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Abstract
This thesis investigates what mechanisms humans and artificial systems use to deal with

linguistic ambiguity. I adopt computational linguistics, in particular deep learning meth-

ods, as my research framework, and focus on the English language. Two studies inves-

tigate how neural language models – trained on unlabeled text corpora – process lexical

and syntactic ambiguities, by inspecting both the internal representations and predictions

of thesemodels. The findings indicate both effects of default preferences over interpreta-

tions and a good level of context-sensitivity, though with room for improvement. In two

other studies, I test linguistic hypotheses on large-scale corpus data, by deriving com-

putational estimates of contextual expectations about word-level content and reference,

respectively, through deep learning models. The results suggest that 1) lexical disam-

biguation relies on a context-dependent interplay between the information contributed

by an expression and its context, and 2) speakers tend to balance the informativeness of

a referring expression and that of its context.

Resum
Aquesta tesi investiga quins mecanismes utilitzen els humans i els sistemes artificials per

respondre a l’ambigüitat lingüística. Adopto la lingüística computacional, i en particular

els mètodes d’aprenentatge profund (“deep learning”), com a marc de recerca, i analitzo

dades de l’anglès. En dos dels estudis, investigo com els models de llenguatge neuro-

nals, entrenats amb dades de corpus textuals sense etiquetar, processen les ambigüitats

lèxiques i sintàctiques, inspeccionant tant les representacions internes com les predicci-

ons d’aquests models. Els resultats indiquen tant efectes lèxics / sintàctics per defecte

sobre les interpretacions com un bon nivell de sensibilitat al context, tot i que ambmarge

de millora. En els altres dos estudis, avaluo hipòtesis lingüístiques amb dades de corpus

a gran escala mitjançant models d’aprenentatge profund. Els models proporcionen es-

timacions de les expectatives contextuals sobre la interpretació d’una paraula i sobre el

referent d’una expressió, respectivament. Els resultats suggereixen que 1) la desambi-

guació lèxica es basa en la interacció entre la informació aportada per una expressió i el

seu context, que varia segons els casos, i 2) els parlants tendeixen a trobar un equilibri

entre la informativitat d’una expressió referencial i la del context en què s’utilitza.

Resumen
Esta tesis investiga qué mecanismos utilizan los humanos y los sistemas artificiales para

responder a la ambigüedad lingüística. Adopto la lingüística computacional, en particu-

lar los métodos de aprendizaje profundo, como mi marco de investigación, y me centro
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en la lengua inglesa. Dos de los estudios investigan cómo los modelos del lenguaje,

entrenados a partir de corpus de texto sin etiquetar, procesan las ambigüedades léxicas

y sintácticas, inspeccionando tanto las representaciones internas como las predicciones

de estos modelos. Los resultados indican tanto efectos léxicos / sintácticos por defecto

sobre las interpretaciones como un buen nivel de sensibilidad al contexto, aunque con

margen de mejora. En los otros dos estudios, investigo hipótesis lingüísticas con da-

tos de corpus a gran escala mediante modelos de aprendizaje profundo. Los modelos

proporcionan estimaciones computacionales de expectativas contextuales sobre la inter-

pretación de una palabra y sobre el referente de una expresión, respectivamente. Los

resultados sugieren que 1) la desambiguación léxica se basa en una interacción entre la

información aportada por una expresión y su contexto, que varía según los casos, y 2)

los hablantes tienden a buscar un equilibrio entre la informatividad de una expresión

referencial y la de su contexto.

vi



“output” — 2021/11/30 — 7:00 — page vii — #7

Contents

Acknowledgements iii

List of figures xiii

List of tables xvi

1 INTRODUCTION 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Structure of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 BACKGROUND 9

2.1 Linguistic Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.1.1 Lexical Ambiguity . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1.2 Syntactic Ambiguity . . . . . . . . . . . . . . . . . . . . . . . 14

2.1.3 Referential Ambiguity . . . . . . . . . . . . . . . . . . . . . . 16

2.2 Deep Learning and Linguistic Ambiguity . . . . . . . . . . . . . . . . 19

2.2.1 Deep Learning Models of Language . . . . . . . . . . . . . . . 19

2.2.2 Ambiguity Resolution in Deep Learning Models . . . . . . . . 22

3 LEXICALAMBIGUITYRESOLUTION INNEURALLANGUAGEMOD-

ELS 29

3.1 Approach and Research Questions . . . . . . . . . . . . . . . . . . . . 30

3.2 Hidden States from Language Models . . . . . . . . . . . . . . . . . . 33

3.2.1 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.2 Processing and Predictive Hidden States . . . . . . . . . . . . . 35

3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Representing Lexical and Contextual Information . . . . . . . . 38

3.3.2 Auxiliary Tasks . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.3 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

vii



“output” — 2021/11/30 — 7:00 — page viii — #8

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.4.1 Word Information in Processing States . . . . . . . . . . . . . 42

3.4.2 Word Information in Predictive States . . . . . . . . . . . . . . 46

3.4.3 Processing as Result of Prediction . . . . . . . . . . . . . . . . 49

3.5 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5.1 Lexical Ambiguity Resolution in Language Models . . . . . . . 51

3.5.2 Methodological Considerations . . . . . . . . . . . . . . . . . 55

4 MODELINGTHE INTERACTIONBETWEENCONTEXTUALEXPEC-

TATIONS AND THE LEXICON IN WORD INTERPRETATION 59

4.1 Approach and Research Questions . . . . . . . . . . . . . . . . . . . . 60

4.2 Modeling the Interaction between Expectations and the Lexicon . . . . 65

4.2.1 Representing Expectations and the Lexicon . . . . . . . . . . . 65

4.2.2 Combining Expectations and Lexical Information . . . . . . . . 69

4.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.1 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.3.2 Data and Evaluation . . . . . . . . . . . . . . . . . . . . . . . 72

4.3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.4 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 78

4.4.1 The Interplay between Expectations and the Lexicon in Inter-

pretation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.4.2 Methodological Considerations . . . . . . . . . . . . . . . . . 81

5 SYNTACTIC AMBIGUITY RESOLUTION IN NEURAL LANGUAGE

MODELS 85

5.1 Approach and Research Questions . . . . . . . . . . . . . . . . . . . . 86

5.2 Temporary Syntactic Ambiguities . . . . . . . . . . . . . . . . . . . . 89

5.2.1 The NP/S Ambiguity . . . . . . . . . . . . . . . . . . . . . . . 89

5.2.2 The NP/Z Ambiguity . . . . . . . . . . . . . . . . . . . . . . . 91

5.2.3 The Noun/Verb Ambiguity . . . . . . . . . . . . . . . . . . . . 92

5.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Language Models . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.2 Estimating Syntactic Uncertainty . . . . . . . . . . . . . . . . 94

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.1 The NP/S Ambiguity . . . . . . . . . . . . . . . . . . . . . . . 97

5.4.2 The NP/Z Ambiguity . . . . . . . . . . . . . . . . . . . . . . . 99

5.4.3 The Noun/Verb Ambiguity . . . . . . . . . . . . . . . . . . . . 102

5.5 Follow-up Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5.1 Effect of Decoding Strategy . . . . . . . . . . . . . . . . . . . 105

5.5.2 Comparison to Surprisal Approaches . . . . . . . . . . . . . . 106

5.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 108

viii



“output” — 2021/11/30 — 7:00 — page ix — #9

5.6.1 Language Models and Syntactic Ambiguities . . . . . . . . . . 108

5.6.2 Methodological Considerations . . . . . . . . . . . . . . . . . 111

6 THE EFFECT OF CONTEXTUAL EXPECTATIONS ON REFERENCE

PRODUCTION 115

6.1 Approach and Research Questions . . . . . . . . . . . . . . . . . . . . 116

6.2 Masked Coreference Resolution: Methods . . . . . . . . . . . . . . . . 119

6.2.1 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2.2 Deployment and Evaluation . . . . . . . . . . . . . . . . . . . 125

6.3 Masked Coreference Resolution: Results . . . . . . . . . . . . . . . . . 128

6.4 Predicting Human Referent Expectations . . . . . . . . . . . . . . . . . 132

6.5 Predictability and Mention Form . . . . . . . . . . . . . . . . . . . . . 134

6.5.1 Predicting Mention Type . . . . . . . . . . . . . . . . . . . . . 135

6.5.2 Predicting Mention Length . . . . . . . . . . . . . . . . . . . . 137

6.6 Summary and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . 140

6.6.1 Referent Predictability and Mention Form . . . . . . . . . . . . 140

6.6.2 Methodological Considerations . . . . . . . . . . . . . . . . . 142

7 CONCLUSION 145

Appendices 148

ix



“output” — 2021/11/30 — 7:00 — page x — #10



“output” — 2021/11/30 — 7:00 — page xi — #11

List of Figures

1.1 Metaphorical visualization of the interaction between an expression and

its context during ambiguity resolution: both contribute a weight to-

wards each potential interpretation. . . . . . . . . . . . . . . . . . . . . 3

2.1 Architecture of RNN/LSTM and transformer language models in both

their unidirectional and bidirectional format. The hidden and output

states involved in the target predictions are marked with thicker borders. 20

3.1 Schematic representation of the architecture of the biLSTM and BERT

language models, highlighting processing and predictive hidden states. 36

3.2 Cos, GAP and Recall-10 scores on test data for representations extracted

with the lex and ctxt tasks (Dl and Dc), respectively, from the biLSTM

and BERT processing states. Cos is measured to l or c depending on

the objective task; in the case of the word embedding baseline (l), we

compute the cosine to c. . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.3 Cos, GAP and Recall-10 scores on test data for representations extracted

with the lex and ctxt tasks (Dl and Dc), respectively, from the biLSTM

and BERT predictive states. Cos is measured to l or c depending on

the objective task; in the case of the word embedding baseline (l), we

compute the cosine to c. . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Overlap of predicted substitutes (10 closest lemmas) of representations

extracted from processing states (with ctxt task) with lexical information

and the predictive state counterparts, respectively. . . . . . . . . . . . . 50

4.1 The context of utterance c is processed by the LM to yield an expectation

ec, which is used to compute a distribution over the vocabulary given

the context, p(V | c;LM). The context-invariant word embedding of a
word v, lv, represents lexical information. Both information sources are
combined to yield a word’s contextualized interpretation iv,c. . . . . . . 63

xi



“output” — 2021/11/30 — 7:00 — page xii — #12

4.2 A schematic visualization of a tied language model, where the weights

of the matrix used to represent the input words (input matrix; Wi) are

shared with those of the matrix used to compute the output probabilities

(output matrix;Wo). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Results on dev data for BERT. Dotted lines mark whether a given α
yields a iv,c that is closer to ec (to the line’s left) than to lv (to its right). . 75

4.4 Distribution of optimal per-datum α using each LM. Dotted lines mark

whether a given α yields a representation that is closer to ec (to the line’s

left) than to lv (to its right). . . . . . . . . . . . . . . . . . . . . . . . . 77

5.1 Distribution of P (S) for each NP/S prompt type and LM. Each dot rep-

resents the value for a prompt item, as estimated considering its com-

pletions sample; the circle indicates the mean across items. . . . . . . . 97

5.2 Distribution of P (Z) for each NP/Z prompt type and LM. Each dot rep-

resents the value for a prompt item, as estimated considering its com-

pletions sample; the circle indicates the mean across items. . . . . . . . 100

5.3 Distribution of P (Verb) for each Noun/Verb prompt type and LM. (a)

and (b) report the results on prompts with Noun and Verb interpreta-

tion, respectively (the no cue condition is the same for both). Each dot

represents the value for a prompt item, as estimated considering its com-

pletions sample; the circle indicates the mean across items. . . . . . . . 103

6.1 An example of deriving referent probabilities from masked coreference

resolution predictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.2 Schematic representation of the SpanBERT-coref architecture: token

representations are obtained through the pre-trained SpanBERT LM,

and then passed to the coreference module to detect mentions and iden-

tify their antecedents. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.3 Antecedent precision for Coref and CorefM, respectively, across more

fine-grained mention types, for masked and unmasked mentions. . . . 130

6.4 Surprisal and mention type. The limits on the y axis were scaled to the

95th percentile of the data to visualize the variability better. . . . . . . . 136

6.5 Trend between surprisal and predicted mention length by the linear re-

gression model (Table 6.5: shallow linguistic features + surprisal), vi-

sualized by adding a smoothing line comparing only the outcome with

the variable surprisal. . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

A.1 Average cosine of hidden states (processing and predictive) to lexical

and contextual representations (lex and ctxt, respectively). . . . . . . . 151

B.1 Results on dev data for the biLSTM. Dotted lines mark whether a given

α yields a iv,c that is closer to ec (to the line’s left) than to lv (to its right). 154

xii



“output” — 2021/11/30 — 7:00 — page xiii — #13

B.2 Results on dev data for BERT-base. Dotted lines mark whether a given

α yields a iv,c that is closer to ec (to the line’s left) than to lv (to its right). 155

D.1 Antecedent precision scoreswith predictedmentions of themodel CorefM
across different mention types, for both masked and unmasked mentions. 162

D.2 Antecedent precision scores with predicted mentions of the model Coref

across different mention types, for both masked and unmasked mentions. 162

D.3 Antecedent precision scores with gold mentions of the model CorefM
3

across different mention types, for both masked and unmasked mentions. 162

xiii



“output” — 2021/11/30 — 7:00 — page xiv — #14



“output” — 2021/11/30 — 7:00 — page xv — #15

List of Tables

3.1 Examples of predicted substitutes (5 closest lemmas) for target word oc-

currence (in bold) of representations extracted from BERT layers using

the diagnostic model from the ctxt task; l: word embedding. . . . . . . 48

4.1 Results on test data in ranking (GAP) and retrieving (Recall-10) substi-

tutes, with best constant α. . . . . . . . . . . . . . . . . . . . . . . . . 73

4.2 Examples of predicted substitutes (5 closest lemmas) for target word

occurrence (in bold) for the expectations, lexical representations, and its

optimal combination. . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

5.1 Examples of prompt types for NP/S; locus of ambiguity underlined, dis-

ambiguating cues in bold. . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Examples of prompt types for NP/Z; disambiguating cues in bold, locus

of ambiguity underlined . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.3 Examples of prompt types for Noun/Verb; cues in bold, locus of ambi-

guity underlined . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.4 Examples of completions generated by GPT2 for NP/S prompts. . . . . 99

5.5 Examples of completions generated by GPT2 for NP/Z prompts. . . . . 101

5.6 Examples of completions generated by GPT2 for Noun/Verb prompts. . 102

5.7 AverageP (S) for different decoding strategies onNoCueNP/S prompts
(p: nucleus size; t: temperature). . . . . . . . . . . . . . . . . . . . . 107

6.1 Results on OntoNotes test data: coreference resolution (only with un-

maskedmentions) and antecedent prediction (both unmasked andmasked

mentions); P, R, F1 = precision, recall, F1 scores (when using gold men-

tion boundaries on antecedent prediction, P = R = F1). BUC, M3 and

CEAF scores are reported in Appendix D.2. . . . . . . . . . . . . . . . 129

6.2 Examples of correct and incorrect predictions byCorefM (with goldmen-

tion boundaries) on masked mentions; model’s prediction underlined,

correct antecedent with dotted line. . . . . . . . . . . . . . . . . . . . 131

xv



“output” — 2021/11/30 — 7:00 — page xvi — #16

6.3 Evaluation of CorefM in terms of accuracy (with respect to the true refer-

ent), relative accuracy with respect to human top guess, average Jensen-

Shannon divergence (JSD) of the probability distributions over referents

derived from human predictions and from themodel (the smaller the bet-

ter). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.4 Two multinomial logit models predicting mention type (baseline level:

“pronoun”), based on 1) surprisal alone and 2) shallow linguistic fea-

tures + surprisal. *: significant predictors with p < .05. All predic-
tors reported improved goodness-of-fit to the data. Complete tables

with Likelihood-ratio Chi-squared test and F-test are reported in Ap-

pendix D.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.5 Two linear regression models predicting mention length (number of to-

kens) of the masked mention, based on 1) surprisal alone and 2) shallow

linguistic features + surprisal. *: significant predictors with p < .05.
All predictors in models improved goodness-of-fit to the data except

“mention = subject” in the full linear regression model. Complete ta-

bles with Likelihood-ratio Chi-squared test and F-test are reported in

Appendix D.3. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

A.1 Hyperparameter settings in the diagnosticmodels (batch size, initial learn-

ing rate) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

D.1 Results on OntoNotes test data in document-level coreference resolution

(only with unmasked mentions); P, R, F1 = precision, recall, F1 scores. 163

D.2 Multinomial logit model with shallow linguistic features and surprisal

predictingmention type (baseline level is “pronoun”). Coefficients which

have an absolute z score lower than 2 are not significant. ∗ : pχ2 < 0.001. 163
D.3 Two linear regression models predicting mention length (number of to-

kens) of the masked mention, based on 1) surprisal alone and 2) shallow

linguistic features + surprisal. All predictors were tested to improve

goodness-of-fit to the data except ”grammatical function of mention”.
∗ : p < 0.001. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

D.4 Two linear regressionmodels predictingmention length for eachmasked

non-pronominal mention, based on 1) surprisal alone and 2) shallow lin-

guistic features + surprisal. ∗ : p < 0.001 . . . . . . . . . . . . . . . . . 164

xvi



“output” — 2021/11/30 — 7:00 — page 1 — #17

Chapter 1

INTRODUCTION

Your gaze scans the streets as if they were written pages: the city says everything you must

think, makes you repeat her discourse, and while you believe you are visiting Tamara you are

only recording the names with which she defines herself and all her parts. However the city

may really be, beneath this thick coating of signs, whatever it may contain or conceal, you leave

Tamara without having discovered it. Outside, the land stretches, empty, to the horizon; the

sky opens, with speeding clouds. In the shape that chance and wind give the clouds, you are

already intent on recognizing figures: a sailing ship, a hand, an elephant...

– Italo Calvino, The Invisible Cities, 1972

Ambiguity is entrenched in linguistic communication and implies that during com-

prehension expressions need to be interpreted; that is, we need to infer what our inter-

locutor intended to convey. This thesis investigates the mechanisms underlying linguis-

tic ambiguity, through a computational linguistics perspective. In particular, I adopt

the paradigm of deep learning as the main research framework, with the goal of 1) in-

vestigating the behavior emergent in an artificial system trained merely from exposure

to language usage (a language model), and 2) testing linguistic hypotheses at scale by

estimating information through data-driven methods.

1.1 Motivation

Natural languages allow for ambiguities to flourish. To give an example at the word

level, the word “chair” can be used to refer to both the piece of furniture (1a), or the

head of an organized group (1b).1

(1) a) I have bought a desk but I still need to get a chair.

b) She gladly accepted her new role as department chair.

1Throughout the thesis, I will often use emojis as a shortcut to refer to word senses.

1
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The case of “chair” exemplifies lexical (semantic) ambiguity (Cruse, 1986; Rodd, 2018),

and is far from being an isolated instance.2 Dictionaries provide tangible evidence of this

as they list more than one definition for most words.3

Ambiguity is not restricted to words and can affect various levels of linguistic analy-

sis, from phonology to pragmatics. In this thesis, I focus on a subset of ambiguity types:

the aforementioned lexical ambiguity, and the ambiguities exemplified by the sentence

pairs presented below (the region subject to the ambiguity is in italics). The sentences in

(2) are an example of syntactic ambiguity (Frazier, 1978; Pickering and Van Gompel,

2006). The parse of the sentence is initially ambiguous as at first “witness” can both

serve as direct object of the main verb (2a) or introduce an embedded clause (2b).

(2) a) The detective believed the witness and continued her investigations.

b) The detective believed the witness was lying.

By contrast, (3) displays a case of referential ambiguity (Ariel, 1990; Nieuwland and

Van Berkum, 2008), where the pronoun “she” could be referring to either of the intro-

duced entities, but depending on the context it is more likely to refer to one or the other

(Ann in (3a), and Betty in (3b)).

(3) a) Ann apologized to Betty, because she had broken her vase.

b) Ann congratulated Betty, because she published her novel.

What these sentence pairs overall exemplify is that the structure of natural languages

– in this case, English – allows expressions to be subject to multiple interpretations.

Speakers tend not to avoid this type of expressions (Ferreira, 2008; Wasow, 2015), for

instance, because they are easier to produce (the most ambiguous expressions tend to be

short and frequent; Zipf 1949). But we know from experience that linguistic communi-

cation is typically successful (i.e., interlocutors understand each other): we rarely remain

indecisive about the meaning of an utterance or get misled to the wrong interpretation.

How is this possible, given the ubiquitous presence of ambiguity in language? Which

mechanisms allow humans to successfully transmit information to each other when the

code used to do so does not univocally determine the interpretation of expressions? This

thesis addresses these general questions. I consider the aforementioned ambiguity types

(lexical, syntactic, and referential) in English, and study strategies and factors enabling

to infer the intended interpretations of expressions.

I focus on the interaction between two sources of information during the interpre-

tation of an expression. First, we have the expression itself, in the sense of the set of

potential interpretations that the expression is associated with. As users of a language,

2Lexical ambiguity may also lead to syntactic ambiguities when a word is associated with different

morpho-syntactic categories (e.g., “hope” as noun or verb).
3According to Rodd et al. (2002), for at least 80% of common words a dictionary lists multiple senses.

2
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Figure 1.1: Metaphorical visualization of the interaction between an expression and its

context during ambiguity resolution: both contribute a weight towards each potential

interpretation.

we abide by conventions (e.g., from the grammar or the lexicon) about what could be

meant by an expression. Because of ambiguity, multiple interpretations may however

be viable. Some may be considered more prototypical, for instance, because they are

more frequent (Duffy et al., 2001) or simple (Frazier and Fodor, 1978). This may cause

that some interpretations are by default preferred. For example, upon hearing “chair”

without any context, the sense probably first comes to mind.

But expressions always occur in a specific situation. As we saw in the sentence pairs

(1-3), a context evokes preferences over what content is more relevant as an interpreta-

tion of an expression. This may be due to both language-internal factors (e.g., syntactic

constraints, selectional preferences) and the plausibility of the state of affairs that the

speaker might be intending (e.g., world knowledge about events, consistency with in-

formation in the common ground). These contextual expectations will interact with the

information from the expression, including potentially overriding the a priori (out-of-

context) preferences over its interpretation.

In a simple scenario with two potential interpretations, we can thus envision the final

state of an ambiguity resolution process as the equilibrium reached in a double-pan bal-

ance (Figure 1.1). Each pan is a potential interpretation; the expression and the context

load each pan with a different weight, depending on the interpretation that they privilege.

Metaphorically speaking, this thesis studies the mechanisms of such a weighing proce-

dure. I investigate the information that both the expression and the context contribute

to the interpretation of expressions, and their interaction in the successful resolution of

3
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ambiguity.

A part of my experiments focuses on the interpretation strategies that artificial sys-

tems learn from mere exposure to word usage at scale (a neural language model), while

receiving no explicit training nor inductive bias as to how to resolve ambiguities: How

successful are these models in accounting for an expression’s contextual interpretation?

Are they a priori biased towards some readings, and if so, can they correctly use the con-

text to overcome those preferences when not panning out in context? In another group of

analyses, I test linguistic hypotheses about the interplay between the information coming

from the expression and from its context for interpretation: To which degree should the

expression and its context, respectively, be relied on to recover the intended meaning?

Do speakers strive to give as much information as possible to the addressee to ease their

interpretation process, or only within the limit of efficient communication?

1.2 Approach

To carry out my research, I resort to the tools of deep learning (LeCun et al., 2015),

a powerful machine learning paradigm to build computational models. A deep learn-

ing model considers an objective task; within Natural Language Processing (NLP), for

instance, to predict the next word in a linguistic sequence – language modeling–, or

if a set of expressions refer to the same entity – coreference resolution (Jurafsky and

Martin, 2009). The output behavior is determined by computing a series of intermedi-

ate distributed representations and learned by spontaneously identifying patterns in the

training data.

In the last decade, deep learning led to dramatic advances in NLP. This raised ques-

tions around ways in which this framework can constitute a resource for linguistic re-

search (Manning, 2015; Linzen, 2019; Baroni, 2021). We can roughly cluster two main

approaches. On the one hand, deep learning models can be used to automate the estima-

tion of some linguistic information. For instance, a common application is to study the

effects of predictability on human sentence processing, using word probability scores

from language models (e.g., Goodkind and Bicknell 2018; Van Schijndel and Linzen

2018). But deep learning models can also themselves be analyzed in how they process

and respond to linguistic phenomena (see Belinkov and Glass (2019) for an overview).

This is not only a thorough way of evaluating these models from an NLP perspective.

It also allows to investigate the conditions that enable the modeling of a linguistic phe-

nomenon, helping to characterize it or individuate its responsible mechanisms in hu-

mans.

Building on both of these approaches, the way I use deep learning to investigate

linguistic ambiguities is thus two-fold: 1) to study the inner dynamics of deep learning

models, and 2) to expedite linguistic analyses by using deep learning models to estimate

information. For each set of experiments reported (chapters 3 to 6) I introduce and apply

4
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novel methodologies, connected to either purpose.

Concretely, chapters 3 and 5 are concerned with the analysis of neural language

models (Mikolov et al., 2010; Bengio et al., 2003; Devlin et al., 2019; Radford et al.,

2018). These deep learning models output a probability distribution over words given a

linguistic context: for instance, in “For dinner, I ate ...” nouns referring to food should

be the most likely. These models are trained only by exposure to language usage in a text

corpus. Yet, we can expect them to develop mechanisms to handle ambiguities in order

to display the correct output behavior. My experiments aim to clarify the nature and

success of these mechanisms. For this goal, I analyze both the internal representations

and the output predictions of language models.

By contrast, in chapters 4 and 6, I use deep learning models as a tool to ease the

testing of linguistic hypotheses on large datasets. Both comprehension and production

strategies related to ambiguity are difficult to test at scale, considering a wide range

of expressions and their occurrences in discourse contexts. Computational data-driven

methods to estimate information can provide much more coverage and flexibility, re-

ducing the need to collect human judgments. For this purpose, in Chapter 4, I use again

language models, in particular, to represent word-level expectations and the lexicon.

In Chapter 6, I instead model reference-level expectations through a system trained to

predict an entity given a context, through a variant of the coreference resolution task.

1.3 Research Goals

This thesis contributes to research in linguistics, cognitive science and NLP, by pre-

senting a comprehensive study of linguistic ambiguity considering different angles of

investigation and ambiguity types.

Concretely, I address the following research goals:

• Clarifying how ambiguities are processed by neural language models

In particular, I aim to establish:

– The degree of responsiveness of language models to contextual cues reveal-

ing the intended interpretation of an expression;

– The effect of default (out-of-context) preferences over the interpretation of

an expression.

I investigate these aspects on both lexical and syntactic ambiguities (chapters 3

and 5). These studies act as an evaluation of thesemodels (assessingwhich aspects

of ambiguity can be successfully learned from data and those that instead pose

challenges) and a clarification of their inner workings. The behavior of language

models, as observable through the experiments, is compared with what is know

about how humans interpret expressions.

5
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• Studying the interaction between the information contributed by an expres-

sion and its context, respectively, in ambiguity resolution

I investigate this aspect from both the comprehension and production perspectives,

by assessing the following:

– The degree of reliance on contextual expectations or an expression that best

models the resolution of ambiguities;

– To which extent the potential challenges of ambiguity are taken into account

by speakers during production.

In Chapter 4, I develop a computational framework to model and test lexical ambi-

guity resolution as the combination of information from the lexicon and contextual

expectations. In Chapter 6, I analyze the relation between the expression chosen

to refer to an entity and the informativeness of its context (i.e., how predictable

the referent is).

1.4 Structure of the Thesis

Chapter 2 I provide an overview of research on ambiguity in linguistics and cognitive

Science. I then introduce deep learning models in the context of NLP and summarize

what we know about their processing of ambiguities.

Chapter 3 I study the resolution of lexical ambiguity in neural language models. Us-

ing supervised auxiliary tasks, I extract and evaluate the word information captured in

the internal representations of the models.

The research presented in this chapter is partially based on the following paper:

• Laura Aina, KristinaGulordava, GemmaBoleda. Puttingwords in context: LSTM

language models and lexical ambiguity. In Proceedings of the ACL 2019 57th An-

nual Meeting of the Association for Computational Linguistics, 2019.

Chapter 4 Modeling different interactions between the lexicon and contextual expec-

tations (represented using language models), I study the degree to which the two sources

of information are relied on for lexical ambiguity resolution.

The research presented in this chapter is based on the following papers:

• Kristina Gulordava, Laura Aina, Gemma Boleda. How to represent a word and

predict it, too: improving tied architectures for language modelling. In Proceed-

ings of the EMNLP 2018 Conference on Empirical Methods in Natural Language

Processing, 2018.

6
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• Laura Aina, Thomas Brochhagen, Gemma Boleda. Modeling word interpretation

with deep language models: The interaction between expectations and lexical in-

formation. In Proceedings of the 42nd Annual Meeting of the Cognitive Science

Society (CogSci 2020), 2020

Chapter 5 I study the way neural language models process temporary syntactic am-

biguities. I use text generation to assess their default biases in lack of disambiguating

cues, and how the behavior changes when these are given.

The research presented in this chapter is based on the following paper:

• Laura Aina, Tal Linzen. The Language Model Understood the Prompt was Am-

biguous: Probing Syntactic Uncertainty Through Generation. In Proceedings of

the 2021 EMNLP Workshop BlackboxNLP: Analyzing and Interpreting Neural

Networks for NLP, 2021.

Chapter 6 I investigate the relation between referent predictability and a referring

expression’s form (its syntactic type and length), using computational estimates of the

former. There estimates are derived through a variant of the coreference resolution task.

The research presented in this chapter is based on the following paper:

• Laura Aina, Xixian Liao, Gemma Boleda, Matthijs Westera. Does referent pre-

dictability affect the choice of referential form? A computational approach using

masked coreference resolution. In Proceedings of the 2021 CoNLL Conference

on Computational Natural Language Learning, 2021.

Chapter 7 I discuss the contributions of the thesis, as well as directions for future

research, jointly considering the insights from the various experiments reported.

7
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Chapter 2

BACKGROUND

In this chapter, I discuss previous research relevant to the experiments reported in the

thesis. In the first part of the chapter (Section 2.1), I provide an overview of the way lin-

guistic ambiguity is accounted for within linguistics and cognitive Science, focusing on

the ambiguity types I consider inmy studies (lexical, syntactic, and referential). I then in-

troduce deep learning models and summarize what we know about the way they resolve

linguistic ambiguities, based on their workings and previous research (Section 2.2).

2.1 Linguistic Ambiguity

To clarify how ambiguity affects language, let us start from the basics of how linguis-

tic communication proceeds. A speaker aims to transmit some information to an ad-

dressee. The speaker encodes the message with some linguistic form and the addressee

has to decode the speaker’s message. In the absence of ambiguities in language, it would

be straightforward to determine what the interlocutor intended to convey, by relying on a

one-to-one mapping between forms and meanings (i.e., each expression can only be un-

derstood in one way). But since ambiguities are often present, the comprehension of the

utterance needs to include an interpretation step: to identify, among various options,

the intended reading.

Ambiguities thus introduce uncertainty in linguistic communication. From the per-

spective of successful transmission of information, it thus seems compelling to consider

them problematic. Indeed, formal languages such as programming ones are purposely

designed to avoid ambiguity, with a univocal mapping between strings and operations

to execute. Why natural languages developed to allow ambiguities is therefore puzzling

and their pervasiveness calls for an explanation (Wasow et al., 2005). One perspective is

that ambiguity is evidence that natural languages are not optimized for communicative

efficiency (Chomsky, 2002). On the contrary, it has been argued that ambiguity offers

functional advantages for a communicative system. For instance, Zipf (1949) claimed

9
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that ambiguity permits a balance in minimizing the efforts of both the speaker and the ad-

dressee: in the extreme case, the speaker’s effort is minimized if there is only oneword in

the language, while the addressee’s effort is minimized if each word is assigned a distinct

meaning. Piantadosi et al. (2012) further developed this idea and claimed that ambigu-

ity achieves a trade-off between clarity and ease: it makes a language compact, re-using

forms that are easier to produce or comprehend (short, frequent, and phonotactically

well-formed). This does not obstruct communication as long as ambiguous expressions

get used in informative contexts, which allow recovering the intended meaning.

But what are actually the mechanisms that make us capable of swiftly and success-

fully resolving ambiguities? These mechanisms are typically described through separate

linguistic accounts for ambiguities at different levels (e.g., lexical, syntactic, etc.). Be-

fore I discuss these accounts, I below provide an overview of the main dimensions used

to characterize ambiguities and their resolution.

What are the potential interpretations of an expression? This depends on the level

of analysis that the ambiguity involves. With respect to syntax, the interpretations of

an expression are strictly constrained by the grammar of the language (Pickering and

Van Gompel, 2006); they can be codified as (sub)trees, syntactic roles – e.g., direct ob-

ject – or morpho-syntactic categories – e.g., noun. Within lexical semantics/pragmatics,

one typically focuses on senses, which may be consolidated in the lexicon – e.g., “palm”

as and –, or ad hoc to a situation – e.g., “Her words are bullets” (Falkum and Vi-

cente, 2015). At the referential level, the interpretations are the set of real-world entities

an expression could refer to, which can be contextually constrained (e.g., the entities in

the discourse or visual context; Nieuwland and Van Berkum 2008).

What is (out of context) the contribution of an expression? Abstracted from any

context, an expression has a set of potential interpretations. It may be equally associated

with each of these, or alternatively, exhibit a bias towards a subset. Accounts of ambi-

guity may posit that expressions come with default preferences over interpretations, due

to, e.g., frequency. These preferences can be taken, for instance, to enforce an interpre-

tation in neutral contexts, to make some readings harder to derive, or to determine the

information initially activated during processing (Frazier, 1978; Duffy et al., 1988).

How does a context affect interpretation? The context can create a bias towards a

reading of an expression through different types of cues. For instance, in (4), “suit” is

disambiguated to its noun or verb reading by the following context. The responsible

sentential cues are rigid (i.e., no other interpretation is possible) and purely linguistic

(driven by grammar; Frazier and Rayner 1987).

(4) The pants suit are great. vs. you well.

10
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By contrast, in (5), the preceding discourse context (beyond the sentence boundaries) in-

duces a preference (potentially defeasible) for the sense of “toast”, which seems the most

congruent with what has been said so far (considering the interaction of the linguistic

context with world knowledge; Wilson and Carston 2007).1

(5) a) Finally, Beth got the promotion. She proposed a toast.

b) Bob asked Beth what he could cook. She proposed a toast.

What is the time-course of ambiguity resolution? As disambiguating cues can occur

before or after an ambiguous expression, one can contrast the behavior under different

types of preceding contexts (e.g., Frazier and Rayner 1987; Foraker and Murphy 2012).

If the context is neutral (no disambiguating cues; e.g., “The palm...”), the addressee may

leave the interpretation open until disambiguating cues are given (e.g., “The palm of my

hand”), or commit to an interpretation, subject to revision if ultimately incorrect. In

disambiguating prior contexts (e.g., “She grew a palm...”), the addressee may directly

engage with the supported interpretation, or initially activate all to then select one.

Do speakers optimize their utterances to ease interpretation? To facilitate linguis-

tic communication, speakers may optimize their utterances to reduce the interlocutor’s

challenges with ambiguity (Grice, 1975; Piantadosi et al., 2012). They may purposely

avoid the use of ambiguous expressions, when not clear by the context how they would

have to be resolved (Ferreira et al., 2005). But there may be also an opposite incentive to

use ambiguous expressions: they tend to be more frequent and short than more transpar-

ent expressions (e.g, “it/mouse/computer mouse”), allowing the speaker to reduce their

production cost.

2.1.1 Lexical Ambiguity

Lexical ambiguity broadly corresponds to the circumstance whereby a word form has a

multiplicity of potential interpretations, or senses (Cruse, 1986; Small et al., 2013; Rodd,

2018). It is however a multi-faceted phenomenon, varying, in particular, in the relations

among the potential senses of a word.

An important dimension in this respect is the degree of relatedness of word senses;

that is, their conceptual overlap. Polysemy involves ambiguity among related senses:

for instance, “glass” can refer to the material, a container of that material, or its content

(6). Several sense alternations are regular across words in the lexicon, while others are

word-specific (Apresjan, 1974).

1The contextual preference is defeasible by the following discourse context, without leading to a con-

tradiction: for instance, in (5b) Beth may propose a toast to celebrate that Bob finally offered to cook

for her.

11
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(6) a) The goblet is fragile: it is made of glass. Material

b) She was relaxing on the sofa when the glass fell. Container

c) I didn’t expect her to drink the whole glass. Content

By contrast, other words, like “bow” (7), are associated with unrelated interpretations,

potentially even due to disjoint etymologies. These cases – the minority within lexical

ambiguity – are described as homonymy.2

(7) a) The gift came wrapped and with a bow.

b) The archer firmly held the bow before shooting the arrow.

c) The passengers moved to the bow of the boat.

The interpretations of a word may also differ inmorpho-syntactic category. These

cases of ambiguity interact with relatedness, and may involve interpretations that share

a conceptual basis (as in “smile”; (8)) or not at all (as in “bear”; (8)).

(8) a) You have a beautiful smile. Noun

b) The surprise is going to make you smile. Verb

(9) a) The polar bear is a vulnerable species. Noun

b) The shelf could not bear the weight of the books. Verb

If multiple categories are possible for a word, lexical ambiguity thus also gives rise

to a syntactic ambiguity (see next section). Cross-categorial polysemy is particularly

frequent in English, as, for instance, denominal verbs can be formed by simply using the

noun root as verb (Clark and Clark, 1979).

Finally, senses of a word may vary in their degree of conventionalization (Carston,

2021). Somemay bemore common and thus consolidated in the lexicon of a language (to

the point they are, for instance, included in a dictionary). But word meaning is flexible

and dynamic (Ludlow, 2014): the interpretation of a word can deviate from the typical

senses, leading to convey ad hoc nuances in each context (11-10).

(10) Her brain is a sponge for knowledge. 6=
(11) The plastic bag dances in the wind. 6=

Considering all these facets, it is clear that lexical ambiguity can affect, in one way

or another, essentially all words in a language, though typically it is resolved effortlessly

in communication. The mechanisms that enable this pose several research puzzles.

Accounts within cognitive science and psycholinguistics focused on the information

that is activated during the processing of a word – word meaning access (see Frisson

2In this thesis, due to focusing on text data, I consider as ambiguous all homographs, including het-

eronyms – forms that have different meanings depending on the pronunciation (e.g., the case of “bow”).

While these are not ambiguous in speech, they are ambiguous in text.

12
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(2009) and Rodd (2018) for overviews). Experimental evidence tends to support an ex-

haustive access view, where information relevant to multiple interpretations of a word

– whether disjoint or based on a common core – is activated when the word is pro-

cessed (Duffy et al., 1988; Frisson and Pickering, 1999; Rodd et al., 2010). This occurs

rapidly, with the person typically remaining unaware of the process. This information

about different senses, though accessed in parallel, may not be equally activated. Both

the dominance of a word sense (typically, codified as its frequency) and the extent to

which the preceding context supports it tend to affect its activation (Rayner and Frazier,

1989; Duffy et al., 1988; Rodd, 2020). After this initial access to multiple senses, one

tends to be rapidly selected (Tanenhaus et al., 1979; Rodd et al., 2005), suppressing the

activation of non-selected senses. If the preceding context does not provide sufficient

evidence to select an interpretation, two strategies are in principle possible: The com-

mitment to a sense is delayed until disambiguating cues in the following context are

integrated. Alternatively, a sense is selected – for instance, based on sense dominance –

to be later revised at need. The chosen strategy seems to depend on the relatedness of the

word senses (Frazier and Rayner, 1990): Senses with little conceptual overlap prompt

a rapid commitment, likely due to being mutually incompatible. On the contrary, the

choice among senses that share a common core can be delayed.

Linguists have proposed various explanatory accounts of the mechanisms allowing

to interpret words in context. A first subject of debate is how information about a word

is organized in the mental lexicon (our memory storage of word knowledge). Follow-

ing Falkum and Vicente (2015), we can group approaches as instantiating either a sense

enumeration or an underspecification view. In the first case, the different senses of a

word are separately represented and stored (Klein and Murphy, 2001). In the second

case, a unique underspecified representation is associated with a word, encompassing

information relevant to various senses: e.g., a rich structured representation (e.g., Puste-

jovsky 1991), or a pointer constraining what the word may convey (Carston, 2012).

An underspecification account can better model the productive aspects of polysemy, as

senses get generated from the lexicon, rather than selected among a predefined set. It

has however been argued that the sense enumeration view better suits homonymy (Kle-

pousniotou, 2002). Some proposals accommodate differences due to sense relatedness,

but treat this as a continuous spectrum, instead of focusing on the polysemy-homonymy

dichotomy (Rodd et al., 2002).

As for the posited disambiguation mechanisms, approaches tend to describe inter-

pretation as either dependant on lexicon-internal processes, or as the result of on-line

inferences (Falkum, 2015). The former group of approaches focuses on interactions

between the words in a sentence; for instance, leading to apply lexical rules (Asher

and Lascarides, 2003), or with the words mutually modulating their meaning (i.e., co-

composition; Pustejovsky 1995). These mechanisms tend to account well for the most

regular aspects of polysemy. The latter group of approaches takes disambiguation to
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be a pragmatic matter and broadens the influence of context to the discourse and extra-

linguistic information (Recanati, 2004; Wilson and Carston, 2007). For instance, (5b)

is a case where the global context overrides preferences from the local sentential con-

text (Cosentino et al., 2017): “to propose a toast” typically refers to an invitation to drink,

but the discourse suggests another reading. A prominent lexical pragmatic approach

is that of relevance theory (Wilson and Sperber, 2006): Disambiguation is achieved

by adjusting the concept associated with a word, through mechanisms like narrowing

or broadening. The process settles when meeting contextual expectations of relevance

(i.e., a concept that seems plausible to be intended). This general reasoning strategy is

taken to account for a broad range of phenomena up to one-off idiosyncratic usages of

words (e.g., the examples in (11)-(10)).

2.1.2 Syntactic Ambiguity

In a syntactic ambiguity, multiple parses of a sentence or portion of it are simultaneously

possible (Pickering and Van Gompel, 2006; Clifton Jr. and Staub, 2008). In a globally

ambiguous sentence, the entirety of the sentence is subject to syntactic ambiguity, with

uncertainty about its structure and consequently meaning.

(12) The friend of your colleague with blonde hair is coming to the party.

In (12), for instance, it is unclear where the prepositional phrase “with blonde hair” at-

taches, and thus whether the friend or the colleague has blonde hair. By contrast, in a

locally ambiguous sentence, only a part of the sentence could have different interpreta-

tions: in the context of the sentence, the intended parse is clear.

(13) a) Jane forgot the cake in the oven.

b) Jane forgot the cake had to be frosted.

The main verb “forgot” takes “the cake” as noun phrase complement (direct object) in

(13a), and a sentential complement, whose subject is “the cake”, in (13b). Other exam-

ples are lexical syntactic ambiguities as in (8-9). Compared to, for instance, polysemy,

the syntactic interpretations of an expression are not flexible, as they are strictly con-

strained by grammar.3 For analogous reasons, the correct disambiguation of a locally

ambiguous sentence directly follows from the application of grammatical knowledge.

For instance, in (13) the verb “had” rules out the direct object interpretation of “cake”

which instead has to be the subject of “had” (else the parse would be ungrammatical).

Due to the topic of my experiments (Chapter 5), I here in particular focus on the

case of temporary syntactic ambiguities, the type exemplified by (13): in these cases,

3An exception are innovative cross-categorial usages of words; e.g., “to chopstick” (Clark and Clark,

1979; Carston, 2019)
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the local ambiguity affects the initial sentence portion, but, as the sentence unfolds, the

parse becomes unequivocal (Frazier, 1978). Sentences as (13b) tend to elicit a so-called

garden-path effect (Bever, 1970): a high processing cost at the disambiguating region

(from “had” onwards) in comparison to the unambiguous version of the sentence (“Jane

forgot that the cake...”). This effect has been construed as caused by an initial preference

for the ultimately incorrect parse (the transitive reading of “forgot” in (13b)). Several

accounts have been proposed in psycholinguistics to account for this behavior. Beyond

modeling garden-path effects, temporary syntactic ambiguities proved useful to investi-

gate how ambiguities are in general resolved in the course of incremental processing.

First, one can investigate which interpretation is by default – initially – favored, to

which degree, and on the basis of which factors. Different parsing strategies have been

proposed. For instance, the garden-path model by Frazier and Fodor (1978) proposes

that when a sentence is compatible with multiple parses, one is immediately selected

based on purely syntactic principles (such as minimal attachment): we only consider

one parse at a time and in particular the simplest available. Constraint-based accounts

instead posit that syntactic ambiguities are resolved somewhat analogously to lexical

ambiguities (MacDonald et al., 1994; Trueswell and Tanenhaus, 1994; McRae et al.,

1998): Multiple interpretations can be, at least to some degree, available, taking into ac-

count factors that affect their plausibility. This may come from the preceding discourse

context, or from the ambiguous expression itself. Regarding the latter, in sentences like

(13), aspects like the bias of “forgot” for a transitive reading and the thematic fit of “the

cake” as its argument were shown to play a role (Garnsey et al., 1997), with an interac-

tion between syntactic and lexico-semantic factors in the initial ambiguity resolution.

Within both accounts, garden-path effects arise due to having to reconsider the parse

of the sentence (Pritchett, 1988): the initially preferred parse – whether the only one con-

ceived or just the most plausible – is contradictory with evidence in the sentence. Some

accounts studied the nature of this reanalysis process: whether it involves reprocessing

the sentence, or a repair strategy attempting to preserve as much as possible the current

representation of the sentence (Sturt et al., 1999; Grodner et al., 2003). Some studies

also found that the reanalysis process is not always successful. Effects of the initial

misinterpretations may linger even after disambiguation (Christianson et al., 2001). In

a sentence like “While Anna dressed the baby spit up on the bed”, subjects were found

to incorrectly assign thematic roles, holding that the baby got dressed, and not Anna.

Evidence of this kind led to challenging the idea that the language system always de-

rives accurate and complete representations of utterances (Ferreira et al., 2002; Ferreira

and Patson, 2007). Rather, these may be superficial in absence of pressure for a detailed

understanding – hence just “good enough”: Ambiguities may not be resolved, or the

interpretation taken may not be consistent with the available evidence.

Under an alternative account, garden-path effects are not due to reanalysis but rather

predictability (Hale, 2001; Levy, 2008, 2013). Surprisal theory takes comprehension to
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be expectation-based, with predictable events being facilitatory for processing. Applied

to syntactic processing, it posits a fully parallel parser, where each potential sentence

structure (and thus interpretation) is assigned some probability. Processing difficulties

at disambiguation then arise out of a general low predictability effect: the parse that

turns out to be correct was initially not deemed likely. This hypothesis was empirically

investigated with the tools of probabilistic language models, computing probabilities

of words or syntactic structures. These include syntax-aware models such as proba-

bilistic grammars (Hale, 2001), as well as neural language models trained solely from

text corpora (Van Schijndel and Linzen (2018); see Section 2.2 for an introduction to

these models). Predictability was found to account well for the existence of garden-path

effects, but less so for the magnitude of the disambiguation difficulties across construc-

tions (Van Schijndel and Linzen, 2021).

2.1.3 Referential Ambiguity

An essential property of language is that it allows us to refer to things in the world: Lin-

guistic expressions are not only associated with some conceptual information they evoke

but they also link to objects in our reality (Frege, 1892). To infer what an expression

refers to is fundamental to language comprehension, but ambiguities may occur also at

this level if an expression could potentially refer to more than one entity.

(14) Bill told James the secret because it was important to him.

For instance, in (14), is the secret important to Bill or to James? Both options could in

principle hold but a combination of semantico-pragmatic and grammatical factors can

guide us to pick a referent (Hobbs, 1978; Grosz et al., 1995; Kehler and Rohde, 2013).

Due to the focus of this thesis (in particular of Chapter 6), I here focus on the in-

teraction between ambiguity and reference production – the form chosen to refer to

an entity. When a speaker plans a referring expression, they are faced with several op-

tions (Davies and Arnold, 2019). Suppose someone wants to refer to me: they can call

me by my name (“Laura”, “Laura Aina”), put together a description (“the student”, “the

PhD student from Pompeu Fabra University”), or use a pronoun (“you” or “she” de-

pending on whether I am the interlocutor). A proper name acts as a rigid label directly

linking to an entity. A description, by means of a full noun phrase, aids the identifi-

cation of the referent by illustrating one of its properties. A pronoun instead provides

little informational content but rather acts as a referential device: it points to an entity

in the context. These options vary in how much they convey about the referent; that is,

their informativeness, or explicitness (Ariel, 1990). Consequently, an expression may be

more or less ambiguous: If two female entities have been introduced, “she” could refer

to either. The same goes for “the student” if multiple students are part of the context.

Various accounts of the mechanisms driving the choice of a referring expression

have been proposed. Differences aside, these proposals generally point to an interaction
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between an expression and its context of use (Arnold and Zerkle, 2019). A prominent

family of accounts takes each entity introduced in a discourse context to be associated

with a certain cognitive status in the situation model of interlocutors (i.e., their men-

tal representation of the discourse; Zwaan and Radvansky 1998). Based on factors in

the linguistic discourse context, entities will vary in their accessibility (other terms are

salience or topicality; Chafe 1996; Givón 1983; Gundel et al. 1993; Ariel 1990). Under

these accounts, third-person pronouns (e.g., “she”) are specialized for highly accessible

entities, while specific expressions (e.g., “Laura Aina”, “the PhD student from Pompeu

Fabra University”) are required when an entity is highly inaccessible. Factors modu-

lating the accessibility of an entity have been identified by looking at contexts where

pronouns or other reduced expressions tend to be used, both in corpora and elicitation

experiments. For instance, pronouns are more likely to be used for entities that have

been mentioned recently, or in subject position (Arnold, 1998; Stevenson et al., 1994).

Another notion that has been put forward to explain reference production is referent

predictability, or context informativeness: if a context is informative about a referent,

this entity becomes predictable, to some degree, without accessing the referring expres-

sion itself. These accounts explain reference production as a process aimed at making

communication not only effective but also efficient. In general, speakers would try to

be neither overinformative nor underinformative (Grice, 1975) and avoid redundancies

in communication (Jaeger, 2010). During reference production, this would lead to tak-

ing into account both clarity (i.e., that their expression is understood by the interlocutor)

and cost (i.e., that the expression is easier for them to produce; Tily and Piantadosi 2009;

Orita et al. 2015). Since informative expressions are typically longer (e.g., “the student”

vs. “her”), they would be used only when necessary to understand the utterance. On the

contrary, if a referent is highly predictable from the context, it can be referred to with

a reduced, less informative expression like a pronoun. An intermediate account is pro-

posed by Arnold (2001), taking accessibility to be influenced by how likely a referent is

expected to be mentioned again in the discourse.

Less informative expressions are more likely to cause ambiguities: as they provide

little information about the referent, they may apply to more than one entity in the con-

text. The predictability account suggests that speakers are prone to create ambiguities

when the interlocutor has enough contextual information to individuate the referent (as

in (15)). On the contrary, the ambiguity is avoided, by using a more explicit expression,

if the context is not informative enough (as in (16)).

(15) Barbara gave Lisa a coffee since she was feeling sleepy.

(16) Barbara and Lisa were having a coffee, when Lisa got an unexpected call.

While this seems like an intuitive explanation, empirical evidence does not actu-

ally point to it consistently. Concretely, factors that modulate referent predictability do

not seem to affect the choice of a referring expression, and in particular pronominal-

ization, to the same degree. Several studies on this topic are based on psycholinguistic
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experiments, manipulating semantico-pragmatic factors that affect expectations about

referents. Some researchers focused on the effect of implicit causality verbs (Fukumura

and Van Gompel, 2010; Rohde and Kehler, 2014): a verb like “congratulate” favors

the object to be mentioned next (Lisa in (17a)); by contrast, “surprise” favors the sub-

ject (Barbara). Other studies looked at transfer of possession verbs (Stevenson et al.,

1994; Rosa and Arnold, 2017), which create a bias for the entity in the thematic role of

goal (in (17b), Lisa with “give”, and Barbara with “received”). The interaction of verb

semantics with coherence relations was also investigated (Stevenson et al., 1994; Fuku-

mura and Van Gompel, 2010), in particular the effect of the connectives because and

so (17c). These experiments typically employed discourse continuation tasks to probe

the expected referents and the form used to refer to them (predictability and production,

respectively). This is achieved by asking subjects to complete an unfolding discourse as

in (17) before the pronoun. But also one can look at referent identification judgments

(comprehension), by asking to continue the discourse after the pronoun (“she” in (17)).

(17) a) Barbara congratulated/surprised Lisa. (She) ...

b) Barbara gave Lisa a book/received a book from Lisa. (She) ...

c) Barbara congratulated/surprised Lisa because/so (she) ...

Some studies (e.g., Arnold 2001; Rosa and Arnold 2017) reported that semantico- prag-

matic factors that affect the predictability of an entity also influence reference production

(pronouns are used for predictable entities). However, other research (e.g., Stevenson

et al. 1994; Fukumura and Van Gompel 2010; Rohde and Kehler 2014) found evidence

that reference production is instead mainly driven by syntactic factors; in particular, a

strong preference to use pronouns to refer to subjects.

The debate over the relation between predictability and referential form was ad-

dressed also considering corpus data and the elicitation of cloze task judgements (Tily

and Piantadosi, 2009; Modi et al., 2017). Humans were instructed to read a passage of

text and indicate the referent that they expected to bementioned next, in order to estimate

referent predictability. The role of this on reference production (its syntactic type: pro-

noun, description, or name) was then studied jointly with other discourse factors such as

recency and syntactic prominence (subjecthood). Tily and Piantadosi (2009) considered

data from news text and found that predictability affects reference production, including

beyond the role of the aforementioned discourse factors. However, these factors still

help to predict the type of a referring expression, pointing to a complex interaction with

predictability. By contrast, Modi et al. (2017) focused on texts describing typical events

(e.g., taking a bath, baking a cake, etc.) but did not find an effect of predictability on the

choice of referring expressions. Considering existing empirical evidence, it is thus to

date not fully clear whether predictability and an efficient approach to communication

affect reference production strategies (Arnold and Zerkle, 2019).
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2.2 Deep Learning and Linguistic Ambiguity

2.2.1 Deep Learning Models of Language

In the last decade, Deep Learning (LeCun et al., 2015; Schmidhuber, 2015) established

as the main modeling paradigm in computational linguistics and NLP, leading to vast

improvements in language technologies and providing new tools for the study of lan-

guage (Linzen, 2019; Baroni, 2021). In this section, I provide a general introduction to

this family of methods, as relevant to my thesis.

Deep learning is an instance of supervised machine learning. A model trained with

supervision learns to solve a task from exposure to a set of data labeled for the correct

prediction; i.e., the training data. For instance, the input may be a linguistic sequence and

the output a word that follows it (e.g., “Today the supermarket is”→ “closed”): the lan-

guagemodeling task. Another task of relevance to this thesis is coreference resolution:

to group referring expressions on the basis of the entity they refer to (e.g., “Have youmet

the new neighbor? She’s nice!” → [“you”], [“the new neighbor”, “She”]). Supervised

machine-learning methods other than deep learning tend to presuppose a considerable

effort in selecting hand-crafted features to describe the input data; for instance, the syn-

tactic role of noun phrases in predicting coreference relations. The computational model

then learns what impact each feature has on the output predictions. Deep learning lifts

the need for the preliminary feature engineering step, by learning its own representation

of the data. This allows learning powerful computational models directly from raw data

as input (in the case of language, from text or speech).

A deep learning model is a specific type of artificial neural network (Rosenblatt,

1958), where distributed (i.e., high-dimensional) representations of the input (also re-

ferred to as states or activations), are computed at multiple levels of abstraction: the

layers. The initial and final layers are referred to as input and output layer, respectively,

while the intermediate ones are the hidden layers. The number of hidden layers charac-

terizes the depth of the neural network. Each representation is the (typically, non-linear)

transformation of the representation at the previous layer, until a prediction is finally

given at the output layer. This multi-layer representation learning is what makes deep

learning models so powerful, in that it gives a model the capacity to autonomously dis-

cover the aspects of the data that are useful to succeed in the objective task.

In Figure 2.1, I schematically represent the architectures most commonly used to

process text sequences focusing on the example of the language modeling task: neural

language models (Bengio et al., 2003; Mikolov et al., 2010). For each architecture, I de-

pict both the unidirectional and bidirectional version: the first uses only the previous

context (left in English) for prediction, while in the second both sides are considered.

In both architectures, a word token is represented at the input layer by means of an em-

bedding that is specific to its word type. This vectorial representation remains constant
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(a) Unidirectional RNN/LSTM (b) Bidirectional RNN/LSTM

(c) Unidirectional transformer (d) Bidirectional transformer

Figure 2.1: Architecture of RNN/LSTM and transformer language models in both their

unidirectional and bidirectional format. The hidden and output states involved in the

target predictions are marked with thicker borders.
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across usages of the word.4 A Recurrent Neural Network (RNN; Elman 1990) in its

unidirectional version (Figure 2.1a), builds a representation relative to a certain token in

the hidden layer as a function of 1) the current token representation from the previous

layer, and 2) the hidden state from the previous token. These recurrent connections en-

able to retain information from the context while processing a new word; variants such

asLong Short-termMemory Networks (LSTMs; Hochreiter and Schmidhuber 1997),

used in my experiments, are designed to enable better retention of long-distance infor-

mation. In a bidirectional RNN-based model (Figure 2.1b), the final prediction depends

on two RNNs processing the text in opposite directions.

By contrast, a transformer architecture (Vaswani et al., 2017) uses self-attention

to incorporate the context in the processing of the input: the representation of a token

is a weighted average of that of context tokens from the previous layer of computation.

The architecture is composed of a series of blocks, outputting each the result of multiple

self-attention steps based on different transformations of the inputs (heads). To provide

information about the order of tokens in a sequence, positional embeddings are given as

part of the input. A transformer can be unidirectional (Figure 2.1c) if for each timestep it

only computes self-attention using tokens in the previous context (Radford et al., 2018).

The model is instead bidirectional if the full input sequence is accessed (Figure 2.1d).

For language modeling, to cover the information from the input word for prediction this

can be masked; i.e., substituted by a generic [MASK] token (Devlin et al., 2019).
In the latest years, the NLP community mostly focused on Transformer architec-

tures, as they facilitate scaling the size of both the model and its training data, leading

to more and more powerful computational models (for example, see the evolution of the

GPT, GPT2, and GPT3 language models; Radford et al. 2018, 2019; Brown et al. 2020).

Another important source of advances within the use of deep learning from NLP came

from the practice of building computational models for a task by relying on pre-trained

neural language models (Peters et al., 2018a; Ruder, 2019). The core idea behind this

type of transfer learning is that language models, trained on a generic word prediction

task on large unlabeled text corpora, learn to process an input sequence in a way that can

be relevant also for other linguistic tasks (e.g., coreference resolution). This information

can be transferred to another model by using the internal representations (hidden states)

from the language model as input (instead of the static word embeddings). In this phase,

the language model parameters may remain frozen, or get optimized (i.e., fine-tuned) to

the target task (Peters et al., 2019). This methodology led to numerous advances in NLP

tasks (e.g., Peters et al. 2018a; Devlin et al. 2019) and became the current mainstream

pipeline in model building.

4Exceptions are models that use character or subword embeddings. In this case, the representation that

remains static is that of a character or subword. I do not consider exceptions models that rely on transfer

learning from language models (see Section 2.2.1), and thus use “contextualized embeddings” as input.

As these come from the hidden states of a language model, still the starting point of the processing of the

sequence is at the input layer of the language model, which involves some static embeddings.

21



“output” — 2021/11/30 — 7:00 — page 22 — #38

The success of deep learning methods in NLP led to the emergence of a thriving re-

search area focusing on the internal mechanisms underlying the behavior of deep learn-

ing models (Alishahi et al., 2019; Belinkov and Glass, 2019). This research arises both

from a need to enhance the interpretability of these models, as well as a linguistic in-

terest in the learning capabilities of data-driven models (in particular, language models

that are only exposed to unlabeled corpus data). The internal representations of deep

learning models, as they are, are not directly telling of the information encoded nor the

dynamics causing their behavior. Also, overall performances on generic benchmarks do

not necessarily clarify the type of linguistic knowledge a model acquired. This led to

the development of analysis techniques aimed at uncovering the internal dynamics of

such “black-box” models and assessing their ability to account for specific phenomena.

For the purpose of this thesis, we can distinguish two main families of analysis ap-

proaches. First, one can clarify the workings of deep learning models by looking at the

information encoded in the internal representations. A way of probing this is by means

of auxiliary supervised tasks (alternative terms are diagnostic or probing tasks; Adi et al.

2017; Conneau et al. 2018; Hupkes et al. 2018): One trains a separate, simple machine-

learning model on some task (for instance, part-of-speech tagging) using as input the

states of interest. If successful, we can conclude that the representations contained in-

formation relevant to the task considered. Another way of studying the information

in hidden states is by instead looking at the way these representations organize in the

high-dimensional space (e.g., Saphra and Lopez 2019; Ethayarajh 2019). As an alter-

native analysis method, one can focus on the behavior (i.e., predictions) of a model

on data focusing on a specific phenomenon. This can clarify the knowledge that is

taken into account by the model in its predictions by simply examining its output on

these targeted data. An example of this type of evaluation is the subject-verb agreement

task (Linzen et al., 2016; Gulordava et al., 2018b), where one assesses whether a higher

word probability is assigned to the verb form that agrees in number with the subject, or

to the incorrect alternative (e.g., “The windows of the building are vs. is”). This allows

establishing if the model keeps track of syntactic structure. Other works focused in-

stead on semantico-pragmatic aspects: for instance, Ettinger (2020) and Pedinotti et al.

(2021) looked into the ability of language models to take into account information such

as commonsense reasoning and event knowledge. In my experiments, I will use analysis

techniques both focusing on the information encoded in the internal representations of

a model and on its output behavior.

2.2.2 Ambiguity Resolution in Deep Learning Models

In this subsection, I provide an overview of what we know about the resolution of lin-

guistic ambiguities in deep learning models, on the basis of both their inner structure

and previous work. To guide this discussion I will follow the computational graph of a

deep neural network, sequentially focus on the input, hidden and output layers (from the
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input data to the output predictions; Figure 2.1).

Before moving on to this, let me first introduce an important distinction, which can

have an impact on both the information encoded by a model and on ways in which

we can inspect it. A deep learning model is explicitly trained to resolve ambiguities

when the output of the task corresponds to the analysis of a linguistic sequence. To

give an example, a syntactic parser will derive a representation of the sentence struc-

ture (e.g., dependency graph): its predictions will thus reflect the resolution of syntactic

ambiguities. Analogously, a coreference system will establish chains of mentions refer-

ring to the same entity, thus reporting the predicted referent of ambiguous expressions.

Many of the classic NLP tasks can in fact be considered to involve some kind of am-

biguity resolution (Manning and Schutze, 1999). On the contrary, some models carry

out more “generic” tasks, where interpretations of expressions are not explicitly output,

though they may be implicit in the behavior. Two prominent examples are the tasks of

language modeling and machine translation. Given a processed sequence, the model is

trained to predict a word or a translation equivalent in the target language. The reso-

lution of ambiguities might affect the predictions: e.g., “palm” should be translated in

Italian as “palma” when meaning and as “palmo” when meaning . However, the

model does not get any direct supervision about ambiguity resolution. Nevertheless, it

can learn to implicitly infer both interpretations of expressions and their effect on the

task, as part of training.

Input layer: Word embeddings

In the standard case, the occurrence of a certain word in an input linguistic sequence is

represented by means of a word embedding.5 This word representation is obtained by

optimizing performances in the objective task on training data, consequently abstracting

over a diversity of occurrences of the word. It thus reflects the information that a word

is generally associated with, but, at this stage, does not vary depending on the context.

The representational format of word embeddings has much in common with distri-

butional semantics (Lenci, 2008; Boleda, 2020). Within this framework, words are

represented with fixed-size high-dimensional vectors based on their distribution across

contexts in a text corpus. This is based on the distributional hypothesis (Harris, 1954;

Firth, 1957): the more aligned is the usage of two words, the more similar is the content

they express. One can then encapsulate the distribution of a word in a vectorial repre-

sentation, and, comparing it to that of other words, establish similarity, or relatedness, in

content. In particular, this can be computed in terms of geometric distance (e.g., cosine)

between vectors. As this notion of similarity is a continuous matter, differences among

words are accounted for in a graded way. Neural network models can be used to derive

distributional representations (Mikolov et al., 2013), though the network is typically not

5See Footnote 4 for exceptions.
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deep (i.e., only one hidden layer).

Word embeddings from deep learningmodels, however, have very similar properties

to distributional representations, and, at least in some cases, qualify as such. In particu-

lar, the embeddings from neural language models, as they are learned to predict a word

based on its context, are essentially optimized to reflect distributional patterns.6 Like

distributional semantic representations, word embeddings from deep learning models

have the following properties that are relevant to ambiguity.

• They are static word representations; i.e., they do not change across contexts (ex-

cept as they are optimized during training). They represent information that is

relevant to the lexical – generic and out-of-context – content of a word (Carston,

2012), but cannot, by design, account for the variation in meaning across us-

ages (Erk, 2010; Westera and Boleda, 2019). They can be seen as the starting

point for the process leading to infer the intended interpretation of a word, but it

is not at the input layer yet where lexical disambiguation occurs.

• Due to being static but optimized across contexts, these word representations will

reflect the diversity of usages, and therefore ambiguity, of a word. If a word ap-

pears in the training corpus with multiple interpretations (e.g., “mouse” as or

) and these distinctions are relevant to the task at hand (e.g., word prediction),

this diversity will affect the learned representation. As a result, word embeddings

tend to encode multi-faceted information relevant to different interpretations of

the word (Camacho-Collados and Pilehvar, 2018). Within this thesis, I refer to

this property as underspecification, following the terminology adopted in lin-

guistics (Frisson, 2009; Falkum and Vicente, 2015). Senses are not explicitly en-

coded nor separated in a word embedding (they are “merged” in a unique vector),

but the position in the high-dimensional space can reveal their effects (e.g., the

embedding of “mouse” is close to both “rat” and “cursor”).

• The frequency of a word sense in the training corpus affects the extent to which

that interpretation is represented in a word’s vector: the lexical representation will

reflect that type of usage the more this is dominant in the data (Arora et al., 2018).

That is, distributional representations are, with respect to senses, frequency-biased.

We can thus consider that these word representations encode sense dominance: in-

formation about frequent senses will be more activated by default. This aspect has

some parallel in human processing (Duffy et al., 1988).

6The difference with traditional distributional vectors is that these are learned predicting simple co-

occurrences in a window of words, disregarding word order in a sequence, whereas language models take

into account the word’s position.
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Hidden layers

Independently of the architecture (e.g., RNN/LSTM, transformer), when a word embed-

ding is passed as input to a model, this is combined in the hidden states with information

coming from the other words in the context (Figure 2.1). Hidden states will eventually

affect the output computed by the model; they are therefore optimized to represent infor-

mation that is useful in order to succeed in the objective task. However, as mentioned

earlier, it is not a priori known what this information is, as the model autonomously

learns the aspects of the data to encode and then leverage for its predictions.

In models that resolve ambiguities at the output, we can expect that in the hidden

layers the model attends to information that tears apart the various interpretations of

a word. The model will have to represent occurrences of expressions associated with

different interpretations sufficiently differently in order to enable a successful output

classification. For instance, Aina et al. (2019) provides a visualization of this idea in the

context of a referential task (to classify mentions by the entity they refer to): We show

that hidden states relative to mentions form clusters in the high-dimensional space based

on the entity they refer to. The clusters get further away from each other as the output

layer is approached.

In terms of the type of information encoded in the hidden states, much focus has

been put on the analyses of models trained on generic tasks like language modeling.

Various works reported evidence that after processing a linguistic sequence such hidden

states encode much and diverse information (Adi et al., 2017; Conneau et al., 2018;

Tenney et al., 2019b). This includes both superficial information, like the identity of

the processed words, and information resulting from deeper linguistic processing, like

that relevant to syntactic and semantic parsing. Moreover, using hidden states from

language models as contextualized embeddings to pass as input to a model tends to

lead to substantial improvements across tasks (Peters et al., 2018a; Devlin et al., 2019).

This supports the idea that these representations encode information that is of sufficient

quality, and at the same time general enough, to facilitate various NLP tasks.

The information in the hidden states arises bymeans of a process of contextualization

of the lexical information passed as input (the word embedding). This contextualization

may encompass word-level disambiguation: to identify the contextual content of the

word given as current input (e.g., its part of speech, sense, or referent). But also compo-

sition: putting together the contribution of different words in a sequence to then represent

the contextual analysis of a larger expression. Previous research provided evidence that

hidden states reflect the context-dependent content of both words and larger expressions,

at least to some extent. In the following, I will summarize the main findings, focusing

on the types of ambiguity I study in this thesis.

When it comes to lexical ambiguities, studies focused on whether hidden states from

languagemodels can distinguish occurrences of different senses (Pilehvar and Camacho-

Collados, 2019; Reif et al., 2019; Wiedemann et al., 2019), as well as accounting for

25



“output” — 2021/11/30 — 7:00 — page 26 — #42

graded differences across usages (Garí Soler et al., 2019a; Nair et al., 2020; Trott and

Bergen, 2021). Other works focused on the effects of composition on word mean-

ing (Shwartz and Dagan, 2019; Yu and Ettinger, 2020). Overall, there is evidence that,

in spite of some margin for improvement, the hidden states from language models en-

code context-sensitive word information and account well for the variation of a word’s

meaning across contexts. Consequently, these representations have been used as proxies

for a word’s contextual meaning (Li and Joanisse, 2021) or the degree of lexical ambigu-

ity (Pimentel et al., 2020a) for the purpose of linguistic studies. Regarding the resolution

of referential ambiguities, a few works provided evidence that the information in hid-

den states is predictive of anaphoric relations of pronouns (Peters et al., 2018b; Jumelet

et al., 2019; Sorodoc et al., 2020; Davis and van Schijndel, 2020). Current evidence indi-

cates that language models track well grammatical information involved in coreference

(e.g., gender agreement), and also, to some degree, distinguish mentions of different

entities. Finally, much work focused on the encoding of syntactic analyses in language

models’ internal representations. It was shown that the hidden states can be predictive of

sentence structure information such as the subject’s number (Giulianelli et al., 2018), the

maximum depth of a parse tree (Conneau et al., 2018), the part of speech of a word (Ten-

ney et al., 2019a) or the distance in the parse between two words (Hewitt and Manning,

2019). However, these works do not specifically focus on cases where multiple syntac-

tic parses are either locally or globally possible, and therefore how a language model

resolves ambiguities.

Output layer

When reaching the output layer, a deep learning model typically outputs a probability

distribution over some classes, based on which a prediction is made. As I anticipated

earlier, such prediction can itself directly reveal the resolution of an ambiguity. It is then

possible to assess whether themodel took the correct interpretation by directly inspecting

the output on the task. For instance, if a part-of-speech tagger processes a sentence con-

taining the word “show”, we can see if this was labeled as noun or verb. Deep learning

led to numerous advances across NLP tasks, thus including improvements in predicting

correct interpretations of expressions. Transfer learning from language models led to

even more progress on top of that. To give an example, Lee et al. (2017) introduced

a successful deep learning architecture for coreference resolution, which, unlike previ-

ous models, did not require a preliminary feature engineering step. Passing representa-

tions from language models as input to an architecture of this kind led to further advan-

tages (Lee et al., 2018; Joshi et al., 2019, 2020). Nevertheless, ambiguities can still pose

some challenges to NLP systems, as shown by evaluations on challenge sets – i.e., data

focusing on harder instances of a task. Some examples are the dataset by Elkahky et al.

(2018) on part-of-speech-tagging of lexically ambiguous words (Noun/Verb), or that

by Webster et al. (2018) on the coreference resolution of ambiguous pronouns.
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When we focus on the output of models trained on generic tasks such as language

modeling, it is instead more difficult to think of ways in which we can evaluate their

ambiguity resolution skills. A word prediction may depend on the resolution of an am-

biguity: e.g., After processing “The TV shows”, the probability of “are” will be affected

depending on whether “shows” is interpreted as a verb or a noun. However, given the

countless ways disambiguation could occur in terms of word predictions, it is not easy

to transfer this intuition in a concrete task to systematically evaluate language models.

Still, a few works proposed analyses of language models that are relevant to ambi-

guity resolution by inspecting its output predictions, besides its internal representations.

An example is the deployment of language models on sentences with temporary syn-

tactic ambiguities (e.g., the example of (13)), and, akin to studies on human process-

ing, looking for evidence of garden-path effects (Futrell et al., 2018, 2019). In particu-

lar, a high surprisal (i.e., negative log-probability) at the disambiguating point suggests

that the model preferred the alternative interpretation of the input. This was interpreted

as evidence that language models maintain an internal representation of the syntactic

state of an unfolding sentence, which is incrementally updated. Another line of work

tested whether language models exhibit human-like referential expectations (Davis and

van Schijndel, 2020; Upadhye et al., 2020), modulated by verb semantics (e.g., implicit

causality verbs) and rhetorical relations. These works compared the probability of the

pronouns “he” and “she” in contexts like (17) but with entities of different gender, al-

lowing to establish which entity the model expects to be mentioned. This is not directly

an evaluation of ambiguity resolution, as it does not test how the model interpreted a

referring expression. It however assesses whether the language model is sensitive to

discourse factors that can impact ambiguity resolution.

Overall, both the architecture of deep learning models and previous analyses sug-

gest that these have some degree of the capacity to handle ambiguities: in particular, to

encode and use both the expression-specific and the context-sensitive information that

is necessary to infer the correct readings. Nevertheless, there are open questions about

their degree of success and underlying dynamics in resolving ambiguities. Chapters 3

and 5 study the way neural language models process lexical and syntactic ambiguities,

studying, in one case, the information encoded in their hidden states and, in the other,

their output behavior. But there are other ways in which deep learning models can be

relevant to the study of ambiguity, besides uncovering their way of dealing with the

phenomenon. Accounts in linguistics and cognitive science posit comprehension and

production strategies connected to ambiguity. Testing these hypotheses on a large scale

can be facilitated by the use of reliable computational estimates, substituting the elici-

tation of human judgments. Deep learning can help us in this, by computing scores or

high-dimensional representations that can act as a proxy for, e.g., contextual expecta-

tions, or the lexicon. This is the approach I take in the chapters 4 and 6.
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Chapter 3

LEXICAL AMBIGUITY

RESOLUTION IN NEURAL

LANGUAGE MODELS

In this chapter, I investigate how lexical ambiguities are resolved in neural language

models. Lexical ambiguity is broadly defined as the phenomenon where a word type

is associated with multiple readings (Cruse, 1986; Small et al., 2013; Rodd, 2018). To

exemplify this multi-faceted phenomenon, we can consider the highly ambiguous word

“match” in English, which is both syntactically and semantically ambiguous, and en-

compasses senses with more or less conceptual overlap:

(18) a) Those trousers match your shirt. Verb

b) Avocado and eggs are a great match. Noun

c) They stopped dating because they were not a good match. Noun

d) The national anthem was played before the football match. Noun

e) We need a match to light the candle. Noun

Lexical ambiguity affects virtually all words in a lexicon, at least to some degree (Cruse,

1986). Yet, in the vast majority of cases, it does not impair human communication:

the correct interpretation can be smoothly identified in context. An artificial system

processing language also needs to deal with lexical ambiguities: they are pervasive,

and their resolution has consequences on both the syntactic structure and meaning of a

text (as shown by the different contributions of “match” in (18)).

In this chapter, I study how deep learning models process lexical ambiguities. In

particular, I develop a methodology to quantify the retention of underspecified lexical

information in a model’s internal activations, contrasted with the representation of the

contextually relevant interpretation. This analysis of deep learning models is related to

psycholinguistic research on the activation of information relevant to different senses
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during human processing (word meaning access) and its relation to ambiguity resolu-

tion (Frisson, 2009; Vitello and Rodd, 2015).

I focus the analysis on neural languagemodels (LMs), deep learning models that are

trained to predict the word that fills a certain slot in a linguistic sequence (e.g., in (18a),

to predict “shirt” based on “Those trousers match your...”). Because of their generic

objective, LMs allow to observe a strategy to the resolution of lexical ambiguity which

emerges only from exposure to word usages in a corpus, without explicit signal nor

built-in mechanisms to handle the process. This offers a comparison to human behavior

and insights into the type of mechanisms that make word interpretation possible. Fur-

thermore, the study informs us about the context-sensitivity of LMs to the variation of a

word’s meaning, and thus their ability to successfully cope with ambiguities. Method-

ologically, the study reported in this chapter fits into the research branch analyzing the

behavior and underlying dynamics of neural network models of language (Belinkov and

Glass, 2019), in particular using supervised auxiliary tasks.

3.1 Approach and Research Questions

In the last years, LMs have received much attention in NLP due to the advantages they

offer when used for transfer learning to other tasks (Peters et al., 2018a, 2019; Devlin

et al., 2019). The improvements across tasks that this technique introduces are often

traced back to the context-sensitivity of the hidden states of LMs, which can be used as

contextualized embeddings of the input words (e.g., Peters et al. 2018a) – as opposed

to the use of static word embeddings (Mikolov et al., 2013). But what exactly do these

representations encode? Indeed, another reason why LMs have been much in the spot-

light is to uncover the type of linguistic knowledge that these models acquire. On the

one hand, the information that LMs encode can justify the advantages of their use for

transfer learning. On the other, as LMs are trained simply from unlabeled text corpora,

we can observe what kind of linguistic knowledge is autonomously acquired without

the need for explicit supervision, and what processing strategies this gives rise to. For

instance, it was shown that LMs track syntax to a large extent (see Linzen and Baroni

(2021) for an overview) but also aspects of semantics and pragmatics (e.g., Shwartz and

Dagan 2019; Ettinger 2020).

Precisely because of the claim that hidden states fromLMs offer contextualized word

representations, various works looked into the extent to which they account for the con-

textual interpretation of a word (see Loureiro et al. 2021 for an overview). This was

studied both at the level of distinguishing occurrences of different senses (e.g., Pilehvar

and Camacho-Collados 2019; Reif et al. 2019) and accounting for graded differences

among word usages (e.g., Ethayarajh 2019; Garí Soler et al. 2019b). Overall, these

works show that the variation between a word’s interpretation across contexts correlates

with the geometric distance of the hidden states in the high-dimensional space: the more
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distant the content conveyed in different occurrences, the further the hidden states tend

to be. But how is this contextualization achieved by the LM? And what type of word

information is encoded in the hidden states? This chapter aims to shed light on these

aspects.

As described in Section 2.2.2, in a LM the processing of a word starts with being in-

putted a static fixed-sized vector: the word embedding. This representation is learned

during training while optimizing word predictions across the training corpus. We can

think of the word embedding as the word information initially activated by a LM dur-

ing processing. Akin to a distributional semantic representation (Lenci, 2008; Boleda,

2020), the word embedding represents the lexical information about the word that the

model has acquired: This is static – it does not change across contexts (after training)

– and underspecified – it represents potentially multi-faceted content associated with

the word (e.g., “match” as or ), with a bias towards the most frequently attested

senses. The position in the high-dimensional space of the word embedding can reveal the

effects of the different senses: e.g., the embedding of “match” can be close to both “fire”

and “sport”. The idea that, during interpretation, underspecified and frequency-biased

information is initially activated has, with some degree of simplification, a parallel with

what is found in the case of humans (Duffy et al., 1988; Rayner and Frazier, 1989).

In the hidden states, this lexical information is “put in context”: the word embedding

is combined with representations from other tokens. Though neural language models are

not explicitly trained to resolve ambiguities, detecting the context-specific contribution

of a word may aid the objective task (word prediction). It is therefore plausible that

the LM learns to resolve the ambiguity in the input word embedding, so that the out-

put predictions can depend on the correct interpretation of the word. To achieve this,

the model would need to infer and encode the information that is relevant to the cor-

rect interpretation in its internal representations (the hidden states), jointly with other

information deemed useful for the output prediction. Borrowing a term from lexical

semantics, this ambiguity resolution process in the hidden layers can be seen as one of

modulation (Cruse, 1986): The multi-faceted content in a lexical entry – in this case, of

a word embedding – is adjusted to circumscribe the contextually-relevant contribution

of a word.1 In this chapter, I investigate the nature of this modulation process in LMs:

the extent to which it leads to encoding contextual word information, and whether this

occurs with some degree of retention of the underspecified lexical information that was

initially passed as input.

We assess the presence of lexical and contextual word information not only in hidden

states that process a word as input – those that have to resolve the lexical ambiguity –

but also, as a contrast, those that instead need to predict the word at the output (without

1In Lexical Semantics, meaning modulation is typically used to refer to polysemy resolution, and

therefore distinguishing related senses of a word. By contrast, we here collapse all cases of ambiguity

resolution, including over unrelated senses (e.g., homonymy) into the same mechanism.
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having observed it; e.g., in (18) predicting a word to fill the slot of “match” based on

“Avocado and eggs are a great...”). To succeed at the word prediction, the model needs

to form expectations about the information that is more likely to be expressed: While

in (18e) it should expect things you can use to light a candle (“match” included), it should

not do so in (18b). We analyze the contextual expectations formed in hidden states of

LMs, in order to isolate and evaluate the contribution of the context alone (without access

to the lexical information as input).

For this analysis, we use supervised auxiliary tasks (Adi et al., 2017; Conneau et al.,

2018; Hupkes et al., 2018) to probe the information encoded in the internal activations

of a model. These methods are used under the assumption that if some information

is present in the representation of a deep learning model (e.g., in a hidden state) then

a (simple) diagnostic model should learn to extract this information from the analyzed

representation (e.g., if a word representation distinguishes the part-of-speech, then one

can predict it from this representation). A classification task is typically used as diagnos-

tics, while we instead focus on a representation learning objective. We train a mapping

from internal representations from LMs to word representations as a way to extract –

and then evaluate – the word information encoded in the hidden states of a LM.

With this methodology, we address the following research questions about how lex-

ical ambiguities are processed across the hidden layers of a LM:

RQ1. When a word is inputted for processing to a LM, to which extent is the lexical

information in the word embedding retained across hidden layers?

To resolve the ambiguity of a word, the LM should get to represent information that is

relevant to the contextually appropriate interpretation in its hidden layers. This, how-

ever, does not necessarily exclude that some degree of retention of the original in-

putted lexical information could occur. In humans, for instance, there is evidence that

underspecified information relevant to different senses of a word is initially activated

during word meaning access, though not maintained long once an interpretation is se-

lected (Vitello and Rodd, 2015). In the case of a LM, I consider different two scenarios

to be possible: Interpreting a word may lead to suppressing (deactivating) the infor-

mation that is not relevant to the selected interpretation, and only what is relevant is

passed to the next steps of processing (i.e., layers). Alternatively, the LM may have a

way of selecting and representing the interpretation of a word that however proceeds

independently from some degree of retention of the inputted lexical information.

RQ2. How good is the representation of contextual word information in the LM? What

differences do we find across hidden layers?

The amount of information relevant to the contextual interpretation of a word we would

find in the hidden layers may depend on several factors. First and foremost, it will be

a signal of the level of context-sensitivity of the LMs, which we aim to assess. We can
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expect models that are bigger and trained on more data to be superior in this. Moving

across hidden layers (from the input to output), we could find a better or worse reflec-

tion of contextual word information. This may depend on the architecture and the way

output predictions are computed in the LM. For instance, a deep model may exhibit a

progressive contextualization of word information, distributing and improving the pro-

cess across layers moving towards the output. But also, if at the output a word other than

the input (e.g., the next word) is predicted, it is possible that information about the input

word actually decays towards the output to focus instead on theword to predict (seeVoita

et al. 2019 for an analogous argument).

RQ3. How are the lexical and contextual word information represented in a hidden layer

that, instead of processing a word, predicts it at the output?

Hidden states used to predict a word at the output do not observe the target word but

only its linguistic context. Therefore, looking at the word information in these states

means looking into what can be determined based on context only, without access to

lexical information; else put, the contextual expectations of the model relative to that

slot in the text. We expect these hidden states to contain word information too, though

of lower quality to information obtained after processing the word, due to the uncertainty

over the word to predict. As this word information is derived from context only, it will

be context-sensitive by design, and, in contrast to states that process the word as input,

should not exhibit any trace of the underspecification in the word embedding. Again,

better LMs are likely to predict better word information, as this depends on the ability

to predict words in the first place (the objective task).

3.2 Hidden States from Language Models

3.2.1 Language Models

In this chapter, we study the behavior of two LMs. Both are bidirectional, in that a word

is predicted based on its surrounding context (previous and following). This choice

is motivated by the following reasons: First, the data which we use for the analyses

were obtained through annotations where subjects could access the surrounding context

of a word. We thus give a LM the same amount of context that the humans received

for the task. Second, though humans process linguistic sequences incrementally, cues

to a word’s interpretation may appear both in the previous and following context of a

word (Foraker and Murphy, 2012). We focus on the representations obtained once all

information available for disambiguation is given, leaving aside the incrementality of

the interpretation process. We however look at this more directly in Chapter 5, when

focusing on the processing of syntactic ambiguities with unidirectional LMs. Though

the two LMs analyzed share the property of being bidirectional, they differ across a

notable set of dimensions.
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biLSTM. This LM consists of a bidirectional LSTM (Schuster and Paliwal, 1997;

Hochreiter and Schmidhuber, 1997) with 3 hidden layers. The architecture is schemat-

ically represented in Figure 3.1a. Each input word at timestep t is represented through
its word embedding (size 300); this is fed to both a forward and a backward 3-layers

LSTMs (hidden size 600/600/300), which process the sequence left-to-right and right-

to-left, respectively. To predict the word at t, we obtain output weights by summing
the last hidden states of the forward and backward LSTMs at timesteps t− 1 and t+ 1,
respectively, and applying a linear transformation followed by softmax (Eq. 3.1, where

L is the number of hidden layers). This ensures that a word is predicted jointly using

both its left and right context, but without access to the word itself. In this sense, the

architecture resembles, for instance, that of the context2vec model by Melamud et al.

(2016) but not the biLSTM used for ELMo (Peters et al., 2018a), instead optimized to

predict the word from the two sides of the context separately.

P (yt) = softmax(W o (
−→
h L

t−1 +
←−
h L

t+1)) (3.1)

The biLSTM was trained on a 150M tokens English corpus, consisting of the con-

catenation of English text data from a Wikipedia dump2, the British National Corpus

(Leech, 1992), and the UkWaC corpus (Ferraresi et al., 2008). The model has a vocabu-

lary of 50K word types. More details about the training of the biLSTM language model

are specified in Appendix A.1.

BERT. BERT (Devlin et al., 2019) is a transformer (Vaswani et al., 2017) encoder,

using bidirectional self-attention (Figure 3.1b) It is trained using a masked language

modeling objective:3 At training, a sample of the input tokens is chosen to be predicted at

the output. The input token is 1) 80% of the time substituted by the special token [MASK],
2) 10% of the time substituted by a random token, 3) 10% of the time left unchanged.

The identity of the token is then predicted at the output in correspondence to its position

at the input; such prediction can be computed both when the token is masked, and –

more easily – when it is given. The vector fed as input to the first hidden layer is the

sum of the input token embedding with position and segment embeddings; we refer to

this as h0, as it corresponds to a first layer of processing of the token embedding.4 This

representation is then passed through a set of hidden layers (transformer blocks), where

2From 2018/01/03, https://dumps.wikimedia.org/enwiki/
3A next-sentence prediction objective is also employed: given two chunks of texts as input, BERT has

to predict whether one is the continuation is the other in correspondence of a special token [CLS]. This is
to enhance the quality of transfer learning to text classification tasks. We do not focus on this objective

as not directly relevant to our analyses (we deploy the model on a single chunk of text).
4Position embeddings are passed in order to inform the model about the token’s position in the se-

quence (Vaswani et al., 2017). Segment embeddings are used to signal that a token belongs to a certain

chunk of text: this plays a role during training for the Next Sentence Objective, but not in the way we

deploy the model, where all tokens belong to the same chunk.
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bidirectional self-attention (attending over other tokens, both at the left and right of the

current one) is computed multiple times (number of heads); the resulting representations

are concatenated and passed through a feedforward network to compute the output of

the layer. The probability scores relative to the word at position t are computed, given
the last hidden state hLt , by first applying a non-linear transformation, then a linear one

whose weight matrix is the transpose of the input word matrix (W T
i ; i.e., the weights of

the input and output matrices are shared or tied; Inan et al. 2017; Press and Wolf 2017).

ut = geLU(hLt Wu + bu) (3.2)

ot = softmax(utW
T
i + bo) (3.3)

We employ the case-preserving version of BERT-base,5 trained on a 3.3B tokens

English corpus, made of the BooksCorpus and English Wikipedia. The model has 12

hidden layers with 12 attention heads, and both the hidden and embedding sizes are set

to 768 units. BERT employs WordPiece token embeddings (Wu et al., 2016) with a

vocabulary of 30K types comprising both full words and subwords. This implies that

certain word type may not be represented through a word embedding, but split into more

than one subword components, each processed as a separate token with their respective

embeddings (e.g., “playful”→ “play” + “##ful”). For simplicity, we restrict our analysis

to word types that are not split into subwords in BERT, and are thus represented by a

unique token embedding.

3.2.2 Processing and Predictive Hidden States

We analyze the internal activations in the hidden layers of a LM resulting from being

passed a certain word as input. We refer to these as processing states, as they reflect

how the LM has processed the target word. We contrast these representations with the

internal activations used to instead predict a word as output – the predictive states.

These are obtained without access to the target word but can be expected to reflect the

information accumulated about it to succeed in the prediction.

The way these states are obtained depends on the architecture of the model, and the

way word predictions are computed. This is visually represented in Figure 3.1. In the

biLSTM, relative to a word at position t and hidden layer i, we consider as processing
state the sum of the outputs of layer i from each unidirectional LSTM at t. For predictive
states, we instead consider the states at the adjacent positions.

hiproc :=
−→
h i

t +
←−
h i

t (3.4)

hipred :=
−→
h i

t−1 +
←−
h i

t+1 (3.5)

5Through the Transformers library.
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(a) biLSTM

 

(b) BERT

Figure 3.1: Schematic representation of the architecture of the biLSTM and BERT lan-

guage models, highlighting processing and predictive hidden states.
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In BERT, both processing and predictive states are the output of the hidden layer i
relative to the position of the target word. What changes between the way the two types

of states are obtained is only the input: For processing states the word is passed as input,

therefore processing its embedding. For predictive states, the word is substituted by the

[MASK] token in order to conceal its identity.

3.3 Methods

To answer our research questions, we require a methodology to inspect the word infor-

mation present in a hidden state. We contrast two types of word information:

• Lexical information: generic (out-of-context) information associatedwith aword.

For the LMs, this is encoded in the word embedding. We can think of this infor-

mation as the interpretational space of the word that the LM initially considers,

as a word embedding tends to reflect multiple senses (e.g., for “match” it may be

close to “game” and “fire”).

• Contextual information: the contextual interpretation of a word (output of a suc-

cessful ambiguity resolution). For the purpose of this study, we think of this as a

vector in the same space of the word embeddings. Contrarily to lexical informa-

tion (the word embedding), contextual information should only reflect the correct

interpretation and not multiple senses at once (e.g., for “match” as it is close

to “game” but not to “fire”).

We aim to quantify the lexical and contextual information in processing and predic-

tive states. We cast this as the probing tasks of extracting and evaluating representations

of the lexical and contextual information, respectively, from hidden states. To do so, we

learn transformations – which we refer to as diagnostic models (Hupkes et al., 2018)–

that extract one or the other from hidden states. We then take the resulting representa-

tions to be telling of the word information encoded in the hidden states. We talk about

“extraction” of word information from hidden states as these contain more information

than that relative to the word to process or to predict; for instance, about the sentence

structure (Hewitt and Manning, 2019; Tenney et al., 2019a) or other words in the con-

text (Klafka and Ettinger, 2020). Through the diagnostic models, we individuate the

information of interest and map it to the space of word embeddings.

Looking at processing states can shed light on ambiguity resolution in LMs. First,

the amount of contextual information will inform us about the context-sensitivity of the

model and its changes across layers (RQ2). Then, the comparison between lexical and

contextual information will clarify the relationship between ambiguity resolution and

retention of lexical information (RQ1). More contextual than lexical information would
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indicate that the underspecified information from the input word embedding was “re-

duced” in the hidden layers to the amount that is relevant to the context. The opposite

case would instead suggest that the retention of lexical information proceeds indepen-

dently of the contextualization process. Predictive states should contain generally less

word information than processing states, due to the uncertainty over the target word. Yet,

as they predict a word based on its context, they should accumulate some contextually

relevant word information approaching the output (RQ3).

3.3.1 Representing Lexical and Contextual Information

While we have representations of the lexical information the LM considers (the word

embedding), we do not have ground-truth representations of the contextual information

expressed by a word (i.e., its interpretation). We solve this by using lexical substitu-

tion annotations (McCarthy and Navigli 2009; henceforth, referred to as LexSub) as a

way to build proxies of the interpretation of a word. LexSub annotations are a set of

one-word paraphrases relative to a target word occurrence in a context (see Table 3.1

for examples). The substitutes reflect how ambiguities have been resolved by humans,

including both graded meaning nuances and distinctions among syntactic categories.

These interpretation judgments can be collected without assuming a pre-defined set of

sense labels as done, for instance, in the case of word sense disambiguation (Navigli,

2009). This is an appealing aspect considering the challenge of determining a sense on-

tology that is satisfying both in terms of both coverage and level of granularity (Kremer

et al., 2014). Concretely, for our experiments, we use the ConceptInContext (CoInCo)

corpus by Kremer et al., 2014 where occurrences of words in context (max. 3 sentences)

have been annotated with substitutes by multiple raters. Substitutes are provided for

15.6K word occurrences (7.1K nouns, 4.6K verbs, 2.5K adjectives, 1.4K adverbs) from

two domains of the MASC corpus (Ide et al., 2010), namely news and fiction texts.

LexSub data are often used as evaluation benchmark for contextual representation

of words, in tasks like substitutes retrieval, or ranking of candidates (e.g., McCarthy and

Navigli 2007;Melamud et al. 2016; Garí Soler et al. 2019b). One aims to a representation

whose similarity to the embeddings of other words reflect the paraphrases; that is, it is

the closest to words that could express the same content. As mentioned earlier, to be

close to words related to the relevant interpretation is a desideratum for a representation

of contextual word information. We thus build a proxy for contextual information using

annotations of substitutes, enforcing that they satisfy this property.

To be precise, we represent the lexical information of a word l through its embed-
ding, referred to as l. For contextual word information, we define an operation that

“merges” the content of the word embedding with that of the given substitutes. This

is inspired by previous work that proposed simple vector operations to combine word

representations (Mitchell and Lapata, 2010; Thater et al., 2011, a.o.). We represent the
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contextual information of a word c as follows:

c :=

∑
i∈S∪{l} i ni + α∑
i∈S∪{l} ni + α

(3.6)

S is the set of substitutes of the word, i is the word embedding of the substitute i, α is a

constant smoothing factor (set to 2), and ni is for a substitute the number of annotators

that produced it, and for the target word the mean of these values. We set α based on

the parameter that would create representations that better retrieve and rank substitutes

based on evaluation of validation data (see next section for the evaluation scores).6 In

intuitive terms, what this averaging procedure does is to highlight the information shared

by the word and its substitutes at the expense of word information that is lexically but not

contextually relevant. This is operationalized by increasing or decreasing values with

respect to certain dimensions of the word vectors. We focus on the common core among

these words, pointing to what makes them good substitutes in this context.

As substitutes will depend on the interpretation of the word, the resulting represen-

tation of the contextual information will vary depending on this. For instance, if “show”

is used with substitutes like “exhibit”, “demonstrate” etc., c will move close to words

related to the verb reading; by contrast, if the substitutes are “series”, “program” etc., c

will be close to words related to entertainment, television, etc.

3.3.2 Auxiliary Tasks

We define the following auxiliary probing tasks: a diagnostic model – a machine learn-

ing model trained merely for the purpose of analyzing another one – is trained to retrieve

a word representation out of a LM’s hidden state, by learning to match ground-truth rep-

resentations. To obtain the inputs and outputs of our task, we deploy a LM on text

passages from CoInCo, and for each target word annotated with substitutes we extract

its processing and predictive hidden states, as well as the representations l and c. Given

these two representations, we define two objective tasks, namely:

• lex: to retrieve lexical information; that is, the representation l;

• ctxt: to retrieve the contextual word information; that is, the representation c;

Previous works (Adi et al., 2017; Conneau et al., 2018; Voita et al., 2019) looked at the

extent hidden states trace a word input, by looking at whether the identity of the word

is retrievable. The lex task is related to these approaches but differs from them in that

we ask the diagnostic model to retrieve the high-dimensional representation of a word

rather than its index in the vocabulary. In the case of processing states, we essentially

ask the diagnostic model to reconstruct the input representation starting from which the

6With α = 2, Recall-10: 0.94; GAP: 0.91.
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hidden state was computed, akin to the role of a decoder in an auto-encoder. While the

target for lexwill be the same for every occurrence of the word – the word embedding, it

will instead change for ctxt, which, as described in the previous subsection, will depend

on the contextual paraphrases of the word. Thus, to solve the ctxt task the hidden states

need some degree of context-sensitivity.

We train diagnostic models D to carry out lex or ctxt, respectively. Each model is

a non-linear transformation, optimized to maximize its promixity – cosine – between its

output and a target representation r:

D(h) = tanh (hW + b) (3.7)

loss := 1− cosine(D(h), r) (3.8)

What the target representation r is depends on the objective task: To carry out lex Dl

uses the lexical representation l. To carry out ctxt, Dc uses the contextual representa-

tion c. We abide by the common practice of keeping the diagnostic model simple and

small in parameter size. This is under the assumption that limiting the complexity of

the diagnostic model constrains that of the task that the model can learn. It cannot solve

the task from scratch or memorize regularities in the data, but only identify the relevant

information that is already encoded in the input representation. To give an example with

the ctxt task, the diagnostic model extracts information relevant to the interpretation of

the word – c – from a hidden state as the LM got to encode it, and not by computing

the interpretation itself on the basis of information in the hidden state. As I discuss in

Section 3.5, this assumption can however be questioned.

We train distinct diagnostic models for each objective task (lex and ctxt) and class

of input representations (for each hidden layer; processing and predictive, separately).7

The CoInCo corpus, with LexSub annotations, comes with a split for development and

testing. We further split the development set into training and validation (train/dev:

80/20%). This leads to 7.9K/2K/5.2K word occurrences as train/dev/test data.8

3.3.3 Evaluation

For each datapoint, we compute the cosine similarity of D(h) to the context-invariant
and contextual word representations, respectively, depending on the task:

cos-l := cosine(Dl(h), l) (3.9)

cos-c := cosine(Dc(h), c) (3.10)

7For each diagnostic model, we optimize its hyperparameters based on validation loss. Details in

Appendix A.2.
8For each LM, only datapoints whose target word and at least one substitute are in the model’s vocab-

ulary are covered; for BERT, words that are split into subwords are considered not covered. This yields

a coverage of ≈ 90% for BERT, and ≈ 95% for the biLSTM.
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This focuses on the absolute similarity between the extracted representation and the gold

one, and corresponds to the metric maximized during training.

For the evaluation on the test data, we also deploy each representation extracted from

a hidden state in a substitute retrieval and ranking task, aimed at testing its similarity

relations in the space of words. This evaluates the extent to which the representation ac-

counts for the contextual interpretation of the word, as reflected by the set of substitutes

S provided by annotators. We follow standard practices for evaluation on the LexSub

task. For retrieval, we consider the top 10 lemmas in the cosine nearest-neighbors of

D(h)i as proposed substitutes Ŝ,9 and calculate recall out-of-ten (McCarthy and Nav-

igli, 2007):

Recall-10 :=

∑
i∈Ŝ ni∑
j∈S nj

(3.11)

weighting each retrieved substitute i by the number of annotators that produced it –

ni. In the ranking task, all substitutes of a given word across the full LexSub dataset

are pooled and considered as the word-specific set of candidate substitutes. The gold

ranking for a word occurrence will be given by the descending order of frequency in the

annotation (for each candidate i, ni). A predicted ranking is obtained ordering candidate

substituted by descending order of cosine similarity to the evaluated representation. The

resulting ranking R̂ is evaluated against the gold one R through generalized average

precision (Thater et al., 2009):

GAP :=

∑|R̂|
i=0 I(i) pi∑|R|
j=0 I(j)gi

(3.12)

I(i) is 1 if ni > 0 else 0, pi and gi are the positions of word i in the predicted and gold
ranking, respectively – R̂ andR. Contrarily to recall, this metric does not require that the
representation is among all words the closest to the substitutes, but just that it is closer

to these than non-substitutes candidates, rewarding proximity to substitutes produced by

more annotators. Both Recall-10 and GAP are sensitive to the relative order in similarity

relations to words but, contrarily to cosine scores, not to their absolute magnitude.

We compare the results to a non-contextual baseline, namely the lexical representa-

tion l itself (the word embedding). It has trivially a cos-l of 1, but when evaluated in cos-c

or with LexSub scores, it measures howmuch the contextual interpretation of a word can

already be modeled by its embedding alone, without appeal to a contextualization. The

content of a word’s embedding tends to reflect its distribution over senses (Arora et al.,

2018): the most frequent senses are likely strongly represented in the word embedding,

9We consider the full vocabulary in the ranking, with exception of non-word characters (excluding

subwords, punctuation, numbers and special tokens). We use the Spacy lemmatizer to identify the top

lemmas.
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thus already accounting for many occurrences of the word (Gale et al., 1992). We can

thus expect this baseline to be rather competitive in practice. For LexSub evaluation

with BERT, we also report the results obtained using the LM probability scores relative

to the target word l (Eq. 3.3). In this case, we rank words not by similarity relations
but by their probability score. P (l)proc is the distribution when the word is not masked,
vice-versa for P (l)pred. This baseline offers a non-supervised evaluation of the word

information the LM has once gone through all the layers (i.e., at the output), which we

can compare to that extracted with diagnostic models.

3.4 Results

3.4.1 Word Information in Processing States

In Figure 3.2, I report the evaluation results on the test data of CoInCo for processing

states from the biLSTM and BERT, respectively. We separately consider the represen-

tations extracted using diagnostic models trained on the lex and ctxt tasks, and report

the average across the dataset for Cos (to l or c depending on the objective task), GAP

and Recall-10. In Table 3.1 I report some examples of substitutes (closest 10 lemmas)

for BERT representations.

Cosine. The cosine score was the metric maximized during training, and reflect the

extent to which the diagnostic model could extract a representation matching the target

one (l or c depending on the task – lex and ctxt respectively). From both LMs and tasks,

word representations are retrievable with precision – high cosine (in all cases D(h) >
.6; in the case of the ctxt task, above the word embedding baseline). This speaks to 1) in

the lex task, the retention of lexical information, and 2) in the ctxt task, the sensitivity

to the correct interpretation of a word (i.e., ambiguity resolution). These results suggest

that contextualizing the input information does not necessarily entail that only the rele-

vant information is carried over in the hidden states: both lexical and contextual word

information seem to be present.

For both LMs and tasks, cosine scores decrease moving towards the output (from

the first to the last layers). They do so much more drastically in the case of lexical in-

formation. The seeming loss of lexical information could be explained by a progressive

modulation of its information: the lexical information is “reduced” to highlight only the

contextually relevant information. Indeed in BERT, from around layer 5, we find better

retrieval of the contextual representation c than the lexical one l (Cos − c > Cos − l).

However, the fact that cosine scores also decrease moving towards the output in the

ctxt task (Cos− c), albeit more smoothly, suggest that contextualization may not alone

explain why the cosine goes down across layers.
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Figure 3.2: Cos, GAP andRecall-10 scores on test data for representations extractedwith

the lex and ctxt tasks (Dl andDc), respectively, from the biLSTM and BERT processing

states. Cos is measured to l or c depending on the objective task; in the case of the word

embedding baseline (l), we compute the cosine to c.
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We consider two explanations, whose impact the next analyses should allow us to

disentangle. First, we posit that the negative tendency of cosine towards the output might

be due to the objective task, analogously to what was observed by Voita et al. (2019).

For instance, causal language modeling (predict the next word) leads to gradually lose

focus on the current word, while masked language modeling (predict the word at the cur-

rent position) leads to stronger retention of input information. In the biLSTM, the latest

layers are used to predict a word other than that at the input: it may be beneficial to lose

the focus on the current word, as the LM encodes other information that is relevant to

the prediction. The same, however, does not apply to BERT, where words are predicted

at the output in correspondence to their position at the input (Figure 3.1b). Still, it is

possible that, through the layers, as the states account for other information (e.g., neigh-

boring words, syntax, coreference; Tenney et al. 2019a; Klafka and Ettinger 2020), the

information about the input word is reduced or at least compressed, making it harder to

reconstruct for the diagnostic model. I refer to this hypothesis as H1: we extract less

accurate word information towards the output because this decays across the layers.

Second, later layers are the result of a more complex transformation of the input (they

pass through more layers of computation). Learning to extract a representation that

is in the subspace of the input is a harder task, considering equal resources (data and

parameters of the diagnostic model). For instance, in BERT if we look at the average

cosine between processing hidden states (not transformed by the diagnostic model) and

l or c, these decrease dramatically across layers, thus increasing the cosine margin that

the diagnostic model needs to recuperate during training.10 I refer to this hypothesis as

H2: we find less accurate word information because it is intrinsically harder to extract.

The LexSub evaluation can help us not only to confirm results regarding the presence

of lexical and contextual information, but also potential effects of the hypotheses which

we put forward above. This is because they assess how well representations account

for interpretations of words independently of the absolute magnitude of cosine scores,

which may be decreasing across layers because of the effect of H2 and not only due to

decay of word information (H1).

LexSub. I focus first on the general results (and not the patterns across layers). When

comparing representations extracted through the lex and ctxt tasks, respectively, better

results are found in the second task for both LMs. In the biLSTM, the extracted rep-

resentations achieve on average comparable or worse results at LexSub than the word

embedding baseline. In BERT, some layers improve a bit over the baseline, but are still

worse than in the ctxt task. This is in line with the lex task objective: to retrieve lexical –

possibly underspecified – information, as opposed to the contextually relevant one. The

fact that the diagnostic model trained on this task tends to extract a representation that

10For BERT, the cosine to l goes from .92 to .19 (from layer 0 to 12), to c from .53 to .14. The complete

results are reported in Appendix A.3
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is less context-sensitive confirms the retention of much lexical information in the hid-

den states. But when using the diagnostic model trained on the ctxt task, the retrieved

representation reflects contextual substitutes to a larger extent. Results are generally

higher for BERT which appears to outdo the biLSTM at the contextualization of word

information. Overall, these results confirm that the hidden states tend to be sensitive to

the contextual interpretation of words, and that this does not interfere with some degree

of retention of underspecified lexical information. Examples of ambiguity resolution in

BERT can be found in Table 3.1, showing predicted substitutes (10 closest lemmas) for

representations extracted from the hidden states.

The biLSTM and BERT results diverge when looking at the LexSub scores across

layers. For the biLSTM, both Recall-10 and GAP decrease towards the output, just like

Cos did. The best level of contextualization is found at the first layer, suggesting that this

LM focuses on lexical ambiguity resolution first to then presumably move on to attend

to other information that is relevant to the output prediction. This seems to support H1

for the biLSTM: in processing states, there is less word information moving towards

the output. The same is not found in BERT, where the picture is more complex and

suggests that the quality of word information does not actually degrade moving towards

the output, in spite of the cosine patterns. In terms of GAP, results progressively improve

across layers, eventually resulting in a plateau. Recall-10 initially increases, reaches its

peak at layers 4-6, to then decrease towards the output (though staying always above the

word embedding baseline). This suggests a contextualization mechanism that initially

benefits the representation of the correct interpretation, but then results in worse behavior

in the latest layers when focusing on retrieval of substitutes. We investigate this further

in the next section, considering a potential effect of masked language modeling.

P (l)proc – the probability distribution over words computed at the output – can be
seen as the final behavior of the LM after all the processing in the hidden layers. We

find that in the LexSub tasks using P (l)proc performs comparably to the last few lay-

ers in GAP and a bit better on Recall-10 (though still worse than layers 4-6). If taking

the latter metric as reference, this supports the aforementioned idea that a bit less pre-

cise ambiguity resolution is displayed in the layers close to the output. But also, since

the representation extracted from the last layer – from which the probabilities are com-

puted (Eq. 3.2-3.3) – is a bit worse, it suggests that either the diagnostic model does not

manage to fully extract all the word information there is in the state (due to limited ca-

pacity or training data), or that the final steps in the network to compute the probabilities

aid the retrieval of correct substitutes.

The fact that in BERT cosine patterns do not match those of LexSub scores suggests

that looking only at cosine – the metric maximized in training – for evaluation can lead

to an unfair comparison across hidden states. The fact that across layers lower cosine

scores are found does not mean that hidden states progressively get to encode less, or

less correct, word information. In fact, intermediate layers (4-6) are found to account for
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word information – considering both Recall-10 and GAP – better than the other layers.

This is because a representation may be further in absolute terms to the embedding of its

substitutes, but yet exceed at ranking them correctly in terms of the relative ordering of

cosine similarities. The cosine magnitude seems to be speaking more of the difficulty of

extracting a representation close enough to the right space (H2) than to the amount and

quality of word information in a hidden state (H1). This underscores the importance of

computing LexSub scores as part of the analyses, since, as in the case of BERT, they

may not necessarily align with the cosine evaluation.

3.4.2 Word Information in Predictive States

Contrarily to processing states, predictive states are computed without the LM observing

the target word as input but when the word is to be predicted at the output. What we

are evaluating is therefore the information about the target word that the LM gets to

represent, presumably because this is identified to be useful for the word prediction.

Therefore, we expect: 1) in comparison to processing hidden states overall less word

information (because of uncertainty over the word itself), 2) more word information

moving towards the output (approaching the prediction), and 3) more contextual word

information than lexical one (due to being predicted solely based on the context).

This scenario is confirmed by our results on the test data of CoInCo, reported in

Figure 3.3 for predictive states from the biLSTM and BERT. The cosine patterns are

opposite to those found for processing states and identical between the two LMs: the

target representation – l or c – can be predicted with more precision moving towards the

output. This makes sense as it is at the output that the LM computes a word prediction,

leading to accumulating more and better information about the word to predict across

layers. Performances in the ctxt task are higher than those on the lex one, though worse

in both cases than those of processing states. This is in line with expectations as pre-

dictive states are context-sensitive by design (they can only predict information based

on the context), and never access the underspecified information in a word embedding.

Therefore, while they may be uncertain about the word to predict, they can only predict

aspects of this that are contextually relevant. For instance, in example (3) in Table 3.1,

where “glass” is used as , the predicted information has to do with containers and not

the sense of glass as material, which is not expected given the context.

The LexSub scores essentially confirm these results. Again, the results improve to-

wards the output, confirming that word information becomes more reliable across the

layers, likely due to decreasing uncertainty about the word to predict. Finally, represen-

tations extracted in the lex and ctxt tasks are comparably good at retrieving and ranking

substitutes. This can be led back to predictive states containing only word information

that is predicted to be contextually relevant: even when probed to extract information

relevant to multiple senses (lex), the diagnostic model can only retrieve context-sensitive

information.
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Figure 3.3: Cos, GAP andRecall-10 scores on test data for representations extractedwith

the lex and ctxt tasks (Dl andDc), respectively, from the biLSTM and BERT predictive

states. Cos is measured to l or c depending on the objective task; in the case of the word

embedding baseline (l), we compute the cosine to c.
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(1) ... You could write a play about someone like him.

substitutes: script, show, comedy, drama, line, manuscript, performance ...

l work, game, dance, perform, player

h6proc show, book, story, program, novel

h12proc show, project, document, act, program

h12pred story, presentation, treatise, tragedy, movie

(2) ... Sales for the full year were $6.6 billion

substitutes: entire, whole, complete, total, overall

l fully, complete, whole, entire, total

h6proc large, complete, whole, entire, total

h12proc first, complete, second, main, major

h12pred previous, prior, preceding, subsequent, last

(3) ... I waited, and drank a glass of MorningAfter and three cups of coffee

substitutes: cup, bit, mug, pint, serving, share, shot, swallow

l stone, ceramic, steel, bottle, porcelain

h6proc drink, beverage, bottle, beer, cup

h12proc beverage, drink, vodka, sip, bottle

h12pred chunk, container, drink, bottle, snack

(4) ... and suddenly the forgotten, in revenge, rears up to savage the unwary.

substitutes: terrorize, attack, blast, crucify, destroy, disrupt, distress

l vicious, brutal, ruthless, fierce, monstrous

h6proc vicious, hideous, horrific, monstrous, seduce

h12proc destroy, seize, eliminate, obtain, weaken

h12pred destroy, assist, protect, oppose, confront

Table 3.1: Examples of predicted substitutes (5 closest lemmas) for target word oc-

currence (in bold) of representations extracted from BERT layers using the diagnostic

model from the ctxt task; l: word embedding.
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3.4.3 Processing as Result of Prediction

In Section 4.4.1, we observed that in BERT the contextual interpretation of a word tend

to improve across the layers, but – when looking at Recall-10 and thus the proximity to

substitutes – decaying a bit towards the output (Figure 3.2). This suggests that during

processing the states are subject to a mechanism that tends to initially benefit the repre-

sentation of contextual word information (better in the central layers) but then, applied

across the layers, eventually results in suboptimal behavior. We hypothesize that this is

an effect of the objective task – masked language modeling – intertwining mechanisms

for processing and prediction of words.

In BERT, a word prediction is computed at the output in correspondence with its

position at the input (Section 4.2), both when the word is masked or given as input.

The difference in the input is therefore the sole aspect that distinguishes predictive and

processing states (Figure 3.1b). We can thus think of processing and prediction of word

information in BERT as stemming from a unique mechanism. The same cannot be said

for the biLSTM where processing and predictive states come from different positions in

the sequence and are used to predict different output words (Figure 3.1a).

We posit that word information in BERT’s processing states results from a friction

between processing the current word, and predicting it as if the word had not been seen.

Lexical ambiguity resolution in processing states would then occur as a result of, on

the one hand, attending to the inputted lexical information, and, on the other, inferring

information that would be contextually relevant as if the input word had been masked.

The latter is the information that would be represented if this was a predictive state,

instead of a processing one. We can conceive this as contextual expectations formed by

the LM about the content relevant for that slot in the input. As contextual expectations

improve towards the output (as shown by the results of predictive hidden states), it is

plausible that BERT would initially mostly focus on the inputted lexical information to

then increase the weight put on the contextual expectations as they becomemore reliable

across layers. Contextualization in a layer would then depend on a tug of war between

lexical information and contextual expectations.

Concretely, this hypothesis predicts that, as we progress towards the output, the con-

textual information in processing hidden states shares less with the inputted lexical in-

formation, and more with the counterpart predictive states. Under this projection, the

layers closer to the output would be the ones that are the most affected by contextual ex-

pectations. This hypothesis could clarify how BERT resolves ambiguities, but also ex-

plain why we found contextualization, in terms of Recall-10, to initially improve across

layers to then worsen close to the output: Though expectations constitute a good context-

sensitive bias, attending to them above a certain degree may ultimately be misleading,

as they are based on uncertainty over the target word.

To test this hypothesis, for each processing state at layer i, we look at the represen-
tation extracted in the ctxt task –Dc(hproc)

i – and its candidate substitutes Ŝi
proc (i.e., the
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Figure 3.4: Overlap of predicted substitutes (10 closest lemmas) of representations ex-

tracted from processing states (with ctxt task) with lexical information and the predictive

state counterparts, respectively.

10 closest lemmas to the representation). We compute the overlap of these substitutes

from the ones of the input lexical representation Ŝlex, on the one hand, and the predictive

counterparts Ŝi
pred (from Dc(hpred)

i), on the other. To avoid confounders, we ignore the

intersection of Ŝi
pred and Ŝlex, focusing on substitutes that are uniquely shared with one

of the two sets.

overlap-lex :=
Ŝi
proc ∩ (Ŝlex − Ŝi

pred)

|Ŝi
proc|

; (3.13)

overlap-pred :=
Ŝi
proc ∩ (Ŝi

pred − Ŝlex)

|Ŝi
proc|

(3.14)

The results per layer are displayed in Figure 3.4. For comparison, we also report the

results obtained for the biLSTM. In line with the projections from the aforementioned

hypothesis, for BERTmoving towards the output word neighbors from processing states
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overlap less with those from the input word embedding, and more with those of the

counterpart predictive states. For the biLSTM, we find the same but the overlap with

substitutes from predictive states is much smaller. It may result simply from predictive

and processing states concurrently focusing on analogous information, since we know

the two are derived from disjoint mechanisms. We instead take the results from BERT

as pointing to a progressively increasing reliance on expectations across the layers at

the expense of lexical information, justified by the fact that prediction and processing of

words in BERT are not independent mechanisms.

These results, together with those displayed in Figure 3.2b, suggest that the optimal

degree of reliance on the context is achieved in central layers: attending to contextual ex-

pectations can positively guide the interpretation of a word, but attending to them above

a threshold seems not to be optimal. It is important to notice, however, that this is a con-

clusion based on focusing on average Recall-10 results across layers: First, measuring

lexical ambiguity resolution with other metrics need not provide the same picture. For

instance, GAP results (3.2b) show different trends. Second, while a certain degree of

reliance on expectations may be beneficial to account for substitutes across the dataset,

based on a qualitative analysis, different occurrences of words may be better modeled

focusing more or less on expectations. For instance, examples (2) and (4) in Table 3.1

are cases where focusing more on expectations leads to accounting better for the inter-

pretation of the word (comparing layer 6 to 12).

3.5 Summary and Discussion

In this chapter, I presented a method to investigate the word information encoded in

a LM’s internal activations, and applied it to study the inner dynamics of two LMs.

This allowed us to inspect both the abilities and strategies of LMs in resolving lexical

ambiguities. We compared hidden states obtained observing the target word as input –

processing – to those that are agnostic of the word’s identity as they have to predict it at

the output – predictive. I discuss here the findings, focusing first on their implications

for our understanding of LMs, and then reporting some methodological considerations.

3.5.1 Lexical Ambiguity Resolution in Language Models

Representation of Contextual Information

Our experiments investigated the degree to which LMs infer and encode the correct in-

terpretation of a word. Our results are in line with other studies (Reif et al. (2019); Nair

et al. (2020); Garí Soler and Apidianaki (2021), a.o.) reporting that LMs have suffi-

ciently context-sensitive internal representations to well account for situation-specific

interpretations of words. We here attempted to shed light on the ambiguity resolution

51



“output” — 2021/11/30 — 7:00 — page 52 — #68

strategy leading to this behavior in terms of representation of word information in the

hidden states. In particular, we studied how the representation of contextual informa-

tion varies throughout the depth of the network (i.e., across layers), and how processing

states – where ambiguity resolution should, if anywhere, occur – compare to predictive

states.

While the biLSTM seems to select an interpretation to then presumably focus on

other information relevant to the output prediction (better results at layer 1), BERT, a

deeper model, seems to apply a more progressive ambiguity resolution across the lay-

ers (best results from layer 4). In accounting for contextual interpretations of words,

BERT’s hidden states outdo the biLSTM’s ones, though in general there is some mar-

gin for improvement. The two LMs differ in size and amount of training data (BERT

surpasses the biLSTM in both), a plausible explanation of the differences in results. We

however also identified an aspect in the BERT architecture possibly impacting the way

it resolves lexical ambiguities. In BERT, processing and prediction of a word are in-

tertwined, with the two merely differing by the token passed as input (whether it is the

word itself or the [MASK] token). This seems to push the LM, when processing an input

word, to attend not only to its lexical information but also to the information that would

have otherwise been predicted for that slot, had the word not been seen as input. We

thus posit that masked language modeling creates a bias for an expectation-driven res-

olution of ambiguities. That incorporating such a bias can be beneficial for ambiguity

resolution is further supported by linguistic accounts highlighting the role of expecta-

tions from both the pragmatic and processing perspective (Wilson and Sperber, 2006;

Clark, 2013).

We found evidence that different hidden layers in BERT pay different degrees of

attention to lexical information and expectations from the context, respectively. This af-

fects the extent towhich a certain layer accounts for the interpretation of theword, at least

as evaluated in terms of substitute retrieval. On average, we found central layers, taking

into account both the lexicon and the expectations to an intermediate degree, to lead to

the best results. Yet, qualitatively looking at different word occurrences, we can note

that in certain situations other states, incorporating more or less towards expectations,

are more apt to explain a word’s interpretation. These results highlight the need to more

directly inspect the interplay between lexical information and contextual expectations as

an explanatory mechanism in word interpretation. We address this in Chapter 4 where

we define a computational framework for the study of word interpretation, leveraging

representations from LMs. In particular, we build on the results from Section 3.4.2 as

support for deriving proxies for contextual expectations about word content using LMs.

Retention of Lexical Information in Processing

Our results indicated that for both LMs, lexical information – potentially associated with

multiple senses – tends to be recoverable from processing states to a large extent. This,
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however, does not seem to obstruct contextualization: we found retention of lexical

information even at layers where contextual word information could also be retrieved

well.

From an NLP perspective, using internal activations from LMs for transfer learning

proved to be a successful strategy in previous work, leading to vast improvements across

many tasks (Peters et al., 2018a; Devlin et al., 2019). It is common to link the gains of

this approach to the use of context-sensitive representations of words – hidden states

from LMs – potentially solving the issue that word embeddings encode information rel-

evant to multiple senses (the meaning conflation deficiency, as referred to in Camacho-

Collados and Pilehvar 2018). Our results indicate that, though these representations tend

to reflect contextual interpretations of words to a large extent, they do not fully get rid

of the underspecification in the input word embedding, as much lexical information is

retrievable. However, this does not need to cause issues when the representations are

used for transfer learning, as long as contextual information is also encoded, enabling

context-sensitive behavior. Besides, the retention of lexical information may even be

useful in case the LM did not correctly resolve the ambiguity, so that the new model

receiving the hidden state as input can get a second chance at it.

We can compare the ambiguity resolution mechanism of the LM, emerging directly

from data, in the way it relates to what is known about human processing of lexical ambi-

guities. Several accounts of word meaning access argue for initial activation of informa-

tion relevant to multiple senses of a word (a.o., Duffy et al. 1988; Frisson and Pickering

1999; Vitello and Rodd 2015). After this initial simultaneous activation of diverse in-

formation, humans do not seem to maintain irrelevant sense alternatives for long and

move on to rapidly select an interpretation (Tanenhaus et al., 1979; Duffy et al., 1988;

Rodd et al., 2010), suppressing the information that was initially activated but turned

out to be ultimately irrelevant. At a general level, also in LMs underspecified lexical

information, potentially relevant to multiple senses, is initially activated when passing

a word embedding as input. Our results suggest that this remains largely present (acti-

vated) in the hidden layers until the output, independently of whether an interpretation

gets selected. This suggests that the initially activated but non-selected information is

not entirely suppressed in the activations of the LM after ambiguity resolution, while in

humans it tends to decay rapidly after. This seeming difference between humans and

LMs should however be taken with a grain of salt: from the bidirectional LMs we ana-

lyzed we cannot infer a time-course of ambiguity resolution which we can then compare

with that posited for humans.11

A general question, encompassing both the linguistic and the more applied NLP

perspective, is why a LM would acquire such a mechanism to ambiguity resolution:

11It is not clear what “rapid”, said of selection or suppression of information, means for a bidirectional

deep learning model, given 1) that both sides of the context are considered here to process a word, and 2)

that we cannot map the depth of processing in a LM (the hidden layer) to a specific temporal stage (e.g., is

rapid selection the inference of an interpretation at layer 2 or 6?).
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that is, to carry over much, possibly noisy, lexical information, independently of the

inference of an interpretation. Since this is a mechanism learned from data, it must have

been identified as part of training as somewhat useful for the objective task. I below put

forward some motivating hypotheses, which, though not testable with the current results

and methods, I hope will spur further research on this topic.

Safety Mechanism. During training the LM recognizes, on the one hand, the need

to disambiguate word information– at the expense of possibly being incorrect – and,

on the other, that the inputted lexical information is often, as is, a safe choice. First,

frequent senses will already have a large representation in the word embedding; second,

different senses of a word are often related (e.g., “glass” as a material or a container

of that material), thus sharing a common core. As a response, the LM would find it

beneficial across cases to keep track of the lexical information “just in case”, for instance,

to smooth the effect ofmisinterpretations (Blott et al., 2020). Themodel can then recover

more easily, or at least limit the damage, if information relevant to other interpretations

is, to some extent, still activated in the states.

“Good enough” Representations. A motivation for our experiments was that LMs

are expected to develop a strategy to cope with lexical ambiguities. However, often

a superficial resolution of ambiguities, or even lack thereof, may be sufficient for the

objective task (word prediction), without requiring a more detailed analysis of the in-

put. This may be due to the monosemy of some words and distinctions among related

senses (as the example of “glass” above). There may be then somewhat contradictory

incentives to, on the one hand, resolve ambiguities and, on the other, “lazily” just pass

forward the underspecified inputted information as is. As a result, the model would

learn to retain much information from the input, despite the noise it may contain. This

hypothesis is inspired by “good enough” accounts of linguistic processing (Ferreira and

Patson, 2007; Frisson, 2009), building on evidence that humans do not always derive

complete and accurate interpretations of an input.

These two hypotheses that I have described justify the retention of lexical word infor-

mation, assuming that this information is encoded in hidden states in parallel to contex-

tual word information. The following hypothesis considers instead a different scenario.

Implicit Ambiguity Resolution. Under this hypothesis, the LM does not actually ex-

plicitly resolve lexical ambiguities in the hidden layers: the content of the inputted word

embedding is not modulated to the context and the hidden states do not get to conse-

quently encode contextual word information (but only lexical information). At a first

glance, this idea may seem at odds with our results, as well as previous research pro-

viding evidence for the context-sensitivity of LMs to word senses. This explanation is
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however not contradictory with the existence of such context-sensitivity, but simply puts

forward a different way in which this would be achieved: in an “implicit” way.

Instead of contextual word information, the hidden states would simply represent:

1) the lexical information about the word, as retained from the input layer, and 2) infor-

mation from its co-text. Because different senses of a word tend to appear with different

context cues, the hidden states relative to occurrences of different senses will end up

being different from each other, despite sharing word-specific lexical information. To

give an example, the representation of “mouse” when used as will be different from

that of an occurrence as , because their contexts will be, in the first place, different.

The variability of representations of the same word type, depending on the context, may

just be sufficient to enable a context-sensitive behavior, both in the predictions of the

LM at the output (i.e., words relevant to the correct interpretation) and when using these

internal representations – for analysis or transfer learning – to predict or represent word

senses (Loureiro et al., 2021; Garí Soler and Apidianaki, 2021). Models can associate

different output behaviors with different representations, and differences in representa-

tions can correlate with graded differences in intended meaning. This hypothesis is, in

comparison to the others previously described, more negative regarding the ambiguity

resolution abilities of LMs: They do not have to develop an ad hoc mechanism for ambi-

guity resolution, because representing word occurrences through their linguistic context

is on its own sufficient to reflect differences in word senses.

Under this hypothesis, our results are explained if: 1) lexical word information is

encoded in hidden states, and therefore it can be extracted by the diagnostic models; 2)

contextual word information is not encoded, but it can still be retrieved. This is possible

if, leveraging the differences of hidden states across word usages, the diagnostic models

learn to compute, as opposed to extract, representations of word interpretations; for in-

stance, by modulating the lexical information encoded in the hidden state based on the

context. Our diagnostic models were purposely kept simple and small so that they did

not have the capacity of learning such a complex mechanism. Yet, as some supervision

is after all involved, we cannot rule out that this explanation may have at least a partial

role on the results. This suggests some methodological caveats, which I discuss in the

next section.

3.5.2 Methodological Considerations

This chapter adds to a long list of recent work analyzing the dynamics of deep learning

models and in particular LMs (Belinkov and Glass, 2019). These can be roughly clus-

tered in approaches focusing on the information encoded in the internal activations of

a model (e.g., whether the representation encodes the identity of a processed word; Adi

et al. 2017), and those which instead test the model’s behavior at the level of its out-

put predictions (e.g., whether the LM predicts the verb with correct number agreement

with the subject; Linzen et al. 2016). Our experiments fall in the first category as we
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inspected the word information contained in hidden states defining auxiliary supervised

probing tasks. Other studies reporting contextualization of word information in LMs

also focused on information in the hidden layers, by, for instance, carrying out a classi-

fication task with these representations as input (Pilehvar and Camacho-Collados, 2019;

Reif et al., 2019) or looking at the graded variation of these vectors across contexts of

use of a word (Garí Soler et al., 2019b; Ethayarajh, 2019; Nair et al., 2020).

Focusing on analyzing the LMs’ internal representations is especially motivated by

the fact that these are often used as input representations to other models (for trans-

fer learning): this practice underscores the need for clarifying the linguistic phenomena

they account for. However, looking at representations, and specifically relying on aux-

iliary supervised tasks, also has some challenges, as we identified in our study. How

to evaluate the information contained in a high-dimensional vector with uninterpretable

dimensions is not straightforward, and requires the definition of rather complex method-

ologies (supervised or not). This is not an issue per se, but it increases the risk of deriving

conclusions that may be to some degree affected by the analysis method itself rather than

only by the studied LM.

First, when using supervision we cannot rule out the possibility that the diagnostic

model does not simply extract information that is already encoded in the vector, but

instead computes it (applied to this study, the aforementioned Implicit ambiguity reso-

lution hypothesis), or even simply “refines” it. This may be enabled by leveraging other

useful information in the representation and regularities in the data. More frequent word

types and, for a certain word, more frequent senses would have an advantage, as there

would be more training instances from which to learn. This issue cannot be bypassed

easily: Since both the occurrences of words and their senses follow a Zipfian distribu-

tion (Zipf, 1949), any corpus intended to reflect the true distributions, like the CoInCo

corpus (Kremer et al., 2014), leads to unbalanced sense distributions. There is there-

fore a hard trade-off between coverage of words and their senses, and reducing potential

biases from regularities in the data.

Second, we noticed that some cautiousness is requiredwhen comparing results across

representations of different types (e.g., from different hidden layers), for which the aux-

iliary task may be intrinsically harder to start with. Concretely, we cast the supervised

probing using a representation learning setup; however, the cosine margin between the

target representation and a hidden layer increases across the hidden layers, making the

transformation to be learned more complex. As we showed, achieving a lower final co-

sine between the target and predicted representation does not mean that the task was not

learned, and actually in terms of relative similarities a representation with lower cosine

could actually be better at accounting for a word’s interpretation. Still, this issue may

lead to confounders in the comparison. Are intermediate states truly better at contextu-

alization? Or - since mapping them to the word space is easier - the diagnostic model

could allocate more resources to, for example, learning more regularities in the data to
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solve the task?

Finally, even when not using supervised auxiliary tasks, it is hard to actually fully

rule out the Implicit ambiguity resolution hypothesis when looking at a LM’s internal

representations. As long as a representation type varies enough across occurrences of

different word senses, the analyzed model does not necessarily need to have learned a

mechanism to compute the interpretation of a word. Rather it may just have learned a

way to represent and compress well the information in the input (Pimentel et al., 2020b).

For applications, this need not be a problem, as the representation can still be rich enough

in information to allow for successful use. But if our goal is to understand how LMs

resolve ambiguities, we need to assess with clarity that they explicitly resolve them –

they select an interpretation and comply with this.

A behavioral evaluation of LMs regarding the resolution of ambiguities – including

beyond lexical ones – could help in clarifying this aspect. Instead of focusing on the

internal representations, one would look instead at the output behavior of the model –

its probabilistic output – on data targeting the phenomenon of interest (e.g., Marvin and

Linzen 2018; Ettinger 2020). Our experiments included some behavioral analysis when

evaluating the probability scores output by the LM in the LexSub task, providing evi-

dence that indeed this reflected a word’s correct interpretation to a good extent. Though

only looking at the surface behavior of the model and not directly at its inner workings,

behavioral analyses of LMs are arguably a more reliable and natural way of assessing

the way a LM handles a certain phenomenon, as they involve deploying a LM in the task

it was trained to start with (to output word probabilities). In Chapter 5, we make a step

towards this direction by defining an evaluation procedure to estimate the uncertainty

of a LM over interpretations of an ambiguous portion of a sentence, focusing on syn-

tactic ambiguities (including lexical Noun/Verb ambiguities). I there also discuss the

challenges and potentials of applying this method beyond ambiguities at the syntactic

level.
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Chapter 4

MODELING THE INTERACTION

BETWEEN CONTEXTUAL

EXPECTATIONS AND THE

LEXICON IN WORD

INTERPRETATION

The basic implication of lexical ambiguity – that a word may convey different informa-

tion depending on the context – is that words are to be understood taking into account

the context they are embedded in. Consider the following examples:

(19) The architect created an amazing bridge.

(20) The songwriter created an amazing bridge.

While it is not inconceivable that a songwriter designed a structural bridge nor that an

architect would write a song section, the context creates strong expectations for each

of the occurrences of the word “bridge” in (19-20): an architect is expected to design

buildings and such, and a songwriter to create music. Expectations alone however do

not determine an interpretation, as not everything that is expected actually could be an

interpretation of “bridge”. Theword itself carries a series of meanings it is most typically

associated with, and it would be non-sensical to interpret it as things that are expected

in the context but not compatible with the word (e.g., as referring to a tower in (19) or a

music album in (20)).

Hence, there are essentially two sources of information which we can use to inter-

pret a word: On the one hand, we can use information about the type of content the

word typically expresses, with the various meanings possibly differing in their strength

of association to the word. On the other, we can use the context the word is embedded
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in – linguistic and extra-linguistic – to consider what content is more likely to be in-

tended. Reasoning about these two sources of information, we get to privilege a certain

interpretation of the target word occurrence. This basic assumption is, in one form or

another, at the basis of most approaches to lexical ambiguity resolution, or subcases of it

(e.g., polysemy, homonymy, figurative language, etc.). In this chapter, we test this idea

at scale as a general explanatory mechanism for lexical ambiguity resolution, by turning

the posited mechanism into a computational framework. Through this framework, we

build computational models implementing different degrees of reliance on the lexicon

and on contextual expectations, respectively, during word interpretation, and study what

interplay between these two sources of information best explains human interpretation

judgments.

To carry out these experiments, we use representations from pre-trained neural lan-

guage models (LMs) as proxies for both the lexicon and contextual expectations. In

the previous chapter, I studied the strategy that these models themselves use to resolve

word-level ambiguities. In this chapter, I do not focus anymore on analyzing the inner

workings of LMs, but rather on the way we can use these models to automatically esti-

mate certain types of information in order to instantiate and test linguistic hypotheses.

Concretely, we use representations from LMs to assess the explanatory breadth of lex-

ical disambiguation strategies. Crucially, we do not use the activations reflecting how

the LM itself has interpreted a certain word, but rather those representations that can act

as proxies for the information we input to our computational model of interpretation:

lexical information and contextual expectations.

4.1 Approach and Research Questions

Accounts of word interpretation in linguistics and cognitive science vary across several

dimensions (Falkum and Vicente, 2015; Rodd, 2020). To start with, how out-of-context

information about a word is stored in the mental lexicon is subject to debate (Klein and

Murphy, 2001; Klepousniotou, 2002; Frisson, 2009): whether information relevant to

different senses of a word is separately stored, or blended in a unique lexical represen-

tation. To derive interpretations, different mechanisms can be posited, such as lexical

rules (Asher, 2011), pragmatic inferences (Wilson and Sperber, 2006), or activation of

information during processing (Duffy et al., 1988). Despite these differences, we con-

sider that there are common general assumptions:

1. Some context-invariant lexical information comes into play when interpreting

words, pointing to familiar usage types;

2. The context of a word influences an interpretation by creating expectations about

what content the interlocutor is more likely to intend to convey, or – else put –

that is supported by the context.
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We here study how much of lexical ambiguity resolution can be explained if concretely

instantiate this assumption into amodel where lexical and expected information are com-

bined to compute an interpretation.

Accounts of lexical ambiguity resolution, or subcases of it, remain to date difficult to

test at scale. One of the main challenges is that of identifying an appropriate represen-

tational format, or meta-language, to represent the inputs to the interpretation process

(the lexicon and the context), such that it allows 1) to cover a wide range of words and

contexts, and 2) allows for the definition of formal operations that transform a hypoth-

esized mechanism of ambiguity resolution into a precise computational model. The use

of computational data-driven methods can help in this challenge if providing reliable

proxies for the information to reason about. We in particular turn to LMs to expedite

this investigation, by using them to represent information in our computational models.

Specifically, we represent lexical information through the word embeddings in a

LM, as an instance of distributional semantics (Lenci, 2008; Boleda, 2020). This frame-

work was often used in previous research as a methodology to approximate the informa-

tion encoded in a lexicon. As argued earlier in this thesis, distributional representations

can be seen as underspecified representations of lexical content, encompassing informa-

tion relevant to different senses of a word. Their similarity relations reveal information

generically associated with a certain word, abstracting over its diversity of usages. For

instance, for “mouse”, we can expect the word embedding to be close to both words

having to do with (e.g., “rat”) and (e.g., “keyboard”); for “watch”, both the sense

of the verb and that of the noun should be encoded. In principle, to represent

the lexicon we could employ alternative methods to represent a distributional seman-

tics perspective (e.g., Pennington et al. 2014; Grave et al. 2018), other than the embed-

dings from a LM. However, as we will see, using embeddings from a LM simplifies

our framework in that, it allows us to have compatible representations of expectations

and the lexicon in the same high-dimensional space. In terms of the correspondence of

these representations with a certain take on the lexicon, they more closely align to a view

where the typical senses of a word are not separately represented, but “compressed” in a

multi-faceted representation reflecting the diversity of information associated with that

word (Pustejovsky, 1995; Frisson, 2009; Carston, 2012).

We model contextually expected information building on a long tradition in Cogni-

tive Science and Computational Linguistics employed LMs to model word-level expec-

tations (Levy, 2008; Frank et al., 2013; Armeni et al., 2017). Typically, what is used is

the probability distribution over the vocabulary output by LMs, to extract, for instance,

surprisal estimates. By contrast, we focus on a different way of encoding expectations:

a representation that shares the representational format (a vector in the same space) of

a word embedding – the lexical representation – and encodes how expected a certain

word is in terms of its similarity to the word embeddings. Analogously to how the lexi-

cal representation provides a pointer to the information that is typically associated with
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the word, this representation of expectations can be seen as pointing to the content – po-

tentially diverse – expected by a listener to be conveyed by the speaker given the context

of utterance. Such expectations may reflect both syntactic and semantico-pragmatic as-

pects: For instance, in (21), contextual expectations relative to “watch” should be closer

to verbs than to nouns given structural constraints making these more likely (e.g., “take”,

“open”, “keep”). In the context of (21), expectations should not only be close to nouns

but also specifically words for objects that often appear on desks (e.g., “laptop”, “key-

board”, “pen”).

(21) Could you please watch my bag for me?

(22) I left my mouse on the desk.

In this chapter, I argue and show that under certain conditions a representation of expec-

tations with these properties can be identified in a LM, without the need to introduce any

ad hoc training or additional procedure (as opposed to, for instance, how we extracted

word information from hidden states in the previous chapter).

We thus have ways of obtaining proxies for both the lexicon and contextual expec-

tations, by simply deploying off-the-shelf a pre-trained LM. The two sources of infor-

mation have complementary properties: one focusing on information suggested by the

word without seeing the context, the other on information suggested by the context with-

out seeing the word. Both rely on a certain degree of uncertainty: both the information

that is associated with a word and that is expected in context can be quite diverse. A

good representation of the contextual interpretation of a word should locate in a point

in the high-dimensional space that overcomes those uncertainties. We define operations

that put together the representations of lexical and expected information to reach an in-

terpretation: the content which is in line with both what is typically associated with a

word and what is contextually expected. This approach is similar in spirit to vector oper-

ations proposed to contextualize distributional semantic representations (Erk and Padó,

2008; Thater et al., 2011). Figure 4.1 sketches out our framework’s architecture. For

instance, in (21), we hopefully obtain a vector for “watch” that is close to “look” and

not to “clock”. Analogously in (22), a vector for “mouse” should be close to “cursor”

and not to “rat”. The operations we define are parametrized in the degree of reliance

they put on the expectations of the lexicon. To elucidate to which degree different ways

of combining the lexicon and expectations, as well as the two alone, capture word in-

terpretation, we implement the framework using three English LMs. For each LM, we

deploy the framework on the CoInCo corpus (Kremer et al., 2014) – introduced in the

previous chapter – and test the computed interpretations in the lexical substitution task;

that is, to retrieve and rank appropriate paraphrases for a target word occurrence.

Our operationalization of the interaction between expected and lexical information

bears strong ties to accounts in Linguistics and Cognitive Science. In particular, it con-

nects to pragmatic theories taking expectations to guide the process of interpretation of

expressions. Within the Gricean tradition, expectations of rational language use play a
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Figure 4.1: The context of utterance c is processed by the LM to yield an expecta-

tion ec, which is used to compute a distribution over the vocabulary given the context,

p(V | c;LM). The context-invariant word embedding of a word v, lv, represents lexical
information. Both information sources are combined to yield a word’s contextualized

interpretation iv,c.

central role (Grice, 1975; Goodman and Frank, 2016) with listeners and speakers rea-

soning about each other’s perspective, including during word interpretation (Wilson and

Carston, 2007). Our approach is also related to accounts of word meaning access which

take both expectations and lexical information to drive the activation of word informa-

tion, by making more frequent and more contextually salient meanings more activated

during comprehension (Duffy et al., 2001; Rodd, 2020). Finally, our framework shows

links to accounts highlighting the role of predictability during processing (Levy, 2008;

Clark, 2013; Kuperberg and Jaeger, 2016).

In the chapter, I address the following research questions:

RQ1. Can we use computational data-driven methods to obtain representations of ex-

pected content? In particular, representations that allow formalizing their combi-

nation with lexical content.

While representing the lexicon via word embeddings (or generally distributional rep-

resentations) is not a novel technique, that of representing word-level expectations in

their same space using LMs is, at least to the best of our knowledge. Typically, one

focuses on the output probability distribution over words, which encodes relevant infor-

mation, but not in a format compatible with that of lexical representations. As discussed

and shown in Chapter 3, LMs – due to their training objective – accumulate word-level

expectations about content in their internal representations. One of the intermediate
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activations of a LM (in certain conditions) can be considered a representation of ex-

pectations in the same space of word embeddings. This representation can be extracted

directly from a pre-trained LMwithout the need of introducing any ad hoc modifications

to the architecture, or of training an auxiliary model (as we did in Chapter 3). Once ob-

tained the two representations of lexical and expected content, we can combine them

using formal (vector) operations.

RQ2. To which extent the representations of the lexicon and expectations alone can

explain word interpretation?

We expect both the lexicon and expectations alone to account for interpretation to

some degree. This can be assessed by evaluating the quality of the representations to

the extent to which they match human judgments of interpretations. On the one hand,

the lexicon provides underspecified information, with a bias towards the most frequent

senses. We can therefore expect this to be a useful pointer already in a good amount

of cases, where the interpretation of the word is a frequent one. On the other hand,

expectations have an important contextual bias in that they privilege content that seems

relevant in a situation. Yet, they are based on an underlying uncertainty over the target

word and thus may be at least partially off-track. We foresee the combination between

lexical and expected content to outdo any of them alone, by combining the context-

sensitivity of expectations with word-specific information.

RQ3. To which degree should a model of word interpretation rely on the lexicon or

expectations to best explain word interpretation judgments?

Because of their complementary properties, a combination of lexical information

and contextual expectations is expected to account for interpretation to a large extent.

We instantiate our framework in models of interpretation adopting different degrees of

reliance on the two sources of information and evaluate their resulting representations. It

seems plausible that the reliance on lexical and expected information that best performs

would not be extremely asymmetric, but rather one that substantially benefits from the

two. Moreover, when using LMs of better quality – for instance, bigger and trained on

more data –, expectations may acquire a more prominent role during interpretation, due

to constituting a more reliable proxy. While we can foresee these patterns of behavior

to better explain interpretation when kept constant across datapoints, it may be that in-

terpretation is even better accounted for if the reliance on expectations and the lexicon

dynamically vary on a case-to-case basis. We can explore this by looking at the variation

of the per-datum optimal degree of reliance.
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4.2 Modeling the Interaction between Expectations and

the Lexicon

4.2.1 Representing Expectations and the Lexicon

To introduce the methods used in this framework, I again go through the way a LM pro-

cess a text to compute an output word prediction, focusing on steps that justify why we

can take certain representations as proxies for contextual expectations and the lexicon,

respectively. I focus on aspects that are shared across models abstracting from specific

architectural choices in which they may differ.

A neural LM is trained to output a probability distribution over the vocabulary V
given a context (Figure 4.1). Given the linguistic context of the word at position t – ct,
deploying the LM gives us P (V | ct). We refer to a generic word type as v. As previ-
ously described, to process the text and compute a prediction, each word is encoded as

a vector – a word embedding – which once learned during training remains static across

contexts.1 In practice, word embeddings are the row-vectors of an input matrixWi: Wi

has dimensionality n × |V |, where n is the size of the embedding (a hyperparameter)

and |V | is the size of the vocabulary.

Lexicon. We can take word embeddings (rows inWi) as the representations of lexical

information, as we also did in Chapter 3. Following the same notation, we refer to

the lexical representation of a word type v – its word embedding – as lv. This way

of representing the lexicon adheres to distributional semantics: The similarity between

words is measured by the geometric proximity of their representations (e.g., cosine), and

is determined by their alignment in distribution (words that more often appear in similar

contexts are closer). Indirectly, however, such similarity is a reflection of shared features

between words (e.g., semantic or morpho-syntactic). As a result of the abstraction over

a diverse corpus, these static embeddings may encode information relevant to different

word senses, leading to underspecification. More frequent senses of a word will be

more salient in the representation. This lexical information, therefore, provides an initial

pointer to the information that is typically associated with the word.

How can we instead obtain representations of expectations from a LM? Concretely,

we want a high-dimensional representation reflecting the type of content expected in a

context, without having access to the word that would express it. This needs to be in the

same space as the lexical representation to ease their combination through vector oper-

ations. Chapter 3 provided evidence that the predictive hidden states of a LM – those

1While this is the standard case for a word-level language model, not in all models each word is

represented through an embedding: the input may instead be split into subword units (similar comment

in Footnote 4 in Chapter 2).
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used to predict a word given its context – encode expectations about the type of content

that the target word expresses: with the aid of diagnostic models, we could retrieve a

word representation that was reflecting, in terms of distance to word embeddings, those

expectations. These representations thus satisfy the aforementioned requirements. How-

ever, the method that was used to isolate the relevant information in hidden states and

map it to the desired space relied on a supervised auxiliary task, consequently requiring

much initial work to obtain the representations. Besides, we cannot rule out that some

shortcomings of our training data or setup may impede the extraction of all the rele-

vant information in a hidden state (see discussion in 3.5.2). In principle, if an option, it

would be desirable to extract representations of expectations directly from the LMwith-

out having to define and implement this machinery. As I explain next, this is actually

not needed, as at least a group of LMs already have internal representations that satisfy

the requirements to represent expectations.

Let us zoom in on the way a LM typically computes its word predictions. The em-

beddings of the words in c are processed to yield intermediate representations within the
hidden layers of LM. Crucially, if we aim to represent expectations formed based on con-

text only, we need to consider the case of word predictions where the target word is not

accessed, using the same setups used to derive predictive hidden states (Section 3.2.2;

e.g., in BERT substituting the word with [MASK]). Going through the depth of the net-
work, the processing of the context c results in an activation vector u of sizem such that

passed through a linear mapping, involving an output matrixWo, yields the output scores

over the vocabulary.2 The softmax function is applied to the output scores to obtain the

final distribution p(V | ct): the higher the output score the higher the word probability.

ut = LM([l0, l1...]) where [l0, l1...] = ct (4.1)

ot = utWo + bo (4.2)

P (V | ct) = softmax(ot) (4.3)

To enable the computations, Wo has dimensionality |V | × m. Depending on the LM

architecture, ut may be the last hidden state or a subsequent transformation of it.

We consider LM architectures – henceforth, tied LMs – where Wo is set to be the

matrix transpose of Wi, meaning that the weights of the input and output matrices are

shared (Inan et al., 2017; Press and Wolf, 2017):

tied LM⇐⇒ Wo = W T
i (4.4)

To enable this, one needs to set n = m, making the size of the word embeddings the

same as that of representations u used to calculate the output predictions. Through this

2b is often not added; i.e., b =
−→
0 . We can think of the b as a vector of learned word-specific constants

(its size is |V |) which, re-weights the output scores, increasing or decreasing the probability of a word,
independently of the context.
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technique – a standard architectural choice in LMs – only the parameters ofWi have to be

learned, therefore reducing the overall LM size (since the size of the vocabulary is often

around 30-50K, the cut is considerable). Weight-sharing is possible becauseWi andWo

share the size of one dimension, corresponding to the vocabulary size (n × |V |; |V | ×
m). Like Wi, Wo also learns one representation per word, in this case as its column-

vectors. On top of the reduction of parameters, tying the input and the output matrices

can therefore be motivated also by the benefits of sharing the word information that is

learned both when representing its contribution (at the input) and when predicting it (at

the output). This technique was empirically shown to enhance the quality of a LM, both

in terms of perplexity in the language modeling task and the learned word embeddings

(predicting word similarity judgments; Inan et al. 2017; Press andWolf 2017; Gulordava

et al. 2018a).

Let us now look at what the constraint in Eq. 4.4 implies for the information encoded

in the representation u. We can effectively rewrite the multiplication between u and

Wo = W t
i (Eq. 4.2) as the vector of dot products between each word embedding (column

vectors inWo) and u.

utW
T
i = [ut · lv|v ∈ V ] (4.5)

In the context of Eq. 4.2-4.3, the probability score assigned to a word v – P (V = v | ct)
– therefore depends on the magnitude of the dot product between u and its word em-

bedding lv (determining the output score). During training, maximizing the probability

of a word entails maximizing the dot product between the representation at u and the

word’s embedding. We can think of dot product as a measure of proximity in the high-

dimensional space, or similarity, between two vectors (cosine is simply the dot product

between the two vectors after normalization). Hence, a tied LM is optimized so that the

similarity relations of u to word embeddings reflect the degree to which each word is

expected.

Expectations. We take u to be a representation of contextual expectations about a

word and henceforth refer to it as ec. This can be seen as a lower-dimensionality rep-

resentation of the information encoded in the output distribution over the vocabulary:

P (V |c). How likely a word is encoded in terms of how similar the word’s representa-

tion (l) is to ec.
3 The position of ec in the word space can be seen not only as encoding

which words are expected but also generally what type of content: if words referring to,

e.g., animals are expected, ec will be closer to nouns used to refer to animals. Since these

3The same argument – can be made – and therefore the framework implemented – for a non-tied LM

if we take lv to be the column-vector corresponding to v in Wo, instead of the row-vector of the shared

input-output matrix. However, learning a unique representation for use at both the input and the output

was found to lead to better representations, as well as output predictions (Press andWolf, 2017; Gulordava

et al., 2018a).
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Figure 4.2: A schematic visualization of a tied language model, where the weights of

the matrix used to represent the input words (input matrix;Wi) are shared with those of

the matrix used to compute the output probabilities (output matrix;Wo).

are expectations computed based on context, they will reflect content that appears to be

relevant in the situation; however, as the target word was not seen as input, ec harbors

uncertainty about its identity and associated content, and may therefore be misleading

in some aspects.

These representations of expectations are based on the context as fed to the LM. If

the context is restricted to the previous words, we can interpret these expectations as

anticipation of information. If the context involves information that also follows the

target word, we intend expectations in a broader sense as the type of information about

a word contributed by the co-text of an expression – taken away the role of the word

itself.

As mentioned earlier, what u – and therefore ec – is within a tied LM may depend on

its architecture. To better represent and therefore isolate the representation of contextual

expectations certain architectural choices are preferable to promote a better division of

labor in the LM. For instance, if u is the last hidden state in an RNN/LSTM (Section

2.2.1), this will not only constitute a pointer to the words expected by the LM, from

which to compute probabilities but also, because of recurrent connections, will have

to contain the information that is relevant to carry over to the adjacent timestep. This

double function of the hidden state may be detrimental not only to the representation

of contextual expectations, which would be mixed up with other information from the

context but also to the quality of the LM. Gulordava et al. (2018a) empirically showed

that the quality of LSTM LMs improves when in their architecture the representation of
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information relevant to the current prediction (i.e., expectations) is decoupled from the

representation of the text processed so far, to be passed to the following timestep; that

is, the hidden state. Even simply applying a linear mapping to the last hidden state leads

to improvements in the language modeling task and the word embeddings. This can

be explained in terms of the intermediate transformation enabling a division of labor,

by extracting from the hidden state the information that is relevant for the current word

prediction. Following these results, in our experiments we focus on tied LMs with an

intervening transformation between the last hidden state and the calculation of output

scores: u – and therefore ec – is the result of applying a transformation to the last hidden

state.

4.2.2 Combining Expectations and Lexical Information

For a target word occurrence – v in context c –, we now can obtain two representations,

lv and ec, respectively encoding the lexical information about the word and contextual

expectations formed about its content. These representations have the same dimension-

ality, and based on the structure and training of the LM, they encode information across

their dimensions in a corresponding way. We can now define operations to combine

these two representations, or else put, sources of information, to yield a representation

of the interpretation of a word. We refer to this output representation – a function of ec
and lv – as iv,c.

4

iv,c = f(ec, lv) (4.6)

Generically, this implements the idea that the interpretation of a word is guided by: 1)

the generic lexical information associated with a word, 2) expectations formed in the

current context. We define and test two operations (versions of f ; 4.6), both acting as a
way of combining information from the two vectors and parametrized by the degree to

which expectations and the lexicon contribute to the resulting interpretation. This allows

us to investigate the optimal degree to which to attend to these sources of information

when interpreting words.

One operation – avg – corresponds to the weighted average of the two vectors.

avg: iv,c = α lv + (1− α) ec (4.7)

Intuitively, this operation blends expected and lexical information, highlighting what

is common between the two: the part of the lexical information that is relevant to the

context. The value of each dimension of iv,c is computed as the weighted average of the

respective values in lv and ec: dimensions with high (or low) values for both vectors will

also be high (or low) in the resulting vector. Depending on the parameter α ∈ [0; 1], the

4The vectors are normalized before applying these operations.
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resulting vector is influenced more by one information source than the other: if α = 0,
the interpretation solely relies on contextual expectations; conversely, if α = 1, the
interpretation only corresponds to lexical information. When 0 < α < 1, both lexical
and expected information are taken into account, with perfect symmetry when α = 0.5.

The other operation, delta rule, reduces the distance between the expectations and

lexical information, to a degree that is constrained by an α parameter:

delta: iv,c = ec − α∇Dec , where D = 1− cos(ec, lv) (4.8)

This is achieved through gradient descent: ec is shifted in the direction of the negative

gradient of D with respect to ec (∇Dec). α regulates how close expectations are pulled

towards lexical information, with an analogous role of the learning rate when gradient

descent is applied for machine learning. If α = 0, the interpretation coincides with

contextual expectations: iv,c = ec. As α approaches infinity, the contribution of lv grows

and that of ec shrinks. Differently from avg, we do not a priori know which α value

marks where the lexicon is more taken into account than expectations and vice-versa (in

avg, 0.5). However, to facilitate the understanding of the results, we can empirically

establish the value where the interpretation (on average) becomes closer to one or the

other (see, e.g., Figure 4.3).

We can think of the delta operation as a form of “expectation revision”, which adapts

formed expectations to information encoded in the actual input. During interpretation,

we may want to reduce the uncertainty or potential error in the expectations, by getting

closer to what is encoded in the lexical information; at the same time, however, we

may want to keep some of the context-sensitivity of expectations. In principle the delta

operation could also be designed in other direction (switching ec and lv in Eq. 4.8),

adapting instead lexical information to expectations. Despite the conceptual difference,

we expect this alternative operation to lead to analogous results.

These vector operations have the potential of accounting for both the conventional

and innovative aspects of lexical ambiguity. Information that is often associated with a

word is highly activated in the lexical vector, and further enhanced if in line with expec-

tations: this facilitates the retrieval of familiar senses of a word. However, the output

of the interpretation process is not limited to a pre-defined set of senses, so contextual

nuances can be accommodated. But also where the interpretation ends up in the high-

dimensional space is not bounded, so one could even represent novel usages of a word

that deviate much from what it typically conveys (e.g., figurative language).
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4.3 Experiments

4.3.1 Language Models

The framework described in the previous section can in principle be applied to any LM

provided that certain conditions are met: that the input and output matrices are tied, and

preferably the presence of a transformation between the last hidden state and the com-

putation of the output probabilities (Gulordava et al., 2018a). For our experiments, we

instantiate our framework using three pre-trained English LMs, comparing the results

obtained with each. All models are bidirectional for analogous reasons to those pre-

sented in the previous chapter. In particular, as evaluation data, we consider annotations

collected in an off-line task (after finishing reading a passage of text) where both the

left and right context of a word were accessible and thus could affect the interpretation.

However, in principle, our framework can also be instantiated using unidirectional LMs,

taking into account only one side of a context. The approach would be recommendable,

for instance, when focusing on online processing effects, or if strictly focusing on ex-

pectations as anticipation.

The first model we consider is a variation of the biLSTM presented in Chapter 3.

This is identical in terms of architecture and training (for details, see Section 3.2.1),

except for a few aspects. Concretely, the model employs weight-sharing between the

input and output matrices, with an intermediate non-linear transformation between the

last hidden state and the output computation. Recall that the last hidden state used to

predict the word at t is obtained processing the left and right context of a word up to
position t− 1 and t+ 1, respectively, through the two unidirectional LSTMs.

ut = tanh
(
(
−→
h L

t−1 +
←−
h L

t+1)Wu + bu
)

(4.9)

ot = softmax(utW
T
i ) (4.10)

The other LMs we use are the two versions of the transformer-based BERT model re-

leased by Devlin et al. (2019) – BERT-base and BERT-large. In the previous chapter,

we employed only the former model, as its lower number of layers simplified our anal-

ysis of word information across its depth. We here also use the bigger BERT-large

(340M parameters as opposed to 110M). BERT-large has 24 hidden layers with 16 at-

tention heads, and an embedding and hidden state size of 1024 units (see 3.2.1 for the

comparison to BERT-base). Except for these differences, the two LMs share all other

aspects of the architecture and training. In particular, the weights of the input and output

matrices are tied, and a non-linear transformation is applied to the last hidden state to

compute probabilities (Eq 3.2-3.3 in Chapter 3). To predict a word, it is substituted in

the input by the [MASK] token.
To run our framework, given a word occurrence, we deploy the pre-trained LM on

the text to extract representations: for a word v in context c, we extract ec and lv. For all
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LMs, ec is the result of non-linear transformation applied to the last hidden state used to

predict the word v (the predictive state; Section 3.2.2); lv is the word embedding of v.
We then compute the interpretation iv,c yielded through avg or delta with the chosen α
parameter.

4.3.2 Data and Evaluation

We aim to assess the overall ability of our framework to account for word interpretation,

and to compare different ways of combining lexical and expected information (through

different degrees of reliance on either of them; i.e., the α parameter). For this evaluation,
we make use of the Concepts in Context (CoInCo) dataset (Kremer et al., 2014), an

English corpus annotated for lexical substitution (LexSub). The dataset was already

presented and used for experiments in Chapter 3. It contains 15.5K content words in

context (at most 3 sentences) annotated with crowd-sourced paraphrases. Contextual

substitutes of aword reflect the inferred interpretation by the annotators. Such judgments

are given as an off-line task: they are not given at the time when the word is processed

but, in principle, after the speaker finished reading the entire passage of text (including

context after the target word). This dataset enables us to test our framework: (1) on a

large scale and a relatively natural distribution of words and their interpretations, and (2)

on both sharp and nuanced differences among word usages, without having to assume a

predefined sense ontology.

We evaluate vector representations of words in the degree to which their position

in the high-dimensional space, and therefore the information encoded, reflect the way

humans interpreted that word occurrence. We consider both the substitute retrieval and

ranking tasks, following the same method described in Section 3.3.3. Given a represen-

tation, we use cosine similarity scores between this and a word’s embedding to estimate

its plausibility as a substitute. For ranking, we order all substitutes of a word type across

the dataset by cosine to the evaluated vector and compare the ranking to the datapoint’s

gold standard – GAP (Thater et al., 2009). For retrieval, we take the 10 highest ranking
word lemmas in terms of cosine and measure their overlap with substitutes provided by

annotators – Recall-10 (McCarthy and Navigli, 2007). Both GAP and Recall-10 fac-

tor in the number of annotators that provided a substitute, with more weight given to

paraphrases produced by more annotators; for both scores, the higher the better.

The CoInCo data comes with a split in data tobe used for development and testing –

dev/test (10K/5Kword occurrences, further filtered by coverage of the vocabulary of the

LM).5 As opposed to the experiments in Chapter 3, we do not need to select a portion of

the dev data to use for training, as we here do not rely on supervision. We can instead use

the full dev set to study the effect of modulating α on accounting for word interpretation.

For each LM and operation, we evaluate the data at 10 α-values, in the range [0, 1] for

5See footnote 8 in Chapter 3 for details about the coverage of the LMs.
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expected lexical avg delta

biLSTM (avg: α=0.5; delta: α=0.9)

GAP 0.45 0.45 0.48 0.48

Recall-10 0.13 0.34 0.38 0.38

BERT-base (avg: α=0.4; delta: α=0.6)

GAP 0.51 0.45 0.52 0.52

Recall-10 0.31 0.40 0.48 0.48

BERT-large (avg: α=0.3; delta: α=0.6)

GAP 0.52 0.46 0.54 0.53

Recall-10 0.34 0.43 0.49 0.51

Table 4.1: Results on test data in ranking (GAP) and retrieving (Recall-10) substitutes,

with best constant α.

avg and [0, 3] for delta. We then assess:

• the α value, for each LM and operation, yielding the best mean performances on

the LexSub tasks when α is kept constant across data points (we refer to this as

constant α). This value is then used for evaluation on the test data.

• for each datapoint (i.e., word occurrence annotated with substitutes), the α value

yielding the best performance on the LexSub tasks relative to that case (we refer to

this as optimal α). We then compute the mean performance in the LexSub tasks

across the dataset when considering, for each datapoint, the result obtained with

its optimal α value.

In both cases, we take an α-value to perform best if yielding the highest sum of Recall-

10 and GAP scores, under the assumption that a good representation of interpretation

should maximize both. Comparing performances using constant and optimal α values is

indicative of whether α better works as a datum-dependent or -independent parameter,

or – else put – if word interpretation is better modeled considering a context-dependent

reliance on expectations or the lexicon.

4.3.3 Results

Table 4.1 reports the results of the evaluation on test data for each LM and operation.

We compare the scores when focusing only on expected information (α = 0), only
on lexical information (α = 1), or to both to some degree modulated by a constant α,
estimated based on dev data. We focus first on expectations and lexical expectations
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alone. Since expectations lie on uncertainty about the target word, they often fail to

have substitutes as the closest words (Recall-10); lexical information performs best, de-

spite being static across word occurrences, as its neighbors are words generically related

to the most frequent senses and therefore often provide good guesses. However, when

ranking word-specific candidates (GAP) the context-sensitivity of expectations is ad-

vantageous. Though expectations don’t frequently have substitutes as neighbors, they

are quite successful at ranking candidate substitutes in terms of how relevant they are to

the context.

Nevertheless, as we expected, it is when we combine lexical and expected informa-

tion that we obtain the best results in both Recall-10 and GAP. This result is found using

both the avg and delta operations, and all LMs. The fact that both Recall-10 and GAP

increase speaks to the generally improved quality of the resulting combination of lexical

and expected information. The results obtained are competitive with recent NLP ap-

proaches to lexical substitution (e.g., Garí Soler et al. 2019b; Zhou et al. 2019; Arefyev

et al. 2020).6

In terms of overall results, performances with avg and delta tend not to differ (except

for a bit with BERT-large) and are even identical in the biLSTM. Through additional

analysis, we find that their results tend to align to a large extent not only at the level of the

average performances across the dataset, but also that of specific datapoints: There are

very strong correlations of the performance scores achieved on each case with avg and

delta operations (e.g., for BERT-large, Spearman’s ρ = .9 for Recall-10; =.97 for GAP).
Analogously, if we look at the overlap in the top 10 closest lemmas of iv,c (candidate

substitutes as evaluated in Recall- 10) for the two operations, we find that on average

the vast majority is shared (e.g., for BERT-large 95%). These results suggest that the

two operations, avg and delta, implement analogous mechanisms of a combination of

lexical and expected information, resulting in similar output behavior.

Table 4.1 shows that the LMs differ in the preferred constant α, but generally all
favor an intermediate value that is focusing neither on expectations nor on the lexicon

to an extreme degree. On dev data, we inspect more closely how the behavior changes

as α varies. This is displayed in Figure 4.3, showing the results on dev LexSub data us-

ing different α values kept constant across datapoints. We focus on BERT-large, which

achieved the best results, but analogous trends are found when looking at the other LMs

(see Appendix B.1 for the full results).Starting from expectations (α = 0), increasing the
reliance on lexical information progressively improves the results: incorporating such

information allows for a better interpretation, presumably to fill the uncertainty gap that

6It is unclear whether all approaches computed the evaluation metrics in the same way we did. For

instance, some works build on the evaluation procedure (and code) from Melamud et al. (2015) where

GAP is computed considering as candidates to rank only substitutes associated with that word type and

the current part of speech (e.g., “show” as a verb). This substantially simplifies the task, by removing the

challenge of syntactic category ambiguity. Consequently, I do not go focus much on the comparison to

previous work, especially considering the more linguistic-oriented goals of our work.
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Figure 4.3: Results on dev data for BERT. Dotted lines mark whether a given α yields

a iv,c that is closer to ec (to the line’s left) than to lv (to its right).
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(1)... The flavor is relatively mild, with a fresh, sour note

substitutes: taste, aftertaste, flavor, hint, jolt, suggestion, tinge, tone, undertone

exp taste, flavor, texture, appearance, smell

lex notice, letter, mark, tone, message

optimal α: 0.1 taste, flavor, feeling, texture, appearance

(2) ... Karnes had his own Jeep, and went to the beach and to evening movies

substitutes: shore, coast, dock, oceanfront, sand

exp movie, theater, park, library, office

lex shoreline, coast, coastline, shore, coastal

optimal α: 1 =lex

(3) ... He took another shot of vodka.

substitutes: drink, glass, cup, hit, jigger, measure, sip, swig

exp drink, sip, hit, pull, swallow

lex film, shooter, cut, fire, stab

optimal α: 0.1 drink, hit, sip, pull, swallow

(4) ... and I hope to see you again!

substitutes: want, wish, desire, aspire, crave, pray

exp want, promise, plan, expect, wish

lex hopeful, expectation, promise, optimistic, fear

optimal α: 0.4 want, promise, wish, expect, desire

(5) ... a huge staircase that seemed to go up for more stories

substitutes: floor, level, fable, flight, landing, plateau, tale

exp flight, level, floor, step, attempt

lex tale, narrative, storylines, storyteller, myth

optimal α: 0.2 flight, floor, level, tale, step

(6) ... He accepts his role with a club and he’s a team guy

substitutes: player, man, dude, member, person

exp player, man, person, leader, girl

lex dude, kid, girl, man, boy

optimal α: 0 =exp

Table 4.2: Examples of predicted substitutes (5 closest lemmas) for target word occur-

rence (in bold) for the expectations, lexical representations, and its optimal combination.
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Figure 4.4: Distribution of optimal per-datum α using each LM. Dotted lines mark

whether a given α yields a representation that is closer to ec (to the line’s left) than

to lv (to its right).

expectations have about the target word. After reaching a peak where the resulting in-

terpretation outdoes both expectations or the lexicon alone, the results, degrade to then

reach the same performance as that of lexical information (as its reliance on it is in-

creased). This indicates that looking too much at lexical information ends up being mis-

leading; this is likely due to the ambiguity or bias towards non-relevant senses this can

introduce. The best behavior is then found at an intermediate point that allows benefit-

ing from the context-sensitivity of expectations as well as the generic information about

what the word tends to usually encode (i.e., lexical). As we saw in Table 4.1, where this

intermediate peak is found (best constant α) varies across models. While the biLSTM

favors an equal reliance on expectations and the lexicon (e.g., for avg, α = .5), with
BERT models we observe a slight preference for expectations (e.g., for avg, α < .5).
This is signaled in Figure 4.3 by marking the α-value that result in interpretations that
are closer to ec than to lv. These differences across LMs may be explained to their dif-

ferent quality in terms of language modeling itself (dependent on aspects like the size of

a model or its amount of training data), which should impact the quality of the expecta-

tions formed: the better the model is at word prediction, the better its representations of

expectations are.

Given these results, it is plausible that the best constant αmay decrease as a measure

of the LM’s quality, with expectations taking a more prominent role as they become

more reliable. It is however unlikely that even a “perfect” LM – completely simulating

human-like expectations – would favor α = 0, where lexical information is completely
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ignored. Due to the pervasive uncertainty that underlies communication, knowing that

a specific word was uttered and the information this word is typically associated with is

critical for comprehension, even if the context provides much information about what it

may convey. We, however, also note that providing both the left and right context of a

word may largely reduce the uncertainty over expectations. Instantiating our framework

with a unidirectional model may lead to different observations.

Lastly, while a certain α value for a LM led to the optimal behavior when kept con-

stant across datapoints, it is not necessarily the parameter that allows to better model

each word occurrence: certain cases may be better modeled with increased or decreased

focus on the lexicon (and consequently decreased or increased focus on expectations).

We study this by exploring the behavior under different α values for each datapoint on

dev data. Figure 4.3 compares the performance on LexSub tasks that are obtained with

constant α values and when instead picking, for every datapoint, its optimal α-value
(Figure 4.4 shows the distribution of optimal α across datapoints). The latter method

outperforms any constant α, indicating that the balance between the optimal contribu-
tion of ec and lv varies across words and contexts. This result suggests that the extent

expectations or the lexicon are to be trusted is a contextual matter.

Qualitatively inspecting examples such as those in Table 4.2 provide some insights

as to the factors driving this variation. In cases such as (2), expectations are not off-

track but lie on much uncertainty: likely some place would be mentioned but with many

diverse options, among which “beach”, the correct one, may not rank high. Its lexical

information is therefore crucial, and, since “beach” is not a particularly ambiguous word,

can be trusted fully (i.e., assigned maximum weight for interpretation). By contrast, in

(1), interpreting “note” in the context of describing a flavor requires to focus much on

expectations, as the lexical information has a bias to the non-relevant verb reading or the

sense. In other cases, like (4), both expectations and the lexicon are to be taken into

account: the former accounts for syntactic cues leading to expect a verb, modulating the

ambiguous lexical content of “hope” towards the contextually appropriate reading. What

these examples suggest is that what mainly contributes to increasing the bias to either

source of information is the accuracy of expectations (i.e., howwell they are approximate

what is actually conveyed), on the one hand, and the degree of dominance of senses as

encoded in the lexical information (i.e., how strongly information relevant to the current

interpretation is encoded), on the other.

4.4 Summary and Discussion

In this chapter, I described a computational framework to model word interpretation

and the results of its deployment on an English corpus to model off-line interpretation

judgments (through contextual substitutes). I first proceed to discuss our findings in the

context of linguistic research, and then discuss the advantages of our framework and

78



“output” — 2021/11/30 — 7:00 — page 79 — #95

ways in which it could be extended.

4.4.1 The Interplay between Expectations and the Lexicon in Inter-

pretation

How aword is interpreted depends on an interaction between the type of information it is

usually associated with and the context it is embedded in – linguistic or extra-linguistic.

This basic assumption underlies the core idea of what it means for an addressee to in-

terpret a word: to retrieve the content that the word comes to convey with an utterance,

considering both the type of information the word typically conveys and what would be

more in line with the current context. In this chapter, I presented a computational frame-

work of lexical ambiguity resolution, where interpretations arise as a combination of

these two sources of information: lexical information and contextual expectations. We

proposed to encode these through representations from pre-trained LMs, which were in

the same high-dimensional space and therefore could be combined through vector oper-

ations. Within the framework, models with different degrees of reliance on either source

of information can be implemented, in order to explore the interplay between the lexicon

and expectations that underlies the way lexical ambiguities are resolved.

We instantiated our framework using three English LMs, and used it to analyze a

large-scale corpus. In particular, we computed representations of interpretations and

evaluated them in the extent to which their word similarity relations – and therefore

the position in the high-dimensional space – reflected the way humans interpreted the

words, as emerging from substitutes provided. Our results indicate that both lexical and

expected word information, taken separately, codify information relevant to interpreta-

tion, but when combined they perform best. The sweet spot where their combination is

optimal is an intermediate point where both play a non-marginal role. For instance, with

the operation avg, the best constant α was for all LMs in the range 0.3-0.5, whereas 0.5

corresponds to equal reliance on the lexicon and expectations, and 0 and 1 to ignore one

or the other. LMs that are bigger and trained on more data (BERT vs. biLSTM) were

associated with increased reliance on expectations, surpassing that on the lexicon (with

avg, α < 0.5): when the expectations formed by the LM are of better quality, they more

reliably contribute to interpretation.

That expectations need to be put more weight on than the lexicon to account for

word interpretation can be explained as follows. Expectations circumscribe the area of

the conceptual space that a speaker is expected to convey according to the context. This

information has an important context-sensitivity, but harbors uncertainty over the actual

word to interpret and the content this tends to encode. Under the assumption that a large

amount of information is predictable in language, expectations will however often be on

the right track (i.e., predicting relevant information), and thus a smaller – yet crucial –

contribution of lexical information (low α parameter) may already be effective.
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The behavior described above is the one found to perform best when kept constant

across word occurrences (constant α). However, it does not have to be the disambigua-
tion strategy that works optimally for each case. We found that the optimal weight put

on the two sources of information varies much across cases (Figure 4.4), and leads to a

better account of word interpretation than keeping the behavior constant. This suggests

that the reliance on expectations and the lexicon gets regulated in context, and raises

questions regarding the factors driving this variation. From a qualitative inspection,

what seems to mostly drive the division of labor between expectations and the lexicon

is (1) the accuracy of expectations, and (2) the dominance of a certain sense as encoded

in the lexical information. The first effect is compatible with accounts taking the role

of expected information to be facilitatory for processing (Kuperberg and Jaeger, 2016),

such as surprisal theory (Hale, 2001; Levy, 2008) and predictive coding (Clark, 2013):

the more expectations deviate from information compatible with the actual input, the

more laborious the revision process to adjust to the target word will be. The effect of

dominance in the encoded lexical information is in line with the approaches taking the

frequency of a sense to affect the information activated during comprehension (Rayner

and Frazier, 1989; Duffy et al., 2001), or assuming that some senses are more literal

than others (Asher and Lascarides, 2003; Wilson and Sperber, 2006). Frequent interpre-

tations are easier to retrieve and are the ones taken by default unless the context strongly

supports information that deviates from them.

More analyses would be beneficial to further understand the interplay between ex-

pectations and the lexicon during interpretation. It would be interesting to assess whether

different mechanisms are to be posited for different relations among possible senses

of a word (e.g., different morpho-syntactic categories, related or unrelated senses), or

rather based on a word’s or context’s property (e.g., sense dominance, or contextual

uncertainty). This could be studied focusing on data targeting specific subcases of lex-

ical ambiguity resolution (from syntactic disambiguation to metaphor comprehension),

as opposed to the current analyses where we focused on the framework’s explanatory

breadth at scale, considering trends in a large and diverse corpus. Modeling could also

offer insights into the division of labor between expectations and the lexicon; in partic-

ular, by extending the framework’s structure to allow for the parameter of reliance on

the two inputs (α) to be dynamically adjusted to the context.

The framework presented resonates with a series of proposals on ambiguity reso-

lution and processing, providing a methodology to instantiate and test some of their

assumptions through computational modeling. While some choices may be considered

limitations or elements of divergences (discussed more below), the methodology I pre-

sented represents a step forward to empirically ground mechanisms that are hypothe-

sized to characterize ambiguity resolution. In particular, our approach is in line with the

relevance-theoretic approach to lexical pragmatics. This takes word interpretations to be

derived considering lexically encoded information and contextual expectations of rele-
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vance (Wilson andCarston, 2007). Amodulation process adjusts the concept encoded by

a word (through processes like narrowing or loosening) until reaching an interpretation

that meets contextual expectations of relevance. Analogously, in our framework, the

interpretation is yielded by identifying an intermediate point between the lexical and ex-

pected information, highlighting their shared aspects. Differently from relevance theory,

our procedure does not consider an iterative process stopping when a suitable interpre-

tation is found (to minimize cognitive cost), but rather expectations and the lexicon are

combined in one step. Within pragmatics, our proposal also shows links to the Rational

Speech Act framework (Goodman and Frank, 2016): Expressions are associated with a

literal interpretation (typically, a distribution over meanings or features). This is then

used to compute a new interpretation (pragmatic or non-literal) taking into account ex-

pectations about rational language use from the side of the interlocutor (e.g., what would

be likely to convey in context; e.g., Kao et al. (2014)). The literal interpretation plays

an analogous role to lexical information in our framework, as it gets refined considering

the addressee’s contextual expectations.

Approaches that are also similar in spirit to our framework are accounts of word

meaning access (Rayner and Frazier, 1989; Duffy et al., 1988; Rodd, 2020). These may

differ in the assumed time-course of word information activation, but overall share the

idea that the information activated relevant to a word’s interpretation is dependent on (1)

information associated to its diversity of senses, with an advantage of dominant senses,

and (2) information supported by the context. As a result of the strength of activation, an

interpretation is selected (and the non-relevant information is suppressed). Akin to this,

in our framework, the lexical information makes available familiar senses of a word with

a bias towards the most frequent ones, while the expectations point to information that

is relevant to the context. The vector operations strengthen the activation of information

that is both lexically and contextually congruent.

While word meaning access approaches tend to focus on rather sharp sense distinc-

tions, pragmatic approaches tend to look at more nuanced cases (e.g., polysemy), in-

cluding more idiosyncratic usages (e.g., “Ironing is the new yoga”; Wilson and Carston

2007). Our proposed framework may therefore constitute a bridge to put together these

perspectives and provide a unifying account of word interpretation.

4.4.2 Methodological Considerations

The method we used to implement our model of interpretation involved representations

from pre-trained LMs as proxies for contextual expectations and the lexicon, and the

use of vector operations to combine them. It did not rely on supervision as to how

words should be interpreted, but only leverages the knowledge formed by a LM about

word-specific information (the word embeddings) and what is expected in a context

(word-level predictions). An important benefit of this approach, when comparing to

other accounts of lexical ambiguity (Small et al., 2013; Falkum and Vicente, 2015),
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is that it can be flexibly applied to different combinations of words and contexts, and

therefore enables large-scale evaluations of the posited interpretation mechanism.

Computational models of ambiguity resolution often need to rely on annotations or

intuitions about what is, for instance, the lexical information associated with a word (its

potential meanings) or what cues in the context can bias an interpretation. Crucially, this

constrains both the coverage and diversity of cases that a computational model can be

tested on. For instance, in the computational model of figurative interpretations of words

by Kao et al. (2014), the focus is on metaphorical interpretations of words referring to

animal categories. A word’s literal sense is encoded as a vector of elicited features

(e.g., scary for “shark”), and the linguistic context the word is embedded in is as simple

as, e.g., “He is a shark”, as a response to being asked how a certain person is.

Earlier models of ambiguity resolution in Computational Linguistics have benefit-

ted from the use of distributed representations learned entirely from data. In particu-

lar, a research branch focused on how distributional semantic representations of words,

underspecified in nature, can be contextualized to express the contextual contribution

of the word (Erk, 2010). The disambiguation process these works implement can be

described as co-composition (Pustejovsky, 1995; Asher et al., 2017), in that the repre-

sentations of the words in the sentential context are combined to modulate the lexical

information (Erk and Padó, 2008; Mitchell and Lapata, 2008; Thater et al., 2011). Such

approaches either apply a shallow processing of the context (considering bags of words)

or stipulate an elaborate interaction with syntax; either way, accounting for context be-

yond the sentence boundaries, and therefore discourse factors, proved difficult within

such framework (Bernardi et al., 2015). Deep learning models supposed a big step for-

ward for an automatic processing of linguistic sequences in that they learn their way of

encoding its content by combining the input words. Instead of focusing on representa-

tions reflecting how the model itself interpreted a word, we extract the representations

about the information that the model expects based on the context. This provided a way

of operationalizing the influence that a discourse context has on interpretation, which

can be then combined with that of lexical information.

The methodology we used therefore has a series of advantages. Yet, in future re-

searchmore analyses of the adequacy of the representations used in our framework could

be beneficial. We have built on existing evidence that embeddings derived from aword’s

distribution across contexts approximate lexical information to large extent, as shown

in tasks ranging from similarity relatedness scores to predict patterns of brain activa-

tion (see Lenci 2018 for an overview). However, few studies focused on the impact of

ambiguity on distributional representations; in particular, whether their underspecifica-

tion is a good parallel to the way humans encode lexical information, or, for instance,

the word embeddings overrepresent dominant senses. As for the representations of ex-

pectations, evaluations of LMs tend to focus on perplexity (looking at the probability

assigned to the word actually uttered in a corpus) but not on, for instance, modeling dis-
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tributions from a cloze task (e.g., what words humans would predict to fill a gap in a

sequence). The latter type of evaluation, especially if carried out on a large scale, can

help to assess whether the word-level expectations formed by LMs correctly reflect the

uncertainty humans have.

We can envision various ways in which in future work the current framework could

be implemented differently than in our experiments, or modified to accommodate as-

sumptions. For instance, many studies on ambiguity resolution, and in particular those

focusing on its time-course, focus solely on the role of the previous context for disam-

biguation, while we also incorporated the following context (using bidirectional LMs).

The framework is, however, not bounded to this choice and, depending on the pre-

trained LM used to obtain representations, can be made to use only the prior linguis-

tic context (with a unidirectional model), or even to incorporate the extra-linguistic one

(e.g, through an image; Lu et al. 2019). Moreover, some approaches reject the idea

that lexical information is represented in a unique representation, but rather senses are

separately stored (Klein and Murphy, 2001). One could modify the current framework

to operate with multi-prototype distributional representations (Schütze, 1998; Reisinger

and Mooney, 2010), where each sense of a word gets its vector representation.

Finally, one could use an analogous approach to that used in this chapter to obtain

proxies for expectations at different levels, for instance as an explicit probability distri-

bution over the potential interpretations of an expression. This is the approach I take in

Chapter 6 where a deep learning model is trained to compute a probability distribution

over the entities an expression could be referring to, on the basis of its context. This

allows us to study the role of contextual expectations on reference production.
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Chapter 5

SYNTACTIC AMBIGUITY

RESOLUTION IN NEURAL

LANGUAGE MODELS

In this chapter, I study the way neural language models (LMs) process and resolve ambi-

guities by quantifying their degree of uncertainty over a set of candidate interpretations.

In particular, I focus on the resolution of temporary syntactic ambiguities. A tempo-

rary ambiguity occurs when, during the incremental processing of a sentence, no contex-

tual cues are available so far to determine a unique interpretation; in the case of syntax,

multiple parses are simultaneously tenable (Frazier, 1978). As the sentence unfolds,

its resulting structure clarifies the intended interpretation, deeming the initial ambiguity

only temporary. The following sentences exemplify the case of the NP/S ambiguity:

(23) a) The fans knew the singer since 2008.

b) The fans knew the singer was going to release a new album.

The portion in italics is temporarily ambiguous as “singer” could act both as the direct

object of the main verb (23a) or as the embedded subject in an upcoming subordinate

clause (23b) – NP and S readings, respectively. When a LM process such an input does

it remain uncertain over the two interpretations, or does it have a default bias towards

one? Does the LM correctly adapts its behavior when disambiguating cues are instead

given?

I address these questions by estimating the underlying probability distribution over

interpretations in a LM, both when the input is ambiguous and when instead it contains

cues to the intended interpretation. This allows us to observe the degree of bias of the

LM for each interpretation when the input is in principle compatible with multiple ones

– its default preferences under ambiguity–, as well as the way the behavior changes as

the LM receives evidence for the intended interpretation – its context-sensitivity.
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In Chapter 3, to uncover the way lexical ambiguities are resolved, we looked at

the information encoded in the internal representations of LMs. I here introduce and

apply a behavioral analysis method, which focuses instead on the probabilistic output

of LMs. Concretely, we look at text generation as a window into a LM’s processing

of an unfolding sentence: by looking into how the model would complete an input we

estimate its degree of preference for its candidate interpretations.

5.1 Approach and Research Questions

Temporary syntactic ambiguities like NP/S (e.g., (23)) have received much attention in

psycholinguistics to studymechanisms in human sentence comprehension. In particular,

they proved useful to better understand the incremental parsing process: for instance,

whether when processing a sentence, only one or a subset of the possible parses are

considered (Frazier and Fodor, 1978), or all in parallel weighted by probability (Hale,

2001). Moreover, it has been investigated whether the default preferences over the in-

terpretation of a temporary ambiguity solely depend on syntactic principles, or are also

affected by lexical factors (MacDonald et al., 1994; Garnsey et al., 1997). The way an

interpretation is revised in cases of initial misinterpretations has also been a subject of

study (Pritchett, 1988; Grodner et al., 2003; Christianson et al., 2001). Analogously,

temporary ambiguities are also useful to study the underlying syntactic processing in

LMs. These deep learning models, despite not receiving any explicit signal on how

to parse sentences during training, were shown to exhibit much awareness to syntac-

tic structure, both at the level of their predictions (e.g, Linzen et al. 2016; Gulordava

et al. 2018b; Wilcox et al. 2018) and the information encoded in the internal represen-

tations (e.g., Giulianelli et al. 2018; Hewitt and Manning 2019).

Within the study of temporary ambiguities, much research focused on explaining

and modeling garden-path effects (Bever, 1970) – a high cognitive cost at disambigua-

tion taken to signal a preference for the alternative analysis. For instance, in (23b), the

garden-path effect would occur at “was” if the NP interpretation was initially preferred

(since “was” introduces the S reading). Estimates, like word surprisal, from unidirec-

tional LMs (processing text incrementally) have been used tomodel such effects in terms

of predictability (Van Schijndel and Linzen, 2018, 2021). But also one can test whether

LMs themselves exhibit some kind of garden-path effects (Futrell et al., 2019). These

results indicated that, as the LM processes the text incrementally, it considers a certain

interpretation of the input more likely, leading to high surprisal when this turns out to

be ultimately incorrect. Yet, the degree of imbalance to which a LM expects that inter-

pretation has not been directly quantified. As a result, it is not clear whether on this type

of ambiguities LMs tend to (1) select an interpretation, due to some default bias (only

to be revised at need), or (2) keep multiple options open until disambiguating evidence

is provided. This chapter attempts to clarify this by providing a general methodology to
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qualify the implicit distribution over interpretations of an input entertained by a LM.

We probe the degree of syntactic uncertainty that LMs have when processing tem-

porary ambiguities, using generation as an analysis tool. Generating text using a LM’s

output probabilities can be seen as a way of instantiating a LM’s expectations over an

unfolding sentence. As (23) show, the completion of a temporarily ambiguous sentence

portion clarifies the intended interpretation. We can therefore inspect how the LM in-

terprets an input by using its next-word probabilities to complete the sentence. Building

on this idea, we apply the following methodology to estimate the implicit distribution

over interpretations of the input: Given a target text as input (containing or not disam-

biguating cues as to its interpretation), we generate a set of sentence completions of an

input by repeatedly applying stochastic decoding (e.g., sampling words from the output

distribution). A sufficiently large set of completions can be seen as exemplifying what

the LM expects moving forward in the sentence, by exploring the LM’s probabilistic

output. The proportion of completions that are consistent with a certain reading of the

prompt – derived through an automatic classification – is taken to indicate the degree

that this reading is expected by the LM. Therefore, we use the relative frequency of that

reading in the sample to estimate its probability.

The idea of analyzing the text generated by a LM to understand its underlying dynam-

ics has not been explored much in previous work. Futrell et al. (2018) studied whether

LMs are aware of obligatory syntactic events by testing them on a relative clause com-

pletion task (e.g., after “The authors who the editor...”, the LM should complete both

the relative and the main clause). From each input, 9 completions were generated via

stochastic decoding and then manually annotated to establish their correctness. Our

methodology is analogous but we consider a much larger amount of completions to es-

timate the underlying distribution of a model over the input’s parse. Van Schijndel and

Linzen (2021) analyzed syntactic predictions of LMs after temporary ambiguous sen-

tence portions, looking at the next-word probabilities and grouping words by part of

speech. Though they focus on just one word, their approach is connected to ours in

that the expectations of the LM over an unfolding sentence are analyzed grouping its

predictions – in their case at the word level – based on syntactic information. We in-

stead classify a LM’s sentence completions. Another relevant work is that by Wei et al.

(2018), which looked at the syntactic properties of the text generated by machine trans-

lation systems. Analogously to our method, they rely on the use of an external syntactic

parser in order to analyze the generated text.

We consider three types of temporary syntactic ambiguities in English (NP/S, NP/Z,

Noun/Verb; I present these in Section 5.2); for each type, we derive prompts from

sentences drawn from psycholinguistic experiments (Grodner et al., 2003; Frazier and

Rayner, 1987). We compare the LM’s uncertainty on ambiguous prompts (e.g., under-

lined region in 23), as well as unambiguous prompts that vary in the number and location

of disambiguating cues (before and/or after the element involved in the ambiguity). To

87



“output” — 2021/11/30 — 7:00 — page 88 — #104

classify each generated sentence based on the interpretation it is associated with, we use

a set of rules based on the dependency labels predicted by a syntactic parser. The English

LMs we analyze in this study are the LSTMmodel released by Gulordava et al. (2018b)

and the transformer GPT2 (Radford et al., 2019). Both models were trained to carry out

unidirectional language modeling, processing the text from left to right and basing their

word predictions only on the previous context. This is motivated by the current focus on

the way ambiguities are incrementally resolved as the LM processes an unfolding sen-

tence and incorporates disambiguating cues. From a methodological perspective, also,

only this class of LMs can be used to generate text.

In spite of the focus on temporary syntactic ambiguities, the results of these analy-

ses can be informative also about the general ambiguity resolution strategy of LMs. In

Chapter 3 we studied this focusing on lexical ambiguities by looking at the way the word

information is processed across the depth of the network. To do so, we considered the

case where the LM could access both the left and right context of the work, assuming

(with some degree of simplification) that all disambiguating material was provided to

allow the LM to infer the correct interpretation. We here instead focus on studying the

behavior of the LM in the absence or presence of disambiguating cues, in terms of the

implicitly maintained distribution over interpretations. Temporary syntactic ambigui-

ties offer a controlled setup to study this. First, these syntactic ambiguities come with a

known discrete set of candidate interpretations, as well as clear contextual cues which

strictly constrain the interpretation of the sentence (i.e., excluding the alternatives). By

contrast, for semantic ambiguities, it would be more complex to list all candidate in-

terpretations as well as to identify the specific cues in a context that constrain them.

Finally, due to their temporary aspect, these ambiguities offer a way of observing the

time-course of ambiguity resolution in a unidirectional model – processing text from left

to right in English – by looking into how the interpretation of the LM changes as this

processes more information.

With these analyses, we thus address the following research questions about the pro-

cessing of ambiguities in LMs:

RQ1 When the input processed by a LM is ambiguous (i.e., it can be interpreted in mul-

tiple ways), does the LM a priori favor one interpretation, consequently assigning

it (nearly) all the probability mass? Or does it track and consider plausible multi-

ple interpretations?

LMs assign probabilities to words, while, as shown, keeping track of the syntactic infor-

mation in a sentence to a large extent. They can therefore be compared to a probabilistic

parser implicitly evaluating the likelihood of certain parses of a sentence (Futrell et al.,

2019). When processing an ambiguous input, where multiple interpretations are possi-

ble, the LM could exhibit different behaviors in terms of the degree of preference for

each interpretation. Concretely, it could display none or low degree of syntactic uncer-

tainty, if assigning all or most of the probability to one interpretation; or instead consider

88



“output” — 2021/11/30 — 7:00 — page 89 — #105

viable to a relatively large extent multiple interpretations, until disambiguating cues are

provided.

RQ2 Does an interaction between syntactic and lexical factors modulate the probability

of a syntactic interpretation entertained by a LM?

The items we use for each temporary ambiguity have the same sentence structure but

vary in their lexical items. If the LM’s default resolution of these ambiguities (without

disambiguating cues) depended solely on syntactic preferences, we should expect no

variation in terms of probabilities of interpretations across items that differently realize

the same ambiguity. Conversely, if we observe variation, this indicates that the LM’s

preferences are modulated in a context-dependent fashion. These results will allow us

to understand whether the LM’s behavior over syntactic ambiguities is therefore the

result of abstract syntactic preferences (e.g., minimal attachment; Frazier 1978), or an

interaction of syntactic and lexical factors (Garnsey et al., 1997).

RQ3 How responsive is a languagemodel to disambiguating cues in the input that reveal

the correct interpretation?

When disambiguating cues are available in the input, the interpretation of the sentence

is clear and a LM would behave correctly if it assigned all the probability mass to this

one, discarding the other alternatives. The lack of this behavior would suggest disam-

biguation issues, and therefore room for improvement for the context-sensitivity of the

LM during their processing of an input. In particular, we compare how a LM reacts to

different types of evidence for disambiguation: cues that appear before and/or after the

ambiguous region.

5.2 Temporary Syntactic Ambiguities

This section describes the types of temporary ambiguity and the materials used in this

study. These ambiguities are structural, and therefore affect the overall interpretation

of the sentence and resulting parse. However, they can be distinguished based on the

syntactic role of a certain word in the sentence, which we here refer to as the locus of

the ambiguity.

5.2.1 The NP/S Ambiguity

TheNP/S ambiguity was already briefly introduced in the previous section as an example

of syntactic ambiguity. I here present it in more detail. The sentence portion in (24)

is compatible with the main verb “understood” taking either a noun phrase (NP) or a

sentential (S) complement. This is reflected by the syntactic role of “contract” – the
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locus of the NP/S ambiguity – which could act as the direct object of the main verb

(labeled as root; 24a), or as the embedded subject in an upcoming subordinate clause

(24b).

(24) The employees understood the contract ...

a) The employees understood the contract well. → NP

DOBJROOT

b) The employees understood the contract would be changed very soon. → S

NSUBJ

CCOMP

ROOT

An equivalent of (24b) without temporary ambiguity can be obtained by adding the com-

plementizer “that” after the main verb, preempting the NP reading:

(25) The employees understood that the contract would be changed very soon. → S

For these experiments, we use the 20 NP/S sentence pairs from Grodner et al. (2003)

– unmodified versions.1 Each pair consists of a temporarily ambiguous sentence and its

unambiguous counterpart, both of which eventually have an S interpretation. The first

shares the basic structure of (24b); the other of (25). The items are built to create an

initial bias for an NP interpretation: First, the main verb appeared more often with a

direct object complement than a sentential one (estimated through the PennTreebank

corpus). Second, the locus of ambiguity is a plausible direct object of the main verb.

Nevertheless, an S interpretation is still possible, and we aim to quantify whether a LM

considers this as likely, or instead assigns all its probability to the NP interpretation.

From each sentence pair (ambiguous and unambiguous sentence), we derive four

types of prompt; i.e., the sentence portion which will be passed to the LM as input

for generation, and therefore whose processing we analyze. Examples of prompts are

shown in Table 5.1. No cue prompts correspond to the sentence portions with temporary

ambiguity. The other prompts contain at least one disambiguating cue, before or after

the locus of ambiguity: “that” is the pre-locus cue, while the post-locus cue is the word

immediately after the locus of ambiguity. This is a finite verb that introduces the verb

of the sentential complement. The specific word acting as post-locus cue varies across

items.

1Grodner et al. (2003) considered two variants of sentences, with or without material between the locus

of ambiguity and the post-locus cue (modified and unmodified, respectively). We use the unmodified

sentence pairs for both NP/S and NP/Z.
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Prompt type

no cue The employees understood the contract

post-locus cue The employees understood the contract would

pre-locus cue The employees understood that the contract

pre&post-locus cuesThe employees understood that the contract would

Table 5.1: Examples of prompt types for NP/S; locus of ambiguity underlined, disam-

biguating cues in bold.

5.2.2 The NP/Z Ambiguity

In (26), the verb “left” in the subordinate clause can be parsed as taking either a noun

phrase complement (NP) or none (zero complement; Z). The locus of ambiguity is

“party”, which can be the direct object of “left” (26a) or subject of the upcoming main

verb (26b).

(26) Even though the band left the party ...

a) Even though the band left the party I stayed. → NP

DOBJ

ADVCL

ROOT

b) Even though the band left the party went on for another hour. → Z

ADVCL

NSUBJ

ROOT

The unambiguous version of (26b) explicitly marks the boundaries between the subor-

dinate and main clauses, through the insertion of a comma:

(27) Even though the band left, the party went on for another hour. → Z

We use the 20 unmodified (see footnote 1) NP/Z sentence pairs from Grodner et al.

(2003). Both sentences in each pair ultimately had the Z interpretation, following the

structure of (26b) and (27), respectively. Analogously for NP/S, the ambiguous NP/Z

sentences are constructed to create an initial bias for the NP interpretation. The verb in

the subordinate clause appears more often in transitive than intransitive constructions,

and the locus of ambiguity is a plausible direct object.

From a sentence pair, we derive prompts following analogous criteria described for

NP/S ambiguity (cropping the sentence before and after the locus of ambiguity, respec-

tively). In this case, the pre-locus cue is the comma, while the post-locus cue – varying

across items – is a finite verb intended to act as the main verb of the sentence (examples

in Table 5.2).
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Prompt type

no cue Even though the band left the party

post-locus cue Even though the band left the party went

pre-locus cue Even though the band left, the party went

pre&post-locus cuesEven though the band left, the party went

Table 5.2: Examples of prompt types for NP/Z; disambiguating cues in bold, locus of

ambiguity underlined

5.2.3 The Noun/Verb Ambiguity

The last ambiguity we investigate involves words that have both a noun and verb reading.

This case is part of the general phenomenon of lexical ambiguity, which we already

looked into in the previous chapters. We here look into this further, in particular focusing

on those cases where the lexical ambiguity leads to a temporary structural ambiguity.

This is, for instance, the case of sentences like (28): if “suit”, the locus of this ambiguity,

is a noun, “pants” acts as its modifier; otherwise it acts as its subject.

(28) Mary thinks that the pants suit ...

a) Mary thinks that the pants suit is pretty. → Noun

NSUBJNN

DET

b) Mary thinks that the pants suit me well. → Verb

DET
NSUBJ

The temporary ambiguity in (28) can be preempted by replacing “the” with a determiner

that forces an interpretation through number agreement:

(29) a) Mary thinks that this pants suit is pretty. → Noun

b) Mary thinks that these pants suit me well. → Verb

We study this type of ambiguity using the data from Experiments 1 and 2 of Frazier

and Rayner (1987). Differently from the other ambiguities’ data, for each temporary

ambiguity, two sentence pairs are provided, with Noun and Verb interpretations, re-

spectively ((28a) and (28c) for Noun, and (28a) and (28b) for Verb). A minority of

cases employ disambiguating cues other than agreement, for instance additionally or

alternatively changing the word before the locus of ambiguity. In order to consider a co-

herent set of datapoints, we discard such cases, therefore focusing solely on the role of

agreement for disambiguation. This leaves us with 26 sentence pairs (out of 32) each for

Noun and Verb interpretations, respectively. We obtain prompts from the pairs, treating

the determiner as pre-locus cue in this case. As we have one pair of sentences for each
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Prompt type

no cue Mary thinks that the pants suit

post-locus cue

Verb Mary thinks that the pants suit me

Noun Mary thinks that the pants suit is

pre-locus cue

Verb Mary thinks that these pants suit

Noun Mary thinks that this pants suit

pre&post-locus cues

Verb Mary thinks that these pants suit me

Noun Mary thinks that this pants suit is

Table 5.3: Examples of prompt types for Noun/Verb; cues in bold, locus of ambiguity

underlined

reading (Noun and Verb), for unambiguous prompt types (all but No cue), we derive

two subtypes of prompts, as shown in Table 5.3. We can therefore inspect the behavior

of a LM in both of the scenarios where the disambiguating cues lead to the Noun and

Verb resolution of the ambiguity, respectively.

5.3 Methods

5.3.1 Language Models

We evaluate two English language models. Both models are trained on unidirectional,

or causal, language modeling: for each word prediction, they solely take into account

the previous linguistic context. As mentioned earlier, this is motivated by the focus

on temporary ambiguities, where incrementality of processing plays a crucial role: a

bidirectional model, accessing both the left and right context of a word, would be able to

observe the entire sentence, thus at any point accessing cues that give away the correct

interpretation. Moreover, we can only use this class of model for text generation (at each

timestep, we need to generate the next token given the preceding ones). Therefore, the

methodology we propose for this study can only be run on such models.

The first LM we evaluate is the LSTM released by Gulordava et al. (2018b). This

LM has two hidden layers; the hidden and input embedding size is set to 650 units.

Through recurrent connections between timesteps, the model processes the text from left

to right. The LM was trained on an 80M-tokens Wikipedia corpus, with a vocabulary of

50K words. The other LM is the transformer-based GPT2 in its small version (Radford

et al., 2019).2 This model builds on the architecture of Radford et al. (2018) and consists

2GPT2 is used through the Transformers library (Wolf et al., 2020). For text generation, we build on
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of 12 hidden layers of transformer blocks with 12 attention heads each. The hidden and

embedding size is set to 768 units. Masked self-attention is applied in order, for each

timestep, not to attend to future positions in the input, and thus output a prediction only

based on the previous context. The model was trained on the 40GB WebText corpus,

using Byte Pair Encoding (Sennrich et al., 2016). It has a vocabulary of ≈50K items,

comprising both words and subwords. GPT2, which surpasses the LSTM in both model

and training corpus size, was shown to have remarkable text generation abilities. We

can therefore expect this LM to generate more fluent text.

5.3.2 Estimating Syntactic Uncertainty

Text Generation

From a prompt we generate a completion through stochastic decoding: at every iter-

ation of the generation algorithm, a word is generated sampling from the LM’s output

distribution over the vocabulary. Concretely, the LM processes an input and outputs

a probability distribution over the next token (Eq. 5.1); from this, a word is sampled

(Eq. 5.2) and incorporated in the input. The process is then repeated to generate the next

tokens.

P (Xi+1|x1:i) = LM(x1:i) (5.1)

xi+1 v P (Xi+1|x1:i) (5.2)

To obtain the sentence completion of a prompt, we iterate the generation step for a fixed

number of tokens, then crop the text to automatically identified sentence boundaries.3

More details are provided in Appendix C.1.

There exist variants of stochastic decoding which modify the LM’s output distribu-

tion before sampling, such as truncated sampling or the use of temperature (Holtzman

et al., 2019). Though these were found to improve the quality of the generated text,

applying such techniques alters the LM’s output behavior. For this reason, for the main

experiments, stochastic decoding is applied with no such modifications in order to es-

timate the LM’s uncertainty before any intervention that could modify it. However, in

Section 5.5.1 we analyze how changes in the decoding strategy affect the text generated

by the LM on ambiguous prompts.

Estimating the Probability of an Interpretation

The syntactic ambiguities presented in the previous section all consist of a scenario

where the locus of ambiguity has two potential interpretations, which we here refer to

the available decoding functions, adapting them to also work on the LSTM.
3Using Spacy Sentencizer.
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generically as i1 or i2. In principle, however, our method can be generalized to the case
with more than two interpretations.

We aim to estimate the probability that the LM assigns to each interpretation after

processing the prompt; that is, a Bernoulli distribution such that:

P (i1|prompt) = 1− P (i2|prompt) (5.3)

We derive an empirical estimate of this distribution by independently sampling a set of

sentence completions of the prompt (Cprompt) and classifying them by the interpretation

they imply of the locus of ambiguity. In our experiments, we generate 100 completions

of each prompt, sampled with replacement (i.e., the same completion may be generated

more than once).4 The relative frequency of interpretations in the sample is then used to

estimate their probabilities:

P̂ (i1|prompt) =
|{c ∈ Cprompt|interpretation(c) = i1}|

|Cprompt|
(5.4)

This allows us to quantify the degree of preference of the LM for each interpretation of

the prompt, and thus its uncertainty. For unambiguous prompts, the desired behavior

is that the probability of the correct interpretation is 1, as the LM only generates com-

pletions that are consistent with it. In the presence of ambiguity (No cue prompts), the

LM could distribute the probability mass across multiple interpretations. The degree to

which this occurs reveals how uncertain the LM is about the interpretation of the input.

If almost exclusively generating completions of one type, we can conclude that the LM

has a strong default preference for that reading; otherwise, that the LM considers both

as viable options, possibly to different degrees.

This operationalization thus enables us to inspect the question of whether the LM’s

behavior on syntactic ambiguities is driven by absolute or graded default preferences

(RQ1), and whether such preferences vary across instances of an ambiguity suggesting

an interaction between syntactic and lexical factors (RQ2). The former aspect is observ-

able looking at the variation of the estimated probability values across items. Finally,

by looking at the model’s behavior on unambiguous prompts, we can check whether it

uses the disambiguating cues to commit to the correct interpretation (RQ3).

Completion Classification

The method described above requires to classify completions based on the syntactic

interpretation of the locus of ambiguity (e.g., for NP/S prompts, whether they are com-

pleted leading to an NP or an S interpretation.) This can be done through manual or

4In practice, the same completions were rarely sampled more than once. The average proportion of

unique completions in a sample (pooling together all prompt types) is at least 98% for all ambiguity types

and LMs. We report further results on the diversity of generated completions in Appendix C.2.
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automatic classification. A manual classification is highly reliable, but less practical

when a large set of sentences needs to be analyzed (in our case, 100 for each prompt).

Moreover, annotations regarding the syntactic analysis of a sentence require linguistic

expertise and therefore would be complex to collect, for instance, through crowdsourc-

ing. By contrast, an automatic classification relies on the use of an external syntactic

parser, thus making the process much more efficient. However, the predicted classifica-

tion may introduce noise in case the parser itself incorrectly disambiguates the sentence.

Even though state-of-the-art parsers are highly reliable, sentences with potential ambi-

guities may indeed be a source of potential errors.

As a compromise, we use automatic annotations and assess their quality by com-

paring them to manual annotations collected for a subset of sentences. This step acts

as a sanity check to assess whether the automatic annotations tend to be reliable. For

the automatic classification, we use the AllenNLP (Gardner et al., 2018) dependency

parser, based on the model of Dozat and Manning (2017). This reaches a label attach-

ment accuracy with predicted part-of-speech tags of 92.86%. Once a sentence is parsed,
we use a set of rules, defined for each ambiguity type, to classify completions based on

the predicted labels. It may occur that a completion cannot be traced back to either of the

candidate interpretations. This tends to be due to some error of the parser, an ill-formed

completion, or a correctly detected alternative interpretation. Since in practice, this is

a rare scenario, for simplicity, such completions are discarded from the sample for the

analysis. For each ambiguity type, I report the rules used to classify completions in its

relevant section; more details are then presented in Appendix C.3.

For each type of ambiguity, a random sample of 80 sentences (20 × prompt type)

generated by GPT2 was manually annotated. This is carried out by three trained lin-

guists, each of whom reviews data from a different ambiguity type. The annotator

chooses between the two candidate interpretations, but also other and unclear (if an

alternative or no interpretation can be derived, respectively). Binary judgments on the

syntactic well-formedness of the sentences are also collected (we do not consider the

semantic plausibility of the sentence, due to the focus of our study on syntax). Since

character and punctuation errors are frequent (e.g., a misspelled word, or the incorrect

presence of a punctuation mark), annotators can specify when a sentence would count

as grammatical without such errors. Overall, 66% of NP/S completions, 61% of NP/Z

completions, and 66% of Noun/Verb completions are judged to be fully well-formed. If

we ignore spelling and punctuation errors, these percentages increase to 75%, 74%, and

85%. Given that the presence of grammatical errors was relatively much more frequent

than the use of the label unclear, we conclude that, at least to some extent, the suboptimal

quality of a generated text does not limit the applicability of this method: the function

of the locus of ambiguity is still typically distinguishable.

96



“output” — 2021/11/30 — 7:00 — page 97 — #113

LSTM GPT2

no cue

0.0

0.2

0.4

0.6

0.8

1.0
P

(S
)

LSTM GPT2

post-locus cue
LSTM GPT2

pre-locus cue
LSTM GPT2

pre&post-locus cue

Figure 5.1: Distribution ofP (S) for each NP/S prompt type and LM. Each dot represents

the value for a prompt item, as estimated considering its completions sample; the circle

indicates the mean across items.

5.4 Results

5.4.1 The NP/S Ambiguity

Classification. The NP and S interpretations can be distinguished through the syntac-

tic role of the head of the noun phrase that contains the locus of ambiguity (direct object

or subject leading to the NP and S interpretations, respectively; see the example of (24)):

The locus of ambiguity can itself be the direct object or subject; or it can be part of a

complex NP, where, for instance, it is the modifier of another noun.

The employees understood the contract ...

DOBJ
NSUBJ

ROOT

The employees understood the contract clauses ...

DOBJ

NSUBJNMOD

ROOT

To classify completions based on this criterion, we then define a set of rules, based on

the labels predicted by the dependency parser (reported in Appendix C.3). To reduce
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noise from parser errors, we define a heuristic that corrects the most typical type of

misclassification (NP instead of S). This involves a failure to detect S cases, labeling the

locus of ambiguity as a direct object when followed by a finite verb:

The mechanic accepted the car looked great

CCOMP

DOBJ

ROOT

This parse is not only incorrect but also ungrammatical, as it leaves the verb after the

locus without a subject. The classification is therefore corrected to NP.

If these rules do not identify the interpretation as either NP or S, the sentence is dis-

carded from the completions; for both LMs, this is the case for 0.2% of the completions,

across all prompt types. We validate the classification method in two ways. As a first

check, we run it on the original sentences from which the prompts were derived, whose

correct interpretation we know from the start: all of them are correctly classified. We

then compare the collected manual annotations to the automatic ones, and find the latter

ones to be reliable: There is a near-perfect agreement between the manual and automatic

annotations (Cohen’s k = .96). The annotator never used the label unclear.

Results. Based on the distribution of NP and S completions in the generated sentences,

we compute P (S) for each prompt (P (NP) = 1− P (S)). The distribution across items
for the different prompt types is visualized in Figure 5.1, where each dot represents the

value of P (S) for a certain prompt, computed from its completions sample. Examples

of completions for the different prompt types can be found in Table 5.4.

We focus first on the No Cue prompts, which are ambiguous between NP and S.

Both LMs are often uncertain – to varying degrees – between the two interpretations of

a prompt. With exceptions, they exhibit a preference for NP (P (S) < .5), though this
preference is typically not absolute, as S completions are also generated (e.g., (1b) in

Table 5.4). This indicates that, in the presence of the NP/S ambiguity, the LMs tend to

consider multiple parses at the same time. In spite of the general preference for NP,P (S)
values vary across items: syntactic uncertainty depends on the context, with some cases

even favoring an S analysis. This indicates that lexical factors modulate the syntactic

expectations of the LM, with different instances of the NP/S ambiguity (differing in their

lexical items) giving rise to different default preferences. The two LMs exhibit the same

trends, though GPT2 seems to favor more often the S interpretation than the LSTM.

The other prompt types all contain at least one cue disambiguating the sentence as

S (before and/or after the locus of ambiguity): for the LM to behave correctly, it should

generate only completions consistent with S, as NP would lead to an ungrammaticality.

In line with this prediction, for all these conditions and LMs, P (S) is very close to 1.
Considering that in No cue prompts the LMs tend to favor NP, this indicates that the

LMs are responsive to the disambiguating cues and use them correctly to adapt their be-

havior. A qualitative inspection of the sentences supports this observation, as there is no
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(1) The scientist proved the theory

a) through two experiments. (NP) b) was correct. (S)

(2) The tourists saw the palace was

a) on fire. (S) b) under construction. (S)

(3) The journalist confirmed that the story

a) is false. (S) b) was being reported on his network. (S)

Table 5.4: Examples of completions generated by GPT2 for NP/S prompts.

evidence of disambiguation issues: the LMs correctly pursue the interpretation clarified

by the disambiguating cue (e.g., (2-3) in Table 5.4). A minority of completions of unam-

biguous prompts are classified as NP. This occurs due to occasional misclassifications,

but also ill-formed completions whose interpretation is unclear (e.g., “The employees

understood that the contract.”; completion underlined), or when NP is actually licensed

despite the post-locus cue (e.g., “The army found the supplies saved by the French.”).

Overall, we can conclude that the LMs tend to display some degree of syntactic

uncertainty when processing NP/S ambiguities. The detected general preference for

NP over S is compatible with results reported by other studies looking at the behavior

of LMs on NP/S ambiguities (Van Schijndel and Linzen, 2018) and in particular their

surprisal level when encountering an S analysis. Analogously, humans were found to

exhibit garden-path effects over NP/S sentences indicating that they initially favor the

NP interpretation (for instance, on these very same items, see the results by Grodner

et al. 2003). In our results, we could also see that the degree of preference of a LM for

the NP is usually non-absolute (the S interpretation is also tracked) and also vary from

case to case, with even some cases favoring an S analysis. When disambiguating cues

are given, the LMs correctly adapt to pick the intended interpretation.

5.4.2 The NP/Z Ambiguity

Classification. NP and Z interpretations can be distinguished following the same cri-

terion of the NP/S ambiguity: based on the syntactic role (direct object or subject for NP

and Z, respectively) of the locus of ambiguity.

Even though the band left the party ...

DOBJ
NSUBJ

We thus employ the same set of rules we used for distinguishing NP and S cases. The

rule correcting cases where a subject is labeled as direct object tend to be crucial for this

classification, as the parser is prone to errors on NP/Z temporarily ambiguous sentences.

A total of 0.6% and 1.4% of GPT2 and LSTM completions, respectively, cannot be

identified as either NP or Z, and are thus discarded from the analysis. When run on the
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Figure 5.2: Distribution ofP (Z) for eachNP/Z prompt type and LM. Each dot represents

the value for a prompt item, as estimated considering its completions sample; the circle

indicates the mean across items.

original sentence pairs, the classification always derives the correct analysis (Z). The

agreement between the automatic and manual annotations is high (Cohen’s k = .86);
the divergences that occur are all due to the use of the label unclear by the annotator (4

sentences), an option which is not available to the parser.

Results. Figure 5.2 shows P (Z) values (P (NP) = 1 − P (Z)) for each prompt type.
Examples of completions are reported in Table 5.5.

In the ambiguous No cue prompts, there is limited syntactic uncertainty: P (Z) stays
close to 0 (on average, .03 and .04 for GPT2 and LSTM), as NP completions are gener-

ated much more often than Z ones. This indicates that both LMs strongly favor the NP

analysis over the Z one when no disambiguating cues are given, with, in the vast major-

ity of cases, virtually no syntactic uncertainty. The preference for the NP interpretation

is in line both with preferences found in humans (Grodner et al., 2003) and other results

on the behavior of LMs on NP/Z ambiguities (Futrell et al., 2019).

Despite this default preference for NP, when there is at least one cue that biases the

prompt to the Z reading, P (Z) spikes to 1 or close to it. This corresponds to the expected
behavior on unambiguous prompts, where the Z interpretation is the only viable one. A

qualitative inspection confirms that indeed most cases are correctly disambiguated (e.g.,
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(1) In case the executive forgot the assistant

a) , the assistant was never fired and so on. (NP)

b) explains the recommendations to this memo. (Z)

(2) Because the train stopped the traffic was

a) much slower. (Z) b) suspended immediately. (Z)

(3) Even though the girl phoned, the instructor

a) ignored her. (S) b) was too rude. (S)

Table 5.5: Examples of completions generated by GPT2 for NP/Z prompts.

(2-3) in Table 5.5). The few completions labeled as NP are due to misclassifications or

cases with unclear interpretation, analogously to those reported for NP/S.

However, around 8% and 25% of completions to Post-locus cue prompts of the

LSTM and GPT2, respectively, exhibit behavior that we take to be indicative of an un-

derlying confusion over the sentence structure, in spite of the Z interpretation being se-

lected.5 Concretely, the subordinate clause ends up ungrammatically incorporating two

predicates, as exemplified by the following sentences (generated by GPT2; completion

underlined):

(30) As the couple danced the tango began , the paparazzi swooned.

(31) Once the child played the piano was ours, it was somewhat expected.

An alternative grammatical interpretation of the sentence is possible if the comma joins

two coordinate clauses, without a conjunction. However, the pervasiveness of this be-

havior with Post-locus cue prompts is suspicious: for comparison, in Pre&Post-locus

cue, it only affects 0.01% of completions. Besides, all cases where the annotator used

the label unclear were cases like this and were judged as ungrammatical. The occur-

rence of this phenomenon suggests that even when the Z reading is selected, the LMs

may not fully adapt to its structure. The cause may be a lingering effect of the initially

preferred NP analysis, or, more generally, difficulty in establishing the boundary be-

tween the subordinate and main clauses when it is not marked by a comma. Based on

the aforementioned estimates, GPT2 seems to be affected more by this phenomenon.

All in all, the results indicate that with NP/Z ambiguities the LMs have a strong bias

for the NP reading. With disambiguating cues for Z, the LMs pick the correct analy-

sis, but, without a comma between the subordinate and main clauses, the LMs may still

appear confused as to the structure of the sentence. That the LMs have difficulties in

adapting to these temporary ambiguous sentences can be justified by the fact that typi-

cally a comma is indeed placed between a subordinate and main clause, even more so

5We identify these sentences through patterns in the dependency label: the post-locus cue is not rec-

ognized as the main verb, which instead appears after a comma, without an intervening conjunction (see

Appendix C.3 for more details).
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(1) Nobody knows if it’s true that the university fines

a) are ever issued. (Noun) b) people who don’t study. (Verb)

(2) Mrs. Baker is convinced that the school fears are

a) valid points. (Noun) b) unfounded. (Noun)

(3) Mary thinks that the pants suit me

a) better. (Verb) b) really in a bad way. (Verb)

(4) Despite last year’s report, those city hopes

a) varied. (Noun) b) to become wealthier. (Verb)

(5) I know that this desert trains

a) people to work! (Verb) b) are closed. (Noun)

Table 5.6: Examples of completions generated by GPT2 for Noun/Verb prompts.

when this could lead to an ambiguity (in speech, these sentences can instead be disam-

biguated through prosody). The LM may then not observe sufficiently this construction

in the training corpus to learn, on the one hand, that the Z interpretation is initially possi-

ble, and, on the other, how to fully recover when this eventually results to be the intended

interpretation.

5.4.3 The Noun/Verb Ambiguity

Classification. To classify the generated sentences, we use the part-of-speech label

predicted by the parser for the locus of ambiguity. When running the classification on

the original sentence pairs, the classification sometimes fails, meaning that the tagger

does not correctly interpret at least one of the sentences associated with that ambiguity

(4 in total). To minimize noise, we discard the items where the parser failed, under the

assumption that if that ambiguity is challenging to the parser already on these sentences,

then errors are likely to spread also to the LM-generated sentences. This leaves us with

21 prompts for each prompt subtype. The agreement between the automatic labels and

the annotator’s ones is high (Cohen’s k = .83). Differences occur due to tagging errors
and sentences annotated as unclear by the linguist (5 cases).

Results. P (Verb) values for each prompt type are shown in Figure 5.3, while examples
of completions can be found in Table 5.6. For ambiguous prompts – i.e., No cue – the

dispersion of values is very high for both models, in particular even higher than what was

found for NP/S No cue prompts. Though there is on average a preference for the Noun

reading (mean P (Verb) ≈ .4), the degree of syntactic uncertainty and the preferred

interpretation vary across items. This indicates that the LMs’ behavior on this temporary

ambiguity is highly dependant on its instance. Since the prompts differ in the ambiguous
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Figure 5.3: Distribution of P (Verb) for each Noun/Verb prompt type and LM. (a) and

(b) report the results on prompts with Noun and Verb interpretation, respectively (the

no cue condition is the same for both). Each dot represents the value for a prompt item,

as estimated considering its completions sample; the circle indicates the mean across

items.
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word (the locus), an option is that the uncertainty depends on the lexical information the

LM has acquired about that word. In this case, we could read P (Verb) as indicating the
degree of dominance of the verb sense for the word, according to the learned lexicon

of the LM. But it is also possible that the degree of bias towards an interpretation is

also affected by the combination of the lexically ambiguous words and, for example,

the previous one (e.g., “suit” vs. “pants suit”), with a more complex interaction between

lexical and syntactic factors.

For Post-locus cue prompts, P (Verb) adapts to the disambiguating cues, approach-
ing 0 and 1 for the Noun and Verb reading, respectively. In the latter case, we find some

inter-item variation, due to some completions labeled as NP. A qualitative inspection

shows that this tends to occur when a Noun reading is licensed despite the post-locus

cue (e.g., “some metal rings loudly beat into our ears.”), or due to tagger errors. We

generally do not find evidence of disambiguation issues on these prompts (e.g., (2-3) in

Table 5.6).

By contrast, Pre-locus cue prompts, especially in the Verb subtype, pose more chal-

lenges to the LMs. P (Verb) values tend to follow the expected trends (decreasing for

the Noun cases, and increasing for the Verb cases), but with much variation. In some

Verb cases, we do not even find a preference for this reading (i.e., P (Verb) < .5). This
behavior is not the expected one as the disambiguating cue constrains the correct inter-

pretation. In particular, Pre-locus cue prompts are disambiguated by the number of the

determiner. These results suggest that the LMs are not fully responsive to this cue, es-

pecially when pointing to a Verb reading. The LSTM shows a larger variation of values

than GPT2, indicating greater disambiguation difficulty. A qualitative analysis confirms

these observations: besides a portion of tagger errors, we find several completions that

persist in the incorrect interpretation, thus violating number agreement (e.g., (4b) and

(5b) in Table 5.6). This phenomenon can be explained by two scenarios. On the one

hand, the LMs may have difficulty in capturing and tracking information on the number

of the determiner (in particular the LSTM), and therefore it does not recognize the deter-

miner as a disambiguating cue. Alternatively, the number of the determiner is actually

kept track of, but the preference for an alternative interpretation eventually overrides its

effect on disambiguation.

In general, we find that classification errors occur more often with the Noun/Verb

ambiguity than with the previously analyzed ones. Lexical ambiguities are challenging

for NLP systems, including when not causing temporary structural ambiguities (Elkahky

et al., 2018). As errors introduce noise, our quantitative estimates can only be considered

approximate. Yet, as mentioned earlier, the trends they point to are reliable as they are

all confirmed by qualitative analyses of the data.

To summarize, on Noun/Verb temporary ambiguities the LMs’ uncertainty tends to

strongly depend on the ambiguity instance. The LMs tend to be responsive to disam-

biguating cues, shifting their preferences towards the correct interpretation; however,
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some issues in the disambiguation arise if the only cue is the number of the determiner.

5.5 Follow-up Experiments

5.5.1 Effect of Decoding Strategy

In our previous experiments, we generated completions by sampling from the LM’s

output distribution. We compare this approach to other decoding strategies, focusing on

NP/S No cue prompts.

Stochastic Decoding. Variants of stochastic decoding modify the LM output distribu-

tion before sampling words from it. Restricting or biasing the sampling process to high

probability words can improve the quality of the generated text (Holtzman et al., 2019),

while at the same time reducing the diversity of the text that can be generated from the

prompt.

In nucleus sampling, the LM distribution is truncated to the set of top-probability

words such that their cumulative probability is at least p – the nucleus size: words that
do not fit in this set are assigned zero probability, and the distribution is recomputed.∑

v∈V p P (xi+1 = v|x1:i) ≥ p (5.5)

if v /∈ V p, P (xi+1 = v|x1:i) = 0 (5.6)

P (Xi+1|x1:i)
′ = softmax

(
P (Xi+1|x1:i)

)
(5.7)

The lower the value of p is set to the less words the probability mass is distributed over.
Another technique is that of re-shaping the distribution over words by dividing the

output scores by a parameter t – temperature – before softmax is applied:

P (xi+1 = v|x1:i) =
exp(ov/t)∑

v′∈V exp(ov′/t)
(5.8)

If t ∈ [0, 1), the distribution is skewed towards high probability words: the lower the
temperature parameter, the more high-probability words become even more likely to be

sampled, further flattening the values at the tail of the distribution.

We inspect how these decoding strategies affect the diversity of interpretations of

completions to an ambiguous prompt. As p or t decreases, words in the tail of the dis-
tribution are less likely to be sampled. For different combination of values of p and t,
we generate a set of completions from prompts and report the average P (S) (Table 5.7),
following the procedure described in Section 5.3. Standard stochastic decoding, adopted

in the previous experiments, corresponds to the setup where p = 1 and t = 1 (the output
distribution of the LM is left unchanged). The values of P (S) decrease as the hyperpa-
rameters are modulated to focus on high-probability words (t or p decreases), indicating
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that a lower number of S completions get generated. This indicates that temperature and

nucleus size can influence how ambiguities in an input get resolved in the text generated

by a LM: Focusing on top-probability words increases the bias towards the preferred

interpretation (NP, in the case of NP/S), which now more consistently manifest in the

completions, thus limiting the “syntactic” diversity of the completions.

Maximization-based Decoding. In the previous experiments, we considered a sam-

ple of completions generated from a prompt to infer the LM’s expectations over its anal-

ysis. Alternatively, one could look at the completion to which the LM assigns the highest

probability as a way of establishing the overall preferred interpretation. Is the prefer-

ence for an interpretation observed sampling multiple completions also reflected in the

interpretation of the top-probability completion? To study this, we use beam search

as maximization-based decoding strategy, returning the completion ranking highest in

probability. Concretely, the beam search generation algorithm keeps track, at every

timestep, of the beam of most likely sequences so far (we use beam size= 16). Since in
this case we consider only one completion per prompt, P (S) for beam search in Table 5.7

corresponds to the proportion of prompts whose top-completion has an S interpretation.

The results show that most – though not all – prompts have an NP interpretation. This

is in line with what was found in our experiments using stochastic decoding: in NP/S

temporary ambiguities, the LMs have a general preference for the NP interpretation, but

this does not apply uniformly to all instances as in some cases many S completions are

also generated. It is however important to emphasize that, while maximization-based

decoding can be seen as an alternative way of probing the preferred interpretation of a

LM, it does not inform us about the degree to which this is expected. For this purpose,

we require to explore the expectations of the LM more broadly, as we did when using

stochastic decoding to generate a sample of completions.

5.5.2 Comparison to Surprisal Approaches

Previous work has probed the syntactic state of a LM in a temporarily ambiguous sen-

tence bymeasuring the surprisal at the disambiguation point – underlined in (32) – (Futrell

et al., 2019): If surprisal is higher than in the unambiguous sentence (33), we can infer

that LM initially preferred the alternative, ultimately incorrect analysis. This is because

it was not as surprised when instead a pre-locus disambiguating cue had already revealed

the interpretation.

(32) The employees understood the contract would be changed very soon.

(33) The employees understood that the contract would be changed very soon.

Both this surprisal-based method and our generation-based one can be seen as ways

of probing the syntactic expectations of a LM. Our method estimates the implicit prob-

106



“output” — 2021/11/30 — 7:00 — page 107 — #123

p t LSTM GPT2

Pure sampling 1 1 .19 .27

Nucleus sampling .9 1 .18 .24

.75 1 .15 .23

.6 1 .15 .22

With temperature 1 .9 .18 .24

1 .75 .15 .24

1 .6 .14 .23

Beam search - 16 - - .10 .25

Table 5.7: Average P (S) for different decoding strategies on No Cue NP/S prompts (p:
nucleus size; t: temperature).

abilities assigned to the candidate interpretations by the LM. Word surprisal scores do

not measure these probabilities but can be seen as reflecting them: the more likely an

interpretation of an input, the less surprisal difference at disambiguation should be found

between the ambiguous and unambiguous versions of the input (e.g., between (32) and

(33)).

Focusing on NP/S temporary ambiguities, we compare the two approaches to assess

whether they are aligned in their estimates. On the one hand, we calculate the differ-

ence in word surprisal of the disambiguating word that follows the locus of ambiguity

(i.e., the post-locus cue) between the ambiguous and unambiguous sentences of a pair

(e.g., (32) and (33)). On the other, we calculate the P (S) values on No cue prompts,
following our generation-based method. For both LMs, there is a strong negative cor-

relation between the two estimates (GPT2: Spearman’s ρ = −.70; LSTM: ρ = −.81;
both p < .05). As the probability of the S interpretation increase, the less difference

in surprisal is found when the sentences is disambiguated as S – at the post-locus cue

– in the temporarily ambiguous sentence and its unambiguous equivalent, respectively.

This result corroborates that, even though surprisal estimates do not directly quantify

expectations about syntactic interpretations, they do reflect them to a large extent, given

how aligned they are to our estimated probabilities of interpretations. This moreover

indicates that the insights observed with either method when probing the syntactic ex-

pectations of a LM are robust. In the next section, I further compare the two approaches,

highlighting advantages of our generation-based approach.
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5.6 Summary and Discussion

In this chapter, I have introduced a method to study the uncertainty of a LM over the

interpretation of an input. Text generation was used as an analysis tool; in particular,

to estimate a probability distribution over the candidate interpretations. We applied the

method to study the resolution of temporary syntactic ambiguities, shedding light on the

degree of preference of LMs for certain readings in both the absence and presence of

disambiguating cues in the context. In the following, I first discuss the implications of

our findings for the understanding of LMs’ behavior, as well as avenues for future work.

I then discuss potentialities and challenges of the methodology introduced.

5.6.1 Language Models and Syntactic Ambiguities

A large amount of previous research provided evidence that LMs take into account syn-

tax to a large extent when processing an input (Linzen and Baroni, 2021). When the

input is compatible with multiple parses, some works provided evidence that the LMs

tend to have an initial preference for one of the interpretations, exhibiting a surprisal level

at disambiguation mirroring garden-path effects in humans (Van Schijndel and Linzen,

2018; Futrell et al., 2019). However, these studies did not directly clarify the degree to

which, in presence of ambiguities, the LM is uncertain among multiple interpretations.

The results reported in this chapter contribute to this question by quantifying the extent

to which each potential interpretation of an input is implicitly entertained by the model,

both on ambiguous and unambiguous inputs.

Ambiguous Inputs (No cue). We found that when processing temporary syntactic

ambiguities, LMs often exhibit uncertainty over the interpretation of the input; that is,

they consider two candidate interpretations simultaneously viable (i.e., neither of them

is assigned all – or nearly all – probability mass). This is displayed by the diversity of

sentence structures in the completions generated by the LM. The presence of syntactic

uncertainty was found for NP/S and Noun/Verb ambiguities. By contrast, on NP/Z am-

biguities, a consistent and strong preference for the NP reading was found, indicating

that the LM has learned to resolve these ambiguities via a general syntactic preference

leading to essentially ignore the Z reading across cases. This can be justified by the

infrequency of temporarily ambiguous NP/Z sentences which eventually result in a Z

interpretation (without a comma marking the boundary between the subordinate and

main clause; e.g., “Event though the band left the party it went on for another hour.’).

On NP/S and Noun/verb ambiguities, syntactic uncertainty tends to be present but

with much inter-item variation in terms of how likely an interpretation is considered.

This dispersion of the values indicates that the way the LMs process these ambiguities,

when no disambiguating cue is given, depends on the concrete instance, varying in the

lexical items used to realize it (e.g., “The employees understood the contract...” vs. “The
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mechanic accepted the car...”; “the warehouse fires...” vs. “the pants suit...”). This

suggests that the LMs take into account other factors other than just abstract syntactic

preference when resolving these syntactic ambiguities, leading to a diverse behavior

across cases.

Some evidence that this is the case at least for humans was provided by several stud-

ies. For instance, Garnsey et al. (1997) showed that in the processing of NP/S ambigui-

ties there is an effect of the strength of the main verb bias (e.g., how often “understand”

occurs with a direct object or sentential complement) and of the plausibility of the locus

of ambiguity for an NP reading (e.g., “The employees understood the contract vs. the

breakfast ...”). We used the NP/S items from Grodner et al. (2003), which all included

main verbs biased for an NP reading based on subcategorization frequencies. We indeed

found a general preference for the NP reading in the LM’s behavior, but still with much

variation in degree, with even some cases favoring an S reading.

The inter-item variation was even higher on Noun/Verb ambiguous prompts. The

items from Frazier and Rayner (1987), used in our experiments, were not controlled for

the dominance of the interpretations (e.g., how often “suit” is used as a noun vs. verb).

In a post-hoc analysis, they collected judgments over the preferred interpretations for

the items and found them to vary in this respect: roughly, half of the items favored the

Noun reading, and half the Verb reading. Given this variation, it is not surprising that a

LM’s preferences also differ across cases. In particular, for humans, there is evidence

that for lexical ambiguities the dominance of a reading influences the information that

is initially activated during processing (Duffy et al., 1988; Rayner and Frazier, 1989).

It is possible that the LM exhibit an analogous behavior with an initial bias to the most

dominant interpretation of the lexically ambiguous word. Another factor that possibly

affects the inter-item variation is plausibility or frequency of the locus of ambiguity and

its preceding word as a noun-noun compound (e.g., “pants suit” vs. “warehouse fires”).

More experiments could be carried out to better understand what factors drove the

variation of syntactic uncertainty of the LMs across cases of NP/S and Noun/Verb am-

biguities. First, one could test the behavior of the LM on more ambiguous prompts

manipulating elements in them to test the effect of certain factors. For instance, for

NP/S we can look at the effect of main verb bias (e.g., “understood/read the contract

...”) and the plausibility of the locus of ambiguity for the NP reading (e.g., “understood

the contract/the breakfast”). Moreover, one could assess whether the variation in the

estimated degrees of preference of the LMmatches structural frequencies in the training

corpus (e.g., the main verb bias in NP/S ambiguity).

Finally, we experimented with different stochastic decoding strategies to assess how

hyperparameters like nucleus size and temperature affect the way the ambiguities are re-

solved in the generated texts. We found that modulating these parameters can influence

the interpretation of the input that is more likely to emerge during generation: if one

interpretation was in the original distribution of the LM more likely, it becomes even
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more dominant when increasing the bias toward high-frequency words via the hyperpa-

rameters.

Unambiguous Inputs. We also investigated the behavior of the LMs when disam-

biguating cues are given as part of the input, before or after the locus of the ambiguity,

respectively, or both. In general, the LMs tend to display the correct behavior. With

some exceptions for Noun/Verb ambiguities, when looking at the distribution over in-

terpretations, we observe the appropriate shifts in the probability with the correct reading

becoming the most likely. This indicates that the LMs have a context-sensitive behav-

ior and tend to correctly take into account the evidence in the input to properly disam-

biguate it. However, we also found evidence that disambiguation is not always carried

out smoothly.

For post-locus cue NP/Z prompts, the lack of a comma between the subordinate and

main clauses (pre-locus cue) led to some ungrammatical completions revealing an un-

derlying confusion of the LMs over the sentence structure (e.g., “*As the couple danced

the tango began, the paparazzi swooned”). This phenomenon can be explained by the

LM downplaying the role of the post-locus cue (in the example above, “began”), thus

not fully ruling out the NP reading. This issue affected the GPT2 model more than the

LSTM, in spite of the former being bigger and trained on more data. An hypothesis

is then that the difference might be due to the way the two models process the input,

one through recurrent connections and the other through self-attention. This could be

further investigated by, for instance, looking at the gate values and attention weights in

the LSTM and GPT2, respectively. Nevertheless, the fact that recovering from a mis-

interpretation of an NP/Z ambiguity pose challenges is not completely surprising. It

can be explained in terms of the higher complexity of readjusting the initial parse of

the sentence (Grodner et al., 2003).6 Issues in reanalysis were indeed also found for

humans (Christianson et al., 2001). But also more simply, commas tend to be typically

placed between a subordinate and main clause (alternatively, in speech the boundary is

marked through prosody). It may therefore not be realistic to expect LMs to learn to

cope with this type of construction.

The other disambiguation issues were found on Noun/Verb ambiguities, and in par-

ticular pre-locus prompts. In this case, the disambiguating cue was the determiner be-

fore the locus of ambiguity: for instance, in “this desert trains”, “this” makes “trains”

a verb due to the incompatibility between the singular determiner and the plural noun

interpretation. From previous evaluations of LMs (Linzen et al. (2016) and subsequent

6In NP/S sentences, the initial verb phrase dominates the noun phrase that is the locus of ambiguity,

independently of whether that is a direct object or part of a sentential complement –NP or S reading; by

contrast, in NP/Z this is only the case if the locus of ambiguity is a direct object – NP reading. This can

cause difficulty in readjusting the implicitly maintained sentence structure when encountering a cue to the

Z reading only after the locus of the ambiguity.
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work), we know that these models tend to account for number agreement in their out-

put predictions: if they observed a singular subject, they tend to expect a verb with the

same number. These works did not focus directly on the number of a determiner, but

it is plausible that the ability of tracking number would generalize. Our results how-

ever show that LMs, especially the LSTM, do not always pick the correct interpretation

when the number feature of the determiner acts as disambiguating cue (e.g, “*this desert

trains are closed”). This aspect requires further investigation to disentangle whether the

disambiguation is caused by a difficulty in tracking the number of the determiner, or

by a strong preference for the alternative interpretation leading to downplay the role of

number agreement for disambiguation.

Again, it should be noted that these ambiguities are particularly hard cases of lexical

ambiguities, purposely designed to be ambivalent and to solely rely on number agree-

ment for disambiguation. Due to this, these experiments may magnify the effect of

disambiguation difficulties in LMs. Still, our results indicate that there is room for im-

provement in the LMs’ responsiveness to contextual cues during processing.

5.6.2 Methodological Considerations

The methods used in this chapter and in Chapter 3 both aimed to analyze how LMs

process ambiguities. The two methods however differ in that the former focused on the

probabilistic output of the model, while the other on its internal representations. The

behavioral evaluation we applied in this chapter did not require any supervision but

probed the LM’s ambiguity resolution by looking at its output behavior.

Most behavioral analyses of LMs focus on the probability assigned to a certain word

in a sentence; for instance, to test subject-verb agreement, one looks at whether a higher

probability is assigned to the correct than the incorrect form of a verb. (e.g., “the keys

to the locker is/are”; Linzen et al. 2016); or to test the effect of implicit causality verbs,

which pronoun – and thus referent – is more likely (“Bob congratulated Mary. He/She

...”; Davis and van Schijndel 2020). To extend this to the analysis of ambiguity resolu-

tion, one would have to identify a word after the locus of ambiguity which, if higher in

probability than a contrast one, indicates that the correct interpretation is taken. Identi-

fying such a contrast pair is however not easy, as there are countless ways in which an

interpretation can be disambiguated.

(34) The employees understood the contract well/./today... (→ NP) vs. ended/ex-

pired/was... (→ S)

But the continuation to an input typically reveal its interpretation. Instead of focusing

on the probabilities assigned to specific words, we proposed to explore the behavior of

the model by sampling from its output distribution to generate completions to the input

text. Our methodology extends the toolbox available to researchers when studying the
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resolution of ambiguities, which I hope will inspire and enable more research on this

topic.

We applied this method to temporary syntactic ambiguities. Previously, these were

studied looking at how expected – in terms of surprisal – the model was to encounter

a certain word (or sequence of them) instantiating an interpretation (e.g., Futrell et al.

2019). Instead of comparing the surprisal score to that of a contrast word (as in (34)),

the same estimate was computed for an unambiguous counterpart of the target sentence,

analogously to experimental paradigms used in psycholinguistics. We compared our

method to this approach in Section 5.5.2, and showed the two lead to highly correlated

estimates. This indicates that the two methods are aligned in their findings and can be

seen as alternative ways of probing the syntactic expectations of a LM. An advantage of

the surprisal-based method is that, in comparison to our generation-based method, it is

more straightforward to apply, as surprisal can be directly derived from the LM’s output.

However, our method, though involving a more complex procedure, has a number of

advantages.

First, to study the ambiguity resolution of the LM, we directly infer the probability

distribution over interpretations. Word surprisal may depend on this (and therefore cor-

relate with our estimates; Sec. 5.5.2), but is not directly interpretable in this sense. Sec-

ond, to study the behavior of a LM on an ambiguous input, the surprisal-based method

requires comparing it to its unambiguous version. Our method does not require this and

just has to be applied to the target input. This enabled us to inspect the behavior of the

LM also on unambiguous inputs, leading to insights about the context-sensitivity of the

model. Finally, letting the LM’s expectations over a sentence manifest in concrete gen-

erated sentences can reveal or clarify aspects of the LM’s expectations that would not

be evident by looking at surprisal only (e.g., the disambiguation issues for NP/Z).

Notwithstanding, the methodology I presented in this chapter also has some chal-

lenges to be addressed by future research. Relying on an automatic classification of

sentences was essential due to the large number of sentences that were generated for

this study, but a computational parser may introduce errors, and thus noise, in the anal-

ysis. Though nowadays parsers are extremely accurate, it is precisely ambiguities – and

even more so temporary ones – that can be challenging to them (Elkahky et al., 2018),

even if they are explicitly trained to interpret expressions. We tried to limit the noise

introduced by parser errors and to make sure that the automatic classification was suffi-

ciently reliable to be used for the analyses. Even so, a more accurate method to classify

the completions is desirable. Furthermore, with our current method, a completion was

always assigned an interpretation (the parser always returned an output), but it would

be useful if completions that are ungrammatical or have an unclear analysis could be

flagged as such, to more easily spot disambiguation issues.

Though we only applied the methodology proposed to syntactic ambiguities, this

could be extended to study further types of ambiguities. In fact, discourse continuation
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experiments have been used in psycholinguistics for other phenomena; for example, the

way ambiguous pronouns are resolved (Stevenson et al., 1994; Kehler and Rohde, 2013):

(35) Bob congratulated John. He ...

a) was very happy for him. (He = Bob)

b) got the promotion. (He = John)

Analogously to our method, the completion is linked to an interpretation of the ambigu-

ous element (“He”). We can therefore imagine using items of this kind as prompts to test

the referential ambiguity resolution of LMs, or, analogously, other types of ambiguities,

such as the lexical one in (36).

(36) I forgot about the ball ...

a) though it is such an important event (ball = )

b) so we can’t play (ball = )

However, there are additional challenges in applying thismethod to semantico-pragmatic

ambiguities. In local syntactic ambiguities, structural constraints rigidly enforce a cer-

tain interpretation. Semantic interpretations can instead be more flexible: they can be

defeasible or vary across subjects. For instance, we can think of contexts where (36a)

and (36b) lead to reversed senses (e.g., if one forgets a ball for an important tour-

nament, or if a band forgets they need to play at a ball event). It is possible that

looking at longer sequences (beyond sentence boundaries) can help to further clarify the

intended interpretation in these cases. As in our experiments, the analyses could be ex-

pedited by using NLP tools (e.g., coreference resolution or word sense disambiguation

systems) for the automatic classification of completions.
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Chapter 6

THE EFFECT OF CONTEXTUAL

EXPECTATIONS ON REFERENCE

PRODUCTION

This chapter investigates the interaction between reference production and referential

ambiguities using deep learning models. By the resolution of a referential ambiguity, I

refer to the process of interpreting a referring expression by linking it to the real-world

entity it is intended to point to, when multiple options may be possible (Arnold, 1998;

Nieuwland and Van Berkum, 2008). Referring expressions can vary in their degree

of informativeness, and consequently their ambiguity potential, as exemplified by the

following sentence (mentions highlighted with the same color corefer):

(37) Ann asked Lucy if she could passed her the bag .

The proper names “Ann” and “Lucy” introduce two female entities via labels that are

specific to them and therefore unambiguous. However, the third-person pronouns “she”

and “her” could refer to either of them based on gender agreement. The context can help

us to correctly interpret them, out of an interaction between syntactic and semantico-

pragmatic cues, and world knowledge (Hobbs, 1978; Grosz et al., 1995; Kehler and

Rohde, 2013). The definite noun phrase “the bag” points to its referent through a de-

scription, making it a rather informative expression especially if the description cannot

apply to more than one discourse entity. If that is not the case, to be even more infor-

mative (e.g., “the blue bag”) might further ease the identification of the referent.

In this chapter, I address the hypothesis that the predictability of a referent in a dis-

course context affects the form chosen to refer to it. Concretely, that an ambiguous

expression like “she” would be used where the context alone already makes a certain

referent very likely; when this is not the case, a more informative, probably longer ex-

pression (e.g., “Mary Poppins”, “the nanny”) would be used instead (Tily and Pianta-

dosi, 2009). We investigate this hypothesis on corpus data (covering ≈10K referring
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expressions) using a computational model that estimates how expected a referent is in a

discourse context; that is, its predictability. For this purpose, I present a methodology

taking advantage of NLP techniques, in particular state-of-the-art deep learning archi-

tectures for coreference resolution. This approach is related to that taken in Chapter 4

where I used deep LMs to derive representations of contextual expectations about word-

level content. It, however, differs in that I here focus on expectations over what entity

an expression refers to, and that these are computed by a model directly trained for this

task (as opposed to a model trained on the generic language modeling objective).

6.1 Approach and Research Questions

The relation between predictability and form has been investigated by a long-standing

research branch in linguistics. For instance, several works provided evidence for the hy-

pothesis that more predictable information tends to be communicated with shorter, less

informative words, or gets pronounced more quickly and prosodically attenuated (Fer-

rer i Cancho and Solé, 2003; Aylett and Turk, 2004; Levy and Jaeger, 2007; Piantadosi

et al., 2011). An explanatory motive is that speakers aim to transmit information in an

efficient way (Zipf, 1949): if some information can already be inferred from the context,

they will reduce the cost of encoding their message. As more informative expressions

pose typically more burden on production cost (being typically longer or less frequent),

speakers will use these only when they provide essential information that would other-

wise not be provided. In this way, they avoid redundancies between the informativeness

of the context and that of the expression (Jaeger, 2010). The experiments presented in

this chapter aim to test this hypothesis in the context of referring expressions.

Like other accounts of reference production, this study concerns the conditions that

lead to choosing a certain form to refer to an entity (Davies and Arnold, 2019); in partic-

ular, contrasting third-person pronouns with the more informative alternatives (descrip-

tions and names). Traditional accounts take referents to be associated with a certain

discourse status determining the form which will be used to refer to them. Such dis-

course status has been connected to the accessibility, or salience, of an entity (a.o., Ariel,

1990; Gundel et al., 1993), and described as dependant on a series of discourse prop-

erties. Examples are the recency of the entity’s last mention, competition (with other

entities), syntactic prominence (whether it last occurred in subject position), or its top-

icality in the discourse. Within these approaches, a pronoun constitutes a pointer to a

highly accessible entity. It is however not straightforward how to quantify accessibility.

Predictability – that is, how expected a referent is to be mentioned at a certain point

in the discourse – was proposed as an alternative explanatory notion (Arnold and Zerkle,

2019). This property can also be referred to as context informativeness, in that if a

referent is predictable from context only, it means that this provides much information.

Referent predictability can be measured by eliciting which entity a subject would predict
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to be mentioned, only with access to the context, for instance through discourse contin-

uation experiments or cloze tasks. For instance, a subject would be asked to continue

an unfolding discourse like (38) revealing which entity they expect to be mentioned

next (Stevenson et al., 1994); alternatively, the subject could be asked to point to the

expected referent, using the antecedent in the discourse (Tily and Piantadosi, 2009).

(38) Barbara congratulated Lisa. ...

Current empirical evidence about the relation between predictability and the choice

of a referring expression, however, paints a mixed picture. While some works using

controlled items found that more pronouns were produced for more predictable referents

(e.g., Arnold, 2001; Rosa and Arnold, 2017), other studies found that predictability was

overridden by syntactic preferences (e.g. Fukumura and Van Gompel, 2010; Kehler and

Rohde, 2013). Results using cloze tasks based on naturally occurring corpus texts also

reported divergent results. Tily and Piantadosi (2009), analyzing newspaper texts, found

that pronouns and proper names are preferred over full noun phrases when subjects were

expecting the intended referent; but Modi et al. (2017), focusing instead on narrative

stories, did not find this effect.

One of the challenges in getting a clear picture of the relation between predictability

and form can be identified in the difficulty of scaling these analyses to larger and more

diverse datasets. Some experiments tested the effect of specific factors like syntactic

prominence, verb type, and rhetorical relations (e.g., Kehler and Rohde 2013; Fuku-

mura and Van Gompel 2010). However, because of the items used, they do not address

referent predictability in its full complexity, where many factors may be concurrently

affecting expectations. Studies on spontaneously produced corpus data (e.g., Tily and

Piantadosi 2009; Modi et al. 2017) tackle a more general notion of predictability without

having to manipulate specific factors in their items. Still, the reliance on the collection

of human judgments limits the scale at which these approaches can be applied.

We propose to expedite research focusing on corpus data through computational es-

timates of referent predictability, instead of human judgments in cloze tasks. We build

on previous work in linguistics and cognitive science using computational methods to

obtain predictability scores. This approach has been mostly employed in the study of

language comprehension at the lexical and syntactic level; for instance, showing that

predictability scores from LMs (e.g., surprisal) tend to correlate with measures of cogni-

tive cost (Smith and Levy, 2013; Frank et al., 2013). LMs have also been used to study

the trade-off between clarity and cost at the lexical level, reporting a cross-linguistic ten-

dency for ambiguous words to appear in informative contexts (Pimentel et al., 2020a).

Expectations at the referential level have received in comparison little attention, with

the exception of a few works. Estimates of referent predictability were used by Orita

et al. (2015) to explain referential choice as the result of an addressee-oriented strategy,

in the context of the Rational Speech Act framework (Frank and Goodman, 2012). The

measures of predictability were, however, only taking into account simple features like
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the frequency of an entity or how recently it was last mentioned. Modi et al. (2017) built

upcoming referent prediction models considering shallow linguistic features and world

knowledge about events and their typical participants. Through this methodology, they

could make observations about the role of linguistic and common-sense knowledge,

respectively, on referential expectations. However, their model required a substantial

amount of annotations, both for training and evaluation, limiting its applicability for

larger, and potentially out-of-domain, analyses.

To model referent predictability, we instead turn to a traditional task in NLP: coref-

erence resolution. A coreference resolution model aims to group referring expression

in a document based on the entity they refer to. For instance, in (37) the system would

have to group together “Ann” and “her” as coreferring, by recognizing that the former is

the anaphoric antecedent of the latter. The ordinary coreference resolution task cannot

be directly used to model referent predictability, as it presupposes access to both the

context of a referring expression and the expression itself. We adapt an existing deep

learning architecture for coreference resolution (Joshi et al., 2020) to carry out a differ-

ent task –masked coreference resolution – where the model can only use the information

in the context to predict the referent of an expression. This can be seen as setting up a

cloze task, analogously to Tily and Piantadosi (2009) and Modi et al. (2017), except that

we now ask a computational model, instead of human subjects, to give us predictions.

We train this model on an English corpus and then assess its abilities in both masked

and ordinary coreference resolution. To further established the quality of our model as

a proxy for referent predictability, we also assess how much the probabilistic output of

our model matches human referential expectations, using data collected by Modi et al.

(2017).

After this evaluation of our computational estimates of referent predictability, we

study the relation between referent surprisal and the chosen referring expressions through

a statistical analysis on the test portion of the English OntoNotes data. These data span

a diversity of genres and allow us to analyze the phenomenon considering a vast amount

of referring expressions. We look at mention form in terms of two aspects: the syntactic

type of a referring expression (pronoun, proper name, full noun phrase), and its length

(number of word tokens). This allows us to test whether shorter and less informative

expressions, like pronouns, are used when a referent is more predictable, and vice-versa

for longer and more informative expressions.

The chapter addresses the following research questions:

RQ1. How can we compute reliable estimates of referent predictability?

Analogously to the role of LMs in psycholinguistics (for instance, in the study of

sentence processing; e.g., Levy 2008), having models that compute expectations at the

referential level can be a helpful tool for linguists. Though it was shown that LMs take

into account reference-level information at least to some degree (Sorodoc et al., 2020;
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Davis and van Schijndel, 2020), they are not trained to identify referents and thus may

not be optimal in their predictions. We opt for models that are directly trained to com-

pute a probability distribution over entities. Concretely, we introduce a variant of the

coreference resolution task to train a state-of-the-art deep learning architecture.

RQ2. Are less informative, more ambiguous expressions, like pronouns, used where the

context provides more information about the intended referent?

Expressions like third-person pronouns provide – out of context – little informa-

tion about their intended referent (at best, number and gender). Yet, because they are

short expressions, the speaker has an incentive to use them to reduce their production

cost (Zipf, 1949). But if a speaker is collaborative with the addressee (Grice, 1975) and

aims to reduce their challenges in interpretation, they should use pronouns only when

the context complements their information, by making the referent predictable. The op-

posite could cause misinterpretations, which are the exception, rather than the rule, in

communication. We thus expect to find pronouns in informative contexts.

RQ3. Are more informative expressions – descriptions or names – only used to compen-

sate a limited informativeness of the context? Or do other factors affect reference

production, on top of predictability?

To avoid redundancies, speakers may reserve the more informative expressions for

less informative contexts, where the referent would not be otherwise identifiable (Jaeger,

2010; Tily and Piantadosi, 2009). But we could also find that speakers still sometimes

opt for informative expressions (a name or a description, instead of a pronoun) in al-

ready informative contexts. For instance, a speaker may be overinformative if this does

not come at a high production cost (e.g., “he” vs. “Tom”). We could then find that in-

formative contexts are generally associated with short expressions, independently of the

distinction across mention types (e.g., pronoun vs. name). We also consider discourse

aspects that have been connected to the accessibility of an entity (Ariel, 1990), such as

its recency of mention, syntactic prominence, etc.: While these factors may also play

a role on referent predictability, they could have an even stronger effect on reference

production. For instance, it was found that the tendency to use pronouns for subjects

can override the role of predictability (Kehler and Rohde, 2013).

6.2 Masked Coreference Resolution: Methods

The objective of an ordinary coreference resolution system is to establish whether two

referring expressions, or mentions, in a document corefer; that is, they refer to the same

discourse entity. By doing so, they get to determine the coreference chains, or clusters,

in the document, grouping mentions by their entity (Pradhan et al., 2012). Several deep
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Meg congratulated the friend. She was happy because [MASK] got the job.

0.2

0.5

none: 0.1

0.2

P (E[MASK] = {Meg, She}) = P (antecedent[MASK] = Meg) + P (antecedent[MASK] = She) =
0.4
P (E[MASK] = {the friend}) = P (antecedent[MASK] = the friend) = 0.5
P (E[MASK] = new) = (antecedent[MASK] = none) = 0.1

Figure 6.1: An example of deriving referent probabilities from masked coreference res-

olution predictions.

learning approaches to coreference resolution have been proposed in the NLP literature.

We focus on mention-ranking models, which carry out the task by outputting, for each

mention, a probability distribution over its potential antecedents. These are the entities in

the previous context, plus a “no antecedent” option (i.e., the current mention introduces

a new entity). Once all mentions in a text are linked to their most likely antecedent,

clusters of coreferring mentions are consequently determined.

Let us consider how referent predictability could be computed with mention-ranking

model. The probability that a mention x refers to the entity e, P (Ex = e), can be

computed as the sum of the assigned antecedent probabilities of all mentions of e in the
previous discourse (Me; Figure 6.1):

P (Ex = e) =
∑
i∈Me

P (antecedentx = i) (6.1)

In a standard coreference resolution system, the model observes both the mention x and
its context cx to compute the predictions. It therefore calculates P (Ex = e|x, cx): a
distribution conditioned on both the mention and its context. By contrast, referent pre-

dictability is about the degree to which a referent is expected based on context only (Tily

and Piantadosi, 2009): that is, P (Ex = e|cx). How can we model this? We propose a

variant of the coreference resolution task where referent predictability is estimated by

accessing the context of a mention, but not the mention itself. To carry out this task, we

propose a simple adaptation of an existing coreference resolution system. In the follow-

ing, I introduce our model, and how its predictions can be computed and evaluated.

6.2.1 The Model

Model Architecture

We rely on the coreference resolution architecture by Joshi et al. (2020) (schematically

represented in Figure 6.2) – henceforth SpanBERT-coref. The model builds on the ar-
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Figure 6.2: Schematic representation of the SpanBERT-coref architecture: token repre-

sentations are obtained through the pre-trained SpanBERT LM, and then passed to the

coreference module to detect mentions and identify their antecedents.

121



“output” — 2021/11/30 — 7:00 — page 122 — #138

chitecture of Lee et al. (2018), which combines the benefits of transfer learning from

LMs (Ruder, 2019) with an end-to-end approach to coreference resolution (Lee et al.,

2017). The latter implies that both mention detection (i.e., identifying the referring ex-

pressions in the text) and coreference resolution are jointly carried out. While Lee et

al. used ELMo (Peters et al., 2018a) as pre-trained LM, Joshi et al. (2019) adapted the

architecture for use with BERT (Devlin et al., 2019), the transformer-based LM intro-

duced in Chapter 3. SpanBERT-coref improved over these models by using instead a

variant of BERT – SpanBERT – to enhance the representation of contiguous spans of

tokens.

In both BERT and SpanBERT, a percentage of tokens is sampled for masking – sub-

stituted with the special token [MASK]; the model predicts these tokens based on their
surrounding context (masked language modeling). In SpanBERT, however, contiguous

sets of tokens –spans – are chosen for masking. Moreover, a Boundary Objective is

added: to predict the words in a masked span at its start and end tokens.1 This is to

encourage that these maintain a representation of the span content. SpanBERT led to

improvements over BERTwhen used for transfer learning to tasks involving spans of to-

kens, like coreference resolution. We, in particular, focus on the SpanBERT-corefmodel

employing SpanBERT-base (12 hidden layers of 768 units, with 12 attention heads).

Besides the reliance on this concrete pre-trained LM, SpanBERT-coref follows the

same architecture of Joshi et al. (2019); in particular, the independent version found to

perform best. The model consists of two components: (1) the pre-trained LM, whose

weights are fine-tuned during the training on coreference, and (2) a task-specific mod-

ule on top of this, which is instead trained from scratch (Figure 6.2). Each document

is split into sequences of a certain maximum length (always terminating at a sentence

boundary). A span of text is represented by a fixed-length vector computed from the

LM representations. In particular, each sequence is passed as input to the LM, and each

token is represented by the last hidden state corresponding to its position. A span repre-

sentation is derived as the concatenation of (1) the start token representation, (2) the end

token representation, and (3) a weighted sum (attention) over the representations of all

tokens in the span. Essentially, each span of tokens is assigned a contextualized repre-

sentation putting together its lexical information – incoming from the word embeddings

in the LM – and the context, which is, in this case, a window of surrounding tokens.

With SpanBERT-base, a window of 384 tokens is adopted as found to perform best.

The span representations are used to compute the following scores: For each span,

a mention score – how likely it is that the span constitutes the mention of some entity;

sm – and for each pair of spans, a compatibility score – how likely it is that the two

expressions corefer;sa. These scores are aggregated in a final score s for each pair of
spans (Eq. 6.2), used to compute a probability distribution over the candidate antecedents

of a mention (Eq. 6.3). The candidate antecedents are the identified mentions in the

1The Next Sentence objective, used in BERT, is dropped in SpanBERT.
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previous discourse and “no antecedent”.

s(x, y) = sm(x) + sm(y) + sa(x, y) (6.2)

P (antecedentx = y) =
es(x,y)∑

i∈candidatex e
s(x,i)

(6.3)

The original SpanBERT-coref model by Joshi et al. (2020) was trained on the En-

glish section of the OntoNotes v5.0 corpus (Weischedel et al., 2013); in particular, the

portion with coreference annotations (1.6M word tokens). The data spans a diversity

of genres: news, magazine articles, weblogs, religious texts, broadcast, and telephone

conversations. Training followed the CoNLL-2012 Coreference Task (Pradhan et al.,

2012), in both the data split (train/dev/test) and evaluation metrics (see Section 6.2.2).

A set of 3.5K documents (1.3M tokens; 155K mentions) is used for training, and 343

and 348 documents are kept for evaluation during development and testing, respectively

(160K and 170K tokens; 19K mentions each). For our experiments, we devise and train

a variant of SpanBERT-coref. We retain the same architecture and training corpus, as

well as the hyperparameters setup found to perform best for this model. As we explain

next, to adapt the model to estimate referent predictability, we only manipulate the data

that the model is fed during training.

Training on Masked Coreference Resolution

As explained earlier, to model referent predictability, we require a probability distribu-

tion over entities given the context – and not the mention – (P (Ex|cx)), while a model
like SpanBERT-coref gives us P (Ex|x, cx) due to access to the target mention.Our goal
is thus to have SpanBERT-coref output predictions without accessing the mention. One

way to achieve this is by not passing the mention information in the input, and ask the

model to resolve the unknown mention using only its context, akin to the cloze task

of Tily and Piantadosi (2009) and Modi et al. (2017). Models like BERT and Span-

BERT, trained on a masked language modeling objective, already come equipped with

a way of implementing a fill-in-the-gap task: When a token in the input is substituted by

the [MASK] token it is predicted on the basis of its context, forcing the model to represent
expectations about its content (as shown in Chapters 3 and 4). However, when the LM

is used for coreference in SpanBERT-coref (or analogously in other tasks), the [MASK]
token is not used again and all information from the input is available for coreference

resolution

To estimate referent predictability with a system like SpanBERT-coref, we propose

to mask the target mention in the input, that is, to substitute it with the [MASK] token.

Only one [MASK] token is used to cover a mention, independently of its length, to fully
omit all mention’s information (by contrast, in BERT or SpanBERT, a [MASK] is used
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to cover a single token).2 The model will now compute P (Ex|cx) as only the context of
the mention x is used for the prediction. We refer to this way of deploying a coreference

model, displayed in Figure 6.1, as masked coreference resolution.3 To mark the con-

trast, we refer to the standard task as ordinary coreference resolution. To implement

either task, only the input to the model changes, while the architecture used to compute

antecedent probabilities – and in turn referent probabilities (Eq. 6.1) – remains the same.

In principle SpanBERT-coref, though trained on ordinary coreference resolution,

could be used on the masked version of the task in a zero-shot way (i.e., without changes

to its training). This is because the SpanBERT LM component of SpanBERT-coref has

encountered the [MASK] token during its pre-training. It should then be able to handle

this setup at least to some extent by representing a masked mention in terms of informa-

tion that is expected to fill its gap. However, sincemaskedmentionswere never passed to

the model during training on coreference, we expect the predictions of SpanBERT-coref

to be suboptimal proxies for referent predictability. First, the coreference component of

the model, contrarily to the LM one, did not see masked mentions during training, and

thus may not handle their representations well. Besides, because of a tendency of deep

learning models to catastrophic forgetting (i.e., forget information about one task when

later trained on another; McCloskey and Cohen 1989), it is not even guaranteed that the

LM component can retain its ability to process masked tokens after training of corefer-

ence. Second, while during the masked language modeling training, [MASK] covered a

single token, in masked coreference resolution it replaces an entire mention span, often

longer than one token. As a consequence, SpanBERT-coref may be confused by ex-

pecting a single token in place of [MASK]. Finally, masked coreference resolution may
require different or additional skills than those used for ordinary coreference resolution,

such as paying more attention to certain contextual cues. This is empirically confirmed

by the results reported in Section 6.3.

To build a more reliable proxy for referent predictability, we train a new instance

of SpanBERT-coref which observes masked mentions during training and thus is op-

timized to handle this setup. I henceforth refer to the SpanBERT-coref model trained

on ordinary coreference resolution as Coref model, and to our variant, trained also on

masked coreference resolution, as CorefM. To train CorefM, at every epoch, a random

sample of mentions in each document is masked; i.e., replaced by a single [MASK] token
(re-sampling the mentions at every epoch). The percentage of mentions masked is a hy-

perparameter (we test values in the range 5%-40%): On the one hand, masking too many

2This is because types of referring expressions (e.g., pronouns vs. noun phrases) tend to differ in

length, thus providing the model with information about mention form if we do not mask all mentions

in the same way. As a sanity check, we also experimented with a variant of the system which masks a

mention using a sequence of three [MASK] tokens, instead of one. This is to make sure that using just

one token does not create any bias, to, for instance, be better on one-token mentions. The two ways of

masking lead to analogous results, as reported in Appendix D.2.
3Further details about the masking procedure are reported in Appendix D.1.
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mentions is expected to be detrimental, as too much information in the input is covered

to properly solve the task. On the other, masking few mentions may not provide enough

training signal to the model for learning to resolve them.

As the model is optimized to identify the correct antecedents of both masked and un-

masked mentions, CorefM should become able to output sensible antecedent predictions

based on context only, or, when available, the context and themention. However, resolv-

ing masked mentions is expected to be a harder task than resolving unmasked mentions,

and, on some occasions, may even be impossible for humans. Because of its training,

CorefM should be better in masked coreference resolution than Coref, thus providing

us with a better proxy of referent predictability. On ordinary coreference resolution, as

both systems are trained to carry out this task, they may perform comparably.

For evaluation on dev data, to select the best model across training epochs and hyper-

parameters, we use antecedent accuracy onmaskedmentions (F1 score; see next section)

as the criterion. We sample 10% of mentions in a document for masking (independently

of the percentage used during training) and evaluate the predictions onmaskedmentions.

We iterate the process 5 times (re-samplingmaskedmentions), finally taking the average

of the evaluation scores. As I explain inmore depth in the coming section, this evaluation

is rather coarse-grained: it does not control for potential interference between masked

mentions nor it considers masked predictions for all mentions. However, it gives us a

good indication of the model’s performances on masked mentions, while being quicker

to compute than a more precise, but computationally more expensive, deployment of the

model, which we reserve for evaluation and analyses on the test data.

6.2.2 Deployment and Evaluation

In the following, I describe the procedure used to deploy the system on a document,

and to extract and evaluate predictions on masked and unmasked predictions, respec-

tively. We use this procedure for our evaluation and analyses on the test portion of the

OntoNotes data. Due to our focus, in our experiments, we mainly focus on a model’s

predictions on masked mentions. For a part of our evaluation we also however look at

the quality of predictions on unmasked mentions.

Unmasked Mentions. By predictions on unmasked mentions, we refer to those ob-

tained with access to both the mention and its context, corresponding to those used for

ordinary coreference resolution. To extract these, we simply deploy the system of a tar-

get document as is, masking no mentions. To evaluate the coreference predictions, we

follow the CoNLL-2012 shared task, and compute MUC, B3, and CEAF metrics – as

precision, recall, and F1 – focusing on their average as summarizing metric (Pradhan

et al., 2012). These metrics focus on the quality of the predicted clusters of mentions

(i.e., coreference chains) compared to the gold ones. The predicted clusters are obtained
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by linking each mention to the cluster of its most likely antecedent, or a new cluster if

this is linked to no antecedent with most likelihood.

Masked Mentions. To extract predictions on unmasked mentions we can run the

system on the document and extract all predictions at once, but we cannot do the same for

extracting predictions on masked mentions. If we mask all the mentions in a document,

the task of coreference resolution becomes virtually impossible, as toomuch information

in the document is concealed. To model referent predictability, we aim at a setup as that

in Figure 6.1: the target mention, whose referent is to be predicted, is masked, while the

rest of its context, including the potential antecedents, are visible. However, to satisfy

this scenario, we would have to pass a different input to the model for each mention of

a document, changing the mention that is masked at each turn. We apply this method

for the evaluation of the Modi et al. (2017) data (Section 6.4) where we compare the

model’s predictions to human judgments. For the larger-scale analyses on the OntoNotes

test data (for evaluation and subsequent analyses of mention form), we instead employ

an intermediate strategy, to achieve a trade-off between computational efficiency and

interference between masked mentions.

Concretely, for each document, we identify a partition of the mentions, such that

each subset can be simultaneously masked due to satisfying the following criteria: for

each mention in each subset, none of its antecedents nor surrounding tokens (50 on both

sides) is also masked. This ensures that all of the antecedents of a masked mention are

accessible as well as the tokens in its local context, reducing the interference among

simultaneously masked mentions.

Since only a subset of mentions is masked in a document, to evaluate predictions

on these mentions the metrics used for ordinary coreference resolution are not suitable,

as they conflate performances on masked and unmasked mentions by evaluating predic-

tions at the cluster level. As we aim to evaluate predictions on unmasked mentions as

proxies for referent predictability, what we care to evaluate is the quality of antecedent

probabilities for a given target mention, as opposed to the quality of the cluster the men-

tion is assigned to, which also depends on the model’s output for other mentions. We

then simply evaluate the system in terms of antecedent prediction quality, as precision,

recall, and F1: a model’s prediction for a mention is correct if it assigns the largest prob-

ability to a true antecedent (an antecedent belonging to the correct mention cluster), or

to “no antecedent” if it is the first mention of an entity. We use F1 on antecedent predic-

tion for masked mentions as the criterion for model selection during development. For

comparison, we also evaluate antecedent prediction for unmasked mentions. A predic-

tion relative to a mention is correct if it is linked to a true antecedent (belonging to the

correct entity cluster), or to none if it is the first mention of an entity.

126



“output” — 2021/11/30 — 7:00 — page 127 — #143

Mention Boundaries. As mentioned earlier, SpanBERT-coref is trained end-to-end

to identify both mentions (i.e., their boundaries) and coreference links between them.

The former challenge introduces additional uncertainty for the system when resolving

the referent of a mention. Errors might occur due to a non-detected antecedent, or if

predictions for a certain mention are not computed because this is not detected. As we

aim to solely focus on the model’s uncertainty over referents, we devise a strategy to

bypass issues related to mention detection. We introduce a way of deploying the system

where this directly uses the gold mentions and does not need to predict them. This setup

is only used for deployment on test data and does not require any change to the way

the model is trained. We pass the system the gold sentence boundaries and enforce that

these are used as the only candidate spans for the output predictions. We then nullify the

contribution ofmention scores (i.e., how likely it is that a span is amention) to antecedent

predictions, by setting the mention scores to 0 for all mentions (i.e., s(i, j) = sa(i, j);
Eq. 6.2). In this way, possibly incorrect expectations of the model about which spans

constitute a mention cannot affect the output predictions. We compare the behavior of

the system using predicted and gold mention boundaries, respectively: we expect the

latter setup to lead to better modeling of referent predictability.

Context. As mentioned in Section 6.2, the SpanBERT-coref architecture builds on

a bidirectional LM – SpanBERT – used to obtain span representations from an input

linguistic sequence (Figure 6.2). For a target mention, only mentions in the previous

discourse will be considered as candidate antecedents. However, the mention repre-

sentation used to compute the prediction is derived considering the context that both

precedes and follows the mention (for each in a degree that depends on the position of

the mention in the sequence). For our experiments, we do not modify this aspect.

In this sense, our setup differs from the cloze tasks of Tily and Piantadosi (2009)

and Modi et al. (2017), where participants were given only the context preceding a men-

tion. In general, most studies on referent predictability or referential ambiguity resolu-

tion focus on the previous context of a mention. However, humans can also take the

following context into account when interpreting referring expressions (Deemter, 1990;

Song and Kaiser, 2020). We can think of cases as the following, where attending to the

information coming after a mention (here, “she”) can change its most plausible interpre-

tation:

(39) Ann scolded her daughter , because

a) she was not behaving.

b) she was not happy with her behavior.

The role of the following context can be connected to a view where the resolution of

referential ambiguities can be delayed or revised taking into account information that
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occurs after the mention. The speaker can take into account this in their choice of men-

tion, as they know in advance – up to some limit – what they are about to say. The

notion of referent predictability that we model is therefore not defined in a temporal

sense as anticipation, but broadly in informational terms: how much information the

context contributes to infer the intended referent of a mention if we set aside the infor-

mation coming from the mention itself (Chapter 4 took a similar approach in modeling

word-level expectations).

Besides this theoretical motivation, the choice of incorporating the following context

is also practically an easier one at this stage, considering the state of the art in coreference

resolution. Recent models tend to build on bidirectional architectures; sticking to this

aspect allows us to obtain a good proxy for referent predictability by introducingminimal

changes to these systems. To make CorefM use a more controlled amount of context for

each mention (its previous context, or, e.g., also the right context up to the end of the

sentence) as opposed to a fixed-size window, can be done with these models. But we

would have to pass a different input to the model depending on the mention of interest,

which is computationally very inefficient, especially if done at training time.4 Besides,

there is no guarantee that the model could adapt well to this setup (e.g., with the sequence

cropped right after the [MASK] token), since it was not trained in this way. We compute

predictions based on the previous context only in the experiments on the Modi et al.

(2017)’s data, reported in Section 6.4. However, in practice, we find this setup to lead

to less human-like predictions than the left+context deployment of the model, despite

more closely resembling how the data were collected. This is likely due to the mismatch

between training and deployment of the model.5 I discuss this aspect further in the

section 6.4 and 6.6.

6.3 Masked Coreference Resolution: Results

Table 6.1 reports the results on OntoNotes test data for both masked and unmasked

mentions. We compare the results of Coref (the existing coreference resolution model)

and our variant CorefM. Based on evaluation on dev data, we select the CorefMmodel

trained with 15% of mentions masked in each document.6 For unmasked mentions,

we provide results both for ordinary coreference resolution and antecedent prediction

(Antecedent); for masked mentions, only the latter is applicable (see Section 6.2).

Results for both model-predicted and gold mention boundaries are reported. The

4The predictions relative to the mentions in a document cannot be computed by feeding the document

once but passing a different version of the document for each mention cropped at its end boundaries.
5Experiments on antecedent prediction on OntoNotes led to similar conclusions.
6Models trained masking between 10%-35% of mentions achieved comparable antecedent accuracy

on masked mentions on dev data. Among the best setups, we select for analysis the best model in terms

of ordinary coreference resolution.
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Unmasked mentions Masked mentions

Coreference Antecedent Antecedent

boundaries P R F1 P R F1 P R F1

Coref predicted .78 .77 .77 .86 .82 .84 .42 .39 .4

gold .91 .85 .88 .90 .50

CorefM predicted .78 .76 .77 .86 .82 .84 .69 .69 .69

gold .91 .86 .88 .91 .74

Table 6.1: Results on OntoNotes test data: coreference resolution (only with unmasked

mentions) and antecedent prediction (both unmasked and masked mentions); P, R, F1 =

precision, recall, F1 scores (when using gold mention boundaries on antecedent predic-

tion, P = R = F1). BUC, M3 and CEAF scores are reported in Appendix D.2.

latter method, across all scores, yields better results, in line with our expectations: re-

moving the challenge of mention detection allows the model to output better antecedent

predictions. Therefore, we use this setup in the analyses in Section 6.5 to obtain better

proxies of referent predictability. Still, even with model-predicted mentions, the mod-

els’ results are quite good, indicating that mention boundaries are typically identified

correctly.

On unmasked mentions, the two models achieve essentially the same performances

across metrics. This indicates that masking a subset of mentions during training, as we

did for CorefM, did not interfere with the learning of ordinary coreference resolution. On

masked mentions, both models achieve worse results than on unmasked mentions. This

is to be expected as the task is now harder: without accessing lexical information about

the mention, the models can only use the context for the prediction, and this may not al-

ways constitute sufficient information. Nevertheless, the two models guess correctly on

a non-trivial amount of cases. Even Coref, which was only trained on unmasked men-

tions, makes correct guesses on half of the mentions when using gold mention bound-

aries. A random baseline would only correctly resolve .08%, while selecting always the

immediately previous mention or always “no antecedent” would achieve .23 and .26%,

respectively. This supports the intuition that the knowledge transferred from masked

language modeling (predicting a word covered by [MASK]) provides a good starting

point to approach masked coreference resolution, as the [MASK] token is not new to the

architecture

Still, as we anticipated, we achieve better performances with a model that resolved

masked mentions also during training: CorefM improves substantially over the results

of Coref on masked mentions. As mentioned earlier, introducing masks during training

can help the system to adapt to this setup, including potentially enhancing the context-

sensitivity it requires. In 74% cases, a correct antecedent prediction is computed based
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(a) Coref (b) CorefM

Figure 6.3: Antecedent precision for Coref and CorefM, respectively, across more fine-

grained mention types, for masked and unmasked mentions.

on context alone (gold mention boundaries): in a large number of situations, the context

is on its own sufficiently informative to identify the referent of an expression.

Results bymention type. In Figure 6.3 I report the antecedent prediction results of the

Coref and CorefM models across mention types. I focus on the results with gold mention

boundaries, as this is the setup employed in subsequent experiments. Using predicted

mentions, the magnitude of scores is lower but the relative differences across mention

types are the same (results reported in Appendix D.2). We distinguish mentions that are

proper names, full noun phrases (NPs), and different types of pronouns. Mentions that

are proper names point to an entity with a label that is typically unique for that referent,

therefore being very informative. NPs may vary in their informativeness by describing

with more or less detail the entity that they refer to (e.g., “the student” vs. “the student

that is sitting by the window”). The heterogeneity of pronouns may lead to differences

in the behavior of the model and are therefore subclassified. First- and second-person

pronouns are indexicals and therefore comparatively more rigid than other pronouns

(they typically refer to the speaker and addressee in dialogue or reported speech). Other

pronouns, like third-person ones or demonstratives (DEM), are instead inherently am-

biguous and appeal to information in the context to be resolved. In describing the results,

I mainly focus on third-person pronouns due to these being the subcategory of pronouns

analyzed in Section 6.5, in line with previous work focusing on third-person referents

(other than the interlocutors).
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context mention

(1) Judy Miller is protecting another source [...] Let me get a response from Lucy

Dalglish. I think it’s very obvious from what . . . . .Judy wrote today [MASK] is protecting

somebody else. X

she

(2) This child [...] felt particularly lonely and especially wanted his father to come

back. He said that . . .he was sick one time. [MASK] worked in Guyuan ×
his father

(3) One high-profile provision [...] was the proposal by

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .Chairman Lloyd Bentsen of the Senate Finance Committee to expand the deduc-

tion for individual retirement accounts. [MASK] said he hopes the Senate will

consider that measure soon X

Mr. Bentsen

(4) Sharon Osbourne, Ozzy’s long-time manager, wife and best friend, announced to

the world that she’d been diagnosed with colon cancer. Every fiber of . . . . . .Ozzy was

shaken. [MASK] had to be sedated for a while. ×

he

Table 6.2: Examples of correct and incorrect predictions by CorefM (with gold men-

tion boundaries) on maskedmentions; model’s prediction underlined, correct antecedent

with dotted line.

Their behavior of Coref and CorefM is aligned on unmasked mentions: the two reach

comparable performances also when splitting results by mention type. On masked men-

tions, CorefM’s results are better for all mention types, indicating that seeing masks

during training benefits the model across classes of referring expressions. In spite of

magnitude differences for masked mentions, in general, the trends of which mention

types posemore challenges to the twomodels are analogous: When looking at unmasked

mentions, proper names are the easiest to resolve, while demonstratives are the hardest.

By contrast, for masked mentions, third-person pronouns are the easiest, followed by

proper names and full NPs.

The fact that the trends across mention types differ for masked and unmasked men-

tions suggests that, depending on the mention type, accessing the mention may be more

or less crucial to identify its referent. For instance, CorefM’s performances on ambiguous

third-person pronouns are not so different when accessing the mention or not (unmasked

vs. masked mentions). This can be explained by pronouns occurring in informative con-

texts and the limited information that the pronoun itself encodes. By contrast, for expres-

sions like full NPs and proper names, there is a substantial difference in accuracy when

the mention is revealed or not, indicating that in those cases the mention tends to often

provide crucial complementary information. Table 6.2 shows examples of predictions

on masked mentions with different mention types.
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accuracy relative accuracy JSD

CorefM left only .54 .50 .46

CorefM left + right .74 .64 .39

Modi et al. (2017) ling. .59 .38 .57

Modi et al. (2017) ling. & world .62 .53 .50

Table 6.3: Evaluation of CorefM in terms of accuracy (with respect to the true referent),

relative accuracy with respect to human top guess, average Jensen-Shannon divergence

(JSD) of the probability distributions over referents derived from human predictions and

from the model (the smaller the better).

6.4 Predicting Human Referent Expectations

Before using CorefM as a proxy for referent predictability, we evaluate whether its pre-

dictions are human-like. In the previous evaluation, we assessed how often the model

assigned the highest probability to a true coreferring expression (accuracy). However,

humans are not expected to always be able to guess the true referent based on context.

We thus evaluate CorefM’s expectations over referents in terms of the extent to which

they approximate those that a human would have, including when they are not able to

guess the true referent. To evaluate whether CorefM is good at this, we compare its

estimates of referent predictability with those derived from experiments with human

subjects.

For this analysis, we rely on the human data collected byModi et al. (2017) in a cloze

task setup. These data come from the InScript corpus (Modi et al., 2016), a collection of

narrative stories around different common scenarios (e.g., going grocery shopping, tak-

ing a bath). Due to this focus, these data trigger expectations that are strongly connected

to world knowledge about events and their participants. Subjects were asked to guess

the antecedent of an undisclosed mention while seeing only its left context (182 stories,

∼3K mentions with 20 guesses each). For example:

... I mixed the ingredients in a bowl, first sifting the dry ingredients

together, and then beating in the butter, eggs, and sugar. I baked

the cake at 350 degrees for 25minutes, then took it out of the oven,

let it cool, and frosted ___

From the antecedent guesses, one can derive a probability distribution over referents.

To elicit human judgments of referent predictability, Modi et al. (2017) used the

syntactic head of mentions as opposed to the complete mention boundaries (e.g., “ingre-

dients” in “the ingredients”). To make the task closer to the way the model was trained

(using full mention spans as pointers to mentions), we identify the mention boundaries

associated with each head through an automatic method, using detected noun chunks
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though the spaCy library and a set of heuristics (e.g., for undetected noun phrases, the

preceding – if any – determiner is incorporated). This leads to an estimated 91% ac-

curacy, based on a manual check of a sample of 200 mentions. We set the identified

mention boundaries as gold mention boundaries, as previously explained. While these

are used as candidate antecedents of a target mention, we set up the cloze task in the way

that Modi et al.’s did, namely masking only the head of the target mention.

To obtain predictions given a target mention, we only mask this one in the document.

We deploy CorefM in two setups: 1) using just the previous context of the target mention

(left), the setup used to elicit the human judgments, and 2) using both the left and right

context of the mention (left + right), the setup used to train the model. To evaluate

the model’s estimates, we follow Modi et al.’s approach and compute Jensen-Shannon

divergence (JSD) – a measure of dissimilarity between probability distributions – to

measure the difference between the predicted and the human distributions over referents.

The lower the divergence, the better the distribution estimated by the model matches that

of humans. We also report the accuracy of predictions with respect to the true referent,

and the relative accuracy with respect to the human top guesses.

We compare our results to those reported by Modi et al. (2017) for their computa-

tional models. These were trained to predict upcoming discourse referents based on 1)

linguistic knowledge alone (ling.), and 2) both linguistic and world knowledge (ling &

world). The models learned from the training portion of the InScript corpus, leverag-

ing, among others, script annotation such as participant and event types. For linguistic

knowledge, they use shallow features, like whether a referent was mentioned as the last

subject, or more complex ones, like how much the referent fits the selectional prefer-

ences of the given syntactic position. For world knowledge, they focus on both whether a

referent (associated with a participant type) fits the current position, and on prototypical

sequences of events.

Table 6.3 reports the results. Our JSD results improve (lower scores) over those re-

ported by Modi et al. (2017) for their models, indicating that we obtain a better proxy

for human referential expectations. Modi et al.’s systems were built incorporating much

information (syntactic and semantic) and trained in-domain. By contrast, our model

only leveraged the coreference annotations in a larger but more diverse training cor-

pus (OntoNotes). Our model gives better approximates of human expectations, while it

provides the flexibility of adapting to texts of different genres, without requiring fine-

grained annotations.

The comparison between the left and left + right deployment of CorefM offers inter-

esting methodological insights, albeit negative. CorefM can be deployed with varying

amounts of context. However, as emphasized earlier, the model was trained with ac-

cess to a bidirectional context window, and may then not work well when the text is

immediately cropped after the masked mention (left). Indeed, CorefM’s predictions are

more aligned to those of humans when accessing both sides of the context than with
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only the left context, even though the second setup more closely resembled that used for

the human data collection. Information in the following context of the mention could

not influence the human judgments, as it was not available. Therefore, if the left-only

deployment of CorefM worked as it should, we should not expect the left+right one to do

better at approximating the human-derived distribution over referents. This is because

both setups give access to the relevant information that humans had for their prediction

– the left context: if anything, adding more information – the right context – could even

lead to a deviation from human judgments because of the reduced uncertainty. There-

fore, we take the results to indicate that CorefM works suboptimally when deployed in a

setup different from that used during its training, with the system possibly having diffi-

culties in identifying the context cues available. For the current experiments, we focus

on the model leading to the best approximation of human expectations so far, namely

CorefM in its left + right deployment.

6.5 Predictability and Mention Form

In the previous sections, we evaluated the ability of CorefM to form referential expecta-

tions. Given that the evaluation provided satisfactory results, we here use the estimates

of referent predictability from our computational model as proxies for the true expecta-

tions, to investigate the relation between predictability and mention form. Our analyses

are analogous in methods to those of Tily and Piantadosi (2009) and Modi et al. (2017),

except that we use computational estimates of referent predictability instead of human

judgments.

Following previous work, we measure predictability with the information-theoretic

notion of surprisal: the more predictable an outcome is, the lower the surprisal when it

occurs. Given a masked mention xwith its true referent etrue, surprisal is computed from
the CorefM probability distribution over entities Ex (Eq. 6.1), given the context cx:

surprisal(x) := − log2 P (Ex = etrue | cx)

Surprisal ranges from 0 – when there is no uncertainty and the correct referent is as-

signed probability 1 – to positive infinity if the true referent was assigned probability

0. We compute surprisal deploying CorefM with gold mention boundaries, which, be-

sides simplifying the prediction of the referent, ensures that the probability distribution

over antecedents output by the model considers all and only the true set of candidate

mentions.

Using estimates of referent surprisal, we address the questions of whether ambigu-

ous expressions like pronouns are used where the referent is more predictable (RQ2),

and whether informative expressions are used exclusively in cases where the context

does not lead to strong expectations about the intended referent (RQ3; in other words,

if redundancies are avoided). To classify mentions by their informativeness, we use a
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mention’s syntactic type (third-person pronouns, full NPs, and proper names) and length

(number of word tokens). We then analyze referent surprisal as a predictor of each of

the two.

For these experiments, we use the OntoNotes test data, extracting for each (masked)

mention the referent predictability estimates, as well as a set of relevant features, some of

which leverage syntactic annotations in the corpus. First and foremost, to allow for the

analyses, the type and length of a mention; then a series of shallow linguistic features:

• distance: number of sentences between target mention and its closest antecedent

(inverse of recency);

• frequency: number of mentions of the target mention’s referent so far;

• antecedent = previous subject: whether the closest antecedent of the target men-

tion is the subject of the previous clause;

• mention = subject: whether the target mention acts as a subject;

• antecedent type: whether the closest antecedent of the target mention is a pro-

noun, proper name, or full NP.

The features are used to investigate whether surprisal can explain the choice of mention

type on top of discourse factors previously connected to reference production (Ariel,

1990; Arnold, 1998). CorefM learned a notion of referent predictability abstracting over

data, thus autonomously identifying the information that seemed relevant to make good

predictions. It is plausible that it learned to attend to some of these linguistic features,

as they can make an entity more expected (e.g., an entity mentioned last is expected

to be mentioned again; Arnold and Zerkle 2019). However, it may also have learned

to leverage other cues, not captured by the features; for instance, semantico-pragmatic

cues like the influence of thematic roles or rhetorical relations, which were shown to

affect expectations (Stevenson et al., 1994; Arnold, 2001; Kehler et al., 2008).

6.5.1 Predicting Mention Type

We employ a three-way distinction of the syntactic type of a referring expression, fol-

lowing previous work: namely, third-person pronouns (henceforth referred to as simply

pronouns), proper names, and full NPs. We thus exclude all other mentions, and also

those without an antecedent (i.e., first mention of an entity). The relevant data amounts

to 9758 datapoints (≈4K pronouns, ≈2K proper names, and ≈3K full NPs). In Fig-

ure 6.4, the distribution of referent surprisal for each mention type is displayed: Full NPs

tend to be associated with lower referent predictability (higher surprisal) than names and

pronouns. Much in-type variation is observed, but pronouns more consistently stay in
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Figure 6.4: Surprisal and mention type. The limits on the y axis were scaled to the 95th

percentile of the data to visualize the variability better.

the lower end of the distribution, meaning that they tend to be associated with lower

surprisal.

We use multinomial logistic regression to quantify the effect of predictability on

mention type, using as the dependent variable mention type with pronoun as the base

level, and surprisal as independent variable.7 Continuous predictors were standardized,

allowing for comparison of coefficients. The results of this regression are given in the

top left segment of Table 6.4. On the basis of the coefficients, we can see that higher

referent surprisal increases the probability of a proper name (β = .31) and even more
so of full NP (β = .47). This indicates that pronouns are used in contexts making the
intended referent more predictable than proper names and full NPs.

Following Tily and Piantadosi (2009) and Modi et al. (2017), we test whether ref-

erent surprisal has any effect when we add as further predictors the aforementioned lin-

guistic features, taken to play a role in mention choice. This allows us to test whether

referent surprisal plays a role beyond what is captured by those features. We fit a new

multinomial regression model, this time including also the linguistic features as inde-

pendent variables. Through the Likelihood Ratio chi-squared test, we verify that in-

corporating each predictor improves goodness-of-fit (with standard .05 alpha level; see

Appendix D.3 for more detailed results). Results are shown in the lower part of Ta-

ble 6.4. Surprisal led to improved goodness-of-fit (pχ2 << 0.001), indicating that it
still contributes information that is relevant to the prediction of the mention type and is

not captured by the linguistic features alone. However, now that the linguistic features

are added, surprisal does not distinguish anymore between pronouns and proper names,

7We use the multinom procedure from the library nnet (Venables and Ripley, 2002).
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but is only predictive of the distinction between pronouns and full NPs (see significance

values for surprisal in Table 6.4). This result was also found by Tily and Piantadosi

(2009).

As for the linguistic features, pronouns are favored over proper names and full NPs

when the referent has been mentioned recently, in line with the idea that pronominaliza-

tion is sensitive to the local salience of an entity. Furthermore, a pronoun is more likely

if the entity it refers to was last mentioned also with a pronoun. Proper names exhibit

an analogous effect, with a tendency to being reused to refer to an entity. The results

are also in line with the subject preference for pronouns (Arnold, 1998), as pronomi-

nalization is more likely when the referent’s previous mention appeared in the subject

position.

As mentioned earlier, we can take the information captured by the linguistic features

to be connected to predictability. However, CorefM could have acquired sensitivity also

to other types of information, such as semantico-pragmatic aspects (e.g., verb seman-

tics, rhetorical relations, world knowledge about events). Under this view, the results

indicate that the overlap of the estimates of referent surprisal with the linguistic cues is

only partial (adding one or the other leads to improvement in goodness-of-fit), and the

choice of mention type is best explained as a combination of these factors. This may

be because the predictability estimates fail to adequately account for the role of those

linguistic factors as they should, or because those factors sometimes override the role of

predictability when choosing mention form. I discuss further these results in Section 6.6.

Overall, the results of this analysis are in line with the findings from Tily and Pi-

antadosi (2009). They also used data from OntoNotes but focused on a comparably

small dataset of just news text. Thanks to the use of a computational model to estimate

predictability, we generalized their findings on a larger scale, considering the larger

OntoNotes test data, spanning a diversity of genres.

6.5.2 Predicting Mention Length

We codify mention length in terms of the number of word tokens in the referring ex-

pression.8 This is linked to informativeness, under the view that using more words to

refer to an entity leads to providing more information for its identification, though pos-

sibly with some degree of simplification.9 But mention length can also be connected to

cost: to produce a longer mention entails more production cost for the speaker, which

can be justified by the intention of providing more information. While pronouns are

8Analogous results were found when codifying mention length as the number of characters.
9The degree of informativeness of an expression may not only depend on the number of word tokens,

but also on the degree of specificity of the concept this encodes. For instance, “the satchel” and “the

leather satchel” are more informative than “the bag” or “the leather bag”, respectively. Moreover, the

degree of informativeness of an expression varies contextually: “the bag” is more or less informative

depending on the number of bags mentioned in the discourse.

137



“output” — 2021/11/30 — 7:00 — page 138 — #154

Predicting mention type

Proper name Full NP

β s.e. z p β s.e. z p

Intercept -.63 .03 -23.8 - -.26 .02 -10.9 -

surprisal .31 .03 9.6 * .47 .03 16.4 *

Intercept -.24 .07 -3.6 - .04 .07 .6 -

distance 3.13 .12 25.4 * 3.10 .12 25.2 *

frequency .09 .03 3.1 * -.13 .03 -3.8 *

antecedent = previous subject -1.31 .09 -13.9 * -1.10 .08 -13.7 *

mention = subject .07 .07 1.0 .3 -0.50 .06 -7.7 *

antecedent type = proper name 1.78 .08 22.8 * .41 .09 4.6 *

full NP -.17 .08 -2.2 * 1.18 .06 18.1 *

surprisal .05 .04 1.5 .1 .23 .03 7.8 *

Table 6.4: Two multinomial logit models predicting mention type (baseline level: “pro-

noun”), based on 1) surprisal alone and 2) shallow linguistic features + surprisal. *:

significant predictors with p < .05. All predictors reported improved goodness-of-fit to
the data. Complete tables with Likelihood-ratio Chi-squared test and F-test are reported

in Appendix D.3.

Predicting mention length

β s.e. t p

Intercept 1.87 .02 80.8 -

surprisal .25 .02 10.7 *

Intercept 1.81 .05 40.1 -

distance .17 .02 7.1 *

frequency -.13 .02 -5.4 *

antecedent = previous subject -.51 .06 -8.5 *

mention = subject .04 .05 .8 .4

antecedent type = proper name -.21 .06 -3.2 *

full NP .42 .06 7.5 *

surprisal .17 .02 7.4 *

Table 6.5: Two linear regression models predicting mention length (number of tokens)

of the masked mention, based on 1) surprisal alone and 2) shallow linguistic features

+ surprisal. *: significant predictors with p < .05. All predictors in models improved
goodness-of-fit to the data except “mention = subject” in the full linear regressionmodel.

Complete tables with Likelihood-ratio Chi-squared test and F-test are reported in Ap-

pendix D.3.
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always one-token mentions (e.g., “she”, “themselves”), names and full NPs can vary

(e.g., “Mary Poppins” vs. “Mary”; “the nanny” vs. “the nanny hired by Mr. Banks”),

giving us a more graded measure than the coarse-grained distinctions across mention

types. On average, proper names are shorter than full NPs (mean number of tokens:

1.67 vs. 3.16).

Following the same approach employed in the analysis of mention type, we fit re-

gression models with mention length as the dependent variable, (or number of charac-

ters, in the Appendix), and, and surprisal with and without shallow linguistic features,

respectively, as independent variables. In this case, we use linear regression models due

to length being a numerical variable. Table 6.5 reports the results. We find essentially

the same trends for mention length which we found for mention type: More surprising

entities tend to be referred to with longer expressions. When we add linguistic features

as predictors, surprisal still contributes information on top of them. Among the fea-

tures, the grammatical function and type of the antecedent are the strongest predictors.

Figure 6.5 visualizes this trend between surprisal and predicted mention length.

The fact that pronouns are always one-token mentions raises the question of whether

perhaps the linear regression is only capturing the distinction between pronoun and the

rest of mentions. To address this, we fit a regression model with the same method but

only considering the non-pronominal mentions: if the relation between length and ref-

erent surprisal still holds, this means that it applies generally to referring expressions,

including names and full NPs. We find that this is the case, as the same results are

found also when pronouns are excluded (see tables 4 and 6 in Appendix D.3): shorter

expressions are associated with more informative contexts, independently of mention

type.

Overall, these results suggest that speakers take into account the predictability of

the entity they want to refer to when planning their referring expressions. Longer, more

informative expressions are used to compensate a limited context informativeness. This

can be explained by speakers going out of their way to produce a more costly expression

when it would be otherwise difficult to understand the utterance. On the contrary, shorter

expressions are favored in informative contexts. In the analysis of mention type we

found that referent predictability did not capture the distinction between pronouns and

names, when considering also the role of linguistic features (Table 6.5). The results on

mention length can help us to posit an explanation for this result, as names tend to be

shorter expressions than full NPs. It is possible that in informative contexts, a speaker

may still opt for a more explicit expression than a pronoun when the redundancy this

introduces does not causemuch production cost: even though the referent can be inferred

from the context, the speaker does not use a pronoun but, e.g., a name.
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Figure 6.5: Trend between surprisal and predicted mention length by the linear regres-

sion model (Table 6.5: shallow linguistic features + surprisal), visualized by adding a

smoothing line comparing only the outcome with the variable surprisal.

6.6 Summary and Discussion

In this chapter, I presented a study of the relation between referent predictability and

mention form using computational estimates of the former. In the following, I discuss

the implications and contributions of our findings for linguistic research. I then dis-

cuss strengths and challenges of the computational methodology we employed to obtain

estimates of referent predictability.

6.6.1 Referent Predictability and Mention Form

The linguistic hypothesis we addressed in our study concerned whether speakers attempt

to strike a balance between clarity and cost when producing referring expressions (Tily

and Piantadosi, 2009). In particular, do speakers tend to use less informative, shorter

expressions like third-person pronouns in contexts that are highly predictive of the ref-

erent? Conversely, do they reserve the more explicit expressions, like descriptions or

names, for when the information in the context needs to be compensated?

When comparing referent predictability and the syntactic type of a mention, third-

person pronouns are the categorymost consistently associatedwith low referent surprisal

(i.e., high predictability; Figure 6.4). This constitutes evidence that ambiguous expres-

sions are used in contexts that already contribute much information about the intended
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meaning of the expression. When looking at the role of referent surprisal jointly with

certain linguistic features, we found that both contribute relevant information when pre-

dicting a mention type. Referent surprisal was predictive of the pronoun vs. full NPs

distinction, though not of the pronoun vs. proper names distinction.

The linguistic features we took into account in our analyses (e.g., how recently a

referent was mentioned, or whether it was mentioned last as the subject) are often taken

to affect pronominalization (Ariel, 1990; Arnold, 1998). This effect was corroborated

also by the results of our analyses. That referent surprisal contributes information on

top of these features suggests that reference production is affected by factors that are

accounted for by predictability but not by the linguistic features. The system we used to

estimate predictability learned the aspects that are relevant to guess a referent from its

context based on patterns in the data. Besides superficial features like recency, it could

attend to, for instance, semantico-pragmatic factors like verb semantics or rhetorical re-

lations (Fukumura and Van Gompel, 2010; Kehler and Rohde, 2013; Rosa and Arnold,

2017). An analysis of the type of cues that the system effectively leverages for its com-

putations would help to clarify what information predictability contributes on top of the

linguistic features (see next subsection). But also, the linguistic features contributed in-

formation on top of referent surprisal. This suggests that reference production cannot be

explained by predictability alone, but rather as a complex interaction of factors.

Looking at the relation between referent predictability and mention length provided

further insights, in particular in connection to the role of production cost. We found

that longer expressions are associated with contexts where the intended referent is less

predictable. Under the assumption that longer expressions provide more information,

this suggests that speakers make the effort of producing a more costly expression when

its meaning would be otherwise hard to infer. Speakers would thus be willing to com-

promise cost to attain clarity and make their expressions interpretable by the addressee.

By contrast, short expressions are used when the context is predictive of their referent.

As pronouns are consistently one-word mentions, this result is in line with the previous

finding that pronouns tend to occur in predictive contexts. But the same trend is found

across non-pronominal mentions only. This indicates that, across mention types, a ref-

erent’s predictability affects the cost of the produced expression. This could explain the

aforementioned lack of distinction between names and pronouns with surprisal: both a

short proper name and a pronoun (e.g., “Tom” vs. “he”) could be used for a predictable

referent. Again, when jointly taking into account linguistic features, referent surprisal

still contributes relevant information, but the form chosen to refer to an entity is best

predicted as the result of multiple factors.

Our results on both mention type and length can be reconciled by positing the fol-

lowing explanation. In reference production, a speaker takes into account clarity to be

collaborative with the addressee and ease the correct identification of its referent (Grice,

1975). This leads to choosing an expression whose ambiguity can be resolved in the
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context of what they said (and the content they plan to mention next). The speaker,

however, also aims to reduce the cost of their expression, and not to convey information

that is already predictable from the context (Zipf, 1949; Jaeger, 2010). This leads to

saving longer (i.e., more costly) expressions – which tend to convey more information –

for when the referent is not otherwise identifiable. Whenever the context is instead pre-

dictive enough, they can safely pick a pronoun, but they may also go for a more explicit

expression, especially if short. This may cause redundancies between the context and

the expression, contrary to what a fully efficient communication strategy would predict:

why? First, being overinformative makes the utterance robust to noise: it may be wel-

come if not requiring much effort. Also, in referential choice, speakers may be guided

by other factors –grammatical or stylistic aspects – beyond clarity and cost. Discourse

factors like recency or syntactic prominence may constrain referential form to a stronger

degree than their effect on predictability. For instance, the preference for pronominaliz-

ing entities mentioned in subject position was found to override the role of semantico-

pragmatic aspects on reference production (Fukumura and Van Gompel, 2010; Kehler

and Rohde, 2013). This connects to the open question about why certain factors affect

referent predictability and production to different strengths (Arnold and Zerkle, 2019),

and the extent to which the notions of predictability and salience/accessibility can be

considered to overlap (Zarcone et al., 2016).

Our findings on mention type are aligned with those reported on the smaller-scale

study, relying on human judgments, by Tily and Piantadosi (2009). The fact that we

could extend their conclusions on a bigger and more diverse dataset speaks to the ad-

vantages of using computational estimates of referent predictability. Like Tily and Pi-

antadosi (2009), our results are however not aligned with those reported by Modi et al.

(2017), which did not find an effect of referent predictability on mention form. This

may be due to the different types of data considered in the studies: Modi et al. used

narrative stories centered around typical scenarios, where participants may generally be

more predictable than entities in, e.g., a news text.

6.6.2 Methodological Considerations

Using computational estimates of referential expectations allowed us to scale and expe-

dite analyses on the relation between referent predictability and mention form. We ob-

tained these estimates by implementing a coreference resolution system that can output

a probability distribution over the antecedents of an unknown mention. Before deploy-

ing our model for the analyses, we assessed the quality of its predictions. Our model’s

estimates of referent predictability, at least when obtained in the same setup the model

was trained on, match human expectations to a satisfactory extent. This ensured that the

method was reliable enough for subsequent analyses. Still, in future research, a more

extensive evaluation of the model behavior would be beneficial.

First, Modi et al. (2017)’s cloze task data was not optimal for our purposes: It is
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not diverse in the type of texts, and it does not consider the full referring expressions

(but only the mention’s syntactic head). Moreover, the judgments were based only on

the previous context of a mention, while the notion of predictability we adopted was

not restricted to anticipation. In future work, one could collect and compare referent

guesses in setups varying in the amount of context (left vs. right context). A new dataset

improving in these aspects would be a useful resource, both for model evaluation and

generally for linguistic analysis.

Another way in which our model of referent predictability could be further studied

is by analyzing the type of cues it is sensitive to, which – recall – were autonomously

learned from the data. A promising research direction is to deploy the model on targeted

evaluations focusing on specific factors. We could use items manipulating specific fac-

tors (as in psycholinguistic experiments; e.g., Kehler and Rohde 2013; Fukumura and

Van Gompel 2010), like the syntactic position of the last mention, or verbs with con-

trasting referent biases. Analogous analyses were carried out, for instance, on language

models (Davis and van Schijndel, 2020). This could provide a further assessment of the

quality of the system (compared to existing evidence on how humans behave). More-

over, knowing which factors are considered in the computation of referent predictability

could help clarify its interaction with the linguistic features considered in our analyses.

The estimates we used in our study were based on access to both the previous and

following context of an expression, but most works focus on referent predictability based

only on the previous context. We motivated this choice in Section 6.2.2, out of both the-

oretical arguments and practical motivations. However, an avenue for future research is

that of more precisely and flexibly control the amount of context that is given to a model

for the prediction. For instance, we could compare results using only the left context of

a mention to those with also some portion of the right context, in order to assess if and

in which amount the following context plays a role on mention form. However, with

the current system, focusing only on the previous context of a mention is inefficient,

and also, in practice, leads to poor behavior as the model was not trained in this setup

(Section 6.4). In future work, solutions to this issue could be explored, such as keeping

the same architecture but relying on unidirectional LMs (as those used in Chapter 5).

Independently of ways in which our current approach could be improved, the general

methodology we put forward to estimate referent predictability – using NLP techniques

– can be a useful tool for linguists. In particular, it lifts the requirement of having to col-

lect a large number of human judgments to run large-scale studies. While a model may

not be a fully accurate approximation of human expectations, the potential noise intro-

duced can be considered counterbalanced by the scale at which the observations can now

be drawn. Our methodology could be applied for analogous studies on more languages

than English, allowing for a cross-linguistic analysis of the relation between referent

predictability and mention form. This was, for instance, the approach of Pimentel et al.

(2020a) using LMs to bring evidence across languages for a balance between ambiguity
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and contextual informativeness at the lexical level. When focusing on reference, there

is however a bottleneck in the number of languages we can test our hypotheses on, due

to the requirement of sufficiently large corpora annotated for coreference (a large por-

tion has to be reserved for training the coreference model). Still, there exist languages

besides English with such resources; for instance, Arabic and Chinese are included in

OntoNotes v5.0 (Weischedel et al., 2013), the resource used in our analysis. Finally,

our method could be useful to explore other topics beyond reference production, such

as the effect of referent predictability on processing during the resolution of referential

ambiguities (McDonald and MacWhinney, 1995).
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Chapter 7

CONCLUSION

This thesis reported a comprehensive study of linguistic ambiguity, which is relevant to

linguistics, cognitive science, and NLP. I investigated linguistic ambiguity in the chal-

lenges it poses to its accounts and to artificial systems learning to process language.

In my experiments, I considered different ways in which ambiguities can surface in

language – syntactic, lexical, and referential ambiguities – focusing on the English lan-

guage. Deep learning was adopted as the main research framework. On the one hand,

I studied the way neural language models process ambiguities (chapters 3 and 5): To

which degree are they sensitive to disambiguating cues in the context? What default

preferences over interpretations do these models have, and what is the effect of these

biases? On the other hand, I used deep learning models as a tool for linguistic analyses.

I investigated the interaction between the information contributed by an expression and

its context, by approximating these sources of information using computational mod-

els. This allowed studying interpretation and production strategies relevant to ambigu-

ity (chapters 4 and 6).

The contributions of the thesis can be classified into explanatory and methodologi-

cal: In the first case, they offer insights into the way either humans or artificial systems

handle ambiguities. In the second case, they introduce novel techniques to either ana-

lyze computational models or use them to facilitate the testing of linguistic hypotheses.

For each set of experiments reported, I have discussed their implications from both per-

spectives – explanatory and methodological – at the end of the respective chapters. In

this final chapter, I consider the various findings to identify common themes and general

open questions for future research.

Let me first start with the explanatory contributions. I started my thesis with a

metaphor on ambiguity resolution (Figure 1.1), envisioning it as the result of balancing

pans on a scale: Each pan – representing an interpretation – is loaded with weights by the

expression and its context. The interpretation settles for the pan receiving more weight.

The findings frommy thesis corroborate this general view on ambiguity resolution, high-

lighting the importance of taking into account the strength to which an interpretation 1)
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is in general associated with the expression, and 2) is relevant to the context.

Two of the studies in this thesis (chapters 3 and 4) were concerned with lexical am-

biguity resolution, both in terms of the mechanisms learned by a neural language model

and those that can be hypothesized to explain human data. The findings in both studies

suggest that lexical ambiguity resolution can be modeled quite successfully when start-

ing from a lexical representation that is underspecified and frequency-biased (encoding

more saliently the more frequent senses) and modulating it based on what information is

contextually relevant. This idea is in line with both processing theories of word meaning

access (Duffy et al., 1988; Rodd, 2020) and lexical pragmatic accounts such as relevance

theory (Wilson and Carston, 2007). This result was found when explicitly formalizing

and testing this mechanism with a computational model of word interpretation. This put

together the lexical information from a word embedding with information that is contex-

tually expected. But also, the neural language model BERT (Devlin et al., 2019), whose

lexical disambiguation strategy is not a priori known, seems to rely on a somewhat sim-

ilar process of contextualization, with contextual expectations acquiring a stronger role

as the input word embedding is processed through the hidden layers.

However, our findings support a view where the degree of reliance on these two

sources of information – the lexicon and context – appears to vary from situation to sit-

uation, likely to counterbalance effects of sense dominance (a bias towards the most fre-

quent senses), or erroneous or vague contextual expectations. Some qualitative evidence

of this was found in Chapter 3 and was then more directly investigated in Chapter 4.

This finding opens questions and avenues for future research, both for the study of lan-

guage and its modeling in NLP. First, how the focus that is put on the lexically encoded

information and contextual expectations gets adapted during interpretation requires fur-

ther investigation. In particular, what factors does it depend on? Our framework could

provide a useful tool to investigate this, by looking at what interplay between the ex-

pectations and the lexicon better model different cases. But also it would be interesting

to extend and deploy this type of framework on ambiguities beyond the word-level.

Moreover, deep learning models, though already quite successful at ambiguity resolu-

tion, may benefit from taking into account this dynamic aspect of interpretation, at the

level of architectural choices or inductive biases. This might in particular help in the

challenging retrieval of infrequent, or even novel, senses, which deviate from the most

typical usages of a word in the training corpus.

The interaction between the information in an expression and its context was found to

affect not only comprehension but also production. The evidence in Chapter 6 suggests

that the more a context makes a referent predictable, the more a speaker tends to reduce

the informativeness of the expression used to refer to it (e.g., a pronoun vs. a description)

– and vice-versa. This effect interacts with other factors (e.g., recency, syntactic posi-

tion), and likely does not explain reference production alone. However, the findings are

in line with the idea that speakers balance the ambiguity potential of an expression with
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the information that can be inferred in context. Such a mechanism can apply beyond the

production of referring expressions, to explain, for instance, how lexically ambiguous

words get avoided in contexts that do not permit their disambiguation (Ferreira et al.,

2005; Ferreira, 2008; Pimentel et al., 2020a).

The contributions reported so far concern hypotheses about how humans handle am-

biguities. Some of the findings of my thesis – chapters 3 and 5 — focus instead on the

way neural language models process ambiguities. Overall, my results confirm that these

systems have good disambiguation skills, though with some margin for improvement.

Both in lexical and syntactic ambiguity resolution, themodels acquire default biases over

interpretations. For lexical ambiguity, this is directly encoded in the word embedding

passed as input, and used in the hidden layers as starting point to infer the contextually

relevant sense. Indeed, contextual word information, reflecting the situation-specific

sense of a word, can typically be retrieved from hidden states. However, my experi-

ments indicate that, at the same time, the underspecified lexical information passed as

input remains to some degree encoded in the hidden states. In Section 3.5 I proposed

some hypotheses about why this behavior emerges in a model, which however remains

an open question. For syntactic ambiguity, I estimated the degree of preference towards

interpretations looking at the model’s output behavior (generating text). The results in-

dicate that a language model can consider simultaneously viable two interpretations, but

adjust its degree of preference for each depending on instances of a construction. This

suggests that both syntactic and lexico-semantic factors (as opposed to just syntactic

principles) are taken into account by the language model in the resolution of the am-

biguity, analogously to mechanisms posited for human processing (MacDonald et al.,

1994; Garnsey et al., 1997). However, more experiments are required to find out what

aspects the model is sensitive to.

The aforementioned observations were made possible by a set of methodologies in-

troduced in this thesis. A first group consists of techniques to use deep learning models

as a tool for linguistic analysis; in particular, to obtain proxies for contextual expecta-

tions. In Chapter 4, I represented expectations about word content as a high-dimensional

vector in the space of lexical representations (i.e., word embeddings). This vector can

be extracted from a language model directly, at an intermediate computation step. This

method was used to test the effect of expectations from the discourse context on lexical

disambiguation. In Chapter 6, I modified the training setup of a coreference resolution

architecture so that it estimates referent predictability based on context only. This en-

abled us to investigate the effect of contextual expectations on the choice of a referring

expression. Both of these methods extend the toolbox of linguists with computational

data-driven techniques, which I hope will inspire further studies aimed at empirically

grounding linguistic hypotheses.

The methodological contributions of this thesis also include techniques to analyze

the inner workings of deep learning models; in particular, their processing of ambiguity.
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In Chapter 3, I used auxiliary supervised tasks to extract the word information encoded

in hidden states after processing a word and its context (or just its context; processing vs.

predictive hidden states). This leveraged a representation learning objective and the use

of lexical substitution annotations. In Chapter 5 I instead introduced a type of behavioral

analysis, focusing on the output predictions as opposed to the internal representation.

I probed the expectations of a language model over an unfolding sentence using text

generation, using completions to estimate the probability of an interpretation of the input.

While this analysis was applied to syntactic ambiguities, it could be applied beyond

this phenomenon in future work; for instance, to study the resolution of referential or

lexico-semantic ambiguities. Both methodologies proved to be useful tools to clarify

the dynamics of neural language models. They however also harbor some weaknesses,

as discussed in Section 3.5 and 5.6. This suggests some cautiousness in the conclusions,

and also highlights the importance of more research on ways in which we can uncover

the dynamics of “black-box” deep learning models.

To conclude, the research presented in this thesis generally pursued two high-level

goals: to find out how deep learning models process language, and how we can use

them to investigate how humans do it. I believe that the second goal cannot be achieved

without advancing also towards the first. Deep learning models led to great improve-

ments in language technologies, suggesting that they may also help the work of linguists

and cognitive scientists by, for instance, providing the tools to automatically estimate

information. We however cannot establish whether a certain method is suitable for our

goals without taking a closer look at the representations or estimates it introduces. If us-

ing deep learning models, we need to take into account the implications of architectural

or training decisions, or the results of analyses on what these models encode and how:

What assumptions am I introducing? Am I obtaining an adequately reliable proxy? But,

with the appropriate caveats, deep learning models offer much potential. I hope that

the ideas put forward in this thesis will inspire new applications of computational data-

driven techniques to enhance our understanding of how language works.
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Appendix A

CHAPTER 3

A.1 biLSTM Language Model

The language model was trained to optimize the log-likelihood of a target word given

its surrounding context, with stochastic gradient descent for 20 epochs with decaying

learning rate using Adam optimizer Kingma and Ba (2014). The initial learning rate

was 0.0005 for a batch size of 32. Dropout was set to 0.2 and applied to the input

embedding, and the outputs of the LSTM layers. At training time, the text data is fed

to the model in sequences of 100 tokens. On test data, the model achieved a language

modeling perplexity of 18.06.

A.2 Diagnostic Models

Separate diagnostic models are trained for each combination of language model (biL-

STM or BERT), task (lex or ctxt) and input representation type (a processing or predic-

tive hidden state at a given layer). Each model consists of a non-linear transformation

with tahn non-linearity, trained using Cosine Embedding Loss (PyTorch 0.4, Paszke

et al., 2017) and Adam optimizer, with early stopping based on validation loss. We

carried out hyperparameter search based on validation loss for each of the model types

in order to set batch size and initial learning rate. We report the final settings for each

combination of input and task in Table A.1.

A.3 Hidden States and Word Representations

Figure A.1 displays the average cosine of hidden states – processing and predictive – to

the representations of word information used as targets by the diagnostic models. lex is

the context-invariant representation of lexical information – the word embedding, while
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biLSTM

input lex ctxt

pred proc pred proc

h1t (64, 5e-05) (64, 0.0005) (32, 0.0001) (64, 0.0005)

h2t (64, 5e-05) (64, 0.0005) (16, 0.0001) (16, 0.0005)

h3t (32, 5e-05) (32,0.001) (32, 5e-05) (64, 0.0001)

BERT

input lex ctxt

pred proc pred proc

h0t (128, 5e-05) (64, 5e-05) (128, 0.0001) (64, 5e-05)

h1t (128, 5e-05) (32, 0.0001) (64, 5e-05) (16, 5e-05)

h2t (128, 5e-05) (128, 0.0005) (64, 5e-05) (128, 0.0005)

h3t (128, 5e-05) (128,0.0005) (64, 5e-05) (16, 0.0001)

h4t (128, 5e-05) (16, 0.0001) (32, 5e-05) (16, 0.0001)

h5t (128, 0.0001) (64, 0.0005) (64, 5e-05) (16,5e-05)

h6t (128, 5e-05) (64, 0.0005) (64, 5e-05) (16, 0.0001)

h7t (128, 0.0001) (64, 0.0005) (64, 5e-05) (16, 5e-05)

h8t (32, 5e-05) (128, 0.0005) (16, 5e-05) (16, 0.0001)

h9t (64, 5e-05) (128,0.0005) (32, 5e-05) (64, 0.0001)

h10t (16, 5e-05) (16, 0.0001) (16, 5e-05) (16, 0.0001)

h11t (32, 5e-05) (64, 0.0005) (16, 5e-05) (16, 5e-05)

h12t (16, 0.0001) (16,0.0001) (16, 0.0001) (64, 0.0005)

Table A.1: Hyperparameter settings in the diagnostic models (batch size, initial learning

rate)
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Figure A.1: Average cosine of hidden states (processing and predictive) to lexical and

contextual representations (lex and ctxt, respectively).

ctxt is modulated to reflect the context-specific interpretation of a word. As it can be

seen, for processing hidden states the cosine to word representations is very high in the

initial layers, especially to the lexical representation. Recall that the word embedding is

passed as input for processing to these layers: what these results suggest is that the hid-

den state retains a high similarity to it initially. The cosine to the input word embedding

then dramatically decreases as more transformations are applied across the following

layers. This has the effect of shifting hidden states away from the representations that

need to be retrieved by a diagnostic model. In particular, there is a larger cosine margin

to recuperate in the latest layers. This does not entail that these states do not contain rele-

vant word information but suggests that retrieving it from the hidden states and mapping

it to the correct subspace might be a more difficult task, to start with.

By contrast, processing hidden states do not exhibit this effect. There is a slight

increase in cosine moving towards the layers closer to the output, but generally, they are

uniformly very far away from the word subspace.
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Appendix B

CHAPTER 4

B.1 Further Results

Figure B.1 and B.2 display the LexSub results obtained with different α values on dev

data, for the biLSTM and BERT-base respectively (the plots relative to BERT-large are

reported in the body of the thesis). While the magnitude of the scores and the α value

where they achieve their peak vary across models, overall the trends are comparable. In

particular, increasing the constant α initially benefits the yielded interpretations, to then

becoming detrimental above a certain threshold. Moreover, selecting for each datapoint

its optimal α leads to accounting best for the substitution judgments.
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Figure B.1: Results on dev data for the biLSTM. Dotted lines mark whether a given α
yields a iv,c that is closer to ec (to the line’s left) than to lv (to its right).
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Figure B.2: Results on dev data for BERT-base. Dotted lines mark whether a given α
yields a iv,c that is closer to ec (to the line’s left) than to lv (to its right).
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Appendix C

CHAPTER 5

C.1 Generation: Further Details

To generate completions from the prompt, we apply stochastic decoding as described in

Section 5.3 Due to the different types of vocabulary used by the two language models

– word-level vs. with both word and subword units (Byte-Pair-Encoding), some differ-

ences are introduced to generate sentence completions from the models. From a prompt,

we generate 30 and 50 tokens for the LSMT and GPT2, respectively. This is because

GPT2 can generate subwords, and thus require more steps on average to reach the end of

a sentence. For the analyses, we discard GPT2 completions where the last word of the

prompt is followed by a subword, thus changing its identity (e.g., from “suit” to “suit-

able”). For the LSTM we penalize the generation of the unknown-word symbol (used

when a word is not covered by the vocabulary), reducing its output score by a factor of

1016. This ensures that sampling this symbol is unlikely.
A minority of words in NP/Z and Noun/Verb prompts were not in the vocabulary

of the LSTM. To avoid having to use the unknown-word symbol and to make sure that

the model has access to all the relevant information in the prompt, we replace these

words with equivalent ones that do not substantially affect the meaning of the sentence

(e.g., “jogger”→ “runner”). We use these modified prompts for the experiments on both

language models.

C.2 Diversity of Generated Sentences

We analyze the diversity of the completions generated for each prompt. Completions

were rarely completely identical: the average proportion of unique completions in a

sample (pooling together all prompt types) is at least 98% for all ambiguity types and

LMs. Of course, two completions can be very similar, though not identical. To mea-

sure to extent of this phenomenon, we measure the lexical overlap across completions,
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focusing on unigrams and bigrams. We calculate individual Self-BLEU scores of each

completion with respect to the others generated for the same prompt. Average unigram

scores tend to be much higher than the bigram ones across ambiguity types and LMs (the

former in the range .68-.71, while the latter .18-.25). This shows that individual words

are often repeated across completions, but not so frequently in the same order.

C.3 Classifying Completions

I here describe the rules employed to classify completions generated by a languagemodel

based on the inferred syntactic interpretation of the prompt.

C.3.1 NP/S and NP/Z Sentences

It is possible to distinguish between the NP and S interpretations and between the NP and

Z interpretation through the syntactic role of the head of the noun phrase that contains

the locus of ambiguity. We turn this principle into concrete rules to classify a sentence

based on the dependency labels assigned to its tokens by a dependency parser.

The rules are applied recursively:

• In the base case, we check if the predicted label of a given token is that of direct

object or subject. If it is a subject, we return S for NP/S and Z for NP/Z.

• If the label for the given token is neither subject nor direct object, we consider

whether it could be part of a complex NP. If the predicted label is that of a modifier

or possessive, we apply the function to the following tokens to identify the head

of the NP and determine whether it is a subject or direct object. If this scenario

does not apply, we return other.

The most common parser error involves a failure to detect S or Z cases, labeling the

locus as direct object when followed by a finite verb. This parse is not grammatical,

because the verb after the locus of ambiguity is left without a subject. The locus of

ambiguity then needs to be the subject itself. We modify the base case rule to detect and

correct these cases:

• If the given token is a direct object but it is followed by a token with a dependency

label compatible with a finite verb (e.g., root, ccomp), we change the label to

subject, and return S for NP/S and Z for NP/Z.

C.3.2 NP/Z Sentences with Disambiguation Issues

In Chapter 5 we described a subset of completions to Post-locus cue completions of NP/Z

prompts that indicate that the LMs have not fully adapted to the Z interpretation. To
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identify this behavior and quantify it across the data, we use patterns in the dependency

labels predicted for a sentence. In particular, the following condition:

• The post-locus cue is not recognized as the main verb;

• A comma is placed between the post-locus cue verb and the main verb;

• The comma is not followed by a conjunction.

C.3.3 The Noun/Verb Ambiguity

For the Noun/Verb ambiguity, we classify completions based the part-of-speech tag pre-

dicted by the parser for the locus of ambiguity (NN, NNS etc. → Noun; VB, MD etc. →
Verb). Errors in the part-of-speech tags predicted by the parser tend to cause incorrect

dependency labels as well; as such, we do not rely on the dependency labels for this

ambiguity.
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Appendix D

CHAPTER 6

D.1 Masking mentions: details

For simplicity, both in training and evaluation, we never mask mentions which are em-

bedded in another mention (e.g., “the bride” in “the mother of the bride”), since that

would cover information relevant to the larger mention. In case we mask a mention that

includes another mention, we discard the latter from the set of mentions for which to

compute a prediction. When evaluating antecedent prediction, we skip the first mention

in a document as this is a trivial prediction (no antecedent).

D.2 Coreference resolution on OntoNotes

Table D.1 reports MUC, B3 and CEAF scores, whose F1 average we report (CoNLL-

2012 score), for the Coref and CorefM, both with predicted and gold mention boundaries.

The results are overall comparable between the two systems across all metrics.

In Chapter 6, I report the results of antecedent prediction by mention type for Coref

and CorefM using gold mention boundaries. I here report the same results for different

setups andmodels. First, the results of Coref andCorefM bymention type using predicted

mention boundaries are displayed in Figure D.2 and D.1. The trends across mention

types are the same as with gold mentions (Table 6.3), but the results are generally worse,

plausibly due to errors introduced by the additional challenge of mention detection. In

Figure D.3 I report the results of a variant of CorefM – CorefM
3 – where, both during

training and deployment, a mention is masked substituting it with a sequence of three

[MASK] tokens, instead of just one. This is to verify whether the use of a single token

is responsible for the quality of predictions on one-token mentions, and in particular

pronouns. The results show that this is not the case, as the trends found with CorefM are

the same as those with CorefM
3: when a third-person pronoun is used the antecedent is

still easier to predict than when a proper name is used, and even less than a full NP.
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Figure D.1: Antecedent precision scores

with predicted mentions of the model

CorefM across different mention types, for

both masked and unmasked mentions.

Figure D.2: Antecedent precision scores

with predicted mentions of the model

Coref across different mention types, for

both masked and unmasked mentions.

Figure D.3: Antecedent precision scores with goldmentions of themodel CorefM
3 across

different mention types, for both masked and unmasked mentions.
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model mentions MUC B3 CEAF Avg

P R F1 P R F1 P R F1 P R F1

Coref predicted .84 .83 .84 .76 .75 .76 .75 .71 .73 .78 .77 .77

gold .95 .91 .93 .87 .86 .86 .92 .77 .84 .91 .85 .88

CorefM predicted .84 .83 .83 .76 .75 .75 .74 .71 .73 .78 .76 .77

gold .95 .93 .94 .86 .88 .87 .92 .78 .85 .91 .86 .88

Table D.1: Results on OntoNotes test data in document-level coreference resolution

(only with unmasked mentions); P, R, F1 = precision, recall, F1 scores.

Proper name Full NP

β s.e. z β s.e. z LRχ2 dfpχ2

Intercept -.63 .03 -23.77 -.26 .02 -10.93

surprisal .31 .03 9.56 .47 .03 16.44 330.28 2 ∗

Intercept -.24 .07 -3.60 .04 .07 0.58

distance 3.13 .12 25.40 3.10 .12 25.23 1466.81 2 ∗

frequency .09 .03 3.11 -.13 .03 -3.78 37.35 2 ∗

antecedent = previous subject -1.31 .09 -13.91 -1.10 .08 -13.70 362.02 2 ∗

mention = subject .07 .07 1.00 -0.50 .06 -7.71 82.57 2 ∗

antecedent type = proper name 1.78 .08 22.83 .41 .09 4.62
1723.67 2 ∗

full NP -.17 .08 -2.16 1.18 .06 18.13

surprisal .05 .04 1.46 .23 .03 7.80 75.18 2 ∗

Table D.2: Multinomial logit model with shallow linguistic features and surprisal pre-

dicting mention type (baseline level is “pronoun”). Coefficients which have an absolute

z score lower than 2 are not significant. ∗ : pχ2 < 0.001.

D.3 Predicting Mention Form: More Results

Table D.2 and D.3 add results from likelihood-ratio chi-square tests and F-tests, respec-

tively. The two tables complement the information in Table 6.4 and 6.5. All variables are

tested to significantly improve goodness-of-fit to the data, except the feature ” mention

= subject” in predicting mention length (number of tokens).

Table D.4 shows two linear regression models predicting mention length quantified

in terms of the number of tokens for each non-pronominal mention (proper noun, full

NP). We find that longer non-pronominal expressions are favored when surprisal in-

creases, indicating that the trends reported when including also pronominal expressions

were not simply due to the distinction between pronouns and non-pronouns. Rather a

predictive relation between referent surprisal and mention length seems to apply in a

general way, across all mention types.
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β s.e. t pt F df pF

Intercept 1.87 .02 80.75 ∗

surprisal .25 .02 10.74 ∗ 115.32 1 ∗

Intercept 1.81 .05 40.08 ∗

distance 0.17 0.02 7.08 ∗ 50.08 1 ∗

frequency -.13 .02 -5.37 ∗ 28.82 1 ∗

antecedent = previous subject -.51 .06 -8.46 ∗ 71.59 1 ∗

mention = subject .04 .05 .77 .44 .60 1 0.44

antecedent type = proper noun -.21 .06 -3.21 .0013
59.32 2 ∗

full NP .42 .06 7.51 ∗

surprisal .17 .02 7.37 ∗ 54.37 1 ∗

Table D.3: Two linear regression models predicting mention length (number of tokens)

of the masked mention, based on 1) surprisal alone and 2) shallow linguistic features

+ surprisal. All predictors were tested to improve goodness-of-fit to the data except

”grammatical function of mention”. ∗ : p < 0.001.

β s.e. t pt F df pF

Intercept 2.53 .04 64.24 -

surprisal .18 .04 5.10 * 26.00 1 *

Intercept 2.69 .09 30.72 -

distance -.02 .03 -0.71 .48 .51 1 .48

frequency -.31 .05 -6.87 * 47.17 1 *

antecedent = previous subject -.14 .15 -.93 .35 .87 1 .35

mention = subject .10 .09 1.05 .29 1.11 1 .29

antecedent type = proper noun -.96 .11 -8.71 *
77.26 2 *

full NP .16 .10 1.56 .12

surprisal .16 .04 4.44 * 19.74 1 *

Table D.4: Two linear regression models predicting mention length for each masked

non-pronominal mention, based on 1) surprisal alone and 2) shallow linguistic features

+ surprisal. ∗ : p < 0.001
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