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Abstract

Multilingual Machine Translation is the task that focuses on methods to translate
between several pairs of languages in a single system. It has been widely studied
in recent years due to its ability to easily scale to more languages, even between
pairs never seen together during training (zero-shot translation). Several architec-
tures have been proposed to tackle this problem with varying amounts of shared
parameters between languages. Current state-of-the-art systems focus on a single
sequence-to-sequence architecture where all languages share the complete set of pa-
rameters, including the token representation. While this has proven convenient for
transfer learning, it makes it difficult to incorporate new languages to the trained
model as all languages depend on the same parameters.

What all proposed architectures have in common is enforcing a shared presentation
space between languages. Specifically, during this work, we will employ as repre-
sentation the final output of the encoders that the decoders will use to perform
cross-attention. Having a shared space reduces noise as similar sentences at se-
mantic level produce similar vectorial representations, helping the decoders process
representations from several languages. This semantic representation is particularly
important for zero-shot translation. The representation similarity to the languages
pairs seen during training is key to reducing ambiguity between languages and ob-
taining good translation performance.

Our contributions focus on studying several methods to obtain a common multi-
lingual representation without parameter sharing. Firstly, we propose a training
method that enforces a common representation for bilingual training and a proce-
dure to extend it to new languages. Secondly, we propose another training method
that allows this representation to be learned directly on multilingual data and can
be equally extended to new languages. Thirdly, we show that the proposed multi-
lingual architecture is not limited only to textual languages. We extend our method
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Abstract

to new data modalities by adding speech encoders, performing Spoken Language
Translation, including Zero-Shot, to all the supported languages.

Our main results show that the common intermediate representation is achievable in
this scenario, matching the performance of previously shared systems while allowing
the addition of new languages or data modalities efficiently without negative transfer
learning to the previous languages or retraining the system.
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1 Introduction

1.1 Motivation

Machine Translation (MT) is the area of research focused on the automatic trans-
lation of languages. For 60 years, linguists and computer scientists have worked to
produce more reliable systems that kept the meaning of the translated sentence and
generated text following the same structure and idioms that a native speaker would
employ. Over the years, it has become a pervasive technology in our everyday lives
with multiple commercial solutions and millions of everyday users. Its importance
can be even more evident during a crisis where people from different parts of the
world interact with limited resources. An example of this phenomenon is the 2010
Haiti earthquake when a Haitian Creole-English system [Lewis, 2010], deployed in
under a week, helped volunteers from all around the world communicate with the
local population.

Since the beginning of the field the idea of developing common language representa-
tions has been an objective [Vauquois, 1968] where a common interlingua serves as
bridge between all languages as any other language could be translated to or from
it. Current state-of-the-art neural machine translation (NMT) systems forget this
objective by following standalone architectures that focus on a fixed set of languages.
Each model is evaluated for its own task, and in order to perform a new task, a new
model is trained from scratch or fine-tuned, harming or completely forgetting the
original one.

From the current NMT approaches, the ones that more resemble this interlingua
objective are multilingual NMT systems where a single system can translate be-
tween several pairs of languages. These systems are trained on a combination of
parallel data from all desired language pairs with the objective of learning a com-
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mon representation that allows knowledge transfer and even zero-shot translation
between non-observed directions during the supervised training. Several architec-
tures have been proposed in the last years seeking better cross-lingual mappings and
transfer learning between languages. From the initial language-specific encoders and
decoders models, [Firat et al., 2016b, Firat et al., 2016a] where each language used
its own set of parameters to fully shared universal encoder-decoders architectures
[Ha et al., 2016, Johnson et al., 2017], where all languages share the same parame-
ters, creating a stronger dependency between language.

1.2 Objectives

In this thesis, we argue that systems should not be considered standalone systems
for a limited amount of tasks but as a flexible platform that can be incrementally
extended to new tasks in the future, benefiting from the previous knowledge encoded
in the model. From this general idea, we devise the four main objectives covered
throughout this work:

1. Explore the capabilities of language-specific encoder-decoder archi-
tectures: Recover the language-specific encoder-decoder approach and ana-
lyze its benefits and limitations compared to current state-of-the-art architec-
tures. To achieve this objective we study the obtained cross-lingual represen-
tations of all our methods (Sections 3.4.3, 4.6.6, and 5.4.2) as well as different
data conditions (Section 4.6.4) and fine-tuning (Section 4.6.5)

2. Learning cross-lingual representations without parameter sharing:
The models should learn a common representation for all languages, ensuring
the performance of any new language projected into this space. To enforce
the modularity of the approaches, encoders, and decoders should be language-
specific, reducing the dependencies between languages. To achieve these ob-
jectives, we propose both a bilingual method (Section 3.1) based on auxiliary
tasks and two multilingual methods (Sections 4.2 and 4.3).

3. Training new languages on a previous cross-lingual representation:
New language encoders/decoders should be able to learn the cross-lingual map-
ping of the system (Objective 2) while being more efficient than training a new
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model from scratch. To achieve this, we propose an incremental training ap-
proach (Sections 3.2 and 4.2) training only the new modules to the system.

4. Training new modalities modules on a previous cross-lingual rep-
resentation: Encoders for new data modalities should be able to learn the
cross-lingual mapping of the system (Objective 2) without modification of the
previous models. To achieve this, we propose a method to incrementally train
Speech encoders (Section 5.3) for the task of Spoken Language Translation.

1.3 Contributions

This thesis focuses on four main aspects of multilingual machine translation: Super-
vised translation, zero-shot translation, language addition, and cross-lingual map-
pings. We highlight this as the main empirical findings throughout this work:

• When data between sufficient languages, language-specific encoder-decoder ar-
chitectures can compare to or even outperform universal encoder-architecture
ones in terms of supervised performance and transfer learning (Section 4.6).

• Systems can be efficiently extended to new tasks and modalities just by train-
ing in combination with previously frozen modules, without modification of
the previous modules (Sections 3.4, 4.6, and 5.4).

• Adapter modules efficiently bridge data modalities even on non-pretrained
systems (Section 5.4).

During this thesis, we also propose four methods based on language-specific encoder-
decoders architecture ranging from bilingual machine translation to multilingual
machine translation and spoken language translation:

• Multilinguality by Incremental Training: A method to train a bilingual
system that can be incrementally extended to new languages while allowing
zero-shot translation to previous languages on the system (Sections 3.1, and
3.2).
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• Multilingual Joint Training: Two methods to train multilingual systems
without parameter sharing while allowing the languages to be incrementally
added (Sections 4.2, and 4.3).

• Multimodality by Incremental Training: A method to incrementally
train Speech encoders to a preexisting multilingual, multilingual NMT sys-
tem, allowing to perform zero-shot spoken language translation (Sections 5.1,
and 5.3).

1.4 Outcomes of the Thesis

Main publications discussed throughout this thesis:

• [Escolano et al., 2019a] Escolano, C., Costa-jussà, M. R., and Fonollosa, J.
A. R.(2019a). From bilingual to multilingual neural machine translation by
incremental training. In Proceedings of the 57th Annual Meeting of the As-
sociation for Compu-tational Linguistics: Student Research Workshop, pages
236–242, Florence, Italy.Association for Computational Linguistics.

• [Escolano et al., 2020b] Escolano, C., Costa-jussà, M. R., Fonollosa, J. A.
R., and Artetxe, M. (2020b). Training multilingual machine translation by
alternately freezing language-specific encoders-decoder. Arxiv Preprint.
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1.5 Thesis outline

In chapter 2 we introduce the most relevant background concepts required through-
out this work and their current state-of-art. The chapter is organized into two main
blocks focusing on deep learning and natural language processing topics covered
during this thesis.

In chapter 3 we propose a bilingual NMT system that can be extended
to new languages without retraining while allowing zero-shot translation.
[Escolano et al., 2019a, Escolano et al., 2021b]

In chapter 4, we propose two methods to train multilingual NMT while maintain-
ing the ability to train new languages incrementally. We also perform an exten-
sive comparison of our model with the state-of-the-art universal encoder-decoder
architecture. [Escolano et al., 2020a, Escolano et al., 2020b, Escolano et al., 2021a,
Escolano et al., 2022]

In chapter 5, we propose a method to extend the method from the previous chapter to
the task on spoken language translation by incrementally training a Speech decoder.
We also analyze the impact of Adapter modules on the task and in the learned
encoding representation. [Escolano et al., 2020c]

In chapter 6, we present the final conclusions of this thesis, reflecting on the different
contributions and research objectives.
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In this chapter, we are going to discuss some of the theoretical concepts upon the
work described in this thesis is built. Section 2.1 will discuss the main Deep Learning
topics applied, focusing on the architectures employed and their importance for this
work. Section 2.2 will provide an introduction to Natural Language Processing and
the different tasks we have cover in our experiments.

2.1 Deep Learning

We name Deep Learning, the area of machine learning focused on models based
on neural networks. The name "Deep" comes from the fact that these models
usually stack several layers to perform their tasks. Each layer transforms the data
until arriving at the desired representation space instead of performing a single
transformation over the input data. For example, a given input space can become
linearly separable by applying transformations, allowing the model to classify the
data.

This section will focus on generative models that given input data, map the data
into a latent representation space, and produce synthetic data conditioned on this
representation. This model vary from generating a reconstruction of the input data
(Autoencoders, section 2.1.1) to generating completely new sequences (section 2.1.3
) such in Machine Translation. We’ll also focus on the latent space and how to adapt
it for different tasks or domains (sections 2.1.2 and 2.1.4 ).
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2.1.1 Autoencoders

From those models, the first one we are going to discuss is Autoencoders
[Lecun, 1987, Bourlard and Kamp, 1988]. An Autoencoder is a system that, given
some input data x, computes its reconstruction y without requiring additional la-
beling. The objective of these techniques is not to copy the data directly but to
compute latent representations, called codes, that encode the most important fea-
tures of the input data. Learned codes could be used as dimensionality reduction
of the original data or feature selection for other models. We can identify two main
components:

• Encoder: Given input data x compute a latent representation h that repre-
sents the most important features of the data defined as: h = f(x)

• Decoder: Given a latent representation h generates a new data point y on the
same space of the original input data. We can define this process as: y = g(h)

During training, the objective is to reduce the distance between the generated y and
the original x. As stated, the model’s objective is learning codes that represent the
input data, not a perfect reconstruction. In order to improve this representation,
several variants of this process have been proposed through the years. Undercom-
plete autoencoders reduce the dimensionality of the latent representation in order to
create an information bottleneck, inducing the model to focus on the most salient fea-
tures. Sparse autoencoders [Hinton, 1984] also achieve this bottleneck, limiting the
neuron’s activation by adding a regularization term to the reconstruction objective.
In order to prevent the model from just copying the data, Denoising Autoencoders
[Vincent et al., 2008] add noise in the form of random noise or permutation to the
input data and try to reconstruct the original data without noise.

All the mentioned methods follow the same principle of learning representa-
tions of the input data. Another variant is Variational Autoencoders(VAE)
[Kingma and Welling, 2014] that represent inputs as a probability distribution in-
stead of points in a learned space. Once the model is trained, this allows the genera-
tion of synthetic data points in the distribution by sampling the learned probability
distribution.

12



2.1 Deep Learning

2.1.2 Common Representation Learning

Representation learning and Autoencoders are useful in diverse scenarios, but it is
not uncommon to have access to more than one view of our data. Video input that
contains both images and audio or parallel text in two languages are examples of
this. Using Autoencoders, we could learn features from each data source, but those
would not benefit from any knowledge transfer between the different views.

Common Representation learning seeks to learn a shared representation from dif-
ferent views, Obtaining a representation that focuses on the mutual information
between views, discarding view-specific details. There are several methods for this
task, but two main families can be defined:

• Multiview Representation Alignment: Given two or more views, compute
a mapping between the view to a shared space. Examples of this technique
are Canonical Correlation Analysis (CCA) [Hotelling, 1936] And Partial Least
Squares [Wold, 1982].

• Deep Representation Fusion: Given two or more views, learn a shared
representation from scratch. All views are required to compute the represen-
tation to capture the most salient features from all of them. Examples of this
technique are MultiModal Deep Autoencoders [Ngiam et al., 2011].

In this section, we will focus on Representation Fusion as it is the closest to
the topic we want to discuss. As mentioned, the main objective of these meth-
ods is mapping different views of the same data in a common representation
space. This space allows the model to represent the data even from a partial
set of the original views. Different approaches have been proposed to achieve this
goal. Distance-based methods [Li et al., 2003] compute a distance metric between
the representations, usually in combination with additional performance metrics
to enforce the model’s reconstruction performance. Another popular approach is
correlation-based methods [Andrew et al., 2013] that try to maximize the correla-
tion between the different views. This measure could be a less restrictive con-
straint over the space, as distances may not perform well on high dimensional spaces
[Aggarwal et al., 2001]. For pre-computed representations, applying an orthogonal
transformation [Artetxe et al., 2017] has also been studied, as this linear transfor-
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mation preserves the length vector and angles from the original space, and therefore
the relation between elements in the same space.

A common characteristic of these methods is the trade-off between the two objec-
tives of the system, reconstruction of the input data, and the mapping between
the representation space. Some works [Chandar et al., 2016, Jaques et al., 2017,
Silberer and Lapata, 2014] have tried to solve this problem by combining the previ-
ous measures, reconstruction, and distance/correlation, with an additional task of
cross-reconstruction. For this task, given input data from one of the available views
to generate a different view. On implementations with view-specific encoders and
decoders, e.g., CorrNets [Chandar et al., 2016] this additional task contributes to
the mapping as it trains the model to decode the views from different input views
or modalities.

2.1.3 Sequence-to-sequence models

In previous sections, we have discussed methods to learn representations based on
the reconstruction of the input data. However, representation learning is required for
other tasks that focus on the generation of new target data. This section will focus
on Sequence-to-Sequence generation as it is the framework used in our experiments.
We can consider a sequence a series of elements x = {x1, x2, ..., xn} , each with its
individual set of features, positioned in a determined order. Order is important, as
we can extract information from the features of each element in the sequence and
the context learned from the surrounding elements in the sequence. An example
of sequences in this sense would be text, given the sentence The boy fell, but he
was ok. each of the words would be an element of the sequence, and we used their
position in it to understand the meaning of the whole sentence. Not only is the
order important to create grammatical sentences, but also, we can understand that
he references "the boy" thanks to the context provided by the previous elements in
the sentence.

Since the first proposed model [Sutskever et al., 2014] the most common approach
has followed an Encoder-Decoder architecture. This model showed the first compet-
itive results on Machine Translation by an end-to-end neural system. It is based on
Recurrent Neural Networks (RNN) [Rumelhart et al., 1986] for both encoder and
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decoder. Following the basic RNN framework, given a sequence x each step of the
sequence:

ct = f(Wct−1 + Uxt + b) (2.1)

ht = V ct + a (2.2)

where W , U and V are weight matrices, b and a are bias vectors, f() is an ac-
tivation function, ct1 is the context vector from the previous element in the se-
quence and xt is the current element in the sequence. Equation 2.1 shows that
for each element the context vector is updated by a transformation learned from
the previous context and the current element. The output, Equation 2.2, is com-
puted from the context vector, including the current element. The most common
implementations on this principle for Sequence-to-Sequence are Long Short Term
Memories (LSTM) [Hochreiter and Schmidhuber, 1997] and Gated Recurrent Units
[Cho et al., 2014].

As in the previous section, the Sequence-to-Sequence model consists of an Encoder-
Decoder architecture as follows:

• Encoder: A RNN layer processes each element of the sequence one by one,
computing an output hidden representation and a context vector that serves
as additional input for the next element of the sequence. This context vector
keeps information of all the previous elements. The context vector from the
last element is used as the decoder’s initial context.

• Decoder: A RNN that generates one element of the sequence at a time
in an auto-regressive manner given the context vector from the encoder and
the last decoded element from the output sequence. As new elements are
generated, the context vector is updated to include the current state of the
output sequence. In order to decode the following output from the output
sequence and not the current one, all elements are shifted right by one position
by including a Beginning of sentence (BOS) element to the decoder as the
initial output element and End of sentence (EOS) token as the last element
to predict by all sequences. The output is mapped into the number of tokens
and normalized with a softmax function when predicting discrete outputs.
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Figure 2.1 shows this architecture omitting all the specific elements of the problem
or modality. An important aspect of this architecture for this work is the decoupling
of the source encoding and the decoding. The target does not modify source repre-
sentation, which is beneficial in terms of efficiency. The cost of processing the source
sequence grows linearly with the number of elements and allows the combination of
different encoders and decoders for a multiview task without any modification.

Figure 2.1: Sequence to Sequence architecture

All the process is fully differentiable, allowing the system to be trained in an end-
to-end fashion. An optimization of this process is the use of Teacher Forcing
[Williams and Zipser, 1989]. During training, the golden truth element from the
target sequence is used instead of feeding the last decoded element to the decoder.
This modification allows the network to compute the elements and removes the
dependency from the previous decoded elements. At inference time, the decoded
elements are used. The possible discrepancies between the real and learned distri-
butions may lead to generation problems.

Even though the model was an important breakthrough on sequence generation
tasks, it also shows some limitations that other works have addressed. Representing
a full sequence into a single vector may create an information bottleneck, as the full
sequence is encoded in a fixed size vector independently of the number of elements.
Additionally, this context vector is modified as new tokens are generated. Especially
on long sentences, this may lead to a loss of context information and repetition
of the generated tokens. [Bahdanau et al., 2015] proposed two improvements over
this architecture. First, the use of bidirectional RNN on the encoder to consider
the context from the whole sequence. These layers consist of two RNN, one that
processes the sequence from left-to-right and another from right-to-left. Finally, the
output of both layers is concatenated.
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The second proposed modification is the addition of Attention. Instead of comput-
ing a single representation for the entire source sequence, this mechanism aims to
compute specific representations for each of the elements of the target sequence.
This allows the system to generate the next token conditioned on a combination of
the most important features of the source sentence. Given a set of encoder hidden
representations h = {h1, h2, ..., hn} and the decoder representation of the last gen-
erated token st a set of scores is computed for each hidden representation based on
their importance or similarity concerning st. Several approaches have been proposed
to compute these scores, feed-forward networks [Bahdanau et al., 2015] and the dot
product between h and s, and a softmax function is applied to normalize the scores
α. The attention representation is computed as the weighted sum of the hidden
states h by α

2.1.3.1 Transformer

Other alternatives have been proposed to the recurrent approach, from con-
volutional [Gehring et al., 2017] to attention-based Transformer architectures
[Vaswani et al., 2017]. This section will focus on the latter, as it is the architecture
employed in this work. The Transformer architecture follows the encoder-decoder
architecture based on applying attention to the sequence features. Two different
applications of attention can be found in this model:

• Self-attention: Attention computed over the same sequence to transform the
data emphasizing its most salient features.

• Cross-attention: Attention computed over the source and target sequence to
emphasize the most salient features from the source sequence given the current
decoded target elements.

Attention is computed by splitting the elements features in n fixed heads and per-
forming attention independently for each of them, in a process called Multi-head
attention. Each head computes attention as follows:

Attention(Q,K, V ) = softmax(
QKT

√
d

)V (2.3)
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Where Q is the query matrix, K is the key matrix, and V is the value matrix. Re-
lating this method to the attention mechanism from the RNN framework, the query
matrix represents the current sequence, keys represent the set of hidden states from
the input sequence used to compute the attention scores, and the values are also
the hidden states from the input sequence over which the scores are applied after
normalizing them, scaling by the key’s dimensionality dk and applying a softmax
function. Attention values are not summed as this attention is applied in parallel
over all sequence elements without any recurrence. This lack of recurrence also re-
moves the notion of order between elements, as attention is computed between all
possible combinations between keys and queries. All elements are attended in the
same way without considering their distance in the sequence order. To provide this
information, positional encodings are added to both the encoder source and target
decoder representations. Figure 2.2 shows how multi-head attention is performed.
Before the attention at each head, queries, keys, and values are independently trans-
formed. After attention, the outputs of all heads are concatenated and combined
by a linear transformation.

Figure 2.2: Multi-head attention

Figure 2.1.3.1 shows the complete Transformer architecture as was initially proposed
for machine translation. The encoder consists of a stack of multi-head self-attention
blocks followed by layer normalization and a feed-forward layer. Previous works
[Geva et al., 2020] showed that feed-forward layers helped to combine the output of
the different heads and acted as memories emphasizing patterns found in the data.
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Figure 2.3: Transformer architecture

The Decoder, also based on a stack of multi-head attention layers. Instead of just
self-attention, the first step of self-attention is applied to the previously decoded
tokens. To prevent attending to elements not decoded yet, the upper triangle of the
matrix is masked before the softmax normalization. The output of this attention
block is used as queries for a step of cross-attention. In this case, the same com-
putation is applied, but queries come from the previous step, and keys and values
are the encoder’s output. As in the recurrent architecture, this step aims at finding
the most salient elements of the encoder hidden representation, according to the
currently decoded elements of the target sequence.

Concerning model training, as in the RNN architecture, the model is trained end-to-
end by optimizing a generation objective. As the model, by definition, can process
sequences in parallel, teacher forcing is applied to allow the training of the complete
sentence as a single block, speeding up training. Additionally, without recurrence,
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the model does not have dependencies between elements, allowing model parallelism
between several GPUs, which allows the use of bigger batch sizes, contributing to
model convergence. At inference time, elements are generated in an autoregressive
manner, generating the next element and feeding the current decoded sentence as
the Decoder’s input.

2.1.4 Transfer Learning

As discussed before, models can benefit from jointly training different views from
the same data, but there are other techniques and scenarios in which we can obtain
knowledge training between our models, improving their generalization performance.
According to the training method, we can distinguish two main approaches:

Transductive Transfer Learning consists of sharing knowledge between a pre-
viously trained model to train a new model for another task or domain. Sev-
eral approaches have been proposed on this principle. Knowledge Distillation
[Hinton et al., 2015] has been used to train a student model to learn the output
distribution of a teacher model trained on another domain with more data avail-
able [Gaido et al., 2020]. Fine-tuning is another popular alternative to leverage the
knowledge from a previous model into a new task or domain. This approach has
gained momentum as large pretrained language models become more popular and
show their ability to perform several tasks. For NLP-related tasks, models like
ELMO [Peters et al., 2018a] based on RNN or BERT [Devlin et al., 2019] based on
Transformer self-attention are commonly fine-tuned to new languages or domains.
While fine-tuning improves the objective task, it is also subject to catastrophic for-
getting of previous tasks. To maintain the model’s performance while new tasks,
Adapter modules [Houlsby et al., 2019] are feed-forward modules added to the orig-
inal network that help the model to learn the new task by training a small set of
parameters compared to the entire model. These modules can always be bypassed
to perform the original tasks.

Inductive Transfer Learning to train models that better represent our data,
we can also train a model that learns to perform more than one task. Unlike
the transductive case, tasks are jointly trained, and all may benefit from the pro-
cess. During training, the model needs to learn an internal representation that
provides valuable information to all the tasks supported by the model, improv-
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ing the performance for all tasks. This approach has been previously applied in
NLP to tasks such as Part of Speech tagging (POS) and Name Entity Recog-
nition [Niehues and Cho, 2017, Zaremoodi and Haffari, 2018], showing positive re-
sults. We can consider multilingual machine translation as an application of these
techniques as the different languages benefit from the knowledge leaked from the
other languages in the system.

2.2 Natural Language Processing

The discussed techniques are applicable to a variety of data sources and tasks. In
this section we will focus on it applications to Natural Language. We can define
Natural Language as the languages that are used by a community of speakers and
which have evolved over generations naturally by the situation of such community.
They are different from structured languages, such as programming language, that
follow a set of predefined rules and which are designed for specific purpose. The
evolution process has lead to languages that are easily understandable by humans
but challenging to process by computers. Ellipsis, co-reference, irony are examples
of resources that commonly used by human speakers but are not easily automatically
processed.

Natural language Processing (NLP) includes a great variety of tasks. In this work,
we are focusing on: Machine Translation, where two (section 2.2.1) or several (sec-
tion 2.2.2) languages are involved; Spoken Language Translation (SLT) with the
source language consisting of the audio speech utterances and the target language
being text; and Natural Language Inference (NLI) (section 2.2.4) that looks for the
sentence’s semantics.
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2.2.1 Machine Translation

The main task we will discuss during this work is Machine Translation. Given a
sentence x in the source language, this task aims to generate a sentence y in the
target language with the same semantic information. Natural languages have nat-
urally evolved by the need of their communities of speakers, meaning that different
languages have developed their own grammatical rules. Figure 2.4 shows some of
the challenges that may be found when translating between distance languages such
as Japanese and English. One of this differences is the script, while English uses the
Latin script, Japanese uses a combination of kanji and katakana scripts, which do
not show any explicit segmentation between words (e.g English uses the space). In
addition, as observed in the example of Figure 2.4, there can be a difference in the
matching between the words in both languages. Words with the same meaning can
appear at different positions and languages can use different amount of words (or
tokens) to produce the same meaning. Some words can be translated into several
words, as Eki being translated into train station or some target words that do not
appear on the source sentence may be required on the target language to produce a
grammatically correct sentence as it is the case of the in the example.

Figure 2.4: Word alignment example between Japanese and English

These phenomenons require models to find a match between tokens and learn
to align and produce proper grammatical sentences. The first approaches were
Dictionary-based systems that mapped words between languages, which showed
poor results. Rule-based Machine Translation (RBMT) improved previous
systems by adding syntactic and morphological rules designed by human experts.
While requiring time and human effort, these systems leverage human knowledge
to produce grammatical translations. Statistical Machine Translation (SMT)
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[Weaver et al., 1955, Koehn et al., 2003] removes the need of human experts by
learning the following probability p(y|x) and applying the Bayes’ rule:

p(y|x) = p(x|y)p(y) (2.4)

Where p(y) is a language model that learns the probability of words appearing
together in the target language. Even though this approach learns the correct map-
pings from the data, it misses the alignment information. This word alignment can
be computed with specific modules such as GIZA++ [Och and Ney, 2003]. Given
an alignment a, it can be added to the translation model as:

p(y|x) = p(x|y, a)p(y) (2.5)

SMT systems learn from human translations and they are complex systems that re-
quire tuning different components. Differently from SMT,Neural Machine Trans-
lation [Bahdanau et al., 2015] uses Sequence-to-Sequence [Sutskever et al., 2014]
and attention-based mechanisms [Bahdanau et al., 2015] that allows to jointly learn-
ing translation and alignment. These models compute the conditional probability
of the target sentence given the previously decoded tokens and source sentence as
follows:

p(yn|y1, y2, ..., yn−1, x) (2.6)

These models are trained in an end-to-end fashion using as objective the cross-
entropy between the predicted target tokens for each pair of source and target sen-
tences (x, y) on the training dataset D as follows:

L(x, y) = −
∑

(x,y)∈D
logp(y|x) (2.7)

All the approaches mentioned rely on parallel data between source and target lan-
guages to learn this conditional probability, but in some scenarios, monolingual data
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may be more abundant, as no labeling or manual translations are required to pro-
duce it. Several methods have been proposed to train fully unsupervised systems
both using statistical machine translation [Artetxe et al., 2018] and neural machine
translation [Artetxe et al., 2019, Lample et al., 2018]. On supervised models, mono-
lingual data has also been used to improve train models [Bojar and Tamchyna, 2011]
and improve the performance for low-resource languages [Currey et al., 2017] and
combining both data sources [He et al., 2016]. The most popular approach is back-
translation [Sennrich et al., 2016a] where the monolingual data is translated using
a model in the opposite direction (target to source) to create a synthetic corpus
and continue training a supervised model. This process can be done iteratively
[Hoang et al., 2018] producing new synthetic data as the model is trained, improv-
ing its quality until convergence.

Text is essentially a sequence of discrete tokens. On NMT systems, it is repre-
sented as embeddings [Mikolov et al., 2013], non-contextual representations of each
token on a contiguous high dimensional space, representing the tokens as well as
their similarity. This can be learnt in an end-to-end fashion or pretrained from
monolingual data [Mikolov et al., 2013, Pennington et al., 2014] . To generate text,
we need to decide the vocabulary of possible tokens of our model. This vocabu-
lary usually consists of a dictionary of the V most frequent tokens on the available
training data. All mentioned methods are subject to the vocabulary size available.
Larger vocabularies can help improving the text generalization at the cost of requir-
ing more computational resources and models with higher capacity. On the other
hand, limiting the vocabulary size may lead to out-of-vocabulary (OOV) errors when
the appropriate token has been excluded. OOV can lead to loss of contextual in-
formation on the source sentence and generation errors on the target. To tackle
this problem, several alternatives have been proposed to represent text at different
granularity levels, characters [Costa-jussà and Fonollosa, 2016, Chung et al., 2016],
and bytes [Costa-jussà et al., 2017] reduce vocabulary size by an order f magni-
tude at the cost of reducing the amount of semantic information provided by the
individual tokens. Subwords , such as BPE [Sennrich et al., 2016b], and Sentence-
piece [Kudo and Richardson, 2018] compute subwords representations based on the
frequency they appear on the training data. These methods are the most popular
as they represent a trade-off between words and characters approaches, allowing
out-of-vocabulary words to split as subwords or even characters.

Another important aspect that has a significant impact on translation performance
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is decoding. The most straightforward method, Greedy Decoding, consists in
selecting at each step the most probable token from the vocabulary given the nor-
malized output from the network. The main disadvantage of this approach is miss-
ing error-control capabilities. Once a token is selected, it is used as input for the
decoder, propagating the error to the following sentence tokens. Beam Search
[Graves, 2012] alleviates this problem by keeping the n options better scored ac-
cording to their model’s probability normalized by number of tokens. The n most
probable tokens are selected at any time, keeping only the n best-scored hypotheses.
This allows the decoding process to discard hypotheses that initially had high prob-
abilities but divert as new tokens are generated. Selecting an appropriate beam size
has a significant impact on the model performance [Britz et al., 2017]: small sizes
do not considering enough possibilities while large sizes assign higher scores to low
probability tokens.

To develop any system, it is necessary to evaluate the quality of the obtained re-
sults. The most accurate evaluation of MT would be human evaluation where an
expert in both languages evaluates both the syntax and semantics of the translated
sentence. This approach can be slow and expensive as several evaluators usually
score the same sentence to measure their level of agreement. It has proven ineffi-
cient when constant evaluation is required or fluent speakers of both languages are
scarce. Automatic evaluation is an alternative, where a metric is computed be-
tween the generated sentences and a set of human-translated references. The most
common metric is BLEU (BiLingual Evaluation Understudy)[Papineni et al., 2002]
which computes the precision of generated groups of contiguous words, n-grams, up
to size N . This precision is computed as the sum of the clipped count of all n-grams
in the candidate sentences c divided by the total number of n-grams.

pn =

∑
C∈{Candidates}

∑
n−gram∈C countclip(n− gram)∑

C′∈{Candidates}
∑

n−gram′∈C′ count(n− gram′)
(2.8)

While equation 2.8 measures generated tokes that appear on the reference sentences,
it does not measure its coverage. Partial translations that correctly predict n-grams
but miss the complete meaning of the source sentence can be highly scored. To
reduce this behavior, the following brevity penalty is added to the computation,
penalizing candidates shorter than a reference sentence r:
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BP =


1 if c < r

e1−
r
c if c ≤ r

(2.9)

The final score for all n-gram precisions is obtained as shown in 2.10 usually with
N = 4 and uniform weights wn = 1

N

BLEU = BP · exp(
N∑

n−1
wnlogpn) (2.10)

There are some alternatives to BLEU, which mainly focus on achieving a higher
correlation of scores to human evaluation. ROUGE [Lin, 2004] is similar to BLEU
but it is based on recall, commonly used on text summarization tasks. Methods such
as METEOR [Lavie and Agarwal, 2007], and BEER [Stanojević and Sima’an, 2014]
try to better capture different phrasings or synonyms by introducing language-
specific resources, which may limit the number of languages they can be applied
to.

2.2.2 Multilingual Machine Translation

Training bilingual systems can be problematic when our objective is translating
between several pairs of languages. Following the previous method, to translate
all possible directions between n languages, a total of n(n − 1) systems need to
be trained. All the possible pairs only excluding the autoencoding directions.
This quadratic growth of the number of systems can quickly become a time and
computational resources limitation. Multilingual Machine Translation seeks
developing systems that can translate between several languages by training a
single system that can scale in a more efficient way with the number of lan-
guages. Several approaches have been proposed for multi-source translation
[Och and Ney, 2001, Zoph and Knight, 2016], using several source languages as in-
put to benefit from the information from the different views. As a limitation, these
methods require multi-parallel data in both training and inference, limiting the ap-
plicability of such methods.
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In this section, we will focus on Multi-way Neural Machine Translation meth-
ods that support several languages, but each sentence is translated from and to a sin-
gle language. In this case, parallel data is only required between pairs of languages.
Three types of systems can be described according to the available languages:

• One-to-many translation: A system is trained to translate between a single
source language into several target languages.

• Many-to-one translation: A system is trained to translate between several
source languages into a single target language.

• Many-to-many translation: A system that is trained to translate from
several languages into several languages.

One-to-many and many-to-one translation benefit from transfer learning, by induc-
tive bias, as the encoder and decoder respectively are common for all translation
directions. Many-to-many translation is not as direct, and several architectures have
been proposed to enforce this behavior.

The first proposed systems were based on minimal parameter sharing between
languages [Luong et al., 2016, Dong et al., 2015]. These systems used language-
specific encoders and decoders, reducing the system’s growth from quadratic to
linear with the number of languages. [Firat et al., 2016a] proposed the use of a
common attention mechanism between languages, enforcing a common represen-
tation space. Improving this common representation also shows positive transfer
learning from high to low resource languages, showing performance improvements
compared to systems trained on bilingual data.

As previous works showed that multilingual systems benefited from sharing attention
mechanism, the following proposed paradigm and the most popular to the present
day is fully shared parameters between languages. These systems proposed a
universal encoder and decoder for all languages. [Ha et al., 2016] proposed a system
with language-specific embeddings and projection layer, keeping the token predic-
tions to a single language. On the other hand, [Johnson et al., 2017] proposed a
fully shared encoder-decoder including sharing embeddings between source and tar-
get languages, respectively. Language tokens are added to the source sentence to
specify the desired target language. This architecture showed that, by sharing all
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parameters, it was able to map several languages into a common representation
space [Kudugunta et al., 2019]. As in the minimally shared architectures, positive
transfer learning is observed from high resource to low resource languages, but also
negative transfer for high resource language, underperforming when compared to
bilingual models trained on the same data [Arivazhagan et al., 2019b]. Sampling
strategies [Wang and Neubig, 2019] during training have shown that can further
transfer learning benefits at the cost of higher convergence times.

Fully shared architectures were one of the earliest to exhibit zero-shot transla-
tion, which allows translation in inference between pairs of languages that have not
explicitly been trained together. Given a translation model exclusively trained on
the translation directions L1 → L2 and L3 → L1, the model can translate L3 → L2

without data for that language pair or explicitly training for that task. While this
phenomenon has allowed for end-to-end translation among language pairs where no
parallel data is available, its performance is still usually lower than pairs trained
in a supervised fashion. Studies have shown [Gu et al., 2019] that spurious correla-
tions between source and target languages from trained directions have a negative
impact on zero-shot translation directions. Creating an information bottleneck be-
tween encoder and decoder [Pham et al., 2019] can help to reduce such correlations,
improving zero-shot performance.

While fully shared architectures are robust and scale to massive amounts of lan-
guages and data [Aharoni et al., 2019], the models are limited by the representation
capacity of the models, requiring larger models with more parameters as the num-
bers grow [Arivazhagan et al., 2019b, Fan et al., 2020]. With those limitations in
mind, partially shared parameters are gaining popularity in recent times. These
approaches combine the advantages of minimally and fully shared approaches, keep-
ing zero-shot and transfer learning between languages while maintaining language-
specific distributions. [Lu et al., 2018, Vázquez et al., 2019] proposed the use of
language-specific encoders and decoders with a shared attention module that en-
forced a common language representation. Visualization of encodings show that
languages are still clearly separated in the representation space. To improve the
learning of such common representations, other works have proposed, in parallel
with the work in this thesis, the use of auxiliary tasks in addition to the translation
objectives. [Zhu et al., 2020] proposed the use of cosine distance between encoding
representations to improve their similarity, while [Wang et al., 2020b] proposed the
use of denoising autoencoding. All these approaches have a clear separation between
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the shared and language-specific components. [Zhang et al., 2021] proposed an ar-
chitecture based on gated layers learned during training that automatically select
which elements should be shared based on the input source sentence.

In this section, we have explained several methods to jointly train several trans-
lation directions. However, in recent years language addition to trained models
has gained popularity, and several approaches have been proposed. Most of these
approaches are based on the fully-shared architecture, being the most popular, even
though it presents some limitations on this scenario. Fully sharing all network pa-
rameters implies that to add a new language, we have to modify all parameters or
fine-tune the parameters of one of the languages already in the system with new
data. Due to catastrophic forgetting, fine-tuning just with the desired data can lead
to lower performance on the other languages. The initial models [Lakew et al., 2018]
proposed a method based on vocabulary expansion for the new progressively added
languages. Other works [Tang et al., 2020] tackle the performance loss on previous
languages by fine-tuning the network with a combination of the new and original
data, at the cost of increasing convergence time. [Lin et al., 2021] proposes comput-
ing language-specific masks that select which network parameters are more relevant
for each language. While reducing the impact on the other languages but not elimi-
nating it, this training requires a two-step training: first, training the entire network
and second, fine-tuning the language-specific subnetworks. Another approach to add
a new language is incorporating new modules to the system that limit the parts of
the network affected by the new language. [Bapna and Firat, 2019] propose the
use of feed-forward adapter networks between the shared encoder and decoder as
language or domain-specific modules. Only the adapter’s parameters are trained
during training, leaving the original model untouched, preventing any catastrophic
forgetting of previous tasks.

2.2.3 Spoken Language Translation

All the methods mentioned focus on translating between written languages, but text
is not the only way humans use natural language to communicate; most commu-
nication happens through speech. Spoken language translation is the task of
translating audio utterances of speech in a source language into a textual target
language. The combination of both data modalities introduces new challenges to
the ones described for MT. Audio is recorded as samplings given a fixed size sam-
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pling rate, usually 8 or 16 kHz, meaning that each second of the recording contains
thousands of elements, leading to sequences usually orders of magnitude longer than
their transcriptions and for each sample to contain much less semantic information
than words or subwords used for text. In addition, unlike text, speech data usually
does not include explicit word boundaries, letting the model learn them. Taking
into account these characteristics, we can represent the input features of our model
as two main families:

• Contiguous Representations: Such as raw recorded samples as shown in
figure 2.5 right. Audio is expressed as sampled amplitudes over the temporal
dimension. While this representation keeps the original sequence size, elements
are dependent only on the temporal dimension, as in text.

• Discrete Representations: Computed by applying transformations over the
utterances over fixed-sized windows of the waveform. Popular methods such as
Mel Frequency Ceptral Coefficients (MFCC) [Davis and Mermelstein, 1980],
and Perceptual Linear Prediction (PLP) [Hermansky, 1990] combine transfor-
mations to represent each window as a range of frequencies with representa-
tions based on the human auditory spectrum, e.g., Mel scale for MFCC. While
these processes significantly reduce the temporal dimension, they may create
2D dependencies between the frequency features and time. . Figure 2.5 shows
a plot example.

Figure 2.5: Speech input formats. Left: Mel-spectrogram. Right: Waveform.

The first models relied on dividing the problem into two subtasks
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[Stentiford and Steer, 1990, Waibel et al., 1991], each one operating over one data
modality. Automatic Speech Recognition (ASR) is the task that given a speech
utterance x computes a textual transcription y, both on the same language. While
similar to MT, this task presents some differences. Transcription seeks the genera-
tion of the exact words from the spoken input without rephrasing or interpreting
semantics. Consequently, this task’s alignment is monotonic, as words are always
produced in the original order. Once a transcription was generated, it could be
translated to the desired target language using the MT models discussed. The
advantage of this approach is benefiting from the more abundant ASR and MT data
compared to ST. On the other hand, cascade methods suffer from propagating errors
between models and using synthetic data instead of the actual language distribution.
Several approaches have been proposed to mitigate this effect, such as the use of
n-best transcriptions [Woszczyna et al., 1993] or lattices [Schultz et al., 2004], that
allowed the exploration of different transcription options.

With the introduction of the Sequence-to-Sequence architecture and the publication
of new datasets, end-to-end SLT systems have gained popularity. Several methods
proposed architectures that rely exclusively on SLT data without using intermediate
transcriptions. [Duong et al., 2016] proposed a model based on an RNN Sequence-
to-Sequence with attention and PLP input features, while [Salesky et al., 2019] pro-
posed the use of pre-computed phoneme boundaries to reduce speech sequence
length. [Gangi et al., 2019b] adapted the Transformer Architecture to SLT using
Mel Spectrograms as input and adding 2D attention to benefit from 2D dependen-
cies on the data. Other models proposed multitask [Weiss et al., 2017] systems that
combined the tasks of SLT, ASR, and MT in an end-to-end fashion. These methods
allowed to leverage all the available data into a single model. [Liu et al., 2020b] used
a shared encoder for SLT and NMT and boundaries computed by an auxiliary ASR
task with CTC loss.

Similarly to the MT case, in recent years the interest for Multilingual Spoken
Language Translation has increased with the release of several new datasets
for the task [Wang et al., 2020a, Di Gangi et al., 2019, Iranzo-Sánchez et al., 2020].
[Inaguma et al., 2019] proposed a one-to-many approach based on RNN archi-
tecture. [Gangi et al., 2019c] applied Transformers to the same scenario. In
parallel to the work in this thesis, [Li et al., 2021] combined a Wav2Vec 2.0
[Baevski et al., 2020] pre-trained speech encoder and an MBART [Liu et al., 2020a]
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pre-trained decoder on textual data, leveraging unlabelled data from both modali-
ties.

2.2.4 Natural Language Inference

Assessing the generalization capabilities of NLP systems is not an easy task. Mod-
els can learn to generalize between languages without supervision [Pires et al., 2019]
or rely on spurious correlations from the data [Gu et al., 2019]. Contextual encod-
ings’ visualization is a popular option [Johnson et al., 2017], but it is subject to
dimensionality reduction techniques that could alter the distances between clus-
ters on the final plots and to the set of sampled sentences that. These factors
may difficult to extract meaningful conclusions when systems show similar perfor-
mance. An alternative to analyze and compare the performance of our systems
is the use of probing tasks. These tasks aim to test the generalization capabil-
ities of systems on other tasks different from the ones used for training. These
became more popular with the introduction of pre-trained large language models,
[Peters et al., 2018b, Devlin et al., 2019] that showed state-of-the-art performance
on a diverse set of tasks, becoming a popular tool to compare the performance
of these systems with public benchmarks such as GLUE [Wang et al., 2018], and
SUPERGLUE [Wang et al., 2019].

From these tasks, the most popular one to assess the cross-lingual capabilities of
multilingual systems is natural language inference (NLI) [Bowman et al., 2015,
Williams et al., 2018]. The task consists of given a reference sentence and a hypoth-
esis sentence to inference their relation between three possible classes. The possible
options are: entailment, if the reference sentence contains the hypothesis, contradic-
tion if the hypothesis facts are not true for the reference sentence or neutral if the
two are not related. Figure 2.6 shows an example of all three classes applied to a
single reference sentence.
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Figure 2.6: NLI example.

On the multilingual setting, a classifier is trained using English data and evaluated
on a multilingual test set to measure the accuracy difference between the supervised
direction and the rest of languages [Conneau et al., 2018]. Significant performance
gaps may indicate a dissimilarity between the model’s contextual representations for
different languages. This approach has been applied to several pre-trained models
[Conneau and Lample, 2019] and even to compare the multilingual representation
learned by an MT model compared to a multilingual BERT large language model
[Siddhant et al., 2020] showing that both models can exhibit comparable perfor-
mance when trained on massive amounts of data.
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Traditional Multilingual NMT systems rely on jointly training N languages into
a single system, with varying degrees of parameter sharing between languages
(see Section 2.2.2). These architectures allow performing a maximum of N2 − 1

translation directions by training at most N language-specific encoder-encoders sys-
tems [Escolano et al., 2019a] or just one for universal encoder-encoder approaches
[Johnson et al., 2017, Ha et al., 2016] that can scale to massive amounts of lan-
guages [Arivazhagan et al., 2019b].

The universal encoder-decoder presents several advantages, such as positive transfer
learning from high resource to low resource languages, leading to significant per-
formance improvements and zero-shot translation between never trained language
pairs. On the other hand, the representation capacity of the shared parameters
can become a bottleneck for the model’s scalability to larger sets of languages
[Arivazhagan et al., 2019b]. Parameter sharing creates a strong dependency be-
tween all languages, as all tasks depend on such parameters. Any modification for
a subset of the task may harm the performance of other tasks or even lead to catas-
trophic forgetting, affecting the addition of new languages to the system or even
fine-tuning a subset of the supported languages. Popular techniques to reduce this
effect include retraining the model for the previous tasks [Chu et al., 2017] joint with
the new ones or using Adapter modules [Bapna and Firat, 2019].

Work adapted from: Escolano, C., Costa-jussà, M. R., and Fonollosa, J. A. R.(2019a). From
bilingual to multilingual neural machine translation by incremental training. In Proceedings
of the 57th Annual Meeting of the Association for Compu-tational Linguistics: Student Re-
search Workshop and Escolano, C., Costa-jussà, M. R., and Fonollosa, J. A. R.(2021). From
bilingual to multilingual neural machine translation by incremental training. In Journal of the
Association for Information Science and Technology p. 190-203

35



3 Multilinguality by Incremental Training

Positive transfer learning from high resource tasks has also been explored on bilin-
gual NMT systems. Several systems have been proposed that benefit from previ-
ously trained models as initialization for new languages, using vocabulary expansion
[Lakew et al., 2018] and knowledge distillation [Kim et al., 2019] to transfer knowl-
edge between languages. These models still required retraining parameters from the
previous task, either affecting its performance or completely forgetting it.

This chapter proposes a training strategy for bilingual NMT systems and efficiently
extends them to a multilingual setting by incrementally training new languages.
Our proposal aims to achieve the positive aspects of the previously mentioned ar-
chitectures, zero-shot translation, and positive transfer learning while eliminating
the limitations of such architectures due to parameter sharing.

In section 3.1 we propose a training strategy for bilingual training that combines
translation, reconstruction, and correlation between parallel sentences to obtain
common representation between both languages.

In section 3.2 we propose the incremental training of new languages without retrain-
ing of previous parameters, preserving the performance original translation direc-
tions. This approach is shown to offer a scalable strategy to new languages without
retraining any of the previous languages in the system and enabling zero-shot trans-
lation.

In sections 3.3 and 3.4 we describe the experimental framework designed to test our
approach on different amounts of data and languages, including zero-shot transla-
tion.

Notation

Before explaining our proposed model we introduce the annotation that will be
used. Languages will be referred as capital letters L0, L1, L2 while sentences will be
referred in lower case l0, l1, l2 given that l0 ∈ L0, l1 ∈ L1 and l2 ∈ L2.

We consider as an encoder (e0, e1, e2) the layers of the network that given an input
sentence produce a sentence representation (h(l0), h(l1), h(l2)) in a space. Analo-
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gously, a decoder (d1, d2, d3) is the subset of layers of the network that, given the
source sentence representation, can produce the tokens of the target sentence. En-
coders and decoders will always be considered independent modules that can be
arranged and combined individually as no parameter is shared. Each language and
module has its weights independent from all the others present in the system.

3.1 Bilingual Joint Training

Due to the nature of neural networks, different training runs of the same architecture
with the same data may lead to different results. Parameter initialization, random
shuffling of the data batches are some factors that may lead that each network’s pa-
rameters converge to a different local minimum, with its own hidden representation
space. This section proposes a training schedule that enforces a shared represen-
tation between the two languages, serving as a platform for new languages to the
system.

Given two languages, L0 and L1, our objective is to train independent encoders and
decoders for each language, e0, d0 and e1, d1 that produce contextual representations
h(l0), h(l1) in a shared space. For instance, given a sentence l0 in language L0, we
can obtain a representation h(l0) from the encoder e0, than can be used to either
generate a sentence reconstruction using decoder d0 or a translation using decoder
d1.

The motivation to choose this architecture is the flexibility to add new languages to
the system without modification of shared components and the possibility to add
new modalities (i.e., speech) in the future as the only requirement of the architecture
is that encodings are projected into the shared space. Our objective is to explore the
viability of this objective purely enforced by the training schedule without parameter
sharing.

With this objective in mind, we propose a training schedule that combines two tasks
(auto-encoding and translation) and the two translation directions simultaneously
by optimizing the following loss:
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L = LL0−L0 + LL1−L1 + LL0−L1 + LL1−L0 + d (3.1)

Where LL0−L0 and LL1−L1 correspond to the reconstruction losses of both language
L0 and L1; LL0−L1 and LL1−L0 correspond to the translation terms of the loss measur-
ing the token generation of each decoder given a sentence representation generated
by the other language encoder (using the cross-entropy between the generated tokens
and the translation reference), and d corresponds to the distance metric between the
representation computed by the encoders. This last term forces the representations
to be similar without sharing parameters while measuring similarity between the
generated spaces. We tested different distance metrics, such as different options of
Minkowski distances or the use of a discriminator network that tried to distinguish
the source language from their representations. We experienced a space collapse
for all these alternatives in which all sentences tend to be located in the same spa-
tial region, making them non-informative for decoding. Consequently, the decoder
performs as a language model, producing an output only based on the information
provided by the previously decoded tokens. Weighting the distance loss term in the
loss did not improve the performance because for the small values required to prevent
the collapse, the architecture did not learn an informative enough representation of
both languages to work with both decoders. To prevent this collapse, we propose
a less restrictive measure based on correlation distance [Chandar et al., 2016] com-
puted as in equations 3.2 and 3.3. The rationale behind this loss is maximizing
the correlation between the representations instead of enforcing the distance over
individual values.

d = 1− c(h(L0), h(L1)) (3.2)

c(h(L0), h(L1)) =

∑n
i=1(h(l0,i − h(L0)))(h(L1,i − h(L1)))√∑n
i (h(l0,i)− h(L0))2

∑n
i (h(l1,i)− h(L1))2

(3.3)

where X and Y correspond to the data sources we are trying to represent; h(xi)

and h(yi) correspond to the intermediate representations learned by the network for
a given observation; and h(X) and h(Y ) are, for a given batch, the intermediate
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representation mean of X and Y , respectively. Figure 3.1 shows the interactions
between network components, in red each term of the proposed loss function.

Figure 3.1: Joint training schedule.

3.2 Incremental training

Given the jointly trained model between languages L0 and L2, the following step is
to add new languages to use our architecture as a multilingual system. Since param-
eters are independent between encoders and decoders, our architecture enables the
addition of new languages without retraining the current languages in the system.

Let us say we want to add language L2. To do so, we must have parallel data
between L2 and any language in the system. So, assuming we have trained L0

and L1, we need parallel data with either L2 − L0 or L2 − L1. For illustration,
let us choose to have L2 − L0 parallel data. Then, we can set up a new bilingual
system with language L2 as source and language L1 as target. To ensure that the
representation produced by this new pair is compatible with the previously jointly
trained system, we use the previous L0 decoder (d0) as the decoder of the new L2L0

system and we freeze it. During training, we optimize the cross-entropy between the
generated tokens and the language L0 reference data, updating only the language
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L2 encoder (e2). Doing this, we train e2 to produce good quality translations on the
shared space learned during the joint training step without requiring an additional
distance. The language L2 sentence representation h(L2) is only enforced by the loss
of the translation to work with the already trained module as it would be trained
in a bilingual NMT system.

Figure 3.2: Language addition and zero shoot training scheme

Mapping the new language into this shared space means that the newly trained
encoder e2 can be used as input of the decoder d1 from the jointly trained system
to produce zero-shot L2 to L1 translations. See Figure 3.2 for illustration. This
property proves that the devised training strategy can converge to the previous
space while representing the most salient features for the task and that those can be
preserved and shared to new languages just by enforcing the new modules to train
with the previous one, without architecture modifications.

An additional property of our approach is that training new modules using only
frozen modules is that, by definition, negative transfer learning to the jointly trained
languages is not possible as weights are never updated during the incremental train-
ing step. Negative transfer learning is a common problem of previous architectures
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based on parameter sharing that are subject to their robustness to fine-tuning or
limited to the use of Adapter modules for the new tasks.

3.3 Experimental Framework

Training data availability is one of the most critical factors during the training of
any neural system. In addition, when working on machine translation, the choice
of language can also have a significant impact as the relatedness of the languages
can also significantly impact the final results. Having these two factors in mind, we
propose the following three experimental scenarios for our approach:

• Large dataset: Joint training between English and Spanish with more than
15 million parallel sentences and incrementally adding French and German,
both with more than 5 million parallel sentences with English available. All
four are European languages, Spanish and French romance languages, and
German and English Germanic languages, even though romance languages
heavily influence the latter.

• Intermediate dataset: Joint training between Russian and English, with
6 million sentences available and incrementally adding Kazakh to the system
with 4 million sentences available with Russian. All three languages are from
different language families, with Russian and Kazakh sharing Cyrillic script.

• Small dataset: Joint training between Turkish and English with 200 thou-
sand sentences available and incrementally adding Kazakh with 100 thousand
parallel sentences with English available. Both Turkish and Kazakh are Turkic
languages, even though Turkish is written using Latin script and Kazakh uses
the Cyrillic script.

3.3.1 Dataset

Table 3.1 show de details of the datasets employed for all three proposed config-
urations. For all languages, preprocessing consisted of a pipeline of punctuation
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normalization, tokenization, corpus filtering of sentences longer than 80 words,
and true-casing. These steps were performed using the scripts available from
Moses [Koehn et al., 2007]. Preprocessed data is later tokenized into BPE sub-
words [Sennrich et al., 2016b]. We ensure that the vocabularies are independent and
reusable when new languages are added by creating vocabularies monolingually, i.e.,
without having access to other languages during the code generation.

Language Pair Corpus Language Set Segments Words Vocab (BPE)
ES 837.8 · 106

EPPS and UN subset
EN

Training 16.5 · 106

449.8 · 106

ES 137.7 · 103 31.9 · 103

ES-EN newstest 2012
EN

Validation 3.003 · 103

80.8 · 103 31.9 · 103

ES 123.2 · 103

newstest 2013
EN

Test 3 · 103

71.5 · 103

FR 586.7 · 106

EPPS and UN subset
EN

Training 18.9 · 106

510.9 · 106

FR 91.4 · 103 31.9 · 103

FR-EN newstest 2012
EN

Validation 3.003 · 103

80.8 · 103 31.9 · 103

FR 82.1 · 103

newstest 2013
EN

Test 3 · 103

71.5 · 103

DE 151.6 · 106

EPPS and UN subset
EN

Training 5.5 · 106

146.4 · 106

DE 95.3 · 103 31.9 · 103

DE-EN newstest 2012
EN

Validation 3.003 · 103

84.8 · 103 31.9 · 103

DE 81.5 · 103

newstest 2013
EN

Test 3 · 103

75.4 · 103

RU 180 · 103

Yandex Corpus + ParaCrawl
EN

Training 6.066 · 103

311 · 106

RU 117.3 · 103 31.8 · 103

RU-EN Newsdev 2019
EN

Validation 4, ·103

204.1 · 103 32 · 103

RU 29.8 · 103

Newstest 2019
EN

Test 1 · 103

51.2 · 103

KK 284.9 · 106

WMT19 Crawled Corpus
RU

Training 4.18 · 106

109.1 · 106

KK 266.6 · 103 24.2 · 103

KK-RU Ext. WMT19 Crawled Corpus
RU

Validation 4 · 103

102.2 · 103 34.6 · 103

KK 66.9 · 103

Ext. WMT19 Crawled Corpus
RU

Test 1 · 103

25.4 · 103

TR 5513 · 103

SETIMES
EN

Training 200 · 103

5467 · 103

TR 26.7 · 103 16 · 103

TR-EN newsdev 2017
EN

Validation 1.001 · 103

28.4 · 103 16 · 103

TR 84.6 · 103

newstest 2017
EN

Test 3 · 103

86.6 · 103

KK 2219 · 103

News Commentary v14
EN

Training 100 · 103

2216 · 103

KK 35.5 · 103

KK-EN newsdev 2019
EN

Validation 1.033 · 103

36.7 · 103

KK 36.7 · 103 7.36 · 103

newstest 2019
EN

Test 1.033 · 103

38 · 103 8.99 · 103

KK 22.5 · 103

KK-TR OpenSubtitles
TR

Test 2.594 · 103

26.3 · 103

KK 1.435 · 103

KK-TR-EN Tatoeba TR Test 381 1.369 · 103

EN 1.827 · 103

Table 3.1: Size of the parallel corpora
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3.3 Experimental Framework

Large Dataset

Experiments are conducted using data extracted from the UN [Ziemski et al., 2016],
and EPPS v7 datasets [Koehn, 2005] that provide 15 million parallel sentences be-
tween English and Spanish, German and French. newstest2012 and newstest2013
were used as validation and test sets, respectively. These sets provide parallel data
between the four languages that allow for zero-shot evaluation. All four languages
are tokenized into BPE subwords with 32 thousand merge operations.

Intermediate Dataset

For experiments with larger datasets, we used the data shared between the Russian-
English case used in WMT 20191 and that between the Russian-Kazakh case. The
validation and test sets from the Russian-English case were extracted from the Yan-
dex corpus. The validation set for the Russian-Kazakh case was extracted from
news-commentary-v14. Finally, and only for visualization and analysis purposes, we
extracted 381 multi-way parallel sentences in Turkish-Kazakh-English. These sen-
tences were also extracted from the OPUS database2. For the latter, we downloaded
the Turkish-English and the Kazakh-English datasets and matched the English sen-
tences that were identical. Detailed statistics of the corpus are shown in Table
3.1. All three languages are tokenized into BPE subwords with 32 thousand merge
operations.

Small Dataset

For the experiments, we used the Turkish-English parallel data from setimes2
[Tiedemann, 2009] which is used in WMT 20173 and the Kazakh-English paral-
lel data from the news domain which is used in WMT 20194. The training set for
the Turkish-English data included approximately 200,000 parallel sentences, and
the Kazakh-English data included approximately 100,000 parallel sentences. As de-

1http://www.statmt.org/WMT19/
2The datasets that we prepared for Kazakh-Turkish and Turkish-Kazakh-English, which are the
only ones that do not belong to a benchmark, are freely available under request.

3http://www.statmachine translation.org/WMT17/
4http://www.statmt.org/WMT19/
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3 Multilinguality by Incremental Training

velopment and test sets, we used newsdev2016 and newstest2016, respectively, for
the Turkish-English data, and newsdev2019 was split into development and test
sets for the Kazakh-English experiments. Additionally, we extracted the Kazakh-
Turkish test set from the OPUS database [Tiedemann, 2012] to evaluate the zero-
shot translation. Due to the small dataset size less merge operations were used for
BPE subword tokenization, using 16 thousand operations for Turkish and English
and 10 thousand for Kazakh.

3.3.2 Model Details and Training Setup

For both baseline and proposed systems, we used the transformer implementation
provided by Fairseq5. We used 6 attention blocks with 4 heads, embedding/hidden
dimensionality of 512, 1024 hidden feed-forward size, and 0.1 dropout. Learning
rate was set to 0.0001 with inverse square root schedule and 4000 warmup updates.
For all cases, we used Adam [Kingma and Ba, 2015] as the optimizer with 0.9 and
0.98 betas. The joint training was performed on two NVIDIA Titan X GPUs with
12 GB of RAM, while for the addition of languages, Titan X GPU was used. As
early-stop criterion, the systems were trained until no improvement was observed on
the validation set. All models have been trained using gradient accumulation with
an effective batch size of 24000 tokens.

3.4 Results

This section will analyze the performance of our proposed approach on the three
mentioned data configurations. Results would be presented in three main blocks,
joint training of the initial bilingual system (Section 3.4.1), incremental training
of new language (Section 3.4.2), and visualization of the encoder representations
(Section 3.4.3).

5Release v0.6.0 available at https://github.com/pytorch/fairseq
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3.4 Results

3.4.1 Bilingual Joint Training Results

Our first experiment consists in comparing the performance of the jointly trained
system to the standard Transformer. As explained in previous sections, this joint
model is trained to perform two different tasks, auto-encoding and translation, in
both directions. For all three tested configurations, the autoencoding task shows
results above 96 BLEU, proving that the models effectively learn the task with
minimal errors independently of the amount of data or the relatedness of the chosen
languages.

More differences between configurations are observed when analyzing the machine
translation results. Table 3.2 shows the obtained results on the large dataset of
European languages. Results show that for both English to Spanish (EN-ES) and
Spanish to English (ES-EN), the proposed architectures underperforms by approxi-
mately 2 BLEU points compared to the baseline bilingual systems. Similar results
are observed on the intermediate configuration, Table 3.3, where both Russian to
English and English to Russian directions underperform by 1 BLEU point when
compared to their respective bilingual baselines. These show that similarity be-
tween the jointly trained languages does not play a significant role in these results,
even between languages with significant alignment and grammatical differences such
as English and Russian. The performance gap may be more likely explained by the
differences between the combined tasks during training, such as monotonic and non-
monotonic alignment between source and target, with might lead to negative transfer
between tasks.

System ES-EN EN-ES
Baseline 32.60 32.90
Joint 29.70 30.74

Table 3.2: Joint training results measured in BLEU score for the large EN-ES dataset.
Best results in bold.

System EN-RU RU-EN
Baseline 32.33 35.09
Joint 29.48 34.64

Table 3.3: Joint training results measured in for the intermediate RU-EN dataset. Best
results in bold.

On the other hand, Table 3.4 shows that when applied to the small dataset configu-
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3 Multilinguality by Incremental Training

ration, the proposed approach outperforms the bilingual baseline by 0.71 BLEU on
the English to Turkish (EN-TR) direction and by 0.51 on the Turkish to English
direction (TR-EN). While the negative bias between tasks may still hold for this ex-
periment, we observe that the proposed joint training took 6792 updates to converge
on this configuration. In contrast, the bilingual EN-TR baseline took 4860 and the
TR-EN baseline 4370, using the same regularization, indicating that when applied
on limited data, the proposed approach may reduce overfitting to the training data,
leading to better performance.

System EN-TR TR-EN
Baseline 11.85 14.31
JointTraining 12.56 14.82

Table 3.4: Joint training results measured in for the small TR-EN dataset. Best results
in bold.

3.4.2 Incremental Training Results

Our second experiment consists of incrementally adding different languages to the
system. Note that, since we freeze the weights while adding the new language, the
order in which we add new languages does not impact performance. Table 3.5 shows
the translation results for the high resource configuration. French-English direction
performs 0.9 BLEU points below the baseline, and German-English performs 1.33
points below the baseline. French-English is closer to the baseline performance,
which may be due to its similarity to Spanish, one of the initial system languages.
It is also worth noticing that the added languages have better performance than
the jointly trained languages (Spanish-English from the previous section). This
reinforces the hypothesis that the auto-encoding task may have a negative impact
on the translation task. While still behind the bilingual systems, results show that
by training only the new language encoders, the approach can obtain comparable
results on the high resource scenario.
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System FR-EN DE-EN FR-ES DE-ES
Baseline 28.96 31.81 - -
Joint Training 27.63 30.93 - -
Pivot - - 29.09 21.74
Zero-shot - - 19.10 10.92

Table 3.5: Incremental training results measured in BLEU score for the large dataset.
All blank positions are not tested or not viable combinations with our data.
Best results in bold.

As previously mentioned, our joint strategy’s objective is to serve as a platform that
allows us to translate to the jointly trained languages even without explicit training.
This section will evaluate the zero-shot performance of the approach between added
languages and one of the jointly trained ones. On the large dataset scenario, German
and French encoders are incrementally using the frozen English decoder. Table 3.5
shows the translation results compared to a cascade translation with English as a
pivot language. Results show that while results are still far from pivot translation,
similarly to other multilingual architectures, the proposed architecture can perform
zero-shot translation for both studied languages. It is also observed that in both
pivot and zero-shot translation, the selection of added language significantly impacts
the final results, with better results between the romance languages, French and
Spanish, than germanic languages even when the supervised French to English pair
obtained lower scores.

System KK-EN
Baseline 3.82
Pivot Baseline 16.62
Pivot JointTrain 13.69
ZeroShot 5.58

Table 3.6: Zero-shot translation (KK-EN) provided by our architecture compared to: a
low-resource baseline (KK-EN), a pivotal system from KK-RU and from RU-
EN, under both the baseline and our JointTrain architecture. Best results in
bold.

Another advantage of shared architecture multilingual NMT systems
[Johnson et al., 2017] is that they allow by parameter sharing the flow of infor-
mation between high-resource and low-resource languages, leading to better results.
As a result, the performance of the latter is improved. In this experiment, we want
to confirm that our proposed architecture also presents this property by adding
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3 Multilinguality by Incremental Training

a new low resource language using incremental training. For both intermediate
and small dataset scenarios, we will perform experiments adding an extremely
low resource pair of Kazakh to English with only 100 thousand sentences and
comparing with a bilingual baseline trained exclusively on this language pair. We
added Kazakh to the already trained Russian decoder from the Russian-English
trained system on the intermediate scenario. Table 3.6 shows how by incrementally
training the low resource language with the frozen Russian decoder, we observe
gains of 1.76 BLEU points with respect to the 3.82 points from the bilingual baseline
system. On the small dataset scenario, we observe the same positive transfer when
using the incremental training approach. Table 3.7 shows an improvement of 0.62
respect the bilingual baseline on the supervised Kazakh to English pair (KK-EN)
and the Kazakh to Turkish zero-shot only a gap of 0.38 BLEU compared to the
pivot results. These results show that this zero-shot approach outperforms both the
baseline and direct Kazakh-to-English addition, proving that having access to more
data provides better models in this architecture. This idea holds even for zero-shot
translation directions.

System KK-EN System KK-TR
Baseline 3.82 Pivot Baseline 4.74
Incr. Train 4.44 Pivot Joint Train 4.93

ZeroShot 4.36

Table 3.7: New supervised language (KK-EN) comparing: the baseline architecture to
our added language (AddLang). Zero-shot translation (KK-TR) is provided
by our architecture compared to a baseline which is a pivotal system from
KK-EN and EN-TR. Best results in bold.

As an additional experiment, we also study the performance of jointly and incre-
mentally trained modules on pivot translation. To do so, we translate the previous
zero-shot translation by cascading using as pivot the one used as frozen decoder
during the incremental training. Results show that, similarly to the joint training
approach, only the model trained on the small dataset can outperform the bilin-
gual baselines, which are correlated to the supervised directions used for the pivot
system.

3.4.3 Common Representation Results

Our training schedule is based on training modules to produce compatible rep-
resentations; in this section, we want to analyze this similarity at the last en-
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coder’s attention block. In order to graphically show the presentation, a UMAP
[McInnes et al., 2018] model was trained to combine the representations of all lan-
guages. Figures 3.3 (A), (B) and (C) show 130 sentences extracted from the test
set. These sentences have been selected to have a similar length to minimize the
amount of padding required.

First, we will analyze the results of the high resource scenario. Figure 3.3 (A) shows
the representations of all languages created by their encoders. Languages tend to
be represented in clusters with no complete overlapping between languages as we
would have liked. This mismatch in the intermediate representation is similar to
what [Lu et al., 2018] reported in their multilingual approach, where authors argue
that the language-dependent features of the sentences have a big impact on their
representations.

However, since our encoder/decoders are compatible and produce competitive trans-
lations, we decided to explore the representations generated at the last attention
block of the English decoder, and as shown in Figure 3.3 (B). We can observe much
more similarity between English, French, and German (except for a small German
cluster) and separated clusters for Spanish. These behaviors may be explained be-
cause French and German have directly been trained with the frozen English decoder
and have been adjusted to produce representations for this decoder. The results also
show that the proposed incremental training effectively forces similar representations
between the frozen decoder and the new languages.

Finally, Figure 3.3 (C) shows the representations of the Spanish decoder. While
around the center of the plot, several sentences show similar encodings for all lan-
guages, we can also observe clearly separated clusters between languages. Looking
at the specific sentences that are plotted, we found that close representations do not
correlate with better BLEU.

Similar conclusions can be extracted from the small configuration, even though it
was the only one that outperformed the bilingual baselines in all tested directions.
We used the 381 multiway parallel sentences extracted specifically for this analy-
sis (see the statistics in Table 3.1). Figure 3.4 shows the sentence representations
created by their encoders. The separated clusters show no overlapping between the
language representations, as observed with the larger configuration. Related work
[Arivazhagan et al., 2019a] shows similar results for the case of a multilingual system
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with shared encoder and decoder. While the system can produce representations
that allow zero-shot translation, they form clear clusters for each language in the
system. Plausible explanations for this difference may be the distance measure that
we are using and/or the alignment of the source sentences. Some distance measures
cause the representations to collapse in a small region of the space, making them
non-informative for the decoder. Our distance measure, the correlation distance,
enforces the representations to correlate, but it does not constrain the scale of the
values in the contextual vectors. This measure enforces the sentence distribution
within the same language to be similar between all languages. However, since we are
not constraining the scale, each language can be represented in a different spatial
region.

Figure 3.3: Plot A shows the source sentence representation of each of the encoder mod-
ules(ES,EN,DE,FR). Plots B and C show the representation of the target
sentence generated by English (B) and Spanish (C) decoders given the sen-
tence encodings of parallel sentences generated for all four language encoder
modules.
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Figure 3.4: Plot show the encoder representations for jointly trained English (EN) and
Turkish (TR) and incrementally trained Kazakh (KK)

3.5 Conclusions

This chapter reports a proof of concept of a bilingual system NMT which can be
extended to a multilingual NMT system by incremental training. We have analyzed
how the model performs for different languages. Experimental results show that
by combining the tasks of autoencoding and machine translation, we can achieve
representations that allow zero-shot translation between incrementally added lan-
guages. Experiments also show that training new language encoders to a frozen
trained decoder can obtain positive transfer learning to low resource language pairs,
as previously observed on multilingual systems, without the known negative transfer
to high resource languages observed on architectures based on parameter sharing.

When applied to different data sizes and language families, we observe that the
proposed approach can outperform bilingual baselines trained on the same data.
Showing that the proposed training objective combining tasks may be beneficial to
prevent overfitting on low resource scenarios, as convergence times indicate.

Finally, an analysis of the language representations learned by the systems shows
that not a perfect alignment between parallel sentences is required to achieve zero-
shot translation. By enforcing a less restrictive distance such as correlation distance,
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3 Multilinguality by Incremental Training

we can obtain this behavior without compromising the internal structure of the
language representations.
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4 Multilingual Joint Training

Multilingual NMT training usually requires parallel data between language pairs to
translate. According to the proportion of available pairs, we can distinguish a variety
of scenarios. Given N languages, we denominate complete dataset, a dataset that
includes parallel data between the N2 - N possible translation directions. On the
other end, we denominate pivot dataset, a dataset including only parallel data be-
tween N languages and a pivot language, usually English, to a total of 2N directions.
These datasets benefit from the higher quantity of translated material to English
while allowing systems to efficiently scale to a massive number of languages.

The use of pivot datasets has a significant impact on Multilingual NMT archi-
tectures and their development. On systems with language-specific encoders and
decoders [Dong et al., 2015] we observe some differences according to desired tasks
(see Section 2.2.2). It has been successfully applied on one-to-many and many-
to-one tasks improving translation performance due to transfer learning. However,
the many-to-many scenario failed to learn a cross-lingual mapping that allowed zero-
shot translation between language pairs not observed during training. Several works
have proposed the use of auto-encoding [Luong et al., 2016] or our bilingual joint
training from Section 3.1, to enforce this common representation through an addi-
tional task. Other works [Firat et al., 2016a, Lu et al., 2018] have proposed sharing

Work adapted from: Escolano, C., Costa-jussà, M. R., Fonollosa, J. A. R., and Artetxe,
M. (2021). Multilingual machine translation: Closing the gap between shared and language-
specific encoder-decoders. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics:Main Volume, Escolano, C., Costa-jussà, M.
R., Fonollosa, J. A. R., and Artetxe, M. (2020b). Training multilingual machine translation by
alternately freezing language-specific encoders-decoder. Arxiv Preprint., Escolano, C., Costa-
jussà, M. R., and Fonollosa, J. A. R.(2020a). The TALP-UPC system description for WMT20
news translation task:Multilingual adaptation for low resource MT. In Proceedings of the Fifth
Conference on Machine Translation, and Escolano, C., Costa-jussà, M. R., and Fonollosa,
J. A. R.(2022). Multilingual machine translation: Deep analysis of language-specificencoder-
decoders. Accepted to the Journal of Artificial Intelligence Research.
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a common attention mechanism between that learned the cross-lingual mapping from
language-specific representations. On the other hand, fully shared universal encoder-
decoder systems [Johnson et al., 2017] do not exhibit these problems as sharing all
parameters and token representations naturally enforce a common representation
and transfer learning between languages at the cost of systems that are conditioned
by the capacity of the model to support more languages [Arivazhagan et al., 2019b]
and are less flexible once they are trained [Kudugunta et al., 2019].

As an alternative, recent works on using complete datasets [Freitag and Firat, 2020]
show that its use on the universal encoder-encoder approach leads to better overall
performance, especially on language pairs not involving the pivot language. Au-
thors claim that these systems can outperform even cascade approaches through
bilingual systems, which has traditionally been higher than multilingual translation
performance.

This chapter extends the bilingual joint training proposed in Section 3.1 to a multi-
lingual joint training between N languages while preserving the incremental training
capabilities from Section 3.2. Our proposal explores the use of complete training
data on language-specific encoder-decoder Multilingual NMT and how this mitigates
the gap between these approaches and universal encoder-decoders. We will follow
the notation described in Section 3.

In section 4.1, we describe the differences between pivot and complete datasets and
the impact it may have on our architecture.

In Section 4.2 we will propose a training schedule for multilingual joint training be-
tween N languages without sharing parameters, focusing on the incremental training
of new languages, both as source and target, to our system.

In Section 4.3 we propose an alternative schedule based on mimicking the incremen-
tal training from Section 3.2) by alternatively freezing encoders and decoders for a
subset of the translation directions.

In Section 4.4 we propose a method to leverage monolingual data on an already
trained language due to the modular nature of our approach.

In Section 4.5 we define the set of experiments to study the performance of our
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approaches on different languages and language-pair availability conditions as well
as the learned cross-lingual mappings obtained on NLI (See section 2.2.4) probing
task and visualization.

4.1 Complete Multilingual NMT

The training data available is a critical factor in any Machine Learning system, as
it defines how the model converges and the overall performance of our system. For
Multilingual NMT, data can become an even more important factor as the model
supports several languages. Depending on our data availability, some translation di-
rections may have to be learned indirectly as zero-shot translation. Figure 4.1 shows
an example for four languages, where the arrows represent the translation directions
with available parallel data. On the pivot datasets (right), the number of transla-
tion directions is much lower at the cost that most language pairs are only indirectly
trained through the pivot language, resorting to cascade or zero-shot translation to
perform those tasks. The lack of supervised training between languages may lead to
attention mismatch between the non-pivot languages, requiring additional elements,
such as parameter sharing, to enforce a common representation. On the other hand,
the complete training approach (left) shows that each language in the systems is
conditioned by all the other languages directly instead of relying exclusively on indi-
rect relations. This prevents some common problems usually found on multilingual
systems, such as the low performance for the non-English language pairs compared
to a bilingual or pivot-based translation. Previous works [Freitag and Firat, 2020]
have shown that even on architectures with full parameter sharing, complete training
leads to better performance when compared to English-centric systems and bilingual
baselines, especially on non-English translation directions.

Figure 4.1: Complete training example (left) and pivot training example (right) with 4
languages.
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Complete training also helps alleviate attention mismatch between the language
representations learned by the system without requiring the addition of shared at-
tention mechanisms to ensure a common representation space. These approaches
would limit the language options for our systems in traditional systems, where all
languages were jointly trained from the beginning. Following the approach from
the previous chapter (see Section 3.2), we propose two approaches that focus on
language-specific encoder-decoders and a two-step training. We schedule joint train-
ing between high-resource languages to establish a solid initial performance and in-
cremental training for new languages, benefiting from positive transfer learning from
previous languages.

We propose the use of a initial complete dataset to train language-specific encoders-
decoders, eliminating the need for additional tasks or parameter sharing between
languages. While this could have been a limitation on previous works focused on
training all languages together, our incremental training step allows adding any new
language to the trained language.

4.2 Language-specific Multilingual NMT

Our first proposed approach trains a separate encoder and decoder for each of the
N languages available, without parameter sharing across these modules. We denote
the encoder and the decoder for the ith language in the system as ei and di, respec-
tively. For language-specific scenarios, both the encoder and decoder are considered
independent modules that can be freely interchanged to work in all translation direc-
tions. In what follows, we describe the proposed method in two steps: joint training
and incremental training.

Joint training The straightforward approach is to train independent encoders and
decoders for each language. The main difference from the standard pairwise training
is that, in this case, there is only one encoder and one decoder for each language,
which will be used for all translation directions involving that language. Following
the common practice of sharing embedding parameters between source, target, and
output projection, we propose the use of tied embeddings for each language. In this
case, instead of sharing between source and target languages, parameters are shared
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between the encoder and decoder of the same language. Sharing the same token
representation on directions that include any given language as source or target
helps to learn better token representations. It enforces an additional link between
languages to converge to a common representation space.

The training algorithm for this procedure is described in Algorithm 2. For each
translation direction, si,j in the training schedule S with language i as the source and
language j as the target, the system is trained using the language-specific encoder
ei and decoder dj.

Algorithm 1 Multilingual training step
1: procedure MultilingualTrainingStep
2: N ← Numberoflanguagesinthesystem
3: S = {s0,0, ..., sN,N} ← {(ei, dj)}
4: E = {e0, ..., eN} ← Language− specificencs.
5: D = {d0, ..., dN} ← Language− specificdecs.
6: for i← 0 to N do
7: for j ← 0 to N do
8: if si,j ∈ S then
9: li, lj = get_parallel_batch(i, j)
10: train(si,j(ei, dj), li, lj)
11: end if
12: end for
13: end for
14: end procedure

Unlike the proposed approach from Section 3.1, it does not rely on jointly training
tasks and correlation between language representations. Instead, using complete
datasets, all encoders and decoders are combined to perform all translation direc-
tions involving their specific language, enforcing them to converge to a common
representation space. This allows translation directions to be trained iteratively,
reducing the computing power required to train several models in parallel.

Similarly, scalability to the number of languages differs from previous multi-
lingual NMT approaches based on parameter sharing. For those architectures,
the number of supported languages is bound by the capacity of the model
[Arivazhagan et al., 2019b]. As a consequence, bigger models and more compu-
tational power are required for the task. While our proposed approach requires new
encoders and decoders for each language, it does not use all of these parameters in
parallel, only storing the parameters for the current language pair on GPU memory.
Experimental results show that it can be trained with the same GPU computational
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requirements of a bilingual model, using additional storage that grows linearly with
the number of idle encoders and decoders, which is considerably more affordable.

Incremental training Once we have our jointly trained model for N languages,
the next step is to add new languages. Since parameters are not shared between the
independent encoders and decoders, language addition can be achieved by applying
the proposed incremental approach from Section 3.2. We must note that in that
section, the cross-lingual representation learned during the bilingual joint training
(see Section 3.1) did not allow to incrementally train new languages as target, only
new encoders. The proposed multilingual joint training approach allows the addition
of both new source and target languages by incrementally training new encoders or
decoders. Suppose we want to add language N + 1. To do so, we must have parallel
data between language N + 1 and any language in the system. As an illustration,
let us assume that we have Li − LN+1 parallel data. Then, we can set up a new
bilingual system with language Li as the source and language LN+1 as the target.
To ensure that the representation produced by this new pair is compatible with
the previously jointly trained system, we use the previous Li encoder (eli) as the
encoder of the new LiLN+1 system, and we freeze it. During training, we optimize
the cross-entropy between the generated tokens and LN+1 reference data but update
only the parameters of to the LN+1 decoder (dlN+1

). By doing so, we train dlN+1
not

only to produce good quality translations but also to produce similar representations
to the already trained languages. Following the same principles, the LN+1 encoder
can also be trained as a bilingual system by freezing the Li decoder. See Figure
4.2 as a scheme for 4 languages (L0...L3) in the system and adding a fifth one (L4)
with parallel data to L0. Once the new encoder or decoder is trained, zero-shot
translation is possible between any language in the system, as the new module, as
all encoders and decoders share the same representation space.

4.3 Frozen Training schedule

As discussed in the previous section, new languages are added into the system by
learning a new encoder e (or decoder d) with a frozen decoder f(d) (or frozen encoder
f(e)) already in the system. To simulate this setup in the initial training, we propose
a modification of the joint training by alternately training encoders and decoders
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Figure 4.2: Block Scheme. (Left) Initial Joint Training. (Middle) Adding a new lan-
guage in the source side with parallel data L0 − L4 and obtaining zero-shot
translation from L4 to L1, L2, L3. (Right) Adding a new language on the
target side.

while systematically freezing modules. For that purpose, we modify Algorithm 2 by
adding new training schedules that define the frozen languages as follow:

Algorithm 2 Multilingual frozen training step
1: procedure MultilingualTrainingStep
2: N ← Numberoflanguagesinthesystem
3: S = {s0,0, ..., sN,N} ← {(ei, f(dj)), (f(ei), dj), (ei, dj)}
4: E = {e0, ..., eN} ← Language− specificencs.
5: D = {d0, ..., dN} ← Language− specificdecs.
6: for i← 0 to N do
7: for j ← 0 to N do
8: if si,j ∈ S then
9: li, lj = get_parallel_batch(i, j)
10: train(si,j(ei, dj), li, lj)
11: end if
12: end for
13: end for
14: end procedure

We are still training all possible translation combinations among the N languages
(avoiding autoencoding and alternating batches in each direction).

We freeze the encoder or decoder for a subset of the combinations. When freezing
f(dj), we effectively force the representation of ei to adjust to the rest of the encoders
that dj learned from other translations, where it was not frozen. This principle holds
because, if ei generated an incompatible representation, f(dj) would be unable to
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adapt to it given that it is frozen, which would increase the training loss for the
direction. Similarly, freezing f(ei) allows dj to be more robust to a representation
that has not been explicitly learned from it. See Figure 4.3 for an illustration of this
with four languages for one training schedule.

Figure 4.3: Alternate training of frozen encoders and decoders for 4 languages

Figure 4.4: Frozen training schedule for 4 languages as directed graph.

Given a set of N languages, we can define a directed graph where each language is a
node, and each edge is a training translation direction. Figure 4.4 shows the gradient
flow between the different languages: l means language; 0...3 are four different lan-
guages in the system; f() means frozen and n() non-frozen, dotted lines means frozen
language pairs, continuous red lines mean non-frozen language pairs. Let’s interpret
the dotted arrow from box l0 to l1 with the scheme f(l0), n(l1). When training the
translation direction from l0 to language l1, we will freeze the l0 encoder and only
update the parameters of the l1 decoder. For the opposite translation direction, we
will freeze the l0 decoder and only update the parameters of the l1 encoder. This
can be extended to translation pairs: (l1,l3); (l2,l3) and (l0,l2). For pairs (l1,l2) and
(l0,l3) no language is frozen and therefore, there are continuous arrows in two direc-
tions because the gradient flows both ways. Note that the proposed schedule ensures
that there are two different paths for any pair of languages from which information
can flow during the training process by forming an Eulerian cycle between all these
languages where one learns from another language and lets another learn from it.
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4.4 Monolingual Fine-tuning

Since different freezing schedules allow these properties, we study three different
alternatives on this work, focused on freezing n

2
translation directions according to

the following criteria:

• Close schedule: Chosen by linguistic similarity, the most similar languages
are not frozen during training.

• Far schedule: Chosen by linguistic similarity, the least similar languages are
not frozen during training.

• Adapt schedule: After each epoch, the languages with the highest validation
loss are not frozen for the following epoch.

4.4 Monolingual Fine-tuning

The previous processes benefit from the additional corpus from the Multilingual
NMT system, but as stated before, monolingual data is another common source
of improvement for NMT systems. In this section, we will discuss how we added
monolingual data to the previously described model. To employ monolingual data
for language Li, we define an autoencoder using the already trained ei encoder and di
decoder. Instead of training the autoencoder to reconstruct the input directly, we in-
troduce an adaptor, between both modules, by stacking a decoder dj and an encoder
ej from any other language on the system. This adaptor is responsible for process-
ing the representation generated and mapping it into the common space learned by
the jointly trained system. This is done by decoding dj’ to decode representation
created by ei and encode it back with encoder ej, to compute the reconstruction of
the monolingual input using di. The motivation for this architecture is preventing
the different objectives of the tasks of reconstruction and translation from harming
performance, as observed in Section 3.4.

For our experiments, we greedy decoding as the autoregressive step was significantly
time-consuming compared to the standard Transformer training. Figure 4.5 show-
cases how this process is applied. In this work, both encoder and adaptor were frozen,
and only the final decoder was updated due to the non-differentiable decoding step.
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In future iterations, decoder gradients could be propagated to the encoder, allowing
the system to fully perform iterative back-translation [Hoang et al., 2018].

Figure 4.5: Training pipeline. Step 1 Supervised pretraining, Step 2 Unsupervised fine-
tuning.

4.5 Experimental Framework

In this section, we are going to describe the experimental results of our proposed
architectures. To do so, we are going to focus on two main tasks. machine translation
to evaluate their performance on the supervised task, and natural language inference
(see Section 2.2.4) to evaluate the shared representation space learned.

Machine Translation

In this section, we aim to evaluate the translation performance of our multilingual
system by two main objectives. Firstly, study the impact of the different proposed
configurations on the translation performance, focusing on the use of tied embed-
dings and the different training schedules applied to the frozen approach. For ex-
periments involving the frozen architecture, language pairs were selected according
to their baseline validation loss as a measure of similarity:
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• Far schedule: German-French and Spanish-English translation directions are
never frozen during training. For all remaining directions, either the encoder
or the decoder is frozen.

• Close schedule: German-English and Spanish-French translation directions
are never frozen during training. For all remaining directions, either the en-
coder or the decoder is frozen.

• Adapt schedule: A new schedule is defined according to the current valida-
tion loss after each epoch starting from the Far schedule.

Secondly, analyze the proposed architectures based on language-specific encoders
and decoders and determine their applicability compared to state-of-the-art fully
shared (Shared) architecture. To do this, we designed a set of experiments to test
several relevant scenarios for multilingual NMT systems:

• Joint training: The performance of the different approaches on the jointly
trained systems.

• Incremental training: Measure the performance of our proposed approaches
during incremental training compared to a Shared baseline and jointly trained
languages, including the new language.

• Low-resource and Monolingual Fine-tuning: Measure the performance
of our proposed LangSpec approach incrementally training a low-resource lan-
guage and leveraging monolingual data.

• Data Completeness: As mentioned in Section 4.1, our proposed approaches
rely on data completeness to converge to a common language representation
space. With this experiment, we aim to analyze the robustness of our approach
to the lack of some translation directions and how it compares to our fully
shared baseline.

• Fine-tuning robustness: Performance loss due to fine-tuning is a known
issue on shared systems [Kudugunta et al., 2019]. In this experiment, we aim
to compare the performance of our approach without parameter sharing.
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Multilingual Representation

Another important aspect of our architectures is the cross-lingual mapping learned
during training, necessary benefit from transfer learning towards incrementally
trained languages and perform zero-shot translation. Following the same approach
proposed in Section 3.4.3 we employ out visualization tool [Escolano et al., 2019b] to
visualize the representations learned by the different models on two different points
of the networks, the static embeddings, that represent a language both as source
and target, and the contextual embeddings produced by our encoders averaged as
sentence embeddings.

In addition to visualization of sentences representations, we introduce Natural Lan-
guage Inference as a probing task to measure this mapping and evaluate how
the different encoder layers produce this mapping. Following the procedure of
[Conneau et al., 2018] a model is trained for the task using as input the encod-
ings produced by our MT systems. As in the original work, the classifier consists of
two fully connected layers with ReLU and Softmax activation. The classifier is fed
with the following combination of the encoding of both reference and hypothesis:

h = [u, v, |u− v|, u ∗ v] (4.1)

Where u is the reference encoding, v is the hypothesis encoding, and ∗ is the ele-
ment multiplication of both vector representations. Figure 4.6 shows an overview
of this NLI architecture. In that work, encoders were explicitly trained on the task
of natural language inference independently for each language, and representations
were forced to share representation space through additional loss terms. In our ex-
periment, the classifier is trained using only English data, without any additional
loss term. This way, other languages’ performance is only based on machine transla-
tion training. It can be considered a probing task of the quality of the cross-lingual
mapping produced by our proposed translation architectures.

4.5.1 Datasets

For our task, we want to study the shared space already trained by the different
configurations of multilingual machine translation systems. For each of them, a
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Figure 4.6: Experiment setup for NLI.

classifier is trained using its English encoder, which is frozen to help the classifier
learn from the current shared space. To keep the encoding as described in equation
4.1 while using a Transformer encoder, the contextual embeddings are averaged to
create a fixed-sized sentence representation. This approach was previously proposed
by [Conneau et al., 2018], where pooling was employed to fix the representation size
while not adding extra padding to the data. As a negative side, this creates an
information bottleneck for the classification, as all sentence information has to be
condensed into a single fixed-size vector, independently of the sentence’s length.

Given that all language pairs in both language-specific architectures were trained
to share sentence representations, we can evaluate the classifier’s performance com-
pared with all the other languages in the multilingual system without any extra
adaptation.
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Language Pair Corpus Language Set Segments Words Vocab (BPE)
DE 42.2 · 106

EPPS
EN

Training 1.8 · 106

40, 3 · 106

DE 92.3 · 103 31.9 · 103

DE-EN newstest 2012
EN

Validation 3.003 · 103

72.9 · 103 31.9 · 103

DE 63.4 · 103

newstest 2013
EN

Test 3 · 103

72.1 · 103

DE 39.9 · 106

EPPS
ES

Training 1.7 · 106

41.8 · 106

DE 92.3 · 103 31.9 · 103

DE-ES newstest 2012
ES

Validation 3.003 · 103

89.9 · 103 31.9 · 103

DE 63.4 · 103

newstest 2013
ES

Test 3 · 103

70.5 · 103

DE 39.6 · 106

EPPS
FR

Training 1.7 · 106

43.7 · 106

DE 92.4 · 103 31.9 · 103

DE-FR newstest 2012
FR

Validation 3.003 · 103

93.1 · 103 31.9 · 103

DE 79.4 · 103

newstest 2013
FR

Test 3 · 103

83.8 · 103

ES 44.1 · 106

EPPS
EN

Training 1.8 · 106

41.8 · 106

ES 89.8 · 103 31.9 · 103

ES-EN newstest 2012
EN

Validation 3.003 · 103

81.5 · 103 31.9 · 103

ES 70.5 · 103

newstest 2013
EN

Test 3 · 103

64.8 · 103

ES 41.6 · 106

EPPS
FR

Training 1.7 · 106

43.9 · 106

ES 89.9 · 103 31.9 · 103

ES-FR newstest 2012
FR

Validation 3.003 · 103

93.0 · 103 31.9 · 103

ES 80.3 · 103

newstest 2013
FR

Test 3 · 103

83.8 · 103

FR 63.4 · 106

EPPS
EN

Training 2.1 · 106

57.5 · 106

FR 93.1 · 103 31.9 · 103

FR-EN newstest 2012
EN

Validation 3.003 · 103

81.5 · 103 31.9 · 103

FR 83.8 · 103

newstest 2013
EN

Test 3 · 103

72.1 · 103

RU 18.5 · 106

Yandex Corpus
EN

Training 9.27 · 105

24.7 · 106

RU 81.6 · 103 31.8 · 103

RU-EN Newstest 2012
EN

Validation 3.003, ·103

81.6 · 103 32 · 103

RU 59.3 · 103

Newstest 2013
EN

Test 3 · 103

65.6 · 103

TA 15.1 · 106

Yandex Corpus + ParaCrawl
EN

Training 4.94 · 105

7.3 · 106

TA 117.3 · 103 16 · 103

TA-EN Newsdev 2010
EN

Validation 1 · 103

204.1 · 103 31.9 · 103

TA 66.6 · 103

Newsdev 2020
EN

Test 1.275 · 103

29.7 · 103

TA NewsCrawl TA Monolingual 5.04 · 105 6.4 · 106 16 · 103

EN NewsCrawl EN Monolingual 6.08 · 105 14.9 · 106 31.9 · 103

Table 4.1: Size of the parallel corpora

We used 2 million sentences from the EuroParl corpus [Koehn, 2005] in German,
French, Spanish and English as training data, with parallel sentences among all
combinations of these four languages (without being multi-parallel). For Russian-
English, we used 1 million training sentences from the Yandex corpus1. As

1https://translate.yandex.ru/corpus?lang=en
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validation and test set, we used newstest2012 and newstest2013 from WMT2,
which is multi-parallel across all the above languages. For English-Tamil PMIndia
[Haddow and Kirefu, 2020], Tanzil v1 [Tiedemann, 2012], The UFAL EnTam corpus
[Ramasamy et al., 2012], The NLPC UOM En-Ta corpus [Fernando et al., 2020],
Wikimatrix [Schwenk et al., 2021], and Wikitiles [Rozis and Skadins, 2017]. As
monolingual Tamil data, we used News Crawl [Barrault et al., 2019], while for En-
glish, we used News-commentary [Tiedemann, 2012].

All non-Tamil data were preprocessed using standard Moses scripts
[Koehn et al., 2007], applying punctuation normalization, tokenization, and true-
casing. After these steps, all languages are tokenized at subword level using BPE
[Sennrich et al., 2016b] with 32 thousand merge-operations. Tamil data has been
tokenized at word-level using Indic-NLP [Kunchukuttan, 2020] and then tokenized
with BPE with 16 thousand operations. Table 5.1 shows the details of all combina-
tions after preprocessing. We evaluate our approach in 4 different settings: (i) the
initial training, covering all combinations of German, French, Spanish and English;
(ii) adding new languages, tested with Russian-English in both directions; and (iii)
zero-shot translation, covering all combinations between Russian and the rest of
the languages; (iv) Low-resource scenario and fine-tuning on monolingual data is
performed on English-Tamil.

For the NLI task, we use the MultiNLI corpus 3 for training, which contains approxi-
mately 430k entries. We use the XNLI validation and test set [Conneau et al., 2018]
for cross-lingual results, which contain 2.5k and 5k segments, respectively, for each
language. All data is preprocessed following the same method described for English,
Spanish, French, German, and Russian using the same BPE codes and vocabularies
from the machine translation systems.

4.5.2 Model Details and Training Setup

All the experiments were done using the Transformer implementation provided by
Fairseq4. We used 6 layers, each with 8 attention heads, an embedding size of
512 dimensions, 2048 hidden size feedforward layers. The dropout was 0.1 for the

2http://www.statmt.org
3https://cims.nyu.edu/ sbowman/multinli/
4Release v0.6.0 available at https://github.com/pytorch/fairseq
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shared approach and 0.3 for language-specific encoders/decoders. All approaches
were trained with an effective batch size of 32k tokens for approximately 200k up-
dates with 0.0001 learning rate, using the validation loss for early stopping. As
optimizer, we used Adam [Kingma and Ba, 2015] with 0.9 and 0.98 betas. All ex-
periments were performed on an NVIDIA Titan X GPU with 12 GB of memory.
For all systems (both shared and language-specific) we used tied embeddings.

When comparing shared and language-specific systems, we use the same number
of parameters to perform each translation direction. Even though the language-
specific systems have additional parameters for other languages, they are only used
when their specific language is involved. Both in training and inference, all models
use approximately 60.5 million parameters, slightly different due to each language’s
subword tokenization.

For the NLI experiments, we use the exact same encoders trained for the machine
translation experiments, which are not further retrained or fine-tuned for this task.
A classifier with 128 hidden units is exclusively trained on top of the English encoder,
the only language we have training data available.

4.6 Results

In this section, we will evaluate the performance of our proposed language-specific
approach (LangSpec) as well as our variant using frozen training schedules (Frozen).
In contrast with our proposed approaches, the shared system requires retraining
from scratch to add a new language. For that reason, we experiment with two
variants of this system: one trained without Russian-English (Shared) and another
one including this pair (SharedRU). Note that, to make experiments comparable,
we use the Shared version when comparing to our LangSpec and Frozen systems
in Table 4.3, and the SharedRU version when adding new languages and performing
zero-shot translation.
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4.6.1 Joint Training Results

Our first experiments consists in comparing the translation performance of our pro-
posed approaches during the joint training step. Before comparing their result,
we will analyze the different training schedules for the frozen method. Table 4.2
shows the translation results for all translations directions between German, En-
glish, French, and Spanish. The Far configuration outperforms the Close schedule
by 0.6 BLEU on average, and similar performance to the Adapt schedule, with a
difference of only 0.05 BLEU. Looking at the individual language, we observe that
the Close obtains small improvement on the non frozen pair German-English and
English-French and Spanish-German, even though these improvements are not con-
sistent in the reverse directions. These differences indicate that non-frozen pairs
may obtain better performance individually, even when having lower overall perfor-
mance. Finally, analyzing the frozen languages during the Adapt schedule training,
we observed that it tended to converge to the Far schedule as the German-French di-
rections showed the highest validation loss. This explains the similar overall results
obtained by both configurations.

Far Close Adapt
de-en 23.25 n-f 23.47 n-n 24.06
de-es 24.25 n-f 23.02 f-n 23.78
de-fr 25.08 n-n 23.46 n-f 24.00
en-de 19.55 f-n 20.88 n-n 21.30
en-es 28.60 n-n 27.42 n-f 27.97
en-fr 27.72 f-n 28.03 f-n 27.81
es-de 18.21 f-n 18.44 n-f 18.43
es-en 27.06 n-n 25.30 f-n 26.35
es-fr 29.34 f-n 28.93 n-n 29.92
fr-de 19.22 n-n 17.19 f-n 18.34
fr-en 25.11 n-f 24.31 n-f 24.91
fr-es 28.14 f-n 27.31 n-n 28.08
Avg. 24.63 23.98 24.57

Table 4.2: Initial training. In bold, best global results. In italic, average results for all
translation directions.

With the previous results, we select the Far schedule to compare to our proposed
language-specific (LangSpec) method and the fully shared baseline (Shared). Table
4.3 shows the results for all three configurations, with and without tied embeddings.
Results show that, on average, the LangSpec configuration with tied embeddings
outperforms both Frozen and Shared architectures with tied embeddings by 0.6
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and 0.4 BLEU points, respectively, and obtaining the best results on 9 out of 12
translation directions. It is worth noticing that this was not the case for the non-tied
configurations, with an improvement of 2.74 BLEU points on average by including
tied embeddings, higher than the 0.65 BLEU obtained by the frozen approach.

Shared LangSpec Frozen
¬Tied Tied ¬Tied Tied ¬Tied Tied

de-en 24.40 25.04 22.04 24.54 23.25 23.76
de-es 24.04 25.01 22.38 25.02 24.25 24.66
de-fr 24.78 25.14 22.57 25.49 25.08 25,78
en-de 21.39 21.51 19.44 22.01 19.55 20.00
en-es 28.08 28.19 26.79 29.53 28.60 29.59
en-fr 28.43 28.67 26.94 29.74 27.72 28.56
es-de 19.51 20.21 17.70 20.31 18.21 18.84
es-en 26.66 26.93 24.9 27.75 27.06 27.64
es-fr 29.47 29.59 27.31 30.08 29.34 29.56
fr-de 19.22 19.81 16.88 19.97 19.22 19.80
fr-en 25.78 26.29 23.50 26.55 25.11 26.11
fr-es 28.15 29.03 26.78 29.07 28.14 28.98
Avg. 24.99 25.41 23.10 25.84 24.62 25.27

Table 4.3: Initial training. In bold, best global results. In italic, average results for all
translation directions.

4.6.2 Incremental Training Results

Our next experiments focus on incrementally adding new languages and their zero-
shot performance with jointly trained languages. Table 4.4 shows that when adding
a new language into the system, language-specific encoder-decoders can outperform
the shared architecture when adding a new language and a new domain by learning
from the previous information in the frozen modules. LangSpec outperforms the
shared architecture by 2.92 BLEU points for Russian-to-English and by 3.64 BLEU
in the opposite direction. The frozen architecture also outperformed the SharedRU

architecture by 1.43 BLEU on average while underperforming the Langspec archi-
tecture by 2 BLEU points on average. It is also worth mentioning that the Russian
data is from a different domain than the frozen English modules used for training
(Yandex corpus and EuroParl, respectively). These results are surprising as the
English module (encoder or decoder) is always frozen during incremental training,
preventing them from learning from the task. This indicates that the combination of
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language-specific parameters as well as embeddings could lead to better translation
results on the incrementally trained supervised directions.

Additionally, retraining the shared encoder-decoder to add a new language took
an entire week. In contrast, the incremental training with the language-specific
encoder-decoders was performed in only one day.

On the other hand, when analyzing the zero-shot results, the shared encoder-decoder
outperforms the LangSpec and Frozen approaches by 1.39 and 3.37 BLEU on av-
erage, respectively. This difference in performance suggests that, while limiting the
amount of shared information during training can improve our model performance,
it may also harm zero-shot translation. On the Shared architecture, representa-
tions are shared from the token embeddings to the contextual cross-lingual mapping
learned by the attention layers. While this may limit representing new languages, it
can also lead to better cross-lingual representations, improving the overall zero-shot
performance.

SharedRU LangSpec Frozen
¬Tied Tied ¬Tied Tied ¬Tied Tied

ru-en 24.71 24.62 25.52 27.54 25.08 25.47
en-ru 19.91 20.03 21.44 23.94 21.33 22.01
Avg. 22.31 22.33 23.48 25.74 23.21 23.74
ru-de 15.36 16.52 12.73 13.77 11.85 13.11
ru-es 21.38 23.12 18.71 21.08 15.31 17.46
ru-fr 21.38 22.04 18.05 19.85 17.46 17.90
de-ru 16.23 17.27 14.39 16.99 14.99 15.38
es-ru 16.98 18.78 15.93 18.46 14.85 15.84
fr-ru 16.79 17.83 15.16 17.47 14.99 15.67
Avg. 18.02 19.26 15.99 17.94 14.91 15.89

Table 4.4: Adding a new language translation and Zero-shot.

4.6.3 Low-resource and Monolingual Fine-tuning Results

Our previous experiments have shown that our proposed approach effectively adds
new languages and how the additional data can improve the overall performance
after fine-tuning. This section’s motivation is to explore the combination of both
positive transfer and monolingual data in a low-resource task such as English-Tamil
Translation and the impact of monolingual data on this scenario. To test our hy-
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pothesis, we trained a bilingual baseline with just the parallel data available for the
task and compared its results to train a new language incrementally.

Tables 4.6 and 4.5 show that both directions benefit from adding Tamil into the
LangSpec system with an improvement of 1.58 and 4.09 BLEU points, respectively,
approximately a 40% improvement when compared to the bilingual baseline in both
directions.

The monolingual fine-tuning results show that the English to Tamil translation
direction benefits more (2.65 BLEU) from the technique than the Tamil to English
direction (1.02 BLEU). This difference in the performance may be explained by
the difference in the training of both decoders. While the Tamil decoder has been
trained just with the parallel data for the task, the English decoder was trained with
the multilingual NMT system with more data available, which may lead to a more
robust representation.

System BLEU ∆BLEU
Baseline 3.42 -
LangSpec 5.00 1.58
+ Mono 7.65 2.65

Table 4.5: Results measured in BLEU of the English to Tamil Translation direction.

System BLEU ∆BLEU
Baseline 6.51 -
LangSpec 10.6 4.09
+ Mono 11.62 1.02

Table 4.6: Results measured in BLEU of the Tamil to English Translation direction.

4.6.4 Data Completeness Results

We have seen that our proposed LangSpec encoders-decoders does not suffer from
attention mismatch as reported in previous research works [Firat et al., 2016a,
Firat et al., 2016b, Lu et al., 2018] even if not sharing any parameter. We surmise
that this is due to having parallel data in all language pairs from the initial system.
Therefore, in this section, we exclude training data from certain language pairs to
see how our system behaves. Beyond, learning the impact of attention mismatch,
this experiment is motivated by the fact that there may be situations where com-
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plete parallel data among all the language pairs in the initial system is not available.
We explore four situations (see Table 4.7):

1. (EN) including parallel data only with English (excluding parallel data from
ES-FR, ES-DE, and DE-FR). This situation is equivalent to English-centered
datasets.

2. (EN+DE) including parallel data with English and German (excluding parallel
data from ES-FR).

3. (EN+ES) including parallel data with English and Spanish (excluding parallel
data from DE-FR).

4. (EN+FR) including parallel data with English and French (excluding parallel
data from DE-FR).

EN EN+DE EN+ES EN+FR
Shared LangSpec Shared LangSpec Shared LangSpec Shared LangSpec

de-en 24.40 24.35 23.92 24.63 22.22 24.07 23.03 23.96
de-es 24.04 0.32 23.98 25.16 22.72 24.74 22.35 22.21
de-fr 24.78 0.35 24.63 25.58 22.27 21.87 23.80 24.80
en-de 21.39 22.24 20.95 21.79 19.96 21.67 20.67 21.52
en-es 28.08 29.84 27.88 29.58 27.28 29.11 27.57 29.17
en-fr 28.43 29.99 28.11 29.72 27.83 29.29 28.25 29.17
es-de 19.51 0.11 19.62 19.73 17.90 19.84 18.53 16.50
es-en 26.66 27.15 26.52 27.53 24.78 27.20 26.09 26.89
es-fr 29.47 0.33 28.19 26.92 27.54 29.84 29.12 29.81
fr-de 19.22 0.16 18.76 19.34 17.37 16.06 18.14 19.08
fr-en 25.78 26.00 25.63 26.16 24.28 26.01 25.17 25.65
fr-es 28.15 0.21 27.39 26.65 27.13 28.86 27.76 28.56
Avg. 24.99 13.42 24.63 25.23 23.44 24.88 24.20 24.86

Table 4.7: Limiting training with parallel corpus from: pairs including English (EN ),
pairs including English and German (EN+DE ), pairs including English and
Spanish (EN+ES ), pairs including English and French (EN+FR)

From the results in Table 4.7, we observe that for English-centered configuration,
limiting training on language pairs to English, we see that our proposed method-
ology is not able to learn translation from the language pairs for which we do not
have training data. For this particular case, we observe the attention mismatch
mentioned in previous works. Consequently, the model cannot converge to an ef-
fective cross-lingual mapping between all languages. On the other hand, the shared
architecture does not have this problem because, by nature, the shared parameters
enforce a common representation between all input sentences. However, in situa-
tions where complete data is in this situation, we also observe that for the language
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pairs involving English, our proposed methodology can outperform the shared archi-
tecture by more than 2 BLEU points in all cases (except for fr-en, where we obtain
0.81 BLEU improvement).

On the other hand, for the remaining three situations where complete data for two
languages are available, we observe that the performance of the language-specific
encoder/decoders increases dramatically, and we do not observe the close to zero
BLEU in zero-shot translation. Similar to situation 1 with the language pairs in-
volving English, we see that the performance of our system in these cases is higher
than that in the shared system (increasing up to 2.42 BLEU points in the case of
ES-EN when lacking the DE-FR parallel corpus). The only exceptions are languages
on the zero-shot translation directions, such as DE-ES and ES-DE, using complete
data for all English and French language pairs.

4.6.5 Fine-tuning Robustness Results

Effect SharedRU LangSpec
ft ft

Transfer ru-en 24.62 27.66 27.54 27.90
en-ru 20.03 23.44 23.94 24.37
Avg. 22.33 25.55 25.74 26.14

Noise de-en 26.25 3.38 24.54 26.25
en-de 22.11 1.99 22.01 22.72
es-en 28.72 4.96 27.75 29.12
en-es 29.78 1.83 29.53 30.53
fr-en 27.98 5.33 26.55 28.24
en-fr 29.63 1.72 29.74 30.33
Avg. 27.41 3.20 26.68 27.86

Table 4.8: Fine-tuning results. Top table, the results after fine-tuning with Russian-
English data. Bottom table, the results after fine-tuning with German-
English data.

Previous work [Kudugunta et al., 2019] showed that overall translation performance
might be affected when Shared architectures are fine-tuned on a subset of the sup-
ported languages. This section analyzes whether our proposed LangSpec archi-
tecture exhibits the same behavior when fine-tuned on an incrementally trained
language and how robust the learned cross-lingual mappings are to new data. For
our experiments adding the new Russian-English pair, we have new data from En-
glish that the English encoder/decoder already in the system has not seen. We
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want to know the impact on translation quality when fine-tuning the English en-
coder/decoder on these data. Basically, we simultaneously update the Russian en-
coder/decoder and English encoder/decoder for the language-specific case. It is
important to note that the fine-tuned Russian modules are already trained using
incremental training to enforce them to learn the system’s cross-lingual represen-
tation. For the shared case, we update the shared encoder/decoder with the new
data. As expected, Table 4.8 shows how this fine-tuning benefits the Russian-English
performance and harms the other directions dramatically in the case of the shared
encoder/decoder. However, for language-specific encoder/decoder, fine-tuning ben-
efits all pairs of languages. Note that Table 4.8 (top) reports variations only on the
results involving English modules, which are the ones modified by this fine-tuning.
This fine-tuning has a double impact on the entire system. First, it is doing in-
ductive transferring for the Russian-English and, therefore, improves its translation
quality. Second, it adds noise/interference to the other language pairs in the system.
By showing that we can fine-tune and not lose performance, we are proving that we
are learning a robust intermediate space that is not forgotten by the perturbations
on individual modules. These results show how the representation created by lan-
guages added to the system is more robust to catastrophic forgetting than the one
obtained by the shared training.

4.6.6 Common Representation Results

To better understand our models’ cross-lingual mapping, we will visualize both the
static subword embeddings and the contextual encoding representations produced
by our models. We use [Escolano et al., 2019b] tool5, that allows us to visualize
intermediate sentence representations. The tool performs a dimensionality reduction
of these data using UMAP [McInnes et al., 2018]. Figure 4.7 shows static subword
embeddings from the intermediate representation of 100 sentences in each language
(German, English, Spanish, French, and Russian). Figure 4.7 shows that both
LangSpec and Frozen approaches (center and right) create defined language-specific
clusters without significant overlapping between languages. On the other hand, the
Shared architecture (left) shows that all languages overlap in a single common space.
This was expected as all languages share the same embedding table, with languages
even sharing an important number of subwords.

5https://github.com/elorala/interlingua-visualization
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Figure 4.7: Subword embeddings for 100 test sentences, SharedRU(left),
LangSpec(center) and Frozen(right) systems.

To observe the contextual encoder representation, we compute sentence vectors as
the average of all tokens contextual embeddings without padding. Figure 4.8 shows
the visualization for all three architectures. The differences between systems results
are much more subtle at this level, with clear overlapping between languages for all
the architectures. These results show that our language-specific approaches create
language-specific representations at subword level that are transformed into a shared
space through the different encoder layers.

Figure 4.8: Sentence encoding visualization for 100 test sentences, SharedRU(left),
LangSpec(center) and Frozen(right) systems.

As all three visualization show similar overlapping results between languages, we
performed additional analysis on NLI as a probing task to better compare the quality
of these representations. In this case, we will Table 4.9 shows the results for the XNLI
tasks for the output of different encoder layers for the language-specific encoder-
decoders, using the LangsSpec approach. Note that our goal is not to improve
the state-of-the-art in this task but rather to analyze the nature and quality of
the cross-lingual representations arising in our proposed multilingual architecture
to understand it better. Better performance is generally achieved at the highest
layer (6), except for French and Russian. This may imply that better sentence
representations may be achieved with more layers. These findings correlate with the
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observed visualizations, with language-specific input representations better aligned
by the encoder’s output.

2* Encoder layers
1 2 3 4 5 6

en 57.50 57.30 58.43 58.62 58.82 59.52
de 43.42 44.70 49.00 51.51 51.83 54.49
es 45.60 47.00 52.23 54.10 55.06 55.71
fr 44.90 44.20 52.11 55.71 57.36 54.81
ru 36.10 33.30 33.40 35.90 43.80 38.94

Table 4.9: XNLI (en, de, es, fr, ru) results according to the number of encoder layers

To better illustrate the model’s performance, table 4.10 show the performance of
the proposed methods compared to the shared system with and without Russian.
Results show that the Frozen approach leads to better performance on the supervised
English direction, by 0.2% over the SharedRU approach and 5.8% over LangSpec.
On the Zero-shot languages, results show that the Shared approaches outperform the
language-specific ones. We observe similar performances when comparing the two
language-specific approaches, with the Frozen approach outperforming LangSpec by
2.4% on the incrementally trained Russian. These results indicate that the Frozen
approach may positively impact the learned cross-lingual mapping, but it does not
correlate with the translations results. We hypothesize that machine translation may
benefit from some language-specific information or spurious correlations between
supervised language pairs.

It is also noticeable that when comparing the performance of the shared model,
it benefits from the additional data used for training, showing better results in all
language pairs. The language-specific model in incremental training does not show
this behavior, as the weights from the previous languages are frozen.

Shared SharedRU LangSpec Frozen
en 58.32 59.96 54.49 60.20
de 59.94 62,15 59.52 57.80
es 58.40 60.59 55.71 55.60
fr 59.19 60.60 54.81 57.90
ru - 55.98 38.94 41.40

Table 4.10: XNLI (en, de, es, fr, ru) accuracy comparison.
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4.7 Conclusions

In this chapter, we presented two methods to train language-specific encoders-
decoders multilingual systems, LangSpec and Frozen, that allow incremental addi-
tions of new languages in the system without retraining the entire system or adding
any adapter. We believe that this approach can be particularly useful for situations
in which a rapid extension of an existing machine translation system is critical.
Our experiments show that training our systems on complete data, including all
translation directions, effectively enforces a cross-lingual mapping.

On multilingual joint training, the language-specific encoder-decoders LangSpec out-
perform the shared architecture by 0.4 BLEU points on average. When adding a
new language, the language-specific encoder-decoders outperform the shared ones
by 3.4 BLEU points on average and by a fraction of the time required to retrain
a complete architecture. Furthermore, without any variation in the quality of lan-
guages in the initial system when adding a new language. Our experiments also
show encoders can be further trained using only monolingual with 1 BLEU points
improvement on low-resource Tamil-English translation tasks.

Further analysis of our model’s robustness to fine-tuning and different data con-
ditions shows that the LangSpec approach is robust to fine-tuning, not only not
showing catastrophic forgetting but also improving the performance of other trans-
lation directions involving the fine-tuned language. On the other hand, on the
different data conditions tested, results show that when trained on pivot language-
based data, our approach cannot perform zero-shot translation to other languages,
while the Shared approach does. Moreover, we do not need parallel data among
all language pairs in the initial system to learn translations from and to all lan-
guages; however, we at least need parallel data with more than one language. In
this sense, language-specific encoders-decoders could take further benefit from in-
cremental training with more than one language in the initial system.

We also examine the quality of the intermediate cross-lingual representation created
with our proposed model in applying natural language inference and visualization.
We observe that our approaches create language-specific subword embeddings that
evolve into a shared cross-lingual mapping through the encoder layers. When com-
pared to the shared system, we observe that parameter sharing provides better cross-
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lingual representations for the probing task, which correlates with the difference in
the performance of the systems on zero-shot translation.
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Training

End-to-end SLT systems are usually trained on a combination of ASR for pretrain-
ing, and SLT data [Gangi et al., 2019b]. This can become a limitation as annotated
data for those tasks can be scarce or limited to high-resource languages. A common
approach is using cascade systems [Sperber and Paulik, 2020] where the output of
an ASR model is fed to an NMT system, leveraging both ASR and NMT data,
which is more available in terms of the number of sentences and language avail-
ability. On the other hand, while cascade approaches incorporate NMT data, they
require an intermediate decoding step, which is time-consuming and may propagate
errors between models.

Data availability is even more important in multilingual systems, where annotated
data is required between several languages. In recent years end-to-end Multilin-
gual SLT has gained popularity with systems able to perform on the one-to-many
[Gangi et al., 2019c], and many-to-many [Gangi et al., 2019c] scenarios, even allow-
ing for zero-shot translation between SLT directions. With the release of large
pretrained models on unlabelled data, recent works [Li et al., 2021] have proposed
fine-tuning a combination of a Wav2Vec 2.0 [Baevski et al., 2020] speech encoder
with an MBART [Liu et al., 2020a] text decoder on Multilingual SLT data. This
leads to significant improvements compared to a randomly initialized system, as the
model can benefit from large amounts of unlabelled data. A common trait of all
these approaches is that they only provide zero-shot translation between languages

Work adapted from: Escolano, C., Costa-jussà, M. R., Fonollosa, J. A. R., and Segura, C.
(2021). Enabling Zero-shot Multilingual Spoken Language Translation with Language-Specific
Encoders and Decoders. In Proceedings of ASRU 2021 ©2021 IEEE,
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trained on the SLT task, which are still limited, without benefiting from NMT data
available.

This chapter proposes the first end-to-end method that performs zero-shot SLT
end-to-end between a speech encoder and a text decoder trained exclusively on
NMT data, translating between language pairs where no SLT data is available.
Our proposal consists in extending our LangSpec architecture from Section 4.2 by
incremental training (see Section 3.2), focusing on the adaptations required to bridge
both speech and text data modalities. Figure 5.1 depicts this behaviour.

Figure 5.1: Diagram showing the incrementally trained speech encoder and zero-shot
SLT directions.

In Section 5.1, we describe the speech encoder architecture used for our experiments
and the adaptations required to use in combination with a previously trained NMT
decoder.

In Section 5.2, we propose a method to incrementally train the LangSpec system
with the speech encoder and how to perform zero-shot translation to all languages
supported by the system.

In Section 5.3 we define the set of experiments performed, datasets, focusing on the
translation performance, including zero-shot, and representations space learned by
the different configurations.

In Section 5.4, we analyze the results obtained by the tested models. We analyze the
learn encoder representation focusing on the observed differences between modalities
and the impact of the Adapter modules.
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5.1 Speech Encoder

5.1 Speech Encoder

Different data modalities have different properties that have to be addressed by
our systems to perform correctly. As explained in Section 2.2.3, some of the most
important differences we may find between text and speech are sequence length
and the possibility of 2D dependencies, as is the case in our experiments. We use
log mel spectrograms that deduce the temporal dimension of the input data, even
though they are still an order of magnitude longer than its transcriptions, while
introducing 2D dependencies between the frequency and temporal dimensions of
our utterances.

Being the Transformer [Vaswani et al., 2017] an architecture designed for text, some
modifications are required for speech processing. In this work, we use the S-
Transformer architecture [Gangi et al., 2019b] as speech encoder for our approach.
This architecture introduces two 2D-convolutions over the input representation to
reduce by 4 the temporal dimension, making it closer to the sequence length of
the correspondent transcription or translation target. To model 2D dependencies,
they introduce a 2D self-attention that computes attention for the temporal and
frequency dimensions in parallel by applying multi-head attention (Section 2.1.3.1)
over the input and its transposed matrix, respectively. Queries Q, keys V , and val-
ues V are computed by applying a 2D convolution with as many output channels as
the number of heads. Dot product attention is also modified to induce the model
to attend to short dependencies by introducing a length penalty π(D) as shown
in equation 5.1 where D is a distance matrix where each di,j ∈ D is the distance
between positions |i − j| and π(di,j) is defined as 0 if di,j equals 0 and loge(di,j)

otherwise.

Attention(Q,K, V ) = softmax(
QKt

√
d− πD

)V (5.1)

To adjust this speech encoder to our LangSpec approach (see Section 4.2), we use
an extra 2D-convolutional layer in order to reduce the length of the input speech
further, resulting in a total of 3 2D-convolutional layers, as in previous works
[Hannun et al., 2019]. Each convolution, with kernel size 3 and stride 2, halves the
input spectrogram’s temporal dimension, resulting in an 8 times shorter sequence,
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obtaining sequences 2 times longer than the text target on average, measured on
the validation set.

5.2 Incremental Training for Speech Encoders

Following the method described in Section 3.2 speech encoders are added by train-
ing them with a frozen decoder from the LangSpec system from Section 4.2. First,
speech encoders are pretrained on the task of automatic speech recognition as pro-
posed by [Gangi et al., 2019b]. For this step, both encoder and decoder are ran-
domly initialized and trained from scratch. Secondly, we pair the pretrained speech
encoder with a frozen decoder from one of the multilingual machine translation sys-
tem languages. Even though the speech encoder is modified for the task, our decoder
cannot be modified during training, which may harm the final model’s performance
in combination with the modality differences. To bridge both representation we
add Adapter [Houlsby et al., 2019], randomly initialized, between speech encoder
and text decoder. Previous works [Bapna and Firat, 2019, Artetxe et al., 2020] have
used this technique to finetune a frozen model for specific languages or tasks. Results
show that this method provides a lightweight mechanism to adapt representations
to new tasks by only training a small portion of the model’s total number of pa-
rameters. This module consists of layer normalization followed by a projection step
ff 1 with a ReLU non-linear activation. This step projects the encoder’s hidden
representation into a different dimensionality space projected back to the original
dimensionality by a second feedforward layer ff 2, being the projection dimension-
ality the only hyperparameter of the module to tune, allowing a fast tuning for each
language. According to this projection size, two main tasks can be performed by
the module. By down projecting the input representation to a smaller dimensional-
ity, an information bottleneck is created, enforcing the model to focus on the most
salient features for the task. By projecting to a higher dimensionality space, the
module tries to capture new information in a richer feature space while maintain-
ing that information when recovering the original dimensionality. The final encoder
representation is the sum of the self-attention encoder and adapter outputs, as a
residual connection, as shown in equation 5.2. Figure 5.2 illustrates this process and
how the modules interact during training with the frozen text decoder and the new
modules for speech. Once both encoder and adapter are trained, any decoder from
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the multilingual system, each specific for a different language, can be combined with
the new speech modules, allowing zero-shot translation to these languages.

Adapter(h) = h+ ff 2(ReLU(ff 1(norm(h)))) (5.2)

Figure 5.2: Close detail to our proposed architecture and its main components, speech
encoder, Adapter and text decoder. Dotted square shows the frozen parts
of the architecture during training.©2021 IEEE

5.3 Experimental Framework

We proposed several experiments to evaluate the performance of our models. We
built a baseline system that consists of an end-to-end ASR and SLT architecture
based on the S-Transformer [Gangi et al., 2019a]. Using the pre-trained ASR En-
glish encoder, we train the SLT systems from English-to-German, French, and Span-
ish (Baseline); we then alternatively add our proposed architecture presented in Sec-
tion of the language-specific architecture (LangSpec) or the Adapter module (Base-
line & Adapt). Finally, we add the combination of both proposed architectures
(+LangSpec & Adapt). Further comparison, we present cascade results (Cascade)
from the ASR model trained for each direction and the language-specific Multi-
NMT. ASR results are provided in Word Error Rate (WER), while SLT results are
provided in BLEU.
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5.3.1 Data

Language Pair Corpus Language Set Segments Words Vocab (BPE)
DE 54.40 · 106

MUST-C
EN

Training 22.90 · 104

25.20 · 106

DE 34.10 · 103 31.90 · 103

DE-EN MUST-C validation
EN

Validation 1.423 · 103

35.50 · 103 31.90 · 103

DE 60.80 · 103

MUST-C tst-COMMON
EN

Test 3.00 · 103

60.90 · 103

ES 6.50 · 106

MUST-C
EN

Training 26.60 · 104

6.40 · 106

ES 33.90 · 103 31.90 · 103

ES-EN MUST-C validation
EN

Validation 1.316 · 103

33.80 · 103 31.90 · 103

ES 54.80 · 103

MUST-C tst-COMMON
EN

Test 2.502 · 103

58.10 · 103

FR 6.90 · 106

MUST-C
EN

Training 27.50 · 104

6.40 · 106

FR 36.60 · 103 31.90 · 103

ES-EN MUST-C validation
EN

Validation 1.412 · 103

34.20 · 103 31.90 · 103

FR 58.20 · 103

MUST-C tst-COMMON
EN

Test 2.632 · 103

63.50 · 103

Table 5.1: Size of the parallel corpora

Our Multilingual NMT system is Langspec method described in Section 4.2, trained
on Europarl dataset for German, English, Spanish, and French. The specific results
for this model are available in Section 4.6. As validation and test set, we used
newstest2012/2013, respectively, from WMT13 [Bojar et al., 2013], which is multi-
parallel across all the above languages. All data were preprocessed by applying
tokenization, punctuation normalization, and truecasing by using standard Moses
scripts [Koehn et al., 2007]. Finally, data was tokenized into subwords by applying
BPE [Sennrich et al., 2016b] with 32k operations using subword-nmt library. 1

We use Must-C as speech dataset [Gangi et al., 2019a], which is a multilingual set
extracted from TED talks in English with transcriptions and textual translations
in 8 languages. Must-C is the largest corpus in the desired languages (English,
German, French, Spanish). The amount of transcribed hours varies from 385 to
504, depending on the language pair. We are using the English transcribed speeches
and the bilingual data on pairs English-German, English-French, English-Spanish.
We use the training, validation, and test splits that Must-C provides. Multilingual
validation and test sets have around 1.4K and 2.5K sentences (respectively) varying
on the language pair. The provided speech preprocessing is used for all sets, 40-
dimensional log Mel spectrograms computed with windows of 25ms and hop length
of 10ms. The same preprocess used for the MultiMT data is applied to the textual,
using the same vocabularies and BPE codes.

1https://github.com/rsennrich/subword-nmt
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5.3.2 Model Details and Training Setup

As multilingual NMT architecture, we use the same configuration described on Sec-
tion 4.5.2, based on a Transformer with 6 attention blocks for both encoder and
decoder and 8 attention-heads each and 512 hidden dimensions, with the only mod-
ification of adding layer normalization as the last step of both encoder and decoder.
Experimental results showed that adding this step to the original textual space
helped model convergence during the SLT training. Our baseline SLT architecture
follows the parameters in [Gangi et al., 2019a]. The basic parameters are identical
to the MultiNMT system, with the only modifications to the original system of using
3 2D-convolutional layers (instead of 2) and 2048 hidden dimensions for the feedfor-
ward layers to match the MultiNMT model. The addition of a 3rd 2D-convolutional
helped the model learn the mapping to the pre-trained space. On average, over the
validation set, this layer reduced the input speech sequence from 4 times longer to
just 2 times longer than text, which can help the trained decoder attend the input.
All models have beeen trained with 0.1 dropout, 0.0001 learning rate, with inverse
square root learning rate schedule, 4000 warmup updates and Adam optimizer with
0.9 and 0.98 betas. Experiments were performed on a single NVIDIA GTX 2080
GPU with batch size of 2000 elements and 64 batches of gradient accumulation.

We tested several alternatives to projection size for the Adapter module to see their
effect on the task. Figure 5.3 shows the performance of the model for the tasks of
English to Spanish, French, and German SLT compared to each respective bilingual
baseline system. All three tasks projecting the encodings to a lower dimensionality
space were harmful to the task, even when keeping the original 512 dimensions.
When over-parametrizing the space, we observe improved performance in all cases,
especially for 4096 dimensions. We tested our models until 9120 dimensions as it
was the biggest size we could use without out of memory errors on a single GPU.
Experiments show that the models obtain their best performance (close to or slightly
better than the baseline system) at 4096 dimensions for German and French and
9120 dimensions for Spanish and English using ASR data. We also measured the
impact on the number of parameters of the model by adding the Adapter modules.
Baseline models have approximately 77 million parameters for all languages with
slight differences due to each language vocabulary. Adapters with 4096 projection
size accounted for additional 4 million parameters or 5,5% of the total number of
parameters. 9192 projections size accounted for 8 million parameters or 11% of
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Figure 5.3: Model performance for several values of the Adapter projection size for Span-
ish, German and French. The baseline model in dotted lines.©2021 IEEE

the total number of parameters. These numbers show that Adapter modules are a
lightweight and easy-to-tune option for this task.

5.4 Results

This section analyzes the performance of our system, both on performance and
learned representations. Section 5.4.1 analyzes the SLT results of the results com-
pared with the baseline system and the zero-shot SLT performance of the system.
Section 5.4.2 studies the learned encoder representation focusing on the differences
between data modalities and the use of Adapter modules.

5.4.1 Spoken Language Translation Results

This section aims to test the translation performance of our proposed incremen-
tal training for speech. Three different systems are trained on a single supervised
translation direction each, from English speech to German (LangSpecende), to French
(LangSpecenfr), and Spanish (LangSpecenes). Each uses the correspondent frozen de-
coder from our Language-Specific Multilingual NMT architecture (See Section 4.2).
Each system is evaluated on supervised ASR and SLT and zero-shot SLT, focusing
on the impact of the Adapter module in each scenario.
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As our proposed approach can leverage ASR, SLT, and MultiNMT data, we propose
two different baseline architectures to compare the impact of these data sources.
These two systems are a cascade approach (Cascade) and an end-to-end SLT baseline
(Baseline). The cascade approach uses MultiNMT to translate the output of an ASR
model, where both models were trained individually using MultiNMT and ASR data,
respectively. The end-to-end baseline approach (Baseline) uses the S-Transformer
architecture, trained with SLT data.

Our first experiment tests our approach’s performance on the two tasks employed
during training, ASR pretraining and SLT. Table 5.2 shows that adding a new
speech encoder to the LangSpec architecture is possible by training an S-transformer
speech encoder with one of the languages in the system (English (en), German (de),
French (fr), Spanish (es)). The Langspec architecture without Adapter shows BLEU
results that vary from 10.80 in English-to-German up to 19.10 in English-to-French.
Compared to the baseline systems, we observe a gap of +5 BLEU points due to the
difference between modalities and using a frozen NMT decoder, never trained on
the new task.

These results are improved in a large amount when adding the Adapter module (&
Adapt), up to almost 6 points BLEU (English-to-French), reducing the gap to the
end-to-end baseline system to ±0.2 BLEU for all tested SLT directions. In fact, the
Adapter module consistently improves in all directions on SLT models, even when
applied to the Baseline, trained from scratch, by +1 BLEU points. This finding
shows that the Adapter is helpful to bridge the modalities’ representation in all
scenarios, not only when limiting the parts of the network trained and both encoder
and decoder are jointly trained for the task of SLT.

Our second experiment focuses on the zero-shot capabilities of our Langspec ap-
proach. Our proposed incremental training for speech aims to add new speech
encoders while maintaining the cross-lingual mapping learned by the Multilingual
NMT system, allowing zero-shot translation from speech to other supported lan-
guages. We test this behavior by translating to all three languages (German, French,
and Spanish rows) using the same models trained only on one of those directions or
ASR. Table 5.3 shows the zero-shot with and without an Adapter module ( Adapt).
Underlined results indicate the translation direction used for training each system.
Otherwise, zero-shot SLT directions are shown. Results show that all systems can
perform zero-shot SLT independently of the text decoder used for training from the
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System ASRen SLTende SLTenfr SLTenes

Cascade - 17.30 27.15 21.29
Baseline 28.75 15.19 25.18 19.36
Baseline
& Adapt 28.54 16.40 26.87 20.90

LangSpec 29.60 10.80 19.10 14.23
LangSpec
& Adapt 29.37 15.48 25.04 19.26

Table 5.2: WER results for ASRen and BLEU results for SLTende, SLTenfr, SLTenes

models, each trained only its specific task. ©2021 IEEE

LangSpec architecture (en, de, fr, es). We can also observe some correlation be-
tween zero-shot results between similar languages, being Spanish and French results
better overall for the LangSpecenfr and LangSpecenes systems, being both trained
on romance languages.

Adding an Adapter module to our LangSpec systems consistently improves all trans-
lation directions on SLT models. Improvements comprehend from 0.08 BLEU for
German Zero-shot translation using the Spanish LangSpecenes model up to 2.82
BLEU on French zero-shot translation using the German LangSpecende model. We
also observe higher zero-shot results when training on the French text decoder, which
is consistent with the supervised results. This correlation indicates that the selection
of the supervised language pair may impact the final performance of the zero-shot
translation directions. Higher results on the supervised directions may be related to
language similarity and better mappings between the two data modalities.

In addition to models trained with SLT data, we also performed the same zero-shot
experiments with a model trained using only ASR data in English (LangSpecen).
Results show that zero-shot translation can also be achieved for all tested languages
in this scenario. The quality of the results correlates with the supervised SLT
performance, French being the best direction at 10.85 BLEU points. By contrast,
unlike the models trained with SLT data, the addition of adapters seems to harm
the zero-shot performance when added to the LangSpecen, despite showing a slight
improvement of 0.23 of WER on the supervised ASR task. The differences in the
tasks could explain this discrepancy (e.g., monotonic vs. non-monotonic alignment)
or the less semantic nature of the task of ASR compared to SLT.
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System de fr es
LangSpecen 6.77 10.85 6.75
LangSpecen & Adapt 5.88 8.27 5.64
LangSpecende 10.88 10.66 8.18
LangSpecende & Adapt 15.48 13.48 10.61
LangSpecenfr 8.43 19.10 9.83
LangSpecenfr & Adapt 9.41 25.04 11.25
LangSpecenes 8.05 14.06 14.23
LangSpecenes & Adapt 8.13 14.46 19.26

Table 5.3: Zero-shot BLEU results from English to different targets (Tgt) (German
(de), French (fr), Spanish (es)) using 4 supervised models (LangSpecen,
LangSpecende, LangSpecenfr, LangSpecenes). Supervised results are in italics
and underlined. ©2021 IEEE

5.4.2 Common Representation Results

After studying the performance of our method, one question that arises is how similar
the obtained speech representations are to the textual ones from our Multilingual
NMT data. Zero-shot performance would benefit from mapping all languages and
modalities in the same space. The newly learned representation would be more
similar to the ones the system was trained with. This mapping of two data modalities
into a shared space becomes more challenging than mapping different languages due
to the different natures of the data. Speech utterances may have even an order of
magnitude more elements than their textual transcription/translations and are split
in arbitrarily given their sampling frequency.

Visualization of the intermediate representation.

We further analyze our model by providing a visualization of the intermediate rep-
resentation and reporting the accuracy in cross-modal sentence retrieval. We use a
tool [Escolano et al., 2019b] freely available2 that allows us to visualize in the same
space the intermediate sentences representations from different languages. The tool
uses the encoder output fixed-representations as input data and makes a dimen-
sionality reduction of these data using UMAP [McInnes et al., 2018] to visualize the

2https://github.com/elorala/interlingua-visualization
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Figure 5.4: Visualization. Speech representation without Adapter (green, bottom left),
with Adapter (red, top right) and text representation English and German,
which are overlapped, (orange,blue respectively, top left) ©2021 IEEE

sentence representations into a 2D plot. We compare the intermediate representa-
tion for the speech and text segments for 820 sentences (randomly extracted from
the Must-C test set) in Figure 5.4. We observe that the speech representations are
far from the text representations, which are altogether in the same part of the space
(English/German text overlap). Instead of projecting the speech representation into
the region where text representation is found, the Adapter module seems to provide
additional information. However, it does not create a mapping between modalities.
The distance between models is only reduced by a small amount. The distribution of
the tokens in the space is similar in both cases, indicating that the relative distance
between sentences from the same set is preserved.

Cross-modal sentence retrieval

If our hypothesis is correct, the relative position of the sentence in the space should
be similar with or without the Adapter, showing a clear correspondence between
them. We performed a top-1 sentence retrieval using the same set to compute the
cosine distance between representations of speech utterances before and after the
Adapter module. Results show that for 73.41% of the sentences, the Adapter’s
closest representation, from speech without Adapter set, was the same sentence,
which proves the previous hypothesis that the Adapter module is not mapping the
sentences into a completely new space but modifying the sentences created by the
speech encoder. The performance improvement from the Adapter may come from
disambiguation or additional information provided by the Adapter over the original
representation.
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The results from these experiments show two main conclusions about the proposed
model. Adapter modules do not learn transformation into a new representation
space. The end-to-end training used as baseline fails to capture some useful infor-
mation for the task. Adding an Adapter between the encoder and decoder can be
helpful to mitigate it.

Another question about the results is the impact of the trained Multilingual NMT
decoder on the task. The proposed incremental training shows a performance im-
provement due to transfer learning compared to a randomly initialized decoder when
applied to textual data (see Sections 3.4.2 and 4.6). Results on SLT do not show this
improvement, and they are similar to the end-to-end baseline without an Adapter.
The differences between modalities and obtained representations may explain this
behavior. As shown by the analysis on the intermediate representation, adding the
Adapter does not show significant improvements.

5.5 Conclusions

In this chapter, we present two main contributions. First, extending a MultiNMT
system to perform SLT and zero-shot MultiSLT is possible by coupling language-
specific encoder-decoders, even from monolingual ASR data only. Our method elim-
inates dependencies to MultiSLT data, allowing end-to-end systems and cascade sys-
tems to be trained on the same data. Experimental results show that our method
provides results on pair with an end-to-end baseline architecture, 0.2 difference for
all tested languages while providing zero-shot SLT even from models trained only on
ASR. Second, the Adapter module is a lightweight and effective method to bridge
different modalities in an end-to-end model. On SLT, it can bridge the speech and
text representations leading to consistent improvements in all tested translation di-
rections. These improvements are up to +6 BLEU points on the English-to-French
SLT direction and up to +1 BLEU points on state-of-the-art end-to-end baseline
systems. These improvements reduce the gap between cascade and end-to-end sys-
tems and are consistent on all zero-shot translation directions for systems trained
in SLT tasks.

Analysis of the cross-lingual mappings shows that this technique improves the
model’s overall performance while maintaining the structure of the representation
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5 Multimodality by Incremental Training

space, making it suitable for the end-to-end baseline systems and other similar
tasks.

Further work includes jointly training speech and text language-specific encoder-
decoders and new language addition methods to improve the knowledge transfer
from the MultiNMT model to the SLT tasks. Taking advantage of the trained
MultiNMT system in both source and target size may lead to better cross-modal
mappings and better overall performance.
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6 Conclusions

With the appearance of fully shared universal encoder-decoder approaches,
language-specific encoder-decoder lost popularity in multilingual machine transla-
tion research. This thesis aims to reflect on the applicability of language-specific
systems on the current state-of-the-art. This chapter focuses on the insights learned
throughout this thesis, investigating the use of these approaches using current
deep learning models and evaluating how these methods fulfill our initial research
objective from Section 1.2.

Our first objective is exploring the capabilities of language-specific encoder-
decoder architectures. The main challenge for these architectures is enforcing
a cross-lingual mapping between the independent modules. During this work, we
propose two main approaches to overcome these difficulties by adding auxiliary tasks
to a bilingual model, Chapter 3, and linking modules through translation directions,
Chapter 4. We observe that the language-specific architectures can perform zero-
shot translation and positive transfer learning as previously shared systems in both
cases. On the other hand, we observe that shared models consistently outperform the
studied language-specific approaches on zero-shot translation, even when showing
better average performance on supervised directions.

A plausible explanation of this performance difference relates to the second objective:
investigating the learning cross-lingual representations without parameter
sharing. A common trait between all proposals is learning language-specific em-
beddings representations that become more similar as they advance through the
encoder layers. This is more evident with the approach from Chapter 4. This effect
may be attributed to the differences between auto-encoding and translations tasks
combined on Chapter 3.

Our previous objectives focused on jointly trained languages, where all languages

95



6 Conclusions

are available simultaneously. The next main task of this thesis is the addition
of new languages on an already trained system by training new languages on
a previous cross-lingual representation. Our proposed incremental training
approach shows that new languages can be efficiently added by just training a new
encoder or decoder at a fraction of the resources required to retrain a fully shared
model. Additionally, the performance of the previous translation is preserved, as
previous languages are not modified during this process, preventing any negative
transfer from new languages.

Our final objective is training new modalities modules on a previous cross-
lingual representation. Chapter 5 shows that our incremental approach can
bridge speech and text modalities with minor adaptations. Our results show that
this approach can translate between encoders and decoders that have been trained
on different tasks, allowing to translate between languages without existing parallel
data.

As final remarks for this work, we would like to include our vision of language-specific
encoder-decoder on the future of multilingual NMT research. With the recent im-
provements in neural architectures and hardware resources, we are witnessing an
increased interest in low-resource and understudied languages. In this scenario, we
could benefit from platforms and architectures that allowed the training of small in-
dependent modules into a known representation, opening new translation directions
and tasks to those languages without additional resources.

On the same line of allowing efficient system combinations, with the surge of pre-
trained models, we see more and more approaches that focus on learning new tasks
on top of a general representation. The study of strategies to combine those systems
could also lead to significant improvements to our current approaches.
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