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Abstract 

iological invasions are currently considered one of the main drivers of 

anthropogenic change and have become one of the most pervasive 

threats to native ecosystems worldwide, causing species extinctions, 

disrupting the functioning of ecosystems, altering the provision of critical 

ecosystem services and causing great economic costs. In the future, due to the 

intensification in trade and transport and to climate change, the number of 

invasions is expected to continue increasing, something that inevitably will go 

associated with greater impacts to native ecosystems. Therefore, finding effective 

ways for the management of invasive species has become a global priority. 

Unfortunately, once invasive species establish in the new habitat, their control and 

eradication becomes really difficult, especially in marine systems, where most 

management interventions have proven to be unsuccessful due to the open nature 

of these systems. However, during the invasive process, several mechanisms and 

characteristics from the receiving habitat can influence the success of non-native 

species, causing many invasions to fail and limiting the abundance and the negative 

impacts of already established invaders. Thus, there is an increasing interest in 

understanding how these mechanisms influence the success of invaders in order to 

find successful management interventions that could foster the resilience of native 

habitats towards invaders. Surprisingly, this knowledge is still quite limited, 

particularly in marine systems, where invasions have been largely understudied. 

Therefore, given this lack of knowledge and considering that invasions will further 

increase in number and impacts in the coming future, there is an urgent need for 

studies that shed light on the mechanisms influencing the success and dynamics of 

well established invaders to find the ways of hampering, or at least lessening the 

impacts of present and future invasions. 

B 
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 In this thesis, given that marine algae are one of the most conspicuous and 

successful invaders, we aim to unravel some of the mechanisms influencing the 

success and the invasiveness of algae species by using Caulerpa cylindracea, one of the 

most successful and harmful marine invaders worldwide, as a model organism. 

Specifically, we intend: i) to determine whether biotic mechanisms can limit the 

success of the invader and influence its long-term dynamics, and ii) to assess the 

role of abiotic factors and disturbance events on the invasiveness of the species, 

something particularly relevant considering the current scenario of global change. 

In the first three chapters of this thesis (Chapters 2, 3 and 4), we assess the 

influence of biotic mechanisms on the success of the invader by using a 

combination of long-term monitoring, chronosequences, in-situ manipulative 

experiments and field sampling. In Chapter 2, our findings from the benthic 

assemblage sampling show that the dominance of canopy-forming and erect algae 

species limits the abundance of the invader through competition mechanisms, 

while results from the in situ exclusion experiment show that herbivory by Sarpa 

salpa further limits the abundance of the invader in shallow habitats, where 

herbivory pressure is high. Therefore, as also confirmed by the long-term 

monitoring of the invader at the study site, the interaction between both biotic 

mechanisms influences the success of the invader at the local scale, with the 

abundance-depth distribution of the invader being shaped by the strength of the 

biotic mechanisms here assessed. Consequently, there are the habitats where the 

intensity of competition and herbivory is highest, the ones that sustain the lowest 

abundances of C. cylindracea. Moreover, by following the dynamics of C. cylindracea 

at the study site, we observed a decline in the abundance of the invader mainly in 

shallow habitats, thus we hypothesized that it could be due to an increase in the 

intensity of herbivory through time. Therefore, in Chapter 3 we followed a 

chronosequence methodology to assess whether the predator-prey interaction 

between S. salpa and C. cylindracea develops from the beginning of the invasion or 

whether it needs certain time to flourish. Remarkably, our findings revealed that S. 
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salpa needs time to start targeting the invader and to become an effective biotic 

resistance mechanism, thus confirming our previous hypothesis that herbivory 

increases its intensity through time. Particularly, an exposure time of at least 6 years 

was necessary for S. salpa to include C. cylindracea as a preferred food item, while the 

highest per capita consumption rates and the greatest proportions of herbivores 

feeding on C. cylindracea were found in places historically invaded compared to 

recently invaded locations. Interestingly, the electivity of S. salpa for the invader 

increased constantly through the invasion, even when the abundance of the invader 

had decreased, highlighting herbivory as an effective long-term biotic resistance 

mechanism that is maintained throughout the invasion. In previous chapters, 

herbivory was assessed in the herbivorous fish S. salpa, however, in the 

Mediterranean Sea other fish species have been occasionally observed feeding on 

C. cylindracea. Therefore, in Chapter 4 we assessed whether four of the commonest 

fish species in the Western Mediterranean Sea can feed on the invader and to what 

extent they elect to feed on it. Stomach content analysis revealed that three of the 

four assessed species: Diplodus annularis, Diplodus vulgaris and Spondyliosoma cantharus, 

were feeding on C. cylindracea, although, being these species omnivorous, the 

importance of the invader for the diet was generally low, except for D. annularis. 

Actually, the low values in the electivity index suggest that all the species are 

avoiding to feed on the invader. However, despite this avoidance, high amounts of 

C. cylindracea were found in several specimens, which together with the numerical 

importance of these species in the Mediterranean rocky habitats, might suggest that 

the consumption of C. cylindracea by omnivorous fishes can complement the 

stronger impact of the herbivory by S. salpa, and contribute to limit the abundance 

of the invader in shallow habitats. 

In the last chapter of this thesis (Chapter 5), we performed an ex situ 

thermotolerance experiment to assess whether acute disturbance events in the form 

of a marine heatwave (MHW) can affect the performance of the invader and to 

understand the influence of extreme temperatures in the plasticity of C. cylindracea. 
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We found that long exposures to high temperatures reduced the survival of the 

species, however, once the harsh conditions disappeared, C. cylindracea showed an 

outstanding capacity to recover. Actually, the exposure to stressful conditions 

triggered the morphological plasticity of the invader and gave rise to a novel 

filamentous morphology that had been previously observed in the field after a 

disturbance event. Therefore, these findings highlight the tolerance of the invader 

to disturbance and its remarkable capacity to adapt to environmental change by 

developing a morphology that improves the persistence, resistance and dispersion 

of the invader. Interestingly, the novel morphology also transforms the invader into 

a cryptic species, which compromises easy identification, thus affecting the 

management of the species. 

Overall, this thesis provides an integrated view of some of the mechanisms 

and factors influencing the success and the long-term dynamics of C. cylindracea in 

the Mediterranean Sea. In this sense, we provide evidence on the role that biotic 

resistance mechanisms have on the history of the invasion, demonstrating that in 

well-preserved habitats, where populations of fishes are healthy, the habitat itself 

has the mechanisms to limit the success of the invader. Also, we demonstrate that 

C. cylindracea has the ability to withstand acute disturbance events and to suffer 

drastic morphological changes that compromise its identification. Therefore, to 

lessen the impacts of invaders, a successful management intervention will be to 

focus efforts on the conservation of native ecosystems, in order to promote the 

natural resistance and resilience of the system, while complementary improving the 

early detection of invaders by implementing monitoring tools that take into account 

the potential plasticity of invasive species. Particularly, given that global change will 

make things easier for the establishment of invasive species, promoting the 

maintenance of the mechanisms that limit invader success will be increasingly 

necessary to hinder the impacts of present and future invaders.	



 
	

xiii	

Resum 

es invasions biològiques són una de les causes principals del canvi 

antropogènic actual i representen un dels impactes més generalitzats als 

ecosistemes d’arreu del món, ja que comporten l'extinció d'espècies, 

pertorben el funcionament dels ecosistemes, alteren importants serveis ecosistèmics 

i provoquen grans pèrdues econòmiques. A més, a causa de l’augment del comerç, 

el transport i el canvi climàtic, en un futur s'espera que el nombre d'invasions 

segueixi creixent, fet que inevitablement va associat a un increment dels impactes 

als ecosistemes natius. Per aquests motius, trobar eines efectives per la gestió 

d’espècies invasores ha esdevingut una de les principals prioritats a nivell global. 

Malauradament, quan una espècie invasora s'estableix en un nou hàbitat, el seu 

control i eradicació esdevé complex, particularment en ecosistemes marins, on la 

majoria d’intents de gestió no han prosperat principalment a causa de la naturalesa 

oberta d'aquests sistemes. No obstant això, durant el procés d’invasió, l'èxit de les 

espècies no natives ve determinat per diversos mecanismes i característiques de 

l'hàbitat receptor, provocant que moltes invasions fracassin i podent limitar 

l'abundància i els impactes negatius de les espècies invasores ja establertes. Per 

aquest motiu, cal  entendre com aquests mecanismes determinen l'èxit dels 

invasors, per tal de dissenyar eines de gestió que fomentin la resiliència dels hàbitats 

natius enfront les espècies invasores. Així doncs, tenint en compte la sorprenent 

manca de coneixement i donat que les invasions seguiran augmentant en nombre i 

impactes en el futur, apareix una necessitat urgent de generar estudis  que aportin 

llum sobre els mecanismes que afecten l'èxit i la dinàmica de les espècies invasores 

ja establertes, amb l'objectiu de trobar formes per eliminar, o mitigar, els impactes 

de les invasions.	

Les algues marines representen un dels invasors més exitosos, és per això 

que l’objectiu d’aquesta tesi consisteix en descobrir alguns dels mecanismes que 

L 
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influeixen en l'èxit i la capacitat d'invasió d'aquests organismes. Per això, utilitzem 

Caulerpa cylindracea com a organisme model, ja que representa una de les espècies 

invasores marines actualment més estesa i perjudicials arreu del món. 

Concretament, pretenem: i) determinar si els mecanismes biòtics poden limitar 

l'èxit de l'espècie invasora i la seva dinàmica a llarg termini, i ii) avaluar com 

influeixen els factors abiòtics i les pertorbacions en la capacitat d'invasió de 

l'espècie, fet particularment rellevant tenint en compte l’actual escenari de canvi 

global.	

En els primers tres capítols d'aquesta tesi (capítols 2, 3 i 4), hem avaluat la 

importància dels factors biòtics en l'èxit invasor utilitzant seguiments a llarg termini, 

crono-seqüencies, experiments manipulatius in situ i mostrejos de camp. 

Concretament, en el Capítol 2, demostrem que la dominància d'algues 

arborescents i d'algues erectes limita l'abundància de l'espècie invasora mitjançant 

mecanismes de competència interespecífica, i que l'herviborisme per part del peix 

Sarpa salpa redueix encara més l'abundància de l'invasor en hàbitats superficials, on 

la pressió herbívora és elevada. Així doncs, l'èxit de l'invasor a escala local està 

influenciat per la interacció entre ambdós mecanismes biòtics. Aquest fet, ha estat 

corroborat pel seguiment a llarg termini, demostrant que la distribució 

d'abundàncies de l'invasor al llarg de la franja batimètrica està modulada per la força 

d'aquests mecanismes biòtics. D'aquesta manera, els hàbitats que tenen una major 

intensitat de competència i herviborisme, són aquells que presenten les abundàncies 

més baixes de C. cylindracea. A més, a partir del seguiment a llarg termini de C. 

cylindracea vam observar una disminució en l'abundància de l'invasor, 

majoritàriament als hàbitats poc profunds, de manera que hipotetitzem que aquest 

fet podria ser degut a un increment en la intensitat de l'herviborisme al llarg de el 

temps. Així doncs, en el Capítol 3 utilitzem mètodes de crono-seqüencia per 

avaluar si la interacció predador-presa entre S. salpa i C. cylindracea sorgeix des de 

l'inici de la invasió o si, contràriament, requereix cert temps per desenvolupar-se. 

Els nostres resultats demostren l'augment de la intensitat de l'herviborisme al llarg 
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del temps, ja que S. salpa necessita cert temps per començar a consumir l'espècie 

invasora i així esdevenir un mecanisme de resistència biòtica efectiu. Concretament, 

S. salpa va necessitar uns 6 anys d’exposició a l'espècie invasora per incloure-la com 

a preferent a la dieta. De la mateixa manera,  a localitats envaïdes des de fa molt de 

temps es van trobar els majors consums per càpita i les majors proporcions 

d'herbívors alimentant-se de l'invasor en comparació dels llocs envaïts recentment. 

De manera sorprenent, la selectivitat de S. salpa cap a l'invasor augmenta 

constantment al llarg del procés d’invasió, fins i tot quan l'abundància d’aquest 

disminueix. Aquest fet demostra que l’herbivorisme pot actuar com un mecanisme 

efectiu de resistència biòtica a llarg termini i que es manté durant la invasió. En els 

capítols anteriors, s'havia avaluat únicament l'efecte del peix herbívor S. salpa, però 

de manera ocasional a la Mediterrània s'ha observat que altres espècies de peixos 

també s'alimenten de C. cylindracea. En aquest context, en el Capítol 4 investiguem 

si quatre dels peixos més comuns del Mediterràni occidental s'alimenten de 

l'invasor i determinem la seva preferència cap a C. cylindracea. L'anàlisi dels 

continguts estomacals va mostrar que tres espècies: Diplodus annularis, Diplodus 

vulgaris i Spondyliosoma cantharus, s'alimenten usualment de C. cylindracea, tot i que 

generalment la importància de l'alga invasora en la seva dieta va ser baixa, excepte 

per a D. annularis, ja que són espècies omnívores. De fet, els baixos valors obtinguts 

en l'índex de selectivitat suggereixen que aquestes espècies eviten consumir 

l'invasor i que el consum és accidental. No obstant, força individus van consumir 

grans quantitats de C. cylindracea, el que, juntament amb la importància numèrica 

d'aquestes espècies en els hàbitats rocosos de la Mar Mediterrània, suggereix que el 

consum de C. cylindracea per part dels peixos omnívors pot complementar el major 

impacte exercit per l’herbivoria de S. salpa i d'aquesta manera contribuir a limitar 

l'abundància de l'invasor en els hàbitats poc profunds.	

A l'últim capítol d'aquesta tesi (Capítol 5), vam realitzar un experiment de 

termotolerància ex situ per  i) determinar si els episodis de pertorbacions agudes, en 

aquest cas un episodi de temperatures extremes, afecten al rendiment de l'invasor, 
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així com  ii) avaluar la seva influència en la plasticitat de C. cylindracea. Períodes 

llargs d’exposició a elevades temperatures afecten a la supervivència de l'espècie, 

però, un cop es van revertir les condicions, C. cylindracea va mostrar una capacitat 

extraordinària per recuperar-se. De fet, sota l'exposició a les condicions d'estrès,  

l’invasor va desenvolupar una nova morfologia filamentosa que havia estat 

prèviament observada al camp després d'un episodi de pertorbació. Així doncs, 

aquests resultats demostren la tolerància de l'espècie invasora a les pertorbacions i 

la seva capacitat per adaptar-se a canvis ambientals mitjançant el desenvolupament 

d'una morfologia que millora la persistència, la resistència i la dispersió de l'espècie. 

Curiosament, aquesta nova morfologia també transforma l'invasor en una espècie 

críptica, fet que afecta a la gestió de l'espècie ja que dificulta una ràpida identificació 

al camp.	

 En resum, aquesta tesi proporciona una visió integrada d'alguns dels 

mecanismes i factors que influeixen en l'èxit i la dinàmica a llarg termini de C. 

cylindracea a la Mediterrània. D'aquesta manera, mostrem el paper que tenen els 

mecanismes de resistència biòtica sobre la història de la invasió, demostrant que en 

els hàbitats ben preservats, on les poblacions de peixos es mantenen sanes i 

equilibrades, l'hàbitat per si mateix presenta mecanismes per limitar l'èxit de 

l'invasor. A més, demostrem que C. cylindracea té capacitat per resistir pertorbacions 

agudes i que pot desenvolupar canvis morfològics dràstics que dificulten la seva 

identificació. Per aquests motius, per tal de reduir els impactes d'espècies invasores, 

proposem com a possible acció de gestió efectiva, garantir la conservació dels 

ecosistemes natius per fomentar la resistència i resiliència natural del sistema. 

Complementàriament, també proposem la implementació d’eines de seguiment que 

considerin la plasticitat morfològica dels invasors, amb l'objectiu de millorar la 

detecció precoç d'aquestes espècies. Concretament, tenint en compte que el canvi 

climàtic afavorirà l'establiment d’espècies invasores, assegurar el funcionament dels 

mecanismes que limiten l'èxit dels invasors serà cada vegada més necessari per 

limitar els impactes de les invasions presents i futures.	
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Resumen 

as invasiones biológicas son uno de los principales causantes del cambio 

antropogénico actual y se han convertido en uno de los impactos más 

generalizados para los ecosistemas de todo el mundo, ya que provocan la 

extinción de especies, perturban el funcionamiento de los ecosistemas, alteran el 

aprovisionamiento de importantes servicios ecosistémicos y causan grandes pérdidas 

económicas. Además, debido al incremento del comercio y del transporte, y al cambio 

climático, se espera que en el futuro el número de invasiones siga creciendo, algo que 

inevitablemente irá asociado con un incremento en los impactos para los ecosistemas 

nativos. Por estos motivos, encontrar maneras efectivas para manejar y gestionar a las 

especies invasoras se ha convertido en una de las prioridades globales. 

Desgraciadamente, cuando una especie invasora se establece en el nuevo hábitat, su 

control y erradicación es muy complicada, sobre todo en los ecosistemas marinos, 

donde la mayoría de los intentos de manejo han fracasado debido principalmente a la 

naturaleza abierta de estos sistemas. Sin embargo, durante el proceso invasivo, el éxito 

de las especies no nativas está influenciado por diversos mecanismos y características 

del hábitat receptor, que provocan que muchas invasiones fracasen y que pueden 

limitar la abundancia y los impactos nocivos de las especies invasoras ya establecidas. 

Por este motivo, existe un interés cada vez mayor en comprender como estos 

mecanismos influyen en el éxito de los invasores, con el fin de utilizar dicho 

conocimiento para encontrar opciones de gestión que fomenten la resiliencia de los 

hábitats nativos frente a las especies invasoras. Sorprendentemente, este conocimiento 

aún es muy limitado. Así pues, teniendo en cuenta esta falta de conocimiento y que las 

invasiones seguirán aumentando en número e impactos en el futuro, existe una 

necesidad urgente de estudios que aporten algo de luz sobre los mecanismos que 

afectan al éxito y a la dinámica de las especies invasoras bien establecidas, con el 

objetivo de encontrar formas para eliminar, o al menos reducir, los impactos de las 

invasiones. 

L 
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 En esta tesis, debido a que las algas marinas son unos de los invasores más 

exitosos y omnipresentes, nuestro objetivo consiste en descubrir algunos de los 

mecanismos que influyen en el éxito y la invasividad de estos organismos. Para ello,  

utilizamos Caulerpa cylindracea como organismo modelo, ya que es uno de las invasores 

marinos más extendidos y nocivos en todo el mundo. Concretamente, pretendemos: i) 

determinar si los mecanismos bióticos pueden limitar el éxito de la especie invasora e 

influenciar su dinámica a largo-plazo, y ii) evaluar como influyen los factores abióticos 

y las perturbaciones en la invasividad de la especie, algo que es particularmente 

relevante teniendo en cuenta el escenario actual de cambio global. 

 En los primeros tres capítulos de esta tesis (Capítulos 2, 3 y 4), hemos 

evaluado la influencia de los factores bióticos en el éxito invasor utilizando monitoreos 

a largo plazo, crono-secuencias, experimentos manipulativos in situ y muestreos de 

campo. En concreto, en el Capítulo 2, demostramos que la dominancia de algas 

formadoras de dosel y de algas erectas limita la abundancia de la especie invasora 

mediante mecanismos de competencia interespecífica, y que la herbivoría por el pez 

Sarpa salpa reduce aún más la abundancia del invasor en los hábitats someros, donde la 

presión de herbivoría es elevada. Así pues, el éxito del invasor a escala local está 

influenciado por la interacción entre los dos mecanismos bióticos. Esto ha sido 

además corroborado por el monitoreo a largo plazo, ya que la distribución de 

abundancias del invasor a lo largo del rango batimétrico está modulada por la fuerza 

de dichos mecanismos bióticos. De este modo, los hábitats que tienen una mayor 

intensidad de competencia y herbivoría, son aquellos que soportan las abundancias 

más bajas de C. cylindracea. Además, siguiendo la dinámica a largo plazo de C. cylindracea 

observamos una disminución en la abundancia del invasor, principalmente en los 

hábitats poco profundos, por lo que hipotetizamos que ésta podría deberse a un 

incremento en la intensidad de la herbivoría a lo largo del tiempo. Por lo tanto, en el 

Capítulo 3 utilizamos una metodología de crono-secuencia para evaluar si la 

interacción predador-presa entre S. salpa y C. cylindracea surge desde el inicio de la 

invasión o si por el contrario, necesita tiempo para desarrollarse. Nuestros resultados 

demuestran nuestra hipótesis del aumento de la intensidad de herbivoría a lo largo del 
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tiempo, ya que S. salpa necesita tiempo para empezar a consumir la especie invasora y 

convertirse en un mecanismo de resistencia biótica efectivo. Concretamente, S. salpa 

necesitó una exposición de al menos 6 años con la especie invasora para incluirla 

como una comida preferente, del mismo modo que en las localidades invadidas hace 

mucho tiempo se encontraron los mayores consumos per capita y las mayores 

proporciones de herbívoros alimentándose del invasor en comparación con los lugares 

invadidos recientemente. De forma sorprendente, la electividad de S. salpa hacia el 

invasor aumenta constantemente a lo largo de la invasión, incluso cuando la 

abundancia del invasor disminuye, lo que señala a la herbivoría como un mecanismo 

de resistencia biótica efectivo a largo plazo y que se mantiene durante la invasión. En 

los capítulos anteriores, se había evaluado únicamente el efecto de la herbivoría del 

pez herbívoro S. salpa, sin embargo en el Mar Mediterráneo se ha observado de forma 

ocasional, como otras especies de peces se alimentan de C. cylindracea. Por este motivo, 

en el Capítulo 4 investigamos si cuatro de los peces más comunes en el Mar 

Mediterráneo occidental se alimentan del invasor y determinamos su electividad hacia 

C. cylindracea. El análisis de los contenidos estomacales reveló que tres especies: 

Diplodus annularis, Diplodus vulgaris y Spondyliosoma cantharus, se alimentan comúnmente 

de C. cylindracea, aunque en general la importancia del alga invasora en la dieta fue baja 

excepto para D. annularis, ya que son especies omnívoras. De hecho, los bajos valores 

obtenidos en el índice de electividad sugieren que estas especies evitan consumir al 

invasor y que el consumo es accidental. Sin embargo, bastantes individuos habían 

consumido grandes cantidades de C. cylindracea, lo que junto con la importancia 

numérica de estas especies en los hábitats rocosos del Mar Mediterráneo, sugiere que 

el consumo de C. cylindracea  por parte de los peces omnívoros puede complementar el 

mayor impacto ejercido por la herbivoría de S. salpa y de este modo contribuir a limitar 

la abundancia del invasor en los hábitats poco profundos. 

 En el último capítulo de esta tesis (Capítulo 5), realizamos un experimento de 

termotolerancia ex situ para i) determinar si los eventos de perturbaciones agudos, en 

este caso en forma de ola de calor, afectan el rendimiento del invasor y ii) para evaluar 

su influencia en la plasticidad de C. cylindracea. Exposiciones largas a temperaturas 
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elevadas afectan a la supervivencia de la especie, sin embargo, cuando las condiciones 

adversas remitieron, C. cylindracea demostró una capacidad extraordinaria para 

recuperarse. De hecho, la exposición a las condiciones de estrés propició la plasticidad 

morfológica del invasor y dio lugar a una nueva morfología filamentosa que había sido 

observada en el campo tras un evento de perturbación. Así pues, estos resultados 

demuestran la tolerancia de la especie invasora a las perturbaciones y su capacidad para 

adaptarse al cambio ambiental mediante el desarrollo de una morfología que mejora la 

persistencia, la resistencia y la dispersión de la especie. De forma interesante, esta 

nueva morfología también transforma al invasor en una especie críptica, lo que afecta 

a la gestión de la especie ya que compromete su rápida identificación en el campo. 

 En conjunto, esta tesis proporciona una visión integrada de algunos de los 

mecanismos y factores que influyen en el éxito y en la dinámica a largo plazo de C. 

cylindracea en el Mar Mediterráneo. De este modo, evidenciamos el papel que tienen los 

mecanismos de resistencia biótica sobre la historia de la invasión, demostrando que en 

los hábitats bien preservados, donde las poblaciones de peces estén sanas y bien 

equilibradas, el hábitat por si mismo posee mecanismos para limitar el éxito del 

invasor. Además, demostramos que C. cylindracea tiene la capacidad para resistir a las 

perturbaciones agudas y que puede sufrir cambios morfológicos drásticos que 

comprometen su identificación. Por estos motivos, podemos proponer que una acción 

de gestión efectiva para reducir los impactos de las especies invasoras consiste en 

garantizar la conservación de los ecosistemas nativos para fomentar la resistencia y 

resiliencia natural del sistema, mientras que de manera complementaria se 

implementan herramientas de monitoreo que tengan en cuenta la plasticidad 

morfológica de los invasores, con el objetivo de mejorar la detección temprana de 

dichas especies. En concreto, ya que el cambio climático favorecerá el establecimiento 

de las especies invasoras, promover el mantenimiento de los mecanismos que limitan 

el éxito de los invasores será cada vez más necesario para limitar los impactos de las 

invasiones presentes y futuras. 







 

Cover image: Detail of a Caulerpa cylindracea thallus as observed under the stereomicroscope.	

Author: Jorge Santamaría Pérez. 
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his thesis is planned to improve our knowledge on the factors that 

influence the invasive success of species by focusing on the study of a 

successful marine invader. This knowledge is particularly relevant 

considering that invasions constitute a growing threat to native ecosystems 

worldwide and they need to be properly managed to lessen their negative impacts. 

However, when knowledge on the invasive process is scarce, it makes it difficult to 

find the appropriate management actions to prevent future invasions or at least to 

control the current ones. 

 Previous efforts have mainly considered the use of direct and active methods 

of eradication, but what if the answer relies in the ability of native communities to 

develop natural resistance mechanisms against invaders? To find out whether 

natural mechanisms can contribute to the control of invasions, we definitively need 

to expand our understanding of the factors that influence the long-term dynamics 

of invaders. 

 

“They [biological invasions] are so frequent nowadays in every continent and island, and even 

in the oceans, that we need to understand what is causing them and try to arrive at some 

viewpoint about the whole business.” 

“Nowadays we live in a very explosive world, and while we may not know where and 

when the next outburst will be, we might hope to find ways of stopping it or at any rate 

damping down its force” 

Charles S. Elton (1958) 

  

T 
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1.1 Invasive species  
 

“It is not just nuclear bombs and wars that threaten us, though these rank very high on 

the list at the moment: there are other sorts of explosions, and this book is about ecological 

explosions. An ecological explosion means the enormous increase in numbers of some kind 

of living organism – it may be an infectious virus like influenza (or coronavirus), or a 

bacterium like bubonic plague, or a fungus like that of the potato disease, a green plant 

like the prickly pear, or an animal like the gray squirrel. I use the word explosion 

deliberately because it means the bursting out from control of forces that were previously 

held in restraint by other forces.” 

Charles S. Elton (1958) 

 

1.1.1 What is an invasive alien species? 

Natural barriers have historically isolated animal and plant species, creating unique 

assemblages of species around the globe through adaptation, speciation, extinction 

and geological processes on a scale of millions of years (Futuyma, 2009). However, 

human activities are eroding those barriers at an unprecedented rate by allowing 

species to change their geographic distribution patterns, from local to continental 

scales (Vitousek et al., 1997; Mack et al., 2000; Simberloff et al., 2013). Due to this 

translocation of species outside their native home range, the term alien species was 

coined. Concretely, an alien species (also denoted as introduced species) refers to 

the organism that has been introduced, either deliberately or inadvertently, to an 

area outside its native range and that it could have not reached without human 

transportation (Richardson et al., 2000; Levine, 2008). This is clearly in 

contraposition with native species, that are defined as those that occur within 

their present or past natural range (IUCN, 2000). In this sense, although the 
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definition of both alien and native species is quite clear, that of invasive alien 

species seems to be more problematic because it can be based on the spread 

(Richardson et al., 2000; Blackburn et al., 2011; Richardson and Pyšek, 2012), on 

the abundance (Colautti and MacIsaac, 2004; Valéry et al., 2008) or on the impacts 

of the alien species (IUCN, 2000; Mack et al., 2000; Lockwood et al., 2013). 

Actually, there is not a universally accepted definition of an invasive alien species, 

but for the matter of this thesis we will refer to invasive alien species (from now 

on invasive species) as introduced species that have negative impacts on native 

ecosystems (1.1.2 Should we care about invasive species?), that have the 

potential to spread over large areas and that sustain self-replacing populations in 

the introduced range. 

 

1.1.2 Should we care about invasive species?  

Invasive species are currently considered among the top 5 direct drivers of 

anthropogenic change, following land/sea use change, direct exploitation, climate 

change and pollution (Butchart et al., 2010; Brondizio et al., 2019; Pyšek et al., 

2020)(Figure 1.1). That is so, because once established, invasive species can affect 

native species abundance and richness, threatening biodiversity worldwide (Vilà et 

al., 2011; Cameron et al., 2016; Gallardo et al., 2016). Actually, invasive species 

have been identified as the second cause of species extinctions since the 16th 

century (Bellard et al., 2016) and they have been the main driver of extinction for at 

least 261 animal species and 39 plant species worldwide (Blackburn et al., 2019). As 

an example of the pervasive impacts that a single invasive species can have for the 

biodiversity, the brown tree snake (Boiga irregularis), in less than 40 years, has caused 

the local extinction of more than half of Guam´s native bird, lizard and bat species 

and the global extinction of some of them (Fritts and Rodda, 1998; Simberloff and 

Rejmánek, 2011); while feral cats (Felis catus) are responsible for at least 14% of the 

modern global extinctions of birds, mammals and reptiles (Medina et al., 2011). 
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However, invasive species impacts expand beyond particular species and can also 

disrupt the functioning of the ecosystem and affect the provision of several 

ecosystem services (Pejchar and Mooney, 2009; Vilà et al., 2010; Simberloff et al., 

2013; Vilà and Hulme, 2017). Among many others, invasive species have been 

reported to alter the nutrient cycling and the water flow (supporting services) 

(Castro-Díez and Alonso, 2017; Catford, 2017), to decrease the production of crop 

and timber and the fisheries yields (provisioning services) (Fried et al., 2017; 

Gozlan, 2017), and to disrupt pollination services and the quality of water 

(regulating services) (Costa et al., 2017; Morales et al., 2017). Additionally, invasive 

species can affect human well-being and health more directly as they can either be 

pathogens themselves, act as vectors of diseases or they can be poisonous to 

humans (Mazza et al., 2014; Nentwig et al., 2017; Rabitsch et al., 2017). Finally, for 

all these reasons, biological invasions have been associated to huge economic costs 

(Pimentel et al., 2001, 2005; Diagne et al., 2021), that just in Europe have been 

estimated to be over 20 billion € (Kettunen et al., 2008). Putting all this information 

together, it seems clear that there is an urgent need to consider the management of 

invasive species as a global priority, and this definitively goes associated to the need 

for better understanding the invasive process and the mechanisms that influence 

invader success. 
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Figure 1.1. Most important direct drivers of biodiversity loss per ecosystem type based 
on the data published in the global assessment report on Biodiversity and Ecosystem 
Services (IPBES 2019). Figure modified from Bongaarts (2019). 
 

1.1.3 How do alien species arrive to the new habitat? 

The spread of non-native species is inherently associated to human activity and can 

be traced back at least to the 16th century (Mack, 2003; Genovesi et al., 2009; Pyšek 

et al., 2009; Roques et al., 2009). Since then, the transport of non-native species has 

increased steadily, following the increase through history in international trade and 

human movement (Hulme, 2009). Among the mechanisms by which alien species 

can be transported and introduced into a new region, six main pathways have been 

defined (Hulme et al., 2008): (1) intentional release (e.g., plants for erosion control 

or game animals), (2) escape from captivity (e.g., pets, ornamental plants), (3) 

contaminants (e.g., parasites or pests on traded goods), (4) stonaways on transport 

vectors (e.g., hull fouling or ballast water), (5) anthropogenic corridors (e.g., 

Panama and Suez Canals) or (6) unaided (e.g., natural dispersal from invaded 

regions). Different pathways predominate depending on the taxonomic group, with 
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the unintentional pathways, mainly contaminants and stoneways, being most 

important for algae, invertebrates or fungi; whereas intentional pathways such as 

scape and release, are usually associated to the movement of alien plants and 

vertebrates (Pyšek et al., 2020). However, despite these pathways being well-known 

and several studies proposing risk-assessment frameworks for their management 

(Hulme et al., 2008; Banks et al., 2015; Hulme, 2015), rates in the accumulation of 

alien species have been growing steadily (Hulme, 2009), as the main vectors of 

introduction – global shipping, the expansion and opening of new canals, and the 

trade of exotic plants and animals – continue increasing (Hulme, 2015; Lockwood 

et al., 2019; Sardain et al., 2019). Actually, over the past 40 years, the estimated 

number of invasive alien species has increased by about 70% in the 21 countries 

that were assessed for the IPBES global assessment (Brondizio et al., 2019) and 

long-term temporal trends show a continuous increase in the cumulative number of 

established alien species over the last 200 years (Seebens et al., 2017). 

Unfortunately, the future looks far from promising, as climate change is predicted 

to increase the number, distribution and impact of invasive species (Vilà et al., 

2007a; Walther et al., 2009; Hulme, 2017), with projections pointing to Europe and 

north eastern United States as the regions where the number of invasive species is 

expected to increase more (Bellard et al., 2013). Definitively, it seems clear that 

more effective measures of prevention, early detection and control are urgently 

needed to hinder the accumulation of invasive species (Seebens et al., 2017). 

  

1.1.4 How do alien species establish in the new habitat? 

Regardless of the pathway of introduction, every alien species, to become 

established and to be considered as an invasive species, has to go through a multi-

stage process referred as the invasion process (Theoharides and Dukes, 2007; 

Blackburn et al., 2011; Lockwood et al., 2013). This process, despite being a 

continuum, has been divided into the following 4 stages: (1) transport, (2) 
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introduction, (3) establishment and (4) spread and impact (Figure 1.2), to better 

assess the importance of the filters between the stages and to better consider the 

different spatio-temporal scales at which they operate (Theoharides and Dukes, 

2007). These filters between the stages are ecological or environmental barriers (e.g. 

geographic, reproductive or dispersive) that prevent every non-native species to 

become established and dominant (Richardson et al., 2000; Theoharides and 

Dukes, 2007; Blackburn et al., 2011). Along the process, failure can happen at any 

stage, and even invasive species, when they have been well established and have 

successfully gone through every stage, can suddenly fail and suffer population 

crashes and local extinctions (Simberloff and Gibbons, 2004; Blackburn et al., 

2011; Strayer et al., 2017).  

Several factors such as (1) the propagule pressure, (2) the biotic mechanisms 

and (3) the abiotic characteristics of the invaded habitat, influence whether a 

species is able to go through any of the stages in the invasion process (Figure 1.2). 

Therefore, due to their importance for the success of invaders, these factors will be 

more deeply introduced in the following section: 1.1.5 Understanding the 

success of invaders, and some of them will be further investigated in the main 

body of this thesis. 

Finally, the filtering that occurs through the invasion process, only allows a 

small percentage of the introduced species to actually become invasive (Williamson 

and Fitter, 1996; Richardson et al., 2000; Jeschke and Strayer, 2005). Yet, despite 

their low number, they can have significant impacts for the native habitats and for 

the economy, as it was introduced in section: 1.1.2 Should we care about invasive 

species? 
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1.1.5 Understanding the success of invaders 

The discipline of invasion ecology (invasion biology or invasion science) started to 

develop around 60 years ago with the seminal work by Elton (1958). Since then it 

has grown in relevance, probably associated to the increase in the perception of 

biological invasions as a global threat to biodiversity (section 1.1.2); but also 

because biological invasions can be used as natural experiments to understand the 

structure, function and dynamics of ecological communities (Levine, 2008). Lately, 

the use of this discipline has become essential to detect, understand and mitigate 

the impact of biological invasions (Simberloff et al., 2013). 

 In general, although the exact reasons behind the failure or success of most 

invasive species remain poorly understood (Hayes and Barry, 2008), a general 

framework of hypothesis has been developed to broadly address the factors 

influencing invasion success (Catford et al., 2009; Enders and Jeschke, 2018). 

Essentially, invasion success is influenced by the propagule pressure, the abiotic 

characteristics of the invaded habitat and the biotic characteristics of both, the 

recipient community and the invader (Richardson and Pyšek, 2006); and for an 

invasion to occur, all factors should be accommodating, if not favorable (Catford et 

al., 2009). Thus, the intensity and the extent of an invasion will be determined by a 

combination of the three factors (Fridley et al., 2007) and their fluctuation through 

time and space (Pyšek and Jarošík, 2005; Pauchard and Shea, 2006; Richardson and 

Pyšek, 2006). So far, the relative importance of each factor for the success of 

invaders is not clear, and while some studies suggest that the three factors strongly 

interact (Perelman et al., 2007; Catford et al., 2009), there are others that have 

found that single factors alone, such as the propagule pressure (Von Holle and 

Simberloff, 2005), the biotic factors (De Rivera et al., 2005; Davies et al., 2011) or 

the abiotic characteristics (Von Holle, 2005; Thomsen et al., 2006), can 

predominantly control the fate of an invasion. 
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 In this sense, we will just focus in the biotic and abiotic factors of the 

invasion, to assess whether several characteristics of the habitat can limit the spread 

and the success of already established species. 

 

I. Biotic resistance 

When an alien species establishes in a new range, it necessarily interacts with the 

biotic component of the habitat and gains several interactions with the native 

community in the form of competition, predation, disease or mutualism. These 

interactions, depending on their direction and strength, can either facilitate the alien 

species (positive interactions) or limit its establishment and spread (negative 

interactions) (Lockwood et al., 2013), being the latter the ones that contribute to 

the resistance of the community against invaders (Levine et al., 2004; Lockwood et 

al., 2013). Actually, although this biotic resistance is generally not enough to 

completely prevent an invasion, it can strongly reduce the abundance and spread of 

the invader once it has been established (Levine et al., 2004; Theoharides and 

Dukes, 2007). More specifically, we will focus on two of the main mechanisms of 

biotic resistance to alien species: (1) competition by the native species and (2) 

herbivory. 

 

I.I. Competition 

The classical biotic resistance hypothesis, also known as the diversity-invasibility 

hypothesis, suggests that high diverse communities would resist invasions more 

effectively because less niches would be available for the invader to occupy (Elton, 

1958; Levine and D’Antonio, 1999) and there would be a more efficient use of 

resources by the community members (Hooper, 1998). However, contrasting 

support for this hypothesis has been found depending on the spatial and temporal 

scales of the study (Levine, 2000; Shea and Chesson, 2002; Stohlgren et al., 2006; 

Fridley et al., 2007; Clark et al., 2013), on the habitat considered (Vilà et al., 2007b) 

and on the nature of the experiment – observational vs. experimental (Naeem et al., 
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2000; Stohlgren et al., 2003; Frankow-Lindberg, 2012; Jeschke et al., 2018; Peng et 

al., 2019). Actually, in general, this hypothesis has received low support (Jeschke et 

al., 2012b, 2018). 

Nowadays, it is more widely suggested that community resistance is more 

influenced by the properties of the community members than by the species 

diversity per se. Thus, there is a growing interest in determining how the 

composition of the native assemblage and the specific functional traits of the native 

species can influence the interspecific competition against the invader (Perelman et 

al., 2007; Byun et al., 2013; Lockwood et al., 2013). So far, increases in the 

functional diversity of the communities have been associated to decreases in the 

invasion success through the preemption of available resources (Pokorny et al., 

2005; Perelman et al., 2007; Byun et al., 2013), while the presence of certain 

functional groups and traits among the community can also significantly affect the 

community resistance towards the invader (Lindig-Cisneros and Zedler, 2002; 

Sheley and James, 2010; Frankow-Lindberg, 2012; Byun et al., 2013; Zhang et al., 

2018). The particular functional group that better resists the invasion is not always 

consistent however, and in some cases it is the functional group more similar to the 

invader (limiting similarity) (Pokorny et al., 2005; Mwangi et al., 2007; Hooper and 

Dukes, 2010; Petruzzella et al., 2018), whereas in other cases there are functional 

groups different to the invader the ones that increase resistance (fitness inequality) 

(Lulow, 2006; Sheley and James, 2010). Despite the lack of a general mechanism, 

what seems clear is that the interspecific competition can negatively affect invader 

success as has been previously reported from different ecosystems (Amsberry et al., 

2000; Fine, 2002; Morris et al., 2015; Petruzzella et al., 2018; te Beest et al., 2018). 

However, on its own, this effect might not be enough to strongly control well-

established invaders (Levine et al., 2004; Vilà and Weiner, 2004). 
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I.II. Herbivory 

Plant performance and distribution can be significantly reduced by herbivores 

(Maron and Crone, 2006; Wood et al., 2017), so we can expect herbivory to affect 

the performance and success of invasive species. However, the effect of herbivory 

on invader success is not fully understood yet as it can take two directions (Maron 

and Vilà, 2001). On the one hand, herbivory has been reported to have no effect 

on the performance of invaders (Stohlgren et al., 1999) and even to promote them 

(Eschtruth and Battles, 2009a; Kalisz et al., 2014), in part because invasive plants 

are usually released from their coevolved specialist herbivores in the invaded 

habitat (Keane and Crawley, 2002; Colautti et al., 2004; Liu and Stiling, 2006). On 

the other hand, however, several studies have reported the ability of herbivores to 

reduce the recruitment, growth and survival of invaders (Parker et al., 2006; 

Cushman et al., 2011; Pearson et al., 2012; Li et al., 2014; Zhang et al., 2018).  

This lack of consensus clearly highlights the need for more studies that 

assess the impact of herbivory in different systems and invaders to try to 

understand the conditions under which herbivory can be effective for the control 

of an invader. In fact, despite previous studies reporting negative impacts of 

herbivores on invader plant performance, the lack of exclusion experiments and 

long-term assessments makes it difficult to assess whether these herbivory impacts 

actually render a limiting effect on the population dynamics of the invader (Liu and 

Stiling, 2006; Pearson et al., 2012). These types of assessments might be particularly 

relevant to understand the effectiveness of herbivory as a resistance mechanism 

considering that invasive species can have strong compensatory mechanisms to 

overcome the herbivory impacts (Garren and Strauss, 2009; Ortega et al., 2012).  

 

I.III. Interaction between mechanisms 

Previous evidence suggests that both competition and herbivory can limit the 

success of invaders to a certain extent (Levine et al., 2004). However, whether the 

interaction between them can further influence the overall resistance of native 
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habitats towards invaders has been rarely assessed (but see: Suwa and Louda, 2012; 

Li et al., 2014; Zhang et al., 2018). In this sense, considering that competition and 

herbivory are mechanisms known to strongly interact between each other 

(Gurevitch et al., 2000; Hambäck and Beckerman, 2003), it might be necessary to 

consider and assess the interaction between these mechanisms if we want to better 

assess the strength of biotic resistance against invaders (Levine et al., 2004; Mitchell 

et al., 2006; Kimbro et al., 2013)(Figure 1.3). 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Conceptual figure showing how the biotic mechanisms assessed in this thesis 
might influence the success of an invader. Both, competition and herbivory can affect 
invader success to a certain extent, but it might be only when the interaction between 
them is considered that a more realistic assessment of the biotic resistance strength might 
be obtained. Figure modified from Theoharides and Dukes (2007). 
 

II. Abiotic characteristics 

The physical environment is considered to be the main factor repelling non-native 

species and preventing them for becoming established (Levine et al., 2004; 

Theoharides and Dukes, 2007; Levine, 2008). However, under certain 

circumstances, it can also influence the success of already established invaders, 

particularly when there are sudden changes to the abiotic conditions such as under 

extreme climatic events (Collinge et al., 2011; Goldstein and Suding, 2014). In such 

situations, the disturbance created can open windows of opportunity for invaders 
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(Shea and Chesson, 2002; Lockwood et al., 2013; Jauni et al., 2015), because, in 

general, invasive species have wider ecological tolerances, higher fitness and are 

phenotypically more plastic than the natives (Pyšek and Richardson, 2007; Van 

Kleunen et al., 2010; Davidson et al., 2011). This might be particularly relevant in a 

scenario where climatic variability and the recurrence of extreme climatic events are 

expected to increase due to climate change (Meehl and Tebaldi, 2004; Karl et al., 

2008; Füssel, 2009), highlighting the potential for invasions to increase in the future 

(Vilà et al., 2007a; Hellmann et al., 2008; Diez et al., 2012; Bellard et al., 2013). 

However, our knowledge on how invaders specifically respond to extreme climatic 

events is still quite limited (but see: Song et al., 2010; Sorte et al., 2010), but this 

information might be of paramount importance to understand the success of 

invaders under future climatic conditions.  

 

 

Taking into account the importance of alien species as drivers of biodiversity loss 

and the lack of knowledge regarding the mechanisms and conditions that influence 

their success, in this thesis we will try to unravel the importance of some of those 

mechanisms for the success of a well established invader, to later use this 

information to propose effective management measures that could reduce the 

impacts of invaders. In particular, we will focus in marine systems as we will 

introduce in the following sections, but we believe that our findings could also be 

applied to other systems. 
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1.2 Marine invaders 

Marine invaders are considered to be one of the main threats to marine ecosystems 

worldwide due to the significant impacts they cause in native communities and in 

ecosystems services (Bax et al., 2003; Halpern et al., 2008; Molnar et al., 2008; 

Katsanevakis et al., 2014b). Similarly to the pattern observed in terrestrial 

ecosystems, their number is on the rise following the increase in their main vectors 

of introduction – the aquarium trade, the opening and widening of canals and 

shipping traffic (Katsanevakis et al., 2013; Seebens et al., 2013; Galil et al., 2017; 

Castellanos-Galindo et al., 2020). Additionally, global warming can also favor the 

spread of alien species both, directly by increasing the chance of establishment and 

indirectly by weakening native species (Walther et al., 2009; Diez et al., 2012), 

which will further intensify the negative impacts of invaders. Currently there are 

1,111 marine alien species listed in the Global Register of Introduced and Alien 

Species (GRISS; http://www.griis.org/) (Pagad et al., 2018), being the 

Mediterranean Sea (Box 1) one of the regions where more alien species have been 

recorded.   

 Regarding the influence of negative interactions on the success of marine 

invaders, previous evidence suggests that competition and consumer pressure are 

weaker on invasive producers than on invasive consumers (Kimbro et al., 2013; 

Papacostas et al., 2017), which highlights that, in general, invasive marine producers 

are released more effectively from biotic control than their terrestrial counterparts. 

Still, it is important to consider that research on marine invaders falls well behind 

that on terrestrial invaders (Figure 1.4, A) (Lowry et al., 2013) and that knowledge 

on the mechanisms that drive the success of marine invaders is still quite limited 

(Papacostas et al., 2017), particularly considering that manipulative experiments, 

long-term assessments and experiments assessing multiple mechanisms are seldom 

done. Given that marine algae are the trophic group that has the highest impacts on 

marine communities (Anton et al., 2019) and that they are one of the less studied 
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taxonomic groups worldwide (Figure 1.4, B) (Pyšek et al., 2008; Jeschke et al., 

2012a), they will be the main focus of this thesis (1.2.1 Invasive algae).  

 

 

Figure 1.4. Summary of invasion ecology studies done: A) per ecosystem type and B) per 

taxonomic group. Figures modified from Lowry et al. (2013) and from Pyšek et al. (2008). 

 

1.2.1 Invasive algae 

Algae are one of the most conspicuous and successful groups of marine invaders 

worldwide (Schaffelke et al., 2006), with at least 346 alien taxa identified (Thomsen 

et al., 2016). These organisms, once established, have direct negative effects on 

single species abundance, community structure and biodiversity (Williams and 

Smith, 2007; Guy-Haim et al., 2018), mainly affecting native algae species 

(Thomsen et al., 2009, 2016; Maggi et al., 2015). Specifically, they contribute to the 

homogenization of marine habitats through the monopolization of space, over-

simplifying the communities and causing reductions in the abundance of fauna 

(Schaffelke and Hewitt, 2008). Additionally, these species can act as foundation 

species and ecosystems engineers, and modify both, the habitat and the availability 

of resources, which is associated to greater negative consequences for the native 

communities (Wallentinus and Nyberg, 2007). However, our knowledge on 
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invasive algae is still quite limited as they have earned little attention in invasion 

ecology (Figure 1.4, B) (Pyšek et al., 2008; Jeschke et al., 2012a). 

Nowadays, knowledge on the mechanisms that determine the long-term 

establishment and persistence of invasive algae is still negligible, although several 

mechanisms such as competition and herbivory have been suggested to influence 

the success of marine algae (Inderjit et al., 2006; Williams and Smith, 2007; Kimbro 

et al., 2013; Papacostas et al., 2017). On the one hand, some studies have reported 

the ability of native algae, mostly canopy-forming and erect species, to reduce, to 

some extent, the success of invasive algae through competition mechanisms 

(Ceccherelli et al., 2002; Arenas et al., 2006; Britton-Simmons, 2006; Inderjit et al., 

2006; Williams and Smith, 2007; Piazzi and Balata, 2009; Vaz-Pinto et al., 2012). 

On the other hand, despite marine communities being dominated by generalist 

herbivores (Hay and Steinberg, 1992; Hay et al., 1992; Enge et al., 2017), herbivory 

seems to be ineffective for the control of invasive algae (e.g., Wikström et al., 2006; 

Williams and Smith, 2007; Forslund et al., 2010; Cebrian et al., 2011; Tomas et al., 

2011b; Nejrup et al., 2012; Enge et al., 2017). This clearly contrasts with the 

significant role that herbivores have on marine systems, where herbivory has been 

reported to exert stronger control impacts on algae compared to terrestrial plants 

(Cyr and Face, 1993; Shurin et al., 2002, 2006; Poore et al., 2012). However, it 

should not be disregarded that most of the previous assessments relied only on 

preference and laboratory experiments, they just considered a particular time frame 

in the invasion and they mainly assessed the role of invertebrates (Williams and 

Smith, 2007; Kimbro et al., 2013; Enge et al., 2017; Papacostas et al., 2017). 

Actually, this could have definitively influenced the patterns reported because: (1) 

preference and laboratory assessments provide feeble information on the real effect 

of herbivory at the community level and in natural environments (Liu and Stiling, 

2006; Pearson et al., 2012), (2) relying on a specific time frame neglects the ability 

of native herbivores to adapt to the invader (Carroll et al., 1998; Siemann et al., 

2006; Dostál et al., 2013), (3) and fishes could significantly influence invader 
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success according to their capacity to regulate algae abundance and distribution 

(Vergés et al., 2009; Poore et al., 2012). Additionally, despite omnivory being more 

prevalent in marine food webs than in the terrestrial ones (Thompson et al., 2007), 

previous assessments have only considered the strict herbivores, disregarding the 

potential role that omnivorous organisms could have for the success of invasive 

algae by directly consuming the invaders. Finally, no study before has considered 

the interaction between competition and herbivory, which could prevent us from 

assessing the true strength of biotic resistance mechanisms in natural marine 

communities.  

Complementary, algae success has also been suggested to be influenced by 

the abiotic conditions of the receiving habitat (Inderjit et al., 2006; Schaffelke et al., 

2006; Thomsen et al., 2016), which highlights the importance of understanding 

how algae respond to environmental change, particularly considering that marine 

climatic conditions are shifting abruptly worldwide (Belkin, 2009; Oliver et al., 

2018, 2019). Unfortunately, knowledge on how invasive algae might respond to 

changes in the abiotic conditions, particularly to climate change and to extreme 

climatic events, is still in its infancy (but see: Roth-Schulze et al., 2018; Atkinson et 

al., 2020), but it definitively needs to gain relevance if we are to better predict how 

climate change might affect current and future invasions.  

Finally, among algae species, Caulerpa cylindracea has been recently ranked as 

one of the marine invaders with the largest negative impacts (Anton et al., 2019) 

and it is also the most wide-spread invader within the Mediterranean Sea (Klein and 

Verlaque, 2008), making it the perfect target species for this thesis (Box 2). 
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Box 1| Study site: the Mediterranean Sea, a biodiversity hotspot 
under threat 
 

The Mediterranean Sea is the deepest and largest semi-enclosed sea on Earth 

and it occupies just 0.82% of the world´s oceans surface (Coll et al., 2010; 

Boudouresque et al., 2017). Still, despite its small size, it is home for an 

unusually rich and diverse biota that represents around 7% of the world´s 

marine biodiversity, including a high percentage of endemic species (Bianchi 

and Morri, 2000; Coll et al., 2010; Lejeusne et al., 2010). As a result, it is 

considered as one of the main biodiversity hotspots for marine species 

(Boudouresque, 2004; Coll et al., 2010). However, it is also one of the marine 

regions more impacted by climate change and anthropogenic pressures 

(Giorgi, 2006; Halpern et al., 2008; Belkin, 2009; Coll et al., 2010; Lejeusne et 

al., 2010), and for the past decades it has also suffered an increase in the 

establishment and spread of alien species, becoming a hotspot for marine 

invasions (Rilov and Galil, 2009). Actually, since the beginning of the 20th 

century, the number of alien species in the basin has doubled every 20 years 

(Galil, 2008), with more than 800 species introductions since 1950 (Zenetos et 

al., 2012). 

Three main pathways of introduction: the Suez Canal, aquaculture and 

shipping traffic through fouling and ballast water (Zenetos et al., 2012; 

Katsanevakis et al., 2013, 2014a), are responsible for most of the close to 

1,000 species introductions that have been reported in the basin, being more 

than half of these species already established and spreading (Zenetos et al., 

2010, 2012). Interestingly, due to most of the alien species entering to the 

Mediterranean Sea through the Suez Canal (Galil et al., 2014, 2015; 

Katsanevakis et al., 2014a), the biodiversity spatial pattern of alien species 

differs to that of native species, with native biodiversity decreasing from the 

northwest to the southeast (Coll et al., 2010) while alien biodiversity decreases 



GENERAL INTRODUCTION 

	 21	

from the southeast to the northwest (Katsanevakis et al., 2014a). Actually, due 

to this increase in the establishment of species native to warmer regions and 

to the rise in the seawater temperature, several authors propose that the 

Mediterranean Sea is going through a process of “tropicalization” (Bianchi, 

Carlo and Morri, 2003), that will be further exacerbated in the future with the 

increase in the warming of the Mediterranean Sea and the likely increase in the 

establishment and spread of more thermophilic species (Bianchi, 2007; 

Bianchi et al., 2013). 

Nowadays, there is a contrast in the taxonomic groups that predominate 

in each region of the Mediterranean Sea, with alien macrophytes 

predominating in the Western Mediterranean, whereas alien fishes and 

invertebrates predominate in the eastern and central part (Zenetos et al., 

2012). What is common, however, is that the arrival and establishment of 

these species is altering the native diversity and the functioning of the system 

in really profound ways (Streftaris and Zenetos, 2006; Galil, 2007; 

Katsanevakis et al., 2014b; Boudouresque et al., 2017; Mannino et al., 2017). 

Still there is a lot of debate on whether all alien species are actually bad, as 

negative effects have only been reported for a small proportion of them 

(Katsanevakis et al., 2014b; Giangrande et al., 2020). However, care should be 

taken when making such considerations, as our understanding of the impacts 

of marine invasions is still quite limited.  

A rich diversity of established alien species can be currently found in the 

Mediterranean Sea (Figure 1.5), being Caulerpa cylindracea one of the most 

wide-spread species in the basin (Klein and Verlaque, 2008). This species, 

being the target species in this thesis, will be introduced in detail in Box 2. 
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Figure 1.5. Some of the alien species that have established in the Mediterranean Sea 
with the arrows indicating the main dispersion routes they use. Credit: Glynn 
Gorick/CLAMER. 
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Box 2| Target species: Caulerpa cy l indracea  
 

Caulerpa cylindracea is a siphonaceous green macroalga native to the 

Southwestern Coast of Australia (Verlaque et al., 2003), which was reported 

for the first time in the Mediterranean Sea in 1990, off the coasts of Libya 

(Nizamuddin, 1991). In less than 20 years, C. cylindracea colonized marine 

communities throughout the entire basin and even reached the North 

Atlantic (Verlaque et al., 2004), becoming the most wide-spread invasive 

species in the Mediterranean Sea (Klein and Verlaque, 2008; Katsanevakis et 

al., 2016). Currently, this species can be found thriving on a wide array of 

substrata in depths from 0 to 70 m, where it can form compact mono-

specific mats that can grow on top of the benthic assemblages (Klein and 

Verlaque, 2008). This causes the homogenization of native communities and 

it has strong negative impacts on the native communities, through the 

limitation of other macrophyte and invertebrate species (Piazzi et al., 2001; 

Piazzi and Ceccherelli, 2006; Klein and Verlaque, 2008, 2011; Kružić et al., 

2008; Žuljević et al., 2011) and through the creation of an anoxic layer 

underneath the mat (Piazzi et al., 2007; Klein and Verlaque, 2008). 

Consequently, C. cylindracea is considered to be the most-harmful invasive 

species in the Mediterranean Sea (Klein and Verlaque, 2008; Katsanevakis et 

al., 2016) and one of the marine invaders with the strongest impacts 

worldwide (Anton et al., 2019). Lately, despite its rampant success, several 

meadows have suffered steep abundance declines (Klein and Verlaque, 2008; 

García et al., 2016), which suggests that after a period of successful 

establishment, there might be some resistance mechanisms that can be 

effective for the control of the invader and could limit its invasive success. 

So far, however, the identity of those mechanisms remains unknown. 

Morphologically, C. cylindracea is characterized by a simple morphology 

that is formed by erect shoots with grape-like ramuli that can be arranged 
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radially or distichously and creeping stolons that attach to the substrate by 

thin rhizoids (Klein and Verlaque, 2008). This characteristic morphology, 

together with its vivid green color, makes species identification an easy task, 

both underwater and on land (Figure 1.6).  

Figure 1.6. Caulerpa cylindracea growing in close proximity to the tunicate Aplidium 
proliferum and to a small colony of the bryozoan Myriapora truncata. Photo credit: 
Eneko Aspillaga. 
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1.3 Objectives 

This thesis is encapsulated in the discipline of invasion ecology and has the general 

aim of improving our understanding of the factors that influence the success of 

invasive species by using Caulerpa cylindracea as a model organism.  Particularly, on 

the first 3 chapters (2, 3 and 4) we focus on assessing the role that biotic factors 

might have on the invasion dynamics of the studied species (Figure 1.7), while in 

Chapter 5 we focus in assessing how the abiotic factors, concretely temperature, 

can influence the invasive process of the studied species (Figure 1.7).  

For this thesis we have chosen Caulerpa cylindracea as the target species for 

several reasons. First, this macroalga species is currently considered the most 

widespread and harmful invader in the Mediterranean Sea (Klein and Verlaque, 

2008; Katsanevakis et al., 2016) and has even been considered as one of the most 

damaging marine invaders worldwide (Anton et al., 2019). However, despite this 

species probably being amongst the most studied invasive algae, the role of several 

factors on its invasion dynamics, particularly herbivory and temperature, are still 

poorly understood (Figure 1.7), although they could potentially influence its 

invasion success considering the importance that biotic and abiotic factors have for 

the invasive process in general (1.1.5 Understanding the success of invaders). 

Actually, several regressions of C. cylindracea meadows have been recently reported 

after the onset of the invasion, and although their causes remain elusive (Klein and 

Verlaque, 2008; García et al., 2016), they could be related to the existence of 

resistance mechanisms against the invader. Still, which are those mechanisms and 

whether they develop with time remains poorly understood, but considering that 

reliable long-term data on the presence and abundance of the species is available 

from the research team since the beginning of the invasion (Piazzi et al., 2005; 

Ballesteros et al., 2008; Cebrian and Ballesteros, 2009; Cebrian et al., 2011; García 

et al., 2016), we combined it with in situ and ex situ experimentation to further 

investigate on the mechanisms that influence the long-term dynamics of the 



CHAPTER 1 

	 26	

invader. Particularly, given that long-term data on invaders is scarce and that 

manipulative experimentation in the field is seldom done, the findings reported in 

this thesis can be relevant for biological invasions in general, as they might allow us 

to understand the mechanisms that influence invader success and the temporal 

dynamics of invasive species dwelling in different systems. 

The chapters here presented combine field surveys (Chapter 2, 3, 4 and 5), 

manipulative experiments in the field (Chapter 2 and 3), controlled experiments in 

the laboratory (Chapter 5) and molecular analysis techniques (Chapter 5). The 

specific objectives of each chapter are detailed below:  

• Chapter 2. The role of competition and herbivory in biotic resistance against invaders: 

A synergistic effect. Using benthic assemblage sampling and in situ field 

experiments, we assess whether the competition mediated by the complexity 

of the assemblage and the herbivory by the fish Sarpa salpa, can contribute 

to the control of the abundance of C. cylindracea. Additionally, by using long-

term data on the abundance and distribution of the invader at the study site 

we further elucidate on the influence that the interaction between both 

biotic mechanisms, competition and herbivory, has for the invasion 

dynamics of C. cylindracea. 

 

• Chapter 3. Learning takes time. Biotic resistance by native herbivores increases 

throughout the invasion process. In this chapter, taking into account the decrease 

in C. cylindracea abundance that we observed some time after the onset of the 

invasion in chapter 2, we investigate how time since the invasion and 

abundance of the invader shape the predator-prey interaction between S. 

salpa and C. cylindracea. Particularly, we experimentally assess whether the 

preference, the consumption and the electivity towards the invader change 

throughout the invasion, in relation to both, exposure time and invader 

availability. 
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• Chapter 4. Fish herbivory on Caulerpa cylindracea: The role of omnivorous sparid 

fishes. Given the important effect that consumption by S. salpa has on C. 

cylindracea abundance, observed in chapters 2 and 3, in this chapter we assess 

whether non-strictly herbivorous fishes can also contribute to the biotic 

resistance towards the invader. Specifically, we study the diets of four of the 

commonest omnivorous sparid fishes in the Mediterranean Sea to elucidate 

whether they consume C. cylindracea, whether the invader is an important 

part of their diet and whether the consumption is intentional or accidental.  

 

• Chapter 5. Stressful conditions give rise to a novel and filamentous form of Caulerpa 

cylindracea. In this chapter, after detecting a previously unreported 

morphology of C. cylindracea in the field, we explore the influence of extreme 

temperatures on the morphological plasticity of the invader to disentangle 

the causes behind the observed morphology and to assess the tolerance of 

the invader to disturbance. Furthermore, given the novelty of the new 

morphology, we characterize it morphologically, both macroscopically and 

microscopically; and we use molecular analyses to confirm the identity of 

the morphology due to its lack of resemblance with previous reported 

morphologies for the genus. 
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Figure 1.7. Conceptual model showing the factors influencing Caulerpa cylindracea spread. 
The factors assessed in this thesis are highlighted in bold, with the different colors 
showing the specific chapters in which they are assessed. Conceptual model modified 
from Piazzi et al. (2016). 
 

 







 

Cover image: Caulerpa cylindracea thriving in a community dominated by turf species like the 

invasive alga Womersleyella setacea.	

Author: Jana Verdura Brugarola. 
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2.1 Abstract 

Invasive species pose a major threat to global diversity and once they are well 

established their eradication typically becomes unfeasible. However, certain natural 

mechanisms can increase the resistance of native communities to invaders and can 

be used to guide effective management policies. Both competition and herbivory 

have been identified as potential biotic resistance mechanisms that can limit plant 

invasiveness but it is still under debate to what extent they might be effective 

against well-established invaders. Surprisingly, whereas biotic mechanisms are 

known to strongly interact, most studies up to date have examined single biotic 

mechanisms separately, which likely influences our understanding of the strength 

and effectiveness of biotic resistance against invaders. Here we use long-term field 

data, benthic assemblage sampling and exclusion experiments to assess the effect of 

native assemblage complexity and herbivory on the invasion dynamics of a 

successful invasive species, the alga Caulerpa cylindracea. A higher complexity of the 

native algal assemblage limited C. cylindracea invasion, probably through competition 

by canopy-forming and erect algae. Additionally, high herbivory pressure by the 

fish Sarpa salpa reduced C. cylindracea abundance by more than 4 times. However, 

long-term data of the invasion reflects that biotic resistance strength can vary 

across the invasion process and it is only where high assemblage complexity is 

concomitant with high herbivory pressure, that the most significant limitation is 

observed (synergistic effect). Overall, the findings reported in this study highlight 

that neglecting the interactions between biotic mechanisms during invasive 

processes and restricting the studied time scales may lead to underestimations of 

the true capacity of native assemblages to develop resistance to invaders. 
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2.2 Introduction 

iological invasions are one of the main threats to biodiversity and 

ecosystem function worldwide, being the second most prominent cause 

of species extinctions and playing an important role in diversity reduction 

(Vilà et al., 2011; Bellard et al., 2016). Furthermore, bioinvasions can produce 

alterations in a number of ecosystem services and basic ecosystems processes 

(Pejchar and Mooney, 2009; Vilà et al., 2010; Simberloff et al., 2013), often at great 

economic cost (Pimentel et al., 2005). Still, our understanding of the factors that 

influence invasion success remains limited (Simberloff et al., 2013), complicating 

the development of effective management strategies to prevent and mitigate the 

negative effects of invasive species.  

The success of an invasion is dependent on multiple processes across a wide 

range of temporal and spatial scales (Perelman et al., 2007; Theoharides and Dukes, 

2007; Eschtruth and Battles, 2009b; Byun et al., 2015). Among these processes, 

most of the attention has fallen on biological processes, in the context of the Biotic 

Resistance Hypothesis (Elton, 1958; Keane and Crawley, 2002; Levine et al., 2004). 

The strength of biotic resistance against an invader is strongly influenced by the 

native assemblage and by the functional traits of the native species (Pokorny et al., 

2005; Perelman et al., 2007; Byun et al., 2013), which modulate the interspecific 

competition; but also by the consumer pressure on both, the invasive and the 

native species (Levine et al., 2004; Parker and Hay, 2005; Mitchell et al., 2006). In 

this sense, negative effects of competition on several invasive plants, mainly caused 

by the limitation of essential resources such as water, nutrients or light, have been 

previously reported in tropical forests (Fine, 2002), saltmarshes (Amsberry et al., 

2000), grasslands (Corbin and D’Antonio, 2004; te Beest et al., 2018), mangroves 

(Li et al., 2014; Zhang et al., 2018), shrublands (Morris et al., 2015) and freshwater 

ecosystems (Petruzzella et al., 2018). However, competition alone might not be 

enough to exert a strong biotic control against a well-established invader (Levine et 

B 
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al., 2004; Vilà and Weiner, 2004). On the other hand, herbivory has been also 

acknowledged as an important biotic resistance mechanism for native ecosystems 

(Levine et al., 2004; Parker and Hay, 2005; Parker et al., 2006), although its 

effectiveness is controversial (Maron and Vilà, 2001; Keane and Crawley, 2002; Liu 

and Stiling, 2006). In fact, herbivores can promote (Eschtruth and Battles, 2009a; 

Relva et al., 2010; Kalisz et al., 2014), deter (Cushman et al., 2011; Pearson et al., 

2012; Zhang et al., 2018), or have no effect on the dominance of invasive plant 

species (Stohlgren et al., 1999), which makes it difficult to understand the 

conditions under which herbivory can be an effective biotic resistance mechanism 

against an invasion. Taking into account that herbivory can be highly influenced by 

other factors such as native plant traits (Grutters et al., 2017) or habitat features 

(Alofs and Jackson, 2014; Li et al., 2014; Ender et al., 2017; Zhang et al., 2018), 

contrasting observations on the role of biotic mechanisms in controlling invasive 

species may be partially explained by the fact that they are often assessed neglecting 

the relative importance of the interactions between mechanisms (Levine et al., 

2004; Mitchell et al., 2006; Alofs and Jackson, 2014; Zhang et al., 2018; Petruzzella 

et al., 2020). Indeed, the interaction between biotic mechanisms has been suggested 

to be responsible for an enhancement in the biotic resistance capacity of the 

invaded community (Suwa and Louda, 2012; Li et al., 2014; Zhang et al., 2018). 

In marine ecosystems, macroalgae are one of the most conspicuous and 

successful invaders, as well as one of the most harmful, comprising 20% of marine 

invasive species worldwide (Schaffelke et al., 2006) and causing potentially 

important ecological and economic damage (Williams and Smith, 2007). Despite 

this, the factors that drive their invasive success remain largely unknown (Inderjit et 

al., 2006), although similarly to what has been observed for plant invasions in 

terrestrial ecosystems, both competition and herbivory are suspected to determine 

their invasion success (Kimbro et al., 2013; Papacostas et al., 2017). In this regard, 

functional traits of the native species can influence habitat resistance to algae 

invasion through their contribution to interspecific competition (Arenas et al., 
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2006; Britton-Simmons, 2006; Vaz-Pinto et al., 2012). Surprisingly, however, most 

studies seem to confirm the inability of herbivores to limit the spread of well-

established invasive macroalgae (e.g., Wikström et al., 2006; Forslund et al., 2010; 

Cebrian et al., 2011; Tomas et al., 2011b; Nejrup et al., 2012), despite the important 

role of herbivory regulating algal abundance and distribution (Vergés et al., 2009; 

Poore et al., 2012). Overall, previous research on biotic resistance against invasive 

macroalgae seems to suggest that, in most cases, the effect of single biotic 

mechanisms might not be enough to significantly affect invader performance 

(Kimbro et al., 2013; Papacostas et al., 2017). Probably, as has been suggested 

above, only by considering the interaction between biotic mechanisms (both 

competition and herbivory), more robust conclusions on the true resistance of an 

assemblage towards a particular invader can be obtained. 

In this study, we aim to test whether herbivory interacts with competition to 

modulate the resistance of a marine habitat towards a particular invader. We use 

Caulerpa cylindracea, one of the most invasive macroalgae worldwide, to assess the 

simultaneous role that both assemblage structure and herbivory pressure have on 

C. cylindracea invasion by using in situ field experiments that assess herbivory and 

assemblage characteristics. Additionally, we monitor the abundance of the invader 

over time to further elucidate whether the studied biotic mechanisms and their 

interaction influence the long-term dynamics of the invader. 

 

2.3 Materials and methods 
 

2.3.1 Study species 

Caulerpa cylindracea is a green alga, native to the Southwestern coast of Australia 

(Verlaque et al., 2003), which is currently considered one of the most invasive 

species within the Mediterranean Sea (Klein and Verlaque, 2008; Katsanevakis et 

al., 2016), having also invaded areas in the North Atlantic (Verlaque et al., 2004). 
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Actually, it has recently been ranked as one of the marine invaders with the highest 

negative ecological impacts worldwide (Anton et al., 2019). However, despite its 

formidable ability to spread and grow, the abundance of C. cylindracea appears to 

differ markedly among invaded assemblages (Klein and Verlaque, 2008; Cebrian 

and Ballesteros, 2009), suggesting that there might be, in some cases, some natural 

mechanisms controlling C. cylindracea abundance. Among such mechanisms, 

competition may play an important role, since canopy-forming and erect algae 

(typical of high-complexity assemblages) can outcompete C. cylindracea (Ceccherelli 

et al., 2002; Bulleri and Benedetti-Cecchi, 2008; Piazzi and Balata, 2009; Bulleri et 

al., 2010), whereas herbivory seems to fail as a control mechanism for C. cylindracea 

when it is well established (Bulleri et al., 2009; Cebrian et al., 2011), even though 

several species are known to commonly feed on it (Ruitton et al., 2006; Box et al., 

2009; Cebrian et al., 2011; Tomas et al., 2011b). However, it is important to 

consider that previous studies have focused on only one of these mechanisms 

(either competition or herbivory) while, in nature, both mechanisms might act 

together to influence the abundance of the invasive species. 

2.3.2 Study system 

The Mediterranean Sea is the largest and deepest semi-enclosed sea on Earth and it 

is considered a hotspot for marine biodiversity as it harbors around 17,000 marine 

species, 20% of them being endemic to the region (Coll et al., 2010). Due to its 

temperate climatic conditions, Mediterranean benthic shallow habitats are 

dominated by macroalgae. Unfortunately, the Mediterranean Sea is one of the areas 

most susceptible to the introduction of non-native species worldwide (Galil, 2007) 

and it is considered to be a hotspot for invasive algae (Williams and Smith, 2007; 

Thomsen et al., 2016). 

The study was conducted in the Cabrera Archipelago National Park, in the 

Balearic Islands (western Mediterranean; 39° 12’ 21” N, 2° 58´44” E) (Figure 2.1). 
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This maritime-terrestrial national park was established in 1991 and currently 

harbors some of the best-preserved benthic and fish assemblages in the 

Mediterranean Sea (Sala et al., 2012; Guidetti et al., 2014).  

The invasive alga, Caulerpa cylindracea, was first detected in the area in 2003 at 

a depth of 30 m (Cebrian and Ballesteros, 2009) and has, since then, colonized 

most of the park´s benthic habitats at depths from 0 to 65 m. Indeed, in some of 

these habitats, it has become the dominant species (Cebrian et al., 2011). 

 
Figure 2.1. Location of the Cabrera Archipelago National Park. The points show the 
locations of the sampling sites where assemblage complexity was assessed (3 sites), the 
exclusion experiment was performed (1 site) and the scuba diving transects were done (16 
sites). Shapefile for the Mediterranean Sea downloaded from www.naturalearthdata.com 
and for the Cabrera Archipelago National Park from www.miteco.gob.es. 
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2.3.3 Benthic habitat sampling and assemblage complexity 

To assess the role that benthic assemblage complexity might have on C. cylindracea 

coverage, different assemblages were surveyed in three sites around the Cabrera 

Archipelago: Ses Rates, Na Foradada and Freu de la Imperial (Figure 2.1). A 

shallow assemblage (10 m) and a deep assemblage (30 m) were surveyed at each site 

to take into account the wide range of benthic assemblage complexities (Ballesteros 

et al., 1993) and contrasting herbivory pressures (Vergés et al., 2009; Tomas et al., 

2011b) in relation to depth. Assemblages were sampled in 2005, 2006 and 2007. At 

each site and depth, three random samples measuring 20 x 20 cm2 were collected, 

with the whole benthic cover removed using a hammer and a chisel 

(Boudouresque, 1971; Sant et al., 2017). After removing the erect algae, and before 

scraping each quadrat, the cover of each encrusting species was visually estimated 

to obtain a more reliable value of their abundance in the encrusting layer. After 

collection, samples were preserved in 4% formalin in seawater, and once in the 

laboratory, they were sorted and all algae were identified to species level. Species 

coverage was calculated by placing the species specimens horizontally over a 

laboratory tray and measuring the area they covered (Ballesteros, 1986). Then, each 

algal species was assigned to a different category (“Canopy-forming”, “Erect”, 

“Turf” and “Encrusting”) based on their morphological traits (size and 

morphology) (Appendix A: Table A.1). In order to avoid the effect of assemblage 

complexity being subject to a confounding effect of the presence of Caulerpa 

cylindracea, this species was not included in any of the previous categories. Finally, 

the percent cover of each category in the sample was calculated.  

Capacity of canopy-forming and erect algae to outcompete C. cylindracea in 

contrast to turf and encrusting species has been experimentally proven for coastal 

shallow rocky bottoms of the Mediterranean Sea (Ceccherelli et al., 2002; Bulleri 

and Benedetti-Cecchi, 2008; Piazzi and Balata, 2009; Bulleri et al., 2010). 

Consequently, complexity of each sample was defined based on the percentage 
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abundance of the “Canopy-forming” and “Erect” categories. Three levels of 

complexity were defined for the samples based on the percentage of coverage that 

comprised canopy-forming and/or erect species: “high complexity” (more than 

50%); “medium complexity” (between 15% and 50%) and “low complexity” (lower 

than 15%). 

2.3.4 Exclusion experiment 

An exclusion experiment was performed to assess whether fish herbivory could act 

as a biotic resistance mechanism against Caulerpa cylindracea invasion by reducing the 

abundance of the invasive alga. To this end, in order to obtain a proxy of 

contrasting herbivory intensities, and bearing in mind that herbivory pressure 

decreases strongly through the water column (Vergés et al., 2009, 2012; Steneck et 

al., 2017), the exclusion experiment was performed at two different depths: 10 m, 

where herbivory pressure is high, and 30 m, where it is low (Reñones et al., 1997; 

Tomas et al., 2011b; Vergés et al., 2012). 

This experiment mainly targeted Sarpa salpa, because it is the only truly 

herbivorous fish in the western Mediterranean Sea (Verlaque, 1990; Gianni et al., 

2017), it plays an important role structuring algal communities (Vergés et al., 2009) 

and it regularly consumes C. cylindracea (Ruitton et al., 2006; Tomas et al., 2011b). 

This fish species is quite abundant throughout the Cabrera Archipelago, where it 

can reach densities up to 14 individuals per 250 m2 above depths of 20 m (Reñones 

et al., 1997), spending around 90% of the time above 20 m (Tomas et al., 2011b). 

Sarpa salpa is known to have a quite heterogeneous diet (Havelange et al., 1997), but 

it can also be very selective (Verlaque, 1990; Marco-Méndez et al., 2017) and even 

shows a preference for C. cylindracea over many native species (Tomas et al., 2011b), 

which makes it a potential candidate for the control of C. cylindracea.  

The exclusion experiment was set up at the end of June 2011 in Na 

Foradada (Figure 2.1), an area where fish communities are well established, sea 
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urchin (Paracentrotus lividus and Arbacia lixula) densities are very low (<0.1 per m2) 

(Cebrian et al., 2011) and the highest densities of the fish S. salpa are found within 

the National Park, with more than 20 individuals per 250 m2 (Reñones et al., 1997). 

Furthermore, we chose this area because both the shallow and the deep benthic 

habitats displayed a similar medium complexity (with coverage of erect and canopy-

forming species at between 25-35%) and similar abundances of native species. This 

meant there was sufficient abundance of C. cylindracea to experimentally assess, in 

the field, the effect of herbivory pressure on it. 

At each depth, 3 treatments were used: “Exclusion”, which consisted of 

cages of 50 x 50 x 50 cm3 made of plastic netting with a mesh size of 2.5 cm; 

“Control-Exclusion”, consisting of cages with open sides; and “Control”, 

consisting of 50 x 50 cm2 quadrats marked permanently on the corners and without 

a cage. A total of 5 interspersed replicates per treatment were set (15 plots per 

depth) within an area of <100 m2 to avoid different abiotic conditions between 

plots. At the beginning (July) and at the end (August) of the experiment, pictures 

were taken at each plot to subsequently assess C. cylindracea abundance, which was 

calculated with the computer program photoQuad version 1.4 (Trygonis and Sini, 

2012). In each photograph, 50 random points were placed and then, each of these 

points was assigned to the category of either “Caulerpa cylindracea” or “other algae”. 

The proportion of points in each category was then used as a proxy of the 

percentage abundance for each of those two categories. 

2.3.5 Abundance of Caulerpa cylindracea 

The abundance of C. cylindracea at the Cabrera Archipelago was assessed in 2008 

and then again in 2017. To do so, 16 representative sites around the archipelago 

were chosen (Figure 2.1) and a perpendicular transect to shore was performed at 

each site by means of scuba diving. The depth of the transects ranged from 5 to 45 

m to cover the main bathymetric range at which C. cylindracea can be found 
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(Cebrian et al., 2011). The abundance of C. cylindracea was estimated by means of 25 

x 25 cm2 quadrats, divided into 25 subquadrats of 5 x 5 cm2 (Sala and Ballesteros, 

1997; Sant et al., 2017) and the number of subquadrats where Caulerpa was 

detected, was used as a unit of abundance. A total of thirty quadrats were randomly 

positioned within each 5 m-depth range and then the mean C. cylindracea abundance 

per each 5 m-depth stratum was calculated. Also, to take into account the effect 

that assemblage complexity might have on the bathymetric abundance of C. 

cylindracea, each 5 m-depth range at each site was classified as having either high or 

low complexity based on the dominant morphological categories in the assemblage 

(“canopy-forming”, “erect”, “turf” and “encrusting”), while ignoring the presence 

of C. cylindracea to avoid confounding effects. 

2.3.6 Statistical analysis 

The effect of benthic assemblage complexity on the cover of Caulerpa cylindracea was 

assessed with binomial generalized linear models (GLM), because the response 

variable was measured as a percentage (% of C. cylindracea coverage in each sample) 

and it could be approximated to a logistic distribution (e.g.: success = % coverage 

of C. cylindracea, failure = % coverage of species other than C. cylindracea). Two 

models were fitted, one to assess the role of “assemblage complexity” and another 

to assess the role of both “depth” and “assemblage complexity” on C. cylindracea 

coverage. In the latter, both factors were included as fixed effects and if the 

interaction between them was significant, it was also included in the model. To fit 

both models, the statistical environment R was used (R version 3.6.3) (R Core 

Team, 2018); and to compare the effects between levels in the assemblage 

complexity factor itself (“high complexity”, “medium complexity” and “low 

complexity”), and in the assemblage complexity factor at each depth (“shallow” 

and “deep”), Tukey post hoc tests were performed using the functions “pairs” and 

“emmeans” from the package emmeans (Lenth, 2018). 
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To evaluate the effect of the exclusion treatment on the abundance of C. 

cylindracea at the end of the experiment, binomial mixed effects GLMs were used 

because the response variables were measured as proportions and could be 

approximated to a logistic distribution (e.g., success = points that corresponded to 

C. cylindracea; failure = points that did not correspond to C. cylindracea), while the 

random terms were used to take into account the repeated measures. In the 

models, the factors “treatment” and “time” were included as fixed effects, whereas 

“plot” was included as a random effect. If the interaction between “treatment” and 

“time” was significant, it was also included in the fixed part of the model. Two 

models were fitted, one per depth (10 m or 30 m) by means of the package lme4 

(Bates et al., 2015) for R. Tukey post hoc tests, which were performed using the 

functions “pairs” and “emmeans” in the package emmeans, were used to compare 

effects between levels in the treatment factor (“Exclusion”, “Control-Exclusion”, 

“Control”) at each time observation (“beginning” and “end”).  

The R code used to perform all the statistical analyses can be found on 

Zenodo: https://doi.org/10.5281/zenodo.4664432 (Santamaría, 2021). 

 

2.4 Results 
 

2.4.1 Effect of benthic assemblage complexity on Caulerpa 

cylindracea coverage 

Benthic assemblage complexity had a significant effect on Caulerpa cylindracea 

coverage (p<0.001, Appendix A: Table A.2), with high complexity assemblages 

supporting low C. cylindracea covers (Figure 2.2, A). In fact, there were significant 

differences in C. cylindracea cover among the different levels of assemblage 

complexity (p<0.001, Appendix A: Table A.3), with C. cylindracea coverage lower 
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than 5% in very complex assemblages, whereas in low complexity assemblages, 

coverage of the invasive species reached values of almost 30% (Figure 2.2, A). 

 When the depth of the sampled assemblages was included in the model, C. 

cylindracea coverage varied significantly by depth, by assemblage complexity and by 

the interaction term (Appendix A: Table A.4). In fact, although the previous 

pattern of lower C. cylindracea cover in high complexity assemblages is maintained, 

the coverage of the invasive alga is significantly higher at deeper habitats, 

independently of assemblage complexity (Appendix A: Table A.5, A; Figure 2.2, 

B). In particular, in shallow habitats, high complexity assemblages had 20 times less 

C. cylindracea coverage than low complexity assemblages, but only 10 times less 

coverage at deeper habitats (Figure 2.2, B). At each depth, there were significant 

differences between all levels of assemblage complexity, except between high 

complexity and medium complexity assemblages in shallow areas (Appendix A: 

Table A.5, B). 
 

 

Figure 2.2. Mean Caulerpa cylindracea coverage ± S.E for A) each level of assemblage 
complexity, and for B) each level of assemblage complexity at the two different depths. 
Significant differences between assemblage complexity levels (p-values from Tukey´s test 
with 95% confidence intervals) are indicated with letters. 
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2.4.2 Exclusion experiment 

Significant effects of herbivory on Caulerpa cylindracea abundance were only detected 

at shallow depths (10 m), where C. cylindracea abundance varied significantly by 

treatment, by time and by the interaction between the two (Appendix A: Table 

A.6). While at the beginning of the experiment, all treatment areas displayed similar 

C. cylindracea abundance, both the “Control-Exclusion” and the “Control” 

treatments exhibited lower C. cylindracea abundances at the end of the experiment 

(p-value < 0.001; Appendix A: Table A.7, A), whereas C. cylindracea abundance in 

the “Exclusion” treatment remained constant (Appendix A: Table A.7, B). 

Indeed, at the end of the experiment, C. cylindracea abundance was 4.33 and 2.36 

times higher in the full exclusion cages compared with the uncaged control plots 

and the side-open cages, respectively (Figure 2.3, A).  

 On the other hand, at 30 m, the abundance of C. cylindracea varied 

significantly across time but not between treatments (Appendix A: Table A.6). In 

fact, for all three treatment levels, abundance was significantly higher (1.88 times 

on average) at the end of the experiment, than at the beginning (Figure 2.3, B). 
 

 

Figure 2.3. Mean Caulerpa cylindracea abundance ± S.E., at each time observation and for 
each treatment in the exclusion experiment. A) Exclusion experiment at 10 m depth and 
B) exclusion experiment at 30 m depth. Significant differences between exclusion 
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treatments (p-values from Tukey´s test with 95% confidence intervals) are indicated with 
letters in each graph. 
 

2.4.3 Abundance of Caulerpa cylindracea 

The abundance of Caulerpa cylindracea in the Cabrera Archipelago decreased between 

2008 and 2017 at depths of between 5 and 35 m, but remained more or less 

constant below 40 m (Figure 2.4). In the entire bathymetric distribution, 

assemblage complexity showed a considerable effect on C. cylindracea abundance, 

with high complexity assemblages exhibiting lower abundances of the invasive alga 

than low complexity assemblages. Furthermore, it was in shallow and highly 

complex assemblages, from 5 to 25 m deep, where C. cylindracea reached its lowest 

abundance, with values ranging between 5 and 10% (Figure 2.4, B). 

 

 

Figure 2.4. Bathymetric abundance of Caulerpa cylindracea (mean ± S.E.) at the Cabrera 
Archipelago National Park: (A) in 2008 and (B) in 2017, on assemblages with different 
complexities. 
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2.5 Discussion 

Our results indicate that while both, competition and herbivory, can provide biotic 

resistance to a certain extent, strong synergistic effects are observed when the two 

mechanisms act together. Indeed, competition (by canopy-forming and erect algae) 

and herbivory (by Sarpa salpa), significantly affect the invasion outcomes of C. 

cylindracea, particularly limiting its abundance in complex algal assemblages in which 

herbivory pressure is high.  

Benthic assemblage complexity had a strong influence on preventing C. 

cylindracea invasion. The dominance of canopy-forming and erect species resulted in 

reduced cover of C. cylindracea, probably determining resistance to C. cylindracea 

invasion through competition mechanisms (Ceccherelli et al., 2002; Piazzi and 

Balata, 2009), such as the reduction in light availability, which can limit the 

photosynthetic performance of C. cylindracea (Bernardeau-Esteller et al., 2015; 

Marín-Guirao et al., 2015; Bernardeau-esteller et al., 2020) and the prevention of 

reattachment of fragments through the branch-sweeping of the substratum (Bulleri 

and Benedetti-Cecchi, 2008; Piazzi et al., 2016). In contrast, when the abundance of 

canopy-forming algae was low and the communities were dominated by turf and 

encrusting species, C. cylindracea cover was much higher. In such habitats, the 

colonization and spread of C. cylindracea seems to be facilitated because turf 

assemblages provide an optimal 3-D matrix which favors the anchoring of the 

stolons and trapping of fragments (Ceccherelli et al., 2002; Bulleri and Benedetti-

Cecchi, 2008; Bulleri et al., 2009). In this sense, these findings support previous 

evidence from marine and terrestrial ecosystems, where the presence and 

dominance of species with certain functional traits (e.g., growth form, size and 

height) among the assemblage, strongly influences the strength of the biotic 

resistance against invasive primary producers (Lindig-Cisneros and Zedler, 2002; 

Arenas et al., 2006; Britton-Simmons, 2006; Byun et al., 2013; Bernardeau-esteller 

et al., 2020) by limiting one or several essential resources for the invader.  
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However, the significant differences we observed in the abundance of C. 

cylindracea between shallow and deep communities, regardless of assemblage 

complexity, suggest that mechanisms other than assemblage complexity are playing 

an important role on the invasion of C. cylindracea, particularly given that C. 

cylindracea can readily colonize habitats from 0 to 50 m depth (Klein and Verlaque, 

2008; Cebrian and Ballesteros, 2009). In this sense, although several factors (e.g. 

propagule pressure, disturbance or abiotic conditions) cannot be disregarded, we 

suggest that the observed differences in invader abundance mainly reflect the 

contrasting consumer pressures found between deep and shallow communities. 

Concretely, given similar assemblage complexity, when herbivory pressure was high 

(here shallow habitats) (Reñones et al., 1997; Vergés et al., 2009, 2012; Tomas et al., 

2011b), the abundance of C. cylindracea was significantly lower compared to areas 

where herbivory pressure was low or non-existent (deeper habitats). Actually both, 

the exclusion experiment and the pattern of C. cylindracea abundance and 

distribution across the Cabrera Archipelago, further support that herbivory is also 

contributing to the biotic resistance of native assemblages to the C. cylindracea 

invasion. In this sense, where herbivory is weak, such as in deep habitats or if 

herbivores have been depleted, C. cylindracea is subject to limited control and its 

abundance depends largely on assemblage complexity, which results in higher 

abundances of the invader among the native assemblage (Figure 2.5, A and B). 

Similarly, when herbivory pressure is high but assemblage complexity is low, the 

invader will also suffer limited control (Figure 2.5, C). However, when high 

herbivory pressure is concomitant with high assemblage complexity, both 

mechanisms (competition and herbivory) strongly limit the abundance of C. 

cylindracea (Figure 2.5, D). Taking into account that sea urchin densities were very 

low in the study area (<0.1 per m2), the herbivory pressure observed can be mainly 

attributed to the effect of Sarpa salpa, a fish which is mostly distributed at shallow 

depths and which has a certain preference for C. cylindracea (Tomas et al., 2011b). 

Nevertheless, considering that sea urchins have been previously reported feeding 
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on C. cylindracea (Ruitton et al., 2006; Bulleri et al., 2009; Cebrian et al., 2011; Tomas 

et al., 2011a), additional negative effects on C. cylindracea abundance may occur in 

areas with high sea urchin abundances. These results where the interaction between 

biotic mechanisms yielded a stronger biotic resistance against the invader than the 

single mechanisms alone, agree with previous studies where habitat characteristics 

interacted with herbivory pressure to influence the overall biotic resistance of 

certain terrestrial ecosystems (Suwa and Louda, 2012; Li et al., 2014; Zhang et al., 

2018).  

Also, and importantly, by following the long-term dynamics of C. cylindracea 

at the study area, we observe that the overall strength of the assemblage´s biotic 

resistance has increased over time as the abundance of the invasive alga in 

assemblages subjected to higher biotic resistance (i.e., communities at depths of 

between 0 to 25 m), has decreased over a 10-year period (Figure 2.4). This 

regression, restricted to areas with high herbivore pressure, may be the result of 

either an increase in the abundance of the herbivores or to some herbivores 

becoming more efficient in consuming the invasive species as the invasion 

progresses (Strayer et al., 2006; Carlsson et al., 2009). However, given that the 

abundance of S. salpa has remained more or less stable during the assessed period 

(Coll, 2020), we suspect that this herbivore has become more efficient at targeting 

the invader and has increased its per capita consumption rates over time (Santamaría 

J., unpublished manuscript, Chapter 3). Nevertheless, other mechanisms that can 

increase biotic resistance, such as, for instance, allelochemical defenses deployed by 

native species and assemblages against the invader (Strayer et al., 2006), cannot be 

ruled out.  
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Figure 2.5. Depiction of how different combinations of assemblage complexity and 
herbivory pressure determine biotic resistance against a marine invasive alga (e.g. Caulerpa 
cylindracea), representing four scenarios: A) low assemblage complexity and low herbivory 
pressure; B) high assemblage complexity and low herbivory pressure; C) low assemblage 
complexity and high herbivory pressure and D) high assemblage complexity and high 
herbivory pressure. (Algae illustrations obtained and modified from the Integration & 
Application Network (IAN) Image Library (Tracey Saxby and Joanna Woerner), the 
IUCN and freepik (https://www.freepik.com/macrovector); the fish illustration, by João 
T. Tavares, was obtained from www.deviantart.com). 
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Unfortunately, in general, knowledge on whether the effects of biotic 

mechanisms are maintained throughout an invasion process or whether they 

change in relation to time since invasion is still quite limited, because most studies 

just assess a particular time frame in the invasion (Maron and Vilà, 2001; Levine et 

al., 2004; Mitchell et al., 2006; Alofs and Jackson, 2014; Papacostas et al., 2017). To 

our knowledge, our study is the first that reports the importance of exposure time 

for the development of resistance against invaders in natural ecosystems (but see: 

Diez et al., 2010 and Dostál et al., 2013 for assessments in common garden 

experiments) and highlights that increases in biotic resistance observed over time 

(due to increased consumer pressure, competitive impacts or a combination of the 

two), could explain why invaders that have previously been considered as hyper-

successful (e.g., Myriophyllum spicatum, Elodea canadiensis, Dreissena polymorpha, Carcinus 

maenas, Caulerpa species) can suffer marked reductions in population size some 

years after the onset of the invasion (Simberloff and Gibbons, 2004; De Rivera et 

al., 2005; Iveša et al., 2006; Carlsson and Strayer, 2009; Bernardeau-esteller et al., 

2020). Therefore, by focusing on only a small time frame or just the beginning of 

an invasion, we may be underestimating the true capacity of native assemblages to 

develop resistance to invaders (Strayer et al., 2006, 2017; Rius et al., 2014; 

Papacostas et al., 2017). For this reason, the use of long-term data, despite being 

scarce, should be prioritized whenever possible, to assess the true effect that biotic 

resistance mechanisms might have on the overall invasion process. 

Generally, our findings highlight the importance of considering several 

factors and their interaction when assessing the strength of biotic resistance 

mechanisms against a particular invader, especially considering that herbivory and 

competition are universal processes that operate across ecosystems and that 

naturally interact with each other (Gurevitch et al., 2000; Meiners and Handel, 

2000; Hambäck and Beckerman, 2003). In fact, it has been proposed that herbivory 

reinforces competition and in turn releases the chance for coexistence, favoring 

those species that are better competitors (Gurevitch et al., 2000). However, despite 
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that, in invasion ecology, the interaction between these mechanisms has been rarely 

assessed (but see: Suwa and Louda, 2012; Li et al., 2014; Zhang et al., 2018) and 

most studies rely on the assessment of single biotic mechanisms (Maron and Vilà, 

2001; Levine et al., 2004; Vilà and Weiner, 2004; Kimbro et al., 2013; Papacostas et 

al., 2017, and references therein). This can definitively underestimate the true role 

of biotic processes (e.g., competition and herbivory) against invasive species and 

may explain why our findings, reporting a strong effect of biotic mechanisms 

against a successful invader, contrast with many previous studies. Actually, our 

results, together with those recently reported for mangrove ecosystems (Li et al., 

2014; Zhang et al., 2018), where a successful invader (Spartina alterniflora) was 

limited and excluded due to the interaction between competition and herbivory, 

suggest that synergisms between biotic resistance mechanisms may be an important 

but overlooked process driving the invasion success of plant invaders (Figure 6). 

In this sense, in situ field experiments, in which competition (e.g., assemblage 

complexity), herbivory, and the interaction between the two can be simultaneously 

assessed, can provide a better understanding of the true extent of biotic resistance 

against an invader (Levine et al., 2004; Mitchell et al., 2006; Kimbro et al., 2013; Li 

et al., 2014; Enge et al., 2017; Zhang et al., 2018; Petruzzella et al., 2020) and will 

definitively help in the understanding of the invasion success and the dynamics of 

different invaders. 

Finally, the findings reported in this study highlight the importance of 

improving our knowledge regarding the factors that influence invasive species 

success in order to fully understand the invasion process of different species and 

adopt successful mitigation and management measures. As a practical example, 

while the removal of invasive algae has proven to be, in most cases, ineffective or 

infeasible (Epstein and Smale, 2017; Giakoumi et al., 2019a), results obtained in 

this and other studies (Caselle et al., 2018; Bernardeau-esteller et al., 2020) suggest 

that by promoting the conservation of marine habitats and herbivorous 

populations, we can foster biotic resistance within an ecosystem-based approach to 
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marine environment management and contribute to the long-term control of 

marine invasions. 

 
Figure 2.6. Schematic representation of how the interaction between competition and 
herbivory might determine the overall biotic resistance against an invader. Depicted 
illustrations correspond to Ratus losea, Cervus elaphus and Sarpa salpa as native herbivores; a 
mangrove forest, a temperate forest and a marine algal forest as native assemblages; and 
two grasses and an alga species (here Caulerpa cylindracea) as invasive species. (Illustrations 
obtained from the Integration & Application Network (IAN) Image Library (Tracey 
Saxby, Kim Kraeer and Lucy Van Essen-Fishman), the IUCN and the fish illustration, by 
João T. Tavares, was obtained from www.deviantart.com). 
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3.1 Abstract 

The arrival of non-native species into a new habitat normally triggers the 

development of novel interactions that can influence the success of invaders. 

Among those, predator-prey interactions have been reported to reduce the invasion 

success of several species, but it is also common to observe invaders being released 

from the effects of native enemies, thus escaping biotic control. Therefore, several 

mechanisms have been proposed to affect the strength and direction of the 

predator-prey interactions. Surprisingly, despite ecological interactions being 

dynamic processes, native predator-invasive prey interactions are normally assessed 

considering a fixed time frame, thus making it difficult to infer whether they can 

shift through the invasion process. Actually, both the exposure time and the 

abundance of the invader in the native community can potentially influence the 

strength and the development of these novel interactions. In this study we use a 

Space-for-Time substitution methodology to assess whether the strength of the 

interaction between a Mediterranean keystone native herbivore (Sarpa salpa) and a 

hyper-successful invasive alga (Caulerpa cylindracea) is mediated by the exposure time 

to the invader and/or by its availability in the community. Our results show that 

preference for Caulerpa develops after at least 5 years since the introduction and 

first contact of the invader with the herbivore, regardless on the abundance of the 

invader; whereas the percentage of herbivores feeding on Caulerpa and the per capita 

consumption rates were influenced by both, the exposure time and the availability 

of the invasive alga. In this sense, sites historically invaded and with higher invader 

abundances, where the ones that supported the strongest predator-prey interaction 

compared to sites recently invaded. Remarkably, even when the abundance of the 

invader decreased with time, the electivity towards the invasive alga continued 

increasing through the invasion, suggesting that the learned herbivory preference is 

continuously transmitted within the grazer population, even when Caulerpa 

abundance is anecdotic. Overall, our findings suggest that novel predator-prey 

interactions need time to develop and that their strength can increase through the 

invasion process, thus becoming an effective biotic resistance mechanism. 
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3.2 Introduction 

iological invasions, together with climate change, land use and pollution, 

are currently considered one of the leading drivers of the current 

biodiversity crisis due to the profound impacts they cause in native 

ecosystems (Butchart et al., 2010; Brondizio et al., 2019; Pyšek et al., 2020). These 

negative impacts also cascade through the ecosystem, affecting the normal 

functioning of the system, disrupting the provision of important ecosystem services 

(Simberloff et al., 2013; Vilà and Hulme, 2017) and even impacting the human well-

being and health (Pejchar and Mooney, 2009; Pyšek and Richardson, 2010). For 

these reasons, the management of invasive species has been positioned as an urgent 

priority at the global scale (Pyšek et al., 2020), but still, rates in the accumulation of 

invasive species have been growing for the past decades (Hulme, 2009; Seebens et 

al., 2017). Therefore, in order to find effective management measures for the 

control of the current invasions and those to come, we need to improve our 

knowledge on the long-term dynamics of successful invasive species and on how 

they interact with the native communities (Seebens et al., 2017).  

 It is well known that the arrival of an invader will develop several novel 

interactions in the receiving community – either in the form of competition or 

predation – and their strength and direction will be key for the success of non-

native species (Colautti et al., 2004; Levine et al., 2004; Sih et al., 2010; Pintor and 

Byers, 2015). Among them, predator-prey interactions have been reported to 

reduce the invasion success of several species by predators directly consuming the 

invader (Maron and Vilà, 2001; Levine et al., 2004; Carpenter and Cappuccino, 

2005; De Rivera et al., 2005; Carlsson and Strayer, 2009; Carlsson et al., 2011; 

Robbins et al., 2013; Kremer and da Rocha, 2016; Caselle et al., 2018; Zhang et al., 

2018). However, many studies have also reported that invasive species can be 

commonly released from the effects of their natural enemies (Maron and Vilà, 

2001; Keane and Crawley, 2002; Colautti et al., 2004; Liu and Stiling, 2006), 

B 
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allowing the invader to escape biotic control. In this sense, several characteristics 

have been proposed to influence the strength and direction of consumer pressure, 

such as the defense capabilities of invaders and their ability to release allelophatic 

chemicals (Mollo et al., 2008; Inderjit et al., 2011; Mennen and Laskowski, 2018), 

the existence of predator avoidance mechanisms (Strauss et al., 2006; Berthon, 

2015; Ruland and Jeschke, 2020) or the inability of predators to identify an invader 

as prey – native predator “naïveté” (Verhoeven et al., 2009; Sih et al., 2010; Kimbro 

et al., 2013). 

However, it is important to consider that most studies assessing predator-

prey interactions against invasive species do so disregarding the temporal 

component of the invasions, just assessing a particular time frame in the invasion 

process. Assuming that invasions are static in contraposition with their real 

dynamic nature can definitively influence the perceived strength of the novel 

predator-prey interactions depending on the time considered (e.g., recent vs. old 

invasions). Actually, predators, through the exposure time to the invader, can 

develop adaptations that allow them to increase their feeding efficiency on the 

novel prey (e.g., Carroll et al., 1998; Phillips and Shine, 2004; Carlsson et al., 2009). 

However, the role that exposure time might have for the development of effective 

novel predator-prey interactions is still under debate, because while several studies 

have reported increased consumptions and damages on invaders as the invasion 

progresses (Siemann et al., 2006; Carlsson and Strayer, 2009; Diez et al., 2010; 

Carlsson et al., 2011; Dostál et al., 2013; Stricker et al., 2016; Kurr and Davies, 

2017); there are others that have not found a positive relationship between 

exposure time and the damage or the consumption of invaders (Carpenter and 

Cappuccino, 2005; Harvey et al., 2013; Pintor and Byers, 2015; Schultheis et al., 

2015).  

Conflicting evidence on the importance of time since invasion for the 

success of invasive species suggests that, although time might play a crucial role in 
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the development of novel predator-prey interactions, other factors and the 

interactions between them might also have an influence for the development of 

such novel interactions (Mitchell et al., 2006). For instance, despite the importance 

that prey abundance has for the strength of predator-prey relationships 

(Wellenreuther and Connell, 2002; Carbone et al., 2011; Davies et al., 2012) and 

considering that the experience with novel prey follows a density-dependent 

increase (Saul and Jeschke, 2015), the abundance of the invader in the community 

has been rarely taken into account when assessing the development of the novel 

predator-prey interactions (but see: Nelson et al., 2011). Therefore, contributions 

on whether the abundance of the invader might mediate the increase in novel prey 

consumption through time and whether both factors – abundance and exposure 

time – interact to modulate the development of the novel predator-prey 

interactions, are urgently needed to understand the long-term dynamics of invaders. 

Unfortunately, as long-term data on most invaders is rare (Strayer et al., 2006), it is 

difficult to draw stronger conclusions on how predator-prey interactions might 

develop through time (Strayer et al., 2017) and whether other factors, such as the 

abundance of the invader, contribute to their development. Nevertheless, the use 

of Space-for-Time methodologies or chronosequences, where populations with 

different invasion times are studied, provides a cost-effective, viable and valid 

alternative to Time-for-Time methodologies (long-term studies) (Thomaz et al., 

2012; Dostál et al., 2013; Gruntman et al., 2017). Actually, this methodology might 

allow to effectively assess whether the strength of the novel consumer-prey 

interactions shifts throughout the invasion process in relation to exposure time 

alone or in combination with other factors such as the invasion intensity. Finally, 

the use of these types of approaches could definitively enhance our understanding 

of the long-term dynamics of certain invasive species and could provide us with 

important information for improving the management of invasions. 

In this study, by using a Space-for-Time substitution methodology, we assess 

whether the strength of the predator-prey interaction between a keystone herbivore 
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and a hyper-successful invader is mediated by the time since the invasion and/or by 

the abundance of the invader in the community. Preference and consumption 

assessments were carried in populations with contrasting exposure times and 

abundances of the invader, to assess whether the preference feeding, the number of 

herbivores feeding on the invader and the consumption per capita rates of the 

herbivore are influenced by the temporal and numerical characteristics of the 

invasion. Additionally, to further disentangle the influence of time since invasion 

on the strength of the predator-prey interaction, electivity for the invader was 

assessed at three succeeding sampling times in two populations characterized for 

their differential exposure time to the invader. 

 

3.3 Materials and methods 
 

3.3.1 Target species 

Caulerpa cylindracea is a siphonaceous green alga native to the Southwestern coast of 

Australia that is invasive in the Mediterranean Sea and in some regions in the 

Atlantic Ocean and in the Indian Ocean (Klein and Verlaque, 2008). In the 

Mediterranean Sea, C. cylindracea has experienced a rampant success, where it has 

colonized marine communities throughout the entire basin in less than 20 years 

since its first detection (Piazzi et al., 2005; Klein and Verlaque, 2008). Ecologically, 

C. cylindracea is able to form dense mono-specific meadows that can grow on top of 

the benthic assemblages, causing strong negative impacts on the native 

communities (Piazzi et al., 2001; Klein and Verlaque, 2008; Bulleri et al., 2017). For 

all these reasons, C. cylindracea is currently considered the most successful and 

harmful invasive species within the Mediterranean Sea (Klein and Verlaque, 2008; 

Katsanevakis et al., 2016) and has been recently ranked as one of the marine 

invaders with the highest negative ecological impacts worldwide (Anton et al., 

2019), which definitively allow us to consider C. cylindracea as a hyper-successful 
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invader. The reasons explaining its invasive success can be several such as the 

production of herbivore deterrent metabolites, its high growing rates or the 

presence of vegetative propagation mechanisms. However, over the last years, 

several meadows have suffered steep declines after a period of successful 

dominance (Klein and Verlaque, 2008; García et al., 2016; Cefalì et al., 2020; 

Santamaría et al., 2021), which suggests that natural communities might be 

developing effective resistance mechanisms against C. cylindracea invasion over time. 

In this sense, due to the accurate data available on the C. cylindracea invasion and to 

the fact that several native organisms have been observed feeding on the invasive 

alga (Ruitton et al., 2006; Cebrian et al., 2011; Terlizzi et al., 2011; Tomas et al., 

2011b; Santamaría et al., submitted), C. cylindracea is an ideal species to study how the 

novel predator-prey interactions might develop and to assess whether the strength 

of those interactions shifts throughout the invasion process and/or in relation to 

the abundance of the invader at the study site. 

Regarding the studied fish species, Sarpa salpa is the only true herbivorous 

fish in the study area (Verlaque, 1990; Gianni et al., 2017) and it plays an important 

role in structuring seagrass and macroalgae communities (Tomas et al., 2005; 

Vergés et al., 2009). This species is quite abundant in the shallow communities 

along the NW Mediterranean Sea (Bell, 1983; Dufour et al., 1995; Reñones et al., 

1997; Tomas et al., 2005) and spends most of its time above 20 m (Bell, 1983; 

Tomas et al., 2011b), where it feeds on a wide variety of species (Verlaque, 1990; 

Havelange et al., 1997). S salpa regularly consumes C. cylindracea (Ruitton et al., 

2006; Tomas et al., 2011b) and a previous study has reported that it even prefers 

the invasive alga over many native species (Tomas et al., 2011b). 
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3.3.2 Study sites 

This study was conducted in 3 regions in the NW Mediterranean Sea: the Cabrera 

Archipelago, Menorca Island and the Catalan Coast (Figure 3.1), based on the 

previous long-term knowledge on the Caulerpa cylindracea invasion in these regions.  

In the Cabrera Archipelago, C. cylindracea was detected in 2003 at 30 m deep 

(Cebrian and Ballesteros, 2009) and quickly expanded through the entire 

Archipelago. Nowadays it can be found in most of the benthic habitats at depths 

from 0 to 65 m, where it can be the dominant species (Cebrian et al., 2011). 

However, in the past few years, the abundance of the invasive alga has experienced 

a decline in the Archipelago, mainly at shallow depths (Santamaría et al., 2021). 

In Menorca, C. cylindracea was first detected in 2006, in photophilic 

assemblages (≈20 m deep) from the south of the island (Illa de l´Aire) (Pons-

Fàbregas et al., 2007), and then it started to move northwards and to shallower 

depths. From 2010 onwards, C. cylindracea can be found in many locations around 

the entire island and in some places it dominates benthic assemblages at depths 

from 5 to 45 m (Massutí et al., 2015), although recent reports show that its 

abundance is decreasing (Cefalì et al., 2020) 

 In the Catalan Coast, C. cylindracea was first detected in 2008 in the 

southern part, at depths from 20 to 50 m (Ballesteros et al., 2008). The invasive 

alga maintained this restricted distribution until 2013, when it was detected towards 

the north, in Blanes (García et al., 2016). Since then, it has followed with its 

expansion northwards and nowadays it can be found in several locations in the 

northern part (María García, personal communication). 
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Figure 3.1. Location of the 3 regions where the study was carried (the Catalan Coast, the 
Cabrera Archipelago and Menorca). The points show the specific locations where 
different assessments were done. Shapefile for the Mediterranean Sea downloaded from 
www.naturalearthdata.com, for the Catalan Coast and Menorca downloaded from the 
Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) and 
for the Cabrera Archipelago downloaded from www.miteco.gob.es. 
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3.3.3 Preference assessment 

To assess whether Sarpa salpa´s preference for Caulerpa cylindracea changes in 

relation to time since invasion and/or in relation to the abundance of the invader in 

the assemblage, paired-choice feeding experiments were performed in different 

locations in Menorca and the Catalan Coast. These regions were chosen because, 

due to the particularities of C. cylindracea invasion in both regions, it is possible to 

find locations with contrasting abundances of the invader and with different times 

since the invasion. 

To determine time since invasion in a certain location, long-term records of 

C. cylindracea presence, available from the research team, were consulted. Based on 

year since first detection, locations were classified as “Old” when C. cylindracea was 

first detected more than 5 years ago, “or “Recent” when C. cylindracea was detected 

less than 5 years ago. Then, the abundance of C. cylindracea at depths from 10 to 15 

m was assessed by means of scuba diving. At each location, thirty 25 x 25 cm2 

quadrats, divided into 25 subquadrats of 5 x 5 cm2 (Sala and Ballesteros, 1997) were 

randomly positioned and the number of subquadrats where Caulerpa was present 

was used as the unit of abundance. Then the mean C. cylindracea abundance was 

calculated for each location. In this sense, if the abundance of C. cylindracea was 

higher than 30%, locations were classified as “High”, whereas if the abundance was 

lower than 30%, locations were classified as “Low”. 

A total of 8 locations were chosen for the preference assessment and were 

classified following the previous criteria as follows: 4 locations from Menorca – Illa 

del Aire (Old-High), Sa Mola (Old-Low), Porros (Old-High) and Sa Llosa (Recent-

Low); and 4 locations from the Catalan Coast – Sant Francesc (Old-Low), Roses 

2019 (Recent-Low), Roses 2018 (Recent-High) and Ses Negres (Recent-Low) 

(Appendix B: Table B.1).  

In each location, paired-choice feeding experiments were performed to 

compare the relative palatability of C. cylindracea vs. two native macroalgae species: 
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Cystoseira compressa, an important habitat-forming alga that is highly palatable 

(Vergés et al., 2009) and that is commonly found in S. salpa´s diet (Verlaque, 1990); 

and Padina pavonica, a photophilic alga that is common from the sublittoral zone in 

warm-temperate coasts (Sala, 1997; Bürger et al., 2017) and that is also a usual food 

source for S. salpa (Verlaque, 1990) (Figure 3.2). In this sense, there were 2 

treatments: i) Caulerpa – Cystoseira and ii) Caulerpa – Padina and 3 controls, one per 

alga species. Each replicate in each treatment was formed by a couple of 

clothespins attached to each other with zip-tie and a piece of weight attached to the 

clothespins to keep them in place underwater. Controls were formed by one 

clothespin protected from herbivores with a plastic mesh cage (0.5 cm mesh size) 

and they were also attached to a piece of weight. The clothespins were used to hold 

the algae fragments and avoid losing them due to currents.  

A total of 7 replicates for each treatment and 5 replicates for each control 

were deployed at each of the eight locations, always at the same depth (≈10 m) to 

avoid potential confounding effects, in areas where there were no sea urchins, and 

in patches with similar macroalgae assemblages to guarantee that the fishes were 

choosing between the offered food choices always under the same conditions. The 

replicates were carefully placed on the sea floor to guarantee that clothespins were 

in an upright position and that all algae were easily accessible to fishes. Replicate 

pairs were 1 m apart from each other, whereas treatments were less than 20 m 

apart to maintain constant environmental conditions between them. All the 

experiments were performed at the end of the summer (in 2018 and in 2019), 

which corresponds to the period of the year when S. salpa feeding activity is more 

intense to accumulate reserves for the winter and to be prepared for reproduction 

(Peirano et al., 2001). Samples were deployed in the morning and collected after 24 

h; and before and after deployment, every algae fragment was pad-dried of excess 

water and wet weighted to the nearest 0.01g. In all pairs, similar initial weights for 

each alga were offered to herbivores. 
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Biomass consumption was estimated with the formula: 

𝐻!  𝑥 
𝐶!
𝐶!

−  𝐻! 

where Hi and Hf were initial and final wet weights of algae exposed to 

herbivory and Ci and Cf were initial and final mean wet weight in controls (Cronin 

and Hay, 1996; Parker and Hay, 2005; Tomas et al., 2011b). Consumption values 

were then transformed to percentage of consumed alga to standardize them. 

3.3.4 Consumption assessment 

To assess whether i) the % of fish feeding on the invader and ii) the per capita 

consumption rates on the invasive alga (total amount consumed), change in relation 

to time since invasion and/or in relation to the abundance of the invader in the 

assemblage, fish fecal pellets were collected by means of scuba diving from the 

same locations where the preference assessment was done (Figure 3.2). In each 

location, the day after the samples from the preference experiment were collected, 

schools of S. salpa were followed throughout their depth range and the fecal pellets 

were collected in the water column with individual zip bags while swimming below 

the fishes. Between 30 and 50 pellets were collected per location and after 

collection, the pellets were preserved in buffered 4% formaldehyde-seawater until 

the laboratory assessment. This non-invasive method was used to diminish human 

impact in the study areas and because it has been previously used to characterize S. 

salpa´s feeding habits (Tomas et al., 2011b).  

 Caulerpa cylindracea presence (% of fish feeding in the invader) and 

abundance (per capita consumption rates) in fecal pellets was determined in the 

laboratory by using a reticulated Petri dish under a stereomicroscope Stemi 2000-C 

(Carl Zeiss, Berlin, Germany). Pellet content was spread in the dish and the relative 

abundance of C. cylindracea in each pellet was estimated as the mean percentage 

cover that it occupied in relation to the rest of the content.  
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3.3.5 Assessment of the electivity towards Caulerpa cylindracea 

throughout the invasion 

To assess whether S. salpa´s electivity towards C. cylindracea changes in relation to 

time since invasion, the Ivlev´s Electivity Index (E) (Ivlev, 1961) was calculated in 

two locations: Roses, at the 2nd, 3rd and 4th year after C. cylindracea invasion – first 

record in 2016; and the Cabrera Archipelago, at the 4th, 5th and 17th year after the 

arrival of C. cylindracea – first record in 2003 (Figure 3.2).  

 To determine E at each location in each time period, the following formula 

was used: 

𝐸 =  
(𝑑! − 𝑎!)
(𝑑! + 𝑎!)

 

where di = % of C. cylindracea in the stomach content of S. salpa (see the 

consumption assessment section) and ai = % of C. cylindracea available in the 

environment (see the preference assessment section). The values of the Ivlev´s 

Index (E) can range from -1 (complete avoidance of the food item) to +1 

(exclusive selection of the item), with positive values indicating that the food item 

is selected and eaten more than it is encountered by chance in the environment 

(Ivlev, 1961). 

3.3.6 Statistical analysis 

To assess whether S. salpa preference changes with time since invasion and/or with 

the abundance of C. cylindracea in the assemblage, the data from the paired-choice 

assays was analyzed in the statistical environment R (R version 3.6.3) (R Core 

Team, 2018), with paired Student t-tests when data was normal and homoscedastic, 

and with Wilcoxon signed-ranks paired tests when data was not normal or was 

heteroscedastic. Replicates in which fish did not feed on any of the algae were 

discarded from the statistical analyses, because they do not provide any information 

on preference. 
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 To evaluate the effect of time since invasion and abundance of the invader 

on the % of fishes feeding on the invader and on the per capita consumption rates 

of C. cylindracea, generalized linear models (GLMs) were fitted to the fecal pellet 

data. In this case, binomial models were used because the response variables were 

measured either as 0-1 data (presence/absence of C. cylindracea in the pellets - % of 

fishes feeding on the invader) or as proportions (abundance of C. cylindracea: % of 

the pellet content that corresponded to the species – per capita consumption rates) 

and could be approximated to a logistic distribution. Two models were fitted in R, 

one for the presence/absence data and the other for the abundance data. In both 

models, the factors “time since invasion” and “abundance of the invader” were 

included and if the interaction between them was significant, it was also included in 

the model. Tukey post hoc tests were performed using the functions “pairs” and 

“emmeans” from the emmeans package (Lenth, 2018) to compare effects in the time 

since invasion factor (“recent” and “old”) at each level of abundance (“high” and 

“low”) when the interaction between the factors was significant. 

 To assess whether there were differences in the Ivlev´s Electivity Index 

values between years at each of the studied locations (Roses and the Cabrera 

Archipelago), Kruskal-Wallis tests were performed due to the lack of normality in 

the data (Kruskal and Wallis, 1952). Then, to compare effects between years, 

Dunn´s post hoc tests (Dunn, 1964) were performed using the FSA package in R 

(Ogle et al., 2020), correcting the p-values with the Benjamini-Hochberg method 

(Benjamini and Hochberg, 1995). 
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3.4 Results 
 

3.4.1 Preference assessment 

The preference of Sarpa salpa towards Caulerpa cylindracea is influenced by time since 

invasion but not by the abundance of the invader in the community. In this sense, 

when the invasive alga has been in the community for more than 5 years, S. salpa 

has a total preference for C. cylindracea, no matter whether the abundance of the 

invader in the community is high or low (Figure 3.3, A and B). In fact, the native 

fish showed at least a 2.5-fold preference for C. cylindracea over any of the native 

species (Figure 3.3, A and B), both in places with high and with low abundance of 

the invader.  

However, in populations where the invasion of C. cylindracea is recent, S. salpa 

does not exhibit a preference for the invader, neither when C. cylindracea abundance 

in the community is high, nor when it is low (Figure 3.3, C and D). In this sense, 

although S. salpa does not show a preference for either of the offered algae, it 

generally consumed more from the native species than it did from the invasive one 

(Figure 3.3, C and D). 
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Figure 3.3. Results from the paired-choice feeding experiments performed at: A, B) 
locations that have been invaded by Caulerpa cylindracea for more than 5 years (Old 
locations) and where the abundance of the invader in the community was either A) high 
(dark gray bars) or B) low (light grey bars); and C, D) locations that have been invaded by 
Caulerpa cylindracea for less than 5 years (Recent locations) and where the abundance of the 
invader in the community was either C) high (dark gray bars) or D) low (light grey bars). 
Bars represent the mean percentage of algae consumed ± S.E.. The illustrations represent 
the algae species used in the experiments: invasive species (Caulerpa cylindracea), native 
species (Cystoseira compressa and Padina pavonica). Text on top of the bars refers to the 
number of replicates (n), statistics from either paired Student T-tests (t) or Wilcoxon 
signed-ranks paired tests (z) and the probability values for those statistics (p-value). P-
values in bold highlight the pairs where significant differences were detected. (Algae 
illustrations were obtained and modified from the IUCN, Henry Bradbury´s and 
Greville´s original illustrations (Algae Britannicae)). 
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3.4.2 Consumption assessment 

The % of fishes feeding on C. cylindracea varied significantly by the interaction term 

(p-value < 0.01; Appendix B: Table B.2), indicating that the number of S. salpa 

feeding on C. cylindracea is dependent both on the time since the invasion and on 

the abundance of the invader in the community. In this sense, at each level of 

exposure time to the invader, the number of fish eating C. cylindracea was 

significantly higher when the abundance of the invader was high (p-value < 0.05; 

Appendix B: Table B.3, A), with at least 2 times more fishes targeting the invader 

than in populations where C. cylindracea abundance was low (Figure 3.4, A). 

Additionally, time since invasion significantly influenced the number of fishes 

targeting the invader in places with high abundances (p-value < 0.001; Appendix 

B: Table B.3, B), with 2 times more fishes consuming C. cylindracea in the Old-

High populations than in the Recent-High populations (Figure 3.4, A). In 

summary, more than 90% of the S. salpa individuals consumed the invasive alga in 

the populations that had a high abundance of C. cylindracea and that had been 

invaded for a long time; whereas only 21% of the S. salpa individuals consumed C. 

cylindracea in populations that were invaded recently and where the abundance of 

the invader was low (Figure 3.4, A). 

 Similarly, the per capita consumption rates of C. cylindracea by S. salpa are also 

dependent on both, the time since the invasion and the abundance of the invader 

in the community (significant interaction term (p-value < 0.001); Appendix B: 

Table B.4). In this sense, S. salpa significantly consumed more C. cylindracea in 

communities with a high abundance of the invader, regardless on time since 

invasion (p-value < 0.001; Appendix B: Table B.5, A)(Figure 3.4, B). However, 

a significant difference in the per capita consumption rates of C. cylindracea between 

old and recent populations was only detected under high abundances of the invader 

(p-value < 0.001; Appendix B: Table B.5, B). In particular, in communities with a 

high abundance of C. cylindracea, consumption of the invader was almost 7 times 
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higher in the old populations than in the recent populations, whereas in 

communities with a low abundance of C. cylindracea, consumption in old and in 

recent populations was similar (Figure 3.4, B). 
 

 

Figure 3.4. A) Percentage of Sarpa salpa inviduals feeding on Caulerpa cylindracea 
(percentage of pellets with the invader) in old and in recent locations, with high and with 
low abundances of the invader in the community. B) Per capita consumption rates of Sarpa 
salpa on Caulerpa cylindracea (mean percentage of C. cylindracea in pellets ± S.E.), in old and 
in recent locations, with high and with low abundances of the invader in the community. 
 

3.4.3 Electivity assessment 

In Roses, where the invasion of C. cylindracea just started a few years ago, S. salpa 

showed a negative electivity for C. cylindracea (Appendix B: Table B.6), but the 

electivity towards the invader has increased throughout the invasion (Figure 3.5-

Roses; Appendix B: Table B.6). Despite this, no significant differences were 

detected in the Ivlev´s Index values between years (p-value > 0.05; Appendix B: 

Table B.7).  

In the Cabrera Archipelago, where C. cylindracea has been well established for 

a long time (~17 years), the electivity of S. salpa towards C. cylindracea has increased 

throughout the invasion and nowadays the native fish has a positive electivity for 

the invader (Figure 3.5-Cabrera; Appendix B: Table B.6). Actually, the Kruskal-
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Wallis test detected significant differences in the Ivlev Index between years (p-value 

< 0.001; Appendix B: Table B.7), being the Electivity Index significantly higher 

in 2020 than in 2007 and 2008 (p-value < 0.01; Appendix B: Table B.8). 

Overall, we observe that independently on the invader abundance, the 

number of specimens showing a total avoidance of C. cylindracea (-1 values; Figure 

3.5 – first years of the invasion) decreases through the invasion and a higher 

proportion of specimens moves towards a positive electivity for the invader 

(positive values; Figure 3.5 – year 17 after the invasion). 
 

 

Figure 3.5. Progress of the Ivlev´s Electivity Index towards Caulerpa cylindracea through 
time in two locations that differ in their exposure time to the invader: Cabrera, where C. 
cylindracea was detected 17 years ago and Roses, where C. cylindracea was detected 4 years 
ago. The line connecting the points does not represent any relationship between them and 
was only added to help interpretation of the figure. Dark grey rectangles highlight the 
sampling times when the abundance of C. cylindracea in the community was high; and light 
grey rectangles highlight the sampling times when the abundance of C. cylindracea in the 
community was low. 
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3.5 Discussion 

Invasive species, particularly invasive producers (plants and algae), are commonly 

reported to be released from biotic control due to their ability to scape native 

enemies (Maron and Vilà, 2001; Keane and Crawley, 2002; Colautti et al., 2004; Liu 

and Stiling, 2006). However, considering the dynamic nature of ecological 

interactions, can we expect an invader to maintain its novelty and to scape biotic 

control forever? Our results definitively suggest that novelty is lost during the 

invasion process and that the strength of predator-prey interactions increases as the 

invasion progresses, which in turn might intensify the biotic resistance of native 

communities through time.  

In agreement with Tomas et al. (2011b), we show that S. salpa prefers to feed 

on C. cylindracea rather than on native algae, however, this preference for the 

invasive alga does not develop from the very beginning of the invasion, but it needs 

some exposure time to emerge. In this sense, a total preference for the invader was 

only evident in locations where S. salpa has had a long exposure – at least 6 years – 

to the invader, whereas in populations with a recent exposure to C. cylindracea, no 

preference for the invader was detected. Remarkably, preference for the invader in 

the old populations was maintained even when the abundance of C. cylindracea in 

the study area was low, which seems noteworthy considering that both P. pavonica 

and C. compressa are highly palatable and are commonly found in S. salpa´s diet 

(Verlaque, 1990; Vergés et al., 2009), and definitively suggests that C. cylindracea has 

some characteristics that make it a preferred food source. So far, the reasons 

behind S. salpa´s feeding preference for C. cylindracea are still unknown, but they 

might be based on several traits such as the nutritive value or the morphology of 

the invader, similarly to what has been described from other generalist herbivores 

(Littler and Littler, 1980; Mattson, 1980; Lodge David M., 1991; Cronin, 1998; 

Schädler et al., 2003). 
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In contrast, the % of herbivorous fishes feeding on the invader and the per 

capita consumption rates were not only influenced by the exposure time but also by 

the availability of the invader in the community. In this sense, only when the 

invader reached certain abundance, the number of herbivores and the per capita 

consumption rates increased significantly, especially in sites historically invaded 

compared with recent invaded areas. This clearly suggests that despite the 

importance that exposure time might have for the development of novel predator-

prey interactions (Carlsson and Strayer, 2009; Carlsson et al., 2011; Schultheis et al., 

2015; Kurr and Davies, 2017), other characteristics of the invasion (e.g. availability 

of the invader) and the synergy between them, might have a critical influence in the 

development of such novel interactions. However, we cannot disregard that low 

invader abundances (<30%) could partially mask the effect of time for the 

development of the novel predator-prey interaction, since low availabilities of the 

invasive alga could inherently prevent high consumptions even when the fish 

population is highly experienced with the invader. Actually, the electivity of S. salpa 

towards C. cylindracea increased through time, even when the abundance of the 

invader had suffered important declines (Figure 3.5). So it seems that once the 

herbivore has identified the invasive alga as a suitable food item and has 

incorporated it to its diet, S. salpa will target C. cylindracea even under low invader 

abundances due to the high preference that the herbivore has towards the invader.  

Consumption of C. cylindracea by native herbivores might be unexpected, 

considering that the invasive alga produces caulerpenyne, a secondary metabolite 

with herbivore deterrent properties (Paul et al., 2007). However, the low metabolite 

concentrations in C. cylindracea (Box et al., 2010) and previous exposition to 

caulerpenyne through the consumption of native Caulerpa species (Marco-Méndez 

et al., 2017), might have allowed the fish to generate tolerance to it. Actually, 

several studies confirm that the phylogenetic similarity between native and invasive 

species can explain the failure of invasive plants to scape naïve herbivores (Hill and 

Kotanen, 2009; Pearse et al., 2013). 
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In nature, mechanisms such as learning and social transmission can influence 

the adaptive processes of predators to novel prey at different time scales, from days 

to years and even generations since first exposition (Cox, 2004; Strauss et al., 2006; 

Carlsson et al., 2009). In this particular case, the mechanisms by which S. salpa 

starts to consume C. cylindracea remain speculative, but they potentially operate at 

two different time scales, a longer one involving many generations that allows S. 

salpa to generate tolerance to C. cylindracea defenses through the subsequent 

exposition to C. prolifera (phylogenetic similarity with the invader), and a shorter 

one that allows S. salpa to identify C. cylindracea as a suitable prey and to develop a 

taste for the newcomer, probably following steps similar to the predation cycle 

(Jeschke et al., 2008; Saul and Jeschke, 2015) (Figure 3.6). Thus, although the first 

interaction with the invader might be accidental and might only be done by few 

individuals (low % of individuals consuming the invader in recent populations); 

they will then target the invader due to its high nutritional value, while the rest of 

the population will learn to target the invader by mimicking their conspecifics. 

Actually, social learning by which some individuals learn behaviors and acquire 

information such as what to eat and what to avoid through observation, is 

important in fish (Brown and Laland, 2003; Reader et al., 2003; Warburton and 

Hughes, 2011) and can explain the fast transmission of search images between 

demonstrators, those that know how to feed on the novel prey, and bystanders, 

those that observe and learn to target the new prey (White and Gowan, 2014). 

Complementary, and in support of our results, the time needed for the 

development of the novel predator-prey interaction will be influenced by the 

abundance of the invader in the community, because the formation and 

transmission of search images within the predators will be faster the higher the 

abundance of novel prey is (Allen, 1988; Saul and Jeschke, 2015).  
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Figure 3.6. Diagram showing the phases necessary for the development of the effective 
predator-prey relationship between the native herbivore Sarpa salpa and the invasive alga 
Caulerpa cylindracea. In the first phase, consumption of the invader is accidental and will 
only be done by few individuals. Then, those individuals that accidentally consumed the 
invader will start to target it and to have a preference towards it due to its highly 
nutritious value. Following that, the rest of the population will learn by observing the 
individuals that target the invader and the search image for C. cylindracea will be transferred 
to the entire fish population. Finally, most of the fish population will target the invader, 
increasing the electivity towards it as the invasion progresses. Illustrations were obtained 
and modified from the IUCN, Henry Bradbury´s and Greville´s original illustrations 
(Algae Britannicae) and devianart. 
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Overall, our study suggests that throughout an invasion, novel predator-prey 

interactions can become an effective biotic resistance mechanism against an 

invader. However, given that some time is needed for the effective development of 

these interactions, invaders might scape biotic control at the beginning of the 

invasion and this will allow them to attain large abundances and to impact native 

communities, similarly to what has been observed for the invasion of C. cylindracea 

(Piazzi et al., 2001; Klein and Verlaque, 2008; Katsanevakis et al., 2016). Actually, 

this release from enemies might be in part responsible for the booms that many 

invaders suffer when they first arrive to a new habitat (Strayer et al., 2017), whereas 

the increase in predation after enough exposure time might cause population busts 

after a period of successful dominance (Carlsson et al., 2009, 2011; Strayer et al., 

2017). In fact, shifts in the strength of biotic resistance through time are suspected 

to be the main reason behind the steep declines in abundance that several hyper-

successful invaders have previously suffered (Simberloff and Gibbons, 2004; De 

Rivera et al., 2005; Carlsson et al., 2010, 2011; Santamaría et al., 2021). This 

reinforces the idea that the biotic resistance against an invader might not be a static 

entity and might fluctuate through the invasion, increasing its strength as the 

invasion progresses (Hawkes, 2007; Carlsson and Strayer, 2009; Diez et al., 2010; 

Mitchell et al., 2010; Carlsson et al., 2011; Dostál et al., 2013; Stricker et al., 2016). 

For this reason, studies that only consider a specific time-frame might provide an 

unreal and biased estimation of the importance of biotic resistance towards an 

invader as the outcomes might be greatly influenced by the time considered – 

recent invasion vs. old invasion, partially explaining previous contradictory patterns 

found in the ability of native communities to develop effective biotic resistance 

mechanisms towards invaders (Maron and Vilà, 2001; Colautti et al., 2004; Mitchell 

et al., 2006; Kimbro et al., 2013; Papacostas et al., 2017; and references therein). 

Therefore, long-term studies or studies assessing the resistance responses of native 

communities at different times since invasion – chronosequences – and at different 
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invader intensities, should be favored to help us understand the long-term 

dynamics of certain invaders (Strayer, 2012; Strayer et al., 2017). 

In short, this study adds evidence to the growing literature that suggests that 

native communities need time to develop resistance mechanisms against invasive 

species (Hawkes, 2007; Lankau et al., 2009; Diez et al., 2010; Carlsson et al., 2011; 

Dostál et al., 2013; Stricker et al., 2016). In this sense, although studies on terrestrial 

ecosystems refer to time exposures of several decades and even centuries for the 

development of effective resistance mechanisms through time (Siemann et al., 

2006; Hawkes, 2007; Diez et al., 2010; Dostál et al., 2013; Stricker et al., 2016), in 

our case, however, an exposure time of less than a decade was enough to observe 

an increase in the biotic resistance of the native community. Actually, the fast 

behavioral change of the native herbivore that we report here, perfectly explains 

the recent decrease in the abundance of the invader after a period of successful 

dominance (Santamaría et al., 2021). Therefore, even if the time needed for the 

development of effective resistance mechanisms varies depending on the 

particularities of the studied system, previous findings stress the importance of 

preserving native communities in a good status to allow them to develop resistance 

mechanisms through time. Particularly, taking into account the role that herbivory 

might have in the long-term dynamics of an invader, the maintenance of healthy 

herbivore assemblages can be a useful strategy to naturally manage invasions in the 

long-term. 
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4.1 Abstract 

Herbivory has long been considered an important component of biotic resistance 

against macroalgae invasions in marine habitats. However, most of the studies on 

herbivory of invasive algae refer only to consumption by strictly herbivorous 

organisms, whereas consumption by omnivorous species has been largely ignored 

and rarely quantified. In this study, we assess whether the commonest omnivorous 

sparid species in the Mediterranean Sea are consuming the highly invasive alga, 

Caulerpa cylindracea, and determine both, its importance in their diet and their 

electivity towards it as a source of food. Our results confirm that three of the four 

fish species studied regularly consume C. cylindracea, but in most cases, the 

importance of C. cylindracea in the diet is low. Indeed, the low electivity values 

indicate that all species avoid feeding on the invasive alga and that it is probably 

consumed accidentally. However, despite animals and detritus being the main food 

for these sparid species, several individual specimens were found to have consumed 

high amounts of C. cylindracea. This suggests a potential role that these fish species, 

being really abundant in shallow rocky bottoms, may play in controlling, to some 

extent, the abundance of the invader. 
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4.2 Introduction 

nvasive macroalgae are one of the most successful and conspicuous groups 

of invaders in marine systems (Schaffelke et al., 2006; Thomsen et al., 2016), 

where they contribute to the homogenization of marine habitats and affect 

the structure of native assemblages by reducing both native species biomass and 

the overall assemblage diversity (Williams and Smith, 2007; Schaffelke and Hewitt, 

2008; Thomsen et al., 2009, 2016).  In the receiving community, the 

establishment and persistence of invasive algae can be reduced and affected by 

biotic and abiotic factors (Dunstan and Johnson, 2007; Catford et al., 2009; 

Thomsen et al., 2009; Kimbro et al., 2013; Papacostas et al., 2017), thus 

determining the invasive success of the invader. Among biotic factors, herbivory 

has long been considered as a potential biotic resistance mechanism and many 

studies have been conducted worldwide to assess the role of this mechanism on 

invasive macroalgae success (see references within Kimbro et al., 2013 and 

Papacostas et al., 2017). Until now, assessments on the role of herbivory as a 

limiting factor for macroalgae invasion have mainly considered strictly herbivorous 

species (e.g.,Ruitton et al., 2006; Wikström et al., 2006; Lyons and Scheibling, 2008; 

Britton-Simmons et al., 2011; Cebrian et al., 2011; Tomas et al., 2011b; Hammann 

et al., 2013; Enge et al., 2017; Noè et al., 2017; Caselle et al., 2018), reporting 

contrasting results depending on the assemblage and the invasive species 

considered (Boudouresque et al., 1996; Trowbridge and Todd, 1999; Scheibling and 

Anthony, 2001; Stimson et al., 2001; Davis et al., 2005; Wikström et al., 2006; 

Monteiro et al., 2009; Steinarsdóttir et al., 2009; Tomas et al., 2011b, 2011a; Nejrup 

et al., 2012; Caselle et al., 2018).  

In the Mediterranean Sea, the most successful and widespread invasive 

macroalga is Caulerpa cylindracea (Klein and Verlaque, 2008; Katsanevakis et al., 

2016), a green alga native of the Southwestern coast of Australia that was first 

detected in Mediterranean waters in Libya in 1990 (Nizamuddin, 1991). Since then, 

I 
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it has colonized marine communities throughout the entire Mediterranean basin 

(Piazzi et al., 2005; Klein and Verlaque, 2008), where it can exert strong detrimental 

effects on native communities (Piazzi et al., 2001; Klein and Verlaque, 2008; Bulleri 

et al., 2016, 2017). However, despite its rampant success, several Caulerpa cylindracea 

meadows have suffered sudden steep declines in abundance some years after the 

onset of the invasion (Klein and Verlaque, 2008; García et al., 2016; Santamaría et 

al., 2021), which may indicate the existence of certain resistance mechanisms 

against this invasive species. Among these, herbivory on C. cylindracea has been 

described and assessed mainly in relation to the strictly herbivorous species present 

in the Mediterranean Sea, such as the fishes Sarpa salpa and Siganus luridus (Azzurro 

et al., 2004; Ruitton et al., 2006; Tomas et al., 2011b; Santamaría et al., 2021), and 

the sea urchins Paracentrotus lividus, Sphaerechinus granularis and Arbacia lixula (Ruitton 

et al., 2006; Bulleri et al., 2009; Cebrian et al., 2011; Tomas et al., 2011a). 

Nevertheless, there are omnivorous fish species, such as Diplodus sargus, Boops boops, 

and Spondyliosoma cantharus, that have been occasionally observed feeding on C. 

cylindracea before (Ruitton et al., 2006; Box et al., 2009; Terlizzi et al., 2011). 

Unfortunately, information is scarce on whether C. cylindracea is a common food 

source for omnivorous fish species, or whether these fish actively elect to feed on 

it. Since some of these species are the dominant fish in the shallow, infralittoral 

rocky habitats of the Mediterranean Sea (García-Rubies, 1997; Sala and Ballesteros, 

1997; García-Charton et al., 2004), information on their consumption of C. 

cylindracea is needed to assess whether they can potentially contribute to limit the 

abundance of the invader. 

In this study, the diets of four of the most abundant omnivorous sea bream 

species (Sparidae) were examined in order to determine (i) whether they feed on 

the invasive alga C. cylindracea, (ii) whether C. cylindracea is important in their diet and 

(iii) whether they actively select or avoid C. cylindracea as a source of food 
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4.3 Materials and methods 
 

4.3.1 Study area 

The samples for this study were collected in the Cabrera Archipelago 

National Park (North-Western Mediterranean Sea; 39°12’21” N, 2°58’44” E) 

(Figure 4.1) in 2008. This marine-terrestrial protected area was established in 1991 

and since then it has maintained an exceptional conservation status for its marine 

habitats (Sala et al., 2012; Coll et al., 2013; Guidetti et al., 2014). Caulerpa cylindracea 

was recorded for the first time in the National Park in 2003 at a depth of 30-35 m 

and since then its distribution has expanded to cover most of its benthic 

communities at depths of between 0 and 65 m (Cebrian and Ballesteros, 2009). 

4.3.2 Analysis of Caulerpa cylindracea consumption 

To determine whether non-strictly herbivorous fish species consume C. 

cylindracea, specimens for this study were captured by artisanal long-lines and gillnets 

on several occasions during June and July 2008, at different sites across the 

Archipelago, at Ses Rates and Foradada Islets (Figure 4.1). Fishing campaigns were 

performed in the summer because it corresponds to the period of the year when 

the activity of the targeted fishes is higher. The main fishes targeted belong to the 

family Sparidae: white sea bream (Diplodus sargus), annular sea bream (Diplodus 

annularis), two-banded sea bream (Diplodus vulgaris) and black sea bream 

(Spondyliosoma cantharus). These species were chosen because they are common 

representatives of the fish assemblages found in the Western Mediterranean, they 

are not herbivorous but can feed on macroalgae (Sala and Ballesteros, 1997) and 

some of them have been observed feeding on C. cylindracea before (Box et al., 2009; 

Terlizzi et al., 2011). These four species have different abundances within the 

National Park, the least abundant of them being S. cantharus, with 1.7 individuals 

per 250 m2; then D. annularis, with 1.9 individuals per 250 m2; then D. sargus with 
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5.3 individuals per 250 m2; and the most abundant being D. vulgaris, with up to 42 

individuals per 250 m2 (Reñones et al., 1997; Coll, 2020). 

 
Figure 4.1. Location of the 3 regions where the study was carried (the Catalan Coast, the 
Cabrera Archipelago and Menorca). The points show the specific locations where 
different assessments were done. Shapefile for the Mediterranean Sea downloaded from 
www.naturalearthdata.com, for the Catalan Coast and Menorca downloaded from the 
Global Self-consistent, Hierarchical, High-resolution Geography Database (GSHHG) and 
for the Cabrera Archipelago downloaded from www.miteco.gob.es. 
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The long-lines and gillnets, two gears commonly used in artisanal fishing, 

were deployed in the morning at depths of between 10 and 30 m. Every time a 

targeted fish species was hauled in, it was gutted and its stomach was stored and 

preserved in buffered 4% formaldehyde-seawater solution for later analysis of its 

content. Once in the laboratory, the species composition and abundance of the 

food items in each fish stomach was determined under a Stemi 2000-C 

stereomicroscope (Carl Zeiss, Berlin, Germany). The content of each stomach was 

spread onto a reticulated Petri dish and the food items were classified to the lowest 

taxonomic level possible. Both surface area and weight measurements can reflect 

the dietary contribution of food items (Hyslop, 1980; Macdonald and Green, 1983), 

but in this case, and to avoid biases that could be derived from the small quantities 

present in the stomach contents, surface area measurements were preferred over 

weight measurements to quantify the dietary contribution of each food item. As 

such, the abundance of a particular food item was estimated as the percentage 

cover on the reticulated fields of the Petri dish in relation to the cover of the whole 

stomach content. When a species had a minimal presence and its cover could not 

be determined, a value of 0.1% of relative coverage was assigned.  

 When calculating the relative measures of prey quantity (RMPQ), the 

stomach contents were divided into the following five food categories: Caulerpa 

cylindracea, Other algal content, Seagrasses, Animal content and Detritus. 

Subsequently, for each fish species, the percentage frequency of occurrence of each 

food category (FOi) was calculated as: 

𝐹𝑂! = (𝑆! 𝑆!)  ∙  100 

where Si is the number of stomachs containing the food category and St is the total 

number of stomachs analyzed for that particular fish species. The FOi value is a 

measure of the consistency with which a species selects a given food category and 

was used to calculate two dietary indices that allow to compare the diets between 

species: the Combined Index (Qi) and the Geometric Index of Importance (GII).  
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 The combined index, Qi, was chosen to assess the relative importance of 

each food category for each fish species. This index standardizes the abundance of 

each category and increases the importance of frequent smaller items while 

reducing the importance of occasional larger items (Nilssen et al., 2019). It was 

calculated as: 

𝑄! =  
𝑉! ∙ 𝐹𝑂!
(𝑉!!

!!! ∙ 𝐹𝑂!)
 

where Vi refers to the percentage surface of a food category, FOi refers to the 

frequency of occurrence of the given food category, and m is the total number of 

food categories. 

On the other hand, the Geometric Index of Importance, GII, represents the 

degree of feeding specialization on a particular food type (Assis, 1996; Preti et al., 

2001) and allows us to classify the food categories as: “Primary prey”, “Secondary 

prey” and “Occasional prey” in relation to the larger discontinuities in a decreasing 

sequence of values (Assis, 1996; Tripp-Valdez et al., 2015).  It was calculated as: 

𝐺𝐼𝐼! =  
(𝑉! +  𝐹𝑂!)!

!!!

2
 

 

Finally, the degree to which the four fish species tend to elect to feed on C. 

cylindracea, was assessed by Ivlev’s electivity Index (E) (Ivlev, 1961). This Index was 

determined by: 

𝐸 =  
(𝑑! − 𝑎!)
(𝑑! + 𝑎!)

 

where di = % of C. cylindracea in the stomach content and ai = % of C. cylindracea 

available in the environment (see following section). The values of the Ivlev’s Index 

(E) can range from -1 (complete avoidance of the food item) to +1 (exclusive 

selection of the item), with positive values indicating that the food item is selected 

and eaten more than it is encountered by chance in the environment (Ivlev, 1961). 
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4.3.3 Assessment of the abundance of Caulerpa cylindracea in the 

community 

The abundance of C. cylindracea at the sampling sites where fish specimens were 

captured was assessed by means of scuba diving, also in the summer 2008. At each 

site, a perpendicular transect to shore was done, at depths of 10 to 30 m, so as to 

cover the same bathymetric range as that of the fishing gear used to collect fish 

samples. To estimate C. cylindracea abundance, a total of thirty quadrats measuring 

25 x 25 cm2 were randomly positioned within each 10 m-depth range (total of 90 

quadrats per sampling site). These quadrats were divided into 25 subquadrats of 5 x 

5 cm2 and the number of subquadrats where C. cylindracea appeared was used as the 

unit of abundance (Sala and Ballesteros, 1997; Cebrian and Ballesteros, 2004; Sant 

et al., 2017). Subsequently, the average C. cylindracea abundance for the study area 

was calculated and this value was used in the calculation of the Ivlev’s electivity 

Index. 

4.3.4 Statistical analyses 

Differences in the specific composition of stomach contents between fish species 

were assessed through multivariate techniques such as non-metric multi-

dimensional scaling plots (NMDS plots), analysis of similarities (ANOSIM) and 

similarity percentage analysis (SIMPER). All of these techniques were performed 

within the vegan package (Oksanen et al., 2018) in the R environment (R Core 

Team, 2018). First, in order to visualize and represent stomach content 

composition, a NMDS (Clarke and Warwick, 1994; Cox and Cox, 2000) based on 

the Bray-Curtis dissimilarity matrix of the square-root transformed data was plotted 

and the most important species that determine the least stressful ordination were 

detected using the envfit function within the vegan package. Then, the statistical 

differences in the food items consumed by the fish species were assessed using 

ANOSIM (Clarke, 1993), applied to the Bray-Curtis dissimilarity matrix, with fish 
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species as a fixed factor. Additionally, a pairwise ANOSIM was performed by 

modifying the pairwise.adonis function 

(https://github.com/pmartinezarbizu/pairwiseAdonis) and the R-values obtained 

were used as an indication of diet similarity, with values near 1 indicating separation 

in diet composition and values near 0 indicating diet similarity (Rogers et al., 2012). 

Finally, a SIMPER analysis based on the Bray-Curtis dissimilarity index was used to 

assess the relative contribution of each food item to the overall differences between 

fish species diets. 

 

4.4 Results 

During the sampling events, a total of 93 fishes were captured, with D. sargus being 

the most abundant (n=51) followed by S. cantharus (n=22), D. vulgaris (n=13) and 

D. annularis (n=7). All the stomachs examined contained ingested material of some 

kind, which, as a whole, was composed of a high diversity of taxonomic groups, 

with 73 different prey items identified, 32 of them to the species level (Appendix 

C: Table C.1).  

Differences in stomach content were observed between species in terms of 

the dominant prey categories, although detritus and animal content were certainly 

prominent in all four species (Table 4.1). In this sense, the Combined Index (Qi) 

and the Geometric Index of Importance (GII), identified the category “Detritus” as 

the primary food item for S. cantharus, while the category “Animal content” was the 

primary prey for the other three fish species (Figures 4.2 and 4.3). Despite this 

predominance for “Animal” and “Detritus” items, algae and seagrasses were found 

in all the species, being the stomach contents of both D. sargus and D. annularis 

particularly rich in algae, with values of around 18% and 30% respectively (Table 

4.1). 
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Table 4.1. Summary of the stomach content data for each fish species.  
 

Diplodus annularis Mean ± S.E. (%)  Diplodus sargus Mean ± S.E. (%) 
Other algal content 4.69 ± 3.10  Other algal content 15.10 ± 3.67 

Caulerpa cylindracea 25.73 ± 11.80  Caulerpa cylindracea 3.56 ± 0.96 

Seagrasses 0.26 ± 0.21  Seagrasses 9.36 ± 2.84 

Animal content 43.28 ± 16.00  Animal content 48.31 ± 5.53 

Detritus 26.05 ± 15.03  Detritus 23.64 ± 5.08 

     

Diplodus vulgaris Mean ± S.E. (%)  Spondyliosoma cantharus Mean ± S.E. (%) 
Other algal content 8.80 ± 6.91  Other algal content 1.88 ± 0.90 

Caulerpa cylindracea 0  Caulerpa cylindracea 5.15 ± 1.94 

Seagrasses 0.29 ± 0.25  Seagrasses 0.40 ± 0.26 

Animal content 54.75 ± 12.30  Animal content 14.10 ± 4.81 

Detritus 36.16 ± 11.14  Detritus 78.47 ± 5.12 
 

The ingested food items are grouped into categories and the values given are mean percentages ± S.E. for each fish 
species. 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2. Combined Index (Q) for each fish species. Each color represents one of five 
food categories (Detritus, Animals, Seagrasses, Other algae and Caulerpa). 
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Figure 4.3. Geometric Importance Index (GII) for each fish species. Food items are 
classified as: “Primary prey”, “Secondary prey” or “Occasional prey” according to their 
relative importance to the diet of each fish species. The line connecting the points was 
added to help interpretation of the figure. 
 

Regarding the consumption of the invasive alga C. cylindracea, 81%, 45% and 

41% of the D. annularis, D. sargus and S. cantharus specimens contained C. cylindracea 

in their stomachs respectively; whereas D. vulgaris was the only fish species that had 

not consumed the invader. However, the contribution of C. cylindracea to the total 

stomach content was generally low, except for D. annularis, in which 26% of the 

stomach content corresponded to the invasive species (Table 4.1). Actually, both 

dietary indexes, Qi and GII, classified C. cylindracea as a primary food item for D. 

annularis, being the second most common food category in the stomachs and 

having values similar to animal content (Figures 4.2 and 4.3). In contrast to this, 
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C. cylindracea was classified as an occasional food item for both D. sargus and S. 

cantharus (Figures 4.2 and 4.3), but most of the algae content in the stomachs of S. 

cantharus corresponded to the invasive species (≈74%; Table 4.1). However, even 

with the high proportion of C. cylindracea found in some of the studied species, the 

negative values obtained for the Ivlev´s Electivity Index suggest that C. cylindracea is 

generally avoided by all the species (Table 4.2).  

 

Table 4.2. Mean ± S.E. values for Ivlev’s electivity Index (E), as a measure of the 
electivity of the four sparid fish species studied towards the invasive alga C. cylindracea. 

ECaulerpa 

D. annularis -0.52 ± 0.18 
D. sargus    -0.90 ± 0.02 
D. vulgaris -1 
S. cantharus        -0.86 ± 0.05 

An E value approaching -1 indicates that the food item is avoided; whereas an E value approaching 1 indicates the 
species only feeds on that item. 

 

 

Considering the whole diet of the four sampled sea bream species, the 

graphical ordination suggested that there might be some overlap between diets 

(Figure 4.4), yet the ANOSIM detected significant differences in the stomach 

content composition between all fish species (ANOSIM; p-value < 0.05; 

Appendix C: Table C.2), with two exceptions: D. sargus – D. vulgaris and D. sargus 

– D. annularis (p-value > 0.05; Appendix C: Table C.2). In this sense, the greatest 

dissimilarities in diet were found between S. cantharus and two of the Diplodus 

species, D. annularis and D. vulgaris (R=0.63 and R=0.47 respectively, Appendix C: 

Table C.2), since the diet of S. cantharus was more homogeneous (Figure 4.4) and 

it was dominated by detritus rather than by animal content (Table 4.1, Figures 

4.2, 4.3 and 4.4). Actually, the SIMPER analysis identified “organic detritus” as the 

biggest contributor to the diet dissimilarities between the four fish species, with 

values ranging from 19% to 40% (Appendix C: Table C.3). Remarkably, C. 

cylindracea was one of the species most strongly influencing the graphical ordination 
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(Figure 4.4) and the SIMPER analysis identified the invasive alga as the second 

most important food item in terms of explaining the diet dissimilarities between D. 

annularis and the other fish species (Appendix C: Table C.3). 

 

 

Figure 4.4. Non-metric MDS for the stomach content of the different fish species. Each 
ellipse surrounds the points for one fish species and the black arrows represent the most 
significant food items determining the ordination. For these variables, only the ones with 
a p-value lower or equal to 0.001 were represented. 
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4.5 Discussion 

Stomach content analysis of four of the commonest species in the shallow rocky 

infralittoral communities in the western Mediterranean Sea, revealed that despite 

these species having a diet predominately based on animal and detritus content 

(Sala and Ballesteros, 1997; Gonçalves and Erzini, 1998; Pita et al., 2002; Box et al., 

2009; Terlizzi et al., 2011; Felline et al., 2012, 2017), they can also feed on 

considerable amounts of algae, with values exceeding those previously reported for 

non-strictly herbivorous sea-bream species (Sala and Ballesteros, 1997; Sánchez-

Jerez et al., 2002; Leitão et al., 2007; Box et al., 2009). Remarkably, the invasive alga 

C. cylindracea was consumed by 3 of the 4 studied fish species, even being the most 

prominent algae for 2 of the fish species, D. annularis and S. cantharus. This clearly 

suggests that, being C. cylindracea a widespread and regionally abundant alga (Klein 

and Verlaque, 2008; Katsanevakis et al., 2016), it can potentially become a recurrent 

food item for omnivorous fish species, similarly to what has happened with the 

herbivorous fish S. salpa, which has adopted the invader as a preferred food item 

(Tomas et al., 2011b). Actually, several studies involving lower sample sizes, had 

previously reported the ability of D. sargus, S. cantharus and D. vulgaris to occasionally 

feed on C. cylindracea on several locations in the Mediterranean Sea (Box et al., 2009; 

Terlizzi et al., 2011; Felline et al., 2012, 2017; Gorbi et al., 2014). In our assessment, 

C. cylindracea was a primary food item for D. annularis, whereas it was an occasional 

one for both S. cantharus and D. sargus. Interestingly, our findings are, to our 

knowledge, the first evidence of D. annularis feeding on C. cylindracea in the 

Mediterranean Sea, but given that almost all the fished individuals had consumed 

the invader and that they had high amounts of C. cylindracea in their stomachs, this 

fish species should be included in subsequent assessments to further elucidate 

whether this feeding behavior is common across the Mediterranean region. 

Despite previous studies reporting the consumption of C. cylindracea by 

omnivorous fishes, none of them report the availability of C. cylindracea in the 
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environment, making it impossible to assess whether the omnivorous fishes are 

actually targeting the invader. In this sense, in our study area, C. cylindracea was 

found to be the dominant species in the benthic communities where the fish 

species were fished, with mean coverage values close to 55%. However, electivity 

of the fish species for C. cylindracea suggests that all the species were avoiding 

feeding on the invader and so, their consumption was more occasional than that of 

the strictly herbivorous fishes, which show a positive electivity for the invader 

(Tomas et al., 2011b). Surprisingly, despite this general avoidance of Caulerpa 

cylindracea, high amounts of the invader were found in the stomach contents of 

some individuals, with values reaching over 35%. This suggests that the invasive 

alga is probably consumed accidentally when the fish are trying to feed on other 

prey living within the dense meadows of C. cylindracea. In fact, polychaetes, 

mollusks and decapods – which are the preferential prey for most of the sea 

breams studied (Bauchot and Hureau, 1986; Sala and Ballesteros, 1997; Gonçalves 

and Erzini, 1998; Pita et al., 2002; Leitão et al., 2007) – have been found to be very 

abundant under the stolons of C. cylindracea (Carriglio et al., 2003; Galil, 2007; Box, 

2008; Klein and Verlaque, 2008). Furthermore, the suggestion that consumption of 

the alga is accidental is also supported by the low assimilation of C. cylindracea in the 

stomach contents, as in most cases it was found intact and undigested (Figure 4.5). 

However, taking into account that some of the sea breams considered here have 

small home ranges and show strong site fidelity (D’Anna et al., 2011; March et al., 

2011; Alós et al., 2012; Di Lorenzo et al., 2014), it cannot be ruled out that they 

might also be forced to feed on C. cylindracea in heavily colonized areas, and this 

might have a negative impact on the physiology of the fish species. In fact, 

previous evidence relates C. cylindracea consumption to a decrease in certain 

essential fatty acids in fish tissues and liver (Felline et al., 2014), to an increase in 

the levels of antioxidants and in pro-oxidant effects (Box et al., 2009; Terlizzi et al., 

2011; Felline et al., 2012), to a decrease in the condition factor (Terlizzi et al., 2011) 

and to a decrease in the gonadosomatic-index (Felline et al., 2012), all of which may 
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negatively affect the fish fitness.  It is not yet clear what causes these physiological 

responses, although they could be caused by the accumulation of some of the 

compounds produced by C. cylindracea, such as caulerpenyne, a toxic, secondary 

metabolite that has herbivore-deterrent properties (Paul et al., 2007). However, 

considering that Caulerpa prolifera, a native species in the Mediterranean Sea, has 

much higher caulerpenyne concentrations than C. cylindracea (Box et al., 2010) and 

that sea breams can often consume the native Caulerpa species (Appendix C: 

Table C.1) (Chaouch et al., 2013, 2014; Marco-Méndez et al., 2017), it is likely that 

the fish might have developed a certain tolerance and effective detoxification 

pathways for the toxic metabolites, as other herbivores do (Cornell and Hawkins, 

2003; Sotka and Whalen, 2008; Sotka et al., 2018). In any case, more studies are 

needed to understand the possible long-term consequences of C. cylindracea 

consumption on the health of fish assemblages and whether these consequences 

could propagate throughout the food-web, potentially affecting the functioning of 

the ecosystem through cascading 

effects. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 4.5. Macroscopic view of Caulerpa cylindracea fragments, as found in the stomach 
contents. 
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Overall, our findings confirm that the invasion of Caulerpa cylindracea in the 

Mediterranean Sea has the potential to influence the feeding habits of the 

omnivorous fish species as it has already done with some of the strictly herbivorous 

organisms (Azzurro et al., 2004; Ruitton et al., 2006; Cebrian et al., 2011; Tomas et 

al., 2011b, 2011a). In this sense, the assessment of C. cylindracea consumption by 

omnivorous (i.e., non-strict herbivores) fish presented here is noteworthy since 

most of the previous research into the effects of herbivory on invasive algae has 

focused only on the strict herbivores disregarding the effect that omnivorous 

organisms might have (Scheibling and Anthony, 2001; Davis et al., 2005; Wikström 

et al., 2006; Ruitton et al., 2006; Lyons and Scheibling, 2008; Vermeij et al., 2009; 

Britton-Simmons et al., 2011; Cebrian et al., 2011; Tomas et al., 2011b, 2011a; 

Nejrup et al., 2012; Hammann et al., 2013). Furthermore, while some of the 

previous studies have highlighted the contribution of some of these herbivores to 

limit the abundance of invasive algae, our findings suggest that non-strict 

herbivores could also potentially have a similar, albeit less important contribution. 

For instance, given the high amounts of C. cylindracea found in some specimens and 

considering that omnivorous sparid fishes dominate the shallow rocky infralittoral 

habitats in the Mediterranean Sea (García-Rubies, 1997; Sala and Ballesteros, 1997; 

García-Charton et al., 2004; Coll et al., 2013) with abundances of up to 60 

individuals per 250 m2 and biomasses of more than 40 g/m2 (García-Rubies and 

Zabala, 1990; Sala and Ballesteros, 1997; Di Franco et al., 2009; Guidetti et al., 

2014; Coll, 2020), it seems that they could certainly have some impact on the 

abundance of C. cylindracea. Therefore, we suggest that the lower impact exerted by 

omnivorous fish can complement the higher impact exerted by strictly herbivorous 

organisms (Santamaría et al., 2021) and that, taken together, they might significantly 

reduce the abundance of C. cylindracea in shallow habitats. So definitively the role of 

herbivory by omnivorous organisms should be researched more in depth to better 

assess and quantify the impact of these organisms on the success of C. cylindracea. 

Finally, considering that sea breams are highly targeted by fisheries and have 
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already suffered important declines in the Mediterranean basin (Sala et al., 1998; 

Coll et al., 2004; Sala, 2004; Morales-Nin et al., 2005; Guidetti, 2006; Lloret et al., 

2008), places that promote their recovery, such as well-enforced marine protected 

areas (MPAs) (Mosquera et al., 2000; Micheli et al., 2005; Claudet et al., 2006; 

Guidetti, 2006; Guidetti and Sala, 2007; Guidetti et al., 2008, 2014; Sala et al., 2012; 

Coll et al., 2013), might also foster the strength of this complementary control 

mechanism on the abundance of C. cylindracea. 
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Cover image: Cross-section of a Caulerpa cylindracea filament as observed under the microscope. 

The strands traversing the lumen of the filament are trabeculae, physiological structures 

characteristic of the genus Caulerpa.	
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5.1 Abstract 

Morphological plasticity can enable algae to adapt to environmental change and 

increase their invasibility when introduced into new habitats. Nevertheless, there is 

still a lack of knowledge on how such plasticity can affect the invasion process of 

an invasive species. In this context, the high plasticity in the genus Caulerpa is well 

documented. However, after an extremely hot summer, a previously unreported 

filamentous morphology of Caulerpa cylindracea was detected; indeed, this 

morphology could only be confirmed taxonomically after in-depth morphological 

characterization and molecular analysis with the genetic marker tufA. We describe 

an ex situ culture experiment which showed that stressful conditions, such as high 

temperatures, can trigger this morphological change. Almost all of the thalli 

maintained at a constant extreme temperature of 29ºC died, but after being 

returned to optimum temperature conditions, the filamentous morphology began 

to develop from the surviving microscopic tissue. In contrast, thalli at a control 

temperature of 21ºC maintained the regular morphology throughout the 

experiment. When C. cylindracea develops this filamentous morphology, it may act as 

a cryptic invader because it is difficult to detect in the field. Furthermore, the 

filaments likely improve C. cylindracea´s invasive capabilities with regard to 

resistance, persistence and dispersion and may have an important role in the re-

colonization process, after a population disappears following a period of stressful 

conditions. Possibly, C. cylindracea´s ability to respond plastically to stressful 

conditions might explain its remarkable success as an invasive species. 
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5.2 Introduction 

iological invasions refer to the process by which different organisms, 

commonly known as invasive species, can arrive and establish in a new 

habitat, where they disrupt the normal functioning of the system. 

Currently, these invasions are considered one of the main drivers of global change 

due to their adverse effects on biodiversity, habitat structure and native ecosystem 

functioning (Mack et al., 2000; Stachowicz and Byrnes, 2006; Simberloff et al., 

2013; Bellard et al., 2016). Additionally, the establishment of invasive species it is 

often associated to great economic costs (Pimentel et al., 2001, 2005) due to their 

alteration of several ecosystem services (Pejchar and Mooney, 2009; Vilà et al., 

2010). The impacts of invasive species are especially important and noticeable in 

marine ecosystems, where biological invasions are on the rise due to the increases 

in their main vectors of introductions, such as shipping traffic, the aquarium trade 

or the opening and widening of new corridors (Katsanevakis et al., 2013; Seebens 

et al., 2013; Galil et al., 2017); and in the future, the establishment of non-native 

species is expected to continue increasing due to climate change (Stachowicz et al., 

2002; Lejeusne et al., 2010). 

Species invasiveness depends on the features that enable a non-native 

organism to invade a certain habitat (Richardson et al., 2011) with the main 

influence being the life-history traits of the invader (Grotkopp et al., 2002; Pyšek 

and Richardson, 2008; Van Kleunen et al., 2010). Several studies have suggested 

that phenotypic plasticity is one of the most important of such features for invasive 

species (Richards et al., 2006; Davidson et al., 2011). Plants and algae can adapt by 

modifying, among other things, photosynthetic traits (Molina-Montenegro et al., 

2012; Zanolla et al., 2015), leaf-area and shoot allocation (Arenas et al., 2002; Liu 

and Su, 2016) and growth form (Van Kleunen and Fisher, 2001; Monro and Poore, 

2009) allowing them to respond to changes in light, temperature or herbivory 

pressure (Lewis et al., 1987; Monro and Poore, 2005; Nicotra et al., 2010). In this 

B 
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sense, understanding how this phenotypic plasticity affects the success of an 

invasive species is crucial to our understanding of its invasion process (Schaffelke 

et al., 2006; Theoharides and Dukes, 2007) and might have important implications 

for the successful management of the species (Hobbs, 2000; Simberloff et al., 

2005). 

Caulerpa cylindracea is a siphonaceous green macroalga, native to Western 

Australia, that has become one of the most widespread non-native algae in the 

Mediterranean Sea (Piazzi et al., 2005; Klein and Verlaque, 2008; Montefalcone et 

al., 2015). Indeed, C. cylindracea is currently considered the most invasive species 

within the Mediterranean basin (Katsanevakis et al., 2016) and has also invaded 

areas in the Atlantic Ocean (Verlaque et al., 2004) and in Southern Australia (Klein 

and Verlaque, 2008). Still, it is not clear which has been the source of the primary 

introduction in the Mediterranean Sea, although it is quite likely that it was through 

the aquarium trade, with shipping traffic and fishing gear being the main sources of 

the secondary introductions within the basin (Verlaque et al., 2003). Ecologically, 

C. cylindracea spread causes the homogenization of native communities due to the 

formation of dense and continuous meadows (Klein and Verlaque, 2008), which 

has negative implications for the native macroalgal assemblages and the diversity of 

the communities (Piazzi et al., 2001; Piazzi and Ceccherelli, 2006; Klein and 

Verlaque, 2011). Also, this species affects the sedimentation rates, the carbon 

turnover, the organic matter composition and the quality of the invaded sediments 

(Piazzi et al., 2007; Holmer et al., 2009; Pusceddu et al., 2016; Rizzo et al., 2017). 

Morphologically, C. cylindracea is characterized by a simple morphology, formed by 

creeping stolons and erect shoots with grape-like ramuli (also called branchlets) that 

can be arranged radially or distichously (Klein and Verlaque, 2008). In addition, it 

has been reported that species in the genus Caulerpa show a high degree of 

morphological plasticity in response to environmental conditions (Peterson, 1972; 

Calvert, 1976; Coppejans and Beeckman, 1989; Collado-Vides, 2002a), allowing 

these species to adapt to different environments and thus increasing their invasive 
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potential (Collado-Vides, 2002a; Raniello et al., 2004; Smith, 2009). Several factors 

such as temperature, light or depth, can trigger subtle morphological changes in 

stolon and ramuli shape (Peterson, 1972; Calvert, 1976; Ohba and Enomoto, 1987; 

Ohba et al., 1992), photosynthetic traits (Raniello et al., 2004, 2006) and the 

interspace between erect axes (Collado-Vides, 2002a; De Senerpont Domis et al., 

2003). However, more acute morphological changes have been detected for the 

first time in C. cylindracea during a recent field survey (Figure 5.1). The thalli of 

these specimens consisted only of thin vertical filaments, which were impossible to 

identify as Caulerpa species until morphological and molecular characterization 

confirmed their identity.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. Macroscopic picture of a rock covered by a thick patch of Womersleyella setacea 
turf with the filamentous form of Caulerpa cylindracea growing from beneath it (black 
arrows). 

 

At present, the exact conditions that trigger this morphological change are 

unknown but, considering that the filamentous form was found in Montenegro 
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after the extremely warm summer of 2018 (Figure 5.2), it would appear that 

stressful conditions brought about by high temperatures could be involved. A 

better understanding of the conditions that trigger this morphological shift – which 

allows C. cylindracea to become a cryptic invader – will greatly enhance our 

understanding of the invasive process, the collapses and the recoveries of this 

species. 

 
Figure 5.2. Marine heatwave (MHW) events during 2018 at Ponta Veslo, Montenegro 
(42º 22’ 5.15’’ N; 18º 36’ 22.50’’ E), calculated with the heatwaveR package (Schlegel and 
Smit, 2018) using Reynolds Optimally Interpolated Sea Surface Temperature (OISST) 
data (Reynolds et al., 2007). The grey line represents the SST climatology for the last 35 
years; the green line indicates the 90th percentile MHW threshold; and the black line 
shows the SST during 2018. The dark red filled area indicates the most severe MHW 
event during 2018, while the orange filled areas indicate all the other MHW events 
identified over the same time period. The dark grey arrow indicates the day of the year 
when the filamentous morphology of Caulerpa cylindracea was sampled from the field (5th 
of September). 
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In this study, our aim was to determine whether extreme temperature 

conditions can trigger the formation of a filamentous morphology in Caulerpa 

cylindracea similar to that observed in the field. To do so, the morphological 

plasticity of this species was studied through culture experiments at contrasting 

temperatures. In addition, in order to confirm the taxonomical identity of the 

specimens, all thalli (from both cultured and natural populations) were genetically 

characterized with a chloroplast molecular marker (tufA), which had been used 

previously for the genus Caulerpa (Famà et al., 2002; Kazi et al., 2013; Sauvage et al., 

2013). 

 

5.3 Materials and methods 
 

5.3.1 Study sites and culture 
  

5.3.1.1 Extreme temperature laboratory experiment 

To study the effects of extreme temperatures on C. cylindracea, specimens from a 

population in Spain (Roses: 42º 14’ 18.26’’ N; 3º 12’ 25.74’’ E) were sampled in 

February 2019. Once in the laboratory, samples were cleaned with sterilized 

seawater to remove all the epiphytes and detritus (such as dead Posidonia oceanica 

rhyzomes and dead shells). For acclimation, Caulerpa samples were placed in 

aquariums (12 L) with sterile seawater and in a Radiber AGP-360 growth chamber at 

12ºC and a 12:12 (L:D) cycle at 200 µmol photons m–2 s–1 to simulate natural 

conditions of irradiance and temperature for one week. After the acclimation 

period, algal cultures were prepared for a period of 170 days under either control 

conditions or extreme (i.e., very warm) conditions (Figure 5.3). Six fragments of C. 

cylindracea  (≈4 cm2 each) were randomly transferred to six plastic beakers (1 L): 

three control treatments and three extreme-temperature treatments, each 

containing 200 g of sterilized gross sand and 0.5 L of sterilized seawater to which 

was added 5 ml/l of K-medium (Keller et al., 1987). The temperature treatments 
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for the experiment were as follows: “control” (21ºC) based on the average summer 

seawater temperature recorded in the sampled area and “extreme” (29°C) based on 

abnormally high summer seawater temperatures recorded in the Mediterranean Sea 

(www.t-mednet.org). After an adaptation period of 7 days at 12ºC in the growth 

chamber, the temperature was progressively increased (by 1ºC every 2 days) in all 

six treatment beakers for 18 days until a temperature of 21ºC was reached in the 

growth chamber. At this point, the beakers were split into two Radiber AGP-360 

growth chambers, one to keep the “control” beakers and the other to keep the 

“extreme” beakers throughout the experiment. Following this, the “control” 

beakers were maintained at 21ºC for the remaining 152 days of the experiment in 

the growth chamber; whereas, in the case of the “extreme” beakers, the 

temperature was raised in the other growth chamber by 1ºC every 5 days for the 

next 40 days until a temperature of 29ºC was reached; this temperature was then 

maintained for a further 14 days and then gradually lowered by 1ºC each day back 

to 21ºC and kept at this temperature for the remaining 90 days of the experiment 

(Figure 5.3). Throughout the experiment, the seawater and growth medium 

mixture was renewed once a week. 

 
Figure 5.3. Water temperature variation over the course of the experiment in “control” 
conditions (above) and “extreme” conditions (below). The numbers indicate the days of 
culture and each change in color represents a 1ºC change in temperature. 
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5.3.1.2 Field sampling for morphological and taxonomical 

characterization 

Samples of C. cylindracea were collected from natural populations in Spain (Roses: 

42º 14’ 18.26’’ N; 3º 12’ 25.74’’ E); Croatia (Funtana: 45º 10’ 40.16’’ N; 13º 35’ 

32.31’’ E and Split: 43º 30’ 28.79’’ N; 16º 23’ 17.56’’ E); Montenegro (Ponta Veslo: 

42º 22’ 5.15’’ N; 18º 36’ 22.50’’ E); and Albania (Kallm: 41º 19’ 27.88’’ N; 19º 25’ 

19.31’’ E) by scuba-divers at depths of between 5 and 12 m based on previous 

knowledge on the presence of the invasive alga in these locations. All samples were 

transported in zip bags within a thermal box to maintain a constant seawater 

temperature until the morphological characterization was performed in the 

laboratory. All samples showed the typical morphology of the species (Figure 5.4, 

B). These samples were also used for the taxonomic characterization of the 

populations (see Molecular analysis section). 

 

5.3.2 Data collection and analysis 

 

5.3.2.1 Extreme temperature laboratory experiment 

The effects of the extreme temperatures we applied to C. cylindracea were assessed 

by measuring the macroscopic morphometric changes. The structure and area of 

Caulerpa were measured by means of macroscopic photographs taken with an 

Olympus TG-5 camera, which were then analyzed with Adobe Photoshop CC 

2018. Living parts of C. cylindracea (green color) were manually selected and 

measured using the “analysis tool”. Then, to assess whether there were differences 

in the area of C. cylindracea between treatments at the end of the experiment, a linear 

mixed effect model (LMM) was fitted with “C. cylindracea area” as the response 

variable and “treatment” and “time” as the explanatory variables. The interaction 

between both explanatory variables was included in the model and a random term 

for “replicate” was used to take into account the repeated measures design 
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(Harrison et al., 2018). To fit this model, the package lme4 (Bates et al., 2015) in the 

statistical environment R was used (R version 3.6.3) (R Core Team, 2018). Finally, 

to compare the effects between levels in the treatment factor (“control” and 

“extreme) at each time observation (“beginning” and “end”), Tukey post-hoc tests 

were performed using the functions “pairs” and “emmeans” from the package 

emmeans (Lenth, 2018). 

5.3.2.2 Morphological characterization and comparison 

The morphological characterization of the cultured stolons and filaments was 

assessed by means of microscopic photographs, taken using a Zeiss AXIO Imager 

A.2 (Carl Zeiss, Berlin, Germany) equipped with an AxioCam MRc5 camera and a 

stereomicroscope Stemi 2000-C (Carl Zeiss, Berlin, Germany) equipped with an 

AxioCam ERc 5s camera; and the images were analyzed with Zen2011 software 

(Blue Edition). Also, to account for regional morphological variability, the mean 

stolon thickness of 10 randomly sampled stolons from each of the natural 

populations (Roses, Funtana, Split, Ponta Veslo and Kallm) was compared to the 

thickness of filaments obtained at extreme temperatures.  

To assess whether mean thickness of filaments differed from that of stolons, 

a linear model was fitted with “C. cylindracea thickness” as the response variable and 

“location_morphology” as the explanatory variable, in the statistical environment 

R. Finally, to compare between location_morphology levels (“Roses_filaments”, 

“Roses_stolons”, “Funtana_stolons”, “Split_stolons”, “Ponta Veslo_stolons” and 

“Kallm_stolons”), Tukey post hoc tests were performed using the functions “pairs” 

and “emmeans” from the package emmeans. 

5.3.3 Molecular analysis 

To determine species identity, a genetic analysis was performed on all sampled and 

incubated thalli, including both filamentous and typical morphology. DNA 
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extraction was performed following the DNeasy Plant Mini Kit (QiaGen) protocol 

in order to obtain the best DNA quality. The primer used to amplify the genetic 

material was tufA (elongation factor A, from the chloroplast). The reactions were 

performed in 25 µL volumes and the master mix contained 5 mM of MgCl2, 0.3 

mM of each primer, 0.2 mM of dNTPs, 0.5 units of Taq DNA polymerase and 1.0 

µL of the extracted DNA. The PCR reaction consisted of 40 cycles of 94ºC for 1 

min (denaturation), 52ºC for 1 min (primer annealing) and 72ºC for 2 min 

(extension) (Famà et al., 2002). The PCR reaction was finalized with a final 5 min 

step at 72ºC. The PCR products were purified and sequenced by Macrogen Spain.  

 Sequences analyses were performed using different R (R Core Team, 2018) 

packages: MUSCLE (Edgar, 2004) to align the sequences, and APE (Paradis et al., 

2004) and PHANGORN (Schliep et al., 2017) to create phylogenetic trees based on 

statistical analyses (Bio neighbor-joining tree, k80 distance, with 10000 replicates). 

 

5.4 Results 
 

5.4.1 Extreme temperature laboratory experiment 

In the model fitted to the data from the extreme temperature experiment, both 

“treatment” and the interaction term between “treatment” and “time” showed a 

significant effect on C. cylindracea area (p-value < 0.05; Appendix D: Table D.1), 

being the area of C. cylindracea equal between treatments at the beginning of the 

experiment but being significantly different between “control” and “extreme” 

conditions at the end (p-value < 0.05; Appendix D: Table D.2). Actually, after 72 

days, the mean surface area of the Caulerpa cylindracea thalli under “control” 

conditions had increased by 44%, whereas that of the specimens exposed to the 

“extreme temperature” treatment (at 29ºC for final 14 days of this 72-day period) 

had decreased significantly by 87% (Figure 5.4, A). Furthermore, while the control 

specimens maintained the typical morphology of the species – characterized by 
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thick rhizomes with some vertical vesicular fronds (Figure 5.4, C) – almost all the 

thick parts of the specimens in the “extreme temperature treatment” had 

disappeared after 14 days at 29ºC (Figure 5.4, E). 

When the cultures were returned to optimum conditions, new living parts 

emerged from the sediment in all the “extreme treatment” beakers, after 20 days. 

However, these new parts did not resemble the original C. cylindracea´s morphology. 

Instead, they presented a new type of structure characterized by erect thin filaments 

(Figure 5.5, A), which for the next three months continued growing vertically and 

extending throughout the liquid in the beakers (Figure 5.5, B). 

Macroscopically, these filaments, which grow vertically from the substrate, 

are long (between 5 and 10 cm) and thin, and occasionally branched. Each filament 

has rhizoids in its basal part (which is without plastids) that serve to attach the 

filament to the substrate. The upper part of the filament (with plastids) is light 

green and in all cases devoid of rhizoids or vesicles, which contrasts with the 

typical morphology of C. cylindracea (Figure 5.4, B and D).  

These filaments contrasted with the C. cylindracea thalli cultured under 

control conditions which, throughout the experiment (Figure 5.4, B and D), 

maintained the typical morphology described for this species: the thalli were 

characterized by thick, prostrate stolons with interspaced rhizoids for anchoring, 

even where they grew unattached to the substrate. Vesicular fronds could also be 

observed, although these were smaller than in the field. 
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Figure 5.4. (A) Mean area ± S.E. of Caulerpa cylindracea in the beakers (n=6, 3 control 
beakers and 3 extreme temperature beakers), at the beginning of the experiment, and after 
72 days. Photographs (B) and (C) show control beakers at the beginning of the treatment 
and after 72 days, respectively. Photographs (D) and (E) show extreme temperature 
beakers at the beginning of the treatment and after 72 days, respectively. The small black 
and white circles highlight the C. cylindracea present in each beaker. 
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Figure 5.5. Lateral (A) and vertical (B) view of one beaker with the filamentous 
morphology of Caulerpa cylindracea. The white square on the bottom of the beaker was 
added at the end of the experiment, to use it as a scale. 
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5.4.2 Morphological characterization 

In the model fitted to the morphological data, the variable “location_morphology” 

showed a significant effect on C. cylindracea thickness (p-value < 0.05; Appendix D: 

Table D.3), with filament thickness being significantly different to stolon thickness 

(p-value < 0.005; Appendix D: Table D.4) while stolon thickness was similar 

between populations (Appendix D: Table D.4). Actually, microscopically, there 

was an almost 10-fold difference in mean thickness between the filaments (222.42 

± 9.78 µm) in the extreme temperature beakers and the stolons (2093.38 ± 31.50 

µm) sampled at different natural populations. This is amply illustrated in Figure 

5.6. 

Although erect filaments are rarely ascribed to Caulerpa genus, the presence 

of trabeculae – slender strands traversing the lumen of the thallus (Lamouroux, 

1809; Womersley, 1984; Wynne and Bold, 1985) – confirms the identity of the 

thalli. The anatomical morphology of this structure in the filaments is identical to 

that of the regular stolons, as they traverse the interior of the filament going from 

one side to the other of a circular section and attach to the wall with a thickened 

structure that resembles a suction cup. However, the trabeculae in the filaments are 

much thinner and less numerous than in the stolons, which might explain why the 

filaments are so weak. 

5.4.3 Taxonomical characterization 

For the genetic analysis, a total of 14 high quality tufA sequences of up to 820 bp. 

were obtained and amplified from 5 specimens with the filamentous shape, 8 

specimens from the Mediterranean Sea with the common morphology of Caulerpa 

cylindracea and an additional sequence from C. sertularioides, which was obtained from 

the Caribbean Sea (Appendix D: Table D.5). In addition, several C. cylindracea 

sequences were obtained from GenBank, together with sequences from C. taxifolia 

and C. prolifera, in order to establish differences in the phylogenetic tree. In the 



CHAPTER 5 
	

	 118	

Neighbor Joining tree (Figure 5.7), all sequences from C. cylindracea formed a 

highly supported cluster, grouped close together, which included both filamentous 

and typical thalli, thus indicating that they are the same entity. 

 

Figure 5.6. (A) Mean width ± S.E. of Caulerpa cylindracea filaments (left) and stolons 
(right) from different populations (n=10 for each population). (B) View of two filaments 
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under the stereomicroscope at 1.0x. (C) View of a stolon with a vertical vesicular frond 
under the stereomicroscope at 1.0x. (D) 1) Macroscopic view of C. cylindracea with the 
regular morphology and 2) macroscopic view of the filamentous form of C. cylindracea. 
The white arrow shows the rhizoids that the filaments use for attaching themselves to the 
substrate. 

 

 

 

 

 

 

 

 
 

 

 

 
 

Figure 5.7. Phylogenetic Neighbor Joining (NJ) tree for Caulerpa cylindracea, obtained 
using the tufA marker. Three other species of Caulerpa (C. sertularioides, C. taxifolia and C. 
prolifera) were used as closely related species to establish differences. GenBank accession 
numbers are given for each sequence. Values at nodes derived from the NJ. The 
sequences produced in the present study are highlighted in bold. 
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5.5 Discussion 

Our culture experiments showed that extreme environmental conditions, in this 

case high temperatures maintained for long periods of time (i.e. 14 days at 29ºC), 

affected the survival of Caulerpa cylindracea and triggered the development of a new 

morphology characterized by long, thin vertical filaments from the surviving 

tissues. This new morphology of C. cylindracea has also been found in the field and 

is described here for the first time.  

The laboratory experiment showed the remarkable capacity of C. cylindracea 

to survive under stressful culture conditions as the temperature treatment chosen 

(29ºC) is much higher than the usual temperatures found at both the native and the 

invaded range (Klein and Verlaque, 2008). Additionally, C. cylindracea showed a 

great ability to adapt to environmental change, because it developed a new 

filamentous morphology from the damaged tissue that survived to the unfavorable 

culture conditions, i.e., extreme temperatures. These morphological changes during 

vegetative development are a common strategy in sessile organisms such as plants 

(Dorn et al., 2000; Puijalon et al., 2008; Nicotra et al., 2010) and algae (Kübler and 

Dudgeon, 1996; Garbary et al., 2004; Monro and Poore, 2005; Fowler-Walker et al., 

2006) to tolerate environmental change, and to improve their competitive and 

survival capacity (Bradshaw, 1972; Harper et al., 1986; Price and Marshall, 1999; 

Collado-Vides, 2002b). Actually, more or less acute morphological changes have 

been previously observed and described in different algae species (e.g.: some 

Caulerpa species, Ulva prolifera, Chondrus crispus, Asparagopsis armata, Padina jamaicensis, 

Codium fragile or Ecklonia radiata among others) under different culture conditions 

(Ohba and Enomoto, 1987; Ohba et al., 1992; Kübler and Dudgeon, 1996; De 

Senerpont Domis et al., 2003; Garbary et al., 2004; Monro and Poore, 2005; Gao et 

al., 2016) and in the field (Lewis et al., 1987; Meinesz et al., 1995; Collado-Vides, 

2002a; Garbary et al., 2004; Fowler-Walker et al., 2006), as a response to changes in 

temperature, salinity, hydrodynamism, light or herbivory pressure.  
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Taking into account that Caulerpa cylindracea may be one of the most widely-

studied invasive algae species around the world, the lack of a previous description 

of the filamentous morphology demonstrates that when C. cylindracea adopts this 

form, it clearly goes undetected. For instance, the filamentous morphology was 

sampled – accidentally – in the field within a macroalgae benthic community 

(Figure 5.1) and was only identified as Caulerpa after the samples were analyzed 

under the microscope. Thus it is clear that C. cylindracea filaments also develop 

under natural conditions. The variables that trigger such filaments in the field may, 

however, be multiple and in general, remain uncertain. Nevertheless, the culture 

experiments and field observations described here strongly indicate that stressful 

conditions may induce the formation of these structures.  

The phenotypic plasticity observed in C. cylindracea and its ability to 

withstand extreme conditions (high temperatures) for a long time are characteristics 

that clearly influence the invasiveness of this species, and improve its persistence 

and resistance to stress. Actually, this resistance, together with the difficulty of 

observing the filaments underwater, might explain why C. cylindracea populations 

sometimes seem to disappear only to bounce back after a few months (García et 

al., 2016). In such situations, it may be that while most of the population dies 

following unfavorable conditions (Figure 5.8, E) (Klein and Verlaque, 2008), some 

small remnants survive, most probably hidden and undetectable in the sediment or 

sand. Then, as was the case in our culture experiment, the surviving parts may 

produce filaments that go unnoticed by divers and researchers (Figure 5.1), and, 

subsequently, the regular morphology of C. cylindracea returns when favorable 

conditions allow the population to recover (Figure 5.8, G). Typically, colonization 

of a new area by C. cylindracea can take approximately 3 years, but the presence of 

this cryptic and resistant form of the species would explain the marked reduction – 

from 3 years to less than one year – in the time it takes C. cylindracea to re-colonize 

areas in which it had disappeared (García et al., 2016), thus highlighting the 

importance of this morphology in the re-colonization process (Figure 5.8). 
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Furthermore, when adopting this cryptic phase, identification is extremely difficult 

or simply impossible, which has further implications for the management of the 

species, since early detection is one of the most important requirements for the 

successful management of invasive species (Lodge et al., 2006; Vander Zanden et 

al., 2010; Giakoumi et al., 2019a). This misidentification of the filaments can also 

affect current estimations of C. cylindracea in the Mediterranean Sea as this species 

may be present at several locations in this latent, cryptic form. Since traditional 

methods of direct observation may not always be reliable in detecting filaments of 

C. cylindracea, as they can be misidentified or missed entirely, methods involving 

environmental DNA (Taberlet et al., 2012; Kelly et al., 2014; Thomsen and 

Willerslev, 2015) could be useful in detecting this species, as has been the case with 

the detection of other invasive species (Dejean et al., 2012; Ardura et al., 2015; 

Simmons et al., 2015). 

Dispersion is another process that might also be favored by C. cylindracea 

filaments, because these long and weak vertical structures are more easily broken 

upon contact or by water movement than the regular thallus. This will release living 

fragments that can be transported by currents or attached to drifting objects, 

favoring dispersal of C. cylindracea and the potential for secondary introductions. 

Actually, in Caulerpa species, the fragmentation process is one of its most important 

reproductive strategies (Fralick and Mathieson, 1972; Ceccherelli and Cinelli, 1999; 

Smith and Walters, 1999; Ceccherelli and Piazzi, 2001) and allows these species to 

spread really fast. 

To conclude, this newly-identified filamentous morphology of C. cylindracea 

could act as a potential jack-of-all-trades that further improves this species’ capacity 

as an invader. The filaments described here are involved in the persistence, 

resistance and dispersion of this invasive species and have characteristics that allow 

this species to withstand harsh abiotic conditions and which may help to explain its 

successful expansion in the Mediterranean Sea. 
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Figure 5.8. Evolution of the abundance of Caulerpa cylindracea over a period of 4 years in 
a population under study, close to Vilanova i la Geltrú (Spain). During the first 
colonization, C. cylindracea was first detected in December 2008 (A); by August 2009, C. 
cylindracea had expanded and had a patchy heterogeneous distribution (B); in August 2010, 
C. cylindracea covered a larger area forming a continuous meadow (C); and in August 2011, 
the abundance of C. cylindracea reached a peak, forming a dense and continuous meadow 
over more than 1000 m2 (D). In December 2011, the population had collapsed after an 
exceptionally warm autumn and no sign of C. cylindracea could be found (E). The first 
report of C. cylindracea in the second colonization was in August 2012 (F); and just three 
months later, in December 2012, it was already forming a continuous meadow over a 
large area (G), with greater abundance than that of August 2010 (C). 
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he role that specific factors might have for the success of well-established 

invaders and whether native habitats can develop resistance mechanisms 

against invasive species still remains poorly understood, making it 

difficult to disentangle the long-term dynamics of most invaders and to propose 

effective management measures to reduce their impacts. Therefore, this dissertation 

is an attempt to unravel the mechanisms that influence the success and the invasion 

history of the invasive alga Caulerpa cylindracea, with the objective of improving our 

understanding of the invasive process and of the mechanisms influencing the 

dynamics of invaders once they have been successfully established. Overall, we 

believe that the insights reported in this thesis can be useful across systems and 

species and could help us find effective management measures to hinder the 

consequences of invasions once prevention is no longer possible. 

 In this general discussion, considering that the discussions of each specific 

chapter were addresses in a very broad and general way, we present the main 

findings mainly focusing on marine invasions, in order to provide a view of their 

application and contribution to marine invasion ecology, as well as to discuss the 

implications that they might have for the conservation of marine native habitats 

and diversity. 

 
 
 
 
 
 
 
 
 

T 
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6.1 Biotic resistance mechanisms. Are they effective 

against marine invasive algae? 

Previous evidence, mostly from terrestrial ecosystems, suggests that both 

competition and herbivory can affect invader success and reduce the fitness and 

the abundance of the invasive species (e.g., Levine et al., 2004; Parker and Hay, 

2005; Cushman et al., 2011; Frankow-Lindberg, 2012; Pearson et al., 2012; Byun et 

al., 2013; te Beest et al., 2018; Zhang et al., 2018). However, studies from marine 

ecosystems quite often report the inability of native communities to limit the 

performance of invaders, particularly that of invasive algae (Kimbro et al., 2013; 

Enge et al., 2017; Papacostas et al., 2017 and references therein), with only 16% 

and 30% of the assessed studies reporting a limiting role of competition and 

herbivory respectively (Papacostas et al., 2017). In contrast to this, in Chapter 2 we 

provide evidence that biotic mechanisms can significantly limit the abundance of C. 

cylindracea, a well-established and successful marine alga that thrives in the 

Mediterranean Sea. 

 In our particular case, competition mediated by the dominance of canopy-

forming and erect species had a significant effect on the abundance of the invader 

throughout its entire bathymetric distribution, probably because the presence of 

certain traits among the community members (e.g., large size, perennial habits and 

complex morphology) reduced the availability of light and avoided the 

reattachment of invader fragments through the branch-sweeping of the substratum 

(Bulleri and Benedetti-Cecchi, 2008; Bernardeau-Esteller et al., 2015; Piazzi et al., 

2016). In this sense, our findings agree with previous evidence that reports the 

ability of complex communities – those dominated by canopy-forming species with 

a large size and usually perennial habits – to strongly influence the success of 

invasive algae (Ceccherelli et al., 2002; Arenas et al., 2006; Britton-Simmons, 2006; 

Bulleri et al., 2010; Vaz-Pinto et al., 2012) and highlight the role of competition as 

an important biotic resistance mechanism also in marine systems. In fact, 
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competition can prevent the invasion of the system or totally suppress the invader 

in well-preserved communities as has been demonstrated by the inability of C. 

cylindracea to establish in healthy Posidonia oceanica meadows (Katsanevakis et al., 

2010; Bulleri et al., 2011; Tamburello et al., 2014; Bernardeau-esteller et al., 2020) 

or by the suppression of Sargassum muticum in mature kelp forests within an old 

marine protected area (MPA) (Caselle et al., 2018). So, it seems that by canopy-

forming and erect species mainly modulating the availability of light and space, the 

most important limiting resources for algae (Sousa, 1979; Carpenter, 1990), 

competition can significantly influence invader success.  

Surprisingly however, if the abundance of invaders can be limited by 

competition, how can it be possible that many of the marine studies report the 

inability of this mechanism to limit invasive algae success? We believe that this 

could be likely related to the fact that many marine habitats, due to the strong 

cumulative impacts they have been exposed to (e.g., extensive habitat loss, over-

grazing by herbivores and climate change), have shifted from being dominated by 

marine foundation and canopy-forming species to habitats dominated by turf, 

encrusting and filamentous species (Wernberg et al., 2013; Filbee-Dexter and 

Scheibling, 2014; Ling et al., 2014; Vergés et al., 2014b; Filbee-Dexter et al., 2016; 

Wernberg et al., 2016; Filbee-Dexter and Wernberg, 2018). In turn, these 

oversimplified systems have little or no capacity to outcompete invasive algae and 

can even promote the attachment and spread of invaders (Ceccherelli et al., 2002; 

Arenas et al., 2006; Bulleri and Benedetti-Cecchi, 2008; Vaz-Pinto et al., 2012). 

Successively, due to the dominance by turf species and invaders, the native species 

might not be able to colonize back, allowing the invader to continue dominating 

the system and maintaining the degraded stable state even when the pressures that 

brought it to that state are no longer there (Scheibling and Gagnon, 2006). Putting 

all this together, it seems that the fact that many marine studies report the lack of 

strong competitive effects against algae invaders it is actually a symptom of the 

degradation, deforestation and oversimplification of macroalgal communities 
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worldwide, definitively a more worrying scenario than that imposed by marine 

invasions. 

Regarding the effect of herbivory on C. cylindracea success, we report the 

ability of herbivores, specifically that of the native fish Sarpa salpa, to limit C. 

cylindracea abundance. However, contrary to what we observed for competition, 

herbivory only influenced the abundance of the invader in shallow habitats, due to 

the constrained distribution and activity of the herbivore to depths shallower than 

30 m (Tomas et al., 2011b). This is the first evidence of herbivory limiting the 

abundance of C. cylindracea and contrasts with many of the previous studies 

assessing the role of herbivory on invasive algae success, where herbivores have 

been reported to be ineffective for the control of invaders (e.g., Boudouresque et 

al., 1996; Wikström et al., 2006; Monteiro et al., 2009; Forslund et al., 2010; Tomas 

et al., 2011a; Cebrian et al., 2011; Nejrup et al., 2012; Enge et al., 2017; but see: 

Stimson et al., 2001; Lyons and Scheibling, 2008; Britton-Simmons et al., 2011; 

Caselle et al., 2018). However, providing that exclusion experiments have been 

seldom done, it is difficult to deduce the role of herbivory on the success of 

invasive algae from previous assessments, as they mainly rely on pair-choice 

experiments that exclusively assess preference. Actually, although these assessments 

serve as an approximation of the alga performance under herbivory pressure, they 

cannot be used to infer the role of herbivores on the population dynamics of 

invaders under natural conditions. That is so, because in natural communities, apart 

from the herbivory effect itself, invader success will also be influenced by the direct 

effect of interspecific competition and by the abiotic conditions (Mitchell et al., 

2006; Catford et al., 2009; Lockwood et al., 2013). Therefore, in situ herbivore 

exclusion experiments like the one we have performed, might be the only reliable 

way of assessing the influence of herbivory on the population dynamics of invaders 

(Liu and Stiling, 2006; Pearson et al., 2012) and they are urgently needed if we are 

to better assess the actual role of herbivory on the success of invasive algae (Enge 

et al., 2017). Taking this into account, it is quite likely that the herbivory effect 



CHAPTER 6 
	

	 132	

observed in our exclusion experiment it is also reflecting the competition by the 

canopy-forming and erect species occurring in the assemblage, which might hinder 

the ability of C. cylindracea to compensate herbivory damage, a mechanism that has 

been attributed to the invader to explain its invasive success (Ruitton et al., 2006; 

Bulleri and Malquori, 2015). Remarkably, this interactive effect between 

competition and herbivory was also detected when the abundance of the species 

was assessed through its bathymetric distribution and it definitively explains why 

the invader is significantly more limited in the high complexity assemblages at 

shallow depths, where both biotic mechanisms act at their maximum intensity. This 

is, to our knowledge, the first time that the interaction between biotic mechanisms 

has been reported for marine ecosystems and our findings agree with those 

reported from terrestrial ecosystems, where the interaction between competition 

and herbivory yielded the strongest limitation of invader success (Suwa and Louda, 

2012; Li et al., 2014; Zhang et al., 2018). In fact, while single biotic mechanism 

assessments still predominate in invasion ecology, several authors have highlighted 

the urgent need for assessments that consider the interaction between biotic 

mechanisms in order to obtain more reliable estimations of the actual role and 

strength of biotic resistance against invaders (Levine et al., 2004; Mitchell et al., 

2006; Alofs and Jackson, 2014; Papacostas et al., 2017; Caselle et al., 2018; 

Petruzzella et al., 2020), 

 Until now, assessments of the role of herbivory on the success of invasive 

algae had mainly considered and assessed invertebrate organisms (e.g., Sumi and 

Scheibling, 2005; Wikström et al., 2006; Lyons and Scheibling, 2008; Forslund et 

al., 2010; Cebrian et al., 2011; Tomas et al., 2011a; Enge et al., 2012; Hammann et 

al., 2013; but see: Stimson et al., 2001; Davis et al., 2005), following the general 

belief of sea urchins and gastropods being the keystone herbivores in temperate 

systems (Hawkins and Hartnoll, 1985; Ling et al., 2014). However, recent evidence 

on the influence of fish herbivory on the abundance and distribution of temperate 

algae (Verlaque, 1990; Vergés et al., 2009; Taylor and Schiel, 2010; Poore et al., 
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2012; Franco et al., 2015; Gianni et al., 2017), suggests that the role of herbivorous 

fish for the control of invaders might have been underestimated. Actually, we 

provide evidence of the significant role that one herbivorous fish species, S. salpa, 

has for the control of the abundance of C. cylindracea (Chapters 2 and 3), 

suggesting that fishes can strongly influence the success of invaders. So definitively, 

in the following studies assessing the importance of herbivory as a biotic resistance 

mechanism, fishes should also be considered to further disentangle their role for 

the success of other invasive algae. In our case, the consumption of C. cylindracea by 

S. salpa is probably mediated by two main particularities: (1) the strong preference 

that the fish species shows towards the invader (Tomas et al., 2011b and Chapter 

3), and (2) the fact that S. salpa has probably generated tolerance to the toxic 

metabolites produced by C. cylindracea through the previous exposition to the native 

conspecific Caulerpa prolifera (Marco-Méndez et al., 2017). Thus, taking into account 

that many invasive algae are known to produce herbivore deterrent metabolites 

(e.g., Wikström et al., 2006; Forslund et al., 2010; Cebrian et al., 2011; Enge et al., 

2012, 2017; Nejrup et al., 2012; Nylund et al., 2012), special emphasis should be 

focused towards understanding whether native herbivores can generate tolerance to 

those metabolites through the subsequent exposition to the invader, something that 

would highlight the importance of time for the development of biotic resistance 

mechanisms (6.2 The importance of time in invasion ecology).  

Complementary, in Chapter 4 we have reported the consumption of C. 

cylindracea by the omnivorous fishes Diplodus annularis, Diplodus sargus and 

Spondyliosoma cantharus and determined that the contribution of the invader to the 

diet of these sparid fishes was generally low and that the consumption seemed 

accidental. However, several individuals were found with high amounts of C. 

cylindracea in their stomachs, suggesting that the grazing activity of these non-strictly 

herbivorous organisms could potentially affect the abundance of C. cylindracea, 

particularly considering that this fish species dominate the shallow rocky 

infralittoral habitats in the Mediterranean Sea (García-Rubies, 1997; Sala and 
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Ballesteros, 1997). In this sense, we pose that the lower impact on C. cylindracea 

abundance exerted by the omnivorous fish can complement the higher impact 

exerted by the strictly herbivorous organisms, and together, they might significantly 

reduce the abundance of the invader. Therefore, considering that omnivory is 

extended and prevalent across marine food webs (Menge, 1995; Sala, 2004; Bruno 

and O’Connor, 2005; Thompson et al., 2007; Long et al., 2011), more studies 

assessing whether other non-strictly herbivorous organisms can feed on invasive 

algae, could increase our understanding of the contribution of different organisms 

to the success of invaders and help us disentangle the myriad of interactions that 

might develop between the invader and the invaded assemblage (Figure 6.1). 

 In general, our results provide evidence that the use of field monitoring 

together with in situ manipulative experiments might be essential if we are to better 

understand and quantify the strength of biotic resistance mechanisms against a 

particular invader, as they allow to assess the interaction between mechanisms and 

their effect in natural settings. Consequently, going back to the question that we 

posed at the heading of this section, are biotic resistance mechanisms effective 

against invasive algae? The answer is that it strongly depends on the environmental 

context of the invasion. For instance, we can confidently say that biotic 

mechanisms are effective at regulating the abundance of C. cylindracea in the 

Mediterranean Sea, whenever the assemblage is well preserved, it sustains a high 

benthic complexity and there is a healthy and balanced community of herbivores. 

Unfortunately, those conditions are rare on the Mediterranean Sea (Sala et al., 2012; 

Bevilacqua et al., 2020), so C. cylindracea can scape biotic control in many locations. 

Similarly, making generalizations for other species is also challenging due to the 

context-dependent nature of the interactions; although it seems that competition, 

through the limitation of essential resources, can potentially affect the success of 

most invaders. However, the fact that canopy-forming species are in regression 

worldwide, could prevent us from properly assessing the true role of this biotic 

mechanism towards invasive algae. On the other hand, herbivory seems to be more 
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species and context dependent than competition, providing that it is highly 

influenced by the traits of the invader (e.g., production of deterrent metabolites, 

compensation growth) and by the behavior of the herbivore (e.g., tolerance to the 

metabolites, preference for a particular species). For example, in the Mediterranean 

Sea, two of the most wide-spread invasive algae: Lophocladia lallemandii and 

Womersleyella setacea, are released from herbivory due to their high toxicity (Cebrian 

et al., 2011; Tomas et al., 2011b, 2011a), which prevents us from using our findings 

to disentangle the mechanisms influencing the success of these species.  This 

definitively highlights that we cannot rely on general hypothesis to explain the 

success of every invader and that in order to increase our understanding of the 

dynamics of invaders, more assessments considering different mechanisms and 

species need to be done, preferably by means of in situ manipulative experiments 

that also consider the temporal component. 
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Figure 6.1. Schematic representation of some of the multiple relationships that might 
develop between Caulerpa cylindracea and different components of the invaded assemblage. 
There are both, direct (solid lines) and indirect (dashed lines) interactions, as well as 
positive (green) and negative (red) interactions. Arrow thickness represents the strength 
of the interaction. Scheme based on the findings reported in this thesis and on those from 
previous authors (Ceccherelli et al., 2002; Bulleri and Benedetti-Cecchi, 2008; Bulleri et al., 
2009; Piazzi and Balata, 2009; Cebrian et al., 2011). Illustrations from Toni Llobet, the 
IUCN and pngaaa.  
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6.2 The importance of time in invasion ecology 

Biological invasions are inherently dynamic ecological processes in which time 

plays an important role and can likely influence the strength of the interactions that 

develop between invaders and the invaded community (Diez et al., 2010; Carlsson 

et al., 2011; Lockwood et al., 2013; Strayer et al., 2017). However, probably due to 

temporal and economical constrains, most of the invasion ecology studies tend to 

focus in assessing a particular time frame in the invasion process, disregarding the 

importance of time and complicating the assessment of the dynamics of invaders 

(Strayer et al., 2006, 2017; Strayer, 2012). Consequently, in order to improve our 

understanding of the long-term dynamics of invaders, in Chapters 2 and 3, we 

have used two different approaches – long-term monitoring and chronosequences 

– that have allowed us to assess whether biotic resistance mechanisms are effective 

through time and to disentangle the effect of time in the development of biotic 

resistance mechanisms.  

 Specifically, the long-term monitoring of C. cylindracea at the Cabrera 

Archipelago National Park (Chapter 2), showed that lower abundances of the 

invader are always associated to the complex assemblages, and that the invader is 

particularly limited in the shallow complex assemblages, where herbivory and 

competition can complement each other. This clearly evidences that the biotic 

resistance mechanisms assessed in this thesis are determining the long-term 

dynamics of the invader at the local scale, with the pattern of C. cylindracea 

abundance and distribution reflecting the interaction outputs between the biotic 

mechanisms. Actually, this might be one of the first real world evidences where the 

effects of biotic mechanisms reported from manipulative experiments are 

correlated with the history of the invasion (but see: Caselle et al., 2018), allowing us 

to unravel the mechanisms influencing the long-term dynamics of this particular 

invader. Unfortunately, due to the scarcity of long-term data on invaders 

(Simberloff and Gibbons, 2004; Strayer et al., 2006, 2017; Strayer, 2012), 
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particularly in marine systems, it is difficult to infer how biotic mechanisms might 

influence the dynamics of other invaders, which definitively must serve as a plea 

for more long-term monitoring programs. 

Interestingly, our long-term monitoring showed that some years after the 

onset of the invasion, there was a decline in the abundance of the invader (Chapter 

2), something that has also been reported for other C. cylindracea meadows in 

Menorca, the south-eastern coast of Spain and France (Klein and Verlaque, 2008; 

Bernardeau-esteller et al., 2020; Cefalì et al., 2020). These regressions, being marine 

invasions highly idiosyncratic (McQuaid and Arenas, 2009), have been usually 

attributed to the natural dynamics of the invader at each particular location. 

However, bearing in mind that biotic invasions are dynamic processes, can we 

disregard that the strength of biotic interactions can vary with time? Actually, 

several mechanisms, such as the development of allelochemical defenses by the 

native species, increases in the number of enemies or an increase in the feeding 

efficiency of predators can potentially intensify the biotic resistance of native 

communities through time (Siemann et al., 2006; Strayer et al., 2006; Carlsson et al., 

2009; Diez et al., 2010). Specifically, in Chapter 3, we have demonstrated that the 

native herbivore S. salpa needs some exposure time with C. cylindracea before 

developing a preference for the invader and starting to target it, which definitively 

explains why the invader can attain large abundances at the beginning of the 

invasion, when it escapes herbivory control. But then, as the invasions progresses, 

herbivory by S. salpa becomes an effective biotic resistance mechanism and C. 

cylindracea can suffer abundance regressions such as those reported in this thesis and 

in previous studies. These boom and bust patterns can be common across 

invasions and although the reasons behind them are not fully understood yet 

(Lockwood et al., 2013; Aagaard and Lockwood, 2016; Strayer et al., 2017), our 

findings suggest that increases in biotic resistance with time can have a significant 

role in them. Actually, enemy accumulation and increases in the predation rates are 

suspected to be responsible for long-lasting busts such as the one we have 
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observed (Strayer et al., 2017), where the abundance of C. cylindracea at the Cabrera 

Archipelago has remained below 10% for the last 3 years (2017-2020) in the 

habitats were herbivory pressure is high (Santamaría et al., unpublished data). 

Similarly to our case, previous declines in hyper-successful invaders have been 

associated to increases in biotic resistance through time (Simberloff and Gibbons, 

2004; De Rivera et al., 2005; Carlsson and Strayer, 2009; Carlsson et al., 2011; 

Strayer et al., 2017), which highlights that our findings might not be case-specific 

and might be spread across other invaders and systems.  

In general our findings provide strong evidence on the importance of 

considering the temporal component of the invasion to understand the long-term 

dynamics of invaders. Unfortunately however, it is difficult to predict the temporal 

scales that might be needed to observe the development of a novel predator-prey 

interaction, with time scales that can go from days to even decades since the first 

exposure, depending on the mechanisms involved in the adaptive process (Carroll 

et al., 2005; Strayer et al., 2006; Carlsson et al., 2009; Forister and Wilson, 2013; 

Berthon, 2015). In our case, we were “lucky” because the presence of a native 

conspecific alga has probably allowed S. salpa to already have tolerance to the toxic 

metabolites of C. cylindracea, so that a time scale of less than a decade was enough 

for the fish population to include the invader as a recurrent food item and to 

become an effective biotic resistance mechanism (Chapters 2 and 3). Interestingly, 

this fast development of the herbivore-algae interaction seems to be also mediated 

by C. cylindracea attaining large abundances from the beginning of the invasion 

(Chapter 3), which might have fostered the effective formation and transmission 

of search images among the S. salpa population. However, if the abundance of the 

invader remains low for a long time or if processes such as contemporary 

evolution, ontological changes in morphology or the development of tolerance 

mechanisms to overcome the prey defenses are needed (Carroll et al., 2005; Phillips 

and Shine, 2006; Strauss et al., 2006; Carlsson et al., 2009; Berthon, 2015), the 

development of the novel interactions might require definitively longer time-scales. 
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For instance, terrestrial studies that have assessed the development of resistance 

mechanisms through time refer to time exposures of several decades and even 

centuries to report an increase in the resistance towards the invader (Siemann et al., 

2006; Diez et al., 2010; Dostál et al., 2013; Stricker et al., 2016), while Britton-

Simmons et al. (2011) found that exposure times greater than 30 years were needed 

for a native herbivore to develop a preference for the invasive alga Sargassum 

muticum. Under such situations it might be really difficult to maintain a monitoring 

program for so long due to economic and temporal constrains, but 

chronosequences, where populations invaded at different times are assessed, can be 

also very useful to reconstruct the long-term dynamics of invaders and to assess the 

development of the novel interactions as we have demonstrated (Chapter 3). In 

particular, providing that many marine herbivores fail to control invasive algae 

because they produce toxic metabolites, this type of methodology might allow to 

assess whether the herbivores, through the subsequent exposition to the invader, 

are able to generate tolerance to this metabolites (Gatehouse, 2002; Cornell and 

Hawkins, 2003; Sotka and Whalen, 2008; Sotka et al., 2018) and can become an 

effective long-term biotic resistance mechanism as herbivory by S. salpa does. 

 Overall, it seems clear that disregarding the temporal component of 

invasions can lead to underestimations of the importance of biotic resistance 

mechanisms, because the biotic resistance against an invader might fluctuate 

through the invasion and the perceived strength of the biotic interactions can 

significantly change depending on the time considered (e.g. recent vs old 

invasions). Therefore, there is an urgent need to adopt long-term monitoring 

programs and chronosequences as essential tools, in order to improve our 

understanding of how biotic mechanisms develop and to better assess the influence 

of these mechanisms on the long-term dynamics of invaders. 
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6.3 Species traits and the role of disturbance on the 

success of invaders  

Disturbance refers to any discrete event in time that it is able to disrupt the 

community structure and to change the resource and substrate availability or the 

physical environment (Pickett and White, 1985). These events have received a lot 

of interest in ecology because they play an important role in shaping the structure 

of natural systems (Levin and Paine, 1974), with some species taking advantage of 

disturbances whereas others mainly flourish after long periods free from 

disturbances (Meiners et al., 2015). Particularly, the study of disturbances has been 

quite prolific in invasion ecology, where these events have been proposed to 

promote invader success through the increase in the availability of limiting 

resources and through the reduction in the interspecific competition (Davis et al., 

2000; Shea and Chesson, 2002; Scheibling and Gagnon, 2006; Lockwood et al., 

2013; Jauni et al., 2015). Thus, given that global change and anthropogenic 

activities are altering the frequency and intensity of disturbances (Coumou and 

Rahmstorf, 2012; Perkins et al., 2012; Halpern et al., 2015; Trenberth et al., 2015), 

it has become particularly relevant to assess how communities and species might 

respond to such changes in disturbance regimes, in order to better predict how 

future climatic conditions might affect the structure of communities and whether 

invasive species might further dominate in a more disturbed world.  

 Specifically, given that the number and intensity of extreme climatic events is 

predicted to increase in marine systems (IPCC 2018; Oliver et al. 2018, 2019), in 

Chapter 5 we simulated a marine heatwave (MHW), a discrete event characterized 

by anomalously warm temperatures (Hobday et al., 2016), to disentangle how C. 

cylindracea might respond to acute disturbance events. In the experiment, C. 

cylindracea showed a remarkable capacity to survive to the disturbance and to 

recover fast once the conditions were favorable, something that can explain its 

extraordinary success as an invader. Actually, MHWs, by strongly affecting native 
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species (e.g., Garrabou et al., 2009; Wernberg et al., 2013; Rubio-Portillo et al., 

2016; Smale et al., 2019; Filbee-Dexter et al., 2020; Verdura et al., 2021) and making 

conditions more favorable for invaders (Diez et al., 2012; Verdura et al., 2019; 

Atkinson et al., 2020), are likely to reduce the resilience of native assemblages 

through the increased mortality of foundation native species and to foster the 

invasibility of the system through the enhancement of the competitive performance 

of invaders. 

In general, the ability of many invaders to tolerate disturbance has been 

related to the presence of certain traits such as: broad tolerance ranges, the capacity 

to reproduce vegetatively, the ability to disperse over long-distances, fast growth 

rates, rapid resource acquisition, polyploidy and high phenotypic plasticity (Pyšek 

and Richardson, 2008; Davidson et al., 2011; Te Beest et al., 2012; Bates et al., 

2013; Higgins and Richardson, 2014; Gallagher et al., 2015; Van Kleunen et al., 

2015), with C. cylindracea having most of them (Ceccherelli and Cinelli, 1999; 

Ceccherelli and Piazzi, 2001; De Senerpont Domis et al., 2003; Raniello et al., 2006; 

Flagella et al., 2008; Klein and Verlaque, 2008; Varela-Álvarez et al., 2012; 

Montefalcone et al., 2015). Interestingly, the MHW experiment in Chapter 5 not 

only demonstrated the extraordinary tolerance of this species, but it also brought to 

light its remarkable phenotypic plasticity, as it was able to drastically change 

morphologically in response to the stressful conditions. In this sense, although it is 

the first time that this filamentous morphology has been reported for C. cylindracea, 

its capacity to respond plastically was already well known, as this species is able, for 

example, to change its growth form between guerrilla and phalanx typologies in 

response to the local environmental conditions (Bulleri et al., 2009; Uyà et al., 

2017). Unfortunately, it is still not clear how the filamentous morphology might 

benefit the invader, although it might serve the purposes of improving the 

persistence, the resistance and the dispersal of the species due to the fast 

development, high tolerance and enhanced fragmentation of the morphology. 

What seems clear however is that by C. cylindracea adopting this morphology, it can 
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become cryptic, which complicates the identification of the species in the field and 

can affect the management of the species.  

 

6.4 Management of invasions. Implications for 

marine conservation 

Given the huge impact that invasive species cause in communities worldwide and 

the forecasted increase in invasions due to climate change and rising globalization, 

the management of invasive species has become one of the greatest challenges for 

the conservation of biodiversity (Pyšek and Richardson, 2010; Simberloff et al., 

2013; Giakoumi et al., 2019a). Depending on the time since the introduction and 

on the distribution range of the target species, different management options are 

available, being those actions that are applied early in the invasive process the most 

successful and cost-effective (Simberloff et al., 2013). In this sense, prevention, by 

for example constraining pathways (e.g., treatment of ballast water or regulation of 

exotic organisms´ trade), is definitively the most effective option as it hinders the 

arrival of the species in the first place (Williams and Grosholz, 2008; Pyšek and 

Richardson, 2010; Simberloff et al., 2013). However, prevention is not always 

successful and once the species establishes in the new range, other management 

options such as eradication, containment or control are needed, being those 

interventions more successful and feasible when they are preceded by the early 

detection of the introduced species, before it undergoes range expansion (Pyšek 

and Richardson, 2010; Simberloff et al., 2013). To date, most successful 

eradications and control interventions have occurred on terrestrial systems (e.g., 

Myers et al., 2000; Simberloff, 2001, 2008; Genovesi, 2005; Robertson et al., 2017), 

whereas in the marine environment, most invasions are difficult to prevent, control 

or eradicate (Thresher and Kuris, 2004; Anderson, 2008; Williams and Grosholz, 

2008; Ojaveer et al., 2015). Actually, successful eradications in marine systems have 
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only been achieved in limited occasions, always in restricted areas, following early 

detection and rapid intervention (Myers et al., 2000; Willan et al., 2000; Wotton et 

al., 2004; Anderson, 2005). This lack of success in management efforts has been 

largely attributed to the open nature of the marine environment, which fosters the 

dispersal of species over large areas after establishment and makes successful 

management more challenging. Therefore, considering that the complete 

extirpation of marine invaders is highly unlikely, the purpose of management 

should be to suppress the abundance of the invader below levels that cause 

ecological harm, so that its impacts are lessened and the resilience of native 

ecosystems can be fostered (Green et al., 2014; Usseglio et al., 2017; Giakoumi et 

al., 2019a). 

 Given that the eradication of C. cylindracea seems unfeasible due to its high 

abundance, wide-distribution and high resilience, other management approaches 

such as the control of its abundance, might be the most effective and reliable 

option. Specifically, our findings show that native habitats, whenever they are well 

preserved and are given enough time (Chapters 2, 3 and 4), can develop resistance 

mechanisms against the invader and significantly reduce its abundance. Therefore, 

as MPAs are effective for the recovery of top-predators, the reestablishment of 

trophic cascades and the restoration of native benthic communities in decadal or 

multi-decadal time scales (Guidetti and Sala, 2007; Lester et al., 2009; Babcock et 

al., 2010; Leleu et al., 2012; García-Rubies et al., 2013), they could be used as a 

management tool to foster the long-term resilience and resistance of the system 

against C. cylindracea. However, it is still not clear under what situations MPAs can 

provide resilience and resistance to invasions or whether they can mitigate the 

negative impacts of invasive species (Kellner and Hastings, 2009; Burfeind et al., 

2013; Giakoumi et al., 2016; Giakoumi and Pey, 2017), with some invaders being 

even more common inside MPAs than outside them (Byers, 2005; Klinger et al., 

2006; Rilov et al., 2018; Giakoumi et al., 2019b). Therefore, there is still an urgent 

need to improve our knowledge on the factors that influence invader success 
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across species and systems in order to understand under which situations natural 

mechanisms can hinder invasions or whether other complementary management 

interventions might be needed to reduce the abundance of the invader. For 

instance, whenever the abundance of C. cylindracea is really high and the native 

assemblage is so impacted that it cannot reduce the success of the invader, 

combining the targeted removal of C. cylindracea together with the effective 

protection of the assemblage can be a successful intervention to reduce the 

abundance of the invader and to foster the resilience of the system at the same 

time. Thus, based on sound knowledge on the traits of invaders, on the dynamics 

of invasions and on the characteristics of the invaded system, management 

interventions, through conservation actions, local eradications, active restorations 

or a combination of them, can then be prioritized to improve their effectiveness 

(Giakoumi et al., 2019a).  

As food for thought, what should we do with non-native species in the 

future? To manage or not to manage that will be the question. 

In the future, climate change will further reconfigure marine ecosystems 

worldwide (Poloczanska et al., 2013; García Molinos et al., 2016; Wernberg et al., 

2016; Pecl et al., 2017), making it increasingly difficult to discern whether an 

species should be considered as an alien species or as an species naturally 

expanding its range. This situation will definitively go associated with the arduous 

decision of whether to focus efforts on trying to preserve the native ecosystems as 

we know them or whether to accept some of the arriving species as the new 

“normal” for the system. For instance, in some regions of the world were native 

assemblages have been severely impacted by anthropogenic stressors and global 

change, ecosystems have started to shift to a new late-successional regime (e.g. 

from macroalgae dominated systems to coral dominated systems) (Yamano et al., 

2011; Vergés et al., 2014a; Wernberg et al., 2016; Tuckett et al., 2017; Kumagai et 

al., 2018), or are now dominated by alien species that could, to a certain extent, 
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substitute the ecological function of the species they have replaced (Johnston and 

Lipcius, 2012; Edelist et al., 2013; Epstein and Smale, 2017; Mačic et al., 2018; 

Ramus et al., 2018; Rilov et al., 2018, 2019). Under such situations, when the native 

system has been greatly modified by climate change and human mediated 

disturbances, and providing that the new species could reestablish the ecosystem 

functions lost or support new critical functions, the wiser decision would be to 

tolerate the changes, to embrace the novel ecosystems and to promote the 

resilience of the system by safeguarding those “new” species that contribute to 

maintain the ecosystem functioning and services. Actually, certain alien species can 

have positive effects, by for example securing ecosystem functions and processes 

or by provisioning food and shelter (D’Antonio and Meyerson, 2002; Gozlan, 

2008; Davis et al., 2011; Schlaepfer et al., 2011; Johnston and Lipcius, 2012; 

Bertness and Coverdale, 2013; Katsanevakis et al., 2014b; Ramus et al., 2018), so 

they might contribute to achieve conservation objectives in the future (Walther et 

al., 2009; Schlaepfer et al., 2011; Bulleri et al., 2018). However, the decision to 

conserve alien species should be taken carefully, and the benefits of some of the 

alien species should never be used as an argument to neglect the impacts of 

invaders, to naturalize every alien species or to promote do-nothing strategies. 

Instead, evidence from ecological change worldwide should be used to highlight 

the need for effective risk assessments and prevention measures to hinder the 

arrival of harmful species, to base management primarily on the ecological function 

and impacts of a species rather than on its origin, and to guarantee the 

conservation of native habitats by creating well-enforced MPAs that promote the 

correct functioning and the natural resilience of the system. Last but not least, 

providing that disturbances significantly disrupt the resilience of native ecosystems, 

we definitively need to focus on trying to slow down the current pace of 

environmental change by mitigating anthropogenic stressors and climate change, so 

that the successional dynamics of the systems can return to their natural rate of 

change. Definitively, nature seems to have the mechanisms to find the balance and 
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tolerate environmental change whenever it has the tools and enough time to adapt. 

So then, the relevant question is: are we ready to change and mitigate our impacts 

on nature before it is too late? Or instead, are we willing to accept and to adapt to 

the ecological changes that will occur if we decide not the change? 





 

Cover image: Thalassoma pavo females feeding on a well-preserved assemblage dominated by the 

canopy-forming species Ericaria brachycarpa.	

Author: Jorge Santamaría Pérez. 
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Chapter 2 

 Competition by canopy-forming and erect algae species and herbivory by the 

fish Sarpa salpa significantly limit the abundance of Caulerpa cylindracea. Thus, 

the success of the invader is greatly influenced by biotic mechanisms. 

 

 It is the synergistic effect between competition and herbivory what determines 

the abundance of the invader at the local scale. Therefore, assessing the 

interaction between biotic mechanisms might be essential to quantify the 

strength of biotic resistance against an invader. 

 

 Long-term monitoring of the invader suggests that the biotic resistance of 

native assemblages might intensify through time as reflected by the regression 

in the abundance of the invader in shallow assemblages. 

 

 The combined use of different approaches such as long-term monitoring and 

in situ manipulative experiments is needed to reliably assess the influence of 

biotic resistance mechanisms on the dynamics of invaders. 

 

 The conservation of marine habitats, particularly promoting habitat 

complexity and balanced grazer assemblages, could be proposed as an 

effective management action to foster the long-term resilience of native 

assemblages against certain invaders. 

 

Chapter 3 

 Sarpa salpa preference for the invasive alga C. cylindracea only develops after 

certain exposure time to the invader. Therefore, the herbivore needs time to 

start targeting the invasive alga. 
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 Sites historically invaded support a higher proportion of herbivores feeding on 

C. cylindracea and higher per capita consumption rates compared to places 

recently invaded, particularly in sites with a high abundance of the invader, 

which confirms that herbivory increases its intensity through time. 

 

 S. salpa´s electivity for C. cylindracea increases through the invasion, even when 

the invader suffers abundance declines, highlighting herbivory as an effective 

long-term biotic resistance mechanism. 

 

 The increase in the strength of herbivory through the invasion, demonstrates 

that native communities need time to develop effective resistance mechanisms 

against invaders. Therefore, long-term studies and chronosequences are 

needed to unravel the mechanisms influencing the dynamics of invaders. 

 

Chapter 4 

 At least 3 of the 4 species consume C. cylindracea, although the contribution of 

the invader to the diet is generally low, except for Diplodus annularis.  

 

 According to the values in the electivity index, all omnivorous sea bream 

species avoid to feed on the invader. Therefore, high consumptions of the 

invader probably happen accidentally when fish are trying to feed on other 

prey.  

 

 Given the high amounts of C. cylindracea consumed by some species and 

considering that sparid fishes dominate shallow rocky habitats, these species, 

despite being omnivorous, could exert some control on the abundance of the 

invader. Thus, well-enforced MPAs, as places that support high abundances of 

sea breams, can foster this complementary biotic resistance mechanism. 
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Chapter 5 

 Exposure to temperatures of 29ºC drastically reduces the survival of C. 

cylindracea thalli and triggers the development of a novel morphology when the 

harsh conditions subside. 

 

 This novel morphology has been also observed in the field after acute 

disturbances, suggesting that stressful events trigger the morphological 

plasticity of the invader. 

 

 The novel morphology is characterized by erect thin filaments that grow 

vertically from the substrate and that do not resemble the distinctive 

morphology of the invader. Thus, accurate monitoring methods are needed to 

reliably assess the presence of the invader. 

 

 The great tolerance to extreme conditions and the high phenotypic plasticity 

of C. cylindracea explain its success as an invader, with the filamentous 

morphology likely involved in the persistence, resistance and dispersion of the 

invader, while also turning C. cylindracea into a cryptic invader. 







 

Cover image: Leach´s spider crab (Inachus phalangium) covered by the invasive alga Caulerpa 

cylindracea in an area highly colonized by the invader.	

Author: Raül Golo. 
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Appendix A: Chapter 2 Supporting Information 

Table A.1. Algae species identified in the sampled assemblages and the trait category 
assigned to each of them. Epiphyte species were not considered for the complexity of the 
assemblage, as they generally do not compete with other algae. 

Species Trait 
category   Species Trait 

category 
Acetabularia acetabulum Erect   Acetabularia parvula Erect 
Acrodiscus vidovichii Erect   Acrosorium venulosum Erect 
Acrosymphyton purpuriferum Erect   Acrothamnion preisii Turf 
Aglaozonia chilosa Turf   Aglaozonia parvula Turf 
Alsidium corallinum Erect   Amphiroa beauvoisii Erect 
Amphiroa cryptarthrodia Erect   Amphiroa rigida Erect 
Anadyomene stellata Erect   Apoglossum ruscifolium Erect 
Asparagopsis taxiformis Erect   Asperococcus bullosus Erect 
Boergeseniella fruticulosa Turf   Botryocladia borgesenii Turf 
Botryocladia botryoides Turf   Botryocladia chiajeana Turf 
Bryopsis sp. Turf   Castagnea sp. Turf 
Caulerpa cylindracea Erect   Ceramium sp. Turf 
Ceramium tenerrimum Turf   Chondria  sp. Erect 
Chondria capillaris Erect   Chondrophycus sp. Erect 
Chylocladia verticillata Erect   Cladophora coelothrix Turf 
Cladophora hutchinsiae Turf  Cladophora liebetruthii Turf 
Cladophora pellucida Turf   Cladophora prolifera Turf 
Cladophora sp. Turf   Cladostephus hirsitus Erect 
Codium bursa Erect   Colpomenia sinuosa Erect 
Corallina elongata Turf   Cordylecladia erecta Erect 
Crouania attenuata Turf   Cryptonemia lomation Erect 
Cryptonemia tunaeformis Erect   Cystoseira balearica Canopy 
Cystoseira compressa Canopy   Cystoseira foeniculacea Canopy 
Cystoseira funkii Canopy  Cystoseira postulata Canopy 
Cystoseira spinosa Canopy  Dasya baillouviana Epiphyte 
Dasya sp. Epiphyte  Derbesia sp. Turf 
Dictyopteris lucida Erect  Dictyopteris membranacea Erect 
Dictyopteris polypodioides Erect  Dipterosiphonia rigens Epiphyte 
Discosporangium 
mesarthrocarpum Turf  Dudresnaya verticillata Turf 

Dyctiota dichotoma Erect  Dyctiota dichotoma var. 
intrincata Erect 

Dyctiota fasciola Erect  Dyctiota linearis Erect 
Ectocarpus sp. Turf  Eledista neglecta Epiphyte 
Enteromorpha sp. Turf  Erythroglosum balearicum Erect 



CHAPTER 2 SUPPORTING INFORMATION 

	 205	

Table A.1. Continued. 

Species Trait 
category   Species Trait 

category 
Eupogodon planus Erect  Falkenbergia hildebrandi Epiphyte 
Feldmannophycus rayssiae Erect   Flabellia petiolata Erect 
Gelidiella sp. Turf  Gelidium pectinatum Erect 
Gloiocladia furcata Erect   Gracilaria sp. Erect 
Griffithsia sp. Turf  Gulsonia nodulosa Epiphyte 
Halicystis parvula Turf  Halimeda tuna Erect 
Haliptilon virgatum Epiphyte  Halopithys incurva Erect 
Halopteris filicina Erect  Halopteris scoparia Erect 
Halydiction mirabile Epiphyte  Heterosiphonia crispella Epiphyte 

Heterosiphonia wurdemannii Epiphyte  
Hildenbrandia 
crouaniorum Encrusting 

Hypnea cervicornis Turf  Hypoglossum 
hypoglossoides Erect 

Jania adherens Epiphyte  Jania corniculata Epiphyte 
Kallymenia sp. Erect  Laurencia sp. Erect 
Leathesia mucosa Erect  Lithophyllum duckeri Encrusting 
Lithophyllum expansum Encrusting  Lithophyllum incrustans Encrusting 

Lithothamnion coralloides Encrusting  Lithothamnion 
fruticulosum Encrusting 

Lithothamnion valens Encrusting  Lobophora variegata Erect 
Lomentaria chylocladiella Erect  Lomentaria sp. Erect 
Lophocladia lallemandii Epiphyte  Lyngbya sp. Epiphyte 
Melobesia sp. Encrusting  Mesophyllum alternans Encrusting 
Microdyction tenuius Turf  Monosporus pedicellatus Epiphyte 
Neogoniolithon brassica-
florida Encrusting  Neogoniolithon 

mamillosum Encrusting 

Nereia filiformis Epiphyte  Osmundaria volubilis Erect 
Osmundea pelagosae Erect  Padina pavonica Erect 
Palmophyllum crassum Encrusting  Peyssonelia coriacea Encrusting 
Peyssonelia harveyana Encrusting  Peyssonelia rubra Encrusting 
Peyssonnelia bornetti Encrusting  Peyssonnelia dubyi Encrusting 
Peyssonnelia rosa-marina Encrusting  Peyssonnelia sp. Encrusting 
Peyssonnelia squamarina Encrusting  Phyllophora crispa Erect 
Phymatolithon calcareum Encrusting  Plocamium cartilagineum Erect 
Poliphysa parvula Erect  Polysiphonia furcellata Turf 
Polysiphonia ornata Turf  Polysiphonia sebulifera Turf 

Predaea sp. Erect  Pseudochlorodesmis 
furcellata Erect 

Pseudolithoderma adriaticum Encrusting  Pterosiphonia sp. Erect 
Pterothamnion crispum Epiphyte  Rhodophyllis divaricata Erect 
Rhodymenia ardissonei  Erect  Rhodymenia delicatula Erect 
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Table A.1. Continued. 

Species Trait 
category   Species Trait 

category 
Rodriguezella ligulata Erect  Rodriguezella pinnata Erect 
Rodriguezella strafforelloi Erect  Rytiphlaea tinctoria Erect 
Sargassum vulgare Canopy  Sebdenia dichotoma Erect 
Simploca hypnoides Turf  Spatoglossum solieri Erect 
Spermatochnus sp. Epiphyte  Sphacellaria cirrosa Turf 

Sphacellaria plumula Turf  Sphaerococcus 
coronopifolius Erect 

Sphondylothamnion 
multifidum Turf  Spongites brassica-florida Encrusting 

Spongites notarisii Encrusting  Sporochnus pedunculatus Erect 
Spyridia filamentosa  Turf  Stilophora rizoides Erect 
Taonia atomaria Erect  Tricleocarpa cylindrica Erect 
Valonia macrophysa Turf  Valonia utricularis Turf 
Womersleyella setacea Turf  Wrangelia penicillata Turf 
Wundermania miniata Turf  

Zonardinia prototypus Encrusting 
Zonaria tournefortii Erect  

 

Table A.2. ANOVA summary for the GLM fitted to the habitat complexity data. 
Caulerpa cylindracea coverage was modeled as a function of habitat complexity. The asterisk 
(*) denotes significant p-values. 

Dependent variable Predictor 𝝌2 Df p-value 

Caulerpa cylindracea coverage Habitat complexity 670.06 2 <0.001* 

 
 

Table A.3. Effect of habitat complexity on Caulerpa cylindracea coverage. Tukey tests were 
applied to the fitted GLM to compare the coverage of Caulerpa cylindracea between 
different habitat complexities. The asterisk (*) indicates that the p-value is significant. 

Dependent variable Comparison z ratio p-value 

Caulerpa cylindracea coverage 

High - Medium -10.330 <0.001* 

High - Low -16.404 <0.001* 

Medium - Low 17.530 <0.001* 
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Table A.4. ANOVA summary for the GLM fitted to the habitat complexity data in 
relation to depth. Caulerpa cylindracea coverage was modeled as a function of depth, habitat 
complexity and the interaction between both terms. The asterisk (*) denotes the 
significant p-values. 

Dependent variable Predictor 𝝌2 Df p-value 

Caulerpa cylindracea 
coverage 

Depth 916.10 1 <0.001* 

Habitat complexity 802.61 2 <0.001* 

Depth x Habitat 
complexity 70.62 2 <0.001* 

 

 

Table A.5. Effect of habitat complexity and depth on Caulerpa cylindracea coverage. Tukey 
tests were applied to the fitted GLM to compare the coverage of Caulerpa cylindracea 
between different habitat complexities at each depth (A) and between different depths at 
each habitat complexity (B). The asterisk (*) indicates that the p-value is significant. 

A) 
Dependent variable Complexity Comparison z ratio p-value 

Caulerpa cylindracea 
coverage 

High Shallow - Deep 2.950 0.003* 

Medium Shallow - Deep 18.854 <0.001* 

Low Shallow - Deep 17.649 <0.001* 

	
B)	

Dependent variable Depth Comparison z ratio p-value 

Caulerpa cylindracea 
coverage 

Shallow 

High - Medium -2.218 0.068 

High - Low -4.933 <0.001* 

Medium - Low 13.421 <0.001* 

Deep 

High - Medium -12.642 <0.001* 

High - Low -17.185 <0.001* 

Medium - Low 11.692 <0.001* 
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Table A.6. ANOVA summary for the mixed effects models fitted to the exclusion 
experiment data. The abundances of Caulerpa cylindracea per depth were modeled as a 
function of Treatment (cage type) and Time (beginning and end), with Plot as a random 
effect to account for the repeated measures over time. The table shows the summaries of 
the ANOVAs for the two models and the asterisk (*) denotes significant p-values. 

 

 

 

 

 

 

Table A.7. Effect of the exclusion treatment on Caulerpa cylindracea abundance at 10 m, at 
the beginning (July) and end (August) of the experiment. Tukey tests were applied to the 
fitted mixed models to compare the abundance of Caulerpa cylindracea between exclusion 
treatments at each time observation (A) and between times at each exclusion treatment 
(B). The exclusion treatments are: Control (n=5), Control Exclusion (n=5) and Exclusion 
(n=5). The asterisk (*) indicates that the p-value is significant. 

A) 

	
B)	

	

Dependent variable Depth Predictor 𝝌2 Df p-value 

Caulerpa cylindracea 
abundance 

Shallow 

Treatment 16.662 2 0.002* 

Time 166.795 1 <0.001* 

Treatment x 
Time 113.269 2 <0.001* 

Deep 
Treatment 0.389 2 0.949 

Time 186.588 1 <0.001* 

Dependent variable Time Comparison z ratio p-value 

Caulerpa cylindracea 
abundance 

Beginning 

Control – Control Exclusion 0.435 0.930 

Control – Exclusion -1.274 0.792 

Control Exclusion – Exclusion -0.768 0.963 

End 

Control – Control Exclusion -3.101 0.024* 

Control – Exclusion 9.755 <0.001* 

Control Exclusion – Exclusion 6.265 <0.001* 

Dependent variable Treatment Comparison z ratio p-value 

Caulerpa cylindracea 
abundance 

Control Beginning - End -14.049 <0.001* 

Control Exclusion Beginning - End -9.069 <0.001* 

Exclusion Beginning - End -0.683 0.523 
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Appendix B: Chapter 3 Supporting Information 

Table B.1. Temporal and numerical characteristics of the locations studied and sampled 
for this study in relation to the invasion of Caulerpa cylindracea. 

Region Location Year 1st 
detection 

Year 
sampled 

Years 
invaded 

Time since 
introduction Abundance Abund. 

in site 

Menorca 

Illa del 
Aire 2006 2018 12 Old 58 High 

Porros 2010 2018 8 Old 54 High 

Sa Mola 2012 2018 6 Old 18 Low 

Sa Llosa 2014 2018 4 Recent 1 Low 

Catalonia 

Sant 
Francesc 2013 2019 6 Old 1 Low 

Roses 
2020 2016 2020 4 Recent 5 Low 

Roses 
2019 2016 2019 3 Recent 7 Low 

Roses 
2018 2016 2018 2 Recent 45 High 

Ses Negres 2017 2019 2 Recent 9 Low 

Cabrera 
Archipelago 

Cabrera 2003 2020 17 Old 28 Low 

Cabrera 2003 2008 5 Recent 55 High 

Cabrera 2003 2007 4 Recent 62 High 

 

 

Table B.2. ANOVA summary for the GLM fitted to the habitat complexity data. 
Caulerpa cylindracea coverage was modeled as a function of habitat complexity. The asterisk 
(*) denotes significant p-values. 

Dependent variable Predictor 𝝌2 Df p-value 

Caulerpa cylindracea 
presence in pellets 

Time since Invasion 7.84 1 <0.01* 

Caulerpa abundance 41.77 1 <0.001* 

Time since Invasion x Caulerpa 
abundance 8.37 1 <0.01* 
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Table B.3. Effect of A) time since invasion and B) Caulerpa cylindracea abundance on the 
presence of Caulerpa cylindracea in the fish pellets. Tukey tests were applied to the fitted 
GLM to compare the presence of Caulerpa cylindracea in the fish pellets between different 
exposure times at each level of invader abundance (A) and between different abundances 
at each level of exposure time (B). The asterisk (*) and the text in bold indicate that the p-
value is significant.  

A) 

Dependent variable Time since 
Invasion Comparison z ratio p-value 

Caulerpa cylindracea 
presence in pellets 

Old High - Low 5.67 <0.001* 

Recent High - Low 2.08 0.04* 

 
B) 

Dependent variable Caulerpa 
abundance Comparison z ratio p-value 

Caulerpa cylindracea 
presence in pellets 

High Old - Recent 3.72 <0.001* 

Low Old - Recent 0.93 0.35 

 

 

Table B.4. ANOVA summary for the Generalized Linear Model fitted to the data on the 
proportion of Caulerpa cylindracea found in Sarpa salpa pellets. The proportion of Caulerpa 
cylindracea in the fish pellets was modeled as a function of the time since the invasion, the 
abundance of the invader in the community and the interaction between both terms. The 
asterisk (*) and the text in bold denote the significant p-values. 

Dependent variable Predictor 𝝌2 Df p-value 

Caulerpa cylindracea 
proportion in pellets 

Time since Invasion 343.71 1 <0.001* 

Caulerpa abundance 1264.8
2 1 <0.001* 

Time since Invasion x Caulerpa 
abundance 198.09 1 <0.001* 
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Table B.5. Effect of A) time since invasion and B) Caulerpa cylindracea abundance on the 
proportion of Caulerpa cylindracea found in the fish pellets. Tukey tests were applied to the 
fitted GLM to compare the proportion of Caulerpa cylindracea in the fish pellets between 
different exposure times at each level of invader abundance (upper table) and between 
different abundances at each level of exposure time (lower table). The asterisk (*) and the 
text in bold indicate that the p-value is significant. 

A) 

Dependent variable Time since 
Invasion Comparison z ratio p-value 

Caulerpa cylindracea 
proportion in pellets 

Old High - Low 28.56 <0.001* 

Recent High - Low 5.23 <0.001* 

	
B)	

Dependent variable Caulerpa 
abundance Comparison z ratio p-value 

Caulerpa cylindracea 
proportion in pellets 

High Old - Recent 17.92 <0.001* 

Low Old - Recent 1.03 0.30 

 
 

 

Table B.6. Mean Ivlev´s Electivity Index values ± S.E., as a measure of the electivity of 
the herbivorous fish Sarpa salpa towards the invasive alga Caulerpa cylindracea. Ivlev Indexes 
were calculated for three different years at two locations with contrasting exposure times 
to the invader: Cabrera (first detection in 2003) and Roses (first detection in 2016). Index 
values approaching -1 indicate that the food item is avoided, whereas values approaching 
1 indicate that the species exclusively targets that item. 

 

 

 

 

 

 

Location Year Ivlev Index 

Cabrera 

2007 -0.181 ± 0.05 

2008 -0.151 ± 0.05 

2020 0.085 ± 0.06 

Roses 

2018 -0.877 ± 0.04 

2019 -0.533 ± 0.10 

2020 -0.455 ± 0.13 
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Table B.7. Kruskall-Wallis test applied to the Ivlev´s Electivity data for different 
sampling years and at each location. The Ivlev´s Electivity Indexes of Sarpa salpa towards 
Caulerpa cylindracea were analyzed as a function of sampling year. The asterisk (*) and the 
text in bold denote the significant p-values. 

Location Dependent variable Predictor 
K-W 
𝝌2 

Df p-value 

Cabrera Ivlev Index Year 15.94 2 <0.001* 

Roses Ivlev Index Year 2.04 2 0.36 

 

 

Table B.8. Effect of sampling year on the Ivlev´s Electivity Index of Sarpa salpa towards 
Caulerpa cylindracea. Dunn tests were applied to the Kruskall-Wallis test to compare the 
Ivlev´s Electivity Index towards Caulerpa cylindracea, between sampling years at Cabrera. P-
values were adjusted with the Benjamini-Hochberg method. The asterisk (*) and the text 
in bold indicate that the p-value is significant. 

Location Comparison Z p-value adjusted 

Cabrera 

2007-2008 -0.44 0.66 

2007-2020 -3.75 <0.001* 

2008-2020 -3.38 0.001* 
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Appendix C: Chapter 4 Supporting Information 

Table C.1. Summary of the species found in the fish stomach contents. The + symbol 
indicates that the prey item was found in one or more of the stomachs from that fish 
species and the – symbol indicates that the prey item was not found in any stomach. 

Group Species Diplodus 
sargus 

Diplodus 
vulgaris 

Diplodus 
annularis 

Spondyliosoma 
cantharus 

Algae 

Acetabularia sp. + - - - 

Acrodiscus vidovichii + - - - 

Alsidium corallinum + - - - 

Amphiroa sp. + + - - 

Arthocladia sp. - - - + 

Asperococcus bullosus + - - - 

Brown algae non-
identified + - - - 

Calothrix sp. + - - - 

Caulerpa cylindracea + - + + 

Caulerpa prolifera + - + + 

Champia parvula - - + - 

Chondria sp. + - - - 

Cladophora pellucida + - - - 

Cladophora prolifera + - - - 

Cladophora sp. + + - + 

Cryptonemia lomation + - - - 

Cystoseira sp. + + - - 

Derbesia tenuissima - + - - 

Dictyopteris polypodioides + + - - 

Dictyota linearis + + - - 

Dictyota sp. + + - - 

Eupogodon planus + - - - 
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Table C.1. Continued. 

Group Species Diplodus 
sargus 

Diplodus 
vulgaris 

Diplodus 
annularis 

Spondyliosoma 
cantharus 

Algae 

Feldmannophycus rayssiae + - - - 

Flabellia petiolata + - - - 

Gracilaria sp. + - + - 

Haliptilon virgatum + - - - 

Halopteris filicina + + - + 

Halopteris scoparia + + - - 

Laurencia sp. + - - - 

Leptofauchea coralligena + - - - 

Lobophora variegata + - - - 

Microtictyon tenuius - + - - 

Padina sp. + - - - 

Peyssonnelia rubra + - - - 

Peyssonnelia sp. + + - - 

Plocamium sp. + - - - 

Polysiphonia sp. + - - - 

Polysiphonia subulifera - - + + 

Rhodymenia sp. + - - - 

Rytiphlaea tinctoria + - - - 

Sargassum sp. + - - - 

Sphacelaria cirrosa + + - + 

Sphacelaria plumula + + - - 

Valonia utricularis + - - - 

Plantae 
Cymodocea nodosa + + - + 

Posidonia oceanica + + + + 

	
	
	



CHAPTER 4 SUPPORTING INFORMATION 

	 215	

Table C.1. Continued. 

Group Species Diplodus 
sargus 

Diplodus 
vulgaris 

Diplodus 
annularis 

Spondyliosoma 
cantharus 

Animalia 

Actinia sp. + - - - 

Aphrodita aculeata + - - + 

Asteroidea + - - - 

Bivalvia + + + - 

Briozoa + + + - 

Chitonidae + + - - 

Chlamis sp. + + - - 

Clavelina sp. + - - - 

Cnidaria + - - - 

Crustacea + + - - 

Fish bones - + - + 

Fish scales + + - - 

Foraminifera + - - - 

Gasteropoda + + + - 

Holothuria sp. + - - - 

Hydraria + + - - 

Invertebrate + - - + 

Mollusc eggs - - - + 

Ophiuroidea + + - - 

Paracentrotus lividus + + - - 

Pherusella tubulosa + - + - 

Polychaeta + - - - 

Sea snail eggs + - - - 

Sipunculida - + - - 

Tunicate + - - - 

Other 
Organic detritus + + + + 

Inorganic detritus + + - - 
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Table C.2. Results of the ANOSIM and the pairwise comparisons between fish species 
to detect diet similarities between species under 999 permutations. The asterisk (*) 
indicates statistical significance (p-value < 0.05). 

 

 

 

 

 

 

 

Table C.3. Results of the SIMPER analysis to detect the most important prey items 
contributing to the diet dissimilarities between fish species. Only the 3 most important 
food items are shown. 

Fish species Item Cumulative contribution to 
dissimilarities 

D. annularis  
vs.  

D. sargus 

Organic detritus 0.187 

Caulerpa cylindracea 0.327 

Eggs 0.466 

D. annularis  
vs.  

D. vulgaris 

Organic detritus 0.215 

Caulerpa cylindracea 0.359 

Eggs 0.495 

D. annularis  
vs.  

S. cantharus 

Organic detritus 0.399 

Caulerpa cylindracea 0.568 

Eggs 0.732 

D. sargus  
vs.  

D. vulgaris 

Organic detritus 0.214 

Gasteropoda 0.394 

Crustacea 0.518 

	

Test Fish species R Statistic Significance 

Global test All species 0.201 0.001* 

Pairwise test 

D. annularis vs D. sargus 0.184 0.306 

D. annularis vs D. vulgaris 0.398 0.006* 

D. annularis vs S. cantharus 0.625 0.006* 

D. sargus vs D. vulgaris 0.156 0.102 

D. sargus vs S. cantharus 0.171 0.012* 

D. vulgaris vs S. cantharus 0.473 0.006* 
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Table C.3. Continued.	

Fish species Item Cumulative contribution to 
dissimilarities 

D. sargus  
vs. 

S. cantharus 

Organic detritus 0.394 

Gasteropoda 0.503 

Non-identified 
invertebrate  0.554 

D. vulgaris  
vs.  

S. cantharus 

Organic detritus 0.382 

Gasteropoda 0.548 

Crustacea 0.695 
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Appendix D: Chapter 5 Supporting Information 

Table D.1. ANOVA summary for the LMM fitted to the extreme temperature culture 
data. Caulerpa cylindracea area was modeled as a function of Treatment (“control” and 
“extreme”), Time (start and end) and their interaction, with Replicate as a random effect 
to account for the repeated measures over time. The asterisk (*) denotes significant p-
values. 

 

 

 

 

Table D.2. Effect of temperature treatment on the area of Caulerpa cylindracea, at the 
beginning and end of the culture experiment. Tukey tests were applied to the fitted mixed 
model to compare the area of Caulerpa cylindracea between temperature treatments at each 
time observation. The temperature treatments are: Control (n=3) and Extreme (n=3). 
The asterisk (*) indicates that the p-value is significant. 

 

Table D.3. ANOVA summary for the LM fitted to the Caulerpa cylindracea thickness data. 
Caulerpa cylindracea thickness was modeled as a function of Location_Morphology 
(“Roses_filaments”, “Roses_stolons”, “Funtana_stolons”, “Split_stolons”, “Ponta 
Veslo_stolons” and “Kallm_stolons”). The asterisk (*) denotes significant p-value. 

Dependent variable Predictor F value Df p-value 

Caulerpa cylindracea thickness Location_Morphology 116.84 5 <0.001* 

	
	

Dependent variable Predictor F value Df p-value 

Caulerpa cylindracea area 

Treatment 18.965 1 0.005* 

Time 1.446 1 0.275 

Treatment x 
Time 15.896 1 <0.007* 

Dependent variable Time Comparison Df t ratio p-value 

Caulerpa cylindracea area 
Start Control - Extreme 6 0.260 0.803 

End Control - Extreme 6 5.899 0.001* 
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Table D.4. Effect of Location and Morphology on the thickness of Caulerpa cylindracea. 
Tukey tests were applied to the fitted mixed model to compare the thickness of Caulerpa 
cylindracea between locations and morphologies. The asterisk (*) indicates that the p-value 
is significant.	

 

 

 

 

 

 

Dependent variable Morphological 
Comparison 

Population 
comparison t ratio p-value 

Caulerpa cylindracea 
thickness 

Filament  
vs.  

Stolon 

Filament vs. Funtana -18.893 <0.001* 

Filament vs. Kallm -18.770 <0.001* 

Filament vs. Ponta Veslo -20.082 <0.001* 

Filament vs. Roses -17.226 <0.001* 

Filament vs. Split -17.881 <0.001* 

Stolon  
vs.  

Stolon 

Funtana vs. Kallm -0.123 1 

Funtana vs. Ponta Veslo 1.189 0.840 

Funtana vs. Roses -1.667 0.559 

Funtana vs. Split 1.012 0.912 

Kallm vs. Ponta Veslo -1.312 0.777 

Kallm vs. Roses 1.544 0.638 

Kallm vs. Split 0.889 0.948 

Ponta Veslo vs. Roses 2.856 0.064 

Ponta Veslo vs. Split 2.201 0.254 

Roses vs. Split -0.654 0.986 
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Table D.5. Caulerpa sequences used to build the phylogenetic tree. The underlined names 
show the sequences that were amplified in this study. The rest of the sequences were 
obtained from GenBank. 

Species Accession 
Number 

Herbarium 
Code Site 

Caulerpa cylindracea MT274435 Svp-144 Split, Croatia 

Caulerpa cylindracea MT274436 Svp-159 Split, Croatia 

Caulerpa cylindracea MT274442 Svp-146 Funtana, Croatia 

Caulerpa cylindracea MT274446 Svp-145 Kallm, Albania 

Caulerpa cylindracea MT274444 Svp-143 Ponta Veslo, Montenegro 

Caulerpa cylindracea MT274443 Svp-130 Ponta Veslo, Montenegro 

Caulerpa cylindracea MT274447 Svp-053 Cabrera, Spain 

Caulerpa cylindracea MT274445 Svp-142 Formentera, Spain 

Caulerpa cylindracea MT274440 Svp-068 Roses, Spain 

Caulerpa cylindracea MT274441 Svp-140 Roses, Spain 

Caulerpa cylindracea MT274439 Svp-138 Roses, Spain 

Caulerpa cylindracea MT274438 Svp-139 Roses, Spain 

Caulerpa cylindracea KY773569  Othoni, Greece 

Caulerpa cylindracea KY773571  Lecce, Italy 

Caulerpa cylindracea KY773570  Brindisi, Italy 

Caulerpa cylindracea KY773572  Lecce, Italy 

Caulerpa cylindracea KY773573  Kotor, Montenegro 

Caulerpa cylindracea JX185615  Naples, Italy 

Caulerpa cylindracea JX185616  Sicily, Italy 

Caulerpa cylindracea FM956048  Ischia, Italy 

Caulerpa cylindracea JN817677  Perth, Australia 

Caulerpa sertularioides MT274434 Svp-083 Colombia 

Caulerpa taxifolia MF172076  Ragusa, Italy 

Caulerpa prolifera KF383343  Cádiz, Spain 

 





 

Cover image: Aerial view of our study site in Cala Sant Francesc, Blanes.	

Author: Jorge Santamaría Pérez. 

 

 

 

 

 

Published 
chapters 

 

 

 

 

 

 

 

 

 

 



This article has been accepted for publication and undergone full peer review but has not been 
through the copyediting, typesetting, pagination and proofreading process, which may lead to 
differences between this version and the Version of Record. Please cite this article as doi: 
10.1002/ECY.3440

 This article is protected by copyright. All rights reserved

MR. JORGE  SANTAMARÍA (Orcid ID : 0000-0003-4425-6297)

Article type      : Articles

Journal: Ecology

Manuscript type: Articles

Running Head: Grazing, competition, and biotic resistance

The role of competition and herbivory in biotic resistance against 

invaders: a synergistic effect

Jorge Santamaría1, Fiona Tomas2,3, Enric Ballesteros4, Juan M. Ruiz5, Jaime Bernardeau-Esteller5, 

Jorge Terrados2, Emma Cebrian4,6

1 Marine Resources and Biodiversity Research Group (GRMAR), Institute of Aquatic Ecology, 

University of Girona, Girona, Catalonia, Spain

2 Marine Ecosystems Dynamics Group – Instituto Mediterráneo de Estudios Avanzados (IMEDEA), 

Universitat de les Illes Balears (UIB) – Consejo Superior de Investigaciones Científicas (CSIC), 

Esporles, Balearic Islands, Spain

3 Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon, United States of 

America

4 Centre d´Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-

CSIC), Blanes, Catalonia, Spain

A
cc

ep
te

d 
A

rt
ic

le

https://doi.org/10.1002/ECY.3440
https://doi.org/10.1002/ECY.3440
https://doi.org/10.1002/ECY.3440
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fecy.3440&domain=pdf&date_stamp=2021-06-18


This article is protected by copyright. All rights reserved

5 Seagrass Ecology Group – Centro Oceanográfico de Murcia, Instituto Español de Oceanografía 

(IEO), San Pedro del Pinatar, Murcia, Spain

6 Corresponding Author. E-mail: emma@ceab.csic.es

Manuscript received 17 March 2021; accepted 5 April 2021.

A
cc

ep
te

d 
A

rt
ic

le

mailto:emma@ceab.csic.es


This article is protected by copyright. All rights reserved

Abstract

Invasive species pose a major threat to global diversity and once they are well established their 

eradication typically becomes unfeasible. However, certain natural mechanisms can increase the 

resistance of native communities to invaders and can be used to guide effective management policies. 

Both competition and herbivory have been identified as potential biotic resistance mechanisms that 

can limit plant invasiveness but it is still under debate to what extent they might be effective against 

well-established invaders. Surprisingly, whereas biotic mechanisms are known to strongly interact, 

most studies up to date have examined single biotic mechanisms separately, which likely influences 

our understanding of the strength and effectiveness of biotic resistance against invaders. Here we use 

long-term field data, benthic assemblage sampling and exclusion experiments to assess the effect of 

native assemblage complexity and herbivory on the invasion dynamics of a successful invasive 

species, the alga Caulerpa cylindracea. A higher complexity of the native algal assemblage limited C. 

cylindracea invasion, probably through competition by canopy-forming and erect algae. Additionally, 

high herbivory pressure by the fish Sarpa salpa reduced C. cylindracea abundance by more than 4 

times. However, long-term data of the invasion reflects that biotic resistance strength can vary across 

the invasion process and it is only where high assemblage complexity is concomitant with high 

herbivory pressure, that the most significant limitation is observed (synergistic effect). Overall, the 

findings reported in this study highlight that neglecting the interactions between biotic mechanisms 

during invasive processes and restricting the studied time scales may lead to underestimations of the 

true capacity of native assemblages to develop resistance to invaders. 

Keywords: invasion ecology, biological invasions, biotic resistance, interspecific competition, 

herbivory, alga-herbivore interactions, Caulerpa cylindracea, Sarpa salpa

Introduction

Biological invasions are one of the main threats to biodiversity and ecosystem function 

worldwide, being the second most prominent cause of species extinctions and playing an important 

role in diversity reduction (Vilà et al. 2011, Bellard et al. 2016). Furthermore, bioinvasions can 

produce alterations in a number of ecosystem services and basic ecosystems processes (Pejchar and 

Mooney 2009, Vilà et al. 2010, Simberloff et al. 2013), often at great economic cost (Pimentel et al. A
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2005). Still, our understanding of the factors that influence invasion success remains limited 

(Simberloff et al. 2013), complicating the development of effective management strategies to prevent 

and mitigate the negative effects of invasive species. 

The success of an invasion is dependent on multiple processes across a wide range of temporal 

and spatial scales (Perelman et al. 2007, Theoharides and Dukes 2007, Eschtruth and Battles 2009a, 

Byun et al. 2015). Among these processes, most of the attention has fallen on biological processes, in 

the context of the Biotic Resistance Hypothesis (Elton 1958, Keane and Crawley 2002, Levine et al. 

2004). The strength of biotic resistance against an invader is strongly influenced by the native 

assemblage and by the functional traits of the native species (Pokorny et al. 2005, Perelman et al. 

2007, Byun et al. 2013), which modulate the interspecific competition; but also by the consumer 

pressure on both, the invasive and the native species (Levine et al. 2004, Parker and Hay 2005, 

Mitchell et al. 2006). In this sense, negative effects of competition on several invasive plants, mainly 

caused by the limitation of essential resources such as water, nutrients or light, have been previously 

reported in tropical forests (Fine 2002), saltmarshes (Amsberry et al. 2000), grasslands (Corbin and 

D’Antonio 2004, te Beest et al. 2018), mangroves (Li et al. 2014, Zhang et al. 2018), shrublands 

(Morris et al. 2015) and freshwater ecosystems (Petruzzella et al. 2018). However, competition alone 

might not be enough to exert a strong biotic control against a well-established invader (Levine et al. 

2004, Vilà and Weiner 2004). On the other hand, herbivory has been also acknowledged as an 

important biotic resistance mechanism for native ecosystems (Levine et al. 2004, Parker and Hay 

2005, Parker et al. 2006), although its effectiveness is controversial (Maron and Vilà 2001, Keane and 

Crawley 2002, Liu and Stiling 2006). In fact, herbivores can promote (Eschtruth and Battles 2009b, 

Relva et al. 2010, Kalisz et al. 2014), deter (Cushman et al. 2011, Pearson et al. 2012, Zhang et al. 

2018), or have no effect on the dominance of invasive plant species (Stohlgren et al. 1999), which 

makes it difficult to understand the conditions under which herbivory can be an effective biotic 

resistance mechanism against an invasion. Taking into account that herbivory can be highly 

influenced by other factors such as native plant traits (Grutters et al. 2017) or habitat features (Alofs 

and Jackson 2014, Li et al. 2014, Ender et al. 2017, Zhang et al. 2018), contrasting observations on 

the role of biotic mechanisms in controlling invasive species may be partially explained by the fact 

that they are often assessed neglecting the relative importance of the interactions between 
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mechanisms (Levine et al. 2004, Mitchell et al. 2006, Alofs and Jackson 2014, Zhang et al. 2018, 

Petruzzella et al. 2020). Indeed, the interaction between biotic mechanisms has been suggested to be 

responsible for an enhancement in the biotic resistance capacity of the invaded community (Suwa and 

Louda 2012, Li et al. 2014, Zhang et al. 2018).

In marine ecosystems, macroalgae are one of the most conspicuous and successful invaders, as 

well as one of the most harmful, comprising 20% of marine invasive species worldwide (Schaffelke et 

al. 2006) and causing potentially important ecological and economic damage (Williams and Smith 

2007). Despite this, the factors that drive their invasive success remain largely unknown (Inderjit et al. 

2006), although similarly to what has been observed for plant invasions in terrestrial ecosystems, both 

competition and herbivory are suspected to determine their invasion success (Kimbro et al. 2013, 

Papacostas et al. 2017). In this regard, functional traits of the native species can influence habitat 

resistance to algae invasion through their contribution to interspecific competition (Arenas et al. 2006, 

Britton-Simmons 2006, Vaz-Pinto et al. 2012). Surprisingly, however, most studies seem to confirm 

the inability of herbivores to limit the spread of well-established invasive macroalgae (e.g. Wikström 

et al. 2006, Forslund et al. 2010, Cebrian et al. 2011, Tomas et al. 2011b, Nejrup et al. 2012), despite 

the important role of herbivory regulating algal abundance and distribution (Vergés et al. 2009, Poore 

et al. 2012). Overall, previous research on biotic resistance against invasive macroalgae seems to 

suggest that, in most cases, the effect of single biotic mechanisms might not be enough to 

significantly affect invader performance (Kimbro et al. 2013, Papacostas et al. 2017). Probably, as has 

been suggested above, only by considering the interaction between biotic mechanisms (both 

competition and herbivory), more robust conclusions on the true resistance of an assemblage towards 

a particular invader can be obtained.

In this study, we aim to test whether herbivory interacts with competition to modulate the 

resistance of a marine habitat towards a particular invader. We use Caulerpa cylindracea, one of the 

most invasive macroalgae worldwide, to assess the simultaneous role that both assemblage structure 

and herbivory pressure have on C. cylindracea invasion by using in situ field experiments that assess 

herbivory and assemblage characteristics. Additionally, we monitor the abundance of the invader over 

time to further elucidate whether the studied biotic mechanisms and their interaction influence the 

long-term dynamics of the invader.
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Materials and methods

Study species

Caulerpa cylindracea is a green alga, native to the Southwestern coast of Australia (Verlaque et al. 

2003), which is currently considered one of the most invasive species within the Mediterranean Sea 

(Klein and Verlaque 2008, Katsanevakis et al. 2016), having also invaded areas in the North Atlantic 

(Verlaque et al. 2004). Actually, it has recently been ranked as one of the marine invaders with the 

highest negative ecological impacts worldwide (Anton et al. 2019). However, despite its formidable 

ability to spread and grow, the abundance of C. cylindracea appears to differ markedly among 

invaded assemblages (Klein and Verlaque 2008, Cebrian and Ballesteros 2009), suggesting that there 

might be, in some cases, some natural mechanisms controlling C. cylindracea abundance. Among 

such mechanisms, competition may play an important role, since canopy-forming and erect algae 

(typical of high-complexity assemblages) can outcompete C. cylindracea (Ceccherelli et al. 2002, 

Bulleri and Benedetti-Cecchi 2008, Piazzi and Balata 2009, Bulleri et al. 2010), whereas herbivory 

seems to fail as a control mechanism for C. cylindracea when it is well established (Bulleri et al. 

2009, Cebrian et al. 2011), even though several species are known to commonly feed on it (Ruitton et 

al. 2006, Box et al. 2009, Cebrian et al. 2011, Tomas et al. 2011b). However, it is important to 

consider that previous studies have focused on only one of these mechanisms (either competition or 

herbivory) while, in nature, both mechanisms might act together to influence the abundance of the 

invasive species.

Study system

The Mediterranean Sea is the largest and deepest semi-enclosed sea on Earth and it is 

considered a hotspot for marine biodiversity as it harbors around 17,000 marine species, 20% of them 

being endemic to the region (Coll et al. 2010). Due to its temperate climatic conditions, 

Mediterranean benthic shallow habitats are dominated by macroalgae. Unfortunately, the 

Mediterranean Sea is one of the areas most susceptible to the introduction of non-native species 

worldwide (Galil 2007) and it is considered to be a hotspot for invasive algae (Williams and Smith 

2007, Thomsen et al. 2016).
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The study was conducted in the Cabrera Archipelago National Park, in the Balearic Islands 

(western Mediterranean; 39° 12’ 21” N, 2° 58´44” E) (Fig. 1). This maritime-terrestrial national park 

was established in 1991 and currently harbors some of the best-preserved benthic and fish 

assemblages in the Mediterranean Sea (Sala et al. 2012, Guidetti et al. 2014). 

The invasive alga, Caulerpa cylindracea, was first detected in the area in 2003 at a depth of 30 

m (Cebrian and Ballesteros 2009) and has, since then, colonized most of the park´s benthic habitats at 

depths from 0 to 65 m. Indeed, in some of these habitats, it has become the dominant species (Cebrian 

et al. 2011). 

Benthic habitat sampling and assemblage complexity

To assess the role that benthic assemblage complexity might have on C. cylindracea coverage, 

different assemblages were surveyed in three sites around the Cabrera Archipelago: Ses Rates, Na 

Foradada and Freu de la Imperial (Fig. 1). A shallow assemblage (10 m) and a deep assemblage (30 

m) were surveyed at each site to take into account the wide range of benthic assemblage complexities 

(Ballesteros et al. 1993) and contrasting herbivory pressures (Vergés et al. 2009, Tomas et al. 2011b) 

in relation to depth. Assemblages were sampled in 2005, 2006 and 2007. At each site and depth, three 

random samples measuring 20 x 20 cm2 were collected, with the whole benthic cover removed using 

a hammer and a chisel (Boudouresque 1971, Sant et al. 2017). After removing the erect algae, and 

before scraping each quadrat, the cover of each encrusting species was visually estimated to obtain a 

more reliable value of their abundance in the encrusting layer. After collection, samples were 

preserved in 4% formalin in seawater, and once in the laboratory, they were sorted and all algae were 

identified to species level. Species coverage was calculated by placing the species specimens 

horizontally over a laboratory tray and measuring the area they covered (Ballesteros 1986). Then, 

each algal species was assigned to a different category (“Canopy-forming”, “Erect”, “Turf” and 

“Encrusting”) based on their morphological traits (size and morphology) (Appendix S1: Table S1). In 

order to avoid the effect of assemblage complexity being subject to a confounding effect of the 

presence of Caulerpa cylindracea, this species was not included in any of the previous categories. 

Finally, the percent cover of each category in the sample was calculated. 
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Capacity of canopy-forming and erect algae to outcompete C. cylindracea in contrast to turf 

and encrusting species has been experimentally proven for coastal shallow rocky bottoms of the 

Mediterranean Sea (Ceccherelli et al. 2002, Bulleri and Benedetti-Cecchi 2008, Piazzi and Balata 

2009, Bulleri et al. 2010). Consequently, complexity of each sample was defined based on the 

percentage abundance of the “Canopy-forming” and “Erect” categories. Three levels of complexity 

were defined for the samples based on the percentage of coverage that comprised canopy-forming 

and/or erect species: “high complexity” (more than 50%); “medium complexity” (between 15% and 

50%) and “low complexity” (lower than 15%). 

 

Exclusion experiment

An exclusion experiment was performed to assess whether fish herbivory could act as a biotic 

resistance mechanism against Caulerpa cylindracea invasion by reducing the abundance of the 

invasive alga. To this end, in order to obtain a proxy of contrasting herbivory intensities, and bearing 

in mind that herbivory pressure decreases strongly through the water column (Vergés et al. 2009, 

2012, Steneck et al. 2017), the exclusion experiment was performed at two different depths: 10 m, 

where herbivory pressure is high, and 30 m, where it is low (Reñones et al. 1997, Tomas et al. 2011b, 

Vergés et al. 2012).

This experiment mainly targeted Sarpa salpa, because it is the only truly herbivorous fish in 

the western Mediterranean Sea (Verlaque 1990, Gianni et al. 2017), it plays an important role 

structuring algal communities (Vergés et al. 2009) and it regularly consumes C. cylindracea (Ruitton 

et al. 2006, Tomas et al. 2011b). This fish species is quite abundant throughout the Cabrera 

Archipelago, where it can reach densities up to 14 individuals per 250 m2 above depths of 20 m 

(Reñones et al. 1997), spending around 90% of the time above 20 m (Tomas et al. 2011b). Sarpa 

salpa is known to have a quite heterogeneous diet (Havelange et al. 1997), but it can also be very 

selective (Verlaque 1990, Marco-Méndez et al. 2017) and even shows a preference for C. cylindracea 

over many native species (Tomas et al. 2011b), which makes it a potential candidate for the control of 

C. cylindracea. 

The exclusion experiment was set up at the end of June 2011 in Na Foradada (Fig. 1), an area 

where fish communities are well established, sea urchin (Paracentrotus lividus and Arbacia lixula) 
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densities are very low (<0.1 per m2) (Cebrian et al. 2011) and the highest densities of the fish S. salpa 

are found within the National Park, with more than 20 individuals per 250 m2 (Reñones et al. 1997). 

Furthermore, we chose this area because both the shallow and the deep benthic habitats displayed a 

similar medium complexity (with coverage of erect and canopy-forming species at between 25-35%) 

and similar abundances of native species. This meant there was sufficient abundance of C. 

cylindracea to experimentally assess, in the field, the effect of herbivory pressure on it.

At each depth, 3 treatments were used: “Exclusion”, which consisted of cages of 50 x 50 x 50 

cm3 made of plastic netting with a mesh size of 2.5 cm; “Control-Exclusion”, consisting of cages with 

open sides; and “Control”, consisting of 50 x 50 cm2 quadrats marked permanently on the corners and 

without a cage. A total of 5 interspersed replicates per treatment were set (15 plots per depth) within 

an area of <100 m2 to avoid different abiotic conditions between plots. At the beginning (July) and at 

the end (August) of the experiment, pictures were taken at each plot to subsequently assess C. 

cylindracea abundance, which was calculated with the computer program photoQuad version 1.4 

(Trygonis and Sini 2012). In each photograph, 50 random points were placed and then, each of these 

points was assigned to the category of either “Caulerpa cylindracea” or “other algae”. The proportion 

of points in each category was then used as a proxy of the percentage abundance for each of those two 

categories. 

Abundance of Caulerpa cylindracea

The abundance of C. cylindracea at the Cabrera Archipelago was assessed in 2008 and then 

again in 2017. To do so, 16 representative sites around the archipelago were chosen (Fig. 1) and a 

perpendicular transect to shore was performed at each site by means of scuba diving. The depth of the 

transects ranged from 5 to 45 m to cover the main bathymetric range at which C. cylindracea can be 

found (Cebrian et al. 2011). The abundance of C. cylindracea was estimated by means of 25 x 25 cm2 

quadrats, divided into 25 subquadrats of 5 x 5 cm2 (Sala and Ballesteros 1997, Sant et al. 2017) and 

the number of subquadrats where Caulerpa was detected, was used as a unit of abundance. A total of 

thirty quadrats were randomly positioned within each 5 m-depth range and then the mean C. 

cylindracea abundance per each 5 m-depth stratum was calculated. Also, to take into account the 

effect that assemblage complexity might have on the bathymetric abundance of C. cylindracea, each 5 
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m-depth range at each site was classified as having either high or low complexity based on the 

dominant morphological categories in the assemblage (“canopy-forming”, “erect”, “turf” and 

“encrusting”), while ignoring the presence of C. cylindracea to avoid confounding effects. 

Statistical analysis

The effect of benthic assemblage complexity on the cover of Caulerpa cylindracea was 

assessed with binomial generalized linear models (GLM), because the response variable was 

measured as a percentage (% of C. cylindracea coverage in each sample) and it could be 

approximated to a logistic distribution (e.g.: success = % coverage of C. cylindracea, failure = % 

coverage of species other than C. cylindracea). Two models were fitted, one to assess the role of 

“assemblage complexity” and another to assess the role of both “depth” and “assemblage complexity” 

on C. cylindracea coverage. In the latter, both factors were included as fixed effects and if the 

interaction between them was significant, it was also included in the model. To fit both models, the 

statistical environment R was used (R version 3.6.3) (R Core Team 2018); and to compare the effects 

between levels in the assemblage complexity factor itself (“high complexity”, “medium complexity” 

and “low complexity”), and in the assemblage complexity factor at each depth (“shallow” and 

“deep”), Tukey post-hoc tests were performed using the functions “pairs” and “emmeans” from the 

package emmeans (Lenth 2018).

To evaluate the effect of the exclusion treatment on the abundance of C. cylindracea at the end 

of the experiment, binomial mixed effects GLMs were used because the response variables were 

measured as proportions and could be approximated to a logistic distribution (e.g.: success = points 

that corresponded to C. cylindracea; failure = points that did not correspond to C. cylindracea), while 

the random terms were used to take into account the repeated measures. In the models, the factors 

“treatment” and “time” were included as fixed effects, whereas “plot” was included as a random 

effect. If the interaction between “treatment” and “time” was significant, it was also included in the 

fixed part of the model. Two models were fitted, one per depth (10 m or 30 m) by means of the 

package lme4 (Bates et al. 2015) for R. Tukey post hoc tests, which were performed using the 

functions “pairs” and “emmeans” in the package emmeans, were used to compare effects between 
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levels in the treatment factor (“Exclusion”, “Control-Exclusion”, “Control”) at each time observation 

(“beginning” and “end”). 

The R code used to perform all the statistical analyses can be found on Zenodo: 

https://doi.org/10.5281/zenodo.4664432 (Santamaría 2021).

Results

Effect of benthic assemblage complexity on Caulerpa cylindracea coverage

Benthic assemblage complexity had a significant effect on Caulerpa cylindracea coverage 

(p<0.001, Appendix S2: Table S1), with high complexity assemblages supporting low C. cylindracea 

covers (Fig. 2, A). In fact, there were significant differences in C. cylindracea cover among the 

different levels of assemblage complexity (p<0.001, Appendix S2: Table S2), with C. cylindracea 

coverage lower than 5% in very complex assemblages, whereas in low complexity assemblages, 

coverage of the invasive species reached values of almost 30% (Fig. 2, A).

When the depth of the sampled assemblages was included in the model, C. cylindracea 

coverage varied significantly by depth, by assemblage complexity and by the interaction term 

(Appendix S2: Table S3). In fact, although the previous pattern of lower C. cylindracea cover in high 

complexity assemblages is maintained, the coverage of the invasive alga is significantly higher at 

deeper habitats, independently of assemblage complexity (Appendix S2: Table S4, upper table; Fig. 2, 

B). In particular, in shallow habitats, high complexity assemblages had 20 times less C. cylindracea 

coverage than low complexity assemblages, but only 10 times less coverage at deeper habitats (Fig. 2, 

B). At each depth, there were significant differences between all levels of assemblage complexity, 

except between high complexity and medium complexity assemblages in shallow areas (Appendix S2: 

Table S4, lower table).

Exclusion experiment

Significant effects of herbivory on Caulerpa cylindracea abundance were only detected at 

shallow depths (10 m), where C. cylindracea abundance varied significantly by treatment, by time 

and by the interaction between the two (Appendix S3: Table S1). While at the beginning of the 

experiment, all treatment areas displayed similar C. cylindracea abundance, both the “Control-
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Exclusion” and the “Control” treatments exhibited lower C. cylindracea abundances at the end of the 

experiment (p<0.0001; Appendix S3: Table S2, upper table), whereas C. cylindracea abundance in 

the “Exclusion” treatment remained constant (Appendix S3: Table S2, lower table). Indeed, at the end 

of the experiment, C. cylindracea abundance was 4.33 and 2.36 times higher in the full exclusion 

cages compared with the uncaged control plots and the side-open cages, respectively (Fig. 3, A). 

On the other hand, at 30 m, the abundance of C. cylindracea varied significantly across time 

but not between treatments (Appendix S3: Table S1). In fact, for all three treatment levels, abundance 

was significantly higher (1.88 times on average) at the end of the experiment, than at the beginning 

(Fig. 3, B).

Abundance of Caulerpa cylindracea

The abundance of Caulerpa cylindracea in the Cabrera Archipelago decreased between 2008 

and 2017 at depths of between 5 and 35 m, but remained more or less constant below 40 m (Fig. 4). In 

the entire bathymetric distribution, assemblage complexity showed a considerable effect on C. 

cylindracea abundance, with high complexity assemblages exhibiting lower abundances of the 

invasive alga than low complexity assemblages. Furthermore, it was in shallow and highly complex 

assemblages, from 5 to 25 m deep, where C. cylindracea reached its lowest abundance, with values 

ranging between 5 and 10% (Fig. 4, B).

Discussion

Our results indicate that while both, competition and herbivory, can provide biotic resistance 

to a certain extent, strong synergistic effects are observed when the two mechanisms act together. 

Indeed, competition (by canopy-forming and erect algae) and herbivory (by Sarpa salpa), 

significantly affect the invasion outcomes of C. cylindracea, particularly limiting its abundance in 

complex algal assemblages in which herbivory pressure is high. 

Benthic assemblage complexity had a strong influence on preventing C. cylindracea invasion. 

The dominance of canopy-forming and erect species resulted in reduced cover of C. cylindracea, 

probably determining resistance to C. cylindracea invasion through competition mechanisms 

(Ceccherelli et al. 2002, Piazzi and Balata 2009), such as the reduction in light availability, which can 
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limit the photosynthetic performance of C. cylindracea (Bernardeau-Esteller et al. 2015, Marín-

Guirao et al. 2015, Bernardeau-esteller et al. 2020) and the prevention of reattachment of fragments 

through the branch-sweeping of the substratum (Bulleri and Benedetti-Cecchi 2008, Piazzi et al. 

2016). In contrast, when the abundance of canopy-forming algae was low and the communities were 

dominated by turf and encrusting species, C. cylindracea cover was much higher. In such habitats, the 

colonization and spread of C. cylindracea seems to be facilitated because turf assemblages provide an 

optimal 3-D matrix which favors the anchoring of the stolons and trapping of fragments (Ceccherelli 

et al. 2002, Bulleri and Benedetti-Cecchi 2008, Bulleri et al. 2009). In this sense, these findings 

support previous evidence from marine and terrestrial ecosystems, where the presence and dominance 

of species with certain functional traits (e.g. growth form, size and height) among the assemblage, 

strongly influences the strength of the biotic resistance against invasive primary producers (Lindig-

Cisneros and Zedler 2002, Arenas et al. 2006, Britton-Simmons 2006, Byun et al. 2013, Bernardeau-

esteller et al. 2020) by limiting one or several essential resources for the invader. 

However, the significant differences we observed in the abundance of C. cylindracea between 

shallow and deep communities, regardless of assemblage complexity, suggest that mechanisms other 

than assemblage complexity are playing an important role on the invasion of C. cylindracea, 

particularly given that C. cylindracea can readily colonize habitats from 0 to 50 m depth (Klein and 

Verlaque 2008, Cebrian and Ballesteros 2009). In this sense, although several factors (e.g. propagule 

pressure, disturbance or abiotic conditions) cannot be disregarded, we suggest that the observed 

differences in invader abundance mainly reflect the contrasting consumer pressures found between 

deep and shallow communities. Concretely, given similar assemblage complexity, when herbivory 

pressure was high (here shallow habitats) (Reñones et al. 1997, Vergés et al. 2009, 2012, Tomas et al. 

2011b), the abundance of C. cylindracea was significantly lower compared to areas where herbivory 

pressure was low or non-existent (deeper habitats). Actually both, the exclusion experiment and the 

pattern of C. cylindracea abundance and distribution across the Cabrera Archipelago, further support 

that herbivory is also contributing to the biotic resistance of native assemblages to the C. cylindracea 

invasion. In this sense, where herbivory is weak, such as in deep habitats or if herbivores have been 

depleted, C. cylindracea is subject to limited control and its abundance depends largely on 

assemblage complexity, which results in higher abundances of the invader among the native 
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assemblage (Fig. 5, A and B). Similarly, when herbivory pressure is high but assemblage complexity 

is low, the invader will also suffer limited control (Fig.5, C). However, when high herbivory pressure 

is concomitant with high assemblage complexity, both mechanisms (competition and herbivory) 

strongly limit the abundance of C. cylindracea (Fig. 5, D). Taking into account that sea urchin 

densities were very low in the study area (<0.1 per m2), the herbivory pressure observed can be 

mainly attributed to the effect of Sarpa salpa, a fish which is mostly distributed at shallow depths and 

which has a certain preference for C. cylindracea (Tomas et al. 2011b). Nevertheless, considering that 

sea urchins have been previously reported feeding on C. cylindracea (Ruitton et al. 2006, Bulleri et al. 

2009, Cebrian et al. 2011, Tomas et al. 2011a), additional negative effects on C. cylindracea 

abundance may occur in areas with high sea urchin abundances. These results where the interaction 

between biotic mechanisms yielded a stronger biotic resistance against the invader than the single 

mechanisms alone, agree with previous studies where habitat characteristics interacted with herbivory 

pressure to influence the overall biotic resistance of certain terrestrial ecosystems (Suwa and Louda 

2012, Li et al. 2014, Zhang et al. 2018). 

 Also, and importantly, by following the long-term dynamics of C. cylindracea at the study 

area, we observe that the overall strength of the assemblage´s biotic resistance has increased over time 

as the abundance of the invasive alga in assemblages subjected to higher biotic resistance (i.e., 

communities at depths of between 0 to 25 m), has decreased over a 10-year period (Fig. 4). This 

regression, restricted to areas with high herbivore pressure, may be the result of either an increase in 

the abundance of the herbivores or to some herbivores becoming more efficient in consuming the 

invasive species as the invasion progresses (Strayer et al. 2006, Carlsson et al. 2009). However, given 

that the abundance of S. salpa has remained more or less stable during the assessed period (Coll 

2020), we suspect that this herbivore has become more efficient at targeting the invader and has 

increased its per capita consumption rates over time (Santamaría J., unpublished manuscript). 

Nevertheless, other mechanisms that can increase biotic resistance, such as, for instance, 

allelochemical defenses deployed by native species and assemblages against the invader (Strayer et al. 

2006), cannot be ruled out. 

Unfortunately, in general, knowledge on whether the effects of biotic mechanisms are 

maintained throughout an invasion process or whether they change in relation to time since invasion 
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is still quite limited, because most studies just assess a particular time frame in the invasion (Maron 

and Vilà 2001, Levine et al. 2004, Mitchell et al. 2006, Alofs and Jackson 2014, Papacostas et al. 

2017). To our knowledge, our study is the first that reports the importance of exposure time for the 

development of resistance against invaders in natural ecosystems (but see Diez et al. 2010, Dostál et 

al. 2013 for assessments in common garden experiments) and highlights that increases in biotic 

resistance observed over time (due to increased consumer pressure, competitive impacts or a 

combination of the two), could explain why invaders that have previously been considered as hyper-

successful (e.g. Myriophyllum spicatum, Elodea canadiensis, Dreissena polymorpha, Carcinus 

maenas, Caulerpa species) can suffer marked reductions in population size some years after the onset 

of the invasion (Simberloff and Gibbons 2004, De Rivera et al. 2005, Iveša et al. 2006, Carlsson and 

Strayer 2009, Bernardeau-esteller et al. 2020). Therefore, by focusing on only a small time frame or 

just the beginning of an invasion, we may be underestimating the true capacity of native assemblages 

to develop resistance to invaders (Strayer et al. 2006, 2017, Rius et al. 2014, Papacostas et al. 2017). 

For this reason, the use of long-term data, despite being scarce, should be prioritized whenever 

possible, to assess the true effect that biotic resistance mechanisms might have on the overall invasion 

process.

Generally, our findings highlight the importance of considering several factors and their 

interaction when assessing the strength of biotic resistance mechanisms against a particular invader, 

especially considering that herbivory and competition are universal processes that operate across 

ecosystems and that naturally interact with each other (Gurevitch et al. 2000, Meiners and Handel 

2000, Hambäck and Beckerman 2003). In fact, it has been proposed that herbivory reinforces 

competition and in turn releases the chance for coexistence, favoring those species that are better 

competitors (Gurevitch et al. 2000). However, despite that, in invasion ecology, the interaction 

between these mechanisms has been rarely assessed (but see: Suwa and Louda 2012, Li et al. 2014, 

Zhang et al. 2018) and most studies rely on the assessment of single biotic mechanisms (Maron and 

Vilà 2001, Levine et al. 2004, Vilà and Weiner 2004, Kimbro et al. 2013, Papacostas et al. 2017 and 

references therein). This can definitively underestimate the true role of biotic processes (e.g. 

competition and herbivory) against invasive species and may explain why our findings, reporting a 

strong effect of biotic mechanisms against a successful invader, contrast with many previous studies. 
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Actually, our results, together with those recently reported for mangrove ecosystems (Li et al. 2014, 

Zhang et al. 2018), where a successful invader (Spartina alterniflora) was limited and excluded due to 

the interaction between competition and herbivory, suggest that synergisms between biotic resistance 

mechanisms may be an important but overlooked process driving the invasion success of plant 

invaders (Fig. 6). In this sense, in situ field experiments, in which competition (e.g. assemblage 

complexity), herbivory, and the interaction between the two can be simultaneously assessed, can 

provide a better understanding of the true extent of biotic resistance against an invader (Levine et al. 

2004, Mitchell et al. 2006, Kimbro et al. 2013, Li et al. 2014, Enge et al. 2017, Zhang et al. 2018, 

Petruzzella et al. 2020) and will definitively help in the understanding of the invasion success and the 

dynamics of different invaders.

Finally, the findings reported in this study highlight the importance of improving our 

knowledge regarding the factors that influence invasive species success in order to fully understand 

the invasion process of different species and adopt successful mitigation and management measures. 

As a practical example, while the removal of invasive algae has proven to be, in most cases, 

ineffective or infeasible (Epstein and Smale 2017, Giakoumi et al. 2019), results obtained in this and 

other studies (Bernardeau-esteller et al. 2020) suggest that by promoting the conservation of marine 

habitats and herbivorous populations, we can foster biotic resistance within an ecosystem-based 

approach to marine environment management and contribute to the long-term control of marine 

invasions.
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FIGURE CAPTIONS

Figure 1. Location of the Cabrera Archipelago National Park. The points show the locations of the 

sampling sites where assemblage complexity was assessed (3 sites), the exclusion experiment was 

performed (1 site) and the scuba diving transects were done (16 sites). Shapefile for the 

Mediterranean Sea downloaded from www.naturalearthdata.com and for the Cabrera Archipelago 

National Park from www.miteco.gob.es.

Figure 2. Mean Caulerpa cylindracea coverage  S.E for A) each level of assemblage complexity, ±

and for B) each level of assemblage complexity at the two different depths. Significant differences 

between assemblage complexity levels (p-values from Tukey´s test with 95% confidence intervals) 

are indicated with letters.

Figure 3. Mean Caulerpa cylindracea abundance  S.E., at each time observation and for each ±

treatment in the exclusion experiment. A) Exclusion experiment at 10 m depth and B) exclusion 

experiment at 30 m depth. Significant differences between exclusion treatments (p-values from 

Tukey´s test with 95% confidence intervals) are indicated with letters in each graph.

Figure 4. Bathymetric abundance of Caulerpa cylindracea (mean  S.E.) at the Cabrera ±

Archipelago National Park: (A) in 2008 and (B) in 2017, on assemblages with different complexities.

Figure 5. Depiction of how different combinations of assemblage complexity and herbivory pressure 

determine biotic resistance against a marine invasive alga (e.g. Caulerpa cylindracea), representing 

four scenarios: A) low assemblage complexity and low herbivory pressure; B) high assemblage 

complexity and low herbivory pressure; C) low assemblage complexity and high herbivory pressure 

and D) high assemblage complexity and high herbivory pressure. (Algae illustrations obtained and 

modified from the Integration & Application Network (IAN) Image Library (Tracey Saxby and 

Joanna Woerner), the IUCN and freepik (https://www.freepik.com/macrovector); the fish illustration, 

by João T. Tavares, was obtained from www.deviantart.com).
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Figure 6. Schematic representation of how the interaction between competition and herbivory might 

determine the overall biotic resistance against an invader. Depicted illustrations correspond to Ratus 

losea, Cervus elaphus and Sarpa salpa as native herbivores; a mangrove forest, a temperate forest and 

a marine algal forest as native assemblages; and two grasses and an alga species (here Caulerpa 

cylindracea) as invasive species. (Illustrations obtained from the Integration & Application Network 

(IAN) Image Library (Tracey Saxby, Kim Kraeer and Lucy Van Essen-Fishman), the IUCN and the 

fish illustration, by João T. Tavares, was obtained from www.deviantart.com).
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Novel and Cryptic Filamentous Form
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1 Marine Resources and Biodiversity Research Group (GRMAR), Institute of Aquatic Ecology, University of Girona, Girona,
Spain, 2 Centre d’Estudis Avançats de Blanes, Consejo Superior de Investigaciones Científicas (CEAB-CSIC), Blanes, Spain

Morphological plasticity can enable algae to adapt to environmental change and
increase their invasibility when introduced into new habitats. Nevertheless, there is
still a lack of knowledge on how such plasticity can affect the invasion process
of an invasive species. In this context, the high plasticity in the genus Caulerpa is
well documented. However, after an extremely hot summer, a previously unreported
filamentous morphology of Caulerpa cylindracea was detected; indeed, this morphology
could only be confirmed taxonomically after in-depth morphological characterization
and molecular analysis with the genetic marker tufA. We describe an ex situ culture
experiment which showed that stressful conditions, such as high temperatures,
can trigger this morphological change. Almost all of the thalli maintained at a
constant extreme temperature of 29◦C died, but after being returned to optimum
temperature conditions, the filamentous morphology began to develop from the
surviving microscopic tissue. In contrast, thalli at a control temperature of 21◦C
maintained the regular morphology throughout the experiment. When C. cylindracea
develops this filamentous morphology, it may act as a cryptic invader because it is
difficult to detect in the field. Furthermore, the filaments likely improve C. cylindracea’s
invasive capabilities with regard to resistance, persistence and dispersion and may have
an important role in the re-colonization process, after a population disappears following
a period of stressful conditions. Possibly, C. cylindracea’s ability to respond plastically to
stressful conditions might explain its remarkable success as an invasive species.

Keywords: cryptic invasions, morphological plasticity, resistance form, Mediterranean Sea, Caulerpa cylindracea

INTRODUCTION

Biological invasions refer to the process by which different organisms, commonly known as invasive
species, can arrive and establish in a new habitat, where they disrupt the normal functioning of the
system. Currently, these invasions are considered one of the main drivers of global change due
to their adverse effects on biodiversity, habitat structure and native ecosystem functioning (Mack
et al., 2000; Stachowicz and Byrnes, 2006; Simberloff et al., 2013; Bellard et al., 2016). Additionally,
the establishment of invasive species it is often associated to great economic costs (Pimentel et al.,
2001, 2005) due to their alteration of several ecosystem services (Pejchar and Mooney, 2009; Vilà
et al., 2010). The impacts of invasive species are especially important and noticeable in marine
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ecosystems, where biological invasions are on the rise due to the
increases in their main vectors of introduction, such as shipping
traffic, the aquarium trade, or the opening and widening of new
corridors (Katsanevakis et al., 2013; Seebens et al., 2013; Galil
et al., 2017); and in the future, the establishment of non-native
species is expected to continue increasing due to climate change
(Stachowicz et al., 2002; Lejeusne et al., 2010).

Species invasiveness depends on the features that enable a
non-native organism to invade a certain habitat (Richardson
et al., 2011) with the main influence being the life-history traits
of the invader (Grotkopp et al., 2002; Pyšek and Richardson,
2008; Van Kleunen et al., 2010). Several studies have suggested
that phenotypic plasticity is one of the most important of such
features for invasive species (Richards et al., 2006; Davidson et al.,
2011). Plants and algae can adapt by modifying, among other
things, photosynthetic traits (Molina-Montenegro et al., 2012;
Zanolla et al., 2015), leaf-area and shoot allocation (Arenas et al.,
2002; Liu and Su, 2016) and growth form (Van Kleunen and
Fisher, 2001; Monro and Poore, 2009) allowing them to respond
to changes in light, temperature or herbivory pressure (Lewis
et al., 1987; Monro and Poore, 2005; Nicotra et al., 2010). In this
sense, understanding how this phenotypic plasticity affects the
success of an invasive species is crucial to our understanding of its
invasion process (Schaffelke et al., 2006; Theoharides and Dukes,
2007) and might have important implications for the successful
management of the species (Hobbs, 2000; Simberloff et al., 2005).

Caulerpa cylindracea is a siphonaceous green macroalga,
native to Western Australia, that has become one of the most
widespread non-native algae in the Mediterranean Sea (Piazzi
et al., 2005; Klein and Verlaque, 2008; Montefalcone et al.,
2015). Indeed, C. cylindracea is currently considered the most
invasive species within the Mediterranean basin (Katsanevakis
et al., 2016) and has also invaded areas in the Atlantic Ocean
(Verlaque et al., 2004) and in Southern Australia (Klein and
Verlaque, 2008). Still, it is not clear which has been the source
of the primary introduction in the Mediterranean Sea, although
it is quite likely that it was through the aquarium trade,
with shipping traffic and fishing gear being the main sources
of the secondary introductions within the basin (Verlaque
et al., 2003). Ecologically, C. cylindracea spread causes the
homogenization of native communities due to the formation
of dense and continuous meadows (Klein and Verlaque, 2008),
which has negative implications for the native macroalgal
assemblages and the diversity of the communities (Piazzi et al.,
2001; Piazzi and Ceccherelli, 2006; Klein and Verlaque, 2011).
Also, this species affects the sedimentation rates, the carbon
turnover, the organic matter composition and the quality of
the invaded sediments (Piazzi et al., 2007; Holmer et al., 2009;
Pusceddu et al., 2016; Rizzo et al., 2017). Morphologically,
C. cylindracea is characterized by a simple morphology, formed
by creeping stolons and erect shoots with grape-like ramuli (also
called branchlets) that can be arranged radially or distichously
(Klein and Verlaque, 2008). In addition, it has been reported
that species in the genus Caulerpa show a high degree of
morphological plasticity in response to environmental conditions
(Peterson, 1972; Calvert, 1976; Coppejans and Beeckman,
1989; Collado-Vides, 2002b), allowing these species to adapt

to different environments and thus increasing their invasive
potential (Collado-Vides, 2002b; Raniello et al., 2004; Smith,
2009). Several factors such as temperature, light or depth,
can trigger subtle morphological changes in stolon and ramuli
shape (Peterson, 1972; Calvert, 1976; Ohba and Enomoto, 1987;
Ohba et al., 1992), photosynthetic traits (Raniello et al., 2004,
2006) and the interspace between erect axes (Collado-Vides,
2002b; De Senerpont Domis et al., 2003). However, more
acute morphological changes have been detected for the first
time in C. cylindracea during a recent field survey (Figure 1).
The thalli of these specimens consisted only of thin vertical
filaments, which were impossible to identify as Caulerpa species
until morphological and molecular characterization confirmed
their identity. At present, the exact conditions that trigger
this morphological change are unknown but, considering that
the filamentous form was found in Montenegro after the
extremely warm summer of 2018 (Figure 2), it would appear that
stressful conditions brought about by high temperatures could be
involved. A better understanding of the conditions that trigger
this morphological shift—which allows C. cylindracea to become
a cryptic invader—will greatly enhance our understanding of the
invasive process, the collapses and the recoveries of this species.

In this study, our aim was to determine whether extreme
temperature conditions can trigger the formation of a
filamentous morphology in Caulerpa cylindracea similar to
that observed in the field. To do so, the morphological plasticity
of this species was studied through culture experiments at
contrasting temperatures. In addition, in order to confirm the
taxonomical identity of the specimens, all thalli (from both
cultured and natural populations) were genetically characterized
with a chloroplast molecular marker (tuf A), which had been
used previously for the genus Caulerpa (Famà et al., 2002; Kazi
et al., 2013; Sauvage et al., 2013).

MATERIALS AND METHODS

Study Sites and Culture
Extreme Temperature Laboratory Experiment
To study the effects of extreme temperatures on C. cylindracea,
specimens from a population in Spain (Roses: 42◦ 14′ 18.26′′N;
3◦ 12′ 25.74′′E) were sampled in February 2019. Once in the
laboratory, samples were cleaned with sterilized seawater to
remove all the epiphytes and detritus (such as dead Posidonia
oceanica rhyzomes and dead shells). For acclimation, Caulerpa
samples were placed in aquariums (12 L) with sterile seawater
and in a Radiber AGP-360 growth chamber at 12◦C and a 12:12
(L:D) cycle at 200 µmol photons m−2 s−1 to simulate natural
conditions of irradiance and temperature for 1 week. After the
acclimation period, algal cultures were prepared for a period of
170 days under either control conditions or extreme (i.e., very
warm) conditions (Figure 3). Six fragments of C. cylindracea
(≈4 cm2 each) were randomly transferred to six plastic beakers
(1 L): three control treatments and three extreme-temperature
treatments, each containing 200 g of sterilized gross sand and
0.5 L of sterilized seawater to which was added 5 ml/l of
K-medium (Keller et al., 1987). The temperature treatments for
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FIGURE 1 | Macroscopic picture of a rock covered by a thick patch of Womersleyella setacea turf with the filamentous form of Caulerpa cylindracea growing from
beneath it (black arrows).

the experiment were as follows: “control” (21◦C) based on the
average summer seawater temperature recorded in the sampled
area and “extreme” (29◦C) based on abnormally high summer
seawater temperatures recorded in the Mediterranean Sea1. After
an adaptation period of 7 days at 12◦C in the growth chamber, the
temperature was progressively increased (by 1◦C every 2 days) in
all six treatment beakers for 18 days until a temperature of 21◦C

1www.t-mednet.org

was reached in the growth chamber. At this point, the beakers
were split into two Radiber AGP-360 growth chambers, one to
keep the “control” beakers and the other to keep the “extreme”
beakers throughout the experiment. Following this, the “control”
beakers were maintained at 21◦C for the remaining 152 days of
the experiment in the growth chamber; whereas, in the case of
the “extreme” beakers, the temperature was raised in the other
growth chamber by 1◦C every 5 days for the next 40 days until
a temperature of 29◦C was reached; this temperature was then

Frontiers in Marine Science | www.frontiersin.org 3 February 2021 | Volume 8 | Article 548679

http://www.t-mednet.org
https://www.frontiersin.org/journals/marine-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/marine-science#articles


fmars-08-548679 February 12, 2021 Time: 18:55 # 4

Santamaría et al. Cryptic Morphology of Caulerpa cylindracea

FIGURE 2 | Marine heat wave (MHW) events during 2018 at Ponta Veslo, Montenegro (42◦ 22′ 5.15′ ′N; 18◦ 36′ 22.50′ ′E), calculated with the heatwaveR package
(Schlegel and Smit, 2018) using Reynolds Optimally Interpolated Sea Surface Temperature (OISST) data (Reynolds et al., 2007). The gray line represents the SST
climatology for the last 35 years; the green line indicates the 90th percentile MHW threshold; and the black line shows the SST during 2018. The dark red filled area
indicates the most severe MHW event during 2018, while the orange filled areas indicate all the other MHW events identified over the same time period. The dark
gray arrow indicates the day of the year when the filamentous morphology of Caulerpa cylindracea was sampled from the field (5th of September).

FIGURE 3 | Water temperature variation over the course of the experiment in “control” conditions (above) and “extreme” conditions (below). The numbers indicate
the days of culture and each change in color represents a 1◦C change in temperature.

maintained for a further 14 days and then gradually lowered by
1◦C each day back to 21◦C and kept at this temperature for the
remaining 90 days of the experiment (Figure 3). Throughout
the experiment, the seawater and growth medium mixture was
renewed once a week.

Field Sampling for Morphological and Taxonomical
Characterization
Samples of C. cylindracea were collected from natural populations
in Spain (Roses: 42◦ 14′ 18.26′′N; 3◦ 12′ 25.74′′E); Croatia
(Funtana: 45◦ 10′ 40.16′′N; 13◦ 35′ 32.31′ E and Split: 43◦ 30′
28.79′′N; 16◦ 23′ 17.56′′E); Montenegro (Ponta Veslo: 42◦ 22′
5.15′′N; 18◦ 36′ 22.50′E); and Albania (Kallm: 41◦ 19′ 27.88′′N;
19◦ 25′ 19.31′′E) by scuba-divers at depths of between 5 and 12 m
based on previous knowledge on the presence of the invasive alga

in these locations. All samples were transported in zip bags within
a thermal box to maintain a constant seawater temperature
until the morphological characterization was performed in the
laboratory. All samples showed the typical morphology of the
species (Figure 4B). These samples were also used for the
taxonomic characterization of the populations (see “Molecular
Analysis” section).

Data Collection and Analysis
Extreme Temperature Laboratory Experiment
The effects of the extreme temperatures we applied to
C. cylindracea were assessed by measuring the macroscopic
morphometric changes. The structure and area of Caulerpa were
measured by means of macroscopic photographs taken with an
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FIGURE 4 | (A) Mean area ±S.E. of Caulerpa cylindracea in the beakers (n = 6, 3 control beakers and 3 extreme temperature beakers), at the beginning of the
experiment, and after 72 days. Photographs (B,C) show control beakers at the beginning of the treatment and after 72 days, respectively. Photographs (D,E) show
extreme temperature beakers at the beginning of the treatment and after 72 days, respectively. The small black and white circles highlight the C. cylindracea present
in each beaker.

Olympus TG-5 camera, which were then analyzed with Adobe
Photoshop CC 2018. Living parts of C. cylindracea (green color)
were manually selected and measured using the “analysis tool.”

Then, to assess whether there were differences in the area of
C. cylindracea between treatments at the end of the experiment, a
linear mixed effect model (LMM) was fitted with “C. cylindracea
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area” as the response variable and “treatment” and “time” as the
explanatory variables. The interaction between both explanatory
variables was included in the model and a random term for
“replicate” was used to take into account the repeated measures
design (Harrison et al., 2018). To fit this model, the package
lme4 (Bates et al., 2015) in the statistical environment R was
used (R version 3.6.3) (R Core Team., 2018). Finally, to compare
the effects between levels in the treatment factor (“control” and
“extreme) at each time observation (“beginning” and “end”),
Tukey post hoc tests were performed using the functions “pairs”
and “emmeans” from the package emmeans (Lenth, 2018).

Morphological Characterization and Comparison
The morphological characterization of the cultured stolons and
filaments was assessed by means of microscopic photographs,
taken using a Zeiss AXIO Imager A.2 (Carl Zeiss, Berlin,
Germany) equipped with an AxioCam MRc5 camera and a
stereomicroscope Stemi 2000-C (Carl Zeiss, Berlin, Germany)
equipped with an AxioCam ERc 5s camera; and the images
were analyzed with Zen2011 software (Blue Edition). Also, to
account for regional morphological variability, the mean stolon
thickness of 10 randomly sampled stolons from each of the
natural populations (Roses, Funtana, Split, Ponta Veslo, and
Kallm) was compared to the thickness of filaments obtained at
extreme temperatures.

To assess whether mean thickness of filaments differed from
that of stolons, a linear model was fitted with “C. cylindracea
thickness” as the response variable and “location_morphology”
as the explanatory variable, in the statistical environment
R. Finally, to compare between location_morphology levels
(“Roses_filaments,” “Roses_stolons,” “Funtana_stolons,”
“Split_stolons,” “Ponta Veslo_stolons,” and “Kallm_stolons”),
Tukey post hoc tests were performed using the functions “pairs”
and “emmeans” from the package emmeans.

Molecular Analysis
To determine species identity, a genetic analysis was performed
on all sampled and incubated thalli, including both filamentous
and typical morphology. DNA extraction was performed
following the DNeasy Plant Mini Kit (QiaGen) protocol in order
to obtain the best DNA quality. The primer used to amplify
the genetic material was tuf A (elongation factor A, from the
chloroplast). The reactions were performed in 25 µL volumes
and the master mix contained 5 mM of MgCl2, 0.3 mM of each
primer, 0.2 mM of dNTPs, 0.5 units of Taq DNA polymerase
and 1.0 µL of the extracted DNA. The PCR reaction consisted
of 40 cycles of 94◦C for 1 min (denaturation), 52◦C for 1 min
(primer annealing) and 72◦C for 2 min (extension) (Famà et al.,
2002). The PCR reaction was finalized with a final 5 min
step at 72◦C. The PCR products were purified and sequenced
by Macrogen Spain.

Sequences analyses were performed using different R (R Core
Team., 2018) packages: MUSCLE (Edgar, 2004) to align the
sequences, and APE (Paradis et al., 2004) and PHANGORN
(Schliep et al., 2017) to create phylogenetic trees based on
statistical analyses (Bio neighbor-joining tree, k80 distance, with
10,000 replicates).

RESULTS

Extreme Temperature Laboratory
Experiment
In the model fitted to the data from the extreme temperature
experiment, both “treatment” and the interaction term
between “treatment” and “time” showed a significant effect
on C. cylindracea area (p < 0.05, Table 1), being the area of
C. cylindracea equal between treatments at the beginning of the
experiment but being significantly different between “control”
and “extreme” conditions at the end (p < 0.05, Table 2). Actually,
after 72 days, the mean surface area of the Caulerpa cylindracea
thalli under “control” conditions had increased by 44%, whereas
that of the specimens exposed to the “extreme temperature”
treatment (at 29◦C for final 14 days of this 72 days period)
had decreased significantly by 87% (Figure 4A). Furthermore,
while the control specimens maintained the typical morphology
of the species—characterized by thick rhizomes with some
vertical vesicular fronds (Figure 4C)—almost all the thick parts
of the specimens in the “extreme temperature treatment” had
disappeared after 14 days at 29◦C (Figure 4E).

When the cultures were returned to optimum conditions,
new living parts emerged from the sediment in all the “extreme
treatment” beakers, after 20 days. However, these new parts did
not resemble the original C. cylindracea’s morphology. Instead,
they presented a new type of structure characterized by erect thin
filaments (Figure 5A), which for the next 3 months continued
growing vertically and extending throughout the liquid in the
beakers (Figure 5B).

Macroscopically, these filaments, which grow vertically from
the substrate, are long (between 5 and 10 cm) and thin,
and occasionally branched. Each filament has rhizoids in its
basal part (which is without plastids) that serve to attach the

TABLE 1 | ANOVA summary for the LMM fitted to the extreme temperature
culture data.

Dependent variable Predictor F value Df Pr (>F)

Caulerpa cylindracea area Treatment 18.965 1 0.005*

Time 1.446 1 0.275

Treatment × Time 15.896 1 0.007*

Caulerpa cylindracea area was modeled as a function of Treatment (“control” and
“extreme”), Time (start and end) and their interaction, with Replicate as a random
effect to account for the repeated measures over time. The asterisk (*) denotes
significant p-values.

TABLE 2 | Effect of temperature treatment on the area of Caulerpa cylindracea, at
the beginning and end of the culture experiment.

Dependent variable Time Comparison df t ratio p-value

Caulerpa cylindracea area Start Control—Extreme 6 0.260 0.803

End Control—Extreme 6 5.899 0.001*

Tukey tests were applied to the fitted mixed model to compare the area of
Caulerpa cylindracea between temperature treatments at each time observation.
The temperature treatments are: Control (n = 3) and Extreme (n = 3). The asterisk
(*) indicates that the p-value is significant.
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FIGURE 5 | Lateral (A) and vertical (B) view of one beaker with the filamentous morphology of Caulerpa cylindracea. The white square on the bottom of the beaker
was added at the end of the experiment, to use it as a scale.

filament to the substrate. The upper part of the filament (with
plastids) is light green and in all cases devoid of rhizoids
or vesicles, which contrasts with the typical morphology of
C. cylindracea (Figures 4B,D).

These filaments contrasted with the C. cylindracea thalli
cultured under control conditions which, throughout the
experiment (Figures 4B,C), maintained the typical morphology
described for this species: the thalli were characterized by
thick, prostrate stolons with interspaced rhizoids for anchoring,
even where they grew unattached to the substrate. Vesicular
fronds could also be observed, although these were smaller
than in the field.

Morphological Comparison
In the model fitted to the morphological data, the variable
“location_morphology” showed a significant effect on
C. cylindracea thickness (p < 0.05, Table 3), with filament
thickness being significantly different to stolon thickness
(p < 0.005, Table 4) while stolon thickness was similar between
populations (Table 4). Actually, microscopically, there was
an almost 10-fold difference in mean thickness between the

TABLE 3 | ANOVA summary for the LM fitted to the Caulerpa cylindracea
thickness data.

Dependent variable Predictor F-value Df Pr (>Chisq)

Caulerpa cylindracea
thickness

Location_Morphology 116.84 5 <0.001*

Caulerpa cylindracea thickness was modeled as a function of
Location_Morphology (“Roses_filaments,” “Roses_stolons,” “Funtana_stolons,”
“Split_stolons,” “Ponta Veslo_stolons,” and “Kallm_stolons”). The asterisk (*)
denotes significant p-value.

filaments (222.42 ± 9.78 µm) in the extreme temperature
beakers and the stolons (2,093.38 ± 31.50 µm) sampled
at different natural populations. This is amply illustrated
in Figure 6.

TABLE 4 | Effect of location and morphology on the thickness of Caulerpa
cylindracea.

Dependent variable Morphological
comparison

Population
comparison

t ratio p-values

Caulerpa cylindracea
thickness

Filament vs.
Stolon

Filament vs. Funtana −18.893< 0.001*

Filament vs. Kallm −18.770< 0.001*

Filament vs. Ponta
Veslo

−20.082< 0.001*

Filament vs. Roses −17.226< 0.001*

Filament vs. Split −17.881< 0.001*

Stolon vs.
Stolon

Funtana vs. Kallm −0.123 1

Funtana vs. Ponta
Veslo

1.189 0.840

Funtana vs. Roses −1.667 0.559

Funtana vs. Split 1.012 0.912

Kallm vs. Ponta Veslo −1.312 0.777

Kallm vs. Roses 1.544 0.638

Kallm vs. Split 0.889 0.948

Ponta Veslo vs. Roses 2.856 0.064

Ponta Veslo vs. Split 2.201 0.254

Roses vs. Split −0.654 0.986

Tukey tests were applied to the fitted mixed model to compare the thickness
of Caulerpa cylindracea between locations and morphologies. The asterisk (*)
indicates that the p-value is significant.
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FIGURE 6 | (A) Mean width ±S.E. of Caulerpa cylindracea filaments (left) and stolons (right) from different populations (n = 10 for each population). (B) View of two
filaments under the stereomicroscope at 1.0×. (C) View of a stolon with a vertical vesicular frond under the stereomicroscope at 1.0×. (D) (1) Macroscopic view of
C. cylindracea with the regular morphology and (2) macroscopic view of the filamentous form of C. cylindracea. The white arrow shows the rhizoids that the filaments
use for attaching themselves to the substrate.

Although erect filaments are rarely ascribed to Caulerpa
genus, the presence of trabeculae—slender strands traversing
the lumen of the thallus (Lamouroux, 1809; Womersley, 1984;
Wynne and Bold, 1985)—confirms the identity of the thalli.
The anatomical morphology of this structure in the filaments
is identical to that of the regular stolons, as they traverse

the interior of the filament going from one side to the
other of a circular section and attach to the wall with a
thickened structure that resembles a suction cup. However,
the trabeculae in the filaments are much thinner and less
numerous than in the stolons, which might explain why the
filaments are so weak.
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FIGURE 7 | Phylogenetic Neighbor Joining (NJ) tree for Caulerpa cylindracea, obtained using the tufA marker. Three other species of Caulerpa (C. sertularioides, C.
taxifolia, and C. prolifera) were used as closely related species to establish differences. GenBank accession numbers are given for each sequence. Values at nodes
derived from the NJ. The sequences produced in the present study are highlighted in bold.

Taxonomical Characterization
For the genetic analysis, a total of 14 high quality tuf A sequences
of up to 820 bp. were obtained and amplified from five
specimens with the filamentous shape, eight specimens from the
Mediterranean Sea with the common morphology of Caulerpa
cylindracea and an additional sequence from C. sertularioides,
which was obtained from the Caribbean Sea (Table 5). In
addition, several C. cylindracea sequences were obtained from
GenBank, together with sequences from C. taxifolia and
C. prolifera, in order to establish differences in the phylogenetic
tree. In the Neighbor Joining tree (Figure 7), all sequences from

C. cylindracea formed a highly supported cluster, grouped close
together, which included both filamentous and typical thalli, thus
indicating that they are the same entity.

DISCUSSION

Our culture experiments showed that extreme environmental
conditions, in this case high temperatures maintained for long
periods of time (i.e., 14 days at 29◦C), affected the survival of
Caulerpa cylindracea and triggered the development of a new
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TABLE 5 | Caulerpa sequences used to build the phylogenetic tree.

Species Accession
number

Herbarium
code

Site

Caulerpa cylindracea MT274435 Svp-144 Split, Croatia

Caulerpa cylindracea MT274436 Svp-159 Split, Croatia

Caulerpa cylindracea MT274442 Svp-146 Funtana, Croatia

Caulerpa cylindracea MT274446 Svp-145 Kallm, Albania

Caulerpa cylindracea MT274444 Svp-143 Ponta Veslo, Montenegro

Caulerpa cylindracea MT274443 Svp-130 Ponta Veslo, Montenegro

Caulerpa cylindracea MT274447 Svp-053 Cabrera, Spain

Caulerpa cylindracea MT274445 Svp-142 Formentera, Spain

Caulerpa cylindracea MT274440 Svp-068 Roses, Spain

Caulerpa cylindracea MT274441 Svp-140 Roses, Spain

Caulerpa cylindracea MT274439 Svp-138 Roses, Spain

Caulerpa cylindracea MT274438 Svp-139 Roses, Spain

Caulerpa cylindracea KY773569 Othoni, Greece

Caulerpa cylindracea KY773571 Lecce, Italy

Caulerpa cylindracea KY773570 Brindisi, Italy

Caulerpa cylindracea KY773572 Lecce, Italy

Caulerpa cylindracea KY773573 Kotor, Montenegro

Caulerpa cylindracea JX185615 Naples, Italy

Caulerpa cylindracea JX185616 Sicily, Italy

Caulerpa cylindracea FM956048 Ischia, Italy

Caulerpa cylindracea JN817677 Perth, Australia

Caulerpa sertularioides MT274434 Svp-083 Colombia

Caulerpa taxifolia MF172076 Ragusa, Italy

Caulerpa prolifera KF383343 Cadiz, Spain

The underlined names show the sequences that were amplified in this study. The
rest of the sequences were obtained from GenBank.

morphology characterized by long, thin vertical filaments from
the surviving tissues. This new morphology of C. cylindracea has
also been found in the field and is described here for the first time.

The laboratory experiment showed the remarkable capacity
of C. cylindracea to survive under stressful culture conditions
as the temperature treatment chosen (29◦C) is much higher
than the usual temperatures found at both the native and
the invaded range (Klein and Verlaque, 2008). Additionally,
C. cylindracea showed a great ability to adapt to environmental
change, because it developed a new filamentous morphology
from the damaged tissue that survived to the unfavorable culture
conditions, i.e., extreme temperatures. These morphological
changes during vegetative development are a common strategy
in sessile organisms such as plants (Dorn et al., 2000; Puijalon
et al., 2008; Nicotra et al., 2010) and algae (Kübler and
Dudgeon, 1996; Garbary et al., 2004; Monro and Poore,
2005; Fowler-Walker et al., 2006) to tolerate environmental
change, and to improve their competitive and survival capacity
(Bradshaw, 1972; Harper et al., 1986; Price and Marshall,
1999; Collado-Vides, 2002a). Actually, more or less acute
morphological changes have been previously observed and
described in different algae species (e.g., some Caulerpa species,
Ulva prolifera, Chondrus crispus, Asparagopsis armata, Padina
jamaicensis, Codium fragile, or Ecklonia radiata among others)
under different culture conditions (Ohba and Enomoto, 1987;

Ohba et al., 1992; Kübler and Dudgeon, 1996; De Senerpont
Domis et al., 2003; Garbary et al., 2004; Monro and Poore,
2005; Gao et al., 2016) and in the field (Lewis et al.,
1987; Meinesz et al., 1995; Collado-Vides, 2002b; Garbary
et al., 2004; Fowler-Walker et al., 2006), as a response to
changes in temperature, salinity, hydrodynamism, light, or
herbivory pressure.

Taking into account that Caulerpa cylindracea may be one
of the most widely studied invasive algae species around the
world, the lack of a previous description of the filamentous
morphology demonstrates that when C. cylindracea adopts this
form, it clearly goes undetected. For instance, the filamentous
morphology was sampled—accidentally—in the field within
a macroalgae benthic community (Figure 1) and was only
identified as Caulerpa after the samples were analyzed under
the microscope. Thus it is clear that C. cylindracea filaments
also develop under natural conditions. The variables that
trigger such filaments in the field may, however, be multiple
and in general, remain uncertain. Nevertheless, the culture
experiments and field observations described here strongly
indicate that stressful conditions may induce the formation of
these structures.

The phenotypic plasticity observed in C. cylindracea and its
ability to withstand extreme conditions (high temperatures)
for a long time are characteristics that clearly influence the
invasiveness of this species, and improve its persistence
and resistance to stress. Actually, this resistance, together
with the difficulty of observing the filaments underwater,
might explain why C. cylindracea populations sometimes
seem to disappear only to bounce back after a few months
(García et al., 2016). In such situations, it may be that
while most of the population dies following unfavorable
conditions (Figure 8E; Klein and Verlaque, 2008), some small
remnants survive, most probably hidden and undetectable in
the sediment or sand. Then, as was the case in our culture
experiment, the surviving parts may produce filaments that
go unnoticed by divers and researchers (Figure 1), and,
subsequently, the regular morphology of C. cylindracea
returns when favorable conditions allow the population to
recover (Figure 8G). Typically, colonization of a new area
by C. cylindracea can take approximately 3 years, but the
presence of this cryptic and resistant form of the species
would explain the marked reduction—from 3 years to less
than 1 year—in the time it takes C. cylindracea to re-colonize
areas in which it had disappeared (García et al., 2016), thus
highlighting the importance of this morphology in the re-
colonization process (Figure 8). Furthermore, when adopting
this cryptic phase, identification is extremely difficult or
simply impossible, which has further implications for the
management of the species, since early detection is one of the
most important requirements for the successful management
of invasive species (Lodge et al., 2006; Vander Zanden et al.,
2010; Giakoumi et al., 2019). This misidentification of the
filaments can also affect current estimations of C. cylindracea
in the Mediterranean Sea as this species may be present
at several locations in this latent, cryptic form. Since
traditional methods of direct observation may not always
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FIGURE 8 | Evolution of the abundance of Caulerpa cylindracea over a period of 4 years in a population under study, close to Vilanova i la Geltrú (Spain). During the
first colonization, C. cylindracea was first detected in December 2008 (A); by August 2009, C. cylindracea had expanded and had a patchy heterogeneous
distribution (B); in August 2010, C. cylindracea covered a larger area forming a continuous meadow (C); and in August 2011, the abundance of C. cylindracea
reached a peak, forming a dense and continuous meadow over more than 1,000 m2 (D). In December 2011, the population had collapsed after an exceptionally
warm autumn and no sign of C. cylindracea could be found (E). The first report of C. cylindracea in the second colonization was in August 2012 (F); and just 3
months later, in December 2012, it was already forming a continuous meadow over a large area (G), with greater abundance than that of August 2010 (C).

be reliable in detecting filaments of C. cylindracea, as they
can be misidentified or missed entirely, methods involving
environmental DNA (Taberlet et al., 2012; Kelly et al., 2014;
Thomsen and Willerslev, 2015) could be useful in detecting
this species, as has been the case with the detection of other
invasive species (Dejean et al., 2012; Ardura et al., 2015;
Simmons et al., 2015).

Dispersion is another process that might also be favored
by C. cylindracea filaments, because these long and weak
vertical structures are more easily broken upon contact or by
water movement than the regular thallus. This will release
living fragments that can be transported by currents or

attached to drifting objects, favoring dispersal of C. cylindracea
and the potential for secondary introductions. Actually, in
Caulerpa species, the fragmentation process is one of its
most important reproductive strategies (Fralick and Mathieson,
1972; Ceccherelli and Cinelli, 1999; Smith and Walters, 1999;
Ceccherelli and Piazzi, 2001) and allows these species to
spread really fast.

To conclude, this newly identified filamentous morphology
of C. cylindracea could act as a potential jack-of-all-
trades that further improves this species’ capacity as an
invader. The filaments described here are involved in
the persistence, resistance, and dispersion of this invasive
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species and have characteristics that allow this species to
withstand harsh abiotic conditions and which may help to explain
its successful expansion in the Mediterranean Sea.
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