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Summary

The building sector, excluding its industry, is one of the world’s largest energy
consumers. 2019 accounted for around 30% of the total final energy consumed
worldwide. In addition, its CO2 emissions accounted for 28% of the total, as much
of the fuel used to generate this final energy is still of non-renewable origin.

Currently, there is an extreme need to reduce these pollutant emissions over
the next few years due to the global warming problems we are experiencing. In
addition, the peak of fossil fuel production is either near or has already been
exceeded during the last decade. This will lead to the end of affordable fossil fuels.
Therefore, the world must move towards an energy strategy aimed at increasing
demand-side efficiency and consuming energy produced from renewable fuels. To
this end, implementing mathematical models to help characterise, simulate and
predict energy consumption in the building sector is a key step in this energy
transition process.

Within the framework of this Thesis, a platform for storing and massively
analysing energy data has been implemented. Additionally, three more specific use
cases have been proposed that refer to some of the most recurrent problems at each
of the main geographical levels in the building sector (dwelling, building or district
level). The objectives of these use cases are to inform and alert end-users about
their energy consumption, optimising energy demand or cost, maximising energy
consumption from renewable generation, or inferring apparently unknown energy
characteristics of buildings and their occupants.

This Thesis presents the data analytics platform designed and developed to deal
with the massive analysis of a vast amount of data coming from electricity smart
meters. Furthermore, the implemented energy information services for end-users are
presented, and the estimated energy savings generated by those services, quantified
within the IEE Empowering project, are presented (3 to 22%).

Subsequently, three applications are introduced, each one dealing with a specific
geographical level. In the first one, a novel methodology to virtually replicate the
control of thermostatically-controlled systems is presented. It is applied over a set
of residential dwellings and it is based on data-driven models. Some promising
outcomes showed during warm conditions (7-15○C), for example, reducing the usual
set-point temperature of the thermostat by 1○C or 2○C would lead to energy savings
of 18.1% and 36.5% on average, respectively.
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In the second application, three Model Predictive Control (MPC) strategies have
been implemented in different locations in Europe to assess the energy flexibility
that can be achieved when a smarter control is applied to existing electricity
driven heating or cooling systems in several building typologies and electricity
markets. The results showed that electric heat pumps can provide significant
demand response flexibility in the respective analysed electricity markets. However,
they sometimes have problems regarding response time and reliability, which can
affect their availability for the standby electricity market.

Finally, in the third and last case study, a methodology for characterising the
electricity consumption of large sets of buildings, e.g. entire districts or postal
codes, is presented. The methodology is based on statistical analysis of the ag-
gregated hourly energy consumption of the whole area of interest, as well as its
correlation against meteorological information, cadastral data and socio-economic
characteristics. This methodology has been validated to interpret the main drivers
of electricity consumption along the whole province of Lleida (Spain).
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Resumen

El sector de la edificación, sin incluir la industria, es uno de los principales
focos de consumo energético del mundo. Supone alrededor de un 30% del total de
energía final consumida mundialmente. Además, sus emisiones de CO2 suponen un
28% respecto al total, ya que todavía buena parte del combustible utilizado para
generar esta energía final es de origen no renovable.

Actualmente, existe la extrema necesidad de reducir estas emisiones contami-
nantes durante los siguientes años debido a los problemas de calentamiento global
que estamos viviendo. Además, el pico de producción de los combustibles fósiles,
o es cercano o ya lo hemos sobrepasado durante la última década. Este hecho
conllevará el fin de los combustibles fósiles a precio asequible. Por lo tanto, el
mundo debe dirigirse hacia una estrategia energética encaminada a incrementar la
eficiencia en la demanda y a consumir energía producida mediante combustibles
renovables. Con este fin, la implementación de modelos matemáticos que ayuden a
caracterizar, simular y a predecir el consumo energético en el sector de la edificación
supone un paso clave en este proceso de transición energética.

En el marco de esta Tesis se ha implementado una plataforma para almacenar
y analizar masivamente datos energéticos, y se han planteado tres casos de uso
más concretos que hacen referencia a algunas de las problemáticas más recurrentes
en cada uno de los principales niveles geográficos en el sector edificación (nivel
vivienda, edificio, o distrito). Los objetivos de estas analíticas son informar y alertar
a usuarios finales sobre su consumo energético, optimizar la demanda o el coste
energético, maximizar el consumo procedente de producción renovable, o inferir
características energéticas aparentemente desconocidas.

Inicialmente, esta Tesis presenta la plataforma de analítica diseñada para
el análisis masivo de contadores inteligentes de electricidad. Aparte, se detallan
los servicios de información energética para usuarios finales implementados, y se
presentan los resultados de ahorro estimado producido (3% a 22%) a lo largo del
proyecto IEE Empowering para tres comercializadoras de electricidad.

Posteriormente, se presentan tres aplicaciones específicas tratando distintos
niveles de agregación. En la primera de ellas, se presenta una metodología novedosa
para replicar virtualmente el control de los sistemas comandados por termostato en
el sector residencial utilizando modelos basados en datos. Los resultados de esta
investigación muestran que se puede conseguir un ahorro energético del 18,1% y del
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36,5% de media, si se reduce la temperatura de consigna habitual en 1○C y 2○C,
respectivamente.

En la segunda aplicación se han implementado tres estrategias de Control
Predictivo mediante Modelos (MPC, en inglés) en tres lugares distintos de Europa,
con el objetivo de evaluar la flexibilidad energética que puede lograrse cuando se
aplica un control más inteligente a sistemas de calefacción eléctricos existentes en
un edificio o un conjunto muy pequeño de edificios. Los resultados del método
muestran que las bombas de calor tienen el potencial de proporcionar una importante
flexibilidad de respuesta a la demanda en los países analizados. Sin embargo, en
ocasiones tienen problemas en cuanto a su tiempo de respuesta y fiabilidad, lo que
puede afectar a su disponibilidad para el mercado de reserva de electricidad.

En la tercera y última aplicación, se presenta una metodología de caracterización
del consumo eléctrico sobre grandes conjuntos de edificios, por ejemplo distritos
enteros o códigos postales. Se basa en el análisis estadístico de los consumos
energéticos horarios agregados a cada una de las áreas de interés, y su correlación
con la información meteorológica, catastral y las características socioeconómicas.
Este método se ha validado para interpretar los factores de cambio en el consumo
eléctrico de la provincia de Lleida (España).
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Resum

El sector de l’edificació, sense incloure la seva indústria, és un dels principals
focus de consum energètic del món. Suposa al voltant d’un 30% del total d’energia
final consumida mundialment. A més, les seves emissions de CO2 suposen un 28%
respecte al total, ja que encara bona part del combustible utilitzat per a generar
aquesta energia final és d’origen no renovable.

Actualment, existeix l’extrema necessitat de reduir aquestes emissions contam-
inants durant els propers anys a causa dels problemes d’escalfament global que
estem vivint. A més, el pic de producció dels combustibles fòssils, o és pròxim
o ja l’hem sobrepassat durant l’última dècada. Aquest fet comportarà la fi dels
combustibles fòssils a preu assequible. Per tant, mundialment ens hem de dirigir cap
a una estratègia energètica encaminada a incrementar l’eficiència en la demanda i a
consumir energia produïda mitjançant combustibles renovables. A aquest efecte, la
implementació de models matemàtics que ajudin a caracteritzar, simular i a predir
el consum energètic en el sector de l’edificació suposa un pas clau en aquest procés
de transició energètica.

En el marc d’aquesta Tesi s’ha implementat una plataforma per emmagatzemar
i analitzar massivament dades energètiques, i s’han plantejat tres casos d’ús més
concrets que fan referència a algunes de les problemàtiques més recurrents en cadas-
cun dels principals nivells geogràfics en el sector edificació (nivell habitatge, edifici,
o districte). Els objectius d’aquestes analítiques són informar i alertar a usuaris
finals sobre el seu consum, optimitzar la demanda o el cost energètic, maximitzar
el consum procedent de producció energètica renovable, o inferir característiques
energètiques.

Primerament, aquesta Tesi presenta la plataforma d’analítica dissenyada per
a l’anàlisi massiva de comptadors intel·ligents d’electricitat. A part, es detallen
els serveis d’informació energètica per a usuaris finals que s’han implementat, i
es presenten els resultats d’estalvi estimat produït (del 3% a 22%) al llarg d’un
projecte amb tres comercialitzadores d’electricitat europees.

Posteriorment, es presenten les tres aplicacions específiques tractant diferents
nivells geogràfics. En la primera d’elles, es presenta una novedosa metodologia per
tal de replicar virtualment el control dels sistemes comandats per termòstat en el
sector residencial utilitzant models basats en dades. Els resultats d’aquesta recerca
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mostren que es pot aconseguir un estalvi energètic del 18,1% i del 36,5% de mitjana,
si es redueix la temperatura de consigna habitual en 1○C i 2○C, respectivament.

En la segona aplicació, tres estratègies de Control Predictiu mitjançant Models
(MPC, en anglès) s’han implementat en tres llocs diferents d’Europa, amb l’objectiu
d’avaluar la flexibilitat energètica que pot aconseguir-se quan s’aplica un control
més intel·ligent a sistemes de calefacció existents d’un edifici o d’un conjunt molt
petit d’edificis. Els resultats del mètode mostren que les bombes de calor tenen el
potencial de proporcionar una important flexibilitat de resposta a la demanda als
països analitzats. No obstant això, a vegades tenen problemes quant al seu temps
de resposta i fiabilitat, la qual cosa pot afectar la seva disponibilitat per al mercat
de reserva d’electricitat.

En la tercera i última aplicació, es presenta una metodologia de caracterització
del consum elèctric de grans conjunts d’edificis, per exemple districtes sencers o codis
postals. Es basa en l’anàlisi estadística dels consums energètics horaris agregats a
les diferents arees d’interès, i la seva correlació respecte informació meteorològica,
cadastral o característiques socioeconòmiques. Aquest mètode s’ha validat per
a interpretar els factors de canvi en el consum elèctric de la província de Lleida
(Espanya).
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Chapter 1

Introduction

1.1 Actual and future perspectives of energy

consumption in buildings

It has been observed that the worldwide final energy consumption of the
building sector remained at the same level in 2019 compared to the previous year,
which supposed around 130 EJ of final energy consumption or 30% of total share
[1] (see Fig. 1.1). Moreover, if the buildings construction industry is included,
this share increases up to 35%. Thus, although the build-up and the population
have been increasing for the last years, the final energy consumption share of the
building sector has remained stable for the first time since 2012. This is caused by
an improvement in energy use intensity indicators and the switch from traditional
biomass, oil, and coal to electricity and gas, which are assumed to be more efficient
(see Fig. 1.2). Additionally, since 2018, renewable energy use (including modern
biomass) has grown by around 6%, representing a strong shift from previous years
and marking a return to fast growth similar to the one made in 2013.

However, looking at the fuel type share within the building sector, in 2019, the
use of fossil fuels in buildings remained highly significant, summing up to around
38% (natural gas, coal and oil) without accounting for the fossil primary sources used
for power production in the case of electricity and commercial heat (see Fig. 1.3).
Therefore, it becomes crucial that the renewable energy share, which is presently
around 5.9%, should continue the fast growth of the last years to accomplish the
buildings decarbonisation.

As shown in Figure 1.4, the amount of CO2 generated by the building’s
operation has reached its highest level ever, around 10 Gt CO2 in 2019 [2]. This
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Chapter 1 Introduction

Figure 1.1: Global share of energy consumption by sectors, 2019.

Figure 1.2: Evolution in global buildings sector final energy use by fuel type.

supposes 28% of global energy-related CO2 emissions. Moreover, if the building
construction industry is included, the share of CO2 emissions increases to 38%,
higher than the combined shares of all the other industries (32%) or the transport
sector (23%) [1]. Finally, the split made between direct emissions from the building
operation itself and indirect emissions from power generation for electricity and
commercial heat is notable.

As a result of continued use of coal, oil, and natural gas for heating and
cooking, as well as higher activity levels in regions with carbon-intensive power
lines, buildings’ CO2 emissions have been increasing in absolute terms, resulting
in steady levels of direct emissions but growing indirect emissions (i.e. electricity).
Nowadays, around 55% of global electricity consumption is associated with buildings
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1.1 Actual and future perspectives of energy consumption in buildings

Figure 1.3: Global buildings sector energy use by fuel type, 2019

operation [2]. Nonetheless, a slight decrease of CO2 emissions in the buildings’
sector is appreciated compared to the 39% achieved in 2018. This is due to an
increase in emissions from transport and other industries.[1]

Figure 1.4: Global share of CO2 emissions by sectors, 2019.

According to IEA [3], the vast majority of CO2 emissions due to global energy
consumption are due to fossil sources (see Fig. 1.5). Since 2015, the main growth
factor of CO2 emissions is the natural gas, principally because the increment of
emissions due to coal, and oil with less emphasis, has been significantly lower in
this period. As analysed by [4], the major cause was that the peak oil had been
reached during the last years. The same study predicted that the natural gas peak
of production will be achieved in 2030, at most.
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Figure 1.5: Sources of CO2 emissions, 1990-2018.

Generally speaking, the peak of production of fossil fuels is not mainly caused
by the nonexistence of new fields, but by the very limited, even negative, Energy
Return on Investment (EROI) of these new resources. In addition, the associated
harmful emissions that they generate [5] [6] are considered as the second main cause.

Although the current demand for fossil fuels as primary energy is enormous,
it would remain very significant considering governmental policies and the current
demand characteristics of the main sectors (transport, industry and buildings). The
so-called Stated Policies Scenario (STEPS) [7] proposes the least change concerning
the current status. Basically, it assumes an increase of the energy demand and fulfils
this demand with the extra supplies coming from new fields and the availability of
disruptive future technologies, making it technically and economically feasible to
exploit these new reserves.

In the mid-long term, multiple sustainable scenarios need to be created. This
is mainly due to the urgent need to decrease the use of traditional fuels in favour
of renewable resources that do not generate polluting emissions and considering
the more realistic decline in the production of fossil fuels. The IEA calls them
Sustainable Development scenarios [8] and Net-zero 2050 scenario [9]. Both of
them propose a significant reduction in fossil fuel demand, except for the low-
carbon fossil fuels (e.g. biodiesel, bioethanol, compressed natural gas), which brings
both predictions (supply and demand) closer together (see Fig. 1.6). Especially
interesting is the Net-zero 2050 scenario, which is largely based on renewables, with
solar being the largest source of supply. In this scenario, businesses, investors and
citizens should cooperate closely with countries to develop sustainable economies
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Figure 1.6: Historical and forecast demand of the
main fossil fuel sources depending on future scenarios

that have the financing and technologies available to reach net-zero emissions in
time.

Figure 1.7 depicts the oil supply forecasts made by IEA [3] and the demand
scenarios already shown in Figure 1.6. It can be seen that the Net-zero 2050 scenario
is the only one where the future is not overly committed to the discovery of new
fields and future technologies that improve the EROI indicator.
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Figure 1.7: Historical and forecasted oil sup-
ply vs oil demand depending on future scenarios

Returning to the buildings sector, the Buildings Climate Tracker (BCT),
promoted by the Global Alliance for Buildings and Construction, tracks the buildings
sector progress in decarbonisation worldwide [10]. This index combines data from
seven global indicators to demonstrate progress since 2015 in an action and impact
index. The objective is to reach an index of 100 in 2050, which means an average
improvement of 2.6 per year. It includes incremental energy efficiency investment in
buildings and Nationally Determined Contributions (NDCs) with actions taken in
the building sector. The contributions of the indicators are weighted individually to
ensure they address the tracker objective (decarbonisation index) adequately and
do not over- or under-represent certain aspects when aggregated. The indicators
of the analysis could be categorized into two groups: impact and action. The
former contains the results of the actions that determine CO2 emissions, final energy
demand, the share of renewable energy sources in buildings, or the energy use
intensities. The latter represents those indicators related to initiatives that aim to
reduce CO2 emissions, such as environmental policies, green building certifications,
energy-efficiency efforts, industry actions, ...

The last update of the BCT [1] finds that annual decarbonisation progress has
slowed and almost halved since 2016 (see Fig. 1.8). Although the number of actions
to reduce CO2 emissions in the building sector is growing, the rate of improvement
year over year is declining. Buildings sector participants across the value chain need
to make joint efforts to reverse this trend to reach net-zero carbon by 2050 and
increase energy efficiency and decarbonisation actions by a factor of five.
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Figure 1.8: Buildings Climate Tracker, 2015-2019.

Moreover, by 2050, the European Union (EU) is committed to becoming the
first climate-neutral continent. The European countries pledge to reduce greenhouse
gas emissions by at least 55% by 2030, compared to 1990 levels [11]. Additionally,
the EU agreed in 2018 to adopt the amending Directive on Energy Efficiency
(2018/2002), providing policy frameworks for 2030 and beyond, in conjunction with
the "Clean Energy for All Europe package". This amendment includes an ambitious
headline energy efficiency target of 32.5% for 2030. To reach the goal, the EU must
achieve the projections that were made in 2007 for 2030. Accordingly, EU energy
consumption must not exceed 1128 Mtoe of primary energy and/or 846 Mtoe of
final energy (following the withdrawal of the United Kingdom)[12].

In sum, a triple strategy is essential to reduce energy demand and emissions
in the building sector. First, decarbonising the electricity power sector while
implementing materials strategies that decrease lifecycle carbon emissions strengthen
the case for reducing energy demand and emissions. According to the IEA, direct
building CO2 emissions will have to decline by 50% by 2050, while indirect building
sector emissions will have to decline through a 60% reduction in electricity power
generation emissions by 2030 if a zero-carbon building stock has to be achieved by
2050 [1]. Efforts like these would need to reduce around 6% of emissions per year
from 2020 to 2030. As a comparison, according to IEA predictions [3], global CO2

emissions dropped by 7% during the COVID-19 epidemic.

Therefore, based on the current status and keeping in mind the objectives
presented above, a huge improvement is needed during the upcoming years. Solving
this problem will require applying multiple approaches, from demand reduction to
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energy generation based on renewable resources. Furthermore, it is well known that
the most cost-effective and environmentally friendly energy is the one that is not
consumed. Therefore, increasing energy efficiency is one of the key aspects to be
addressed in the current and future energy transition.

To this end, applying statistics and machine learning techniques to energy-
related problems can help achieve this important transformation to boost energy
efficiency and meet future decarbonisation targets, both at the global and EU level.
For instance, plenty of data-driven methodologies have demonstrated they can
assess and predict the energy performance of buildings, provide optimised controls
for Heating, Ventilation and Air Conditioning (HVAC) systems, or increase users’
awareness towards buildings’ energy consumption.

1.1.1 From dwelling to district level

In the framework of this Thesis, multiple geographical levels related to buildings
are considered. In the subsequent paragraphs, these levels are explained to align
the meaning of these concepts between the author and the readers.

The formal definition of a dwelling is a place where someone lives. According
to the EPBD (Directive 2010/31/EU), the closest definition to dwelling refers to a
building unit, which means a section, floor or apartment within a building designed
or altered to be used separately. Besides, the formal definition of a building is a
structure with a roof and walls, for example, a house or a factory. The same EPBD
(Directive 2010/31/EU) defines a building as a roofed construction having walls,
for which energy is used to condition the indoor climate. At this point, the energy
consumption made by the users to fulfil their necessities (e.g. cooking, cleaning,
lighting, entertainment,...) could be added.

Depending on the building typology and the specific characteristics, a single
building could be constituted by one or multiple dwellings or building parts. Fur-
thermore, each of these parts could be related to singular energy consumption
characteristics due to differences in user behavioural patterns, occupancy, domestic
appliances or building characteristics.

Finally, the formal definition of a district is an area of a town or a city that
has been given official boundaries for administration. Regarding the energy context
of this Thesis, the definition of district refers to a geographical zone in a city or a

8



1.2 Applied statistical learning techniques to buildings energy-related data

region with a particular characteristic or condition. For instance, in district heating
installations, the whole group of buildings supplied by the system forms a district
because the heating system is the particular characteristic in common. Or, in the
case of electricity consumption, all the consumers who are located in a close area
given a certain economic sector (residential, industrial or services) and tariff.

1.2 Applied statistical learning techniques to

buildings energy-related data

Statistical learning uses a wide range of tools to understand data. There are
two categories of tools: supervised and unsupervised. The broad definition of
supervised statistical learning is the construction of a statistical model to predict or
estimate output based on one or more inputs. This problem is prevalent in various
fields, including business, medicine, astronomy and public policy. As opposite,
unsupervised statistical learning involves an output without supervision. However,
it is still possible to learn relationships and structure from these data [13].

More precisely, statistical learning is a field between mathematics and machine
learning, composed of a toolbox for modelling and understanding complex data to
obtain statistical models for prediction and characterisation purposes. Compared to
machine learning models, the training process usually needs major human interaction
during the definition of the models and the transformation of the inputs to boost
and optimise them. However, statistical learning techniques tend to need less data
to be reliable, as certain relationships between variables are considered priorly
during the definition of the models. Several statistical learning tools are nowadays
applied to buildings’ energy consumption data. They range from unsupervised
techniques, such as clustering of consumers, to supervised techniques, like regression
or classification models.

In this Thesis, multiple types of statistical learning techniques are used to
provide a solution to each of the applications described, mainly concerning forecast,
characterisation, and simulation scenarios. Thus, this document offers a powerful
example that data-driven methodologies should be used from now on as a method to
massively model complex phenomena related to energy consumption in the buildings
sector, based on data gathered from IoT and metering devices.
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1.3 Outline of the thesis

This Thesis applies several statistical learning techniques to real building-
energy-related datasets obtained from Internet of Things (IoT) monitoring devices,
Advanced Metering Infrastructure (AMI), or online services. The main objective is
to validate that these techniques are suitable and convenient for assessing energy
performance across multiple geographical levels within this sector.

First, this document describes the design and implementation of an ICT
infrastructure for the statistical analysis of high-frequency data gathered and
communicated by electricity smart meters, focusing on user awareness applications
for domestic electricity consumption. Then, this IT platform is used to implement
three different case studies involving analysis at multiple geographical levels (see
Fig. 1.9). The commonality between these chapters is the usage of data-driven
models to characterise, predict or optimise energy consumption in buildings.

1.3.1 IT infrastructure

The amount of information available and suitable for the energy assessment
of buildings is increasing year by year. However, the heterogeneity of these data
increases in parallel, which makes its appropriate usage more difficult. Nowadays, the
information gathered from buildings monitoring systems contains a wide combination
of consumption data, sensors data, or information from controllers or IoT devices.
Therefore, this data should be stored in a platform where it can be managed and
analysed adequately.

In chapter 2, the results achieved during the EMPOWERING project are
presented. From 2013 to 2017, a Big Data platform for the assessment of energy-
related data was developed. Initially, it aimed at helping domestic customers to
save electricity by managing their consumption positively. This is achieved by
improving the information received about energy bills and offering online tools
to the end-users. The main contributions of EMPOWERING were creating a
novel workflow in the electric utility sector regarding the implementation of data
analytics for their customers and the fast implementation of data-mining techniques
over massive data sets within a Big Data platform. The results obtained showed
that EMPOWERING can be used for customers of electricity suppliers to change
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Figure 1.9: Flow chart of the Thesis chapters

their energy habits to decrease energy consumption and increase environmental
sustainability.

1.3.2 Application at dwelling level

Chapter 3 presents a data-driven method to model the energy performance of
thermostatically-controlled heating systems. These systems are widely spread in
the residential sector since they control the heat consumption provided for domestic
hot water and space heating. Therefore, assessing the energy performance at the
thermostat level and the effect of different control strategies requires simplified
modelling techniques demanding few inputs and low computational resources. Data-
driven techniques are envisaged as one of the best options to meet these constraints.

This chapter presents a novel methodology consisting of an optimization algo-
rithm, two auto-regressive models and a control loop algorithm able to virtually
replicate the control of thermostatically driven systems. This combined strategy
includes all the modes governed by the setpoint temperature and enables automatic
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assessment of the energy consumption impact of multiple scenarios. The required
inputs are limited to available historical readings from smart thermostats and
external climate data sources. The methodology has been trained and validated
with datasets coming from 11 smart thermostats connected to gas boilers and placed
in several households in northeastern Spain. Important conclusions of the research
are that these techniques can estimate the temperature decay of households when
the space heating is off, and the energy consumption needed to reach the comfort
conditions. Furthermore, this research shows that energy savings of 18.1% and
36.5% can be achieved on average if the usual setpoint temperature schedule is
lowered by 1○C and 2○C, respectively.

1.3.3 Application at the building level

In chapter 4, three different MPC strategies were implemented in three different
European locations to evaluate the energy flexibility achievable when a smarter
control is applied to legacy HVAC systems at the building level. To date, the
assessment of the energy flexibility to be delivered by existing buildings and by their
legacy HVAC systems is hindered by a lack of commonly agreed-upon methodologies.
There are many research works in the field; however, many of them are focused
on the design stage or, in case of addressing building operation, they are based on
controlled experimental set-ups.

The novelty of this chapter lies in the fact that it develops and validates
an original methodology for the Flexibility Function estimation to evaluate the
delivered energy flexibility of several Automated Demand Response services applied
on different heat pump systems working under real operations. Furthermore, the
active interaction with several electricity markets, ranging from the Spanish day-
ahead market to the German and Swiss ancillary services markets, have also been
evaluated during the winter and spring seasons. The method results showed that
heat pumps could offer a significant potential of flexibility in the analysed countries.
Nevertheless, it has also been envisaged that some restrictions concerning reaction
times and reliability may affect its readiness for certain ancillary services markets.
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1.3.4 Application at the district level

In chapter 5, a bottom-up electricity load characterisation methodology of the
building stock is presented. It is based on the statistical analysis of aggregated hourly
energy consumption, weather data, and cadastral and socioeconomic information.
To demonstrate the validity of this methodology, the whole province of Lleida,
located in northeast Spain, was used as a case study. The geographical aggregation
level considered is the postal code level since it is the highest data resolution
available through the open data sources used in the research work. The development
and the experimental tests are supported by a web application environment formed
by interactive user interfaces specifically developed for this purpose.

The major novelty of this chapter relies on the application of statistical data
methods able to infer the energy performance characteristics by principal components
without prior knowledge of its specific building characteristics. First, a multi-step
data-driven technique is used to disaggregate the electricity consumption in multiple
uses (space heating, cooling, holidays and baseload). Afterwards, multiple Key
Performance Indicators (KPIs) are derived from this decomposition to obtain the
energy characterisation over a certain area. The potential reuse of this methodology
allows for a better understanding of the drivers of electricity use, with multiple
applications for the public and private sectors.

1.3.5 Projects and publications related

This Thesis has been elaborated in the framework of multiple projects and
publications developed in CIMNE - BEE Group from 2016 to 2021, collaborating
with other researchers, companies and entities.

Chapter 2: Big data infrastructure for the massive analysis of energy
smart meters

The development and implementation of the IT infrastructure were mainly
supported by the Intelligent Energy for Europe (IEE) programme in a project called
EMPOWERING and partially by the Ministerio de Economía y Competitividad
under contract TIN2017-84553-C2-2-R, and the European Union FEDER (CAPAP-
H6 network TIN2016-81840-REDT).
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Additionally, this chapter was published as a journal article: Mor, G.; Vila-
plana, J.; Danov, S.; Cipriano, J.; Solsona, F.; Chemisana, D. EMPOWERING, a
smart Big Data framework for sustainable electricity suppliers, IEEE Access 2018,
https://doi.org/10.1109/ACCESS.2018.2881413

Lastly, the open-source code of the ENMA architecture, which is the last
production version of the data analytics platform presented in this chapter, is
accessible in https://github.com/BeeGroup-cimne/ENMA.

Chapter 3: Data-driven virtual replication of domestic thermostatically
controlled loads

The methodology and case study to simulate thermostatically controlled domes-
tic systems using data-driven models was funded by the project COMRDI15-1-0036,
so-called REFER, within the RIS3CAT community of the Catalan government.

In addition, this research was published in:

Mor, G.; Cipriano, J.; Gabaldon, E.; Grillone, B.; Tur, M.; Chemisana, D.
Data-Driven Virtual Replication of Thermostatically Controlled Domestic Heating
Systems. Energies 2021, 14, 5430. https://doi.org/10.3390/en14175430

Chapter 4: Operation and flexibility assessment of direct load control
systems in buildings

The work regarding the assessment of flexibility demand in buildings emanated
from collaborative research conducted with the financial support of the European
Commission through the H2020 project Sim4Blocks, grant agreement 695965.

Furthermore, this chapter is already a published paper:

Mor, G.; Cipriano, J.; Grillone, B.; Amblard, F.; Menon, R.P.; Page, J.;
Brennenstuhl, M.; Pietruschka, D.; Baumer, R.; Eicker, U. Operation and energy
flexibility evaluation of direct load controlled buildings equipped with heat pumps,
Energy and Buildings 2021, https://doi.org/10.1016/j.enbuild.2021.111484
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Chapter 5: Electricity load characterization of districts

The work related to data-driven energy characterisation of districts was ex-
ecuted in several projects and contracts. Mainly, the work emanated from the
collaboration between JRC and CIMNE, through the Energy & Location Applica-
tions of the ELISE (European Location Interoperability Solutions for e-Government)
action of the ISA² (Interoperability solutions for public administrations, businesses
and citizens) programme. In particular, this collaboration has been materialised
through a personal JRC Expert Contract, grant agreement CT-EX2017D306558-
102. Additionally, the European Commission has also been financing this research
through the BIGG H2020 project, grant agreement 957047.

This research has been accepted as a journal paper in:

Mor, G.; Cipriano, J.; Martirano, G.; Pignatelli, F.; Lodi, C.; Lazzari, F.;
Grillone, B.; Chemisana, D. A data-driven method for unsupervised electricity
consumption characterisation at the district level and beyond, Energy Reports 2021.
https://doi.org/10.1016/j.egyr.2021.08.195b
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Chapter 2

Big data infrastructure for the massive

analysis of energy smart meters

This chapter has been published as a paper:

Mor, G.; Vilaplana, J.; Danov, S.; Cipriano, J.; Solsona, F.; Chemisana, D.
EMPOWERING, a smart Big Data framework for sustainable electricity suppliers,
IEEE Access 2018, https://doi.org/10.1109/ACCESS.2018.2881413

2.1 Introduction

The built environment sector is becoming the leading consumer of energy
in the world, accounting for 40% of global energy use and one third of overall
greenhouse gas emissions [14]. Within the built environment, in 2015, residential
energy consumption amounted to around 25.4% of total final energy use in the
European Union [15]. Therefore, to achieve the European 2020 targets, changes
in the consumption patterns of EU households are urgent and necessary. To
mitigate the energy and environmental pressures caused by household energy use,
substantial research and development efforts have been made into energy-efficient
technologies [16]. In recent years, improving energy efficiency and reducing energy
demand have been widely regarded as the most promising, fastest, cheapest and
safest ways to mitigate environmental pressures and climate change [17]. As a result,
heating and cooling systems now use less energy than ever. However, final energy
consumption has not decreased as expected. On the contrary, energy consumption
has tended to increase. An analysis carried out within the EU-funded ODYSEE
and MURE projects [18] quantified the increase in the energy efficiency of domestic
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appliances in Europe over the 2000 to 2012 period at 21% while the increase in final
energy consumption was 75 Mtoe for the same period. One reason appears to be
that much technology is made available to the public without adequate instruction
and support. Although technological advances are significant for promoting energy
conservation and improving energy efficiency [19], it is increasingly recognized that
behavioral factors are of greater significance for energy conservation [20]. It has
been suggested that behavioral changes can be just as effective as technological
changes [21]. In [18], it was stated that changes in heating behavior had an impact
on energy consumption by reducing it by 20 Mtoe over the over the period from
2000 to 2012. Since 2008, the level of this behavioural effect has doubled to 2.6
Mtoe/year, compared with 1.2 Mtoe before. Effective long-term strategies should
engage people directly in efforts to reduce their energy consumption. This should be
achieved through the implementation of environmental policies aiming at changing
energy use behavior, as highlighted in [22]. Acknowledging people as an active
element in the energy system should lead to efforts to better understand how people
interact with energy and to stimulate the development of Energy Awareness services
that attempt to change how and when people use energy.

Regarding the change of the energy behavior of consumers, in recent decades,
many psychological models have been developed and adopted to explore how
householders consume energy and the factors that influence this [23]. Different
types of intervention strategies have been developed with the aim of stimulating
changes in people’s energy use behavior and thus achieving energy savings [24].

The overall aim of the EMPOWERING project is to empower consumers by
involving, informing and helping them to take measures to save energy on the basis
of the information they receive from their utility company. More specifically, the
consumers’ aim consists of achieving measurable energy savings.

The main contribution of EMPOWERING consists of a novel dataflow proce-
dure for electric utility companies to standardize data communication, cleaning,
storage and analysis. This workflow is based on secure API REST [25] communi-
cation, a set of ETL (Extract, Transform and Load) modules to clean and store
the data in the EMPOWERING databases and a set of analytical modules to infer
information from the energy consumption. EMPOWERING analyses data across
the database of clients by making unsupervised learning searches and inferring
clusters of similar types of domestic customers according to different information
fields by means of data-mining techniques. This procedure can account for similar-
ity between neighborhoods, size of building, number of occupants, climatic zone,
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etc. It provides a means to make comparisons of energy consumption with similar
customers, namely between members of the same cluster. EMPOWERING offers
specific, personalized, targeted information about whether one’s consumption is
above or below a cluster average over a season. This can show a need for space
heating systems to be checked, or the building envelope to be improved. The large
amount of data handled cannot be processed efficiently using traditional databases.
These are the foundations of the smart Big Data framework developed within the
EMPOWERING project.

The EMPOWERING services can deal with different data granularity, from
monthly-based data coming from standard meters, to hourly-based data from smart
meters. However, notable benefits are reached when hourly metering is used. For
instance, alarms can be set up that detect abnormally high consumption levels for
base-load appliances such as refrigerators or freezers. Some of these possibilities have
already been developed within the EMPOWERING project with the collaboration
of four electric utility companies in Europe, but the potential is far from the
mainstream. The EMPOWERING project aims to accelerate the transition of the
use of this type of service from pioneering companies to mainstream best practice.

2.2 Related Work

Many data-mining techniques have been used to predict electricity consump-
tion [26, 27]. These include neural networks (NN) [28], support vector machines
(SVM) [29], support vector regression (SVR) [30], decision trees [31], auto regressive
integrated moving average (ARIMA) models [32], clustering models [33], decom-
position models, grey box models [34], and regression models [35]. The authors
in [36] noted that NN and SVR have been used extensively for forecasting residential
electricity consumption. In [30], the authors considered NN and SVR suitable
for predicting industrial energy demand. They concluded that the two models
have advantages and disadvantages and that it is inconclusive which is the best for
energy forecasting. In [31], the performance of regression analysis models, decision
trees, and NN for energy forecasting were compared. In the winter period, NN
performed slightly better, whereas in the summer period, the decision tree model
performed somewhat better than the other two. The authors in [37] presented
a multidimensional hybrid architecture to make energy consumption predictions
based on energy data-mining techniques that additionally makes use of current
energy data enriched by external unstructured Big Data information. Predictive
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data-mining has been also applied to the building operation stage to predict its
overall energy consumption [27]. Data-mining can be also used to obtain deeper
insights into the data, to try to discover associations, correlations, and intrinsic
data structures in Big-data. This is called descriptive data-mining. Compared with
predictive data-mining, the descriptive version is more flexible in application, as it
does not involve a training process and the knowledge of the discovery process is
not guided by predefined targets. Descriptive data-mining has mainly been applied
at the building operation stage for fault detection and diagnostics [38, 39]. Popu-
lar techniques include association rule mining, anomaly detection and clustering
analysis.

Quilumba et al. [40] proposed a combination of predictive and descriptive data-
mining procedures, recognizing the importance of differences in energy consumption
patterns. They proposed a prediction approach based on clustering customers
according to their consumption behavior and then predicting the energy consumption
of the whole population by aggregating the forecasting of each single cluster. They
applied this strategy to predict electricity consumption and demand for event-
organising venues in the residential and commercial sectors. Clustering has also
been used in the literature to group energy consumers with similar characteristics [41,
42] and to detect atypical, usually undesired, user behavior [43, 44].

The results of the studies [45, 46] show that a combination of statistical analysis
with prediction models (holistic, simulation and inverse models), complemented in
some cases with monitoring data analysis, can be a powerful tool for developing
urban energy action aimed at reducing the energy consumption not only of existing
buildings but also in higher geographical areas, such as neighborhoods or districts.

Big Data technology gives insights into how we think about a certain topic [47].
Big Data tools can manage structured, unstructured and semi-structured data [48].
Various data-acquisition Internet-of-Things (IoT) devices are penetrating into the
wider world and are able to collect information spanning different areas [49]. The
estimated installed base of smart meters worldwide will surpass 1.1 billion by
2022 [50], and will collect electricity usage data in the range of 15 minutes each.
This is up to a three thousand-fold increase in the amount of data utilities processed
in the past. It means that by 2022 the electric utility industry will be swamped
by more than 2 petabytes of data annually from smart meters alone. Cisco [51]
estimated that the data generated by devices would reach 507.5 zettabytes (ZB)
per year (42.3 ZB per month) by 2019. This immense growth of data cannot be
processed efficiently using relational databases.
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2.3 The EMPOWERING platform

2.3.1 Architecture

Fig. 2.1 shows the general architecture of the EMPOWERING system, which
is designed to tackle the following IT challenges: (i) to provide a means to link the
local utility database to the Big Data analysis environment, (ii) to offer high quality
in the delivered services, (iii) to provide batch-processing data analytics services
and (iv) to ensure data privacy and security.

The Big Data architecture developed within EMPOWERING is a Representa-
tional State Transfer (REST) framework which provides an Engine with a technology
aware interface.

Figure 2.1: EMPOWERING Architecture.

A REST style architecture conventionally consist of a client-server paradigm.
REST’s client-server separation simplifies component implementation and allows
intermediary modules, like proxies, gateways, caching systems and firewalls to
be inserted into middle levels without changing the interface between the main
components.

This architecture allows the storage and wrangling of large amounts of data.
This is made up by a combination of low-cost hardware and database technologies
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that allows the acquisition, allocation and extraction of data to be processed in a
distributed cluster. Essentially, the storage is split into Short-term and Long-
term databases (DB), which have different characteristics according to the quantity,
type and usage of data stored in them.

The EMPOWERING Big Data framework is entirely developed using open-
source software. It is mainly composed of 3 components: API REST, Task Man-
agement System and the Hadoop infrastructure.

API REST

This is the communication interface between the server and the Client REST,
and thus also with the utilities. The Application Program Interface (API) is fully
developed following the REST standard. This component is the utilities’ gateway
to communicate and configure the Engine. The aim is to enable a Service-Oriented
Architecture (SOA), offering specialized energy services to the customer and the
utility system administrators. This is not a simple issue. The main objectives of
the API are (i) to set and configure the services (see section 2.3.3), (ii) to import
data into the Engine and (iii) to export data from the Engine. These objectives are
addressed using different technologies. Data import and export are enabled using
the Eve framework to implement the Web service. MongoDB is the technology
used for the short-term DB. It is buffer storage for data reception and sending
in fast environments. It is the data storage directly connected to the API and
provides high communication bandwidth. It supplies temporary storage, acting
as a cache memory, prior to permanent storage in the long-term database. ExtJS
technology was used to implement User Interface (UI) for setting and configuring the
services. OpenAM provides open source Authentication, Authorization, Entitlement
and Federation software. The Flask and Python modules implement all the server
functionalities in order to deploy a web API server. Flask allows customizable, fully
featured REST Web Services to be built and deployed effortlessly, which greatly
simplifies the configuration of the API.

Task Management System

This level is in charge of scheduling and synchronizing the tasks in the engine
by means of RabbitMQ and Celery. In essence, the scheduler picks up the new task
to be executed in EMPOWERING according to a scheduling policy. The FIFO
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policy was chosen because the batch operation of the tasks made other variants (like
Round Robin), frequently applied in time-sharing environments, inefficient. Celery
is the scheduler itself. RabbitMQ is a fast internal message-queuing system used to
interchange information between tasks with different paradigm technologies.

Hadoop infrastructure

Apache Hadoop is an open-source framework that provides tools for distributed
storage and processing. It allows organizations to process and analyze large volumes
of unstructured and semi-structured data, heretofore inaccessible, in a cost- and
time-effective way.

Apache Ambari is used in order to manage the Hadoop cluster. It allows nodes
to be added and removed, new components to be installed in existing working nodes,
the cluster monitored, etc.

The two main Hadoop components are YARN and HDFS:

• HDFS (Hadoop Distributed File System) consists of slave components called
DataNodes where data is physically saved and a master process called Na-
meNode that is responsible for mantaining the file system directory tree and
has the information of where data effectively is (i.e. which blocks are available
in every DataNode). All HDFS reads and writes are managed by DataNode.

• YARN (Yet Another Resource Negotiator) is responsible for processing Map-
Reduce tasks using the master-slave paradigm. It consists of the Resource-
Manager (master similar to NameNode). It is in charge of managing the
launched tasks. The NodeManager resides in the slave nodes. It receives
Map or Reduce orders from the ResourceManager and executes those tasks in
YARN containers.

There are many high level applications running on the main components. Two
of them were used in this project:

• Hbase: Distributed key-value database. Provides real-time read/write access
and is built on top of HDFS. Hbase is used as the long-term big-data DB. It is
formed by hundreds of thousands of AMI (Advanced Metering Infrastructure)
devices used in EMPOWERING.

23

https://hadoop.apache.org/
https://ambari.apache.org/
https://hadoop.apache.org/docs/r1.2.1/hdfs_design.html
https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://hbase.apache.org/


Chapter 2 Big data infrastructure for the massive analysis of energy smart meters

• Hive: Data warehouse on top of HDFS which provides SQL-like querying
which are translated into MapReduce functions.

The YARN component is recursively used when Extract, Transforms and Load
(ETL), and analytical modules are running. Initially, multiple asynchronous ETL
functionalities aggregate, clean and transfer the data from the short-term to the
long-term DB. These functions pre-process the input data to ensure the quality and
format of the long-term DB.

Once the information is stored in the long-term DB, asynchronous analytical
modules are implemented to generate the needed results for the services offered to
the utility. The technologies used for the algorithms are a combination of R, Hive,
and Python software libraries using the Map Reduce [52] paradigm to allow complex
calculations over large sets of data. R is an open-source programming language for
statistical computing. In order to use R in the Hadoop environment, the Rhipe
and Rhadoop packages were used. These packages offer access to the long-term
DB and facilitate the implementation of Map Reduce algorithms using common
R functionalities. Python can also be used in the same manner with the MRjob,
Happybase and Snakebite libraries. Python scientific libraries, such as Pandas,
SciPy or NumPy, enable other advanced means for data analysis as an alternative
to R. Hive is a data warehouse system for Hadoop. It provides functionality for
data summarization, querying, and analysis of data. Hive queries are written in
HiveQL, an SQL-like language.

The combination of these languages allows the use of the most highly optimized
implementations according to the requirements of the algorithm and this generates
less development effort and a shorter data processing time when the code is executed.

2.3.2 Data

EMPOWERING services mainly rely on three categories of data: (1) energy
consumption and contract, (2) end-user’s and (3) third-party data.

• Energy consumption and contract data is the information used for billing
(e.g. consumption data, contract details). This encompasses consumption
data, either read at a low frequency manually, or by analogue meters, or
estimated (quarterly, bi-annually, annually, etc.), as well as fine consumption
data from smart meters (sub-hourly, hourly, daily, monthly, etc.). A certain
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type of consumption data may require clients’ consent to collect or display.
Thus, this type of data may not be available for all customers.

• End-user data is not directly accessible by the customers because it does not
serve for billing purposes. It is usually collected via online forms or surveys.
Services relying on this type of data depend on the willingness of customers to
fill in information about their dwellings and equipment. It can be erroneous
or incoherent, so services based on this information have to consider data
inaccuracies.

• Third-party data these data is obtained from remote databases or pro-
vided by third parties and do not concern the user directly. This can be
meteorological, statistical, etc.

EMPOWERING was conceived as a Big Data ICT architecture because of
the large amount of data to be managed. More specifically, in the first services
implemented from 2013 to 2016, the EMPOWERING architecture was managing
3 years of historical data from 70,000 contracts with the end users of two Euro-
pean electricity trading companies on an hourly basis and 30,000 contracts on a
monthly basis, altogether corresponding to 1,831 million measurements of electricity
consumption.

2.3.3 Services

This section describes the EMPOWERING services. These constitute the main
outputs of the analytic modules and are delivered to the final user in multiple
formats and timescales (i.e. web, paper reports).

In addition to the usual services currently provided by electric utilities, such
as consumption billing or historical monthly consumption, others seek to increase
the benefits and volume of useful information that reaches the end users. These
innovative services focus on the following topics: weather-normalized consumption
comparisons compared with similar consumers, personalized energy-saving tips, tariff
comparisons, consumption prediction and consumption alerts. These are the most
relevant services currently developed in EMPOWERING. Most of them are based
on one or multiple data-mining techniques to detect the weather-dependent share
of consumption, clustering similar neighbors or forecasting the energy consumption.
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Weather-dependence analysis

This can be understood as a pre-treatment service. It is widely used in
many services, e.g. normalized benchmarks, clustering of similar neighbors and
consumption prediction or alerts. It estimates customers’ energy consumption with
respect to the weather at their locations. These services use several linear-regression
techniques to correlate the energy consumption for space heating or cooling with the
outdoor temperature. Households with strong weather dependence are associated
with higher consumption levels in winter and higher outdoor temperatures in summer.
Fig. 2.2 depicts the information provided to the customers: monthly consumption
and the average monthly evolution of temperature over the preceding 12-month
period. An explanatory text is attached so that the customers can understand the
correlations between their energy consumption and the outdoor temperature better.
In this case, it seems that electricity consumption is not weather dependent. Thus,
this customer’s consumption was similar throughout the year.

Figure 2.2: Monthly consumption and av-
erage temperature over the last 12 months.

The models used to determine weather dependence differ depending on the
data granularity of the consumption data:

• Monthly data: A linear regression is used to fit the monthly energy con-
sumption based on heating or cooling degree days. The regression during
heating and cooling periods are expressed in equation 2.1.

Et = α +Hc ∗CDt +Hh ∗HDt + εt, (2.1)

26



2.3 The EMPOWERING platform

where Et is the electricity consumption at month t (Wh), α is the estimated
baseload consumption (Wh), Hh is the estimated Heat Transfer Coefficient
of the dwelling (not considering the performance of the systems) (Wh/K),
Hc is the estimated Cool Transfer Coefficient of the dwelling during the
cooling period (not considering the performance of the systems) (Wh/K),
HD t and CD t are respectively the heating and cooling days in month t (K),
and εts ∼ N(0, σ) and i.i.d.

The model parameters are estimated using the least-squares minimization
approach. Customers with an estimated Heat Transfer Coefficient (HTC)
higher than 100 Wh/K are assumed to have weather dependence during the
cooling or heating periods. The adjusted coefficients α and HTC are also used
to weather-normalize the monthly consumption when this information is used
to compare historical consumption. In this case, the HD t and CD t considered
correspond to the values of the last 12 months.

• Hourly data: Three-parameter (3P) and five-parameter (5P) models are used
to estimate the relation between the daily aggregated electricity consumption
and the average daily outdoor temperature. The 5P model is appropriate for
modeling energy consumption data that include both heating and cooling, e.g.
dwellings with a heat pump installed. 3P models are appropriate for modeling
the electricity use in residences with a weather dependence during one of the
periods (cooling or heating), e.g. dwellings with an electric chiller or boiler
installed. The 5P model is presented in Equation 2.2.

Et = αs +Hc,s ∗ (Tt − Tc)+ +Hh,s ∗ (Tt − Th)− + εt, (2.2)

where Et is the electricity consumption at day t in Wh, s corresponds to a
certain daily load curve pattern (each day is clustered in a specific pattern), Tt
is the average daily temperature at day t (K), Tc is the cooling change point
temperature (K), Th is the heating change point temperature (K). These tem-
peratures are optimised for each customer using a BFGS method considering
the Root Mean Square error (RMSE) between the predicted and actual energy
consumption as the cost function. The αs, Hh,s, and Hc,s are adjusted to each
daily load curve pattern detected, to characterise better the different cooling
or heating dependencies along weekdays and weekends, holidays, or specific
parts of the year related with extremely particular intradaily seasonality.
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For the time-dependent consumption comparison modules, a weather normal-
ization analysis is applied. It consists of estimating the actual consumption by
considering the ratios between the HD t or CD t from the previous and current
periods. This estimation allows the comparison of the electricity consumption for
different periods on a basis of similar weather. Once weather normalization has been
applied, the differences in energy consumption between both periods are considered
to be due to other factors (user behavior, new appliances, etc.).

Clustering of similar customers

Energy consumption can be compared either against historical customer con-
sumption or with other customers with similar characteristics. These consumption
comparisons also take into account different time periods: daily, monthly, quarterly,
semi-annual, yearly, bi-annual and triennial. In order to obtain similar customers, a
clustering procedure is performed.

Several data-mining techniques are used, ranging from supervised learning
approaches, based on similar contract information (contracted power, tariff) or
geographical information (municipality, postal code, region), as K-nearest neigh-
bours, to unsupervised learning algorithms such as Self-Organizing Maps (SOM)
and K-means. The selection of the best grouping criteria for each customer is based
on an optimization procedure which is aimed at minimizing a cost function (Equa-
tion 2.3) that consists of the difference between the monthly electricity consumption
of a customer and the average of their peers and the dispersion of this monthly
consumption within this group. To increase the robustness of the grouping criteria
selection, the optimization procedure considers the last 12 months available.

min
X

f(X, c) =
1

n

n

∑

i=1

∣Eic −EiX ∣ +
Q3(EiX)) −Q1(EiX))

Q3(EiX)) +Q1(EiX))
, (2.3)

Where X = similar customers, c = customer, n = number of months, Q3(EiX)
and Q1(EiX) are the ith monthly consumption 75% and 25% percentiles of the
similar users.

In general, the meaningfulness of the grouping criteria is related to the avail-
ability of input data and their characteristics. For instance, in the case of customers
with only consumption data and no contract or survey information available, the
meaning of the chosen grouping criteria is only related to the range of yearly con-
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sumption or the shape of the yearly profile. In other cases, when more contract
information is available, the meaning of the best grouping criteria could be related
to similar contracted power, heating or cooling dependencies, weather severity and
also consumption indicators.

In the case of the unsupervised approach, a clustering algorithm is used to
group the different kinds of customer. The first step is to train an SOM, a Neural
Network (NN) that makes up the low-dimensional representation of the overall set
of customers. When some customer features are clustered in a specific neuron, that
represents a similar group of customers. The next step consists of a second clustering
procedure, using the K-means technique, to find the emergent structures. The
inputs used in this second clustering are the centroids from the SOM neurons and
their mapping position. The emergent structure offers a more abstract description
of a complex system consisting of low-level individuals. The number of groups for
the K-means algorithm is optimized using the Gap Statistic index [53].

Two types of features are used in the training phase of the clustering algorithm.
The first considers static customer features, such as contract information (contracted
power, tariff, heating or cooling resources, location or yearly consumption), weather
dependence indicators (explained in section 2.3.3) and daily or weekly consumption
profiles averaged over a long period. The second one considers customer dynamic
features. It consists of determining likely cyclical consumption patterns. Daylight
imposes a natural rhythm on human behavior, making daily series an obvious
choice. Inferring how consumers use electricity during different periods of the
day on different days of the week and seasons of the year, is considered the most
relevant information to be found. In order to obtain this, the SOM + K-means
algorithm is used to detect patterns of daily consumption series over the whole set
of customers. Fig. 2.3 depicts a subset of those detected patterns for a utility of
6,500 customers. This information is the used by a classification algorithm (i.e.
SVM) that detects the pattern closest to every real daily consumption series of
each customer. Thus, the results of this classification are a discrete time series
of the closest consumption pattern over time. With this discrete time series, the
signature of daily consumption series over a limited period (3-4 months, at least) is
calculated. Finally, the signature and a K-means algorithm are used to detect the
groups of similar customers in terms of energy behavior, because users with similar
user behavior over time seem to have a similar signature for daily consumption over
a time period.
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Figure 2.3: Subset of representative daily
consumption series of all the customers
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Figure 2.4: Monthly consumption over the
last 12 months compared with similar users.

Fig. 2.4 shows a comparison of consumption over the previous 12 months
between a customer, similar customers and the most efficient customers within the
corresponding cluster.

Forecasting

Electricity forecasting is widely used in EMPOWERING to give consumption
prediction information to customers and the utility. The techniques used for fore-
casting depend highly on the customer characteristics and their energy usage. The
AutoRegresive Integrated Moving Average with eXogeneous variables (ARIMAX) is
used for those contracts that are weather dependent, because multiple independent
variables could be considered in addition to the lagged consumption time series, e.g.
the outdoor temperature, solar radiation or wind speed. In the case of contracts
without weather dependence, Generalized Additive Models with Autoregressive
fitting of the Residuals (GAMAR) are used. Alternatively, the consumption of this
type of customers could be forecast using a decision tree which is trained by the
information inferred in the clustering of similar customers in order to make the
day-ahead predictions.

Tariff comparison

This set of services summarizes high-frequency energy consumption measures
and integrates them into the tariff information of the utility. Thus, the customer
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can visualize which tariff is the most cost-effective considering their real energy
usage. Fig. 2.5 depicts the result of the daily consumption of a customer considering
a time-of-use tariff in a single month.

Figure 2.5: Daily consumption for each of the two tar-
iff periods contracted by a customer in one month.

Personalized energy-saving tips

These are the most important services for energy awareness. The energy-saving
tips are delivered once a month and the methodology used to select them differs
depending on the data frequency. For the monthly data, the energy-saving tips
are related to each customer’s weather dependence (as defined in 2.3.3) and the
season of the year. When a customer has strong weather dependence, they will
receive tips related to space heating or cooling systems. In the case of customers
with smart meters, the selection of tips is done following the procedure explained
in Algorithm 2.1. This procedure is performed once a month. To avoid repetition,
the selected tips are excluded from the procedure for a period of four months.

Alerts and alarms

In order to avoid over-consumption in upcoming bills, these services calculate
the bias between the actual consumption of each customer and their historical
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Algorithm 2.1: Energy Saving Tips
1: Clustering of users into similar groups based on each customer’s daily consumption pattern

and following the same techniques as in Section 2.3.3.
2: Evaluation of the average daily pattern of each cluster and the hourly percentage difference

between this averaged pattern and each customer’s pattern.
3: Definition of a set of around 100 energy-saving tips and weighting of each tip every hour of

the day. For example, tips linked to cooking have a higher weight at midday and in the
evening.

4: Calculation of the accumulative product between the hourly weight of each tip and the
hourly percentage difference of each customer’s pattern.

5: Classification of the tips to be delivered to each customer based on the score obtained.
6: Delivery of the three tips with the highest scores.

consumption and set up an alarm. This allows customers to react within the
period between two consecutive energy bills. The frequency of the alarms is directly
dependent on the data granularity. For instance, daily or weekly consumption data
is needed for monthly alarms. The platform delivers the alerts to the customers
through visual interfaces and direct messages.

2.4 Results

2.4.1 Evaluation Metrics

The evaluation of energy savings was based on the difference-in-difference
multi-parameter linear regression method according to [54] and re-arranged in
Equation (2.4).

ADCm = α + β ∗GE,m + γ ∗ tm + δ ∗ (GE,m ∗ tm) + εm, (2.4)

This method is widely adopted to evaluate the behavior of energy-efficiency
based programs. It only evaluates the differences caused by the delivering of the
EMPOWERING services, avoiding the rest of the external factors that affect the
customers. It was implemented as a service within the analytical tool with access
to the long-term databases. The EMPOWERING databases contain consumption
data for all customers, classified as customers who receive the EMPOWERING
services, EMPOWERING Group (EG), and the remaining ones, making up the Non-
EMPOWERING Group (NG). An extension of the EMPOWERING data model,
within the API Restful, was implemented to include each customer evaluated in the
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corresponding group and the date when they started using the EMPOWERING
services. The energy savings analysis is calculated for each group according to the
Averaged Daily Consumption (ADC ). The ADC is obtained as the ratio of the
aggregated monthly consumption. Once the ADC of each customer and month
(m) has been determined, the customer is inserted into a group. The relationship
between these variables can be found as a multiple linear regression model and are
used to find the ADC of each month (Equation (2.4)).

where:

α Independent parameter. It could be assumed to be the theoretical base-load
average daily energy consumption of the total number of customers.

β Parameter related to the difference in energy consumption caused by the effect
of belonging to the (EG) or (NG) groups.

GE Treatment variable. GE = 1 if the customer belongs to EG and GE = 0 if the
customer belongs to NG.

t Time period variable. t = 1 if the month falls within the evaluation period and t
= 0 if it is outside the evaluation period.

γ Parameter related to the time trend effect.

δ Parameter related to the combined effect of the customer group and the time
trend.

ε Uncertainty error accounting for all effects not considered in the model.

m It corresponds to the time index of all the variables (month).

The parameters are determined through a least square minimisation of the residuals.
Once all the parameters have been determined, the expected energy savings, (ES),
achieved by the customers belonging to EG is determined with Equation 2.5.

ES = δ

(α + β + γ) ∗ 100% (2.5)
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2.4.2 Energy Savings

The EMPOWERING architecture and services were applied in three pilot
experiments in France, Spain and Austria for slightly over 2 years, from November
2013 to December 2015. In each country, a local electricity-supplier was responsible
for gathering data from customers, putting this into the analytical platform presented
in section 2.3.1 to obtain data analysis and deliver them to the customers through
several user interfaces. The details of the communication channel to deliver the
services and the number of users included in the EG and NG groups as follows:

• Spain: The services were provided to the customers in two ways: (group 1)
through an on-line portal and (group 2) as a monthly energy report. Meter
readings were taken daily. The energy reports were sent together with the
energy bill every 2 months. The NG and EG groups consisted of 3,129 and
1,582 customers respectively.

• France: The services were also offered to customers as an on-line tool within
the utility web portal. Meters were read at a frequency of 6 months, but the
services used an estimated 3-month consumption. To evaluate the energy
savings of similar users, a clustering of the customers belonging to the NG
was performed based on the contracted power: (group 1) low contracted power
and electricity use limited to home appliances; (group 2) high contracted
power and electricity used mainly in space heating systems; (group 3) low
contracted power with occasional use of electricity for domestic hot water
and space heating. The NG and EG were formed of 4,632 and 60 customers
respectively.

• Austria: The services were offered to the customers as an on-line tool within
the utility web portal. Meters were read every 15 minutes. The NG and EG
groups were made up of 45,423 and 115 customers respectively.

After the test, the evaluation of the energy savings achieved by the group of
customers belonging to EG was performed following the methodology defined in
Eq. 2.5. Fig. 2.6 shows the percentage of energy savings achieved in the Spanish,
French and the Austrian pilot projects. As can be seen, the customers who used
electricity mainly for space heating and domestic hot water systems or those who
received both energy reports and access to on-line tools achieved greater savings in
electricity.
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Figure 2.6: Average energy savings achieved in
the Spanish, French and Austrian pilot projects.

Figure 2.7 shows the energy savings of the two groups of customers in the
Spanish pilot project segmented into percentiles of electricity consumption. A
similar pattern can be appreciated for both groups. In general, higher savings
were achieved in the higher energy consumption segments. Both groups reduced
consumption significantly. The savings achieved were considerably more higher for
the customers that receive billing tools (6%), compared to the users that only used
the online tool (4%), which could be related to the low user acceptance of utility
web dashboards. Thus, offering the services through the proper channels could
improve the savings significantly.

Figure 2.7: Energy savings per consumption distri-
bution percentile range for the Spanish pilot project.

Fig. 2.8 shows the energy savings achieved by the three groups of customers in
the French pilot project, segmented into the percentiles of electricity consumption.
It indicates higher energy savings for the middle-high percentile range customers
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in groups 1 and 2. In group 3, the savings are present over the whole range of
consumption, with higher (up to 22%) savings for the largest consumers. It can
also be seen that electricity savings were achieved in all three groups. Savings were
higher in the groups where the electricity was used for both space heating and hot
water (Groups 2 and 3). Considerable savings, above 20%, were achieved in Group
3, this being the group with more opportunities to modify their energy usage habits.
The number of customers in the EG was relatively small for the three evaluation
groups, allowing room for large uncertainty in the evaluated results.

Figure 2.8: Energy savings per consumption distri-
bution percentile range for the French pilot project.

Fig. 2.9 shows the energy savings achieved among the customers in the Austrian
pilot project, segmented into the percentiles of electricity consumption. Higher
energy savings were achieved by customers in the upper consumption segments, while
the customers with lower consumption barely increased their energy consumption.
The opt-in strategy also meant that only very motivated customers entered the
portal. The baseline consumption before the services was 8.15 KWh/day and the
average savings per user were 0.5 KWh/day.
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Figure 2.9: Energy savings per consumption distri-
bution percentile range for the Austrian pilot project.

2.5 Conclusions and future work

In this chapter, we present an efficient and scalable platform aimed at helping
domestic customers to save energy by managing their energy consumption positively.
The electricity savings achieved by using EMPOWERING ranged from an average of
2 to 12% among the different pilot and user groups. Improvements in the behavioral
aspects in energy use have considerable potential. The users’ own motivation
also seems to play an important role and thus, better results were achieved with
customer involvement. The personal motivation for energy savings is based on
different reasons and money saving is only one of them. Environmental concerns,
governmental laws, social policies and technological restrictions are other powerful
reasons where the future services should diversify in order to have greater impact.
In addition, more encouraging and ad-hoc services must be provided to the final
customers. Future work will analyze energy awareness depending on the nationality
of the customers. We leave this for the future work due to the complexity of the
diversity of features as well as clustering groups to be analyzed.
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Chapter 3

Data-driven virtual replication of domestic

thermostatically controlled loads

This chapter has been published as a paper:

Mor, G.; Cipriano, J.; Gabaldon, E.; Grillone, B.; Tur, M.; Chemisana, D.
Data-Driven Virtual Replication of Thermostatically Controlled Domestic Heating
Systems. Energies 2021, 14, 5430. https://doi.org/10.3390/en14175430

3.1 Introduction

In 2019, the final energy consumption of the residential sector accounted
for 26% of the overall final energy consumption in the EU [55]. The main use
of this final energy was for space heating, representing around 64% [55]. Most
EU Member States rely mainly on natural gas and electricity for meeting these
needs, followed by renewable energies, mostly solid bio fuels. This high dependence
on natural gas clearly determines any achievable strategy to reach the binding
carbon targets. As stated in [56], energy saving is one of the easiest ways to
save money for consumers and to reduce greenhouse gas emissions. The EU has
set binding targets of at least 32.5% improvement in energy efficiency by 2030.
To achieve this increase in energy efficiency on the global scale, more effort in energy
conservation strategies or in electrification of buildings’ technical systems should
be dedicated to this endeavor. The electrification can be based on several mature
technologies, such as electricity driven heat pumps, hybrid heat pumps, or district
heating networks. Many research studies have focused on demonstrating their cost
effectiveness and how these technologies can increase the energy efficiency in several
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European countries [57, 58, 59, 60, 61]. This strategy is the best option in the mid-
long term. However, in the short term, cost-efficient strategies, able to drastically
reduce the energy consumption of legacy space heating systems and, in particular,
thermostatically driven systems (fed with gas), should be also accelerated.

Another challenge to address is related to the users’ involvement in the energy
transition. Although the technologies are readily available, the control strategy,
as well as the involvement of end users in their management is not fully clarified
yet. End users must be part of the solution, and this can only be achieved if
manufacturers of home space heating/cooling systems, which should be one of the
drivers of the low-carbon transition, can find new and more interactive ways to
support end customers. The unfolding of these user driven energy control strategies
requires higher digitization of the existing systems. Manufacturers should accelerate
the virtualization (digital twins) of the operation of their systems to drastically
improve the user interaction and the automatic demand response. This process
needs some kind of Advanced Metering Infrastructure (AMI) or a massive adoption
of smart home devices. To date, Member States committed to rolling out close to
200 million smart meters for electricity and 45 million for gas by the end of 2020
at a total potential investment of EUR 45 billion [62]. By the end of 2021, it is
expected that almost 72% of European consumers should have a smart meter for
electricity, while 40% should have one for gas.

On the other hand, for the few last years we have seen a fast penetration of the
emerging Internet of Things (IoT) technologies into residential homes. Nowadays,
smart devices are inevitable in our lives [63, 64]. Smart thermostats are one of them.
These smart thermostats allow remote control of the home climate, display of the
temperature and energy consumption in real time or communication with intelligent
cloud-based IT systems to incorporate self-learning capabilities. These are crucial
features to accommodate efficient techniques to increase the energy efficiency of
space conditioning systems and decrease energy costs. However, some studies [65]
showed that 40% of programmable thermostats are used in manual modes, mainly
due to confusing user interfaces. Peffer et al. [66] stated significant failures in people–
technology interactions when they set their programmable thermostats. They also
pointed out some of the needed characteristics to overcome the misconceptions
about thermostat operation. For instance, to provide accessible web portals or
mobile applications or to add voice recognition features, or indicators of how much
time the heating system needs to achieve a desired temperature. Although smart
thermostats include some of these features, which help increase the user’s satisfaction,
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some studies [67] reflect that the end users are still reluctant to rely on the smart
thermostat to control their boiler or heat pump. In [68], product reviews of
five smart thermostats were collected and analyzed. When comparing the most
commonly discussed topics, generally they were not related to energy and cost
saving. The most discussed topics were control, ease of use, and installation. In [67]
a comparison of two different smart thermostats included an evaluation of the
achieved gas savings. The main conclusion was that there appeared to be higher
gas savings in homes where the occupancy detection features were enabled. Data
gathered by connected thermostats are also useful in understanding the operational
and occupancy patterns of users. A longitudinal analysis [69] was conducted in
relation to thermostat operation behavior due to the climate, season, and price
and to the thermal preferences. It was used to categorize users based on operation.
Furthermore, a study [70] on residential households located in high-rise buildings,
using complementary survey data, demonstrated the potential benefit of using
connected thermostat data as a diagnostic tool to identify opportunities for energy
savings in this type of building. In [71], various models designed to predict the user
occupancy, based on machine learning and deep learning methods, are compared.
Optimal set point temperature scenarios can be also estimated using these occupancy
prediction models.

Therefore, while thermostats’ capabilities to control the indoor temperature,
mainly based on occupancy detection, are well understood, less is known about
their effectiveness to enable energy savings. The uncertainty in relation to the
potential energy savings is increasingly important because manufacturers are adding
many new features and functions to the thermostats without detailed assessment
of their impact on the gas or electricity consumption. Previous research studies
demonstrated a high variation in the achieved energy savings due to the substitution
of conventional thermostats with smart thermostats. In [72], an assessment of two
smart thermostat models is performed, and a high variation of the achieved energy
savings, among users with the same smart thermostat, is documented. Moreover,
although these smart thermostats were focused on occupancy-responsive control,
the specific actions which led to the energy savings as well as the reasons of these
high variations are not clearly determined. In [73, 74], more detailed assessments
of the energy savings achieved by occupancy responsive thermostat control are
performed. A clear relationship between this occupancy-based control and the
achieved energy savings, supported by supervised learning data-driven models, can
be found. Nonetheless, the effect of other control variables such as variations in
the set point temperature are not analyzed in detail. Some studies, performed
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by the National Research Council Canada in their experimental set up (CCHT
twin houses), analyzed the effect of thermostat setback strategies over the energy
consumption [75]. They tested three setback strategies for the winter season and two
more for the summer season. Their research conclusion was that these strategies
can be very effective in winter but not in the summer. The research was very
accurate in evaluating setback strategies; however, they were tested in non-occupied
and highly controlled home environments and they were limited to the applied
setback schedules. They did not include dynamic modeling calibration or advanced
thermostatically controlled strategies. More research in prediction and control
optimization techniques, addressing the uncertainty in the evaluation of the effect
over the energy consumption, are certainly necessary.

The prediction and control optimization models should be able to include
not only the occupancy and the weather-dependent variables but also the control
variable which, in most cases, is the set point temperature. In [76], a review of
the state of the art of dynamic models able to predict natural gas consumption,
from 2000 to 2010, was presented. From this review, it can be ascertained that an
exponential increase in papers was detected in this field, especially in the lower
forecasting area level (regional, gas distribution and individual). The predominant
trend of these research works was a combination of optimization tools with more
classic forecasting models. After 2010, several authors continued using statistical and
stochastic methodologies to predict and characterize aggregated gas consumption
of residential units or groups of commercial buildings [77, 78]. At the individual
level, in [79] Nonlinear Mixed-Effects models (NLME) are used for the prediction
of single gas consumption at daily basis. After comparing the results among
auto regressive models, such as AutoRegressive with eXogenous variables (ARX)
and AutoRegressive Moving Average with eXogenous variables (ARMAX) models,
the conclusion was that such models perform similarly but have both merits and
problems. The NLME models are cleaner and clearer, while ARX and ARMAX are
better for local adaptation to sudden and abrupt changes within a single individual.
In [80], linear ARX, Artificial Neural Networks (ANN) and Support Vector Machine
Models (SVM) are applied to forecast natural gas consumption on a daily basis.
The solar radiation as an exogenous variable was included in the models and the
accuracy improved. That research work performed a very detailed evaluation of
several Time Series (TS) models in non-occupied test homes and clearly quantified
the model accuracy improvement by introducing the solar radiation as an exogenous
variable. The results were encouraging, however these test conditions were very
far from real and occupied buildings where the heating system is thermostatically
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controlled by the user through the set point temperature. In [81], a step wise
calibration of a dynamic thermal empirical model of a residential building was
performed. The calibration included some user-dependent parameters, such as the
air ventilation rates; however, the constraints derived by the set point temperature
control were not included in the analysis. More recently, Wang et al. [82] developed
a home thermal dynamic model built upon the standard Resistance and Capacitance
(R-C) approach and tested it with data from a test home in free-floating conditions.
This R-C model included the effect of most of the exogenous variables, such as
the internal and external temperatures, the wind direction and the solar radiation,
though it did not consider the effect of the set point temperature and of the
user behavior. Alinberti et al. [83] developed a non-linear Autoregressive Neural
Network model for short and medium-term predictions of the indoor temperature of
a secondary school building. The accuracy of the predictions is very well evaluated;
however, as in the previous literature works, the model cannot evaluate the effect
of the set point temperature in the energy consumption. In [84] a machine learning
model to predict residential energy consumption based on data from Wireless
thermostats is developed. Although the results are very promising in relation to
the energy savings evaluation, the developed technique requires many data of the
building features and it is limited to monthly frequency. This could be a clear limit
for wider application and for near-real time control solutions.

Recent studies moved one step beyond the prediction of the energy performance
of thermostatic load control systems and assessed control-optimized techniques
within Demand Response (DR) programs or in relation to the electricity network
operation [85]. In [86], the set point temperature of thermostatically controlled
systems is included in the evaluation of the demand response programs in 1000
households. That paper is based on synthetic data; however, it demonstrated how
an accurate modeling of the thermostatic control of space heating and cooling
systems enables simple and reliable evaluation of demand response and of Energy
Conservative Measures (ECM) in the residential sector. These emerging applications
require very fast and computation efficient data-driven models able to provide the
necessary response.

From these previous research works, it can be concluded that, although the
knowledge of the energy performance of thermostatic load controlled systems is
growing fast, there are still some gaps in relation to the modeling of the combined
effect of the thermal energy supplied by the heating system, of the user-based
thermostatic control driven by the set point temperature and of the exogenous
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variables (external weather conditions). Furthermore it is also stated that more
advanced modeling strategies, able to virtually mimic the performance of the
thermostatic control, are needed if we want to increase the smartness of these systems
and to enhance interactions with the customers. In our research, a new methodology
to emulate the performance of thermostatic load controlled systems is developed and
put in practice. The novelty relies on the fact that, unlike most literature solutions,
which limit their applicability to forecasting the indoor temperature or the energy
consumption separately, our approach combines several optimization techniques,
with auto regressive models and a control loop, to model cross-combined effects
and to mimic all the possible control modes driven by the control variable (the set
point temperature). The control loop included in the methodology is based on the
difference between the indoor and the set point temperatures. The mode when
the indoor temperature is higher than the set point threshold is modeled by a first
regression model where the indoor temperature is the dependent variable and the
space heating power consumption is one of the input variables. This space heating
power consumption becomes a dependent variable, fed by the indoor temperature
and other exogenous variables, when the indoor temperature is lower than the set
point temperature threshold. Both regression models are combined to forecast the
expected energy consumption and the potential energy savings when a certain set
point temperature schedule is applied. The methodology was validated in real cases
within a heating season. However, a similar implementation should be applicable
also to space cooling system as long as they are thermostatically-controlled systems.

The paper starts with a mathematical description of the regression models and
of the input variables transformation. It follows with a description of the processes
used to train both models and to optimize the regression parameters. The procedure
used to combine the two regression models to predict the energy consumption,
and the potential energy savings due to a certain set point temperature schedule, is
then described. The paper finishes with the application of the methodology over a
set of households in northeastern Spain, which are equipped with condensing gas
boilers driven by smart thermostats.

3.2 Methodology

The energy performance of a household is influenced by many factors that
include the dynamic indoor and outdoor conditions, the physical and geometric
characteristics of the building, the type of space conditioning system and, finally,
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the control of this system, which in most cases is a thermostat controlled by the
end-users. Therefore, when modeling the energy performance of real households
using data-driven models, all these factors should be considered. In this chapter,
a methodology is developed to accurately predict the energy consumption and
indoor temperature of thermostatically controlled heating systems. Technically,
the methodology combines two ARX models, named the demand-side and the
supply-side models, in order to dynamically simulate the heat losses and gains of the
building due to changes in the thermostat set point temperature. The demand-side
model captures the heat dynamics affecting the indoor temperature of the household,
while the supply-side model determines the heat dynamics concerning boiler energy
consumption. The two models, and their control loop coupling, are trained using
historical data of real systems performance during occupancy. Figure 3.1 depicts
the general flow diagram of the developed methodology. The first step starts with
the gathering of historical data available from smart thermostats reading and from
weather forecasting web services which provide climatic data. Then, both data-
driven models are trained using these data sets. Subsequently, these models are used
as a simulation tool to estimate the energy consumption and indoor temperature due
to changes in set point temperatures. Finally, the set of validated algorithms can
be used for multiple smart-control applications, such as Model Predictive Control
(MPC) or short-term forecasting. The outputs of these applications, in turn, can
generate more data which can be fed into an iterative self-learning process to re-train
the models.

Historical data
- Energy consumption
- Weather data
- Indoor temperature
- Setpoint temperature 

Data-driven models of:
- Energy consumption 
- Indoor temperature

TRAIN

SIMULATE
multiple setpoint 
temperature scenarios

Estimate the:
- Energy consumption 
- Indoor temperature
due to the setpoint 
temperatures scenarios

USED
BY

Applications:
- Model Predictive Control
- Historical savings estimations
due to changes in setpoints 
- Time estimation to reach a 
desired indoor temperature
- Short-term forecasting of energy
and indoor temperature

NEW DATA 
AVAILABLE

2

3

4

1

Figure 3.1: General steps and objectives of the modeling technique presented.
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The use of two models is justified because the heat dynamics of the building are
not affected by only the external variables and the supplied energy. They are also
affected by the indoor conditions. The lower the indoor temperature, the higher
the energy to be supplied to reach the comfort conditions defined by the set point
temperature thresholds. One of the models, the demand-side model, is used to
simulate the indoor temperature of the household in free-floating conditions, when
energy delivered by the heating system is zero. The other model, the supply-
side model, is used to estimate the energy needed to recover the indoor comfort
conditions when the supply system is activated again. Figure 3.2 shows 3 different
scenarios of simulated set point temperature schedules,T s,sim, the corresponding
simulated indoor temperature changes, T i and the supply energy delivered by the
gas boiler to recover the comfort conditions, Φh. As can be seen, the length of
the free-floating periods determine the indoor temperature decay and the energy
to be supplied by the gas boiler consumption to reach the set point temperature
schedule again. ARX models were selected, because these kind of black-box models
contain autoregressive impulse responses which can properly describe time-varying
processes in a fast and efficient way. In addition, as can be seen in Section 3.2.5,
a hybrid optimization procedure, considering least squares and a Genetic Algorithm
(GA), is applied to fit the models and to identify the unknown parameters. Last
but not least, in Section 3.2.3, a description of the prior transformations applied to
several input variables, along the training phase, are presented.

   simulated scenario 1,  simulated scenario 2, ..., simulated scenario n.
24
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Figure 3.2: Theoretical examples of 3 different set point tem-
peratures scenarios over the same time period and their re-
lated indoor temperature and space heating consumption.
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3.2.1 Demand-Side Model

The demand-side model is defined by an ARX model represented by the indoor
temperature (T i) as the output. The external weather conditions and the space
heating consumption are the input variables. This model captures how the heat
flows out of the building and how the indoor temperature is affected by the space
heating system. The model formula is described in Equation (3.1).

φ(B)T it = ωh(B)Φht + ωe(B)T et + ωpT e,lpt + ωi(W s,lp
t ×W d,fs

t ×Ψt)+
ωs(Isol,lpt × Saz,fst × Sel,fs) + εt

(3.1)

The coefficients φ(B), ωh(B), ωe(B), ωp ,ωi and ωs are the parameters of
the model, where: B is the backward shift operator B, defined as Bkyt = yt−k, k
is the auto-regression order, y is the considered variable, for instance, the indoor
temperature in the case of φ(B) or the outdoor temperature in ωe(B).

The independent variables considered in the model are:

• Time-lagged (n) indoor temperatures (T it−n) to characterize the inertia of the
building.

• Low-pass filtered outdoor temperature (T e,lp) to characterize the heat loses
through the envelope of the building due to changes in the outdoor temperature.
Compared to the T e, should be understood as a temperature that represents
better the internal temperature of the envelope.

• Raw outdoor temperature (T e) to properly model changes in indoor temper-
ature due to fast changes in the outdoor temperature, specially convenient,
for example, in low-inertia buildings, or buildings with large single-glazed
windows.

• Heat consumption of the boiler (Φh) to characterize the increase in the indoor
temperature due to the operation of the heating system.

• Solar direct normal irradiance (Isol,lp), interacting with the Fourier series of
the solar azimuth (Saz,fs) and of the solar elevation (Sel,fs) to characterize
the solar gains of the building.

• Wind speed (W s,lp), interacting with Fourier series of the wind direction
(W d,fs) and the temperature difference between indoors and outdoors (Ψ =
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T i − T e) to characterize the heat losses due to air leakage and convection
effects through the envelope.

3.2.2 Supply-Side Model

This dynamic model estimates the amount of energy needed to warm up the
household considering the inertia of the building, the external weather conditions,
the performance of the boiler and its thermostatic control.

γ(B)Φht = βt(B)T it + βe(B)T et + βpT e,lpt + βi(W s,lp
t ×W d,fs

t ×Ψt)+
βs(Isol,lpt × Saz,fst × Sel,fs) + εt

(3.2)

In this model, γ(B), βt(B) βe(B), βp, βi, βs are the coefficients of the model.
The output is the log-transformed consumption Φh. The inputs of the model are:

• Time-lagged (n) heat consumption (Φh
t−n) to consider how the boiler was

performing in the last time steps.

• Raw data of the outdoor temperature (T e) to consider the variation of the
coefficient of performance of the boiler due to changes in the outdoor temper-
ature.

• T e,lp is the low-pass filtered version of the outdoor temperature. It represents
the temperature of the building envelope.

• As in the demand-side model, the solar direct normal irradiance (Isol,lp)
interacts with the Fourier series of the solar azimuth (Saz,fs) and of the solar
elevation (Sel,fs).

• Ψ as in the case of the demand side model, it is the temperature difference
between indoors and outdoors.

• Wind speed (W s,lp) interacts with Fourier series of the wind direction (W d,fs)
and the temperature difference between indoors and outdoors (Ψ = T i − T e).

Unlike the demand-side model, the datasets used to estimate the γ and β

parameters only consider the periods where Φht > 0. This is because no information
can be extracted about the performance of the boiler in the periods when it is
not operating.
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3.2.3 Transformation of Input Variables

Low-Pass Filter

The application of a Low-Pass Filter (LPF) over the exogenous variables, used
as inputs of the models, transforms them into variables that better represent the
dynamics of the system and, therefore, the model fitting is improved. The LPF
assumes that the dynamics of the buildings can be described by lumped parameter
R-C models; see for example [87, 88]. This assumption means the response of
the indoor temperature or the energy consumption to changes in some climate
exogenous variables can be modeled as a first order LPF. Based on this assumption,
it is reasonable to apply LPF to all the exogenous variables in order to eliminate the
high input frequencies that might negatively affect the model training. The discrete
time implementation of this first order R-C LPF is the exponentially weighted
moving average of each variable with the filter parameter (α) tuned to match the
response of the building to each effect separately:

xlp = LPF (x,α) (3.3)

xlpt = αxt + (1 − α)xlpt−1, (3.4)

where xlp is the filtered exogenous variable, α is the filter parameter [0, 1], and x is
the original time series of the exogenous variable.

As described in Equations (3.1) and (3.2), outdoor temperature T e,lp = LPF (T e, αe),
wind speed W s,lp = LPF (W s, αw) and solar irradiance Isol,lp = LPF (Isol, αs) are
the inputs which are low-pass filtered for some of the terms used in the models.

Fourier Series

The correlation between indoor temperature (T i), solar irradiance (Isol,lp) and
air leakage (W s,lpΨ) is, normally, non-linear. Multiple reasons lead to this behavior,
such as: building envelope orientation and characteristics, sun position and wind
direction. To solve this issue, a harmonic function, based on a Fourier series, is
used to account for these non-linearities. Solar azimuth Saz, solar elevation Sel and
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wind direction W d are the observations transformed using this technique, and the
number of harmonics considered are, respectively, nhar,az, nhar,el and nhar,wd.

Y fs =
nhar

∑
h=0

⎧⎪⎪⎨⎪⎪⎩

θ0 if h = 0;

θh,1sin (2πhY ) + θh,2cos (2πhY ) otherwise
(3.5)

In Equation (3.5), Y represents the observation to be transformed, Y fs is the
transformed variable, nhar is the maximum number of harmonics included in the
Fourier series [0,∞), and θ are the regressors of each component. In the demand
and the supply-side models, the generic θ coefficients depicted in Equation (3.5)
are identified following the same procedure as ωi, βi, ωs and βs parameters

3.2.4 Models Coupling

The supply-side and the demand-side models are coupled to allow the simulation
of both the space heating energy consumption and the indoor temperature, given a
certain set point temperature schedule.

Figure 3.3 accurately describes how the models are coupled (Algorithm 3.1 of
the Appendix). In essence, it mimics the operation of a thermostat considering
the heat transfers of a household and setting on or off the operation of the boiler
according to the set point temperature. At each time step, the algorithm predicts
the variation of the indoor temperature in free-floating conditions, and then, when
the set point temperature is higher than the indoor temperature, it simulates the
space heating operation by estimating both the energy consumption and the indoor
temperature the household will reach.

3.2.5 Model Training and Parameter Optimization

The linear least squares method is used to estimate the ω, β, φ and γ parameters
of both ARX models. However, there are more parameters to be optimized: the
coefficients of the input feature transformations and the auto regressive orders of the
ARX models. Those parameters cannot be estimated using the least squares method
used in the regression analysis. Therefore, a Genetic Algorithm (GA) technique is
used as the optimizer for those coefficients. The GA evaluates several combinations
of a set of coefficients and then estimates the remaining ones (ω, β, φ and γ) using
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the least squares method. The cost function is defined in Equation (3.6). The GA
is based on the R package GA, developed by Scrucca et al. [89]. The GA package
provides a flexible general-purpose set of tools for implementing a genetic algorithm
search in both the continuous and discrete case, whether constrained or not. In this
research, a binary GA is selected within the available tools of the GA package.
A binary GA is a simple and flexible optimizer able to simultaneously include
multiple integer, continuous and discrete variables. More specifically, a Reflected
Binary Code (RBC) representation, which is an ordering of the binary numeral
system such that two successive values differ in only one bit, is used as the binary
representation of each chromosome evaluated by the GA. This RBC enhances the
optimization process during the recombination and mutation steps. Algorithm 3.2
describes in detail this optimization procedure. Algorithm 3.3 describes the way
in which the cost of each chromosome is calculated during the evaluation steps
of Algorithm 3.2. The cost function considered in this optimization is defined
in Equation (3.6). It consists of a combination of the Coefficient of Variation of
the Root Mean Squared Error (CVRMSE) of the indoor temperature and of the
space heating energy consumption. Although the CVRMSE is not affected by zero
values of the boiler energy consumption, it is only computed for households with
aggregated historical energy consumption greater than zero, Φh > 0. As can be seen
in Algorithm 3.3, the cost of each chromosome is evaluated using the cross-validation
folds along a testing period.

C =

√
1
n ∑

n
t=1(T̂ it − T it )2

T i
+

√
1
n ∑

n
t=1(Φ̂ht −Φht )2

Φh
(3.6)

Once all the parameters are optimized, the supply-side and the demand-
side models are considered as correctly validated and are ready to be used for
further evaluations.
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Figure 3.3: Models coupling flow diagram.

Table 3.1: Columns of A matrix.

Column Conditions

T et−k k ∈ N ∧ k ≤max(nβe(B), nωe(B))

T e,lpt−k k ∈ N ∧ k ≤max(nωp(B), nβp(B))

T̂ it−k k ∈ N ∧ k ≤max(nφ(B)nωe(B))

Ψt−k k ∈ N ∧ k ≤ nβp(B)

Φ̂ht−k k ∈ N ∧ k ≤max(nωh(B), nγ(B))

Saz,fs,hsin

t hsin ∈ N ∧ 1 ≤ hsin ≤ nhar,az

Saz,fs,hcos

t hcos ∈ N ∧ 1 ≤ hcos ≤ nhar,az

Sel,fs,hsin

t hsin ∈ N ∧ 1 ≤ hsin ≤ nhar,el

Sel,fs,hcos

t hcos ∈ N ∧ 1 ≤ hcos ≤ nhar,el

W d,fs,hsin

t hsin ∈ N ∧ 1 ≤ hsin ≤ nhar,wd

W d,fs,hcos

t hcos ∈ N ∧ 1 ≤ hcos ≤ nhar,wd

Isol,lpt -

W s,lp
t -

T s,simt -

52



3.2 Methodology

Algorithm 3.1: Forecasting algorithm and coupling of supply-side and
demand-side models

Input: Trained supply-side model; trained demand-side model; autoregressive
orders nγ(B), nβt(B), nβe(B), nβp(B), nφ(B), nωh(B), nωe(B), nωp(B);
number of harmonics nhar,az, nhar,el and nhar,wd; the smoothing
parameters of the low-pass filter αe, αs and αw; initial indoor conditions
(T i), weather conditions during the whole evaluation period (outdoor
temperature T e, wind speed W s, wind direction W d, solar irradiance
Isol, and solar position Saz, Sel), the space heating consumption few
timesteps before the period to be evaluated the hysteresis of the
thermostat h and, finally, the setpoint temperature (T s,simt ) to apply
during the evaluation period

Output: The predicted heat consumption (Φ̂h) and the predicted indoor
temperature (T̂ i) considering a setpoint temperature schedule (T s,sim)
during a period ts ∈ [0, j].

begin
SET ts = 0;
DEFINE the A input–output matrix (A ∈ Rj,i). The i columns are de-
scribed in Table 3.1. From now on, variables are referred to columns in
Ats,∗;

SET the autoregressive terms Yt−k ∶ k ∈ N∧k > 0 of the next variables: T̂ i (T i

is used), Φ̂h (Φh is used) and Ψ (T e and T i are used) at their respective
columns in Ats,∗;

while ts ≤ j do
Φ̂ht = 0;

ESTIMATE ̂
T i,lpt using the demand-side model;

if ̂
T i,lpt < (T s,simt − h) then
SET T̂ it = T

s,sim
t + h;

CALCULATE Ψt using, among others, last set T̂ it ;
ESTIMATE Φ̂ht using the supply-side model;
ESTIMATE T̂ it using the demand-side model;

for hr ← 1 to max(nωh(B), nωe(B), nβh(B), nβh(B), nγ(B), nφ(B)) do
SET the autoregressive terms Yt−k ∶ k ∈ N∧ k > 0 of the next variables:
T̂ i, Φ̂h and Ψ at their respective columns in Ats+hr,Y ;

SET ts = ts + 1;

Φ̂h = A
∗,̂Φh

t

;

T̂ i = A
∗,̂T i

t
;
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Algorithm 3.2: Genetic Algorithm for the optimization of the auto
regressive orders (n∗(B)), the low-pass filter (α∗), and the number
of harmonics (nhar,∗) to be considered in the transformation of the
input variables

Input: Hourly space heating consumption, indoor and set point temperature of
the thermostat and historical weather of the location of the household
during a period where the boiler is operating. At least 3 months of data
are required.

Output: Find the optimal auto regressive orders nγ(B), nβt(B), nβe(B), nβp(B),
nφ(B), nωh(B), nωe(B), nωp(B); optimal number of harmonics nhar,az,
nhar,el and nhar,wd; and optimal smoothing parameters of the low-pass
filter αe, αs and αw

begin
DEFINE a test set and a training set (15% and 85%, respectively);
DEFINE a cross-validation with 8 folds from the training set. Randomly
select, for each of the folds, a set of 80% of the days for training and 20%
for validation;

SET the value ranges, levels and type of variables of the parameters to
optimize;

DEFINE an encode–decode technique to convert each single combination of
parameters to a Reflected Binary Code (RBC) representation, taking into
account the allowed ranges or levels assigned to each parameter;

INITIALIZE population with random candidate RBC representations, also
called chromosomes;

EVALUATE the related cost of each chromosome using Algorithm 3.3.
In this step, ω, β, φ and γ ARX-models coefficients are estimated using
the least squares method;

SET i = 1;
while i ≤MaxIteration do

SELECT multiple chromosomes from the last iteration, giving more
chances to the ones with lower evaluated cost;

RECOMBINE pairs of parents;
MUTATE the resulting offspring in order to obtain a set of candidate
chromosomes for this iteration;

EVALUATE the related cost of each chromosome using Algorithm 3.3.
In this step, ω, β, φ and γ ARX-models coefficients are estimated
using the least squares method;
i = i + 1;

OBTAIN and decode the chromosome with the minimum cost, which con-
tains the optimal values for nγ(B), nβt(B), nβe(B), nβp(B), nφ(B), nωh(B),
nωe(B), nωp(B), nhar,az, nhar,el, nhar,wd, αe, αs and αw.
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Algorithm 3.3: Cost evaluation of each chromosome
Input: A chromosome which contains an RBC representation; training set; test

set; and the description of the cross-validation folds.
Output: The cost related to the input chromosome
begin

DECODE the RBC representation to the set of parameters which represent
the input chromosome;

TRANSFORM the variables of the raw data set considering the decoded
parameters. To build a data set with all the needed transformations and
lagged variables.;

DUPLICATE nf times the transformed data set. Each of these items will
represent a fold of the cross-validation procedure.;

SPLIT each fold between the training and the validation period specified in
the input of this algorithm. This procedure aims at avoiding the models
over-fitting. Since the folds are not randomly selected for each chromo-
some, the likelihood of the GA to reach a global optima is greater because
all the chromosomes are trained and validated exactly with the same folds;

i = 1;
while i ≤ nf do

TRAIN the supply-side model (Equation (3.2)) and the demand-side
model (Equation (3.1)) with the training subset of the ith fold;

VALIDATE the indoor temperature (T̂ i) and the heat consumption
(Φ̂h) using the trained models, the validation subset of the ith fold,
and the Algorithm 3.1;

CALCULATE the cost of the ith fold using the Equation (3.6) and the
validation results;

i = i + 1
CALCULATE the total cost of the chromosome, averaging the cost of all
the folds;

TRAIN the supply-side model (Equation (3.2)) and the demand-side model
(Equation (3.1)) with the test set. These models will be an output of the
algorithm;

VALIDATE the indoor temperature (T̂ i) and the heat consumption (Φ̂h)
using the last trained models, the test set, and the Algorithm 3.1;

CALCULATE the cost of the test set using the Equation (3.6) and the
validation results ;

CALCULATE the final cost as the mean value between the average of all
the cross-validation folds cost, and the test set cost.;

i = i + 1
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3.2.6 Evaluation of Potential Energy Savings

The developed methodology is suitable for multiple applications. For in-
stance, day-ahead forecasting or Demand Response (DR) services can benefit from
this methodology by including it within Model Predictive Control (MPC) proce-
dures. To demonstrate its wider applicability, within the framework of this paper,
the assessment of several set point temperature scenarios along a historical period,
is performed.

These scenarios are always compared against the Business as Usual (BaU)
scenario, instead of against the real data measurements. The reason is that the
models errors, even if they are small, may disturb the evaluation of the estimated
absolute energy differences. Therefore, it is better to compare between simulated
scenarios and to obtain relative energy differences that are affected by the same
error model. This strategy is supported by the fact that both the demand side
and the supply model residuals fulfil the white noise requirement. The model
parameters were trained using a cross-validated framework and, finally, the models
were validated over a data set not seen by any of the cross-validation folds. The only
requirement to assure an accurate evaluation of the relative energy differences is
that the set point temperature, along the training period, should contain different
temperature levels. This guarantees proper capturing of the heat dynamics of the
households. Therefore, if no excitation is provided to the output variables, no
dynamics can be inferred. Equation (3.7) describes the mathematical expression
used to evaluate the relative energy differences between a BaU scenario, in which
the set point temperature is the same as the measured one, (T s), and another
scenario under evaluation, represented by T s,sim.

Φhsavings =
∑nt=1 Φ̂ht (T s) −∑nt=1 Φ̂ht (T s,sim)

∑nt=1 Φ̂ht (T s)
100%. (3.7)

3.3 Case Study

3.3.1 Case Study Datasets

A real test of the whole methodology was performed over a test pilot case
formed by 15 households placed in a north-western area of Spain. Each household
is equipped with a condensing gas boiler which is controlled by a smart thermostat.
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Both the condensing boiler and the smart thermostat, named BAXI Connect, were
manufactured and provided by the company BAXI. In all cases, the distribution
heating systems were based on radiators. Other building characteristics as well as
occupancy patterns were not known because of data privacy requirements. Figure 3.4
shows a set of pictures of the installation process. It starts with the connection
between the control board and the gateway, followed by the removal of the old ther-
mostat and finishing with the switching on of the new smart thermostat. The smart
thermostat follows the Open Therm communication protocol to communicate with
the gas boiler and a wireless connection to communicate with the household router.
The variables transmitted by the thermostat are: the indoor temperature, the set
point temperature, the outdoor temperature (boilers equipped with an extra sensor),
an indirect estimation of the space heating thermal power, and an indirect estima-
tion of the domestic hot water thermal power. These data are communicated every
60 min and the hourly measurement tolerance corresponds to 1 kWh for the space
heating and domestic hot water power and 0.5 ○C for the temperature readings.
The testing period started in December 2018 and finished in May 2019. However,
since the involved customers had to accept the terms and conditions through the
BAXI Connect mobile application, the activation was performed sequentially in
time. A representative number of connected customers was not achieved until March
2019. Therefore, the analyses performed in this research are limited to this time
period, from March to May. The final number of users with accurate data had to
be limited to 11 households, selected among the whole population of 15 households.
This reduction is due to the lack of data availability for the selected test period and
due to the requirement of having a minimum level of excitation of the set point
temperature. Several heating and cooling ramps were required for proper model
training. Households where the set point temperature was fixed along large periods
(several days, weeks, or even months) were discarded.

The IT architecture of this case study is formed by the local smart thermostat
which transfers all the data to a central server managed by BAXI. These data were
anonymized and communicated through a RESTful API communication layer to the
big data analytics cloud. The details of this distributed and big data processing
framework are described in [90].
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Climate Data

Although some of the households have an extra temperature sensor placed
outside the building to provide data on climate-dependent exogenous variables,
the amount of gaps and outliers discarded the use of these data. As an alternative,
outdoor temperature, wind speed and wind bearing data were obtained from a
weather web service managed by the company Dark Sky [91]. These climate data
are based on the approximate location of each household (postal code). Additionally,
the global incident solar radiation on a planar surface is obtained from the Copernicus
European Union’s Earth observation program [92], which entails more accurate
modeling the solar heat gains of the households.

Figure 3.4: Pictures of the installation of the smart thermostat (BAXI
CONNECT) in one of the case study households. The top row shows the removal

of the front cover of the boiler. The middle row shows the connection with
the gateway. The bottom row shows the new smart thermostat installation.

3.4 Results

3.4.1 Detailed Model Validation in One Household

In Figure 3.5, the variables used in the demand and supply-side models of one
of the analyzed households are shown. The testing period ranges from 1st March
to 31st May 2019. Starting from the top, the dark-green line corresponds to the
set point temperature assigned by the tenant. The dark-orange line corresponds to
the indoor temperature gathered by the thermostat. The violet line corresponds
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to the outdoor temperature gathered from dark sky web service [91]. The outdoor
temperatures, ranging between 10 ○C and 25 ○C, are observed along the testing
period. The magenta line corresponds to the boiler energy consumption. The light-
green line corresponds to the direct normal incident solar radiation. The dark-yellow
line represents the wind speed times. The light-brown line corresponds to the
difference between the outdoor and the indoor temperatures, only if this is positive.
In addition, Figure 3.6 depicts the set point and the indoor temperature for the
same household, but in a shorter period. The aim is to show the correct operation
of the thermostatic control.
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Figure 3.5: Input and output variables of the de-
mand and supply-side models for one household.

Using these initial data sets, a cross-validation process is implemented to
identify all the unknown parameters of the two models. The number of folds
(nf ) considered was eight, and the percentage of training in each fold was 80%.
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The ranges, and the allowed levels considered for the optimization are summarized
in Table 3.2. As can be seen, most of the obtained auto-regressive orders have a
maximum value of four because beyond this value their statistical significance tends
to decrease. However, in the case of the indoor temperature, since this state variable
is highly affected by the household thermal inertia, higher orders are permitted in
the optimization (7 and 16 in the supply-side and demand-side, respectively), even
the optimised values for the case study tend to range between 1 to 4. The ranges
of harmonics for the Fourier series are between one and three. These ranges keep
the model simple while allowing enough flexibility. To increase the chances of the
GA obtaining larger values of the alphas and to address their high sensibility when
they have values close to one, an exponential weighted distribution was permitted.
The set of optimal parameters for the household in study is described in the last
right-hand column of Table 3.2.
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Figure 3.6: Actual set point and indoor temperature for one household.
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Figure 3.7: Training residuals of the model with T i as output.

Figure 3.7 shows the residual analysis of the demand-side model of the analyzed
household along the training period. As can be observed, the residuals are not auto-
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correlated, they follow a Gaussian distribution and the variance is homocedastic
along the time. These three conditions set that the residuals are independent and
identically distributed, meaning they achieve the white noise condition and the
model is properly trained and considered as valid. To validate the model with new
data, and therefore to assess its forecasting accuracy, the daily aggregated MAPE

and RMSE indicators were computed. They yield values are 1.4% and 0.45 ○C,
respectively. These error ranges are very satisfactory and demonstrate the validity
of the model for simulations of long term periods.
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Figure 3.8: Training residuals of the model with Φh as output.

Figure 3.8 shows the residual analysis of the supply-side model of the analyzed
household for the training data sets. As can be observed, the residuals are not
auto-correlated. Even though, they do not follow a Gaussian distribution and
the variance is not homocedastic along the time. Thus, the stationarity is not
satisfied, which means that the residuals of the supply-side model are not fully white
noise. This problem is originated during the gathering process implemented for
the energy consumption monitoring using the BAXI smart thermostats. The data
storage is made in hourly granularity, but using a high data resolution (2 kWh),
not recommendable for the modelling of residential heating systems using complex
models, such as ARX. Nevertheless, considering that, and keeping in mind that the
usage of this model is coerced to large period predictions (weeks or months), the
model is considered properly trained and valid. Even though, as future work of
this methodology, other techniques, which may incur in simpler models, should be
tested to better deal with the resolution limitation of this devices. To evaluate the
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accuracy of the model to assess potential energy savings, the MAPE and RMSE

were computed at aggregated daily granularity. This is because the tolerance of
the space heating consumption readings is too high in relation to the hourly space
heating consumption of the households. The computed daily MAPE and RMSE

were 37.1% and 4.72 kWh, respectively, for the testing period.
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Table 3.2: Model coefficients configuration for each exogenous variable.

Parameter Type
Values
Range

Levels
Weights

Distribution
*

Optimal
Value for

Household in
Study

nγ(B) integer N ∈ [1,4] 4 uniform 1

nβt(B) integer N ∈ [0,7] 8 uniform 5

nβe(B) integer N ∈ [0,3] 4 uniform 3

nβp(B) integer N ∈ [0,3] 4 uniform 0

nφ(B) integer N ∈ [1,16] 16 uniform 3

nωh(B) integer N ∈ [0,3] 4 uniform 1

nωe(B) integer N ∈ [0,3] 4 uniform 1

nωp(B) integer N ∈ [0,3] 4 uniform 0

nhar,az integer N ∈ [1,3] 3 uniform 2

nhar,el integer N ∈ [1,3] 3 uniform 1

nhar,wd integer N ∈ [1,3] 3 uniform 1

αe float
R ∈

[0.00,0.99]
20 exponential 0.891

αs float
R ∈

[0.00,0.70]
14 exponential 0.252

αw float
R ∈

[0.00,0.90]
18 exponential 0.824

modeIsol discrete ** 3 uniform
linear depending
solar position

modeWs×Ψ discrete *** 3 uniform
linear depending
wind direction

h float
R ∈

[0.25,1]
4 uniform 0.5

Notes: * see Figure 3.9; ** no dependence, linear depen-
dence, and linear depending solar position; *** no de-
pendence, linear dependence, and linear depending wind
direction.
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Once the models of the household are trained and validated, forecasts of the
indoor temperature and of the space heating consumption are performed, applying
the procedure defined in the Algorithm 3.1. The prediction period was between 1st
March and 31st May. Figure 3.10 depicts the comparison between measured data of
heat consumption Φh and indoor temperature T i, with the black colored line, and the
forecasted ones, Φ̂h and T̂ i, with the red colored line. The set point temperature
considered in the forecasting (T s,sim) is the BaU set point (T s), which is the original
schedule set by the user. As can be seen in Figure 3.5, the set point temperature
ranges from 18 ○C to 22 ○C along the majority of the period. Looking at the results
of the simulation, it is notably appreciated that the predicted indoor temperature
accurately fits the dynamics of the measured values. However, the supply-model
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tends to inaccurately predict some of the peaks. As previously mentioned, one
of the reasons for this low accuracy is related to the high measurement tolerance
of the space heating energy consumption readings. Nonetheless, it is remarkable
that the whole-= period aggregated space heating energy consumption difference
(∑Φh −∑ Φ̂h) is 12 kWh. That means only 1.55% over-prediction, which can be
considered as a good result considering the main goal of this research.The good
performance of the models in periods where the household behaves in free-floating
mode (with the boiler switched off) is also remarkable.

3.4.2 Model Validation in a Larger Population
of Households

The training and validation framework was applied over a set of households,
11 households, with available space heating energy consumption for the period
winter–spring 2019. Instead of showing a residual analysis for each of them, two
Goodness Of Fit (GOF) indicators were considered. To determine the models
parameters of each household, a cross-validation procedure and two prediction
strategies were followed. The testing period comprised three months (1st March–
31st May). The first strategy was a one-step ahead prediction of each of the models
in order to see how the prediction fit the actual data according to an hourly update
of the data inputs. This could be understood as the training error of each model.
Following this strategy, no error propagation was considered. The second prediction
strategy consisted of following the Algorithm 3.1. In this case, in addition to the
trained models, the BaU set point temperature and the historical external weather
conditions were also considered. The initial conditions for the indoor temperature
and space heating initialization were those of 1st March at 00:00:00. Using the
second strategy, the error propagation was considered. If the models did not properly
characterize the dynamics, the GOF indicators would dramatically increase when
compared to the one-step ahead prediction strategy. Both strategies were confronted
with the monitored data gathered by the smart thermostat. The GOF indicators
were the Mean Absolute Percentage Error (MAPE) and the Coefficient of Variation
of the Root Mean Square Error (CV RMSE). Equations (3.8) and (3.9) describe
their mathematical expressions. In these equations, n corresponds to the number of
time steps of the whole period, yt is the measured time series and ŷt is the predicted
time series.

MAPE =
n

∑
i=1

∣yt − ŷt
yt

∣ (3.8)
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CV RMSE = 1

yt
⋅
¿
ÁÁÀ

n

∑
i=1

(yt − ŷt)2

n
(3.9)
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Figure 3.11: MAPE of the space heating consump-
tion of 11 households, aggregating data to daily multiples.

Model coupling prediction

One-step ahead prediction

01 03 05 07 09 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45

0%

10%

20%

30%

0%

10%

20%

30%

Number of days aggregated

C
V

R
M

S
E

 [%
]

Φh CVRMSE on 11 different households

Figure 3.12: CVRMSE of the space heating consump-
tion of 11 households aggregating data to daily multiples.
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In Figures 3.11 and 3.12, box-plots of the MAPE and CV RMSE for the
space heating energy consumption are, respectively, shown for the 11 households,
considering both prediction strategies and the same testing period. The MAPE is
only computed when yt > 0. As can be seen, the data are aggregated to several days
to understand what the minimum period required to perform this kind of analysis is
30 days. In both, MAPE and CV RMSE, the errors evolved similarly, decreasing
asymptotically as the aggregation frequency increased. When aggregation periods
larger than 30 days are considered, both errors have an average value of less than
10%. Therefore, a minimum period of a month is recommended for the assessment
of energy savings scenarios. It can also be concluded that both models are able to
correctly characterize the dynamics of households since the error propagation does
not increase sharply between both prediction strategies.
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Figure 3.13: Hourly indoor temperature
CVRMSE and MAPE of 11 households.

The box-plots of the MAPE and the CV RMSE of the indoor temperature
are shown in Figure 3.13. The high accuracy of the demand-side model results in a
very well predicted indoor temperature using both strategies. The hourly frequency
residuals are lower than 3% on average. This means that the model is capable of
accurately modeling the dynamics of the thermal losses and heat gains. This is of
high importance since the indoor temperature is the variable used to control the
operation of the space heating system of the households.

67



Chapter 3 Data-driven virtual replication of domestic thermostatically controlled loads

3.4.3 Assessment of Potential Energy Savings

To envisage a wider applicability of the data-driven techniques developed in
this research, the potential energy savings of several set point temperature scenarios
over the analyzed household of Figure 3.5 are shown in Figure 3.14. As can be
seen, in the period between 1st March and 31st May, the space heating energy
consumption is estimated to decrease around 24% if the BaU set point schedule
is lowered by 1 ○C. If this BaU schedule is lowered by 2 ○C, the estimated space
heating energy savings reaches around 49%.
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point temperatures scenarios (T s,sim) over one household.
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These figures should be considered as approximate since the supply model has a
higher error validation than the demand side model. This data-driven methodology
also allows the assessment of the response of the space heating energy consumption
to time fixed values of the indoor temperature, as recommended by the building
code regulations. Two predictions of fixed set point temperatures of 20 ○C and 21
○C are generated and shown in the last top down plots of Figure 3.14.

Although some energy savings was expected, the outcomes of these simula-
tions yielded approximate energy consumption increases of around 29% and 84%,
respectively. Therefore, for this household, it is not recommended to fix the temper-
ature along the whole period, since this would lead to higher space heating energy
consumption. This conclusion is in line with the set point temperature schedules
set by the user in the BaU scenario, where 30 to 40% of the hours are set to low
set point temperature. These low set point temperature periods correspond to the
night time, when no energy gains are present and the outdoor temperatures are
lower. In other words, even in case the values of the fixed set point temperature
scenarios are lower than the higher values of the set point temperatures in the BaU
scenario, the energy demand of the household increases to avoid the drop in the
indoor temperature during this non-operational period.

Finally, the free-floating conditions can be also assessed. This facilitates the
estimation of the minimum indoor temperature that a household would reach
without the operation of the space heating system. In this case, this household
would reach a minimum temperature of 16.7 ○C along the whole tested period.

An assessment of approximate potential energy savings of the 11 households was
performed. Figure 3.15 presents the box-plot of the energy consumption difference
between the measured data and the simulated space heating energy consumption
over the period between 1st March and 31st May. The first column represents the
measured space heating energy consumption versus the predicted one, obtained by
applying the Algorithm 3.1 considering the BaU set point temperature. The average
difference is −2%, with an interquartile range between 4 and −10%. Since the
absolute error is lower than 10%, it can be concluded that the trained models for
the 11 households are valid to simulate set point temperatures scenarios. In the
second and third columns, the comparison between two set point temperatures
scenarios and the BaU set point temperature scenario is shown. Decreases of 1 ○C
and 2 ○C are tested, yielding potential average energy savings of 18.1 and 36.5%,
respectively.
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Figure 3.15: Energy potential savings distributions applying two dif-
ferent set point temperatures scenarios (T s,sim) over 11 households.

3.5 Conclusions

The study demonstrates high accuracy of the models to predict both the indoor
temperature and the space heating energy consumption. However, for this specific
use case, since the measurement resolution for the space heating consumption is
too high, a minimum aggregated period of 30 days is recommended to properly
estimate the potential energy savings scenarios.

The major novelty of the proposed methodology is that it goes beyond the
prediction of the heat consumption and the indoor temperature of these systems.
The methodology incorporates an optimization algorithm and a control loop which
provides the capability to virtually mimic all the possible user controlled modes
driven by the set point temperature.

Some direct conclusions can be finally obtained in relation to the potential
energy savings which can be achieved if the users decide to modify their usual set
point temperature schedule. Average estimated energy savings of 18.1% can be
achieved if the usual set point temperature is lowered by 1 ○C. Up to approximately
36.5% energy savings can be achieved if the usual set point temperature is lowered
by 2 ○C.
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Chapter 4

Operation and flexibility assessment of

direct load control systems in buildings

This chapter has been published as a paper:

Mor, G.; Cipriano, J.; Grillone, B.; Amblard, F.; Menon, R.P.; Page, J.;
Brennenstuhl, M.; Pietruschka, D.; Baumer, R.; Eicker, U. Operation and energy
flexibility evaluation of direct load controlled buildings equipped with heat pumps,
Energy and Buildings 2021, https://doi.org/10.1016/j.enbuild.2021.111484

4.1 Introduction

Renewable energy sources like solar panels and wind turbines are invaluable
for transitioning to a fossil-free energy system to mitigate climate change impacts.
However, their natural fluctuations introduce significant uncertainty in the power
grid. In addition, they transform the present unidirectional centralized system into
a bi-directional decentralized system with smaller units and multiple prosumers,
increasing the difficulty to achieve power balance [93]. This leads to an increased
need for flexibility on the demand side [94, 95] and for new storage capacity [96,
97]. One attractive solution identified to support the transition of power systems is
to manage not only the energy supply but also the demand via Demand Response
(DR) programs [98, 99]. The principle behind it is to use various economic incentives
to shift the electrical loads of end-use customers from times with a high wholesale
market price or when the system’s security is threatened to other time periods. As
has been pointed out in [100], there are predominantly two types of DR programs:
i) explicit DR (also called incentive-based); ii) and implicit DR (also called price-
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based). In Implicit DR, a price signal is sent to the prosumers to motivate their
user behaviour change. Explicit DR involves the participation of a third party, who
takes action on behalf of a customer by sending an activation signal such that the
system behaviours are directly modified. In both DR programs, and considering that
nearly 50 % of the total energy consumption of buildings comes from Space Heating
(SH)/Cooling (SC) and domestic hot water (DHW), as stated by [101], there is
definitely a role that electrically driven Heating, Ventilation and Air Conditioning
(HVAC) systems can play.

Although the installation of control devices, communication, control protocols
and standardization have improved, DR is currently still rarely implemented in the
commercial and even less in the residential sector in Europe [102]. Serale et al. [103]
reviewed 161 papers on Model Predictive Control (MPC) in buildings, and revealed
that only a fourth considered residential buildings and only a bit more than a fifth
compared experimental cases to simulated cases. Kohlhepp et al. [104] performed
a thorough review of 16 projects of field tests and demonstrations of applied DR
from around the world. Only four projects had more than 100 households, a size
large enough to represent load diversity and test resource competition. A singular
case of commercially applied DR to large scale residential buildings is run by the
French company Voltalis, which manages one of the biggest portfolios of explicit DR
services in the world. They follow a strategy of DR based on service curves [105,
106].To our knowledge, they have not published peer-reviewed papers analysing
the impacts of this DR strategy or provided a general methodology to evaluate
the delivered energy flexibility. In general, there is a lack of test case benchmarks.
Comparing the results among case studies with different goals, addressed electricity
markets and technology environments is still very challenging.

The few real case applications of DR have brought forth a wide diversity of
methodologies to evaluate the energy flexibility that individual or clustered buildings
can provide. In many cases, assessment methodologies are focused on the potential
energy flexibility at the building design stage. Arteconit et. al [107] is a clear
example of defining an indicator of flexibility labelling at the design stage. Finck
et. al [108] performed a very detailed analysis of the demand flexibility that power-
to-heat systems can deliver. Several flexibility indicators such as available storage
capacity and efficiency are enhanced with a flexibility factor, which relates electricity
costs in the lower price and higher price periods in a day-ahead electricity market
DR scenario. A thermal instantaneous power flexibility indicator is also described.
These indicators have a great potential to evaluate the energy flexibility in DR
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services addressing the ancillary markets. The only weakness is that they were
demonstrated in a theoretical simulated environment. Moreover, that research was
more focused on developing control strategies and not on the flexibility evaluation
itself.

In their hands-on review, Reynders et al. [109] made a valuable contribution
in reviewing prior research dealing with definitions and quantification of energy
flexibility. One of their main conclusions was that a large share of the performed
research practices did not explicitly define or were not focused on quantifying energy
flexibility. Yet, they dealt with the development of control strategies and algorithms
for specific case studies. They also stated that most of the studies had in common
the identification of three general properties of energy flexibility: i) the potential
flexibility in several time horizons; ii) the load which can be shifted; and iii) the
cost of this flexibility. The authors also deducted that methodologies aimed at
quantifying the energy flexibility by analyzing triggered events at specific times have
greater strengths when dealing with the flexibility to be delivered by the thermal
mass of buildings or energy storage systems. In contrast, methodologies which
relied on differences in the accumulated energy profiles are difficult to interpret
because they treat systems driven by multiple time constants as a single state system.
El Geneidy and Howard [110] performed a detailed analysis of the categories of
characteristics that constrain the contracted flexibility potential in homes. Although
their results are valuable for defining further DR strategies, they are limited by
simplified assumptions and exclusively based on simulated scenarios. Bampoulas
et al. [111] conducted a more detailed recent review on studies aiming at defining
suitable flexibility indicators. They highlighted that most of these studies were
limited to evaluating control strategies and assessing the activating and deactivating
of the building’s thermal mass. Still, they did not clearly quantify the flexibility
potential of HVAC systems.

Following these remarks, Junker et al. [112] developed a novel methodology
to characterize the energy flexibility as a dynamic function named the Flexibility
Function (FF ). This FF enables a Flexibility Index, which describes how a building
can respond to certain activation signals. The FF is a step-response function that
assumes that the relation between the penalty signal and the power load is linear and
time-invariant. Several theoretical cases were presented to validate this proposed
FF , demonstrating how the FF enables the quantification of the energy flexibility
in different types of buildings. This paper represents a valuable contribution to the
field since it establishes a robust methodology to represent, in a normalized manner,
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the correlation between the penalty signal and the load response. The concept of
the FF applies to several building typologies and DR scenarios but specifically
addresses implicit DR services. However, the assumption that the dependence of
the active power and the activation variable is linear limits its applicability to DR
services which can fulfil this requirement. Recently, Junker et al. [113] published a
paper presenting a new generic method capable of overcoming the linearity and time
dependency of the correlation between the flexibility and the penalty signal. This
new method follows the principles of the FF , but it changes the perspective. They
developed a non-linear dynamic model based on stochastic differential equations.
It is applied to price-based controlled buildings and water towers, showing high
robustness, accuracy and scalability to similar business cases. One limitation is that
these methods are developed to specifically address implicit DR services driven by
penalty signals triggered by one of the stakeholders of the electricity sector. This is
very common in many electricity markets, such as the spot electricity market, the
intra-day market, or certain ancillary services markets. However, in some explicit
DR services, where the activation variable is a power trace to be followed, such
as when a commercial aggregator makes bilateral agreements with their Balance
Responsive Parties (BRP), both the FF and the flexibility characterization model
defined in [112, 113] need to be modified or extended to adapt them to these different
kinds of activation variables.

In our research, an extension of the previously developed flexibility character-
ization procedures is performed, which is the main novelty of the research work.
Based on the background knowledge developed by Junker et al. [112], and further
improved in [113], new linear regression-based models, designed to characterize the
energy flexibility delivered by blocks of buildings, are developed and validated in
real cases. These new flexibility models address different implicit and explicit DR
scenarios. For example, the activation variable can be the spot market price, the
percentage of power to be activated, or a power trace to be tracked. This is also an
extra contribution to the paper. One last novelty of the research lies in the fact of
developing and applying these flexibility models on clustered residential buildings,
ranging from high energy performance detached houses (Germany) to building
blocks connected to low-temperature district heating (Switzerland) or a group of
buildings formed by small shops, a food market and residential units (Spain). In
all the scenarios, the methods were applied to remote-controlled heat pumps with
different system configurations.
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The rest of the paper is organized as follows. Section 4.2 describes the developed
methodology, identifies potential flexibility markets, presents a common method-
ology for quantifying energy flexibility and describes the models and the new FF

formulations. Hereinafter, the three case studies (Spain, Germany and Switzerland)
are presented in Section 4.3. They comprise three clusters of buildings with heat
pumps remotely driven by MPC procedures. The operation of the DR services and
the results are summarized in Section 4.4, where details of the outcomes of the
different direct load control tests are presented. The energy flexibility is assessed,
through the derived Flexibility models and Flexibility Functions, in this section.
Finally, the findings are extensively discussed in Section 4.5, and summarised in
Section 4.6.

4.2 Methodology

4.2.1 Identification of the addressed flexibility markets

Different markets exist for the trading of electricity between buyers and sellers.
In the day-ahead market, products are traded for delivery on the following day.
The intraday market trades products to balance possible deviations from the
day-ahead forecast. Balancing or control reserves markets are needed to balance
electricity generation and consumption in the short term. Three different types of
control reserves markets are available: i) Frequency Containment Reserve (FCR),
ii) Automatic Frequency Restoration Reserve (aFRR), and iii) Manual Frequency
Restoration Reserve (mFRR). They differ according to the principle of activation, to
their bid minimum size and symmetry, and their activation speed. The last category
of markets is the Reserve Replacement (RR) market. These capacity mechanisms
aim at ensuring the security of supply from a long-term perspective.

In this paper, four of the above-mentioned markets are selected to be addressed
through direct load control DR services: i) the Spanish wholesale electricity market
(day-ahead); ii) the German operating reserve; iii) the German intraday spot market
and; iv) the Swiss imbalance market (aFRR).

In Spain, OMIE is the nominated electricity market operator (NEMO) for
managing the Iberian Peninsula’s day-ahead and intraday electricity markets. The
delivery takes place on the day after the trading day (incl. weekends or holidays),
and trading sessions take place in one daily auction 365 days/year. Sale and purchase
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bids can be made considering between 1 and 25 energy blocks in each hour, with
power and prices offered in each block. In the case of sales, the bid price increases
with the block number; in purchases, the bid price decreases with the block number.
The minimum size is 0.1 MW. The Spanish TSO, Red Eléctrica Española, has
developed an information system known as ‘System Operator Information System
(esios)’, specially designed to run all the necessary processes to ensure economic and
reliable exploitation of the Spanish Power System in real-time. The esios portal
offers an open API where the wholesale electricity prices for the next 24 h are
published once the spot market is closed (at 13 h of every day). These electricity
prices become the control variable for the direct load control services implemented
in the Spanish use case.

Unlike the day-ahead spot market in Germany and Switzerland, the intraday
market can be described as a corrector market because the time intervals between
trade and activation and the activation period are significantly lower. Thereby,
electrical energy is traded in intervals of one hour for Switzerland or 15 min for
Germany. In Germany, trades for 15 min intervals can be completed between 15:00
(CET) of the previous day until 5 min before activation [114].

In Germany, four different TSOs are responsible for the reserve markets, and
around 60 companies are pre-qualified to deliver operating reserves. Therefore,
compared to the spot trade market, there is a highly reduced field of actors. The
FCR activation time of a few seconds is very short term. aFRR requires an activation
time of less than 30 s and 5 min to reach full power. RR requires 5 min for activation.
mFRR and RR are traded daily and bids can be provided in blocks of 4 h. Negative
and positive reserve power is traded. As a first instance, positive or negative power
is offered with different assigned prices. If an offer is accepted, a working price (e.g.
EUR/MWh) is also offered, and the activation occurs according to the working
price within a merit order list. The main drawbacks of mFRR and RR are that
at least 1 MW of power must be certified. Thereby, an aggregated larger pool
operation is necessary. The German operating reserve market, especially mFRR
has seen dropping costs within the last years [115, 116], whereas in comparison the
amount of energy traded at the EPEX Intraday market has almost doubled from
2014 – 2019 (from 47 TWh to 91.6 TWh) [117], shifting the favourability more to
intraday trade. In the German pilot site, activations were carried out by Centrica,
an aggregator company situated in Belgium, according to available market data
from Belgium. This is justifiable due to the fact, that the spot market products are
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tradable in between Germany and Belgium [118] as well as the operating reserve
market conditions are comparable [119].

The Swiss operating reserve markets are managed only by one TSO (Swissgrid).
Compared to Germany, the minimum certified bid of the aFRR and RR markets is
5 MW, making them even less accessible for residential buildings, as a vast pool
of assets would be needed. For aFRR, the trading is automated. The products
traded are asymmetric and must be available 30 s to 5 min after the notification for
a duration of up to 15 min. The size of the aFRR in Switzerland in 2017 was ±380
MW [120]. The high participation of hydropower supply in the reserve markets
limits residential DR. The high number of DSOs present in Switzerland [120], each
of them with a limited asset pool, also hinders the development of DR services by
the DSOs. For the field tests of the Swiss pilot site, the targeted reserve market
was the aFRR, as its market constraints are the most accessible for heat pumps.
By combining a pool of batteries with fast activation time and heat pumps whose
power availability lasts longer, an aggregator could theoretically fulfil the market
constraints. The trading in this work was done by Centrica (aggregator), and
HES-SO Valais-Wallis carried out the activations in Switzerland. Real trading could
not be tested, as it would have required 200 times the capacity offered by the pilot
site to reach the minimum bid of 5 MW.

4.2.2 New reference methodology to assess energy flexibility

The methodology to characterize the energy flexibility in a more standardized
way follows the initial methodology set out by [112]. This methodology defines
a dynamic function, named the flexibility function FF , which characterizes the
energy flexibility of any device through the use of penalty signals. In our research,
the analysed use cases do not strictly follow the activation of the energy flexibility
through penalty signals since they respond to other DR schemes. To address these
different DR schemes, we took a broader approach than [112] and implemented a
methodology to include other kind of signals and activation variables which are more
realistic for the analysed energy flexibility markets. The proposed methodology
follows the process shown in Fig. 4.1. As can be seen, the initial point starts with
setting up the baseline modelling, which corresponds to the energy performance
model of the buildings in a Business as Usual (BaU) scenario. This baseline model
is then used to forecast the building energy consumption for the time horizon
defined by the activation period. This energy forecasting is integrated into a model
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predictive control optimization where the activation variable is the output. The cost
function depends on the flexible electricity market to be addressed. The activation
period is different for each use case and flexible electricity market. It is driven
by the optimized activation variable, ranging from a penalty signal, such as the
day-ahead price, a percentage of power activation time, or a power trace to be
tracked. The active power consumed throughout of activation period is registered.
This time series is considered as the dependent variable within the flexibility model.
The baseline forecasting and the activation variable time series are defined as the
independent variables. The flexibility model is then formulated also to include
the corresponding autoregressive terms. The next step consists of training this
flexibility model with historical data of the activation period. Once the flexibility
model is trained and validated, the i-step prediction is used to define the flexibility
function, FF .

Process to quantify energy flexibility
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Figure 4.1: The general process to quantify the energy flexibility
.

Baseline modelling

Since the energy flexibility cannot be directly measured, as it represents the
activation or deactivation of power usage, it is determined by comparing measured
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power during the activation period and forecasting the power consumed by the
building as if the activation had not taken place. This supposed scenario is called
the Business as Usual (BaU) scenario. To determine the energy load forecasting
under the BaU scenario, a model of the thermal dynamics and the energy con-
sumption of the building, prior to the activation period, needs to be developed.
This model is called the baseline model. The baseline model can be defined as
the energy characterization of the starting situation and has a fundamental role in
the determination of energy flexibility. In fact, the baseline model allows isolating
the effects of the activation variables from the effects of other parameters that can
simultaneously affect the energy consumption. To obtain the baseline model, several
approaches can be followed:

• Empirical modelling based on a system of differential equations and heat
transfer functions

• Grey box modelling based on state-space models

• Data-driven modelling based on transfer function models or machine learning
techniques

In this research, the three approaches have been used for the different use cases.
The first approach requires detailed models with several monitored variables and
a calibration stage to fit with the monitored data. An example of these kinds of
calibration processes can be found in [121]. The second approach requires monitoring
the state variable (indoor temperature or water tank temperature) and a precise
process to identify the unknown parameters. A[122, 88] detailed description of
the identification procedure applied over suitable grey box building heat dynamics
models is presented. The third approach requires good data quality of a minimum
historical period and the measurement of the control variable. Several authors
applied this last approach to determine the heat dynamics of buildings. In [123],
some of the most common data-driven methods used to develop baseline models are
reviewed. The baseline models developed in each use case are described in detail
and referenced in the corresponding subsection of Section 4.3 of this document.

Flexibility models

A flexibility model is a regression-based model which aims at finding the
correlation among the active power, the activation variable and the power under
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the BaU scenario. In this research, a data-driven approach is followed based
on Autoregressive (AR) models. As previously mentioned, the initial modelling
technique is defined by [112] is modified to adapt it to the specific constraints of the
different activation variables. The original model by Junker et al. assumes that the
active load when exposed to a the penalty signal can be separated into two parts;
the load that dynamically responds to the the the penalty, and the non-responsive
load (baseload power, in our equations). However, in our case the dynamics due to
the active and baseload signal itself are added. Thus, an ARX model is considered
based on the initial equation presented in [112]. This allows to better estimate the
amount of time and load that can be flipped once an activation, a change of price,
or a trace to follow is received. Additionally, it helps to the proper estimation of
the rebound effect caused by a change in the penalty, as it considers the thermal
inertia available in the system.

In the use cases when the activation variable is the day-ahead electricity price
of the wholesale spot market, the model formula is described in Eq. 4.1.

φTo
(B)P et = ωTo

(B)P bt +ΨTo
(B)DAt + εt (4.1)

P et is the active power of the system, P bt is the predicted baseline power without
activations, andDAt corresponds to the activation variable, the day-ahead electricity
price. φTo(B), ωTo(B) and ΨTo(B) are the parameters of the model. The sub
index To represents their dependence with one categorical variable, the outdoor
temperature. In order to better express this dependency, a 4 hours moving-averaged
transformation is applied over the outdoor temperature for the testing periods. This
averaged temperature is further split in two levels: [6.67 ○C - 12.3 ○C] and [12.3 ○C
- 21.5 ○C]. Therefore, the To is not used as a exogenous variable of the model. The
backward shift operators,B, are defined as Bkyt = yt−k, where yt is the considered
variable (P et , P

b
t ,DAt) at time t and k ∈ [0, j]. Here, j refers to the maximum order

allowed to that backward shift operator, B. The εt corresponds to the white noise
residual of the model at time t.

In the use cases when the activation variable is the percentage of activation
time within each time step, the model formula is described in Eq. 4.2.

φbd(B)P et = ωbd(B)P bt +Ψbd(B)At + εt (4.2)

P et is the active power of the system, P bt is the predicted baseline power without
activations, and At corresponds to the activation variable, which is the percentage
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of time asked for activation within every time step [0%-100%]. φbd(B), ωbd(B)
and Ψbd(B) are the parameters of the model. The sub index bd represents their
dependence with one categorical variable, the building number. bd comprises the
categorical values of the building number for this use case [20, 22, 24, 25], and a
virtual building that aggregates the power of all of them. Therefore, the building
number, bd, is not used as a exogenous variable of the model. The backward shift
operators,B, are defined as Bkyt = yt−k, where yt is the considered variable (P et ,
P bt ,At) at time t and k ∈ [0, j]. Here, j refers to the maximum order allowed to
that backward shift operator, B. The εt corresponds to the white noise residual of
the model at time t.

In the use cases when the activation variable is a trace to be tracked, the power
used within the activation period is no longer the model’s dependent variable. In
Eq. 4.3, the dependent variable is substituted by the difference between the active
power, P et , and the baseline power,P bt . Whereas, the independent variable of the
model corresponds to the difference between the power trace to be tracked, P ft and
the baseline power, P bt . The modified formula is shown in Eq. 4.3.

φs,To
(B)(P et − P bt ) = ωTo

(B)(P ft − P bt ) + εt (4.3)

φs,To(B), ωTo(B) are the parameters of the model. The sub-index To represents
their dependence on a categorical variable, the outdoor temperature. Based on a
4 hours moving-averaged transformation of the outdoor temperature, for the test
periods, the results are split into two groups of outdoor temperature levels: [6.5 ○C
- 15.7 ○C] and [15.7 ○C - 28.5 ○C]. The sub-index s refers to the sign of the trace to
be tracked in relation to the baseline power, being equal to 1 when it is positive,
equal to 0 when there is no difference with the baseline power, and equal to -1 when
it is negative. Therefore, neither the To nor the s are used as exogenous variables
of the model. The backward shift operators,B, are defined as Bkyt = yt−k, where yt
is the considered variable (P et , P

b
t ,Xt) at time t and kε[0, j]. Here, j refers to the

maximum order allowed to that backward shift operator, B. The εt corresponds to
the white noise residual of the model at time t.

Flexibility Functions

The Flexibility Function (FF ) can be understood as the impulse response
function of each flexibility model since the flexibility models include autoregressive
terms of the dependent variables, which cause an influence over the P et when t ≥ 1.
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To do so, an i-step prediction is performed to estimate the impulse response of the
models properly.

In the use case when the activation variable is the day-ahead price, the FF is
determined based on a positive and a negative change in the day-ahead electricity
price (±0.1 €/kWh) for the time steps n = 15, 60 and 120 minutes and for a
flexibility evaluation period of i = 480 minutes. When the activation variable is the
percentage of time of activation within each time step, 100 % activation signals for
time steps of n = 1, 2 and 4 hours are tested along a flexibility evaluation period of
i = 12 hours. Both use cases follow a similar procedure to determine the FF :

t = (0,1, ..., i) (4.4a)

P et≤0 = 0 (4.4b)

P bt∈N = 0 (4.4c)

For the day-ahead electricity price as the activation variable:

DA =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0.1, if positive price change

−0.1 if negative price change
(4.4d)

DAt = (0, (DA, ..,DA)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

, (0, ...,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-i times

) (4.4e)

φTo,k=0(B)P et = −φTo,k≥1(B)P et +ΨTo
(B)DAt (4.4f)

φTo,k=0(B) = 1 (4.4g)

FFt = P et = −φTo,k≥1(B)P et +ΨTo
(B)DAt (4.4h)

For the percentage of time activation within a time step as the activation variable:

At = (0, (100, ..,100)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n times

, (0, ...,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n-i times

) (4.4i)

FFt = P et = −φbd,k≥1(B)P et +Ψbd(B)At (4.4j)

In the use case when the activation variable is a trace to be tracked, the FF is
determined by considering a 100 % activation signal of time steps n = 15, 30 and
60 minutes for a flexibility evaluation period of i = 120 minutes. A multi-step
prediction method is used to predict the expected response of ±1 kW of the trace
to be tracked. The previous estimate of the flexibility function, (P e − P b), is used
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for the new prediction step. The baseline power is set to P bt = 0 for t ∈ (0,1, ..., i).
Here, s is equal to 1 if the activation is pos equal to -1 if it is negative.

(P et≤0 − P bt≤0) = 0 (4.5a)

(P ft − P bt ) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0, if t ≤ 0

( (s, ..., s)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n times

, (0, ...,0)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶
i-n times

), otherwise (4.5b)

φs,To(B)(P et − P bt ) = ωTo(B)(P ft − P bt ) (4.5c)

φs,Tok=0(B)(P et − P bt ) = −φs,Tok≥1(B)(P et − P bt ) + ωTo(B)(P ft − P bt ) (4.5d)

φs,Tok=0(B) = 1 (4.5e)

Considering the flexibility model of Equation 4.3 and the set up described in previous
equations, the FF is defined as:

FFt = (P et − P bt )
= −φs,Tok≥1(B)(P et − P bt ) + ωTo(B)(P ft − P bt )

(4.6)

4.3 Case studies

The methodology to evaluate the energy flexibility is applied over three case
studies which have in common a direct load control of space heating systems driven
by heat pumps:

• Case study of the Spanish wholesale electricity market price as the activation
variable. Blocks of buildings placed in North-East Spain (Sant Cugat)

• Case study of the percentage of activation time as the activation variable.
Residential households placed in South Germany (Wüstenrot)

• Case study of a trace to be tracked as the activation variable. Blocks of
residential buildings placed in Switzerland (Naters)

A new player, called the Cluster Manager (CM), is incorporated in these case
studies. CMs are site managers that cluster together with the local energy , which
are remotely controlled (e.g. heat pumps). They have technical knowledge of
these energy systems and the connected devices (control system, meters, sensors...).
They manage these assets and act as the bridge between the aggregator, who bid
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in the markets, and the end-user. Thus, they do not have to deal with market
specifications handled by the aggregator.

4.3.1 Spanish case study: wholesale market price
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Figure 4.2: Space heating configuration of the Spanish use
case. The zoom shows details of the hydraulic distribution ring

.

This case study is a pilot site constituted by buildings that combine apartments,
offices, shops and a local food market. They are placed in a city called Sant Cugat,
in Northern East Spain. Figure 4.2 shows the space heating and cooling system
configuration. It comprises a water storage tank of 3,500 litres fed by two reversible
heat pumps accounting for 60 kW of electric power. The heat pumps are controlled
by an immersed temperature probe inserted into the bottom of the water tank. The
heat pumps deliver thermal energy to the water storage tank through a primary
circuit with two hydraulic pumps and external heat exchangers, which follow the
same operation schedules as the heat pumps. The water tank provides hot and cold
water to two different hydraulic circuits, which transfer this thermal energy to 32
offices, 3 shops and a local food market. These hydraulic circuits are managed by
two 3-way motorized valves incorporating a proportional integral derivative (PID)
control, leading to variable water volume flow rates. The control variable of the
system is the water tank setpoint temperature. Since the two heat pumps do not
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have variable-speed compressors, they are thermostatically controlled in ON/OFF
modes.

The direct load control strategy followed in this use case is based on the
augmented heat pumps performance with price information from the wholesale
market and weather forecast data for the current and following day. The heat
pumps’ electrical use adjusts times when the Spanish wholesale market spot price
is lower (day-ahead optimization). To make these services operational, a Model
Predictive Control (MPC) approach is put into practice. Every day at 00:00, a
Genetic Algorithm (GA) optimizes the cost function, which is the minimum daily
electricity consumption cost and gets the vector of the setpoint temperature of the
water storage tank, T sopt, for the next 24 hours in the more cost-effective way.

The baseline model is developed based on the third approach mentioned in
Section 4.2.2. It is a data-driven approach formed by two ARX models. They define
the dynamic energy balance between the electricity load of the heat pumps, the
water tank temperature and the thermal energy delivered to the offices, to the shops
and the local food market, as well as the thermal losses in the water storage tank
and the water distribution rings. More details of this kind of model can be found in
[124]. These two forecasting models need, as inputs, day-ahead predictions of the
thermal energy consumed by the shops, the offices, and the local food market. Since
they form a block of buildings, they can be simplified as a multi-space building
formed by several thermal balance nodes. This model is expected to behave highly
non-linear in relation to the external temperature and other climate-dependent
exogenous variables. Therefore, data-driven models are also used to evaluate their
energy performance. After a previous fine-tuning phase, where several machine
learning models were evaluated, the Generalised Additive Model GAM , developed
by Hastie et al. [125], provided the highest accuracy and was the selected one.

4.3.2 German case study: percentage of activation time

This case study is a pilot site situated in the rural municipality of Wüstenrot
in southwest Germany. It consists of a newly built positive energy settlement
with 18 residential single and multifamily buildings. These buildings are connected
to a low-temperature district heating grid fed by a so-called “agrothermal” – a
large scale geothermal - collector. All buildings are equipped with decentralized
heat pumps, thermal buffer storage tanks ranging from 175 to 300 litres, radiant
floor systems, and photovoltaic (PV) systems of installed power between 6 and 29
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kWp per building. In addition, a cloud-based monitoring system is installed for
12 buildings that include all relevant thermal and electrical energy flows. Within
those 12 buildings, a local energy management system is installed to control the
heat pumps. Figure 4.3 shows a scheme of the energy systems configuration of
one of the households. Since different manufacturers provided the heat pumps,
some connectivity problems appeared with the interfaces of some of them and the
activation was only carried out for four heat pumps manufactured by Tecalor (Typ
TTF 10 and TTC05). Two of these heat pumps have a maximum electrical power
of 2.38 kW, and two have a maximum power of 3.82 kW. These activations aimed
to test the potential and challenges of flexible control of heat pumps from the
viewpoint of a flexible service provider.

Figure 4.3: Energy systems configuration of one
of the single households of Wüstenrot pilot site

The development of the baseline model followed the first approach mentioned
in Section 4.2.2. For four of the selected households, a white-box model of each
building was generated. More details of the models can be found in [126] and in
[127]. They include heat pumps, buffer storage water tanks and control systems.
To increase the model’s accuracy, a calibration on parameters changeable by the
users (indoor setpoint temperature and air exchange rate) with measured data was
carried out. Given the unavailability of a baseline for the fifth household, due to
inadequate monitoring data, this baseline has been derived from another house
which was most similar (same heat pump type and no heating buffer) applying a
linear extrapolation based on the historical consumption difference of both. Input
parameters for the heat pump control are active power, DHW temperatures and
floor heating temperatures. The control strategy is a direct load control over heat
pumps on/off.
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4.3.3 Swiss case study: trace to be tracked

This case study is a pilot site placed in the municipality of Naters, in Southern
Switzerland. It comprises 12 residential multi-family buildings connected to a
centralized low-temperature district heating network (anergy network). It represents
166 residential units. The size of the buildings ranges from 4 to 36 residential units
per building. The buildings’ construction years range from 1919 to 2015. Thus their
envelopes have different thermal efficiencies and have either radiators or floor heating
systems. Each building is equipped with one or two fixed speed compressor heat
pumps, thermal buffer storage tanks for SH and DHW. Hardware components called
‘gateways’ are installed in each building. They collect, process and export data from
the building devices (e.g. heat pumps, electricity meters) to a cloud-based platform
that enables remote control of the heat pumps. The gateways installed in this use
case do not have the same level of internal intelligence as the management system
installed in the German use case. Due to some restrictions in the control interfaces
with the heat pumps, only five out of fourteen heat pumps were intensively tested,
accounting for a maximum aggregated electricity power of 34.3 kW. Figure 4.4 shows
and scheme the energy systems configuration of the multi-apartment buildings.
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Figure 4.4: Energy systems configuration of one of
the multi-apartment buildings of Nater’s pilot site
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The test aims to confirm the potential and challenges of flexible control of heat
pumps in residential buildings from the viewpoint of a flexible service provider.
A transactive DR approach was tested (a two-way communication system). Its
reliability and performance over consecutive days with multiple DR-events per day
was also assessed. The framework can be divided into three steps: i) the site is
waiting to provide DR services by running BaU; ii) the aggregator starts negotiating
power traces with the CM; iii) once a trace has been agreed on, the CM tracks
it with an MPC adapted from the formulation developed by [128]. The baseline
trace is modelled based on the third approach mentioned in Section 4.2.2. It is a
data-driven approach formed by a Seasonal Autoregressive model (SAR) for each
building using the past 3 days’ power data. The aggregated baseline for the site
is computed by summing up the estimated baseline of each building. The other
traces are generated by solving scheduling optimization problems. The control
variables of the heat pumps are the SH and DHW temperature set points, which
are increased/decreased based on the new values optimized by the MPC.

4.4 Results

4.4.1 Operation of the Spanish case study
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Figure 4.5: Results of the direct load control of the use case of
the Spanish wholesale spot market price as activation variable

Figure 4.5 depicts the results of the direct load control applied in the case
study where the Spanish wholesale spot market price acts as the activation variable.
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An MPC optimization was applied during the activation period, which comprised
from March 29th to April 12th 2020.

The upper figure shows, in a black-coloured line, the monitored active water
storage tank temperature,T topt along the activation period. It is compared with
the water storage tank setpoint temperature,T sopt, the red-coloured line, obtained
as the output of the day-ahead optimization performed every day. The T sopt is
the direct control variable that drove the heat pumps performance along the
activation period. As can be seen, the water tank temperature follows the optimized
setpoint temperature very well. The lower plot shows the simulated baseline
forecasting of the water storage tank temperature (black-coloured line), T tb , and the
corresponding setpoint temperature (blue-coloured line), T sb , in the BaU scenario,
which is minimum operational temperature level required by the offices, shops and
local food market to keep the comfort requirements. The differences in both plots
show the effect of the activation. It can be seen that the baseline forecasting usually
has two temperature peaks and a second smaller temperature level. In contrast,
the optimized temperature shows a single peak that is slightly lagged in time. This
time lagging shows the MPC is shifting the higher setpoint temperature values to
the periods with lower electricity prices.

Time series inputs for the flexibility model development

In Figure ,4.6 the day-ahead signal price, DA, the forecasting of the baseline
power load, P b, and the active power of the heat pumps, P e, are shown. Comparing
the two time series of power, the differences due to the MPC are appreciable. The
bigger differences can be seen for the first days of April, where the active power is
concentrated in the lower price hours while the baseline forecasting also consumes
in higher prices periods.

Since the objective of this use case is to reduce the cost of the energy consump-
tion of the heat pumps, Figure 4.7 depicts the accumulated cost difference achieved
between the active optimized energy performance (black line) and the BaU scenario
(red line). The reduction of cost reaches 18 % at the end of the field test operation
period. This is an auspicious outcome to consider day-ahead price optimization as
an important way to optimize the operational costs of heat pumps systems while
offering flexibility to the electricity system.
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Figure 4.6: Active power, P e, forecasting of the power baseline, P b, day-
ahead electricity price, DA and outdoor temperature, To of the heat pumps
of the Spanish use case, during the direct load control operation period
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Figure 4.7: The accumulated cost of the active optimized energy
performance (black line) compared to the BaU scenario (red line)

4.4.2 Operation of the German case study

Before operating the Tecalor heat pumps, different tests were conducted to
verify their control capabilities. An upwards signal of 100 % activation for 30
minutes, followed by a stop of 10 minutes and the second activation of 15 minutes
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was sent to the heat pump controller. The result is shown in Figure 4.8. The time
to start up was 56 seconds from the setpoint to on. Besides, the heat pump needed
15 minutes to reach 75 % of the maximum power. It can also be seen that the
activation profile started with a first step increase, followed by a roughly linear
ramp. The time to shut down was 1 min 22 seconds, whereas the shutting down
profile was a decreasing step function. There is a 20-minute recovery time between
switching off and switching the heat pump on again. These factors determine how a
flexibility service provider can control the heat pump flexibly and integrate it into
a virtual power plant.
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Figure 4.8: Heat pump control capabilities analysis

Another test was performed to assess a stepwise activation. For certain flexibility
services, a heat pump may have to deliver a linear increasing or decreasing power
curve (e.g. track the TSO’s aFRR signal). Since the modulation of the power output
of the heat pumps was not possible, the test performed to deliver a linear ramp was
based on stacking the deactivation of heat pumps. In this test, 1 minute between
each heat pump switching on/off was set up, and a variation time of switching on
between 5 to 30 minutes. During this test, 3 heat pumps were available at the
case study pilot site. Temperature measurements of both the DHW and the floor
heating system were available, allowing us to estimate the available flexibility in
the system. The ranking of the heat pumps to switch them on and off was based
on the measured temperature in the floor heating circuit, which turned out to be
the limiting factor.
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Figure 4.9: Stepwise action of 3 heat pumps in the German pilot site
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Figure 4.10: Power and temperatures of the
heat pump systems along the activation period

This test is shown in Figure 4.9. The results were not satisfactory to deliver a
service such as aFRR standalone. This can be explained by the small pool (3 units)
and the fact that the heat pumps were often unavailable for (de)activation due to
comfort/safety constraints. Furthermore, since the heat pumps controls are driven
by load curves that are dependent on the indoor and outdoor temperatures, and
the latest was high for the testing period, the heat pump power demand was lower
than initially expected. In Figure 4.10 a deeper zoom on the (un)availability causes
of one of the heat pumps is shown. Number 1 indicates forced on the situation,
which means unavailability of the heat pump. This is due to the DHW temperature
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dropping below a threshold, forcing the heat pump to switch on for comfort reasons.
Number 2 indicates a forced off situation, which means the heat pump is unavailable
because the floor heating temperature exceeds the threshold temperature, forcing
the heat pump to switch off for comfort/safety reasons. After the temperature
drops again below the low threshold, the heat pump can be activated again, as can
be seen from the graph.

Looking at the overall results of the performed tests, it has been demonstrated
that the flexible operation of heat pumps in the cases study is possible and can be
leveraged for multiple flexibility services or energy markets. Nevertheless, important
points of attention are: i) the latency to ramp up to full power to ramp down to
switch it off, which is around 1 minute; ii) and the recovery time, which is around
20 minutes. Furthermore, the comfort set points and the available storage in hot
water tanks or the inertia of the building clearly determine the duration for which
the heat pump can be switched on or off.
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Figure 4.11: Active heat pumps power (P e), forecasting of base-
line power in BaU scenario (P b) and percentage of activation

time in each hour (A) of four households in Wüstenrot pilot site
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Time series inputs for the flexibility model development

The operation of the case study in Wüstenrot, Germany, was a direct load
control of four of the available heat pumps considering activation signals sent by a
commercial aggregator. When activation was sent, the heat pumps had to operate
for as long as possible during the whole activation period. In this case study, the
control variable is the percentage of activation time (ON/OFF) of each building or
heat pump (named 20, 22, 24 and 25). The energy flexibility is also analysed from
this point of view. Figure 4.11 depicts the operation performance of the heat pumps
from February 15th to March 31st. During those days, some activation signals were
sent by the commercial aggregator. Therefore, as the actual heat pumps operation
was affected by these signals, large differences between active power, P e, and the
forecasting of the baseline power in BaU scenario, P b, can be appreciated for the
activation period.

4.4.3 Operation of the Swiss case study

The use case in Naters, Switzerland, consists of a direct load control of five
HPs that consider activation traces negotiated between the CM and the commercial
aggregator. When an activation trace is accepted, the heat pumps should track the
trace during the whole activation period.

Figure 4.12 represents the results of a day from a week-long test of direct load
control services, detailed at the building level. The light grey vertical areas display
the 15 minute negotiation periods between the aggregator and the CM. The light red
vertical areas display the direct load control periods performed on-site as solutions
of the tracking MPC optimization. It is not always easy to assess what a system
would have done without direct load control, but coupling set points, temperature
and power measurements can visually help. As a reminder, HP’s local control works
with hysteresis on the temperature of each storage. When the storage temperature
drops too far below the setpoint value of the hysteresis, the compressor starts, and
the HP runs until the upper value of the hysteresis is met. This is, of course the
theory, but unforeseen events can sometimes change this behaviour.
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Figure 4.12: Power and temperature variation resulting from
direct load control for one building in the Swiss pilot site

The top panel of Figure 4.12 shows both the temperature setpoints used for
controlling the HP and the power measurements. The dotted lines correspond to
the setpoint values for SH and DHW, respectively. Outside the direct load control
periods, the values of those set points are set back to their default values. The
solid coloured line displays the measured power consumed by the compressor of the
HP. The solid coloured bars are the power consumption given as the solution of the
tracking MPC. The middle panel represents the effect of direct load control on SH.
The dashed line corresponds to the measured departure temperature of the heating
circuit after the 3-way valve. The dotted line represents the theoretical departure
temperature of the circuit as given by the heat curve of the HP. It is modelled as
a function of the SH setpoint displayed in the top panel and To averaged over 3
hours. The bottom panel represents the effect of direct load control on DHW. In
Figure 4.12, it can be seen that direct load control of SH perfectly matches the
results of the tracking MPC. Instead, for the DHW load, it appears to be more
difficult. Having only one sensor to assess the energy state inside the DHW storage
tank makes it difficult to predict when a new cycle will occur. For comfort reasons,
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DHW is always prioritized and setpoints are only reduced to a minimum of 47 °C.
Therefore, delaying a DHW cycle for more than 30 minutes is not always possible,
as demonstrated for the DR call at 06:00. In the bottom panel, we can see that the
storage temperature at the start of the period is low. This is because the setpoints
are set to the lowest possible value. At 06:40, a DHW consumption brought the
storage temperature below the lower bound of the hysteresis, which starts a new
DHW cycle. The DR called at 10:00 is a good example of the usefulness of MPC
when dealing with direct load control. When the power traces are generated, the
storage tank temperature is maximal. There is only a small chance that a DHW
cycle will happen in the next hour. However, within the third 15 minutes interval,
a sudden high DHW consumption puts the storage temperature below the lower
bound of the hysteresis, and the heat pump starts a new DHW cycle. At 11:00, to
avoid deviating further from the trace, the DHW setpoint is reduced, which directly
stops the heat pump.

Iterative tracking performance

Figure 4.13 presents the results of a day from a week-long test of direct load
control services over all the HPs. The light grey vertical areas display the 15 minute
negotiation periods between the aggregator and the CM. The light red vertical areas
display the direct load control periods performed on-site as solutions of the tracking
MPC optimization.

The top panel of Figure 4.13 displays the aggregated power (blue) of five
participating HPs on May 14th 2020. The daily average outside temperature is
18 °C with temperatures above 20 °C from 12:00 to 20:00. Therefore, most HP
consumption occurs during the early hours of the day when the outside temperature
is still cold. The dashed red lines are the power loads P f agreed upon by the
aggregator and the CM. The selected traces are assumed to be constant over the
sampling period of 15 minutes. Each one corresponds to a power trace resulting from
a 6-hour forecast scheduling optimization problem proposed by the CM and selected
by the aggregator. The bottom panel of Figure 4.13, represents the power deviation
(P f − P e). When the values are negative, it means that the on-site power was
lower than the expected trace, and when they are positive, it means that the power
was higher. The relative deviation over the day is -6.4 kWh and the cumulative
deviation, computed as the sum of all the absolute deviations, is equal to 32.7 kWh.
When high power change occurs as a result of direct load control, high deviation
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spikes can be observed. The negative spikes correspond to an activation delay of
the HPs: Even when conditions for the local controller are met, HP compressors
are only started after a 2-minute delay by the local controller. To compensate, the
tracking MPCs are launched two minutes before the new actuation periods. As soon
as an optimal solution is found, the new setpoints are sent. Setpoints to switch off
HPs are sent at the actuation time. HP compressors directly stop when conditions
are met, except when an explicit minimum running time is implemented by the local
controller. The positive spikes observed can be the result of the monitoring sampling
rate of 2 minutes and of the way power is measured: The power consumption of
four out of five HPs is not directly measured but reconstructed from operating
temperature time series and manufacturer datasheets. The interpolation and the
model formulation can sometimes create mismatches.

1. Waiting (BaU) 2. Negotiations 3. Tracking

1

2

3

Figure 4.13: Power deviation compared to the agreed-upon traces result-
ing from the DR calls over a day for a weekly test in the Swiss pilot site

.

Time series inputs for the flexibility model development

In this use case, the objective of the flexibility function is to characterize
how flexible the HP consumption was due to the activation trace accepted by both
entities in terms of amount and shift in time. In this case study, the control variables
are the DHW and SH setpoint temperature of five multi-household buildings. The
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entity that controls these variables is the CM, which proposes feasible traces that
can be fulfilled.
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Figure 4.14: Difference between the trace to be tracked, P f , and the prediction
of the baseline, P b, versus the difference between the active power P e and the
baseline prediction of the baseline, P b, and the 4-hour moving-averaged outdoor

temperature in the Swiss pilot site. The tests in May were week-long tests
.

Figure 4.14 depicts the performance of the HPs from April 3rd to May 15th.
The granularity of the monitored data is two minutes, and the power is aggregated
over the individual readings of the five available buildings. For this field operation
period, multiple activation traces were tested in several operation tests. They
are represented separated by gaps in Figure 4.14. In the top panel, the difference
between the power trace to be tracked and the baseline forecasting is represented. As
expected, significant differences between these two time series are clearly appreciated.
The middle panel shows the differences between the active power, P e, and forecasting
of the baseline power,P b. As in the other graph, the differences show that the heat
pumps are following the trace up to a certain level and that these traces have very
different patterns than the BaU scenario.
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4.4.4 Energy flexibility evaluation and quantification

Training and validation of the flexibility models

For the case study where the activation variable is the Spanish day-ahead
electricity price, a training and validation activation period was set up from March
29th to April 12th 2020. The flexibility model of this case study is defined in
Equation 4.1. The training of the model to identify the regression parameters was
carried out using 90 % of the data. The remaining 10 % of data was used to validate
the model with new data and then avoid model overfitting. The Flexibility Function
(FF) is finally inferred from this model.
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Figure 4.15: Flexibility model for the Spanish pilot site: the upper graph is a
comparison of the active power (black line) and the predicted one (red line); the
lower graphs show the autocorrelation functions of the training period residuals

The top plot of Figure 4.15 depicts the training and validation periods with
white and grey backgrounds, respectively. In this plot, the active power, P e, is
represented by a black coloured line. The forecasting based on the flexibility model
is represented by a red coloured line. It can be seen that no significant differences
in residuals between the two periods are appreciated; therefore, it is confirmed that
overfitting issues were avoided. Additionally, from the two bottom plots, the Auto
Correlation Function, ACF, and the Partial Autocorrelation Function, PACF, of
the residuals of the training period, do not indicate autocorrelation in residuals.
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Therefore, they can be considered i.i.d, and the white noise condition is fulfilled.
This is the requirement for a model to be considered valid.

For the case study where the activation variable is the percentage of activation
time, in the German pilot case, a training and validation activation period was set
up from February 15th to March 31st 2020. The flexibility model of this case study
is defined in Equation 4.2. The training of the model was carried out using 90 % of
the data. The remaining 10 % of the data was used to validate the model.
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Figure 4.16: Flexibility model for the German pilot site; the
upper graph shows a comparison of the active power (black
line) and the predicted one (red line); the lower graphs show
the autocorrelation functions of the training period residuals

.

In Figure 4.16, the upper graph depicts the training and validation periods with
white and grey backgrounds, respectively. In this graph, the active power, P e, is
represented by a black coloured line. The forecasting based on the flexibility model
is represented by a red coloured line. It can be seen that no significant differences
in residuals between the two periods are appreciated. Although there are two
significant spikes in time lags 3 and 12 in the bottom plots of the ACF and PACF,
there is no clear indication of autocorrelation in residuals of the training period.
Therefore, they can be considered as i.i.d. and then, the white noise condition is
fulfilled for this flexibility model.

For the case study where the activation variable is the trace to be tracked, the
Swiss pilot case, a training and validation activation period was set up from April
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3rd to May 15th in the Swiss pilot site case study. The flexibility model of this case
study is defined in Equation 4.3. The training of the model was carried out using 90
% of the data. The remaining 10 % of data was used to validate that the model. In
Figure 4.17, the upper graph depicts the training and validation periods with white
and grey backgrounds, respectively. In this graph, the difference between the active
power and the prediction of the baseline power in BaU, (P e −P b), is represented by
a black coloured line. The forecasting based on the flexibility model is represented
by a red coloured line. It can be seen that no significant differences in residuals are
appreciated. Although there is one significant spike in time lag 15, in the bottom
plots of the ACF and PACF, there is no clear indication of autocorrelation in
residuals of the training period. Therefore, they can be considered i.i.d. The white
noise condition is fulfilled for this flexibility model.
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Figure 4.17: Flexibility model for the Swiss pilot site; the upper
graph shows a comparison of (P e − P b) (black line) and the predicted
one performed with the flexibility model (red line); the lower graphs
show the autocorrelation functions of the training period residuals

.

Flexibility functions

Figure 4.18 and Figure 4.19 show the obtained flexibility functions, FFs, for
the Spanish case study, where the activation variable is the electricity day-ahead
Spanish spot market. The activation variable, the day-ahead electricity price, is
normalized to activation and deactivation signals of 10 cents.
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Figure 4.18: FFs of the Spanish case study
for positive changes of the spot market price

Figure 4.18 shows the obtained FFs due to positive signals of different lengths
and two different outdoor temperature levels. The left column shows the FFs for
outdoor temperature ranges between 6.67 ºC and 12.3 ºC. The right column shows
the FFs for outdoor temperature ranges between 12.3 ºC and 21.5 ºC. It can be seen
that the flexibility decreases for low outdoor temperature ranges. When outdoor
temperatures are between 6.67 ºC and 12.3 ºC, the average maximum deactivated
power reaches -7 kW, and it remains for the first 30 minutes. Then, it increases
to -3.5 kW from 30 to 45 minutes, and finally, it linearly increases to -1 kW after
100 minutes of the initial price change. Whereas, when outdoor temperatures are
between 12.3 ºC and 21.5 ºC, the maximum deactivated power reaches -11 kW for
the first 15 minutes; it decreases to -14 kW after 30 minutes, and finally, it increases
up to -1 kW after 100 minutes of the price change. The rebound effect achieves the
same maximum power levels for both temperature ranges but in positive. They
start just when the activation signal finishes and reach the maximum level within
the first 30 minutes after the activation signal ends. Considering the maximum
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available power of the two heat pumps of 60 kW, this represents maximum flexibility
between 11 % and 23 %, with a rebound of the same level, for low and high outdoor
temperature ranges, respectively. It can also be concluded that the estimated period
where major energy shifts could be done is the starting 30 minutes after the price
signal is triggered, in both outdoor temperature ranges. This conclusion is closely
related to the thermal capacity of the water storage tank, which is 3,500 litres, and
the permitted water tank temperature variation, which is constrained by the indoor
comfort conditions in the offices, shops and the local food market.
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Figure 4.19: FFs of the Spanish case study
for negative changes of the spot market price

Figure 4.19 depicts the obtained FFs due to negative signals of different lengths
and the same outdoor temperature levels. The flexibility performance is identical to
the case of positive activation but another way around. The rebound effect achieves
the same maximum power levels for both temperature ranges but in negative. The
same conclusions as in the case of positive signals can be deducted.
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Figure 4.20: FFs of 4 heat pumps of the German case study

Figure 4.20 shows the Flexibility Functions, FFs of four heat pumps and their
aggregated power, of the case study where the activation signal is the percentage of
activation within an activation period. The activation variable has been normalized
to 100 % activation time. The Figure 4.20 represents the FFs of each heat
pump/building, named as 20, 22, 24 and 25 in the legend, and the aggregated
flexibility of all of them, named as "all" in the legend. Every plot shows a FF
for several activation periods ranging from 1 h to 4 h. From this Figure, multiple
insights in relation to the achieved flexibility of a cluster of heat pumps can be
extracted. The total amount of power flexibility for the cluster of 4 buildings reaches
2.8 kW -on average- for the first hour of activation. And from there, it decreases to
2.3 kW for the second and the third hours of activation. If the activation period
is extended to four hours, maximum flexibility decreases to 2 kW. Considering
a maximum available power of the four heat pumps of 10.9 kW, this represents
maximum flexibility of 25 % for the first hour, 20 % for three hours and 18 % for
four hours. After the activation periods, Figure 4.20 depicts a long wave rebound
effect of about 20 % of the total active power. Nonetheless, around 70 % of this
rebound takes place within the first 3 h after the activation period ends.

In Figure 4.20, it can also be seen that the reactions of buildings 20, 22 and
24 are quite similar and also very similar to the aggregated FFs. However, a very
different behaviour happens in building 25 since it seems this heat pump is not
activated. This may be due to less flexible indoor comfort conditions.
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Figure 4.21 shows the FFs for the swiss case study. In this case, the activation
variable is a power trace that should be tracked, and the flexibility is assessed as
the deviation towards the traces and towards de predicted baseline in the BaU
scenario. In Figure 4.21, the left Y-axis describes the change in power (P e − P b)
and the right Y-axis describes the change in power due to the trace negotiated
with the commercial aggregator (P f − P b). The flexibility is analysed for two
different outdoor temperature levels; low-to-mid range [6.5 ºC, 15.7 ºC] in yellow
and mid-to-high [15.7 ºC, 28.5 ºC] in black. Two types of normalized activation
traces of 1 kW (e.g. red signal [-1, 0, 1]) are tested: (1) Negative, when the
consumption is lower than the baseline, and (2) Positive, when the consumption is
higher than the baseline. The terms Negative and Positive used here have to be
differentiated from the existing positive (Upward) and negative (Downward) reserve
services defined in the market regulation and provided by conventional generators.
In this methodology, the term Positive refers to an increase in power consumption
compared to the baseline, which, from a market perspective, is equivalent to a
decrease in power production (negative reserve).
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Figure 4.21: Flexibility Function (FF) of a 5-buildings cluster in Naters

In the case of tracking negative activation traces (left panels) in low-to-mid
outdoor temperature levels (yellow lines), the active power follows 80 to 90 % of
the power trace to be tracked for the first 15 minutes, reaching the maximum
deactivation peak (98 %) after 13 minutes. Then, the deactivation decreases to 75 %
after 30 minutes, maintaining this percentage for 30 minutes more. When tracking
a positive activation trace, the actual power follows 80-90% of the theoretical
activation for the first 15 minutes, then, it linearly decreases to 50 % after 30
minutes and maintains this percentage, with a small rebound (+10 %), up to the
60 minutes. This means that heat pumps involved in this case study, when the
outdoor temperature is in the low-to-mid range, can provide the amount of flexibility
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required by the commercial aggregator for the first 15 minutes. Still, then, the
limited availability of thermal energy storage in the building (either for SH or DHW)
does not allow for full activation compliance. In both outdoor temperature levels,
the rebound effect reaches up to 30 % change in power. It starts just after the
activation/deactivation of the trace, and its peak is after approximately 13 minutes.
In the case of mid-to-high outdoor temperatures levels, the flexibility peak of the
first 15 minutes no longer exists in both negative and positive traces to be tracked.
This can be explained mainly because at these temperature levels; the buildings
have less thermal storage capacity and hence less energy flexibility to keep the
indoor comfort within the user-defined comfort boundaries. In this case, the system
which can still provide a certain level of flexibility is the DHW system, which is
thermostatically controlled by the water tank temperature set points. The average
compliance of tracking the trace is 60 % along the 60 minutes of activation in the
case of positive and 75 % in the case of negative traces. The rebound effects follow
the same path as in the lower temperatures case but with smaller peaks of around
25 % of the change in power.

4.5 Discussion

Some specific conclusions can be drawn from the operation of the DR services
in each of the three pilot sites:

• The direct load control of the heat pumps of the Spanish pilot site achieved 18
% of accumulated cost savings at the end of the testing period (2 weeks). This
is a promising result to demonstrate the benefits of optimising the operational
costs of heat pumps through augmented performance with price information
from the wholesale market forecast data.

• In the German pilot site, it was demonstrated that using the flexibility of the
heat pumps allowed to optimize the heating energy cost on the day-ahead
energy market. This flexibility also enabled balancing a BRP’s portfolio and
optimization on the balancing market. With a limited number of heat pump
assets and only ON/OFF control, it was impossible to deliver linear power
ramps based on the stacking of heat pumps.

• In the Swiss pilot site, a success of 91 % heat pump activation for the
transactive DR approach and 50-95 % fulfilment of the activation traces was
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achieved for the testing period. The results are strongly correlated with the
external temperature. Mid-range outdoor temperature conditions offered more
flexibility, as highlighted by the higher activation success and the FF closer
to 100 % of the theoretical activation.

The developed standard methodology for assessing the flexibility allowed to
compare results from the different DR use cases and gave the necessary support for
cross-comparison of the most significant energy flexibility indicators. Some specific
conclusions can be deducted for the achieved flexibility in each pilot site:

4.5.1 Spanish case study

Considering the peak power of the heat pump system, the maximum flexibility
achieved was between 11 % and 23 %, depending on low or high outdoor temperature
ranges, respectively. A contrary rebound effect at the same level was achieved in
both cases. Table 4.1 summarizes the achieved active flexibility for this pilot site:

Table 4.1: Achieved active power and rebound effect defined by the FF in the
Spanish use case

Activation time [min] Maximum change in
power [kW]

Maximum power re-
bound [kW]

Flexibility with low outdoor temperature [6.6 ºC ≤ T ≤ 12.3 ºC]
positive/negative change of price

t ≤ 30 -7/7 6/-6
30≤ t ≤ 45 -3.5/3.5 3/-3
45≤ t ≤ 100 linear increase linear decay
t > 100 -1/1 0.8/-0.8
Flexibility with high outdoor temperature [12.3 ºC ≤ T ≤ 21.5 ºC]

Positive/negative change of price
t ≤ 15 -11/11 8/-8
t ≤ 30 -14/14 12/-12
30≤ t ≤ 45 -8/8 6/-6
45≤ t ≤ 100 linear increase linear decay
t > 100 -1/1 0.8/-0.8
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4.5.2 German case study

In the German pilot site, considering a maximum aggregated power of 10.9
kW, 25 % of flexibility was achieved for the first hour. For activation of three hours,
it was reduced to 20 %, and it finally decreased to 18 % for activation of four hours.
A long wave rebound effect of about 20 % of the total activated power appears in
all cases. However, around 70 % of the total rebound effect occurs within the first 3
h after the activation period ends. Table 4.2 summarizes achieved active flexibility
for this pilot site:

Table 4.2: Achieved active power and rebound effect defined by the FF in the
German use case

Activation time [min] Maximum change in
power [kW]

Maximum power re-
bound [kW]

Flexibility under a 100 % positive activation signal

t ≤ 60 2.8 -0.8
60≤ t ≤ 180 2.3 -0.5
180≤ t ≤ 240 2 exponential increase
t > 240 —- 0.0

4.5.3 Swiss case study

The heat pumps involved in the Swiss case study can provide the amount of
flexibility required by the commercial aggregator for the first 15 minutes. Still, then,
the limited availability of thermal energy storage in the buildings does not allow for
full activation compliance. In both outdoor temperature levels, the rebound effect
reaches up to 30 % change in power. The average compliance of tracking the trace
is 60 % along the 60 minutes of activation in the case of positive activation traces
and 75 % in the case of negative ones. Table 4.3 summarises the achieved active
flexibility for this pilot site:
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Table 4.3: Achieved active power and rebound effect defined by the FF in the
Swiss use case

Activation time [min] Maximum change in
power [%]

Maximum power re-
bound [%]

Flexibility with low outdoor temperature [6.49 ºC ≤ T ≤ 15.7 ºC]
positive/negative trace to be followed

t ≤ 15 85/-98 -40/40
15≤ t ≤ 30 linear decrease/-75 linear increase / lin-

ear decay
30≤ t ≤ 60 60/-75 0/0
Flexibility with high outdoor temperature [15.7 ºC ≤ T ≤ 28.5 ºC]

Positive/negative change of price
t ≤ 15 60/-75 -25/25
15≤ t ≤ 30 60/-75 linear increase / lin-

ear decay
30≤ t ≤ 60 60/-75 0/0

4.6 Conclusions

This study confirms that thermostatically controlled heat pumps represent
a huge potential for DR flexibility depending on conditions. Furthermore, it is
possible to manage clusters of heat pumps to respond to requests for DR flexibility.
In addition, it has been proven that forecasting and optimization algorithms can be
tailored to the particularities of each system configuration (e.g. HP interface, HP
installation, and temperature sensors).

The operation tests performed in three European pilot sites demonstrated that
the flexible operation of heat pumps in the field is possible and can be leveraged for
multiple flexibility services or energy markets. However, several problems need to
be addressed with most legacy systems. In general, those systems do not provide
fully interoperable connectivity with the heat pump, resulting in constraints to the
control and less flexible systems. Additionally, it has been confirmed that outdoor
conditions, configured set points and the available thermal storage, both in hot
water tanks or inertia in the building, determine the duration for which the heat
pump can be switched on or off. Another important conclusion from this research

110



4.6 Conclusions

is that a new player, called the Cluster Manager (CM), is essential to assure a
successful operation of the DR services in real market scenarios.
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Chapter 5

Electricity load characterization of districts

This chapter has been published as a paper:

Mor, G.; Cipriano, J.; Martirano, G.; Pignatelli, F.; Lodi, C.; Lazzari, F.;
Grillone, B.; Chemisana, D. A data-driven method for unsupervised electricity
consumption characterisation at the district level and beyond, Energy Reports 2021,
https://doi.org/10.1016/j.egyr.2021.08.195

5.1 Introduction

Enhancing energy efficiency has become a priority for the European Union [129].
Several policies and initiatives aim to improve buildings’ energy performance and
collect data of sufficient quality on the effect of energy efficiency policies on building
stock across Europe. Knowledge about the energy characteristics of buildings
and their occupants’ usage is essential to define and assess strategies for energy
conservation.

For the last years, dynamic measured data has been massively accessible for a
significant part of the European building stock, especially electricity consumption
[130]. Besides, accurate location-based data such as weather, cadastre and socio-
economic conditions became available with the explosion of governmental open data
platforms and price-competitive weather online services. Given the recent advances
in machine learning and big data processing, we are in an excellent position to
develop and validate statistically-based methodologies capable of inferring, with no
human interaction, the main energy features contained in the available data sets to
determine how buildings perform and how their occupants consume energy at the
local level. The outcomes of these data-driven methodologies can become essential
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to understand the building stock energy dynamics and, therefore, to support the
transition to renewable and distributed generation at district or regional levels. A
recent study [131] has shown the necessity to explore energy efficiency solutions
for buildings at the local aggregated level (e.g. district, neighbourhood, city,
region). The implementation of local Energy Conservation Measures (ECM) and
the increase of in-situ renewable generation in buildings are key factors to satisfy
energy security and limit global warming in future. This local geographical level is
large enough to infer prior unknown patterns of energy consumption and to address
several ECM scenarios or, at least, to support decision-making in setting up energy
transition plans. Additionally, this is the geographical scale where most of the urban
transformations in Europe occur and where the newest instruments for financing
energy efficiency strategies in the building sector exist.

In literature, the energy characterisation based on modelling groups of buildings
is named building stock modelling. Three major typologies of groups of buildings
exist residential, industrial and services. Each of them corresponds to its own
building archetypes, uses and occupancy patterns. Two main approaches for building
stock modelling can be identified: top-down and bottom-up methods. Lagevin
et al. [132] provided an extensive and updated literature review based on Swan
and Ugursal [133] classification methods. They extended it by considering three
major developments of the last ten years: big data, increased computing power,
and new modelling techniques. The bottom-up approach begins with a detailed
representation of a system’s constituent part that is further aggregated to the
whole-system level. In this case, building archetypes are used to characterise each
building or a sample of buildings. The outcomes or the key performance indicators
(KPIs) are scaled up to summarise the whole building stock of the analysed area.
By contrast, top-down approaches begin with an aggregated view of the overall
stock of the area, which is then disaggregated into subsequent sub-systems. In this
approach, the energy performance of groups of buildings is analysed as a black
box, in statistical terms, defined as a large sink with inputs and outputs following
historical trends.

In both bottom-up and top-down approaches, energy characterisation of exist-
ing buildings at multiple geographical levels (district, city, region) can be used to
understand trends in energy use, to correlate the energy consumption to character-
istics of the territory and to identify specific locations where there are buildings
with poor energy performance. Nonetheless, it is often difficult to obtain this char-
acterisation, which can be tackled from different viewpoints, with widely varying
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accuracy and associated costs. Traditionally, in the case of bottom-up approaches,
the characterisation of the energy performance of a given region is performed em-
ploying Building Energy Simulation (BES) models. In these cases, a calibration
of the simulated data against real monthly or annual energy consumption data
should be considered since the energy performance gap between simulated and
real data should be minimised. Although these models are robust, this type of
calibration procedures usually ignore the changes in the behaviour of the users
over time, and in many cases, the dynamics between the real consumption and the
climate conditions are not properly captured. Moreover, in several methodologies,
a subset of representative buildings should be considered to depict the archetype
of a particular region. Therefore, this model could experience large biases against
reality if the sample is not statistically significant or the calibration procedure is not
properly implemented. These limitations can result in high inaccuracies in the esti-
mates of energy performance. For the last years, data-driven techniques have been
applied to bottom-up approaches to overcome the limitations of simulation-based
procedures. Abbasabadi and Ashayeri [134] presented a review paper where several
data-driven techniques for urban energy modelling are classified. They detected
that the future tendency should integrate data-driven models and simulation-based
models, as each of them provides interesting advantages. In Voulis et al. [135],
urban electricity demand modelling was tested for Dutch municipalities, where
a combination of multiple data sets (reference electricity demand profiles, local
customers composition data and aggregated local annual demand data) were used to
train a regression model for local electricity demand prediction with an interesting
application for local renewable energy transition plans [136]. Kontokosta and Tull
[137] developed a predictive energy use model at the building, district, and city
scales using training data from energy disclosure policies and predictors from the
widely available property and zoning information. Their method was validated
in New York, and the results demonstrated that electricity consumption could be
reliably predicted using real data from a relatively small subset of buildings. In
contrast, natural gas use presented a more complicated problem given the bimodal
distribution of consumption and infrastructure availability. An interesting conclu-
sion from this paper is that Ordinary Least Squares (OLS) methods perform better
when applied to district and city scales, compared to other statistical techniques,
such as Random Forest (RF) or Support Vector Machines (SVM). Oliveira Panão
and Brito [138] developed a bottom-up approach to model the aggregated hourly
electricity consumption based on a Monte Carlo model. They used probability
distribution functions of the building stock characteristics, web surveys for user
behaviour characterisation and energy consumption data from national statistics
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and smart meters data sets as input of the model. The Mean Average Percentage
Error (MAPE) and the Coefficient of Variation of the Root Mean Squared Error
(CVRMSE) obtained during the validation of the hourly prediction against actual
data are 11% and 16%, respectively. Using data from Gothenburg, Osterbring et al.
[139] proposed a methodology for building-stock energy characterisation based on
characteristics of the buildings, energy performance certificates, building envelope
geometries from 2.5D GIS models and measured energy.

In other cases, building stock models are used as a toolbox for specific applica-
tions. For instance, in the case of Spain, a study from Rodriguez et al. [140] showed
the possibilities to mitigate energy poverty in low-income districts by combining
Photo-Voltaic (PV) generation and building thermal storage using actual data
and calibrated deterministic models. In this case study, the authors estimated
an improvement in thermal comfort of households of up to 33% in winter and
67% in summer by using individual heat pumps and the surplus production of
the district PV system. Furthermore, Gouveia et al. [141] estimated the regional
energy poverty vulnerability index for Portugal at the civil parish level, based on
socio-economic data, building stock characteristics, actual consumption data and
theoretical consumption using the EN ISO 13790 approach.

The novelty of our research lies in the development of a data-driven technique
to characterise the electricity consumption of large areas at the district level (e.g.
postal code level in Spain) and upper levels, with the particularity that actual hourly
consumption is considered, which makes it quite innovative considering actual state
of the art. Besides, an innovative implementation of multiple statistical techniques
to model the buildings stock energy consumption is performed. It is based on
inferring knowledge from actual weather data, aggregated consumption data from
smart meters and building stock and socio-economic characteristics data. The aim is
to obtain normalised energy trends and KPIs to describe the energy consumption of
each analysed region - e.g. yearly consumption per built area or monthly-averaged
daily load curve due to heating or cooling needs. This characterisation requires the
implementation of modelling techniques that segment the total energy consumption
into different weather-dependent and non-weather-dependent components, well-
described in Section 5.4.

Ideally, the main final energy fuel types related to buildings should be taken
into account in the building stock characterisation. The International Energy
Agency (IEA), estimate that globally in 2019, and by order of importance, the
main fuel types used in buildings are: electricity (32.4%), natural gas (23.4%),
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traditional biomass (18.5%), oil (10.5%), renewable energy (5.9%), commercial heat
(4.9%) and coal (4.1%). However, multiple issues still exist nowadays regarding
the availability of energy consumption datasets at the needed aggregation levels,
both in terms of geographical resolution and time-frequency. Therefore, considering
the broader implementation of the Advanced Metering Infrastructure (AMI) for
electricity consumption in certain EU countries, it is much more feasible to obtain
detailed sets for electricity than for the rest of them. In summary, and as a first
validation of the data-driven characterisation methodology presented in this chapter,
electricity consumption has been considered as the only one to be characterised due
to the problems in obtaining detailed data for the other main resources.

In literature, an electricity consumption segmentation at the household level
using clustering techniques was developed by Kwac et al. [142]. This work helps
to determine that the methodology presented in this paper need to integrate an
interpreter of similar daily seasonalities, as they may not be directly related to
calendar features, but to time-varying changes in the general behaviour of the
consumers.In Gouveia et al., [143] energy consumption data profiles from smart
meters were used to detect active behaviour regarding space heating and cooling
using the deviations from normal behaviour and survey data on socio-economic
conditions, building structure, equipment and use. Even though the relatively small
sample of participants (19 households with survey and smart meter data), this
research enlighten the necessity to consider the non-linearity between consumption
and outdoor temperature, either for cooling and heating usages. In our research,
multiple cooling and heating change-point temperatures along the day are considered
as rectifiers of the model outdoor temperature regressors. The objective is to
linearise their relationship, and thus, model properly their influence considering
linear regression models. Furthermore, a first order low pass filter accounts for the
thermal inertia of buildings, which helps to boost the model accuracy, especially
when are based on data frequencies higher than daily (e.g. hourly).In more recent
literature, several authors applied advanced energy signatures to model daily thermal
consumption to characterise the linear and non-linear heat usage dependency on
outdoor temperature, wind and solar irradiation [144]. Similar techniques are
applied in our research, focusing on the characterisation of building stock instead of
individual households. Furthermore, in Wang et al. [145], regression and machine
learning techniques were also used to detect how electricity use was influenced
by weather and COVID-19 lockdowns over three large metropolitan areas city-
scale aggregated forecasting (Los Angeles, Sacramento and New York). The daily
models’ forecasting accuracy was between 4-6% of CVRMSE. In our research,
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similar accuracy is reached 4-12% of CVRMSE, highly depending on the number of
consumers aggregated on each case. Even though, and considering the 4h-frequency
aggregation considered in our analysis, the increase in error compared to the daily
aggregation is very low. The results are also more accurate than the 16% CVRMSE
obtained in Oliveira Panao et. al research [138].

Besides the definition and implementation of the methodology, a validation case
study is presented in Section 5.5. The outcomes are shared through a Shiny web
dashboard [146] that depicts multiple plots related to the electricity consumption
characterisation for each postal code and interactive maps to benchmark the whole
set of KPIs, among other visualisations. The Spanish province of Lleida (>12500
km²) is the area selected for the case study. Section 5.2 extensively describe
the main data sources used for the case study validation. The final goal is to
provide a geographically aggregated characterisation methodology for building
performance and usage trends of electricity consumption, both for the residential
and public/tertiary buildings.

5.2 Input data

This section explains the data requirements, gathering, cleaning, and transfor-
mation procedures needed to successfully characterise the electricity consumption
over the case study in Spain. Moreover, it defines the initial requirements to
implement this methodology in other countries or use cases.

5.2.1 Cadastral data

Buildings characteristics are gathered from national cadastral datasets. The
data format used by these entities across EU countries is harmonised using the
INSPIRE Buildings theme [147]. In the case of Spain, the massive downloadable
public information of cadastral datasets is available through ATOM files [148], where
Geography Markup Language (GML) files regarding "buildings" and "building
parts" can be obtained for all the Spanish municipalities. Those files contain a
set of georeferenced information for each building and, depending on the type of
information described. Each variable could be grouped in:
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1. Geometry information, including information about 2D geometries of the
building parts, gross floor area, number of floors above and below ground.

2. Typology information, including variables, such as the major current use, the
total number of dwellings and building units.

3. Construction information, including the actual conditions of the building and
the year of construction.

Even if the amount of information is pervasive, it has to be considered that
multiple drawbacks exist when using cadastral data gathered through ATOM files.
In the case of the variables belonging to groups 2 and 3, it should be considered
that many data inaccuracies can exist compared to the real conditions. Some of
the encountered issues are:

• Problems dealing with buildings with several main uses (services + residential,
or industrial + services), as only one use is related to each building.

• Non-realistic dwelling areas based on the gross floor area, due to the influence
of large parking and/or community areas.

• Some building information is not available for all the regions (Buildings located
in the countryside vs those located in cities). For instance, in certain rural
areas of the Lleida province, up to 30% of buildings without current use
information.

To avoid unrealistic estimations when aggregating this data to postal code
geographical level, some filters were considered - e.g. subtract ground floors and
basements from the total gross area in residential buildings with more than three
floors.

5.2.2 Socioeconomic data

The economic status and the demographics indicators considered in this method-
ology are gathered through national statistics institutes. In the case of Spain, this
data can be obtained from an experimental project of the Spanish Statistical Office
(INE), named "Household income distribution map" [149]. This project proposes
constructing statistical indicators of the level and distribution of household income
at the municipal and census tract geographical levels from the link between INE’s
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Access
toll name

Time-of-use
structures
(nº periods)

Contracted
power range Main usage

2.0 A (1) < 10 kW All-kind of
DHA (2) < 10 kW dwellings, houses,

DHS (3) < 10 kW small-sized shops
or offices

2.1 A (1) ≥ 10 and < 15 kW Big-sized houses
DHA (2) ≥ 10 and < 15 kW medium-sized shops
DHS (3) ≥ 10 and < 15 kW or offices

3.0 A (3) ≥ 15 kW
Public buildings,
or big-sized shops,
or office buildings

3.1 A (3) < 450 kW
(high voltage) Industrial buildings

Table 5.1: Electricity tariffs description in the Spanish market

demographics information and the tax data from the National and the Autonomous
Treasuries. Some of the indicators obtained at the census tract geographical level
are the average income per person and household, the income primary sources, the
income quantile 80 and 20 ratio, the number of inhabitants, the average population
age, the percentage of people under 18 and over 65, the number of people per
household, the percentage of single households, and the Gini index.

5.2.3 Electricity consumption data

Datadis platform [150] supplies the historical hourly electricity consumption
aggregated by postal code, economic sector, tariff and DSO for Spain. This platform
is participated by most Spanish DSOs, who provide electricity services to around
28 million consumption points. The aggregated hourly consumption is gathered
through the Datadis API, which requires authentication using an FNMT electronic
certificate [151] of a legal entity. On average, most of the postal codes contain two
years of historical data. The aggregated information for each obtained item through
the API is the hourly consumption and online contracts.

In Spain, the electricity tariffs available through Datadis during the period
represented in the case study (from beginning 2018 to mid-2020) are specified in
Table 5.1.
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Data within the same economic sector sometimes contains gaps, multiple energy
trends, and seasonality between different tariffs. Due to this fact, a synthetic tariff
is created, named "all", weighting its values using the number of contracts per each
of the tariffs. This aggregated tariff improves the representativeness of each postal
code when the results are visualised over a map.

Even considering the use of aggregated consumption data at a postal code
level, which alleviates the influence of poorly measured data at some particular site,
some problems were detected during the initial quality checks. Hence, it became
mandatory the implementation of a data cleaning process before modelling steps.
In essence, the outlier filtering avoids any measure which accomplishes, at least,
one of the following conditions:

1. Hourly consumption equal to 0. It is certainly impossible to have zero
consumption considering that several contracts are aggregated per each postal
code.

2. Hourly consumption lower than the maximum feasible contracted power,
depending on the tariff restrictions. For instance, the contracted power must
be lower than 10 and 15 kW, respectively, for 2.0 and 2.1 tariffs.

3. Hourly consumption is six times higher than the 3rd quartile of all the historical
consumptions.

4. Hourly consumption outside the right-aligned moving average plus-minus
three moving standard deviations, considering a window of 15 days.

5.2.4 Weather data

Outdoor weather conditions are obtained through the Dark Sky API service
[91] for the whole area in analysis. In essence, the historical weather data for the
same period is downloaded for each of the postal codes considered. The most
important variables in our analysis are the outdoor temperature and wind speed.

5.2.5 Geographical levels

Data used in the framework of this energy characterisation is related to multiple
geographical levels. In this subsection, each of the available geographical levels is

121



Chapter 5 Electricity load characterization of districts

described. Moreover, in the data integration section, it is described how all data sets
are normalised to the same level, which is a necessary step to analyse the datasets.

Building level

Data referenced to this level contains the exact location where the building is
physically placed. Cadastral data is an example of a dataset with this geographical
level. Beyond cadastral information, and mainly due to privacy issues, there are not
many other open datasets available at this level. It is worth mentioning that this
geographical level would be the most interesting due to its flexibility for aggregation
purposes. For instance, characterisation results could be easily aggregated by streets,
blocks of buildings, neighbourhoods or custom aggregations which could provide
differences within the census tract or postal code levels.

Postal code level

The postal code is a code that is assigned to different areas or places in a
country. Initially, it was a code to facilitate and mechanise the delivery of mail. It
usually consists of a series of digits, although in some countries, it includes letters.
In the case of Spain, it is composed of the province code (two first digits) and then
three more digits which represent each different postal code. The institution that
defines them is the "Sociedad Estatal Correos y Telégrafos, S.A.". Many other
companies, or even the government, widely use this geographical level to refer their
data to its location. It strikes a good balance between anonymity, simplicity and
detail. The shape of each postal code is obtained from KML files [152].

Census tract level

Census tracts are the lowest level units for disseminating statistical information
and are also used to organise electoral processes. Being basically operational in
nature, they are always defined by more or less fixed sizes: the number of statistical
surveys that an interviewer agent can distribute and collect for population counting
purposes in the time of one or two months, or the number of people who can vote
in a ballot box without crowding on an election day.
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The most updated shapefiles of the census tract in Spain are obtained from
the National Statistical Office [153].

For urban areas, the census tract level offers much more detail than the postal
code one. The number of building blocks inside a certain census tract is much lower
than in the postal code. However, for rural areas, the representativity of both levels
is very similar, as they usually represent areas of similar size.

5.3 The architecture of the solution

The implementation of this methodology consists of combining and analysing
multiple layers of data, as shown in Figure 5.1. Considering that this information
has heterogeneous characteristics, both in terms of frequency, geographical reference
and typology, one of the mandatory aspects regarding the cross-analysis is the
harmonisation of these layers. Specific aggregations and transformations are done
for each input dataset. For instance, GML files of cadastre data are transformed to
tabular data and aggregated to several geographical levels to correlate cadastral
information to socioeconomic conditions, electricity consumption and weather data.
Python 3.8 [154] is used to extract, transform, and load data processes, using
QGIS 3.10 [155] as a backend to analyse geospatial data. Regarding the electricity
characterisation model, it is implemented in R 4.1 [156]. All these scripts store the
raw, intermediate and final results to a MongoDB 4 non-relational database [157].

Figure 5.1: General view of the data flow and the architecture of the software
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The relationships and transformations among the different databases are de-
picted in the UML model shown in Figure 5.2, where the classes are named by
the name of the provider and the name of the collection, separated using ":". In
the case of intermediate or final classes used by the data analytics backend or by
the frontend to visualise results, the provider’s name is "beegeo". The calculations
considered for the aggregations to higher geographical levels are explained following
SQL format in yellow notes.

Figure 5.2: UML of the used data model

The implementation of this UML representation is made using a combination
of open-source analytics and data storage technologies that allow validating the
methodology over the province of Lleida. The visualisation is made using a Shiny
frontend application [146], which has been developed on purpose for this case
study. In general, the data prompted into this web application is always read
from the MongoDB database. However, some of the normalisation calculations are
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computed on-demand using the serialised characterisation models estimated in the
analytics backend. The web application is mounted on Docker containers, hence
it should be prepared to be horizontally scalable, which is an interesting feature
for future deployment of the application, either for Spain or other EU countries.
The time period extends from the beginning of 2018 until June 2020, but the ETL
processes are prepared to recursively obtain new data as soon as it becomes available
online. To sum up, the web application is divided into four tabs: KPIs on a map,
Characterisation, Benchmarking and KPIs correlation.

5.4 Electricity characterisation method

The characterisation methodology consists in the execution of the following
steps per each region, tariff, and economic sector under analysis:

• Clustering the daily load curves to infer the most representative usage patterns.

• Estimate a regression model of the electricity consumption using calendar
features, clustering results and weather conditions as exogenous variables.

• Disaggregate the raw electricity consumption in baseload, holidays, heating
and cooling components.

• Calculate the performance KPIs.

5.4.1 Clustering model

A clustering of the daily load curves for each postal code combination, tariff and
economic sector is performed to detect similar usage patterns. The representative
groups obtained should be used along the algorithm to increase the reliability of the
characterisation due to the consideration of the multiple seasonality’s that could
not be related to calendar variables or weather conditions.

Clustering can be achieved using various algorithms, which differ in their way to
define the constituents of a cluster and how to find them efficiently. The best-suited
clustering algorithm depends on the particular data set and the intended use of the
results. In this study, the achieved outcome of the clustering technique is to obtain
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a model to define the typical usage patterns for each case based on the original
consumption time series.

The first step is to encode the input data appropriately to the usage pattern
recognition. To do so, the original hourly frequency is resampled to 4 hours, as
the objective is to cluster daily load curves based on their approximate peak and
valley consumptions - e.g. morning consumers, double-valley consumers, or nightly
consumers. Then, two normalisations and one encoding procedure are considered:

1. Conversion of the original consumption time series (Qabs) to a daily relative
consumption time series (Qrel). Qrelt = Qabs

t

∑t∈dayQ
abs
t

.

2. Generation of a matrix of days (day) as rows, and parts of the day (dh) as
columns, using the daily relative consumption time series.

3. Transformation of the values using a Z-score normalisation, which improves
the performance of the clustering algorithm.

Qz,relday,dh =
Qrel

day,dh−mean(Q
rel
dh )

sd(Qrel
dh
)

Among the different clustering techniques, distribution-based clustering is
chosen because it is the one that most closely resembles the way energy measurement
data sets are generated by sampling random objects from a distribution. The
distribution of every observation is specified by a probability density function
through a finite mixture model of G components, as shown in Equation 5.1.

f(xi; Ψ)) =
G

∑
k=1

πkN(µk,Σk) (5.1)

Where Ψ = {π1, ..., πG−1, µ1, ..., µG,Σ1, ...,ΣG} are the parameters of the mixture
model. Nk(xi;µk,Σk) is the kth component Gaussian density for observation xi with
parameter vector (µk, Σk). (π1, ..., πG−1) are the mixing weights or probabilities
(such that πk > 0, ∑πk = 1. And G is the number of mixture components (in the
model-based approach to clustering, each component is associated with a group or
cluster). Assuming that G is fixed, the mixture model parameters Ψ are usually
unknown and should be estimated. In the case described above, it is assumed
that all component densities arise from the same parametric distribution family:
the Gaussian. Thus, clusters are ellipsoidal, centred at the mean vector µk and
with geometric features such as volume, shape and orientation, determined by
the covariance matrix Σk. The mixture of multi-dimensional Gaussian probability
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distributions that best fit the input dataset is estimated via the expectation-
maximisation algorithm for maximum likelihood estimation. The covariance (Σk)
structures for parameter estimation of Gaussian mixture models are the following:

• Spherical: variance is equal in all directions (where the directions are the
daypart columns of the input matrix)

• Diagonal: each direction has a different variance

• Ellipsoidal: allows covariance terms to orient ellipse in different directions
plus constraints regarding shape and volume of the Gaussian density functions

The Gaussian Mixture Model is computed for G clusters between 2 and 10.
The optimum total amount of clusters is selected using the Integrated Completed
Likelihood (ICL) criterion, and the model fit is done using the Bayesian Information
Criterion (BIC). The key difference between the BIC and ICL is that the latter
includes an additional term (the estimated mean entropy) that penalises clustering
configurations exhibiting overlapping groups.

Figure 5.3: Clustering of the daily load curves, only using
days which are presumably not affected by weather conditions.
These six profiles represent the usage patterns of the case study
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Finally, an important point regarding the usage pattern detection is that to
infer patterns not accounting for the weather dependence or holidays component, a
clustering-classification approach with a different subset of days is considered. The
clustering technique explained above is used to detect the patterns from a subset
of the daily load curves when low, or even null, weather dependence is expected
(during March, April, May, September, October, and November).

Figure 5.4: Classification of the complete series using the repre-
sentative usage patterns detected with the clustering technique

Subsequently, in a second step, a classification of the rest of the daily load curves
is predicted using the clustering model obtained in the first stage. An example
of the clustering results is depicted in Figure 5.3. The red curves correspond
to the usage patterns, and the black ones are the actual daily loads during the
training phase of the clustering procedure. Using the same representation, the
results of the classification stage are depicted in Figure 5.4, where the whole period,
including winter and summer seasons, are considered. As it can be seen, the weather
conditions’ influence tends to increase energy consumption in certain usage patterns.
However, in all cases, they tend to maintain the relative shape.
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5.4.2 Regression model

The technique used to characterise the electricity consumption consists of a
penalised multiple linear regression model. The terms of this model are explained
more in detail in the following subsections. However, in essence, the consumption is
decomposed into multiple parts: the usage patterns estimated with the previous
clustering-classification technique; the calendar features, which allow modelling
the hourly and weekly baseload patterns; and the weather features, which enable
to estimate the increase in consumption when severe weather conditions occur.
Equation 5.2 describes the major components of the penalised regression model.

Qet = (Bt × st) + (Ht × dht) + (Ct × dht) + εt (5.2)

Where Qte is the electricity consumption at instant t; Bt are the baseload terms
interacting with the usage patterns (st), Ht and Ct are the weather dependence
terms during heating and cooling periods interacting with the hour of the day (dht).
Lastly, εt is the error term of the model, where εt ∼ N(0, σ2) and i.i.d.

Baseload terms

The baseload component is one of the most significant parts of electricity
consumption. The formal definition of baseload consumption consists of the min-
imum level of demand on an electrical grid over a span of time. However, in the
framework of this methodology, it is understood as hourly consumption with no
weather dependence at all. Hence, the baseload component only depends on the
representative usage pattern and the calendar variables of a certain day. Given the
regression model presented, differences in consumption along the week and the day
are considered. For both of them, a Fourier series describing the weekly and daily
cycle was used. This decomposition transformation reduces the dimension of the
fitting problem in the cases where input variables are periodic. The baseload terms
are described in detail in Equation 5.3.

Bt = ωb + SNd
(pdt ) + SNw(pwt ) (5.3)
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SNd
(pdt ) =

Nd

∑
n=1

ωb,d,n,cos cos(2πnpdt ) + ωb,d,n,sin sin(2πnpdt ) pdt =
dht
24

(5.4)

SNw(pwt ) =
Nw

∑
n=1

ωb,w,n,cos cos(2πnpwt ) + ωb,w,n,sin sin(2πnpwt ) pwt = wht
168

(5.5)

Where ωb is the linear intercept; SNd
(pdt ) and SNw(pwt ) are the Fourier series of the

daily and weekly cycles, where ωb,w,n,cos , ωb,w,n,sin , ωb,w,n,cos and ωb,w,n,sin are
the coefficients estimated within the regression model, Nd and Nw are the number
of harmonics of both series, and finally, pdt and pwt are the relative part the day
or the week at instant t. The dht and wht variables mean the hour of the day
and the hour of the week at instant t. The advantage of using the Fourier series
is that it avoids the use of an excessive number of dummy variables which would
require the fit of all-possible combinations (24 + 168 dummy variables, in the case
of fitting the regression model using an hourly-frequency dataset, multiplied by
the number of usage patterns detected in the clustering step). This transformation
reduces the fitting problem to the number of harmonics considered (normally,
between 3 and 5 harmonics per cycle), which are enough to infer the underlying
correlation between the electricity consumption and the seasonal cycle without a
considerable loss of information. Additionally, an interesting feature of the Fourier
series transformations is that, in some sense, it coerces the regression to maintain a
relationship between closer parts of the cycle and between the beginning and the
end of the cycle itself.

Weather dependence components

Besides the baseload terms, heating and cooling dependent components ac-
count for the consumption related to weather conditions, energy performance and
characteristics of the buildings, and Heating, Ventilation, and Air Conditioning
(HVAC) systems operation.

These components estimate the increase in consumption due to weather severity.
They are important to understanding electricity consumption and infer character-
istics of how the reference building/dwelling in a certain zone is composed and
operated. Ideally, one of the most interesting building characteristics that could
be inferred using this type of modelling is the building envelope’s Heat Transfer
Coefficient (HTC). This coefficient highly depends on the considerations made
during its definition. For instance, depending on the inclusion of certain phenomena,
such as ventilation or air leakage, the HTC can be different. If ventilation and air
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infiltration are not considered, the HTC is calculated considering the energy transfer
through the building envelope, i.e. all the surrounding surfaces of the building
in contact with the outdoors, ground or other buildings. If they are considered,
the energy transfer due to ventilation and air infiltrations is included in the HTC
definition. Furthermore, to estimate HTC some variables are needed, such as indoor
temperatures or performance characteristics regarding the HVAC systems installed
in the buildings. Without this additional information, it becomes nearly impossible
to estimate the HTC. Therefore, in the framework of this methodology, instead of
characterising the HTC as a heat flow rate quantification, it is estimated as the
change in electricity consumption, compared to the baseload, due to a variation in
indoor-outdoor temperature difference. To do so, and considering that only the wind
speed and the outdoor temperature are available, multiple-input transformations
over these features account for the different interactions between the electricity
consumption and the outdoor conditions.

The first transformation considers the temperature differences between a theo-
retical balance temperature and the actual outdoor temperature. The main reason is
to overcome the non-linearities between the outdoor temperature and consumption.
Furthermore, different balance temperatures are considered during the heating and
cooling season, and during multiple parts of the day. This feature helps the model
to characterise certain situations better. For instance, regions that require heating
and cooling needs at the same time or significant differences of weather dependence
along the day. The increase in consumption due to an increase of this feature tends
to be more related to ventilation systems without heat recovery units or window
operations. Physically, it could be translated into the colder or hotter outdoor air,
compared to indoor air, which enters the building, increasing HVAC systems energy
consumption.

The second transformation uses the product of the wind speed and the the-
oretical temperature difference obtained by the first transformation to correlate
consumption and the air infiltrations caused by the infiltration of outside air into a
building, typically through cracks in the building envelope, doors, windows, and
chimneys. This infiltration is caused by wind, negative pressurisation of the building,
and air buoyancy forces, commonly known as the stack effect. In general, the higher
the product between wind speed and indoor-outdoor temperature difference, the
more energy consumption is experienced due to air infiltrations. Making a similar
interpretation as in the first transformation feature, HVAC systems need to increase
consumption to maintain the normal indoor thermal conditions.
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Finally, the third transformation is the consideration of low pass filters in the
inputs of the model. Due to building inertia and heat transfer through the envelope,
the indoor temperature of buildings does not react instantly to changes in the
outdoor temperature. Then, to linearise the correlation between energy losses and
energy consumption, a first-order low pass filter of the outdoor temperature T o

with a certain α parameter is considered. This tuned temperature is called T o,lp,
and, afterwards, it is transformed using the same differential process used in the
first transformation. The low pass filter retains the slow undisturbed variations
(signals with a low frequency), while the fast variations are damped (filtered). It
allows transforming the temperature, used as input in the models, into a variable
that better represents the system’s dynamics, enhancing the model fitness. This
transformation assumes that the dynamics of the buildings can be described by
lumped parameter RC (resistance-condenser) models. In turn, this assumption
means that the response in consumption due to envelope energy transfers can be
modelled as a first-order low pass filter. To summarising, the space heating and
cooling terms are mathematically described in Equations 5.6 and 5.7.

Ht = ω+h,lpTh,lpt + ω+hTht + ω+ahAht (5.6)

Ct = ω+c,lpT c,lpt + ω+c T ct + ω+acAct (5.7)

Th,lpt = (T bal,cdht
− T o,lpt )dst T c,lpt = (T o,lpt − T bal,cdht

)dst
Tht = (T bal,hdht

− T ot )dst T ct = (T ot − T bal,cdht
)dst

Aht =W s
t T

h
t dst Act =W s

t T
c
t dst

T o,lpt =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

αT ot if t = 0,

αT ot + (1 − α)T o,lpt−1 if t > 0.
α = 1 − e−tsampling/(2πτ/24)

dst =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

1 if weather dependence in st,

0 if no weather dependence in st.

Where: ω+h,lp is the always-positive linear coefficient for the heating dependent
term that considers the thermal inertia of the reference building (Th,lpt ), which is
related to the heat losses through the envelope and is calculated as the difference
between balance heating temperature (T bal,hdht

) at the portion of the day (dht) and the
low-pass filtered outdoor temperature (T o,lpt ) at instant t; ω+h is the always-positive
linear coefficient for the raw heating dependent term (Tht ), which is usually related
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to ventilation heat losses, and it is calculated as the difference between balance
heating temperature (T bal,hdht

) at the part of the day (dht) and the raw outdoor
temperature (T ot ); ω

+
ah is the always-positive linear coefficient for the heat losses

due to air infiltrations (Aht ), which is the wind speed (W s
t ) multiplied by the raw

heating dependent term (Tht ); ω
+
c,lp is the always-positive linear coefficient for the

cooling dependent term that considers the thermal inertia of the reference building
(T c,lpt ), which is related to the heat gains through the envelope and is calculated as
the absolute difference between balance cooling temperature (T bal,cdht

) at the part
of the day (dht) and the low-pass filtered outdoor temperature (T o,lpt ); ω+c is the
always-positive linear coefficient for the raw cooling dependent term(T ct ), which
is usually related to ventilation heat gains, and it is calculated as the difference
between balance cooling temperature (T bal,cdht

) at the part of the day (dht) and the
raw outdoor temperature (T ot ); ω

+
ac is the always-positive linear coefficient for the

heat gains due to air infiltrations (Act), which is the wind speed (W s
t ) multiplied by

the raw cooling dependent term (T ct ). Besides, the α value of the low-pass-filtered
outdoor temperature depends on the tsampling, which is the number of measures
per hour of consumption time series Qe, and the τ thermal time constant, which
defines the number of hours that the synthetic building reacts over a certain change
in outdoor temperature. Last but not least, all the temperature differentials and air
leakage terms are multiplied by a dummy variable which coerces weather dependence
terms to 0 if a certain usage pattern has no weather dependence (dst).

Impact of holiday seasonality

After the first tests of the implementation, the authors detected that the
influence of holidays tends to generate significant change points in electricity con-
sumption for certain regions, sectors and periods of the year. In most cases, the
holidays periods occurred in correspondence of national holidays, Fridays or Mon-
days between national holidays and weekends, winter and summer weekends, and
the summer vacations. However, it was difficult to find a feature that linearly corre-
lates the holidays component of the electricity consumption with the different local
festivities of every region along the year. As a first attempt, some of the features
that could be used are the number of tourists, second homes occupancy, or hotel
bookings at the postal code level and daily frequency. However, this information
was impossible to find at the desired aggregation levels. Therefore, another strategy
is considered in the final implementation. The data-driven characterisation model
is fitted using only those days that are not suitable to be holidays. Then, the
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whole period is predicted using the trained model and the residuals between the
actual and predicted data during the holidays period are considered as the holiday’s
component. In addition, this holidays dependence component is estimated only
when a difference of at least 20% is detected between the RMSE of the holidays /
non-holidays period.

Impact of COVID-19 lockdown periods

The Covid-19 Spanish lockdown, during the period from March 15th to June
21st 2020, significantly affected the energy consumption either in residential, indus-
trial or public sectors. Changes in business activities, user behaviour and building
occupancy caused this situation. For the presented case study, the time period
analysed depends on the availability of electricity consumption data for each post-
code. In general, the evaluated period comprised mid-2018 to mid-2020. Thus, the
data used to validate the characterisation methodology was fully affected by this
lockdown period. A set of terms have been introduced into the regression model
to quantify the decrease or increase in consumption due to the lockdown. They
basically add an interaction of the lockdown period to the baseload terms and
a set of re-adjusted weather dependence coefficients during the period. Another
consideration made during this period is that holidays effect on energy consumption
must be fixed to zero, as people should have stayed at home for those periods,
except in particular cases.

Training of the model

The electricity time series considered during the training phase changes slightly
depending on the economic sector considered. It clearly depends on the most
representative area factor for each economic sector, as the characterisation outcomes
are further compared among different regions. The built area normalisation becomes
a key factor in assessing the energy performance of buildings. The ratios considered
for each location and existing tariffs are the following:

• Residential sector:

Qe = Total consumptionresidential

number of contractsresidential×average dwelling area [W /m2]

• Industrial / Agriculture / Offices / Retail sector:
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Qe = Total consumptionsector

number of contractssector×average building areasector [W /m2]

Figure 5.5: Model training periods to charac-
terise the evolution in time of the dependencies

The model’s training is recursively performed every three months over a one-
year window, as is shown in Figure 5.5. This procedure provides information on
how the reference building is evolving in time. So, the characterisation coefficients
become, in some sense, time-variant. To decrease the computational time, the
original hourly frequency of the input time series is resampled to 4 hours.

Regarding the estimation of the unknown terms, most of them are inferred
through the maximum likelihood technique implemented in the penalised function
of the R package Penalised [158], where the whole regression formula is estimated.
However, several coefficients cannot be solved using this methodology, as they are
variables that transform the model inputs themselves. Examples are the thermal
time constant of the reference building, the number of harmonics of the Fourier
series, or the balance temperatures, among others. The optimisation of these
coefficients is made using a Genetic Algorithm (GA) that iterates and evolves
chromosomes (in this case are the binary representation of the parameter values to
optimise), minimising a cost function, which in this case is the Root Mean Square
Error (RMSE) of the predicted consumption versus the metered consumption data.
As a required initial input for the GA, a range of feasible values for each parameter
to estimate is defined. In the case of T bal,hd h, the heating balance temperature range
goes from 10 to 22 ○C, in steps of 0.5. For T bal,cd h, the cooling balance temperature
ranges between 18 to 30 ○C, in steps of 0.5. The building thermal inertia parameter
(τ) ranges between 1 to 48 hours in steps of 1. Finally, the boolean activators for the
weather dependence in each daily seasonality (ds) can be 0 or 1. In each training
period, the initial parameters considered for the GA optimisation are the ones
obtained in the last period, that is the reason to increase the number of maximum
iteration permitted in the case of the first training period (50 vs. 20), when no
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initial values are available. The population considered in the GA is 300 for each
iteration and the elitism in set to a 5%.

Known terms and time series: Qe,
s, pd, pw, dh, wh, T o, W s and tsampling.

Unknown terms for each usage pat-
tern: ωb, ds(*), ωb,d,n,sin, ωb,d,n,cos,
ωb,w,n,sin and ωb,w,n,cos.

Unknown fixed terms: τ(*), Nd and
Nw.

Unknown terms for each day part:
ω+h,lp, ω

+
h, ω

+
ah ,ω+c,lp, ω

+
c , ω

+
ac, T

bal,h
dh (*)

and T bal,cdh (*).

(*) Estimated using a genetic algorithm optimiser

5.5 Case study results

Rather than summarise in detail the results over the whole province of Lleida
(Spain), which might be investigated in future studies, consumers in the residential
sector of postal code 25006 are selected to show the intermediate and final results
obtained during the validation procedure. This helps to focus on each of the results
obtained concerning the models’ accuracy and the estimated KPIs linked to the
energy performance of buildings and usage patterns of their occupants.

5.5.1 Characterisation of a postal code

The postal code analysed is related to the Zona Alta neighbourhood in the
city of Lleida. It is known as one of the most well-being districts in Lleida, at least
compared to those near the city centre. Some of its socio-economic characteristics
are household incomes of 36,498€ per year, incomes quantile 80-20 ratio of 3.23
(one of the highest of the province, which means there are large differences between
low and high salaries), an average population age of 47.42 years, with 26.95% of
people older than 65 and 13.59% under 18.

Estimated model

The accuracy of the models for each of the tariffs and evaluation periods are
detailed in Table 5.2 and 5.3.
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For both of the selected metrics, the average accuracy (MAPE: 5,04%, CVRMSE:
6,51%) is very high considering the characterisation purposes of this methodology.
Even dealing with 4h-frequency predictions, the accuracy level reaches the state-of-
the-art forecasting techniques at the city-scale level and daily aggregation. Figure
5.6 shows the energy signature between the 4h-resampled real observations and the
predictions of the models. It has been proved that the predictions capture the main
trend of the original data, and even the variance is extremely similar.

Figure 5.6: Predicted 4-hourly aggregated energy signature versus actual data

The weather-related coefficients are depicted in Figure 5.7. Dark blue lines
correspond to the characterisation coefficients between June 2019 to May 2020 and
the yellow ones from July 2018 to June 2019. In the Y-axis, the different weather
dependence coefficients in heating and cooling modes are depicted. Uraw heating
values are the ω+h model coefficients depending dht (hour of the day), Ulp heating
values are the ω+h,lp model coefficients depending the dht , Iair heating values are
the ω+ah model coefficients depending the dht , T bal heating values are the heating
balance temperature depending on the dht , τ is the thermal time constant of the
building, Uraw cooling values are the ω+c model coefficients depending on dht , Ulp
cooling values are the ω+c,lp model coefficients depending on the dht , Iair cooling
values are the ω+ac model coefficients depending on the dht , and T bal cooling values
are the cooling balance temperature depending on the dht.

137



Chapter 5 Electricity load characterization of districts

Figure 5.7: Weather-dependent characterisation parameters of the model
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Period - MAPE [%] 2.0A 2.0DHA 2.1A 2.1DHA 3.0A all
June 2018 -
May 2019 4,52 7,05 5,78 8,28 7,03 5,33

Sept. 2018 -
Aug. 2019 4,31 7,65 5,90 9,30 6,89 5,02

Dec. 2018 -
Nov. 2019 4,18 6,25 5,56 8,36 5,92 4,73

Mar. 2019 -
Feb. 2020 4,37 5,95 6,35 9,79 6,52 5,34

June 2019 -
May 2020 4,15 5,32 5,57 8,69 7,35 4,77

Table 5.2: Mean Average Percentage Error (MAPE) over distinct periods and
tariffs

Period - CVRMSE [%] 2.0A 2.0DHA 2.1A 2.1DHA 3.0A all
June 2018 -
May 2019 5,75 8,53 7,34 9,99 8,94 6,45

Sept. 2018 -
Aug. 2019 5,68 9,08 7,56 10,68 8,55 6,55

Dec. 2018 -
Nov. 2019 5,65 8,06 7,40 10,27 7,84 6,27

Mar. 2019 -
Feb. 2020 5,95 7,73 8,25 12,40 8,61 7,03

June 2019 -
May 2020 5,56 7,06 7,06 11,03 8,58 6,27

Table 5.3: Coefficient of Variation of the Root Mean Squared Error (CVRMSE)
over distinct periods and tariffs

It can be seen that the coefficients across different tariffs vary largely and tend
to be higher the more electricity is consumed by the tariff customers. This is a
normal effect, as customers with 2.1 and 3.0 tariffs tend to have more domestic
appliances or electrical driven HVAC equipment in their households. One of the most
interesting insights is that space heating and cooling dependencies tend to differ
widely along day time, responding with more emphasis to weather conditions during
sunlight hours. Moreover, the estimated balance temperature helps to understand
the most common HVAC operation schedule during a typical day, or, in other words,
how people or energy managers tend to set the thermostats. Additionally, differences
in the thermal time constant show variations in building’s envelope characteristics
between tariffs. At first glance, it seems that the 2.1A tariff is more related to
higher thermal inertia buildings, which could also be related to better-insulated
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buildings. Regarding the baseload characterisation, each usage pattern’s daily and
weekly profile and tariffs are obtained using the model parameters.

Figure 5.8: Daily electricity disaggrega-
tion results over distinct periods and tariffs

In summary, using the developed regression model, the decomposition of the
three main components of buildings electricity loads (baseload, space heating and
cooling) is made for the whole period of data within each of the evaluation periods
(from June 2018 to May 2019, and from June 2019 to May 2020). In the web
application, the results of this disaggregation are much better represented using
interactive plots. However, to show the results in paper form, the Figure 5.8
represents the daily disaggregation and the total consumption. To compare the
yearly evolution between different periods, the X-axis represents the months from
January to December.

From Figure 5.8, it can be noted that, in all the cases, the significance of the
baseload consumption is much higher than the weather dependence components.
Also, the high variance in the baseload component in tariff 3.0A corresponds to the
weekdays-weekends variation. Another detail that can be seen in this plot is the
impact of the Covid-19 lockdown in Spain during the months from March to May of
the last evaluation period, especially in the case of tariff 3.0A, where allegedly some
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business buildings/dwellings are integrated into the residential sector subset of the
Datadis database. The evolution of the heating and cooling components through
the year seems to fulfil the expected behaviour during a natural year, considering
the total consumption series and the climate data of the case study area. However,
it is noted that the reference building of tariff 2.1DHA has a major impact in terms
of heating dependency. So, it can be interpreted that customers with this tariff
have more electricity resourced heating systems compared to the customers with
other tariffs.

Summarised KPIs

Once the characterisation model is technically fitted, a set of KPIs is defined
to compare different areas, even when certain conditions differ widely from the type
of users, weather conditions, or building characteristics. To do so, simple units and
plots were chosen to represent the model results.

Figure 5.9: Usage patterns detected over distinct tariffs

The results of the clustering and classification of the usage patterns are illus-
trated in Figure 5.9. In the right pane, the different usage patterns in multiple
colours are depicted, and in grey, the interval of daily load curves at confidence
95% is shown. In the left pane, the daily classification is represented, and it can be
observed that some patterns have continuity in time. Hence, they tend to evolve
over time, depending on certain conditions that interact with energy consumption.
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These conditions are related to the weather, part of the year, holiday seasons and
other unknown variables.

Figure 5.10: Intraday summarised electricity disaggre-
gation results over a natural year and distinct tariffs

The heat map shown in 5.10 uses the most updated characterisation model
(Trained with data from July 2019 to June 2020) to show the average kWh/year
contribution of each electricity component by tariff through a natural year (X-axis,
each step is one month) and the different parts of the day (Y-axis, each step are four
hours). It can be seen that in the case of baseload, it seems that, during the Covid-19
confinement, it has been incremented by about 20% during the daytime period from
12 h to 16 h. This can be related to more people in their homes interacting with
electricity-driven cooking systems during lunchtime. In contrast, 3.0A customers
decrease their consumption drastically during those months. Regarding the heating
and cooling components, it can be observed that the different intraday dependencies
along different tariffs and months of the year (see Figure 5.10). Maybe, again, the
3.0A customers clearly behaved significantly different in terms of cooling dependency
compared to customers with other tariffs. Besides increasing the understandability
of the distribution between components and their evolution in time, the Figure
5.11 represents the relative disaggregation, on a natural year basis, between the
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baseload, the heating and the cooling components, and the impact of holidays and
Covid-19 lockdown on the total consumption.

Figure 5.11: Yearly-aggregated relative segmentation of
the electricity consumption over distinct periods and tariffs

For instance, concerning tariff 2.0A and the first period July 2018 to Jun
2019: the baseload component represents approximately 86% of the total annual
consumption, the heating component the 11%, the cooling component represents
2%, and the holidays do not contribute at all. In this case, the Covid-19 lockdown
had a shallow impact during the lockdown period (March 15th to June 21st 2020).
Another conclusion is that the evolution of the different components in time is
rather similar. However, large differences can be detected between different tariffs,
and this corresponds to the different users/building typologies that characterise
each tariff.
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Besides the relative disaggregation, the web application also provides the point
of view of the absolute consumption contribution in kWh per natural year. Using
this representation, a decrease in total consumption for tariffs 3.0A and 2.0DHA
is detected, especially the former, which is much more affected by the Covid-19
lockdown (approx. -20%, according to the relative segmentation results). Then, in
general, for the rest of the tariffs, the same amount of total consumption during
the whole evaluation period is observed.

5.5.2 Results at a province level

The characterisation results over the whole province will be described in further
research publications. However, to show the web dashboard created for this purpose,
a set of examples are described in the following paragraphs. This validation has been
launched on a single server equipped with a 12-core 3.6 GHz CPU and 32 GB RAM.
The execution of the model training algorithm and the calculation of all the KPIs
related to all the historical periods available and all combinations of economic sector,
postal codes, and tariffs available within the province of Lleida, took 18h. Once
the aggregated consumption dataset of the whole month is gathered, the analysis
can be reassessed, considering the new data, in less than 2.5 h. It means that the
batch calculation on the same conditions for all the Spanish provinces would take
less than six days. This computational cost is totally affordable considering the low
cost of this type of server and a monthly basis update of the characterisation.

Figure 5.12 depicts the home section of the dashboard, whose purpose is to give
a clear and simple visualisation of all the estimated consumption KPIs, cadastre
information and socio-economic indicators on a map. The visualisation can be
filtered by tariffs, economic sectors, periods, percentiles ranges. An interesting
feature is a tiny histogram representing the distribution of values of the variable
depicted on the map, especially when outliers can generate useless colouring legends.

The characterisation tab, shown in Figure 5.13, represents the complete assess-
ment of the electricity consumption of a specific postal code and economic sector
selected over the map. Several of the plots shown in this tab are interactive versions
of the summarised KPIs explained in the subsection above, such as information
about the model accuracy, the usage patterns detected and the disaggregation
results in several time aggregations. The user can go deeper into the most common
electricity uses over a certain geographical area.
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Figure 5.12: Web application - "KPIs on a map" tab

In Figure 5.14, the benchmarking tab is depicted, where the objective is to
exploit the usage of the characterisation models to compare in detail two postal codes.
This comparison is made by the estimated electricity components, normalising the
results of the second postal code to the weather conditions and building/dwelling
sizes of the first one. This normalisation procedure means that the divergence in
electricity consumption should be caused by the difference in the energy performance
of buildings, alternative usage patterns in electric devices, or by a different HVAC
systems operation in cooling and heating electricity consumption components. In
parallel, intraday differences along a natural year between the baseload consumption,
and the impact of holidays and the Covid-19 lockdown period, are also represented.

Finally, Figure 5.15 shows the tab that allows cross-correlating all the KPIs
to understand tendencies and relations between them, providing a wider interpre-
tation of the territory and understanding if the variation of a certain cadastre or
socio-economic indicator has a significant correlation to another estimated energy
consumption KPI. For instance, it could be inferred if there is a relation between
holidays periods contribution to the energy consumption and average percentage of
single households, or the average annual incomes per person.
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Figure 5.13: Web application – “Characterisation” tab
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Figure 5.14: Web application – “Benchmarking” tab
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Figure 5.15: Web application - "KPIs correlation" tab

5.6 Conclusions

A methodology to characterise actual electricity consumption of large geograph-
ical areas has been developed, implemented and validated. It has been proven
that the segmentation of the aggregated electricity time series provides multiple
interesting possibilities to estimate KPIs related to energy performance buildings
and occupants usage trends.

Moreover, it has been developed as an open-source platform able to extract
information from publicly available data sources. This platform is split into two
main parts: a back-end and a front-end. The former gathers, transforms and
stores the data into databases. These data are accessible to data analysis tools
designed to model the buildings’ electricity consumption only using high-frequency
time series data of actual consumption and weather data as the main inputs. The
latter visualises the KPIs and the obtained outcomes through a purpose-built web
application.
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5.6 Conclusions

This research demonstrated that implementing this type of data-driven method-
ologies is feasible for large regions in Spain. Still, other European countries can also
apply it as long as similar open data sources are available. The list of possible ap-
plications that could use the methodology and the web platform is pretty extensive,
targeting different types of beneficiaries, from the public to the private sector.
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Chapter 6

General discussion and conclusions

As said in Chapter 1, globally, the buildings’ energy consumption meant 30%
of all-sectors energy consumption during 2019. Hence, as it is one of the most
important sectors, only surpassed by the industrial one (37%), it has been envisaged
that a better predictability and energy characterisation of the building sector is a
key factor to optimise the demand and maximise the usage of renewable energy
sources.

This Thesis enlightens the importance of applying statistical learning techniques
for a successful global energy transition in the buildings sector. Several techniques
were used in this Thesis. Some are penalised linear models, autoregressive models,
clustering techniques, optimisation algorithms, and several model feature transfor-
mations. In all cases, these methods were used to represent physical phenomena,
such as space heating consumption at dwelling level, the operation of building-level
HVAC systems, or the total energy consumption of districts.

It has been proved that even the geographical level of the applications was
drastically divergent (dwelling level, building level, and district level), these tech-
niques were handy for a wide range of applications. For instance, forecasting and
simulation of energy consumption or thermal comfort conditions, estimation of
energy flexibility in buildings, or inference of unknown characteristics contained
intrinsically in the energy-related data.

In the following sections, each chapter discussion, conclusions and possible
future work are summarised.
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Common data analytics platform

The research presented in Chapter 2 indicates the importance of improving
consumer energy efficiency by implementing a data management platform that is
efficient and scalable. According to different pilot groups and users, the electricity
savings achieved during the EMPOWERING project were 2 to 12%. However,
improvements in the behavioural aspects of energy use have considerable potential.
Customers’ motivation also seems to be important, as better results were achieved
when customers were involved. Energy savings are motivated by many reasons, and
money savings is only one of them. In addition, environmental concerns, government
regulations, social policies, and technological restrictions are powerful reasons why
future services should diversify to increase their impact.

Furthermore, implementing this ICT platform meant an essential starting point
for the applications presented in this Thesis (Chapters 3, 4, 5). For example, using
a common data model to structure and store the data properly helps the reusability
of analytical functionalities initially coded for another service or case study.

Modelling of thermal consumption in buildings

In Chapter 3, a methodology to virtually emulate the performance of thermo-
static load controlled systems relying on statistical learning models derived from
the information gathered by smart thermostats. Two regression-based models are
developed: one with the supplied energy as the dependent variable (supply-side
model), and another one with the indoor temperature as the dependent variable
(demand-side model). Multiple exogenous variables, such as outdoor temperature,
solar radiation, wind speed and wind direction, are considered in addition to multi-
ple input transformation techniques that enhance these models’ accuracy. Finally,
a control algorithm, driven by the setpoint temperature, is implemented to couple
both models and to be able to estimate the energy consumption and the indoor
temperature when several setpoint temperature schedules are applied.

The methodology is validated in real cases within the winter season. One of the
first findings is that the methodology used to train and couple the models, as well as
the thermostatic control emulation, can be fully applicable to any space heating or
cooling system as long as it is thermostatically controlled and a minimum historical
data period is available. It has been shown that the models can accurately predict
both the indoor temperature and the amount of energy used for space heating.

152



However, due to the high measurement tolerance of space heating consumption in
this use case, a minimum of 30 days is recommended to determine the potential
energy savings.

Among its major innovations, this methodology does more than predict heat
consumption and indoor temperature. A mathematical optimization algorithm and
control loop is integrated to simulate virtually all user-controlled modes driven by
a setpoint temperature.

Another important finding of this research is that the analysed households’
free-floating conditions can also be assessed accurately. This gives the opportunity,
for instance, to estimate, during the winter season, the lower indoor temperature
that a household would reach without the operation of the space heating system.

Even though this methodology’s limitation is related to data quality require-
ments when the models are trained, during this training period, the setpoint
temperatures of the buildings need to be excited in the range of evaluation of
the setpoint temperature scenarios. This excitation generates dynamic changes in
indoor temperature and heat consumption that the data-driven models subsequently
infer. That means a minimum period of historical data of setpoint temperatures
within the range of normal operation of indoor temperatures and space heating
consumption is required.

Some conclusions can be drawn regarding the potential energy savings that
may be achieved if users modify their usual setpoint temperature schedule. First, it
has been demonstrated that lowering the usual set point temperature by 1○C can
result in an average energy savings of 18.1%. Indeed, up to approximately 36.5% of
energy savings can be achieved if the usual setpoint temperature is lowered by 2○C.

A further potential application of this research would be using this methodology
as a forecasting toolbox for the short-term prediction of the impact, over the energy
consumption and the indoor thermal conditions, of several set point temperature
scenarios. For instance, this methodology could be used as the modelling part of a
Model Predictive Control (MPC), which aims at minimizing the electricity cost of
thermostatically controlled heat pumps due to market signals or at increasing the
benefit of on-site renewable energy production (e.g., PV panels) while maintaining
indoor comfort.

In fact, a similar modelling infrastructure has been implemented in the Sant
Cugat pilot site presented in Chapter 4. In that case, a four-model strategy has
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been used. Firstly, using an ARX model for the water tank temperature modelling.
Secondly, modelling, with another ARX model, the electric consumption provided
by the heat pumps. And finally, using two GAM models for the energy demand
forecasting of the office building and a local market.

Energy flexibility of building blocks

Furthermore, Chapter 4 confirmed that thermostatically controlled heat pumps
could represent a huge potential for DR flexibility. It has been demonstrated that it
is possible to manage clusters of heat pumps to respond to requests for DR flexibility.
In addition, it has been proved that forecasting and optimization algorithms can
be tailored to the particularities of each system configuration (e.g. HP interface,
HP installation, and temperature sensors). Based on tests at three European pilot
sites, it appears that heat pumps can be operated playing with the building inertia
or storage tanks and are capable of being leveraged for multiple flexibility services.
Nonetheless, many legacy systems have several issues that need to be resolved.
These systems generally do not provide full interoperability with the heat pump,
causing them to be restrictive and less flexible. Additionally, it has been confirmed
that outdoor conditions, configured set points, and the available thermal storage
strictly determine the duration for which the heat pump can be activated. This
research also showed that the figure of a Cluster Manager plays a significant role
in providing successful interoperability between the final users and the Aggregator
under real-world market conditions.

Although the developed methodology to assess the flexibility in the different
pilot sites shows promising outcomes to demonstrate its scalability and wider
application, some procedures’ limitations to determine the FF need further research.
These limitations are mainly related to the non-accurate incorporation of the
dynamic variability of the flexibility and the dependencies between the active
energy and the activation variable. Both have been addressed in this research
by including the autoregressive terms in the model. However, this procedure is
not accurate enough and can miss some of the non-linearities. Therefore, some
improvements should be addressed. As an example, recent papers [113] opened
alternative methodologies to address these non-linearities in price-based DR schemes.
These complementary approaches should be investigated in real practice experiences.
Finally, simpler and more cost-efficient computational methods to evaluate the
flexibility potential of large amounts of buildings and HVAC systems need to be
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further developed to assure a seamless connection with commercial practices of
Aggregators and Cluster Managers in already existing European energy flexible
markets.

Territorial energy consumption characterisation

In chapter 5, the development, implementation, and validation of a methodology
to characterize actual electricity consumption in large geographical areas, such as
districts, has been completed. Several methods were combined to infer significant
relationships from the initial dataset. Initially, a clustering technique was used to
detect the most representative daily seasonalities. Afterwards, a penalised linear
regression methodology was applied to model the aggregated energy consumption per
unit floor area in terms of calendar seasonalities and weather conditions. According
to this research, multiple interesting KPIs related to buildings’ energy performance
and occupants’ usage trends can be estimated from aggregated electricity time
series.

Furthermore, this methodology has been implemented as an open-source plat-
form to extract information from publicly available data sources. As is normally
done in web applications, this software is split into two main parts: a back-end
and a front-end. The former gathers, transforms and store the data into databases,
where the latter version of the ICT architecture presented in Chapter 2 is used.
The latter visualises the KPIs and the obtained outcomes through a purpose-built
web interface. It has been shown that it is feasible to implement these types of
data-driven methodologies for large regions in Spain. Even so, other European
countries are also able to benefit from it as long as similar open data sources become
available. Applications that could be built using the methodology and the web
platform are quite varied, aiming at different types of beneficiaries:

1. Public authorities interested in improving the understanding of the energy
consumption flows within their territory, producing better planning and opti-
mal integration of renewable energies, prioritising the ECM implementation
at the local level, or assessing ECM impacts over districts or regions.

2. Private companies aim to improve their marketing strategies based on the
existing links between the territory and the electricity consumption trends.
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During the validation of this methodology, an attempt has been made to
include energy resources such as gas, biomass and oil in the analysis. So then,
regardless of the implantation rate of the different energy resources in the building
equipment (heating boilers, chillers, cooking equipment, domestic hot water), the
interpretation of this characterisation could be understood as the performance of all
buildings and their occupants against the final energy consumption. Nonetheless,
the actual availability of big datasets containing high-frequency gas, biomass or oil
consumption is meagre, especially for the residential sector. This point is significant
in Spain, where the validation was conducted, and only electricity consumption
data is available for many customers. However, this fact should evolve positively to
implement global energy data-driven characterisation techniques in the mid and
long term due to the pronounced tendency to electrify all-kind of building systems
and the strong implementation of advanced meters for gas consumption.

To summarise, practical applications that could use the outcomes presented
in this characterisation should assume that the methodology was only tested with
electricity consumption. The inclusion of other final energy fuel types should slightly
vary the data-driven modelling approach presented in this research and require
another validation procedure with actual data.
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