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Abstract

Sequential decision making under uncertainty covers a broad class of problems.
Real-world applications require the algorithms to be computationally efficient
and scalable. We study a range of sequential learning problems, where the learner
observe only partial information about the rewards we develop the algorithms that
are robust and computationally efficient in large-scale settings.

First problem that we consider is an online influence maximization problem
in which a decision maker sequentiaonally selects a node in the graph in order
to spread the information throughout the graph by placing the information in the
chosen node. The available feedback is only some informartion about a small
neighbourhood of the selected vertex. Our results show that such partial local
observations can be sufficient for maximizing global influence. We propose
sequential learning algorithms that aim at maximizing influence, and provide their
theoretical analysis in both the subcritical and supercritical regimes of broadly
studied graph models. Thus this is the first algorithms in the sequential influence
maximization setting, that perform efficiently in the graph with a huge number of
nodes.

In another line of work, we study the contextual bandit problem, where the
reward function is allowed to change in an adversarial manner and the learner
only gets to observe the rewards associated with its actions. We assume that the
number of arms is finite and the context space can be infinite. We develop a
computationally efficient algorithm under the assumption that the d-dimensional
contexts are generated i.i.d. at random from a known distribution. We also propose
an algorithm that is shown to be robust to misspecification in the setting where the
true reward function is linear up to an additive nonlinear error. To our knowledge,
our performance guarantees constitute the very first results on this problem setting.
We also provide an extension when the context is an element of a reproducing
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kernel Hilbert space.
Finally, we consider an extension of the contextual bandit problem described

above. We study a setting where the learner interacts with a Markov decision
process in a sequence of episodes, where an adversary chooses the reward function
and the reward observations are available only for the selected action. We allow
the state space to be arbitrarily large, but we assume that all action-value functions
can be represented as linear functions in terms of a known low-dimensional feature
map, and that the learner at least has access to the simulator of the trajectories
in the MDP. Our main contributions are the first algorithms that are shown to be
robust and efficient in this problem setting.

iv



i
i

“main” — 2021/9/23 — 13:41 — page v — #6 i
i

i
i

i
i

Contents

Abstract ii

1 Introduction 1
1.1 Online learning . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Main contributions . . . . . . . . . . . . . . . . . . . . . . . . 8
1.3 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Sequential influence maximization 11
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Observations of censored component size . . . . . . . . . . . . 16
2.3 Degree observations . . . . . . . . . . . . . . . . . . . . . . . . 22
2.4 Multi-type branching processes . . . . . . . . . . . . . . . . . . 29
2.5 Analysis of inhomogeneous random graph model . . . . . . . . 30
2.6 Degree observations. . . . . . . . . . . . . . . . . . . . . . . . 41

3 Adversarial contextual bandits 59
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.3 Algorithms and main results . . . . . . . . . . . . . . . . . . . 64
3.4 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.5 Algorithms for contextual learning with full information . . . . 81
3.6 Efficient implementation of MGR . . . . . . . . . . . . . . . . 82
3.7 Kernel methods . . . . . . . . . . . . . . . . . . . . . . . . . . 84

v



i
i

“main” — 2021/9/23 — 13:41 — page vi — #7 i
i

i
i

i
i

4 Learning in episodic MDP 91
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.2 Problem setting . . . . . . . . . . . . . . . . . . . . . . . . . . 94
4.3 Regret decomposition approach . . . . . . . . . . . . . . . . . 98
4.4 Linear optimization approach . . . . . . . . . . . . . . . . . . . 112

5 Conclusions 133
5.1 Sequential influence maximization . . . . . . . . . . . . . . . . 134
5.2 Adversarial contextual bandits . . . . . . . . . . . . . . . . . . 137
5.3 Learning in episodic MDP . . . . . . . . . . . . . . . . . . . . 139

vi



i
i

“main” — 2021/9/23 — 13:41 — page 1 — #8 i
i

i
i

i
i

Chapter 1

Introduction

This work is related to the field of sequential learning and, more specifically, to
frameworks such as multi-armed bandits and reinforcement learning. Sequential
learning covers the family of problems where information is revealed incremen-
tally, and the learner must make decisions before all information is available. This
approach is required when the system has to be adaptive to the environment’s
changes and provides scalable algorithms, which is necessary for problems with
a dynamic nature. Therefore, the field of sequential learning completes this de-
ficiency. This field already exists for many decades, but it has attracted a lot of
attention during the last years. In this work we study a range of problems, that
belong to sequential learning framework. Our results have theoretical nature, with
a focus on providing formal guarantees to the proposed methods.

The current chapter consists of two parts. In the first part, we describe the
context and all necessary notions, and in the second part, we summarise the
contributions of the different chapters.

1.1 Online learning

First, we describe the common online learning framework. It can be stated as a
sequential game, in which for time steps t = 1, . . . , T :

1. The learner observes the context Xt,

2. the learner selects an action At,
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3. the environment simultaneously selects an action Bt,

4. the learner suffers loss `(At, Bt, Xt),

5. the learner observes the feedback f(At, Bt, Xt).

This sequential game has been studied under various assumptions on the nature
of the environment, choice of loss function, the type of feedback that the learner
observes, presence of the context and the set of actions. Among this variations,
the most fundamental factor is the assumption on the behavior of the environment.
There are two diametrically opposite settings, in one setting the actions of the
environment are generated as the outcomes of the stochastic process and in the
other the environment may be adaptive to the strategy of the learner by looking
on the history of the learner’s actions. These different settings are considered
for various problems. In such examples of practical problems as forecasting
the weather or playing on the stock exchange, we do not consider the opponent
dependent on our actions. In such settings, the learner’s strategy usually involves
estimating the parameters of the underlying stochastic process. In the opposite
setting, the environment may be considered as an opponent with the goal of
maximizing the learner’s loss. Such an opponent is referred to as the adversary, the
study of the sequential problems with adversarial environment was first done in the
works of Blackwell [27] and Hannan [67]. The adversary the learner to maneuver
between minimizing losses based on the observations and avoiding being tricked
by an opponent. While the assumption on the presence of the adversary may be
seen as too strong, one can use it in settings where the environment can be so
complex so the learner could give up on estimating the stochastic model. Then,
considering that the situation could turn out in the worst possible way for the
learner, the learner may assume facing the adversarial opponent.

In the sequential game the learner’s task is to minimize the cumulative loss
and perform not much worse than some strategy that achieves the minimal loss
in the hindsight. Thus the performance of the learner may be quantified by a
measure called regret, which is the difference between the loss accumulated by
the learner and the loss that the learner would get by following the fixed strategy
that achieves the smallest cumulative loss in hindsight. This strategy is referred
to as a comparator. In the setting where the loss does not depend on the context,
the comparator is simply one of the actions, fixed for all time steps. In the more
complex setting, different actions may have smaller losses for different contexts,
and then the ideal comparator would choose the action with the smallest loss for
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the current context. Nevertheless, it is unfeasible to compete with this comparator
if the set of contexts is large. In such problems, the comparator is usually restricted
to be chosen from some set of policies, which is a map from the context to the set
of distributions over actions.

For now we turn to the discussion of the feedback the learner observes. In
the simplest case, the learner observes the losses of all actions. This setting
with this type of feedback and with the adversarial environment is called the
prediction with expert advice, and it was first introduced in the papers of Vovk
[144], Littlestone and Warmuth [98]. Prediction with expert advice is simple,
but a fundamental model and many sequential learning techniques were first
developed for this setting. Each action here corresponds to some expert, and by
choosing the actions, we decide to follow the appropriate expert. The practical
example of the problem of prediction with expert advice is the aggregation of
models for predicting the sequence since each model can be evaluated after the
sequence element is revealed. Still, the assumption on the observations of losses
of all actions may be too strong for some problems. The other widely studied
feedback model assumes that the learner observes only the loss of the chosen
action. This framework is called a multi-armed bandits, which comes from the
name of a slot machine, a one-armed bandit. The name refers to the gambler
places his bet each time on a possibly different slot machine he can observe
the reward only of the chosen slot machine. This problem is more challenging
than the prediction with expert advice since the learner at each time step has
to choose between choosing actions with small cumulative loss and exploring
the unknown actions. Thus the framework of multi-armed bandit is the simplest
mathematical formulation of the explore-exploit dilemma. In almost the whole
thesis, we consider problems with bandit form of feedback.

In many sequential learning problems, the learner has access to the context,
which is a piece of additional information that may help to predict the losses of the
actions. For example, imagine a system that has to choose which advertisements
to show to a website visitor. This system has to consider the information available
about the user to select the ad that the user will likely click on. On the one side,
the presence of context makes the learning problem easier since the learner gets
more information. On the other side, as we already discussed, the comparator for
the settings with contexts gets "stronger" since it also may adapt to the context.
In the same manner, as we considered the nature of the environment, the context
may be assumed to be generated from some distribution in an i.i.d manner or be

3



i
i

“main” — 2021/9/23 — 13:41 — page 4 — #11 i
i

i
i

i
i

chosen by an adversary. The widely used assumption on the context is that it
is generated according to the dynamics of the Markov decision process (MDP).
This assumption is widely used in reinforcement learning, where the context is
referred to as a state. This setting has received a particular interest since, in many
real-world problems, the transitions between the states in the Markov decision
process depend on the learner’s past action. At the same time, the learner may
estimate the parameters of the MDP, which makes the setting less challenging
than when an adversary chooses the context.

All sequential learning problems can be classified either as loss games or as
gain games. In the vast majority of settings, it is only a lexical difference. The
goal of minimizing the loss can be replaced by maximizing the reward, although
sometimes this replacement is non-trivial. Often the loss/reward function is
assumed to be nice in some way (convex or smooth on some argument, for
example). In many cases, significantly tighter performance bounds may be shown
under specific assumptions on the loss/reward function.

We have described above the general sequential learning setting and some
possible variations of its components. Still, we have not covered of the possible
assumptions for feedback, environment, and other factors. Now we state more
formally the specific frameworks that we consider further in this work.

Multi-armed bandits

The multi-armed bandit problem was first considered by Thomson [138] in 1933,
as a solution of the sequential treatment allocation problem. Recently multi-armed
bandits became an active area of research, since the vast of real-valued problems
lie under this framework. For the overview of the bandit algorithms, see the resent
book of Lattimore and Szepesvári [92]. This problem has been widely studied
both in a stochastic and in a adversarial setting and now we separately describe
the mathematical formulation of each setting .

The stochastic bandits setting was first considered in the papers of Thom-
son [138] and [124].In the stochastic bandits each action a from a finite set of
actions [K] corresponds to an unknown probability distribution Pa. The learner
sequentially chooses one of K actions over T time steps for some fixed finite
T . At each time step t, the learner chooses an action At ∈ [K] and then the
reward Zt(At) ∼ PAt is revealed to the learner. For an action a, we denote the
mean of the distribution Pa as µa and the expected reward of optimal action is
µ∗ = arg maxa µa. The goal of the learner is to maximize the cumulative rewards
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or minimize the pseudo regret, defined as

RT = Tµ∗ − E

[
T∑
t=1

Zt(At)

]
,

where the expectation is taken with respect to the strategy of the learner and the
randomness of the reward distributions for different actions.

While in the stochastic bandit framework, the rewards are drawn i.i.d for
each action, so the reward at time t depends only on the chosen action. In the
adversarial bandit framework, there is almost no assumption on how the rewards
are generated, it can change arbitrarily and can depend on the history of actions
taken by the learner. This setting was first considered in the works of Banos [21],
Megiddo and Avivl [105] and Auer et al. [13]. In contrast to stochastic bandit
formulation, where the learner is maximizing her reward, historically, losses have
been used more often than rewards in the adversarial setting. So the goal of the
learner in the adversarial setting is to minimize the loss, which are assumed to be
bounded. So, after choosing action At at time t, the learner suffer the loss Yt(At).
The pseudo regret is defined as following:

RT = min
a∈[K]

E

[
T∑
t=1

Yt(At)−
T∑
t=1

Yt(a)

]
,

Note that the expectation is taken over the randomization of the learner.
There are many domains in which multi-armed bandit problems arise, now

we state a few. In the web design, the learner’s action would be a page layout,
and the cumulative reward is the number of clicks. For the data center design
problem, the arm is a server at which the task was sent, and the loss would be the
task completion time. The action also can have a complicated structure, as in the
problem of the route planning, the set of actions would be the set of all possible
routes from sink to the target (see, e.g., Valko [140]).

Contextual bandits

The first paper that studied sequential learning with bandit feedback and available
context was Woodroofe [148]. As Thomson did in his work on the classic multi-
armed bandit problem, Woodroofe considered the clinical trial of medicines as
a motivating example. In this problem, the learner wants to learn how to map
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features of the patient (e.g. age, gender, symptoms) into one of the available
medicines. Although there is no evidence of practical use of bandits for the
sequential trial problem, Nowadays the contextual bandits are widely applied
in the problem of online advertisement placement and other personalization
problems ([96], [3]).

The precise definition of context, action, and loss function depends on the
setting. The context Xt are drawn from some context space S. For the finite
context space, one simple approach is to use a bandit algorithm for each context.
However, if the set of possible contexts is large, this approach won’t work very
well. Further, we will make use of the concept of policies π : S → ∆A. A policy
π prescribes a behavior rule to the learner by assigning probability π(a|x) to
action a at state x. As we already described for the general sequential learning
framework, the learner’s goal is to minimize the total loss, which can also be
stated as the regret minimization problem. Let Π be the set of policies to which
the learner is comparing to. We define the regret for the contextual bandit problem
as:

RT = max
π∈Π

E

[
T∑
t=1

`t(π(Xt), Xt)−
T∑
t=1

`t(At, Xt)

]
,

where the expectation is taken over the distribution of the context and the ran-
domness of the learner’s policy. The case when the set Π is finite was studied in
Auer et al. [14], but their algorithm becomes computationally infeasible if the set
of policies is large. This difficulty has been overcomed by assuming that there
is some structure on how reward may depend on the context. For example, [1]
considers the setting where losses a linear function of the context with a presence
of some noise. This is a strong assumption, but it makes the problem more
computationally tractable and works well in practice. [61], [60], [135] consider a
more complicated dependences of losses on the context.

Episodic Markov decision processes

An episodic Markov Decision Process (MDP), denoted by M = (S,A, H, P, r)
is defined by a state space S , action space A, episode length H ∈ Z+, transition
function P : S × A → ∆S and a reward function r : S × A → [0, 1]. We will
assume that the MDP has a layered structure, satisfying the following conditions:

• The state set S can be decomposed into H disjoint sets: S = ∪Hh=1Sh,
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• S1 = {x1} and SH = {xH} are singletons,

• transitions are only possible between consecutive layers, that is, for any
xh ∈ Sh, the distribution P (·|x, a) is supported on Sh+1 for all a and
h ∈ [H − 1].

These assumptions are common in the related literature (e.g., 111, 152, 126) and
are not essential for the analysis; their primary role is simplifying the notation.
The learner observes the state Xt,h at each step h ∈ [H − 1], picks an action At,h
and observes the reward rt,h(Xt,h, At,h). Then, unless h = H , the learner moves
to the next state Xt,h+1, which is generated from the distribution P (·|Xt,h, At,h).
At the end of step H , the episode terminates, and a new one begins. The aim of
the learner is to select its actions so that the cumulative sum of rewards is as large
as possible.

The learner starts interacting with the MDP in each episode from the initial
state Xt,1 = x1. At each consecutive step h ∈ [H − 1] within the episode, the
learner observes the state Xt,h, picks an action At,h and observes the reward
rt,h(Xt,h, At,h). Then, unless h = H , the learner moves to the next state Xt,h+1,
which is generated from the distribution P (·|Xt,h, At,h). At the end of step H ,
the episode terminates, and a new one begins. The aim of the learner is to select
its actions so that the cumulative sum of rewards is as large as possible.

Let τπ = ((X1, A1), (X2, A2), . . . , (XH , AH)) be a trajectory generated by
following the policy π through the MDP. The expected total reward of a policy π
is defined as

ρt(π) = E

 ∑
(X,A)∈τπ

rt(X,A)

 .
Using this notation, we define the learner’s goal as minimizing the total expected
regret defined as

RT = max
π

T∑
t=1

E [ρt(π)− ρt(πt)] , (1.1)

where the maximum is taken over the complete set of stochastic stationary policies.
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1.2 Main contributions

1.2.1 Online influence maximization.

The problem of finding the most influential nodes in networks has been broadly
studied under various definitions of influence, the information spreading model,
and the feedback available to a decision maker [79, 43, 143, 145, 80, 120]. The
most studied influence maximization setup is an offline discrete optimization
problem of finding the most influential nodes in a network. This setup assumes
that the probability of influencing is known, or at least data is available that
allows one to estimate these probabilities. However, such information is often
not available or is difficult to obtain. Also, the network over which information
spreads is rarely fixed. To avoid such assumptions, we introduce a novel model
of influence maximization in a sequential setup, where the underlying network
changes every time and the learner has only partial information about the set of
influenced nodes.

Specifically, we study a family online influence maximization problems where
at each time step the decision maker selects a node from a large number of vertices
with the goal of maximizing influence. After choosing a node, the decision maker
places a piece of information there. The information then spreads to other nodes
in the graph, in a way that the information transmits between two nodes with
some fixed but unknown probability. The goal of the decision maker is to reach
as many nodes as possible.

The decision maker has to learn about the probabilities of spreading infor-
mation in the graph on the fly, while simultaneously attempting to maximize
the total reward. This gives rise to a dilemma of exploration versus exploitation,
commonly studied within the framework of multi-armed bandit problems [92].
Indeed, if the decision maker could observe the size of the set of all influenced
nodes in every round, the sequential influence maximization problem outlined
above could be naturally formulated as a stochastic multi-armed bandit problem.
The main drawback of this approach is that in the most of applications tracking
down the set of all influenced agents may be difficult or downright impossible
due to privacy and computational considerations. This motivates the study of
a more restrictive setting where the decision maker has to manage with only
partial observations of the set of influenced nodes. Our results show that partial
local observations can be sufficient for maximizing global influence under a set
of assumption on the information spreading. We propose sequential learning
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algorithms that aim at maximizing influence under the partial observations on
the set of influenced nodes, and provide their theoretical analysis in both the
subcritical and supercritical regimes of all considered models.

1.2.2 Adversarial contextual bandits

The contextual bandit problem is one of the most important sequential decision-
making problems studied in the machine learning literature. This framework can
be used to address a broad range of challenging real-world problems, such as
recommendation systems, healthcare and finance. These applications require the
algorithm to be robust, which can be guaranteed by providing formal performance
guarantees.

The limitation of virtually all known algorithms for linear contextual bandits
is that they crucially rely on assuming that the loss function is fixed during
the learning procedure. This is in stark contrast with the literature on multi-
armed bandits, where there is a rich literature on both stochastic bandit models
assuming i.i.d. rewards and adversarial bandit models making no assumptions on
the sequence of loss functions. Our main contribution in this work is addressing
this gap by designing and analysing algorithms that are guaranteed to work for
arbitrary sequences of loss functions (Cesa-Bianchi and Lugosi [39]). While it
is tempting to think that the our bandit problem can be directly addressed by a
minor adaptation of algorithms developed for adversarial linear bandits, this is
unfortunately not the case: all algorithms developed for such problems require
a fixed decision set, whereas reducing the linear contextual bandit problem to a
linear bandit problem requires the use decision sets that change as a function of
the contexts. As a crucial step in our analysis, we will assume that the contexts are
generated in an i.i.d. fashion and that the loss function in each round is statistically
independent from the context in the same round. This assumption will allow us to
relate the contextual bandit problem to a set of auxiliary bandit problems with a
fixed action sets, and reduce the scope of the analysis to these auxiliary problems.

1.2.3 Learning in episodic MDP

While for the contextual bandit problem we were assuming that the context is
generated i.i.d. from a fixed distribution, the reinforcement learning framework
typically allows the actions taking in the past to affect the states that the decision
maker will reach in the future. More concretely, the state of the environment
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changes according to the transition function of the underlying MDP, as a function
of the previous state and the action taken by the learner. This is more general and
much more challenging setting than the contextual bandit framework.

Online learning in MDP has been first considered in the works of Burnetas
and Katehakis [32], Auer and Ortner [16]. We focus on the setting where the
reward function can chosen by the adversary in the beginning of each episode.
Most of practical applications requires the state space to be very large, so we are
interested in computationally efficient algorithm with meaningful guarantees for
arbitrarily large state space. Our main contribution is designing algorithms that
obtain strong theoretical guarantees in the setting where the reward function is
chosen by adversary, the state space is infinite and only feedback on the chosen
action is revealed to the learner.

1.3 Notation

We use 〈·, ·〉 to denote inner products in Euclidean space and by ‖·‖ we denote the
Euclidean norm for vectors and the operator norm for matrices. For a symmetric
positive semidefinite matrix A, we use λmin(A) to denote its smallest eigenvalue.
We use ‖A‖op to denote the operator norm of A and we write tr (A) for the trace
of a matrix A. Finally, we use A < 0 to denote that an operator A is positive
semi-definite, and we use A < B to denote A − B < 0. For a d-dimensional
vector v, we denote the corresponding d× d diagonal matrix by diag(v). For a
positive integerN , we use [N ] to denote the set of positive integers {1, 2, . . . , N}.
Finally, we will denote the set of all probability distributions over any set X by
∆X .

10
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Chapter 2

Sequential influence
maximization

2.1 Introduction

Finding influential nodes in networks has a long history of study. The problem has
been cast in a variety of different ways according to the notion of influence and
the information available to a decision maker. We refer the reader to Kempe et al.
[79], Chen et al. [43, 42], Vaswani et al. [143], Carpentier and Valko [38], Wen
et al. [147], Wang and Chen [145], Khim et al. [80], Perrault et al. [120] and the
references therein for recent progress in various directions.

The most studied influence maximization setup is an offline discrete opti-
mization problem of finding the set of the most influential nodes in a network.
This setup assumes that the probability of influencing is known, or at least data is
available that allows one to estimate these probabilities. However, such informa-
tion is often not available or is difficult to obtain. Also, the network over which
information spreads is rarely fixed. To avoid such assumptions, we introduce a
novel model of influence maximization in a sequential setup, where the underlying
network changes every time and the learner has only partial information about the
set of influenced nodes.

Specifically, we define and explore a sequential decision-making model in
which the goal of a decision maker is to find one among a set of n agents
with maximal (expected) influence. We parametrize the information spreading
mechanism by a symmetric n× n matrix P , whose entries pi,j ∈ [0, 1] express
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“affinity” or “probability of communication” between agents i and j. We assume
that pi,i = 0 for all i ∈ [n]. The matrix P defines an inhomogeneous random
graph G in a natural way: an (undirected) edge is present between nodes i < j
with probability pi,j and all edges are independent. When two nodes are connected
by an edge, information flows between the corresponding agents. Hence, a piece
of information placed at a node i spreads to the nodes of the entire connected
component of i in G.

In the sequential decision-making process we study, an independent random
graph is formed at each time instance t = 1, . . . , T on the vertex set [n]. The
random graph formed at time t is denoted by Gt. Hence, G1, . . . , GT is an
independent, identically distributed sequence of random graphs on the vertex
set [n], whose distribution is determined by the matrix P . If the decision maker
selects a node a ∈ [n] at time t, then the information placed at the node spreads
to every node of the connected component of a in the graph Gt. The goal of the
decision maker is to spread information as much as possible, that is, to reach
as many agents as possible. The reward of the decision maker at time t is the
number of nodes in the connected component containing the selected node in Gt.

In this paper, we study a setting where the decision maker has no prior
knowledge of the distribution P , so she has to learn about this distribution on
the fly, while simultaneously attempting to maximize the total reward. This
gives rise to a dilemma of exploration versus exploitation, commonly studied
within the framework of multi-armed bandit problems (for a survey, see 30 or 88).
Indeed, if the decision maker could observe the size of the set of all influenced
nodes in every round, the sequential influence maximization problem outlined
above could be naturally formulated as a stochastic multi-armed bandit problem
[86, 12]. However, this direct approach has multiple drawbacks. First of all, in
many applications, the number n of nodes is so large that one cannot even hope to
maintain individual statistics about each of them, let alone expect any algorithm
to identify the most influential node in reasonable time. More importantly, in most
cases of interest, tracking down the set of all influenced agents may be difficult
or downright impossible due to privacy and computational considerations. This
motivates the study of a more restrictive setting where the decision maker has to
manage with only partial observations of the set of influenced nodes.

We address this latter challenge by considering a more realistic observation
model, where after selecting an agent At to be influenced, the learner only
observes a local neighbourhood of At in the realized random graph Gt , or even
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only the number of immediate neighbours of At (i.e., the degree of vertex At
in Gt). This model raises the following question: is it possible to maximize
global influence while only having access to such local measurements? Our key
technical result is answering this question in the positive for some broadly studied
random graph models.

The rest of the paper is structured as follows. In Section 3.2 we formalize the
sequential influence maximization problem. In Section 2.1.2 a general model of
inhomogeneous random graphs is described and the crucial notions of sub-, and
super-criticality are formally introduced. Section 2.2 is dedicated to the general
case when the underlying random graph is an arbitrary inhomogenous random
graph and the learner only knows whether it is in the subcritical or supercritical
regime. We show that in both cases online influence maximization is possible by
only observing a small “local” neighborhood of the selected node. We provide two
separate algorithms and regret bounds for the subcritical and supercritical cases,
respectively. In Section 2.6, we consider the situation when the learner has even
less information about the underlying random graph. In particular, we assume that
the learner only observes the degree of the selected node in the realized random
graph. We study three well-known special cases of inhomogeneous random
graphs that are commonly used to model large social networks, namely stochastic
block models, the Chung–Lu model, and Kronecker random graphs. We prove
that in these three random graph models, degree observations are sufficient to
maximize global influence both in the subcritical and supercritical regimes.

2.1.1 Problem setup

We now describe our problem and model assumptions formally. We consider
the problem of sequential influence maximization on the set of nodes V = [n],
formalized as a repeated interaction scheme between a learner and its environment.
We assume that node i influences node j with (unknown) probability pi,j(= pj,i).
At each iteration, a new graph Gt is generated on the vertex set V by independent
draws of the edges such that edge (i, j) is present with probability pi,j and all
edges are independent. The set of nodes influenced by the chosen node At is
the connected component of Gt that contains At. Ci,t denotes the connected
component containing vertex i:

Ci,t = {v ∈ V : v is connected to i by a path in Gt} .

13
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The feedback that the decision maker receives after choosing a node is some
“local” information around the chosen vertex At in Gt. We consider several
feedback models. In the simplest case, the feedback is the degree of vertex At in
Gt. In another model, the information might consist of the vertices found after
a few steps of depth-first exploration of Gt started from vertex At. In a general
framework, we may define a “local neighborhood" ofAt, denoted by ĈAt,t, where
ĈAt,t ⊂ CAt,t. For each model considered below, we specify later what exactly
ĈAt,t is. In the general setup, the following steps are repeated for each round
t = 1, 2, . . . :

1. the learner picks a vertex At ∈ V ,

2. the environment generates a random graph Gt,

3. the learner observes the local neighborhood ĈAt,t,

4. the learner earns the reward rt,At = |CAt,t|.
We stress that the learner does not observe the reward, only the local neighborhood
ĈAt,t. Define ci as the expected size of the connected component associated with
the node i: ci = E [|Ci,1|]. Ideally, one would like to minimize the expected regret
defined as

RT = E

[
T∑
t=1

(
max
i∈V

ci − cAt
)]

. (2.1)

Since we are interested in settings where the total number of nodes n is very large,
even with a fully known random graph model, finding the optimal node maxi-
mizing ci is infeasible both computationally and statistically. Such intractability
issues have lead to alternative definitions of the regret such as the approximation
regret [76, 44, 133] or the quantile regret [41, 45, 100, 83].

In the present paper, we consider the α-quantile regret as our performance
measure, which, instead of measuring the learner’s performance against the single
best decision, uses a near-optimal action as a baseline. For a more technical
definition, let i1, i2, . . . , in be an ordering of the nodes satisfying ci1 ≤ ci2 ≤
· · · ≤ cin , and denote the α-quantile over the mean rewards as c∗α = cid(1−α)ne .
Then, defining the set V ∗α = {id(1−α)ne, . . . , in} as the set of α-near-optimal
nodes, we define the α-quantile regret as

RαT = E

[
T∑
t=1

(
min
i∈V ∗α

ci − cAt
)]

= E

[
T∑
t=1

(c∗α − cAt)

]
. (2.2)

14
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2.1.2 Inhomogeneous Erdős–Rényi random graphs

Next we discuss the random graph models considered in this paper. All belong to
the inhomogeneous Erdős–Rényi model, that is, edges are present independently
of each other, with possibly different probabilities. Moreover, the graphs we
consider are sparse graphs, that is, the average degree is bounded. We will
formulate our random graph model following the work of [28], whose framework
is particularly useful for handling large values of n. To this end, let κ be a bounded
symmetric non-negative measurable function on [0, 1]× [0, 1]. Each edge (i, j)
for 1 ≤ i < j ≤ n is present with probability pi,j = min(κ(i/n, j/n)/n, 1),
independently of all other edges. When n is fixed, we will often use the notation
Ai,j = κ(i/n, j/n) so that pi,j = min(Ai,j/n, 1). We are interested in random
graphs where the average degree isO(1) (as n→∞). This assumption makes the
problem both more realistic and challenging: denser graphs are connected with
high probability, making the problem essentially vacuous. A random graph drawn
from the above distribution is denoted by G(n, κ). This model is sometimes
called the binomial random graph and was first considered by [84].

We consider two fundamentally different regimes of the parameters G(n, κ):
the subcritical case in which the size of the largest connected component is
sublinear in n (with high probability), and the supercritical case where the largest
connected component is at least of size cn for some constant c > 0, with high
probability. (We say that an event holds with high probability if its probability
converges to one as n→∞.) Such a connected component of linear size is called
a giant component. These regimes can be formally characterized with the help of
the integral operator Tκ, defined by

(Tκf) (x) =

∫
(0,1]

κ(x, y)f(y)dµ(y) ,

for any measurable bounded function f , where µ is the Lebesgue measure. We
call κ subcritical if ‖Tκ‖2 < 1 and supercritical if ‖Tκ‖2 > 1. We use the same
expressions for a random graph G(n, κ). It follows from Bollobás et al. [28,
Theorem 3.1] that, with high probability, G(n, κ) has a giant component if it is
supercritical, while the number of vertices in the largest component is o(n) with
high probability if it is subcritical.
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2.2 Observations of censored component size

First we study a natural feedback model in which the decision maker, unable
to explore the entire connected component Ci,t of the influenced node i in Gt,
resorts to exploring the connected component up to a certain (small) number of
nodes. More precisely, we define feedback as the result of counting the number of
nodes in Ci,t by (say, depth-first search) exploration of the connected component,
which stops after revealing K nodes, or before, if |Ci,t| < K. Here K is a fixed
positive integer, independent of the number of nodes n.

The main results of this section show that this type of feedback is sufficient
for sequential influence maximization. However, the subcritical and supercritical
cases need to be treated separately as they are quite different. In the subcritical
case, the expected size of the connected component of any vertex is of constant
order while in the supercritical case there exist vertices whose connected compo-
nent is linear in n. This also means that the rewards – and therefore the per-round
regrets – are of different order of magnitude (as a function of n) in the subcritical
and supercritical cases. For simplicity, we assume that the decision maker knows
in advance whether the function κ defining the inhomogeneous random graph is
subcritical or supercritical, as we propose different algorithms for both cases. We
believe that this is a mild assumption, since in typical applications it is possible to
set the two settings apart based on prior data. We also assume that ‖Tκ‖2 6= 1,
that is, the random graph is not exactly critical.

2.2.1 Subcritical case

First we study the subcritical case, that is, we assume that ||Tκ||2 < 1. In this
case the proposed influence-maximization algorithm uses the censored size of
the connected component of the selected node. That is, for a node i ∈ [n], we
define ui,t(K) as the result of counting the number of nodes in Ci,t by exploration
of the connected component, which stops after revealing K nodes or before, if
|Ci,t| < K. Hence, the feedback is ui,t(K) = min (|Ci,t|,K).

A key ingredient in our analysis in the subcritical case is an estimate for the
lower tail of the size of the connected component containing a fixed vertex. We
state it in the following lemma:

Lemma 1. For any subcritical κ, there exist positive constants λ(κ), g(κ) and
n0(κ), such that for any n ≥ n0, for any node i in G(n, κ), the size of the
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connected component Ci of a vertex i satisfies

P [|Ci| > u] ≤ e−λ(κ)ug(κ) . (2.3)

Unfortunately, there is no closed-form expression for the dependence λ(κ)
and g(κ) on κ. The idea of the proof of this lemma relies on the proof of Theorem
12.5 in Bollobás et al. [28]. To obtain this result, we show that the size of the
connected component in G(n, κ) is stochastically dominated by the total progeny
of the multitype Poisson branching process with carefully chosen parameters. We
introduce branching processes in Section 2.4 and prove Lemma 1 in Section 2.5.1.

Now we are ready to define an estimate of ci = E|Ci| in the sequential
decision game. For a fixed a constant K, we define the estimate ûi,t(K) =
(1/t)

∑t
s=1 ui,s(K)I{As=i}. Using the concentration inequality (2.3), with the

choice of the threshold parameter K = log(T )
λ with λ > λ(κ), we get that the

bias of ûi,t(K) is at most g(κ)
T . We state this result more formally in Lemma 2.

The censored observations are bounded, since ui,t(K) ∈ [1,K]. We use those
observations as rewards in our bandit problem and we feed them to an instance of
the UCB algorithm [15]. We call the resulting algorithm Local UCB(V0), defined
in Algorithm 2.1 below.

A minor challenge is that, since we are interested in very large values of n,
it is infeasible to use all nodes as separate actions in our bandit algorithm. To
address this challenge, we propose to subsample a set of representative nodes
for UCB to play on. The size of the subsampled nodes depends on the quantile
α targeted in the regret definition (2.2) and the time horizon T . Our algorithm
uniformly samples a subset V0 of size

|V0| =
⌈

log T

log(1/(1− α))

⌉
(2.4)

and plays Local UCB(V0) for the corresponding regime on the resulting set. Note
that the size of V0 is chosen such that the probability that V0 does not contain any
of the αn notes with the largest values of ci is at most 1/T .

To simplify the presentation, we introduce some more notation. Analogously
to the α-optimal reward c∗α, we define the α-optimal censored component size
u∗,α(K) = mini∈V ∗α ui(K) and we define the corresponding gap parameters
∆α,i = (c∗α − ci)+, δsubα,i (K) = (u∗,α(K)− ui(K))+ and ∆α,max = maxi ∆α,i.
Ni,t =

∑t
s=1 I{As=i} denotes the number of times node i is selected up to time t.
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Algorithm 2.1 Local UCB(V0) for subcritical G(n, κ).
Parameters: A set of nodes V0 ⊆ V , K > 0.
Initialization: Select each node in V0 once. For each i ∈ V0, set Ni,|V0| = 1 and
ûi,|V0| = ui,i(K).
For t = |V0|, . . . T , repeat

1. Select any node At+1 ∈ arg maxi ûi,t(K) +K
√

log t
Ni,t

.

2. Observe uAt+1,t+1(K) , update ûi,t+1 and Ni,t+1 for all i ∈ [n].

For the subcritical case, Local UCB(V0) has the following performance
guarantee:

Theorem 2.2.1 (Subcritical inhomogeneous random graph). Assume that κ is
subcritical. Let V0 be a uniform subsample of V with size given in (2.4) and
define the event E = {V0 ∩ V ∗α 6= ∅}. Then for any G(n, κ) with n > n0(κ) and
any K, the expected α-quantile regret of Local UCB(V0) satisfies

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
4K2 log T

(δsubα,i (K))2
+ 8

)∣∣∣∣∣∣ E
 ,

where the expectation is taken over the random choice of V0. Furthermore, if κ is
such that λ(κ) > λ, g(κ) < g, then, taking K = log T

λ , we have

RαT ≤
4 log T

λ

√
T

log(1/(1− α))
+ 8∆α,max

⌈
log T

log(1/(1− α))

⌉
+ 2g.

We prove Theorem 2.2.1 in Section 2.5.1. Observe that one may choose the
value ofK as a constant, regardless of the number n of the nodes. This means that
the feedback information is truly “local” in the sense that only a constant number
of vertices of the connected component of the selected node need to be explored.
How large K needs to be depends on the parameter λ. An undesirable feature of
Local UCB(V0) is that the learner needs to know the parameter λ that depends
on the unknown function κ. To resolve this problem we propose a version of
a "doubling trick" (see, e.g., Section 2.3 [40]). While in our problem it is not
possible to control the range of λ(κ) explicitly, we still can control the frequency
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with which |Ci| is censored by choosing the range of K. In order to do this, we
propose a variation of Local UCB(V0), such that we split time T into episodes
q = 1, 2 . . . in the following way. At the beginning of each episode q, the learner
starts a new instance of Local UCB(V0) with a threshold parameterKq = 2q log T
and starts a new time counter tq. Then, at each time step of the current episode,
the learner computes the empirical probability p̂q = 1

tq

∑tq
τ=tq−1+1 I{|CAτ ,τ |>Kq},

that is updated each time when the size of connected component of the chosen
node exceeds Kq. Once p̂q gets larger than 1

T +
√

lnT
2(tq+1) , the episode q finishes

and the next episode begins. In this way, the length of each episode and the total
number of episodesQmax are random. We call this algorithm UCB(V0)-DOUBLE

, and show that it has the following performance guarantee:

Algorithm 2.2 UCB(V0)-DOUBLE for subcritical G(n, κ).
Parameters: A set of nodes V0 ⊆ V , T > 0.
Initialization: K0 = log T , t = 1, q = 0, tq = 0, p̂q = 0.
While t ≤ T , repeat:

• Select each node in V0 once. For each i ∈ V0, set Ni,t = 1, ûi,t = ui,t(Kq)

and p̂q = 1
|V0|
∑tq−1+1+|V0|

τ=tq−1+1 I{|CAτ ,τ |>Kq}.

While p̂q ≤ 1
T +

√
lnT

2(tq+1) , repeat:

1. Select any node Atq+1 ∈ arg maxi ûi,tq(Kq) +Kq

√
log T
Ni,tq

.

2. Observe uAtq+1,t+1,

3. Update ûAtq+1,tq+1 = 1
tq

∑tq
τ=tq−1+1 ui,τ (Kq)I{Aτ=Atq+1},

NAtq+1,tq+1 = NAtq ,tq + 1, p̂q = 1
tq

∑tq
τ=tq−1+1 I{|CAτ ,τ |>Kq},

4. Update tq = tq + 1 and t = t+ 1.

• Set tq+1 = 0, p̂q+1 = 0, Kq+1 = 2Kq and q = q + 1.

Theorem 2.2.2. Assume that κ is subcritical and n > n0(κ). Let V0 be a uniform
subsample of V with size given in (2.4) and define the event E = {V0 ∩ V ∗α 6= ∅}.
Then for G(n, κ) with n > n0(κ), the expected α-quantile regret of UCB(V0)-
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DOUBLE satisfies

RαT ≤ ∆α,max +
64

3
E

∑
i∈V0

∆α,i

(
log3 T

(λ(κ) ·minq∈[Qmax]{δsubα,i (2q log T )})2
+ 8

)∣∣∣∣∣∣ E
 ,

where the expectation is taken over the random choice of V0, and

RαT = O

(√
T (log(1/λ(κ)) + 1)

λ(κ)
√

ln(1/(1− α))
log2 T

)
.

The proof of Theorem 2.2.2 may be found in Section 2.5.1. Note that both
Theorems 2.2.1 and 2.2.2 present two types of regret bounds. The first set of these
bounds are polylogarithmic1 in the time horizon T , but show strong dependence
on the parameters of the distribution of the graphs Gt. Such bounds are usually
called instance-dependent, as they are typically interesting in the regime where T
grows large and the problem parameters are fixed independently of T . However,
these bounds become vacuous for smaller values of T as the gap parameters
δsupα,i (·) and δsubα,i (·) approach zero. This issue is addressed by our second set of

guarantees, which offer a bounds of Õ
(√
|U |T

)
for some set U ⊆ V that holds

simultaneously for all problem instances without becoming vacuous in any regime.
Such bounds are commonly called worst-case, and they are often more valuable
when optimizing performance over a fixed horizon T .

A notable feature of our bounds is that they show no explicit dependence
on the number of nodes n. This is enabled by our notion of α-quantile regret,
which allows us to work with a small subset of the total nodes as our action set.
Instead of n, our bounds depend on the size of some suitably chosen set of nodes
U , which is of the order polylogT/ log(1/(1− α)). Notice that this gives rise to
a subtle tradeoff: choosing smaller values of α inflates the regret bounds, but, in
exchange, makes the baseline of the regret definition stronger (thus strengthening
the regret notion itself).

2.2.2 Supercritical case

Next we address the supercritical case, that is, when ||Tκ||2 > 1. Here the
proposed algorithm uses vi,t(K) defined as the indicator whether |Ci| is larger

1Upon first glance, the bound of Theorem 2.2.1 may appear to be logarithmic, however, notice
that the sum involved in the bound has Θ(log T ) elements, thus technically resulting in a bound of
order log2 T .
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than K, that is, vi,t(K) = I{|Ci(Gt)|>K}. Since the observation is an indicator
function, vi,t(K) ∈ {0, 1}. Similarly to the subcritical case, we propose a variant
of UCB algorithm, Local UCB(V0), played over a random subsample of nodes of
size defined in (2.4). We define vi(K) = E [vi,t(K)] and v∗(K) = maxi vi(K).
Analogously to the notation introduced for the subcritical regime, we denote
v∗,α(K) = mini∈V ∗α vi(K) and δsupα,i (K) = (vi(K)− v∗,α(K))+.

In the supercritical case, the learner receives vi,t(K) as a reward and we
design a bandit algorithm based on this form of indicator observations. Note, that
vi,t(K) is a Bernoulli random variable with parameter P [|Ci(Gt)| > K]. The
following algorithm is a variant of the UCB algorithm of Auer et al. [15]. Just
like before, Ni,t denotes the number of times node i is selected up to time t by
the algorithm.

Algorithm 2.3 Local UCB(V0) for supercritical G(n, κ).
Parameters: A set of nodes V0 ⊆ V , k(n).
Initialization: Select each node in V0 once. For each i ∈ V0, set Ni,|V0| = 1 and
v̂i,|V0|(k(n)) = vi,i(k(n)).
For t = |V0|, . . . T , repeat

1. Select any node At+1 ∈ arg maxi v̂i,t(k(n)) +
√

log t
Ni,t

.

2. Observe the feedback vi,t(k(n)) , update v̂i,t+1(k(n)) and Ni,t+1 for all
i ∈ [n].

Local UCB(V0) for supercritical G(n, κ) satisfies the following regret bound:

Theorem 2.2.3. Let V0 be a uniform subsample of V with size given in (2.4) and
define the event E = {V0 ∩ V ∗α 6= ∅}. For any G(n, κ) with supercritical κ and
n > n0(κ), for any function k : N→ N such that limn→∞ k(n) =∞, we get

RαT
n
≤ 1

n
∆α,max +

1

n
E

∑
i∈V0

∆α,i

(
4 log T

(δsupα,i (k(n)))2
+ 8

)∣∣∣∣∣∣ E
 ,

where the expectation is taken over the random choice of V0, and

RαT
n
≤ 9

(
E [|C1|]
n

+ 1

)⌈
log T

log(1/(1− α))

⌉√
T log T .
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For the proof of Theorem 2.2.3, see Section 2.5.2. Note that for a supercritical
κ, E [C1] = Θn(n). Therefore, RαT scales linearly with n and hence it is natural
to normalize the regret by the number of nodes. Both in the subcritical and
supercritical regimes, our bounds scale linearly with the maximal expected reward
c∗, which is of Θn(1) in the subcritical case, but is Θn(n) in the supercritical
case. The dependence of the obtained bounds on the time horizon T is similar in
both regimes. Note that unlike in the subcritical case, the censoring level K is not
a constant anymore as we choose it to be K = k(n) for some function k. Hence,
strictly speaking, the feedback is not local as the number of vertices that need
to be explored is not independent of the number of nodes even if k(n) can grow
arbitrarily slowly. Similarly to the subcritical case, a sufficiently large constant
value of K would suffice. The value of the constant should be so large that for any
vertex i, the conditional probability – conditioned on the event that i is not in the
giant component – that the component of i has size larger than K is sufficiently
small. Such a constant exists, see (2.10) below. However, this value depends on
the unknown distribution of the underlying random graph. In the subcritical case
we solved this problem by applying a doubling trick. This is made possible by the
fact that in the subcritical case one observes the “bad” event that a component has
size larger than K and therefore censoring occurs. By “trying” increasingly large
values of K one eventually finds a value such that the probability of censoring
is sufficiently small. However, in the supercritical case, the “bad” event is that
even though the selected vertex is not in the giant component, the size of the
component is larger than K. Unfortunately, one cannot decide whether the bad
event occurs or simply the vertex lies in the giant component. For this reason,
we have been unable to apply an analogous doubling trick in the supercritical
case. To circumvent this difficulty, we choose K to be growing with n. This
guarantees that the bad event occurs with small probability. The price to pay is
that the observation is not entirely local in the strict sense.

2.3 Degree observations

The results of the previous section show that it is possible to learn to maximize
influence under very general conditions if the learner has access to the censored
size of the connected component, where the size of censoring may be kept much
smaller than the size of the entire network. In this section we consider the case
when the learner has access to significantly less information. In particular, we
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study the case when the learner only observes the degree of the selected vertex
At (i.e., the number of edges adjacent to At) in the graph Gt. Under such a
restricted feedback, one cannot hope to learn to maximize influence in the full
generality of sparse inhomogeneous random graphs as in Section 2.2. However,
we show that in several well-known models of real networks, degree information
suffices for influence maximization. In particular, we study three random graph
models that have been introduced to replicate properties of large (social) networks
appearing in a variety of applications. These are (1) stochastic block models; (2)
the Chung–Lu model; and (3) Kronecker random graphs.

2.3.1 Three random graph models

We start by introducing the three models we study. All of them are special cases
of inhomogeneous Erdős–Rényi graphs.

Stochastic block model

In the stochastic block model, the probabilities pi,j are defined through the notion
of communities, defined as elements of a partition H1, . . . ,HS of the set of
vertices V . We refer to the index m of community Hm as the type of a vertex
belonging to Hm. Each community Hm contains αmn nodes (assuming without
loss of generality that αmn is an integer). With the help of the community
structure, the probabilities pi,j are constructed as follows: if i ∈ H` and j ∈ Hm,
the probability of i and j being connected is given by pi,j =

K`,m
n , where K is a

symmetric matrix of size S × S, with positive elements. The random graph from
the above distribution is denoted as G(n, α,K).

In the stochastic block model, identifying a node with maximal reward
amounts to finding a node from the most influential community. Consequently,
it is easy to see that choosing α such that α > minm αm, the near-optimal set
V ∗α exactly corresponds to the set of optimal nodes, and thus the quantile regret
(2.2) coincides with the regret (2.1). We consider the stochastic block models
satisfying the following simplifying assumptions:

Assumption 1. Kl,m = k > 0 for all l 6= m.

This assumption requires that nodes i, j belonging to different communities
are connected with the same probability. Additionally, in our analysis in the
supercritical case we make the following natural assumptions:
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Assumption 2. For all l, Kl,l > k.

In plain words, this assumption requires that the density of edges within
communities is larger than the density of edges between communities.

Chung–Lu model

Another thoroughly studied special case of the inhomogeneous Erdős–Rényi
model is the so-called Chung–Lu model (sometimes referred to as rank-1 model)
as first defined by Chung and Lu [49] (see also [50, 28]). In this model the
edge probabilities are defined by a vector w ∈ Rn with positive components,
representing the “weight” of each vertex. Then the matrix defining the edge
probabilities has entries Aij = wiwj . We assume that the vector w is such that
wiwj/n < 1 for all i, j. In other words, the Chung–Lu model considers rank-1
matrices of the form A = wwT. The random graph from the Chung–Lu model
is denoted by G(n,w). Chung–Lu random graphs replicate some key properties
of certain real networks. For instance, if w is a sequence satisfying a power law,
then G(n,w) is a power law model, which allows one to model social networks,
see [50].

Kronecker graphs

Kronecker random graphs were introduced by [94, 93, 95] as models of large
networks appearing in various applications, including social networks. The
matrix P of the edge probabilities of a Kronecker random graph Gn,P [k] is defined
recursively. The model is parametrized by the constants ζ, β, γ ∈ [0, 1]. Here one
assumes that the number of vertices n is a power of 2. Starting from a 2× 2 seed
matrix,

P [1] =

[
ζ β
β γ

]
,

we define the matrices P [2], . . . , P [k] such that for each i = 2, . . . , k, P [i] is a
2i × 2i matrix obtained from P [i−1] by

P [i] =

[
ζP [i−1] βP [i−1]

βP [i−1] γP [i−1]

]
.

Finally P = P [k]. Hence, the Kronecker random graph Gn,P [k]has n = 2k

vertices, where each vertex i is characterised by a binary string si ∈ {0, 1}k,
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such that the probability of an edge between nodes i and j is equal to pi,j =
ζ〈si,sj〉γ〈1̄−si,1̄−sj〉βk−〈si,sj〉−〈1̄−si,1̄−sj〉, where 1̄ = (1, . . . , 1) ∈ {0, 1}k de-
notes the all-one vector and 〈·, ·〉 is the usual inner product. [94] show that a
Kronecker graph with properly tuned values of ζ, β, γ replicates properties of
real world networks, such as small diameter, clustering, and heavy-tailed degree
distribution.

2.3.2 Learning with degree feedback in stochastic block models and
Chung–Lu graphs

In this section we introduce an online influence maximization algorithm that only
uses the degree of the selected node as feedback information. The algorithm is
a variant of the kl-UCB algorithm, that was proposed and analyzed by [65, 102,
37, 87]. The main reason why learning is possible based on degree observations
only is that nodes with the largest expected degrees µ∗ are exactly the ones with
the largest influence c∗. This (nontrivial) fact holds in both the stochastic block
model (under Assumptions 1 and 2) and the Chung–Lu model, across both the
subcritical and supercritical regimes. These facts are proven in Sections 2.6.1
and 2.6.2. Further, we define Xt,i as the degree of node i in the realized graph
Gt, and define µi = E [X1,i] as the expected degree of node i. We also define
c∗ = maxi ci and µ∗ = maxi µi.

The learner uses the observed degrees as rewards, and feeds them to an
instance of kl-UCB originally designed for Poisson-distributed rewards. A key
technical challenge arising in the analysis is that the degree distributions do not
actually belong to the Poisson family for finite n. We overcome this difficulty by
showing that the degree distributions have a moment generating function bounded
by those of Poisson distributions, and that this fact is sufficient for most of the
kl-UCB analysis to carry through without changes.

As in the case of the inhomogeneous Erdős–Rényi model, we subsample a
set of size given in Equation (2.4) of representative nodes for kl-UCB to play
on. For clarity of presentation, we first propose a simple algorithm that assumes
prior knowledge of T , and then move on to construct a more involved variant
that adds new actions on the fly. We present our kl-UCB variant for a fixed set of
nodes V0 as Algorithm 2.4. We refer to this algorithm as d-UCB(V0) (short for
“degree-UCB on V0”). Our two algorithms mentioned above use d-UCB(V0) as a
subroutine: they are both based on uniformly sampling a large enough set V0 of
nodes so that the subsample includes at least one node from the top α-quantile,
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Algorithm 2.4 d-UCB(V0)

Parameters: A set of nodes V0 ⊆ V.
Initialization: Select each node in V0 once. Observe the degree Xi,i of vertex
i in the graph Gi for i = 1, . . . , |V0|. For each i ∈ V0, set Ni(|V0|) = 1 and
µ̂i(|V0|) = Xi,i.
For t = |V0|, . . . T , repeat

1. For each node, compute

Ui(t) = sup

{
µ : µ− µ̂i(t) + µ̂i(t) log

(
µ̂i(t)

µ

)
≤ 3 log(t)

Ni(t)

}
.

2. Select any node At+1 ∈ arg maxi Ui(t).

3. Observe degree Xt+1,At+1 of node At+1 in Gt+1 and update

µ̂At+1(t+ 1) =
NAt+1(t)µ̂At+1(t+ 1) +Xt+1,At+1

NAt+1(t) + 1
.

Update NAt+1(t+ 1) = NAt+1(t) + 1.

with high probability. We define the α-optimal degree µ∗α = mini∈V ∗α µi and
the gap parameter δα,i = (µi − µ∗α)+. We first present a performance guarantee
of our simpler algorithm that assumes knowledge of T , so the learner plays d-
UCB(V0) on the uniformly sampled a subset of size (2.4). This algorithm satisfies
the following performance guarantee:

Theorem 2.3.1. Assume that the underlying random graph is either (a) a subcrit-
ical stochastic block model satisfying Assumption 1; (b) a supercritical stochastic
block model satisfying Assumptions 1 and 2; (c) a subcritical Chung–Lu random
graph; or (d) a supercritical Chung–Lu random graph.

Let V0 be a uniform subsample of V with size given in Equation (2.4) and
define the event E = {V0 ∩ V ∗α 6= ∅}. If the number of vertices n is sufficiently
large, then the expected α-quantile regret of d-UCB(V0) simultaneously satisfies
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Algorithm 2.5 d-UCB-DOUBLE(β)

Parameters: β ≥ 2.
Initialization: V0 = ∅.
For k = 1, 2 . . . , repeat

1. Sample subset of nodes Uk uniformly such that |Uk| =
⌈

log β
log(1/(1−α))

⌉
.

2. Update action set Vk = Vk−1 ∪ Uk.

3. For rounds t = βk−1, βk−1 + 1, . . . , βk − 1, run a new instance of d-UCB
(Vk).

RαT ≤ E

∑
i∈V0

∆α,i

(
µ∗α (18 + 27 log T )

δ2
α,i

+ 3

)∣∣∣∣∣∣ E
+ ∆α,max,

where the expectation is taken over the random choice of V0, and

RαT ≤ 18c∗

√
Tµ∗ (2 + 3 log T )2

log(1/(1− α))
+

(
3 log T

log(1/(1− α))
+ 4

)
∆α,max.

In contrast to the results obtained in the general setting of Section 2.2, where
we have to run different algorithms in the subcritical and supercritical cases,
for the models considered in this section the learner can run the Algorithm 2.5
without prior knowledge of the regime.

For unknown values of T , we propose the d-UCB-DOUBLE(β) algorithm
(presented as Algorithm 2.5) that uses a doubling trick to estimate T . The
following theorem gives a performance guarantee for this algorithm:

Theorem 2.3.2. Assume that the underlying random graph is either (a) a subcrit-
ical stochastic block model satisfying Assumption 1; (b) a supercritical stochastic
block model satisfying Assumptions 1 and 2; (c) a subcritical Chung–Lu random
graph; or (d) a supercritical Chung–Lu random graph.

Fix T , let kmax be the value of k on which d-UCB-DOUBLE(β) terminates, and
define the event E = {Vkmax ∩ V ∗α = ∅}. If the number of vertices n is sufficiently
large, then the α-quantile regret of d-UCB-DOUBLE(β) simultaneously satisfies
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RαT ≤ E

 ∑
i∈Vkmax

∆i

((
18µ∗

δ2
α,i

+ 3

)
(logβ T + 1) +

27 log β(logβ T + 1)2

2δ2
α,i

)∣∣∣∣∣∣ E


+ ∆α,max logβ T,

where the expectation is taken over the random choice of the sets V1, V2, . . . , and

RαT ≤ 36c∗

√
T (µ∗ + log (βT )) log2 T

log(1/(1− α))
+

(
3 log2 T

log(1/(1− α))
+ 4

)
∆α,max.

2.3.3 Learning with degree feedback in Kronecker random graphs

In this section we study influence maximization when the underlying random
network is a Kronecker random graph. We set this model apart as the properties
of Kronecker random graphs differ significantly from those of the stochastic block
model and the Chung–Lu model. At the same time, we show that observing the
degree of the selected nodes is enough to maximize the total influence in this
graph model as well. In particular, the same algorithm d-UCB(V0) introduced
above achieves a small regret.

Since subcritical Kronecker random graphs contain only o(n) non-isolated
vertices with high probability, we consider only supercritical regime with param-
eters are such that (ζ + β)(β + γ) > 1. Denote by H the subgraph of Gn,P [k] ,
induced by the vertices of weight l ≥ k/2. We exploit the property that for the
graph Gn,P [k]with parameters (ζ + β)(β + γ) > 1, there exists a constant b(P )
such that a subgraph of Gn,P [k] , induced by the vertices of H , is connected with
probability at least 1−n−b(P ), see Frieze and Karonski [63, Theorem 9.10]. This
means that on this event, the connected components Ci are the same for all i ∈ H .
This allows us to prove the following:

Theorem 2.3.3. Let V0 be a uniform subsample of V of size
⌈

log(nT )
log(2)

⌉
. Let

Gn,P [k]be such that (ζ + β)(β + γ) > 1 and ζ > γ > β. Then there exists a
constant b(P ) such that the quantile regret of d-UCB(V0) satisfies

RαT
n
≤
⌈

log(nT )

log(2)

⌉µ∗(2 + 6 log T )(
1− β+γ

ζ+β

)2 + 3 + n−b(P )µ
∗(2 + 6 log T )(ζ + β)2

(ζ − γ)2
+ 3n−b(P )

+ 1 .
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2.4 Multi-type branching processes

One of the most important technical tools for analyzing the component struc-
ture of random graphs is the theory of branching processes, see Bollobás et al.
[28], van der Hofstad [141]. Indeed, while the connected components of an
inhomogenous random graph G(n, κ) have a complicated structure, many of
their key properties may be analyzed through the concept of multi-type Galton–
Watson processes. Recall the notation introduced in Section 2.1.2. Consider a
Galton–Watson process, where an individual x ∈ (0, 1] is replaced in the next
generation by a set of particles distributed as a Poisson process on (0, 1] with
intensity κ(x, y)dµ(y) and the number of children has a Poisson distribution
with mean

∫
(0,1] κ(x, y)dµ(y). We denote this branching process, started with a

single particle x by Wκ(x). [28] establishes a connection between the sizes of
connected components of G(n, κ), the survival probability of a branching process
Wκ(x), and the function κ. As shown in [28], the operator Φκ can be directly
used for characterizing the probability ρ(x) of survival of the process Wκ(x) for
all x ∈ (0, 1]. By their Theorem 6.2, the function ρ is the maximum fixed point of
the non-linear equation Φκ(f) = f . Furthermore, as was shown in Bollobás et al.
[28, Lemma 5.8.], if ‖Tκ‖2 < 1, then ρ(x) = 0 for all x and when ‖Tκ‖2 > 1,
ρ(x) > 0 for all x.

To analyze the random graph G(n, κ), we use Poisson multi-type Galton–
Watson branching processes with n types, parametrized by an n × n matrix
A with positive elements. Therefore, each node corresponds to its own type.
The branching process tracks the evolution of a set of individuals of various
types. Starting in round n = 0 from a single individual of type i, each further
generation in the Galton–Watson process Wκ(i) is generated by each individual
of each type i producing Xi,j ∼ Poisson(Ai,j/n) new individuals of each type
j. Therefore, the number of offsprings of the individual of type i is

∑n
j=1Xi,j ∼

Poisson(
∑n

j=1Ai,j/n).
Our analysis below makes use of the following quantities associated with the

multi-type branching process:

1. Zn(i) is the number of individuals in generation n ofWκ(i) (whereZ0(i) =
1);

2. B(i) is the total progeny, that is, the total number of individuals generated
by Wκ(i) and its expectation is denoted by xi = E [B(i)];
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3. ρ(i) is the probability of survival, that is, the probability thatB(i) is infinite.

2.5 Analysis of inhomogeneous random graph model

2.5.1 Proofs of Theorem 2.2.1 and 2.2.2.

The connected components Ci of an individual i have a complicated structure,
but many key properties can be analyzed through the concept of multi-type
Galton-Watson branching processes with n types. Fix an arbitrary node i and
let Yi,1, Yi,2, . . . , Yi,n be independent Bernoulli random variables with respective
parameters Ai,j/n for i, j ∈ [n]. Consider a multitype binomial branching
process where an individual of type i produces an individual j with probability
Ai,j/n, and let BBer(i) denote its total progeny when started from an individual
i. In the same way, consider a multitype Poisson branching process where an
individual of type i produces Xi,j ∼ Poisson(Ai,j/n) individuals, and let B(i)
denote its total progeny when started from an individual i. We use the concept
of stochastic dominance between random variables. The random variable X
is stochastically dominated by the random variable Y when, for every x ∈ R,
P [X ≤ x] ≥ P [Y ≤ x]. We denote this by X � Y .

Proof of Lemma 1. First, we define an upper approximation to κ. We choose
an integer m and we partition the interval (0, 1] into m sets A1, . . . ,Am, where
Ak = ((k − 1)/m, k/m], k ∈ [1,m]. Also we denote by Am(x) the set Ak for
which x ∈ Ak. Then we bound κ from above by

κ+
m(x, y) = sup{κ(x′, y′) : x′ ∈ Am(x), y′ ∈ Am(y)} .

As κ is bounded, there exists a sufficiently large m such that ‖Tκ+
m
‖ < 1:

‖Tκ+
m
‖ ≤ ‖Tκ‖+‖Tκ+

m
−Tκ‖ ≤ ‖Tκ‖+

(∫
(0,1]×(0,1]

(κ+
m(x, y)− κ(x, y))2dxdy

)1/2

.

Then for any node i in G(n, κ), we define a type ki = k if (k − 1)/m <
i/n ≤ k/m holds. By our definition of κ+

m, we have

P [|Ci| > u] ≤ P [BBer(ki) > u] .
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For k, ` ∈ [m] we define pk,` = 1
mκ

+
m(k/m, `/m). Notice, that for random

variables Y ∼ Ber(p) and X ∼ Poisson(p′) with p′ = − log(1 − p) > p,
Y � X holds. This follows from the observation that P [Y > 0] = p and
P [X > 0] = p. It follows that Ber(pk,`) � Poisson((1 + ε)pk,`). Then
there exists ε > 0 such that the multitype Poisson branching process B̃(k)

with parameters (1 + ε)pk,` is such that P [BBer(k) > u] < P
[
B̃(k) > u

]
and

it is subcritical. We also define a random variable X̃k,` ∼ Poisson ((1 + ε)pk,`).
Since the total number of descendants of individuals in the first generation are
independent, we can write the following recursive equation on the number of
descendants of type k:

|B̃(k)| = 1 +

m∑
`=1

X̃k,`|B̃(`)|.

For any type k, for zk > 1, the probability generating function of |B̃(k)| is

g(k) = E
[
z
|B̃(k)|
k

]
and we denote g = (g(1), . . . , g(m))T . Using that for

X ∼ Poisson(γ) for some γ > 0, y > 1 the probability generating function is
E
[
yX
]

= eγ(y−1), we have

g(k) = E
[
z
|B̃(k)|
k

]
= zkE

[
z
X̃k,1|B̃(1)|
k . . . z

X̃k,M|B̃(m)|
k

]
= zk

∏
`

E
[
z
X̃k,`|B̃(`)|
k

]
= zk

∏
`

E
[(
E
[
z
|B̃(`)|
k

] )X̃k,`] = zk exp

(
(1 + ε)

∑
`

pk,`(g(`)− 1)

)
.

Recall that P denotes the m ×m matrix with entries pk,`. Our next aim is to
study the fixed point of the operator GP , defined as

g = GP g := z exp

(
(1 + ε)P (g − 1̄)

)
. (2.5)

Define the function F (z, g) = z exp

(
(1 + ε)P (g − 1̄)

)
− g. This function is

smooth and the entries of the Jacobian matrix are

Jk,`(z, g) :=
∂Fk
∂g`

= zk(1 + ε)pk,` exp

(
(1 + ε)

∑
`

pk,`(g` − 1)

)
− I{k=`}.
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LetP ′(g, z) be the matrix with elements zk(1+ε)pk,` exp ((1 + ε)
∑

` pk,`(g` − 1)).
Then, at point (1̄, 1̄), P ′k,`(1̄, 1̄) = (1 + ε)pk,`. Since ε is chosen such that the

branching process B̃(k) is subcritical, P ′(1̄, 1̄) is smaller than one. This means,
that we can find z′ = 1 + δ, g′ > 0, such that the largest eigenvalue of P ′(g′, z′)
is smaller than one as well, and therefore J(z′, g′) is invertible. Then, by the
implicit function theorem there exists an open set Uz ⊂ (1,+∞)m and a function
q : Uz → (0,+∞)m such that F (z, q(z)) = 0̄.

Finally, the statement of the lemma is obtained by applying the Chernoff
bound:

P
[
B̃(k) > u

]
= P

[
z
B̃(k)
k > zuk

]
≤

E
[
z
B̃(k)
k

]
zuk

.

Denote λk = ln(zk) > 0. Then,

E
[
z
B̃(k)
k

]
zuk

=
gk
zuk

= exp(−λku)gk.

Then taking any λ(κ) = mink λk, g(κ) = maxk gk, we get the statement of the
lemma. �

Armed with this concentration result, we can see that the typical size |Ci|
of the connected component of any vertex i is O(1). Recall that the learning
algorithm has only access to a censored value of |Ci|, truncated by a constant K.
Our main technical result shows that nodes with the largest expected censored
observations u∗(K) are exactly the ones with the largest influence c∗. We formally
state this result next:

Lemma 2. For G(n, κ) with subcritical κ, and n > n0(κ), for any node i we
have c∗− ci ≤ u∗(K)−ui(K) + e−λ(κ)Kg. Then, for K = log T

λ , with λ < λ(κ)

we have c∗ − ci ≤ u∗(K)− ui(K) + g(κ)
T .

Proof. The expected bias of ui(K) is, using the result of Lemma 1:

ci − ui(K) = E [|Ci(Gt)| − ui(K)] = E [(|Ci| −K)+]

≤
∫ ∞

0
P [|Ci| −K > u] du ≤

∫ n

0
e−λ(u+K)du ≤ e−λKg(κ).
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Set K = log T
λ . Then,

c∗ − ci ≤ u∗(log T/λ)− ui(log T/λ) +
g(κ)

T
.

�

Proof of Theorem 2.2.1. In order not to overload notation we write δsubα,i for
δsubα,i (K). We first note that, with high probability, the size of V0 guarantees that
the subset contains at least one node from the set V ∗α : P [E ] ≥ 1− 1/T . Then, the
regret can be bounded as

RαT ≤ P [Ec]T∆α,max + E

 T∑
t=1

∑
i∈V0

I[At = i]∆α,i

∣∣∣∣∣∣ E
P [E ] (2.6)

≤ ∆α,max + E

∑
i∈V0

∆α,iE [Ni,T ]

∣∣∣∣∣∣ E
 . (2.7)

By Hoeffding’s inequality,

P

[
At+1 = i|Ni,t ≥

4K2 log t

(δsubα,i )2

]
≤ 4

t2
.

Then,

E [Ni,T ] ≤ 4K2 log T

(δsubα,i )2
+

T∑
t=|V0|

P

[
At+1 = i|Ni,t ≥

4K2 log t

(δsubα,i )2

]

≤ 4K2 log T

(δsubα,i )2
+

T∑
t=|V0|

4

t2
≤ 4K2 log T

(δsubα,i )2
+ 8.

Now, observing that δsubα,i ≤ maxj∈V0 uj(K) − ui(K) holds under event E ,
we obtain

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
4K2 log T

(δsubα,i )2
+ 8

)∣∣∣∣∣∣ E
 , (2.8)
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thus proving the first statement.
Next, we turn to proving the second statement regarding worst-case guarantees.

To do this, we appeal to Proposition 2 and take K = log T
λ , where λ is any

number, satisfying conditions of Lemma 1. To proceed, let us fix an arbitrary
ε > 0 and split the set V0 into two subsets: U(ε) =

{
a ∈ V0 : δsubα,i ≤ ε

}
and

W (ε) = V0 \ U(ε). Then, under event E , we have∑
i∈V0

∆α,iE [Ni,T ] =
∑
i∈U(ε)

∆α,iE [Ni,T ] +
∑

i∈W (ε)

∆α,iE [Ni,T ]

≤ ε
∑
i∈U(ε)

E [Ni,T ] +
g

T

∑
i∈U(ε)

E [Ni,T ]

+
∑

i∈W (ε)

δsubα,i

4
(

log T
λ

)2
log T

(δsubα,i )2

+
g

T

∑
i∈W (ε)

4
(

log T
λ

)2
log T

(δsubα,i )2

+ 8|W (ε)|∆α,max

≤ εT + g +
∑

i∈W (ε)

4
(

log T
λ

)2
log T

δsubα,i

+
g

T

∑
i∈W (ε)

4
(

log T
λ

)2
log T

(δsubα,i )2

+ 8|W (ε)|∆α,max

≤ εT + g + |V0|
4
(

log T
λ

)2
log T

ε
+
g

T
|V0|

4
(

log T
λ

)2
log T

ε2

+ 8|V0|∆α,max

≤ 4

(
log T

λ

)√
|V0|T log T + 2g + 8|V0|∆α,max.

where the last step uses the choice ε = 2
(

log T
λ

)√
|V0| log T/T . Plugging in the

choice of |V0| concludes the proof. �

Proof of Theorem 2.2.2. To simplify the notation, we use λ instead of λ(κ).
Let Tq be the length of the q-th iterate. The expected regret over each period q can
be bounded as an expected regret of Local UCB(V0) with parameters λq = 2−q

and Tq time steps. Appealing to Theorem 2.2.1, we can bound the expected regret
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as

RαT ≤ P [Ec]T∆α,max + E

 T∑
t=1

∑
i∈V0

I{At=i}∆α,i

∣∣∣∣∣∣ E


≤ ∆α,max + E

Qmax∑
q=1

∑
i∈V0

∆α,iE
[
Ni,Tq

]∣∣∣∣∣∣ E


Following the analysis of Theorem 2.2.1, by (2.8), we get

RαT ≤ ∆α,max + E

Qmax∑
q=1

∑
i∈V0

∆α,i

(
4K2

q log T

(δsubα,i (Kq))2
+ 8

)∣∣∣∣∣∣ E
 .

We have Qmax = dlog2(1/λ)e ≤ log2(1/λ) + 1, and

Qmax∑
q=0

K2
q = log2 T

Qmax∑
q=0

4q = log2 T
4Qmax+1 − 1

3
≤ 16

3

1

λ2
log2 T.

This gives us

RαT ≤ ∆α,max +
64

3
E

∑
i∈V0

∆α,i

(
log3 T

(λ ·minq∈[Qmax]{δsubα,i (Kq)})2
+ 8

)∣∣∣∣∣∣ E
 .

Next, we prove the second statement regarding worst-case guarantees. To
proceed, let us take εq = log T

λ

√
|V0| log T/Tq and split the set V0 into two

subsets: U(εq) =
{
a ∈ V0 : δsubα,i (Kq) ≤ εq

}
and W (εq) = V0 \ U(εq). Then,
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under event E , we have

E

 T∑
t=1

∑
i∈V0

I{At=i}∆α,i


≤ E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈V0

∆α,iI{|CAtq |≤Kq}
+ E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈V0

∆α,iI{|CAtq |>Kq}


= E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |≤Kq}


︸ ︷︷ ︸
Term 1

+E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |>Kq}


︸ ︷︷ ︸
Term 2

+ E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{|CAtq |≤Kq}


︸ ︷︷ ︸
Term 3

+E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{|CAtq |>Kq}


︸ ︷︷ ︸
Term 4

.

Term 1:

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |≤Kq}
 ≤ |V0|

log T

λ
E

Qmax∑
q=1

√
|V0|Tq log T


≤ |V0|3/2

log T

λ

√
(log2(1/λ) + 1)T .

Term 2: The expected bias of µsubi,t (Kq) is, using the result of Lemma 1:

E [(|Ci| −Kq)+] ≤
∫ ∞

0
P [|Ci| −Kq > u] du ≤

∫ n

0
e−λ(u+Kq)du ≤ e−λKqg

=

(
1

T

)λ2q

g ≤
(

1

T

)2q−Qmax

g.

Then,

c∗ − ci ≤ µsub∗ (Kq)− µsubi (Kq) +

(
1

T

)2q−Qmax

g. (2.9)
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According to the stopping rule, we get

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈U(εq)

∆α,iI{|CAtq |>Kq}


≤ |V0|E

Qmax∑
q=1

(
εq + g

(
1

T

)2q−Qmax
)(

1

T
+

√
log T

2Tq

)
Tq


≤ |V0|E

Qmax∑
q=1

(
log T

λ

√
|V0| log T/Tq + g

)(
1

T
+

√
log T

2Tq

)
Tq


≤ |V0|

(
log T

λ

√
(log2(1/λ+ 1))|V0| log T

T
+
g

T

)
+ |V0|3/2(log2(1/λ) + 1)

log2 T

λ

+ |V0|g
(√

(log2(1/λ) + 1)T log T
log T

λ

)
.

Term 3: Following the analysis of Theorem 2.2.1 and by (2.9), we get

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{At=i,|CAt |≤Kq |}


≤ E

 ∑
i∈W (εq)

Qmax∑
q=0

δsubα,i (Kq)

4
(

log Tq
λ

)2
log T

(δsubα,i (Kq))2


+ 8|V0|∆α,max

≤ 4
√
|V0|E

Qmax∑
q=0

(√
Tq

log3/2 T

λ

)+ 8|V0|∆α,max

≤ 4
√
|V0|

(√
(log(1/λ) + 1)T

log3/2 T

λ

)
+ 8|V0|∆α,max.
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Term 4:

E

Qmax∑
q=1

Tq∑
tq=1

∑
i∈W (εq)

∆α,iI{At=i,|CAt |>Kq |}


≤ E

 ∑
i∈W (εq)

Qmax∑
q=0

(
δsubα,i (Kq) + g

(
1

T

)2q−Qmax
)4

(
log Tq
λ

)2
log T

(δsubα,i (Kq))2

( 1

T
+

√
log T

2Tq

)
+ 8|W (εq)|∆α,max

≤ 4
√
|V0|(log2(1/λ) + 1)

log3/2 T√
Tλ

+ 4
√
|V0|(log2(1/λ) + 1)

log2 T

λ

+ 4g(log2(1/λ) + 1)
log T

λ
+ 4g

log3/2 T

λ

√
(log2(1/λ) + 1)T + 8|V0|∆α,max.

Putting everything together, we conclude that

Rαt ≤ 4
1√

ln(1/(1− α))

(√
(log(1/λ) + 1)T

log2 T

λ

)
+ 16∆α,max

log T√
ln(1/(1− α))

+ 4g(log2(1/λ) + 1)
log T

λ
+ 4g

log3/2 T

λ

√
(log2(1/λ) + 1)T

+ log T ·

√
log2(1/λ+ 1)

T ln(1/(1− α))
+

g
√

log T

T
√

ln(1/(1− α))
+

2(log2(1/λ) + 1) log5/2 T

(ln(1/(1− α)))3/2

+ g

√
T (log2(1/λ) + 1)

ln(1/(1− α))
log T.

2.5.2 Proof of Theorem 2.2.3.

The proof relies on some known properties of the largest connected component in
G(n, κ) for supercritical κ. We denote the largest and second-largest connected
components of Gt by C1(Gt) and C2(Gt), respectively. The survival probability
of the branching process Wκ(x) is denoted as ρ(x). The expected size of the
connected component containing vertex i can be estimated in terms of ρ(i/n) and
E [|C1|] as

ci = ρ(i/n)E [|C1|] + on(n) ,
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see Bollobás et al. [28, Chapter 9]. The following properties are proved by
Bollobás et al. [28]:

• If G(n, κ) is supercritical, then, with high probability, C1 = Θn(n);

• C1(Gn)→
∑

i∈V ρ(i/n) in probability;

• C2(Gn) = on(n) with high probability.

Recall from Section 2.2 that in the supercritical case the feedback vi,t(K)
is the indicator whether |Ci| is larger than K. In the following lemma we show
that taking K = k(n) for an arbitrary function of n that diverges to infinity, it is
enough to control the bias of the estimate of ci:

Lemma 3. For any supercritical κ, for any node i satisfying ci < c∗ and for
any K = k(n), where k : N → N is an arbitrary positive function satisfying
limn→∞ k(n) = ∞, there exist a positive function fκ : N → R, such that
limn→∞ fκ(n) = 0 and

c∗ − ci
n

≤ (v∗(k(n))− vi(k(n)))
E [C1]

n
+ fκ(n).

Proof. Define a kernel κ̄(x, y) = (1 − ρ(y))κ(x, y), where ρ is defined in Sec-
tion 2.4. By Theorem 6.7 in [28], the branching process Wκ conditional on
extinction is subcritical and has the same distribution as the branching process
with parameters Wκ̄. Then, by Lemma 1,

P [B(i) > K|B(i) <∞] ≤ e−λ(κ̄)k(n)g(κ̄) . (2.10)

We relate the size of the connected component to the total progeny of branch-
ing process. Following the stochastic dominance Ci � B(i),

vi(k(n)) = P [|Ci| > k(n)] ≤ ρi + P [B(i) > k(n)|B(i) <∞] .

This implies, for n > n0(κ̄),

vi(k(n))E [|C1|]− ci < P [B(i) > k(n)|B(i) <∞]E [|C1|] + ρiE [|C1|]− ci
≤ e−λ(κ̄)k(n)g(κ̄)E [|C1|] + on(n).
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Finally, using that ρ∗ ≤ v∗(k(n)), we get

c∗ − ci
n

≤ (v∗(k(n))− vi(k(n)))
E [|C1|]
n

+ e−λk(n)g(κ̄)
E [|C1|]
n

+ on(1)

= δsupi (k(n))E [|C1|] + fκ(n).

�

Proof of Theorem 2.2.3. First, by (2.6),

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,iE [Ni,T ]

∣∣∣∣∣∣ E
 .

As we mentioned before, with high probability, C2(Gn) = on(n), which
means that if At /∈ C1(Gt), then |CAt(Gt)| = on(n). Since G(n, κ) is super-
critical, arg maxa µa = arg maxa ρa. Then, we can approximate distribution
of rewards of arm a by a Bernoulli distribution with parameter ρa. Using the
result of Proposition 3, we reduce the initial problem to the analysis of a multi-
armed problem with arms Z1, . . . , Z|V0|, where Zi ∼ Ber(ui), for pi defined in
Proposition 3.

By Hoeffding’s inequality,

P

[
At+1 = i|Ni,t ≥

4 log t

(δsupα,i (K)2

]
≤ 4

t2
.

Then

E [Ni,T ] ≤ 4 log T

(δsupα,i (k(n)))2
+

T∑
t=|V0|

P

[
At+1 = i|Ni,t ≥

4 log t

(δsupα,i (k(n)))2

]

≤ 4 log T

(δsupα,i (k(n)))2
+ 8.

Now, observing that δsupα,i (k(n)) ≤ maxj∈V0 vj − vi holds under the event E ,
we obtain

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
4 log T

(δsupα,i (k(n)))2
+ 8

)∣∣∣∣∣∣ E
 , (2.11)
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thus proving the first statement.
Now we fix an arbitrary ε > 0, we split the set V0 into two subsets: U(ε) ={

a ∈ V0 : δsubα,i (k(n)) ≤ ε
}

andW (ε) = V0\U(ε), where we use the choice ε =

2
√
|V0|E [C1] log T/T . Lemma 3 shows that c∗−cin ≤ v∗(k(n))−vi(k(n))

n E [|C1|] +
fκ(n). Then there exists n0(κ), such that for any G(n, κ) with n > n0(κ),
fκ(n) ≤ ε holds. Then, under the event E , we have

1

n

∑
i∈V0

∆α,iE [Ni,T ] =
∑
i∈U(ε)

∆α,i

n
E [Ni,T ] +

∑
i∈W (ε)

∆α,i

n
E [Ni,T ]

≤
(
εE [|C1|]

n
+ ε

) ∑
i∈U(ε)

E [Ni,T ] +
∑

i∈W (ε)

∆α,i

n
E [Ni,T ]

≤
(
εE [|C1|]

n
+ ε

)
|V0|T +

∑
i∈W (ε)

δsubα,i (k(n))
E [C1]

n

(
4 log T

(δsubα,i (k(n)))2

)

+ ε
∑

i∈W (ε)

(
4 log T

(δsubα,i (k(n)))2

)

≤
(
εE [|C1|]

n
+ ε

)
|V0|T + |V0|

(
E [|C1|]
n

+ 1

)
8 log T

εn

≤ 9

(
E [|C1|]
n

+ 1

)
|V0|
√
T log T ,

where the last step uses the choice ε =
√

log T/T . Plugging in the choice of |V0|
concludes the proof. �

2.6 Degree observations.

2.6.1 Subcritical case

Our main technical result is proving that nodes with the largest expected degrees
µ∗ are exactly the ones with the largest influence c∗, in both the stochastic block
model and the Chung–Lu model, across both the subcritical and supercritical
regimes. The following lemma states this result for the subcritical case.
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Lemma 4. Suppose that

1. G is generated from a subcritical G(n, α,K) satisfying Assumption 1, or

2. G is generated from a subcritical G(n,w).

Then, for any i satisfying µi < µ∗, we have c∗ − ci ≤ 2c∗ (µ∗ − µi) +O(1/n).

Before stating and proving the lemma, we introduce some useful technical
tools. Since we suppose that G(n, κ) is subcritical, we have P [B(i) =∞] = 0
and xi = E [B(i)] is finite. First observe that the vector x of expected total
progenies satisfies the system of linear equations

x = e+
1

n
Ax ,

where e is the vector with ei = 1 for all i.
For the analysis of the stochastic block model we define the vector b ∈ RS

with coordinates bl = µl, l = 1, . . . , S, where by µl we define the expected degree
of the node from community Hl. Also we define vector x′ ∈ RS with coordinates
x′l = E [B(l)], l = 1, . . . , S, where by B(l) we define the total progeny of the
individual of type l. We define x∗ = maxi∈[n] xi. Armed with this notation, we
begin the proof Lemma 4, which consists of the following steps:

• proving that for any i, j ∈ V , xi − xj ≤ 2x∗ (µi − µj), (Lemma 5, 6),

• proving that for any i, j ∈ V , ci − cj = xi − xj +O(1/n) (Lemmas 7, 8).

These facts together lead to Lemma 4, given that n is large enough to suppress
the effects of the residual terms. We begin with analysing the relation between bl
and x′l in a straightforward way:

Lemma 5 (Coordinate order for mean of the total progeny in the SBM). Assume
that G(n, α,K) is subcritical and that Km` = k > 0 holds for all m 6= `.
If two coordinates of b are such that bl > bm, then we have x′l > x′m, and
x′l − x′m ≤ 2x∗ (bl − bm).

Proof. For the stochastic block model with S blocks, the system of equations x =
e+Ax can be equivalently written as x′ = e+Mx′, forM = Kdiag(α) ∈ RS×S ,
and x′ ∈ RS , with x′m now standing for the expected total progeny associated
with any node of type m. Similarly, we define b′m as the expected degree of any
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node of type m. Notice that the system of equations x′ = e+Mx′ satisfied by
x′ can be rewritten as (I −M)x′ = e, where I is the S × S identity matrix. By
exploiting our assumption on the matrix K and defining γm = Km,m − k, this
can be further rewritten as

1− α1γ1

. . .
1− αSγS

− k

α1 α2 · · · αS
α1 α2 · · · αS
...

...
. . .

...
α1 α2 · · · αS


x′ = e,

which means that for any m, x′m satisfies

x′m =
1 + k(αTx′)

1− αmγm
.

Also observe that
b′m = k(αT 1̄) + αmγm,

so, for any pair of types m and `, we have

x′m − x′` =
(1 + k(αTx′))(αmγm − α`γ`)

(1− αmγm)(1− α`γ`)
,

which proves the first statement.
To prove the second statement, observe that for any pair ` and m of communi-

ties, we have either αm ≤ 1
2 or α` ≤ 1

2 (otherwise we would have αm + α` > 1).
To proceed, let ` and m be such that x′m ≥ x′`, and let us study the case α` ≤ 1

2
first. Here, we get

x′m − x′` =
(1 + k(αTx′))(αmγm − α`γ`)

(1− αmγm)(1− α`γ`)
=

(αmγm − α`γ`)
(1− α`γ`)

x′m

≤ (αmγm − α`γ`)
(1− γ`/2)

x′m ≤ 2x′m(b′m − b′`).

In the other case where αm ≤ 1
2 , we can similarly obtain

x′m − x′` ≤ 2x′`(b
′
m − b′`) ≤ 2x′m(b′m − b′`).

This concludes the proof. �
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For the analysis of the Chung–Lu model, we define µ ∈ Rn as the vector of
mean degrees. Then we may prove the following.

Lemma 6 (Coordinate order for mean of the total progeny in the Chung–Lu
model). Assume that G(n,w) is subcritical. If two nodes are such that µi > µj ,
then we have xi > xj and xi − xj ≤ x∗(µi − µj).

Proof. From the system of equations x = e+ 1
nAx, the coordinates xi have the

form

xi = 1 +
1

n
· wi

 n∑
j=1

wjxj

 ,

which implies that wi ≥ wj holds if and only if xi ≥ xj . This observation implies
for x∗ = maxi xi

xi − xj ≤
1

n
· (wi − wj)

 n∑
j=1

wj

x∗ = (µi − µj)x∗,

thus concluding the proof. �

The next two lemmas establish the relationship between the expected com-
ponent size ci of vertex i and the expected total progeny xi of the multi-type
branching process seeded at vertex i.

Lemma 7. For any i, the mean of the connected component associated with type
i is bounded by the mean of the total progeny: ci ≤ xi.

Proof. Now fix an arbitrary i ∈ [n] and let Yi,1, Yi,2, . . . , Yi,n be independent
Bernoulli random variables with respective parameters (Ai,1/n,Ai,2/n,

. . . , Ai,i/n, . . . , Ai,n/n). Consider a multitype binomial branching process
where the individual of type i produces Yi,j individuals of type j, and let BBer(i)
denote its total progeny when started from an individual of type i. Recalling
the Poisson branching process defined in Section 2.4 with offspring-distributions
Xi,j , we can show BBer(i) � B(i) using the relation Yi,j � Xi,j .

Considering a node a of type i, we can use Theorem 4.2 of van der Hofstad
[141] to bound the size of the the connected component Ca as |Ca| � BBer(i),
which implies by transitivity of � that |Cai | � B(i). The proof is concluded by
appealing to Theorem 2.15 of [141] that shows that stochastic domination implies
an ordering of the means. �
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Next we upper bound the excess that appears in the domination by the branch-
ing process:

Lemma 8. xi − ci = O( 1
n) .

Proof. As in Lemma 7, BBer(i) denotes the total progeny of a Bernoulli branch-
ing process whose set of parameters corresponds to G(n, κ). Then we may
decompose the difference as

xi − ci = xi − E [BBer(i)] + E [BBer(i)]− ci.

Denote the set of edges in the connected component Ca as E(Ca) and the
set of edges containing a vertex v as E(v). We call |S| the surplus, which is the
number of edges to be deleted from E(Ca) such that the graph Ca becomes a tree.
Then, we have E [BBer(i)]− ci ≤ E [|S|]. The expectation of the surplus may be
written as

E [|S|] = E

 ∑
e∈E(Ca)

I{e ∈ S}

 =
∞∑
k=1

P [|Ca| = k]
∑

e∈E(Ca)

E [I{e ∈ S}| |Ca| = k]

=
1

2

∑
v∈Ca

∑
e∈E(v)

E [I{e ∈ S}| |Ca| = k] .

Define Amax = maxi,j Ai,j as the maximal element of the matrix A. Then
for an arbitrary vertex, the probability of an edge e ∈ E(v) being in the surplus
can be upper bounded as∑

e∈E(v)

E [I{e ∈ S}| |Ca| = k] ≤ Amaxk

n
.

Then we may upper bound the sum as

1

2

∑
v∈Ca

∑
e∈E(v)

E [I{e ∈ S}| |Ca| = k] ≤ Amaxk
2

n
.

Using our expression for E [|S|], we get

E [|S|] ≤
∞∑
k=1

P [|Ca| = k]
Amaxk

2

n
=
AmaxE|Ca|2

n
.
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Now we notice that, by Le Cam’s theorem, the total variation distance
between the sum of independent Bernoulli random variables with parameters
(Ai,1/n, . . . , Ai,n/n) and the Poisson distribution Poi(

∑n
j=1Ai,j/n) is at most

2(
∑n

j=1A
2
i,j)/n. Using this fact and that the moments of the total progeny of a

subcritical branching process do not scale with n (cf. Theorem 1 of 68), we have
xi − E [BBer(i)] = O

(
1
n

)
, thus proving the lemma. �

2.6.2 Supercritical case

Lemma 9. Suppose that

1. G is generated from a supercritical G(n, α,K) satisfying Assumptions 1
and 2, or

2. G is generated from a supercritical G(n,w).

Then, for any node i satisfying µi < µ∗, we have c∗− ci ≤ c∗ (µ∗ − µi) + on(n).

The proof of Lemma 9 follows from the following lemmas for the stochastic
block model and the Chung–Lu model and from the following relation between
ci and ρi:

ci = ρiE [|C1|] + on(n) ,

see Bollobás et al. [28, Chapter 9].

Lemma 10 (Coordinate order preserving in the stochastic block model.). Assume
the conditions of Lemma 9 and let l∗ = arg maxl bl. Let a ∈ RS be any vector
such that al ∈ [0, al∗ ] for all l. Then (ΦM (a))l∗ ≥ (ΦM (a))l.

Proof. Let us fix two arbitrary indices l and l′. By the definition of ΦM , we have

(ΦM (a))l = 1− e−((
∑
m 6=l αmam)k+αlKl,lal) ,

(ΦM (a))l′ = 1− e−((
∑
m 6=l′ αmam)k+αl′Kl′,l′al′ ) .

Notice that if l and l′ satisfy∑
m 6=l

αmam

 k + αlKl,lal ≥

∑
m6=l′

αmam

 k + αl′Kl′,l′al′ ,

we have (ΦM (a))l ≥ (ΦM (a))l′ . Now, using the facts that
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•
∑

m 6=l αmam −
∑

m 6=l′ αmam = αl′al′ − αlal,

• αlKl,l ≥ αlk,

• αlKl,l + αl′k ≥ αl′kl′,l′ + αlk and

• al − al′ ≥ 0,

we can verify that

αlKl,lal + αl′kal′ − αlkal − αl′Kl′,l′al′

= (αlKl,l + αl′k)al′ + (al − al′)αlKl,l − (αl′Kl′,l′ + αik)al′ − (al − al′)αlk ≥ 0,

thus proving the lemma. �

Lemma 11 (Order of coordinates of eigenvector in the SBM). Let a be the eigen-
vector corresponding to the largest eigenvalue λ of the matrix M = Kdiag(α).
Then if l∗ = arg maxl bl, we have al∗ ≥ al for l 6= l∗.

Proof. If a is an eigenvector of M , then for coordinates l, l′:
(∑

m6=l αmam

)
k + αlkl,lal = λal,(∑

m6=m′ αmam

)
k + αlKl′,l′al′ = λal′

By the Perron–Frobenius theorem and our conditions on matrix M , λ is a real
number larger than one. Denote C = k

∑
m 6=l,m6=l′ αmam, x = al, y = al′ ,

a = αlKl,l, b = αl′k, c = αlk, d = αl′kl′,l′ . Then,{
C + ax+ by = λx,

C + cx+ dy = λy
(2.12)

Let r = 1 + ε be such that y = rx = (1 + ε)x. Then{
C
x + a+ b+ bε = λ,
C
x + c+ d+ dε = λ+ λε

and therefore
C

x
+ c+ d+ dε =

C

x
+ a+ b+ bε+ λε .
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Rearranging the terms and using the fact that a+ b ≥ c+ d, we have

0 ≤ (a+ b)− (c+ d) = (d− b− λ)ε .

Since Kl,l ≥ k, we have αlkl,l ≥ αlk and a ≥ c.
We consider two cases separately: First, if b ≥ d, we have d − b − λ < 0,

which implies ε < 0 and y < x, therefore proving al > al′ for this case. In the
case when b < d, we have a + b ≥ c + d and d−b

a−c ≤ 1. Subtracting the two
equalities of the linear system 2.12, we get

λ(1− r) = (a− c)
(

1− d− b
a− c

r

)
.

Now, since d−b
a−c ≤ 1, we have λ ≥ a − c, which implies λ ≥ d − b and

d− b− λ ≤ 0, thus leading to ε ≤ 0 and y ≤ x, therefore proving al ≥ al′ for
this case. �

Lemma 12 (Order of coordinates of eigenvector in the Chung–Lu model). Let
a be the eigenvector corresponding to the largest eigenvalue λ of the matrix A.
Then if i∗ = arg maxm bm, we have ai∗ ≥ aj for j 6= i∗.

Proof. It is easy to see that the only eigenvector of A corresponding to a non-zero
eigenvalue is a = w with λmax = wTw/n:

1

n
Aw =

1

n
· (wwT)w =

wTw

n
· w.

The proof is concluded by observing that the maximum coordinate of the vector b
corresponds to the maximum coordinate of w, due to the equality

bi =
1

n
· wi

n∑
j=1

wj .

�

Lemma 13 (Coordinate order preserving in the Chung–Lu model). Assume the
conditions of Lemma 9 and let i∗ = arg maxi bi. Let a = (a1, . . . , an) be such
that aj ∈ [0, ai∗ ] for all j. Then (ΦA(a))i∗ ≥ (ΦA(a))j .
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Proof. Let us fix two arbitrary indices i and i′. By the definition of ΦA, we have

(ΦA(a))i = 1− e−wi(
∑n
j=1 wjaj) .

Then, using the fact that w = a, we have (ΦA(a))i∗ ≥ (ΦA(a))j , thus proving
the lemma. �

We finally study the maximal fixed point of the operator ΦA, keeping in
mind this fixed point is exactly the survival-probability vector ρ of the multi-type
Galton–Watson branching process Bollobás et al. [28]. By Lemma 5.9 of Bollobás
et al. [28], this is the unique fixed point satisfying ρi > 0 for all i. The following
lemma shows that ρi takes its maximum at i∗ = arg maxi bi, concluding the
proof of Lemma 9.

Lemma 14 (Fixed point coordinate domination). Let ρ be the unique non-zero
fixed point of ΦA, and let i∗ = arg maxi bi. Then, ρi∗ ≥ ρj and ρi∗ − ρj ≤
ρ∗ (bi∗ − bj) holds for all j 6= i∗.

Proof. Letting a be the eigenvector ofA that corresponds to the largest eigenvalue
λ, Lemma 12 and 11 guarantee ai∗ ≥ aj for j 6= i∗. Let ε > 0 be such that
ε ≤ 1−1/λ

a∗ , where a∗ = maxi=1,...,S ai. Then by Lemma 5.13 of Bollobás et al.
[28], ΦM (εa) ≥ εa holds elementwise for the two vectors.

Since the coordinates of the vector εa are positive, we can appeal to Lemma
5.12 of Bollobás et al. [28] to show that iterative application of ΦA converges to
the fixed point ρ: letting Φm

A be the operator obtained by iterative application of
ΦA for m times, we have limm→∞Φm

A (εa) = ρ, where ρ satisfies ρ ≥ εa ≥ 0
and ΦA(ρ) = ρ > 0. By Lemmas 12 and 11 we have ρi∗ ≥ ρj , for i∗ 6= j for
both the SBM and the Chung–Lu models, proving the first statement.

The second statement can now be proven directly as

ρi∗ − ρi = e−( 1
n
Aρ)j − e−( 1

n
Aρ)i∗ = e−

1
n

∑n
j Ai∗jρj − e−

1
n

∑n
j Aijρj

= e−
1
n

∑n
j Ai∗jρj (1− e−

1
n

∑n
j Aijρj−Ai∗jρj ) ≤ e−

1
n

∑n
j Ai∗jρj

 1

n

n∑
j

(Ai∗j −Aij)ρi∗


≤ ρ∗(bi∗ − bi),

where the first inequality uses the relation 1− e−z ≤ z that holds for all z ∈ R,
and the last step uses the fact that Aρ has positive elements. �
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2.6.3 Proofs of Theorems 2.3.1, 2.3.2 and 2.3.3 .

Having established that, in order to minimize regret in our setting, it is sufficient
to design an algorithm that quickly identifies the nodes with the highest degree. It
remains to show that our algorithms indeed achieve this goal. We do this below by
providing a bound on the expected number of times E [NT,i] = E

[∑T
t=1 I{At=i}

]
that the algorithm picks a suboptimal node i such that ci < c∗, and then using this
guarantee to bound the regret.

Without loss of generality, we assume that V0 = {1, 2, . . . , |V0|}. The key to
our regret bounds is the following guarantee on the number of suboptimal actions
taken by d-UCB(V0).

Theorem 2.6.1 (Number of suboptimal node plays in d-UCB). Define ηi =
(maxj∈V0 µj − µi) /3. The number of times that any node i ∈ {i : µi < maxj∈V0 µj}
is chosen by d-UCB(V0) satisfies

ENT,i ≤
µ∗ (2 + 6 log T )

η2
i

+ 3 . (2.13)

The proof is largely based on the analysis of the kl-UCB algorithm due to
Cappé et al. [37], with some additional tools borrowed from Ménard and Garivier
[106], crucially using that the degree distribution of each node is stochastically
dominated by an appropriately chosen Poisson distribution. Specifically, lettingZi
be a Poisson random variable with mean E [Xt,i], we have E

[
esXt,i

]
≤ E

[
esZi

]
for all s. It turns out that this property is sufficient for the kl-UCB analysis to go
through in our case, which is an observation that may be of independent interest.

Before delving into the proof, we introduce some useful notation. We start by
defining Yi,1, . . . , Yi,n as independent Bernoulli random variables with respective
parameters B = (Ai,1/n, Ai,2/n, . . . , Ai,n/n), and noticing that the degree Xt,i

can be written as a sum Xi =
∑

j 6=i Yi,j . The following lemma, used several
times in our proofs, relates this quantity to a Poisson distribution with the same
mean.

Lemma 15. Let i ∈ [S] and let Yi,1, Yi,2, . . . , Yi,n be independent Bernoulli
random variables with respective parameters pi,1, pi,2, . . . , pi,n, and let Zi be
a Poisson random variable with parameter µi =

∑
j 6=i pi,j . Defining Xi =∑

j 6=i Yi,j , we have E
[
esXi

]
≤ E

[
esZi

]
for all s ∈ R.
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Proof. Fix an arbitrary s ∈ R and i ∈ [n]. By direct calculations, we obtain

EesXi =
n∏
j=1

(
EesYi,j

)
≤

n∏
j=1

(1 + pi,j(e
s − 1)) ≤

n∏
j=1

exp (pi,j · (es − 1)) ,

where the last step follows from the elementary inequality 1 + x ≤ ex that holds
for all x ∈ R. The proof is concluded by observing that EesZi = exp (µ (es − 1))
and using the definition of µ. �

For simplicity, we also introduce the notation ψB(s) = logE
[
esX
]

and
φλ(s) = logEesZi = λ(es − 1). The proof below repeatedly refers to the
Fenchel conjugate of φλ defined as

φ∗λ(z) = sup
s∈R
{sz − φ(s)} = z log

( z
λ

)
+ λ− z

for all z ∈ R. Finally, we define d(µ, µ′) = µ′−µ+µ log
(
µ
µ′

)
for all µ, µ′ > 0,

noting that φ∗λ(z) = d(z, λ).

Proof of Theorem 2.6.1. The statement is proven in four steps. Within this
proof, we refer to nodes as arms and use K to denote the size of V0. We use the
notation f(t) = 3 log t.

Step 1. We begin by rewriting the expected number of draws E [Ni] for any
suboptimal arm i as

ENi = E

[
T−1∑
t=K

I{At+1 = i}

]
=

T−1∑
t=K

P{At+1 = i}.

By definition of our algorithm, at rounds t > K, we have At+1 = i only if
Ui > Ui∗i. This leads to the decomposition:

{At+1 = a} ⊆ {µ∗ ≥ Ui∗(t)} ∪ {µ∗ < Ui∗(t) and At+1 = a}
⊆ {µ∗ ≥ Ui∗(t)} ∪ {µ∗ < Ui(t) and At+1 = a}

Steps 2 and 3 are devoted to bounding the probability of the two events above.
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Step 2. Here we aim to upper bound

T−1∑
t=K

P [µ∗ ≥ Ui∗(t)] . (2.14)

Note, that {Ui∗(t) ≤ µ∗} = {µ̂i∗(t) ≤ Ui∗(t) ≤ µ∗} . Since d(µ, µ′) = µ′− µ+
µ log( µµ′ ) is non-decreasing in its second argument on [µ,+∞), and by definition

of Ui∗ = sup{µ : d(µ̂i∗(t), µ) ≤ f(t)
Ni∗(t)

} we have

{µ∗ ≥ Ui∗(t)} ⊆
{
µ̂i∗(t) ≤ Ui∗(t) ≤ µ∗ and d(µ̂i∗(t), µ

∗) ≥ f(t)

Ni∗(t)

}
,

Taking a union bound over the possible values of Ni∗(t) yields

{µ∗ ≥ Ui∗(t)} ⊆
t−K+1⋃
n=1

{
µ∗ ≥ µ̂i∗,n and d(µ̂i∗,n, µ

∗) ≥ f(t)

n

}
=

t−K+1⋃
n=1

Dn(t),

where the event Dn(t) is defined through the last step. Since d(µ, µ∗) is decreas-
ing and continuous in its first argument on [0, µ∗), either d(µ̂i∗,n, µ

∗) < f(t)
n on

this interval and Dn(t) is the empty set, or there exists a unique zn ∈ [0, µ∗) such
that d(zn, µ

∗) = f(t)
n . Thus, we have

t−K+1⋃
n=1

Dn(t) ⊆
t−K+1⋃
n=1

{µ̂i∗,n ≤ zn} .

For λ < 0, let us define ψ(λ) as the cumulant-generating function of the sum of
binomials with parameters B, and let φ(λ) be the cumulant-generating function
of a Poisson random variable with parameter µ∗. With this notation, we have for
any λ < 0 that

P [µ̂i∗,n ≤ zn] = P [exp(λµ̂i∗,n) ≥ exp(λzn)]

= P

[
exp

(
λ

n∑
i=1

Xi∗,i − nψ(λ)

)
≥ exp(nλzn − nψ(λ))

]

≤
(
EeλXi∗,1
eψ(λ)

)n
e−n(λzn−ψ(λ)) ≤ e−n(λzn−ψ(λ)),
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where the last step uses the definition of ψ(λ). Now fixing λ∗ = arg maxλ{λzn−
φ(λ)} = log(zn/µ

∗) < 0, we get by Lemma 15 that

e−n(λ∗zn−ψ(λ∗)) ≤ e−n(λ∗zn−φ(λ∗)) = e
−nφ∗

µ∗ (zn)
= e−nd(zn,µ∗) .

In view of the definition of zn and f(t), this gives the bound

e−nd(zn,µ∗) = e−f(t) =
1

t3
,

which leads to

T−1∑
t=K

P [µ∗ ≥ Ui∗(t)] ≤
T−1∑
t=K

t−K+1∑
n=1

1

t3
< 2,

thus concluding this step.

Step 3. In this step, we borrow some ideas by Ménard and Garivier [106, Proof
of Theorem 2, step 2] to upper bound the sum

B =

T−1∑
t=K

P [µ∗ < Ui(t) and At+1 = i] . (2.15)

Writing η = ηi = {µ∗ − µi}/3 for ease of notation, we have

{µ∗ < Ui(t) and At+1 = i} ⊆ {µ∗ − η < Ui(t) and At+1 = i}
⊆ {d(µ̂i(t), µ

∗ − η) ≤ f(t)/Ni(t) and At+1 = i} .

Thus, we have

B ≤
T−1∑
t=K

P [d(µ̂i(t), µ
∗ − η) ≤ f(t)/Ni(t) and At+1 = i]

≤
T∑
n=1

P [d(µ̂i,n, µ
∗ − η) ≤ f(T )/n]

Defining the integer n(η) as

n(η) =

⌈
f(T )

d(µi + η, µ∗ − η)

⌉
,
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we have f(T )/n ≤ d(µi + η, µ∗ − η) for all n ≥ n(η). Thus, we may further
upper bound B as

B ≤ n(η)− 1 +
T∑

n=n(η)

P [d(µ̂i,n, µ
∗ − η) ≤ f(T )/n]

≤ f(T )

d(µi + η, µ∗ − η)
+

T∑
n=n(η)

P [d(µ̂i,n, µ
∗ − η) ≤ d(µi + η, µ∗ − η)] .

By definition of η, we have

{µ̂i,n, µ∗ − η) ≤ d(µi + η, µ∗ − η)} ⊆ {µ̂i,n ≥ µi + η} ,

which implies

T∑
n=n(η)

P [d(µ̂i,n, µ
∗ − η) ≤ d(µi + η, µ∗ − η)] ≤

T∑
n=n(η)

P [µ̂i,n ≥ µi + η] .

By an argument analogous to the one used in the previous step, we get for a
well-chosen λ that

T∑
n=n(η)

P [µ̂i,n ≥ µi + η] ≤ P [exp(λµ̂i,n) ≥ exp(λ(µi + η))]

=
T∑

n=n(η)

P

exp(λ
n∑
j=1

Xi,j − nψ(λ)) ≥ exp(nλ(µi + η)− nψ(λ))


≤

T∑
n=n(η)

(
E
[
eλXi,j

]
eψ(λ)

)n
e−n(λ(µi+η)−ψ(λ))

≤
T∑

n=n(η)

e−n(λ(µi+η)−φ(λ)) =
T∑

n=n(η)

e−nd(µi+η,µi)

≤
∞∑

n=n(η)

e−nd(µi+η,µi) ≤ 1

ed(µi+η,µi) − 1
≤ 1

d(µi + η, µi)
,

where the last step uses the elementary inequality 1 + x ≤ ex that holds for all
x ∈ R.
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Step 4. Putting together the results from the first three steps, we get

ENi ≤ 3 +
1

d(µi + η, µi)
+

3 log T

d(µi + η, µ∗ − η)
.

We conclude by taking a second-order Taylor-expansion of d(µi + η, µi) in η to
obtain for some η′ ∈ [0, η] that

d(µi + η, µi) =
η2

2(µi + η′)
≥ η2

2(µi + η)
.

Taking into account the definition of η, we get

1

d(µi + η, µi)
≤ 2µ∗

η2
.

An identical argument can be used to bound (d(µi + η, µ∗ − η))−1 ≤ 2µ∗/η2.
�

The remainder of the section uses Theorem 2.6.1 to prove Theorem 2.3.1. The
proof of Theorem 2.3.2 follows from similar ideas and some additional technical
arguments.

Proof of Theorem 2.3.1. First, by (2.6),

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,iE [NT,i]

∣∣∣∣∣∣ E
 .

Now, observing that δα,i ≤ 3ηi holds under event E , we appeal to Theorem 2.6.1
to obtain

RαT ≤ ∆α,max + E

∑
i∈V0

∆α,i

(
µ∗ (18 + 27 log T )

δ2
i,α

+ 3

)∣∣∣∣∣∣ E
 , (2.16)

thus proving the first statement.
Next, we turn to proving the second statement regarding worst-case guarantees.

To do this, we appeal to Propositions 4 and 9 that respectively show ∆i ≤
2c∗δi +O(1/n) and ∆i ≤ c∗δi + o(n) for the sub- and supercritical settings, and
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we use our assumption that n is large enough so that we have ∆i ≤ 3c∗δi in both
settings. Specifically, we observe that δi = Θn(1) by our sparsity assumption
and c∗ is Θn(1) in the subcritical and Θn(n) supercritical settings, so, for large
enough n, the superfluous O(1/n) and o(n) terms can be respectively bounded
by c∗δi. To proceed, let us fix an arbitrary ε > 0 and split the set V0 into two
subsets: U(ε) = {i ∈ V0 : δα,i ≤ ε} and W (ε) = V0 \ U(ε). Then, under event
E , we have∑
i∈V0

∆α,iE [NT,i] =
∑
i∈U(ε)

∆α,iE [NT,i] +
∑

i∈W (ε)

∆α,iE [NT,i]

≤ 3c∗ε
∑
i∈U(ε)

E [NT,i] + 3c∗
∑

i∈W (ε)

δα,i

(
µ∗ (18 + 27 log T )

δ2
α,i

)
+ 3|W (ε)|∆α,max (by Theorem 2.6.1)

≤ 3c∗εT + 3c∗
∑

i∈W (ε)

µ∗ (18 + 27 log T )

δα,i
+ 3|V0|∆α,max

≤ 3c∗
(
εT + |V0|

µ∗ (18 + 27 log T )

ε

)
+ 3|V0|∆α,max

≤ 6c∗
√
T |V0|µ∗ (18 + 27 log T ) + 3|V0|∆α,max,

where the last step uses the choice ε =
√
|V0|µ∗ (18 + 27 log T ) /T . Plugging

in the choice of |V0| concludes the proof. �

Proof of Theorem 2.3.2. We start by assuming that α < 1/2. Also notice that
for a uniformly sampled set of nodes U , the probability of U not containing a
vertex from V ∗α is bounded as

P [U ∩ V ∗α = ∅] ≤ (1− α)|U |.

By the definition of Vk, this gives that the probability of not having sampled a
node from V ∗α in period k of the algorithm is bounded as

P [Vk ∩ V ∗α = ∅] ≤ (1− α)|Vk| ≤ β−k.

For each period k, the expected regret can bounded as the weighted sum of
two terms: the expected regret of d-UCB (Vk) in period k whenever Vk ∩ V ∗α is
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not empty, and the trivial bound ∆α,maxβ
k in the complementary case. Using the

above bound on the probability of this event and appealing to Theorem 2.6.1 to
bound the regret of d-UCB (Vk), we can bound the expected regret as

E [RαT ] ≤
kmax∑
k=1

βk 1

βk
∆α,max +

∑
i∈Vk

∆α,i

(
µ∗
(
2 + 3 log βk

)
δ2
α,i

+ 3

)
≤ kmax∆α,max +

kmax∑
k=1

∑
i∈Vk

∆α,i

(
µ∗ (2 + 3k log β)

δ2
α,i

+ 3

)
≤ kmax∆α,max +

∑
i∈V

∆α,i

((
3 +

2µ∗

δ2
α,i

)
(kmax + 1) +

3 log β(kmax + 1)2

2δ2
α,i

)
.

The proof of the first statement is concluded by upper bounding the number of
restarts up to time T as kmax ≤ log T

log β .
The second statement is proven by an argument analogous to the one used in

the proof of Theorem 2.3.1, and straightforward calculations. �

Proof of Theorem 2.3.3. For a node i, such that si contains li ones, the expected
degree is

µi = (ζ + β)li(β + γ)k−li .

Since ζ > γ > β, we get that µi > µj if li > lj . By symmetry of the nodes in
the Kronecker graph, if two nodes i and j are such that li = lj , then ci = cj . This
implies that for any node i, ci is a function of li. Then we may choose nodes i
and j such that si ≥ sj coordinate-wise. Then, using the condition ζ > γ > β, it
is straightforward to see that for any vertex k, the probability of the edge (i, k) is
greater than that of edge (j, k). This implies that the connected component is a
monotone function of the degree.

Theorem 9.10 in [63] shows that for a graph Gn,P [k] there exists b(P ) such
that a subgraph of Gn,P [k] induced by the vertices i ∈ H of weight li ≥ k/2

is connected with probability at least 1 − n−b(P ). We denote by H the event
that the subgraph of Gn,P [k] induced by the vertices of H of weight l ≥ k/2 is
connected. This implies that under eventH, |Ci| = |maxj Cj | for all i ∈ H and
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|Ci| ≤ |maxj Cj | for all i /∈ H . Then we get

c∗α − ci = E
[

max
j
|Cj |

∣∣∣∣H]P [H] + E [ |C∗α||Hc]P [Hc]

− E
[

max
j
|Cj |

∣∣∣∣H]P [H]− E [ |Ci||Hc]P [Hc]

≤ E [ |C∗||Hc]P [Hc] ≤ n1−b(P ).

For all i ∈ V0\H , δα,i ≥ ((ζ + β)(β + γ))k/2−(ζ+β)k/2−1(β+γ)k/2+1 =

((ζ + β)(β + γ))k/2
(

1− β+γ
ζ+β

)
. Since we consider the regime, where (ζ +

β)(β + γ) > 1, we get that δα,i >
(

1− β+γ
ζ+β

)
. For all i, j ∈ H , δα,i =

(ζ+β)li(β+γ)k−li ≥ (ζ+β)k/2−1(β+γ)k/2(ζ−γ) ≥ (ζ−γ)/(ζ+β). In the
same way as we analysed the regret of the stochastic block model and Chung–Lu
model, we can write

RαT ≤ nTP [Ec] + E

∑
i∈V0

∆α,iE [Ni,T ]

∣∣∣∣∣∣ E
 .

Applying Theorem 2.6.1, we get

RαT
n
≤ E

 ∑
i∈V0\H

∆α,i

n

µ∗(2 + 6 log T )(
1− β+γ

ζ+β

)2 + 3


∣∣∣∣∣∣∣ E


+ n−b(P )

⌈
log(nT )

log(2)

⌉(
µ∗(2 + 6 log T )(ζ + β)2

(ζ − γ)2
+ 3

)
+ 1 .

Applying |V0 \H| ≤ |V0| and ∆α,i ≤ n, we get the final bound on the regret. �
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Chapter 3

Adversarial contextual bandits

3.1 Introduction

The contextual bandit problem is one of the most important sequential decision-
making problems studied in the machine learning literature. Due to its ability
to account for contextual information, the applicability of contextual bandit al-
gorithms is far superior to that of standard multi-armed bandit methods: the
framework of contextual bandits can be used to address a broad range of impor-
tant and challenging real-world decision-making problems such as sequential
treatment allocation [137] and online advertising [97]. On the other hand, the
framework is far less complex than that of general reinforcement learning, which
allows for proving formal performance guarantees under relatively mild assump-
tions. As a result, there has been significant interest in this problem within the
learning-theory community, resulting in a wide variety of algorithms with perfor-
mance guarantees proven under a number of different assumptions. In this work,
we fill a gap in this literature and design computationally efficient algorithms with
strong performance guarantees for an adversarial version of the linear contextual
bandit problem.

Perhaps the most well-studied variant of the contextual bandit problem is that
of stochastic linear contextual bandits [11, 127, 48, 1, 89]. First proposed by
Abe and Long [2], this version supposes that the loss of each action is a fixed
linear function of the vector-valued context, up to some zero-mean noise. Most
algorithms designed for this setting are based on some variation of the “optimism
in the face of uncertainy” principle championed by Auer [11], Auer et al. [12], or
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more generally by an appropriate exploitation of the concentration-of-measure
phenomenon [29]. By now, this problem setting is very well-understood in many
respects: there exist several computationally efficient, easy-to-implement algo-
rithms achieving near-optimal worst-case performance guarantees [1, 8]. These
algorithms can be even adapted to more involved loss models like generalized
linear models, Gaussian processes, or very large structured model classes while
retaining their performance guarantees [59, 131, 34, 61]. That said, most algo-
rithms for stochastic linear contextual bandits suffer from the limitation that they
are sensitive to model misspecification: their performance guarantees become
void as soon as the true loss functions deviate from the postulated linear model to
the slightest degree. This issue has very recently attracted quite some attention
due to the work of Du et al. [56], seemingly implying that learning an ε-optimal
policy in a contextual bandit problem has an extremely large sample complexity
when assuming that the linear model is ε-inaccurate (defined formally later). This
claim was quickly countered by Van Roy and Dong [142] and Lattimore et al.
[91], who both showed that learning a (somewhat worse) ε

√
d-optimal policy is

feasible with the very same sample complexity as learning a near-optimal policy
in a well-specified linear model. Yet, since algorithms that are currently known
to enjoy these favorable guarantees are quite complex, there is much work left
to be done in designing practical algorithms with strong guarantees under model
misspecification. This is one of the main issues we address in this work.

Another limitation of virtually all known algorithms for linear contextual
bandits is that they crucially rely on assuming that the loss function is fixed during
the learning procedure 1. This is in stark contrast with the literature on multi-
armed (non-contextual) bandits, where there is a rich literature on both stochastic
bandit models assuming i.i.d. rewards and adversarial bandit models making no
assumptions on the sequence of loss functions—see Bubeck and Cesa-Bianchi
[30] and Lattimore and Szepesvári [90] for an excellent overview of both lines of
work. Our main contribution is addressing this gap by designing and analyzing
algorithms that are guaranteed to work for arbitrary sequences of loss functions.
While it is tempting to think that the our bandit problem can be directly addressed
by a minor adaptation of algorithms developed for adversarial linear bandits, this
is unfortunately not the case: all algorithms developed for such problems require
a fixed decision set, whereas reducing the linear contextual bandit problem to a

1Or make other stringent assumptions about the losses, such as supposing that their total
variation is bounded—see, e.g., Cheung et al. [46], Russac et al. [128], Kim and Tewari [81].
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linear bandit problem requires the use decision sets that change as a function of
the contexts [90, Section 18]. As a crucial step in our analysis, we will assume
that the contexts are generated in an i.i.d. fashion and that the loss function
in each round is statistically independent from the context in the same round.
This assumption will allow us to relate the contextual bandit problem to a set of
auxiliary bandit problems with a fixed action sets, and reduce the scope of the
analysis to these auxiliary problems.

Our main results are the following. We consider a K-armed linear contextual
bandit problem with d-dimensional contexts where in each round, a loss function
mapping contexts and actions to real numbers is chosen by an adversary in a
sequence of T rounds. The aim of the learner is to minimize its regret, defined
as the gap between the total incurred by the learner and that of the best decision-
making policy π∗ fixed in full knowledge of the loss sequence. We consider
two different assumptions on the loss function. Assuming that the loss functions
selected by the adversary are all linear, we propose an algorithm achieving a regret
bound of order

√
KdT , which is known to be minimax optimal even in the simpler

case of i.i.d. losses (cf. 48). Second, we consider loss functions that are “nearly
linear” up to an additive nonlinear function uniformly bounded by ε. For this case,
we design an algorithm that guarantees regret bounded by (Kd)1/3T 2/3 + ε

√
dT .

Notably, these latter bounds hold against any class of policies and the ε
√
dT

overhead paid for nonlinearity is optimal when K is large [91]. Both algorithms
are computationally efficient, but require some prior knowledge to the distribution
of the contexts.

There exist numerous other approaches for contextual bandit problems that
do not rely on modeling the loss functions, but rather make use of a class of
policies that map contexts to actions. Instead of trying to fit the loss functions,
these approaches aim to identify the best policy in the class. A typical assumption
in this line of work is that one has access to a computational oracle that can
perform various optimization problems over the policy class (such as returning
an optimal policy given a joint distribution of context-loss pairs for each action).
Given access to such an oracle, there exist algorithms achieving near-optimal
performance guarantees when the loss function is fixed [57, 5]. More relevant to
our present work are the works of Rakhlin and Sridharan [123] and Syrgkanis et al.
[134, 135] who propose efficient algorithms with guaranteed performance for
adversarial loss sequences and i.i.d. contexts. Unlike the algorithms we present,
these methods fail to guarantee optimal performance guarantees of order

√
T .

61



i
i

“main” — 2021/9/23 — 13:41 — page 62 — #69 i
i

i
i

i
i

Yet another line of work considers optimizing surrogate losses, where achieving
regret of order

√
T is indeed possible, with the caveat that the bounds only hold

for the surrogate loss [77, 26, 60].
This chapter is organized as follows. After defining some basic notation,

Section 3.2 presents our problem formulation and states our assumptions. We
present our algorithms and main results in Section 3.3 and provide the proofs in
Section 3.4.

3.2 Preliminaries

We consider a sequential interaction scheme between a learner and its en-
vironment, where the following steps are repeated in a sequence of rounds
t = 1, 2, . . . , T :

1. For each action a = 1, 2, . . . ,K, the environment chooses a loss vector
θt,a ∈ Rd,

2. independently of the choice of loss vectors, the environment draws the
context vector Xt ∈ Rd from the context distribution D, and reveals it to
the learner,

3. based on Xt and possibly some randomness, the learner chooses action
At ∈ [K],

4. the learner incurs and observes loss `t(Xt, At) = 〈Xt, θt,At〉.

The goal of the learner is to pick its actions in a way that its total loss is as small
as possible. Since we make no statistical assumptions about the sequence of
losses (and in fact we allow them to depend on all the past interaction history), the
learner cannot actually hope to incur as little loss as the best sequence of actions.
A more reasonable aim is to match the performance of the best fixed policy that
maps contexts to actions in a static way. Formally, the learner will consider the
set Π of all policies π : Rd → [K], and aim to minimize its total expected regret
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(or, simply, regret) defined as

RT = max
π∈Π

E

[
T∑
t=1

(
`t(Xt, At)− `t(Xt, π(Xt))

)]

= max
π∈Π

E

[
T∑
t=1

〈
Xt, θt,At − θt,π(Xt)

〉]
where the expectation is taken over the randomness injected by the learner, as
well as the sequence of random contexts. For stating many of our technical results,
it will be useful to define the filtration Ft = σ(Xs, As, ∀s ≤ t) and the notations
Et [·] = E [·|Ft−1] and Pt [·] = P [·|Ft−1]. We will also often make use of a ghost
sample X0 ∼ D drawn independently from the entire interaction history FT for
the sake of analysis. For instance, we can immediately show using this technique
that for any policy π, we have

E
[〈
Xt, θt,π(Xt)

〉]
= E

[
Et
[〈
Xt, θt,π(Xt)

〉]]
= E

[
Et
[〈
X0, θt,π(X0)

〉]]
= E

[〈
X0,E

[
θt,π(X0)

]〉]
,

where the last expectation emphasizes that the loss vector θt,a may depend on the
past random contexts and actions. This in turn can be used to show

E

[
T∑
t=1

〈
Xt, θt,π(Xt)

〉]
= E

[
T∑
t=1

〈
X0,E

[
θt,π(X0)

]〉]
≥ E

[
min
a

T∑
t=1

〈X0,E [θt,a]〉

]
,

so the optimal policy π∗T that the learner compares itself to is the one defined
through the rule

π∗T (x) = arg min
a

T∑
t=1

〈x,E [θt,a]〉 (∀x ∈ Rd). (3.1)

We will refer to policies of the above form as linear-classifier policies and are
defined through the rule πθ(x) = arg mina 〈x, θa〉 for any collection of parameter
vectors θ ∈ RK×d. We will also rely on the notion of stochastic policies that
assign probability distributions over the action set to each state, and use π(a|x) to
denote the probability that the stochastic policy π takes action a in state x.

Our analysis will rely on the following assumptions. We will suppose the
context distribution is supported on the bounded set X with each x ∈ X satisfying
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‖x‖2 ≤ σ for some σ > 0, and also that ‖θt,a‖2 ≤ R for some positive R for
all t, a. Additionally, we suppose that the loss function is bounded by one in
absolute value:

∣∣`t(x, a)
∣∣ ≤ 1 for all t, a and all x ∈ X . We will finally assume

that the covariance matrix of the contexts Σ = E [XtX
T
t ] is positive definite with

its smallest eigenvalue being λmin > 0.

3.3 Algorithms and main results

Our main algorithmic contribution is a natural adaptation of the classic EXP3
algorithm of Auer et al. [12] to the linear contextual bandit setting. The key idea
underlying our method is to design a suitable estimator of the loss vectors and use
these estimators to define a policy for the learner as follows: letting θ̂t,a be an esti-
mator of the true loss vector θt,a and their cumulative sum Θ̂t,a =

∑t
k=1 θ̂k,a, our

algorithm will base its decisions on the values 〈Xt, Θ̂t−1,a〉 serving as estimators
of the cumulative losses 〈Xt,Θt−1,a〉 =

∑t−1
k=1 〈Xt, θk,a〉. The algorithm then

uses these values in an exponential-weights-style algorithm and plays action a
with probability proportional to exp

(
−η〈Xt, Θ̂t−1,a〉

)
, where η > 0 is a learning-

rate parameter. We present a general version of this method as Algorithm 4.3.
As a tribute to the LINUCB algorithm, a natural extension of the classic UCB
algorithm to linear contextual bandits, we refer to our algorithm as LINEXP3.

As presented above, LINEXP3 is more of a template than an actual algorithm
since it does not specify the loss estimators θ̂t,a. Ideally, one may want to use
unbiased estimators that satisfy E

[
θ̂t,a
]

= θt,a for all t, a. Our key contribution
is designing two different (nearly) unbiased estimators that will allow us to prove
performance guarantees of two distinct flavors. Both estimators are efficiently
computable, but require some prior knowledge the context distributionD. In what
follows, we describe the two variants of LINEXP3 based on the two estimators and
state the corresponding performance guarantees, and relegate the proof sketches
to Section 3.4. We also present two simple variants of our algorithms that work
with various degrees of full-information feedback in Section 3.5.

3.3.1 Algorithm for nearly-linear losses: ROBUSTLINEXP3

We begin by describing the simpler one of our two algorithms, which will be seen
to be robust to misspecification of the linear loss model. We will accordingly refer
to this algorithm as ROBUSTLINEXP3. Specifically, we suppose in this section
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Algorithm 3.1 LINEXP3
Parameters: Learning rate η > 0, exploration parameter γ ∈ (0, 1), Σ
Initialization: Set θ0,i = 0 for all i ∈ [K].
For t = 1, . . . , T , repeat:

1. Observe Xt and, for all a, set

wt(Xt, a) = exp

(
−η

t−1∑
s=0

〈Xt, θ̂s,a〉

)
,

2. draw At from the policy defined as

πt (a|Xt) = (1− γ)
wt(Xt, a)∑
a′ wt(Xt, a′)

+
γ

K
,

3. observe the loss `t(Xt, At) and compute θ̂t,a for all a.

that `t(x, a) = 〈x, θt,a〉+ εt(x, a), where εt(x, a) : Rd ×K → R is an arbitrary
nonlinear function satisfying |εt(x, a)| ≤ ε for all t, x and a and some ε > 0.
Also supposing that we have perfect knowledge of the covariance matrix Σ, we
define the loss estimator used by ROBUSTLINEXP3 for all actions a as

θ̂t,a =
I{At=a}
πt(a|Xt)

Σ−1Xt`t(Xt, At). (3.2)

In case the loss is truly linear, it is easy to see that the above is an unbiased
estimate since

Et
[
θ̂t,a

]
= Et

[
Et
[ I{At=a}
πt(a|Xt)

Σ−1Xt 〈Xt, θt,a〉
∣∣∣∣Xt

]]
= Et

[
Et
[ I{At=a}
πt(a|Xt)

∣∣∣∣Xt

]
Σ−1XtX

T
t θt,a

]
= Et

[
Σ−1XtX

T
t θt,a

]
= θt,a,

where we used the definition of Σ and the independence of θt,a from Xt in the last
step. A key result in our analysis will be that, for nonlinear losses, the estimate
above satisfies ∣∣∣Et [〈Xt, θ̂t,a

〉
− `t(Xt, a)

]∣∣∣ ≤ ε√d.
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Our main result regarding the performance of ROBUSTLINEXP3 is the following:

Theorem 3.3.1. For any positive η ≤ γλmin

Kσ2 and for any γ ∈ (0, 1) the expected
regret of ROBUSTLINEXP3 satisfies

RT ≤ 2
√
dεT + 2γT +

2ηKdT

γ
+

logK

η
.

Furthermore, letting η = T−2/3 (Kd)−1/3 (logK)2/3, γ = T−1/3 (Kd logK)1/3

and supposing that T is large enough so that η ≤ γλmin

Kσ2 holds, the expected regret
of ROBUSTLINEXP3 satisfies

RT ≤ 5T 2/3 (Kd logK)1/3 + 2ε
√
dT.

3.3.2 Algorithm for linear losses: REALLINEXP3

Our second algorithm uses a more sophisticated estimator based on the covariance
matrix

Σt,a = Et
[
I{At=a}XtX

T
t

]
,

which is used to define the estimate

θ̃∗t,a = I{At=a}Σ
−1
t,aXt 〈Xt, θt,a〉 .

This can be easily shown to be unbiased as

Et
[
θ̃∗t,a

]
= Et

[
I{At=a}Σ

−1
t,aXt 〈Xt, θt,a〉

]
= Et

[
Σ−1
t,a I{At=a}XtX

T
t θt,a

]
= θt,a,

where we used the conditional independence of θt,a and Xt once again. Unfortu-
nately, unlike the estimator used by ROBUSTLINEXP3, the bias of this estimator
cannot be bounded when the losses are misspecified. However, its variance turns
out to be much smaller for well-specified linear losses, which will enable us to
prove tighter regret bounds for this case.

One downside of the estimator defined above is that it is very difficult to
compute: the matrix Σt,a depends on the joint distribution of the context Xt and
the action At, which has a very complicated structure. While it is trivially easy
to design an unbiased estimator of Σt,a, it is very difficult to compute a reliable-
enough estimator of its inverse. To address this issue, we design an alternative
estimator based on a matrix generalization of the Geometric Resampling method
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of Neu and Bartók [109, 110]. The method that we hereby dub Matrix Geometric
Resampling (MGR) has two parameters β > 0 and M ∈ Z+, and constructs an
estimator of Σ−1

t,a through the following procedure:

Matrix Geometric Resampling
Input: data distribution D, policy πt, action a.
For k = 1, . . . ,M , repeat:

1. Draw X(k) ∼ D and A(k) ∼ πt(·|X(k)),

2. compute Bk,a = I{A(k)=a}X(k)X(k)T,

3. compute Ak,a =
∏k
j=1(I − βBk,a).

Return Σ̂+
t,a = βI + β

∑M
k=1Ak,a.

Clearly, implementing the MGR procedure requires sampling access to the dis-
tribution D. The rationale behind the estimator Σ̂+

t,a is the following. Assuming
that M = ∞ and β ≤ 1

σ2 , we can observe that Et [Bk,a] = Σt,a and, due to
independence of the contexts X(k) from each other,

Et [Ak,a] = Et

 k∏
j=1

(I − βBk,a)

 = (I − βΣt,a)
k ,

we can see that Σ̂+
t,a is a good estimator of Σ−1

t,a on expectation:

Et
[
Σ̂+
t,a

]
= βI+β

∞∑
k=1

(I − βΣt,a)
k = β

∞∑
k=0

(I − βΣt,a)
k = β (βΣt,a)

−1 = Σ−1
t,a .

(3.3)
As we will see later in the analysis, the bias introduced by setting a finite M can
be controlled relatively easily.

Based on the above procedure, we finally define our loss estimator used in
this section as

θ̃t,a = Σ̂+
t,aXt`(Xt, At)I{At=a}. (3.4)

Via a careful incremental implementation, the estimator can be computed in
O(MKd) time and M calls to the oracle generating samples from the context
distribution D. We present the details of this efficient computation procedure in
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Section 4.3.4. We will refer to the version of LINEXP3 using the estimates above
as REALLINEXP3, alluding to its favorable guarantees obtained for realizable
linear losses. Our main result in this section is the following guarantee regarding
the performance of REALLINEXP3:

Theorem 3.3.2. For γ ∈ (0, 1), M ≥ 0, any positive η ≤ 1
σ2β(M+1)

and any

positive β ≤ 1

2σ2
√
d(M+1)

, the expected regret of REALLINEXP3 satisfies

RT ≤ 2TσR · exp

(
−γβλminM

K

)
+ 2γT + (3 + 5d)ηKT +

logK

η
.

Furthermore, letting β = 1

2σ2
√
d(M+1)

,M =
⌈
K2σ4d log2(Tσ2R2)

γ2λ2
min

⌉
, γ =

√
log(Tσ2R2)

T ,

and η =
√

logK
dKT log(Tσ2R2)

and supposing that T is large enough so that the above
constraints are satisfied, we also have

RT ≤ 4
√
T +

√
dKT logK

(
8 +

√
log(Tσ2R2)

)
.

3.4 Analysis

This section is dedicated to proving our main results, Theorems 3.3.1 and 3.3.2.
We present the analysis in a modular fashion, first proving some general facts
about the algorithm template LINEXP3, and then treat the two variants separately
in Sections 3.4.1 and 3.4.2 that differ in their choice of loss estimator.

The main challenge in the contextual bandit setting is that the comparator
term in the regret definition features actions that depend on the observed contexts,
which is to be contrasted with the classical multi-armed bandit setting where the
comparator strategy always plays a fixed action. The most distinctive element
of our analysis is the following lemma that tackles this difficulty by essentially
reducing the contextual bandit problem to a set of auxiliary online learning
problems defined separately for each context x:

Lemma 16. Let π∗ be any fixed stochastic policy and let X0 be sample from the
context distribution D independent from FT . Suppose that πt ∈ Ft−1 and that
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Et
[
θ̂t,a
]

= θt,a for all t, a. Then,

E

[
T∑
t=1

∑
a

(
πt(a|Xt)− π∗(a|Xt)

)
〈Xt, θt,a〉

]
(3.5)

= E

[
T∑
t=1

∑
a

(
πt(a|X0)− π∗(a|X0)

)〈
X0, θ̂t,a

〉]
.

Proof. Fix any t and a. Then, we have

Et
[(
πt(a|X0)− π∗(a|X0)

)〈
X0, θ̂t,a

〉]
= Et

[
Et
[(
πt(a|X0)− π∗(a|X0)

)〈
X0, θ̂t,a

〉∣∣∣X0

]]
= Et

[
Et
[(
πt(a|X0)− π∗(a|X0)

)
〈X0, θt,a〉

∣∣X0

]]
= Et

[(
πt(a|X0)− π∗(a|X0)

)
〈X0, θt,a〉

]
= Et

[(
πt(a|Xt)− π∗(a|Xt)

)
〈Xt, θt,a〉

]
,

where the first step uses the tower rule of expectation, the second that Et
[
θ̂t,a
∣∣X0

]
=

θt,a that holds due to the independence of θ̂t and θt on X0, the third step is the
tower rule again, and the last step uses that X0 and Xt have the same distribu-
tion and both are conditionally independent on θt. Summing up for all actions
concludes the proof. �

Notably, the lemma above is not specific to our algorithm LINEXP3 and only
uses the properties of the loss estimator. Applying the lemma to the policies
πt produced by LINEXP3 and using any comparator π∗, we can notice that
the term on the right hand side is the regret RT of the algorithm. We stress
here that the above result is in fact very powerful since it does not assume
anything (except measurability) about π∗, even allowing it to be non-smooth—
we provide a more detailed discussion of this issue in Section 5.2. In order
to interpret the term on the right-hand side of Equation (3.5), let us consider
an auxiliary online learning problem for a fixed x with K actions and losseŝ̀
t(x, a) =

〈
x, θ̂t,a

〉
for each t, a, and consider running a copy of the classic

exponential-weights algorithm2 of Littlestone and Warmuth [99] fed with these
2For the sake of clarity, we omit the step of mixing in the uniform distribution in this expository

discussion.
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losses. The probability distribution played by this algorithm over the actions a
is given as πt(a|x) ∝ exp

(
−η
∑t−1

s=1
̂̀
s(x, a)

)
, which implies that the regret in

the auxiliary game against comparator π∗ at x can be written as

R̂T (x) =

T∑
t=1

∑
a

(
πt(a|x)− π∗(a|x)

)〈
x, θ̂t,a

〉
.

This brings us to the key observation that the term on the right-hand side of the
equality in Lemma 25 is exactly E [RT (X0)]. Thus, our proof strategy will be
to prove an almost-sure regret bound for the auxiliary games defined at each x
and take expectation of the resulting bounds with respect to the law of X0, thus
achieving a bound on the regret RT . The following lemma provides the desired
bounds for the auxiliary games:

Lemma 17. Fix any x ∈ X and suppose that θ̂t,a is such that
∣∣η〈x, θ̂t,a〉∣∣ < 1.

Then, the regret of LINEXP3 in the auxiliary game at x satisfies

R̂T (x) ≤ logK

η
+ 2γUT (x) + η

T∑
t=1

K∑
a=1

πt(a|x)
〈
x, θ̂t,a

〉2
,

where UT (x) =
∑T

t=1

(
1
K

∑
a

〈
x, θ̂t,a

〉
−
〈
x, θ̂t,π∗(x)

〉)
.

In the above bound, UT (x) is the regret of the uniform policy, which can be
bounded by T for all algorithms on expectation. The proof is a straightforward
application of standard ideas from the classical EXP3 analysis due to Auer et al.
[14], and we include it in Section 4.4.4 for completeness.

The lemmas above suggest that all we need to do is to bound the expectation of
the second-order terms on the right-hand side, Et

[∑K
a=1 πt(a|X0)

〈
X0, θ̂t,a

〉2
]
.

This, however, is not the only challenge due to the fact that the estimators our
algorithms use are not necessarily all unbiased. Specifically, supposing that our
estimator can be written as θ̂t,a = θ̂∗t,a + bt,a, where θ̂∗t,a is such that Et

[
θ̂∗t,a
]

=
θt,a and bt,a is a bias term, we can directly deduce the following bound from
Lemma 25:

RT ≤ E
[
R̂T (X0)

]
+ 2

T∑
t=1

max
a
|E [〈Xt, bt,a〉] |. (3.6)
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The rest of the section is dedicated to finding the upper bounds on the bias term
above and on the expectation of the second-order term discussed right before
for both estimators (3.2) and (3.4), therefore completing the proofs of our main
results, Theorems 3.3.1 and 3.3.2.

3.4.1 Proof of Theorem 3.3.1

We first consider ROBUSTLINEXP3 which uses the estimator θ̂t,a defined in
Equation (3.2). While we have already shown in Section 3.3.1 that the estimator
is unbiased, we now consider the case where the true loss function may be
nonlinear and can be written as `t(x, a) = 〈x, θt,a〉+ εt(x, a) for some nonlinear
function εt uniformly bounded on X by ε. Then, we can see that our estimator
satisfies

Et
[〈
X0, θ̂t,a

〉]
= Et

[ I{At=a}
π(a|Xt)

XT
0 Σ−1Xt

(
〈Xt, θt,a〉+ εt(Xt, a)

)]
= Et [〈X0, θt,a〉] + Et

[
XT

0 Σ−1Xtεt(Xt, a)
]
,

and thus the bias can be bounded using the Cauchy–Schwarz inequality as∣∣∣∣Et [XT
0 Σ−1Xtεt(Xt, a)

] ∣∣∣∣ ≤√Et [tr (X0XT
0 Σ−1XtXT

t Σ−1)] ·
√

Et
[
(εt(Xt, a))2

]
≤
√
dε. (3.7)

Here, we used Et [X0X
T
0XtX

T
t ] = Σ2, which follows from the conditional

independence of X0 and Xt and the definition of Σ, and the boundedness of εt in
the last step. The other key component of the proof is the following bound:

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̂t,a

〉2

]

= Et

[
K∑
a=1

πt(a|X0)
I{At=a}`t(Xt, a)2

π2
t (a|Xt)

XT
0 Σ−1XtX

T
t Σ−1X0

]
(3.8)

≤ Et

[
K∑
a=1

πt(a|X0) · K
γ
·
I{At=a}
πt(a|Xt)

· tr
(
Σ−1XtX

T
t Σ−1X0X

T
0

)]
≤ Kd

γ
,
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where we used πt(a|Xt) ≥ γ
K in the first inequality and the conditional indepen-

dence of Xt and X0 in the last step. The problem we are left with is to prove that
η
∣∣〈X0, θ̂t,a

〉∣∣ ≤ 1:

∣∣〈X0, θ̂t,a
〉∣∣ =

I{At=a}
πt(a|Xt)

∣∣XT
0 Σ−1Xt

∣∣ `t(Xt, At) ≤
Kσ2

γλmin
,

where we used the conditions πt(a|Xt) ≥ γ
K and |`t(x, a)| ≤ 1 and the Cauchy–

Schwarz inequality to show
∣∣XT

0 Σ−1Xt

∣∣ ≤ σ2

λmin
. Having satisfied its condition,

we may now appeal to Lemma 30, and the proof is concluded by combining and
Equations (3.6), (3.7), and (3.8).

3.4.2 Proof of Theorem 3.3.2

We now turn to analyzing REALLINEXP3 which uses the slightly more com-
plicated loss estimator θ̃t,a defined to the MGR procedure. Although we have
already seen in Section 3.3.2 that MGR could result in an unbiased estimate if we
could set M =∞. However, in order to keep computation at bay, we need to set
M to be a finite (and hopefully relatively small) value. Following the same steps
as in Equation (3.3), we can show

Et
[
Σ̂+
t,a

]
= β

M∑
k=0

(I − βΣt,a)
k = Σ−1

t,a − (I − βΣt,a)
MΣ−1

t,a .

Combining this insight with the definition of θ̃t,a and using some properties of our
algorithm, we can prove the following useful bound on the bias of the estimator:

Lemma 18. Suppose that M ≥ Kσ2 log T
γλmin

, β = 1
2σ2 . Then,

∣∣Et[〈Xt, θt,a −
θ̃t,a
〉]∣∣ ≤ σR√

T
.

Proof. We first observe that the bias of θ̃t,a can be easily expressed as

Et
[
θ̃t,a
]

= Et
[
Σ̂+
t,aXtX

T
t θt,aI{At=a}

]
= Et

[
Σ̂+
t,a

]
Et
[
XtX

T
t I{At=a}

]
θt,a

= Et
[
Σ̂+
t,a

]
Σt,aθt,a = θt,a − (I − βΣt,a)

Mθt,a,
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where we have used our expression for Et
[
Σ̂+
t,a

]
derived above. Thus, the bias is

bounded as∣∣Et [XT
t (I − βΣt,a)

Mθt,a
]∣∣ ≤ ‖Xt‖2 · ‖θt,a‖2

∥∥(I − βΣt,a)
M
∥∥

op .

In order to bound the last factor above, observe that Σt,a <
γ
KΣ due to the

uniform exploration used by LINEXP3, which implies that

∥∥(I − βΣt,a)
M
∥∥

op ≤
(

1− γβλmin

K

)M
≤ exp

(
−γβ
K
λminM

)
≤ 1√

T
,

where the second inequality uses 1 − z ≤ e−z that holds for all z, and the last
step uses our condition on M . This concludes the proof. �

The other key term in the regret bound is bounded in the following lemma:

Lemma 19. Suppose that Xt is satisfying ‖Xt‖2 ≤ σ, 0 < β ≤ 1
2σ2d

√
M+1

and
M > 0. Then for each t, REALLINEXP3 guarantees

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̃t,a

〉2

]
≤ K(3 + 5d).

Unfortunately, the proof of this statement is rather tedious, so we have to
relegate it to Section 3.4.4. As a final step, we need to verify that the condition of
Lemma 30 is satisfied, that is, that η

∣∣〈X0, θ̃t,a
〉∣∣ < 1 holds. To this end, notice

that

η ·
∣∣〈X0, θ̃t,a

〉∣∣ = η ·
∣∣XT

0 Σ̂+
t,aXt 〈Xt, θt,a〉 I{At=a}

∣∣ ≤ η · ∣∣XT
0 Σ̂+

t,aXt

∣∣
≤ ησ2

∥∥∥Σ̂+
t,a

∥∥∥
op
≤ ησ2β

(
1 +

M∑
k=1

‖Ak,a‖op

)
≤ η(M + 1)/2,

where we used the fact that our choice of β ensures that ‖Ak,a‖op =
∥∥∏k

j=0(I −
βBj,a)

∥∥
op ≤ 1. Thus, the condition η ≤ 2/(M + 1) allows us to use Lemma 30,

so we can conclude the proof of Theorem 3.3.2 by applying Lemma 21, Lemma 31
and the bound of Equation (3.6).
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3.4.3 Proof of Lemma 30

The proof follows the standard analysis of EXP3 originally due to Auer et al.
[14]. We begin by recalling the notation wt(x, a) = exp

(
−η
∑t−1

s=1

〈
x, θ̂t,a

〉)
and introducing Wt(x) =

∑K
a=1wt(x, a). The proof is based on analyzing

logWT+1(x), which can be thought of as a potential function in terms of the
cumulative losses. We first observe that logWT+1(x) can be lower-bounded in
terms of the cumulative loss:

log

(
WT+1(x)

W1(x)

)
≥ log

(
wT+1(x, π∗(x))

W1(x)

)
= −η

T∑
t=1

xTθ̂t,π∗(x) − logK.

On the other hand, for any t, we can prove the upper bound

log
Wt+1(x)

Wt(x)
= log

( K∑
a=1

wt+1(x, a)

Wt(x)

)
= log

( K∑
a=1

wt(x, a)e−η〈x,θ̂t,a〉

Wt(x)

)

= log

( K∑
i=1

πt(a|x)− γ/K
1− γ

· e−η〈x,θ̂t,a〉
)

(a)

≤ log

( K∑
i=1

πt(a|x)− γ/K
1− γ

(
1− η

〈
x, θ̂t,a

〉
+
(
η
〈
x, θ̂t,a

〉)2))
(b)

≤
K∑
a=1

πt(a|x)

1− γ

(
− η
〈
x, θ̂t,a

〉
+
(
η
〈
x, θ̂t,a

〉)2)
+

ηγ

K(1− γ)

∑
a

〈
x, θ̂t,a

〉
,

where in step (a) we used the inequality e−z ≤ 1 − z + z2, which holds for
z ≥ −1, and in step (b) we used the inequality log(1 + z) ≤ z that holds for any
z.

Noticing that
∑T

t=1 log Wt+1

Wt
= log

WT+1

W1
, we can sum both sides of the

above inequality for all t = 1, . . . , T and compare with the lower bound to get

− η
T∑
t=1

xTθ̂t,π∗(x) − lnK ≤
T∑
t=1

K∑
a=1

πt(a|x)

1− γ

(
− η
〈
x, θ̂t,a

〉
+
(
η
〈
x, θ̂t,a

〉)2)

+
ηγ
∑

a

〈
x, θ̂t,a

〉
K(1− γ)

.
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Reordering and multiplying both sides by 1−γ
η gives

T∑
t=1

(
K∑
a=1

πt(a|x)
〈
x, θ̂t,a

〉
−
〈
x, θ̂t,π∗(x)

〉)

≤ (1− γ) logK

η
+ η

T∑
t=1

K∑
a=1

(
〈x, θ̂t,a〉

)2

+ γ
T∑
t=1

(
1

K

∑
a

〈
x, θ̂t,a

〉
−
〈
x, θ̂t,π∗(x)

〉)
.

This concludes the proof. �

3.4.4 Proof of Lemma 19

First, we prove the following statement, that would be helpful further in the proof.

Lemma 20. Let H̃ be a symmetric positive definite matrix, commuting with
Σt,a, let V be a matrix where the columns are from the orthonormal system of
eigenvectors of Σt,a, then

tr
(
H̃AkΣt,aAk

)
≤ βσ2tr (Σt,a)

2
tr
(
H̃Σt,a

(
(I − βΣt,a)

k
))

+
βσ2tr (Σt,a)

2
tr
(
H̃Σt,a

(
V diag

(
1

λj(Σt,a)
exp

(
β2σ2tr (Σt,a) k + 2βλj(Σt,a)

))
V T

))
,

for j = 1, . . . , d.

Proof. To simplify the notation, we omit indices a, t in this proof. Let H be a
symmetric positive definite matrix, commuting with Σt,a, X be a random vector
with ‖X‖ ≤ σ, then we will show the following inequality that holds almost
surely:

XXTHXXT 4 σ2tr (H)XXT.

To prove this, we first notice that, since H is symmetric positive definite, we
can write H =

∑d
i=1 λiviv

T
i , and thus

XXTHXXT =
d∑
i=1

λiXX
Tviv

T
iXX

T.
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To proceed, we will fix i and study the corresponding term in the above sum.
Fixing an arbitrary vector a ∈ Rd and letting bi = viX

Ta, we write

aTXXTviv
T
iXX

Ta = aTXvT
iXX

TviX
Ta = bTiXX

Tbi ≤ σ2 ‖bi‖22 = σ2aTXvT
i viX

Ta

= σ2 (aTX)
2

where the inequality is Cauchy–Schwartz and we used that ‖vi‖2 = 1. Multiply-
ing by λi and summing up on both sides, we get

aTXXTHXXTa =
d∑
i=1

λia
TXXTviv

T
iXX

Ta

≤ σ2
d∑
i=1

λia
TXvT

i viX
Ta

= σ2 (aTX)
2 tr (H) .

Since the inequality holds for arbitrary a, this implies that XXTHXXT 4
σ2tr (H)XXT. Using the above result and the definition ofAk = Ak−1(I−βBk),
we get

tr (E [ΣAkHAk]) ≤ tr (E [ΣAk−1H (I − 2βΣ)Ak−1])+β2σ2tr (H) tr (E [ΣAk−1ΣAk−1]) .
(3.9)

To proceed, let us introduce some shorthand notations: α(H) = β2σ2tr (H),
α = α(Σ), and U = I − βΣ. Thus, we can rewrite (3.9) as

tr
(
E
[
H̃AkHAk

])
≤ tr

(
E
[
H̃Ak−1 (α(H)Σ +HU)Ak−1

])
. (3.10)

We show that the following holds:

tr
(
E
[
H̃AkΣAk

])
≤ tr

(
H̃Σ

(
Uk + α ·

(
k−1∑
i=0

(α+ 1)iUk−1−i

)))
.

(3.11)
To prove the inequality above, we show by induction the following:

tr
(
E
[
H̃AkΣAk

])
≤ tr

H̃Ak−jΣ
U j + α ·

(j−1)∧0∑
i=0

(α+ 1)iU j−1−i

Ak−j

 .
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First, for j = 0, the inequality clearly holds as an equality. Now we will show
that if the inequality above holds for j, then it also holds for j + 1:

tr

H̃Ak−jΣ
U j + α ·

(j−1)∧0∑
i=0

(α+ 1)iU j−1−i

Ak−j


≤ tr

H̃Ak−j−1Σ

U j + α ·

(j−1)∧0∑
i=0

(α+ 1)iU j−1−i

UAk−j−1


+ α

U j + α ·

(j−1)∧0∑
i=0

(α+ 1)iU j−1−i

 tr
(
H̃Ak−j−1ΣAk−j−1

)

≤ tr

H̃Ak−j−1Σ

U j + α ·

(j−1)∧0∑
i=0

(α+ 1)iU j−1−i

UAk−j−1


+

α+ α ·

(j−1)∧0∑
i=0

(α+ 1)i

 tr
(
H̃Ak−j−1ΣAk−j−1

)

≤ tr

H̃Ak−j−1Σ

U j + α ·

(j−1)∧0∑
i=0

(α+ 1)iU j−1−i

UAk−j−1


+ (α+ 1)j tr

(
H̃Ak−j−1ΣAk−j−1

)
≤ tr

(
H̃Ak−j−1Σ

(
U j+1 + α ·

(
j∑
i=0

(α+ 1)iU j−1−i

))
Ak−j−1

)
,

which is exactly what we wanted to show. Thus, we proved (3.11).
Now, we use the inequality 1 + x ≤ ex, to bound α + 1 ≤ eα and λi(I −

2βΣ) ≤ e−2βλj(Σ),∀j ∈ [d], where λj(·) is the jth eigenvalue. It gives us

λj

(
α

(
k−1∑
i=0

(α+ 1)iUk−1−i

))
≤ α

k−1∑
i=0

eαi exp(−2βλj(Σ)(k − 1− i))

= α exp(−2βλj(Σ)(k − 1))
k−1∑
i=0

exp(αi+ 2βλj(Σ)i)
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= α exp(−2βλj(Σ)(k − 1))
exp ((α+ 2βλj(Σ)) k)− 1

exp(α+ 2βλj(Σ))− 1

≤ α exp(−2βλj(Σ)(k − 1))
exp ((α+ 2βλj(Σ)) k)

exp(α+ 2βλj(Σ))− 1

≤ α exp(−2βλj(Σ)(k − 1)) exp ((α+ 2βλj(Σ)) (k − 1))
exp ((α+ 2βλj(Σ)))

exp(α+ 2βλj(Σ))− 1

≤ α exp (α(k − 1))
exp (α+ 2βλj(Σ))

α+ 2βλj(Σ)

≤ α

2βλj(Σ)
exp (α(k − 1)) exp (α+ 2βλj(Σ))

(using 1 + x ≤ ex again)

=
βσ2tr (Σ)

2λj(Σ)
exp (αk + 2βλj(Σ)) =

βσ2tr (Σ)

2λj(Σ)
exp

(
β2σ2tr (Σ) k + 2βλj(Σ)

)
.

The statement of the lemma is obtained by joining the result of last equation with
the equation (3.11). �

Equipped with this result, we can prove the upper bound on the quadratic
term. The proof relies on a series of matrix operations, and makes repeated use of
the following identity that holds for any symmetric positive definite matrix S:

M∑
k=0

(I − S)k = S−1 − (I − S)MS−1.

We start by plugging in the definition of θ̃t,a and writing

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̃t,a

〉2

]
= Et

[
K∑
a=1

πt(a|X0)
(
XT

0 Σ+
t,aXtX

T
t θt,aI{At=a}

)2]

≤ Et

[
E

[
K∑
a=1

tr
(
πt(a|X0)X0X

T
0 Σ+

t,aXtX
T
t Σ+

t,aI{At=a}
)∣∣∣∣∣X0

]]

=
K∑
a=1

Et
[
tr
(
Σt,aΣ

+
t,aΣt,aΣ

+
t,a

)]
,
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where we used
〈
X0, θt,a

〉
≤ 1 in the inequality and observed that Σt,a =

Et [πt(a|X0)X0X
T
0 ]. In what follows, we suppress the t, a indexes to enhance

readability. Using the definition of Σ+ and elementary manipulations, we can get

E
[
tr
(
ΣΣ+ΣΣ+

)]
= E

β2 · tr

Σ

(
M∑
k=0

Ak

)
Σ

 M∑
j=0

Aj


= β2

M∑
k=0

M∑
j=0

tr (E [ΣAkΣAj ]) = β2
M∑
k=0

tr (E [ΣAkΣAk])

+ 2β2
M∑
k=0

M∑
j=k+1

tr (E [ΣAkΣAj ]) .

Now, recalling the definition Ak =
∏k
j=1Bj and using the result of Lemma 20

with H̃ = Σt,a, we can obtain

β2
M∑
k=0

tr (E [ΣtAkΣtAk]) ≤ β2
M∑
k=0

tr
(

Σ2 (I − 2βΣ)k
)

+ β2
d∑
j=1

M∑
k=0

λ2
j (Σ)

βσ2tr (Σ)

2λj(Σ)
exp

(
β2σ2tr (Σ) k + 2βλj(Σ)

)
= βtr

(
Σ(I − (I − βΣ)M )

)
+ β3σ

2tr (Σ)

2

d∑
j=1

λj(Σ) exp(2βλj(Σ))
exp

(
β2σ2tr (Σ) (M + 1)

)
− 1

exp (β2σ2tr (Σ))− 1

≤ βtr (Σ) + β3 σ2tr (Σ)

2β2σ2tr (Σ)

d∑
j=1

λj(Σ) exp(2βλj(Σ)) exp
(
β2σ2tr (Σ) (M + 1)

)
≤ βtr (Σ) +

β

2

d∑
j=1

λj(Σ) exp(2βλj(Σ)) exp
(
β2σ2tr (Σ) (M + 1)

)
≤ βσ2d+

β

2

d∑
j=1

σ2 exp(2βσ2) exp
(
β2σ4d(M + 1)

)
≤ 3,

(3.12)
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where we used the condition β ≤ 1

2σ2d
√

(M+1)
≤ 1

2σ2 and the fact that (I −

β(2 − βσ2)Σ)M < 0 by the same condition. We also used an observation that
our assumption on the contexts implies tr (Σ) ≤ tr

(
σ2I
)

= σ2d, so again by our
condition on β it implies the final bound.

Moving on to the second term, we first note that for any j > k, the conditional
expectation ofBj givenB≤k = (B1, B2, . . . Bk) satisfies E [Aj |B≤k] = Ak(I−
βΣ)j−k due to conditional independence of all Bi given Bk, for i > k. We make
use of this equality by writing

β2
M∑
k=0

M∑
j=k+1

E [tr (ΣtAkΣtAj)] = β2
M∑
k=0

E

E
 M∑
j=k+1

tr (ΣtAkΣtAj)

∣∣∣∣∣∣B≤k


= β2
M∑
k=0

E

E
 M∑
j=k+1

tr
(

ΣtAkΣtAj(I − βΣt)
j−k
)∣∣∣∣∣∣B≤k


= β

M∑
k=0

E
[
E
[

tr
(

ΣtAkΣtAkΣ
−1
t

(
I − (I − βΣt)

M−k
))∣∣∣B≤k]]

≤ β
M∑
k=0

E
[
E
[

tr
(
ΣtAkΣtAkΣ

−1
t

)∣∣B≤k]]
(due to (I − βΣt)

M−k < 0)

= β
M∑
k=0

E [tr (AkΣAk)]

≤ β
M∑
k=0

tr
(

Σ (I − 2βΣ)k
)

+ β
d∑
j=1

M∑
k=0

λj(Σ)
βσ2tr (Σ)

2λj(Σ)
exp

(
β2σ2tr (Σ) k + 2βλj(Σ)

)
(applying Lemma 20 with H̃ = I )

≤ d+
β2σ2tr (Σ)

2

d∑
j=1

exp
(
β2σ2tr (Σ) (M + 1) + 2βλj(Σ)

)
− 1

exp (β2σ2tr (Σ) + 2βλj(Σ))− 1
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≤ d+
1

2

d∑
j=1

exp
(
β2σ2tr (Σ) (M + 1) + 2βλj(Σ)

)
≤ d+

1

2

d∑
j=1

exp
(
β2σ4d(M + 1) + 2βλj(Σ)

)
≤ 5d.

where the last line again used the condition β ≤ 1

2σ2
√
d(M+1)

≤ 1
2σ2 and (I −

β(2−βσ2)Σ)M < 0. The proof of the theorem is concluded by putting everything
together. �

3.5 Algorithms for contextual learning with full infor-
mation

Clearly, our algorithm LINEXP3 can be simply adapted to simpler settings where
the learner gets more feedback about the loss functions `t chosen by the adversary.
In this section, we show results for two such natural settings: one where the
learner observes the entire loss function `t, and one where the learner observes the
losses `t(Xt, a) for each action a. We refer to the first of these observation models
as counterfactual feedback and call the second one full-information feedback. We
describe two variants of our algorithm for these settings and give their performance
guarantees below. Both results will hold for general nonlinear losses taking values
in [0, 1].

In case of counterfactual feedback, we can modify our algorithm so that, in
each round t, it computes the weights wt,a(Xt) = exp

(
−η
∑t−1

k=1 `k(Xt, a)
)

for
each action, and then plays action At = a with probability proportional to the
obtained weight. Using our general analytic tools, this algorithm can be easily
shown to achieve the following guarantee:

Proposition 1. For any η > 0, the regret of the algorithm described above for
counterfactual feedback satisfies

RT ≤
logK

η
+
ηT

8
.

Setting η =
√

8 logK
T , the regret also satisfies RT ≤

√
(T/2) logK.
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Notably, this bound does not depend at all on the dimension of the context
space, the complexity of the policy class, or any property of the loss function,
and only shows dependence on the number of actions K. The caveat is of course
that the counterfactual model provides the learner with a level of feedback that is
entirely unrealistic in any practical setting: it requires the ability to evaluate all
past loss functions at any context-action pair.

The full-information setting is arguably much more realistic in that it only
requires evaluating the losses corresponding to the observed context Xt, which
which is typically the case in online classification problems. For this setting, we
use our LINEXP3 algorithm with the loss estimator defined for each action a aŝ̀

t,a = Σ−1Xt`t(Xt, a).

Using our analysis, we can show that the bias of this estimator is uniformly
bounded by ε

√
d (cf. Equation 3.7). The following bound is then easy to prove

by following the same steps as in Section 3.4.1:

Proposition 2. For any positive η ≤ λmin
σ2 , the regret of the algorithm described

above for full-information feedback

RT ≤
logK

η
+ ηdT + ε

√
dT.

Setting η =
√

d logK
T , the regret also satisfies RT ≤ 2

√
dT logK + ε

√
dT for

large enough T .

As expected, this bound scales with the dimension as
√
d due to the fact that

the algorithm has to “estimate” d, parameters, as opposed to the Kd parameters
that need to be learned in the contextual bandit problem we consider in the main
text. We also note that this online learning setting is closely related to that of
prediction with expert advice, with the set of experts being the class of linear-
classifier policies [39]. As a result, it is possible to make use of this framework
by running any online prediction algorithm on a finely discretized set of policies,
resulting in a regret bound of order

√
dT log(KT ). Our result above improves

on this by a logarithmic factor of T , while being efficient to implement.

3.6 Efficient implementation of MGR

The naïve implementation of the MGR procedure presented in the main text
requires O(MKd+Kd2) time due to the matrix-matrix multiplications involved.
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In this section we explain how to compute ̂̀t(x, a) =
〈
x, θ̃t,a

〉
in O(MKd) time,

exploiting the fact that the matrices Σ̂t,a never actually need to be computed, since
the algorithm only works with products of the form Σ̂t,aXt for a fixed vector Xt.
This motivates the following procedure:

Fast Matrix Geometric Resampling
Input: context vector x, data distribution D, pol-
icy πt.
Initialization: Compute Y0,a = Ix.
For k = 1, . . . ,M , repeat:

1. Draw X(k) ∼ D and A(k) ∼ πt(·|X(k)),

2. if a = A(k), set
Yk,a = Yk−1,a − β 〈Yk−1,a, X(k)〉X(k),

3. otherwise, set Yk,a = Yk−1,a.

Return qt,a = βY0,a + β
∑M

k=1 Yk,a.

It is easy to see from the above procedure that each iteration k can be computed
using (K + 1)d vector-vector multiplications: sampling each action A(k) takes
Kd time due to having to compute the products

〈
X(k), Θ̂t,a

〉
for each action a,

and updating Yk,a can be done by computing the product 〈Yk−1,a, X(k)〉. Overall,
this results in a total runtime of order MKd as promised above.
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3.7 Kernel methods

3.7.1 Preliminaries

Kernel method is a natural technique to extend linear models to non-linear, which
allows to cover quite broad class of loss functions. There is a huge interest in
applying kernel methods into sequential learning setting, with a numerous works
on analysis of kernel-based bandit problems [132, 85, 129, 47, 130, 139]. In
the previous section, we considered a contextual bandit problem, where the loss
function is assumed to be an unknown linear function, parameterized by a finite
dimensional vector. Now we generalize this setting, we consider a contextual ban-
dit problem, where loss function is assumed to lie in a reproducing kernel Hilbert
space (RKHS) with bounded RKHS norm. Such functions can be represented
in a linear space, but for many kernels the representation has large dimension or
even infinite. Therefore methods of the previous chapter are not applicable in this
setting, which calls for the new algorithms that can obtain a regret that scales with
a quantity that depends on the kernel function, rather then on the dimension of
the loss function in the linear representation. Our regret bounds come in terms
of a quantity of effective dimension, which is often used to generalize the results
from parametric problems to non-parametric methods.

The problem we consider in this chapter sounds as following. Let context
vector X be a random variable, sampled from a probability distribution D and
taking values in a compact set S. LetH be a Reproducing Kernel Hilbert Space
(RKHS) with an inner product denoted as 〈·, ·〉H and with a kernel κ : S×S → R.
Then, for any f ∈ H, f(x) = 〈κ(x, ·), f(·)〉H, ∀x ∈ S,∀f ∈ H and we define
a feature map ϕ : S → H, such that ϕ(x) = κ(·, x), ∀x ∈ S. At the beginning
of round t, the learner observes the context vector Xt ∼ D and simultaneously
the adversary chooses the loss function ft,a(·) ∈ H, so the loss corresponding to
the action a is `(Xt, a) = 〈κ(·, Xt), ft,a〉H = ft,a(Xt). We assume that contexts
and loss functions are bounded in the norm ofH, so κ(X,X) ≤ σ2, ∀X ∈ S and
‖θt,a‖H ≤ R,∀t ∈ [T ], a ∈ A. We define the covariance operator Σ : H → H
as Σ = E [ϕ(X)ϕ(X)T], where ϕ(X)ϕ(X)T is a Hilbert space outer product.We
assume that the eigenvalues of Σ, λ1 ≥ λ2 ≥ . . . are decaying in a way that there
exists a positive number C such that

∑
i λi ≤ C.
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3.7.2 Algorithm and main result

We begin by describing our algorithm, which is an adaptation of LINEXP3. It
uses an estimator, that comes from the modifying the idea of Matrix Geometric
Resampling from previous section and constructs an estimation of ft,a through
the following procedure:

Kernel Geometric Resampling
Input: Context Xt, data distribution D.
Initialization: Set Y0 = Φ(Xt).
For k = 1, . . . ,M , repeat:

1. Draw X(k) ∼ D and A(k) ∼ πt(·|X(k)),

2. set Yk = Yk−1 − β 〈Yk−1, ϕ(X(k))〉H ϕ(X(k)),

Return qt = βY0 + β
∑M

k=1 Yk.

Then, estimator of ft,a can be written as

θ̃t,a =
1

π(a|Xt)
qt`t(Xt, At)I{At=a}.

Notice, that due to the form of Kernel Geometric Resampling, qt is a linear combi-
nation ofϕ(Xt(k)), k = 1, . . . ,M , so qt can be written as qt =

∑M
k=1 ct,kϕ(Xt(k)).

Then for a given context X , it is possible to compute the value of θ̃t,a on X ,

which is
〈
ϕ(X), θ̃t,a

〉
H

= `t(Xt, At)I{At=a}
∑M

k=1 ct,kκ(X,Xt(k)), without
having to hold in memory Yk, which can be an infinite-dimension objects. Let
Bk = X(k)X(k)T, Ak =

∏k
j=1(I − βBk) and Σ̂+ = βI + β

∑M
k=1Ak, then

θ̃t,a can be expressed as

θ̃t,a =
1

π(a|Xt)
Σ̂+Xt`t(Xt, At)I{At=a}. (3.13)

Now we are ready to present the algorithm KERLINEXP3, which is presented
as Algorithm 3.2. An important quantity in the performance guarantee that we
present shortly is an effective dimension

deff(Σ, λ) = tr
(

(Σ + λI)−1 Σ
)
.
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Algorithm 3.2 KERLINEXP3
Parameters: Learning rate η > 0, exploration parameter γ ∈ (0, 1), Σ
Initialization: Set θ0,i = 0 for all i ∈ [K].
For t = 1, . . . , T , repeat:

1. Observe Xt and, for all a, set

wt(Xt, a) = exp

(
−η

t−1∑
s=0

〈Xt, θ̂s,a〉

)
,

2. draw At from the policy defined as

πt (a|Xt) = (1− γ)
wt(Xt, a)∑
a′ wt(Xt, a′)

+
γ

K
,

3. observe the loss `t(Xt, At) and compute θ̂t,a for all a.

An effective dimension was introduced by Zhang [151], and for the finite dimen-
sion space it can be bounded by dimensionality of the space. Our main result
regarding the performance of KERLINEXP3 is the following:

Theorem 3.7.1. For any positive η ≤ 2
M+1βσ

2 and for any γ ∈ (0, 1) the
expected regret of KERLINEXP3 satisfies

RT ≤ 2T
R

βM
+ 2γT + η

γ

K

(
3 + 4C + deff

(
Σ,

1

βM

))
T +

logK

η
.

Furthermore, letting β = 1

2σ2
√
C(M+1)

,M =
⌈
K2σ4C log2(Tσ2R2)

γ2λ2
min

⌉
, η = T−2/3 (KC)−1/3 ·

(logK)2/3, γ = T−1/3 (KC logK)1/3 and supposing that T is large enough so
that η ≤ 2

M+1βσ
2 holds, the expected regret of KERLINEXP3 satisfies

RT = O
(
T 2/3 (KC logK)1/3

)
.

3.7.3 Analysis

For the ease of readability, later we will write X for ϕ(X), 〈·, ·〉 for 〈·, ·〉H
and ‖·‖ for ‖·‖H. For the analysis of LINEXP3 in the kernel setting, we adapt
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the techniques for the finite-dimensional contextual bandits. We can prove the
following useful bound on the bias of the estimator:

Lemma 21.
∣∣Et[〈Xt, θt,a − θ̃t,a

〉]∣∣ ≤ R
βM .

Proof. We start our analysis from the bound on the estimation of the loss. We
can see that our estimator satisfies

Et
[
XT

0 θ̃t,aI{At=a}
]

= E [XT
0θt,a] + Et

[
XT

0 Σ̂+XtX
T
t θt,aI{At=a}

]
= E [XT

0θt,a] + Et
[
XT

0 Σ̂+XtX
T
t θt,a(Σ +

1

βM
)(Σ +

1

βM
)−1I{At=a}

]
≤ E [XT

0θt,a] +

∥∥∥∥(1− βΣ)

(
Σ +

1

βM

)∥∥∥∥
∥∥∥∥∥XT

0

(
Σ +

1

βM
I

)−1

θt,a

∥∥∥∥∥ .
The first term in the bias can be bounded as∥∥∥∥(1− βΣ)

(
Σ +

1

βM
I

)∥∥∥∥ ≤ 1

βM
.

Second term can be bounded as following:

E

[∥∥∥∥∥XT
0

(
Σ +

1

βM
I

)−1

θt,a

∥∥∥∥∥
]

= E

[∥∥∥∥∥X0X
T
0e1

(
Σ +

1

βM
I

)−1

θt,a

∥∥∥∥∥
]

≤

∥∥∥∥∥Σ

(
Σ +

1

βM
I

)−1
∥∥∥∥∥ ‖θt,a‖ ‖e1‖ ≤ R.

Summing all bias terms, we get

Et
[
XT

0 θ̃t,aI{At=a}
]
≤ Et [XT

0θt,a] +
R

βM
.

�

The other key term in the regret bound is bounded in the following lemma:

Lemma 22. Suppose that Xt is satisfying ‖Xt‖ ≤ σ, 0 < β ≤ 1
2(σ2+λ)

, tr (Σ) ≤
C and M > 0. Then for each t, REALLINEXP3 guarantees

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̃t,a

〉2

]
≤ γ

K

(
3 + 4C + deff

(
Σ,

1

βM

))
.
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Proof. We start by plugging in the definition of θ̃t,a and writing

Et

[
K∑
a=1

πt(a|X0)
〈
X0, θ̃t,a

〉2

]
= Et

[
K∑
a=1

πt(a|X0)

πt(a|Xt)2

(
XT

0 Σ+XtX
T
t θt,aI{At=a}

)2]

≤ Et

[
K∑
a=1

tr
(
πt(a|X0)

K

γ
ΣΣ+ΣΣ+

)]
,

where we used
〈
X0, θt,a

〉
≤ 1 in the inequality. Using the definition of Σ+ and

elementary manipulations, we can get

E
[
tr
(
ΣΣ+

t ΣΣ+
t

)]
= E

β2 · tr

Σ

(
M∑
k=0

Ak

)
Σ

 M∑
j=0

Aj


= β2

M∑
k=0

M∑
j=0

tr (E [ΣtAkΣtAj ]) = β2
M∑
k=0

tr (E [ΣAkΣAk])

+ 2β2
M∑
k=0

M∑
j=k+1

tr (E [ΣAkΣAj ]) .

Let us first address the first term on the right hand side. Recalling the definition
Ak =

∏k
j=1Bj and adapting the result of Lemma 20 to the infinite-dimentional

case, with H̃ = Σ, we can obtain

β2
M∑
k=0

tr (E [ΣtAkΣtAk]) ≤ β2
M∑
k=0

tr
(

Σ2 (I − 2βΣ)k
)

+ β2
∞∑
j=1

M∑
k=0

λ2
j (Σ)

βσ2tr (Σ)

2λj(Σ)
exp

(
β2σ2tr (Σ) k + 2βλj(Σ)

)
= βtr

(
Σ(I − (I − βΣ)M )

)
+ β3σ

2tr (Σ)

2

∞∑
j=1

λj(Σ) exp(2βλj(Σ))
exp

(
β2σ2tr (Σ) (M + 1)

)
− 1

exp (β2σ2tr (Σ))− 1

≤ βtr (Σ) + β3 σ2tr (Σ)

2β2σ2tr (Σ)

∞∑
j=1

λj(Σ) exp(2βλj(Σ)) exp
(
β2σ2tr (Σ) (M + 1)

)
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≤ βtr (Σ) +
β

2

∞∑
j=1

λj(Σ) exp(2βλj(Σ)) exp
(
β2σ2tr (Σ) (M + 1)

)
≤ βC +

β

2
C exp(2βσ2) exp

(
β2σ2C(M + 1)

)
≤ 3,

As it was done for the proof of Lemma 19, we are moving to the second term

β2
M∑
k=0

M∑
j=k+1

E [tr (ΣAkΣAj)] = β2
M∑
k=0

E

E
 M∑
j=k+1

tr (ΣAkΣAj)

∣∣∣∣∣∣B≤k


= β2
M∑
k=0

E

E
 M∑
j=k+1

tr
(

ΣAkΣAj(I − βΣ)j−k
)∣∣∣∣∣∣B≤k


= β

M∑
k=0

E
[
E
[

tr
(

ΣtAkΣAkΣ
−1
(
I − (I − βΣ)M−k

))∣∣∣B≤k]]
≤ β

M∑
k=0

E
[
E
[

tr
(
ΣAkΣAkΣ

−1
)∣∣B≤k]]

(due to (I − βΣ)M−k < 0)

= β

M∑
k=0

E [tr (AkΣAk)] ≤ β
M∑
k=0

tr
(

Σ (I − 2βΣ)k
)

+ β
∞∑
j=1

M∑
k=0

λj(Σ) exp
(
β2σ2tr (Σ) k + 2βλj(Σ)

)
(applying Lemma 20 with H̃ = I )

≤ E

[
tr

(
Σ

(
Σ +

1

βM
I

)−1
)]

+

∞∑
j=1

λj(Σ) exp
(
β2σ2tr (Σ) (M + 1) + 2βλj(Σ)

)
(by the same argument as in [35, Proof of Theorem 5])

≤ deff
(

Σ,
1

βM

)
+ 4C.

This results to the final bound. �

As a final step, we need to verify that η
∣∣〈X0, θ̃t,a

〉∣∣ < 1 holds. To this end,
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notice that

η ·
∣∣〈X0, θ̃t,a,λ

〉∣∣ = η ·
∣∣XT

0 Σ̂+
t,a,λXt 〈Xt, θt,a〉 I{At=a}

∣∣ ≤ η · ∣∣XT
0 Σ̂+

t,a,λXt

∣∣
≤ ησ2

∥∥∥Σ̂+
t,a,λ

∥∥∥
op
≤ ησ2β

(
1 +

M∑
k=1

‖Ak,a‖op

)
≤ ησ2β(M + 1)/2,

where we used the fact that our choice of β ensures that ‖Ak,a‖op =
∥∥∥∏k

j=0(I − βBj,a)
∥∥∥

op
≤

1. Then we have to take η ≤ 2
M+1βσ

2. The expected regret of REALLINEXP3
satisfies

RT ≤ 2T
R

βM
+ 2γT + η

γ

K

(
3 + 4C + deff

(
Σ,

1

βM

))
T +

logK

η
.
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Chapter 4

Learning in episodic MDP

4.1 Introduction

We study the problem of online learning in episodic Markov Decision Processes
(MDP), modelling a sequential decision making problem where the interaction
between a learner and its environment is divided into T episodes of fixed length
H . At each time step of the episode, the learner observes the current state
of the environment, chooses one of the available actions, and earns a reward.
Consequently, the state of the environment changes according to the transition
function of the underlying MDP, as a function of the previous state and the action
taken by the learner. A key distinguishing feature of our setting is that we assume
that the reward function can change arbitrarily between episodes, and the learner
only has access to bandit feedback: instead of being able to observe the reward
function at the end of the episode, the learner only gets to observe the rewards
that it actually received. As traditional in this line of work, we aim to design
algorithms for the learner with theoretical guarantees on her regret, which is
the difference between the total reward accumulated by the learner and the total
reward of the best stationary policy fixed in hindsight.

We allow the state space to be very large and aim to prove performance
guarantees that do not depend on the size of the state space, bringing theory one
step closer to practical scenarios where assuming finite state spaces is unrealistic.
To address the challenge of learning in large state spaces, we adopt the classic
RL technique of using linear function approximation and suppose that we have
access to a relatively low-dimensional feature map that can be used to represent
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policies and value functions. We will assume that the feature map is expressive
enough so that all action-value functions can be expressed as linear functions
of the features. We study two types of assumptions on the knowledge of the
learner about the environment. First, we assume that the learner only has an
access to the simulator of the dynamics of the MDP that will allow the learner
to generate sample episodes. Then we strength this assumption and consider the
case when the learner has full knowledge of the transition function of the MDP.
More specifically, our main contributions are:

• Under the assumption that the learner has an access to the simulator of MDP,
we design a computationally efficient algorithm called MDP-LINEXP3
and prove that its regret is at most Õ

(
H2T 2/3(d logK)1/3

)
, where K is

the number of actions and d is the dimensionality of the feature map. We
also show that this bound can be improved to Õ

(
H2
√
dT logK

)
under

the additional strong condition that the likelihood ratio between the state
distributions generated by any pair of policies is upper bounded by a
constant. Notably, both these bounds show only logarithmic dependence on
the number of actions K, guaranteeing that they remain meaningful even
for very large action spaces.

• Our second contribution is an algorithm called ONLINE Q-REPS, for
which, under the assumption that the learner has the perfect knowledge
of MDP dynamics, show that the regret is at most O

(√
dHTD (µ∗‖µ0)

)
,

where D (µ∗‖µ0) is the relative entropy between the state-action distribu-
tion µ∗ induced by the optimal policy and an initial distribution µ0 given as
input to the algorithm. Notably, our results do not require the likelihood
ratio between these distributions to be uniformly bounded, and the bound
shows no dependence on the eigenvalues of the feature covariance matrices.
Our algorithm itself requires solving a d2-dimensional convex optimization
problem at the beginning of each episode, which can be solved to arbitrary
precision ε in time polynomial in d and 1/ε, independently of the size of
the state-action space.

Our work fits into a long line of research considering online learning in
Markov decision processes. The problem of regret minimization in stationary
MDPs with a fixed reward function has been studied extensively since the work
of Burnetas and Katehakis [32], Auer and Ortner [16], Tewari and Bartlett [136],
Jaksch et al. [69], with several important advances made in the past decade
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[53, 54, 19, 64, 71]. While most of these works considered small finite state
spaces, the same techniques have been very recently extended to accommodate
infinite state spaces under the assumption of realizable function approximation by
Jin et al. [73] and Yang and Wang [149]. In particular, the notion of linear MDPs
introduced by Jin et al. [73] has become a standard model for linear function
approximation and has been used in several recent works (e.g., 115, 146, 6).

Even more relevant is the line of work considering adversarial rewards, initi-
ated by Even-Dar et al. [58], who consider online learning in continuing MDPs
with full feedback about the rewards. They proposed a MDP-E algorithm, that
achieves O(τ2

√
T logK) regret, where τ is an upper bound on the mixing time

of the MDP. Later, Neu et al. [113] proposed an algorithm which guarantees
Õ
(√

τ3KT/α
)

regret with bandit feedback, essentially assuming that all states
are reachable with probability α > 0 under all policies. In our work, we focus
on episodic MDPs with a fixed episode length H . The setting was first consid-
ered in the bandit setting by Neu et al. [111], who proposed an algorithm with a
regret bound of O(H2

√
TK/α). Although the number of states does not appear

explicitly in the bound, the regret scales at least linearly with the size of the
state space S, since |S| ≤ H/α. Later work by Zimin and Neu [152], Dick
et al. [55] eliminated the dependence on α and proposed an algorithm achieving
Õ(
√
TH|S|K) regret. Regret bounds for the full-information case without prior

knowledge of the MDP were achieved by Neu et al. [112] and Rosenberg and
Mansour [126], of order Õ(H|S|K

√
T ) and Õ(H|S|

√
KT ), respectively. These

results were recently extended to handle bandit feedback about the rewards by Jin
et al. [72], ultimately resulting in a regret bound of Õ(H|S|

√
KT ).

The adversarial rewards setting with infinite number of states was first con-
sidered in the full-information case by Cai et al. [33]. This work proposes the
algorithm OPPO, that is guaranteed to achieve Õ

(√
d3H3T

)
. It is assumed there

that the learner has access to d-dimensional features that can perfectly represent
all action-value functions, without assuming any prior knowledge of the MDP
parameters.

The follow up work of [101] covers the same setting with the results presented
in this chapter. It is assumed there that the learner only has access to the simulator
of dynamics of the MDP. Under this assumption, they propose an algorithm,
with a regret at most Õ(T 2/3). This result is largely based on the analysis of
MDP-LINEXP3, with an improvement of eliminating the assumption on the
lower bound of the covariance matrix of the states induced by an exploratory
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policy.
Our results are made possible by a careful combination of recently proposed

techniques for contextual bandit problems and optimal control in Markov deci-
sion processes. In particular, a core component of our algorithm is a regularized
linear programming formulation of optimal control in MDPs due to Bas-Serrano
et al. [23], which allows us to reduce the task of computing near-optimal policies
in linear MDPs to a low-dimensional convex optimization problem. A similar
algorithm design has been previously used for tabular MDPs by Zimin and Neu
[152], Dick et al. [55], with the purpose of removing factors of 1/α from the previ-
ous state-of-the-art bounds of Neu et al. [111]. Analogously to this improvement,
our methodology enables us to make strong assumptions on problem-dependent
constants like likelihood ratios between µ∗ and µ0 or eigenvalues of the feature
covariance matrices. Another important building block of our method is a version
of the recently proposed Matrix Geometric Resampling procedure of Neu and
Olkhovskaya [114] that enables us to efficiently estimate the reward functions.
Incorporating these estimators in the algorithmic template of Bas-Serrano et al.
[23] is far from straightforward and requires several subtle adjustments.

4.2 Problem setting

We already defined a general framework of episodic Markovian Decision Process,
that is denoted as M = (S,A, H, P, r), in Section 1.1. In our work, we assume
that both S and A are finite sets, although we allow the state space S to be
arbitrarily large. Without significant loss of generality, we will assume that the
set of available actions is the same A in each state, with cardinality |A| = K. In
this work, we consider an online learning problem where the learner interacts
with its environment in a sequence of episodes t = 1, 2, . . . , T , facing a different
reward functions rt,1, . . . rt,H+1 selected by a (possibly adaptive) adversary at
the beginning of each episode t. Oblivious to the reward function chosen by the
adversary, at the beginning of each episode the the learner chooses the policy
πt and performs the consecutive steps over the layers of the MDP following the
policy πt. The objective of the learner is selecting a sequence of policies πt
for each episode t in a way that it minimizes the total expected regret, that we
defined in 1.1. It follows from standard results that there exists a stationary and
deterministic policy π∗ that achieves the corresponding supremum [122, Theorem
4.4.2]. Intuitively, the regret measures the gap between the total reward gained
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by the learner and that of the best stationary policy fixed in hindsight, with full
knowledge of the sequence of rewards chosen by the adversary. This performance
measure is standard in the related literature on online learning in MDPs, see, for
example Neu et al. [111], Zimin and Neu [152], Neu et al. [112], Rosenberg and
Mansour [126], Cai et al. [33].

In our work, we focus on MDPs with potentially enormous state spaces, which
makes it difficult to design computationally tractable algorithms with nontrivial
guarantees, unless we make some assumptions. We particularly focus on the
classic technique of relying on linear function approximation and assuming that
the reward functions occurring during the learning process can be written as a
linear function of a low-dimensional feature map. We specify the form of function
approximation and the conditions our analysis requires as follows:

Assumption 3 (Linear MDP with adversarial rewards). There exists a feature
map ϕ : S ×A → Rd and a collection of d signed measures m = (m1, . . . ,md)
on S, such that for any (x, a) ∈ S ×A the transition function can be written as

P (·|x, a) = 〈m(·), ϕ(x, a)〉 .

Furthermore, the reward function chosen by the adversary in each episode t can
be written as

rt,h(x, a) = 〈θt,h, ϕ(x, a)〉

for some θt,h ∈ Rd. We assume that the features and the parameter vectors satisfy
‖ϕ(x, a)‖ ≤ σ and that the first coordinate ϕ1(x, a) = 1 for all (x, a) ∈ S ×A.
Also we assume that ‖θt,h‖ ≤ R.

Online learning under this assumption, but with a fixed reward function,
has received substantial attention in the recent literature, particularly since the
work of Jin et al. [73] who popularized the term “Linear MDP” to refer to this
class of MDPs. This has quickly become a common assumption for studying
reinforcement learning algorithms (Cai et al. [33], Jin et al. [73], Neu and Pike-
Burke [115], Agarwal et al. [6]). This is also a special case of factored linear
models (Yao et al. [150], Pires and Szepesvári [121]).

4.2.1 Algorithm and reward estimator

This section provides a template of the strategy for the learner, acting in episodic
MDP, and an efficient estimator of the reward vectors θt,h based on the esti-
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mator, presented in Chapter 3. The template of the algorithm is presented as
Algorithm 4.1.

Algorithm 4.1 Decision making in episodic MDP

Initialization: Set θ̂1,h = 0 for all h.
For t = 1, . . . , T , repeat:

• For h = 1, . . . ,H , do:

– Observe Xt,h and compute πt,h(a|Xt,h) for all a ∈ A(Xt,h),

– Draw At,h ∼ π0,h(·|Xt,h),

– Observe the reward `t,h(Xt,h, At,h).

• Compute θ̂t,1, . . . , θ̂t,H−1.

We now turn to describing the reward estimators r̂t,h, which will require
several further definitions. Specifically, a concept of key importance will be the
following feature covariance matrix:

Σt,h = Eπt [ϕ(Xt,h, At,h)ϕ(Xt,h, At,h)T] .

Making sure that Σt,h is invertible, we can define the estimator

θ̃t,h = Σ−1
t,hϕ(Xt,h, At,h)rt,h(Xt,h, At,h). (4.1)

This estimate shares many similarities with the estimates that are broadly used in
the literature on adversarial linear bandits [103, 17, 52]. It is easy to see that θ̃t,h
is an unbiased estimate of θt,h:

Et
[
θ̃t,h

]
= Et

[
Σ−1
t,hϕ(Xt,h, At,h)ϕ(Xt,h, , At,h)Tθt,h

]
= Σ−1

t,hΣt,hθt,h = θt,h.

Unfortunately, exact computation of Σt,h is intractable. To address this issue, we
propose a method to directly estimate the inverse of the covariance matrix Σt,h

by adapting the Matrix Geometric Resampling method that we already presented
in Chapter 3 (which itself is originally inspired by the Geometric Resampling
method of 109, 110). This method is using two parameters: β > 0 and M ∈ Z+,
and generates an estimate of the inverse covariance matrix through the following
procedure
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Matrix Geometric Resampling
Input: simulator of P , policy π̃t = (π̃t,1, . . . , π̃t,H−1).
For i = 1, . . . ,M , repeat:

1. Simulate a trajectory
τ(i) = {(X1(i), A1(i)), . . . , (XH−1(i), AH−1(i))},
following the policy π̃t in P ,

2. For h = 1, . . . ,H − 1, repeat:
Compute

(a) Bi,h = ϕ(Xh(i), Ah(i))ϕ(Xh(i), Ah(i))T,

(b) Ci,h =
∏i
j=1(I − βBj,h).

Return Σ̂+
t,h = βI + β

∑M
i=1Ci,h for all h ∈ [H − 1].

Based on the above procedure, we finally define our estimator as

θ̂t,h = Σ̂+
t,hϕ(Xt,h, At,h)rt,h(Xt,h, At,h).

The idea of the estimate is based on the truncation of the Neumann-series expan-
sion of the matrix Σ−1

t,h at the M th order term. Then, for large enough M , the
matrix Σ+

t,h is a good estimator of the inverse covariance matrix, which will be
quantified formally in the analysis.

The implementation of the MGR procedure presented above requiresO(MKHd+
MHd2) time due to the matrix-matrix multiplications involved. Now we explain
how to compute θ̂t in O(MKHd) time, exploiting the fact that the matrices Σ̂t,h

never actually need to be computed, since the algorithm only works with products
of the form Σ̂t,hϕ(Xt,h, At,h) for vectors Xt,h, h ∈ [H]. This motivates the pro-
cedure of Fast Matrix Geometric Resampling. It is easy to see from the procedure
of Fast Matrix Geometric Resampling that each iteration k can be computed
using (K + 1)Hd vector-vector multiplications: sampling each action Ah(k)
takes Kd time due to having to compute the products

〈
ϕ(Xh(k)),

∑t−1
s=1 θ̂s,a,h

〉
for each action a, and updating Yk,h can be done by computing the product
〈Yk−1,h, ϕ(Xh(k))〉. Overall, this results in a total runtime of order MKHd as
promised above.
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Fast Matrix Geometric Resampling
Input: simulator of transition function P , policy πt
Initialization: Compute Y0,h = ϕ(xh) for all h ∈ [H].
For k = 1, . . . ,M , repeat:

1. Generate a path U(i) = {(X1(i), A1(i)), . . . , (XH(i), AH(i))},
following the policy πt in the simulator of P ,

2. For h = 1, . . . ,H , repeat:

(a) if Ah(k) = ah, set
Yk,h = Yk−1,h−β 〈Yk−1,h, ϕ(Xh(k), Ah(k))〉ϕ(Xh(k), Ah(k)),

(b) otherwise, set Yk,h = Yk−1,h.

Return qt,h = βY0,h + β
∑M

k=1 Yk,h for all h ∈ [H].

4.3 Regret decomposition approach

4.3.1 Preliminaries

Before we state main results, we define some useful concepts that we will use
later. First, the value function and action-value function with respect to policy π
in episode t are respectively defined as

Qπt,h(x, a) = Eπ

[
H∑
k=h

`t(X̃k, Ãk)

∣∣∣∣∣ X̃h = x, Ãh = a

]
,

V π
t,h(x) =

∑
a

π(a|x)Qπt,h(x, a),

where the notation Eπ[·] highlights that the sequence of states X̃k and actions Ãk
are generated by following policy π in the MDP. For an action-value function Q,
we will sometimes use the notation Q(x, π) =

∑
a π(a|x)Q(x, a).

Each policy π generates a probability distribution µπh over each layer h ∈ [H],
and we will refer to the collection of these distributions in each layer as the
occupancy measure µπ induced by π. We will use occupancy measures in the
analysis later.
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We will be interested in developing learning algorithms that select a policy πt
for the learner at the beginning of each episode t. With some abuse of notation,
we will use Vt,l(x) = V πt

t,l (x) and Qt,l(x, a) = Qπtt,l(x, a) to denote the value
function and the action-value function of policy πt in episode t. With this notation,
we can reformulate the notion of regret, introduced in (1.1), as following:

RT = sup
π

T∑
t=1

(
V π
t,1(x1)− Vt,1(x1)

)
.

As in (1.1), the supremum is taken over the set of all stationary policies mapping
states to actions.

As shown by Jin et al. [73], an important property of the linear MDPs is that
the action-value functions are also linear in the feature map ϕ(x, a):

Lemma 23 (Linear action-value function). Suppose that Assumption 3 is satisfied.
Then, for any t, h and any stationary stochastic policy π, there exists a vector
ζπt,h ∈ Rd such that the action-value function can be written as

Qπt,h(x, a) =
〈
ζπt,h, ϕ(x, a)

〉
(4.2)

for all (x, a) ∈ S ×A. Furthermore, ζt,h satisfies
∥∥ζπt,h∥∥ ≤ (H − h)R.

The statement is a direct consequence of Proposition 2.3 in Jin et al. [73],
and is thus omitted. We note that our results in this section do not directly
require Assumption 3 to hold, and only make use of the property established in
Lemma 4.2.

4.3.2 Algorithm and main results

Our algorithm design is motivated by the following decomposition of the regret
first proposed for online MDP problems by Even-Dar et al. [58] and adapted to
finite-horizon MDPs by Neu et al. [111]:

Lemma 24. Let µ∗ denote the occupancy measure induced by π∗. Then, for
any sequence of policies πt selected by the learner, the regret satisfies RT =∑H

h=1 EX∗h∼µ∗h
[∑T

t=1

(
Qt,h(X∗h, π

∗)− Vt,h(X∗h)
)]
.

This decomposition is based on the classic performance-difference lemma
popularized by Kakade and Langford [74], Kakade [75] (see also 32, 36). As
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observed in previous work [58, 111], this lemma implies that the global regret
minimization problem can be decomposed into a set of local regret minimization
problems in each state x, where the reward function associated with each action a
is defined as Qt,h(x, a). Indeed, letting πt(·|x) denote the policy played by the
local algorithm in state x in round t, we can define the local regret against policy
π∗ as

Rh,T (x) =

T∑
t=1

E [Qt,h(x, π∗)− Vt,h(x)] .

and the regret in layer h as RT,h = EX∗h∼µ∗h [Rh,T (X∗h)]. This can be easily seen
to be related to the global regret as RT =

∑H
h=1RT,h, and thus it is obvious that

bounding the local regrets in each state x yields a bound on the global regret.
With this in mind, following the algorithmic template laid out by Even-Dar

et al. [58] called MDP-E, we propose an algorithm based on running a variant
of the classic EXP3 algorithm of Auer et al. [14] in each state x. The key
challenge is constructing the inputs to these local algorithms in a way that yields
a computationally tractable algorithm with nontrivial performance bounds, and
more specifically to achieve runtime and regret guarantees that are independent of
the size of the state space. Indeed, instead of the possibly infinite number of states,
we prefer to have the dimensionality of the feature map appear in our bounds,
which is made possible by Assumption 23. Indeed, this assumption allows us
to represent each Q-function by its parameter vector, which in turn enables an
efficient implementation of the local regret minimization algorithms. Specifically,
we design an estimator ζ̂t,h of the parameter vector ζt,h corresponding to the
action-value function Qt,h(x, a) = 〈ζt,h, ϕ(x, a)〉 of policy πt, and plug the
resulting estimates 〈ζ̂t,h, ϕ(x, a)〉 into a local copy of EXP3. The form of the
estimator ζ̂t,h and overall algorithm design is directly influenced by the LINEXP3
method, presented in Chapter 3, and thus we refer to our algorithm as MDP-
LINEXP3. Its pseudocode is presented as Algorithm 4.3.

For stating many of our technical results, we define the filtration Ft =
σ (τs, s ≤ t), and the notation Et [·] = E [· |Ft−1 ]. Our reward estimator will
be based on the observed rewards, and particularly the partial sums Gt,h =∑H

k=h `t(Xt,k, At,k) for each layer h. Analogically to estimator of the reward
function, we can define the estimator of the action-value function

ζ̃t,h = Σ−1
t,hϕ(Xt,h, At,h)Gt,h. (4.3)
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Algorithm 4.2 MDP-LINEXP3
Parameters: Learning rate η > 0, exploration parameter γ ∈ (0, 1),
Initialization: Set ζ̂1,h = 0 for all h ∈ [H].
For episode t = 1, . . . , T , repeat:

• Draw Yt ∼ Ber(γ),

• For step h = 1, . . . ,H , do:

– Observe Xt,h and, for all a ∈ A(Xt,h), set

wt(Xt,h, a) = exp

(
η ·

t−1∑
s=1

〈ϕ(Xt,h, a), ζ̂s,h〉

)
,

– draw At,h from the policy defined as

πt (a|Xt,h) =
wt(Xt,h, a)∑

a′∈A(Xt,h)wt(Xt,h, a′)
I{Yt=0}

+
1

K
I{Yt=1},

– observe the reward `t(Xt,h, At,h).

• Compute ζ̂t,h for all h = 1, . . . ,H .

This is an unbiased estimator of the action-value function:

Et [Gt,h|Xt,h = x,At,h = a] = Qt,h(x, a) = 〈ϕ(x, a), ζt,h〉 .

It is easy to see that ζ̃t,h is an unbiased estimate of vector ζt,h:

Et
[
ζ̃t,h

]
= Et

[
Σ−1
t,hϕ(Xt,h, At,h)ϕ(Xt,h, , At,h)Tζt,h

]
= Σ−1

t,hΣt,hζt,h = ζt,h.

Based on the Matrix geometric resampling procedure, described in Sec-
tion 4.2.1, we finally define our estimator of value function as

ζ̂t,h = Σ̂+
t,hϕ(Xt,h, At,h)Gt,h.
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Computing these estimators, MDP-LINEXP3 constructs an EXP3-style policy
defined as πt(a|x) ∝ exp

(∑t−1
k=1

〈
ϕ(x, a), ζ̂k,h

〉)
for each x, a. Notably, the

policy only depends on the cumulative parameter vectors and the feature vector
ϕ(x, a), and thus does not have to make explicit updates to the individual regret-
minimization algorithms acting in the states x. For technical reasons, MDP-
LINEXP3 follows the uniform policy πU (a|x) = 1

K with probability γ in each
episode, and follows the above exponential-weights policy otherwise. We will
denote the covariance matrix generated by the uniform policy at layer h as Σh,
and make the following assumption:

Assumption 4. The eigenvalues of Σh for all h are lower bounded by λmin > 0.

Our main result is the following guarantee regarding the performance of
MDP-LINEXP3:

Theorem 4.3.1. Suppose that the MDP satisfies Assumptions 3 and 4 and λmin >
0. Then, for γ ∈ (0, 1), M ≥ 0, any positive η ≤ 1

σ2β(M+1)H
and any positive

β ≤ 1

2σ2
√
d(M+1)

, the expected regret of MDP-LINEXP3 over T episodes

satisfies

RT ≤ O
(
γH2T + dH3T

ησ2

γλmin
+
H logK

η

)
.

Furthermore, letting β = 1

2σ2
√
d(M+1)

,M =
⌈
σ4d log2(

√
THσR)

γ2λ2
min

⌉
, η =

(logK)2/3λ
1/3
min

T 2/3d1/3H
,

γ = σ(d logK)1/3

(Tλmin)1/3 and supposing that T is large enough so that the above con-
straints on γ,M, η and β are satisfied, we also have

RT =O
(
σH2T 2/3

(
d logK

λmin

)1/3)
.

For the complete regret bound, see Section 4.3.4. The downside of the above
result is that it scales with the time horizon as T 2/3, which is likely to be subopti-
mal in light of the best known bounds of order

√
T achieved in the tabular setting

[152] in the bandit case and the large-scale setting considered by Cai et al. [33]
in the full-information case. The next result shows that this dependence can be
improved at the price of making stronger assumptions about the MDP. Specifi-
cally, assume that P is such that for any policy π, the occupancy distribution µπh
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has a density fπh (x) on the set of states Sh with respect to some base measure,
and denote the density corresponding to µ∗h as f∗h(x). Then, assuming that the

likelihood ratio f∗h(x)

fπh (x) is uniformly upper bounded, the dependence of our bounds

on T can be improved to
√
T :

RT ≤2TσRH · exp (−γβλminM) + γH2T

+ ηH3d

(
1

3
+ ρ

)
T +H · logK

η
.

Theorem 4.3.2. Suppose that the MDP satisfies Assumptions 3 and 4 and that
the likelihood ratio between the occupancy measures induced by any policy
π and π∗ can be bounded uniformly as supπ,h,x

f∗h(x)

fπh (x) ≤ ρ for some ρ > 0.

Then, for γ ∈ (0, 1), M ≥ 0, any positive η ≤ 1
σ2β(M+1)H

and any positive

β ≤ 1

2σ2
√
d(M+1)

, the expected regret of MDP-LINEXP3 over T episodes,

satisfies

RT ≤ O
(
γH2T + ηH3dρT +H · logK

η

)
.

Furthermore, letting β = 1

2σ2
√
d(M+1)

,M =
⌈
σ4d log2(

√
THσR)

γ2λ2
min

⌉
, η = 1

H

√
logK
Tdρ ,

γ =
√

dρ logK
T and supposing that T is large enough so that the above constraints

are satisfied, we also have

RT =O
(
H2 ·

√
Tdρ logK +H2

√
Td logK

ρ

)
.

For the complete regret bound, see Section 4.3.4.

4.3.3 Analysis

As explained in the previous section, our algorithm and analysis is based on
decomposing the overall learning problem to a number of local online learning
problems corresponding to each state in the MDP. This approach is closely related
to the ghost sample technique used in the Section 3 in the contextual bandit
problem, where a similar regret decomposition was suggested. Our analysis in
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this section will make use of several tools developed to solve the contextual bandit
problem, with the added challenge that the feature vectors in the current setting
are no longer i.i.d.: in any layer, the distribution of states clearly depends on the
learner’s policy in the previous layers. Concretely, the main challenge in our
analysis comes from the fact that the state distribution µ∗ appearing in the regret
decomposition of Lemma 24 does not match the actual distribution of states µt.
In what follows, we highlight the main steps in the analysis. Proofs of the lemmas
are given in the Section 4.4.4.

We start by rewriting our reward estimator as ζ̂t,h = ζ̃t,h + bt,h, where ζ̃t,h is
such that Et

[
ζ̃t,h
]

= ζt,h and bt,h is a bias term. Also, we will use the notation
Q̃t to refer to the function taking values Q̃t,h(x, a) =

〈
ζ̃t,h, ϕ(x, a)

〉
. The bulk

of our analysis is based on the following regret decomposition that further refines
the decomposition given in Lemma 24:

Lemma 25. Let X∗h be sampled from the context distribution generated by µ∗h.
Suppose that πt ∈ Ft−1 and that Et

[
ζ̃t,h
]

= ζt,h for all t, h. Then, for all h,

RT,h =
T∑
t=1

K∑
a=1

EX∗h∼µ∗h,t
[
Q̃t,h(X∗h, π

∗)− Q̃t,h(X∗h, πt)

]
.

The proof is presented in Section 4.3.4. This suggests that we can define an
auxiliary regret minimization game for every layer h and every state x, action a
with reward

〈
ϕ(x, a), ζ̂t,h

〉
assigned to action a in each round t. The regret in this

auxiliary game can be written as

R̂T,h(x) =

T∑
t=1

K∑
a=1

(
π∗(a|x)− πt(a|x)

)〈
ϕ(x, a), ζ̂t,h

〉
,

and the above lemma suggests that the regret in layer h can be simply bounded as

RT,h ≤ E
[
R̂T,h(X∗h)

]
+ 2

T∑
t=1

max
a

∣∣E [〈ϕ(X∗h, a), bt,h〉]
∣∣.

Thus, we are left with the problem of controlling the auxiliary regret in each state,
and the bias of our estimators. The following lemma, which is a straightforward
application of Lemma 30, gives bounds for the regret in the auxiliary game:
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Lemma 26. Fix any h ∈ [H], x ∈ Sh and suppose that ζ̂t,h is such that∣∣η〈ϕ(x, a), ζ̂t,h
〉∣∣ < 1. Then, the regret in the auxiliary game at x satisfies

R̂T,h(x) ≤ logK

η
+ η

T∑
t=1

K∑
a=1

πt(a|x)
〈
ϕ(x, a), ζ̂t,h

〉2

+ γ

T∑
t=1

K∑
a=1

(
π∗(a|x)− 1

K

)〈
ϕ(x, a), ζ̂t,h

〉
.

The main term on the right-hand side of this bound is handled in the next
lemma:

Lemma 27. Suppose that ϕ(Xt,h) is satisfying ‖ϕ(Xt,h, a)‖2 ≤ σ for any a,
0 < β ≤ 1

2σ2
√
d(M+1)

and M > 0. Then for each t and h,

Et

[
K∑
a=1

πt(a|X∗h)
〈
ϕ(X∗h, a), ζ̂t,h

〉2

]
≤ 3(H − h)2

(
1 +

d

γ

σ2

λmin

)
.

The proof of this claim is rather complicated and is presented in Section 4.4.4.
The main difficulty in the analysis comes from the mismatch of distribution of X∗h
and Xt,h. To illustrate this difficulty, consider replacing ζ̂t,h by the ideal estimator
ζ̃t,h defined in Equation (4.3) in the quadratic term bounded in the above lemma.
Introducing the notation Σ∗t,h = E [ϕ(X∗h, πt(X

∗
h))ϕ(X∗h, πt(X

∗
h))T], each term

in the sum can be bounded as

Et
[
πt(a|X∗h)

〈
ϕ(X∗h, a), ζ̃t,h

〉2
]

= Et
[
πt(a|X∗h)

(
ϕ(X∗h, a)TΣ−1

t,hϕ(Xt, a)Gt,h

)2
]

≤ (H − h)2 · Et
[

tr
(
πt(a|X∗h)ϕ(X∗h, a)ϕ(X∗h, a)TΣ−1

t,hϕ(Xt,h, a)ϕ(Xt,h, a)TΣ−1
t,h

)]
= (H − h)2 · tr

(
Σ∗t,hΣ−1

t,h

)
.

Unfortunately, this latter term cannot be bounded without further assumptions on
Σt,h due to the mismatch between the distributions of X∗h and Xt,h. We address
this issue by mixing the exponential-weights distribution with the uniform policy
and appealing to Assumption 5, which together ensure that the smallest eigenvalue
of matrix Σt,a,h is at least λmin

γ
K . This yields a bound on the operator norm of
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the matrix inverse Σ−1
t,h , and eventually the bound of order H2Kd/(γλmin) above.

The tighter bounds of Theorem 4.3.2 are derived by using a stronger assumption
to bound tr

(
Σ∗t,hΣ−1

t,h

)
—the details of these tighter bounds are presented in the

Section 4.3.4. The final element in the proof is the following lemma that bounds
the bias of the estimator:

Lemma 28. For M ≥ 0, β = 1

2σ2
√
d(M+1)

, we have

∣∣Et[〈ϕ(X∗h, a), ζt,h − ζ̂t,h
〉]∣∣ ≤ σR exp (−γβλminM) .

The proof can be found in the Section 4.4.4. Putting these lemmas together
and verifying that the reward estimators indeed satisfy the condition of Lemma 26
(done in Lemma 32 in the Section 4.4.4), we obtain the following bound on the
regret in layer h:

RT,h ≤ 2TσR · exp (−γβλminM) + 2γ(H − h)T

+ 3η(H − h)2

(
1 + d

1

γ

σ2

λmin

)
T +

logK

η
.

Summing up the bound for all h ∈ [H] proves Theorem 4.4.1.

4.3.4 Proofs

The proof of Lemma 25

By Lemma 24, and since ζ̃t,a,h is unbiased, we have

RT,h =

T∑
t=1

EX∗h∼µ∗h,t
[
Qt,h(X∗h, π

∗(X∗h))− Vt,h(X∗h)

]

=

T∑
t=1

EX∗h∼µ∗h,t
[ K∑
a=1

(π∗(a|X∗h)− πt(a|X∗h)) ·
〈
ϕ(X∗h, a), ζt,h

〉]

=

T∑
t=1

EX∗h∼µ∗h,t
[ K∑
a=1

(π∗(a|X∗h)− πt(a|X∗h)) ·
〈
ϕ(X∗h, a), ζ̃t,h

〉]
.

�
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The proof of Lemma 27

The proof relies on a repeated use of the following identity that holds for any
symmetric positive definite matrix S:

M∑
k=0

(I − S)k = S−1 − (I − S)MS−1.

For ease of readability, we will omit the indices h in this section. We denote the co-
variance of states, generated by policy π∗ as Σ∗ = E [ϕ(X∗, πt(X

∗))ϕ(X∗, πt(X
∗))T].

We start by plugging in the definition of ζ̂t and writing

Et

[
K∑
a=1

πt(a|X∗)
〈
ϕ(X∗, a), ζ̂t

〉2

]

= Et

[
K∑
a=1

πt(a|X∗)
(
ϕ(X∗, a)TΣ̂+

t,aϕ(Xt, At)Gt,h

)2
]

(4.4)

≤ (H − h)2 · Et

[
K∑
a=1

tr
(
πt(a|X∗)ϕ(X∗, a)ϕ(X∗, a)TΣ̂+

t,aϕ(Xt, At)ϕ(Xt, At)
TΣ̂+

t

)]
,

where we used
〈
Xt, ζt,a

〉
≤ H − h in the inequality. Using the definition of Σ+

t,a

and elementary manipulations, we can get

Et

[
K∑
a=1

tr
(
πt(a|X∗)ϕ(X∗, a)ϕ(X∗, a)TΣ̂+

t ϕ(Xt, At)ϕ(Xt, At)
TΣ̂+

t

)]

= Et
[
tr
(
Σ∗Σ+

t ΣtΣ
+
t

)]
= β2 · Et

tr

Σ∗

(
M∑
k=0

Ck

)
Σt

 M∑
j=0

Cj


= β2Et

 M∑
k=0

M∑
j=0

tr (Σ∗CkΣtCj)


= β2Et

[
M∑
k=0

tr (Σ∗CkΣtCk)

]
+ 2β2Et

 M∑
k=0

M∑
j=k+1

tr (Σ∗CkΣtCj)

 .
Let us first address the first term on the right hand side. Let V be a matrix where
the columns are from the orthonormal system of eigenvectors of Σt. Applying
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Lemma 20 with H̃ = Σ∗, and recalling the definition Ck =
∏k
j=1(I − βBj), we

can obtain

β2
M∑
k=0

tr (E [Σ∗CkΣtCk]) ≤ β2
M∑
k=0

tr
(

Σ∗Σt (I − 2βΣt)
k
)

+ β2
M∑
k=0

tr
(

Σ∗ΣtV diag
(
βσ2tr (Σt)

2λj(Σt)
exp

(
β2σ2tr (Σt) k + 2βλj(Σt)

))
V T

)
= βtr

(
Σ∗(I − (I − βΣt)

M )
)

+ β3σ
2tr (Σt)

2
tr

(
Σ∗V diag

(
exp(2βλj(Σt))

exp
(
β2σ2tr (Σt) (M + 1)

)
− 1

exp (β2σ2tr (Σt))− 1

)
V T

)

≤ βtr (Σ∗) +
β

2
tr
(
Σ∗V diag

(
exp(2βλj(Σ)) exp

(
β2σ2tr (Σt) (M + 1)

))
V T
)

≤ βσ2d+
β

2

d∑
j=1

σ2 exp(2βσ2) exp
(
β2σ4d(M + 1)

)
≤ 3,

where we used the condition β ≤ 1

2σ2d
√

(M+1)
≤ 1

2σ2 and the fact that (I −

β(2− βσ2)Σt)
M < 0 by the same condition. We also used an observation that

our assumption on the contexts implies tr (Σt) ≤ tr
(
σ2I
)

= σ2d, so again by our
condition on β it implies the final bound.

Moving on to the second term, we first note that for any j > k, the conditional
expectation ofBj givenB≤k = (B1, B2, . . . Bk) satisfies E [Ck|B≤k] = Ck(I−
βΣt)

j−k due to conditional independence of allBj givenBk, for i > k. We make
use of this equality by writing

β2
M∑
k=0

M∑
j=k+1

E [tr (Σ∗CkΣtCj)] = β2
M∑
k=0

E

E
 M∑
j=k+1

tr (Σ∗CkΣtCj)

∣∣∣∣∣∣B≤k


= β2
M∑
k=0

E

E
 M∑
j=k+1

tr
(

Σ∗CkΣtCj(I − βΣt)
j−k
)∣∣∣∣∣∣B≤k


= β

M∑
k=0

E
[
E
[

tr
(

Σ∗CkΣtCkΣ
−1
t

(
I − (I − βΣt)

M−k
))∣∣∣B≤k]]
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≤ β
M∑
k=0

E
[
tr
(
Σ∗CkΣtCkΣ

−1
t

)]
(due to (I − βΣt)

M−k < 0)

≤ β
M∑
k=0

tr
(

Σ−1Σ∗Σ (I − 2βΣ)k
)

+ β

M∑
k=0

tr
(

Σ−1Σ∗ΣtV diag
(
βσ2tr (Σt)

2λj(Σt)
exp

(
β2σ2tr (Σt) k + 2βλj(Σt)

))
V T

)
(applying Lemma 20 with H̃ = Σ−1

t Σ∗)

≤ 3tr
(
Σ∗Σ−1

)
tr
(

Σ∗
(
Σ′t + γΣ

)−1
)
≤ 3

γ
tr
(
Σ∗Σ−1

)
,

(following the analysis for the first term)

where in the last line we used that Σt can be written as Σt = (1 − γ)Σ′t + γΣ
for Σ′t = Et

[
ϕ(Xt, At)ϕ(Xt, At)

TI{Yt=0}
]
. Now, turning back to the sum over

actions in (4.4) and recalling the definition of Σ∗, we can write

Et

[
K∑
a=1

tr
(
πt(a|X∗)ϕ(X∗, a)ϕ(X∗, a)TΣ̂+

t ϕ(Xt, a)ϕ(Xt, a)TΣ̂+
t

)]

≤ 3 +
3

γ
tr
(
Σ∗Σ−1

)
≤ 3 +

3

γ

√
tr
(

(Σ∗)2
)

tr
(

(Σ−1)2
)

≤ 3 + 3
d

γ

σ2

λmin
,

(4.5)

where we used the Cauchy–Schwarz inequality in the last step. This proves the
statement. �

The proof of Lemma 34

We first observe that the bias of ζ̂t,h can be easily expressed as

Et
[
ζ̂t,h
]

= Et
[
Σ̂+
t,hϕ(Xt,h, At,h)ϕ(Xt,h, At,h)Tζt,h

]
= Et

[
Σ̂+
t,h

]
Et [ϕ(Xt,h, At,h)ϕ(Xt,h, At,h)T] ζt,h
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= Et
[
Σ̂+
t,h

]
Σt,hζt,h = ζt,h − (I − βΣt,h)Mζt,h.

Thus, the bias is bounded as∣∣Et [ϕ(X0, a)T(I − βΣt,h)Mζt,h
]∣∣ ≤ ‖ϕ(X0, a)‖2 · ‖ζt,h‖2

∥∥(I − βΣt,h)M
∥∥

op .

In order to bound the last factor above, observe that Σt,h < γΣh due to the
uniform exploration used in the first layer by MDP-LINEXP3, which implies that∥∥(I − βΣt,h)M

∥∥
op ≤ (1− γβλmin)M ≤ exp (−γβλminM) ,

where the second inequality uses 1− z ≤ e−z that holds for all z. This concludes
the proof. �

The boundedness of the estimates

Lemma 29. The loss estimates satisfy η
∣∣〈ϕ(X0, a), ζ̂t,h

〉∣∣ < 1 for η ≤≤ 1
σ2β(M+1)H

.

Proof. The claim is proven by the following straightforward calculation:

η ·
∣∣〈ϕ(X0, a), ζ̂t,h

〉∣∣ = η ·
∣∣ϕ(X0, a)TΣ̂+

t,hϕ(Xt,h, a) 〈ϕ(Xt,h, a), ζt,h〉
∣∣

≤ η(H − h) ·
∣∣ϕ(X0, a)TΣ̂+

t,hϕ(Xt,h, a)
∣∣ ≤ η(H − h)σ2

∥∥∥Σ̂+
t,h

∥∥∥
op

≤ η(H − h)σ2β

(
1 +

M∑
k=1

‖Ck,h‖op

)
,

where we used the fact that our choice of β ensures ‖Ck,h‖op =
∥∥∥∏k

j=0(I − βBj,h)
∥∥∥

op
≤

1. �

Complete regret bound on Theorem 4.4.1.

For γ ∈ (0, 1), M ≥ 0, any positive η ≤ 1
σ2β(M+1)H

and any positive β ≤
1

2σ2
√
d(M+1)

, the expected regret of MDP-LINEXP3 over T episodes satisfies

RT ≤2TσRH · exp (−γβλminM) + γH2T + 3ηH3

(
1 +

d

γ

σ2

λmin

)
T +H · logK

η
.
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Furthermore, letting β = 1

2σ2
√
d(M+1)

,M =
⌈
σ4d log2(

√
THσR)

γ2λ2
min

⌉
, η =

(logK)2/3λ
1/3
min

T 2/3d1/3H
,

γ = σ(d logK)1/3

(Tλmin)1/3 and supposing that T is large enough so that the above con-
straints on γ,M, η and β are satisfied, we also have

RT ≤H2T 2/3

(
d logK

λmin

)1/3

(2σ + 1) + 6H2T 1/3(d logK)2/3λ
1/3
min + 4H

√
T .

Proof of Theorem 4.3.2

The improvement in the regret bound comes from applying an importance-
weighting trick in the proof of Lemma 31 to bound the problematic term tr

(
Σ∗hΣ−1

t,h

)
.

Specifically, we write

tr
(
Σ∗hΣ−1

t,h

)
= tr

(
Et [ϕ(X∗h, πt(X

∗
h))ϕ(X∗h, πt(X

∗
h))T] Σ−1

t,h

)
= tr

(
Et
[
f∗h(Xt,h)

fπth (Xt,h)
ϕ(Xt,h, πt(Xt,h))ϕ(Xt,h, πt(Xt,h))T

]
Σ−1
t,h

)
≤ ρ · tr

(
Et [ϕ(Xt,h, πt(Xt,h))ϕ(Xt,h, πt(Xt,h))T] Σ−1

t,h

)
= ρd,

where we used our assumption on the likelihood ratio in the inequality. Using this
bound instead of the one in Equation (4.5) at the end of the proof of Lemma 31
yields the improved bound

Et

[
K∑
a=1

πt(a|X∗h)
〈
ϕ(X∗h, a), ζ̂t,h

〉2

]
≤ (H − h)2d

(
1

3
+ ρ

)
.

The proof of Theorem 4.3.2 is then concluded similarly as the proof of Theo-
rem 4.4.1.

�

Complete regret bound on Theorem 4.3.2.

For γ ∈ (0, 1), M ≥ 0, any positive η ≤ 2
(M+1)H and any positive β ≤ 1

2σ2 , the
expected regret of MDP-LINEXP3 over T episodes, satisfies

RT ≤2TσRH · exp (−γβλminM) + γH2T + ηH3d

(
1

3
+ ρ

)
T +H · logK

η
.

111



i
i

“main” — 2021/9/23 — 13:41 — page 112 — #119 i
i

i
i

i
i

Furthermore, letting β = 1
2σ2 , M =

⌈
σ2 log(Tσ2R2)

γλmin

⌉
, η = 1

H

√
logK
Tdρ , γ =√

dρ logK
T and supposing that T is large enough so that the above constraints are

satisfied, we also have

RT ≤3H2 ·
√
Tdρ logK +

1

3
H2

√
Td logK

ρ
+ 4H

√
T .

4.4 Linear optimization approach

4.4.1 Preliminaries

Analysis in this section is largely based on the concept of occupancy measures.
Let τπ = ((X1, A1), (X2, A2), . . . , (XH , AH)) be a trajectory generated by
following the policy π through the MDP. Then, for any xh ∈ Sh, ah ∈ A we
define the occupancy measure µπh(x, a) = Pπ [(x, a) ∈ τπ]. We will refer to the
collection of these distributions across all layers h as the occupancy measure
induced by π and denote it as µπ = (µπ1 , µ

π
2 , . . . , µ

π
H). We will denote the set of

all valid occupancy measures by U and note that this is a convex set, such that for
every element µ ∈ U the following set of linear constraints is satisfied:∑
a∈A

µh+1(x, a) =
∑

x′,a′∈Sh×A
P (x|x′, a′)µh(x′, a′), ∀x ∈ Sh+1, h ∈ [H − 1],

(4.6)

as well as
∑

a µ1(x1, a) = 1. From every valid occupancy measure µ, a sta-
tionary stochastic policy π = π1, . . . , πH−1 can be derived as πµ,h(a|x) =
µh(x, a)/

∑
a′ µh(x, a′). For each h, introducing the linear operators E and

P through their action on a set state-action distribution uh as (ETuh)(x) =∑
a∈A uh(x, a) and (P T

huh)(x) =
∑

x′,a′∈Sh,A P (x|x′, a′)uh(x′, a′), the con-
straints can be simply written as ETµh+1 = P T

hµh for each h. We will use the
inner product notation for the sum over the set of states and actions: 〈µh, rh〉 =∑

(x,a)∈(Sh×A) µh(x, a)rt,h(x, a). Using this notation, we can formulate the
notion of regret, introduced in (1.1), as

RT = sup
π∗

T∑
t=1

H∑
h=1

(Eπ∗ [rt,h(X∗h, A
∗
h)]− Eπt [rt(Xt,h, At,h)])
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= sup
µ∗∈U

T∑
t=1

H∑
h=1

〈
µ∗h − µ

πt
h , rt,h

〉
,

where the notations Eπ∗ [·] and Eπt [·] emphasize that the state-action trajec-
tories are generated by following policies π∗ and πt, respectively. As the above
expression suggests, we can reformulate our online learning problem as an in-
stance of online linear optimization where in each episode t, the learner selects an
occupancy measure µt ∈ U (with µt = µπt) and gains reward

∑H
h=1〈µt,h, rt,h〉.

In this work, we will exploit the useful property shown by Neu and Pike-
Burke [115] and Bas-Serrano et al. [23] that all occupancy measures in a linear
MDP can be seen to satisfy a relaxed version of the constraints in Equation (4.6).
Specifically, for all h, defining the feature matrix Φh ∈ R(Sh×A)×d with its action
on the distribution u as ΦT

hu =
∑

x,a∈Sh,A uh(x, a)ϕ(x, a), we define UΦ as the
set of state-action distributions (µ, u) = ((µ1, . . . , µH), (u1, . . . , uH)) satisfying
the following constraints:

ETuh+1 = P T
hµh (∀h), ΦT

huh = ΦT
hµh (∀h), ETu1 = 1. (4.7)

It is easy to see that for all feasible (µ, u) pairs, u satisfies the original con-
straints (4.6) if the MDP satisfies Assumption 3: since the transition operator can
be written as Ph = ΦhMh for some matrix Mh. In this case, we clearly have

ETuh+1 = P T
hµh = MT

hΦT
hµh = MT

hΦT
huh = P T

huh, (4.8)

showing that any feasible u is indeed a valid occupancy measure. Furthermore,
due to linearity of the rewards in Φ, we also have 〈uh, rt,h〉 = 〈µh, rt,h〉 for
all feasible (µ, u) ∈ UΦ. While the number of variables and constraints in
Equation (4.7) is still very large, it has been recently shown that approximate
linear optimization over this set can be performed tractably [115, 23]. Our own
algorithm design described in the next section will heavily build on these recent
results.

4.4.2 Algorithm and main results

This section presents a new efficient algorithm for the setting described above
along with its performance guarantees. Our algorithm design is based on a re-
duction to online linear optimization, exploiting the structural results established
in the previous section. In particular, we will heavily rely on the algorithmic
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ideas established by Bas-Serrano et al. [23], who proposed an efficient reduc-
tion of approximate linear optimization over the high-dimensional set UΦ to a
low-dimensional convex optimization problem. Another key component of the
algorithm is an estimator of the reward vectors θt,h, that we already presented in
the Section 4.3, which is based on the matrix geometric resampling technique.
Despite the fact that the reward estimator is the same as it was used for MDP-
LINEXP3, accommodating it into the framework of Bas-Serrano et al. [23] is not
straightforward and necessitates some subtle changes.

The policy update rule

Our algorithm is an instantiation of the well-known “Follow the Regularized
Leader” (FTRL) template commonly used in the design of modern online learning
methods (see, e.g., 118). We will make the following design choices:

• The decision variables will be the vector (µ, u) ∈ R2(S×A), with the
feasible set U2

Φ defined through the constraints

ETuh = P T
hµh (∀h), ΦT

hdiag(uh)Φh = ΦT
hdiag(µh)Φh (∀h).

(4.9)
These latter constraints ensure that the feature covariance matrices under
u and µ will be identical, which is necessary for technical reasons that
will be clarified in Section 3.4. Notice that, due to our assumption that
ϕ1(x, a) = 1, we have U2

Φ ⊆ UΦ, so all feasible u’s continue to be feasible
for the original constraints (4.6).

• The regularization function will be chosen as 1
ηD(µ‖µ0)+ 1

αDC(u‖µ0) for
some positive regularization parameters η and α, where µ0 is the occupancy
measure induced by the uniform π0 with π0(a|x) = 1

K for all x, a, and
D and DC are the marginal and conditional relative entropy functions
respectively defined as D(µ‖µ0) =

∑H
h=1D(µh‖µ0,h) and DC(µ‖µ0) =∑H

h=1DC(µh‖µ0,h) with

D(µh‖µ0,h) =
∑

(x,a)∈(Sh×A)

µh(x, a) log
µh(x, a)

µ0,h(x, a)
, and

DC(µh‖µ0,h) =
∑

(x,a)∈(Sh×A)

µh(x, a) log
πµ,h(a|x)

π0,h(a|x)
.
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With these choices, the updates of our algorithm in each episode will be given by

(µt, ut) = arg max
(µ,u)∈U2

Φ

{ t−1∑
s=1

H−1∑
h=1

〈µh, r̂s,h〉 −
1

η
D(µ‖µ0)− 1

α
DC(u‖µ0)

}
(4.10)

where r̂t,h ∈ RX×A is an estimator of the reward function rt,h that will be defined
shortly.

As written above, it is far from obvious if these updates can be calculated
efficiently. The following result shows that, despite the apparent intractability
of the maximization problem, it is possible to reduce the above problem into a
d2-dimensional unconstrained convex optimization problem:

Proposition 3. Define for each h ∈ [H − 1], a matrix Zh ∈ Rd×d and let matrix
Z ∈ Rd×d(H−1) be defined as Z = (Z1, . . . , ZH−1). We will write h(x) = h, if
x ∈ Sh. Define the Q-function taking values QZ(x, a) = ϕ(x, a)TZh(x)ϕ(x, a)
and define the value function

VZ(x) =
1

α
log

 ∑
a∈A(x)

π0(a|x)eαQZ(x,a)


For any h ∈ [H − 1] and for any x ∈ Xh, a ∈ A(x), denote Px,aVZ =∑

x′∈Xh(x)+1
P (x′|x, a)VZ(x′) and ∆t,Z(x, a) =

∑t−1
s=1 r̂s,h(x)(x, a)+Px,aVZ−

QZ(x, a). Then, the optimal solution of the optimization problem (4.10) is given
as

π̂t,h(a|x) = π0(a|x)e
α
(
QZ∗t

(x,a)−VZ∗t (x)
)
,

µ̂t,h(x, a) ∝ µ0(x, a)e
η∆t,Z∗t

(x,a)
,

where Z∗t = (Z∗t,1, . . . , Z
∗
t,H−1) is the minimizer of the convex function

Gt(Z) =
1

η

H−1∑
h=1

log

 ∑
x∈Xh,a∈A(x)

µ0(x, a)eη∆t,Z(x,a)

+ VZ(x1). (4.11)

A particular merit of this result is that it gives an explicit formula for the
policy πt that induces the optimal occupancy measure ut, and that πt(a|x) can
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be evaluated straightforwardly as a function of the features ϕ(x, a) and the
parameters Z∗t . The proof of the result is based on Lagrangian duality, and
mainly follows the proof of Proposition 1 in Bas-Serrano et al. [23], with some
subtle differences due to the episodic setting we consider and the appearance
of the constraints ΦT

hdiag(uh)Φh = ΦT
hdiag(µh)Φh. The proof is presented in

Section 4.4.4.
The proposition above inspires a very straightforward implementation that

is presented as Algorithm 4.3. Due to the direct relation with the algorithm of
Bas-Serrano et al. [23], we refer to this method as ONLINE Q-REPS, where
Q-REPS stands for “Relative Entropy Policy Search with Q-functions”. ONLINE

Q-REPS adapts the general idea of Q-REPS to the online setting in a similar way
as the O-REPS algorithm of Zimin and Neu [152] adapted the Relative Entropy
Policy Search method of (author?) [Jan Peters and Altun] to regret minimization
in tabular MDPs with adversarial rewards. While O-REPS would in principle be
still applicable to the large-scale setting we study in this work and would plausibly
achieve similar regret guarantees, its implementation would be nearly impossible
due to the lack of the structural properties enjoyed by ONLINE Q-REPS, as
established in Proposition 3.

The reward estimator

We already defined the estimator of the reward in Section 4.2.1, which makes
use of the covariance matrix Σ̂+

t,h. The covariance matrix is computed by the
Matrix Geometric Resampling procedure, presented in Section 4.2.1 and there
the estimator of the rewards is defined as

θ̂t,h = Σ̂+
t,hϕ(Xt,h, At,h)rt,h(Xt,h, At,h).

As was explained, θ̂t,h can be computed in O(MHKd) time, using M calls to
the simulator.

The regret bound

We are now ready to state our main result: a bound on the expected regret of
ONLINE Q-REPS. During the analysis, we will suppose that all the optimization
problems solved by the algorithm are solved up to an additive error of ε ≥ 0.
Furthermore, we will denote the covariance matrix generated by the uniform
policy at layer h as Σ0,h, and make the following assumption:
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Algorithm 4.3 ONLINE Q-REPS
Parameters: η, α > 0, exploration parameter γ ∈ (0, 1),
Initialization: Set θ̂1,h = 0 for all h, compute Z1.
For t = 1, . . . , T , repeat:

• Draw Yt ∼ Ber(γ),

• For h = 1, . . . ,H , do:

– Observe Xt,h and, for all a ∈ A(Xt,h), set

πt,h(a|Xt,h) = π0,h(a|Xt,h)eα(QZt (Xt,h,a)−VZt (Xt,h)),

– if Y = 0, draw At,h ∼ πt,h(·|Xt,h), otherwise draw At,h ∼
π0,h(·|Xt,h),

– observe the reward `t,h(Xt,h, At,h).

• Compute θ̂t,1, . . . , θ̂t,H−1, Zt+1.

Assumption 5. The eigenvalues of Σ0,h for all h are lower bounded by λmin > 0.

Our main result is the following guarantee regarding the performance of
ONLINE Q-REPS:

Theorem 4.4.1. Suppose that the MDP satisfies Assumptions 3 and 5 and λmin >
0. Furthermore, suppose that, for all t, Zt satisfies Gt(Zt) ≤ minZ Gt(Z) + ε
for some ε ≥ 0. Then, for γ ∈ (0, 1), M ≥ 0, positive η ≤ 1

σ2β(M+1)H
and

any positive β ≤ 1

2σ2
√
d(M+1)

, the expected regret of ONLINE Q-REPS over T

episodes satisfies

RT ≤2TσRH · exp (−γβλminM) + γHT + 3ηHdTe3 +
1

η
D(µ∗‖µ0)

+
1

α
DC(u∗‖µ0) +

√
αε(M + 2)HT.

Furthermore, letting β = 1

2σ2
√
d(M+1)

, M =
⌈
σ4d log2(

√
THσR)

γ2λ2
min

⌉
, η = 1√

TdH
,

α = 1√
TdH

and γ = 1√
TH

and supposing that T is large enough so that the
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above constraints on M,γ, η and β are satisfied, we also have

RT ≤
√
dHT (2 +D(µ∗‖µ0) +DC(u∗‖µ0)) +

√
HT +

√
εT 7/4(Hd)1/4 + 2.

Thus, when all optimization problems are solved up to precision ε = T−5/2,
the regret of ONLINE Q-REPS is guaranteed to be of O

(√
dHTD(µ∗‖µ0)

)
.

Implementation

While Proposition 3 establishes the form of the ideal policy updates πt through
the solution of an unconstrained convex optimization problem, it is not obvious
that this optimization problem can be solved efficiently. Indeed, one immediate
challenge in optimizing Gt is that its gradient takes the form

∇Gt(Z) =
∑
x,a

µ̃Z(x, a)

ϕ(x, a)ϕ(x, a)T −
∑
x′,a′

P (x′|x, a)πZ(a′|x′)ϕ(x′, a′)ϕ(x′, a′)T

 ,

where µ̃Z(x, a) = µ0(x,a) exp(η∆Z(x,a))∑
x′,a′ µ0(x′,a′) exp(η∆Z(x′,a′)) . Sampling from this latter distri-

bution (and thus obtaining unbiased estimators of ∇Gt(Z)) is problematic due to
the intractable normalization constant.

This challenge can be addressed in a variety of ways. First, one can estimate
the gradients via weighted importance sampling from the distribution µ̃Z and
using these in a stochastic optimization procedure. This approach has been
recently proposed and analyzed for an approximate implementation of REPS by
Pacchiano et al. [119], who showed that it results in ε-optimal policy updates
given polynomially many samples in 1/ε. Alternatively, one can consider an
empirical counterpart of the loss function replacing the expectation with respect
to µ0 with an empirical average over a number of i.i.d. samples drawn from the
same distribution. The resulting loss function can then be optimized via standard
stochastic optimization methods. This approach has been proposed and analyzed
by Bas-Serrano et al. [23]. We describe the specifics of this latter approach in
Section 4.4.4.

4.4.3 Analysis

This section gives the proof of Theorem 4.4.1 by stating the main technical results
as lemmas and putting them together to obtain the final bound. In the first part of

118



i
i

“main” — 2021/9/23 — 13:41 — page 119 — #126 i
i

i
i

i
i

the proof, we show the upper bound on the auxiliary regret minimization game
with general reward inputs and ideal updates. Then, we relate this quantity to the
true expected regret by taking into account the properties of our reward estimates
and the optimization errors incurred when calculating the updates. The proofs of
all the lemmas are deferred to Section 4.4.4.

We start by defining the idealized updates (µ̂t, ût) obtained by solving the
update steps in Equation (4.10) exactly, and we let ut be the occupancy measure
induced by policy πt that is based on the near-optimal parameters Zt satisfying
Gt(Zt) ≤ minZ Gt(Z) + ε. We will also let µt be the occupancy measure
resulting from mixing ut with the exploratory distribution µ0 and note that µt,h =
(1 − γ)ut,h + γµt,h. Using this notation, we will consider an auxiliary online
learning problem with the sequence of reward functions given as r̂t,h(x, a) =

〈ϕ(x, a), θ̂t,h〉, and study the performance of the idealized sequence (µ̂t, ût)
therein:

R̂T =
T∑
t=1

H−1∑
h=1

〈µ∗h − ût,h, r̂t,h〉.

Our first lemma bounds the above quantity:

Lemma 30. Suppose that θ̂t,h is such that
∣∣η · 〈ϕ(x, a), θ̂t,h〉

∣∣ < 1 holds for all
x, a. Then, the auxiliary regret satisfies

R̂T ≤ η
T∑
t=1

H−1∑
h=1

〈µ̂t,h, r̂2
t,h〉+

1

η
D(µ∗‖µ0) +

1

α
DC(u∗‖µ0).

While the proof makes use of a general potential-based argument commonly
used for analyzing FTRL-style algorithms, it involves several nontrivial elements
exploiting the structural results concerning ONLINE Q-REPS proved in Propo-
sition 3. In particular, these properties enable us to upper bound the potential
differences in a particularly simple way. The main term on contributing to the
regret R̂T can be bounded as follows:

Lemma 31. Suppose that ϕ(Xt,h, a) is satisfying ‖ϕ(Xt,h, a)‖2 ≤ σ for any a,
0 < β ≤ 1

2σ2
√
d(M+1)

and M > 0. Then for each t and h,

Et
[
〈µ̂t,h, r̂2

t,h〉
]
≤ 3 + 5d+ (M + 1)2 ‖ût,h − ut,h‖1 .
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The proof of this claim makes heavy use of the fact that 〈µ̂t,h, r̂2
t,h〉 =

〈ût,h, r̂2
t,h〉, which is ensured by the construction of the reward estimator r̂t,h

and the constraints on the feature covariance matrices in Equation (4.9). This
property is not guaranteed to hold under the first-order constraints (4.7) used in
the previous works of Neu and Pike-Burke [115] and Bas-Serrano et al. [23],
which eventually justifies the higher complexity of our algorithm.

It remains to relate the auxiliary regret to the actual regret. The main challenge
is accounting for the mismatch between µt and ut, and the bias of r̂t, denoted as
bt,h(x, a) = Et [r̂t,h(x, a)]− rt,h(x, a). To address these issues, we observe that
for any t, h, we have

〈µt,h, rt,h〉 = 〈(1− γ)ut,h + γµ0,h, rt,h〉
= 〈(1− γ)ût,h + γµ0,h, rt,h〉+ (1− γ) 〈ut,h − ût,h, rt,h〉
≥ Et [〈(1− γ)ût,h + γµ0,h, r̂t,h〉] + ‖bt,h‖∞ + (1− γ) ‖ut,h − ût,h‖1 ,

where in the last step we used the fact that ‖rt,h‖∞ ≤ 1. After straightforward
algebraic manipulations, this implies that the regret can be bounded as

RT ≤ (1− γ)E
[
R̂T

]
+

T∑
t=1

H∑
h=1

E
[
γ 〈µ0,h − µ∗h, rt,h〉+ ‖ût,h − ut,h‖1 + ‖bt,h‖∞

]
.

(4.12)

In order to proceed, we need to verify the condition
∣∣η · 〈ϕ(x, a), θ̂t,h〉

∣∣ < 1 so
that we can apply Lemma 30 to bound R̂T . This is done in the following lemma:

Lemma 32. Suppose that η ≤ 1
σ2β(M+1)H

. Then, for all, t, h, the reward
estimates satisfy η ‖r̂t,h‖∞ < 1.

Proceeding under the condition η(M + 1), we can apply Lemma 30 to bound
the first term on the right-hand side of Equation (4.12), giving

RT ≤
D(µ∗‖µ0)

η
+
DC(u∗‖µ0)

α
+ (3 + 5d)ηHT + γHT

+
∑
t,h

E
[
(M + 2) ‖ût,h − ut,h‖1 + ‖bt,h‖∞

]
.

It remains to bound the bias of the reward estimators and the effect of the
optimization errors that result in the mismatch between ut and ût. The following
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lemma shows that this mismatch can be directly controlled as a function of the
optimization error:

Lemma 33. The following bound is satisfied for all t and h: ‖ût,h − ut,h‖1 ≤√
2αε.

The final element in the proof is the following lemma that bounds the bias of
the estimator:

Lemma 34. ForM ≥ 0, β = 1
σ2β(M+1)H

, we have ‖bt,h‖∞ ≤ σR exp (−γβλminM).

Putting these bounds together with the above derivations concludes the proof
of Theorem 4.4.1.

4.4.4 Proofs

The proof of Proposition 3

The proof is based on Lagrangian duality: for each h ∈ [H − 1], we introduce a
set of multipliers Vh ∈ R|Xh| and Zh ∈ Rd×d corresponding to the two sets of
constraints connecting µt,h and ut,h, and ρt,h for the normalization constraint of
µt,h. Then, we can write the Lagrangian of the constrained optimization problem
as

L(µ, u;V,Z, ρ) =
H−1∑
h=1

t−1∑
s=1

〈µh, r̂s,h〉+ 〈Zh,ΦT
h(diag(uh)− diag(µh))Φh〉

+
H−1∑
h=1

(
ρh(1− 〈µh,1〉)−

1

η
D(µh‖µ0,h)− 1

α
DC(uh‖µ0,h)

)

+ V1(x1)(1− ETu1) +

H−1∑
h=1

〈Vh+1, P
Tµh − ETuh+1〉.

For any h ∈ [H−1], for any x ∈ Xh, a ∈ A(x), denoteQZ(x, a) = ϕ(x, a)TZh(x)ϕ(x, a),
Px,aVh+1 =

∑
x′∈Xh+1

P (x′|x, a)Vh+1(x′) and ∆t,Z(x, a) =
∑t−1

s=1 r̂s,h(x)(x, a)+

Px,aVh(x)+1 −QZ(x, a). The above Lagrangian is strictly concave, so the maxi-
mum of L(µ, d;V,Z, ρ) can be found by setting the derivatives with respect to its
parameters to zero. This gives the following expressions for the choices of π and
µ:

π∗t,h(a|x) = π0,h(a|x)eα(QZ(x,a)−Vh(x)),
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µ∗t,h(x, a) = µ0(x, a)eη(∆t,Z(x,a)−ρt,h),

From the constraint
∑

x∈Xh,a∈A(x) µ
∗
t,h(x, a) = 1 for all h, we get that

ρ∗t,h =
1

η
log

 ∑
x∈Xh,a∈A(x)

µ0(x, a)eη∆t,Z(x,a)


and from the constraint

∑
a π
∗
t (a|x) = 1, we get

V ∗h (x) =
1

α
log

(∑
a

π0(a|x)eαQZ(x,a)

)
.

We will further use the notation VZ(x) := V ∗h (x). Then, by plugging π∗t,h, µ
∗
t,h, VZ(x)

into the Lagrangian, we get

Gt(Z) = L(µ∗, u∗;V ∗, Z, ρ∗) =
1

η

H−1∑
h=1

log

 ∑
x∈Xh,a∈A(x)

µ0(x, a)eη∆t,Z(x,a)

+ VZ(x1).

Then, the solution of the optimization problem can be written as

max
µ,u∈U

min
V,Z,ρ

L(µ, u;V,Z, ρ) = min
V,Z,ρ

max
µ,u∈U

L(µ, u;V,Z, ρ) = min
Z
L(µ∗, u∗;V ∗, Z, ρ∗)

= min
Z
Gt(Z).

This concludes the proof. �

The proof of Lemma 30

The proof is based on a variation of the FTRL analysis that studies the evolution
of the potential function Ψt defined for each t as

Ψt = max
(µ,u)∈U2

Φ

{ t−1∑
s=1

H∑
h=1

〈µh, r̂s,h〉 −
1

η
D(µ‖µ0)− 1

α
DC(u‖u0)

}
.

This definition immediately implies the following bound:

ΨT+1 ≥
T∑
s=1

H−1∑
h=1

〈µ∗h, r̂s,h〉 −
1

η
D(µ∗‖µ0)− 1

α
DC(u∗‖u0). (4.13)
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To proceed, we will heavily exploit the fact that, by Proposition 3, the potential
satisfies Ψt = minZ Gt. Introducing the notation Z∗t = arg minZ Gt(Z), we have

Ψt+1 −Ψt = Gt+1(Z∗t+1)− Gt(Z∗t ) ≤ Gt+1(Z∗t )− Gt(Z∗t )

=
1

η

H−1∑
h=1

(
log

( ∑
x∈Sh,a∈A

µ0,h(x, a) exp

(
η

( t∑
s=1

r̂s,h(x, a) + Px,aVZ∗t −QZ∗t (x, a)

)))

− log

( ∑
x′∈Sh,a′∈A

µ0,h(x′, a′) exp

(
η

( t−1∑
s=1

r̂s,h(x, a) + Px′,a′VZ∗t −QZ∗t (x′, a′)

))))

=
1

η

H−1∑
h=1

log

 ∑
x∈Xh,a∈A

µt,h(x, a) exp (ηr̂t,h(x, a))


(using the expression of µt,h(x, a) obtained in Proposition 3)

≤ 1

η

H−1∑
h=1

log

1 +
∑

x∈Xh,a∈A
µt,h(x, a)η

(
r̂t,h(x, a) + ηr̂2

t,h(x, a)
)

≤
H−1∑
h=1

(
〈µt,h, r̂t,h〉+ η〈µt,h, r̂2

t 〉
)
,

where in the last two lines we have used the inequalities ez ≤ 1 + z + z2,
which holds for z ≤ 1 and log(1 + z) ≤ z, which holds for all z > −1, which
conditions are verified due to our constraint on η. Summing up both sides for all t
and combining the result with the inequality (4.13), we obtain

R̂T =

T∑
s=1

H−1∑
h=1

〈µ∗h, r̂s,h〉 −
T∑
t=1

〈µt, r̂t〉 ≤ η
T∑
t=1

H−1∑
h=1

〈µt,h, r̂2
t,h〉+

1

η
D(µ∗||µ0)

+
1

α
DC(u∗||u0),

concluding the proof. �
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The proof of Lemma 31

We start by using the the definition of θ̂t,h to obtain

Et

 ∑
x∈Xh,a∈A

µ̂t,h(x, a)
〈
ϕ(x, a), θ̂t,h

〉2


= Et

 ∑
x∈Xh,a∈A

µ̂t,h(x, a)tr
(
ϕ(x, a)ϕ(x, a)Tθ̂t,hθ̂

T
t,h

)
= Et

 ∑
x∈Xh,a∈A

ût,h(x, a)tr
(
ϕ(x, a)ϕ(x, a)Tθ̂t,hθ̂

T
t,h

)
(by the constraint ΦT

hdiag(µ̂t)Φh = ΦT
hdiag(ût)Φh)

= Et

 ∑
x∈Xh,a∈A

ut,h(x, a)tr
(
ϕ(x, a)ϕ(x, a)Tθ̂t,hθ̂

T
t,h

)
+

∑
x∈Xh,a∈A

(ut,h(x, a)− ût,h(x, a))Et
[〈
ϕ(x, a), θ̂t,h

〉2
]

≤ Et

 ∑
x∈Xh,a∈A

ut,h(x, a)tr
(
ϕ(x, a)ϕ(x, a)Tθ̂t,hθ̂

T
t,h

)
+ ‖ut,h − ût,h‖1 ·

∥∥Et [r̂2
t,h

]∥∥
∞ .

The second term can be bounded straightforwardly by ‖ut,h − ût,h‖1 (M + 1)2,
using Lemma 32 to bound ‖r̂t,h‖∞ ≤ (M + 1). As for the first term, we have

(1− γ)Et

[∑
x,a

ut,h(x, a)tr
(
ϕ(x, a)ϕ(x, a)Tθ̂t,hθ̂

T
t,h

)]

≤ (1− γ)Et

[∑
x,a

tr
(
ut,h(x, a)ϕ(x, a)ϕ(x, a)TΣ̂+

t,hϕ(Xt,h, At,h)ϕ(Xt,h, At,h)TΣ̂+
t,h

)]

≤ (1− γ)Et

[∑
x,a

tr
(
ut,h(x, a)ϕ(x, a)ϕ(x, a)TΣ̂+

t,hϕ(Xt,h, At,h)ϕ(Xt,h, At,h)TΣ̂+
t,h

)]
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+ γEt

[∑
x,a

tr
(
u(x, a)ϕ(x, a)ϕ(x, a)TΣ̂+

t,hϕ(Xt,h, At,h)ϕ(Xt,h, At,h)TΣ̂+
t,h

)]
= Et

[
tr
(

Σt,hΣ̂+
t,hΣt,hΣ̂+

t,h

)]
,

where we used |rt,h(Xt,h, At,h)| ≤ 1 in the first inequality. For ease of readability,
we will omit the indices h in the rest of the proof. Using the definition of Σ+

t and
elementary manipulations, we get

Et
[
tr
(
ΣtΣ

+
t ΣtΣ

+
t

)]
= β2 · Et

tr

Σ∗

(
M∑
k=0

Ck

)
Σt

 M∑
j=0

Cj


= β2Et

 M∑
k=0

M∑
j=0

tr (ΣtCkΣtCj)


= β2Et

[
M∑
k=0

tr (ΣtCkΣtCk)

]
+ 2β2Et

 M∑
k=0

M∑
j=k+1

tr (ΣtCkΣtCj)

 .
Let us first address the first term on the right hand side. Applying Lemma 20 with
H̃ = Σt, we get

β2
M∑
k=0

tr (E [ΣtCkΣtCk]) ≤ β2
M∑
k=0

tr
(

Σ2 (I − 2βΣ)k
)

+ β2
d∑
j=1

M∑
k=0

λ2
j (Σ)

βσ2tr (Σ)

2λj(Σ)
exp

(
β2σ2tr (Σ) k + 2βλj(Σ)

)
= βtr

(
Σ(I − (I − βΣ)M )

)
+ β3σ

2tr (Σ)

2

d∑
j=1

λj(Σ) exp(2βλj(Σ))
exp

(
β2σ2tr (Σ) (M + 1)

)
− 1

exp (β2σ2tr (Σ))− 1

≤ βtr (Σ) + β3 σ2tr (Σ)

2β2σ2tr (Σ)

d∑
j=1

λj(Σ) exp(2βλj(Σ)) exp
(
β2σ2tr (Σ) (M + 1)

)
≤ βtr (Σ) +

β

2

d∑
j=1

λj(Σ) exp(2βλj(Σ)) exp
(
β2σ2tr (Σ) (M + 1)

)
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≤ βσ2d+
β

2

d∑
j=1

σ2 exp(2βσ2) exp
(
β2σ4d(M + 1)

)
≤ 3,

where we used the condition β ≤ 1

2σ2d
√

(M+1)
≤ 1

2σ2 and the fact that (I −

β(2 − βσ2)Σ)M < 0 by the same condition. We also used an observation that
our assumption on the contexts implies tr (Σ) ≤ tr

(
σ2I
)

= σ2d, so again by our
condition on β it implies the final bound.

Moving on to the second term, we first note that for any j > k, the conditional
expectation ofBj givenB≤k = (B1, B2, . . . Bk) satisfies E [Ck|B≤k] = Ck(I−
βΣ)j−k due to conditional independence of all Bj given Bk, for i > k. We make
use of this equality by writing

β2
M∑
k=0

M∑
j=k+1

E [tr (ΣtCkΣtCj)] = β2
M∑
k=0

E

E
 M∑
j=k+1

tr (ΣtCkΣtCj)

∣∣∣∣∣∣B≤k


= β2
M∑
k=0

E

E
 M∑
j=k+1

tr
(

ΣtCkΣtCj(I − βΣt)
j−k
)∣∣∣∣∣∣B≤k


= β

M∑
k=0

E
[
E
[

tr
(

ΣtCkΣtCkΣ
−1
t

(
I − (I − βΣt)

M−k
))∣∣∣B≤k]]

≤ β
M∑
k=0

E
[
E
[

tr
(
ΣtCkΣtCkΣ

−1
t

)∣∣B≤k]]
(due to (I − βΣt)

M−k < 0)

= β

M∑
k=0

E [tr (CkΣCk)]

≤ β
M∑
k=0

tr
(

Σ (I − 2βΣ)k
)

+ β
d∑
j=1

M∑
k=0

λj(Σ)
βσ2tr (Σ)

2λj(Σ)
exp

(
β2σ2tr (Σ) k + 2βλj(Σ)

)
(applying Lemma 20 with H̃ = I )
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≤ d+
β2σ2tr (Σ)

2

d∑
j=1

exp
(
β2σ2tr (Σ) (M + 1) + 2βλj(Σ)

)
− 1

exp (β2σ2tr (Σ) + 2βλj(Σ))− 1

≤ d+
1

2

d∑
j=1

exp
(
β2σ2tr (Σ) (M + 1) + 2βλj(Σ)

)
≤ d+

1

2

d∑
j=1

exp
(
β2σ4d(M + 1) + 2βλj(Σ)

)
≤ 5d.

The proof of the theorem is concluded by putting everything together. �

The proof of Lemma 34

We first observe that the bias of θ̂t,h can be easily expressed as

Et
[
θ̂t,h
]

= Et
[
Σ̂+
t,hϕ(Xt,h, At,h)ϕ(Xt,h, At,h)Tθt,h

]
= Et

[
Σ̂+
t,h

]
Et [ϕ(Xt,h, At,h)ϕ(Xt,h, At,h)T] θt,h

= Et
[
Σ̂+
t,h

]
Σt,hθt,h = θt,h − (I − βΣt,h)Mθt,h.

Thus, the bias is bounded as∣∣Et [ϕ(Xt,h, a)T(I − βΣt,h)Mθt,h
]∣∣ ≤ ‖ϕ(Xt,h, a)‖2·‖θt,h‖2

∥∥(I − βΣt,h)M
∥∥

op .

In order to bound the last factor above, observe that Σt,h < γΣh due to the
uniform exploration used in the first layer by MDP-LINEXP3, which implies that∥∥(I − βΣt,h)M

∥∥
op ≤ (1− γβλmin)M ≤ exp (−γβλminM) ,

where the second inequality uses 1− z ≤ e−z that holds for all z. This concludes
the proof. �

The proof of Lemma 33

The proof consists of two main components: proving that the conditional relative
entropy between ut and ût can be bounded in terms of the optimization error ε,
and then using this quantity to bound the total variation distance between these
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occupancy measures. For ease of readability, we state these results as separate
lemmas.

We will first need the following statement:

Lemma 35. DC(ût‖ut) ≤ αε.

The proof follows along similar lines as the proof of Lemma 1 in Bas-Serrano
et al. [23]. To preserve clarity, we delegate its proof to Section 4.4.4 below.
The second lemma lemma bounds the relative entropy between two occupancy
measures in terms of their conditional relative entropies:

Lemma 36. For any two occupancy measures u and u′ and any h, we have

D
(
uh‖u′h

)
≤

h∑
k=1

DC(uk‖u′k).

Proof. The proof follows from exploiting some basic properties of the relative
entropy. Specifically, the result follows from the following chain of inequalities:

D(uh‖u′h) = D(ETuh‖ETu′h) +DC(uh‖u′h)

(by the chain rule of the relative entropy)

= D(P Tuh−1‖P Tu′h−1) +DC(uh‖u′h)

(by the fact that u and u′ are valid occupancy measures)

≤ D(uh−1‖u′h−1) +DC(uh‖u′h)

(by the data processing inequality)

≤ · · · ≤
h∑
k=1

DC(uk‖u′k),

where the last step follows from iterating the same argument for all layers. �

Putting the above two lemmas together and using Pinsker’s inequality, we
obtain

‖ût,h − ut,h‖1 ≤
√

2D
(
ût,h
∥∥ut,h) ≤

√√√√2
h∑
k=1

DC

(
ût,k
∥∥ut,k) ≤√2DC

(
ût
∥∥ut) ≤ √2αε,

concluding the proof of Lemma 33. �
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The proof of Lemma 35

For the proof, let us introduce the notation µ̃t,h with

µ̃t,h(x, a) =
µ0,h(x, a)eη∆t,Zt (x,a)∑

(x′,a′)∈(Sh×A) µ0,h(x, a)eη∆t,Zt (x,a)
.

and also Gt,h(Z) = 1
η log

(∑
x∈Xh,a∈A(x) µ0(x, a)eη∆t,Z(x,a)

)
andZ∗t = arg minZ Gt(Z).

Then, observe that

D(µ̂t,h‖µ̃t,h) =
∑

x,a∈Sh×A
µ̂t,h(x, a) log

µ̂t,h(x, a)

µ̃t,h(x, a)

= η
〈
µ̂t,h,∆t,Z∗t

− Gt,h(Z∗t )1−∆t,Zt + Gt,h(Zt)1
〉

= η
〈
µ̂t,h, PhVZ∗t −QZ∗t − PhVZt +QZt

〉
+ η (Gt,h(Z∗t )− Gt,h(Zt))

= η
∑

(x,a)∈(Sh×A)

∑
x′∈Sh+1

µ̂t,h(x, a)P (x′|x, a)(VZ∗t (x′)− VZt(x′))

+ η (Gt,h(Z∗t )− Gt,h(Zt)) + η
∑

(x,a)∈(Sh×A)

µ̂t,h(x, a)ϕ(x, a)T(Zt,h − Z∗t,h)ϕ(x, a)

= η
∑

(x′,a′)∈(Sh+1×A)

ût,h+1(x′, a′)(VZ∗t (x′)− VZt(x′)) + η(Gt,h(Zt)− Gt,h(Z∗t )).

+ η
∑

(x,a)∈(Sh×A)

ût,h(x, a)ϕ(x, a)T(Zt,h − Z∗t,h)ϕ(x, a).

Here, the last equality follows from the fact that (µ̂t, ût) satisfy the constraints of
the optimization problem (4.10). On the other hand, we have

DC(ût,h‖ut,h) =
∑

(x,a)∈(Sh×A)

ût,h(x, a) log
π̂t,h(a|x)

πt,h(a|x)

=α
∑

(x,a)∈(Sh×A)

ût,h(x, a)
∑

x′∈Sh+1

P (x′|x, a)(VZ∗t (x′)− VZt(x′))

+ α
∑

(x,a)∈(Sh×A)

ût,h(x, a)ϕ(x, a)T(Zt,h − Z∗t,h)ϕ(x, a)

=α
∑

(x′,a′)∈(Sh+1×A)

ût,h+1(x, a)(VZ∗t (x′)− VZt(x′))
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+ α
∑

(x,a)∈(Sh×A)

ût,h(x, a)ϕ(x, a)T(Zt,h − Z∗t,h)ϕ(x, a),

where the last equality follows from the fact that ût is a valid occupancy measure,
as shown in Equation (4.8). Putting the two equalities together, we get

D(µ̂t,h‖µt,h)

η
−
DC(ût,h‖ut,h)

α
= Gt,h(Zt)− Gt,h(Z∗t ).

Then, summing up over all h gives

D(µ̂t‖µt)
η

− DC(ût‖ut)
α

=

H∑
h=1

(Gt,h(Zt)− Gt,h(Z∗t )) = Gt(Zt)−Gt(Z∗t ) ≤ ε.

Reordering gives the result. �

The proof of Lemma 32

The claim is proven by the following straightforward calculation:

η ·
∣∣〈ϕ(Xt,h, a), θ̂t

〉∣∣ = η ·
∣∣ϕ(Xt,h, a)TΣ̂+

t,hϕ(Xt,h, a) 〈ϕ(Xt,h, a), θt〉
∣∣

≤ η
∣∣ϕ(Xt,h, a)TΣ̂+

t,hϕ(Xt,h, a)
∣∣ ≤ ησ2

∥∥∥Σ̂+
t,h

∥∥∥
op

≤ ησ2β

(
1 +

M∑
k=1

‖Ck,h‖op

)
≤ η(M + 1)/2,

where we used the fact that our choice of β ensures ‖Ck,h‖op =
∥∥∥∏k

j=0(I − βBj,h)
∥∥∥

op
≤

1. �

Implementation by optimizing the empirical loss

This section outlines a possible implementation of the policy update steps based
on approximate minimization of an empirical counterpart of the loss function Gt.
To this end, we define

Gt,h(Z) =
1

η
log

(∑
x,a

µ0(x, a)eη∆Z,t,h(x,a)

)
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and its empirical counterpart that replaces the expectation by an empirical mean
over state-action pairs sampled from µ0. Concretely, for all h, we let (Xh(i), Ah(i))Ni=1

be N independent samples from µ0 that can be obtained by running policy π0 in
the transition model P . Using these samples, we define

Ĝt,h(Z) =
1

η
log

(
N∑
n=1

eη∆Z,t,h(Xh(i),Ah(i))

)
. (4.14)

This objective function has several desirable properties: it is convex in Z, has
bounded gradients, and is (α+ η)-smooth. Furthermore, its gradients can be eval-
uated efficiently inO(N) time, given that we can efficiently evaluate expectations
of the form

∑
x′ P (x′|x, a)V (x′). As a result, it can be optimized up to arbitrary

precision ε in time polynomial in 1/ε and N .
The downside of this estimator is that it is potentially biased. Nevertheless,

as the following lemma shows, it is well-concentrated around the true objective
function, under some reasonable conditions:

Lemma 37. Fix Z and suppose that |∆Z(x, a)| ≤ B for all x, a. Then, with
probability at least 1− δ, the following holds:

∣∣∣Ĝt,h(Z)− Gt,h(Z)
∣∣∣ ≤ 56

√
log(1/δ)

N
.

This statement is a variant of Theorem 1 from Bas-Serrano et al. [23], with
the key difference being that being able to exactly calculate expectations with
respect to P (·|x, a) enables us to prove a tighter bound.

Proof. Let us start by defining the shorthand notations Ŝi = ∆Z,t(Xh(i), Ah(i))

andW = 1
N

∑N
i=1 e

ηSi . Furthermore, we define the function

f(s1, s2, . . . , sN ) =
1

N

N∑
i=1

eηsi

and notice that it satisfies the bounded-differences property

f(s1, s2, . . . , si, . . . , sN )−f(s1, s2, . . . , s
′
i, . . . , sN ) =

1

N

(
eηsi − eηs′i

)
≤ ηe2ηB

N
.
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Here, the last step follows from Taylor’s theorem that implies that there exists a
χ ∈ (0, 1) such that

eηs
′
i = eηsi + ηeηχ(s′i−si)

holds, so that eηs
′
i − eηsi = ηeηχ(s′i−si) ≤ ηe2ηB , where we used the assumption

that |si − s′i| ≤ 2B in the last step. Notice that our assumption ηB ≤ 1 further
implies that e2ηB ≤ e2. Thus, also noticing that W = f(S1, . . . , SN ), we
can apply McDiarmid’s inequality that to show that the following holds with
probability at least 1− δ′:

|W − E [W ] | ≤ ηe2

√
log(2/δ′)

N
. (4.15)

Thus, we can write

Ĝt,h(θ)− Gt,h(θ) =
1

η
log (W )− 1

η
log
(
E
[
W
])

=
1

η
log

(
W

E
[
W
])

=
1

η
log

(
1 +

W − E
[
W
]

E
[
W
] )

≤
W − E

[
W
]

ηE
[
W
] ≤ e4

√
log(2/δ′)

N
,

where the last line follows from the inequality log(1 + u) ≤ u that holds for
u > −1 and our assumption on η that impliesW ≥ e−2. Similarly, we can show

Gt,h(θ)− Ĝt,h(θ) =
1

η
log

(
1 +

E
[
W
]
−W

W

)
≤ E [W ]−W

ηW
≤ e4

√
log(2/δ′)

N
.

This concludes the proof. �
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Chapter 5

Conclusions
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5.1 Sequential influence maximization

In this section we highlight some features of our results and discuss directions
for future work. Our main result is showing for all considered graph models both
instance-dependent bounds of order O(logT ) and worst-case bounds of order
O(
√
T ) on the quantile regret of our algorithm. Notably, our bounds hold for both

the subcritical and supercritical regimes of the random-graph models considered,
and show no explicit dependence on the number of nodes n.

Previous work. Related online influence maximization algorithms consider
more general classes of networks, but make more restrictive assumptions about
the interplay between rewards and feedback. One line of work explored by
Wen et al. [147], Wang and Chen [145] assumes that the algorithm receives full
feedback on where the information reached in the previous trials (i.e., not only the
number of influenced nodes, but their exact identities and influence paths, too).
Clearly, such detailed measurements are nearly impossible to obtain in practice,
as opposed to the local observations that our algorithm requires.

Another related setup was considered by Carpentier and Valko [38], whose
algorithm only receives feedback about the nodes that were directly influenced
by the chosen node, but the model does not assume that neighbours in the graph
share the information to further neighbours and counts the reward only by the
nodes directly connected to the selected one. That is, in contrast to our work, this
work does not attempt to show any relation between local and global influence
maximization. One downside to all the above works is that they all provide
rather conservative performance guarantees: On one hand, Wen et al. [147]
and Carpentier and Valko [38] are concerned with worst-case regret bounds that
uniformly hold for all problem instances for a fixed time horizon T . On the other
hand, the bounds of Wang and Chen [145] depend on topological (rather than
probabilistic) characteristics of the underlying graph structure, which inevitably
leads to conservative results. For example, their bounds instantiated in our
graph model lead to a regret bound of order n3 log T , which is virtually void
of meaning in our regime of interest where n is very large (e.g, in the order of
billions). In contrast, our bounds do not show explicit dependence on n. In
this light, our work can be seen as the first one that takes advantage of specific
probabilistic characteristics of the mechanism of information spreading to obtain
strong instance-dependent global performance guarantees, all while having access
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to only local observations.
Other related framework is stochastic multi-armed bandits with partial moni-

toring [4, 22, 82]. In this setting the loss is not directly observed by the learner,
which makes this setting applicable to a wider range of practical problem. Works
on the partial monitoring would not capture the graph structure, so that results
cannot be applied directly, and in addition the regret would scale with n2.

Tightness of our bounds. In terms of dependence on T , both our instance-
dependent and worst-case bounds are near-optimal in their respective settings:
even in the simpler stochastic multi-armed bandit problem, the best possible regret
bounds are ΩT (log T ) and ΩT (

√
T ) in the respective settings [12, 15, 30]. The

optimality of our bounds with respect to other parameters such as c∗, µ∗ and n
is less clear, but we believe that these factors cannot be improved substantially
for the models that we studied in this work. As for the subproblem of identifying
nodes with the highest degrees, we believe that our bounds on the number of
suboptimal draws is essentially tight, closely matching the classic lower bounds
by Lai and Robbins [86].

Our assumptions. One may wonder how far our argument connecting local and
global influence maximization can be stretched. Clearly, not every random graph
model enables establishing such a strong connection. Finally, let us comment on
our condition that the number of vertices n needs to be “sufficiently large”. We
regard this condition as a technical artifact due to our proofs relying on asymptotic
analysis. We expect that the required monotonicity property holds for small values
of n under mild conditions. Whenever this is the case, the regret bounds remain
valid.

Graph model. The degree of a given vertex has a binomial distribution. This is
a strongly concentrated distribution with an exponentially decreasing tail. Many
graphs from “real life” has much larger tails, for example power-law tails, and it is
therefore important to study also random graph models with such behaviour. An
example of such a random graph model is the configuration model (for a survey
see [141]). This model is different from the family of the models where the
nodes are connected with some probability. In the configuration model, nodes are
associated with those degrees, and the random graph is generated by uniformly
at random selecting a pair of stubs and connecting them. The model for the
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sequential spread of the influence can be the following: first, fix a realisation of a
stochastic block model, and then assume that the information transmits between
connected nodes with fixed probability, equal for all edges. The goal of the learner
is then to minimize the Bayesian regret by taking the men of the expected regret
over all realisations of the configuration model.
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5.2 Adversarial contextual bandits

Our work is the first to address the natural adversarial variant of the widely
popular framework of linear contextual bandits, thus filling an important gap in
the literature. Our algorithm REALLINEXP3 achieves the optimal regret bound of
of order

√
KdT and runs in time polynomial in the relevant problem parameters.

To our knowledge, REALLINEXP3 is the first computationally efficient algorithm
to achieve near-optimal regret bounds in an adversarial contextual bandit problem,
and is among the first ones to achieve any regret guarantees at all for an infinite
set of policies (besides results on learning with surrogate losses, cf. 60). In the
case of misspecified loss functions, our algorithm ROBUSTLINEXP3 achieves a
regret guarantee of order (Kd)1/3T 2/3 + ε

√
dT .

Whether or not the overhead of ε
√
dT can be improved is presently unclear:

while Lattimore et al. [91] proved that the dependence on
√
d is inevitable even

in the stochastic linear bandit setting when K is large (say, order of T ), the very
recent work of Foster and Rakhlin [62] shows that the overhead can be reduced to
ε
√
KT in the same setting. These results together suggest that the regret bound√
KdT+ε

√
min {K, d}T is achievable in for stochastic linear contextual bandits.

Whether such guarantees can be achieved in the more challenging adversarial
setting we considered here remains an interesting open problem.

The reader may be curious if it is possible to remove the i.i.d. assumption
that we make about the contexts. Unfortunately, it can be easily shown that
no learning algorithm can achieve sublinear regret if the contexts and losses
are both allowed to be chosen by an adversary. To see this, we observe that
one can embed the problem of online learning of one-dimensional threshold
classifiers into our setting, which is known to be impossible to learn with sublinear
regret [Ben-David et al., 134]. While one can conceive other assumptions on
the contexts that make the problem tractable, such as assuming that the entire
sequence of contexts is known ahead of time (the so-called transductive setting
studied by 134), such assumptions may end up being a lot more artificial than
our natural i.i.d. condition. In addition, it is unclear what the best achievable
performance bounds in such alternative frameworks actually are. In contrast, the
regret bounds we prove for REALLINEXP3 are essentially minimax optimal.

Our algorithm design and analysis introduces a couple of new techniques
that could be of more general interest. First, a key element in our analysis is
introducing a set of auxiliary bandit problems for each context x and relating

137



i
i

“main” — 2021/9/23 — 13:41 — page 138 — #145 i
i

i
i

i
i

the regrets in these problems to the expected regret in the contextual bandit
problem (Lemma 25). While this lemma is stated in terms of linear losses, it can
be easily seen to hold for general losses as long as one can construct unbiased
estimates of the entire loss function. In this view, our algorithms can be seen as
the first instances of a new family of contextual bandit methods that are based
on estimating the loss functions rather than working with a policy class. An
immediate extension of our approach is to assume that the loss functions belong
to a reproducing kernel Hilbert space and define suitable kernel-based estimators
analogously to our estimators—a widely considered setting in the literature on
stochastic contextual bandits [131, 31, 34]. We also remark that our technique
used to prove Lemma 25 is similar in nature to the reduction of stochastic sleeping
bandit problems to static bandit problems used by (author?) [Kanade et al.], Neu
and Valko [117].

A second potentially interesting algorithmic trick we introduce is the Matrix
Geometric Resampling for estimating inverse covariance matrices. While such
matrices are broadly used for loss estimation in the literature on adversarial linear
bandits [104, 18, 51, 10], the complexity of computing them never seems to be
discussed in the literature. Our MGR method provides a viable option for tackling
this problem. For the curious reader, we remark that the relation between the
iterations defining MGR and the dynamics of gradient descent for linear least-
squares estimation is well-known in the stochastic optimization literature, where
SGD is known to implement a spectral filter function approximating the inverse
covariance matrix [125, 66, 20, 116].

Besides the most important question of whether or not our guarantees for
the misspecified setting can be improved, we leave a few more questions open
for further investigation. One limitation of our methods is that they require
prior knowledge of the context distribution D. We conjecture that it may be
possible to overcome this limitation by designing slightly more sophisticated
algorithms that estimate this distribution from data. Second, it appears to be an
interesting challenge to prove versions of our performance guarantees that hold
with high probability by using optimistically estimators as done by (author?)
[Beygelzimer et al.], Neu [107], or if data-dependent bounds depending on the
total loss of the best expert rather than T can be achieved in our setting [7, 9,
108]. We find it likely that such improvements are possible at the expense of a
significantly more involved analysis.
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5.3 Learning in episodic MDP

We merge two important lines of work on online learning in MDPs concerned
with linear function approximation [73, 33] and bandit feedback with adversarial
rewards [111, 113, 152]. Our results are the first in this setting and not directly
comparable with any previous work, although some favorable comparisons can
be made with previous results in related settings. In the tabular setting where
d = |S||A|, our bounds exactly recover the minimax optimal guarantees first
achieved by the O-REPS algorithm of Zimin and Neu [152]. For realizable
linear function approximation, the work closest to ours is that of Cai et al. [33],
who prove bounds of order

√
d2H3T , which is worse by a factor of

√
dH than

our result. Their setting, however, is not exactly comparable to ours due to the
different assumptions about the feedback about the rewards and the knowledge of
the transition function.

One particular strength of our work is providing a complete analysis of the
propagation of optimization errors incurred while performing the updates. This
is indeed a unique contribution in the related literature, where the effect of such
errors typically go unaddressed. Specifically, the algorithms of Zimin and Neu
[152], Rosenberg and Mansour [126], and Jin et al. [72] are all based on solving
convex optimization problems similar to ours, the effect of optimization errors
or potential methods for solving the optimization problems are not discussed at
all. That said, we believe that the methods for calculating the updates discussed
in Section 4.4.2 are far from perfect, and more research will be necessary to find
truly practical optimization methods to solve this problem.

The most important open question we leave behind concerns the requirement
to have full prior knowledge of P . In the tabular case, this challenge has been
successfully addressed in the adversarial MDP problem recently by Jin et al. [72],
whose technique is based on adjusting the constraints (4.6) with a confidence set
over the transition functions, to account for the uncertainty about the dynamics.
We find it plausible that a similar extension of ONLINE Q-REPS is possible by
incorporating a confidence set for linear MDPs, as has been done in the case of
i.i.d. rewards by Neu and Pike-Burke [115]. Nevertheless, the details of such an
extension remain highly non-trivial, and we leave the challenge of working them
out open for future work.
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