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Abstract

Insulinomas are extremely rare pancreatic neuroendocrine (PNET) tumours that develop

from the β-cells of the pancreas. β-cells are the only cells capable of producing the hormine

insulin, and play a major role in glucose homeostasis but have extremely low proliferative

ability under normal physiological conditions. Insulinomas feature dysregulation of insulin

secretion and aberrant proliferation. Insulinoma development has been associated with ge-

netic and epigenetic alterations leading to loss of cell fate.

We collected a large set of insulinoma and human islet samples, and utilised published

data from other PNETs. ChIP-seq of H3K27ac, ATAC-seq and RNA-seq were performed

to infer the regulatory landscape of insulinomas and control samples. In silico pipelines

and analyses methods were developed in order to characterise the β-cell physiological and

aberrant regulatory networks, across different layers of gene regulation.

By comparing unaffacted pancreatic islets and insulinomas I have identified widespread

changes in enhancer activity and gene expression. I have described the gene-regulatory land-

scape of insulinomas, identified putative drivers and mechanisms of tumour development,

and built the first insulinoma-specific gene regulatory networks.
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1.1 Pancreatic islets, β-cells and insulin secretion.

The pancreas could be desribed as two (or even four) organs in one, as it’s different sections

and cell types have different developmental origins and functions. The bulk of the mature

pancreas in humans is an exocrine gland comprising acinar and ductal cells, that produce

digestive enzymes and sodium bicarbonate respectively, reponsible for digestion and ab-

sorption of foodstuffs. The endocrine gland is distributed throughout the pancreas and is

comprised of five different types of secretory islet cells. The principal function of islets is

the maintenance of glucose homeostasis through the production and release of insulin and

glucagon. Pancreatic secretory functions are tightly regulated by a variety of mechanisms,

and aberrant activation or inactivation of regulatory pathways has significant consequences

in terms of human health and disease.

1.1.1 β-cells, the most abundant cell type in the pancreatic islets.

Pancreatic islets, first described by Paul Langerhans in 1869 are clusters of approximately

1000 cells scattered throughout the pancreas. There is significant variation in cellular compo-

sition and architecture of pancreatic islets between species. But human islet samples are dif-

ficult to obtain, so much of our knowledge regarding human islet structure and function is de-

rived from experiments using rodent islet samples. Human islets consist of insulin-producing

β-cells (≈ 70%), glucagon-producing α-cells (≈ 20%), with the remainder (≈ 10%) made

up of somatostatin-producing δ-cells, ghrelin-producing �-cells and pancreatic polypeptide-

producing PP cells [1]. Murine islets, the most well studied, feature a β-cell core surrounded

by the other islet cell types, and a slightly higher β : α cells ratio [2]. Human islets have

been described as having a more scatterred organisation of endocrine cells [3], and this scat-

tering may extend to the positioning of islets within the pancreas [4]. Reports of variation in

insulin secretion in patients after partial pancreatectomy also suggests functional differences

in islets from different parts of the pancreas (e.g. head vs tail) [1].
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β-cells are the only cells capable of producing and secreting insulin, and loss of β-cell mass

results in the dysregulation of glucose homeostasis which leads to diabetes mellitus. The

discovery of insulin and it’s ability to lower blood glucose earned Frederick Banting and

Charles Best a Nobel Prize in 1923, and has since been the subject of extensive research due

to the loss of β-cell mass/function associated with diabetes. But while the loss of pancreatic

β-cell mass leads to disease, there appears to be little or no effect on physiology from near

complete loss of α-cell mass [5]. The major funtion of glucagon is as a counter-regulatory

response to insulin, and the prevention of hypoglycaemia, and elevated glucagon secretion

has been observed in type 2 diabetes (T2D) in addition to reduced insulin levels. However,

despite recent efforts, a lot less is known about α-cells compared to β-cells.

Figure 1: The composition of pancreatic islets in the human pancreas.

In simple terms a β-cell is a cell that produces insulin and secretes it in response to phys-

iological glucose levels. Insulin is stored in secretory granules as a complex with zinc and

released in response to high glucose concentrations [6] and stimulation by neurotransmitters

3



[7]. Several other factors also contribute to the regulation of insulin secretion, including

inhibition by somatostatin and ghrelin. Furthermore, studies have suggested significant het-

erogeneity in β-cell identity and function within an islet [8]. Mapping of islet functional

architecture revealed the spatial arrangement of β-cells within islets, including hub cells

with pacemaker properties, enabling specific cell-cell communication patterns and insulin

release via ’rhythmic activity’.

1.1.2 Development and identity of β-cells (and other islet cells).

β-cells develop from a subset of precursor cells that have adopted an endocrine fate and

themselves represent a subset of cells of the posterior foregut with a pancreatic identity

[9]. It is possible to build a putative map of β-cell development using expression patterns

and knockout phenotypes of associated genes (fig.2). Although more is known about β-

cell development in mice, evidence of the involvement of the various factors in this lineage

map is derived from experiments in human multipotent pancreatic progenitors (MPCs) and

pluripotent stem cells (hPSCs). The most important regulator of endocrine specification

is Neurogenin 3 (NGN3) [10], expression of which activates several transcription factors

(TFs) including PAX4, ARX, NKX2.2, NKX6.1, ISL1, NEUROD and INSM1, which are

responsible for the differentiation of endocrine precursors into mono-hormonal islet cells

[11]. NGN3 expression is transient and disappears in mature endocrine cells, but the timing

and level of expression is important in determining the fate of endocrine progenitors [12].

One feature of endocrine cell lineages that stands out is the number of factors implicated in

α and β cell development compared to the other endocrine cell types. This may be reflective

of specific biological needs, although it may also be due to the fact that the majority of

studies have focused on α and β cells and therefore much more is known about them.

One of the earliest TFs to be expressed in pancreatic progenitors is SOX9, which plays a

major role in regulating the expression of TFs, such as HNF6 and FOXA2, in the transcrip-

tional network of pancreatic progenitors. Cells of both endocrine and exocrine pancreatic
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Figure 2: Development of islet cell types from Endocrine progenitors. A lineage
diagram of pancreatic endocrine cell development from Ngn3+ progenitor cells [12].

lineages are derived from SOX9-positive progenitors [13]. SOX9 activates NGN3 and along

with FOXA2 and TCF2 controls the activation of genes involved in endocrine cell differen-

tiation [14]. During pancreatic development in mice Foxa1 and Foxa2 regulate pancreatic

and duodenal homebox 1 (Pdx1) (also known as insulin promoter factor 1 (IPF1)), which

is expressed in all pancreatic precursor cells, by binding to a distal enhancer [15]. PDX1

expression levels vary across pancreas developmental stages, but it is upregulated in the later

stages of β-cell development. PDX1 is a master regulator of β-cell fate, activating genes that

specify β-cell identity and repressing genes that promote α-cell identity [16]. For example,

overexpression of Pdx1 in a murine cell line resulted in significant upregulation of insulin

(Ins1 and Ins2 ) [17].

NKX6.1 is expressed at early stages of pancreatic development and is ever-present in the

β-cell lineage, playing a critical role in β-cell development [18]. During the MPC stage,

expression of NKX6.1 and SOX9 is crucial, and these TFs interact to promote NGN3 ex-
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pression and the generation of endocrine progenitors . An antagonistic mechanism exists be-

tween NKX6.1 and PTF1A, with NKX6.1 promoting endocrine linages and PTF1A a main

regulator of acinar gene transcription. PTF1A represses SOX9 and NGN3 but is directly

regulated by NKX6.1, enabling the switch to endocrine cell development [12]. This switch

occurs during a specific window, after which progenitors are committed to an acinar or ductal

fate, suggesting that this antagonism between TFs dicates the relative numbers of newly dif-

ferentiated endocrine vs exocrine cells in the pancreas. Poly-hormonal and mono-hormonal

endocrine cells appear at different stages in humans and mice [19], but Nkx6.1 -knockout

studies have shown that it is important in the transition from poly-hormonal cells to mature

β-cells [18, 20].

Figure 3: Functional interactions of key transcription factors involved in the
development of cells of the endocrine pancreas in humans. Thicker lines represent
stronger associations (minimum confidence value 0.4/1). Protein interaction maps created
using STRINGdb and featured in Al-Khawaga et al 2018 [11].

Neurogenic differentiation factor D1 (NEUROD1 ) is another crucial TF for development of

the endocrine pancreas and β-cell maturation. NEUROD1 is activated by NGN3 and is a

transactivator of the insulin gene. It interacts with INSM1 and FOXA2 and co-occupies

β-cell-specific regulatory elements. Disruption of NEUROD1 binding sites at these genomic

regions has been shown to result in β-cell dysfunction in humans [21]. Another Ngn3 target,

Pax4 (paired box gene 4), is expressed stongly in β-cell precursors but is limited in α-
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cells [22]. Its counterpart Arx (aristaless-related homeobox gene) drives specification of

glucagon-producing α-cells. Precursor cells split into separate populations according to their

expression of Pax4 or Arx. Selective inhibition of ARX is sufficient to promote the conversion

of α-cells into β-cells [23], but β-cells are the first and most predominant islet cell type to

appear in human fetal development [24].

The specification of cell identity in cells of the endocrine pancreas occurs via sequential

activation and repression of specific genes. Transcription factors with key roles in main-

taining the mature β-cell phenotype include MAFA and RFX6. Mafa knockout mice have

reduced β:α cell ratio, reduced expression of Ins1 and Ins2, and upregulation of genes that

are normally repressed in mature β-cells [25]. Gene set enrichment analysis in Mafa−/−

mice identified several β-cell signalling pathways including protein-binding, ion-binding, and

receptor and mitogen-activated protein kinase signalling indicating widespread functional

importance of Mafa in β-cells [26]. RFX6 is a downstream effector of NGN3 which pro-

motes insulin production and secretion via upregulation of INS gene expression and calcium

channels [27]. FOXA2, MAFB and NKX2.2 are expressed in β-cells and in other islet cell

types, while NKX6.1 is specific to β-cells and PDX1 is expressed primarily in β-cells but

also at low levels in δ-cells. Down-regulation of MAFA, NKx6.1 and FOXO1 contributes to

de-differentiation in type 2 diabetic (T2D) patients [28], highlighting their importance in the

maintenance of β-cell identity. ChIP-seq analysis in human islets revealed that these TFs

form a remarkably interconnected network, with overlapping DNA-binding patterns suggest-

ing auto- and cross-regulatory interactions. Chromatin conformation analysis also identified

clusters of enhancers involved in combinatorial transcription factor binding [29].

1.1.3 Insulin production and secretion

Several of the factors described above have a role in regulating insulin biosynthesis, thus con-

trolling the most important aspects of the identity of a β-cell: the production and secretion

of insulin in a tightly regulated manner. In mammals, control of insulin gene expression,
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including metabolic regulation, is centered around a highly conserved promoter/enhancer

region located within 350bp immediately upstream of the transcription start site. Within

this region are a series of regulatory elements, including E, A and C boxes, that are major de-

terminents of insulin gene expression [30]. Pancreatic/duodenal homeobox-1 (PDX1) binds

to the A boxes and functionally interacts with proteins of the basic helix-loop-helix family

(including NeuroD1) that bind to E boxes [31], whilst MAFA binds to C boxes. PAX6 has

also been shown to regulate insulin gene expression both directly (by binding to the insulin

gene promoter) and indirectly via interactions with TFs including MAFA [32]. Together

these interactions between transcription factors and the proximal cis-regulatory region make

up the principal regulatory machinery of the insulin gene under normal conditions [33].

Healthy β-cells act as glucose sensors, matching insulin secretion to the circulating glucose

concentration, and glucose regulates all steps of insulin gene expression, including tran-

scription, preRNA splicing and mRNA stability. Glucose-responsive transcription control

elements include A3, E1 and C1 as well as a more distal regulatory element that binds a

glucose-sensitive complex [34]. Glucose infusion results in an increase in Akt activation,

which increases PDX1 expression [35]. Glucose also promotes the binding of PDX1 to the

insulin promoter, in turn promoting recruitment of transcriptional co-activators including

histone acetyltransferases [36].

Insulin secretion from β-cells is achieved via changes in electrical activity, characterised

by membrane depolarisation and bursts of action potentials [37]. Glucose-stimulated insulin

secretion (GSIS) begins with glucose entering β-cells via glucose transporter 1 and 2 (GLUT1

and GLUT2). Glucose is broken down by glycolysis to pyruvate, which then enters the

mitochondria and is used to generate adenosine triphosphate (ATP) via the TCA cycle. This

ATP is then transported to the cytoplasm where it acts to close ATP-sensitive potassium

channels, thus depolarising the cell membrane, which in turn induces the opening of voltage-

gated Ca2+ channels. Bursts of Ca2+ influx into β-cells push insulin vesicles to the cell

membrane and insulin is released by exocytosis [38].
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Figure 4: Glucose-stumulated insulin secretion from pancreatic β-cells.

1.1.4 β-cell proliferation

While early PDX1+ pancreatic progenitor cells are proliferative, replication rates of differ-

entiated β-cells decline rapidly in early childhood. With this comes a marked change in

cell identity; as the secretory capacity (limited in immature cells) of β-cells is enhanced,

their ability to replicate declines rapidly [39]. Mature human β-cells replicate at low rates

(≈ 2−4%/day) and this replicative ability is limited to the first few years of life. By contrast

cell prolifertion in several other tissues is often 10-fold higher. Furthemore there is insuffi-

cient regeneration of β-cells to offset the loss of β-cell mass in diabetes and a major area

of research is focused on finding ways to reverse these effects. Little is known about how
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β-cell proliferation is regulated during the perinatal period in humans, so here again, findings

from studies in murine β-cells provide most of the insights. There is a large and expand-

ing intracellular signalling map describing how β-cell proliferation occurs in rodents (fig.5).

Multiple mitogenic signalling pathways such as IrsPi3kAkt, Gsk3, mTor, ChREBP/cMyc,

Ras/Raf/Erk, and Nfats integrate signals from growth factors and nutrients, including in-

sulin/insulin growth factor.

Figure 5: Model of β-cell proliferation in murine cells. Pathways and key fac-
tors involved in β-cell proliferation in mouse cell lines [40]. β-cell proliferation in mice
features signalling by growth factors and hormones including insulin/insulin growth factor
(IGF), hepatocyte growth factor (HGF) and glucagon-like peptide-1 (GLP-1). Subsequent
phosphorylation of insulin receptor substrates (IRS) activates the phosphatidylinositol-3 ki-
nase (PI3K)/Akt pathway. PI3K activation results in the production of phosphatidylinos-
itol trisphosphate, which directly binds to phosphoinositide-dependent kinase-1 (PIDK-1).
PIDK-1 then binds to and activates protein kinase C γ (PKC γ). (PKC γ) inactivates glux-
ose synthase kinase 3 β (GSK3β) and activates mTORC1. mTORC1 signalling controls cell
growth and metabolism via further downstream effectors [40].

Mitogenic signals regulate the expression of downstream cell cycle regulators, pushing quies-
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cent β-cells to re-enter the cell cycle. Circulating factors derived from other organs including

intetsinal peptides and adipose tissue-derived adipokines can also regulate β-cell prolifera-

tion during puberty, pregnancy and obesity. Curiously, rodent β-cells can display relatively

large proliferative responses (≈ 10− 15%/day), which is never seen in humans, even in fetal

and neonatal stages [40]. This enforced quiescence in adult human β-cells may have sev-

eral molecular causes, but recent evidence points towards epigenetic factors including DNA

methylation and chromatin modifying enzymes [41, 42]. Significant research efforts have

been directed towards identifying drugs or growth factors able to induce beta cell replica-

tion. Many putative pathways, that may act as drug targets, and classes of drugs have been

discovered. DIRK1A inhibitors provide the highest proliferation rates (up to 5%) in human

β-cells and also represent the most widely replicated findings.

DYRK1A (Dual specificity tyrosine-phosphorylation-regulated kinase 1A) is a dual speci-

ficity kinase, possessing both serine/threonine and tyrosine kinase activities. Several differ-

ent chemical entities, including harmine (a beta-carboline)[43] and 5-IT (5-iodo-tubericidin)

[44], have been shown to increase the rate of β-cell proliferation via inhibition of DYRK1A.

Dyrk1a is a negative regulator of the NFAT pathway, which is of crucial importance to murine

β-cell proliferation [45]. The nuclear factor activated in T cells (NFAT) family of TFs bind

to and activate cell cycle activating genes, including CDK1 (cyclin-dependent kinase 1), and

repress cell cycle inhibitor genes such as CDKN1C, thus activating cell cycle progression

[43]. DYRK1A phosphorylates nuclear NFATs, preventing entry to the nucleus and thus

terminating their mitogenic signal. DYRK1A inhibitor action prevents NFAT phosphory-

lation, allowing continued stimulation of cell cycle activation [46]. Harmine treatment also

increased markers of β-cell differentiation including PDX1, NKX6.1 and MAFA [43].

In insulinomas, β-cells proliferate whilst maintaining some of the functional features of nor-

mal β-cells, including the capacity to synthesize and secrete insulin. But they lack the

capacity to process, store and limit insulin secretion in response to the physiological glucose

range such that proliferation leads to fasting hypoglycemia. Tumour cells in insulinomas

therefore present an intriguing possibility to study the molecular mechanisms governing cell
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proliferation and cell identity.

1.2 Insulinoma - a functional pancreatic neuroendocrine tumour.

Neuroendocrine tumours (NETs) are neoplasms that arise from neuroendocrine cells, which

are characterised by the release of hormones or neuropeptides into the circulating blood in

response to a neural stimulus. NETs can develop in several locations in the human body, the

most common occuring in the gastrointestinal tract, lungs and appendix, and around 20%

develop from the cells of pancreatic islets. Pancreatic neuroendocrine tumours (PNETs) are

divided into two classes, functional (characterised by the abnormal secretion of hormones)

and non-functional, with the later representing the majority of cases. Functional PNETs are

named according to the hormone produced and secreted by the cells from which they derive,

including insulinoma, glucagonoma and somatostatinoma.

Insulinomas are the most common type of functional PNET (≈ 50%) and develop from β-

cells. As described above, β-cells replicate readily in fetal and neonatal stages of development

but their proliferative ability declines rapidly after these stages. The proliferation of β-cells in

insulinoma therefore presents an intriguing phenomenon, and by investigating the aberrant

molecular mechanisms driving insulinoma development we hope to gain insights into the

factors affecting β-cell proliferation, and a broader understanding of β-cell identity.

1.2.1 Epidemiology, diagnosis and treatment.

PNETs, previously known as islet cell tumours, comprise less than 2% of all pancreatic

neoplasms, with an incidence of ≈ 1 case per 100,000 individuals. Their incidence has in-

creased significantly in recent years, although improvements in imaging technology has also

improved detection. Functional PNETs typically present with clinical syndromes related to

the hypersecretion of hormones (fig.7), which in the case of insulinoma is hyperinsulinaemic

hypoglycemia. Cells in non-functional PNETs still produce and secrete the hormone associ-
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Figure 6: Locations of neuroendorine tumours in the human body.

ated with the cell type from which they originate, but the cause of morbidity and mortality

is associated with expansion of the tumour mass rather than hormone-related symptoms.

Insulinomas are extremely rare (1 to 4 cases per million of population) and present as single,

small (usually around 2cm in diameter) lesions. More than 90% of insulinomas are be-

nign and yet if left untreated the uncontrolled release of insulin can cause severe symptoms

associated with hypoglycaemia including convulsions and coma, and can even be fatal.

Benign NETs tend to develop slowly, and the average time between symptoms appearing

and diagnosis of insulinoma is about 3 years. Insulinomas can develop at any age, but the

peak incidence is between 30 and 60 years of age, and are more prevalent in females. They

can be difficult to diagonse as the milder symptoms (including confusion and weakness)

can have several causes. When insulinomas are suspected, blood sugar is monitored and
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Figure 7: Incidence and clinical features of functional pancreatic neuroendocrine
tumours [47].

imaging tests are used to check the size and precise location of the tumour. The gold

standard test for diagnosing insulinoma is a 72-hour fast during which levels of insulin,

plasma glucose, C peptide, proinsulin and beta-hydroxybutyrate are monitored in order

to establish whether hypoglycemia induction is due to hyperinsulinemia. Histopathology

tests can also support insulinoma diagnosis. Immunohistochemistry for insulinoma includes

staining for insulin, chromogranin A (a protein released from neuroendocrine cells) and Ki-67

(a marker of proliferative cells) [48]. There are several classification and grading systems,

including World Health Organisation (WHO), European Neuroendocrine Tumour Society

(ENETS) and American Joint Committee on Cancer (AJCC) for PNETs, providing essential

prognostic values. Figure 8 outlines a TNM (tumour, nodes, metastases) staging system for
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insulinoma.

Figure 8: Classification and grading system for insulinoma.

Single, sporadic insulinoma is curable by surgical intervention involving either enucleation

or laparoscopic resection. Prior to surgery treatment strategies include dietry modification,

MedicAlert bracelets, glucagon pens, somatostatin analogs, and steroids. In cases where

surgery is not an option drugs like diazoxide and everolimus can be used. Diazoxide decreases

insulin release and enhances glycogenolysis, and eliminates symptoms in approximately 60%

of patients [49]. Everolimus, an mTOR (mammalian target of rapamycin) inhibitor with high
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affinity to the intracellular receptor FKBP12, is often used in cases of metastatic PNETs [50].

Inhibition of mTOR by the Everolimus-FKBP12 complex prevents downstream signalling

required for cell cycle progression [51]. Treatment strategies have become more agressive

in recent years, enabled by advances in surgical intervention techniques, and based on the

assumption that patients benefit from reducing the tumour burden. Agressive approaches

involve removing as much (primary or metastatic) tumour as possible. The overall 10 year

survival rate for insulinoma patients, following successful surgical removal of the tumour, is

88%. However, this drops to less than 30% for malignant cases.

1.2.2 Mutations associated with insulinoma

The majority of PNETs are sporadic, with no known cause, but a small percentage arise as

the result of inherited syndromes including Multiple Endocrine Neoplasia type 1 (MEN1),

Von Hippel-Lindau syndrome and Neurofibromatosis type 1 (NF1). Early approaches to

finding the molecular alterations responsible for tumour phenotypes focused on mutations

in protein-coding genes, and the catalogue of cancer-associated mutations in these regions

is largely complete for major cancer types. But due to their rarity insulinomas were not

prioritised by large consortia such as The Cancer Genome Atlas (TCGA) and the Interna-

tional Cancer Genome Consortium (ICGC). Several smaller studies have investigated exonic

mutations in insulinoma and identified germline and somatic mutations associated with the

insulinoma phenotype.

Mutations in MEN1,which codes for Menin, a tumour suppressor with roles in cell growth

and apoptosis, as well as control of transcriptional machinery and gene expression, account

for 4 - 6% of insulinomas [52] [53]. Wang et al also identified several exonic mutations in

insulinoma including recurrent mutational signals in epigenetic modifiers functionally related

to MEN1 [42], including KDM6A, EZH2, PCGF5, KMT2C and CREBBP. The authors

of this study suggested that multiple specific ”epigenetic roads” may lead to insulinoma.

Menin is a ubiquitously expressed scaffold protein with no intrinsic enzymatic activity. But
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it does contain a binding site through which it interacts with various chromatin modifiers

and transcription factors, affecting the expression of genes involved in cell proliferation [54].

Recurrent mutations affecting another ubiquitously expressed protein, YY1 (YinYang 1),

including T372R, are reported to be present in up to 30% of sporadic insulinomas [55] [56].

YY1 is a transcription factor with roles in glucose metabolism and epigenetic regulation.

The T372R mutation affects the third zinc-finger domain, part of the repression domain of

YY1, altering it’s DNA-binding specificity [57].

So there is evidence that aberrant transcriptional regulation may be a key driver of insuli-

noma development, but no study has yet investigated the role of cis-regulatory elements

(CREs) in insulinoma development. Elucidating insulinoma-specific gene-regulatory net-

works could provide important insights into the pathways driving cell proliferation and dys-

regulated insulin secretion in insulinoma.

1.3 Gene regulation

The regulation of gene expression is a complex process involving many different factors,

including genomic regulatory elements, epigenetic modifications and transcription factors.

Control and regulation of these factors enables precise control of gene expression and, in

turn, specific processes to occur within each cell type, thus maintaining cell identity. Gene-

regulatory networks (GRNs) are composed of two main components: nodes and edges. The

network nodes are the factors involved (genes and their regulators), while edges are the phys-

ical/regulatory relationships between the nodes. Disruption of GRNs has been associated

with a wide range of human diseases including cancer. Much remains to be discovered about

gene regulatory mechanisms, but the knowledge that enables us to investigate it is the result

of decades of scientific discoveries.
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1.3.1 Deoxyribonucleic acid (DNA) and chromatin.

DNA is composed of nucleotides: a deoxyribose sugar, a phosphate group and one of four

nitrogenous bases (adenine, thymine, cytosine and guanine or A, T, C and G). The famous

double helix structure of DNA showed the sugar and phosphate groups form the backbone

of the molecule while the bases are paired up (A with T and C with G) via hydrogen bonds

to connect the two strands. A human nucleus is ≈ 10µm in diameter but contains more than

2 meters of DNA. Fitting all that DNA into such a small space is achieved via a ’beads-

on-a-string’ structure incorporating sections of about 150bp wrapped around an octamer

of proteins called histones to form a nucleosome [58]. Each nucleosome features a central

tetramer of two H3 and two H4 histones flanked by two H2A/H2B heterodimers [59] fig(9).

Another histone protein (H1) binds to the linker DNA between nucleosomes which allows

further folding of this DNA-protein complex to form what is known as chromatin fiber.

So nucleosomes are essentially the core unit of chromatin, but chromatin is not a static struc-

ture, and features large variation in accessibility, which persists across the human genome.

Chromatin accessibility refers to the degree to which nuclear macromolecules are able to

physically interact with chromatinised DNA and is determined by nucleosome positioning

and occupancy [61]. The positioning of nucleosomes is defined with respect to genomic

DNA sequence incorporated by each nucleosome, and occupancy refers to the fraction of

cells in a population in which a given region of DNA is occupied by a histone octamer [62].

Nucleosome-free regions (NFR) (or nucleosome-depleted regions (NDR)) of chromatin allow

proteins (including transcription and replication machineries) to bind to the DNA. Thus

while nucleosomes enable the packaging of DNA in the nucleus, this variation in chromatin

accessibility also provides a layer of control over the initiation of transcription [63].

The dynamic and flexible nature of eukaryotic chromatin enables it to respond to envi-

ronmental, developmental and metabolic cues. The organisation of DNA into chromatin

generates a ’default’ state of inaccessibility, preventing, for example, DNA binding proteins

from finding their binding sites. The cell overcomes this state by employing enzymes that are
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Figure 9: Schematic representation of the structure of DNA and a nucleosome
[60].

able to remodel nucleosomes. Nucleosome remodelling enzymes may partially disassemble

nucleosomes or incorporate histone variants and thereby change the interactions between

DNA and histones. The precise mechanism depends on the combination of remodelling

enzymes and co-factors [64].
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1.3.2 Genes defined

In order to investigate gene expression and how it is regulated it is important to consider

how a gene is defined. The earliest definition of a gene as ’the basic unit of heredity’ is useful

as a starting point, but through decades of research this picture has become increasingly

complicated. The core principals that genotype determines phenotype and that DNA within

genes contains the code to produce functional molecules [60] remain and form the basis

of current descriptions. When information flows from DNA to protein, the DNA is first

transcribed into a form of ribonucleic acid (RNA) called messenger RNA (mRNA) via an

intermediate precursor (pre-mRNA). The simplest view is that one DNA sequence codes for

one protein, but each gene may code for several different mRNA molecules (or transcripts) to

produce multiple versions of a protein. Furthermore, many gene transcripts are non-coding

RNA molecules which do not serve as the basis for protein production. Non-coding RNAs

have a variety of functions within a cell, including regulation of gene expression.

A gene contains not just coding regions (exons) but also non-coding regions (introns). The

sequence corresponding to the introns is removed from pre-mRNA by splicing to produce a

mature mRNA. During this process alternative splicing events may occur, whereby one or

more exons are also removed. This is a simplified version of events, and the mechanisms

governing alternative splicing are not fully understood, but the fact remains that the DNA in

each gene can be used to make several different functional products. The crucial component

here is function, and regulatory mechanisms ensure that specific proteins and non-coding

RNA molecules are generated from the same DNA blueprint. Cell type-specific utilisation

of genetic information, including timing, dosage and transcript usage, forms the basis of cell

function and identity.

1.3.3 The human genome and the origin of complexity.

In 2003, 50 years after the paper describing the structure of DNA, the human genome

project was declared complete. The project, an international collaboration, determined the

20



order (sequence) of all the bases in the human genome and the locations of genes for major

sections of each chromosome. The genome of an organism is the complete DNA sequence

in one haploid cell. In humans this amounts to more than 3 billion base pairs and almost

every cell in the human body contains the same genome sequence. Given the complexity of

humans compared to other species, initial estimates of the number of protein-coding genes in

the human genome ran to 6 figures. However, following the completion of the human genome

project only around 20,500 genes, covering approximately 2% of the genome, were identified.

To put this into context, the mouse genome has around 30,000 genes and Caenorhabditis

elegans, a nematode worm about 1 mm in length with no circulatory or respiratory systems

and only a primitive neural system, has around 18,000.

So it was clear that organismal complexity was not merely a function of the number of

genes an organism has, and that much remained to be discovered regarding the molecular

mechanisms involved [65]. The genome project gave us the genetic code and the ability

to predict genes from sequence, but in order to understand how this information is used

to generate complexity, and give each cell type it’s functional identity, we would need to

understand the ’regulatory code’. Subsequently the ENCODE project was established with

the aim of cataloguing all functional elements in the human genome (and select model

organisms), including the ’non-coding’ regions outside of genes [66]. This resource would

enable developments in our understanding of the regulation of gene expression and the genetic

basis of disease.

1.3.4 Transcription regulation by cis-regulatory elements.

Generation of the multitude of cell types required by a complex organism is facilitated by

specific gene expression programs in each cell type. Gene expression is initiated along a

promoter, a sequence of DNA located immediately upstream (up to 2kb) of the coding

region of each gene. Promoters contain binding sites for RNA polymerase II (RNA polII),

the enzyme responsible for the transcription of all genes (with the exception of those coding
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for ribosomal or transfer RNA) in eukaryotes, and transcription factors (TFs). Once bound

to DNA, TFs interact with RNA polII and other factors and in doing so initiate and regulate

transcription of the DNA [67]. But this mechanism alone is only sufficient for low levels of

transcription relative to those which may be required by the cell. Many cell-type-specific

processes require significantly higher levels of transcription of specific genes. This is enabled

by enhancers, another type of CRE located distal to the transcription start site (TSS) of

genes.

Enhancers are short (200 - 1500 bp) DNA segments that can exert their effect over dis-

tances of hundreds of thousands of base pairs. Like promoters they contain binding sites for

transcription factors, co-factors and RNA pol II. They are able to integrate multiple signals

and regulatory determinants, enabling precise, cell-type-specific and state-specific control of

spatiotemporal gene expression. Hundreds of thousands of putative enhancers have been

mapped in various human cell lines by the ENCODE project, an order of magnitude more

than the number of protein-coding genes, and it has been estimated that tens of thousands of

enhancers are active in any given cell type [66]. Enhancers may be located upstream, down-

stream or in introns of target genes or unrelated genes, and connect to promoter elements

via long-range physical interactions [68], often bypassing more proximally located genes [69]

(fig.10). In fact, up to 50% of enhancers skip over the most proximal gene and regulate more

distal gene(s) [70].

Several mechanisms for the establishment of enhancer-promoter interactions (EPIs) have

been proposed, including chromatin looping (involving structural protein complexes cohesin

and CTCF, and mediator) and tracking of molecular motors along chromatin [71]. Regardless

of the precise mechanism, it is clear that contact between enhancers and promoters, and

associated factors, is critical for precise control of gene transcription and ultimately cell-type

specific gene expression. Some EPIs are prevented by insulators, DNA sequence elements

that are able to protect genes from inappropriate signals from the surrounding environment,

either by blocking the action of an enhancer or by affecting local chromatin organisation

[72]. Aside from genomic location, the line between promoter and enhancer in terms of
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gene-regulatory properties is somewhat blurred. In fact it has been observed that enhancers

and promoters share remarkably similar chromatin and sequence architecture [73]. There are

many examples of promoters with enhancer activity [74], and transcription can be initiated

directly from enhancers, generating enhancer RNAs [75].

Figure 10: Enhancer-promoter interactions. Illustration of gene-regulatory interac-
tions between distal cis-regulatory elements and genes. Assumes interaction with promoter
regions immediately upstream of each gene. Insulator regions may prevent some EPIs.

Clusters of enhancers called ’super-enhancers’ have also been functionally linked to cell iden-

tity [76]. Super-enhancers are described as groups of putative enhancers in close genomic

proximity (within 12.5kb of each other), densely occupied by Mediator (a multi-subunit com-

plex that mediates gene expression) and bound by master TFs Oct4, Sox2 and Nanog [77].

The median size of super-enhancers (as described in mouse embryonic stem cells (mESC))

is an order of magnitude larger than that of regular enhancers [76]. Several factors are en-

riched in both regular and super-enhancers, including RNA polII, enhancer RNA (eRNA),

the histone acetyltransferases p300 and CBP, cohesin, histone modifications H3K27ac and

H3K4me1, and increased chromatin accessibility. In mESCs super-enhancers are associated

(by proximity) with genes encoding factors involved in pluripotency. Subsequent studies in

various cell types, including pro-B cells and helper T cells, identified super-enhancers on the

basis of enrichment for H3K27ac and revealed that they are enriched for sequence motifs

corresponding to cell type-specific master transcription factors relative to normal enhancers

[78]. Recent studies have also revealed super-enhancers that control tissue-specific gene ex-

pression in human pancreatic islets [29, 79, 80]. Super-enhancers are also enriched at genes

23



with known oncogenic function such as the MYC locus [81].

1.3.5 Epigenetic modification of chromatin at CREs.

The core histone proteins in nucleosomes acquire post-translational chemical modifications

at various residues of their N-terminal tails. Active CREs are located in regions of open

chromatin, featuring nucleosome depletion and accessibilty to transcription factors and tran-

scriptional co-activators. These regions are enriched for histone variants H3.3 and H2A.Z

[82]. Incorporation of these histone variants creates domains of nucleosome hypermobility,

facilitating the binding of TFs and TF-dependent recruitment of chromatin remodelling com-

plexes [83]. But the most prominent marker of CRE activity is the epigenetic modification

of adjacent nucleosomes, including the (post-translational) addition of methyl and acetyl

groups to histone tails. Histones are modified by chromatin modifying enzymes which may

be activating (e.g. p300) or repressive (e.g. PRC2 (polycomb repressive complex 2)). Modi-

fication of lysine residues of histones 3 and 4 make up the enhancer signature, as identified by

the ENCODE project. Enhancers can be classified as active, poised or repressed depending

on the combination of histone tail modifications present (fig. 11).

Tri-methylation of lysine 27 on histone 3 (H3K27me3) is a repressive histone mark associated

with PRC2 and linked to chromatin compaction and gene silencing. Acetylation of the same

lysine residue (H3K27ac) is a key feature of nucleosomes flanking both active enhancers and

promoters. There is also an intermediate stage in which enhancers are poised for activity,

and are enriched for both activating and repressive histone marks. Nucleosomes at poised

enhancers still feature the repressive H3K27me3 mark and lack H3K27ac, but they gain

monomethylation of histone 3 lysine 4 (H3K4me1). H3K4me3 is a marker of active promoters

(in the developmental context) and when this mark is found in combination with H3K27me3,

associated genomic regions were found to be in a poised state. However, markers typically

enriched at enhancers such as H3K4me1 have also been observed at promoters [85], so here

again the line between promoter and enhancer is not so distinct, and the distribution of
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Figure 11: Schematic representation of histone modifications associated with
repressed, poised and active enhancer states [84].

histone marks may be context dependent. What is clear though is the distinction between

poised and active CREs, with the loss of repressive marks and gain of H3K27ac marking the

transition [73].

Deposition of H3K27ac, specifically at enhancer regions, is mediated by the SWI/SNF mul-

tiprotein complex, one of four major families of chromatin remodelling complexes containing

an ATPase subunit as the main catalytic subunit. ChIP-seq for the core SWI/SNF subunits

Smarcc1 and Smarca4 in a murine cell line demonstrated that over 95% of distal CREs

showed enrichment. Deletion of the SWI/SNF DNA-binding subunit Smarcb1 resulted in

significant reduction in SWI/SNF at enhancers (relative to promoters) and regions showing

the greatest loss of SWI/SNF binding also showed the strongest loss of H3K27ac. Gain-of-

function of Smarcb1 in a human cell line resulted in a global increase in H3K27ac levels, as

well as a ’subtle increase’ in H3K4me1. In addition, levels of p300 (an H3K27 acetyltrans-
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ferase) and enhancer-associated factors BRD4 and Mediator were also increased. These

findings demonstrate that SWI/SNF is essential for enhancer activation [86].

1.3.6 Gene regulatory alterations in cancer.

It has long been known that changes in gene expression levels drive tumourigenesis. Studies

in pancreatic cancer cell lines showed differential expression of genes involved in a variety of

cellular functions including control of transcription, cell cycle regulation, cell adhesion and

cell signalling [87]. Differences in gene expression levels have also been shown to account for

differences in cancer subtypes, such as those observed in breast cancer [88].

More recent studies have shown that in cancer, cell-type-specific enhancers can become dys-

regulated or ’hijacked’, resulting in the activation of genes that promote tumourigensis [89].

Activation of enhancers associated with oncogenes or multipotentiality factors may drive

tumour formation [90]. Several studies have described aberrant enhancer activity, resulting

from both mutations and epigenetic changes in cancer cells [91, 92, 93]. Specific ’enhancer

signatures’ were also recently described in a cohort of non-functional PNETs (those that do

not produce excess hormone), including variation in the level of activity at specific genomic

regions that indicated the likelihood of relapse following surgery. In addition to differential

enhancer activation, the ’unexpected yet consistent’ observation of structural variants (SVs)

resulting in juxtaposition of specific oncogenes to putative cis-regulatory elements (including

enhancers) was observed in a cohort of medulloblastoma samples. Subsequent analysis of

H3K27ac in the regions surrounding the SVs predicted the presence of multiple enhancers,

with enrichment consistent with the presence of super-enhancers [89].

There is also significant diversity in terms of tumour initiating GRNs. A pan-cancer screen

of accessible regions of the genome in 23 cancer types identified > 500, 000 novel distal

regulatory elements. Cluster analysis showed that almost half of the putative CREs identified

were present in a single cluster or small group of clusters. These cluster-specific regions were

enriched for binding sites of transcription factors associated with cancer and tissue identity
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[94]. With such heterogeneity, and the challenges associated with assigning function to

distal regulatory elements, the task of establishing components of GRNs driving aberrant

gene expression in human disease phenotypes is not trivial.

1.4 Regulatory genomics in the era of high-throughput sequencing

The first draft of the human genome took 10 years to complete, at a cost of nearly $3 billion,

using DNA sequencing technology developed by Fred Sanger. Since then the technology for

molecular biology experiments has developed rapidly, akin to the development of microchips,

to the point where an entire human genome can be sequenced in a matter of days and at

a fraction of the cost. This enables us to perform genome-wide assays across large sample

cohorts, increasing the statistical power of the conclusions.

Until recently, performing assays using samples with relatively few cells (< 1 million) was

technically very challenging. This may be due to loss of input material at various stages

of a protocol, including DNA preparation and enzymatic reactions. But new techniques,

including developments of existing methodology, have made experiments with limited cell

numbers more routine. A good example of this is chromatin immunoprecipitation combined

with high-throughput sequencing (ChIP-seq), which allows the mapping of histone modifi-

cations and chromatin-associated proteins on a genome-wide scale. ChIP-seq methodology

has developed rapidly from it’s initial use, becoming quicker and more high-throughput, as

well as enabling the use of more challenging samples. A major improvement to the protocol

came with the development of ChIPmentation [95] in which sequencing-compatible adaptors

are attached to bead-bound chromatin using a Tn5 transposase. This reduces the num-

ber of steps in the protocol by eliminating the need for DNA purification prior to library

amplification, and in doing so reduces time and sample losses.

With this increase in the generation of large data sets comes additional challenges in pro-

cessing and analysing large volumes of data, requiring increasingly complex computational

methods. Raw sequence must be subject to quality control checks to highlight any prob-
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lems that might affect downstream analysis. Once aligned to a genome and processed to a

binary output, the data may be utilised in a myriad of ways to try to tease out meaningful

results. Care is required when comparing data sets generated in different labs, and with

variations in protocol. There are now a multitude of algorithms for performing tasks such

as normalisation and differential analysis, and within each alternate statistical methods may

be used. Furthermore, designing computational protocols for integrating data from various

assays, such as epigenomic screens, transcript abundance and chromatin accessibility adds

additional challenges.

1.5 Motivation

Despite developments in experimental and computational biology, deciphering the gene-

regulatory networks involved in tumour development remains a major challenge. In addition

both cancer and diabetes remain widespread health problems, so increasing our knowledge

of the molecular mechanisms involved could be of great benefit to the scientific and medical

community. This study has the potential to uncover novel gene-regulatory mechanisms

involved in β-cell proliferation and insulin secretion, which could be useful in the diagnosis

and treatment of both insulinoma and other pathologies.

This work may be viewed in two parts; the first largely descriptive part focused on iden-

tifying differentially expressed genes and differentially active CREs as putative markers of

insulinoma development. The second, integrating muliple data sets to search for evidence

of links between groups of genes and CREs, and to build putative gene-regulatory networks

that could characterise functional β-cell tumours.
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2 Hypothesis and objectives
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2.1 Hypothesis

Changes to the gene regulatory architecture including the epigenetic landscape, chromatin

structure and polymorphisms in cis-regulatory elements may result in aberrant proliferation

and the loss of cell identity, and contribute to the development of functional pancreatic

neuroendocrine tumours.

2.2 Objectives

To create the first gene regulatory maps of a functional pancreatic neuroendocrine tumour

(insulinoma) by profiling active gene regulatory elements and gene expression. Using these

maps we aim to identify the key gene regulatory pathways underlying the expansion of the

β-cell mass and the maintenance of β-cell identity.

Profile the landscape of active CREs in pancreatic islets and insulinoma:

• Complete ChIP-seq assays to profile the deposition of the active histone mark H3K27ac

genome wide for all insulinoma samples.

• Complete RNA-seq to detect changes in gene expression levels for all insulinoma sam-

ples.

Identify insulinoma-specific gene regulatory elements and pathways by applying bioinfor-

matic techniques to epigenomic and transcriptomic data.

• Perform differential analysis to identify genomic regions significantly enriched in in-

sulinoma compared to pancreatic islets.

• Investigate the regulatory potential of the insulinoma-specific genomic regions by in-

tegrating gene expression data, identifying super-enhancers and comparing putative

insulinoma enhancers to other pancreatic tumour enhancers.

• Build insulinoma-specific gene regulatory networks.
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3 Materials and methods
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3.1 Ethics.

Human islets were isolated from brain-dead organ donors in accordance with national laws

and institutional ethical requirements at the Istituto Scientifico San Raffaele, Milan, Italy.

Insulinoma samples were obtained upon removal of the tumour without interfering with

the clinical patient management. All experiments were performed according to protocols

approved by the institutional research committees of the Istituto Scientifico Ospedale San

Raffaele and the Institute for Health Science Research Germans Trias i Pujol and the study

was conducted in accordance with the Declaration of Helsinki. All patients or their parents

gave informed consent. All samples and data were handled protecting patients’ privacy.

3.2 Wet lab

3.2.1 Samples

We elected to use human islets as controls rather than a β-cell line such as EndoC or FACS

purified β-cells. EndoC cells are essentially β-cells that have been induced to proliferate in

a cell culture. As the aim of this work is to discover in vivo drivers of β-cell proliferation,

using EndoC cells might be inapropriate as they are already biased towards proliferating.

FACS purified β-cells have been used in previous studies to investigate insulinoma, but the

purification process induces significant cell stress, which may in turn lead to gene-regulatory

changes that diverge from those of a normal beta cell.

32



Sample Gender Age BMI % Purity Cause of Death Experiment

HI6* Female 23 22.5 46 Cardiac arrest RNA-seq

HI7* Male 31 27.8 66 Cerebral bleeding RNA-seq

HI8* Male 77 24.5 59 Cerebral bleeding RNA-seq

HI9* Female 64 29.4 47 Cerebral bleeding RNA-seq

HI10* Female 58 21.3 67 Cerebral bleeding RNA-seq

HI25** Male 59 24.2 93.5 ischemic haemorrhage RNA-seq

HI32** Male 38 22.9 93.8 trauma RNA-seq

HI 19 Male 34 23.1 80 Cerebral bleeding ChIP-seq

HI 22 Male 52 25.1 85 Trauma ChIP-seq

HI 32 Male 62 23.1 90 Cerebral bleeding ChIP-seq

HI 37 Female 53 21.8 85 Cerebral bleeding ChIP-seq

HI 40 Female 62 29.3 90 Cerebral bleeding ChIP-seq

HI D2*** Female 47 28 85 Stroke ChIP-seq

Table 1: Patient data for human islet samples. Previously reported data: * [96] ** [97] ***
[80].

So, although human islets are a heterogeneous group of cells, at least 70% of those cells are

normal β-cells, lacking significant proliferative activity, and thus they represent the closest

approximation to the cells from which insulinomas would develop. Healthy human islet

samples were obtained from cadaveric donors (with no premortem diagnosis of diabetes)

from San Raffaele hospital in Milan, Italy (table 1). Additional ChIP-seq (HI D2) and

RNA-seq data from healthy human islet samples was obtained from previously published

reports [96, 97, 80].

Insulinoma samples were obtained from hospitals in Spain, Italy and Argentina. A 20−30cm3

segment of pancreas was resected from each insulinoma patient during surgery, from which

a tumour mass of 4− 6cm3 was isolated. Part of each resected tumour was frozen and part

was fixed with formaldehyde to preserve the DNA-protein contacts. Following histological
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Figure 12: Density plot of proliferation index (Ki67) values for insulinoma sam-
ples. The dashed green line indicates the mean average Ki67 value for all insulinoma samples
in our cohort.

evaluation, 75% of the samples were characterised as grade 1 (NET G1 or WHO 1) and

the remainder as grade 2 (NET G2 or WHO 2). These grades relate to the speed at which

the tumour is growing, so in this case the majority are growing slowly. This can further be

represented in terms of the proliferation index, or mitotic index, which is a measure of the

percentage of cells that stain positive for Ki67, a marker of cell proliferation. Slow growing

tumours have a Ki67 value of less than 2%, whilst aggressive tumours may have values up

to 50%. The majority of insulinoma samples in our cohort had Ki67 value of 1− 2% and the
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remainder had values of 5−6%, with a mean average Ki67 value of 3.8% (fig.12). Insulinoma

phenotype was determined via positive immunoreactivity tests, with tumour cells positive

for insulin and negative for glucagon, confirming the β-cell origin.

Data for non-functional PNETs, including ChIP-seq and RNA-seq was obtained from db-

GAP and uploaded by the authors of ’Enhancer signatures stratify and predict outcomes

of non-functional pancreatic neuroendocrine tumours’ [98]. Samples are characterised as

’PDX+’ (β-cell-like), ’ARX+’ (α-cell-like) and ’DP’ (double positive) based on a combina-

tion of immunohistochemistry and enhancer signatures. ChIP-seq data includes genome-wide

H3K27ac enrichment profiles for 4 PDX+, 9 ARX+ and 7 DP samples. RNA-seq data in-

cludes transcriptome profiles for 3 PDX+, 5 ARX+ and 2 DP samples.

3.2.2 ChIP-seq.

ChIP-seq is a well established and popular technique for identifying the binding sites of DNA-

binding proteins and the locations of histone modifications, and has been widely utilised by

the ENCODE consortium [66]. It is extremely versatile, enabling profiling of multiple factors

and modifications in multiple cell types, but there are also a multitude of options for the

various buffers and conditions that may be used at different stages of the technique. A level

of optimisation is thus required to adapt the technique to the specific cells and antibodies

under investigation. Furthermore, challenges still remained to obtain good quality data

from ChIP-seq with low cell numbers. We decided to utilise a version of the ChIPmentation

technique [95] as Schmidl et al had demonstrated results with as few as 500,000 cells to be of

similar quality to those from assays using several million cells. The ChIPmentation protocol

was a significant improvement on previous ChIP experiments using low cell numbers as it

reduced the number of steps involved and the overall cost per assay, enabling faster and

cheaper results. The protocol utilises a Tn5 transposase which enables DNA fragmentation

and adaptor ligation in the same reaction, applied directly to bead bound chromatin (fig.13).

ChIP-seq assays were performed with an anti-histone H3 acetylK27 antibody (abcam ab4729)
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Figure 13: Schematic of the ChIPmentation protocol, adapted from Schmidl et
al 2015 [95].

using 12 insulinoma and 4 human islet samples. These samples typically have low cell num-

bers and the total number of cells in each tumour mass is unknown. The ChIP-seq protocol

was based on the ChIPmentation technique [95] and can be found in full in the supplemen-

tary section. Briefly, fixed and frozen samples were sonicated to achieve an average fragment

size of around 200bp. 35µg chromatin was immunoprecipitated in a 0.4% SDS IP buffer

with 1.5µl anti-H3K27ac and 50µl 10%BSA. Following incubation, IPs were hybridised to

protein A+G beads and washed with low-salt, high-salt and LiCl wash buffers. IPs were

then incubated with 1µl Tagment DNA enzyme for 10 minutes, followed by washes with

RIPA and Tris-EDTA buffers. ChIP libraries were eluted in a 1% SDS, 0.1M NaHCO3

buffer. qPCR with SYBRgreen polymerase mix was used to determine the number of cycles

to amplify each library. Libraries were amplified using Illumina primers and Nextera Taq

mix and enrichment of ChIP libraries was determined by qPCR using custom primers (table

2). Sequencing of ChIP libraries was performed using a single-end protocol with minimum

40 million, 50bp reads. An additional 2 human islet ChIP-seq data sets from previous studies

were utilised for analysis.
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Name Oligonucleotide sequence
NEUROD ChIP-F CTTGGCTTCTTCTCCTTGGC
NEUROD ChIP-R GGAACTGGGAGAGGACGATC

MAFB ChIP-F GAATGAGCGCCGGGACAA
MAFB ChIP-R CGCCCTCCCCAACATACAAA

ISL1 ChIP-F GTGTGCCCTCCAAAGCTCTA
ISL1 ChIP-R GTTGTCACTCGTTCTCTTTTGCA

NANOG prom-F TCCCATTCCTGTTGAACCAT
NANOG prom-R TCCCGTCTACCAGTCTCACC

AMILASE-F GGCTTCTGGACCACTTGTTT
AMILASE-R ACAGGTATAAATGCGAACCCC

PDX1 R8B-F CATGAAAGCGGGTTAATCGT
PDX1 R8B-R GGCCCCTCACTCTTCTTACC

Table 2: Primer sequences for positive and negative control qPCRs.

3.2.3 ATAC-seq.

The assay for transposase accessible chromatin followed by high-throughput sequencing

(ATAC-seq) was used to profile regions of accessible chromatin in insulinoma and human

islet samples. Preservation of the native chromatin structure and the original nucleosome

distribution patterns are key to successful ATAC-seq experiments and therefore use of freshly

isolated tissue rather than fixed or frozen material represents the most efficient approach.

For this reason ATAC-seq assays were performed immediately following surgical resection at

the San Raffaele Scientific Institute in Milan, Italy.

A fraction of the fresh insulinoma (corresponding to approximately 50,000 cells) was used for

each sample. The protocol used is based on that originally developed by Buenrostro et al [99].

Cells were lysed in 300µl cold lysis buffer and centrifuged for 15 min at 500xg. Nuclei pellets

were then resuspended in 25µl transposase reaction mix containing 2µl of Tn5 transposase,

12.5µl TD buffer (Nextera DNA Library Prep Kit, 15028212, Illumina) and 10.5µl DEPC
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treated water per reaction, and incubated at 37◦C for 1 hour. Following incubation, 5µl clean

up buffer ((900 mMNaCl, 300 mM EDTA)), 2µl 5% SDS and 2µl Proteinase K was added and

the mix incubated for 30 min at 40◦C. Tagmented DNA was isolated using a 2x SPRI bead

cleanup (Agencourt AMPure XP5 ml, A63880, Beckman Coulter). Isolated DNA samples

were stored at −20◦C before library amplification. Tagmented DNA samples were shipped

to the Endocrine Regulatory Genomics lab where we amplified the libraries. An initial

amplification of 5 PCR cycles was performed (see ChIP protocol for library amplification

conditions), after which a qPCR assay was used to determine how many extra cycles were

required. The number of extra cycles used was x + 1 where x was determined by rounding

the Ct value of the qPCR reaction up to the nearest whole number. Enrichment of ATAC

libraries was determined by qPCR using custom primers [99].

3.2.4 RNA-seq.

RNA was extracted from frozen tumour samples using the Qiagen AllPrep DNA/RNA ex-

traction kit. RNA concentration was measured using a nanodrop spectrophotometer. RNA

quality was established using gel electrophoresis (to check for degradation) and RNA in-

tegrity number (RiN) tests, which compares several features of RNA integrity, including

28S:18S ratio, to produce an overall score [100]. RNA libraries were prepared using a riboso-

mal RNA depletion method and libraries were sequenced using a 150bp paired-end protocol.

After sequencing the raw reads were filtered to remove adaptor sequences, contamination

and low quality reads

3.2.5 YY1 T372R genotyping.

20 insulinoma samples were genotyped for the heterozygous C/T mutation T372R as de-

scribed in [56] using the following primers:

F: 5’-CACCCAGGGCAGGAATG-3’

R: 5’-CCTGTCTCCGGTATGGA-3’.
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3.3 Computational analysis

3.3.1 NGS analysis pipelines.

An initial cleanup of raw sequencing data was performed at the sequencing facility. This

included filtering to remove adaptor sequences, contamination and low quality reads. A

pipeline was created to perform all steps from quality control of raw data to peak calling.

The pipeline consisted of an R script with functions calling software using the Bash shell via

system commands. Each function included if statements allowing the customisation of the

pipeline for different NGS data sets including ATAC-seq and various ChIP-seq assays. QC for

datasets was performed using fastqc to identify any problems with the data before further

processing. Raw reads were aligned to hg38 using Bowtie2 [101] using standard settings.

Aligned reads were filtered for duplicates and repetitive sequences before conversion of the

sequence alignment map (SAM) to a binary alignment map (BAM) using Samtools [102].

ChIP-seq and ATAC-seq peaks were called using MACS2 [103]. For ChIP-seq of H3K27ac

the ’broad’ flag was used, with q-value cutoff 0.05 and broad cutoff q-value = 0.1. Although

H3K27ac covers relatively narrow domains compared to other histone marks, in the context

of peak calling with MACS2 it is a broad peak, as the standard (’narrow’) setting is designed

to detect peaks reflective of TF binding sites. The broad setting links nearby highly enriched

regions (max length 4x fragment length).

3.3.2 Count matrices

ChIP-seq data for 12 insulinoma, 6 human islet and 20 PNET samples was analysed in

order to identify differentially active (enriched for H3K27ac) regulatory elements. Initially a

consensus peak set (cps) was created using the cat command in Bash and the merge function

from bedtools [104]. This cps was imported into R [105] and then modified to remove X, Y

and non-canonical chromosomes. Aligned reads were then assigned to each consensus region

for each sample using featureCounts [106] from the Rsubread package to create a count
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matrix.

3.3.3 Transcript quantification

Transcript quantification for 11 insulinoma and 7 human islet samples was performed us-

ing Salmon [107], which includes a ’pseudo alignment’ algorithm for mapping reads to the

genome. Salmon combines quasi-mapping with a two-phase inference procedure to achieve

accurate and ’wicked-fast’ expression estimates. It takes a transcriptome index and unaligned

reads in fastq format and performs quantification directly, without generating intermediate

alignment files. It’s algorithm also takes into account sequence fragment biases such as GC

bias and fragment length distribution, learning auxiliary models that describe the relevant

distributions. Read count data (Salmon output) was imported into R using tximport [108]

and merged with transcript information using Ensembl biomaRt.

3.3.4 Regulatory element conservation.

All H3K27ac enriched regions were converted to a standard size (3 or 5kb) by extending 1.5

or 2.5kb in each direction from the midpoint of the region. Each region was then divided into

50bp bins for which a conservation score, derived from hg38.phastCons100way.bw (phastCons

scores for multiple alignments of 46 vertebrate genomes to the human genome) was assigned.

The mean score for each bin across all regions was then calculated. Conservation scores were

calculated for insulinoma CREs and compared to a set of random regions of similar size and

genomic distribution (blacklist regions including repetitive sequences excluded).

3.3.5 Regulatory element coverage and sharing.

CREs were split into proximal and distal groups (proximal defined as within 2kb upstream

and 200bp downstream of the nearest transcription start site). A consensus peak set was

then created, combining the coordinates of every peak (corresponding to a proximal or distal
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regulatory element) in ChIP-seq data from the 12 insulinomas. Bedtools intersect was used

to find every peak in each individual dataset that overlapped with the consensus set. For

each combination of a set number of samples (from 1 to 12) the sum (Mb) of all H3K27ac

peaks represented was calculated in R. For each CRE in the consensus set a sharing index

score (equivalent to the number of individual samples from each tissue type where the CRE

is enriched for H3K27ac) was also calculated.

3.3.6 Correlation clustering.

To investigate the inter- and intra-group variability between insulinoma and unaffected hu-

man islets for ChIP-seq and RNA-seq data we utilised correlation tests, specifically the

Spearman correlation. Correlation coefficients describe the directionality and strength of

the relationship between two variables. The more similar the profiles (e.g. gene expression)

between two samples, the higher the correlation. This allows a global overview of the data

and to identify any outliers. Spearman’s correlation is a rank-based algorithm that can han-

dle non-normal distribution of data and capture various relationships between the data [72].

Thus it is less restrictive than the Pearson correlation, which assumes a normal distribution

of data and a linear relationship between variables. As our initial aim is to get a general

overview of the data, using a less restrictive methods made sense.

Correlation coefficients were used as input for an unsupervised clustering algorithm to gen-

erate a graphical representation of the relationship between tumour and control samples for

counts of transcript abundance and enrichment for H3K27ac. Unsupervised learning algo-

rithms aim to infer the inner structure of data sets and then group or cluster them based

on similarities between them, where similarity refers to the distance between data points.

Hierarchical clustering is one of the most commonly used types of unsupervised learning, and

builds a multi-level hierarchy of clusters based on patterns or groups in the data. Each ob-

servation is initially treated as a separate cluster, and the most similar clusters are merged

iteratively. Unsupervised hierarchical clustering of correlation values was performed, and
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results annotated, using the ComplexHeatmap package [109] in R.

3.3.7 Differential analysis

There are several different algorithms designed to perform differential analysis of count data,

and there is little consensus about the most appropriate pipeline or protocol for this task

[110]. Selection of appropriate methods depends on the type of data (experimental origin)

being analysed, as well as prior knowledge or assumptions about it’s distribution. Many

popular differential expression analysis methods use some kind of parametric test where

certain assumptions are made about the distribution of the data. Such approaches can

make the process much faster (compared to non-parametric tests) by providing a form of

likelihood or functional distribution to the parameters. They also have greater statistical

power, meaning they are more likely to find true significant results. A certain level of

heterogeneity in both normal and aberrant cell types, as well as slight variations between

experiments, is expected. EdgeR [111] calculates relative changes in gene expression rather

than estimating absolute expression levels, meaning that any technical factor not related to

the experimental setup, such as gene length, should have no effect on differential expression

analysis.

The expression profile of each sample is the set of genewise counts and the expected size

of each count is a combination of the library size and the relative transcript abundance for

that specific gene and sample. The number of reads mapped to gene g in sample i may

be denoted as Ygi. Variation in the magnitude of Ygi between RNA samples is mainly due

to biological causes. Variation in Ygi due to technical differences can be captured using a

Poisson model [112], with < 0.5% of genes deviating from this model. Poisson distribution is

a discrete probability distribution expressing the probability of x number of events occurring

in time t, if the mean and variance are constant. EdgeR uses the negative binomial (NB)

distribution, which has one more parameter than the Poisson distribution, that adjusts the

variance independently from the mean using the following equation, where Mi is the total
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number of reads, φg is the dispersion and Pgi is the relative abundance of gene g in sample

i of experimental group j .

Y gi ≈ NB(MiPgi,φg)

For RNA-seq analysis we utilised quasi likelihood (QL) dispersion estimation, an extension

of the NB model which accounts for uncertainty in estimates of the NB dispersion for each

gene, allowing for overdispersion in the data and increasing error control. In this case,

the NB dispersion describes the overall biological variability across all genes and the QL

dispersion controls for any gene-specific variability above or below the overall level. Gene-

wise dispersion estimates are maximised using an empiracle Bayes approach, whereby QL

estimates of dispersion are squeezed towards a mean-dependent trend, reducing uncertainty

in the estimates and improving testing power.

This is a common analysis for gene expression, and several of the tools developed for this

type of analysis were optimised for gene expression data, but the noise and variability in

ChIP-seq often present additional challenges. In recent years many new methods have been

developed or modified for use with ChIP-seq data, utilising different algorithms, varying in

applicability and all have advantages and disadvantages. For consistency we used edgeR

for differential analysis of ChIP-seq data, but to account for the uncertainty in variability

we incorporated the RUVr method from the RUVseq [113] package. RUVr enables control

of ’unwanted variation’ by calculating residuals, from a first-pass GLM regression of raw

read counts, which can be used in the normalization of raw count data. Importantly, RUVr

assumes that the true biological effects are much larger than the unwanted variation.

For both RNA-seq and ChIP-seq differential expression (DE) was assessed for each transcript

or CRE using an exact test analogous to Fisher’s exact test, but adapted for overdispersed

data [114]. For RNA-seq the main analyses are focused on differential analysis between in-

sulinoma and unaffected human islets, but an additional DE analysis was performed between

non-functional PNETs and human islets in order to investigate genes related to the dysregu-

lation of insulin secretion that distinguishes the two tumour types. Two individual analyses
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(insulinoma vs human islets & insulinoma vs non-functional PNETs) were also performed

for ChIP-seq data sets, producing log(2) fold change and adjusted p-values for all regions in

the cps for each comparison. The two sets of results were then combined in a data frame

and results grouped using FDR (< 0.05) and log2FC (≥ [1.5]) cutoffs for significance.

3.3.8 Pre-ranked gene set enrichment analysis.

Pre-ranked GSEA produces an enrichment score for each gene set which is reflective of the

frequency with which individual genes in the set occur at the top or bottom of the ranked

data set. Transcript data was sorted according to logFC from the differential analysis from

highest to lowest and the transcript with the highest logFC for each gene was selected for

the analysis. Transcripts described as ’nonsense-mediated decay’ by Ensembl were removed.

Pre-ranked GSEA was performed using pathway gene sets from Reactome and two different

algorithms.

Analysis was first performed using the multi-level method from the fast gene set enrichment

analysis (fgsea) R package which enables accurate estimation of arbitrarily low p-values for

individual gene sets based on an adaptive multi-level split Monte Carlo scheme [115]. To

account for variation in experimental design, including the number of data sets in test and

control groups, we also applied a generally applicable GSEA (GAGE) [116]. GAGE calculates

an enrichment score (ES) that reflects the degree to which a gene set is over-represented at the

extremes (top or bottom) of the ranked list of genes. The significance of the ES is calculated

using an empiracle phenotype-based permutation test. A null distribution is calculated for

each ES and an empiracle p-value for the observed ES is calculated relative to this null

distribution. Only gene sets with adjusted p-values < 0.05 obtained using both algorithms

were considered significant.
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3.3.9 Chromatin accessibility within CREs

Peaks from ATAC-seq assays in insulinoma samples were combined with ATAC-seq peaks

from unaffected human islets and a pan-cancer cohort from Corces et al [94] to produce

a consensus peak set incorporating more than 400,000 regions of accessible chromatin. In

addition to this the nfr algorithm from HOMER was used to identify putative nucleosome

free regions from insulinoma ChIP-seq peaks. These two data sets were combined and

overlapped with CREs of interest in order to assign region(s) of accessible chromatin to each

H3K27ac-enriched CRE.

3.3.10 Super-enhancers

Super-enhancers were called for all H3K27ac data (insulinoma, islets and non-functional

PNETs) using the ROSE algorithm [76, 81]. As with regular enhancers, comparisons of

SEs from different tissues were performed by creating a consensus peak set, but in this case

a minimum overlap of 0.2 was used to merge peaks. Bedtools was used to find overlaps

between SEs from individual samples and the cps. Overlap data was loaded into R in order

to identify tissue-specific SEs and the extent to which SEs are shared between insulinoma

and non-functional PNETs.

3.3.11 Comparison to chromHMM and H3K27me3 data

CRE regions derived from ChIP-seq data were compared to regions from chromHMM analysis

and H3K27me3 ChIP-seq data sets from unaffected human islets using the findOverlaps

function from the GenomicRanges package in R. For H3K27me3 data overlap permutation

tests were then used to test if the overlaps were significant.
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3.3.12 Selection of CRE to TSS distance cutoff

As described, enhancers may act over large genomic distances. But in order to search for

putative insulinoma-specific enhancer-promoter interactions it is necessary to define a cutoff

(distance in bp between enhancer and promoter). Using a small cutoff risks eliminating a

significant number of functional interactions from the analysis, while a large cutoff risks incor-

porating many false positives. A genome-wide map of regulatory interactions in the human

genome (using cells lines from ENCODE and analysing several histone marks and transcrip-

tion factors) observed a median distance of 120kb [117]. We further analysed interaction

distance data from this study and found that over 99% of interactions occured within 200kb.

Another study using human induced pluripotent stem cells (iPSCs) and iPSC-derived car-

diomyocytes (CMs) observed a median EPI distance of 170kb and 164kb respectively [118].

These studies suggest 200kb to be a suitable range to investigate functional EPIs, whilst

limiting spurious results. Our approach was thus to extended the coordinates of each TSS

by 200kb upstream and downstream to produce a window to explore potential functional

relationships between differentially active enhancers and up-regulated genes in insulinoma.

3.3.13 Overlap-permutation tests.

Overlap permutation tests were performed using the overlapPermTest function from the

regioneR package [119]. Tests were performed for each group of CREs (identified from the

plot of differentially enriched CREs (fig.29)) vs TSS coordinates (+/− 200kb) corresponding

to the leading edge of each up-regulated gene-set from the gsea analysis. For each comparison,

random region sets consisting of regions of a similar size to the CREs were generated 1000

times and the number of overlaps with the TSS windows calculated. The profile of overlap

scores created was then used to calculate the likelihood that the number of overlaps of the

CRE group was significant. Tests were performed iteratively for every gene set (from GSEA

analysis) against each CRE group. The p-value for each test was recorded and then corrected

for multiple testing using the Bonferroni approach. Results with adjusted p-values < 0.05
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were considered significant for overlap.

3.3.14 Networks

Network analysis was performed using Stringdb. Gene lists were produced by selecting genes

from the leading edge of pathways identified using gene set enrichment analysis. Only genes

above a log2FC cutoff and overlapping specific CREs (as described in results) were selected.

A minimum confidence value of 0.4 (scale from 0 to 1) was used along with Markov clustering.

3.3.15 Non-functional PNETs.

H3K27ac ChIP-seq data for a collection of non-functional PNET samples was obtained from

Cejas et al [98] following an application for permission via dbGAP.
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4 Genome-wide profiling of gene

expression and CREs in pancreatic

islets and insulinoma.
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4.1 Transcriptome profiling of insulinomas.

Cellular function is dictated by transcriptional profiles and, as described above, the de-

velopment and functional identity of normal β-cells is the result of the action of several

transcription factors which act to regulate the expression of various genes. Components of

multi-protein complexes involved in activation and repression of gene expression are associ-

ated with insulinoma [42]. Furthermore the two most frequently mutated genes associated

with insulinoma (MEN1 and YY1 ) have critical roles in transcription regulation. Profil-

ing the transcriptome of insulinomas is therefore an important step toward identifying the

mechanisms driving the cell proliferation and insulin secretion observed in these tumours.

Whole RNA extracted from 11 frozen insulinoma samples was of sufficient quality to build

libraries for sequencing. An RNA integrity score of ≥ 7 is normally the minimum standard,

but we proceeded with sequencing of NET17 (RiN = 6.9). NET16 was incorrectly stored

in formalin following surgical resection, hence it’s low RiN score, so an RNA-seq protocol

designed for formalin-fixed samples was applied to this sample.

Sample ID RiN Concentration (ng/µl)
NET10 9.1 1190
NET11 8.1 383
NET14 9 1155
NET16 3.1 63
NET17 6.9 196
NET20 7.5 90
NET25 8.4 860
NET26 7.2 740
NET29 9.2 605
NET30 7.5 1715
NET38 8.9 267

Table 3: Quality control for Insulinoma RNA samples. RiN = RNA integrity number;
concentration measured by nanodrop spectrophotometer.

Paired-end transcriptome sequencing was completed for all 11 insulinoma samples. More

than 150 million reads (75 million in each direction) were generated for each sample (following

cleanup of raw data) with an average Q20 score of 98%. Fastqc analysis of the raw data
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Sample name Clean reads Q20(%) GC(%)
NET10 150,310,928 97.68% 53.69%
NET11 181,913,670 97.41% 50.33%
NET14 198,368,952 97.32% 52.11%
NET16 194,295,974 98.38% 60.88%
NET17 216,028,968 98.04% 51.75%
NET20 214,629,428 98.31% 55.43%
NET25 205,432,668 97.41% 52.93%
NET26 213,410,396 97.45% 53.24%
NET29 196,272,612 98.20% 55.20%
NET30 217,511,018 97.51% 53.30%
NET38 160,346,214 97.93% 52.50%

Table 4: RNA-seq read and quality data for insulinoma samples. ’Clean reads’ corresponds
to the number of reads for each sample following data cleanup (described in methods. The
Q20 score is the percentage of reads for which the probability of an incorrect base call is 1
in 100).

revealed that the majority of reads for each sample reached Q40 (probability of incorrect

base call 1 in 10,000). This data enabled comparisons of insulinoma transcript profiles with

existing data sets from unaffected human islets and thus the potential to identify genes and

pathways that are differentially regulated in insulinoma.

4.2 Optimisation of chromatin immunoprecipitation

To enable investigation of molecular mechanisms driving gene expression changes in insuli-

noma I also profiled CRE activity in insulinomas and healthy human islets. Acetylation of

lysine 27 on histone 3 (H3K27ac) is a prominent marker of activity for both proximal and dis-

tal CREs. Genomic regions enriched for this mark were identified using chromatin immuno-

precipitation (with an anti-H3K27ac antibody) followed by high-throughput sequencing. For

this assay, all stages from cell lysis and sonication to library preparation and quality control

were completed in the Endocrine Regulatory Genomics lab. Optimisation of the protocol

was performed using samples from a colorectal cancer cell line before proceeding with (more

precious) insulinoma and human islet samples.
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The chromatin immunoprecipitation stage of the experiments was very similar to other pro-

tocols. As with all such protocols the overall goal is to map the regions of DNA that bind

to an antibody with the maximum signal-to-noise ratio and genome coverage [120]. There

are several steps for which sub-optimal conditions may compromise the success of the as-

say. Firstly, to achieve maximum resolution it is important to fragment the chromatin to

an average size of 150 - 200bp (approximate size of DNA wrapped around a nucleosome)

whilst preserving the interactions between modified histones and DNA. The challenge here

lies in the fact that the efficiency of sonication varies from sample to sample, particularly

in solid tissue. I used a standard protocol for the initial sonication cycles across all samples

(see methods) followed by additional cycles as required. Figure 14 shows an example of the

fragmentation achieved, with the majority of fragments in the desired range.

Figure 14: Sonication results. Tapestation profile of sonicated chromatin. The main
peak around 200bp accounts for the majority (≈ 80%) of the chromatin in the sample. A
larger peak between 2 and 5kb is relatively undigested material.

Optimisation of the immunoprecipitate reaction involved a series of ChIP experiments using

various SDS concentrations. I observed that the yield of immunoprecipitated DNA was

inversely correlated with the concentration of SDS. However, the library concentration was
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not the only factor to be affected by SDS concentration. The final step in a ChIP protocol

before sequencing is to check the enrichment of the amplified library. Regions expected

to be enriched (gene regulatory regions known to be active in β-cells - positive controls)

should have a significantly higher signal compared to regions expected to have low or zero

enrichment (negative controls) - evaluated using a quantitative assay such as RT qPCR.

Higher SDS concentrations in the IP reduced the enrichment levels of positive controls, most

likely by limiting the efficacy of the antibody. Optimal results were thus achieved using an

SDS concentration that allowed the best compromise between yield and enrichment.

Figure 15: The relationship between immunoprecipitate SDS concentration and
ChIP-seq library concentration. SDS concentration of the IP plotted against library
concentration for the first few ChIPmentation experiments of the study. A line of best fit
shows a an approximately linear relationship.
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4.3 Insulinoma and control ChIPs showed strong signal enrich-

ment at key β-cell factors.

Signal-to-noise ratio of the ChIP libraries was evaluated by quantitative real time PCR

prior to proceeding with library sequencing. qPCR enables the quantification of initial

starting material by measuring the point (PCR cycle number) at which a reaction reaches

a fluorescent intensity above background levels. The enrichment of signal was profiled at

regulatory regions of genes important for the proper functioning of β-cells.

Figure 16: Enrichment qPCR results. Bar plot shows the enrichment of immunoprecip-
itated material (concentration derived from qPCR Ct values) for positive controls (regions
proximal to the genes NEUROD, MAFB and ISL1) compared to negative controls (NEGS,
corresponding to regions of chromatin that are inactive in islets) - see primer info (table 2).
UCSC web browser images for MAFB (top) and ISL1 (bottom) loci; green and red big-
wig tracks correspond to healthy human islet and insulinoma data respectively. Blue boxes
highlight the region covered by the qPCR primers.
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NEUROD is expressed in all islet cell types but crucially in β-cells it acts as a transactivator

of the insulin gene [121]. MAFB is required for insulin and glucagon transcription and is

required for the maintenance of key β-cell markers PDX1 and SLC2A2 [122, 32]. ISL1

(Insulin Gene Enhancer Protein) binds to the enhancer region of the insulin gene and is

an important factor in it’s transcription [123]. All insulinoma and control ChIP libraries

showed strong enrichment (> 10 fold) for these factors over negative controls (fig. 16). The

high signal-to-noise ratio and its consistency across samples was confirmed through visual

analysis of ChIP profiles via the UCSC genome browser and the subsequent computational

analysis.

4.4 QC, genome alignment and peak calling for ChIP-seq data.

Initial analysis of sequence data from ChIP-seq experiments using Fastqc showed the data to

be of consistently high quality across all data sets. An example of per base and per sequence

quality metrics for insulinoma is given in figure 17.

(a) (b)

Figure 17: Fastqc analysis results for insulinoma ChIP-seq of H3K27ac. Per
base (A) and per sequence (B) quality results from fastqc analysis of ChIP-seq data for an
insulinoma sample (NET30).

Insulinoma ChIP-seq data aligned to genome hg38 with a 99% total average alignment rate
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and 80% single alignment rate (table 5). The number of peaks called per sample ranged

from 36,000 to 73,000 with a mean average of 54,700. These statistics suggest the successful

implementation of experimental protocols and the generation of high quality data.

Sample name # Raw reads Genome alignment rate # Peaks called
Single (%) All (%)

HI 19 105751270 83.5 98.5 75261
HI 22 48182652 83.5 99.1 65290
HI 32 23812683 77.9 93.1 60953
HI 37 85131100 84 99 64152
HI 40 78309325 84 99.2 62420
HI D2 30967085 81.9 97.3 80598
NET 10 59802823 81.6 98.9 52324
NET 11 75691688 81.4 97.9 72950
NET 14 53599712 81.3 99.2 59213
NET 16 46796968 80.1 99 42875
NET 17 63105141 80.7 98.7 61870
NET 20 63259531 78.6 98.6 51623
NET 21 57372840 80 99.1 56605
NET 25 54135363 79.4 98.9 35933
NET 26 30908538 81.1 98.6 54039
NET 29 44014639 81.6 98.8 49270
NET 30 56360741 79.1 99 56577
NET 38 57015729 76.4 98.7 63074

Table 5: Genome alignment and peak calling statistics for human islet and insulinoma
samples. HI = human islets, NET - insulinoma.

4.5 A comprehensive profile of active CREs.

Having high quality data is an important first step, but it’s usefulness is limited unless

it represents a comprehensive map of the factor in question. This means a set of regions

enriched for H3K27ac across the sample cohorts that is representative of the vast majority of

active CREs in insulinoma and control samples is required. This is also important in order

to give confidence in the statistical analysis and any conclusions drawn from downstream

analysis. With a data set incorporating data from x samples, the question is, how many
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(a) Distal CREs

(b) Proximal CREs

Figure 18: Coverage plots for H3K27ac enriched regions in insulinoma and hu-
man islets. LHS plots = insulinoma (x12); RHS plots = healthy human islets (x6). Dots
represent the total coverage (Mb) of peaks of enrichment for H3K27ac for each combination
of the number of samples permuted. Black dots represent the mean average coverage and
vertical black lines the standard deviation from the mean. Dashed lines connect the means
at each level. Proximal defined as within 2kb upstream and 200bp downstream of the nearest
TSS.

more regions would be added to the set if we were to profile x+1 samples? Starting with one

56



sample and adding one at a time, plotting the coverage (Mb) of CREs for every combination

of samples, the difference in average coverage between x and x+1 will be reduced with each

iteration until the addition of a new sample (x + 1) will not result in an increment of the

genomic coverage of the CRE data.

As the insulinoma H3K27ac coverage curve reaches a plateau we are getting close to satura-

tion in terms of approximating a comprehensive set of CREs, and adding extra data would

add only a minimal number of extra regions to the set. Figure 18 shows the coverage (Mb) of

genomic regions enriched for H3K27ac in our sample cohorts. In each case (insulinoma and

unaffected human islets; distal and proximal CREs) coverage approaches a peak, indicating

that the data is sufficient to approximate saturation in terms of generating a comprehensive

set of active CREs. Importantly, this suggests that we are not excluding a large number of

enriched regions from downstream analysis. Calculating the difference between mean cover-

age for 11 and 12 samples indicates that by adding the 12th sample we gain less than 4%

extra enriched sites. Extrapolating forward, by adding a 13th sample we would gain approx-

imately 3.5%, compared to the 28% difference between 2 and 3 samples. The difference in

coverage between proximal and distal CREs indicates, in line with the previous analysis, that

distal elements are approximately 10 times more abundant. The range of coverage values

for each permutation also suggests, as we would expect, more diversity in distal CREs in

comparison to proximal regions.

4.6 Characteristics of H3K27ac enriched regions.

Consensus peak sets (cps) generated from ChIP-seq data for healthy human islets and in-

sulinoma contained 131,119 and 178,675 regions respectively. Part of this difference in the

number of active regions could be explained by the number of samples in each cohort (12

insulinoma vs 6 human islet). However, from the previous analysis we can say that the

number of samples is not a limiting factor in profiling comprehensive data sets of H3K27ac

enrichment. This would suggest therefore, that insulinoma development is characterised by
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an overall increase in CRE activity.

(a) Human islets

(b) Insulinoma

Figure 19: Distribution of H3K27ac enriched regions. Proportion of H3K27 enriched
regions from consensus peak sets of a) human islets and b) insulinoma located within a set
distance of annotated transcription start sites as calculated by GREAT analysis.

As mentioned, this data includes both enhancers and promoters, and by analysing specific

characteristics of the regions we can begin to describe the landscape of CREs in insulinoma

and compare it to that of unaffected human islets. Promoters are defined as proximal CREs,

which means they are located within 5kb (usually 2kb) of the transcription start site of

the gene they control. Conversely, regions with enhancer function may be located either
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proximal or distal to the TSS(s) that they regulate. Figure 19 shows the distribution of

regions in each cps relative to transcription start sites annotated to GRCh38. Here we can

see that for both islets and insulinomas the majority of regions are distal to TSSs, with less

than 10% located within 5kb, which fits with observations from the coverage analysis. As

we can expect a proportion of the proximally located regions to feature enhancer activity we

can approximate that between 5 and 10% of regions within each cps are promoters.

Figure 20: Conservation of insulinoma CREs. Mean phastCons conservation scores
for 50bp binned regions across insulinoma CREs (red line) and random genomic regions (blue
line).

Another defining feature of gene-regulatory elements is the level of evolutionary conservation.

Whole genome sequencing projects focusing on a wide range of animals, from vertebrates to

nematodes, have revealed that non-coding sequence is conserved at a much greater level than
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was previously expected. In particular, extremely conserved CREs have been found to cluster

around genes involved in regulating development [124]. In vertebrates, CREs are often more

conserved than protein-coding sequences. Evolutionary conservation of H3K27ac enriched

regions is therefore a strong indication of functional importance. Comparing phastCons

conservation scores for H3K27ac enriched regions from insulinoma samples to a random

control set of genomic regions we observe high mean conservation scores for the insulinoma

data (fig. 20). Mean conservation scores are highest (above background) at the centre of

each region, but high levels of conservation are recorded for regions encompassing almost

1kb up and downstream of the centre, encompassing a region size that is characteristic of

most CREs. These results provide further evidence that the regions identified from ChIP-seq

data of H3K27ac enrichment are functionally important in gene regulation.

4.7 Evaluation of accessible chromatin within CREs.

A key part of the identity of any cell type is the action of specific transcription factors. Under

normal conditions TFs are the molecular orchestrators, activated by signalling pathways and

in turn activating transcriptional programs. Changes to CRE activity in a tumour cell may

alter or initiate de novo activity of TFs, which may in turn affect the identity of the cell type

from which the tumour develops. CRE regions are defined by the enrichment of flanking

histones for specific epigenetic marks, but the CRE itself is located in the accessible regions

of chromatin between enriched nucleosomes. Therefore, rather than searching the entirety

of regions represented by ChIP-seq peaks for TF binding sites, a more targeted approach is

to use accessible regions (NFRs) overlapping ChIP-seq peaks. This concept is illustrated in

figure 21.

Quality control of ATAC-seq libraries showed suboptimal enrichment (< 5x) for positive

controls (regions expected to be accessible in cells with a β-cell identity) and fragment dis-

tribution, for most insulinoma samples assayed. Ensuring efficient chromatin fragmentation

(whilst preserving native chromatin structure) and Tn5 transposase distribution is more
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Figure 21: Identifying TF binding sites within CREs. Schematic representation of
the identification of TF binding sites by overlapping ChIP-seq and ATAC-seq data.

challenging in solid tissues than in cell lines, and these factors may account for the limited

success seen here. Finally, I sequenced five ATAC-seq libraries and four human islet control

libraries. Narrow peak calling using MACS2 produced an average of ≈ 100, 000 peaks for

islet ATAC-seq data. In contrast 3 of the insulinoma ATAC-seq data sets produced fewer

than 10,000 peaks and only one produced more than 30,000. We thus decided to combine

this data with other ATAC-seq profiles, to locate possible TF binding sites within the active

CREs already identified. ATAC-seq data from multiple sources was used to direct the search

for TF binding DNA motifs overlapping peaks from insulinoma ChIP-seq data. I incor-

porated data from genome-wide chromatin accessibility profiling of more than 400 tumour

samples [94]. The combined data set, generated using data from insulinomas, human islets

and various cancer types, as well as the results of nfr analysis of insulinoma ChIP-seq reads,

included more than 500,000 accessible regions. This was sufficient to assign one or more

accessible regions to the vast majority of active CREs from our insulinoma ChIP-seq data

sets, enabling a comprehensive search for TFs involved in insulinoma development.

4.8 Summary and concluding remarks.

I have generated the first genome-wide profiles of H3K27ac enrichment in a cohort of in-

sulinoma samples. This is a big step towards identifying insulinoma-specific gene-regulatory

elements. Moreover such data can be used to identify TF binding sites within active CREs by
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integrating chromatin accessibility data. One potential limitation of studying a rare tumour,

in this case with a sample cohort of less than 20, is heterogeneity. But by analysing the cov-

erage of H3K27ac enriched regions across our cohort we have demonstrated that we are able

to capture most of the variability due to tumour heterogeneity for this histone mark. For the

majority of insulinomas I also generated corresponding RNA-seq data enabling the profiling

of the insulinoma transcriptome which could be used to infer gene regulatory networks.

Sample ID YY1 T372R RNA H3K27ac ATAC

NET 10 WT

NET 11 WT

NET 14 WT

NET 16 T372R

NET 17 WT

NET 20 WT

NET 21 WT

NET 23 WT

NET 25 WT

NET 26 WT

NET 29 WT

NET 30 WT

NET 33 WT

NET 34 WT

NET 35 WT

NET 36 WT

NET 38 T372R

Table 6: Summary of experiments for all insulinoma samples in the study cohort. Green
cells indicate experiments completed successfully, blank cells indicate no experiment com-
pleted, WT = wild type, T372R = samples heterozygous for that mutation.

I have demonstrated that the data is of sufficient quality to use for downstream analy-
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ses. This data enables comparisons of enhancer activity and gene expression in insulinoma

and unaffected human islets and thus identification and characterisation of changes in the

gene-regulatory architecture that lead to insulinoma development. Table 6 summarises the

experiments conducted for each insulinoma sample. Where possible RNA-seq analysis was

performed for each sample for which ChIP-seq was successfully completed. YY1 T372R mu-

tation analysis was performed for all insulinoma samples, regardless of the success of other

assays.
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5 The gene-regulatory landscape of

insulinoma.
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Bioinformatics may be defined in several ways, but essentially it involves developing and

applying computational methods to analyse data from biological experiments to produce

an interpretable output. It requires using robust statistical methods, but there is no one-

size-fits-all approach. The methodology to conduct experiments in molecular biology has

developed at an incredible pace, generating vast amounts of data, so the design and use

of in silico methods for handling this data is of ever increasing importance. Using the

data described in the previous chapter I take on this challenge in order to describe the

gene-regulatory landscape of insulinomas. First though, it is necessary to genotype each

insulinoma for known recurrent mutations, in order to enable accurate interpretations of any

novel findings.

5.1 Genotyping known recurrent mutations.

Despite excluding all subjects with a family history of MEN1, I nevertheless detected one

insulinoma in our cohort (NET14 INS) carrying a coding mutation in the MEN1 gene. I

also genotyped all insulinoma samples in our cohort for the T372R mutation in YY1. Sanger

sequencing of the region surrounding this mutation identified heterozygous mutations in

2 (NET16 INS & NET38 INS) out of the 20 insulinomas (10%) in our cohort (fig.22).

This represents a much lower mutation rate for T372R than the 30% reported in other

studies [56]. In addition the minor allele was at a low level in both samples, suggesting

mosaicism of the T372R genotype within the tumour samples. Unfortunately the low number

of cases detected limits the possibility of performing solid statistical analysis when comparing

tumours carrying this mutation against YY1 wild type tumours. Nevertheless, we can

speculate on the potential effect of this mutation on downstream analysis as the findings

from RNA-seq data (fig.23) and cluster analysis of CRE activity (fig.27b), described below,

suggest it results in widespread changes in CRE activity and subsequently gene expression.
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Figure 22: Genotyping of the T372R mutation in YY1. Chromatogram of Sanger
sequencing for NET38 INS, one of the insulinomas heterozygous for the c.C1115G/p.T372R
mutation in the YY1 gene.

5.2 Insulinoma development is driven by changes in gene

expression.

The identity of a cell is dictated by the action of signalling pathways, transcription factors

and gene-regulatory elements. The observable output of these factors is the transcriptome,

the amount of RNA corresponding to each possible gene transcript in the cell, in other

words, the level of expression of each gene. As described, this output is frequently modified

in disease states, and therefore identifying gene expression that is significantly different in an

abnormal cell or tissue compared to the normal state is extremely important. The starting

point for delineating the relationship between data sets from high-throughput sequencing

experiments is a matrix of count data where rows represent transcripts or genomic regions

and columns represent samples. Various algorithms may then be applied, the majority of

which enable modelling of the data in order to estimate variance.
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5.2.1 Data correlation and hierarchical clustering

Using unsupervised hierarchical clustering of pairwise correlations of transcript abundance

in insulinomas (n = 11) and unaffected human islets (n = 7) we found a clear distinction

between tumour samples and healthy islets indicating that tumour development involves

widespread changes in gene expression (fig.23). Insulinoma samples heterozygous for the

T372R mutation in YY1 (NET16 INS & NET38 INS) cluster together, and separately

from the rest of the insulinomas, suggesting that this mutation has a significant effect on

gene expression. NET10 INS also features a significantly different gene expression profile,

and appears similar to NET16 INS & NET38 INS. However, NET10 does not carry a

mutation in YY1 and we are yet to identify a mutation that would account for the gene

expression profile of this sample.

Figure 23: Insulinoma development is characterised by significant changes in
gene expression. Unsupervised hierarchical clustering of pairwise Spearman correlations
of normalised transcript abundance counts for insulinoma (NET) and unaffected human
islets (HI).
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There is also some heterogeneity within the unaffected human islet samples, but crucially

all human islet control data clusters in a distinct group separate from the insulinoma data,

enabling a direct comparison of normal and pathogenic gene expression profiles.

5.2.2 Differential analysis of gene expression.

Given that insulinomas can be distinguished from unaffected human islets on the basis of

gene expression profiles, we sought to identify genes that are differentially expressed in

insulinoma. Count data from RNA-seq for a total of 50513 transcripts was analysed across

11 insulinoma and 7 human islet samples. 5980 transcripts were significantly (log2FC > [1.5]

& FDR < 0.05) up-regulated (insulinoma vs human islets) and 5168 were significantly down-

regulated (fig.24). Focusing on the insulin gene, expression of INS in our cohort was 10 fold

higher in insulinoma vs human islets. So in addition to dysregulation of insulin secretion,

the expression of INS is significantly higher in insulinomas. Interestingly, expression of

INS was ≈ 1000x higher in insulinoma than a small cohort of PDX+ (derived from β-cells)

non-functional PNETs, suggesting a significant loss of insulin production in non-functional

PNETs.

Two PAX6 protein-coding transcripts were also 10 fold more abundant, which may explain,

at least in part, the upregulation of insulin, given the role of PAX6 in insulin gene expression.

Interestingly, PDX1 was significantly (FDR < 0.01) downregulated (log fold change −2.3).

Although PDX1 plays a significant role in establishing β-cell identity, studies have shown

that islets with reduced PDX1 expression tend to mount a larger Ca2+ response to glucose,

possibly mediated by an increase in expression of Ca2+ channel subunits [35]. Taken together,

these results point towards a mechanism involving significant changes in gene expression

that is responsible for the dysregulation of insulin production and secretion observed in

insulinoma. Other key TFs that are involved in establishing β-cell identity, including NKX6.1

and MAFA are expressed equally in insulinoma and unaffected human islets.

The majority of genes encoding chromatin modifiers, in which recurrent variants described
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Figure 24: Differential analysis of transcript abundance. Fold change (log2) vs FDR
adjusted p-values (-log10) for differential analysis of transcript abundance (insulinoma vs
human islets). Green and red dots indicate significantly (log2FC > [1.5] & FDR < 0.05)
downregulated or upregulated transcripts in insulinoma respectively. Grey dots indicate
non-significant results (FDR >= 0.05).

by Wang et al [42] are located, are stably expressed (insulinoma vs human islets) in our

cohort. The exception to this is the lysine methyl transferase KMT2C, which is significantly

upregulated in insulinoma (log2FC+2.8, FDR 0.003). KMT2C (along with KMT2D) methy-

lates lysine 4 of histone 3, increasing genome-wide deposition of H3K4me1. In doing so it

facilitates the activation of enhancers, partly by promoting the recruitment of the coactivator

and H3K27 acetyltransferase p300 [125, 126]. Wang et al observed a recurrent copy number

gain variant in KMT2C in insulinoma samples (compared to healthy β-cells), and as copy

number gain is associated with increased gene expression (as observed in a pan-cancer study

[127]) this is in line with what we would expect if KMT2C is overexpressed.
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5.2.3 Upregulated genes are enriched for chromatin modifiers.

Given that gene expression changes are associated with the insulinoma phenotype, I next

sought to find specific gene sets or pathways that are overrepresented in the data. Expression

changes in individual genes may be the result of a multitude of different factors, and may

have only a small effect on the identity of a cell. However, finding gene sets that form

part of specific pathways, enriched for genes with expression changes in the same direction,

would be very significant, and enable us to tease out the changes most likely to have a large

effect. GSEA, a widely used method for analysis of gene expression data, determines whether

differences between biological states are significantly associated with a priory defined gene

sets. However, classical GSEA methods are suboptimal for data sets of different sample

sizes and experimental designs. Initial analysis with a standard GSEA approach produced

inconsistent results, making interpretation challenging.

A more recent development of GSEA enables the use of pre-ranked gene expression data.

Pre-ranked GSEA produces an enrichment score for each gene set which is reflective of the

frequency with which individual genes in the set occur at the top or bottom of the ranked data

set. Pre-ranked gene-set enrichment analysis of normalised counts of transcript abundance

identified 17 significantly (FDR < 0.05) up-regulated Reactome pathways (insulinoma vs un-

affected human islets), the most significant of which are displayed in fig.25. Interestingly, one

of the most significantly up-regulated gene sets was ’chromatin modifying enzymes’, indicat-

ing that chromatin modification is a key part of insulinoma development. More specifically,

histone demethylases (HDMs) and histone acetyl transferases (HATs) were up-regulated,

suggesting that a mechanism involving the derepression of CREs in human islets is an im-

portant factor in insulinoma development. This supports the hypothesis that up-regulation

of enhancer activity is a key driver of insulinoma development and an important factor in

insulinoma-specific gene-regulatory networks.

Genes involved in neuronal cell development and signalling by Rho GTPases and receptor

tyrosine kinases (RTK) are also upregulated. One of the most significantly up-regulated
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Figure 25: Gene-set enrichment analysis identifies up-regulated gene-sets in in-
sulinoma. The most significantly up-regulated (insulinoma vs unaffected human islets)
gene-sets (adjusted p − value < 0.01) identified by pre-ranked GSEA. Lighter blue bars
represent higher normalised enrichment scores; vertical dashed lines mark adjusted p-value
thresholds.

genes (log2FC = 8.7, FDR = 0.0005) in the Rho GTPase gene set is CDC42. CDC42 is

involved in the regulation of multiple cellular functions and is known to be an important

mediator of cell proliferation and insulin granule mobilisation [128]. The leading edge of the

RTK gene-set includes the insulin receptor gene (INSR) and epidermal growth factor receptor

(EGFR). EGFR expression is required for embryonic β-cell maturation, islet migration and

maintenance of β-cell mass and proliferation [129, 130].

I further demonstrated the up-regulation of genes in pathways identified by GSEA analysis

by comparing the fold change of transcripts within each upregulated gene set to all other

transcripts (control set) from differential analysis of RNA-seq data. The average log2FC

for the control set is, as expected, very close to zero, whilst the average for each GSEA

gene is ≈ 5, confirming the upregulation of genes in these pathways (fig. 26). Curiously, no

gene sets were significantly (padj < 0.05) downregulated in insulinoma, which suggests that

activation, rather than repression, of gene-regulatory networks is the most prominent driver

of insulinoma development.
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Figure 26: Genes in up-regulated pathways show higher than average expres-
sion. Distribution of log2FC (insulinoma vs unaffected human islets) of normalised RNA-seq
counts for transcripts from up-regulated gene-sets identified by gene-set enrichment analysis
and a control group of all remaining transcripts from RNA-seq analysis.

5.3 Profiling CREs enriched for H3K27ac genome-wide can distin-

guish insulinoma from human islets and non-functional PNETs.

If the development of insulinoma is driven by significant changes in gene expression and

chromatin modification by HATs, we would expect to observe changes in the profile of

H3k27ac enrichment in insulinoma samples compared to unaffected human islets. Correlation

clustering of ChIP-seq data (fig.27) demonstrates a clear distinction between insulinomas and

human islets suggesting that changes to enhancer activity are a key part of the development
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of these tumours. I also integrated H3K27ac ChIP-seq data for non-functional PNETs from

published research. Here too we observe a clear distinction from insulinoma, suggesting

that alteration of gene regulatory mechanisms is a key marker of both cell proliferation and

dysregulation of insulin secretion that is characteristic of insulinomas.

(a) (b)

Figure 27: Cluster analysis of H3K27ac ChIP-seq data. Unsupervised hierarchi-
cal clustering of pairwise Spearman correlations of normalised ChIP-seq read counts. a)
Insulinoma (NET, purple), unaffected human islets (HI, green) and non-functional PNETs
(PNET, orange). b) Insulinoma (NET) and unaffected human islets (HI).

Performing correlation cluster analysis using large sample sets (such as the non-functional

PNETs) can mask some relationships between samples. For example, differences between

samples in one cohort may appear less significant when compared to samples from different

cells and tissue types than if they were compared to cells from the same origin. For this reason

I performed a separate correlation cluster analysis comparing just insulinoma and human islet

samples (fig.27b). This analysis highlights a high degree of similarity between insulinomas

heterozygous for YY1 T372R. Once again we do not have enough samples carrying this
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mutation to enable statistically robust analysis, but we can postulate that this mutation

is effecting CRE activity genome-wide in these tumours, possibly via changes in H3K27ac

deposition resulting from aberrant DNA binding of YY1.

Figure 28: Principal component analysis of H3K27ac data. PCA plot of insulinoma
(x12) (purple dots), unaffected human islets (x6) (green dots), PDX+ PNETs (x4) (orange
dots, ARX+ PNETs (x9) (grey dots), double positive (DP) PNETs (x7) (blue dots).

In the clustering analysis I treated all non-functional PNETs as one cohort, but Cejas et

al described differences in the enhancer profiles of these samples and classified them by

the enrichment of H3K27ac activity around key genes encoding cell-type-specific TFs [98].

Thus ’alpha-like’ and ’beta-like’ non-functional PNETs featured signal enrichment around

ARX and PDX1 respectively, whilst a third group (double positive (DP)) showed signal

enrichment around both genes. PCA analysis (fig.28) revealed that overall the enhancer

landscape of PDX+ PNETs is more similar to that of insulinoma than ARX+ or DP PNETs.

So whilst we identify distinct gene regulatory mechanisms driving insulinoma we also observe

changes to the gene-regulatory architecture that are common to both functional and non-

functional PNETs derived from the same cell type. Furthermore, there is some overlap

between insulinomas and unaffected human islets in terms of CRE activity, and we could

74



potentially split the insulinomas into two or more groups on the basis of this factor. Moving

forward though, for the purposes of statistical power in deciphering insulinoma-specific gene-

regulatory networks, we will consider all insulinomas as a single group.

5.4 Insulinoma-enriched CREs.

I next sought to determine the differences in CRE activity between insulinoma and unaffected

human islets in order to identify CRE activity involved in insulinoma development.

Figure 29: Differential analysis of H3K27ac ChIP-seq data. Fold changes (log2)
of H3K27ac enrichment at CREs in insulinoma vs unaffected human islets (x axis) and
insulinoma vs non-functional PNETs (y axis). Coloured dots represent CRE with FDR
< 0.05 and log2FC ≥ [1.5]. Grey dots represent regions that fall outside of the FDR and
fold change cutoffs and are therefore considered equally active in the 3 tissues.

Differential analysis of ChIP-seq data identified groups of CREs that are differentially en-

riched for the H3K27ac mark in insulinoma compared to unaffected human islets and non-
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functional PNETs (fig.29). I compared > 250, 000 H3K27ac enriched regions comprising a

consensus peak set generated using data from all samples. 32,453 regions display insulinoma-

specific activity when compared to unaffected islets (group 8), and a small subset of almost

2000 CREs (group 1) are more active in insulinoma compared to both unaffected islets and

non-functional PNETs. These CREs are phylogenetically conserved (fig 30) and 97% are

distal to the nearest TSS. Interestingly, there are three times more CRE regions that are

up-regulated in insulinoma (compared to unaffected islets) than down-regulated.

Figure 30: Conservation of insulinoma-specific CREs. Mean phastCons conservation
scores for 50bp binned regions across insulnoma CREs (red line) from group 8 of figure 29
and a set of random genomic regions (blue line).

Often the most significant changes (such as exonic mutations) are associated with loss-of-

function of proteins or pathways associated with tumour suppression, but here we see clear

evidence of a gain-of-function mechanism leading to tumour development. Regions falling

outside of the fold change and adjusted p-value cutoffs are considered equally active in the
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three tissues and will be referred to as ’stable’. The groups of CREs identified from this

analysis (1-9 in fig.29) formed the basis of downstream analysis aimed at deciphering gene-

regulatory networks driving the development of functional β-cell tumours.

Figure 31: Distribution of super-enhancers across human islets and PNETs. Blue
bars indicate the number of super-enhancers called in each tissue. X axis labels indicate the
tissue profiled (INS = insulinoma, HI = unaffected human islets, PNET = non-functional
PNETs).

Since the vast majority of changes in H3K27ac enrichment were found distal to TSSs (i.e. not

promoter regions) I also profiled super-enhancers in unaffected human islets, insulinomas and

non-functional PNETs and generated a set of ’insulinoma-specific’ super-enhancers (SEs).

Over 5500 SEs were called in the 12 insulinoma samples, half of which were specific to

insulinomas compared to unaffected human islets and almost 2000 were specific compared

to islets and non-functional PNETs. Furthermore, the number of SEs specific to either

tumour type is more than six times higher than SEs specific to unaffected islets. This can
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be accounted for in part by the fact that there are more samples in both tumour cohorts,

but this data also suggests that de novo establishment of SEs maybe a key marker of PNET

development. As SEs are characterised by very high enrichment for H3K27ac deposition, this

result further highlights the importance of CRE activation in insulinoma development. De

novo SE formation could account for some of the most significant changes in gene expression

observed in insulinomas compared to unaffected islets.

5.5 Motif analysis for putative insulinoma CREs

Motif analysis was performed on all regions of accessible chromatin overlapping distal (out-

side of loci parameters defined for proximal regions) CREs from group 8 of figure 29. For

each significantly enriched motif I searched for associated transcription factors expressed in

our insulinoma cohort with log2FC > 0 compared to unaffected human islets. Three TFs

with the most significantly enriched motifs are shown in figure 32. Early B-Cell Factor 1

(EBF1) is required for B cell lineage commitment, repressing factors that promote alterna-

tive cell fates [131]. It has also been shown to be enriched in regions of hypomethylated DNA

in breast cancer. Pathway analysis of hypomethylated regions correlated to nearby EBF1

motifs showed enrichment for regulation of cell proliferation and apoptosis [132]. Myocyte

enhancer factor 2C (MEF2C) is one of several forms of MEF2 TF (and the predominant form

in the mammalian cerebral cortex) and induces a mixed neuronal/myogenic phenotype in

P19 precursor cells [133]. Constitutive activation of MEF2C rescued P19 cells dominant neg-

ative for the mitogen-activated protein kinase p38α from apoptosis, suggesting that MEF2C

prevents cell death during neuronal differentiation. ETS-related gene (ERG) is one of 28

E-26 transformation-specific (ETS) genes in the human genome and was first described in

human colorectal carcinoma cells [134]. ERG has a key role in embryonic development via

regulation of the WNT/β-catenin signalling pathway. It is also overexpressed in a high pro-

portion of prostate carcinomas and is one of the most consistently overexpressed oncogenes

in malignant prostate cancer. High levels of ERG are associated with loss of cell polarity
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and changes in cell adhesion [135].

Figure 32: Motif enrichment in differentially active CREs. Information on TFs and
associated consensus binding sites obtained from motif analysis using HOMER.

Transcription factor TF match score p-value RNA-seq log2FC INS vs HI
ERG 0.95 1e−67 +5.0
MEF2C 0.92 1e−27 +4.5
EBF1 0.87 1e−26 +5.0

Table 7: Summary of data from motif analysis.

5.6 Summary and concluding remarks

I have shown that the insulinoma samples in our cohort feature genome-wide enhancer activ-

ity and gene expression profiles that are significantly different from unaffected human islets.

More than 30,000 CREs and 5000 transcripts (including chromatin modifying enzymes) are

significantly upregulated (insulinoma vs human islets). I have identified over 2000 de novo

super-enhancers in insulinoma, adding further evidence of the importance of enhancer activ-

ity in insulinoma development. I have also identified DNA binding motifs for TFs (known

79



to regulate cell identity and cell proliferation) that are enriched in insulinoma-specific CREs

and for which corresponding transcripts are upregulated in insulinoma (vs unaffected human

islets). Further investigation of the functional relationship between upregulated CREs and

genes may enable insights into the structure of insulinoma-driving gene regulatory networks.
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6 Insulinoma-specific gene-regulatory

networks.

81



6.1 Insulinoma-specific CREs are linked to changes in gene ex-

pression.

Having established that the development of insulinomas is coupled with broad changes in gene

expression and CRE activity, the next challenge is to find functional links between activated

CREs and up-regulated genes. To establish whether, on a broad scale, insulinoma-specific

CREs have a functional impact on gene expression, I overlapped the genomic coordinates

of enhancers in each group of figure 29, with transcript coordinates from insulinoma and

human islet RNA-seq data (extended by 200kb (see methods)).

Figure 33: Linking enhancer activity to gene expression. Box plots showing the
range of log2FC (from differential analysis of RNA-seq data: insulinoma vs human islets)
for transcripts with TSS within 200kb of enhancers in CRE groups (CRE classification is as
in figure 29 (dark (red and green), light (red and green) and grey boxes represent transcripts
associated with CREs that are up-regulated, down-regulated and stable respectively). Box
plot limits show upper and lower quartiles.

The average log2FC of transcript abundance (insulinoma vs human islet) is significantly
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higher for genes associated with differentially active enhancers in insulinoma than for stable

enhancers (fig.33). Concordantly, enhancers that are more active in islets are associated with

genes with reduced expression levels in insulinoma compared to unaffected islets. Statistical

tests confirmed that the increase in average log2FC (INS vs HI) of genes associated with

up-regulated enhancers compared to those associated with stable enhancers is significant

(p− value < 2.2x10−16).

6.2 Putative enhancer-promoter links hint at mechanisms of in-

sulinoma development.

Linking enhancer activity to changes in gene expression is a major challenge in modern

molecular biology given the large variation in location of distal regulatory elements relative

to the promoter(s) they interact with. Chromatin conformation experiments can be used

to identify such contacts genome-wide, but often have limited resolution. 3C and 4C ap-

proaches can provide higher resolution but the results are limited to the specific genomic

loci analysed. In silico approaches to predicting EPIs rely on the availability of multiple epi-

genetic and transcriptomic datasets to build models of chromatin architecture surrounding

CREs and describe how these models are related to gene expression. Without these data

sets, distal CREs can be assigned to genes simply by proximity, using a window around tran-

scription start sites, but this approach has significant limitations. The number of positive

(and false positive/negative) interactions identified will vary greatly depending on the size

of the window used and the gene-specific regulatory landscape. In fact one study found that

less than 50% of distal CREs regulate the nearest gene [136].

Initial analysis of the potential function of insulinoma-specific CREs utilised the Genomic

Regions Enrichment of Annotations Tool (GREAT), which uses a binomial test to assign on-

tology terms to CREs within a user defined window. GREAT analysis resulted in significant

hits for RTK signalling, regulation of apoptosis and regulation of ion transport when using

CREs in group 8 of figure 29. This is a useful starting point but relies on evidence from
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studies of CRE-gene relationships from a large number of studies in a wide range of tissues.

A more robust and informative approach could take advantage of the association between

large groups of CREs and upregulated gene sets identified in the tissue(s) of interest, rather

than approaching the problem from the perspective of individual EPIs.

Figure 34: Results of overlap permutation tests. Adjusted p-values for overlap per-
mutation tests between TSS +/- 200kb for each gene set enriched for genes up-regulated in
insulinoma (rows) and groups of CREs identified by differential analysis, plus insulinoma-
specific super-enhancers (columns).

By performing overlap permutation tests between CREs and regions surrounding up-regulated

genes from the leading edge of enriched gene sets (fig.25), I found evidence pointing to a po-

tential mechanism in insulinoma development. The question I was asking when performing

these tests is ’do these two sets of regions overlap more than would be expected by chance?’.

In this case the regions corresponded to different groups of CREs (the genomic coordinates

of H3K27ac enriched regions) based on the classifications made in figure 29 and genes (TSS

+/− 200kb) from the leading edge of each enriched gene set identified by GSEA (fig.25). An

overlap higher than expected by chance suggests enhancer activation has a functional effect

on gene expression. Permutation tests showed that enhancers activated during insulinoma

development are enriched in regions surrounding up-regulated genes involved in nervous sys-

tem development and function, signalling by receptor tyrosine kinases, Rho GTPases and

VEGF (fig.34). Surprisingly though, there was no significant association between activated

enhancers and upregulated chromatin modifying enzymes. This does not rule out a func-

tional effect of insulinoma-specific enhancers on genes encoding chromatin modifiers, but it

does suggest that an alternative mechanism, such as a mutation or copy number alteration,
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is more likely to be the primary cause of the observed upregulation of these genes. This

observation is consistent with findings from Wang et al, 2017 [42], who reported an accumu-

lation of mutations in chromatin modifiers in an insulinoma cohort, particularly copy number

gains such as that described in KMT2C. Super-enhancers follow the same pattern as regular

enhancers, being significantly associated with the aforementioned signalling pathways and

nervous system genes (with the possible exception of Rho GTPase signalling, although this

result is very close to significance) and no association with chromatin modifiers.

6.3 Insulinoma chromatin architecture develops via de-repression

and activation of CREs.

Upregulated genes (insulinoma vs unaffected human islets) within the chromatin modifier

gene set include components of the SWI/SNF and MOZ/MORF complexes. The SWI/SNF

complex (BRG1/SMARCA4 and associated factors in humans) has a key role in activation

of enhancers via H3K27ac and is also required for p300 activity at enhancers [86]. Similarly

the MOZ/MORF complex (KAT6A and KAT6B) along with bromodomain-containing co-

activators have H3K27 acetyltransferase activity. In addition to the genes that increase

H3K27ac, our data suggest a role for histone demethylases, such as KDM6B. This observation

suggests a mechanism by which CREs that are normally inactive in human islets are de-

repressed by removal of H3K27me3 and subsequently activated by acetylation at H3K27.

To further investigate this mechanism I overlapped CREs (both up- and down-regulated in

insulinoma) in groups from figure 29, plus CREs upregulated in non-functional PNETs vs

unaffected human islets, with data from ChromHMM analysis of unaffected human islets.

This analysis showed that more than half of the insulinoma-specific CREs are activated de

novo. 10−15% of differentially active CREs in insulinoma and non-functional PNETs overlap

polycomb-repressed CREs in human islets (fig.35a). To confirm this finding I then overlapped

CREs from the same groups with regions enriched for the repressive H3K27me3 mark in

healthy human islets. I found significant overlap between CREs activated in insulinoma
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and those repressed in human islets, whilst stable and downregulated CREs did not overlap

significantly (fig.35b). Taken together these analyses showed activation of CREs in regions

that are actively repressed in human islets, highlighting a potentially relevant mechanism in

insulinoma development.

(a) (b)

Figure 35: Overlap of CREs with H3K27me3 enriched regions and ChromHMM
analysis from unaffected human islets. A Overlap of CRE regions from fig.29 (plus
CREs upregulated in non-functional PNETs vs unaffected human islets) with regions classi-
fied by chromatin state (see key) as calculated by chromHMM analysis of a set of unaffected
human islet samples. B Red bars show the percentage overlap between groups of CREs from
fig.29 and regions enriched for H3K27me3 in unaffected human islets. Green stars indicate
groups with a statistically significant overlap.

6.4 Gene-regulatory networks.

Combining the results of the previous analyses, I built putative insulinoma gene-regulatory

networks. The first (fig. 36) includes significantly upregulated genes from the chromatin
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Figure 36: Stringdb interaction network 1. Interaction network featuring chromatin
modifier genes with significantly (FDR < 0.05) upregulated (insulinoma vs unaffected human
islets) protein-coding transcripts, plus genes from up-regulated gene sets with derepressed
CREs within 200kb. Colours represent individual gene sets: Chromatin modifiers (green),
Rho-GTPases (pink), VEGF(dark grey), RTK (yellow) and nervous system (blue) gene sets.
Genes associated with super-specific CREs are coloured purple. Lines in-between gene names
represent evidence of molecular interaction with line thickness correspondng to the confidence
level assigned to each interaction. The marker for the INS gene is larger only to highlight
it’s position within the network.
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modifier gene set and leading edge genes from the other upregulated gene sets (RTK, Rho

GTPase and VEGF signalling, and nervous system development) with associated (by prox-

imity) derepressed CREs from group 8 (differentially active in insulinoma vs human islets or

non-functional PNETs). I also included the insulin gene in the network. Whilst we would

not expect repressed CREs to be associated with INS in unaffected human islets, several

genes in the network feature strong interactions with INS. This suggests that an increase in

insulin production may itself be partly responsible for expansion of the β-cell mass in in-

sulinoma. This phenomenon was reported in murine β-cells [137] and in other tumour cells

[138]. The group of CREs used includes some regions that are differentially active compared

to both unaffected human islets and non-functional PNETs, but the majority are equally

active in both functional and non-functional PNETs. This allowed us to build a much larger

network than that which would have been possible using only CREs in group 1 of fig.29,

the ’super-specific’ CREs in insulinoma. However, by highlighting proteins in the network

that are linked only with these super-specific’ CREs we are able to describe a network with

different elements, some of which are common to both types of PNET and some of which

are specific to insulinoma.

Another interesting feature of this network is MEF2C (myocyte enhancer factor 2), a tran-

scription factor that was a significant hit from motif analysis of group 8 CREs. MEF2C is

activated by lysine acetyltransferase 2B (KAT2B), an upregulated chromatin modifier in the

network. MEF2 TFs are regulators of neuronal survival [139] and MEF2C is a p38-binding

protein. Phosphorylation of MEF2 by p38 has been linked to the protection of neurons

from apoptosis [133]. One study investigating epigenetic programs in mouse cortical neurons

found that MEF2C binds enhancer regulatory elements close to target genes involved in

neuronal plasticity and calcium signalling [140]. If these functions are conserved in human

cells then it is very likely that MEF2C is a key orchestrator of insulinoma development.

The majority of derepressed CREs linked (by proximity) to genes in this network are dif-

ferentially active in both insulinoma and non-functional PNETs compared to unaffected

human islets. However, there were interesting examples of genes with proximity to ’super-
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specific’ derepressed CREs (enriched for H3K27ac compared to both unaffected human islets

and non-functional PNETs) including genes linked to cell proliferation and insulin secretion.

NEDD4, an E3 ubiquitin-protein ligase, overexpression of which has been associated with

the growth of breast tumours [74] and FOS, a component of the AP-1 TF, could play major

roles in the proliferative ability of beta cells in insulinoma. Also linked to super-specific

derepressed CREs was CACNA1C which encodes the voltage-gated Ca2+ channel Cav1.2.

Cav1.2 knockout mice featured impaired insulin secretion [141]. Overexpression of this gene

in insulinoma could explain (at least in part) the dysregulation of insulin secretion seen in

insulinomas.

While this network encapsulates the key findings from this study, it represents a limited num-

ber of CREs that are ’super-specific’ (differentially active in insulinoma vs both human islets

and non-functional PNETs) to insulinoma. I have shown that the upregulation of chromatin

modifiers is a key part of insulinoma development, and therefore it seems important to create

a network incorporating all genes linked to these super-specific CREs (fig. 37). This network

may include false positive components (genes that aren’t regulated by super-specific CREs)

but all proteins displayed are coded for by up-regulated genes (insulinoma vs human islet).

CDC42 which, as described above, is an important mediator of cell proliferation and insulin

granule mobilisation, appears as a major node. Several other proteins of the Rho GTPase

family appear to interact with CDC42, but recent evidence suggests that CDC42, by itself is

an important modulator of insulin expression [142]. The most differentially expressed gene

(insulinoma vs human islets log2FC = 13) is COL4A1 which encodes a subunit of type IV

collagen. There are 15 super-specific, differentially active CREs within 200kb of this gene,

strongly suggesting that insulinoma-specific increases in enhancer activity are responsible,

at least in part, for this increase in it’s expression. Type IV collagen is abundant in the

peripheral matrix of human islets, affecting the stiffness of the extra-cellular matrix. The

’islet-matrix relationship’ has been shown to be a key determinant of β-cell function and

survival in vitro [143].
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Figure 37: Stringdb interaction network 2. Interaction network featuring genes from
the leading edge of all pathways identified by GSEA analysis with significantly (FDR <
0.05) upregulated (insulinoma vs unaffected human islets) protein-coding transcripts, with
insulinoma super-specific CREs within 200kb. Colours are derived from Markov clustering.
Lines in-between gene names represent evidence of molecular interaction with line thickness
corresponding to the confidence level assigned to each interaction.
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7 Discussion
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Insulinoma is a very rare disease, and as such, opportunities for performing studies on large

sample datasets have been limited compared to common diseases such as breast cancer

or prostate cancer. Rare diseases account for a relatively small fraction of the healthcare

burden, and therefore fewer resources are directed at investigating the mechanisms that cause

their development. However, given the role that β-cells play in glucose homeostasis, the

prevalence of diabetes, and the low proliferative ability of β-cells under normal physiological

conditions, investigation of the mechanisms driving insulinoma development is a relevant area

of research. Although several studies have investigated exonic mutations and gene expression

in insulinoma development (including YY1 and MEN1), no previous study has attempted

to map cis-regulatory elements in insulinoma samples, or to build insulinoma-specific gene

regulatory networks. As such this study represents a significant step forward in insulinoma

research.

Perhaps the most comprehensive prior study of the molecular mechanisms driving insulinoma

was conducted by Wang et al [42], in which whole exome sequencing was used to identify

variation, including SNVs, CNVs and indels in a cohort of 26 human insulinomas. Recurrent

exonic variants identified in this cohort were significantly enriched in genes encoding epige-

netic regulators. However, the authors did not extend the study to profile the enrichment

of histone marks genome-wide. These findings influenced the direction of our study, as we

focused efforts on profiling changes in the activity of cis-regulatory elements, by completing

genome-wide profiles of H3K27ac enrichment in our insulinoma cohort. Another key finding

from Wang et al was the enrichment of upregulated genes (insulinoma vs normal β-cells) for

the repressive mark H3K27me3. Our findings shed further light on this mechanism, showing

that this de-repression extends to associated enhancers, confirming the importance of the

differential regulation of chromatin modifiers to the insulinoma phenotype.

Investigating rare diseases inevitably involves working with a limited number of samples.

However, collaborations with labs in several countries have enabled the collection of a cohort

of 20 insulinoma samples. The relatively small size of the tumours presented challenges in

generating high quality genome-wide epigenomic and transcriptomic profiles. Here we have
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developed a robust protocol for chromatin immunoprecipitation with small cell numbers,

utilising the tn5 transposase enzyme (tagmentation), that could be used for future studies.

I have demonstrated the high quality of the data generated, including genome-wide profiles

of the histone mark H3K27ac and transcriptome profiles for insulinoma samples. I have

also shown that this data is sufficient to approximate a comprehensive set of cis-regulatory

elements in insulinoma and to perform robust statistical analysis. Initial analyses focused

on describing the landscape of enhancer activity and gene expression in insulinoma and to

compare and contrast it with that of a cohort of unaffected human islets.

The landscape of H3K27ac enriched chromatin in our insulinoma cohort consists of almost

178,000 regions, nearly 40,000 more than the number seen in unaffected human islets. Fur-

thermore, differential analysis of ChIP-seq data showed 3 times as many gained active regions

compared to those lost (32,453 vs 10,243). The key finding from this analysis therefore is

that insulinoma development is characterised by an overall increase in chromatin activation.

The heterogeneity of the control samples prevents us from drawing firm conclusions regard-

ing down-regulated CREs or genes, as although β-cells are the most abundant cell type in

human islets, it is possible that any increase in enrichment (of H3K27ac) relative to insuli-

nomas could originate from other islet cell types. But this point should not detract from

the significance of the results obtained and the conclusions drawn. We observe that CREs

upregulated in insulinoma map to phylogenetically conserved sequences, a further indication

of their potential function as gene regulatory elements. More than 90% of H3K27ac enriched

regions in insulinoma are located distal to the nearest TSS, and the largest group of such

regions is located more than 50kb from a TSS. Overlap of ChIP-seq data for H3K27ac with

similar data for the repressive histone mark H3K27me3 and ChromHMM data enabled fur-

ther characterisation of the landscape of insulinoma-specific cis-regulatory element activity.

This analysis showed that activation of CREs that are actively repressed under normal phys-

iological conditions is a major factor in insulinoma development. It also provided further

evidence that the insulinoma gene regulatory landscape includes a large number of de novo

(compared to unaffected human islets) regulatory elements.
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Given that the function of enhancers is to positively regulate the expression of associated

genes, we would expect to observe a corresponding increase in transcript abundance, and

indeed there are more upregulated transcripts than downregulated. Differential analysis

of transcript abundance identified putative factors involved in the dysregulation of insulin

production and secretion in insulinoma. Gene set enrichment analysis showed that genes

that code for chromatin modifiers are some of the most upregulated in insulinoma compared

to unaffected human islets. This finding is further evidence that changes in the activity

of gene regulatory elements are a major part of the molecular mechanisms responsible for

the insulinoma phenotype. In addition we identified signalling pathways enriched for genes

upregulated in insulinoma (vs human islets). I believe that the approach taken in this

analysis (pre-ranked GSEA using only significant hits from two algorithms) was very robust

statistically and gave a clear evaluation of the pathways and mechanisms most associated

with the insulinoma phenotype.

Integration of ChIP-seq and RNA-seq data formed the basis of in silico investigations aimed

at elucidating more precisely the aberrant pathways and networks involved in insulinoma

development. In the absence of data from experiments that profile chromatin contacts,

assigning function to distal CREs in terms of the genes they regulate is extremely challenging.

We can assign limits to their activity based on established knowledge and evidence in the

literature, but a complete understanding of enhancer action is thus far elusive. However,

to begin to understand the relationship between CRE activity and gene expression, and to

build putative gene regulatory networks, it’s not necessary to evaluate every single element,

but simply to look for relationships at a more general level. To do this some boundaries must

be drawn, limits within which the majority of functional relationships operate. As described

above, the key limit (distance from the nearest TSS) was arrived at by careful evaluation of

the existing literature.

As described, up-regulated genes encoding chromatin modifiers are not significantly associ-

ated with activated enhancers within the genomic window investigated. Perhaps chromatin

modifiers are regulated by fewer enhancers or by enhancers located more distally than the
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200kb window around each TSS. However it also seems likely that another mechanism is

involved in the activation of genes within this gene set. One working hypothesis is that gain-

of-function mutations, including gain of CNV could be associated with the upregulation of

chromatin modifier gene(s) in insulinoma. This hypothesis is consistent with the observation

by Wang et al [42] that insulinomas are enriched for copy number gains in this class of genes.

Taken together, data from this study and Wang et al suggest that a mutational mechanism af-

fecting chromatin modifier genes is a strong candidate for driving the insulinoma phenotype.

Finally, activation of polycomb-repressed regions in unaffected human islets would likely be

facilitated by the upregulation of histone demethylases and acetyltransferases observed from

the RNA-seq data. This therefore potentially represents a key feature of enhancer-driven

development of insulinomas.

Incorporating insights from all analyses in this study I built the first insulinoma gene regu-

latory networks. The first is a snapshot of the most significant findings presented here and

shows putative links between chromatin modifiers, transcription factors, signalling pathways

and insulin. Whilst I believe that this network encapsulates some very important findings,

it represents only a handful of genes that are associated with ’super-specific’ (upregulated

in insulinoma vs human islets and non-functional PNETs) enhancers, meaning that several

of the tumour-driving factors in the network could be common to both insulinoma and non-

functional β-cell tumours. The second network presented addresses this by including only

proteins encoded by genes associated with super-specific enhancers. As mentioned, due to

the challenges of assigning distal CREs to genes, the confidence with which we assign indi-

vidual proteins to this network has some limitations. However, the strict inclusion criteria

(log2FC ≥ 2 transcript abundance insulinoma vs human islet) ensures that false positives

are limited.

Parallel studies using whole-genome sequence data have shown that all insulinoma and hu-

man islet samples in this study show high purity levels (75-85%) and as β-cells are by far the

largest cell type in human islets we can be confident that these reults are not significantly

limited by heterogeneity of the tissues studied. However, future analysis using single-cell and
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chromatin contact technologies would provide the opportunity to validate these findings and

provide insights into the cell sub-population that might comprise pancreatic islets affected

by insulinoma tumours. Further studies including gain and loss of function assays in human

β-cell lines could provide experimental confirmation for the role of candidate genes identi-

fied in the studies described in this thesis. Insulinoma is not just a rare tumour, it is one

that develops from cells with extremely low proliferative ability (under normal physiological

conditions). The proliferation of β-cells observed in insulinomas is essentially the opposite

phenotype to that which characterises the very common disease, diabetes. So, in this case,

focusing research efforts on a rare disease could also provide benefits in terms of advances in

treatment approaches for common disease.
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8 Conclusions

The results presented here represent important insights into the gene regulatory networks

involved in the development of insulinomas. Through successful implementation of ChIP-

seq and RNA-seq in a large cohort of tumour samples and unaffected pancreatic islets I

have generated genome-wide profiles of gene expression and the activity of cis-regulatory

elements in insulinomas. I have shown that insulinomas display widespread changes in

gene expression and CRE activity compared to unaffected human islets and non-functional

PNETs. I have also integrated these data sets to identify components of gene-regulatory

networks as candidate drivers of cell proliferation and insulin dysregulation in insulinomas.

I have uncovered potentially key epigenetic mechanisms driving insulinoma development.

Our results show that insulinoma development is associated with the upregulation of key

chromatin modifiers, resulting in widespread activation of CREs, including a significant

number of regions that are normally repressed in human islets. Activated CREs promote ex-

pression of genes involved in nervous system development, and signalling pathways involving

Rho GTPases, receptor tyrosine kinases and VEGF. Overexpression of genes resulting from

elevated CRE activity specific to insulinoma (inactive or stable in non-functional PNETs)

may explain the dysregulation of insulin and subsequent hyperinsulinemic hypoglycemia seen

in insulinoma patients.
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9 Supplementary methods

9.1 ChIPmentation

Sonication:

keep sample on ice

• Prepare lysis buffer - aliquot 1ml and add 1ul PIC just before use. Use 600ul (can

adjust depending on size of sample).

• Incubate for 5 mins with lysis buffer

• Break up tissue with doucer (after approximately 5 mins and 15 mins of incubation) -

need to grind the tissue to try to break up the lumps complete lysis and homogenisation

are crucial for efficient sonication. Total incubation = 20-25 mins.

• Each cycle of sonication = 5 x 1 min (40 sec ON & 20 sec OFF) Initial sonication for

all samples = 4 cycles

NOTES: make sure water is cold add ice to cool water after each cycle but make sure

there is no ice floating in the water afterwards

• After 4 cycles of sonication transfer 40ul (or 5 10%) of chromatin to another tube for

QC and put the rest in freezer @ -80 or on ice in fridge (for up to 48 hours)

• Extract DNA from sample (as described below)

• Send DNA for Tapestation analysis

Successful sonication = around 80% fragments in the 100 500bp range

• Decide if further sonication is required usually one or two more cycles
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Prepare IP

• Measure concentration of DNA from sonicated chromatin and (if required) pipette

appropriate amount of chromatin to a new tube

• Spin sonicated chromatin at full speed for 15 mins @ 4C

• Transfer supernatant to another tube

• Add dilution buffer (and lysis buffer if required) to give a volume of 1ml and an SDS

concentration of 0.4% (for H3K27ac antibody).

• Add 50ul of 10% BSA (100mg/ml = 10g in 100ml)

• Add 1.5ul antibody (depends on antibody) and incubate at 4C (cold room) O/N with

rotation

Beads:

• Aliquot 20ul Protein A + G bead slurry (= 10ul beads + 10 solution)

• Wash with PBS: Add 1ml PBS, mix, place on magnet, wait for beads to move towards

magnet, remove supernatant, repeat.

• Resuspend in 20ul PBS

• Add beads to chromatin/antibody sample and incubate at 4C (cold room) for 2 hours

(max) with rotation

Washes:

NOTE : it is recommended that buffers are ice cold : pipette mixing should be gentle

• Place sample on magnetic rack (on ice), wait for beads to move towards magnet, remove

supernatant.
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NOTE: need to keep chromatin cold make a trough for magnet stand in the ice

• Remove sample from magnetic rack, add 1ml LOW SALT Immune Complex Wash

Buffer, pipette up and down to mix and incubate for 4 mins at 4C (cold room) with

rotation. Place sample on magnetic rack and remove the supernatant.

• Repeat for HIGH SALT Immune Complex Wash buffer and LiCl Immune Complex

Wash buffer

ChIPmentation:

All washes use magnetic rack

• Wash beads twice with 10mM Tris-HCl (pH 8.0) (brief no incubation)

During second wash, before placing sample on magnetic rack, transfer sample to an-

other tube this will decrease tagmentation of unspecific chromatin fragments

• Resuspend beads in 30ul tagmentation reaction buffer and add 1ul Tagment DNA

Enzyme (from the Nextera DNA Sample Prep Kit Illumina)

• Incubate for 10 mins @ 37C with gentle agitation. During incubation (twice roughly

every 2-3 mins) briefly remove sample from thermo block and flick mix to resuspend

beads to maintain contact between beads and reaction mix.

• Wash twice with RIPA buffer (from version 2 of ChIPmentation protocol)

• Wash twice with Tris-EDTA transfer sample to another tube during second wash (as

above)

Elution:

• Place the sample at room temperature and add 150ul Elution buffer to the beads.

• Pipette to mix and incubate with rotation for 15 mins at room temperature
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• Place on magnetic rack, allow beads to settle to magnet and transfer the supernatant

to another Eppendorf

• Re-elute by adding another 150ul Elution buffer to the beads, pipette to mix, separate

beads using magnet.

• Combine both elutions in the same tube

DNA extraction:

First step for checking sonication add cold TE to make 300ul and spin at full speed @ 4C

for 5 mins, transfer the supernatant to a new tube.

• Add 0.75ul (20mg/ml) OR 1.5ul (10mg/ml) RNAse A, flick tube to mix and incubate

at 37C for ¿30 mins with gentle agitation

• Add 4.5ul Proteinase K and 12ul 5M NaCl, flick tube to mix and incubate at 65C for

5 hrs or O/N

• Add 150ul TE to make 450ul

• Add 450ul Phenol Chloroform to a new tube and then add the sample, vortex for 30

secs to mix then spin at full speed for 5 mins @ room temperature

• Transfer the top phase to a new tube

• Add 450ul Chloroform, vortex for 30 secs to mix then spin at full speed for 5 mins @

room temperature

• Transfer the top phase to a new tube

• Add 1/10 volume 3M Na Acetate (pH 5.2), 2.5 x volume of ice-cold 100% EtOH

(calculate ethanol volume after addition of Na Acetate) and 1ul glycogen (volume

depends on concentration). Invert sample several times to mix and incubate at -20C

for 4hrs (over night for ChIP DNA)
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• Spin at full speed for 20 mins @ 4C and remove the supernatant

• Wash with 1ml ice-cold 70% EtOH, spin at full speed for 5 mins @ 4C and remove the

supernatant

• Allow sample to air dry (to remove the excess EtOH)

• Re-suspend in appropriate volume of dH2O (10ul to check sonication, 22ul for ChIP

• Incubate @ 37C for 10 mins

qPCR (to determine number of cycles for library amplification):

Prepare 2.5M index primer dilutions and make a mix as follows -

1 l 10x Sybr Green (final concentration in reaction mix = 1x) 0.6 l primer (index Ad1) 2.5M

(0.15M in reaction mix) 0.6 l primer (chosen index) 2.5M (0.15M in reaction mix) 2 l library

5 l Taq mix (Next) 0.8 l dH2O

Light cycler program:

activation: 72C 5 mins

denaturation: 98C 30 s

then 24 cycles of: 98C 10 s

63C 30 s

72C 30 s

final elongation: 72C 1 min

• Determine optimum number of cycles for library amplification based on Cq value

Notes on Sybr green dilution:
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stock @ 10,000x dilute 1:10 1,000x dilute 1:100 10x

Library amplification:

Prepare 25M index primer dilutions and make a mix as follows -

1.5 l primer (index Ad1) 25M (0.75M in reaction mix) 1.5 l primer (chosen index) 25M

(0.75M in reaction mix) 20l library 25 l Taq mix (Next) 2 l dH2O

PCR program:

activation: 72C 5 mins

denaturation: 98C 30 s

then n cycles (where n = Cq rounded up to the nearest whole cycle) of: 98C 10 s

63C 30 s

72C 30 s

final elongation: 72C 1 min

Bead cleanup - SPRI based size selection (0.7x)

For a 50ul reaction...

• Add 35 ul AmpPure beads to the sample

• Pipette up and down at least 10 times and incubate at RT for 1 minute

• Separate beads using a magnet and transfer the supernatant to a new tube

• Add 93.5 ul ((1.8 0.7) x 85) beads to the sample

• Pipette up and down at least 10 times and incubate at RT for 1 minute
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• Separate beads using a magnet and discard the supernatant

• With beads still on the magnet add 180ul 85% Ethanol to the tube, incubate for 30

secs and remove

• To elute add at least 20ul dH2O, pipette up and down to mix and incubate at RT for

1 minute

• Transfer the elute to a new tube Check concentration and enrichment of ChIP library

Buffers:

Lysis buffer: 2% Triton X-100 (10 mL 10% Triton X-100) 1% SDS (5 mL 10% SDS) 100

mM NaCl (1 mL 5M SDS) 10 mM Tris-HCl pH 8.0 (500ul 1M Tris-HCl) 1 mM EDTA (100ul

0.5M EDTA pH 8.0) 1x protease inhibitor cocktail (add just before adding the buffer to the

pellet)

Dilution Buffer: 50 mM Hepes pH8.0 (2.5 mL 1M Hepes-KOH pH 8.0) 140 mM NaCl (1.4

mL 5M NaCl) 1 mM EDTA (100ul 0.5 M EDTA pH 8.0) 0.75% Triton X-100 (3.75mL 10%

Triton X-100) 0.1% Na-deoxycholate (50mg Na-deoxycholate) 1x protease inhibitor cocktail

(add just before adding the buffer to the pellet)

Low Salt Immune Complex Wash Buffer: 1% Triton X-100 (5 mL 10% Triton X-100)

150 mM NaCl (1.5 mL 5M NaCl) 20 mM Tris-HCl, pH 8.0 (1mL 1M Tris-HCl pH 8.0) 0.1%

SDS (500ul 10% SDS) 2mM EDTA (200ul 0.5M EDTA pH 8.0)

High Salt Immune Complex Wash Buffer: 500 mM NaCl (5mL 5M NaCl) 1% Triton

X-100 (5mL 10% Triton X-100) 20 mM Tris-HCl, pH 8.0 (1mL 1M Tris-HCl pH 8.0) 0.1%

SDS (500ul 10% SDS) 2mM EDTA (200ul 0.5 M EDTA pH 8.0)

LiCl Immune Complex Wash Buffer: 0.25 M LiCl (2.5 mL 5M LiCl) 1% deoxycholate

sodium (0.5g deoxycholate sodium) 10 mM Tris-HCl, pH 8.0 (500ul 1M Tris-HCl pH 8.0)

1% NP40 (5mL 10% NP40) 1 mM EDTA (100ul 0.5 M EDTA pH 8.0)
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1xTE: 10 mM Tris-HCl, pH 8.0 (500ul 1M Tris-HCl pH 8.0) 1 mM EDTA (100ul 0.5 M

EDTA pH 8.0)

RIPA buffer: 10 mM Tris HCl, pH 8.0 1 mM EDTA, pH 8.0 140 mM NaCl 1% Triton x100

0.1% SDS 0.1% Sodium Deoxycholate 1x protease inhibitor cocktail

Elution buffer: (5mL) Add water before (4mL) 1% SDS (500ul 10% SDS) 0.1M NaHCO3

(500ul 1M NaHCO3) Prepare at room temperature
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9.2 Scripts

Scripts developed in the R programming language for the integrative analysis of ChIP-seq,

ATAC-seq and RNA-seq data sets can be found at

https://github.com/rnorris1260/hello-world
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[130] Päivi J. Miettinen, Jarkko Ustinov, Päivi Ormio, et al. Downregulation of EGF re-

ceptor signaling in pancreatic islets causes diabetes due to impaired postnatal β-cell

growth. Diabetes, 55(12):3299–3308, 2006.

[131] Robert Nechanitzky, Duygu Akbas, Stefanie Scherer, et al. Transcription factor EBF1

is essential for the maintenance of B cell identity and prevention of alternative fates in

committed cells. Nat. Immunol., 14(8):867–875, 2013.

[132] Nora Fernandez-Jimenez, Athena Sklias, Szilvia Ecsedi, et al. Lowly methylated region

analysis identifies EBF1 as a potential epigenetic modifier in breast cancer. Epigenetics,

12(11):964–972, 2017.

120



[133] Shu Ichi Okamoto, Dimitri Krainc, Katerina Sherman, and Stuart A. Lipton. Anti-

apoptotic role of the p38 mitogen-activated protein kinase-myocyte enhancer factor 2

transcription factor pathway during neuronal differentiation. Proc. Natl. Acad. Sci. U.

S. A., 97(13):7561–7566, 2000.

[134] E. S.P. Reddy, V. N. Rao, and T. S. Papas. The erg gene: A human gene related to

the ets oncogene. Proc. Natl. Acad. Sci. U. S. A., 84(17):6131–6135, 1987.

[135] P. Adamo and M. R. Ladomery. The oncogene ERG: A key factor in prostate cancer.

Oncogene, 35(4):403–414, 2016.

[136] Amartya Sanyal and Job Dekker Bryan Lajoie, Gaurav Jain. The long-range interaction

landscape of gene promoters. Physiol. Behav., 176(10):139–148, 2017.

[137] Jennifer L. Beith, Emilyn U. Alejandro, and James D. Johnson. Insulin stimulates

primary β-cell proliferation via Raf-1 kinase. Endocrinology, 149(5):2251–2260, 2008.

[138] Chi Cheng Lu, Pei Yi Chu, Shih Min Hsia, et al. Insulin induction instigates cell

proliferation and metastasis in human colorectal cancer cells. Int. J. Oncol., 50(2):736–

744, 2017.

[139] Timothy A. McKinsey, Chun Li Zhang, and Eric N. Olson. MEF2: A calcium-

dependent regulator of cell division, differentiation and death. Trends Biochem. Sci.,

27(1):40–47, 2002.

[140] Qi Ma and Francesca Telese. Genome-wide epigenetic analysis of MEF2A and MEF2C

transcription factors in mouse cortical neurons. Commun. Integr. Biol., 8(6):1–5, 2015.

[141] Verena Schulla, Erik Renström, Robert Feil, et al. Impaired insulin secretion and

glucose tolerance in β cell-selective Cav1.2 Ca2+ channel null mice. EMBO J.,

22(15):3844–3854, 2003.

[142] Xiang Qin He, Ning Wang, Juan Juan Zhao, et al. Specific deletion of CDC42 in

pancreatic β cells attenuates glucose-induced insulin expression and secretion in mice.

121



Mol. Cell. Endocrinol., 518, 2020.

[143] L. Alberto Llacua, Marijke M. Faas, and Paul de Vos. Extracellular matrix molecules

and their potential contribution to the function of transplanted pancreatic islets. Di-

abetologia, 61(6):1261–1272, 2018.

122


	RICHARD NORRIS_COVER
	TESI_full_signed

