentum dependence that can be inter-
preted as the effect of the g-dependent part of the momentum dependent mass
m*(kc) = m*(ko + q)°? (defined in eq. (3.8)). We can cancel out this effect by
setting 5 = 0, which corresponds to a balanced superposition of the two states
with P = 0 or, equivalently, to the choice kg = dp/4.

By inserting eq. (3.21) into the effective kinetic Hamiltonian of eq. (3.16) and
transforming to position space, we obtain

—_iAn)2 | .
uatsin = [ 010 [5—(k0) swovi - B2 A g )
ko

Here we have dropped the indices of the lower band, so ¢§_ = CZ; <;§T_ = qu.

Low momentum expansion for the interaction part

The interaction part l:lint of the Hamiltonian, describing two atoms colliding with
incoming and outgoing momenta ki, ko and ks, kg respectively, is in second quan-
tization and in momentum space

(3.24)

int —

N _/ d3k; d3ko d3k3 d3ky v
(2m)* (2m)* (2m)* (2m)°
with
~ 1 ~ N a ~
V=22 8.ndhi(ka)dl, (ka) b, (k) do, (ki)0 (ks + ks — ko — ka). (3.25)
01,02

The delta function in this equation ensures momentum conservation, i.e. the sum
of the incoming momenta k; + k> is equal to the sum of the outgoing momenta
k3 + k.

As a next step, we express V in the dressed basis ggi(k) and restrict ourselves to
the lowest energy band ¢_(k). This approximation is justified when the energy
gap to the upper dressed state |+) is much larger than all interaction energies,
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3 Approach to simulate the chiral BF theory in a Bose-Einstein condensate

so processes that couple the lower to the higher dressed state are negligible. In
the following, we drop the — subscript in the field operators. The interaction
Hamiltonian in the dressed basis then reads

~ [ &k d®ko d®ks d%ks 1
" _/ (27) (2m) (2m)? (23 28 (Ko b o Kax) (3.26)
B (ka) B (k3)d(ka)B(k1)03 (K + k3 — ko — ki)

where we have introduced the generalized interaction strength

geff(kl,Xr k2,x: k3,x: k4,x) = Z 801,02 U—,0'1(k4,x)Ui,gl(kZ,x)U—,ag(k&x)Ui,gz(kl,x)

01,02

(3.27)
which is the effective coupling constant of the system, describing the interactions
between atoms in the lower Raman-dressed band. In particular, ge is a function of
the quasi-momenta of the colliding atoms. It is interesting to notice that eq. (3.27)
also describes the interactions among atoms in the lower band for the case of
vanishing momentum transfer (kg = 0), i.e. in the case of rf-coupling. In that
case, gefr results in g = gry cos*(6) + gy sin*(0) + (1/2)g 1 sin®(20) with the
mixing angle 6 independent of the momentum. This case will be the object of
study in section 4.2.2.

Up to now, the modified coupling constant was investigated only in this particular
case of rf-coupling and gr # g1 1971% or for non-zero Raman transfer kg # 0
but identical intra- and interspin interactions (g4 = gy = gm)lm. In this work,
we present the first investigation of the modified coupling constant for both kg # 0
and gy # g|| (see chapter 7 for the experimental study).

As previously done for the kinetic part, we write for the momenta along the Raman
coupling direction k, = ko+q and expand the interaction Hamiltonian to first order
in q/f2r (ko). We obtain

geff.(kl,xY k2,Xr k3,x: k4,x) = ge(?f) + ge(éf) + O(q?)

o) (3.28)

2mzo = -Q(kO)
where géff)g;}f) represent the contributions of zeroth and first order in g. This
notation will be used in chapter 7 to give an estimate for the validity of eq. (3.28)
for our experimental realization. The sum in eq. (3.28) runs over the incoming
and outgoing momenta of the colliding atoms. The expansion coefficients are

81 = gefi (Ko, ko, ko, ko), (3.29)
amy ([ d(ko) :

A= 0 | 220 + gy sin® 0(ko) — gy cos* O(ko) | - (3.30)
B(ko) (Q(ko) i i
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3.3 Full effective single-component Hamiltonian

Substituting these expressions into eq. (3.24), the interaction Hamiltonian in po-
sition space becomes to leading order Hj,y = fd3r’H;nt with

- 1 [ d3q, d3q, d3q; d3q
- / (277)13 (2@23 (277)33 (27T)43 8! (a3) 8 (a4)

int — 2

#(a1)o(az) expli(a; +a, —az —ag) - 1]
= %glﬁ(r)[ﬁ(r) - 1]+ 2,.372 (NG (r)Oxd(r) — (0T (r))p(r)]d(r)
° (3.31)

Apart from the usual non-linearity, scaling with gy, the interaction Hamiltonian
in eq. (3.31) features an additional term scaling with A. In this term, we rec-
ognize the current operator of eq. (2.26) which reads in our dimensionless units:
J= 1/(imi0)(<;§Jf8X¢; — (84¢")d). Accordingly, the additional term precisely cor-
responds to the chiral interaction term )\jp/2 of the encoded chiral BF theory
(see eq. (2.26)). It explicitly breaks the Galilean invariance and provokes interac-
tions which depend on momentum and hence are chiral. Thus, to first order in
A, eq. (3.31) is identical to the quantum version of the interaction term of the
encoded chiral BF theory in eq. (2.26).

Full effective Hamiltonian

Combining eq. (3.23) and eq. (3.31), we obtain for the full Hamiltonian in position

space:

¥ I\ ax - A 2 A

A = [ el [5(/«» swovy o O g
ko

+ [ [;glﬁ(r)(ﬁ(r) 1)+ 5010 [$1(10:80) — (08 ()30 é(r)] .

2imj,
(3.32)

In the case of § = 0 (implying P = 0), the static vector potential Ay does not
depend on the quasi-momentum k, and we can recast the Hamiltonian in terms
of a covariant current-nonlinearity:

A (Ox — iAg)?

Hefr. = /d3f€5T(f) [8,(k0) +W-vi - "
ko

v <g1 + z,jf“’) it ;Jm] i) (333)
ko
with the current operator
) = [$)0 — iA)Ar) — (@0 + i) (NN (339)
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3 Approach to simulate the chiral BF theory in a Bose-Einstein condensate

The Hamiltonian eq. (3.33) describes a system of bosonic particles around ar-
bitrary momentum kg that are subjected to a synthetic vector potential Ag and
have an effective mass mj, along the x-axis. These Raman-dressed bosons have
standard density-density interactions of coupling strength gy +2)\A0/m’,§0, but also
anomalous current-density interactions )\jp which are characteristic for the en-
coded version of the chiral BF theory.

The encoded Hamiltonian of the chiral BF theory (see eq. (2.27)) includes in ad-
dition a three-body interaction term. In the dimensionless units employed in this
chapter, this energy term reads

5. X
Esg = [ d’r—[8]". (3.35)
4mk0

Since it scales with A2, it is negligible in the regime of 2g > grp, g p and
gi+p we are working in. Therefore, we can complete the square in the effective
Hamiltonian of eq. (3.33) which allows us to rewrite the non-linear current term
into the kinetic part:
~ A Oy — iA)?
Fesr. = / &rol(r) [6(/«)) pw vy G AR
ko

1 2)\A .
+2Gr+m£>4wﬂ+005

(3.36)

In this case, the Hamiltonian describes a bosonic field minimally coupled to a
vector potential which has a single particle and a density-dependent contribution:
A= Ay— %(ET(r)qg(r) Note that in the assumed case of § = 0, the first part of the
vector potential is constant as Ay = —mj_ko and can be removed by a standard
gauge transformation. Moreover, the evaluation of the coupling strength gy simply
yields g1 = (g4t + &1 + 2g1)/4 which is equivalent to the coupling strength g
of the non-linearity in eq. (3.15) out of Ref. [52]. The factor A also simplifies
to A = mio(gu — gﬁ)/ﬁR, so the magnitude of the density-dependent vector
potential scales linearly with the unbalance in the intrastate interaction strengths.
The result in eq. (3.36) connects our momentum-space derivation of the effective
Hamiltonian to the real-space derivation of Ref. [52] yielding eq. (3.15), and shows
that the latter is the classical limit of the former.

Apart from constant energy contributions, the effective Hamiltonian of eq. (3.36)
for 6 = 0 is identical to the encoded Hamiltonian of the chiral BF theory in
eq. (2.26), supplemented with an additional density non-linearity of 2)\A0|¢;(r)|2/mio
and where the mass of the atoms is replaced by mj . Therefore, a two-component
Raman-dressed BEC with unbalanced interactions (implying A # 0) described by
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3.4 Conclusion

the effective Hamiltonian eq.(3.36), is a well-suited platform to experimentally
realize the chiral BF theory in its encoded form. The system described by the
effective Hamiltonian has the properties discussed in section 2.4 for the chiral BF
theory. In particular, chiral soliton solutions exist and the expansion dynamics is
modified, effects we indeed observe experimentally (see chapter 7).

My group also performed numerical simulations to validate the Hamiltonian of
eq. (3.36) as effective description for our experimental parameters. To this end,
the effective single-component Hamiltonian was compared with the complete two-
component description with respect to density profiles and experimental observ-
ables. Details can be found in our publication "Encoding a one-dimensional topo-
logical field theory in a Raman-coupled Bose-Einstein condensate". The simula-
tions were performed by my colleague Craig Chisholm, and will thus be included
in his PhD thesis.

3.4 Conclusion

In this chapter we discussed to which extent the effective Hamiltonian of a BEC
where two internal states with unequal interactions are coupled by Raman light
maps to the encoded Hamiltonian of the chiral BF theory presented in chapter 2.
While the mapping was originally proposed by the Ohberg group in Ref. [52], where
the effective Hamiltonian was obtained with perturbation theory in the adiabatic
approximation in position space, we presented in this chapter an alternative ap-
proach based on a momentum-space picture. Building upon the work of Ref. [107],
we derived the effective Hamiltonian in momentum space and in the dressed state
basis from a microscopic view. Our description holds for arbitrary momenta and
interaction strengths in the Raman-coupled states. It allowed us to derive the ef-
fective Hamiltonian of the system restricted to the lowest dressed band outside the
adiabatic approximation which demonstrates that its implementation is also possi-
ble for experimentally less demanding values of the Raman coupling strength. We
also included finite values of the two-photon detuning, and found that the effective
Hamiltonian maps to the encoded chiral BF theory as long as § ~ 0. Moreover,
the mapping remains valid on the quantum level, so the chiral BF theory beyond
the mean-field approximation could be explored.
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4 Experimental platform and
interaction control using coherent
coupling

This chapter gives an overview over the experimental platform on which
we experimentally realize the encoded chiral BF Hamiltonian. We start
with a description of our apparatus capable of producing Bose-Einstein
condensates of ' K or K. Afterwards we focus on methods to control
the interactions in the isotope 3°K. In particular, we investigate coherent
coupling via radio-frequency as novel method to tune the effective inter-
actions of the system in a broad, flexible and fast manner.
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After chapter 1,2 and 3, we have set the theoretical ground for a realistic exper-
imental investigation of the chiral BF theory. In the following, we turn to the
experimental part of our work. In this chapter, we start by introducing the exper-
imental setup. Thereafter, we turn to the interaction control in 39K by coherent
coupling, which is one of the main requirements for realizing the encoded chi-
ral BF theory (see chapter 3). We study the effective interactions present in a
coherently-coupled 3°K BEC with unequal interaction strengths which was derived
in section 3.3.1 in a general form. In this chapter, we realize the coherent coupling
not with Raman light as in the rest of the thesis, but instead via radiofrequency.
Hence, the interactions are not chiral as the internal state is not locked to the
momentum. This allows us to investigate the concept of effective interactions in
a simple setting, before combining the interaction control and Raman coupling in
chapter 7.

4.1 Experimental apparatus

All our experiments are performed with a Bose-Einstein condensate of potassium
41K or 39K. Our experimental apparatus as well as the cooling sequence and
techniques utilized to achieve condensation, are described in detail in the PhD
thesis of Dr. Cesar Cabreral® and Dr. Julio Sanz!'%°, who played the most
significant role in building up the apparatus. | started my research on the potassium
experiment in January 2018. Although | started with an apparatus readily built,
several improvements and maintenance tasks were necessary. In particular, in the
first half of 2018 my PhD colleague Dr. Julio Sanz and | replaced and implemented
a new in situ imaging setup and added a second high resolution objective for
addressing potentials to the experiment. This steps required major rebuilding, e.g.
removing most of the MOT optics and a re-optimizing of the established cooling
sequence.

In this section, we give a short overview over the different isotopes of potassium,
the cooling sequence and the parts of our apparatus relevant for the measurements
described in this thesis. In addition, we summarize important parameter of the in
situ imaging and our procedure to build in two high resolution objectives.

4.1.1 The potassium atom

Potassium is an alkali atom, it has a single electron in its valence band. This makes
it relatively easy to cool down potassium to quantum degeneracy in comparison to
dipolar or alkaline-earth metals. Potassium has three stable isotopes. The most
common is the bosonic 3°K with 93.3 % abundance, followed by the bosonic 'K
with 6.7 % and the fermionic “°K with 0.012 % abundance. All three isotopes
of potassium have been cooled down to quantum degeneracy for the first time
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Figure 4.1: Fine- and hyperfine structure of the two potassium isotopes 3K and
41K. The hyperfine energy shifts in parenthesis are given with respect to the cor-
responding energy level of the fine structure. The spacing of the levels are not to
scale and values are taken from Ref. [113].

between 2001 and 200719112 Qur experimental apparatus is currently capable
of condensing both bosonic isotopes and we performed experiments with 3°K as
well as with 4'K.

The atomic energy levels arising from the fine structure and hyperfine structure
splitting are depicted in Fig. 4.1 for the two potassium isotopes 'K and 3°K. The
level scheme is shown in terms of the quantum number F, which describes coupling
of the electronic angular momentum and spin and the nuclear spin. We use the
electronic transitions at A = 766.701 nm (D2 line) and at A = 770.100 nm (D1
line) to cool down and image the atoms. Our experimental sequence is described
in the next paragraph.

4.1.2 Route to Bose-Einstein condensation

In order to produce a 3K or *'K Bose-Einstein condensate we employ a standard
cooling sequence of Doppler cooling, sub-Doppler cooling, rf evaporation cooling
in a magnetic trap and evaporative cooling in an optical dipole trap. A peculiarity
of our apparatus is that we cool down 3°K and “'K simultaneously. In fact, the
sympathetic cooling steps for 39K crucially rely on the presence of 4'K. Because the
background interaction strength of 39K is negative, we employ the large repulsive
collisional properties between 3°K and #K to achieve thermalization. The cooling
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4 Experimental platform and interaction control using coherent coupling

sequence for both isotopes is in principle the same and consists out of the following
main steps:

50

We start the sequence in a vacuum chamber with high vapour pressures of
39K and 'K. Out of these, we sequentially produce cold atomic beams with
a 2D Magneto-optical trap (2D MOT) on the D2-transition.

We push the atoms optically to a distinct ultra-high vacuum chamber where
39K and #'K are sequentially captured by a 3D Magneto-optical trap (3D
MOT) on the D2-transition. If we want to condense *'K, we remove the
loading time of the 3K MOT. Afterwards the density of the cloud is increased
in a compressed hybrid D1-D2 MOT.

We perform sub-Doppler cooling of 3°K and 4K with a grey optical molasses
on the D1-transition.

We optically pump atoms into state |F = 2, mg = 2) which is a low-field
seeking state. The atoms get captured in a magnetic quadrupole trap, where
we use radio-frequency (rf) evaporation on the hyperfine transition to cool
41K, The isotope 3°K is sympathetically cooled due to the positive and
large background interaction strength between 3°K and “'K. Typical atom
numbers at this stage are 4 x 107 and 2.5 x 107 for *'K and **K at a
temperature of ~ 30 uK.

We apply magnetic field gradients to shift the centre of the quadrupole trap
to the geometric centre of the vacuum cell. This step is needed as our
imaging setup with high NA objective is designed for imaging objects in the
geometric centre.

We load the atoms to a hybrid trap formed by a reduced quadrupole trap
and an additional optical dipole trap beam. Atoms are evaporatively cooled
down and we remain with an atom number of ~ 1 x 10° atoms in both
isotopes with a temperature of ~ 1 uK.

We transfer the atoms to a purely optical dipole trap formed by two crossed
laser beams. If we want to condense 39K, we blow away 'K with an optical
pulse on resonance with the #*K D2 transition. Afterwards, we prepare the
atoms in the lowest state of the F = 1 manifold via radio-frequency sweeps.

We increase the magnetic field strength to a value close to a Feshbach reso-
nance of 3°K (around 33 G or 402 G) and achieve Bose-Einstein condensation
by forced evaporation. We have atom numbers up to 120 x 103 and 140 x 103
for 41K and 39K, respectively.
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Figure 4.2: Sketch of the experimental setup. The atoms are trapped in a crossed
optical dipole trap, formed by laser beams along the é,- and &,-axis. A homogenous
bias field in é,-direction is applied through a pair of coils in Helmholtz configuration.
Two high NA objectives are installed on the top and bottom of the chamber for
imaging and projecting potentials on the atoms.

4.1.3 Details of operation
Optical dipole traps

The starting point of all our experiments is a Bose-Einstein condensate in a optical
dipole trap formed by two laser beams propagating along the é,- and (éx+éy)/\@—
axis. Unless explicitly stated otherwise, we transfer the atom into a optical trap
formed by the trapping laser beam along &, and an additional laser beam along &,
direction. The geometry of the setup is sketched in Fig. 4.2. In most measurements
we investigate the dynamics of system only along the direction of &. In this case
we initialize the experiment by switching off the axial confinement and allow the
cloud to expand in the remaining waveguide potential along the é;-axis. The
remaining axial trap frequency caused by the residual curvature of the magnetic
field is in the order of wy/2m =4 Hz at 400 G .

Magpnetic fields

All magnetic fields in our apparatus are produced by electric currents. The main
fields are produced by a couple of coils aligned along é, and placed at the top
and bottom of the vacuum chamber. The coils have a distance of ~ 27 mm
to the atoms and have a Bitter design!'#, which allows an efficient water cool-
ing. The configuration of the coils can be switched between anti-Helmholtz and
Helmholtz configuration by an H-bridge circuit. Thus the coils are used to pro-
duce the quadrupole field for the magnetic trap stage as well as the homogenous
field oriented along é, direction during condensation and measurement stage. The
current is supplied by a power supply with a range of (0 —400) A L. In this thesis

!Delta Elektronika SM 15-400
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4 Experimental platform and interaction control using coherent coupling

we employ magnetic fields strengths between (50 — 400) G, which corresponds to
currents between ~ (21 — 170) A. The magnetic field strength has a stability of
~ +2 mG at 50 G and ~ +15 mG at 400 G, measured with rf spectroscopy and
Ramsey interferometry 1.

In addition to the main coils we have a set of four coils in cloverleaf configuration
both at the bottom and top of the vacuum chamber, and a set of round coils
around each window of the chamber. All these coils are winded with copper-wire
and are not water cooled. These coils allow us to compensate curvatures or gra-
dients produced by the main coils. Moreover, they are essential for optimizing
the transfer of atoms from the hybrid to the optical dipole trap which has a fixed
position to ensure that the atoms are in the focus of our imaging objectives. In
addition, we use the coils to realize a strong magnetic field gradient along &, in
some imaging sequences. The earth magnetic field and ambient stray magnetic
fields are compensated with a set of three coils located outside the optical table.

Internal state control

The internal state of the atoms in the BEC can be controlled and manipulated by
means of radio-frequency fields. Depending on the application, i.e. rf-sweeps or rf-
pulses, we use either a FPGA based? or analogue® frequency generator, respectively.
The signal is amplified with a high power amplifier* and forwarded to an antenna.
The impedance between amplifier and antenna is matched to maximize the strength
of the RF in the vacuum chamber. We also use optical Raman coupling to control
the internal state (see chapter 5).

Imaging

In order to extract information from the atomic cloud we either extract its mo-
mentum or spatial distribution. The momentum distribution of the cloud is re-
constructed via time of flight (ToF) imaging. In ToF imaging, the optical traps
are turned off abruptly and the cloud ballistically expands for time duration ttoF,
so the momentum distribution is mapped into position space. We have a time of
flight duration of ~ 21 ms after which the cloud’s size is in the order of hundreds
of micrometres. Therefore it is sufficient to use standard absorption imaging in the
horizontal plane along the & + é, direction. We use light on the D2-transition,
which after passing through the atomic cloud is shed on a CCD camera ®. The
geometry of our vacuum chamber implies a long working distance of > 150 mm
and therefore a relatively low numerical aperture (NA) of < 0.25 and resolution

2Signadyne, SD AOU-H3444-PXle-1G
3Rhode and Schwarz, SMC100A
4ZHL-100W-GAN+, Mini-Circuits
5Chameleon, USB CMLN-1352M-CS
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power. In the absorption imaging sequence, we apply a magnetic field gradient
along the &, direction during time of flight expansion, which is referred to as Stern
Gerlach pulse. This pulse spatially separates different magnetic spin states along
the vertical axis. Hence, we are able to measure not only the total atom number,
but also the spin resolved populations.

To reconstruct the spatial distribution of the atomic density, we make instead use
of an in situ imaging with a high numerical aperture objective, oriented along
the vertical é,-direction and based on the polarization phase contrast effect. This
imaging setup is described in more detail in the next section.

4.1.4 High NA objectives for imaging and addressing

The design, implementation and characterization of the in situ imaging objectives
are thoroughly described in Ref.[109]. Here below, we summarize the main aspects
of the imaging setup, its alignment and performance.

Imaging setup

The imaging setup allows to image the cloud in situ along the é,-direction. It
consists out of a homebuilt high NA objective, a camera and additional lenses
to match the magnification to the pixel size of the camera. An illustration of
the setup is shown in Fig. 4.3. The imaging laser light with A\ = 766.7 nm
illuminates the sample from the bottom view-port of the vacuum chamber and is
collected by the high NA objective placed at the top of the chamber. The top
objective in combination with three additional lenses results in a magnification of
the light by 33, and finally the light is shined on a camera. The NA of our setup is
mainly limited by the distance between the view-ports of our vacuum cell, the clear
aperture and thickness of the windows. The objective is made out of a meniscus ©
and an asphere 7 with an effective focal length of f = 48.6 mm. The objective
is designed for light with wavelength A\ = 766.7 nm. The numerical aperture is
0.43 and the expected resolution 1.1 um. The depth of focus is calculated to be
10 pm, the field of view 330 um. As imaging device we use a Electron Multiplying
Charged-Coupled Device camera (EMCCD) & with a pixel size of 16 um. The large
imaging magnification ensures that the resolution is not limited by this (large) size
of the pixels.

custom meniscus, Ross Optics Industries, N-BK-7
"Edmund Optics,L-BAL35
8Andor, Ixon DU 897U-CS0-EXF
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Figure 4.3: Schematics of the in situ imaging setup along &,. (O1) denotes the
object plane, (W) the view-port window. The high NA objective consists out of
meniscus (L1) and asphere (L2). The objective is followed by an achromat with
f =500 mm (L3), which together form a telescope with magnification of ~ 10.3.
The second telescope with achromatic lenses with f = 80 mm (L4) and f = 250 mm
(L5) results in a total magnification of ~ 33. The mirrors (M1,M2,M3) are dielectric
mirrors with NIR broad-band coating. (M4) is a long-pass dichroic mirror to separate
the imaging light and infrared light from our dipole trap. The polarizing beam
splitter (PBS) maps changes in the polarization of the probe light into intensity
differences in the camera. Picture is taken from J. Sanz out of Ref. [109].

Addressing setup

Additionally to the new high NA objective for imaging, we decided to add a micro-
scope to the apparatus, which is capable of projecting arbitrary potentials onto the
atomic plane. The microscope is placed on the bottom of the vacuum chamber
and its design is identical to the imaging objective. The addressing setup is used
to create a barrier potential for the atoms in chapter 7.

Alignment and characterization

The alignment of the objective is challenging and requires many steps. We re-
moved the previous setup completely and started by characterizing the aberrations
introduced by the windows (viewports) of our vacuum chamber. We investigated
the effect of the view-ports by building an interferometer, where a large Gaussian
beam passing twice through the two viewports interferes with a reference arm. The
wavefront of the beam passing through the vacuum windows gets deformed and
the interference signal shows an intensity distribution which is elliptical rather than
circular along the axial direction, indicating that the viewports introduce astigma-
tism. We also performed tests with a shearing plate interferometer?, where the
reflections from the front and back of a wedged plate are interfered. If the input
beam is perfectly collimated, the interference fringes are parallel to the propagation

Shearing interferometer, Thorlabs, SI500
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direction of the laser beam. If the beam is decollimated, the fringes are tilted. Our
tests showed that an initially collimated beam gets slightly defocused after the vac-
uum chamber. The interference fringes are also different in orthogonal directions,
so the vacuum windows introduce some astigmatism. Moreover, we observed a
curvature of the fringes, indicating higher-order aberrations.

Afterwards, we installed the high NA objectives for imaging and addressing in the
apparatus. We based our alignment procedure on reference beams which are ge-
ometrically centred and perpendicular to the viewports. Because the top and the
bottom window have a tilt of ~ 0.2°, we needed one reference beam for each
window. To bring the two objectives into focus, we used the following procedure:
at first we kept the top objective fixed at its rough focus position, namely at the
planned distance form the vacuum window, and found the focus position of the
bottom objective by collimating an initially collimated beam after passing through
the two objectives with the shearing plate. Afterwards we found the final focus
position of the top objective by imaging a test object. As test objects we used an
USAF 1951 target'® and an 1 pum pinhole!’. In both cases we produced the re-
spective image with the addressing objective in the plane of the atoms and imaged
it with the imaging objective from top. The focused image exhibited strong astig-
matism introduced by the view-ports as previously investigated. We decided to
actively correct this astigmatism by compensating with a tilted glass plate placed
between the achromat L3 and mirror M3 (see Fig. 4.3) which introduces astigma-
tism in the opposite direction.

In the final performance of the complete setup - addressing and imaging objective
- we were able to discern element 6 of group 5 from the USAF target, which are
separated by 1.09 um in the object plane. Moreover, we could recover the point
spread function of the 1 um pinhole and measured radii of 1.1 um and 1.5 pum in
the EMCCD camera.

4.2 Interaction control in ¥°K

As outlined in section 3.3, interactions in the systems play a key role in the real-
ization of the encoded chiral BF theory. Therefore we need a good control over
the intra- and interstate interactions of the internal states.

In section 3.3 we have described interactions via the coupling strength g. In
the experimental parts we instead express the coupling strength in its commonly
parametrized form of the s-wave scattering length a with g = 4wh?a/m. The two
isotopes 41K and 39K vastly differ in their scattering length a. Whereas #!K has a

19R1DS1P, Thorlabs
" Mounted precision pinhole, P1H, Thorlabs
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background scattering length of ~ 60 ag, 3°K possesses ~ —33 ag. Here ag is the
Bohr radius. The background scattering lengths have important implications for
the BEC production (see section 4.1.2). Moreover, in 41K the scattering lengths
of the internal states are approximately constant and of same value. By contrast,
in 39K we can adjust the interaction strengths in the internal states of the BEC to
different values. This allows us to explore different physics with the two isotopes.

In this section, we explain how we can tune the scattering length a in the 3°K
condensate. We can either do so by means of magnetic Feshbach resonances or
via coherent coupling. The following subsection explain in more detail these two
methods.

4.2.1 Magnetic Feshbach resonances

In the isotope 39K, the intra- and interstate scattering lengths can be widely tuned
by means of magnetic Feshbach resonances!'®. In particular, we consider the scat-
tering lengths of the magnetic sub-levels mg = {1,0, —1} of the F = 1 hyperfine
manifold. For our experiments, we are interested in the regions where for a pair of
states both intrastate scattering lengths are positive and we can tune the strength
of at least one in a wider range. This ensures we can prepare a stable condensate
in both states and we can realize different interaction strengths in the two states
- a crucial feature of all or experiments with 3°K. Up to 400 G, there are two win-
dows of magnetic field strengths where these requirements are fulfilled for a pair of
states. Fig. 4.4 displays the intra- and interstate scattering lengths for the relevant
states in these magnetic field ranges. Namely, around B ~ 57 G and B ~ 400
G, which are in the vicinity of a Feshbach resonance of the |F = 1, mg = 0) state
(left panel in Fig 4.4) and |F = 1, mg = 1) (right panel of Fig. 4.4), respectively.
For the study of coherent coupling via radio-frequency as interaction control (see
next paragraph 4.2.2), we work in the first magnetic field range of ~ (56 — 58)
G. The experiments with Raman coupling (see chapters 6,7) we instead perform
in the magnetic field range between B = (374 — 397) G, which offers additional
advantages (see section 5.1.2)

The scattering lengths shown in Fig. 4.4 were calculated by A. Simoni with the
39K model interaction potentials of Ref. [117]. The systematic uncertainty in a
is dominated by the uncertainty of the position By of the Feshbach resonances.
For the high field range, we can compare the results of A. Simoni to calculations
with different interaction potentials performed by the group of Prof. Kokkelmans,
using the model potentials of Ref. [118]. The latter have been built based on
the most recent calibrations of Feshbach resonances of the different potassium
isotopes, including among others 39K-*1K resonances observed by our group?.
From the different results we estimate a systematic uncertainty in the theory pre-
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Figure 4.4: Magnetic Feshbach resonances in 3°K. Left: Intra- and interstate
scattering lengths of |}) = |F =1,mr =0) and |[1) = |F =1, mg = —1) close to
57 G as function of applied magnetic field B. Right: Intra- and interstate scattering
lengths of |}) = |F =1, mg =1) and 1) = |F =1, mg = 0) around 397 G.

diction of approx. 200 mG for the position By of the Feshbach resonance around
402 G. Using spectroscopy, we could in principle locate the Feshbach resonance
experimentally much more precise. However, the uncertainty in the theoretical
prediction translates in a maximal uncertainty of ~ 9 ag in the intra-state scatter-
ing length of state ||) at B = 397 G. This precision is already sufficient to interpret
our experiments and does not affect the conclusions drawn in our work. Therefore
we did not attempt to calibrate the scattering lengths more accurate.

4.2.2 Coherent coupling

In this section, we investigate an alternative method for controlling interactions
in Bose-Einstein condensates which is fast, flexible and simple to implement ex-
perimentally. In our scheme, two internal states ||),|1) with different scattering
lengths are coherently-coupled, which modifies the scattering properties of the
corresponding dressed states, as we have investigated in section 3.3. Here we use
radio-frequency fields for the coherent coupling, so in contrast to the more gen-
eral equations derived in chapter 3 for Raman coupling, no momentum transfer
is involved. Hence, the study of rf-coupling as interaction control can be seen as
preparatory step in which we get familiar with the concept of effective scattering
properties but do not add additional complexity caused by the momentum transfer.

Until now, the modified scattering length of rf-dressed atoms could only be ob-
served indirectly through the change of miscibility in binary BEC mixtures194:105:120,
in a configuration where interactions were modified in a narrow range. In the fol-
lowing, we characterize the elastic and inelastic scattering properties in a rf-dressed
39K BEC, which we can flexibly control by adjusting the parameters of the coupling
field. We also demonstrate the interaction control in the attractive regime, where

57



4 Experimental platform and interaction control using coherent coupling

we observe the stabilization of bright solitons formed by dressed-state atoms. Fur-
thermore, we exploit the high temporal bandwidth of this technique to quench
the interactions from repulsive to attractive values, and observe how the resulting
modulational instability develops into a bright soliton train.

The study of rf-dressing as interaction control gave rise to the publication "In-
teraction control and bright solitons in coherently-coupled Bose-Einstein conden-
sates" 1% in which | am second author and which was published in Physical Review
Letters. It was performed in close collaboration with Dr. Julio Sanz, first author
of this publication, Craig Chisholm and Dr. Cesar Cabrera. The work is presented
in all its detail in the PhD thesis of Dr. Sanz!'%°. Therefore, here | will report on
the main results of the publication without major modifications.

This chapter describes experimental results without Raman coupling. Accordingly,
we will change from the dimensionless units of the Raman recoil energy employed
in the last theoretical chapters to Sl units.

Theoretical base

We perform all experiments in the strong coupling limit, where the Rabi frequency
2 of the radio-frequency field dominates over all other energy scales of the system.
We describe the system in the previously introduced dressed state picture (see
section 3.2.1). For the coupling with radio-frequency, these formulas simplify as

no momentum transfer is involved. Hence, § = o and 2 = _(~2(O) = /22 + 82
Therefore the dressed states |—) = sin#|])—cos#|1) and |[+) = cos @ |})+sind |1),
with cos? = (14 P)/2 and P = 8,/£2(0) that do not depend on the momentum.
The energies of the two dressed states is shown as function of the detuning Jg in
the upper panel of Fig. 4.5. The energy gap in the avoided crossing is h{2. To
describe the interactions between dressed states, we rewrite the interaction part of
the Hamiltonian in the dressed-state basis'?3. The resulting collisional couplings
account for elastic or inelastic scattering, so processes which either preserve the
two-particle dressed state of the colliding atoms, or modify it. For a condensate in
state |—), inelastic collisions in the strong coupling limit are energetically forbidden
and only elastic processes remain. They can be described by the effective scattering
length eq. (3.27) derived in section 3.3 when considering vanishing momentum
transfer. This effective scattering length a__ depends on the scattering properties
of the bare states and on the composition of the system. Therefore it can be tuned
with the coupling field parameters. In contrast, for a BEC in state |+) both elastic
and inelastic processes are relevant.
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Figure 4.5: Elastic scattering properties of the lower dressed state. Top: energy
E of states |—) and |+) as function of the detuning J, normalized to the Rabi
frequency 2. T and | are the bare atomic states. The colorscale indicates the state
composition in terms of P = §/2. Bottom: experimental value of a._ obtained
by scaling o2/N (orange circles, left axis) and the polarization P (gray squares,
right axis) versus §. The lines show the theory predictions, the brown diamonds
represent the values obtained from an numerical simulation of the expansion. The
colourscale of the a__ curve indicates the value of P. The error bars are obtained
from the standard deviation of 5 independent measurements. Figure is taken from
Ref. [106].

Methods

For the study presented in this section, we employ a 3°K BEC at magnetic fields
of B ~ (56 — 57) G. We exploit two magnetic sub-levels of the F = 1 hyperfine
manifold |1) = |F =1, mg = —1) and ||) = |F = 1, mg = 0), for which the intra-
state scattering lengths are repulsive (a4, aj; > 0), and the interstate scattering
length is attractive (ay, < 0) (see left panel of Fig. 4.4).

We coherently couple the two states with an rf-field, with /27 > 8 kHz. We
prepare single dressed states through Landau-Zener sweeps, starting from state |1)
(unless explicitly stated otherwise) and ramping the detuning § to its final value.
The detuning uncertainty is 1.5 kHz, limited by short-term magnetic field fluctu-
ations in the order of &2 mG. This limits the minimal Rabi frequencies accessible
in our setup, which are calibrated independently through Rabi oscillations. The
ramp rates are limited from below by such fluctuations, and from above by dia-
batic transitions to the higher dressed state when the Landau-Zener adiabaticity

59



4 Experimental platform and interaction control using coherent coupling

\'.......’::T..-/

G

< 0.5

5 O S
o5t @

1 okfkg

' X

Vd
§/9r==5kH; (Y 6/2r=5kHz (O 6/2r = 10kHz

Figure 4.6: Inelastic decay of the higher dressed state. Top: sketch of possible
dressed state changing collisions @: |++) — |——) (orange, solid arrows) and :
[++) = (J+=) +|—+)) /v/2 (green, dashed arrows). Energy E and momentum

k are normalized by 2 = V22462 and ks = /m2/h. Bottom: momentum
distribution of the collision products. Images are the average of 10 independent
measurements. The likelihood of processes ) and ) depends on §. Figure is
taken from Ref. [106].

criterion & < 22 is not fulfilled.

One peculiarity of the chosen states |]) and |1) is the vast difference in their three-
body recombination rates. In our employed magnetic field range, the three-body
loss rate measured for a thermal gas in state |}.), K| || ~ 3x 10727 cm®/s, is almost
40 times larger than the three other relevant rates Ky, K|+, and Ky, which are
compatible with the background value Kt ~ 7.8 x 1072% cm®/s8. Therefore,
the lifetime of the rf-dressed BEC is strongly reduced when the fraction of atoms
in state ||) increases, i.e. for polarizations P — —1, which corresponds to large
and negative values of the detuning 6. The minimal value of the rf-dressed BEC
lifetime is set by that of a single-component condensate in state |]), which for
our typical densities and optical trap depths corresponds to tens of milliseconds.
However, since the atom loss rate due to three-body recombination is much smaller
than the Rabi frequency of the rf-coupling field £2/27 > 8 kHz, the latter is always
able to keep P at its expected value. Thus, the net effect of the state-dependent
three-body recombination rate is to induce losses of atoms with an effective rate
Kfff that depends on the value of §, increases as P approaches —1, and does not
change the state composition of the system nor its effective scattering length.
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Figure 4.7: Quantization of the inelastic decay of the higher dressed state. Left:
velocity of the scattered atoms vr vs. Q. Right: fraction of scattered atoms Ny /N
as function of §. Inset: Inelastic scattering rate I7 versus § for n = 1.3 x 10%*
atoms/cm3. In both panels, orange circles (green squares) correspond to process
@D (@). The lines represent the non-interacting theory predictions. The error bars
stem from the fit error (vertical) and uncertainty of § and 2 (horizontal). Figure
is taken from Ref. [106].

Elastic scattering in the lower dressed state

In a first series of experiments we focus on the elastic scattering properties of the
lower dressed state |—). They are characterized by the effective scattering length
eq. (3.27) with kg = 0 which gives a._ = aprcos* 0 + ay sin* 0 + Jaq, sin® 26.
Thus the scattering properties depend on the state composition of the system via
2 and 6. We experimentally probe the dependency on § by performing expansion
measurements in an optical waveguide along &, (see section 4.1.3 for our trap
geometry).

To this end, we prepare a BEC in state |—) with /27 = 20.0(6) kHz and
variable detuning 0 using a ramp rate of 0.83 kHz/ms. The magnetic field is
set to B = 57.280(2) G, for which the scattering lengths are ay/ap = 32.5,
ay /a0 = 109, ay;/ap = —52.9, and we always have a._ > 0. After holding the
gas for 5 ms at the final detuning, we abruptly switch off the axial confinement
and allow it to expand for 21 ms along a single-beam optical dipole trap with
radial trap frequency w,/2m = 133(1) Hz and axial frequency wy/2m ~ 1 Hz.
We finally image the gas in situ (see section 4.1.4 and Ref. [86,121]) and fit the
images with a 2D Thomas-Fermi profile to extract the axial size o, and atom
number N. We exploit the axial size of the cloud o, after the fixed expansion
time to infer the scattering length a__. In the Thomas-Fermi regime the two are
related by a._ oc 02/N'2. Although this approximation is not strictly valid for
all of our experimental parameters, we have verified by solving numerically the
time-dependent Gross-Pitaevskii equation (GPE) that estimating a._ through this
scaling law results in errors below our experimental uncertainties.

The lower panel of Figure 4.5 shows our determination of a__ for various values of
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detuning (circles), which corresponds to different values of the polarization param-
eter P (squares). We determine the latter by Stern-Gerlach separation of the bare
states during time-of-flight expansion, from which we extract their populations. In
order to correct for systematic errors in the measurement and compare the results
to the scattering length a._, we have scaled o2/N to yield app at large positive
. For large positive (negative) values of § the effective scattering length should
approach ay; (ay)), and we expect a minimum at /27 = 6.5 kHz (P = 0.31) due
to the attractive character of the interstate interactions a; < 0. This is in good
agreement with the experimental measurements. The data at large negative ¢ are
in fair agreement with the limit aj;. In this regime, also the scaling law yields
the largest discrepancies with the GPE simulations (diamonds). For § < 0, the
data suffers from larger uncertainties due to residual breathing excitations induced
by the detuning ramp, which is associated to large changes of a__, and the larger
three-body recombination rate of state |]). The reduced atom number is also
responsible for the breakdown of the Thomas-Fermi approximation.

Scattering in the higher dressed state

In the next series of experiments, we consider the scattering properties of the
higher dressed state |+). There, besides elastic collisions, two-body inelastic col-
lisions leading to a change of the two-particle dressed state are also allowed. For
our typical experimental parameters they limit the lifetime of the BEC to ~ 1
ms. The upper panel of Fig. 4.6 sketches the two possible inelastic processes: (1)
[++) = |==) and @ |++) = (J+—) +|—+)) /V/2. Both lead to the creation
of correlated atom pairs with opposite momenta. They are accompanied by an
energy release of either B2 or h_(~2/2 per atom, corresponding to the energy gap
between the two-particle dressed states. Similar processes occur in Raman-coupled
BECs107.

To reveal these dressed-state changing collisions, we prepare rapidly with a ramp
rate of 500 kHz/ms, a pure sample of |[+) atoms. We then immediately switch off
the trap and let the gas expand for a time te,,. During the first 1 ms the rf-field
is kept on, allowing us to characterize the decay processes in the absence of the
trap. As depicted in the lower panel of Fig. 4.6, the time-of-flight images reveal
the presence of halos of atoms expanding away from the condensate.

Since atoms in a BEC scatter with extremely low relative momenta, the halo radius
Ry at time tey, directly reflects the velocity of the collision products vf = Ry / texp.
Processes D and (2 can be distinguished because the velocities are given by

vi = /2h2/m and v» = \/h2/m respectively, where m is the mass of 3°K.
In these expressions, we have neglected the released mean-field energy of the BEC
since the corresponding correction remains well below our experimental resolution.
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4.2 Interaction control in 3°K

Interestingly, we observe that the likelihood of the two processes depends on the
dressed state composition, and thus on 4.

Figure 4.7 presents a more systematic study of these inelastic processes as a func-
tion of the parameters of the coupling field. Therefore, we model the halo by
a spherical shell with a Gaussian profile centred around the BEC and extract its
parameters by fitting the time-of-flight images with its forward Abel transform.
The left panel of Fig. 4.7 depicts the velocity of the atoms in each halo versus
2, determined by measuring Ry for different values of te,. For simplicity, we
perform the experiments at only two particular values of §. This ensures that only
one of the two inelastic decay processes is significant in each measurement and
the images have a single halo. The measurements are in excellent agreement with
the theory predictions neglecting the BEC mean-field energy without any fitting
parameters (solid and dashed lines).

The scattering cross section of the two processes strongly depends on detuning.
This can be clearly seen in the right panel of Fig. 4.6, where we plot the fraction
of atoms scattered in each halo Ns./N as a function of ¢ extracted from the same
set of images as Fig. 4.6(d). The rate equation describing the evolution of the
density in the initial state reads g = —2(I7 + 2)p = —2G@) (o1v1 + 02v2)(p?/2).
Here 7, are the inelastic scattering rates for processes D and ), G@ =1is
the BEC two-body correlation function, p?/2 is the density of atom pairs, and o7 =
7 [(ar + ayy — 2apy) sin? 29]2 /2 and o = 47[(arysin® @ — ay ) cos? 0 + ay| cos 26)

103 Qur measurements

sin20]? are the corresponding scattering cross sections
agree qualitatively with the expected 7> line shapes, see inset. For a quantita-
tive prediction, the simultaneous reduction of p due to the 1 ms expansion of the
cloud (which depends on § via a; 1) must be taken into account. For  ~ 0, the
expansion can be neglected and o2 ~ 0, greatly simplifying the dynamics. In this
regime, integration of the rate equation yields N/Ns. ~ 0.28 for an initial density

p ~ 1.3 x 101* atoms/cm3, in good agreement with the experiment.

Rf-dressed solitons

After demonstration of the different collisional couplings present in dressed BECs,
we refocus on the lower dressed state |—) and exploit the broad tunability of its
effective scattering length to explore attractively interacting systems. In optical
waveguides, this situation enables the study of bright solitons: matter-wave pack-
ets that propagate without changing their shape because attractive non-linearities
balance the effect of dispersion along the unconfined direction 123,

In coherently-coupled systems, they are formed by dressed atoms constituting
dressed-state bright solitons. Compared to conventional bright solitons, they are
bound by an additional mean-field attractive non-linearity which scales with density
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4 Experimental platform and interaction control using coherent coupling

as an effective three-body force. This term results from the density-dependent de-
tuning appearing when a|| # ay, which yields a differential mean-field frequency
shift. For our experimental parameters, its effects are small and remain below our
experimental resolution. The dressed-state bright solitons are only stable while the

gas is effectively one dimensional, with an interaction energy that remains below
Fico, 85,124,125
r .

To observe this new type of bright soliton, we study the dynamics of a BEC in
state |—) after release in the optical waveguide. The magnetic field is set to
B = 56.000(2) G, where a+/ap = 35.1, aj/ap = 57.9, a4 /a0 = —b3.5, and
a__ can take negative values, see top panel of Fig. 4.8. We adiabatically prepare
the system at different values of the detuning with a ramp rate of 1 kHz/ms. For
a__ < 0 we keep the initial atom number below N ~ 3000 to avoid collapse. To
prepare such small samples, we start with a BEC in state |]) and exploit its large
three-body recombination rate to reduce the atom number. We then remove the
axial confinement in 15 ms, allowing for free evolution in the waveguide. The
lower panel of Fig. 4.8 shows in situ images after an evolution time t;. Whereas
for 6/2m = £250 kHz the gas expands, as expected for a repulsive BEC in states
1) or |}), for § = 0 its shape remains unchanged. Here a._/ag = —3.5 and we
observe the formation of a single dressed-state bright soliton.

Interaction quench into the attractive regime

In the last series of experiments, we explore the response of the system to a quench
of the effective scattering length from repulsive to attractive values. As demon-
strated in recent experiments'?%127 this triggers a modulational instability in the
BEC: a mechanical instability where fluctuations in the condensate density are ex-
ponentially enhanced by the attractive non-linearity. Consequently, the gas splits
into several components. The growth of the density modulation is dominated
by the most unstable Bogoliubov modes, which have characteristic momentum
kmi ~ 1/€. Here & = ano/+/4|a.-| pip is the healing length of the BEC in the
waveguide, ah, = \/h/mw, is the radial harmonic oscillator length, and pip is
the line density of the system before the quench. The characteristic length and
time scales of this process are A = 27 /ky and 1y = 2m/hk,%,”, respectively. For
t > 7mi, each of the components evolves into a bright soliton, forming a soliton

123,128-131 ' For 3 system of size L at the moment of the quench, the average
129

train
number of solitons is expected to be Ns = L/ from length scale arguments
This prediction has been verified experimentally only in a restricted range of scat-

tering lengths due to limitations in the quench timescales!?%:127

Our experimental sequence is summarized in the top panel of Fig. 4.9. The start-
ing point is a BEC of 65(15) x 103 atoms confined in a crossed trap. The
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Figure 4.8: Formation of a dressed-state bright soliton. Top: calculation of a._
versus § with eq. (3.27) for rf-coupling (kg = 0). Near zero detuning, the effective
scattering length becomes negative: a.. < 0. Bottom: in situ dynamics of the gas
after an evolution time t, in the optical waveguide. For §/2m =0 (a../ap = —3.5)
a self-bound bright soliton forms. For §/27 = 250 kHz (N = 9(2) x 10*) and
§/2m = —250 kHz (N = 1.0(2) x 10*), a.. > 0 and the gas expands. Figure is
taken from Ref. [106].

initial trap frequencies in the crossed optical dipole trap are (wy,wy,w;)/2m =
(26(1),190(1),188(1)) Hz, and the radial frequency in the optical waveguide is
wr/2m = 188(1) Hz. At t = 0 we switch off the axial confinement and let the
atoms expand in the waveguide for t; = 11 ms, reaching a size L ~ 112 um. At this
point, we abruptly change § with a ramp rate of 1 kHz/us, effectively quenching
the scattering length from 35.1 ag to its final value. An additional expansion time
of 10 ms allows the development of the modulational instability and the formation
of a soliton train, which we image in situ.

The lower panel of Fig. 4.9 shows the average number of components observed
per image Ns as a function of the final detuning. We determine the number of
components with an algorithm similar to the one presented in Ref. [127]. Whereas
the initial BEC has Ns = 1, for all values of § such that a.. < 0 we measure
Ns > 1. The maximum number of solitons in a train is observed at §/2r = 2.3
kHz, which corresponds to the most attractive value of a__/ag = —4.2. This value
is 2.5 larger than in previous experiments, where interactions were controlled using
magnetic Feshbach resonances!?%1?7  Indeed, our dressed-state approach enables
ramp rates orders of magnitude faster, ensuring a clear separation of timescales vs.
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Figure 4.9: Modulational instability and formation of bright soliton trains. Top:
sketch of the experimental sequence and exemplary in situ images. Bottom: num-
ber of components observed per image Ns vs. ¢ after the interaction quench (orange
circles). Error bars indicate the standard deviation of 4 to 6 independent measure-
ments (vertical) and the uncertainty of § (horizontal). Orange line, left axis: theory
prediction Ns = L/\ (shaded area: uncertainty due to the systematic error in the
atom number). Colored line, right axis: a.. (colorscale: value of P). Figure is taken
from Ref. [106].

7M1 and making three-body recombination processes during the quench negligible.
As a result, we are able to verify the validity of the scaling prediction Ng = L/
in a much broader range of parameters. Quantitative studies of the modulational
instability require a timescale for the interaction quench that is clearly separated
not only from 7y, but also from the characteristic three-body recombination time.
Otherwise, atom losses during the quench modify the density of the gas, changing
\. Here we realize peak ramp rates —5 x 10*ag/ms with rf-dressing in contrast to
~ —6ap//ms in Ref. [126] with a magnetic Feshbach resonance. This increased
speed is key to maintain the separation of timescales and verify the scaling law in
a broader range of interaction strengths.

General view on rf-coupling as technique for interaction control

In the last paragraphs we have investigated the elastic and inelastic scattering
properties of rf-coupled Bose-Einstein condensates. Below, we shortly discuss rf-
dressing in BECs as technique for interaction control on a more general level and
comment on the tuning range and the rate of change of the effective scattering
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4.2 Interaction control in 3°K

length in principle available in experiments.

The effective scattering length in the lowest dressed state |—) can be rewritten in
terms of the polarization P = 6/12 as

a._= a1+ aP + aP?, (4.1)

where we have defined a; = (ay + ay +2ap))/4, a3 = (apr — ay1)/2, and a» =
(apy + ayy — 2ay)/4 following the notation of Ref. [132]. This expression shows
that the range of tunability of a._ is maximized by selecting systems with large
values of a3 and/or ap, i.e. situations where apy and ay are very different and/or
where ay is large. In practice, one should also be able to prepare the corresponding
system. This imposes that at least one of the two intra-state scattering lengths (ay
or aj|) is positive, to have a stable BEC in the initial state. For the experiments
reported in this section, we use a configuration where both at and a are positive
because this allows us to adiabatically prepare the rf-dressed states starting from
both negative and positive values of the detuning. Moreover, due to the negative
sign of ap it is possible to set the effective scattering length to zero and to reverse
its sign.

However, since the three bare scattering lengths have relatively small values, this
configuration is clearly suboptimal concerning the range of tunability of a_._. In
this respect, a more favourable configuration consists on maximizing as by using
states |}) = |[F=1,mg=1) and [1) = |[F =1, mr=0) at B ~ 396 G, where
ajp ~ —6ag, a4 ~ lag, and a;y > 0 is large and widely tunable using a
Feshbach resonance!33. This situation allows one to tune the scattering length on
a much broader range. Another possibility is to maximize instead ap, for example
by using states |}) = |[F =1,mg =0) and |1) = |[F =1, mg =—1) at B ~ 114
G. There, ajy ~ —22ag, a4 ~ 8ap, and a4 is large and widely tunable with a

broad interstate Feshbach resonance!!9.

When performing a detuning sweep, the rate of change of the effective scattering
length in state |—) can be expressed as

_5. 2

da._. 05 OP da._

This expression shows that a._ varies with P during the detuning ramp, and that
larger ramp rates can be obtained by selecting magnetic fields where a3 and/or
ap are large. From the experimental point of view, the detuning ramp must be
sufficiently slow to avoid diabatic transitions from the lower to the higher dressed
state. For a linear ramp, the probability of such transfer is given by the well-known
Landau-Zener formula and imposes the adiabaticity condition 6 < 22. For the
maximal Rabi frequency and ramp rate used in the experiments £2/27 = 20 kHz
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and 5/27? ~ 1 kHz/us, we estimate a probability of transfer < 2%, in agreement
with our observations.

In our experiment, the Rabi frequency is limited by the available rf power. In
principle, the ramp speed could be increased by several orders of magnitude if
the coupling was performed optically, using two-photon transitions induced by co-
propagating Raman beams. For a Raman wavelength corresponding to the potas-
sium tune-out wavelength A\ = 769 nm, which avoids parasitic trapping potentials,
Rabi frequencies /27 ~ 1 MHz and ramp rates 6/2m ~ 1 MHz/us should be
readily accessible.

Moreover, dressed states can also be prepared via rf-pulses followed by a phase
jump of the driving field19%. This enables interaction quenches as fast as those ob-
tained by performing a m-pulse between two states of different scattering lengths.
Note however that, compared to an rf m-pulse, rf-dressing (implemented using rf-
sweeps, as in this paper, or in a pulsed manner, as in Ref. [104]) is a more flexible
interaction control tool. First, it allows one to control the interaction strength
in a continuous manner between a and aj |, without being limited to those two
discrete values, and even yields systems with effective interaction strengths outside
that range thanks to the effect of a;|. Second, it enables interaction changes at
any rate, from adiabatic to sudden, and is not just limited to quenches. And third,
it allows one to perform fast temporal modulations of the effective scattering length
with complex waveforms, such as those required to implement Floquet-engineering
schemes of the interaction term 1347130

4.3 Conclusion

In conclusion, we investigated the effective scattering properties in a 3°K BEC
where two components with unequal intrastate interaction are coherently coupled
via radio-frequency. The effective single-component interaction depends on the
bare state scattering lengths and the spin composition of the system, and thus can
be tuned by the parameters of the coupling field.

The effective interaction strength was derived in a more general form for Raman
coupling in chapter 3 in eq. (3.27). In the case of kg # 0 as in Raman coupling,
eq. (3.27) was investigated in Ref. [107] for equal intrastate interactions. The
exploration of kg # 0 and additionally unequal intrastate interactions, will be sub-
ject of chapter 7. For kg = 0 as for rf-coupling, the modification in the effective
scattering length was previously only observed in a small range of interactions in
the group of Prof. Oberthaler!941%5 and Prof. Hirano'?°. We here presented the
first direct measurements of the effective elastic scattering length over a range of
100 ag. We also explored rf-coupling as method to control interactions in the at-
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tractive range and observed the formation of rf-dressed solitons. Moreover, we have
demonstrated that the method also allows for fast temporal control by studying
how the modulational instability triggered by an interaction quench develops into a
bright soliton train.In a broader context, our study demonstrated coherent coupling
as alternative method to control interactions in a Bose-Einstein condensate. Com-
mon techniques for interaction control are magnetic Feshbach resonances®3” or
optical Feshbach resonances38:13% which suffer however from temporal limitations
or light-induced inelastic collisions, respectively!'®. These drawbacks can partially
be overcome with optical control of magnetic Feshbach resonances!4%-144  As we
have shown in this chapter, as complementary method coherent coupling could be
employed, which can be used to control interactions in a fast and flexible manner

and within a broad range of interactions strengths.

Our work suggests inelastic collisions from the higher dressed band as novel source
for correlated atom pairs for atom optics experiments, complementary to other
reported approaches?14°7148 - Furthermore, rf-coupled BECs with attractive inter-
actions are an exiting platform to investigate beyond mean-field (BMF) effects.
As predicted in Ref. [149], they are expected to host novel types of non-linearities
for which BMF corrections are relevant. In the weak coupling limit, these resem-
ble three-body forces and could stabilize new types of quantum droplets. In fact,
after publication of our work, the group of Prof. Bourdel reported in Ref. [150]
the study of BMF effects in a rf-dressed condensate as function of the coupling
strength and the observation of a three-body force caused by BMF effects. More-
over, they showed in Ref. [151] that an effective attractive three-body interaction
with significant larger magnitude can be engineered on the mean-field level with
rf-coupling. The concept is based on spin composition dependent effective inter-
actions as investigated in this chapter and density induced mean-field shifts which
affect the spin composition.
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5 Experimental implementation of
Raman coupling

This chapter is devoted to the implementation of Raman coupling in our
potassium Bose-Einstein condensate. In order to find the most suitable ex-
perimental parameters, we introduce the atomic Hamiltonian in an external
magnetic field and calculate the ratio between Raman coupling strength
and inelastic photon scattering rate from the Raman beams. We dis-
cuss our choice of parameters like magnetic field, Raman wavelength and
atomic states for the two bosonic isotopes of potassium, 3°K and 1 K. In
the last part we describe the setup, the procedure of optical alignment and
establish common techniques to characterize the Raman-coupled system.
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In chapter 2, we have introduced the encoded Hamiltonian of the chiral BF theory
we want to simulate. Afterwards, we have shown that a realization can be achieved
with a Raman-coupled BEC with unequal intrastate interactions (see chapter 3).
We presented our experimental system, a potassium BEC of 39K or 41K, in chap-
ter 4 and studied the effective interaction control available in 3°K via coherent
coupling. In this chapter, we turn to the second experimental ingredient for re-
alizing an effective Hamiltonian identical to the encoded chiral BF theory: the
experimental implementation of Raman coupling.

Raman dressing is a well-known technique in the toolbox for manipulating ultracold
quantum gases. It was first used in the group of Prof. Spielman to generate an
artificial light-induced vector potential in BECs of 8 Rb%?. Thereafter, Raman cou-
pling in continuum systems similar to what is considered in this thesis, continued
to be used in Bose-Einstein condensates of 87Rb, e.g. in Refs. [98-102,107,152-
160]. It was also implemented in a BEC of 22Na 6!, where lattice band pseudospins
instead of internal atomic states were coupled, as well as in fermionic degenerate
gases of 40 162,163 6| ;164 161Dy165 and 13Yb1%  Moreover, it has also been
applied in lattice systems'®”"179 To our knowledge, we report for the first time

on Raman coupling in a Bose-Einstein condensate of potassium atoms.

5.1 Relevant parameters of the Raman coupling scheme

This section deals with the parameters of Raman coupling, i.e. involved internal
states, magnetic field, wavelength of the Raman light and frequency difference
between the two beams. We start with the theoretical base, namely review the
Hamiltonian of an atom in an external magnetic field to find the transition ener-
gies and calculate the ratio between Raman coupling strength and inelastic photon
scattering rate from the beams. Afterwards we apply these findings to our experi-
mental system and motivate our choice of experimental parameters.

5.1.1 Derivation of atom-light interaction rate

Hamiltonian of an atom in an external magnetic field

An atom at rest in an external magnetic field B is described with the Hamiltonian
H; = He + Hyfr with HE = ¢rL-S, Hyr = chril - L+ cpaS - | (5.1)

with ¢, cpr1, curo the fine and hyperfine constants. The part Hg captures the
fine structure splitting of the atomic energy levels which is caused by the coupling
between the electronic orbital momentum L and electronic spin S. The second
contribution Hyfr stems from the coupling between the electronic angular momenta
and nuclear spin |I.

72
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An applied external magnetic field B leads to an additional contribution, so

H = Hr + Hyr + Hp with
Hp=n-B = up(gL +gsS +gil) - B,

and pug the Bohr magneton, gs the electron g-factor and g, g the orbital and
nuclear gyromagnetic factors respectively. The Hamiltonian H;, energetically splits
the eigenstates of Hr + Hgs into magnetic sub-levels, which is the well-known
Zeeman effect.

The overall Hamiltonian has eigenstates depending on the strength of the mag-
netic field. At low magnetic field values, the Hamiltonian Hp can be treated as
perturbation. In this case an appropriate basis is |J, F, mg), composed out of the
atom's total momentum F = J + | and its projection mg on the quantization axis
with —F < mg < +F. Here J is the quantum number of the total electronic
angular momentum J =L+ S.

At sufficient high magnetic fields, the so called Paschen-Back regime, the energy
splitting Eg given by eq. (5.3) gets large enough so it is appropriate to treat Hyg
as perturbation instead. Then nuclear and electronic momenta get decoupled and
the good basis is |J, I, my, m;). At significantly higher magnetic field strengths,
where Eg > c¢f, even L and S get decoupled and the fine structure is mixed.
However, ¢ ~ 2mh x 1 THz for alkali-metal atoms and for all feasible magnetic
field values in our experiment, the fine structure is robust against the magnetic
field and J remains a good quantum number.

Even though the eigenstates change with the magnetic field, it can be shown that
the eigenvalues in the case of an alkali atom in the ground state (which implies
J = 1/2) for all magnetic field strengths are given by the analytic Breit-Rabi
formula:

A A 1 2
EB(mF): —% +g[},LBmFB:l:% (/+2> \/1+I—|-En]_F/2)X+X2 (54)

with x = 2ugB(gy — &1)/(Anr(l + (1/2))) and Axr the hyperfine energy splitting
between F =1 and F = 2 of the 4251/2 ground state. The energies of the 'K and
39K ground manifold as function of the magnetic field are shown in Fig. 5.2. In
our experiment, we work with the |]), |1) states which are two Zeeman sub-levels
of the F = 1 ground state manifold at low field. We can apply eq. (5.4) and the
energy difference between the two can be calculated with hwg = Eg(T) — Eg({)
for all magnetic fields.
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Ratio of coupling strength to inelastic scattering rate

In chapter 3, we have seen that Raman coupling offers great possibilities to en-
gineer and control interesting energy-momentum relations. However, it has the
drawback of reducing the atomic lifetime. The atoms inelastically scatter photons
of the Raman beams with rate [;,. In the limit where the atom energy after the
scattering process is much larger than the trap depth, the atom will be lost and
the scattering rate corresponds directly to the atom loss rate. Otherwise the atom
remains in the trap with an increased energy, thermalization then leads to an over-
all increase in temperature and hence atom loss due to evaporation of the most
energetic atoms.

The effect of inelastic scattering is conveniently quantified by the ratio 8 = %

This ratio describes the probability that an atom completes a Raman cycling tran-
sition before undergoing an inelastic scattering event. In particular, the larger S
is, the more robust is the process against losses.

In our experiment we are interested in working in the single minimum regime, im-
plying relatively high values of {2z, while minimizing the scattering rate. Thus, we
identify the optimal settings of the coupling field at the point where 5 is maxi-
mized. In the following, we will present the calculation of R. Wei out of Ref. [171]
without major modifications and retrace it to obtain the ratio 3 for our experimen-
tal parameters. In particular, we want to compute § as function of the magnetic
field strength.

The two-photon Raman coupling strength (g between ||), 1) is given by
h$y (2 h$21 ,$2
Op — M M U U )
R %: 4A +ZU:LL(A+Af) (5:5)

with (2; ¢ the single-photon Rabi frequency of the ground state g; with i € {{, 1} to
the excited state ef with f € {u, v}. Here 1 represents an excited state from the
lower fine-structure manifold, corresponding to the D1 transition (see Fig. 4.1), v
one from the D2 manifold. A is the fine structure splitting, namely the splitting
of the excited states Af = E, — E, and A = lw — (E, — Eg) is the detuning of the
coupling light from the D1-transition. Note that we do not take any two-photon
detuning g into account and we approximate the two frequencies wi,ws of the
coupling light with w. The single-photon Rabi frequency (2;  can be calculated
with the electronic dipoled =€ - r:
_ E{gildler)

0; ;= 28i1gier) 5.6
f - (5.6)

where E is the electric field amplitude. Experimentally we can only measure the
light intensity / which is related to E by | = egcE?/2 with the dielectric constant
€o and speed of light c.
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The formula for the two-photon Rabi frequency in eq. (5.5) can be simplified, as no-
ticed by the authors in Ref. [171]. The quadrupole matrix elements (g;|d.dp|g;) #
0 only if i = j, as the dipole operator does not couple to the spin, and for dipole
moments along the same direction: a = b with a, b € {x,y,z}. Therefore, the
sum > 2132+ >, 1,062, = 0. By inserting this relation in eq. (5.5), the
two-photon Raman coupling strength can be expressed as

hAf
% = ga(a— A 2 e o

so it is sufficient to calculate the coupling strengths to the D1 manifold.

The inelastic photon scattering rate caused by the coupling field can be described

by
R2(022 + 22) R2($22 + 22)
I, = Ip o Jv Tv '
7 (Zu: 442 + ZU: 4(A+ Af)? (58)

Here, the two sums Zu and )  represent the contributions of the D1- and D2-
transitions, and take both the |[|) and |1) state into account. Each sum contribution
stems from the probability to excite an atom from the ground state g; with i €
{1.1} to a specific excited state e: hf22_,/2A?, times the probability to decay
back into the ground state manifold. The latter is approximated with the global
linewidth ~ for all transitions as we assume that the Raman light is largely detuned
with respect to the hyperfine splitting.

The formulas in eq. (5.7) and (5.8) can be greatly simplified for values of detuning
much larger than the fine structure splitting: A > Af. In this case we have
.QR X Af/A2 and I_in X ’Y/AQ.

For the calculation of eq. (5.7) to eq. (5.8), the single-photon Rabi frequencies
{2; ¢, which are determined by the electric dipole element, are needed. As explained
in the previous paragraph, the eigenstates of an atom in an external magnetic field
strongly depend on the magnetic field strength. Hence we cannot use the basis
|J, F, mg) throughout the computation. Instead the eigenstates can be expressed
asasum |J, Q) = >, o m (ML, mslJ, my)c¥ o |J. my, mp) for all magnetic field
values, where @ denotes an eigenstate within the specific J manifold. The electric
dipole element of a system in state |J, m;, m;) can be written in terms of the
reduced dipole element

(Ji my i, myil erg | Je, my e, mie) = Omymy Woti g m,: (Jil lergl [ J) . (5.9)

where we have used the Wigner-Eckart theorem. The Kronecker delta function
Om, .,m; ; occurs because the electric dipole operator does not couple to the spin.
For the same reason ms ; = ms ¢ in the next steps. The abbreviation g denotes the
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light polarization. Linearly polarized light is represented with g = 0, right circular
and left circular with g = +1 respectively. Momentum conservation during the
atom light interaction is ensured by

. et e, J 1 J;
Wi — (=1)Itmui /o) 1 ! , 5.10
mirams; = (71) " myf g —my, (5.10)
where the square brackets denote the Wigner 3 symbol. As it is zero unless
myf+ q— my; = 0, circular polarized light is needed to change the magnetic
quantum number mj.

Summing up, for any eigenstate |J, Q) of Hamiltonian (5.3) one has

<J,', Q,| érq |va Qf) = Z CmL,i,msyJime,iCr%,,-,m, CmL,f,ms,Jf,mJ,ancv)if,m,
myi,mgf,mp,ms
Wt o m,, (il lergl [ Jf)
J,£19,my q
(5.11)

Here Cvaf'ms'Jl.’mJ'i = (mL,,-, ms\J,-, mJ',-) and

Cmy pome dp.my e = (ML £, Ms|Jr, my ¢). The reduced dipole matrix element (J;| [erq| |Jf)
can be deduced from the lifetime 7, m, of the transition between m; and ms. It
is

) _ L wil(illergl 1) PP
JiJr,mi,my Ty my 3meghc3
; 2
_ W 2 ot
_ B ) 5.12
37T60hc3( + D) (il lerg| [ Jf) | Zq: [mf q —m,} (512

Usually the lifetimes of the different initial m; states are not resolved in a mea-
surement, instead the total lifetime 7 is measured. Summing over all channels, we
obtain for the reduced dipole matrix element

3meghcd (2Jf + 1)> 1/2 (5.13)

Ll = (TR G

We perform a numerical computation of 25 and [;, with the program Mathemat-
ica. The main task is the calculation of cva,.,ms,J,,mJ'icn?j'i’m, and Cmy rmg+ Cmy ¢me,Jrmy g
c,S;’;,,,,,, in eq. (5.11), describing the probability that the corresponding sets of quan-
tum numbers couple together. In the limit of low magnetic field, these would just
correspond to the product of two Clebsch-Gordan coefficients. For arbitrary mag-
netic field values we can deduce these coefficients from the eigenvectors obtained
by diagonalization of Hamiltonian (5.3) at one particular magnetic field value. The
realization in Mathematica is straightforward, but care has to be taken to sort the
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Figure 5.1: Numerical computation of the ratio 8 = 2g/l;, as function of the
magnetic field B for A = —27h x 100 THz and the isotopes 2>Na, 'K, 4°K and
39K_

eigenvectors by increasing energy. Moreover, the eigenvectors calculated in Math-
ematica are not fully determined. The phase of the eigenvector is completely free.
For different magnetic field values we can get arbitrary values for the phase, thus
we get phase jumps which can be observed as sign changes in the values of the
eigenvectors. To circumvent the problem, we specify additional constraints to fix
the phase for all points. Concretely, we put the requirement that the maximum /or
first non-zero value of each eigenvector has to be real. In addition, the eigenvectors
are normalized.

The result of our numerical calculation is displayed in Fig. 5.1. We plot the ratio
B = Qg/lin in the magnetic field range B = (50 — 400) G for different isotopes
of potassium and 22Na. To compare to the results of Ref. [171], the calculation is
performed for a detuning of A = —27h x 100 THz. Moreover, we have assumed
Raman beams with linear and circular polarization as |1) , |]) differ in the magnetic
quantum number. We find good agreement between our results and the values for
23Na and “°K reported in Ref. [171].

Our calculation in Fig. 5.1 illustrates two aspects: first, the ratio (§ is larger
for heavier atoms. This is because heavier atoms have a larger fine structure
splitting Af than lighter atoms, e.g. Af = 27h x 515 GHz for 2>Na, whereas
Af = 27h x 1730 GHz for 4°K. Second, the ratio (B decreases with magnetic field.
The reason lies in the hyperfine mixing with increasing magnetic field. The Raman
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5 Experimental implementation of Raman coupling

coupling can only couple to the orbital electronic momentum L, but not to the
electronic or nuclear spin S,1. However, at low magnetic field, the coupling of
L, S, I to the total atom’'s momentum F, leads to a coupling channel. As it dimin-
ishes with magnetic field, the coupling strength reduces while the inelastic photon
scattering remains constant. It is interesting to notice that within the potassium
isotopes, the ratio 3 decreases the fastest for 4°K, followed by 3°K and reduces
the slowest for LK. This is compatible with the hyperfine structure splittings An¢
of the isotopes which fulfil Anfao > Anf 39 > Anfa1. A smaller hyperfine structure
splitting is less robust against the increasing magnetic field (i.e. the hyperfine
levels get parallel earlier in the case of 'K compared to 3°K as shown in Fig. 5.2)
and the hyperfine mixing develops faster.

5.1.2 Choice of experimental parameters

Building on the theoretical understanding and predictions for the photon scatter-
ing rate versus magnetic field reported in the previous section, we explain in the
following the chosen experimental settings for the Raman coupling scheme. We
use the Raman recoil energy Eg and momentum kg as natural units for all Raman
parameters and momenta. However, we do not set Egr, kg and h to 1. For other
quantities we use Sl units.

States

In our experiment, we prepare a Bose Einstein-condensate of 3°K or 41K in a
harmonic dipole trap in spin state |]) and couple it to state [1) with the Raman
light. For all following experiments with Raman coupling we use different states
than in chapter 4 where we investigated the modified effective interaction of rf-
coupled states. From this point onwards, we use spin states which correspond
at low magnetic field to two magnetic sub-levels of the F = 1 hyperfine ground
manifold: ||) = |1) = |[F=1,mg=1) and |1) = |2) = |F =1, mg =0) in the
case of ¥Kand [|) =2) = |[F=1,mg=0)and |1) = [3) = |F =1, mg = —1)
for #1K. In the Paschen-Back regime these states correspond to

=) =1=3/2,m=3/2,J=1/2,m,=—1/2)
N =2)=1=3/2,m=1/2,0=1/2,m;=—1/2) (5.14)

for 39K and

=12 =|1=3/2,m=1/2,J=1/2,m;=—1/2)
N =13y =|1=3/2,m =-1/2,J=1/2,m; = —1/2) (5.15)

for 41K, respectively.
In some experiments, we make use of an auxiliary state, which is the remaining
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Figure 5.2: Magnetic field choice. Top: energy levels of the ground-state manifold
as function of magnetic field B calculated with the Breit Rabi formula. Bottom:
magnetic sensitivity of the transitions which we use as [|) to 1) and [])/|T) to
laux) transitions in 41K /39K, respectively.

uncoupled state of the F = 1 hyperfine manifold. This means

laux) = [3) = [/ =3/2,m = —1/2,J =1/2,m; = —1/2) for ¥K
laux) = [1) = [l =3/2,m; =3/2,J =1/2,m; = —1/2) for K (5.16)

and |aux) = |3) = |[F=1,mg = —1) or laux) = |1) = |[F=1,mg = 1) at low
magnetic field, respectively.

Magnetic field

The choice of the magnetic field influences the Raman coupling in two ways. On
the one hand - as we have seen in section 5.1.1 - the ratio # of Raman coupling
strength to inelastic photon scattering rate monotonically decreases with increasing
magnetic field. In this respect, it is in general more advantageous to work at lower
magnetic field. On the other hand, the magnetic field defines the energy difference
between the coupled states. The change in energy is in principle non-relevant,
as we can easily realize the right frequency difference between the Raman beams
with an adequate choice of acoustic-optical modulators (AOMs). However, it
becomes important on the practical level because we have short term magnetic
field fluctuations on the order of 15 mG. Because we couple states whose energies
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5 Experimental implementation of Raman coupling

depend on the magnetic field, these fluctuations directly translate into fluctuations
of the two-photon detuning. In order to minimize changes in the detuning, one
could invest much effort into an improved magnetic field stability involving an
active feedback loop for ambient magnetic field noise. A much simpler solution is
to consider the magnetic field sensitivity of the two-photon transition instead.

The energy of the magnetic sub-levels |), [1) can be analytically calculated for all
magnetic field strengths with the Breit-Rabi formula (see eq.5.4). We obtain the
magnetic sensitivity of the Raman transition by taking the numerical derivative of
the difference of the energy levels of the 1) and ||) state
10(E, — E)

00p/0B = T (5.17)
The magnetic sensitivity versus magnitude of magnetic field is shown in Fig. 5.2.
As the latter is increased, the energy levels of |1), ||) are getting more parallel (see
Fig. 5.2, upper panel) and hence the transition becomes less sensitive to magnetic
field noise (lower panel). Analogously, we calculate the energy and magnetic sen-
sitivity of the |aux) state and the |aux),||) transition.

In the case of 41K, the magnetic sensitivity of the ||) = |2) to |aux) = |1) tran-
sition is slightly higher and therefore the |1) = |3), |}) = |2) states are a better
choice for the Raman coupling. At a magnetic field of B = 338.4 G, we have for
the transition between these states 969/0B = 0. Hence, the magnetic sensitivity
of our chosen Raman transition is actually zero at this point and the two-photon
detuning is insensitive to magnetic field changes. From Fig. 5.1 we conclude that
the ratio § is still sufficiently high at this field strength. It reduces by ~ 2.5 from
B > 25 x 103 to f = 10.7 x 103. Therefore, we choose to work at B = 338.4 G
for all our experiments dealing with Raman coupling in 4*K.

In the case of 3K, we have an additional constraint as we want to work in the
vicinity of the Feshbach resonances of either [1) = |2) at ~ 57 G or ||) = |1) at
~ 400 G (see Fig.4.4). Because of the lower magnetic sensitivity we choose to work
at the latter one. We choose the particular magnetic field value within a range
of (374-397) G, depending on the scattering length needed in the experiment. At
a magpnetic field of 397 G, the magnetic sensitivity of the |]) = |1) to |1) = |2)
transition is approx. 50 Hz/mG. Taking magnetic field fluctuations of 15 mG into
account, this translates into a detuning uncertainty of approx. 750 Hz.

Interactions

For the isotope 4K, the intra- and interspecies scattering lengths are nearly the
same, precisely we have a|| = 61 ag, ap = 60.9 ag and a4 = 60.7 ag at B = 338.4
G.
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5.1 Relevant parameters of the Raman coupling scheme

For 39K we can tune the scattering lengths between a;| ~ (25-252) ag, att ~ (—5-
1.5) ag and a4 ~ (—13.5-—6.5) ag in the operation range of B = (374-397) G. The
scattering lengths of 39K as function of magnetic field are shown in the previous
chapter in Fig. 4.4.

Wavelength of Raman light

For the Raman coupling we use light with wavelength A\g = 768.9 nm, in the middle
between the D1 and D2 resonances. This choice has two advantages: the first
and most important one concerns the ratio 5 = Q2g/l, as derived in section 5.1.1
and shown as function of the detuning A of the light from the D1 resonance in
Fig. 5.3. The two minima correspond to the coupling light on resonance with the
D1- and D2-transition respectively, where the scattering rate is maximized. Moving
away from the resonances, the scattering rate decreases faster than the coupling
strength, so 3 is growing. At A =~ +4A¢, the ratio is saturated. In between the two
resonances, at our chosen wavelength of A\g = 768.9 nm implying A = A¢/2, 8
has a global maximum. Therefore this choice is extremely beneficial for minimizing
loss due to inelastic photon scattering from the Raman beams.

The second advantage concerns the scalar light shifts introduced by the Raman
light. At the particular wavelength of A\g = 768.9 nm, the so called "tuneout"
wavelength, the scalar light shifts from the D1 and D2 transition cancel out exactly.
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Figure 5.3: Numerical calculation of the ratio 8 = Qg/[;, for 39K as function
of the detuning A from the D1-transition at magnetic field of B = 397 G. The
detuning A is given in units of the fine-structure splitting Ar.
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5 Experimental implementation of Raman coupling

Away from this wavelength, these shifts would alter the energy levels and thus affect
the trapping potential, which is highly undesirable.

Frequency difference of Raman beams

We use eq. (5.4) to calculate the energies of the coupled states [|),[1) at our
chosen magnetic field strength. For 'K at B = 338 G, the energy difference
is AE/h = 65.78 MHz, whereas for 3K at B = 397 G it is AE/h = 98.63
MHz. Accordingly, we choose the frequencies of the Raman beams such that their
frequency difference Af fulfils hAf = A + g for a desired two-photon detuning.
Concretely, we set the two Raman frequencies to w1 /27 = (¢/Ag) + 118.78 MHz
and wo /27 = (c/AR) + 53 MHz for 1K and to wy /27 = (c/Ag) + 217.63 MHz
and wy /271 = (c/Ag) + 118 MHz for 3K, respectively.

Polarization of Raman light

As depicted in the left panel of Fig. 3.1, the Raman beams have linear orthogonal
polarization along é, and é,. The linear polarization along é, can be decomposed
in a superposition between circular o and o_ light. Thus we effectively drive
transitions with 7 and o light and 7 and o_ light, which can couple two spin
states which differ by Am,; = +1. Therefore the two-photon Rabi frequency Qg
given by eq. (5.7)-(5.10) is non-zero.

5.2 Raman setup

We have the following main requirements for the Raman setup: first, the optical
alignment of the counter-propagating laser beams on the atomic cloud. Second,
the frequency difference between the two beams is adjustable in a wider range
so that we can realize the Raman coupling for different magnetic fields for both
isotopes, 'K and 3°K. Third, the frequency difference should be adjustable in
a smaller range of ~ 500 kHz within milliseconds, corresponding to control over
the detuning dg during the experimental sequence. Last but not least, we also
need temporal control in the microsecond range and an active stabilization over
the intensity of the two beams, as we want to implement pulses as well as ramps
of the coupling strength within one experimental cycle. The optical setup consists
out of two parts:

1. The first part where two laser beams with the chosen wavelength, sufficient
power and adjustable frequency difference between them is produced, and
which allows for temporal control of the light. Special care was taken to
suppress unwanted frequency components in the laser light, such that the
atom loss due to photon scattering is optimized. This part of the setup is
located on our "laser table" and is shown schematically in Fig. 5.4.
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5.2 Raman setup

2. The laser light is send via optical fibers to the second part on the "experi-
mental table", where the two beams are aligned on the atoms in the vacuum
chamber. This part of the setup is sketched in Fig. 5.5.

The first part of the Raman setup was originally build up by master student Manon
Ballu and former PhD student Dr. Julio Sanz. We use a commercial diode laser *
to provide light at the tune-out wavelength Ag = 768.97 nm, in the middle be-
tween the D1 and D2 resonance, which minimizes the inelastic photon scattering
(see section 5.1.2). The laser is free running, during months of operation the drift
in its wavelength typically remains below 0.1 nm. The laser light with a power
of ~ 20 mW at the output of the optical fiber connected to its fiber dock, gets
amplified with a homebuilt tapered amplifier> (TA). Following the TA, an optical
isolator 3 prevents back-reflections after which we obtain a laser power of ~ 1.2
W. The TA not only emits light at the injection frequency, because of the broad
gain curve (between 730 — 800 nm), it also amplifies its spontaneous emission, so
the light after the TA has an increased frequency background. Therefore, filtering
the light after the TA and in particular diminishing the contributions of the D1
and D2 resonances is crucial to prevent excessive atom loss. In our final setup,
the frequency filtering is performed by a combination of three distinct commercial
#. The range of reflectance of the filters depends on the pre-
cise angle of incidence of the light. Hence, they are placed in homebuilt rotating
mounts and aligned for minimal transmission for the laser light when tuned to the
D1 and D2 resonance and maximal transmission for light at the Raman wave-
length. After the filtering stage, the laser beam is split in two different paths. In
each path, the frequency of the light is controlled with an acoustic-optical modu-
lator (AOM) to produce the required frequency difference between the beams for
the Raman coupling. Moreover, the AOMs also allow for temporal control. For
the experiments with the isotope *'K, we use AOMs® with centre frequencies at
110 and 60 MHz, respectively. This allows us to obtain a frequency difference of
65.78 MHz, matching the energy splitting between ||) and [1) at B = 338 G (see
section 5.1.2). In order to be able to switch fast to a setup for Raman coupling in
39K, we have built an additional path, with an AOM® at 200 MHz. In this way, we
can use the 110 MHz and 200 MHz AOMs to match the energy splitting of 98.63
MHz between the ||) and [1) states in 3°K at B = 397 G. The two AOMs are
controlled with two independent commercial frequency sources: a programmable

interference filters

Toptica, DL pro 780nm

2Eagleyard: EYP-TPA-0765-01500-3006-CMT03-0000

3Thorlabs, 10T-5-780-VLP

4LaserOptik: IF780/6deg, Semrock: LL01-780-12.5, Semrock: SP01-785RU-2.5
®Intraaction: ATM-1101A2, ATM601A2

®Intraaction: ATM-2001A2

83



5 Experimental implementation of Raman coupling

frequency generator’ and an FPGA based frequency generator®.

After passing through the AOMs, the laser beams are coupled into independent
polarization maintaining single-mode fibers? and sent to the second part of the
setup, to our experimental table.

The purpose of this part is the alignment of the two different Raman beams on
the atoms, counter-propagating along the x-direction, which coincides with our
waveguide trap (see section 4.1). A simplified schematics of the setup is depicted
in Fig. 5.5. The two fibers run to the two different sides of the vacuum cham-
ber. The following beam paths are strongly constrained by the existing optics
around the vacuum chamber. Moreover, they are partially overlapped with the
infrared laser beam forming the waveguide potential along é.. This is achieved
with two dichroic mirrors directly placed before and after the viewport windows of
the vacuum chamber. The Raman beams also partially overlap with one of our
ToF imaging paths. Therefore, one mirror along each Raman path is placed on
a mount that can be manually flipped out of the imaging beam trajectory. From

"Rhode Schwarz: SMC100A 9kHz-1.1GHz
8Signadyne: SD-AOU-H3444-PXle-1G
9Thorlabs: P3-630PM-FC-10

s\ o
1-5 2 3 8
@hcj‘ U from 7 Q\l\gm
rom laserhea [ = ) .
S / L]
i 5
\L VA
AOMT— N\
]
\ 12 E; <;
@G E to experimental table T T
i

i ({ fiber in-/outcoupler lens "\ filter % M2 waveplate to experime\ntal table %
I optical isolator/mirror Z polarizing beam splitter @@7
Figure 5.4: Sketch of the Raman setup on the laser table. The optical components
are (1): 60FC-4-A6.25-02 (Schaffter+Kirchhoff), (2): =30 mm, (3): f=100 mm,
(4): tapered amplifier, see footnote 2, (5): =150 mm, (6): f=-50 mm, (7): C110-
TMD-B-f=6.24 (Thorlabs), (8): 60FC-4.55-02 (Schéffter+Kirchhoff), (9), (10),
(11): see footnote 4, (12), (13), (14): see footnotes 5, 6. All mirrors are the BB1-
E03 model from Thorlabs, all cubes used for power splitting the model PBS0649-
650-850nm from Foctek, all cubes for polarization cleaning the model G335525000

from Qioptiq, all waveplates zero-order 768.4 nm waveplates from Foctek.
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5.3 Optical alignment

the fiber outcoupler'® on both sides of the vacuum chamber, the light is picked up
on a photodiode with a beamsampler 1! for an intensity stabilization. Afterwards,
the two Raman beams are focussed on the atoms with a lens'? of focal length
f = 300 mm, which results in an 1/e? diameter of (150, 162) um on the atoms.
Compared to the atomic cloud size, which is typically < 10 um of diameter in the
plane transversal to the Raman propagation direction, this is sufficiently large to
consider the Raman intensity as uniform on the atomic’s position. The polarization
of the two beams is set by \/2 plates to linear horizontal (along é,) and linear
vertical (along é;) polarization before the chamber respectively.

5.3 Optical alighment

A good alignment of the Raman beams relative to each other and onto the atoms
along the waveguide direction is quite challenging to achieve. In order to optimize
it, we have established the following routine:

e As a starting point, the two beams are aligned on the dipole trap beam along
the x-direction (waveguide potential).

e The position of the atoms is recorded in a camera with an imaging beam
along the x-axis.

e We optimize the alignment of one of the Raman beams along the waveguide
by monitoring its position on the camera relative to that of the atomic cloud.

105 chaffter+Kirchhoff; 60FC-4-A6.25-02
" Thorlabs, BSN11 and Thorlabs, BSF10-B
2Thorlabs: LA4579-B-f=300mm

@6 S A am( fiber in-/outcoupler lens jdichroic mirror
3 (M photodiode /mirror Z PBS /beamsampler
by — ,
/ / / \ A2

D

e

Figure 5.5: Simplified schematics of the Raman setup on the experimental table.
The optical components are (1): 60FC-4-A6.25-02 (Schaffter+Kirhhoff), (2) f=-
100 mm, (3): f=150 mm, (4): f=300 mm, (5): DMSP1000L (Thorlabs), (6):
DMLP950L (Thorlabs), (7) flipping mirror.
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e Afterwards, the other Raman beam is overlapped with the first one. Fine-
tuning is achieved by coupling this beam back into the fiber of the first
Raman beam.

e In the last step, the alignment is improved with the atomic signal. The
orientation of the last mirrors before the chamber is tuned on both sides in
an iterative way to improve the atomic transfer during a pulse with the two
Raman beams on resonance. In order to prevent confusion, one should use
a time shorter than the expected 7-pulse time. Otherwise a larger coupling
strength could imply a smaller transfer at a fixed pulse period.

Each time the mirrors on the flipping mounts are moved in and out the path, the
Raman alignment has to be checked.

5.4 Characterization of the Raman setup

As detailed in chapter 3, the effect of the Raman coupling can be understood in
terms of a dressing of the bare coupling states [1) and |]) into a new ground state
with modified energy dispersion. The new dispersion relation strongly depends on
the coupling field parameter 2z and &g and therefore, a precise knowledge of these
is needed in our experiments. Moreover, the lifetime 7, set by the Raman inelastic
photon scattering rate and therefore also dependent on the Raman light settings, is
also crucial to our experiment as it limits the duration of all our measurements. In
this section we describe how (2, dg are controlled and calibrated and 7 is measured
in the experiment.

Raman detuning

We control the relative detuning of the two counter-propagating Raman beams
by means of single pass AOMs placed along the path of each beam on the 'laser
table'(see section 5.2). One of the two AOMs is driven by the programmable rf
source and sets the frequency of the respective Raman beam to w; /27 = 118.78 or
wi/2m = 217.36 MHz for %K or 3°K, respectively. The second AOM, controlled by
the FPGA-based frequency source, has a centre frequency of 60 MHz (110 MHz)
for 41K (39K) and its frequency w» is adjusted to match the desired detuning of the
two-photon transition. We checked that the frequency output of the generators
is precise within < 100 Hz with a spectrum analyzer clocked externally with 10
MHz. For a fine adjustment of the two-photon detuning, we fix the frequencies of
the Raman beams to the theoretically expected ones for a chosen magnetic field
By and tune the external magnetic field, controlled by the current in the coils, to
this precise value. We use a transition between two internal states to find By by
optimizing the transfer probability from one hyperfine state to another via an rf
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m-pulse with the theoretically expected frequency at By.

The magnetic field calibration is specific for each isotope and mainly relevant for
39K. When working with 4'K, we cannot use the transition between the Raman
states ||),|T) as they are magnetic insensitive as outlined above. Therefore we
use the transition between the lowest states of the ground-state manifold |aux)
and ||) with a magnetic sensitivity of 98y/0B ~ 20 Hz/mG. Instead, in 3°K we
can use the |]) to |1) transition which has a magnetic sensitivity of ddo/0B ~ 50
Hz/mG. In contrast to *1K, we cannot perform the calibration with a condensate
as the different interactions in the two hyperfine states introduce differential mean
field shifts and therefore an effective detuning in the order of kHz. Therefore,
the magnetic field calibration is obtained from an atomic cloud slightly above the
condensation temperature.

A typical measurement of the transfer is shown in Fig. 5.6 for the case of K.
We mostly use an rf-coupling strength of Q2gg/2m ~ 2 kHz, corresponding to a
m-pulse of duration ~ 220 ps. As function of the magnetic field we obtain the
transfer probability Naux/(N| + Naux) after the rf-pulse by extracting the atom
numbers N,., N| via ToF imaging and a Stern Gerlach pulse. The uncertainty of
the magnetic field strength By yielding the maximum transfer is < 10 mG from
fitting uncertainties, which translates into an uncertainty of ~ 200 Hz and ~ 500
Hz in detuning for 'K and 3°K, respectively. We have considered to decrease the
rf-coupling strength so the peak gets narrower, but the measurement gets more
noisy and the accuracy of determining the centre of the peak does not necessarily
improve.

Raman coupling strength

The strength of the Raman coupling is given by the intensity or optical power in
the beams (see eq. (5.7)), which we control and stabilize with an active feedback
loop. The Raman coupling strength is calibrated with the atomic signal. When the
Raman beams are turned on abruptly for a time period At, i.e. the band-structure
as described in chapter 3 is induced suddenly, the atoms undergo Rabi flopping
dynamics between the bare states. The polarization P oscillates between —1 and
1 and the probability to find an atom in the upper state |1) is given by

22 1~
Py = 2B sin? [ gt ), 5.18
= g (5%) (5.18)
where we have assumed P = —1 initially, so all atoms are in state |]). In accordance

with its physical meaning, P; runs from 0 to 1 as the time is varied, which is in
contrast to the polarization for which P € [—1, 1] holds. We introduce such Rabi
oscillations between |1) and ||) with a resonant Raman pulse with variable length.
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The Raman pulse is on resonance if the condition Aw = wq + h?(2kg)%/2m is
fulfilled. The second contribution accounts for the additional energy separation
due to the momentum transfer. We then determine P; by measuring the atom
numbers N, N; of the two spin states with our spin resolvable absorption imaging
and calculating Py = Ny /(Ny + N}).

An example of a measured Rabi oscillation is shown in Fig. 5.6 up to a pulse
duration of 750 us. Within this timescale only minor damping is observed, and we
fit a squared sine function to the data to extract the Rabi frequency. Usually we
realize the optical pulse in the order of us with a disabled intensity control, as the
PID controller cannot react properly in this timescale. An alternative procedure is
to keep the Raman beams at a fixed power for a few milliseconds and to change
the detuning from far off resonance (e.g. do/2m = —30.4 Eg/h) to resonance
for the required pulse length. We do so by abruptly changing the rf input of the
AOM between two distinct frequency sources at different frequencies with an rf
switch. In this way, we are able to stabilize the power during the pulse with our
active feedback loop. Both methods result in a very similar error in the coupling
strength calibration, thus both do not suffer from additional uncertainty due to
power fluctuations in the Raman beams. The error of the measured 2z, extracted
from the covariances of the fit is in the order of 3%. We estimated numerically that
the additional error in 3°K due to the damping caused by the mean field detuning
is < 3%.
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Figure 5.6: Calibration of coupling field parameter. Left: Typical transfer proba-
bility between |aux) and |}) in **K with an RF m-pulse. The signal is used for a
magnetic field /two-photon detuning calibration. Right: Rabi oscillations between
|[4) and |1) after a Raman m-pulse. The signal is used for a Raman coupling strength
calibration.
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5.4 Characterization of the Raman setup

Atomic lifetime under the presence of Raman coupling

We measured the atom loss of the Raman-dressed #'K and 3°K Bose-Einstein
condensate for a coupling strength of 2z/2m = 4.5 Eg/h. During these mea-
surements we had a two-photon detuning of dp/2m = —30.4 Eg/h, so we only
measure the effect from single particle photon scattering. The results are shown
in Fig. 5.7. We fitted an exponential decay to the data and extracted an 1/e value
of 7 =(39.2 +1.9) ms for #!K and 7 = (38.7 & 1.6) ms for K.

Our theoretical computation of the ratio § = Qg /I (presented in section 5.1.1)
predicts for A = —A¢/2 a ratio of f = 9.7 x 103 for *’K at B = 338 G and
B =9.6 x 103 for 3°K at 397 G. For 2r/27 = 4.5 Eg/h the expected lifetime is
7 = 1/, =~ 41.8 ms for both isotopes at these different magnetic field values,
where we have assumed the energy transfer of the Raman beams leads to the
immediate loss of the atom. Note that the computation gives the lifetime only
accounting for single particle photon scattering as we also measure experimentally
in Fig. 5.7. The result of the calculation is in very good agreement with the theo-
retical prediction. We conclude that the experimentally measured atomic lifetime
is close to the ideally expected value and our filtering procedure after the TA is

sufficient.
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Figure 5.7: Measured atomic lifetime in the presence of Raman coupling. The
graph shows the atom number after a time period t under the presence of the two
Raman beams with Qg /27 = 4.5 Eg/h and &o/2m = —30.4 Eg/h. Red data points
correspond to “'K at B = 338 G, orange data points to 3°K at B = 397 G. The
dashed lines are an exponential fit with (1/¢) values of 7 = (39.2 + 1.9) ms and
7 = (38.7 & 1.6) ms for 1K and 3°K, respectively.
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5 Experimental implementation of Raman coupling

5.5 Quasi- and mechanical momentum in the laboratory
frame

In chapter 3, we have seen that the characteristics of the Raman coupling are a
function of the quasi-momentum k,, as any momentum introduces an effective
detuning § = 8o — 4k, which affects the atom’s energy, polarization, its effective
mass and the experienced effective gauge potential.

Assuming that the Raman dressing is switched on adiabatically, the group velocity
of the cloud in the quasi-momentum frame coincides with the momentum in the
minimum of the dispersion: ky = kmin. However, as the process is never perfectly
adiabatic and the atoms in the experiment also have a mechanical momentum
Kkmech On top, the total quasi-momentum is ky = Kmin + Kkmech. Here below we
explain how the momentum kpi, and mechanical momentum Kyech can be directly
seen in the laboratory frame.

In order to determine the quasi-momentum, we switch off abruptly the Raman
beams and measure the momentum distribution with ToF imaging. In this way
the Raman-dressed state is projected into the two bare states and k, can directly
be extracted from the difference Ax in the position of atoms which were and
which were not coupled by the Raman beams: ky = Ax/trop. In the left panel
of Fig. 5.8 we see an exemplary image obtained after trog = 21 ms and Stern
Gerlach separation of the spin states, for 2g/27m = 4 Eg/h and &g fin/2m = —0.37
Egr/h. The bare states [|), |1) are separated vertically. The dashed line marks
the reference position of atoms in state ||) without Raman coupling. In order to
understand the horizontal shift Ax observed after time of flight, one has to consider
the physical momenta of the bare states. These are not k. but khys = kx £ kg,
respectively, with kx = kmin + kmech. Because of the momentum transfer from
the photons of the Raman beams to the atoms, the two components are always
separated by 2kg. In particular, in our system, the [1) component is on the positive
side (here left) with respect to |), which is set by the propagation direction of the
Raman beam with higher/lower frequency. If the atoms are transferred from || ) to
1) with a m-pulse, they will appear on the left at a distance Ayx = 2Kg/t1oF from
the rest position of the atoms in |} ), if zero mechanical momentum Kkmpech = 0 is
assumed. If instead the dressed state |—) is prepared by e.g. a detuning sweep
from ||) towards |1), both spins composing |—) will be found again separated by
2KRr/t1oF, but commonly shifted by kmin/tror to the right, because kmin < O.
Therefore, Ayx = +2kg/troF — |kmin|/tToF for the shift of atoms in [1) and
A x = —|kmin|/tTor for the atoms in state |]), respectively. The shift kmin/tTor
unveils the synthetic static vector potential Ap present in the system. This is
summarized in table 5.1, which gives the values of kmin and kypys for the three
limiting cases of the detuning.
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5.6 Preparation of atoms in the Raman-dressed band

‘ do,in < 0 ‘ do,in =0 ‘ do,fin >0 ‘
Knin +kr 0 —kr
Kohys — kmech | O for |1}, +2kg for 1) | —kg for |]), +kgr for |T) | —2kg for |]), O for |1)
Kmech 1 X (0 + Kmech)+ 0.5 x gfkR + Kmech)+ 0 x 2*2/0? + Kmech )+
0 X (2kgr + Kmech) 0.5 X (kr + Kmech) 1 % (0 + Kmech)

Table 5.1: Momenta of Raman-dressed atoms for three characteristic values of
two-photon detuning. The detected momentum Kpnys is kx — kg for ||) and k. + kg
for [1) with kx = Kkmin + Kmech.- The mechanical momentum is the spin weighted
sum of the momentum in the two bare states.

Fig. 5.8 shows the case of a finite negative detuning do/2m = —0.37 Eg/h. Any
discrepancy between the momenta extracted from the clouds positions and the
expected kppys, represents an additional kmnech, common to both spins. Practically,
the contribution kmech can be calculated over the spin weighted sum (see bottom
line in Table 5.1):

kmech = Prkxt + (1 — Pp)ky ., (5.19)

where Py = N;/(Ny + Ny) is the probability to project the dressed state into |1)
as previously introduced.

In our measurements we use two different methods to extract the quasi-momentum
kyx from the condensate in the lower dressed state and to distinguish between kmin
and kmech. The first one is based on ToF images in combination with the centre of
mass oscillation induced by the mechanical momentum in a dipole trap1°?
to measure the synthetic static vector potential (see section 6.2 for more details).
The second method relies on spin ejection spectroscopy'®* and is applied in the
measurements on the modified free expansion dynamics caused by the effective
mass or/and density-dependent vector potential (see section 6.3 and 7.3), where
a precise knowledge of the generalized detuning § is needed.

and used

5.6 Preparation of atoms in the Raman-dressed band

In all our experiments we start with the condensate in |]) without Raman coupling.
We then load the atoms in the Raman modified dispersion relation characterized
by the final values (2g fin, do fin. We aim to prepare the atoms with zero mechan-
ical momentum, so the quasi-momentum is just given by the momentum in the
minimum of the dispersion: ky = kmnin. However, this is challenging as any non-
adiabatic preparation induces a mechanical momentum kpech and we are limited
in the time duration of the preparation by the atomic lifetime of ~ 39 ms.

The optimal preparation procedure we found for the isotope 3°K, consists out of
the following steps:
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5 Experimental implementation of Raman coupling

1. We switch on the Raman beams at an initial two-photon detuning do/27
below = —0.46 Eg/h.

2. We ramp up the power of the Raman beams non-linearly to Qg/27 = 4
Egr/h within time 71. The non-linear power ramp is of the form
Qg(t) = 4/(t/m1)(2 — (t/71)), which leads to a liner increase of the mo-
mentum in the minimum of the dispersion, kmin = /1 — (£2g/4)? for Qg /27 <
4ER/h and (50 =0.

3. We sweep the detuning linearly to its final value and simultaneously increase
linearly the coupling strength to its final value in a time 7.

This preparation procedure is illustrated in Fig. 5.9. For the isotope 'K we follow
a similar scheme. Exact values and minor differences are peculiar to each mea-
surement and detailed in the corresponding section.

The outlined steps ensure that we are above 2z/2m = 4 Eg/h before sweeping
the detuning Jp to values close to zero. This is necessary for the following reasons:

e The first reason resides in the phase diagram of the Raman-coupled con-
densate, which was calculated for 3K by my colleague Craig Chisholm72.

Spin projection

400 800
Position along é,(um)

Figure 5.8: Example of an absorption image of the Raman-dressed condensate for
Qr/2m = 45Eg/h and 6y/2m = —0.37 Eg/h obtained after time of flight of 21
ms. The dressed atoms get projected into the bare states |]),|1) and separated
vertically during a Stern Gerlach pulse. The dashed line indicates the reference
position of atoms in ||} without Raman coupling present. Ax is the shift due the
quasi-momentum Ky = Kmin + Kmech-
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5.7 Conclusion

For coupling strengths above 4 Eg/h the dispersion has a single minimum.
In this thesis, we always want to prepare the system in this phase. For
Qr < 4 Er/h, the dispersion has two minima. If only one minimum is oc-
cupied the system is in the plane wave phase. For values of the detuning
between &y/2m = (—0.4-0.1) Egr/h, both minima are occupied and the sys-
tem is in the "stripe phase"!32161  Whereas the transition between plane
wave to single minimum phase is of second order, the stripe to single mini-

mum phase transition is of first order”® and thus has to be circumvented.

e The second reason concerns the adiabaticity of the preparation. For cou-
pling strengths of 2r/27w < 4 Eg/h, the minima on the k, < 0 and k, > 0
sides do not connect smoothly around d9 = 0 and the preparation cannot
be adiabatic. Fig. 5.10 illustrates this circumstance for atoms prepared at
a final 2g/2m < 4 Eg/h. The left panel shows the predicted energy in the
minima of the dispersion at negative and positive momentum, respectively.
For the example of final 2g/2m = 2.5 Eg/h there is a discontinuity in the
energy when sweeping the detuning across zero. In the right panel the me-
chanical momentum arising for different values of the final detuning and final
Qr/27m =4 Eg/his depicted. It was calculated with the spin-weighted aver-
age (see. (5.19)) from ToF images. In the regime of 9 < 0, the mechanical
momentum acquired by the dressed atoms is minor. It considerably increases
for a final two-photon detuning do/27m > —0.12 Eg/h, which we attribute to
the flat dispersion at 2g/27m = 4 Eg/h.

In order to validate our preparation procedure, we usually perform the following
tests:

e We measure the introduced mechanical momentum as function of the sweep
rates. Any mechanical momentum of atoms trapped in a harmonic dipole
trap leads to an oscillation of the atomic cloud’s centre of mass position.
We optimize the detuning and power ramps by minimizing the amplitude of
this oscillation.

e We test the coherence of the prepared dressed state. Therefore we reverse
our preparation ramps after a variable waiting time in the dressed band and
undress the atoms. We observe the full population back in the initial state
|4}, so the state remains coherent.

5.7 Conclusion

In this chapter, we summarized experimental considerations concerning the imple-
mentation of Raman coupling in a Bose-Einstein condensate of 4°K and 3°K. We
described the experimental setup and found theoretically suitable parameters such
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5 Experimental implementation of Raman coupling

that the two-photon uncertainty and the atomic loss caused by the inelastic photon
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Figure 5.9: lllustration of the optimized preparation sequence to prepare atoms in
the lower Raman-dressed band. §; (dr) denote the initial (final) two-photon detuning
do. These steps ensure the stripe phase in 3°K is not entered, the dispersion minima
on the negative and positive k, side connect smoothly while keeping the atom loss
minimal.
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Figure 5.10: Non-adiabaticity of preparation. Left: The energy of the dispersion
relation for kyin for a coupling strength below and above 4 Eg/k as function of
the detuning. The minima in the sides k, < 0 and k, > 0 only connect smoothly
for 2g/2m > 4 Er/h. Right: Mechanical momentum of the dressed state at
Qr/2m = 4 Eg/h as function of the final detuning. The mechanical momentum
was extracted via the spin weighted average, see eq. (5.19).
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5.7 Conclusion

scattering is minimized. In particular, we found for 3°K a magnetic field setting
at values around 400 G which limits the fluctuation in the two-photon detuning to
approx. 750 Hz and also allows us to tune the interactions of the |]) state in a
broad range of approx. 225 ag. At this given magnetic field, we set the wavelength
of the Raman light to the "tune-out" wavelength in the middle between D1 and
D2 line which results in a lifetime of < 40 ms at the Raman coupling strengths
Qr/2w > 4 Eg/h we employ. With these setting we are able to prepare atoms in
the Raman-dressed dispersion with tolerable mechanical momentum. In conclu-
sion, a BEC of 39K seems a suitable platform to explore the combination of tunable
interactions and Raman coupling and hence to simulate the chiral BF theory.

As we have seen, the lifetime increases for heavier atomic species. Therefore a heav-
ier atom which also offers a flexible interaction control as 39K would be an exciting
prospect. For example, 133Cs offers many magnetic Feshbach resonances!’4-178
and hence might be a promising candidate for studies where a higher Raman cou-
pling strength is desired. However, due to its negative and very large background
scattering length, experiments will only be possible at the overlap of several Fes-
hbach resonances and finding an appropriate magnetic field region could be more

challenging than for potassium.
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6 Single particle effects in a
Raman-coupled BEC

After the technical characterization of our Raman setup, we now turn to
the study of Raman-coupled condensates. In this chapter we investigate
its induced effects on the condensate on the single particle level.

We directly measure the energy band of the lowest dressed state, the
synthetic vector potential experienced by the atoms and investigate the
change in the free expansion dynamics of the condensate due to its mod-
ified effective mass.
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6 Single particle effects in a Raman-coupled BEC

In this chapter we investigate Raman-coupled BECs on the single particle level
as a preparatory step before studying Raman-coupled BECs with interactions in
chapter 7. As we detailed in chapter 3, Raman coupling modifies the dispersion
relation of the coupled atoms. The effect of Raman coupling on the atoms has
already been studied extensively in different groups®8-102.107,152-157,159-166  \y/e
here follow some of these measurements and investigate the modified dispersion,

the effective vector potential and the effect of the modified mass.

Most measurements in this chapter are performed with the isotope 'K for which
we achieve a better stability in the two-photon detuning (see chapter 5) and where
we cannot confuse single-particle and interaction effects. However, the measure-
ment of the synthetic vector potential via the quasi-momentum for which the
interaction effects are below our experimental resolution, is carried out with the
isotope 39K. In this chapter, all Raman parameters and momenta are expressed in
units of the Raman recoil energy Eg and momentum kg respectively. In contrast
to chapter 3, we do not set Eg,kg and & to one. Other quantities are given in S|
units.

All the experimental work presented in this chapter was obtained in close collabo-
ration with my colleagues Craig Chisholm and Dr. Cesar Cabrera.

6.1 Spin injection spectroscopy of the lowest
Raman-dressed band

As described in chapter 3, the modified dispersion relation is the key feature of the
Raman-dressed BEC. We can directly measure the dispersion relation by spin injec-
tion spectroscopy. This technique was established by the group of Prof. Zwierlein
in Ref. 164, where it was used to measure the lower Raman-dressed band of a Fermi
gas in the low coupling regime Qg /27w < 4 Eg/h. Here we adapt this technique
to measure the dispersion relation of the lower dressed band of the Raman-dressed
41K Bose-Einstein condensate.

Spin injection spectroscopy is based on directly probing the energy of the transi-
tion between a bare state and the Raman-dressed band. We start with atoms in
the uncoupled auxiliary state |aux) = |1)|F =1, mg = 1) and inject atoms into
the unoccupied Raman-dressed dispersion via a radio-frequency pulse with vari-
able frequency. Afterwards, we quantify the fraction of atoms transferred to the
[4) = |2) or |T) = |3) state by spin resolved absorption imaging after time of
flight. From the frequency of the rf-pulse with the highest injection probability
we can infer the energy of the Raman-dressed band. This concept is illustrated
in Fig. 6.1. More precisely, the resonant transition frequency between the lowest
dressed band and the |aux) state with energy E,uy is given by f— ,ux(kx, 00, 2r) =
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6.1 Spin injection spectroscopy of the lowest Raman-dressed band

Figure 6.1: Spin injection spectroscopy as established in Ref.164. Left: Schematics
of the dispersion relations of the |aux) state (dashed line), |), |1) states (dashed
lines) and Raman-dressed states |—),|+). We experimentally measure the fre-
quency foux — and from the difference Af to the frequency between the bare states
|aux) and ||), we can reconstruct the energy of the Raman-dressed state |—).
Right: Transfer probability from state |aux) to the dressed state |—) as function
of frequency difference Af to the bare transition frequency f,,x, for a selection of
quasi-momenta prepared by Bragg diffraction (see Fig. 6.2).

(E_(kx, 80, 2R) — Eaux(kx))/h, with E_(ky, 8o, 2r) = Er(k2 + 1) = 1if2r /2 as de-
rived in section 3.2.1 for the non-interacting case. As one can see from Fig. 6.1,
the dispersion of the auxiliary state can be expressed as Eaux(kx) = € (kx) — hfaux,|
where f,,x | is the frequency of the transition between |aux) and []) in the absence
of Raman coupling and which can be calculated with eq. (5.4). The dispersion of
the bare ||) state is a parabolic free particle dispersion and in the quasi-momentum
frame is given by £, = Eg(k« — 1) — hidp/2. Therefore we find

hf_ aux(kx, 00, 2r) = E—_(kx, 00, £2r) — (€| — hfaux,|) (6.1)

for the frequency difference between the |aux) to |—) and the |aux) to the bare |{)
state . .
Qr+9

At
The momentum dependence of Af is illustrated in the right panel of Fig. 6.1,
where we show the measured shift in the transfer frequency for three exemplary

Af(kX1 50: QR) = ff,aux(ka 50: QR) - faux,¢ = -

(6.2)

momenta. For quasi-momenta k, in the range of —0.1 kg to 2.1 kg, the resonant
frequency f_ ,ux is changing by Af = 8 kHz. After the experimental determination
of Af(k,do, 2r), we can infer the energy of the dressed band with eq. (6.1).

In order to reconstruct the full band we need Af(ky, do, 2r) for all ky of interest.
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6 Single particle effects in a Raman-coupled BEC
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Figure 6.2: Left: Momentum of the condensate in state |]) after applying a mag-
netic gradient in x-direction as function of the waiting time in an harmonic dipole
trap. Right: Momentum of the condensate in |]) after Raman-Nath diffraction
on an optical lattice as function of the waiting time in a harmonic dipole trap.
The solid lines are the theoretical predictions assuming an oscillation in a trap
with wy,/2m = 45 Hz. In the case of the magnetic kick we perform a fit with
Acos(2rf, 4+ ¢) and find A= 0.6 kg and ¢ = 0.63. The dashed lines are fits of a
third order polynomial.

In the pioneering work of Ref. [164], the experiments were performed with a Fermi
gas and hence all momenta could be probed with one single rf-pulse. In the case of
a BEC only a narrow range of momentum states are occupied. Therefore, we have
to prepare the condensate at different momenta and repeat the measurement of
Af (ky, 60, £2r) at each momentum to obtain the full energy-momentum relation.

We start with a 'K BEC in the auxiliary state in the crossed dipole trap formed
by our waveguide along &, and the additional beam along (& + &,)/1/(2) (see
section 4.1) with trapping frequency of wy/2m = 45 Hz along é,. Note that in the
quasi-momentum frame, the atoms in |aux) are at ky = 1 kg in the minimum of
the dispersion.

We prepare the condensate at different momenta by imparting a kick kyick to the
atoms and afterwards letting the condensate oscillate in the trap for a variable wait-
ing time Twait, SO that the momentum is changing by kyx = kick COS(27T X fiTwait)-
For momenta ky < 0.5 kg or ky > 1.5 kg, we employ Raman-Nath diffraction from
an optical lattice’®7181 The lattice has a wavelength of A; = 1064 nm and thus
the momentum imparted on the atoms is *-kyjcxk = £2 %27 /A = 2k, = +1.44 kg.
We choose to pulse the lattice with shallow depth of Vi =~ 4 E; for 45 us, so the
diffraction orders above +kgr are suppressed and the three orders 0, £kgr have a
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6.1 Spin injection spectroscopy of the lowest Raman-dressed band

similar population.

For momenta between 0.5 > k, > 1.5 kg we could not apply the same method as
the three peaks form the 0 and 4+kgr order got unresolvable in space after time of
flight. Instead, we applied a magnetic gradient in x-direction for 1 ms to prepare
the BEC at a momentum in this range.

We calibrate the momentum for a certain waiting time 7.t by employing the
momentum resolution of a Raman 7-pulse. As described in section 5.4, the reso-
nant frequency for a Raman 7-pulse between |]) and |1) is fro = (Ey — E}) /h +
4hk3/(2m) with 2kg the momentum transferred by the Raman beams. If the
atoms in state ||) have a velocity v, = hk,/m, the frequencies of the Raman
beams as experienced by the atoms are modified by the Doppler effect: The fre-
quencies get blue- and red-shifted for the beam travelling in the same and op-
posite direction:fy, = (1 + (|vi|/c))f and f_ = (1 — (|vx|/c))f, respectively.
The effective change in the frequency difference between the two Raman beams is
Afp = hky(fi+1£)/cm giving 27 x Afp = h2kgky/m in dimensional units. There-
fore the Raman pulse is only resonant for a narrow momentum class k., and we
determine the momentum of the condensate by finding the frequency shift which
maximizes the transfer of a m-pulse. By repeating this procedure after different
waiting times in the dipole trap, we obtain the momentum calibration, which is
shown in Fig. 6.2. In the left and right panel the momentum of the atomic cloud
is displayed as function of the wait time in the trap after Bragg diffraction and
after applying the magnetic gradient respectively. Both calibrations are compatible
with the trap frequency of w,/2m = 45 Hz (solid lines). However, to account for
imperfections in the dipole trap we use empirical polynomial functions (dashed
lines) to describe the data.

By combining the spin injection spectroscopy and the momentum calibration
we are able to reconstruct the energy band of the lower dressed state. Our re-
sult for 2r/27 = 0.97(3) Er/h, dp/2m = 0.0(2) Er/h and a momentum range
(—0.1—2.3) kg is displayed in Fig. 6.3. Our data points agree well with the single
particle theory (solid line). Remarkably, we can resolve the difference between
Raman-dressed band and the free particle dispersion (dashed lines) at k, = 1 kg,
which corresponds to a energy difference of ~ 0.07 Eg or frequency difference of
~ 570 Hz, respectively.

From the same absorption images we extract the spin composition of the atoms
transferred to the Raman-dressed band and calculate the polarization Peyp

Ny — N
p NN

= 6.3
&P NT+N¢ ( )
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6 Single particle effects in a Raman-coupled BEC
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Figure 6.3: Measurement of the lower dressed state energy band with spin injection
spectroscopy in a 'K BEC for 2z/27 = 0.97(3) Er/h and §o/27 = 0.0(2) Er/h.
The colour of the data points indicates the measured polarization, as explicitly
plotted in Fig. 6.4. The dashed lines represent the free particle dispersion relations
of the |}) (green), |1) (blue) states and the solid line describes the prediction for
the lower dressed state |—), see section 3.2.2.

with the atom number N|, N; of the bare states in which the atoms in the dressed
band are projected in. We show the obtained Pe,, for different values of ky in
Fig. 5.8. It matches well with the prediction calculated with P = g/fZR.

6.2 Experimental observation of the static vector
potential

In the single minimum regime, Raman coupling can be effectively described as the
presence of a vector potential acting on the atoms and a modified atomic mass
(see chapter 3). In this section, we measure the synthetic one-dimensional vector
potential induced by the Raman coupling along &.. As explained previously, the
vector potential Ag for this configuration is static and is given by the change of the
minimum of the dispersion: eAg = kmin. We here follow a technique pioneered in
the Spielman group 29190 to directly measure the strength of the vector potential.

The measurement consists out of preparing the atoms in the lower dressed state
and afterwards determining the vector potential experienced by the atoms via the
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6.2 Experimental observation of the static vector potential
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Figure 6.4: Measured polarization P of the atoms transferred with spin injection
spectroscopy to the Raman-dressed band |—) with 2z/27 = 0.97(3) Eg/h and
do/2m = 0.0(2) Eg/h as function of the quasi-momentum k.. The solid line shows
the expectation P = §/2x.

momentum they have acquired in the modified dispersion. More precisely, the
vector potential Ap is given by eAg = kmin = kx — Kmech, SO the measurement
of the vector potential reduces to the determination of the quasi- and mechanical
momentum. In the following we will describe the measurement methods and results
in detail.

We load the condensate into the lower Raman-dressed band with 2z /27 = 5.0(3)

Er/h and &p/27 in the range (—12.1 — 12.1) Eg/h. This is achieved with the
following steps: first, we ramp up the Raman power to 2g/2m = 1.00(6) Er/h
in 10 ms at dg/2m = —12.1(6) Eg/h. Afterwards, we sweep the frequency in 10
ms to do/2m = —0.6(6) Eg/h. At this detuning, we further ramp up the Raman
power to its final value 2r/2m = 5.0(3) Er/h in 20 ms. As last step, we sweep
to the final detuning in 10 ms. In case of a final detuning do/27 < —0.6 Eg/h
the last step is omitted. All ramps are of linear form. The preparation follows
roughly the concept of the procedure outlined in section 5.6, differences are due
to historical reasons.

In order to measure the vector potential experienced by atoms in the lower dressed
band, we have to obtain the total quasi-momentum and the mechanical momentum
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6 Single particle effects in a Raman-coupled BEC

of the atoms. We measure the quasi-momentum k, with time of flight imaging and
distinguish the contributions from kpecn and kmin by measuring the momentum
oscillation in the presence of the Raman coupling in the dipole trap. Whereas
the mechanical momentum is changing with waiting time in the trap as kinetic
energy is transformed in potential energy and vice versa, the momentum in the
minimum of the dispersion remains the same as it only depends on the Raman
parameters. Therefore kni, corresponds to the average over full periods of the
oscillation, which is captured by the offset when describing the oscillation with a
trigonometric function. Fig. 6.5 shows the measured quasi-momentum oscillations
for different values of the final detuning dg. We fit a sine function (solid lines) to
the data to extract kmin (dashed lines).

In Fig. 6.6 the measured vector potential eAg = kmin as function of the two-photon
detuning is displayed. The data is in excellent agreement with the single particle
theory (solid line), which is the numerical solution of eq. (3.11). This measurement
was performed with the isotope 3°K, for which we expect an additional density
dependent detuning caused by interaction effects on top of the single particle
effects. This detuning would lead to a shift of the vector potential with respect to
the single particle theory. However, we don’t expect to resolve this discrepancy as
the interaction induced detuning is on the order of a few hundreds Hz and in the
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Figure 6.5: Measured oscillations for the quasi-momentum k, of the dressed state
|—) with 2g/27m = 5.0(3) Egr/h as function of waiting time in the optical dipole
trap. We fit sine functions to the data (solid lines). The momentum ki, in the
minimum of the Raman-dressed dispersion is the average of the oscillation, namely
the offset (dashed lines) obtained out of the fit.
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Figure 6.6: Gauge potential Ag for K at 2z/27 = 5.0(3) Er/h as function of the
final detuning dp. The line is the single particle theory calculated with eq. (3.12).
Uncertainties are obtained by error propagation of the fit covariances and are below
the marker size.

case of 39K we are limited by the stability of the two-photon detuning which is in
the order of 500 Hz (as detailed in chapter 5).

6.3 Effective mass: modified free expansion dynamics

In eq. (3.8) we have introduced a momentum-dependent effective mass m* (k)
that accounts for the non-constant curvature of the modified dispersion relation.
The effective mass has severe consequences in the free dynamics of the Raman-
dressed particles. This was first investigated in the group of Prof. Engels, where
a negative effective mass regime was realized and the resulting hydrodynamics in-
cluding an anisotropic expansion and self-trapping effects were studied %.

Here we also study the expansion dynamics of the Raman-dressed atoms for the
experimental parameters relevant in the next chapter 7. In contrast to Ref. [9§],
which investigates the regime of 2z/2m = 2.5 Eg/h and positive detuning, we
study the effect in the single minimum regime with 2g/27m = 4.5(1) Er/h and
around 8o/27 = 0.0(2) Eg/h. In this regime the effective mass remains always
positive (compare with Fig. 6.8). Nevertheless, it also leads to an asymmetric ex-
pansion dynamics and the density distribution develops a skewness which depends
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6 Single particle effects in a Raman-coupled BEC
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Figure 6.7: Integrated in situ density profiles for the Raman-dressed 'K condensate
with 0o /27 = (—0.18(2),0.12(2),0.61(2)) Eg/h and 2r = 4.5(1) Eg/h after an
expansion time t in an optical waveguide. The values of §y correspond to 5/277 =
(—1.51(14), —0.13(10), 1.45(08)) Er/h measured experimentally with spin ejection
spectroscopy. Top to bottom: t =1 ms, t =10 ms, t = 15 ms.

on the generalized detuning &p.

We probe the effective mass of the dressed atoms with the following procedure:
first, we prepare the atom in the lowest dressed state with 2g/27m = 4.5(1) Eg/h
and dp/2m = (—0.18(2),0.12(2),0.61(2)) Er/h. However, as outlined in sec-
tion 5.5, our system is described in terms of the generalized detuning § = &y — 4k,
where k, can stem from the finite momentum in the minimum of the dispersion
kmin as well as from mechanical momentum kmnecr. Because the mechanical mo-
mentum is unknown and originates i.e. from the preparation procedure, we perform
additional experiments to infer § after the preparation of the BEC into the lowest
Raman-dressed state.

To this end, we inverse the spin injection method used in section 6.1 to measure di-
rectly the energy of the occupied dressed-band by ejecting atoms from the |—) state
into the unoccupied bare state |aux) by radio-frequency spectroscopy. Out of the
mismatch between the measured and the expected energy of the Raman-dressed
state with 2z and dg fin, we infer the mechanical momentum. From this calibration
for each used detuning Jo, we obtain §/27 = (—1.51(14), —0.13(10), 1.45(08))
Er/h.

Similar to Ref. [98], we prepare the Raman-dressed condensate in a crossed opti-
cal dipole trap formed by the waveguide trap along é, and a vertical beam along
é,, and afterwards release the é, beam and let the cloud freely expand in the
waveguide potential along the Raman coupling direction. Because we are inter-
ested in the density distribution, we use the phase contrast scheme to image the
condensate in situ. In Fig 6.7, in situ images are displayed for different values of
§ and evolution times. Whereas the expansion for §~0is symmetric as for the
free particle case, the expansion gets anisotropic as soon as 5 # 0. For different
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Figure 6.8: Effective mass m*(k.) calculated with eq. (3.8) for 2g/27 =
4.5(1) Eg/h and different values of the detuning do/2m, given in units of Eg/h.
The colour encodes the spin polarization P. The dashed lines indicates the position
of kmin, i.e. the centre of mass momentum of the condensate in the case of no
mechanical momentum.

signs of detuning, the distribution is skewed in opposite directions. This effect can
intuitively be explained in the effective mass picture: the momentum distribution
of the cloud is centred around k, = 0. For § = 0, the effective mass is symmetric
around k, = 0 and hence atoms in the different halves of the cloud (i.e. in the
left halve with kx < 0 and in the right half with k, > 0) have an effective mass
which only depends on the modulus of ky, leading to a symmetric expansion. For
§ # 0, the peak of the effective mass is shifted. Now, for § < 0, atoms with
k < 0 are heavier than atoms with k > 0 and vice versa for § > 0. Atoms with
a higher effective mass have a slower dynamics and thus expand less compared to
atoms with lower effective mass. Therefore the different effective mass in the two
halves of the atomic cloud causes a growing asymmetry in the density profile and
the direction of skewness is defined by the sign of 5. This concept is summarized
in the illustration of Fig. 6.8.

In order to compare our experimental results to theoretical prediction we need to
find a reliable method to quantify the skewness of the density distribution. We
decided to use the skewness parameter s = % where o and u3 are the second and
third central moments of the density distribution. Details about the data analysis
can be found in the next chapter 7. In Fig. 6.9 the extracted skewness s from the
experimental data is shown. It captures well the opposite sign of the asymmetry
for § < 0 and § > 0 and is zero within the error bars for § = 0. After ~ 8 ms
the skewness parameter stops increasing, which we attribute to the condensate
entering the ballistic expansion regime. Indeed, from the Castin-Dum scaling so-
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Figure 6.9: The skewness parameter s as function of the expansion time t for a
BEC of “'K under the influence of Raman dressing with 2z /27 = 4.5(1) Eg/h and
positive and negative values of generalized detuning &/27, given in units of Eg/h.
The data points are the mean over 4 experimental realizations and the error bars
the standard deviation.

122 \we obtain that the condensate’s width after ~ 5 ms increases linearly

lutions
for our experimental parameters, i.e. the expansion gets ballistic. So at this point
the potential energy is converted to kinetic energy and the shape of the atomic
cloud, including its asymmetry, will remain constant which is in good agreement

with the experimental data.

6.4 Conclusion

We have studied single particle effects of Raman-coupled BECs similarly as re-

98-102,107,152-157,162-166 \\/hich enables us to distin-

ported in previous experiments
guish those from interaction effects in chapter 7. While none of the measurements
is new in itself, their added value lies on the new experimental techniques devel-
oped in the thesis. For instance, this is to our knowledge the first implementation
of Raman coupling in potassium BECs, we extended the method of spin injection
of the full dressed band of a Fermi gas to a Bose-Einstein condensate or estab-
lished a new analysis method for the asymmetric density profiles when studying

the effective mass.

Based on the work presented in this chapter, we can also conclude about our fur-
ther procedure to measure the chiral BF gauge field from the encoded theory. We
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6.4 Conclusion

have shown that we do not have the stability to measure the density-dependent
part of a vector potential in a 3°K BEC via the quasi-momentum. An alternative
approach was described in chapter 2 and involves measuring the modified expan-
sion dynamics of the condensate. However, because the expansion is also changed
by the effective mass of the particles as observed in this chapter, we will have to
differentiate these two effects.
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7 Experimental simulation of the
encoded chiral BF theory

In this chapter we report on the experimental realisation of the chiral BF
theory in its encoded form. Our implementation relies on the combination
of Raman coupling and state dependent scattering lengths. We experi-
mentally probe the resulting chiral interactions present in the system and
observe the two main features of the encoded chiral BF theory, namely the
formation of chiral solitons and the BF electric field.
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7 Experimental simulation of the encoded chiral BF theory

We have seen in chapter 3 that we can realize the chiral BF gauge theory in a
Bose-Einstein condensate by engineering chiral interactions via the combination of
Raman coupling and different interactions in the coupled states. We have studied
both ingredients in our experimental platform independently, namely the interac-
tion control by coherent coupling in 3°K (see section 4.2) and Raman coupling on
the single particle level (see chapter 6). In this chapter we combine these two key
elements and present the main result of this thesis: the experimental realization of
the chiral BF theory. To this end we proceed as follows: we first demonstrate the
momentum-dependent nature of interactions in the system by studying the expan-
sion dynamics of condensates with different momenta (see section 7.1). Afterwards
we provide evidence for the realization of the chiral BF theory in its encoded form
by observing its defining properties. First, we observe the formation of a chiral
bright soliton whose existence relies on its momentum. We probe its chiral nature
by reversing its propagation direction (see section 7.2). Second, we use the local
symmetry constraint of the theory to reveal the BF gauge field through measure-
ments of the modified expansion dynamics of the condensate (see section 7.3).

As in the previous experimental chapters, all Raman parameters and momenta are
expressed in units of the Raman recoil energy Egr and momentum kg respectively.
In contrast to chapter 3, we do not set Eg,kg and h to one. Other quantities are
given in Sl units.

The results presented in this chapter were obtained in close collaboration with
my PhD colleague Craig Chisholm and the two Postdocs of my group Dr. Elet-
tra Neri and Dr. Ramén Ramos. Our work led to the manuscript "Realising
a one-dimensional topological gauge theory in an optically dressed Bose-Einstein
condensate" which is currently in preparation for submission. | share the first au-
thorship with Craig Chisholm. This chapter recalls some parts of our manuscript
without major modification and develops further certain aspects such as exper-
imental techniques, the quasi-momentum violation for the chiral soliton or the
analysis of asymmetric density profiles.

7.1 Experimentally probing chiral interactions

In a first series of experiments, we investigate the combination of Raman coupling
and interactions, and show the anticipated resulting momentum-dependent nature
of interactions in this system. We investigate the dynamics of the Raman-dressed
atoms when propagating in opposite directions in the waveguide potential along
the x-axis.
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Figure 7.1: Imparting momentum to the atoms via Bragg diffraction. Left:
schematics of the Bragg setup with two consecutive AOMs in double-pass con-
figuration. Right: resonant Bragg diffraction in the state [J) = |F =1, mg = 0)
of ®K (without Raman dressing) as function of applied pulse length for a Bragg
beam laser power of ~ 24 mW corresponding to a lattice depth of s &~ 5 E; where
E = hzk‘?gc/(2m41) is the recoil energy of the Bragg light. Ngs denotes the atom
number transferred to the momentum class 2hkgg, Ny the number of atoms at the
initial momentum.

Methods and Bragg diffraction

We start with the BEC in the crossed dipole trap with trapping frequencies

(wx, wy,wz) /2m = (75(2),128(2),51(4)) Hz and prepare state |—) close to the
minimum of the dispersion with 2g/27m = 5.3(3) Er/h and do/2m = —2.62(6)
Er/h at a magnetic field of B = 374.30(1) G. At this field strength the scattering
lengths are apy = —4.9a9,a;; = 24.6a and a;; = —13.8ag (see Fig. 4.4).
Afterwards we remove the vertical confining beam, so the trapping frequencies
change to (wx, wy, w;)/2m = (4(1),98(2),51(4)) Hz, and we impart a well-defined
momentum to the condensate.

We give momentum to the BEC in the waveguide by Bragg diffraction. The Bragg
diffraction is realised by subjecting the atoms to two counter-propagating laser
beams of wavelength A\gg = 1064 nm, which form a standing wave. Similarly as
for the Raman coupling this corresponds to a A-coupling via a two-photon process.
But in contrast to the Raman coupling, the beams are far off-resonant, and they
couple two different energy states of the same internal spin state, separated by
momentum 2 X kgg where kgg = 27 /A\gg.

In order to resonantly drive the population transfer to a single momentum state
we have to be able to adjust the relative frequency between the two counter-
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7 Experimental simulation of the encoded chiral BF theory

propagating Bragg beams. The energy difference between two momentum states
in the lower dressed band is for our settings typically in the order of AE/h =
Afg = (5-20) kHz. To realize such small frequency difference between the two
beams we employ a "quadruple-pass” AOM configuration8? as shown in the left
panel of Fig. 7.1. After the Bragg beam with frequency fgg crossed the chamber
once, it passes two AOMs consecutively, is reflected and passes a second time
through the two AOMs. We use the light diffracted into the plus order of the
first AOM driven at frequency fy + Afgg/2 and the minus diffraction order of the
second AOM driven with fy. With this setup, the beam entering again the chamber
has the desired frequency of fgg + 2(fo + Afgg/2) — 2fy = fge + Afsg.

For the case of resonant transfer to the momentum state +2hkgg, the right panel
of Fig. 7.1 shows the fraction of transferred atoms as function of the time duration
for which the standing wave with lattice depth s ~ 5 E; with E; = h?k3./(2m)
is applied to the condensate. A pulse duration of 7, = 84 us corresponds to
a m-pulse. The discrepancy of the typically maximal detected fraction of 88 %
from the expected full transfer at 7, mainly stems for experimental limits in the
control of the relative Bragg detuning, for example due to the momentum spread
of the atomic cloud and fluctuations of the laser beam power. After imprinting
Ak = £1.45 kg to the cloud by applying a Bragg pulse of time 7, we let the
condensate propagate for variable time and image the atomic cloud in situ. Typical
atom numbers at 1 ms of expansion time are 14(4) x 103.

Expansion dynamics for different momenta

Figure 7.2 shows the observed dynamics of the Raman-dressed 3°K condensate
after imparting opposite momenta: Ak = —1.45 kg in the left and Ak = +1.45
kg in the right panel.

From the in situ images at different propagation times, we extract the centre of
mass positions xp, yo and widths oy, o, of the cloud by fitting the data with a 2D
Gaussian Aexp(—(x — x0)?/202) exp(—(y — y0)2/20}2,) + B. The centre of mass
positions are depicted in the left panel of Fig. 7.3. We measure a centre of mass
velocity of (17.384+0.03) mm /s for a BEC moving with k. > 0, which is nearly twice
as large as (—8.83 £0.02) mm/s observed for k, < 0 (dashed lines). These values
are in fair agreement with the single-particle theoretical prediction v = Ji &, which
give 16.78 mm/s and —8.96 mm/s, not taking any initial mechanical momentum
before the Bragg kick into account (solid lines). The difference in the modulus of
the two velocities reflects the non-parabolic form of the dispersion relation (k)
at the Rabi frequency employed here.

More interestingly, the width o, of the atomic cloud along the propagation
direction is also markedly different in the two cases. As shown in the right panel
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7.2 Chiral soliton

of Fig. 7.3, for ky > 0 the BEC expands to more than three times its initial size
in 12 ms, whereas for k, < 0 it preserves its shape and o4 remains constant. This
difference reveals the momentum dependence of interactions in our Raman-dressed
system. The effective scattering length a1 corresponding to the effective coupling
strength g1 of zero order in our Taylor expansion (see eq. (3.28) and eq. (3.30)), is
a1 ~ 21 ag for ky > 0 and a; =~ —2.7 a9 for kx < 0. In particular, the cloud kicked
to negative momenta shows no collapse despite the negative effective scattering
length. We attribute this collective behaviour to the formation of a bright soliton.
Due to the intrinsic chirality of interactions in our system, this propagating mode
of matter is only allowed for negative momenta. This novel matter wave excitation
is studied in more detail in the next section.

7.2 Chiral soliton

The one-dimensional chiral BF theory predicts novel soliton solutions which are
of chiral nature. In this section, we characterise the Raman-dressed soliton by
investigating its behaviour after abruptly reversing its propagation direction.
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Figure 7.2: Observation of momentum-dependent interactions. Integrated den-
sity profiles of a Raman-dressed 3°K BEC with Q2g/27 = 5.3(3) Er/h, do/27 =
—2.62(6) Er/h, a4 = —4.9ap,a;; = 24.6a and a;; = —13.8 ag, subjected to a
magnetic field of B = 374.30(1) G and measured after an evolution time t in the
optical waveguide (vertical axis). A mechanical momentum of Ak = —1.45 kg (left
panel) or +1.45 kg (right panel) is imparted along the Raman-coupled x axis using
two additional Bragg beams. The dressed state in the dispersion relation is shown
before and after the Bragg pulse in the insets.
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7 Experimental simulation of the encoded chiral BF theory

Methods and barrier potential

We follow the same procedure as in the previous section to create a Raman-dressed
soliton and add a potential barrier perpendicular to the propagation direction. In
the collision with the barrier, the soliton gets reflected and its propagation direction
reversed.

We create a potential barrier for the atoms using a blue-detuned laser beam at a
wavelength of A = 765.03 nm and propagating along the z-direction. We use the
addressing setup (see chapter 4) and a cylindrical lens to obtain a strongly elliptic
beam with a 1/€? radius of w, = 14 um along the propagation direction of the
atoms and with a waist of w,, = 350 um in the perpendicular direction. The barrier
is focused on the left side of the BEC's initial position, such that the atomic cloud
with k, < O starts interacting with it after a few milliseconds of propagation. For
barrier heights exceeding the kinetic energy of the atoms, the collision reflects the
atomic cloud, inverting its propagation direction83-185  In order to distinguish
between effects caused by the barrier and the novel nature of the Raman-dressed
soliton, we first study the collision of a "conventional" single-component bright
soliton on the barrier.
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Figure 7.3: Left: position of the atomic cloud vs. propagation time for k, > 0
(green circles) and k, < 0 (blue circles). The different speeds reflect the non-
parabolic shape of the dispersion relation, in agreement with single-particle theory
(lines). Right: measured cloud widths along the waveguide direction. While the
cloud expands when propagating towards the right (effective scattering length a; =
21 ag), its size remains unchanged and a bright soliton forms when moving towards
the left (a; = —2.7 ag). Values and error bars are the mean and standard deviation
of three to five measurements and are extracted from 2D Gaussian fits to the
measured density profiles.
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Figure 7.4: Left: In situ dynamics in the presence of an optical barrier (dashed
line) for a Raman-dressed soliton with the parameters of Fig. 7.2. Right: In situ
dynamics for a conventional bright soliton with scattering length —2 a¢ in state |1).
Upon reflection on the barrier, the Raman-dressed soliton dissociates and starts
expanding, while the conventional soliton remains unchanged.

To prepare such conventional soliton, we start with the BEC in state |1) in the same
trapping potential, at a magnetic field of B = 397.00(2) G and atom number of
~ 7(2) x 103. As we remove the vertical trapping potential along the z-direction,
we linearly decrease the applied magnetic field to B = 385.60(2) G in 5 ms to enter
the attractive interaction regime with a;p = —2.239. We set the barrier height
larger than the single particle kinetic energy, which is verified by the observed
reflection of the soliton from the barrier. As depicted in the right panel of Fig. 7.4,
the conventional soliton remains self-bound after reflection. Hence, the barrier
only inverts the propagation direction but does not lead to dissociation.

Expansion dynamics after collision with barrier and energy vs. momentum
conservation for solitons during reflection

We compare the behaviours of the conventional soliton and the Raman-dressed
soliton after colliding with the barrier and getting reflected. In the left panel
of Fig. 7.4, the in situ dynamics of the Raman-dressed soliton is depicted. In
contrast to the conventional soliton, the reflection on the barrier dissociates a
Raman-dressed soliton making it expand. We conclude that our Raman-dressed
solitons are chiral, that is, they exist only for one propagation direction.

We also investigate the conservation of energy and momentum for the conven-
tional and chiral soliton during the collision with the barrier. The chiral soliton has
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7 Experimental simulation of the encoded chiral BF theory

a non-parabolic dispersion relation, i.e. atoms with quasi-momenta k, and —k
have a different effective mass. Therefore they would not have the same energy
and we expect that energy and modulus of the quasi-momentum cannot both be
conserved. We test this hypothesis by extracting the velocities of the solitons be-
fore and after the barrier. Fig. 7.5, shows the measured centre of mass positions as
function of the expansion time. We obtain a velocity of v = —8.96(21) mm/s and
v = —18.33(39) mm/s for the chiral and conventional soliton before colliding with
the barrier and v = +13.96(12) mm/s and v = +19.37(22) mm/s after reflection.
These values agree reasonable well with the predictions from single particle theory
of v =13.59 mm/s and v = 19.24 mm /s assuming energy conservation during the
reflection process. On the contrary, the predicted velocity for the chiral soliton af-
ter the barrier assuming quasi-momentum conservation is v = 0.54 mm/s. Hence,
the experimental data confirms energy and momentum conservation for the con-
ventional soliton and the conservation of energy and violation of quasi-momentum
for the chiral soliton. Of course, the overall momentum of the atom plus light field

remains conserved.
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Figure 7.5: Chiral nature of the Raman-dressed soliton. Left: centre of mass
position for a conventional and chiral soliton, which at t = 0 collides with a barrier
(gray dashed line). The dotted and dashed lines indicate the linear fit to the data
before and after collision, respectively. The solid lines are the predictions for the
velocities after collision from single particle theory assuming energy conservation.
Right: width of the atomic cloud o, renormalized by its initial value o4 as a
function of time for conventional and chiral soliton.

Relation to the effective Hamiltonian of the chiral BF theory

Chiral solitons as observed in the previous section, were introduced in section 3.3
as one of the key features of the chiral BF theory. Here, we verify the pa-
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Time (ms)

Figure 7.6: Average expansion parameter ga.e/{2z within the atomic cloud. g is
estimated from the measured centre of mass momentum of the cloud kcom and
the momentum ko = kmin(£2r, do) + 2kgg at which the effective theory is derived:
q = kcom — ko. Blue circles represent the data of Fig. 7.3 (k. < 0), green circles
the data of Fig. 7.3 (k« > 0) and cyan circles show q/{2r for the data of the chiral
soliton as in Fig. 7.5. The lines indicate the theory predictions. The error bars
stem from the uncertainties of the Gaussian fits as relevant for kcom and from the
momentum spread Ak of the atomic cloud. In addition, the error bars take the
uncertainties in 2z and &g into account.

rameter regime in which equation (3.36) provides an appropriate effective de-
scription of our Raman-dressed system. To this end, we show in Fig. 7.6 the
value of the expansion parameter qave/f?R of an average atom around the se-
lected momentum ko = kmin({2g, d0) — 2kg¢ for all the Raman-dressed data in-
cluded in Fig. 7.3 and Fig. 7.5. We obtain the average value of g = k, — kg by
Gave = kcom — ko with the experimentally measured centre of mass momentum
kcom. The momentum spread Ak of the atomic cloud is taken into account in the
errorbars. For the chiral soliton data without barrier as in Fig. 7.3 for the Bragg
kick towards negative momenta (blue points), the centre of mass momentum is
kcom,— = ko, so the expansion parameter remains small (qave/f?R < 0.2) for all
times. In contrast, for the data with an opposite Bragg kick to positive momenta
kcom + = kmin(2r, 00) + 2kge = ko + 4kgc (green points), the centre of mass
momentum is far from the expansion point and qave/fZR takes values around 0.6.
For the bouncing measurements of the chiral soliton as presented in Fig. 7.5 (cyan
points), the momentum is inverted from kcom — to kcom .+ between 5 to 9 ms
and hence the expansion parameter evolves between the two cases. Note that - as
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7 Experimental simulation of the encoded chiral BF theory

detailed in the previous section - the centre of mass momentum of the chiral soliton
data after colliding with the barrier is approx. 0.4 kg smaller than for the BEC
immediately kicked towards positive momenta (green points) because the momen-
tum is not conserved in the reflection process. However, 0.4 kR/_(~2R ~ 0.09 and
accordingly this difference is hardly visible in Fig. 7.5. The lines are the theoreti-
cally expected values for our experimental parameters, not taking any mechanical
momentum or the momentum spread into account.

Without further analysis, we consider all data points of positive momenta, in-
cluding all points after reflection from the barrier in the chiral soliton case where
qave/_(?R > 0.3, as outside the validity of the effective BF theory. Here, higher order
corrections have to be taken into account in the Taylor expansions in eq. (3.19) and
eq. (3.28) describing the single particle energy £_ = 5(,0)+5£1)+€£2)+€£3)+0(q4)
and effective coupling strength gesr = gégf) + géflf) + O(g?) and leading to the ef-
fective chiral BF Hamiltonian of eq. (3.36).

In the following, we focus on the data for which qave/fZR < 0.3. We estimate
in momentum space an upper limit for the next higher order terms of the kinetic
and interaction part. To this end, we estimate the corrections in the Taylor ex-
pansions for these contributions for a particle with momentum g = qo + 27/o
where qg is the group velocity and ¢ the momentum spread of the atomic cloud.
We weight the importance of these corrections by considering the ratio A8£4) =
5(_4)/(5(_0)+5(_1)+5(_2)+8(_3)) and Age(fzf) = ge(é)/(ge(]g)"_ge(i}':)), respectively. These
ratios are shown in Fig. 7.7 for the data sets of the chiral soliton without (blue
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Figure 7.7: Importance of correction terms for data with q/fZR < 0.3. Left:
estimation of the kinetic corrections AE™. Right: estimation of the corrections
Ag(fzr) in the interaction part.
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markers) and with barrier (cyan markers). For the latter one, we only include times
below 7 ms for which qave/f?R < 0.3. Both - kinetic and interaction corrections
- remain around 10% for all times in the case of the chiral soliton without barrier
(Fig. 7.3), but exceed 10 % already after 3 ms for the data of Fig.7.5.

Another aspect to consider for the validity of the effective encoded chiral BF Hamil-
tonian, is the assumption of § = 0 in the derivation of eq. (3.36). This condition is
required, because otherwise the static gauge field Ag depends on g and we cannot
introduce the current operator as in eq. (3.33). However, in our measurements we
have a small but finite §, e.g. for the data of Fig. 7.7 we have § ~ 0.28 Eg/h. We
calculate the relative weight of the first term in Ag which depends on g, which is
~ 1 % for these data sets and thus negligible.

We conclude that all Raman-dressed solitons observed in Fig. 7.3 and in Fig. 7.5
until 4 ms are fairly well described by the effective chiral BF theory.

7.3 Revealing the chiral BF gauge field

In a second series of experiments, we turn to the chiral BF gauge field. Although
we have realized an encoded version of the theory, where the gauge field has been
eliminated in terms of matter-only degrees of freedom, both remain related through
the local symmetry constraint of the theory. Thus, we can use this relation to infer
the BF gauge field from measurements of the matter field. Specifically, we have
seen in chapter 2 that the expectation values of the electric field and matter field
operators are linked by <E> = A(0¢p). In the weakly interacting regime that we
realize, our system is well described by the classical version of the theory and we
can simply write E = A0¢p. Thus, by inducing a change in the condensate density,
we should observe a modification of the BF gauge potential A = A\p 4+ 0xA and
thus the emergence of a BF electric field. Note that this can also be understood
if the encoded Hamiltonian is interpreted as that of matter minimally coupled to a
density-dependent vector potential that is a linear function of the density A = Ap/2
(see discussion after eq. (2.27), and note that here we use A to distinguish it from
the BF gauge potential A). Then, time variations of the density of the system
give rise to changes of A and thus also to the emergence of a density-dependent
electric field.

We choose to introduce the change in density by letting the Raman-dressed 3°K
BEC expand in the quasi 1D waveguide potential. We study its expansion dynamics
as we have done previously in section 6.3 for investigating effects of the momentum-
dependent effective mass with a 4K BEC. However, here we expect to observe
additional many-body effects due the back-action between matter and gauge field.
In contrast to the previous experiments of this chapter, we focus now on the regime
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7 Experimental simulation of the encoded chiral BF theory

of repulsive effective interactions, so g3 > 0.

Observation of asymmetric expansion dynamics
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Figure 7.8: Calibration of mechanical momentum by spin ejection. Left: rf-
spectroscopy on the |—) to |aux) transition for various values of detuning with
Qr/2w = 4.5(3) Er/h. Right: measured frequency difference Af for Qr/27 =
4.5(3) Eg/h for various values of detuning (yellow points) and the corresponding
values of §/27 in Eg/h (red points). The solid lines are the theoretical expected
values without any mechanical momentum. The shadings illustrate the uncertainties
in the theoretical values caused by the uncertainty in §g and (2.

To this end, we start with a BEC in state |]) and further compress the crossed
dipole trap compared to previous experiments to (wy, wy, w;)/2m = (70(1), 147(2),
99(1)) Hz, which increases the density and hence also enhances the magnitude of
density-dependent effects. To ensure gz > 0, we work at a magnetic field of
B = 397.00(2) G, where apy = 1.3ag, a)| = 252.7ap, and a;, = —6.3ap. We
prepare the lower Raman-dressed state |—) with 2gr/27m = 4.5(3) Er/h and dif-
ferent do close to the minimum of the dispersion relation. As previously (see
section 6.3), we calibrate the actual generalized detuning § for each &y with
spin ejection spectroscopy. The calibration is shown in Fig. 7.8. On the left
side, the measured transfer probabilities for the different values of Jy are de-
picted from which we infer the mismatch in frequency Af and the actual value
of & (right panel). For &y/2m = [—0.58(6),0.00(6), +0.58(6)] Er/h, we obtain
§/2m = [-2.18(18),0.45(33),2.70(53)] Eg/h, which corresponds to mechanical
momenta of kmech. = [—0.09(21), —0.11(12), —0.04(21)] kg, which are within
their error bars compatible with zero.

We let such characterized dressed state |—) expand in a trapping potential with
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Figure 7.9: In situ expansion dynamics for a Raman-dressed BEC in state |—)
with Qg/27 = 4.5(3) Eg/h, 6o/2m = —0.58(6) Egr/h and B = 397.00(2) G,
corresponding to scattering lengths ay+ = 1.3 ag, a;| = 252.7 ag and ay| = —6.3 ap.
The combination of Raman coupling and unequal interactions leads to asymmetry
in the density along the x direction. Left: integrated density profiles in the xy plane
in the optical waveguide along é, Right: density profiles obtained after integration
along é,.

(wx, wy,wz)/2m = (4(1),129(2),99(1)) Hz along the x-axis. After 1 ms of ex-
pansion time, we typically have 21(5) x 103 atoms. The left panel of Fig. 7.9
shows the in situ images of the expanding Raman-dressed 3°K BEC for 5/277 =
—2.18(9) Er/h (and 2r/2m = 4.5(3) ER/h) in steps of 4 ms. We integrate the
images along the y-axis and obtain density profiles as displayed in the right panel
of Fig. 7.9.

The Raman-dressed 3°K BEC develops an asymmetric density profile over time.
At first sight, this behaviour seems similar to the asymmetric dynamics we have
already observed in the study of the Raman-dressed *'K condensate (see sec-
tion 6.3). We aim to systematically study the asymmetric shape of these density
profiles and thus need a reliable method to quantify the asymmetry. The data
analysis is explained in detail in the next section.

7.3.1 Quantification of asymmetric density profiles

The analysis of the asymmetric density profiles is not straightforward. We tried
out different analysis techniques which can be divided in methods based on fitting
functions or on purely numerical calculations. We concluded that a quantification
via a purely numerical approach is less prone to misinterpretation of the data and
the most robust method. In particular, we decided to use the skewness parameter
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Figure 7.10: Analysis based on fitting functions. Density profile of state |—) with
Qr/2w = 4.5(3) Eg/h and &o/2m = 0.00(6) Eg/h (top) and &o/2m = +0.58(6)
Egr/h (bottom) after 14 ms and 18 ms of expansion in the waveguide potential.
The solid lines indicate the fits with a skewed Gaussian (eq. (7.
function of eq. 7.2 defined in Ref. [186]. The dashed lines are the respective fitting
functions with the asymmetry parameter set to zero. Both fitting functions fail to

describe the data properly.
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7.3 Revealing the chiral BF gauge field

which is defined as s = 3 /o>, where ¢ and 3 are the second and third central
moments of the density distribution. For completeness we give a short summary
of the different analysis techniques we tried out before we detail the data analysis
via the skewness parameter.

One possibility to quantify the asymmetric shape is fitting a function with a pa-
rameter capturing the asymmetry to the density p = |®|2. We tried to fit a skewed
Gaussian of the form

O =

and used the parameter a as measure for the amount of asymmetry. As alternative
fitting function we considered the function

(z — D)? 1

C? 1+ A(z—- D)

B - max (O, 1- +F (7.2)
defined by A. Carli et al. to characterize the asymmetric density profile of an
expanding BEC in the Thomas-Fermi approximation'®. There, the asymmetry
evolved from an interaction gradient in space caused by a Feshbach resonance and
a magnetic field gradient. In Fig. 7.10 we see exemplary density profiles during
expansion for 2g/2m = 4.5(3) Er/h and two different values of detuning, namely
do/2m = 0.00(6) Er/h (top) and do/2m = +0.58(6) Er/h (bottom). For the
top profile we show both fitting functions of eq. (7.1) and eq. (7.2) (solid lines).
They give an asymmetry of & ~ 0.1 and A = 0.0006 1/um, respectively. The
dashed lines indicate the same functions with the asymmetry parameter set to
zero. Clearly, the parabolic function of eq. (7.2) does not capture the shape of our
data properly. Although the fit with the skewed Gaussian seems reasonable for the
top profile, it is in general not robust and e.g. fails for the density profile in the
bottom panel. Therefore we conclude that our analysis method should not rely on
a fitting function as this implies an assumption of the exact shape of the data.

A different approach to characterize the asymmetry is to extract numerically the
difference between the two halves of the profile, as outlined by the group of Prof.
Fallani in [167]. In this method, the function

h(x) = |®(x)[*~| &(—x)[ (7.3)
with the inverted density profile |®(—x)|? is calculated and the asymmetry A, of
the density profile defined as A, = [ h(x)dx. This concept is illustrated in the
right panel of Fig. 7.11. It is necessary to align the middle of the x-axis with
the centre of the density profile, otherwise a finite asymmetry arises due to the
displacement. Hence, a critical and sensitive step is the extraction of the centre,
which is quite involved for an asymmetric profile as it might not correspond to
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Figure 7.11: lllustration of calculating the asymmetry A, for 2g /27 = 4.5(3) Egr/h
and §p/2m = —1.15(6) Eg/h. Left: normalized density profile and its inversion.
Right: asymmetry function h(x) of eq. (7.3).

the centre of mass position nor to xp from the skewed Gaussian fit, which rather
describes the peak position. In Fig. 7.11 we obtained the centre from a symmetric
Gaussian fit to the data. However, this is only an approximation and therefore the
asymmetry Ap is not trustworthy.

We decided to use a numerical method which does not require any previous knowl-
edge about specific points of the density profile. In a first step, we low-pass filter
the data. Our filtering procedure is performed in Fourier space: first, we remove the
offset and afterwards apply a low-pass filter with a cut-off frequency defined by the
smallest value of |k| which corresponds to a minimum in the power spectral density
and has a value less than 1% of the maximum. We have verified the robustness of
our filtering procedure by taking GPE numerical simulations with added artificial
noise analogous to which was found in our experimental images, and analysing
the resulting profiles with this filtering procedure. After the filtering, we calcu-
late the moments of the distribution. In general the m-th moment is defined as
Hm = [(x — p1)"p(x)dx, where the first moment p; = [ xp(x)dx is the centre
of mass position of the atomic cloud. With the moments, we characterise the
asymmetry of the distribution using the standardized third moment also known
as skewness parameter s = u3/a3 with the standard deviation o = ,/uz. The
skewness s is a dimensionless number and resilient to atom number fluctuations.

Asymmetric expansion as signature of the effective Hamiltonian

We observe and quantify the asymmetry of the density profiles with the skew-
ness paramater s for different values of the detuning, which we show in Fig. 7.12

126



7.3 Revealing the chiral BF gauge field

@ 60/2n=-0.58(6)

1.001 & sp2m=0(6)
60/2m=0.58(6

0.75 ¢ ol2m (6)

bt
S

0.00 “;igaaﬁu‘lumﬁ{

—0.25

Skewness s

0 10 15
Expan5|on time t (ms)

Figure 7.12: Back-action between matter and gauge fields. Skewness of the
density profiles s = 3 /03 for §o/2m = +£0.58(6) Eg/h and 0.00(6) Eg/h. The rela-
tionship between s and §y arises from the interplay between interaction and kinetic
effects caused by the non-parabolic form of the dispersion relation. The dashed lines
are numerical solutions of the two-component Gross-Pitaevskii equation. The solid
orange line corresponds to the effective encoded chiral BF theory for 69 = 0. Values
and error bars are the mean and standard deviation of four to five measurements.

for do/2m = [—0.58(6), 0.00(6), +0.58(6)] Er/h or §/2n = [—2.18(18), 0.45(33),
2.70(53)] Eg/h, respectively. Interestingly, the evolution of s during the expansion
has a non-trivial dependence on detuning. It stems from an interplay of single-
particle and many-body effects. On the one hand, we expect skewness arising from
the momentum dependence of the dressed atoms effective mass and the momen-
tum spread of the atomic cloud, as we have studied in section 6.3 for 'K and
which was originally demonstrated for 2g/2m < 4 Eg/h in Ref. [98]. Concretely,
we expect the skewness from these kinetic effects to be sy, < 0 (> 0) for 4o > 0
(< 0) at the Rabi frequencies we use. On the other hand, the momentum de-
pendence of interactions makes the atoms expand slower when moving to the left
than to the right, leading to a contribution s;,; > 0 to the skewness independent
of the sign of the detuning as predicted in Ref. [52]. Our results confirm this qual-
itative picture, with both contributions cancelling out for do/2m = —0.58(6) Er/h
and adding up when d¢/2m = +0.58(6) Eg/h. Moreover, this behaviour is well
captured by Gross-Pitaevskii simulations for the Raman-coupled two-component
system (dashed lines) and also by our effective chiral BF theory, namely by the
extended Gross-Pitaevskii equation stemming from the Hamiltonian of eq. (3.36)
(solid line for do/2m = 0.00(6) Eg/h). By contrast, the interplay of kinetic and
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interaction effects is absent in the adiabatic approximation, i.e. where the disper-
sion is assumed to be parabolic (see chapter 3).

For g = 0, where the lowest order kinetic corrections to our effective Hamiltonian
equation (3.36) cancel out, our experimental observations are also qualitatively
reproduced by the predictions of the chiral BF theory. There, the discrepancy
between the effective (solid line) and complete (dashed line) theories stems from
higher order corrections, which remain sizeable for our experimental Rabi frequency
of 2r/2m = 4.5 Eg/h and further drop when increasing the value of 2g. This is
illustrated in Fig. 7.13 for 2g/2m = 7 Eg/h, where the expected density profiles
during expansion are essentially indistinguishable in the two cases. This demon-
strates the validity of our effective chiral BF theory description well beyond the adi-
abatic approximation, which in our system is only reached for 2z /27w ~ 85 Eg/h.

Interestingly, the chiral BF theory formalism provides a very intuitive explanation
of the experimentally observed asymmetric expansion. Upon release in the op-
tical waveguide the atomic density decreases over time, modifying the chiral BF
vector potential A = —Ap. This in turn results in a density-dependent electric
field E = —0:A = AOtp. As depicted in the lower panels of Fig. 7.13, in an
inhomogeneous system the associated electric force is spatially dependent (black
arrows) and distorts the atomic density distribution during the expansion, skew-
ing it. Therefore, the asymmetric expansion dynamics observed in the experiment
reveals the back-action of matter onto the gauge field and implies that A is a
density-dependent vector potentials, which constitutes - apart from chiral solitons
- the other characteristic of the chiral BF gauge theory.

7.4 Conclusion

In this chapter, we reported on the experimental realization of the encoded Hamil-
tonian of the 1D chiral BF theory and observed two of its predicted properties:
chiral solitons and the distortion of the density profiles during expansion due to the
BF electric force which can be extracted from the matter density using the local
symmetry constraint of the theory.

This specific theory was never employed for simulation in an experiment before.
However, the encoded Hamiltonian describes matter coupled to a vector potential,
which depends linearly on density, and density-dependent vector potentials have
been engineered previously with ultracold atoms*%=*3 (see chapter 1). In contrast
to previous experiments, we realized the full gauge theory including the crucial
local symmetry constraint by enforcing the specific linear density dependence of
the vector potential. To which extent the local symmetry constraint is enforced in
our experiment, is shown e.g. in Fig. 7.6, where we validated the mapping to the

128



7.4 Conclusion

effective single-component Hamiltonian by calculating the expansion parameter or
in Fig. 7.12 which compares the measured skewness of the density profiles with
the prediction form the effective chiral BF theory. Another difference to previous
experiments lies in the bulk system we employed for our measurements, whereas all
other experiments to engineer density-dependent vector potentials were performed

in a lattice system.
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Figure 7.13: Density profiles for 2r/27 = 7 Eg/h and dy = 0 from the effective
chiral BF theory (solid orange line) and two-component simulations (dashed orange

line).
regime.

The agreement shows the validity of the chiral BF theory mapping in this
The decrease in density induces a density-dependent electric field E =

—0:A = A\Op from the BF gauge potential A. The corresponding electric field
varies along the density profile (black arrows), giving the cloud an asymmetric shape
as observed in the experiment. The grey lines depict symmetric density profiles for

comparison.
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8 Conclusion and Outlook

In this thesis, we have investigated the simulation of a topological gauge theory in
an analogue quantum simulator. More specifically, we have studied the realization
of the chiral BF theory in a Bose-Einstein condensate of 3°K. The chiral BF theory
constitutes a toy model for a topological gauge theory in 1D that results from
the dimensional reduction of U(1) Abelian Chern-Simons theory from two to one
dimension.

In chapters 1,2,3 and 5 of this thesis, we have studied on the theoretical level how
to realize the chiral BF theory in a Bose-Einstein condensate.

e We started in chapter 1 by introducing the general idea of gauge theories
and by summarizing the state of the art of simulating gauge theories with
quantum systems in a quantum simulator approach. We identified the fol-
lowing goal for this thesis: the realization of a full topological gauge theory,
i.e. where not only the matter field is coupled to a gauge field but in addition
the gauge symmetry is enforced.

e We continued in chapter 2 with the comparison of the main properties of
dynamical versus topological gauge theories by means of the prototypical
examples of QED and Chern-Simons theory. We introduced the chiral BF
gauge theory as one possible dimensional reduction of the Chern-Simons
gauge theory and derived an encoded Hamiltonian in which the gauge field
is eliminated using the local symmetry constraint. This results in a system
with matter only degrees of freedom but subjected to unusual momentum-
dependent interactions which are chiral.

e In chapter 3, we presented a realization of the encoded form of the chiral BF
theory in a Bose-Einstein condensate. Building upon the seminal proposal of
Edmonds et al. in Ref. [52], we have discussed a realistic experimental im-
plementation in a BEC where two internal states with very unequal intrastate
interactions are subjected to two-photon Raman transitions. Specifically, we
have derived the effective low-energy description of the interaction Hamilto-
nian of the condensate from a microscopic point of view, instead of analyzing
the system from the perspective of the density-dependent synthetic potential
generated by the Raman coupling. This approach highlights the origin of the
chiral interactions inherent to the encoding we have used, and also allows
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us to relax the conditions required in the original proposal for the mapping
to be valid: the need to fulfil both the adiabatic approximation for the Ra-
man coupling, and the mean-field approximation for the BEC interactions.
Indeed, we have shown that the equivalence to the chiral BF model remains
valid for realistic experimental values of the Raman coupling strength, well
beyond the adiabatic approximation.

In chapter 4 as well as in chapters 6,7 of this thesis, we turned to the experimental
realization of the encoded chiral BF theory based on the combination of Raman
coupling and unbalanced intrastate interactions in two internal states of a 3°K
BEC. To this end, we started to study both key ingredients independently. On
the one hand unequal intrastate interactions in a coherently coupled 3°BEC with
radio-frequency in chapter 4. On the other hand the implementation of Raman
coupling in chapter 5 and single particle effects in a #'K BEC or 3°K BEC caused

by the Raman coupling in chapter 6, respectively.

In more detail,

132

e In chapter 4 we showed that rf-coupling can be employed as interaction

control tool as the effective interaction strength of the coupled states can
be conveniently tuned by the coupling field parameters. We demonstrated
a broad tunability and also applied the control in the attractive scattering
length regime where we observed bright solitons and bright soliton trains
formed out of the rf-dressed atoms, respectively.

In chapter 5 we described and characterized the Raman coupling imple-
mented in our experimental platform and in chapter 6, studied the single
particle effects of Raman coupling by first directly measuring the modified
dispersion relation of the lower dressed state with spin injection spectroscopy,
second by measuring the static synthetic gauge potential from the momen-
tum oscillation in the dipole trap and third by studying the changes in the
free expansion dynamics by the momentum-dependent effective mass.

Finally, we combined the Raman coupling and unbalanced intrastate inter-
actions in chapter 7. With this system, we realised a 3?°K Bose-Einstein con-
densate with effective chiral interactions and exploited them to engineer a
one-dimensional topological gauge theory. Concretely, we have demonstrated
the chiral interactions present in the condensate by studying its expansion
dynamics for opposite momenta. Afterwards, we observed two of the main
features of the encoded chiral BF theory: the formation of a chiral soliton
and the observation of the effects of the chiral BF electric field. We investi-
gated the chiral nature of the soliton by reversing its propagation direction
during reflection on a barrier and observed immediate dissociation. We ver-
ified the validity of the encoded chiral BF Hamiltonian for our experimental



parameters and found that the observed chiral soliton is fairly well described
by the chiral BF theory in its encoded form. In our final measurements, we
studied the BF electric field, which we could infer from the expansion dynam-
ics of the matter field as matter and chiral BF gauge field are related by the
symmetry constraint of the theory. We showed that the electric force during
the expansion modifies the symmetric shape of the condensate density. We
also carefully distinguished it from single particle effects causing asymmetry
by studying the electric force for different values of the two-photon detuning.

The realization of the encoded version of the chiral BF theory presented in this
thesis opens the door to several further intriguing research directions. First of
all, we could continue in the same line and further experimentally study the novel
properties of our chiral system. For example, the chiral soliton solution predicted
within the chiral BF theory also exists for BECs with repulsive interactions. In this
case, dark instead of bright solitons should arise, which manifest themselves as
density dips in the condensate (see chapter 2.4). Moreover, our system constitutes
a well-suited playground to explore the effect the lack of Galilean invariance has
on superfluidity. We expect the superfluid properties, which we could characterize
by measuring the excitation spectrum, collective modes and critical velocity 187188
to strongly depend on propagation direction 89,

Our reported experiments on realizing the encoded chiral BF theory also motivate
the theoretical study of the physical relation between Chern-Simons and chiral BF
theory. The dimensional reduction of the Chern-Simons theory is not unique, i.e.
can be performed in different ways. Hence, one may wonder to which extent the
chiral BF theory gives the proper effective description for edge states of fractional
quantum Hall systems. This is a quite fundamental question that should be inves-
tigated from the theoretical perspective.

In this thesis we have focused on a linear geometry with open boundary conditions.
An exciting prospect would be the experimental realization of the chiral BF theory
with closed boundary conditions®2. The new topology of the space would imply
a different solution in which the magnetic degrees of freedom could not be com-
pletely eliminated. It could be achieved with a Bose-Einstein condensate trapped
190-192 3nd subjected to an extended Raman cou-
pling scheme which imparts angular momentum 93 instead of linear momentum as

exploited in our present work. This would give rise to a chiral BF flux piercing the

in an annular (ring-like) geometry

ring and would lead to a geometric phase for particles outside the flux area in full
analogy to an Aharanov-Bohm phase.

As we have stressed the importance of the Chern-Simons theory for the understand-
ing of fractional quantum Hall states, a natural further step would be an extension
to the simulation of topological gauge theories in 2D and the direct modelling of
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Chern-Simons theory. In Ref. [194] the group of Prof. Ohberg recently proposed
a scheme for the generalization to 2D. It employs Raman-coupled BECs with un-
equal interactions in which the Raman beams impart angular momentum. In this
way, interactions depend on the angular momentum and a magnetic field fulfilling
the flux attachment condition of Chern-Simons theory is engineered. Hence, an
experimental realization of the proposal would enable the investigation of true any-
onic excitations, the flux attachment and topological order akin to the fractional
quantum Hall effect.

Throughout this thesis, we have considered Raman-coupled BECs in the strong
coupling limit, where the modified dispersion relation has a single minimum (see
chapter 5) and the (interaction induced) Raman detuning leads to an effective (den-
sity dependent) vector potential. When we reduce the Raman coupling strength
Qr/27 below 4 Eg/h, we enter the so-called spin-orbit coupling regime!02. Here,
the dispersion relation features two minima and the system exhibits two different
phases. On the one hand, if the BEC components strongly repel each other, phase
separation occurs and the system is in the plane wave phase. All atoms occupy a
single minimum and have at dg = 0 either momentum k, = —kg or ky, = +kgr. On
the other hand, if the repulsive intrastate scattering lengths are sufficient large,
the system is in the stripe phase, where it is miscible, i.e. the two minima are
occupied simultaneously. In other words, the atoms are in a superposition of the
two plane wave states with = k £ kg. In this stripe phase, two symmetries are
broken simultaneously: the U(1) symmetry associated to the condensate’s phase
and the translational symmetry. This gives rise to supersolid properties, namely
frictionless flows as in superfluids in combination with crystalline structure as in
solids. A characteristic of this fascinating phase is the periodic modulation of the
density profile of the condensate with a wavelength determined by the difference
in momentum of the two occupied plane wave states. The stripe phase was re-
cently observed in ultracold rubidium and sodium gases!®971%1 and supersolidity
was intensively investigated in dipolar quantum gases!®>71%7 where it stems from
a very different mechanism. However, the experiments exploring the stripe phase
suffered from a low fringe contrast and a narrow parameter regime in which the
phase is stable. In contrast, employing a BEC of 3°K with the possibility to tune
the interstate interactions allows the realization of a stripe phase where those are
attractive. As my colleague Craig Chisholm recently calculated 172, this will enable
high contrast fringes and a stability over a parameter range an order of magnitude
greater/broader than previously realized. The group plans to use the enhanced
stability to study for the first time e.g. the regime in the phase diagram where
the plane wave, the single minimum and the stripe phase merge at a tricritical
point 132, Moreover, attractive interspin interactions within the spin-orbit coupling
limit are an ideal setting to investigate the liquid phase stabilized by beyond mean
field effects®0:121:198 and its combination with supersolid-like properties.
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