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Transport equations
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by Juan Carlos CANTERO GUARDEÑO

Throughout this thesis we consider the non-linear non-local homogeneous
transport equation 

ρt(x, t) + v(x, t) · ∇ρ(x, t) = 0,
v(x, t) = [K ∗ ρ(·, t)](x),
ρ(x, 0) = ρ0(x).

By non-linear we mean that the velocity field is not given: it is also an un-
known of the partial differential equation and it is related to the scalar ρ. This
makes that if we have ρ1 and ρ2 solutions of the PDE then their sum ρ1 + ρ2
does not have to be a solution for sure. By non-local we mean that the re-
lation between the velocity field at a time v(·, t) and the scalar ρ(·, t) is by
the convolution with a kernel K. So, the value of the velocity field at a point
depends not only on the scalar at that point but on its values in the whole
space. This class of equations are also known as active scalar equations.

The two master examples of this type of equation are:

(a) the vorticity formulation of the Euler equation in dimension 2 (2D Eu-
ler), where the scalar is usually written as ω (and we call it the vorticity)
instead of ρ and the kernel is

KBS(x1, x2) =
1

2π(x2
1 + x2

2)
(−x2, x1),

for (x1, x2) ∈ R2;
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(b) and the aggregation equation when the initial data ρ0 is the characteristic
function of a set. In this case the kernel is

KAg(x) = −∇N(x)

for x ∈ Rn, where N is the fundamental solution of the laplacian.

Other examples of active scalar equations can be found. For instance, the
surface quasi-geostrophic equation it is one.

The thesis is structured in two large blocks and a smaller one. In a few
words, the first one corresponds to the Hölder well-posedness of the PDE,
the second one to the persistence of the regularity of the boundary of a den-
sity patch and the third one to the limit structure as time goes to infinity of
a certain type of solutions. We want to mention that each chapter of this
dissertation has its own introduction.

• In Chapters 1 and 2 we prove the Cγ well-posedness of the transport
equation for some families of kernels in Rn and in the complex plane
respectively. Special cases of the theorems presented here recover the
Cγ well-posedness for 2D Euler (see [MB, Chapter 4]) and the transport
equation with the aggregation kernel (see [CGK, Theorem 5.3]).

• In Chapters 3 and 4 we prove the persistence of the C1,γ regularity of
the boundary of a density patch, that is, we prove that if the initial data
ρ0 is the characteristic function of a C1,γ domain, then the solution ρ(·, t)
of the transport equation is for every time the characteristic function of
such a regular domain. This is done for the same families of kernels
considered in the first block and it also covers the equivalent result for
2D Euler (done first by Chemin in [Ch] and later on by Bertozzi and
Constantin in [BC]) and for the aggregation equation (see [BGLV]).

• Finally, in Chapter 5 we study the skeleton for a one-dimensional ag-
gregation equation. We call skeleton to the limit domain at the blow-up
time when we start with a density patch. This equation is equivalent
to a transport equation for the case of the evolution of the characteristic
function of a domain. This was one of the first questions when I started
my doctoral studies, but we finally did not follow this line of work.

The main technical arduousness appearing is related with the divergence of
the velocity field, which depends obviously on the choice of the kernel. In
2D Euler the velocity field is incompressible, which means that it has zero di-
vergence. For a velocity field obtained by the convolution of the aggregation
kernel KAg with a scalar, the divergence is exactly minus the scalar function,
meaning that the regularity of the scalar is inherited by the divergence. As
we will se later, this is not the situation for the kernels that we consider in the
two first blocks of the thesis.



ix

Acknowledgements
És evident que he de començar agraint al Joan Orobitg: gran jugador d’esports
de raqueta, millor persona i encara millor director de tesi (o potser cal can-
viar l’ordre, ara ja no ho tinc clar). Amb una paciència espectacular i una
dedicació absoluta m’has ensenyat a entendre la feina de l’única manera que
ara em sembla raonable. T’ha tocat portar una tesi en un canvi de paradigma
brutal i em sembla admirable l’adaptació que has hagut de patir (no par-
larem aquí, perquè seria molt lleig, de l’àudio del Zoom: n’estic convençut
que pel proper esdeveniment mundial ja et funcionarà bé). Gràcies per les
infinites hores de discussions, per la disponibilitat total, per la calma davant
les bestieses matemàtiques que pugui haver plantejat. Gràcies per fer-ho tan
fàcil: provar teoremes i també fer gestions. Per tot: aquest passeig s’ens ha
allargat una mica però ha estat molt bonic.
Gràcies als altres Joans: Mateu i Verdera. Una part d’aquesta tesi no hagués
estat possible sense la vostra participació. A banda de les reunions que hem
tingut us agraeixo molt els consells per l’escriptura de la tesi. Gràcies a la
resta de companys analistes, en particular a la Laura Prat. Ha estat molt
guay fer la docència amb el teu lideratge.
Gracias al equipazo de Secretaría del Departamento y unas disculpas por
toda la lata que haya podido dar. Gràcies Bea, Ignasi, Joan, Loli, María José,
Paco, Santi, Vicente.
Gràcies als meus companys de viatge doctoral. A Amanda y Walter por
darme una introducción detallada de todos los elementos del departamento.
A l’Alejandro, l’Àlex, Banhirup, Juan Luis, Odí, Salvador... i espero no deixar-
me ningú! Per las bones estones i converses que hem compartit.
Gracias a José Antonio Carrillo y Matías Delgadino por la buena acogida en
mi estancia en el Imperial College.
Un agradecimiento enorme a Javier Ajenjo, Jordi Herreruela, Antonio Romero,
Gabi Ruiz y Alfonso Santiago por un 2019 estupendo previo al año de la
hecatombe. Os dejé mucha pasta pero me llevé mucha cerveza y decibelios.
Quid pro quo supongo.
A mis compañeros de Vila Universitària y de los cientos de pisos donde he
vivido estos años: a Alba y su entusiasmo por el Capitán América, a l’Arnau
i el miler de sèries que hem vist aquests anys, a Dani y su rebujito esperán-
donos al llegar de estudiar en la biblioteca, a l’Eloi i el Mario Kart, al Francesc
i el seu (poc exitós) compte de Twitter, an Guillem i es seu curs d’Antònia
Font fa anys, a Tamara y sus hermanos Gallagher que siempre están a punto
de volver.
A las personas que he conocido en los últimos tiempos por la intermediaria
común y que se han interesado fuertemente en este empujón final. Gracias
Arnau, Estefi, Jorge (ElNovioDeSonia), JF, Marc, Óscar, Sonia por el aliento.
A toda la gente que dejé lejos hace bastantes años ya. Almudena, Andrea,
Gámiz, Jovani, Lucía, Madero, Mari Carmen, Miguel, Nacho, Ropero, Sorsa,
Valentín: gracias por seguir estando aunque sea sólo posible en fiestas de
guardar. A Eva, Javi, Noemí y mis hermanos de la Piedad de Cabra. A la



x

Virgen de la Piedad.
A mi familia y sobre todo a mis padres. Siendo un tópico de alto nivel no deja
de ser real: gracias por el gran esfuerzo y sacrificio tanto económico como de
lejanía que han tenido que sufrir muchos años. Esta tesis es vuestra porque
sin vosotros no hubiera sido viable. Espero que os alegre el resultado.
A Ana, que ha seguido paso a paso todo el proceso de elaboración de esta
tesis. Has sido la mejor compañía posible en estos casi cinco años. Me has
aguantado en los días de mayor desesperación y angustia. En los días que
nada salía como tenía que salir. Me has aguantado bajo el mismo techo (un
techo con pocos metros cuadrados) todos y cada uno de los días en que no
había escapatoria. Y has sobrevivido para seguir aguantando después. No
hay suficientes líneas para agradecerlo. Por la hilaridad (cuando hay suerte).
Por compartir. Por despertarme con el café hecho para que pudiera escribir
tesis con energía. Por aguantar la incertidumbre ahora. Por todo.



xi

Contents

Declaration of Authorship iii

Abstract vii

Acknowledgements ix

Contents xi

1 Cγ
c well-posedness in Rn 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Outline of the chapter . . . . . . . . . . . . . . . . . . . 4

1.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Local Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.4 Global Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
1.5 Higher regularity . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Cγ
c well-posedness in C 31

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.1.1 Outline of the chapter . . . . . . . . . . . . . . . . . . . 32

2.2 Distributional derivatives of the kernel. . . . . . . . . . . . . . 33
2.3 Local Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.4 Global Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
2.5 Further comments about Cγ

c well-posedness . . . . . . . . . . . 40

3 C1,γ regularity for patches and for the kernel L · ∇N in Rn 43
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Outline of the chapter . . . . . . . . . . . . . . . . . . . 45
3.2 Smoothness of domains and the (refined) logarithmic inequality 46
3.3 Local Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.4 The choice of the defining function . . . . . . . . . . . . . . . . 53
3.5 Commutators for the material derivative of ∇Φ . . . . . . . . 58
3.6 The (controlled) extension of Φ . . . . . . . . . . . . . . . . . . 65
3.7 Proof of the Main Theorem . . . . . . . . . . . . . . . . . . . . 68

4 Patches in C 73
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.1.1 Outline of the chapter . . . . . . . . . . . . . . . . . . . 74
4.2 Hölder estimates . . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.3 Local Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78



xii

4.3.1 Contour Dynamics Equation . . . . . . . . . . . . . . . 78
4.3.2 Checking the hypothesis in Picard-Lindelöf . . . . . . . 82
4.3.3 The local theorem . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Globalness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.4.1 The defining function Φ . . . . . . . . . . . . . . . . . . 93
4.4.2 Commutators for ∂Φ . . . . . . . . . . . . . . . . . . . . 95
4.4.3 Global Theorem . . . . . . . . . . . . . . . . . . . . . . . 98

5 Skeleton of a one-dimensional aggregation patch 101
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

5.1.1 Outline of the chapter . . . . . . . . . . . . . . . . . . . 103
5.2 Open domain . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
5.3 Compact domain case . . . . . . . . . . . . . . . . . . . . . . . 107

Bibliography 109



xiii

Dedicated to my grandparents Juanito, Manolo and
Sensión who left us during the development of this

thesis and to my grandmother Sierrita who I know is
surely happy to see the end of it. They are the seed

of this work.

Para mis abuelos Juanito, Manolo y Sensión que nos
dejaron durante el desarrollo de esta tesis y para mi

abuela Sierrita que seguro está contenta de ver la
finalización de la misma. Son la semilla de este

trabajo.

Pels meus avis Juanito, Manolo i Sensión que ens
van deixar durant el desenvolupament d’aquesta

tesi i per la meva àvia Sierrita que segur está feliç de
veure el final. Són la llavor d’aquest treball.





1

1 Cγ
c well-posedness in Rn

1.1 Introduction

Let ρ(x, t) a scalar quantity usually known as the density and let v(x, t) a
vector field called velocity both depending on the position x ∈ Rn and on
the time t ∈ R . The (homogeneous) transport equation for the pair (ρ,v) is the
partial differential equation defined by

(1.1)

{
ρt + v · ∇ρ = 0,
ρ(·, 0) = ρ0.

We shall now give an explanation of such a name for (1.1). Given a velocity
field v and a point α ∈ Rn we set, whenever it is well defined, the flow map

X(α, ·) : R→ Rn,
t→ X(α, t)

as the solution of the ordinary differential equation

(1.2)

{
d
dt X(α, t) = v(X(α, t), t),
X(α, 0) = α.

This map indicates the position at time t of the particle that was initially at α
and that has moved following the velocity field at every moment. It is also
called the trajectory of the particle α.

Then let ρ the density and set g(α, t) = ρ(X(α, t), t). If we compute the
derivative of g with respect to the time variable, we get, by an application of
the chain rule,

d
dt

g(α, t) = ρt(X(α, t), t) +∇ρ(X(α, t), t) · d
dt

X(α, t),

and by (1.2),

(1.3)
d
dt

g(α, t) = ρt(X(α, t), t) + v(X(α, t), t) · ∇ρ(X(α, t), t).

For a pair (ρ, v) satisfying the transport equation, the right hand side of
(1.3) vanishes, meaning that g(x, t) does not depend on time and hence

ρ(X(α, t), t) = ρ(X(α, 0), 0) = ρ(α, 0) = ρ0(α).



2 Chapter 1. Cγ
c well-posedness in Rn

That means that the density at time 0 and at position α takes the same value
as the density evaluated at t and at the future position of α at time t. So, it
can be said that ρ is transported with the flow defined by the velocity field v.
This is a good reason for calling transport equation to (1.1).

For a fixed time t, the functions ρ and v in (1.1) can be related by some
functional T so that v(·, t) = T(ρ(·, t)) and often T can be expressed as a
convolution with a given kernel. The most important example of a transport
equation of this kind for n = 2 is the Euler equation. Let N be the fundamen-
tal solution of the Laplacian (N(x) = 1

2π ln(|x|)) and let

KBS(x1, x2) =
1

2π |x|2
(−x2, x1) = ∇⊥N(x)

(we call KBS the Biot-Savart kernel). If we set ω(·, t) = ∇× v(·, t), then the
vorticity formulation of the Euler equation is

(1.4)


ωt + v · ∇ω = 0,
v(·, t) = KBS ∗ω(·, t),
ω(·, 0) = ω0,

which is a non-linear transport equation for (ω, v).
Another example in Rn (see [BLL, Section 4.2] for more details of its

derivation) is the aggregation equation when the initial condition ρ0 is the
characteristic function of some domain D0, χD0 . We will call solutions for
this type of initial data density patches and they will be discused in depth in
Chapters 3 and 4 of this dissertation. Let wn the volume of the n-dimensional
unit ball and set

(1.5) N(x) = − 1
n(n− 2)wn

1

|x|n−2 , n ≥ 3

the fundamental solution of the Laplacian in Rn. In this case, given
KAg = −∇N we get 

ρt + v · ∇ρ = 0,
v(·, t) = KAg ∗ ρ(·, t),
ρ(·, 0) = ρ0 = χD0 .

In the spirit of generalizing these example equations we will consider
throughout this paper a matrix L ∈ Mn×n(R) and the corresponding ker-
nel

(1.6) K(x) = L · ∇N(x)

where · stands for the usual product of matrices and ∇N(x) is seen as a
column vector. Then (1.6) produces a relation v(·, t) = K ∗ ρ(·, t) as in the
previous cases.
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Our goal is to prove a well-posedness result for the transport equation
and for the kernel (1.6) in some space of functions that will be defined in a
moment.

We would like to anticipate that the divergence of v is an important quan-
tity appearing in the computations and in the proofs that we are going to
develop. For the Euler equation the divergence vanishes everywhere for any
time and for the aggregation equation the divergence at a given time t is
equal to −ρ(·, t). In both cases, the proofs are easier due to the simplicity of
the divergence.

Definition 1.1. Given 0 < γ < 1 and f : Rn → R let

|| f ||L∞ = sup
x∈Rn

| f (x)| and | f |γ = sup
x,y∈Rn

x 6=y

| f (x)− f (y)|
|x− y|γ

.

We define the norm
|| f ||γ := || f ||L∞ + | f |γ .

For F : Rn → Rd, x→ F(x) = ( f1(x), . . . , fd(x)), we define

||F||γ := sup
i=1,...,d

|| fi||γ

and then the space

Cγ(Rn; Rd) =
{

f : Rn → Rd : || f ||γ < ∞
}

.

Finally, given an integer m and a multiindex
α = (α1, . . . , αn) consider |α| = ∑n

i=1 αi and dα

dxα = d|α|

dx
α1
1 ...dxαn

n
. Then define

|F|m,γ = |F(0)|+ sup
1≤|α|≤m

∣∣∣∣∣∣∣∣ dα

dxα
F
∣∣∣∣∣∣∣∣

γ

.

For m = 1 we simply write

||∇F||L∞ = sup
i=1,...,d

(
sup

j=1,...,n

∣∣∣∣∣
∣∣∣∣∣ ∂

∂xj
fi

∣∣∣∣∣
∣∣∣∣∣

L∞

)
,

|∇F|γ = sup
i=1,...,d

 sup
j=1,...,n

∣∣∣∣∣ ∂

∂xj
fi

∣∣∣∣∣
γ

 ,

and then
|F|1,γ = |F(0)|+ ‖∇F‖L∞ + |∇F|γ .
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We define the Hölder space Cm,γ(Rn; Rd) as

Cm,γ(Rn; Rd) =
{

f : Rn → Rd : || f ||m,γ < ∞
}

.

When it is clear enough, we will just write Cm,γ.
Additionally, we set Cm,γ

c as the space of functions in Cm,γ which are also com-
pactly supported.

We are ready to anticipate the main theorem of this chapter.

Theorem 1.2. Let N the fundamental solution of the Laplacian in Rn. Consider
L ∈ Mn×n(R). For 0 < γ < 1, if ρ0 ∈ Cm,γ

c (Rn, R), then the transport equation
ρt + v · ∇ρ = 0,
v(·, t) = L · ∇N ∗ ρ(·, t),
ρ(·, 0) = ρ0,

has a unique weak solution ρ(·, t) ∈ Cm,γ
c (Rn, R) for any time t ∈ R.

The definition of weak solution will be given in Chapter 4 (see Definition
4.7). Nevertheless, in the smooth framework of the present chapter it is pos-
sible to check that a (transported by trajectories) solution is a weak solution
of the PDE.

The reason we have chosen this space is double. Firstly, the result was
proved for the Euler equation (see [MB, Chapter 4]) and for L the identity
matrix, i.e., for the aggregation kernel (see [CGK, Theorem 5.3]). Secondly,
we wanted to be sure about having well-posedness of the smooth case before
moving to other situations (for instance, density patches). The proof pre-
sented here does not change much from the one for the Euler equation, but
at some steps we will need more involved arguments due to the fact that the
velocity field is not divergence free in general. We will stress this fact in the
next sections whenever those differences appear.

1.1.1 Outline of the chapter

The present chapter is structured as follows. In Section 1.2 we give some
preliminary results on Hölder spaces and on Calderón-Zygmund Operators
(CZO) acting on them. In Section 1.3 we prove a local-in-time version of
Theorem 1.2. In Section 1.4 we prove that this local solution is actually global.
Finally, in Section 1.5 we explain how to proof higher regularity provided the
initial data is of class Cm,γ

c .

1.2 Preliminaries

First of all, we have the following elementary properties for elements of the
Hölder spaces.
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Lemma 1.3. Let f , g be Cγ functions, 0 < γ < 1. Then

| f g|γ ≤ || f ||L∞ |g|γ + | f |γ ||g||L∞ ,(1.7)

|| f g||γ ≤ || f ||γ ||g||γ .(1.8)

If moreover X is a smooth invertible transformation in Rn satisfying

|det∇X(α)| ≥ c1 > 0,

then there exists c > 0 such that∣∣∣∣∣∣(∇X)−1
∣∣∣∣∣∣

γ
≤ c ||∇X||2n−1

γ ,(1.9) ∣∣∣X−1
∣∣∣
1,γ
≤ c |X|2n−1

1,γ ,(1.10)

| f ◦ X|γ ≤ | f |γ ||∇X||γL∞ ,(1.11)

|| f ◦ X||γ ≤ || f ||γ (1 + |X|
γ
1,γ),(1.12) ∣∣∣∣∣∣ f ◦ X−1

∣∣∣∣∣∣
γ
≤ || f ||γ (1 + |X|

γ(2n−1)
1,γ ).(1.13)

The proof of Lemma 1.3 can be found in [MB, p. 159] (see Lemmas 4.1, 4.2
and 4.3). Note that (1.8) implies that Cγ is an algebra.

We also have the following bounds for Calderón-Zygmund operators act-
ing on Hölder spaces. They will be used repeatedly in the proofs developed
in the upcoming sections.

Lemma 1.4. Let K : Rn → R, K ∈ C2(Rn \ {0}) a kernel homogeneous of degree
1− n. That is,

K(λx) =
1

λn−1 K(x), ∀ λ > 0. ∀x 6= 0,(1.14)

Let P = ∂iK, i = 1, . . . , n. Set

T f (x) =
∫

Rn
K(x− x′) f (x′)dx′; S f (x) = p.v.

∫
Rn

P(x− x′) f (x′)dx′.

For 0 < γ < 1 let f ∈ Cγ
c (R

n; R). Set Rn := m(supp( f )) < ∞, that is, the
measure of the support of f . Then, there exists a constant c, independent of f and R,
such that

||T f ||L∞ ≤ cR || f ||L∞ ,(1.15)

||S f ||L∞ ≤ c
{
| f |γ εγ + max

(
1, ln

R
ε

)
|| f ||L∞

}
∀ε > 0,(1.16)

|S f |γ ≤ c | f |γ .(1.17)
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Remark 1.5. The proof of Lemma 1.4 can be found in [MB, pp. 159-163] (see Lem-
mas 4.5 and 4.6). There more hypothesis on the kernels K and P are required but we
remark here that they are not needed. In particular, for K as in the previous lemma,
by differentiating with respect to xi the equation (1.14) it is clear that this derivative
is homogeneous of degree −n. Also, we can see that ∂iK has zero mean integral on
the sphere. Let 0 < a < b. By Stokes’ theorem we can write∫

a≤|x|≤b
∂iK(x)dx =

=
∫

∂B(0,b)
K(x)ni(x)dσ(x)−

∫
∂B(0,a)

K(x)ni(x)dσ(x),
(1.18)

where ni(x) is the i-th component of the unitary normal vector to each surface at
the point x. By homogeneity of the kernel K it is clear that the two integrals in the
second line of (1.18) are equal and then the difference is 0. By doing a hyperspherical
coordinates change of variables and again by homogeneity of the kernel, the first line
of (1.18) can be written as∫

a≤|x|≤b
∂iK(x)dx = (log(b)− log(a))

∫
∂B(0,1)

∂iK(w)dσ(w),

and so we can conclude that∫
∂B(0,1)

∂iK(w)dσ(w) = 0

as it is required in the mentioned proof done in [MB].

Remark 1.6. For N the fundamental solution of the Laplacian, each component of
the kernel K = ∇N satisfies (1.14) and, consequently, Lemma 1.4 holds.

1.3 Local Theorem

As in the case of Euler equation, a good way to prove an existence and
uniqueness result is by dealing with an, in some sense, equivalent equation
rather than the one presented in Theorem 1.2. Recall that ρ is transported
with the flow, i.e., ρ(x, t) = ρ0(X−1(x, t)) for X−1(·, t) the inverse of the flow
X(·, t). Therefore by (1.13) we have

||ρ(·, t)||γ ≤ ||ρ0||γ
(

1 + |X(·, t)|γ(2n−1)
1,γ

)
.

Thus, ρ(·, t) ∈ Cγ provided X(·, t) ∈ C1,γ.
Furthermore, eventually we will need to control the measure of the sup-

port of ρ(·, t). In order to do it, we have the next lemma, which will be also
needed in the rest of the chapters of this dissertation. Note that in the zero
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divergence case there is no need to control the support of ρ(·, t) since its mea-
sure is conserved with the time and therefore it is equal to the measure of the
support of ρ0.

Lemma 1.7. Let (ρ, v) be a solution of (1.1) and let X be the flow map associated to
v(·, t) as in (1.2). Then

m(supp(ρ(·, t))) ≤ c(n)m(supp(ρ0)) ||∇X(·, t)||nL∞ .

Proof. Given A ⊆ Rn, let χA be the function taking value 1 in A and 0 other-
wise. Then

m(supp(ρ(·, t))) =
∫

Rn
χsupp(ρ(·,t))(x)dx.

Taking the change of variables x = X(α, t) we get

m(supp(ρ(·, t))) =
∫

Rn
χsupp(ρ(·,t))(X(α, t))det DX(α, t)dα.

Since ρ is transported with the flow, it is clear that X(α, t) ∈ supp(ρ(·, t)) if
and only if α ∈ supp(ρ0). Thus,

m(supp(ρ(·, t))) =
∫

Rn
χsupp(ρ0)(α)det DX(α, t)dα.

Taking absolute value on the previous equation and having into account that
||det DX(·, t)||L∞ ≤ c(n) ||∇X(·, t)||nL∞ we get

m(supp(ρ(·, t))) ≤ c(n)m(supp(ρ0)) ||∇X(·, t)||nL∞ .

We can focus then on proving existence, uniqueness and regularity for X.
We know X satisfies (1.2) and then, as v(·, t) = K ∗ ρ(·, t), we obtain

dX
dt

(α, t) = v(X(α, t), t) =
∫

Rn
K(X(α, t)− x′)ρ(x′, t)dx′.

Applying a change of variables x′ = X(α′, t)

dX
dt

(α, t) =
∫

Rn
K(X(α, t)− X(α′, t))ρ(X(α′, t), t) det[DX(α′, t)]dα′ =

=
∫

Rn
K(X(α, t)− X(α′, t))ρ0(α

′) det[DX(α′, t)]dα′,

where, in the last equality, we have used that ρ is conserved along the flow.
Consequently, we have an ordinary differential equation (ODE) for X.

A standard way to prove existence and uniqueness for an ODE is to apply
Picard-Lindelöf’s theorem. It can be stated as follows.
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Theorem 1.8 (Picard-Lindelöf). Let O ⊆ B be an open subset of a Banach space B
and let F : O→ B be a locally Lipschitz continuous mapping.

Then given X0 ∈ O, there exists a time T > 0 such that the ordinary differential
equation

dX
dt

= F(X), X(·, t = 0) = X0 ∈ O,

has a unique (local) solution X ∈ C1 [(−T, T); O].

So, in order to apply Theorem 1.8, we first need an equation of type
dX
dt = F(X). As we have seen, we have it for

(1.19) F(X(α, t)) :=
∫

Rn
K(X(α, t)− X(α′, t))ρ0(α

′) det[DX(α′, t)]dα′.

Then we need a Banach space B and an open subspace of B such that the
flow maps X(·, t) belong to OM. We also need a functional F mapping OM to
B being this map locally Lipschitz continuous and satisfying that F(X(α, t))
is equal to (1.19). Let B = C1,γ(Rn; Rn) and

(1.20) OM = B ∩
{

X : Rn → Rn :
1
M

< sup
α 6=β

|X(α)− X(β)|
|α− β| < M

}
.

Remark 1.9. Then we have:

• OM is non-empty: Id ∈ OM ∀M > 1.

• It is an open set since it is the preimage of the open set ( 1
M , M) for some norm

function (which is continuous).

• If X ∈ OM, then the image of X is open because X is locally a diffeomorphism
and it is also closed because it is complete (X is a bilipschitz function) . Then
the image of X is the whole space and so X is a homeomorphism.

After this, we have to check that the hypothesis in Picard-Lindelöf’s the-
orem are satisfied. Since computations of derivatives of F(X) will be needed,
we first look how distributional derivatives of our kernels are.

Lemma 1.10. Given L = (lij)n
i,j=1 ∈ Mn×n(R), then for K = L · ∇N we have,

distributionally,

∂iKj =
lji

n
δ0 + p.v.

n

∑
r=1

ljr∂i∂rN,

where δ0 is the Dirac delta at 0.

Proof. It is well known that for N, fundamental solution of the Laplacian, we
have ∂2

i N = 1
n δ0 + p.v.∂2

i N and for i 6= j we have ∂i∂jN = p.v.∂i∂jN. Then,
since Kj can be expressed as

Kj =
n

∑
r=1

ljr∂rN,
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we apply ∂i and we get the result.

We are now in position to show that F : OM → B.

Proposition 1.11. Let OM as defined in (1.20). Then, the functional F defined by

(1.21) F(X)(α) =
∫

Rn
K(X(α)− X(α′))ρ0(α

′) det[DX(α′)]dα′

maps OM to C1,γ(Rn; Rn).

Proof. Let X ∈ OM. In order to prove the proposition, we need to verify

(1.22) ||F(X)||L∞ + sup
i∈{1,...,n}

(∣∣∣∣∣∣∣∣ d
dαi

F(X)

∣∣∣∣∣∣∣∣
γ

)
< ∞.

If we consider the change of variables x′ = X(α′) in (1.21) we get, for the
j-th component

Fj(X)(α) =
∫

Rn
Kj(X(α)− x′)ρ0(X−1(x′))dx′ =

= (Kj ∗ (ρ0 ◦ X−1))(X(α)).
(1.23)

Let R = m(supp (ρ0 ◦ X−1))1/n. Then, as in Lemma 1.7, we have, for
R0 = m(supp (ρ0))

1/n that

R ≤ cnR0 ||∇X||L∞ .

Since K = L · ∇N satisfies (1.14) (recall that∇N satisfies it and every compo-
nent of our kernel is just a linear combination of components of it), by (1.15)
in Lemma 1.4 we have

||F(X)||L∞ ≤ cR
∣∣∣∣∣∣ρ0 ◦ X−1

∣∣∣∣∣∣
L∞

= cR ||ρ0||L∞ ≤ cnR0 ||∇X||L∞ ||ρ0||L∞ ,

which is bounded for X ∈ C1,γ and ρ0 ∈ Cγ
c .

We focus then on the norms of derivatives of F(X). We write ∂i =
∂

∂αi
. We

have, by definition of the norm, ||∂iF(X)||γ = supj∈{1,...,n}
∣∣∣∣∂iFj(X)

∣∣∣∣
γ

. We
work then with ∂iFj(X) for i, j ∈ {1, . . . , n}. An application of the chain rule,
combined with Lemma 1.10, yields

∂iFj(X)(α) = ∇(Kj ∗ (ρ0 ◦ X−1))(X(α)) · ∂iX(α) =

=
n

∑
r=1

∂r(Kj ∗ (ρ0 ◦ X−1))(X(α))∂iXr(α) =

=
n

∑
r=1

(
ljr

n
ρ0(α) + p.v. (∂rKj ∗ (ρ0 ◦ X−1))(X(α))

)
∂iXr(α) =

=
n

∑
r=1

(
ljr

n
ρ0(α) + Srj(α)

)
∂iXr(α),

(1.24)
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where Srj(α) := p.v. (∂rKj ∗ (ρ0 ◦ X−1))(X(α)) and · stands for the usual
scalar product.

Since ρ0, ∂iXr ∈ Cγ and Cγ is an algebra, then it suffices to control the Cγ

norm of Srj. Clearly, hypothesis in Lemma 1.4 are satisfied if P = ∂rKj. Then

we set ε =
∣∣ρ0 ◦ X−1

∣∣1/γ

γ
and apply bound (1.16) in Lemma 1.4 to get

(1.25)
∣∣∣∣Srj

∣∣∣∣
L∞ ≤ c

{
1 + max

(
1,

1
γ

ln(R
∣∣∣ρ0 ◦ X−1

∣∣∣
γ
)

) ∣∣∣∣∣∣ρ0 ◦ X−1
∣∣∣∣∣∣

L∞

}
where R = m(supp (ρ0 ◦ X−1))1/n. As previously, R is bounded by
cnR0 ||∇X||L∞ . Since both

∣∣∣∣ρ0 ◦ X−1
∣∣∣∣

L∞ and
∣∣ρ0 ◦ X−1

∣∣
γ

are bounded above
by
∣∣∣∣ρ0 ◦ X−1

∣∣∣∣
γ

and taking also into account that∣∣∣∣∣∣ρ0 ◦ X−1
∣∣∣∣∣∣

γ
≤ ||ρ0||γ (1 + |X|

γ(2n−1)
1,γ ) < ∞,

then we have that the right hand side of (1.25) is finite. On the other hand,
by (1.17) we have∣∣Srj

∣∣
γ
≤ c

∣∣∣ρ0 ◦ X−1
∣∣∣
γ
||∇X||γL∞ ≤ c ||ρ0||γ (1 + |X|

γ(2n−1)
1,γ ) |X|γ1,γ .

Then, as we argued before, the Cγ norm of ∂iFj(X) is finite for any i, j so
the supremum in (1.22) is finite as well, completing the proof of the proposi-
tion.

Hence, we have that F satisfies the first hypothesis in Picard-Lindelöf’s
theorem. It remains to check that F is locally Lipschitz. We claim (and prove
later) that if the directional derivative F′(X) is bounded as a linear operator
between OM and B then F is locally Lipschitz. So, first of all we have to
compute this directional derivative. An auxiliary lemma is useful for this
computation and we need to give a previous definition to write it.

Definition 1.12. Given A ∈ Mn×n(Rn) we define Ac
i,j ∈ M(n−1)×(n−1)(R

n) as
the submatrix of A obtained by erasing the i-th row and the j-th column .

The following lemma is not needed whenever the velocity field is diver-
gence free, as in the Euler equation. In that case, det(DX(·, t)) ≡ 1 and
consequently the functional in (1.21) does not contain the determinant inside
the integral. In the general case, as we will see later, an expression for the
sum of determinants will be necessary.

Lemma 1.13. Given X, Y : Rn → Rn differentiable homeomorphisms.

d
dε

det(DX + εDY)
∣∣
ε=0 =

n

∑
i,j=1

(−1)i+j∂jYi det(DXc
i,j).
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Proof. First we use a formula for the determinant of a sum of square matri-
ces. The proof can be found in [Ma, pp. 162-163]. Let A, B ∈ Mn×n(R)
and let α, β strictly increasing integer sequences chosen from {1, . . . , n}. Let
|α| (resp. |β|) the number of elements of α (resp. β). If |α| = |β| then let
A[α|β] ∈ M|α|×|α|(R) the submatrix of A lying in rows α and columns β and
B[α|β] ∈ M(n−|α|)×(n−|α|)(R) the submatrix of B lying in rows complemen-
tary to α and columns complementary to β. Let s(α) (resp. s(β)) the sum of
the integers in α (resp. β). Then

(1.26) det(A + B) =
n

∑
r=0

∑
α,β

|α|=|β|=r

(−1)s(α)+s(β) det(A[α|β])det(B[α|β]).

Note that for a matrix M ∈ Ms×s(R) and a constant c ∈ R we have
det(c ·M) = cs det(M). Then setting A = DX and B = εDY in (1.26) we get

det(DX + εDY) =
n

∑
r=0

εn−r ∑
|α|=|β|=r

(−1)s(α)+s(β) det(DX[α|β])det(DY[α|β]).

Differentiating with respect to ε the previous equation and setting ε = 0
make some terms vanish and, in consequence,

d
dε

det(DX+ εDY)
∣∣
ε=0 = ∑

|α|=|β|=n−1
(−1)s(α)+s(β) det(DX[α|β])det(DY[α|β]).

Note that a strictly increasing sequence taking n− 1 elements of {1, . . . , n}
is a sequence avoiding just one of them. So

α = (1, . . . , i− 1, i + 1, . . . , n), β = (1, . . . , j− 1, j + 1, . . . , n),

for i, j = 1, . . . , n. Then s(α) + s(β) = n(n + 1) − (i + j) and hence
(−1)s(α)+s(β) = (−1)i+j. For these special sequences we can simplify and
write DY[α|β] = ∂jYi and DX[α|β] = DXc

i,j as in Definition 1.12. Summing
up,

d
dε

det(DX + εDY)
∣∣
ε=0 =

n

∑
i,j=1

(−1)i+j∂jYi det(DXc
i,j)

and the lemma is proved.

We already have the tools to compute the directional derivative of F.
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Proposition 1.14. Let X ∈ OM, Y ∈ B . For F = (Fj)
n
j=1 defined in (1.21) we have

F′j (X)Y =I+II where

I : =
∫

Rn
∇Kj(X(α)− X(α′)) · (Y(α)−Y(α′))ρ0(α

′)det(DX)(α′)dα′,

II : =
n

∑
r,s=1

(−1)r+s
∫

Rn
Kj(X(α)− X(α′))ρ0(α

′)∂sYr(α
′)det(DXc

r,s)(α
′)dα′.

Proof. Let j = 1, . . . , n. Consider X ∈ OM and Y ∈ B. Firstly, we apply the
chain rule to see

d
dε

(
Kj(X(α)− X(α′) + ε(Y(α)−Y(α′)))

)
ε=0 =

=
n

∑
i=1

∂iKj(X(α)− X(α′))(Yi(α)−Yi(α
′)) =

= ∇Kj(X(α)− X(α′)) · (Y(α)−Y(α′)),

where · is the usual scalar product. Thus having into account the above com-
putation and applying Lemma 1.13 we get

(F′j (X)Y)(α) =
d
dε

(Fj(X + εY)(α))ε=0 =

=
∫

Rn
∇Kj(X(α)− X(α′)) · (Y(α)−Y(α′))ρ0(α

′)det(DX)(α′)dα′+

+
n

∑
r,s=1

(−1)r+s
∫

Rn
Kj(X(α)− X(α′))ρ0(α

′)∂sYr(α
′)det(DXc

r,s)(α
′)dα′,

as we wanted to prove.

Remark 1.15. Note that there is no need to write principal value in the term I of
the proposition because the singularity of∇Kj when α = α′ is compensated with the
term Y(α)−Y(α′).

The directional derivative computed in Proposition 1.14 has been decom-
posed as the sum of two terms. The second one is very similar to the one
treated in Proposition 1.11, but the first one looks different. It can be written
as an integral with respect to a kernel which is not of convolution type and
so its derivatives may be tricky to handle. In the following lemma, which is
somehow technical, we compute exactly those derivatives.

Lemma 1.16. Let I defined in Proposition 1.14. Then I = ∑n
i=1 Ii(α) where

Ii(α) :=
∫

Rn
∂iKj(X(α)− X(α′))(Yi(α)−Yi(α

′))ρ0(α
′)det(DX)(α′)dα′,
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and its distributional derivatives are ∂l Ii(α) = ∇ Ĩi(X(α)) · ∂lX(α) where

∂k Ĩi(x) =

= p.v.
∫

Rn
∂k∂iKj(x− x′)(Yi(X−1(x))−Yi(X−1(x′)))(ρ0 ◦ X−1)(x′)dx′+

+ ∂k[Yi ◦ X−1](x)p.v.
∫

Rn
∂iKj(x− x′)(ρ0 ◦ X−1)(x′)dx′+

+ ck(∇[Yi ◦ X−1](x) · ξk)(ρ0 ◦ X−1)(x),

where ξk is a vector in Rn depending on k.

Proof. Consider α = X−1(x), then after the change of variables α′ = X−1(x′),
we have

Ĩi(x) = Ii(X−1(x)) =

=
∫

Rn
∂iKj(x− x′)(Yi(X−1(x))−Yi(X−1(x′)))ρ0(X−1(x′))dx′.

Following the scheme in [MB, p. 165] for the Euler equation, let
R(x, x′) = ∂iKj(x − x′)(Yi(X−1(x))− Yi(X−1(x′))). Firstly, we compute the
partial distributional derivative with respect to xk of R(x + x′, x′). In order to
do that, note previously that, given h > 0 and a ∈ Rn, |a| = 1, we have, by
Taylor expansion of Y ◦ X−1,

lim
h→0

R(x+ah, x)hn−1 =

= lim
h→0

∂iKj(ah)(Yi(X−1(x + ah))−Yi(X−1(x)))hn−1 =

= lim
h→0

∂iKj(a)h−nhn−1(∇[Yi ◦ X−1](x) · ah + o(h)) =

= ∂iKj(a)∇[Yi ◦ X−1](x) · a.

(1.27)

We then compute the distributional derivative of R(x + x′, x′). Let
ϕ ∈ C∞

c (Rn; R) a test function. Then

〈∂xk R(·+ x′, x′), ϕ〉 = −
∫

Rn
∂xk ϕ(x)R(x + x′, x′)dx =

= lim
ε→0

∫
Rn\B(0,ε)

ϕ(x)∂xk R(x + x′, x′)dx−

− lim
ε→0

∫
Rn\B(0,ε)

∂xk

[
ϕ(x)R(x + x′, x′)

]
dx.

Applying Stokes’ theorem, and since ϕ has compact support we obtain

〈∂xk R(·+ x′, x′), ϕ〉 = p.v.〈∂xk R(·+ x′, x′), ϕ〉+

+ lim
ε→0

∫
∂B(0,ε)

ϕ(x)R(x + x′, x′)nk(x)dσ(x),
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where nk(x) is the k-th component of the unitary normal vector to ∂B(0, ε) at
the point x. We apply the observation made in (1.27) to conclude that

lim
ε→0

∫
∂B(0,ε)

ϕ(x)R(x + x′, x′)nk(x)dσ(x) = ϕ(0)∇[Yi ◦ X−1](x′) · ξk,

where the l-th component of ξk is

(ξk)l =
∫

∂B(0,1)
∂iKj(a)nk(a) al dσ(a).

Therefore, distributionally

∂xk R(·+ x′, x′) = p.v. ∂xk R(·+ x′, x′) + (ck∇[Yi ◦ X−1](x′) · ξk)δ0.

Then, since ∂xk R(x, x′) = ∂xk [R(· + x′, x′)](x − x′) we finally get for
H(x) =

∫
Rn R(x, x′) f (x′)dx′,

∂kH(x) = p.v.
∫

Rn
∂kR(x, x′) f (x′)dx′+

+
∫

Rn
δ0(x− x′)ck∇[Yi ◦ X−1](x′) · ξk f (x′)dx′ =

= p.v.
∫

Rn
∂k∂iKj(x− x′)(Yi(X−1(x))−Yi(X−1(x′))) f (x′)dx′+

+ ∂k[Yi ◦ X−1](x)p.v.
∫

Rn
∂iKj(x− x′) f (x′)dx′+

+ ck∇[Yi ◦ X−1](x) · ξk f (x).

The proof is completed setting f = ρ0 ◦ X−1 in the previous expression
and applying the chain rule to Ii(α) = Ĩi(X(α)).

Remember that our goal is to bound the C1,γ norm of the map
α→ F′(X)Y(α) in such a way that we get∣∣F′(X)Y

∣∣
1,γ ≤ c |Y|1,γ

for c depending maybe on n, ρ0 and X in order to have that F′(X) is bounded
as a linear operator. Note that the first term in ∂k Ĩi in Lemma 1.16 is an in-
tegral containing ∂k∂iKj, which is a hypersingular kernel. Nevertheless, the
term Y(α)−Y(α′) will, in some sense, kill this excess of singularity. We quan-
tify this effect in the following Lemma.

Lemma 1.17. Let H : Rn → R, H ∈ C1(Rn \ {0}), be a kernel homogeneous of de-
gree −n− 1 such that Hi

1(x) = xiH(x), i = 1, . . . , n, define a CZO of convolution
type. Let g ∈ C1,γ(Rn; R) and f ∈ Cγ

c (R
n; R). Then for

T f (x) = p.v.
∫

Rn
H(x− x′)(g(x)− g(x′)) f (x′)dx′



1.3. Local Theorem 15

we have
||T f ||γ ≤ c |g|1,γ || f ||γ ,

for c depending on m(supp( f )).

Proof. Since g ∈ C1,γ we can write its Taylor series centered at x′ as

g(x) = g(x′) +
n

∑
i=1

∂ig(x′)(xi − x′i) + R(x, x′)

with |R(x, x′)| ≤ c |g|1,γ |x− x′|1+γ. Now, if we add and subtract some term
we obtain

T f (x) =
∫

Rn
H(x− x′)(g(x)− g(x′)−∇g(x′) · (x− x′)) f (x′)dx′+

+
n

∑
i=1

p.v.
∫

Rn
(xi − x′i)H(x− x′)∂ig(x′) f (x′)dx′ =: T1 f (x) + T2 f (x),

The kernel Hg(x, x′) := H(x− x′)(g(x)− g(x′)−∇g(x′) · (x− x′)) satisfies

the bound
∣∣Hg(x, x′)

∣∣ ≤ c|g|1,γ

|x−x′|n−γ and its gradient

∇xHg(x, x′) = ∇H(x− x′)(g(x)− g(x′)−∇g(x′)(x− x′))+
+ H(x− x′)(∇g(x)−∇g(x′))

satisfies
∣∣∇xHg(x, x′)

∣∣ ≤ c|g|1,γ

|x−x′|n+1−γ . To check that T1 f belongs to Cγ we use

an usual argument. We can see |T1 f (x)| ≤ c || f ||L∞ |g|1,γ for every x ∈ Rn.
Then ||T1 f ||L∞ ≤ c || f ||L∞ |g|1,γ. Now, let x1, x2 ∈ Rn and
B := B(x1, 3 |x1 − x2|). We decompose

T1 f (x1)− T1 f (x2) =
∫

Rn\B
(Hg(x1, x′)− Hg(x2, x′)) f (x′)dx′+

+
∫

B
Hg(x1, x′) f (x′)dx′ −

∫
B

Hg(x2, x′) f (x′)dx′.

Then, by the Mean Value Theorem and the bounds for Hg and ∇xHg, we
have

|T1 f (x1)− T1 f (x2)| ≤ c |g|1,γ

{
|x1 − x2|

∫
Rn\B

| f (x′)|
|x1 − x′|n+1−γ

dx′+

+
∫

B

| f (x′)|
|x1 − x′|n−γ dx′ +

∫
B

| f (x′)|
|x2 − x′|n−γ dx′

}
≤

≤ c |g|1,γ

{
|x1 − x2| || f ||L∞ |x1 − x2|γ−1 + || f ||L∞ |x1 − x2|γ

}
≤

≤ c |g|1,γ || f ||L∞ |x1 − x2|γ .
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So |T1 f |γ ≤ c || f ||L∞ |g|1,γ. To finish we need to bound T2 f . If we set
Hi

1(x) = xiH(x), which is a CZO of convolution type by hypothesis, then
since T2 f = ∑n

i=1 Hi
1 ∗ ( f ∂ig), by Lemma 1.4 we have

||T2 f ||γ ≤ c || f∇g||γ ≤ c |g|1,γ || f ||γ ,

finishing the proof of the lemma.

The constant c in Lemma 1.17 is finite whenever f is compactly supported,
but we know this is true by Lemma 1.7. In a few words, Lemma 1.7 states that
ρ(·, t) is compactly supported when it is transported by a flow with bounded
gradient as it happens, in particular, if X ∈ OM. We are ready to check that
F′(X) is bounded. As promised, taking into account that boundedness, we
can verify that the second hypothesis in Picard-Lindelöf holds for F.

Proposition 1.18. Let OM as defined in (1.20). Then, the functional
F : OM → C1,γ(Rn; Rn) defined in (1.21) is locally Lipschitz.

Proof. First of all, by the Fundamental Theorem of Calculus, given
X1, X2 ∈ OM,

|F(X1)− F(X2)|1,γ =

∣∣∣∣∫ 1

0

d
dε

F(X1 + ε(X2 − X1))dε

∣∣∣∣
1,γ

=

=

∣∣∣∣(∫ 1

0
F′(X1 + ε(X2 − X1)) · (X2 − X1)dε

)∣∣∣∣
1,γ
≤

≤
{∫ 1

0

∣∣∣∣F′(X1 + ε(X2 − X1))
∣∣∣∣

B→B dε

}
|X2 − X1|1,γ ,

where F′(X) is the operator defined by Y → F′(X)Y. So, provided
||F′(X)||B→B < ∞ for every X ∈ B then the integral in the previous ex-
pression is finite and therefore F is Lipschitz. Thus, it suffices to prove this
boundedness in order to prove the Proposition.

By Proposition 1.14 we have seen that every component of F′(X)Y can
be written as the sum of two terms I and I I. The arguments in Proposition
1.11 can be repeated for each element appearing in the sum in which I I is
decomposed, just by changing the role of ρ0 to ρ0∂sYr. Then we can conclude,
similarly, that

|I I|1,γ ≤ c(n, ρ0) |Y|1,γ |X|
n
1,γ .

Hence, we just have to work with the first term, I, and bound its C1,γ

norm. Before considering derivatives, note that I can be compared to any
derivative of I I, so also in similar fashion to Proposition 1.11, we get

||I||L∞ ≤ c(n, ρ0) |Y|1,γ |X|
n
1,γ .

We then need to consider derivatives of I. By Lemma 1.16 we write
I = ∑n

i=1 Ii and also ∂l Ii(α) = ∑n
k=1 ∂k Ĩi(X(α))∂lXk(α). Since Cγ is an algebra
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and also, by (1.12), we have

||∂i Ii||γ ≤
n

∑
k=1

∣∣∣∣∂k Ĩi ◦ X
∣∣∣∣

γ ||∂lXk||γ ≤

≤
n

∑
k=1

∣∣∣∣∂k Ĩi
∣∣∣∣

γ
(1 + |X|γ1,γ) |X|1,γ .

Now we focus on
∣∣∣∣∂k Ĩi

∣∣∣∣
γ

. We consider the expression given by Lemma 1.16

∂k Ĩi(x) =

= p.v.
∫

Rn
∂k∂iKj(x− x′)(Yi(X−1(x))−Yi(X−1(x′)))(ρ0 ◦ X−1)(x′)dx′+

+ ∂k[Yi ◦ X−1](x)p.v.
∫

Rn
∂iKj(x− x′)(ρ0 ◦ X−1)(x′)dx′+

+ ck(∇[Yi ◦ X−1](x) · ξk)(ρ0 ◦ X−1)(x) = A(x) + B(x) + C(x).

A straightforward repetition of the arguments done before let us verify that

||C||γ ≤ c(n, ρ0) |Y|1,γ |X|
m
1,γ ,

where m is a finite constant depending on γ and n. Also, as in Proposition
1.11, we get

||B||γ ≤ c(n, ρ0) |Y|1,γ |X|
m
1,γ .

The term A is more involved than the rest in the decomposition of ∂k Ĩi.
Nevertheless, we claim that we can apply Lemma 1.17 for H = ∂k∂iKj,
g = Yi ◦ X−1 and f = ρ0 ◦ X−1 to obtain also

||A||γ ≤ c(n, ρ0, R) |Y|1,γ |X|
m
1,γ ,

where R = m(supp(ρ0 ◦ X−1)) = m(supp(ρ)). We conclude that

|I|1,γ ≤ c(n, ρ0, R) |Y|1,γ |X|
n
1,γ ,

where c(n, ρ, R) is finite by Lemma 1.7.
Summing up, for any X ∈ B and any Y ∈ OM we have seen∣∣F′(X)Y

∣∣
1,γ ≤ c(n, ρ0, R) |X|m1,γ |Y|1,γ ,

so F′(X) is bounded as a linear operator from OM to B and then the Proposi-
tion is proved.

Remark 1.19. We have been able to apply Lemma 1.17 since the kernels
xi∂j∂k∂l N are CZO. In general, if K satisfies the hypothesis in Lemma 1.4 then its
second derivatives ∂j∂kK satisfies Lemma 1.17. It is clear that ∂j∂kK is homogeneous



18 Chapter 1. Cγ
c well-posedness in Rn

of degree −n− 1. Also, if i 6= j (and similarly if i 6= k),∫
|w|=1

wi∂j∂kK(w)dσ(w) =
∫
|w|=1

∂j[wi∂kK(w)]dσ(w) = 0.

The last integral vanishes for similar reasons as explained in Remark 1.5.
Otherwise, if i = j = k,∫

|w|=1
wi∂

2
i K(w)dσ(w) =

=
∫
|w|=1

∂i[wi∂iK(w)]dσ(w)−
∫
|w|=1

∂iK(w)dσ(w) = 0

since both integrals in the right vanishes, similarly as before. If K = ∂l N then we
have seen that xi∂j∂k∂l N are CZO.

Finally, since all the hypothesis in Theorem 1.8 are verified, we prove the
existence result for the trajectory maps.

Theorem 1.20. Let ρ0 ∈ Cγ
c (R

n; R). Then there exists T∗ > 0 such that the
ordinary differential equation{

d
dt X(α, t) = F(X(α, t)),
X(α, 0) = α,

for

F(X(α, t)) =
∫

Rn
K(X(α, t)− X(α′, t))ρ0(α

′) det[DX(α′, t)]dα′,

has a unique solution X(·, t) ∈ C1,γ(Rn; Rn) for t ∈ (−T∗, T∗).

Proof. Let B = C1,γ(Rn; Rn) and let OM defined in (1.20). Then, by Proposi-
tions 1.11 and 1.18 the functional F satisfies the hypothesis of Picard-Lindelöf’s
theorem 1.8 and therefore we conclude that the statement holds.

Given the flow map X(·, t) we can define the solution to (1.1) in an unique
way: since the velocity field is smooth enough, any solution of the transport
equation (1.1) can be described through the trajectories. So we have the main
result of this section: well-posedness in the Hölder class for the transport
equation and the family of kernels L · ∇N described in (1.6).

Theorem 1.21. Let ρ0 ∈ Cγ
c (R

n; R). Let L ∈ Mn×n(R) and consider
K = L · ∇N, where N is the fundamental solution of the Laplacian. Then there
exists T∗ > 0 such that the transport equation

(1.28)


ρt + v · ∇ρ = 0,
v(·, t) = K ∗ ρ(·, t),
ρ(·, 0) = ρ0.
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has a unique solution ρ(·, t) ∈ Cγ
c (R

n; R), v(·, t) ∈ C1+γ(Rn; Rn) for
t ∈ (−T∗, T∗).

Proof. By Theorem 1.20 up to time T∗ there exists a unique solution
X(·, t) ∈ C1+γ. We define ρ and v via the flow X as ρ(·, t) = ρ0(X−1(·, t)) and
v(·, t) = L · ∇N ∗ ρ(·, t). Assume there exist ρ̃ ∈ Cγ

c and ṽ ∈ C1+γ satisfying
(1.28). Then we can find a trajectory X̃(·, t) associated to ṽ(·, t) such that ρ̃ is
transported by X̃. Since we have uniqueness of trajectory by Theorem 1.20
then X̃ = X. Therefore

ρ̃(·, t) = ρ0(X̃−1(·, t)) = ρ0(X−1(·, t)) = ρ(·, t)

and hence, by convoluting the density with the kernel K we can see that
ṽ = v.

1.4 Global Theorem

We want to show that the solution defined in Theorem 1.20 does exist for any
time, that is, we want to show that T∗ = ∞. In order to do that, we need
to invoke a Continuation Theorem which gives us a necessary condition for
that to happen. The theorem is stated as in [MB, p. 148] and a proof for a
general version of it can be found in [LL, p. 161]. We would like to remark
that it is valid since we have been able to state the problem with a functional
F which does not depend explicitly on time.

Theorem 1.22. In the situation of Theorem 1.8 the unique solution
X ∈ C1((−T, T); O) either exists globally in time or T is finite and X(t) leaves
the open set O as |t| approaches T.

In a nutshell, we need to check that at time T∗ the flow X(·, T∗) still be-
longs to OM. As we will see later, it is enough to verify that the C1,γ norm
of X(·, T∗) is a priori bounded. The following lemma is an auxiliary result
needed in order to achieve bounds that allow us to prove that boundedness.

Lemma 1.23. Let X(·, t) defined in (1.2). Then for the inverse flow at time t, we
have X−1(·, t) = X̃(0, t, ·), where X̃(s, t, x) is the solution of the integro-differential
equation

X̃(s, t, x) = x−
∫ t

s
v(X̃(r, t, x), r)dr.

Proof. We define a generalized flow map X̂ : R×R×Rn → Rn satisfying

(1.29) X̂(s, t, x) = x +
∫ t

s
v(X̂(s, r, x), r)dr.

Then X̂(s, t, x) is the position at time t of the particle that was at the position
x at time s. It is clear that X(x, t) = X̂(0, t, x).
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First, we can check that X̂ has the semigroup structure

(1.30) X̂(s, t, x) = X̂(τ, t, X̂(s, τ, x)).

By definition of X̂ in (1.29), the right hand side of (1.30) can be expressed
as

(1.31) X̂(τ, t, X̂(s, τ, x)) = X̂(s, τ, x) +
∫ t

τ
v(X̂(τ, u, X̂(s, τ, x)), u)du.

We differentiate (1.31) with respect to τ to get

∂τ(X̂(τ, t, X̂(s, τ, x))) = ∂τX̂(s, τ, x)− v(X̂(τ, τ, X̂(s, τ, x)), τ) =

= v(X̂(s, τ, x), τ)− v(X̂(s, τ, x), τ) = 0.

So X̂(τ, t, X̂(s, τ, x)) does not depend on τ and hence

X̂(τ, t, X̂(s, τ, x)) = X̂(τ, t, X̂(s, τ, x))|τ=t = X̂(t, t, X̂(s, t, x)) = X̂(s, t, x),

which proves equation (1.30).
Secondly, we want to see that X̂ satisfies a transport equation. Differenti-

ating (1.30) with respect to s we obtain

∂sX̂(s, t, x) = ∇X̂(τ, t, X̂(s, τ, x))∂sX̂(s, τ, x) =

= −∇X̂(τ, t, X̂(s, τ, x))v(X̂(s, s, x), s) =

= −∇X̂(τ, t, X̂(s, τ, x))v(x, s),

(1.32)

and putting τ = s in (1.32)

(1.33) ∂sX̂(s, t, x) + v(x, s)∇X̂(s, t, x) = 0.

Thus, X̂(·, t, ·) : R×Rn → Rn satisfies a transport equation.
Then, we define a map X̃ : R×R×Rn via

(1.34) X̃(s, t, x) = x−
∫ t

s
v(X̃(r, t, x), r)dr.

We want to check that for any t, s ∈ R and any x ∈ Rn the maps X̂ and X̃ are
inverse in the following sense

(1.35) X̂(s, t, X̃(s, t, x)) = x.

In order to prove (1.35) we differentiate its left hand side with respect to s

∂sX̂(s, t, X̃(s, t, x)) +∇X̂(s, t, X̃(s, t, x))∂sX̃(s, t, x).
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By (1.34) we can see that ∂sX̃(s, t, x) = v(X̃(s, t, x), s) and then the above
expression can be written as

∂sX̂(s, t, X̃(s, t, x)) + v(X̃(s, t, x), s)∇X̂(s, t, X̃(s, t, x)) =

=
[
∂sX̂(·, t, ·) + v(·, ·)∇X̂(·, t, ·)

]
(x, X̃(s, t, x)) = 0

since X̂(·, t, ·) satisfies the transport equation (1.33).
Thus, the left hand side of (1.35) does not depend on s and hence

X̂(s, t, X̃(s, t, x)) = X̂(t, t, X̃(t, t, x)) = x,

as we wanted to prove.
Taking s = 0 we get X̂(0, t, X̃(0, t, x)) = X(X̃(0, t, x), t), so

X(x, t)−1 = X̃(s, t, x)|s=0 and the Lemma is proved.

As a consequence of the previous Lemma, we see that the flow map X(·, t)
and its inverse X−1(·, t) share the same regularity properties since its integral
expressions are similar. We will use this fact later on.

The next lemma is a well known and very classical fact in the theory of
ordinary differential differential equations. For its proof see, for instance,
[Pa, p. 13].

Lemma 1.24 (Gronwall Lemma). Let u and f be continuous and nonnegative
functions defined on I = [a, b], and let n be a continuous, positive and non-decreasing
function defined on I. If

u(t) ≤ n(t) +
∫ t

a
f (s)u(s)ds

for t ∈ I, then

u(t) ≤ n(t) exp
(∫ t

a
f (s)ds

)
.

We are ready to give a first condition ensuring the a priori C1,γ bounded-
ness of the flow map at any time. The following bounds are very similar to
those obtained for the Euler equation. The only difference that appears in the
proof is the fact that the measure of the support of ρ(·, t) is not constant over
time, because the divergence is not zero in general.

Proposition 1.25. Let X(·, t) be the solution given in Theorem 1.20 and c(n) a con-
stant depending on the dimension n. Then, for a certain function
G : R → R+ with G(t) < ∞ whenever

∫ t
0 ||∇v(·, s)||L∞ ds < ∞, we have
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the following inequalities

|X(0, t)| ≤ c(n)m(supp(ρ0))
1/n ||ρ0||L∞

∫ t

0
||∇X(·, s)||L∞ ds,

||∇X(·, t)||L∞ ≤ exp
(∫ t

0
||∇v(·, s)||L∞ ds

)
,

|∇X(·, t)|γ ≤ G(t) exp
(

c
∫ t

0
||∇v(·, s)||L∞ ds

)
.

In particular, |X(·, t)|1,γ is bounded provided
∫ t

0 ||∇v(·, s)||L∞ ds also is.

Proof. By definition (1.2) we have, for any α ∈ Rn,

X(α, t) = α +
∫ t

0
v(X(α, s), s)ds.

Setting α = 0 and taking absolute value we get

|X(0, t)| =
∣∣∣∣∫ t

0
v(X(0, s), s)ds

∣∣∣∣ ≤ ∫ t

0
||v(X(·, s), s)||L∞ ds.

Since X(·, s) is an homeomorphism then ||v(X(·, s), s)||L∞ = ||v(·, s)||L∞ and
therefore we simply have

|X(0, t)| ≤
∫ t

0
||v(·, s)||L∞ ds.

Now let R(s) = m(supp(ρ(·, s)))1/n. Then as v(·, s) = K ∗ ρ(·, s) by (1.15)
we get the bound

(1.36) ||v(·, s)||L∞ ≤ cR(s) ||ρ(·, s)||L∞ = cR(s) ||ρ0||L∞ ,

where the last equality stands provided ρ is transported with the flow and
so, the L∞ norm is conserved in time.

By Lemma 1.7 we have a control for R(s) and then

|X(0, t)| ≤ c(n)m(supp(ρ0))
1/n ||ρ0||L∞

∫ t

0
||∇X(·, s)||L∞ ds.

In order to achieve bounds on derivatives of the flow map, we compute
the partial derivative with respect to αi (denoted as ∂i from now on) of the
j-th component of (1.2). By the chain rule, we get

d
dt

(∂iXj(α, t)) =
n

∑
k=1

∂vj(X(α, t), t)
∂Xk(α, t)

∂iXk(α, t) =

= ∇vj(X(α, t)) · ∂iX(α, t),
(1.37)
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where · stands for the scalar product between vectors in Rn.
Taking L∞ norm on (1.37) and considering supremum over i, j we get

d
dt
||∇X(·, t)||L∞ ≤ ||∇v(X(·, t), t)||L∞ ||∇X(·, t)||L∞ =

= ||∇v(·, t)||L∞ ||∇X(·, t)||L∞ .
(1.38)

Therefore, by direct integration on (1.38) we have the desired bound

(1.39) ||∇X(·, t)||L∞ ≤ exp
(∫ t

0
||∇v(·, s)||L∞ ds

)
.

Finally, taking the |·|γ seminorm and considering supremum over i, j on
(1.37) we have

d
dt
|∇X(·, t)|γ ≤ sup

i,j

∣∣∇vj(X(·, t)) · ∂iX(·, t)
∣∣
γ
≤

≤ c
(
||∇v(·, t)||L∞ |∇X(·, t)|γ + |∇v(X(·, t), t)|γ ||∇X(·, t)||L∞

)
,

(1.40)

where we have used inequality (1.7) to bound the |·|γ seminorm of a product.
By (1.11) we have

(1.41) |∇v(X(·, t), t)|γ ≤ |∇v(·, t)|γ ||∇X(·, t)||γL∞ .

Also, by (1.16),

(1.42) |∇v(·, t)|γ ≤ c |ρ(·, t)|γ ≤ c |ρ0|γ
∣∣∣∣∣∣∇X−1(·, t)

∣∣∣∣∣∣γ
L∞

,

where we have used that ρ(·, t) = ρ0(X−1(·, t)). Using the equation for
X−1(·, t) described in Lemma 1.23 and similarly as done in (1.38) we have

(1.43)
∣∣∣∣∣∣∇X−1(·, t)

∣∣∣∣∣∣
L∞
≤ exp

(∫ t

0
||∇v(·, s)||L∞ ds

)
.

Combining inequalities (1.38), (1.41), (1.42), (1.43), we get a bound for
(1.40)

d
dt
|∇X(·, t)|γ ≤ c

(
||∇v(·, t)||L∞ |∇X(·, t)|γ +

+ |ρ0|γ exp
(
(1 + 2γ)

∫ t

0
||∇v(·, s)||L∞ ds

))
.

(1.44)
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Setting

g(t) := c |ρ0|γ exp
(
(1 + 2γ)

∫ t

0
||∇v(·, s)||L∞ ds

)
and G(t) :=

∫ t
0 g(s)ds, and then applying Lemma 1.24 to (1.44) we get

|∇X(·, t)|γ ≤ G(t) exp
(

c
∫ t

0
||∇v(·, s)||L∞ ds

)
,

which completes the proof of the proposition.

Having proved the inequalities in Proposition 1.25 we can see that, in fact,
the C1,γ norm of the flow is finite for any time which was our first goal.

Proposition 1.26. Let X(·, t) be the solution given in Theorem 1.20. Then |X(·, t)|1,γ
is finite for any time.

Proof. By Proposition 1.25 |X(·, t)|1,γ is finite provided
∫ t

0 ||∇v(·, s)||L∞ ds
is. Then it suffices to check that this integral is bounded for any time. Let
i, j ∈ {1, . . . , n}. By Lemma 1.10 we have

(1.45) ∂ivj(·, t) =
lji

n
ρ(·, t) + p.v.∂iKj ∗ ρ(·, t).

Let ε = |ρ(·, t)|−1/γ
γ and let R(t) = m(supp(ρ(·, t)))1/n and apply inequality

(1.16) to the equation (1.45) to obtain

(1.46)
∣∣∣∣∂ivj(·, t)

∣∣∣∣
L∞ ≤ c{1 + ln[R(t) |ρ(·, t)|1/γ

γ ] ||ρ0||L∞}.

Since ρ(·, t) = ρ0(X−1(·, t)) then |ρ(·, t)|γ ≤ |ρ0|γ ||∇X(·, t)||γL∞ . Also, taking
into account Lemma 1.7 we get

R(t) |ρ(·, t)|1/γ
γ ≤ c(n)m(supp(ρ0))

1/n |ρ0|1/γ
γ ||∇X(·, t)||2L∞ .

By Proposition 1.25 we can bound ||∇X(·, t)||L∞ and then

R(t) |ρ(·, t)|1/γ
γ ≤ c(n)m(supp(ρ0))

1/n |ρ0|1/γ
γ exp

(
2
∫ t

0
||∇v(·, s)||L∞ ds

)
.

Therefore inequality (1.46) can be written as

∣∣∣∣∂ivj(·, t)
∣∣∣∣

L∞ ≤ c(n, ρ0) + c
∫ t

0
||∇v(·, s)||L∞ ds.

Taking supremum over i, j ∈ {1, . . . , n}

||∇v(·, t)||L∞ ≤ c(n, ρ0) + c
∫ t

0
||∇v(·, s)||L∞ ds.
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and applying Gronwall’s Lemma (1.24) we finally get

||∇v(·, t)||L∞ ≤ c(n, ρ0) exp(ct),

which makes
∫ t

0 ‖∇v(·, s)‖L∞ ds finite for any time.

Finally, as we anticipated at the beginning of the section, using the a priori
bound for the flow and by the Continuation Theorem 1.22 we can prove that
the solution X(·, t) is global in time.

Theorem 1.27. Let ρ0 ∈ Cγ
c (R

n; R). Then the ordinary differential equation{
d
dt X(α, t) = F(X(α, t)),
X(α, 0) = α,

for

F(X(α, t)) =
∫

Rn
K(X(α, t)− X(α′, t))ρ0(α

′) det[DX(α′, t)]dα′

has a unique solution X(·, t) ∈ C1,γ(Rn; Rn) for any time t ∈ R.

Proof. We want to apply Theorem 1.22 in order to ensure the globalness of the
solution X(·, t). So, we need to check that, for any given T, the map X(·, T)
belongs to OM where

OM = B ∩
{

X : Rn → Rn :
1
M

< sup
α 6=β

|X(α)− X(β)|
|α− β| < M

}
.

Let us first prove that we can avoid to check that the condition for M is satis-
fied at time T. By the Mean Value Theorem,

|X(α, t)− X(β, t)| ≤ ||∇X(·, t)||L∞ |α− β| ≤ |X(·, t)|1,γ |α− β| ,

and also since we can express

α = X−1((X(α, t), t)) and β = X−1((X(β, t), t)),

we then get

|α− β| ≤
∣∣∣∣∣∣∇X−1(·, t)

∣∣∣∣∣∣
L∞
|X(α, t)− X(β, t)| ≤ |X(·, t)|2n−1

1,γ |X(α)− X(β)| .

Consider now M′ such that

sup
t∈[−T,T]

max{|X(·, t)|1,γ , |X(·, t)|2n−1
1,γ } ≤ M′ < ∞.

Such an M′ exists since |X(·, t)|1,γ is finite for every time by Proposition 1.26.
For this choice of M′ it is sure that X(·, t) ∈ OM′ for every time t ∈ [−T, T].
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Throughout the proofs of Proposition 1.11 and 1.18 we can check that
those statements are independent of M. Due to this independence we can
modify OM to OM′ without changing neither the solution nor the maximal
time of existence given by Picard-Lindelöf’s theorem.

Then as soon as |X(·, t)|1,γ is finite at time T, X(·, T) ∈ OM′ . But we know
that this is true by Proposition 1.26. So X(·, T) ∈ OM′ and this does not de-
pend on the choice of T so we have existence and uniqueness of
X(·, t) ∈ C1,γ for any time t by Theorem 1.22.

As a direct consequence of Theorems 1.21 and 1.27 we finally have the
next result, which corresponds to Theorem 1.2 for m = 0.

Theorem 1.28. Let N the fundamental solution of the Laplacian in Rn. Consider
L ∈ Mn×n(R). For 0 < γ < 1, if ρ0 ∈ Cγ

c (R
n, R), then the transport equation

ρt + v · ∇ρ = 0,
v(·, t) = L · ∇N ∗ ρ(·, t),
ρ(·, 0) = ρ0,

has a unique solution ρ(·, t) ∈ Cγ
c (R

n, R) for any time t ∈ R.

1.5 Higher regularity

Up to now we have proved a special case of Theorem 1.2. In this Section, we
explain, skipping most of the computations (which are much more tedious
in the general situation), how to move from m = 0 to the general version. We
will sometimes focus on m = 1 since some detail for it can be given explicitly
and also the reader can deduce the behavior of m ≥ 2 from this case.

For ρ0 ∈ Cm,γ
c we expect ρ(·, t) ∈ Cm,γ

c , v(·, t) ∈ Cm+1,γ and hence
X(·, t) ∈ Cm+1,γ as well, so this will be a natural working space in order
to apply Picard-Lindelöf’s theorem to the ODE satisfied by X(·, t). Then, for
B = Cm+1,γ, we take

(1.47) Om+1
M = Cm+1,γ ∩

{
X : Rn → Rn : |X|m+1,γ < M

}
.

As in Section 1.3, we need to prove first that F : Om+1
M → Cm+1,γ. Roughly

speaking, we have to deal with the m + 1-th derivatives of the functional

F(X(α, t)) :=
∫

Rn
K(X(α, t)− X(α′, t))ρ0(α

′) det[DX(α′, t)]dα′.

The first derivative can be applied to the kernel K as it was done in Propo-
sition 1.11, obtaining again Equation (1.24). Then the difficult term will be

Sij(α) = p.v.
∫

Rn
∂iKj(X(α)− X(α′))ρ0(α

′)det DX(α′)dα′.



1.5. Higher regularity 27

We want to use the fact that now ρ0 is more regular than in Section 1.3. So we
want to put the rest of derivatives up to the m + 1-th on it. We can undo the
change of variables performed and get

Sij(α) = p.v.
∫

Rn
∂iKj(X(α)− x′)ρ0(X−1(x′))dx′ =

= p.v. (∂iKj ∗ (ρ0 ◦ X−1))(X(α)).

Since ρ0 ∈ Cm,γ
c and X ∈ Om+1

M the term ρ0 ◦ X−1 can receive up to the m + 1-
th derivative. For instance, if m = 1

∂kSij(α) = p.v. (∂iKj ∗ (∇[ρ0 ◦ X−1]))(X(α)) · ∂kX(α).

Therefore, repeating the arguments on Proposition 1.11 we can get∣∣Sij
∣∣
1,γ '

∣∣∣∣∂kSij
∣∣∣∣

γ
≤ c(|ρ0|1,γ , |X|1,γ) |X|2,γ .

In general, and dealing with the rest of the terms (which are easier) we
have the following statement, analogous (and more precise) to Proposition
1.11.

Proposition 1.29. Let Om+1
M as defined in (1.47). Then, the functional F defined in

(1.21) maps Om+1
M to Cm+1,γ(Rn; Rn). In particular,

|F(X(·, t))|m+1,γ ≤ c(|ρ0|m,γ , |X(·, t)|m,γ) |X(·, t)|m+1,γ .

We need to verify that F : Om+1
M → Cm+1,γ is locally Lipschitz continuous.

Again, it suffices to bound F′(X) as a linear operator. The expression for
F′(X)Y in Proposition 1.14 and the derivatives of the tricky term that were
computed in Lemma 1.16 remain both valid. We need to adapt the Lemma
1.17 to the higher regularity of ρ0. For example, for m = 1, we have the
following Lemma.

Lemma 1.30. Let H ∈ C2(Rn \ {0}) be a real-valued kernel, homogeneous of degree
−n− 1 and such that

• for any i ∈ {1, . . . , n} the kernel Hi
1(x) = xiH(x),

• and for any i, j, k ∈ {1, . . . , n} the kernel Hi,j,k
2 (x) = xixj∂kH(x)

both define a SIO of convolution type. Let g ∈ C2,γ(Rn; R) and f ∈ C1,γ
c (Rn; R).

Then for

T f (x) = p.v.
∫

Rn
H(x− x′)(g(x)− g(x′)) f (x′)dx′

we have
||T f ||1,γ ≤ c |g|2,γ || f ||1,γ ,

for c depending on m(supp( f )).
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Proof. Since g ∈ C2,γ we can write its Taylor series centered at x′ as

g(x) = g(x′) +
n

∑
i=1

∂ig(x′)(xi − x′i)+

+
1
2

n

∑
i=1

n

∑
j=1

∂i∂jg(x′)(xi − x′i)(xj − x′j) + R(x, x′)

with |R(x, x′)| ≤ c |g|2,γ |x− x′|2+γ. Now, if we add and subtract the terms in

the Taylor series written above, we obtain, by defining Ĥi,j
2 (y) := yiyjH(y),

T f (x) =
∫

Rn
H(x− x′)R(x, x′) f (x′)dx′+

+
n

∑
i=1

p.v.
∫

Rn
Hi

1(x− x′)∂ig(x′) f (x′)dx′+

+
n

∑
i=1

n

∑
j=1

∫
Rn

Ĥi,j
2 (x− x′)∂i∂jg(x′) f (x′)dx′ =:

=: T1 f (x) +
n

∑
i=1

(Hi
1 ∗ ( f ∂ig))(x) +

n

∑
i=1

n

∑
j=1

(Ĥi,j
2 ∗ ( f ∂i∂jg))(x),

(1.48)

The operator T1 can be treated similarly to the respective term in the proof
of Lemma 1.17 and we can benefit from the fact that first derivatives of
H(x − x′)R(x, x′) are bounded by a constant times |x− x′|−n+γ (as it hap-
pen to the kernel in T1 from the mentioned Lemma) and second derivatives
are bounded by a constan times |x− x′|−n−1+γ (as happened with deriva-
tives of the kernel in T1 from the Lemma). Arguing in a similar way then we
can verify that

(1.49) |T1 f |1,γ ≤ c | f |1,γ |g|2,γ .

Since Hi
1 is a SIO of convolution type,∣∣∣∂k[Hi

1 ∗ ( f (∂ig))]
∣∣∣
γ
=
∣∣∣Hi

1 ∗ (∂k( f (∂ig)))
∣∣∣
γ
≤ c | f |1,γ |g|2,γ ,

and then taking supremum over k we can see

(1.50)
∣∣∣Hi

1 ∗ ( f (∂ig))
∣∣∣
1,γ
≤ c | f |1,γ |g|2,γ .

To finish we need to bound derivatives of Ĥi,j
2 ∗ ( f (∂i∂jg)). Since sec-

ond derivatives of g are involved in this term and g ∈ C2,γ if we want to
differentiate the convolution these derivatives must go to Ĥi,j

2 . Recall that
Ĥi,j

2 (y) = yiyjH(y). Then if we consider, for instance, the partial derivative
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with respect to k of this term, it may contain terms of type Hi
1 and terms of

type Hi,j,k
2 (as in the statement of the Lemma) depending on the values of

i, j, k ∈ {1, . . . , n}. In any case since all of them are SIO of convolution type
we also have

(1.51)
∣∣∣Ĥi,j

2 ∗ ( f (∂i∂jg))
∣∣∣
1,γ
≤ c | f |1,γ |g|2,γ .

Combining (1.49), (1.50) and (1.51) into (1.48) the Lemma is proved.

Remark 1.31. Note that we can apply the previous lemma to the hypersingular
kernels ∂j∂l∂tN because of Remark 1.19 and because of the fact that also

xrxs∂r∂j∂l∂tN

define CZOs. In fact, if K satisfies the hypothesis in Lemma 1.4 then its second
derivatives ∂j∂lK satisfy the second item in the hypothesis in Lemma 1.30. Since the
homogeneity of xrxs∂i∂j∂lK is clearly of degree −n then we just have to verify that
we have the zero mean integration over spheres. So, we have to check that∫

|w|=1
wrws∂i∂j∂lK(w)dσ(w) = 0.

If i (similarly for j, l) is such that i 6= r and i 6= s then∫
|w|=1

wrws∂i∂j∂lK(w)dσ(w) =
∫
|w|=1

∂i
[
wrws∂j∂lK(w)

]
dσ(w) = 0,

the last inequality being true for similar reasons as argued in Remark 1.5. Otherwise,
if at least one of the elements in {r, s} (namely r) is equal to one in {i, j, l} (namely
i) then∫
|w|=1

wrws∂r∂j∂lK(w)dσ(w) =

=
∫
|w|=1

∂r[wrws∂j∂lK(w)]dσ(w)−
∫
|w|=1

ws∂r∂j∂lK(w)dσ(w) = 0.

The two integrals in the last expression vanishes similarly as seen in Remark 1.19.

We can apply this bound to the first term in Lemma 1.16 (the rest of the
terms involved are easier to handle) and in similar fashion to what was done
in Section 1.3 get ∣∣F′(X)Y

∣∣
2,γ ≤ c(n, ρ0, R) |X|n2,γ |Y|2,γ .

In general we have an equivalent result to Proposition 1.18.

Proposition 1.32. Let Om+1
M as defined in (1.47). Then, the functional

F : Om+1
M → Cm+1,γ(Rn; Rn) defined in (1.21) is Lipschitz.
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Then by Propositions 1.11 and 1.18 we can apply Picard-Lindelöf’s theo-
rem again and obtain local-in-time existence and uniqueness of solution for
the trajectory map X(·, t) and thus for (ρ(·, t), v(·, t)).

For the global-in-time version of the theorem, notice that the precise bound
given in Proposition 1.29 is very important. By making use of it, we can see

d
dt
|X(·, t)|m+1,γ ≤ |F(X(·, t))|m+1,γ ≤ c(|ρ0|m,γ , |X(·, t)|m,γ) |X(·, t)|m+1,γ ,

which implies

|X(·, t)|m+1,γ ≤ |X(·, 0)|m+1,γ exp
(∫ t

0
c(|ρ0|m,γ , |X(·, s)|m,γ)ds

)
.

That is, |X(·, t)|m+1,γ is bounded a priori if |X(·, t)|m,γ is and so on. Hence we
can reduce to bound |X(·, t)|1,γ and we know by Proposition 1.26 that this is
finite for any time. This is sufficient to ensure the globalness of the solution.
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2.1 Introduction

We want to translate Equation (1.4) to the two-dimensional euclidean space
seen as the complex plane. So, we consider x = (x1, x2) ≡ x1 + ix2 = z. We
note that x⊥ = (−x2, x1) ≡ −x2 + ix1 = iz and |x|2 = zz̄. Hence,

KBS(x) =
1

2π

x⊥

|x|2
≡ iz

2πzz̄
=

i
2πz̄

= KBS(z) = ∇⊥N(z),

that is, we can reformulate the original problem using complex variable and
the corresponding kernel still has a simple form. Our goal is to study the
mentioned transport equation (1.4) but changing the kernel KBS for a simi-
lar one (with the same regularity properties). In the case of the aggregation
equation the kernel can be written in complex variable as

KAg(z) =
−1
2πz̄

= −∇N(z).

A natural way to choose a kernel that resembles to KBS and KAg is to take

KC =
1

2πz
,

where C stands for Cauchy.
Despite there is no physical model described by the transport equation

with the Cauchy kernel (at least as far as we are aware), the problem makes
sense from the mathematical point of view and by comparison with KBS and
KAg it seems very reasonable to consider it.

Since for a velocity field in the complex plane v(z) ≡ vx + ivy the deriva-
tive with respect to z –which we denote by ∂– can be computed as

∂v(z) ≡ 1
2
(∂x − i∂y)(vx + ivy) =

1
2
([∂xvx + ∂yvy] + i[∂xvy − ∂yvx]).

That means that in complex notation the divergence of v can be expressed
simply as 2<(∂v). So, if v(z) = KC ∗ ρ(·, t) then

divv(z) = 2<[p.v. ∂KC ∗ ρ(·, t)] = 2<[B(ρ(·, t))],
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where B is the Beurling Transform. This Cauchy kernel produces then a ve-
locity field with a more singular divergence than in the previous cases.

Nevertheless, in Chapter 1 we dealt with kernels of type K = L · ∇N (as
in equation (1.6)). We can easily check that

1
2πz

≡ L · ∇N(z) for L =

(
1 0
0 −1

)
.

Thus, the Cγ
c well-posedness for the Cauchy transport equation has been al-

ready proved as a special case of Theorem 1.2. In fact, when we consider the
kernels

L · ∇N(z), L =

(
a b
c d

)
in the case of the complex plane we see that they correspond to

K(z) =
1

2π

w1z + w2z̄

|z|2
=

w1

2πz̄
+

w2

2πz
,

for the complex numbers

w1 =
a + d

2
+

c− b
2

i, and w2 =
a− d

2
+

b + c
2

i.

Since the hypothesis in Picard-Lindelöf’s theorem are satisfied for linear com-
binations of functionals satisfying them, we can say that we dealt with ker-
nels of type α

z and β
z̄ for α, β ∈ C. In the spirit of generalizing the kernels for

which the transport equation is well-posed we consider a wider class con-
taining those two simpler cases. We will consider kernels of the type

(2.1) K1(z) =
1
π

(z + εz̄)k

(z̄ + εz)k+1 or K2(z) = K1(z) =
1
π

(z̄ + εz)k

(z + εz̄)k+1 ,

for ε ∈ R, |ε| < 1, k ∈ N ∪ {0}, so setting k = 0 and ε = 0 we recover the
kernels in the previous chapter.

The reason to this choice (and not a more general class) will become clear
in Chapter 4. Nevertheless, we will explain at the end of the chapter how
–for the Cγ

c well-posedness– we can consider other kernels as soon as they
satisfy certain conditions.

2.1.1 Outline of the chapter

The chapter is structured as follows: in Section 2.2 the distributional deriva-
tives of the kernels (2.1) are computed and so we have an expression for the
derivatives of the velocity field. Then, in Section 2.3 we prove local-in-time
well-posedness for the transport equation and these kernels. This can be
done –since derivatives of the velocity field behave likely to the ones there–,
at almost every moment, as a repetition of the arguments in Chapter 1, so we
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will write the partial results without a proof and just mention the little differ-
ences. In Section 2.4 we check that the local solutions are indeed global also
by a straightforward repetition of the results in the previous chapter. Finally,
Section 2.5 is a remark about how one can consider a bigger family of kernels
for which we have Cγ

c well-posedness.

2.2 Distributional derivatives of the kernel.

Since the velocity field is computed by v(·, t) = K ∗ ρ(·, t) in order to control
its partial derivatives we need to compute the distributional derivatives of
the kernels.

Lemma 2.1. Let

K1(z) =
1
π

(z + εz̄)k

(z̄ + εz)k+1

Then, distributionally we have{
∂K1 = p.v. ∂K1 − εkδ0,
∂K1 = p.v. ∂K1.

Proof. Let ϕ ∈ C∞ function with compact support. Then,

〈(∂ (K1 ∗ f ) , ϕ〉 = −〈K1 ∗ f , ∂ϕ〉 =

= −
∫

C

{∫
C

K1(z− w) f (w)dA(w)

}
∂ϕ(z)dA(z) =

= −
∫

C

{∫
C

K1(z− w)∂ϕ(z)dA(z)
}

f (w)dA(w),

(2.2)

where we have applied Fubini’s theorem to change the integrals.
Having into account that for ∂ = ∂z and at points z 6= w we have

∂[K1(z− w)ϕ(z)] = ∂K1(z− w)ϕ(z) + K1(z− w)∂ϕ(z),

we can write the last integral in (2.2) as

−
∫

C
lim
δ→0

{∫
C\B(w,δ)

∂(K1(z− w)ϕ(z))dA(z)
}

f (w)dA(w)+

+
∫

C
lim
δ→0

{∫
C\B(w,δ)

ϕ(z)∂ (K1(z− w))dA(z)
}

f (w)dA(w) = I + I I,
(2.3)

and applying again Fubini’s theorem, we can see that the term I I is equal to

〈p.v. ∂K1 ∗ f , ϕ〉.
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On the other hand, by Stokes’ theorem, the term I in (2.3) can be written as

− i
2

∫
C

lim
δ→0

{∫
∂B(w,δ)

K1(z− w)ϕ(z)dz̄
}

f (w)dA(w) =

= −
∫

C
g(w) f (w)dA(w),

where we have used that, for z = x + iy, we have

dA(z) = dx ∧ dy =
i
2

dz ∧ dz̄

and that ϕ has compact support. Furthermore, we have defined

g(w) :=
i
2

lim
δ→0

∫
∂B(w,δ)

K1(z− w)ϕ(z)dz̄.

Now, for g we have

g(w) =
i
2

lim
δ→0

∫
∂B(w,δ)

K1(z− w)(ϕ(z)− ϕ(w) + ϕ(w))dz̄ =

=
i
2

lim
δ→0

∫
∂B(w,δ)

K1(z− w)(ϕ(z)− ϕ(w))dz̄+

+
i
2

lim
δ→0

∫
∂B(w,δ)

K1(z− w)ϕ(w)dz̄ = A + B.

We check that the integral in A vanishes as we let δ → 0. Let Cϕ the
modulus of continuity of ϕ. Thus,∣∣∣∣ i

2
lim
δ→0

∫
∂B(w,δ)

K1(z− w)(ϕ(z)− ϕ(w))dz̄
∣∣∣∣ ≤

≤ 1
2

lim
δ→0

∫
∂B(w,δ)

|K1(z− w)| |ϕ(z)− ϕ(w)|dz̄ ≤

≤ 1
2

lim
δ→0

∫
∂B(w,δ)

Cϕ(z, w) |z− w| |K1(z− w)|dz̄ = 0,

because Cϕ(z, w) → 0 as δ → 0 and |K1(z− w)| |z− w| is bounded. There-
fore,

g(w) =
iϕ(w)

2
lim
δ→0

∫
∂B(w,δ)

K1(z− w)dz̄.
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By a change of variables z = w + δeiθ we can simplify the computation of the
complex line integral around ∂B(w, δ) appearing in g(w).

g(w) = − iϕ(w)

2
lim
δ→0

∫ 2π

0
K1(δeiθ) iδe−iθ dθ =

= − iϕ(w)

2π
lim
δ→0

∫ 2π

0

(δeiθ + εδe−iθ)k

(δe−iθ + εδeiθ)k+1 iδe−iθ dθ =

= − iϕ(w)

2π

∫ 2π

0

(eiθ + εe−iθ)k

(e−iθ + εeiθ)k+1 ie−iθ dθ =

= − iϕ(w)

2π

∫ 2π

0

(eiθ + εe−iθ)k

(e−iθ + εeiθ)k+1
ieiθ

ei2θ
dθ =

= − iϕ(w)

2π

∫
∂B(0,1)

(z + ε 1
z )

k

z2(1
z + εz)k+1

dz =

= − iϕ(w)

2π

∫
∂B(0,1)

1
z(1 + εz2)

(z + ε 1
z )

k

(1
z + εz)k

dz.

(2.4)

In order to compute the integral in the right hand side of (2.4) we will use the
Residue Theorem (see [Ru, p. 215] for instance). Since |ε| < 1, the only pole
of the function

z→ 1
z(1 + εz2)

(z + ε 1
z )

k

(1
z + εz)k

inside the unit ball is z = 0 and for it

Res

(
1

z(1 + εz2)

(z + ε 1
z )

k

(1
z + εz)k

, 0)

)
= lim

z→0
z

1
z(1 + εz2)

(z + ε 1
z )

k

(1
z + εz)k

= εk.

Thus, by Residue Theorem

g(w) = − iϕ(w)

2π
2πiεk = ϕ(w)εk

and hence
I = −εk

∫
C

ϕ(w) f (w)dA(w).

Summing up,

〈∂(K1 ∗ f ), ϕ〉 = 〈p.v. ∂K1 ∗ f + εk f , ϕ〉

so, distributionally,
∂K1 = p.v. ∂K1 − εkδ0,

where δ0 is the Diract delta at the origin.
Repeating the arguments above one can see that

〈∂(K1 ∗ f ), ϕ〉 = I′ + I I′



36 Chapter 2. Cγ
c well-posedness in C

for

I′ = −
∫

C
lim
δ→0

{∫
C\B(w,δ)

∂(K1(z− w)ϕ(z))dA(z)
}

f (w)dA(w)

=
∫

C
g′(w) f (w)dA(w)

and

I I′ =
∫

C
lim
δ→0

{∫
C\B(w,δ)

ϕ(z)∂ (K1(z− w))dA(z)
}

f (w)dA(w) =

= 〈p.v. ∂K1 ∗ f , ϕ〉.

Similarly as done before, by the continuity of ϕ and by a straightforward
application of Stokes’ theorem we get

g(w) =
iϕ(w)

2π

∫
∂B(0,1)

z
1 + εz2

(z + ε 1
z )

k

(1
z + εz)k

dz.

Since the function inside the integral has no poles in B(0, 1) then it is equal
to 0. Then g(w) = 0 and we simply have that distributionally

∂K1 = p.v. ∂K1.

For the conjugate kernels we have a similar expression for their distribu-
tional derivatives.

Lemma 2.2. Let

K2(z) =
1
π

(z̄ + εz)k

(z + εz̄)k+1

Then, distributionally we have{
∂K2 = p.v. ∂K2,
∂K2 = p.v. ∂K2 − εkδ0.

Proof. Since K2(z) = K1(z) we then have, by Lemma (2.1),

∂K2 = ∂K1 = ∂K1 = p.v. ∂K1 = p.v. ∂K1 = p.v. ∂K2

and similarly

∂K2 = ∂K1 = ∂K1 = p.v. ∂K1 − εkδ0 = p.v. ∂K2 − εkδ0.
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2.3 Local Theorem

In this section we will explain the reasons why we have Cγ
c well-posedness

for the kernel K1 as in (2.1). Since K2 is the complex conjugate of K1 the result
holds immediately for it too.

We want to apply Picard-Lindelöf’s theorem for an ODE satisfied by the
flow map. We need, as in Section 1.3 in Chapter 1 a space of functions B, a
subspace O of B and a functional between O and B. Since the flow satisfies
(1.2), we have

dX
dt

(α, t) = v(X(α, t), t) =

=
∫

C
K(X(α, t)− X(α′, t))ρ0(α

′) det[DX(α′, t)]dA(α′).

Thus, we can consider

(2.5) F(X)(α) =
∫

C
K(X(α)− X(α′))ρ0(α

′) det[DX(α′)]dA(α′)

and so d
dt X(·, t) = F(X(·, t)). We now set B = C1,γ(C; C) and

(2.6) OM = B ∩
{

X : C→ C :
1
M

< sup
α 6=β

|X(α)− X(β)|
|α− β| < M

}
.

We then have, as in Remark 1.9 that OM is an open, non-empty subspace
containing homeomorphisms of the complex plane.

Then, first of all, we need to check that F maps OM to B. That is, we need
to proof Proposition 1.11 for our functional. If we take a look to that proof
we conclude that it will remain valid for our complex kernel as soon as the
partial derivatives of F are comparable. Applying the Complex Chain Rule
to (2.5), we obtain

d
dα

F(X(α)) = −εk∂X(α)ρ0(α)+

+ p.v.
∫

C
∇K1(X(α)− X(α′))DX(α)ρ0(α

′)det DX(α′)dA(α′)
(2.7)

for

∇K1 :=
(
∂K1, ∂K1

)
(row vector),

DX :=
(

∂X
∂X

)
(column vector).
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Also,

d
dα

F(X(α)) = −εk∂X(α)ρ0(α)+

+ p.v.
∫

C
∇K1(X(α)− X(α′))DX(α)ρ0(α

′)det DX(α′)dA(α′)
(2.8)

for

DX :=
(

∂X
∂X

)
(column vector).

Comparing the expression (2.5) with (1.21) on one hand and the expres-
sions (2.7)-(2.8) with (1.24) on the other hand, one can see that they are likely
the same. The derivatives of the functional are the sum of a constant times
the scalar ρ0 plus a SIO acting on ρ0 det DX. So, a repetition of the arguments
in Proposition 1.11 in Section 1.3 yields the following.

Proposition 2.3. Let OM as defined in (2.6). Then, the functional F defined by (2.5)
maps OM to C1,γ(C; C).

Secondly, we need to prove that the functional F is locally Lipschitz be-
tween OM and B. Again, it will be sufficient to have a bound for the direc-
tional derivative F′(X)Y. The computation giving an expression for F′(X)Y
is easier in the two-dimensional space. For instance, in dimension 2, the for-
mula for the determinant of a sum of two square matrices A and B can be
stated easily as

det(A + B) = det A + det B + trAtrB− trAB.

Then, we simply have

det(DX + εDY) = det DX + ε2 det DY + ε(trDXtrDY− trDXDY)

which yields

d
dε

det(DX + εDY)|ε=0 = trDXtrDY− trDXDY

and one can compute the directional derivative as in Lemma 1.14 to get

F′(X)Y(α) =
d
dε

F(X + εY)(α) =

=
∫

C
∇K1(X(α)− X(α′))(Y(α)−Y(α′))∗ρ0(α

′)det DX(α′)dA(α′)+

+
∫

C
K1(X(α)− X(α′))ρ0(α

′)×

× [trDX(α′)trDY(α′)− trDX(α′)DY(α′)]dA(α′),

(2.9)

where

(Y(α)−Y(α))∗ =
(

Y(α)−Y(α′)
Y(α)−Y(α′)

)
, (column vector).
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The expression (2.9) is equivalent to the one obtained in Proposition 1.14.
Following up the procedure in Chapter 1, we can see that the each of the dis-
tributional derivatives of the first term in (2.9) can be written as some expres-
sion similar to the one in Lemma 1.16, so again the proof in Proposition 1.18
can be adapted and so we have the second hypothesis in Picard-Lindelöf’s
theorem.

Proposition 2.4. Let OM as defined in (2.6). Then, the functional
F : OM → C1,γ(C; C) defined in (2.5) is locally Lipschitz.

Then we can apply Picard-Lindelöf and so we have assured existence
and uniqueness of a flow map X(·, t) for t ∈ [−T∗, T∗] and this time T∗

does not depend on the constant M in (2.6). With this flow map, we can
define in an unique way the density ρ(·, t) = ρ0 and the velocity field as
v(·, t) = K1 ∗ ρ(·, t) and then we finally have the local theorem.

Theorem 2.5. Let ρ0 ∈ Cγ
c (C; R) and K1 as in (2.1). Then there exists T∗ > 0

such that the transport equation

(2.10)


ρt + v · ∇ρ = 0,
v(·, t) = K1 ∗ ρ(·, t),
ρ(·, 0) = ρ0.

has a unique solution ρ(·, t) ∈ Cγ
c (C; R), v(·, t) ∈ C1+γ(C; C) for

t ∈ (−T∗, T∗).

2.4 Global Theorem

The validity of the a priori bound for the planar case is even easier to check.
The proof of Proposition 1.25 does not depend on the choice of the kernel
as soon as it was locally integrable. This integrability of K was the one that
produces the bound

‖v(·, t)‖L∞ = ‖K ∗ ρ(·, t)‖L∞ ≤ cR(t)‖ρ0‖L∞

as in (1.36). The rest of the proof of Proposition 1.25 concerns bounds de-
pending implicitly on ∇v and thus they hold for any given kernel K such
that v(·, t) = K ∗ ρ(·, t). We can state it in a compact way as follows.

Proposition 2.6. Let X(·, t) be the solution of

d
dt

X(·, t) = F(X(·, t)), X(·, 0) = Id,

for F as in (2.5). Then |X(·, t)|1,γ is finite provided

(2.11)
∫ t

0
‖∇v(·, s)‖L∞ ds < ∞.
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Now it all reduces to check again that the integral in (2.11) is finite for any
time. The proof for this does depend on the choice of the kernel. However
it relies on the derivatives of the velocity field. Since for K1 those derivatives
are equal to a SIO applied to the density ρ plus a constant times ρ the bound-
edness proved for the kernels in Chapter 1 can be proved also for K1. Indeed,
we can substitute the expression for ∂v(·, t) and ∂v(·, t) in (1.45) and then fin-
ish the proof in the same way to check that the integral in (2.11) is finite for
any time and so we have the following:

Proposition 2.7. Let X(·, t) be the solution of

d
dt

X(·, t) = F(X(·, t)), X(·, 0) = Id,

for F as in (2.5). Then |X(·, t)|1,γ is finite for any time t.

We state then the global result which is a consequence of the local theorem
2.5 and Proposition 2.7. Also, since K2 = K1, by Lemma 2.1 we see that the
derivatives of the velocity field obtained by v(·, t) = K2 ∗ ρ(·, t) are also a
combination of the density ρ and a SIO acting also on ρ. So all the procedure
can be restated for K2 instead K1. To sum up we have the main theorem of
the chapter.

Theorem 2.8. Let ρ0 ∈ Cγ
c (C; R) and Ki, i = 1, 2 as in (2.1). Then, the transport

equation

(2.12)


ρt + v · ∇ρ = 0,
v(·, t) = Ki ∗ ρ(·, t), i = 1, 2
ρ(·, 0) = ρ0.

has a unique solution ρ(·, t) ∈ Cγ
c (C; R), v(·, t) ∈ C1+γ(C; C) for t ∈ R.

2.5 Further comments about Cγ
c well-posedness

We want to stress that for the relationship v(·, t) = K ∗ ρ(·, t) we have focused
on kernels of the type

• L · ∇N for N the fundamental solution of the Laplacian and
L ∈ Mn×n(R) for the transport equation in Rn, as done in
Chapter 1,

• Ki, i = 1, 2 as in (2.1) for the transport equation in the complex plane.

The reason to choose these kernels is the following: we have a well-posedness
result for them in the case of a density patch. Although the Cγ

c result is not
necessary for the study of patches, we strongly thought it would be good to
prove it too for completeness.
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Notwithstanding, if we take a closer look to the proof in Chapter 1 and
the remarks for it to be adapted in Sections 2.3 and 2.4 we see that a wider
class of kernels could have been considered instead of L · ∇N or Ki, i = 1, 2.
In fact, note that by Remark 1.5 we reduced the hypothesis in [MB, Lem-
mas 4.5 and 4.6] to produce Lemma 1.4. Then, in conclusion, for any kernel
K ∈ C2(Rn \ {0}) homogeneous of degree 1− n we have bounds (1.15), (1.16)
and (1.17) and so we can repeat the proof of the Cγ

c well-posedness for K pro-
vided distributional derivatives of K are a combination of Dirac deltas and
SIOs. Observing the proof of Lemma 2.1 we see that the Dirac delta appears
since the terms

lim
δ→0

∫
∂B(w,δ)

K1(z− w)dz or lim
δ→0

∫
∂B(w,δ)

K1(z− w)dz̄

are equal to a well defined quantity. In general, in dimension n and for a
kernel K ∈ C2(Rn \ {0}) homogeneous of degree 1− n, when repeating the
proof of Lemma 2.1 one has to take care of a term

lim
δ→0

∫
∂B(w,δ)

K(z− w)nk(z)dσ(z),

where nk(z) is the k-th component of the unitary normal vector n(z) at the
point z ∈ ∂B(w, δ). By a change of variable z = w + δs, s ∈ ∂B(0, 1) and by
the homogeneity of the kernel K, we have

lim
δ→0

∫
∂B(w,δ)

K(z− w)nk(z)dσ(z) = c
∫

∂B(0,1)
K(s)nk(s)dσ(s),

which is equal to a quantity independent of w. If this quantity is equal to
0 then no Dirac delta appear but in any case since it is well defined for the
kernel K we would have for the partial derivative in the direction i

∂iK = p.v. ∂iK + ciδ0

for ci ∈ R and then the Cγ
c well-posedness works also for K.

On the other hand, the arguments in Chapter 1, Section 1.5 can be adapted
for K this way and finally we can conclude that the following theorem holds.

Theorem 2.9. Let ρ0 ∈ Cm,γ
c (C; R) and let K ∈ C2(Rn \ {0}) be a kernel homo-

geneous of degree 1− n. Then, the transport equation
ρt + v · ∇ρ = 0,
v(·, t) = K ∗ ρ(·, t), i = 1, 2
ρ(·, 0) = ρ0.

has a unique solution ρ(·, t) ∈ Cm,γ
c (Rn; R), v(·, t) ∈ Cm+1,γ(Rn; Rn) for t ∈ R.
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3 C1,γ regularity for patches and
for the kernel L · ∇N in Rn

3.1 Introduction

The vorticity form of the Euler equation in the plane is

∂tω + v · ∇ω = 0,

v(·, t) = ∇⊥N ∗ω(·, t),
ω(·, 0) = ω0,

(3.1)

where t ∈ R, N = 1
2π log |x| is the fundamental solution of the laplacian in

the plane and ω0 is the initial vorticity.
A very well-known result of Yudovich [Y] states that the vorticity equa-

tion is well-posed in L1 ∩ L∞ the measurable bounded and integrable func-
tions. In particular the result holds for vorticities in L∞

c , that is, vorticities
measurable bounded and with compact support.

We call a vortex patch to a special weak solution of (3.1) for an initial con-
dition which is the characteristic function of a bounded domain D0. Since the
vorticity equation is a transport equation, vorticity is conserved along trajec-
tories and thus ω(x, t) = χDt(x) for some domain Dt. A challenging problem,
posed in the eighties, was to show that boundary smoothness persists for all
times. Specifically, if D0 has boundary of class C1,γ, 0 < γ < 1, then one
would like Dt to have boundary of the same class for all times. This was
viewed as a 2 dimensional problem which featured some of the main diffi-
culties of the regularity problem for the Euler equation in R3. On one hand,
and based on numerical simulations, it was conjectured that the boundary of
Dt could become of infinite length in finite time [M]. Nevertheless, Chemin
proved that boundary regularity persists for all times [Ch] using paradiffer-
ential calculus, and Bertozzi and Constantin found shortly after a minimal
beautiful proof in [BC] based on methods of classical analysis with a geomet-
ric flavor.

Later on, the density patch problem (when the initial density is equal to
χD0) was considered for the aggregation equation with newtonian kernel in
higher dimensions in [BGLV]. The equation is

∂tρ + div(ρv) = 0,
v(·, t) = −(∇N ∗ ρ(·, t)),
ρ(·, 0) = ρ0,

(3.2)
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x ∈ Rn and t ∈ R. In [BLL] a well-posedness theory in L∞
c was developed,

following the path of [Y] and [MB, Theorem 8.1]. When the initial condition
is the characteristic function of a domain one calls the unique weak solution
a density patch, analogously to the vorticity equation. One proves in [BGLV]
that if the boundary of D0 is of class C1,γ, 0 < γ < 1, then the solution
of (3.2) with initial condition ρ0 = χD0 is of the form ρ(x, t) = 1

1−t
χDt(x),

x ∈ Rn, 0 ≤ t < 1 where Dt is a C1,γ domain for all t < 1. The restriction
to times less than 1 obeys a blow up phenomenon studied in [BLL]. Hence
the preceding result is the analog of Chemin’s theorem for the aggregation
equation.

Equation (3.2) is not a transport equation, but for density patches and
after a change in the time scale it becomes the non-linear transport equation

∂tρ + v · ∇ρ = 0,
v(·, t) = −(∇N ∗ ρ(·, t)),
ρ(·, 0) = χD0 ,

(3.3)

x ∈ Rn, t ∈ R, where N is the fundamental solution of the laplacian in Rn

and D0 is a bounded domain. Due to this equivalence, the result in [BGLV]
proves that if D0 is of class C1,γ, then there is a solution of (3.3) of the form
χDt(x) with Dt a domain of class C1+γ.

To the best of our knowledge there is no well-posedness theory in L1 ∩ L∞
c

(or even in L∞
c ) for (3.3), so that there could be other weak solutions in L∞

c
with initial condition χD0 . Nevertheless, one has uniqueness in the class of
characteristic functions of domains with C1,γ boundary.

In this chapter we consider, as in Chapter 1, that the velocity field can be
recovered from the density by v(·, t) = L ·∇N ∗ ρ(·, t), for L an n-dimensional
square matrix and N the fundamental solution of the laplacian defined by

N(x) =

{
1

2π log |y| , n = 2,
− 1

n(n−2)wn
1

|x|n−2 , n ≥ 3,

where wn is the volume of the n-dimensional unit ball.

Theorem 3.1. Let L ∈ Mn×n(R) and D0 a domain with boundary of class C1,γ,
0 < γ < 1. Then the non-linear transport equation

∂tρ + v · ∇ρ = 0,
v(·, t) = (L · ∇N) ∗ ρ(·, t),
ρ(·, 0) = χD0(x)

(3.4)

x ∈ Rn, t ∈ R, has a weak solution of the form

ρ(x, t) = χDt(x), x ∈ Rn, t ∈ R,

with Dt a domain with boundary of class C1,γ.
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This solution is unique in the class of characteristic functions of domains with
boundary of class C1,γ.

We recall what we mean by weak solution of the transport equation. We
say (ρ, v) is a weak solution to equation (3.4) if, for any 0 ≤ t ≤ T, we have
ρ(·, t) ∈ L1

loc(R
n), the relationship v(·, t) = L · ∇N ∗ ρ(·, t) holds and for each

ϕ ∈ C∞([0, T]×Rn) with compact support we have

−
∫ T

0

∫
Rn

ρϕt dx dt−
∫

Rn
ρ0ϕ(·, 0)dx−

∫ T

0

∫
Rn

ρdiv (ϕv)dx dt = 0.

The proof of Theorem 3.1 follows the scheme of [BC] and overcomes dif-
ficulties related to the fact that the velocity field has a non-zero divergence
and to the higher dimensional context.

The results in this chapter belong to a joint work with Joan Mateu, Joan
Orobitg and Joan Verdera (see [CMOV]). We present them here with a differ-
ent and more detailed structure in their proofs.

In the next chapter we will prove a result analogous to Theorem 3.1 for
a wider class of kernels replacing those of the form L · ∇N but reducing to
dimension 2.

3.1.1 Outline of the chapter

The chapter is structured as follows. In Section 3.2 we give an important in-
strument, the –non unique– defining function, used to measure the smooth-
ness of a domain in Rn. Also, we define some quantities strictly related to
the boundary of a domain that will be used throughout the chapter. Then a
version of the classical logarithmic inequality for the gradient of the velocity
field is established. Again, this new inequality relies just on the behavior of
the domain at its boundary. Later on, it will become clear why these adapta-
tions have to be made. In Section 3.3 we set a Contour Dynamics Equation
(CDE) for the evolution of the domain describing the patch and we state a
local-in-time existence and uniqueness result for this equation. We take profit
of the work done in [BGLV] for L equal to the n dimensional identity matrix
and adapt it to the general case.

Once we have proved the existence and uniqueness of local solutions,
the goal of the chapter is to check that these solutions are in fact global. In
Section 3.4, we choose a good defining function for the transported domain
and compute a partial differential equation for its material derivative. In
Section 3.5 we get rid of a disturbing term appearing when computing the
material derivative of the gradient of the defining function. Once this term,
that we will call solitary, is controlled we will verify that in fact those ma-
terial derivatives are equal to a difference of commutators when looked at
the boundary of the domain. Since the equality to commutators is just valid
at the boundary, in Section 3.6 we extend, via Whitney’s Extension theorem,
the defining function at the boundary to the whole space. Finally, in Section
3.7 we combine all the results coming from previous sections and we prove
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the global-in-time version of the existence and uniqueness results and so we
have Theorem 3.1.

3.2 Smoothness of domains and the (refined) loga-
rithmic inequality

We start this section by giving some basic information about how to quantify
the smoothness of a domain. Classically, we define a C1,γ domain D as a
bounded domain whose boundary is locally, and possibly after a rotation,
the graph of a C1,γ function. An important tool when dealing with these
kind of domains is the following.

Definition 3.2. Let D a bounded domain in Rn. We say ϕ : Rn → R is a C1,γ-
defining function for D if

(a) ϕ ∈ C1,γ(Rn; R),

(b) D = {x ∈ Rn : ϕ(x) < 0},

(c) ∂D = {x ∈ Rn : ϕ(x) = 0},

(d) ∇ϕ(x) 6= 0, for x ∈ ∂D.

A standard argument based on a partition of unity shows that if D is a C1,γ

function then there exists a C1,γ-defining function Φ (which is not unique)
and on the other hand, by the Implicit Function Theorem, if there exists Φ
satisfying Definition 3.2 then the domain D is of class C1,γ in the classical
sense.

For these domains we can define some important quantities that will be
used in the next sections. Set

| f |γ,∂D = sup
{
| f (x)− f (y)|
|x− y|γ

, x, y ∈ ∂D
}

and
| f |inf = inf {| f (x)| , x ∈ ∂D} .

Then we define σ(D) as the n− 1 dimensional surface measure of ∂D and
also

q(D) := inf

{
|∇Φ|γ,∂D

|∇Φ|inf
: Φ is a C1,γ-defining function for D

}
.

Furthermore, if in the numerator inside the infimum we consider the Hölder
norm in the whole space, we can define the bigger quantity

(3.5) Q(D) := inf

{
|∇Φ|γ
|∇Φ|inf

: Φ is a C1,γ-defining function for D

}
.
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The classical definition -given at the beginning of the section- of being D
a C1,γ domain means that given any x ∈ ∂D, there exists a radius rx such
that the points of the boundary of D closer than rx to x are a graph. The
following Lemma quantifies the size of a radius r which does not depend on
the point x ∈ ∂D and such that the property holds for every point. In [BGLV,
see Lemma 6.4], this universal radius is related to the quotient appearing in
Q(D) as in (3.5). The following lemma is a new version of that result where
the dependence is on the quotient in q(D) as defined in (3.2). The proof
is very similar to the one presented in [BGLV], but for convenience of the
reader we repeat it here adding the mentioned improvement.

Lemma 3.3. Let D a C1,γ domain and let Φ a C1,γ-defining function for D. If we
consider δ > 0 such that

δγ
|∇Φ|γ,∂D

|∇Φ|inf
≤ 1

2
,

then for each x ∈ ∂D the set ∂D ∩ B(x, δ) is, after a rotation around x, the graph of
a C1,γ function ϕ and D ∩ B(x, δ) is the part of B(x, δ) lying below the graph of ϕ.
Also we have the estimate

(3.6)
∣∣ϕ(x′)

∣∣ ≤ √2γ
|∇Φ|γ,∂D rγ

|∇Φ|inf
for
∣∣x′∣∣ ≤ r <

δ√
2

.

Proof. Without loss of generality we can assume x = 0 and
∇Φ(0) = (0, . . . , 0, ∂nΦ(0)) with ∂nΦ(0) > 0. Consider p, q ∈ ∂D ∩ B(0, δ)
and set p = (p′, pn) with p′ = (p1, . . . , pn−1) and equivalently q = (q′, qn).
Then, by doing a Taylor expasion of Φ around 0 we get

0 = Φ(p) = Φ(0) +∇Φ(0) · p + E(p) = |∇Φ(0)| pn + E(p),

and similarly
0 = |∇Φ(0)| qn + E(q).

Subtracting and taking absolute value we get, since Φ ∈ C1,γ,

|∇Φ(0)| |pn − qn| = |E(p)− E(q)| ≤ sup
x∈[p,q]

|∇E(x)| |p− q| =

= sup
x∈[p,q]

|∇Φ(x)−∇Φ(0)| |p− q| ≤

≤ sup
x∈[p,q]

|x|γ |∇Φ|γ |p− q| ≤

≤ |∇Φ|γ δγ(
∣∣p′ − q′

∣∣+ |pn − qn|).

(3.7)

Thus
|pn − qn|
|p′ − q′| ≤

|∇Φ|γ
|∇Φ|inf

δγ

(
1 +
|pn − qn|
|p′ − q′|

)
,
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which implies, by setting δ satisfying δγ |∇Φ|γ
|∇Φ|inf

≤ 1
2 , that

|pn − qn|
|p′ − q′| ≤ 1.

This inequality states that ∂D ∩ B(x, δ) is the graph of a Lipschitz function ϕ
with pn = ϕ(p′) with domain an open subset U of {x′ ∈ Rn−1 : |x′| < δ} and
it satisfies |∇ϕ(x′)| ≤ 1 for x′ ∈ U. By the Implicit Function Theorem ϕ is of
class C1,γ on its domain.

We can get a better bound in Equation (3.7) now that we know that the
surface ∂D is smooth. In particular, given p, q ∈ ∂D consider the (differen-
tiable) curve c ⊂ ∂D parametrized by arc length (i.e. |c′| ≡ 1) such that
c(0) = p, c(l) = q, and minimizing l the length of c between p and q. Then,
by the Mean Value Theorem, there exists s ∈ [0, l] such that

E(q)− E(p) = E(c(l))− E(c(0)) = l∇E(c(s)) · c′(s),

and thus

|∇Φ(0)| |pn − qn| = |E(p)− E(q)| = |E(c(l))− E(c(0)))| ≤
≤ l |∇E(c(s))|

∣∣c′(s)∣∣ = l |∇E(c(s))| ≤ l sup
s∈[0,l]

|∇E(c(s))| ≤

≤ l sup
s∈[0,l]

|∇Φ(c(s))−∇Φ(0)| ≤ |∇Φ|γ,∂D δγl.

Since c is chord-arc then l ≤ c |p− q| and hence

|∇Φ(0)| |pn − qn| ≤ c |∇Φ|γ,∂D δγ |p− q| ,

which allow us to repeat the argument done before but setting

δγ |∇Φ|γ,∂D
|∇Φ|inf

≤ 1
2 instead of δγ |∇Φ|γ

|∇Φ|inf
≤ 1

2 .
By implicit differentiation we have for i = 1, . . . , n− 1,

0 = ∂i[Φ(x′, ϕ(x′))] = ∂iΦ(x′, ϕ(x′)) + ∂nΦ(x′, ϕ(x′))∂i ϕ(x′),

and then

∂iΦ(x′, ϕ(x′)) = − ∂iΦ(x′, ϕ(x′))
∂nΦ(x′, ϕ(x′))

.

Since |∇ϕ(x′)| ≤ 1 we have, taking supremum over i∣∣∇Φ(x′, ϕ(x′))
∣∣ ≤ ∣∣∂nΦ(x′, ϕ(x′))

∣∣ .
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Note that the ball B(x′, δ√
2
) is contained in U. Then, since ∂jΦ(0) = 0 for

j = 1, . . . , n− 1, if we consider r < δ√
2

we have

∣∣∇ϕ(x′)
∣∣ ≤ |∇Φ|γ,∂D (

√
2r)γ

|∇Φ|inf
, for

∣∣x′∣∣ ≤ r,

completing the proof of the Lemma.

We need a logarithmic inequality for the L∞ norm of the gradient of the
velocity field. Such a bound has been established both for Euler (e.g. [MB,
Proposition 8.12]) and aggregation (e.g. [BGLV, Corollary 6.3]) equations.
Since the kernel L · ∇N has the same regularity properties than the kernel
−∇N (each one of them can be recovered as a linear combination of the
other) the results in [BGLV] can be adapted to the present case. Since second
derivatives of the fundamental solution of the laplacian has zero mean inte-
gral on the sphere and recalling Lemma 1.10, then the distributional deriva-
tives of the velocity field can be computed as in the following lemma.

Lemma 3.4. Given v = L · ∇N ∗ χD, let x /∈ ∂D, and set
ε = ε(x) = dist(x, ∂D). Then for j, k ∈ {1, . . . , n}, distributionally we have

∂kvj =
ljk

n
χD +

n

∑
i=1

lji∂k∂iN ∗ χD\B(x,ε).

The following estimate can be recovered by repeating the proof of Theo-
rem 6.2 in [BGLV] step by step but changing the value of δ from

δγ
|∇Φ|γ
|∇Φ|inf

=
1
2

to the refined choice that is emerged from Lemma 3.3,

δγ
|∇Φ|γ,∂D

|∇Φ|inf
=

1
2

.

At some point in the proof we need to split integrals in two parts: one
for the region of integration of points closer to a distance related to δ and the
other one for the complementary. Furthermore, estimate (3.6) (depending
on |∇Φ|γ,∂D instead of |∇Φ|γ as in [BGLV]) is used to give the following
theorem.

Theorem 3.5. Let D a C1,γ domain and let Φ be a C1,γ-defining function for D.
Then, for every i, j ∈ {1, . . . , n}, x ∈ Rn and ε > 0 there exists a constant cn
depending on n such that∣∣∣∣∫|y−x|>ε

∂i∂jN(x− y)χD(y)dy
∣∣∣∣ ≤ cn

γ

(
1 + log+

(
|D|1/d |∇Φ|γ,∂D

|∇Φ|inf

))
,
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where log+ x = max{log x, 0}.

Finally, as a combination of Lemma 3.4 with Theorem 3.5 we get the de-
sired logarithmic inequality that will be used later on.

Theorem 3.6. Let D a domain in Rn with a C1,γ-defining function Φ. If
v = L · ∇N ∗ χD, then for R := m(D)1/n we have

||∇v||L∞ ≤
cn

γ

(
1 + log+

(
R
|∇Φ|γ,∂D

|∇Φ|inf

))
.

3.3 Local Theorem

As we have said, in [BGLV] the proofs were developed for the kernel −∇N.
In the case of local well-posedness of regular patches we do not have to re-
peat a similar argument since we can reduce to the situation for that kernel
and take advantage of the work done in that paper.

Let DX be the differential of the flow X as a differentiable mapping from
∂D0 into Rn. Take β ∈ ∂D0 and set n(β) the normal vector to ∂D0 at β and
T1(β), . . . , Tn−1(β) an orthonormal basis of the tangent space to ∂D0 at β.
We choose all of them in such a way that n(β), T1(β), . . . , Tn−1(β) gives the
standard orientation in Rn. Then, consider, as in [BGLV, Eq. (2.3)],

F(Ag)(X)(α) =
∫

∂D0

N(X(α)− X(β))
n−1∧
j=1

DX(β)(Tj(β))dσ(β)

(where Ag stands for aggregation). Having into account the way the func-
tional has been computed we have

F(Ag)(X(·, t))(α) = (−∇N ∗ χDt)(X(α, t)),

meaning that component-wise F(Ag)
i = (−∂iN ∗ χDt)(X(α, t)). As usual, the

functional F defining the Contour Dynamics Equation satisfies

dX(·, t)
dt

= F(X(·, t)).

Since in our working case v(·, t) = (L · ∇N) ∗ χDt and so
vi(·, t) = ∑n

j=1 lij∂jN ∗ χDt , then we write the i-th component of F as

Fi(X(·, t))(α) = vi(X(α, t), t) =
n

∑
j=1

lij(∂jN ∗ χDt)(X(α, t)) =

= −
n

∑
j=1

lijF
(Ag)
j (X(·, t))(α).

(3.8)
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That is, each component of F is a linear combination of components of F(Ag).
In the paper by Bertozzi, Garnett, Laurent and Verdera, they proved (see

[BGLV, Theorem 2.2]) that F(Ag) satisfies the hypothesis of Picard-Lindelöf’s
theorem. More precisely, for

Ω =
{

X ∈ C1,γ (∂D0, Rn) for which ∃ µ ≥ 1 such that

|X(α)− X(β)| ≥ 1
µ
|α− β| α, β ∈ ∂D0

}
,

then F(Ag) : Ω → C1,γ(∂D0, Rn) and also F(Ag) is Lipschitz with constants
depending on some parameters referring to D0 (one of them being Q(D) as
in (3.5)). Also, as the functional F whose components are defined in (3.8) is
a linear combination (with the coeficients of the matrix L) of F(Ag) we then
conclude with the same result but depending also on L.

Theorem 3.7. Let F defined component-wise in (3.8). If X ∈ Ω, then

(3.9) |F(X)|1,γ ≤ cµ(X)3n+2(1 + |X|2n+4
1,γ ),

and

(3.10)
∣∣∣∣F′(X)

∣∣∣∣
C1,γ→C1,γ ≤ cµ(X)3n+8(1 + |X|3n+7

1,γ ),

where c is a constant depending on L, n, q(D0), σ(D0) and diam(D0) and

µ(X) := inf
{

µ > 0 : for every α, β ∈ ∂D0, |X(α)− X(β)| ≥ 1
µ
|α− β|

}
.

The main difference between Theorem 3.7 and its equivalent version in
[BGLV, Theorem 2.2] is that the universal radius of Lemma 3.3 (with norms
referring to the boundary of the domain) is used in the proof instead of the
one given in [BGLV, Lemma 6.4]. The proof of Theorem 3.7 can be done
following the one in [BGLV] with this new choice of δ when needed. The new
dependence on the matrix L relies on equation (3.8). In particular, Theorem
3.7 implies that hypothesis in Picard-Lindelöf’s theorem 1.8 are satisfied and
so local-in-time existence and uniqueness for the CDE holds. Thus, we have
the following theorem.

Theorem 3.8. Let D0 a C1,γ domain. Let F(X(·, t)) = (Fi(X(·, t)))n
i=1 defined by

Fi(X(·, t))(α) = −
n

∑
j=1

lijF
(Ag)
j (X(·, t))(α).
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Then there exists T∗ > 0 depending on L, n, q(D0), σ(D0) and diam(D0), such that
the ordinary differential equation{

d
dt X(α, t) = F(X(α, t)),
X(α, 0) = α,

has a unique solution X(·, t) ∈ C1,γ(∂D0; Rn) for t ∈ (−T∗, T∗).

The Contour Dynamics Equation in Theorem 3.8 can be thought of as an
ODE in the open set Ω. We want to show that a solution X(·, t) to the CDE
in an interval (−T, T) provides a weak solution of the non-linear transport
equation (3.4).

Theorem 3.9. Let L ∈ Mn×n(Rn) and D0 a domain with boundary of class C1,γ,
0 < γ < 1. Then, there exists T∗ > 0 depending on L, n, q(D0), σ(D0) and
diam(D0) such that the non-linear transport equation (3.4) has a weak solution of
the form ρ(·, t) = χDt for t ∈ (−T∗, T∗), with Dt a domain with boundary of class
C1,γ. This solution is unique in the class of characteristic functions of domains with
boundary of class C1,γ.

Proof. Clearly X(·, t) maps ∂D0 onto a n − 1 dimensional hypersurface St.
The goal now is to identify an open set Dt with boundary St. First assume
that ∂D0 is connected, and hence a connected n − 1 dimensional hypersur-
face of class C1,γ, then the analog of the Jordan curve theorem holds [GP, p.
89]. Then the complement of ∂D0 in Rn has only one bounded connected
component which is D0. In the same vein, the complement of St has only one
bounded connected component, which we denote by Dt, so that the bound-
ary of Dt is St.

Secondly, if we drop the assumption that ∂D0 is connected then we pro-
ceed as follows. Let Sj

t, 1 ≤ j ≤ m, be the connected components of St. Denote
by U j

t be the bounded connected component of the complement of Sj
t in Rn.

Among the U j
t there is one, say U1

t , that contains all the others. This is so
at time t = 0 because D0 is connected and this property is preserved by the
flow X(·, t). We set Dt = U1

t \ (∪m
j=2U j

t), so that the boundary of Dt is St.
Thus, we define a velocity field by

(3.11) v(·, t) = L · ∇N ∗ χDt , t ∈ (−T, T).

Since its gradient is a SIO acting on a bounded function, a first look to (3.11)
tells us that v(·, t) belongs to the continuous Zygmund class. Nevertheless,
since Dt has boundary of class C1,γ, the field v(·, t) is Lipschitz for each
t ∈ (−T, T) and the equation of the flow (1.2) has a unique solution which
is a bilipschitz mapping of Rn onto itself whose restriction to ∂D0 is the so-
lution of the CDE we were given. Thus X(D0, t) = Dt and χDt is a weak
solution of the non-linear transport equation (3.4).
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3.4 The choice of the defining function

In Theorem 3.9, we have seen that the unique solution to (3.4) at time t is the
characteristic function of a C1,γ domain Dt up to a certain time T∗. From now
on, we want to proof that this weak solution is indeed global, that is, that
we have T∗ = ∞. We make use of the C1,γ-defining functions introduced in
Section 3.2 to measure the smoothness of Dt. By Definition 3.2 it is clear that
given a C1,γ domain the defining function associated to that domain is not
unique (for instance multiplying by a positive constant the function does not
change the validity of the requirements in the definition). A natural ansatz
in order to get a C1,γ-defining function for a domain evolving with a flow is
the following. We consider ϕ0 a C1,γ defining function for the initial domain
D0. For the domain Dt = X(D0, t) we consider

ϕ(·, t) = ϕ0(X−1(·, t)),

that is, we also let the defining function evolve with the flow. In the case of
Euler equation the function ϕ(·, t) defined this way is a C1,γ-defining func-
tion for the domain Dt determining the density patch and we can develop an
argument using ϕ(·, t) to prove that the domain keeps the C1,γ smoothness
for any time. For the aggregation equation one can see in [BGLV] that this
function ϕ does not behave well and a correction (depending, as usual, on
the divergence of the velocity field) has to be made in order to addapt the
proof of the Euler case. In this section we get the good correction to ϕ in the
case of the kernel L · ∇N.

We start with a technical lemma that will be used when proving that our
choice is a nice defining function. This is a result that was not needed neither
for the Euler nor the aggregation equations.

Lemma 3.10. Let Ω a subset of Rn and let

u ∈ Har(Ω) ∩ Cγ(Ω).

Then there exists a constant c such that

|∇u(x)| ≤ c |u|γ,Ω d(x, ∂Ω)γ−1.

Proof. Let ϕ be a C∞ function, radial and supported in the unit ball and such
that

∫
Rn ϕ(x)dx = 1. Let x ∈ Ω and consider r > 0 such that r < d(x, ∂Ω).

Define ϕr =
1
rn ϕ(y/r). Since u is harmonic on B(x, r) then by the mean-value

property

u(x) =
∫
|x−y|<r

u(y) ϕr(x− y)dy.



54 Chapter 3. C1,γ regularity for patches and for the kernel L · ∇N in Rn

We compute the partial derivative ∂i as

∂iu(x) =
∫
|x−y|<r

u(y)∂i ϕr(x− y)dy.

Since by Stokes’ theorem we have∫
|x−y|<r

∂i ϕr(x− y)dy = 0,

then
∂iu(x) =

∫
|x−y|<r

(u(y)− u(x))∂i ϕr(x− y)dy

and so

|∂iu(x)| =
∫
|x−y|<r

|u(y)− u(x)| |∂i ϕr(x− y)| dy ≤

≤
|u|γ,Ω

rn

∫
|x−y|<r

|y− x|γ
∣∣∣∣∂i

[
ϕ

(
x− y

r

)]∣∣∣∣ dy ≤

≤ c
|u|γ,Ω

rn

∫ r

0
sγ 1

s
sn−1 ds = c

|u|γ,Ω

rn rγ+n−1 = c |u|γ,Ω rγ−1.

Letting r → d(x, ∂Ω) we obtain the result.

With this lemma we will set in a moment a right defining function for Dt
in terms of a partial differential equation. The lemma will be used to verify
that the partial derivatives of the divergence of the velocity field blow up at
the boundary but in a controlled way since they satisfy the hypothesis. Note
that for the Euler equation, since the velocity field was incompressible these
partial derivatives are equal to 0 so the previous lemma is not needed. In the
aggregation case although the divergence is not equal to 0, its partial (spatial)
derivatives vanishes almost everywhere and we can also avoid this general
argument.

Proposition 3.11. Given {Dt}0≤t≤T∗ a family of C1,γ domains in Rn. If we con-
sider a velocity field v(·, t) = (L · ∇N) ∗ χDt , then the solution Φ : Rn → R of the
linear non-homogeneous partial differential equation

(3.12)
DΦ
Dt

= div(v)Φ

is a C1,γ-defining function for Dt whose gradient is continuous.

Proof. Let ϕ0 a C1,γ Firstly we see that the solution of (3.12) is

(3.13) Φ(x, t) =

{
0, x ∈ ∂Dt,
det∇X(X−1(x, t), t) ϕ(x, t), x /∈ ∂Dt,
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where X(·, t) is the flow map defined in (1.2) and ϕ(x, t) = ϕ0(X−1(x, t)) for
ϕ0 a C1,γ-defining function for D0. We check it by computing the material
derivative of Φ.

DΦ
Dt

(x, t) =
Dϕ

Dt
(x, t)det∇X(X−1(x, t), t)+

+
D
Dt

(det∇X(X−1(x, t), t)ϕ(x, t) =

=
D
Dt

(det∇X(X−1(x, t), t)ϕ(x, t),

(3.14)

since Dϕ
Dt ≡ 0 because it is a function transported by the flow map. The

evolution of the jacobian of the flow map

(3.15) J(α, t) = det∇X(α, t)

is determined by the equation (see [MB, Proposition 1.2])

(3.16)
dJ
dt

(α, t) = div(v(X(α, t), t))J(α, t).

If we apply this to (3.14) we simply get the partial differential equation (3.12).
Now, we have to verify that the gradient of Φ defined in (3.13) is contin-

uous. The Main Lemma in [MOV] states that if T is an even smooth con-
volution homogeneous Calderón-Zygmund operator and D a domain with
boundary of class C1+γ, 0 < γ < 1, then T(χD) satisfies a Hölder condition
of order γ in D and in Rn \ D. Then

(3.17) ||∇v(·, s)||γ,Ds + ||∇v(·, s)||γ,Rn\Ds
≤ C(t), 0 ≤ s ≤ t,

where C(t) denotes here and in the sequel a positive constant depending on
t but not on s ∈ [0, t]. Equation (3.17) implies a similar bound for the gradient
of Φ, that is,

||∇Φ(·, s)||γ,Ds + ||∇Φ(·, s)||γ,Rn\Ds
≤ C(t), 0 ≤ s ≤ t,

and this way Φ(·, s) is of class C1,γ both in the interior of Ds and in the com-
plement of the closure of Ds. Then we just have to check the continuity of the
gradient of Φ in the boundary of the domain. It will ensure that Φ(·, s) ∈ C1,γ

in the whole euclidean space.
As it was pointed out in [BGLV, Section 8] if one transports a defining

function ϕ0 of D0 by ϕ(·, t) = ϕ0 ◦ X−1(·, t), then ∇ϕ(·, t) may have jumps
at the boundary of Dt for t 6= 0 and so ϕ(·, t) is not necessarily differentiable.
In [BGLV] one shows that, for x ∈ ∂Dt,

(3.18) lim
Dt3y→x

∇ϕ(y, t) = lim
Dt3y→x

det∇X−1(y, t)
|∇ϕ0(X−1(x, t))|

det D(x)
~n(x)
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and
(3.19)

lim
Rn\Dt3y→x

∇ϕ(y, t) = lim
Rn\Dt3y→x

det∇X−1(y, t)
|∇ϕ0(X−1(x, t))|

det D(x)
~n(x),

where X−1(·, t) is the inverse mapping of X(·, t), ~n(x) is the unitary exterior
normal vector to ∂Dt at x and D(x) is the differential at x of the restriction of
X−1(·, t) to ∂Dt, as a differentiable mapping from ∂Dt onto ∂D0. Equations
(3.18) and (3.19) can be interpreted as follows. The gradient of ϕ(·, t) at a
point x ∈ ∂Dt may have a jump and this jump is related with the jump of
the jacobian at x. By equation (3.16) we see that the possible discontinuity at
the boundary has to be related with the divergence. We are going to check
that this jump appearing when the divergence is not continuous is in fact
compensated with the determinant in equation (3.13).

In particular, if we take gradient in (3.13) we get, for x /∈ ∂Dt,

∇Φ(x, t) = det∇X(X−1(x, t), t))∇ϕ(x, t)+

+∇
(

det∇X(X−1(x, t), t))
)

ϕ(x, t) = I(x) + I I(x).
(3.20)

Since second order derivatives of the velocity field are harmonic on the
complement of ∂Ds an application of Lemma 3.10 yields that for x /∈ ∂Ds and
for any 0 ≤ s ≤ t and any j, k ∈ {1, . . . , n}

(3.21) |∂j∂kv(x, s)| ≤ C(t) dist(x, ∂Ds)
γ−1.

As we have seen in Chapter 1 (see Lemma 1.23 and Proposition 1.25) both
the flow map and its inverse satisfy

(3.22) ‖∇X(·, t)‖L∞ , ‖∇X−1(·, t)‖ ≤ exp
∫ t

0
‖∇v(·, s)‖L∞ ds

and then

(3.23) C(t)−1 ≤ ‖∇X(·, s)‖L∞ ≤ C(t), 0 ≤ s ≤ t.

Consequently, for all α ∈ Rn, and for 0 ≤ s ≤ t,

(3.24) C(t)−1 dist(α, ∂D0) ≤ dist(X(α, s), ∂Ds) ≤ C(t)dist(α, ∂D0).

Now let us turn to the second term in the right hand side of (3.20). We
write

(3.25) I I(x) = ϕ0(α)∇x J(α, t),
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where we have set x = X(α, t) and J(α, t) as defined in (3.15). The jacobian
satisfies (3.16) and so

J(α, t) = exp
∫ t

0
div(v(X(α, s), s)) ds.

Hence ∇x J(α, t) is

J(α, t)
∫ t

0
div

(
(∇v)t(X(α, s), s)

)
∇X(α, s) ds∇X−1(x, t),(3.26)

where the divergence of a matrix is the vector with components the diver-
gence of rows. Combining (3.21), (3.22), (3.23), (3.24), (3.25) and (3.26) we
get

|I I(x)| ≤ C(t) |ϕ0(α)|
∫ t

0
dist(X(α, s), ∂Ds)

γ−1 ds

≤ C(t) |ϕ0(α)| dist(α, ∂D0)
γ−1

≤ C(t) dist(α, ∂D0)
γ.

If dist(x, ∂Dt)→ 0 then dist(α, ∂D0)→ 0 and thus I I(x)→ 0.
Therefore, if we let x → ∂Dt equation (3.20) becomes

(3.27) ∇Φ(x, t) = det∇X(X−1(x, t), t))∇ϕ(x, t)

and then a straightforward application of equations (3.18) and (3.19) shows
us that ∇Φ(·, t) can be extended continuously to any point x ∈ ∂Dt and, in
particular, we have

lim
Rn\∂Dt3y→x

∇Φ(x, t) =
|∇ϕ0(X−1(x, t))|

det D(x)
~n(x).

As we have pointed out in the proof of the previous lemma, the function
Φ(·, t) is a C1,γ-defining function for Dt for t up to the time T∗ given by
Picard-Lindelöf’s theorem. The problem is that we need an a priori control
of the smoothness of the domain for bigger times. For this reason, in the next
section we describe the evolution of the derivatives of this defining function
in terms of commutators (as in the Euler equation or the aggregation one).
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3.5 Commutators for the material derivative of∇Φ

At the moment we have set a defining function Φ(·, t) for the domain Dt for
0 ≤ t ≤ T∗ and we have seen that this Φ satisfies

DΦ
Dt

= div(v)Φ.

This partial differential equation for Φ is general and does not depend
on the choice of the kernel K such that v(·, t) = K ∗ χDt (as soon as we can
invoke Lemma 3.10 or a similar result) but the divergence of the velocity
field does. For instance, if K is such that the velocity field is divergence
free then the material derivative of Φ vanishes and we simply have that
Φ(·, t) = ϕ0(X−1(·, t)) for ϕ0 a defining function for D0. Also if we con-
sider the aggregation kernel then div(v(·, t)) = −χDt (note that the spatial
derivative of this divergence is 0 except maybe at ∂Dt) and then we recover
the defining function Φ computed in [BGLV]. Nevertheless, in general, the
divergence of the velocity field for K = L · ∇N will be a SIO acting on the
characteristic of a domain.

Both in Euler and aggregation equations one can see that the material
derivative of the gradient of a good defining function is equal to a commuta-
tor with a singular kernel, that is, it is equal to an expression of the form

p.v.
∫

Rn
K(x− y)[ f (x)− f (y)]ω(y)dy.

The importance of having a commutator is that it allows us to have a proper
bound for the Hölder norm of it, and this will be needed later on in our
arguments. More specifically, we have the next control of the Hölder norm.

Lemma 3.12. Let K be a Calderon-Zygmund kernel, homogeneous of degree −n,
with mean zero on spheres, satisfying |∇K(x)| ≤ C |x|−n−1. For f ∈ Cγ and
ω ∈ L∞ set

G(x) = p.v.
∫

Rn
K(x− y)[ f (x)− f (y)]ω(y)dy.

Then, there exists a constant C0 depending on γ and n such that

|G|γ ≤ C0 | f |γ (|K ∗ω|L∞ + |ω|L∞).

Proof. See [BGLV, p. 355].

The goal of this section is to show that the material derivative of the gra-
dient of Φ is equal to a commutator also when the kernel is L · ∇N. Notice
that taking the gradient of div(v)Φ a term involving second derivatives of v
appears. This is

∇(div(v))Φ
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and it is annoying for our purposes. It does not combine with the rest of the
terms to yield a commutator. Also, apparently this is the most singular term
appearing. If our velocity field is divergence free this solitary term vanishes,
and for the aggregation equation, although the is not equal to 0, it also dis-
appears because div(v) is constant on each component of Rn \ ∂Dt and Φ
vanishes on ∂Dt. In general, the solitary term is present but, as we will see in
a moment, at least it vanishes when we look the PDE for∇Φ just at points of
the boundary of the domain.

To simplify the computations instead of a general matrix L we consider
n-square matrices having an entry equal to 1 and the rest of them null. It is
clear that these matrices form a base of the space Mn×n(R) and then, as we
discuss later, it will be sufficient to get the results in this section for them. We
define the basis in a precise way.

Definition 3.13. Let i, j = 1, . . . , n. We define the matrix Mij ∈ Mn×n(R) as
Mij = (Mij)kl for

(Mij)kl =

{
1 if k = i and l = j,
0 otherwise.

First of all we get the PDE involving the commutator for matrices of the
basis and for points of the boundary of the domain. The restriction to the
boundary has to be done, as already mentioned, due to the presence of the
solitary term.

Lemma 3.14. Let Mij the matrix defined in (3.13) and let
v = Mij · ∇N ∗ χD. Then, for Φ a defining function of D satisfying

DΦ
Dt

= div(v)Φ

we have that for every k = 1, . . . , n the material derivative of ∂kΦ restricted to ∂D
is either equal to 0 or equal to the difference of two commutators, each one of them of
the form

Sijk[Φ] := p.v. ∂i∂jN ∗ (χD∂kΦ)− (p.v. ∂i∂jN ∗ χD)∂kΦ.

Proof. In the conditions of the lemma, the field v is 0 en each component
except vj. Also, we have vj = ∂iN ∗ χD. Then, the equation for Φ can be
written as

∂tΦ + vj∂jΦ = ∂jvjΦ.

Computing the partial derivative ∂k of the previous equation and rearranging
terms we obtain

(3.28)
D(∂kΦ)

Dt
= ∂k∂jvjΦ + ∂jvj∂kΦ− ∂kvj∂jΦ.



60 Chapter 3. C1,γ regularity for patches and for the kernel L · ∇N in Rn

We claim that the term ∂k∂jvjΦ vanishes when we restrict to ∂D. On one
hand, since Φ is equally 0 and its gradient is not null at ∂D one has, by
Taylor expansion, that near the boundary Φ(x) ' d(x, ∂D). On the other
hand, By Main Lemma in [MOV], derivatives of the velocity field belong to
Cγ(D ∩ D̄c). Also, these derivatives are harmonic in this region because of
the choice of the kernel L · ∇N defining the velocity. Thus, having into ac-
count these facts and Lemma 3.10 we have

∂k∂jvjΦ ≤ Cd(x, ∂D)γ−1d(x, ∂D) = Cd(x, ∂D)γ → 0 as x → ∂D,

which proves the claim. Then equation (3.28) can be written at the boundary
as

(3.29)
D(∂kΦ)

Dt
= ∂jvj∂kΦ− ∂kvj∂jΦ = (∂i∂jN ∗ χD)∂kΦ− (∂k∂iN ∗ χD)∂jΦ.

As i, j, k ∈ {1, . . . , n} then different combinations and repetitions of the in-
dexes can appear and we have to distinguish between some cases.

First of all, if i = j = k then the two terms in the right hand side of (3.29)
are equal and D(∂kΦ)

Dt = 0.
If i = j 6= k, since ∂2

i N = 1
n δ0 + p.v. ∂2

i N for any i = 1, . . . , n then equation
(3.29) is equal to

D(∂kΦ)

Dt
= (∂2

i N ∗ χD)∂kΦ− (∂k∂iN ∗ χD)∂iΦ =

=
1
n

χD∂kΦ + (p.v. ∂2
i N ∗ χD)∂kΦ− (p.v. ∂k∂iN ∗ χD)∂iΦ.

(3.30)

The first term of the right hand side can be expressed as

(3.31)
1
n

χD∂kΦ =
1
n

δ0 ∗ (χD∂kΦ) = ∂2
i N ∗ (χD∂kΦ)− p.v. ∂2

i N ∗ (χD∂kΦ).

Since Φ vanishes in ∂D then χD∂kΦ = ∂k(χDΦ). Thus, switching derivatives
in the convolution we have

∂2
i N ∗ (χD∂kΦ) = ∂i(∂iN) ∗ (∂k[χDΦ]) = ∂k(∂iN) ∗ (∂i[χDΦ])) =

= ∂k∂i ∗ (χD∂iΦ) = p.v. ∂i∂kN ∗ (χD∂iΦ),

and we can write (3.31) as

(3.32)
1
n

χD∂kΦ = p.v. ∂k∂iN ∗ (χD∂iΦ)− p.v. ∂2
i N ∗ (χD∂kΦ).

Putting (3.32) inside (3.30) we get

D(∂kΦ)

Dt
= p.v. ∂k∂iN ∗ (χD∂iΦ)− (p.v. ∂k∂iN ∗ χD)∂iΦ

− [p.v. ∂2
i N ∗ (χD∂kΦ)− (p.v. ∂2

i N ∗ χD)∂kΦ] = Skii[Φ]− Siik[Φ].
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Up to now we have discussed the cases where i = j, that is, when the matrix
Mij has the non-zero value at the diagonal. Consider now i 6= j, k = i. Then

D(∂iΦ)

Dt
= (∂i∂jN ∗ χD)∂iΦ− (∂2

i N ∗ χD)∂jΦ.

Note that the above expression is very similar to (3.30). Then, a straightfor-
ward repetition of the argument in that case shows

D(∂iΦ)

Dt
= Siij[Φ]− Siji[Φ].

If i 6= j but k = j then (3.29) is

D(∂jΦ)

Dt
= (p.v. ∂i∂jN ∗ χD)∂jΦ)− (p.v. ∂i∂jN ∗ χD)∂jΦ) = 0

and there is nothing to prove.
Finally, if the three indexes i, j, k are pairwise different the expression in

(3.29) can be written with principal values for sure. That is, in this case

(3.33)
D(∂kΦ)

Dt
= p.v. (∂i∂jN ∗ χD)∂kΦ− p.v. (∂k∂iN ∗ χD)∂jΦ,

since no Dirac deltas appear.
Note that since i, j, k are different from each other (and therefore the prin-

cipal values can be avoided), then we can switch derivatives in the following
convolutions and get

p.v. ∂i∂jN∗(χD∂kΦ) = ∂i∂jN ∗ (χD∂kΦ) =

= ∂k∂iN ∗ (χD∂jΦ) = p.v. ∂k∂iN ∗ (χD∂jΦ).

Then we can add and subtract some term in (3.33) to have

D(∂kΦ)

Dt
= Skij[Φ]− Sijk[Φ].

If we apply Lemma 3.12 we see that the Hölder semi-norm of order γ of
each of the commutators appearing in the previous lemma can be estimated
by

Cn ‖∇v(·, t)‖∞‖∇Φ(·, t)‖γ,Rn .

This is not enough in our situation. Since the commutator is just valid at
the boundary of the domain then we need that the presence of the factor
‖∇Φ(·, t)‖γ,Rn (which appears since the region of integration of the commu-
tator is the whole space) is replaced by a boundary quantity like
‖∇Φ(·, t)‖γ,∂Dt . This attempt could be tried since we can transform the dif-
ferences of commutators obtained in Lemma 3.14 in what we call boundary
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commutators, that is, commutators described by an integral just taking values
of points in the boundary of the domain.

In order to simplify the proof of the equivalence between differences of
solid commutators and differences of boundary ones we have the following gen-
eral relationship between them.

Lemma 3.15. Let f ∈ C2(Rn, R) and D a smooth domain in Rn. If we define

Bijk[ f ](x) := (−1)k−1
∫

∂D
∂iN(x− y)[∂j f (y)− ∂j f (x)]dyk̄,

for dyk̄ = dy1 ∧ . . . ∧ dyk−1 ∧ dyk+1 ∧ . . . ∧ dyn, then we have

Sijk[ f ] = −Bjki[ f ] + ∂jN ∗ (χD∂i∂k f ).

Proof. Let Aε = D ∩ B(x, ε). Thus,

(3.34) Sijk[ f ](x) = lim
ε→0

∫
D\Aε

∂i∂jN(x− y)[∂k f (y)− ∂k f (x)]dy.

For y ∈ D \ Aε we have

∂

∂yi
(∂jN(x− y)[∂k f (y)− ∂k f (x)]) =

= −∂i∂jN(x− y)[∂k f (y)− ∂k f (x)] + ∂jN(x− y)∂i∂k f (y)
(3.35)

By (3.35) we can write (3.34) as

Sijk[ f ](x) = lim
ε→0

∫
D\Aε

∂jN(x− y)∂i∂k f (y)dy−

− lim
ε→0

∫
D\Aε

∂

∂yi
(∂jN(x− y)[∂k f (y)− ∂k f (x)])dy =

= lim
ε→0

∫
D\Aε

∂jN(x− y)∂i∂k f (y)dy−

−(−1)i−1 lim
ε→0

∫
D\Aε

d
(
∂jN(x− y)[∂k f (y)− ∂k f (x)]dyī

)
,

(3.36)

where
dyī = dy1 ∧ . . . ∧ dyi−1 ∧ dyi+1 ∧ . . . ∧ dyn.

If we apply Stokes’ Theorem to the last integral in (3.36) we get

Sijk[ f ](x) = lim
ε→0

∫
D\Aε

∂jN(x− y)∂i∂k f (y)dy−

−(−1)i−1p.v.
∫

∂D
∂jN(x− y)[∂k f (y)− ∂k f (x)]dyk̄ =

= ∂jN(x− y) ∗ (χD∂i∂k f )− Bjki[ f ](x),

(3.37)
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because the term

lim
ε→0

∫
∂B(x,ε)∩D

∂jN(x− y)[∂k f (y)− ∂k f (x)]dyk̄

vanishes since ∂k f is continuous at x.

The above result needs the function f to have two derivatives but we
want Φ to take the role of f and in general we just can assure that Φ ∈ C1,γ.
We need the following technicalities to justify that we can use the previous
lemma. We start by setting a new space of functions related to the Hölder
space.

Definition 3.16. Let 0 < γ < 1. We define the little-Hölder space of functions
cγ(Rn; Rd) as

cγ(Rn; Rd) =

 f ∈ Cγ(Rn; Rd) : lim
δ→0

sup
x,y∈Rn

|x−y|<δ

| f (x)− f (y)|
|x− y|γ

= 0

 .

Remark 3.17. One can check that, given 0 < γ < 1 then for every ε > 0,

Cγ+ε(Rn; Rd) ⊂ cγ(Rn; Rd) ⊂ Cγ(Rn; Rd).

We have that this space we just defined is the closure of the classical
Hölder space.

Proposition 3.18. Let 0 < γ′ < 1 and let γ > γ′. Then cγ′(Rn; Rd) is the closure
of Cγ(Rn; Rd) in Cγ′(Rn; Rd).

Proof. See e.g. [Lu, Proposition 0.2.1].

We have all the tools to check that the PDE for the gradient of Φ can be
expressed (at least at the boundary of the domain) as a difference of boundary
commutators.

Lemma 3.19. Let Mij the matrix defined in (3.13) and let
v = Mij · ∇N ∗ χD. Then, for Φ a defining function of D satisfying

DΦ
Dt

= div(v)Φ

we have that for every k = 1, . . . , n the material derivative of ∂kΦ restricted to ∂D
is either equal to 0 or equal to the difference of two commutators on the boundary of
D, each one of them of the form

Bijk[ f ](x) := (−1)k−1
∫

∂D
∂iN(x− y)[∂j f (y)− ∂j f (x)]dyk̄.
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Proof. There are two type differences of commutators that appear in the proof
of Lemma 3.14. When i = j 6= k (similarly for k = i 6= j) the material
derivative of ∂kΦ at the boundary can be written as Skii[Φ]− Siik[Φ]. Assume
Φ ∈ C2. Then, by Lemma 3.15 we have

Skii[Φ]− Siik[Φ] = −Biik[Φ] + ∂iN ∗ (χD∂i∂kΦ)+

+ Biki[Φ]− ∂iN ∗ (χD∂i∂kΦ) = Biki[Φ]− Biik[Φ].

Also, for i, j, k pairwise different we saw that the material derivative of
∂kΦ was equal to Skij[Φ] − Sijk[Φ]. Again assuming Φ ∈ C2 we can apply
Lemma 3.15 to get

Skij[Φ]− Sijk[Φ] = Skij[Φ]− Sjik[Φ] =

= −Bijk[Φ] + ∂iN ∗ (χD∂j∂kΦ) + Bikj[Φ]− ∂iN ∗ (χD∂j∂kΦ) =

= Bikj[Φ]− Bijk[Φ],

where we have used that Sijk[Φ] = Sjik[Φ] which is clear by definition.
If Φ /∈ C2, consider ϕ a smooth mollifier and ϕε = ε−n ϕ(x/ε). Let

Φε = ϕε ∗ Φ. In particular, Φε ∈ C2. Let T1 one of the differences of com-
mutators appearing in Lemma 3.14 and let T2 the corresponding difference
of commutators on the boundary, as computed above. Thus, since Φε ∈ C2,
we have

T1Φε = T2Φε.

Since the operators Ti, i ∈ {1, 2} are linear we have

lim
ε→0

Ti(Φε)− Ti(Φ) = lim
ε→0

Ti(Φε −Φ) = 0

where the limit has been taken in the Cγ′ norm for γ′ < γ. The second limit
is equal to 0 by virtue of Lemma 3.12 and Proposition 3.18 since

lim
ε→0
|Ti(Φε −Φ)|γ′ ≤ lim

ε→0
C |Φε −Φ|1,γ′ = 0.

Consequently, in the Cγ′ norm we get

T1(Φ) = lim
ε→0

T1(Φε) = lim
ε→0

T2(Φε) = T2(Φ)

even though Φ /∈ C2.
A straightforward argument shows that T1(Φ) = T2(Φ) pointwise and

hence the proposition holds.

At the moment, we have the commutators satisfied by the material deriva-
tive of the components of ∇Φ. Unfortunately, we cannot apply Lemma 3.12
directly as some difficulties appear. We explain the nature of this problem
and how to solve it in the next section.
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3.6 The (controlled) extension of Φ

As we explained before, our objective is to bound the Cγ norm of the gradient
of the defining function Φ at the boundary of the domain. In order to do
that, we bound the material derivative of this gradient in such a way that we
can apply Gronwall’s Lemma and get what we desire. As stated before, we
cannot do it for the material derivative written as the difference of two solid
commutators since that would lead us to a bound depending on the Cγ of the
gradient of Φ in the whole space. On the other hand and with respect to the
boundary commutators, if we try to adapt the Lemma 3.12 to the underlying
measure dσt on ∂Dt, we would get a constant of the type

Ct = sup
x∈∂Dt

sup
r>0

σt(B(x, r))
rn−1 .

The constant Ct can be estimated by the Lipschitz constant of X(·, t), namely,
exp

∫ t
0 ‖∇v(·, s)‖∞ ds, but this exponential constant is far too large. The goal

of the present section will be to solve these problems and achieve the right
estimate for the material derivative of the gradient of Φ (at the boundary) in
terms of the quantity ‖∇Φ(·, t)‖γ,∂Dt . We will make use of Whitney’s Exten-
sion theorem (see e.g. [Ste, Chapter VI, p.177]) and also we will take profit
again of the equivalence between solid and boundary commutators, in this
case turning back to the solids once the extension is done.

We start by giving a technical lemma that will be used to control the future
extension by just its behavior at the boundary.

Lemma 3.20. Let D a domain with C1,γ-defining function Φ. Then

sup

{
|∇Φ(x) · (y− x)|
|y− x|1+γ

: y 6= x, y, x ∈ ∂D

}
≤ 21+γ/2 ||∇Φ||γ,∂D .

Proof. Let x ∈ ∂D. Without loss of generality we can consider x = 0 and
∇Φ(0) = (0, . . . , 0, ∂nΦ(0)) with ∂nΦ(0) > 0. We define δ = δx by

δ−γ = 2
||∇Φ||γ,∂D

|∇Φ(0)| .

Let y ∈ B(0, δ) ∩ ∂D. Since

|∇Φ(y)−∇Φ(0)| ≤ ||∇Φ||γ,∂D δγ =
|∇Φ(0)|

2
,

then we have that ∇Φ(y) ∈ B(∇Φ(0), |∇Φ(0)|
2 ). That is, the tangent hyper-

plane to ∂D at y forms an angle less than 30 degrees with the horizontal plane
and thus ∂D ∩ B(0, δ) is the graph of a function yn = ϕ(y′n) which satisfies
a Lipschitz condition with constant less than 1. The function ϕ is defined in
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an open set U which is the projection of B(0, δ) ∩ ∂D into Rn−1 defined by
y = (y′, yn) → y′. By the Implicit Function Theorem ϕ is of class C1,γ in its
domain.

Note that the segment [0, y′] = {ty′ : 0 ≤ t ≤ 1} is contained in U since
for any z′ ∈ [0, y′] we have∣∣ϕ(z′)− ϕ(0)

∣∣ = ∣∣ϕ(z′)∣∣ ≤ ∣∣z′∣∣ ≤ ∣∣y′∣∣ .

The Mean Value Theorem on the segment [0, y′] for the function
t→ ϕ(ty′) yields

|∇Φ(0) · y|
|y|1+γ

=
|∇Φ(0)| |ϕ(y′)|
|y|1+γ

≤

≤ |∇Φ(0)|
|y|1+γ

sup
{∣∣∇ϕ(z′)

∣∣ : z′ ∈ U,
∣∣z′∣∣ ≤ ∣∣y′∣∣} ∣∣y′∣∣ .

(3.38)

By implicit differentiation

∂j ϕ(z′) = −
∂jΦ(z′, ϕ(z′))
∂nΦ(z′, ϕ(z′))

, 1 ≤ j ≤ n− 1

and recalling that ∂jΦ(0) = 0, 1 ≤ j ≤ n− 1 and that z = (z′, ϕ(z′)) we get

(3.39)
∣∣∇ϕ(z′)

∣∣ ≤ ||∇Φ||γ,∂D

|∂nΦ(z)| |z|
γ ,

∣∣z′∣∣ ≤ ∣∣y′∣∣ .

We also have

|∂nΦ(z)| ≥ |∂nΦ(0)| − |∂nΦ(z)− ∂nΦ(0)| ≥

≥ |∇Φ(0)| − ||∇Φ||γ,∂D δγ =
|∇(0)|

2

(3.40)

and

(3.41) |z| = (
∣∣z′∣∣2 + ϕ(z′)2)1/2 ≤

√
2
∣∣z′∣∣ .

Putting (3.40) and (3.41) into (3.39) we get

∣∣∇ϕ(z′)
∣∣ ≤ 2
|∇Φ(0)| ||∇Φ||γ,∂D 2γ/2 ∣∣z′∣∣γ ,

∣∣z′∣∣ ≤ ∣∣y′∣∣ .

Thus, by the inequality above we can bound (3.38) as

|∇Φ(0) · y|
|y|1+γ

≤ 21+γ/2 ||∇Φ||γ,∂D .



3.6. The (controlled) extension of Φ 67

Otherwise, if y ∈ ∂D \ B(0, δ)

|∇Φ(0) · y|
|y|1+γ

≤ |∇Φ(0)|
|y|γ

≤ |∇Φ(0)|
δγ

= 2 ||∇Φ||γ,∂D

completing the proof of the lemma.

Then we can state the result that we anticipated in the beginning of the
section.

Proposition 3.21. In the situation of Lemma 3.19, the |·|γ,∂D norm of each of the
differences of two commutators on the boundary of D appearing for the material
derivative of ∂kΦ is bounded by

Cn ||∇v||L∞ |∇Φ|γ,∂D ,

where Cn is a constant depending on the dimension n.

Proof. We start by considering the jet

(0, ∂1Φ, . . . , ∂nΦ)

on ∂D. By Whitney’s Extension theorem there exists Ψ of class C1+γ(Rn) such
that Ψ = 0 and ∇Ψ = ∇Φ on ∂D, satisfying

‖∇Ψ‖γ,Rn ≤ Cn

(
‖∇Φ‖γ,∂D + sup{ |∇Φ(x) · (y− x)|

|y− x|1+γ
: y 6= x, y, x ∈ ∂D}

)
.

This estimate is not stated explicitly in the theorem in [Ste, p. 177] but it fol-
lows from the proof. In Lemma 3.20 the supremum in the expression above
has been bounded and then we have the simpler bound

‖∇Ψ‖γ,Rn ≤ Cn‖∇Φ‖γ,∂D.

We set DS as a difference of solid commutators described in Lemma 3.14
and DB the associate difference of boundary commutators as in Lemma 3.19.
Then, since ∇Ψ = ∇Φ on ∂D the differences of solid commutators DS(Φ)
and DS(Ψ) are equal. Thus

‖DB‖γ,∂D = ‖DS(Ψ)‖γ,∂D ≤ ‖DS(Ψ)‖γ,Rn

≤ Cn ||∇v||L∞ ‖∇Ψ‖γ,Rn ≤ Cn ||∇v||L∞ ‖∇Φ‖γ,∂D

and so the proposition is proved.

Finally we have achieved a good control of the commutators. This would
lead us to an a priori control of the smoothness of the domain.
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3.7 Proof of the Main Theorem

Before proving Theorem 3.1, we present the a priori estimates for the defin-
ing function Φ. Getting these estimates is the core of the proof and are a
direct consequence of the bound obtained thanks to have a commutator for
the material derivative of ∇Φ. The same estimates were obtained both for
the Euler and for the aggregation equations.

Lemma 3.22. Let v(·, t) = L · ∇N ∗ χDt and let Φ(·, t) the defining function for
Dt determined by

(3.42)
DΦ
Dt

= div(v)Φ.

Then, for ‖∇Φ(·, t)‖L∞,∂Dt := ‖∇Φ(·, t)χ∂Dt‖L∞ we have

(3.43) ‖∇Φ(·, t)‖L∞,∂Dt ≤ ‖∇Φ(·, 0)‖L∞,∂Dt exp
(

2n
∫ t

0
‖∇v(·, s)‖L∞ ds

)

(3.44) |∇Φ(·, t)|inf ≥ |∇Φ(·, 0)|inf exp
(
−2

∫ t

0
‖∇v(·, s)‖L∞ ds

)
,

and

(3.45) |∇Φ(·, t)|γ,∂Dt
≤ |∇Φ(·, 0)|γ,∂D0

exp
(

Cn

∫ t

0
‖∇v(·, s)‖L∞ ds

)
.

Proof. Getting rid of the solitary term ∂k(div(v))Φ –we know it vanishes
at the boundary by an application of Lemma 3.10 as done in the previous
section–, we get by taking a partial derivative to equation (3.42) and after a
rearrangement of terms,

(3.46)
D(∂kΦ)

Dt
= div(v)∂kΦ−

n

∑
j=1

∂kvj∂jΦ =
n

∑
j=1

(∂jvj ∂kΦ− ∂kvj∂jΦ).

If we consider the ‖ · ‖L∞,∂Dt norm in the previous equation we obtain

D
Dt
‖∂kΦ(·, t)‖L∞,∂Dt ≤

n

∑
i=1

(
‖∂jvj(·, t)‖L∞,∂Dt‖∂kΦ(·, t)‖L∞,∂Dt+

+ ‖∂kvj(·, t)‖L∞,∂Dt‖∂jΦ(·, t)‖L∞,∂Dt

)
≤

≤ 2n‖∇v(·, t)‖L∞,∂Dt‖∇Φ(·, t)‖L∞,∂Dt .

Taking supremum over k then

D
Dt
‖∇Φ(·, t)‖L∞,∂Dt ≤ 2n‖∇v(·, t)‖L∞,∂Dt‖∇Φ(·, t)‖L∞,∂Dt
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which yields

‖∇Φ(·, t)‖L∞,∂Dt ≤ ‖∇Φ(·, 0)‖L∞,∂Dt exp
(

2n
∫ t

0
‖∇v(·, s)‖ds

)
.

Secondly, for x ∈ ∂Dt choose k ∈ {1, . . . , n} such that ∂kΦ(·, t) does not
vanishes at x –such a k exists since ∇Φ(·, t) is not zero for every point in the
boundary since Φ is a C1,γ-defining function–

D
Dt

[log(|∂kΦ(x, t)|)] = 1
|∂kΦ(x, t)|

D
Dt
|∂kΦ(x, t)| ≥

≥ 1
‖∇Φ(·, t)‖L∞

D
Dt
|∂kΦ(x, t)| .

By equation (3.46) we can bound D
Dt |∂kΦ(x, t)| from below by

−2n‖∇v(·, t)‖L∞‖∇Φ(·, t)‖L∞

and obtain

D
Dt

[log(|∂kΦ(x, t)|)] ≥ −2n‖∇v(·, t)‖L∞ .(3.47)

Taking supremum over k and by direct integration we get, for x ∈ ∂Dt

|∇Φ(x, t)| ≥ |∇Φ(x, 0)| exp
(
−2n

∫ t

0
‖∇v(·, s)‖L∞ ds

)
which implies inequality (3.44).

We finally prove inequality (3.45). Since the right hand side of (3.46) de-
pends linearly on v then the material derivative of ∂k is a linear combination
of differences of commutators on the boundary of Dt. Therefore, by Proposi-
tion 3.21

D
Dt
|∂kΦ(·, t)|γ,∂Dt

≤ Cn‖∇v(·, t)‖L∞ |∇Φ(·, t)|γ,∂Dt
.

Taking supremum over k ∈ {1, . . . , n} and integrating we get inequality
(3.45).

We already have all the ingredients to complete the proof of the main
theorem of the chapter.

Proof of Theorem 3.1. By Theorem 3.8 there exists a solution X(·, t) with max-
imal time T∗. By this we mean that X(·, t) is defined for t ∈ (−T∗, T∗) but
cannot be extended to a larger interval. We want to prove that T∗ = ∞. For
that it suffices to prove that for some constant C = C(T∗) one has

(3.48) diam(Dt) + σt(∂Dt) + q(Dt) ≤ C, t ∈ (−T∗, T∗).
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If the preceding inequality holds, then we take t0 < T∗ close enough to T∗

so that after the application of the existence and uniqueness theorem for the
CDE to the domain Dt0 at time t0 we get an interval of existence for the solu-
tion which goes beyond T∗ (the same argument applies to the lower extreme
−T∗).

Given χDt the weak solution to the transport equation given by Theorem
3.9 and v(·, t) = L · ∇N ∗ χDt , we consider the function Φ(x, t) defined by
the partial differential equation

D
Dt

Φ(x, t) = div(v(x, t))Φ(x, t).

By Proposition 3.11 we know that Φ(·, t) is a C1,γ-defining function for Dt.
Also, by inequalities (3.44) and (3.45) in Lemma 3.22 we get

(3.49)
|∇Φ(·, t)|γ,∂Dt

|∇Φ(·, t)|inf
≤
|∇Φ(·, 0)|γ,∂D0

|∇Φ(·, 0)|inf
exp

(
Cn

∫ t

0
‖∇v(·, s)‖L∞ ds

)
.

By an application of Lemma 1.7 and the classic bound

(3.50) ‖∇X(·, t)‖L∞ ≤ c exp
(∫ t

0
‖∇v(·, s)‖L∞ ds

)
we also have for R(t) = m(Dt)1/n

(3.51) R(t) ≤ R(0) exp
(∫ t

0
‖∇v(·, s)‖L∞ ds

)
.

Combining now the bounds (3.49) and (3.51) and the logarithmic inequality
in Theorem 3.6 one gets, for a dimensional constant C,

||∇v(·, t)||L∞ ≤ C + C
∫ t

0
||∇v(·, s)||L∞ ds,

which yields, by Gronwall,

(3.52) ||∇v(·, t)||L∞ ≤ C eCt, −T∗ < t < T∗.

Inequality (3.52) allow us to control the left hand side of (3.48). Indeed, as
seen in [BGLV, Section 7], one has

σt(∂Dt) ≤ (n− 1)1/2σ0(∂D0) exp
(
(n− 1)

∫ t

0
‖∇v(·, s)‖L∞ ds

)
and then by (3.52), for −T∗ < t < T∗,

σt(∂Dt) ≤ (n− 1)1/2σ0(∂D0) exp (C exp(Ct)) .

An argument similar to the one developed in the proof of Lemma 1.7 allow
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us to give an expression for the diameter of Dt in terms of the gradient of the
flow map and therefore by (3.50) and (3.52), for −T∗ < t < T∗ we have

diam(Dt) ≤ diam(D0) exp(C exp(Ct)).

Finally by inequalities (3.49) and (3.52) it is clear that

q(Dt) ≤ q(D0) exp(C exp(Ct))

which completes the proof of the theorem.
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4 Patches in C

4.1 Introduction

Throughout this chapter we will study the density patch problem as done in
Chapter 3 but reducing to dimension 2. This reduction allow us to consider
more kernels than the ones of the form L · ∇N. As in Chapter 2 we will
work in the complex plane (details describing the change of language and
the notation used can be found in Section 2.1) and we will deal with the same
general family of kernels described in (2.1), namely

K1(z) =
1
π

(z + εz̄)k

(z̄ + εz)k+1 or K2(z) = K1(z) =
1
π

(z̄ + εz)k

(z + εz̄)k+1 .

For these kernels we will recover the C1,γ regularity result for the boundary
of a domain, exactly as in Chapter 3. That is, the main result of the present
chapter is the following.

Theorem 4.1. Let Ki, i = 1, 2 as defined in (2.1) and let D0 be a simply connected
C1,γ domain in the complex plane. Then the transport equation

(4.1)


ρt + v · ∇ρ = 0,
v(·, t) = Ki ∗ ρ(·, t),
ρ(·, 0) = χD0 ,

has a unique weak solution in the sense of (4.8) such that ρ(·, t) = χDt for Dt a
simply connected C1,γ domain in the complex plane, for every time t ∈ R.

We will write the proof just for the kernel K2 but since K1 is the conjugate
of it, a straightforward repetition of the argument will work for K1 too. We
want to stress that at some steps –specially in the last section– we will refer to
the previous chapter to see details that are not presented here. However, we
will highlight the differences and difficulties appearing when dealing with
the kernels in (2.1) when these come up. In particular, we prove in detail
a local version of Theorem 4.1, that is, for short times. The proof of the lo-
cal Theorem was avoided in Chapter 3 because it could be reduced to the
proof for the case of patches for the aggregation kernel, and this was done in
[BGLV]. Nevertheless, for the kernels in (2.1) we cannot reduce to that case
and so the proof is needed.
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Recall that the kernels K1 and K2 (or its sum) are a generalization of the
kernels L · ∇N considered in Chapters 1 and 3, so Theorem 4.1 encompasses
the equivalent result for L · ∇N when reducing to dimension 2.

4.1.1 Outline of the chapter

The chapter has the following structure. In Section 4.2 we present some
Hölder estimates around integral operators acting on a curve in C. In Sec-
tion 4.3 we have a complete proof of the local-in-time version of Theorem 4.1
by using again the Picard-Lindelöf’s theorem. Finally, in Section 4.4 we adapt
the proof in Chapter 3 in order to check that the local patch solution is in fact
global. We explain the details concerning the differences appearing and refer
to Chapter 3 whenever we need results that were already done there.

4.2 Hölder estimates

In order to show Theorem 4.1, we need some auxiliary results concerning the
kernels K1 and K2 that should be used on the proof. The techniques used
in this section might be already known, but we prefer to write the proofs in
detail for the sake of the reader.

Definition 4.2. Let D be a simply connected domain with boundary Γ = ∂D, a
Jordan-Ahlfors regular curve. Let

Nk,ε(z) =
(z̄ + εz)k

(z + εz̄)k+1 , k ∈N∪ {0}, 0 ≤ |ε| < 1.

We define the operator Ck,ε as

[Ck,ε f ](z) = p.v.
∫

Γ
Nk,ε(z− w) f (w)dw, z ∈ Γ

for sufficiently good functions f .

Definition 4.3. For Γ as in Definition 4.2 we define the norm

|| f ||Lip(γ,Γ) = sup
z∈Γ
| f (z)|+ sup

z,w∈Γ
z 6=w

| f (z)− f (w)|
|z− w|γ

:= || f ||L∞ + | f |γ .

Also, we define the space Lip(γ, Γ) of functions having this norm bounded.

This norm presented here is not new and we write it using this notation
when working with curves in the plane.

The result of this section shows that the operator Ck,ε sends the space
Lip(γ, Γ) into itself. First of all, we verify that the result holds for the function
taking constant value 1, as this would be used in the proof later on.
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Lemma 4.4. Let Ck,ε as in Definition 4.2. Then, for each k ∈ N ∪ {0} and each
ε ∈ R such that 0 ≤ |ε| < 1, we have

[Ck,ε1](z) ∈ Lip(γ, Γ).

Proof. First of all, recall that by Plemelj’s Formula (e.g. [To, Thm. 1.1]),

[Ck,ε1](z) =
1
2

(
[C+k,ε1](z) + [C−k,ε1](z)

)
, a.e. z ∈ Γ;

where
[C+k,ε1](z) = lim

D3y→z
non-tangencially

∫
Γ

Nk,ε(y− w) f (w)dw,

[C−k,ε1](z) = lim
Dc3y→z

non-tangencially

∫
Γ

Nk,ε(y− w) f (w)dw.

We observe that for ∂B(y, δ) := {|w− y| = δ}, by a change of variables
w = y + δeiθ we have

∫
∂B(y,δ)

Nk,ε(y− w) dw =
∫ 2π

0
Nk,ε(δeiθ)iδeiθ dθ =

∫ 2π

0
Nk,ε(e

iθ)ieiθ dθ,

where the last equality stands due to the homogeneity of the kernel Nk,ε. If
we do now a change of variables z = eiθ we then have∫

∂B(y,δ)
Nk,ε(y− w) dw =

∫
∂B(0,1)

Nk,ε(z)dz =: ck,ε.

Let y ∈ D. We observe then that ck,ε is a well-defined quantity which is inde-
pendent of δ. Thus, we can subtract the integral around ∂B(y, δ) by paying
the quantity ck,ε.

∫
Γ

Nk,ε(y− w)dw =
∫

Γ
Nk,ε(y− w)dw−

−
∫

∂B(y,δ)
Nk,ε(y− w)dw + ck,ε =

=
∫

Γ\∂B(y,δ)
Nk,ε(y− w)dw + ck,ε.

(4.2)

We just have to focus on the integral in the right hand side of (4.2). Applying
Stokes’ theorem∫

Γ\∂B(y,δ)
Nk,ε(y− w)dw = 2i

∫
D\B(y,δ)

∂Nk,ε(y− w)dA(w) := T̄k,ε(χD)(y),
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where T̄k,ε denotes the Calderón-Zygmund operator with kernel

2i

[
ε
(z̄ + εz)k−1

(z + εz̄)k+1 − (k + 1)
(z̄ + εz)k

(z + εz̄)k+2

]
.

These operators are even, smooth homogeneous Calderón-Zygmund opera-
tors and by the Main Lemma in [MOV, p. 407] we have

T̄k,ε(χD) ∈ Lip(γ, D)

because Γ = ∂D is a curve of class C1,γ. Proceeding in a similar way, we get
when y ∈ Dc

∫
Γ

Nk,ε(y− w)dw = −T̄k,ε(C \ χD)(y) = T̄k,ε(χD)(y)

and by the mentioned Main Lemma in [MOV] T̄k,ε(χΩ) ∈ Lip(γ, Dc
).

Therefore [C+k,ε1] and [C−k,ε1] belong to Lip(γ, Γ) and finally

[Ck,ε1] =
1
2
([C+k,ε1] + [C−k,ε1]) ∈ Lip(γ, Γ),

proving the lemma.

We also need the following lemma in order to prove our goal.

Lemma 4.5. Let Nk,ε as in Definition 4.2. Given η > 0, we set for z ∈ Γ and
k ∈N∪ {0},

[Cη
k,ε f ](z) := p.v.

∫
Γ\D(z,η)

Nk,ε(z− w) f (w)dw.

Then,
∣∣∣[Cη

k,ε1](z)
∣∣∣ ≤ C, where C is a constant independent of η.

Proof. Recall the definition of the maximal singular operator

C∗k,ε f (z) := sup
η>0

∣∣∣[Cη
k,ε f ](z)

∣∣∣ .

Now, since |dw| on Γ is a doubling measure we can apply Cotlar’s in-
equality (e.g. [Ar, Thm. 3.7]) to have the estimate

C∗k,ε f (z) ≤ C (M([Ck,ε f ])(z) + M( f )(z)) ,

where M denotes the Hardy-Littlewood maximal operator. In particular,

C∗k,ε1(z) ≤ C (M([Ck,ε1])(z) + M(1)(z)) , z ∈ Γ.
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By Lemma 4.4 we have that Ck,ε1 is bounded. Obviously, 1 is bounded on
Γ and Hardy-Littlewood Maximal Operator preserves bounded functions.
Then, ∣∣∣[Cη

k,ε1](z)
∣∣∣ ≤ C∗k,ε1(z) ≤ C

as we claimed.

Now, we are in position to prove the boundedness of Ck,ε in Lip(γ, Γ).

Proposition 4.6. Let Ck,ε and Γ as in Definition 4.2. If Γ is a C1,γ curve, then the
operators Ck,ε, k ∈N∪ {0}, 0 ≤ |ε| < 1, are bounded on Lip(γ, Γ) for 0 < γ < 1.

Proof. Let f ∈ Lip(γ, Γ). We write

[Ck,ε f ](z) = [Ck,ε f ](z)− f (z)[Ck,ε1](z) + f (z)[Ck,ε1](z) =

=
∫

Γ
Nk,ε(z− w)( f (w)− f (z))dw + f (z)[Ck,ε1](z) =:

=: Tk,ε f (z) + f (z)[Ck,ε1](z).

(4.3)

Note there is no principal value in Tk,ε because the term f (w) − f (z)
makes it integrable.

By Lemma 4.4 the second term in the right hand side of (4.3) belongs to
Lip(γ, Γ) and it is enough to check that Tk,ε f ∈ Lip(γ, Γ). Clearly,

|Tk,ε f (z)| ≤
∫

Γ

| f (w)− f (z)|
|w− z| |dw| ≤ | f |γ

∫
Γ

1

|w− z|1−γ
|dw| ≤ C | f |γ .

Now, let z1, z2 ∈ Γ and let d := |z1 − z2|. By definition,

Tk,ε f (z1)− Tk,ε f (z2) =

=
∫

Γ
[( f (w)− f (z1))Nk,ε(z1 − w)− ( f (w)− f (z2))Nk,ε(z2 − w)] dw.

Hence, by taking absolute value, we get

|Tk,ε f (z1)− Tk,ε f (z2)| =

=

∣∣∣∣∫Γ\D1

[( f (w)− f (z1))Nk,ε(z1 − w)− ( f (w)− f (z2))Nk,ε(z2 − w)] dw
∣∣∣∣+

+
∫

Γ\D1

| f (w)− f (z1)|
|w− z1|

|dw|+
∫

Γ\D2

| f (w)− f (z2)|
|w− z2|

|dw| =: I + II + III,

where D1 := D(z1, 2d) and D2 := D(z2, 3d).
The term II can be estimated by

(4.4) II ≤ | f |γ
∫

Γ∩D(z1,2d)

|dw|
|w− z1|1−γ

.
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Let σ(ρ) = length(Γ ∩ D(z, ρ)). Recall that Γ is Ahlfors, so σ(ρ) ' ρ. Hence

II ≤ C
∫ 2d

0

dσ(ρ)

ρ1−γ
= C

∣∣∣∣σ(ρ)ρ1−γ

∣∣∣∣2d

0
+ C(1− γ)

∫ 2d

0

σ(ρ)

ρ2−γ
dρ =

= Cdγ + C
∫ 2d

0
ργ−1 dρ = Cdγ.

An estimate for III follows in similar fashion and so we have

III ≤ | f |γ
∫

Γ∩D(z2,3d)

|dw|
|w− z2|1−γ

≤ Cdγ.

Now, we focus on I. Adding and subtracting

( f (w)− f (z2))Nk,ε(z1 − w)

we get

I ≤
∣∣∣∣∫|w−z1|>2d

( f (z2)− f (z1))Nk,ε(z1 − w)dw
∣∣∣∣+

+

∣∣∣∣∫|w−z1|>2d
( f (w)− f (z2)) [Nk,ε(z1 − w)− Nk,ε(z2 − w)] dw

∣∣∣∣ .
(4.5)

By Lemma 4.5 the first term of (4.5) is bounded by C | f (z2)− f (z1)|. The
second one is bounded by

C || f ||γ |z1 − z2|
∫
|w−z1|>2d

|dw|
|w− z|2−γ

≤ Cd
∫ ∞

2d

dσ(ρ)

ρ2−γ
=

= Cd
∣∣∣∣σ(ρ)ρ2−γ

∣∣∣∣∞
2d
+ Cd

∫ ∞

2d

σ(ρ)

ρ3−γ
dρ = Cdγ.

Therefore, I, II and III are bounded by Cdγ = C |z1 − z2|γ, which proves
the proposition.

4.3 Local Theorem

4.3.1 Contour Dynamics Equation

We derive an equation for the boundary of the domain of the patch at any
time. Such a derivation will be done formally and the equation will make
completely sense whenever the existence theorem is proved. Our goal is to
prove that the C1,γ regularity of the boundary is preserved.

First of all, we compute the distributional derivative with respect to z̄ for
the indicator function of a domain Ω, χΩ. Let ϕ ∈ C∞

0 a test function. Then,
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〈∂̄χΩ, ϕ〉 = −〈χΩ, ∂̄ϕ〉 = −
∫

C
χΩ(w)∂̄ϕ(w)dA(w) = −

∫
Ω

∂̄ϕ(w)dA(w)

= − i
2

∫
Ω

∂̄ϕ(w)dw ∧ dw̄ =
i
2

∫
∂Ω

ϕ(w)dw = 〈 i
2

dw|∂Ω, ϕ〉,

where we have applied Stokes’ theorem.
That is, ∂̄χΩ = i

2 dw|∂Ω. Note that we have used

dA(w) = dx ∧ dy =
1
2
(dw + dw̄) ∧ 1

2i
(dw− dw̄) =

=
1
4i
(−2dz ∧ dz̄) =

i
2

dz ∧ dz̄.

Similarly, we can compute ∂χΩ.

〈∂χΩ, ϕ〉 = −〈χΩ, ∂ϕ〉 = −
∫

C
χΩ(w)∂ϕ(w)dA(w) = −

∫
Ω

∂ϕ(w)dA(w) =

= − i
2

∫
Ω

∂ϕ(w)dw ∧ dw̄ = − i
2

∫
∂Ω

ϕ(w)dw = −〈 i
2

dw|∂Ω, ϕ〉.

Thus, ∂χΩ = − i
2 dw̄|∂Ω.

Consider the kernel K2 as defined in (2.1)

K2(z) =
1
π

(z + εz)k

(z + εz)k+1 .

Then, given z 6= 0 we have K2(z) = (∂− ε∂)H(z) for

H(z) :=
1

(1− ε2)(k + 1)
1
π

(z + εz)k+1

(z + εz)k+1 .

We compute the velocity field by

v(z, t) = (K2 ∗ ρ(·, t))(z) =
(
(∂− ε∂)H ∗ ρ(·, t)

)
(z) =

=
(

H ∗ (∂− ε∂)ρ(·, t)
)
(z).

Now, since solutions are transported by trajectories, we know that for
ρ0 = χΩ0 , we have ρ(·, t) = χΩt for some domain Ωt. Let

z : [0, 2π]×R+ −→ C,
(α, t) −→ z(α, t),
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such that z(·, t) : [0, 2π] → C is a parametrization of ∂Ωt, the boundary of
Ωt. Then, we compute the velocity at time t and at the point z(α, t) of ∂Ωt.

v(z(α, t), t) =
(

H ∗ (∂− ε∂)ρ(·, t)
)
(z(α, t)) =

=
∫

C
H(z(α, t)− z)(∂− ε∂)χΩt(z)dA(w) =

=
i
2

∫
∂Ωt

H(z(α, t)− z)dz + ε
i
2

∫
∂Ωt

H(z(α, t)− z)dz̄ =

=
i
2

∫ 2π

0
H(z(α, t)− z(α′, t))zα(α

′, t)dα′+

+ ε
i
2

∫ 2π

0
H(z(α, t)− z(α′, t))zα(α

′, t)dα′ =: F(z(·, t))(α),

where zα(α′, t) = ( d
dα z(·, t))(α′). We have assumed that the parametrization

is differentiable.
Considering z(α, ·) as the trajectory starting at α, we have the ordinary

differential equation

(4.6)

{
d
dt z(α, t) = v(z(α, t), t) = F(z(·, t))(α),
z(α, 0) = z0(α),

for the functional

F(z)(α) =
i
2

∫ 2π

0
H(z(α)− z(α′))zα(α

′)dα′+

+ ε
i
2

∫ 2π

0
H(z(α)− z(α′))zα(α′)dα′ =

=
i
2
[F1(z)(α) + εF2(z)(α)].

(4.7)

We will check that a solution of (4.6) is a solution of the transport equation
in the weak sense, i.e., satisfying the following.

Definition 4.7. Let ρ ∈ L1 ∩ L∞. We say (ρ, v) is a weak solution of (4.1) if
v(·, t) = K ∗ ρ(·, t) and for any ϕ ∈ C∞(C× [0, T]) with compact support,∫

C
ϕ(z, T)ρ(z, T)dA(z)−

∫
C

ϕ(z, 0)ρ0(z)dA(z) =

=
∫ T

0

∫
C
[ϕt(z, t) + div(v(z, t)ϕ(z, t))]ρ(z, t)dA(z)dt

(4.8)

holds.

Before proving that a solution of the Contour Dynamics Equation defines
a weak solution, we have to be sure of the existence and uniqueness of the
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trajectory maps X(·, t) defined by

(4.9)

{
d
dt X(α, t) = v(X(α, t), t),
X(α, 0) = α.

Firstly, we assume ρ(·, t) ∈ L∞(C) with compact support. Then since{
∂v(·, t) = ∂K ∗ ρ(·, t)
∂v(·, t) = ∂K ∗ ρ(·, t)

and both ∂K and ∂K are even kernels defining a Calderón-Zygmund operator
of convolution type, we clearly have ∂v(·, t), ∂v(·, t) ∈ BMO(C). That is,
v(·, t) ∈I(BMO). By [Str], v(·, t) belongs to the Zygmund class and hence, it
satisfies a log-Lipschitz condition, which assures existence and uniqueness
of solution of equation (4.9) (see [AL, Thm. 1.5.1], for instance).

Therefore, provided ρ(·, t) ∈ L∞(C) with compact support, the trajectory
maps X(·, t) are well defined.

Proposition 4.8. Assume that for 0 < t < T∗, we have z(·, t) solution of (4.6).
Then, the pair (v, ρ) defined by

v(z, t) =
i
2

∫ 2π

0
H(z− z(α′, t))zα(α

′, t)dα′−

+ ε
i
2

∫ 2π

0
H(z− z(α′, t))zα(α′, t)dα′,

ρ(z, t) = ρ0(X−1(z, t)),

(4.10)

is a weak solution of (4.1) in the sense of (4.8).

Proof. For simplicity we will consider k = 0 and ε = 0. We have

v(z, t) =
i

2π

∫ 2π

0

z− z(α′, t)
z− z(α′, t)

zα(α
′, t)dα′ =

=
i

2π

∫
Γt

z− z′

z− z′
dz′,

where Γt is the curve defined by z(·, t). Thus,

∂v(z, t) =
i

2π

∫
Γt

1
z− z′

dz′ =
i

2π
2πiχDt(z) = −χDt(z),

by Cauchy Integral Formula, where Dt is the interior of the curve Γt. Since
v is one half of the Cauchy operator applied to the density χΩ we verify this
computation is correct.
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4.3.2 Checking the hypothesis in Picard-Lindelöf

This section requires detailed, accurate and sometimes tedious computations
that resemble to [MB, Section 8.3.2].

Once again we want to apply the Picard-Lindelöf’s theorem 1.8. We need
a functional (the one given by the CDE), a suitable function space and a sub-
space of it. Our choice is similar to the one in the previous chapters. We take
B = C1,γ([0, 2π]; C), the space of functions whose derivatives are bounded
and belong to the Hölder class with exponent γ. For the open subset, we
consider the ones that are also bilipschitz, that is,

OM = B ∩
{

f : [0, 2π]→ C : ∃M > 0 such that
1
M

<
| f (x)− f (y)|
|x− y| < M

}
.

We need to check that F : OM → B and it is locally Lipschitz continuous. First
of all, we see that F is well defined between OM and B. As we will explain
later, due to the likelihood between the functionals F1 and F2 in (4.7) we can
just check the hypothesis for one of them, in this case for F1.

Proposition 4.9. Let F1 defined in (4.7). For OM defined in (4.7) we have that
F1 : OM → C1,γ([0, 2π]; C).

Proof. First of all, we estimate ||F1(z)||L∞ .

||F1(z)||L∞ = sup
α∈[0,2π]

∣∣∣∣∫ 2π

0
H(z(α)− z(α′))zα(α

′)dα′
∣∣∣∣ ≤

≤ sup
α∈[0,2π]

∫ 2π

0

∣∣H(z(α)− z(α′))
∣∣ ∣∣zα(α

′)
∣∣ dα′ ≤

≤ 2πc(k, ε) ||zα||L∞ < ∞,

where we have used

|H(z)| = 1
π(1− ε2)(k + 1)

=: c(k, ε).

Secondly, we want to control the L∞ norm of the derivative. We begin
with the case k = 0 and ε = 0 in order to understand better the procedure,
but we will explain later on the differences when k > 0, ε 6= 0.

We have to differentiate with respect to α the functional F1.

d
dα

F1(z)(α) =

=
1
π

p.v.
∫ 2π

0

zα(α)[z(α)− z(α′)]− zα(α)[z(α)− z(α′)]
(z(α)− z(α′))2 zα(α

′)dα′ =

=:
1
π

p.v.
∫ 2π

0
L(z(α), z(α′))zα(α

′)dα′,

(4.11)
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where the identity defines L(z(α), z(α′)).
The integral can be expressed as the sum of four integrals which are not

singular. In fact, we can write

d
dα

F1(z)(α) =
1
π

4

∑
i=1

∫ 2π

0
Li(z(α), z(α′))zα(α

′)dα′

where we have defined

L1(z(α), z(α′)) =
zα(α)[z(α)− z(α′) + zα(α)(α′ − α)]

(z(α)− z(α′))2 ,

L2(z(α), z(α′)) =
[zα(α)− zα(α′)][z(α)− z(α′)]

(z(α)− z(α′))2 ,

L3(z(α)z(α′)) =
zα(α′)[z(α)− z(α′)− zα(α′)(α− α′)]

(z(α)− z(α′))2 ,

L4(z(α), z(α′)) =
(|zα(α′)|+ |zα(α)|)(|zα(α′)| − |zα(α)|)(α′ − α)

(z(α)− z(α′))2 .

(4.12)

Note that, since z ∈ OM we have |Li(z(α), z(α′))| ≤ Ci
|α−α′|1−γ . Therefore,

the kernels are summable and we easily have

(4.13)
∣∣∣∣∣∣∣∣ d

dα
F1(z)

∣∣∣∣∣∣∣∣
L∞
≤ c ||zα||L∞ < ∞.

Finally, in order to see that the norm
∣∣∣ d

dα F(z)
∣∣∣
γ

is bounded we return to

the original expression for d
dα F.

d
dα

F1(z)(α) =
zα(α)

π
p.v.

∫ 2π

0

zα(α′)

z(α)− z(α′)
dα′−

− zα(α)

π
p.v.

∫ 2π

0

z(α)− z(α′)
(z(α)− z(α′))2 zα(α

′)dα′ =: Fα,1(α)− Fα,2(α),

and treat each integral separately.

Fα,1(α) =
zα(α)

π

∫ 2π

0

zα(α′)

z(α)− z(α′)
dα′ =

=
zα(α)

π

∫
Γ

dz
z(α)− z

=
zα(α)

π
[C0,01](z(α)),

(4.14)
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where we have performed a change of variables z = z(α′) and where C0,0 is
as in Definition 4.2. Similarly,

Fα,2(α) =
zα(α)

π

∫ 2π

0

z(α)− z(α′)
(z(α)− z(α′))2 zα(α

′)dα′ =

=
zα(α)

π

∫
Γ

z− z(α)
(z(α)− z)2 dz =

zα(α)

π
[C1,01](z(α)).

(4.15)

Then, applying Theorem 4.6 we have [C0,01](z(α)) and [C1.01](z(α)) belong
to Lip(γ, Γ). Also, zα, zα ∈ Lip(γ, Γ) and since this space is an algebra, we can
conclude that both Fα,1 and Fα,2 belong to it. Hence, F maps O to B whenever
k = 0 and ε = 0.

Consider now ε 6= 0 but k = 0. Then, for L as in (4.11), if we define

Lε(z(α), z(α′)) := L
(
z(α) + εz̄(α), z(α′) + εz̄(α′)

)
,

it is easy to check that

d
dα

F1(z)(α) =
1

π(1− ε2)
p.v.

∫ 2π

0
Lε(z(α), z(α′))zα(α

′)dα′

and then we can repeat the arguments above for ε = 0. In fact we can write

d
dα

F1(z)(α) =
1

π(1− ε2)

4

∑
i=1

∫ 2π

0
Lε

i (z(α), z(α′))zα(α
′)dα′

for
Lε

i (z(α), z(α′)) := Li
(
z(α) + εz̄(α), z(α′) + εz̄(α′)

)
,

and Li as in (4.12).
Also, one can see that

d
dα

F1(z)(α) = Fε
α,1(α) + Fε

α,2(α)

for Fε
α,1(α) = zα(α)+εzα(α)

π(1−ε2)
[C0,ε1](z(α)),

Fε
α,2(α) = zα(α)+εzα(α)

π(1−ε2)
[C1,ε1](z(α)).

Thus, similar arguments allow us to verify that F : OM → B when k = 0 and
ε 6= 0.

Finally, if k > 0 and ε 6= 0 we can write

d
dα

F1(z)(α) =
1

π(1− ε2)
p.v.

∫ 2π

0
[P0(z(α), z(α′))]kLε(z(α), z(α′))zα(α

′)dα′
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for

P0(z(α), z(α′)) :=
z(α) + εz(α)− z(α′)− εz(α′)
z(α) + εz(α)− z(α′)− εz(α′)

.

Also,

d
dα

F1(z)(α) =
1

π(1− ε2)

4

∑
i=1

∫ 2π

0
[P0(z(α), z(α′))]kLε

i (z(α), z(α′))zα(α
′)dα′

and
d

dα
F1(z)(α) = Fk,ε

α,1(α) + Fk,ε
α,2(α)

for Fk,ε
α,1(α) = zα(α)+εzα(α)

π(1−ε2)
[Ck,ε1](z(α)),

Fk,ε
α,2(α) = zα(α)+εzα(α)

π(1−ε2)
[Ck+1,ε1](z(α)).

So, for the reasons explained above for the case k = 0 and ε = 0 (and since the
operator Ck,ε sends Lip(γ, Γ) into itself in general) we have that F : OM → B
generally.

Before proving the second hypothesis in Picard-Lindelöf’s theorem we
need to compute the directional derivative of F1.

Lemma 4.10. Let F1 : OM → C1,γ([0, 2π]; C) as defined in (4.7). Let z ∈ OM and
Y ∈ C1,γ([0, 2π]; C). Let Q : C2 → C defined by

Q(w1, w2) :=
w2w1 − w1w2

w2
1

and
c(k, ε) :=

1
π(1− ε2)(k + 1)

.

Then, we have F′1(z)w = I(α) + I I(α) for

I(α) : = c(k, ε)
∫ 2π

0
Q(zε(α)− zε(α

′), wε(α)− wε(α
′))dα′

I I(α) : = c(k, ε)
∫ 2π

0
H(z(α)− z(α′))wα(α

′)dα′
(4.16)

where
wε(α) = w(α) + εw(α) and zε(α) = z(α) + εz(α).

Proof. Since

F1(z)(α) =
∫ 2π

0
H(z(α)− z(α′)) zα(α

′)dα′
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then

F1
′(z)(α) =

d
dη

[F1(z + ηw)]|η=0(α) =

=
∫ 2π

0

d
dη

[H(z(α) + ηw(α)− z(α′)− ηw(α′))]|η=0 zα(α
′)dα′+

+
∫ 2π

0
H(z(α)− z(α′))

d
dη

(zα(α
′) + ηwα(α

′))|η=0 dα′ = I(α) + I I(α).

The second integral in the expression above corresponds clearly with

I I(α) =
∫ 2π

0
H(z(α)− z(α′))wα(α

′)dα′.

To compute I(α) recall the expression for the kernel H,

H(z) =
1

π(1− ε2)(k + 1)

(
z + εz
z + εz

)k+1

,

and after some computations we can see that I(α) can be written as in (4.16).

Then, we need to check that F1 is locally Lipschitz continuous.

Proposition 4.11. Given k = 0 and ε = 0, let F1 : OM → C1,γ([0, 2π]; C) defined
in (4.7). Then F1 is locally Lipschitz continuous.

Proof. It can be seen that it is enough to prove that the directional derivative
of F1 is bounded as a linear operator. Details for this simplification can be
found in Proposition 1.18.

For k = 0, ε = 0 the directional derivative computed in Lemma 4.16 can
be simply written as F′1(z)w = I(α) + I I(α) for

I(α) =
1
π

∫ 2π

0
S(α, α′)zα(α

′)dα′, I I(α) =
1
π

∫ 2π

0

z(α)− z(α′)
z(α)− z(α′)

wα(α
′)dα′,

where

S(α, α′) =
(w(α)− w(α′))(z(α)− z(α′))− (z(α)− z(α′))(w(α)− w(α′))

(z(α)− z(α′))2 .

Note that we can write

I(α) =
1
π

∫ 2π

0
KI(α, α′)zα(α

′)dα′, II(α) =
1
π

∫ 2π

0
KII(α, α′)wα(α

′)dα′,
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with
∣∣Kj(α, α′)

∣∣ ≤ M4, j ∈ {I, II} (because z and w are bilipschitz, and
we let M the bigger of the constants). Recall that zα, wα ∈ L∞ (because they
belong to C1,γ). Hence,

||I||L∞ ≤ πM4 ||zα||L∞ < ∞;

||II||L∞ ≤ πM4 ||wα||L∞ < ∞.

We compute now the derivative with respect to α of F′1(z)w. With the
same notation as before, d

dα F′1(z)w = d
dα I + d

dα II. Explicitly for the first one,

d
dα

I = I1 − I2 − I3 − I4 − I5; where

I1 =
1
π

p.v.
∫ 2π

0

wα(α)

z(α)− z(α′)
zα(α

′)dα′,

I2 =
1
π

p.v.
∫ 2π

0

zα(α)(w(α)− w(α′))

(z(α)− z(α′))2 zα(α
′)dα′,

I3 =
1
π

p.v.
∫ 2π

0

zα(α)(w(α)− w(α′))

(z(α)− z(α′))2 zα(α
′)dα′,

I4 =
1
π

p.v.
∫ 2π

0

wα(α)(z(α)− z(α′))
(z(α)− z(α′))2 zα(α

′)dα′,

I5 =
1
π

p.v.
∫ 2π

0

2zα(α)(z(α)− z(α′))(w(α)− w(α′))

(z(α)− z(α′))3 zα(α
′)dα′.

(4.17)

and for the second term

d
dα

II = II1 + II2;

II1 =
1
π

p.v.
∫ 2π

0

zα(α)

z(α)− z(α′)
wα(α

′)dα′,

II2 =
1
π

p.v.
∫ 2π

0

zα(α)(z(α)− z(α′))
(z(α)− z(α′))2 wα(α

′)dα′.

(4.18)

In order to see that the seven integrals in equations (4.17) and (4.18) are
bounded in Lip(γ, Γ) we want to use Theorem 4.6, so we need to write them
in a convenient way. For instance,

I1 =
1
π

p.v.
∫ 2π

0

wα(α)

z(α)− z(α′)
zα(α

′)dα′ =

=
wα(α)

π
p.v.

∫
Γ

dz
z(α)− z

= wα(α)[C0,01](z(α)).

Thus, I1 ∈ Lip(γ, Γ) since w ∈ C1,γ and C0,01 ∈ C1,γ (by Theorem 4.6). Also
we have used that Lip(γ, Γ) is an algebra.
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To verify that I2 belongs to Lip(γ, Γ) we have to proceed more carefully. If
we undo the change of variables corresponding to the parametrization in I2,
that is, for z(α′) = z′, we have

I2 =
1
π

p.v.
∫ 2π

0

zα(α)(w(α)− w(α′))

(z(α)− z(α′))2 zα(α
′)dα′ =

=
zα(α)

π
p.v.

∫
Γ

w ◦ z−1(z(α))− w ◦ z−1(z′)
(z(α)− z′)2 dz′.

Since w ∈ B and z ∈ O, the composition g := w ◦ z−1 is also in B. By
Whitney’s Extension theorem, there exists an extension of g, called G, with
G ∈ C1,γ(Ω∗, C), where Ω∗ is an open neighborhood of Γ. Hence, the com-
plex Taylor expansion for G(z(α)) centered at z′ is

G(z(α)) =

= G(z′) + ∂G(z′)(z(α)− z′) + ∂̄G(z′)(z(α)− z′) + R(z(α), z′),
(4.19)

where R(z(α), z′) is the remainder. Since G ∈ C1,γ, it satisfies∣∣R(z(α), z′)
∣∣ ≤ C

∣∣z(α)− z′
∣∣1+γ .

Hence, we have,

I2 =
zα(α)

π
×

× p.v.
∫

Γ

∂G(z′)(z(α)− z′) + ∂̄G(z′)(z(α)− z′) + R(z(α), z′)
(z(α)− z′)2 dz′ =

=
zα(α)

π

(
[C1,0∂̄G](z(α)) + [C0,0∂G](z(α)) + J(z(α))

)
,

(4.20)

where J(z(α)) =
∫

Γ R̂(z(α), z′)dz′ and

R̂(z1, z2) =
R(z1, z2)

(z1 − z2)2 =

=
G(z1)− G(z2)− ∂G(z2)(z1 − z2)− ∂G(z2)(z1 − z2)

(z1 − z2)2 .
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The derivatives with respect to the first variable of the kernel R̂ are

∂z1 R̂(z1, z2) =
∂G(z1)− ∂G(z2)

(z1 − z2)2 −

− 2
G(z1)− G(z2)− ∂G(z2)(z1 − z2)− ∂G(z2)(z1 − z2)

(z1 − z2)3 ,

∂̄z1 R̂(z1, z2) =
∂G(z1)− ∂G(z2)

(z1 − z2)2 .

Thus, we have the easy bounds,

∣∣R̂(z1, z2)
∣∣ ≤ C |G|1+γ

|z1 − z2|1−γ
,

∣∣∂z1 R̂(z1, z2)
∣∣ ,
∣∣∂̄z1 R̂(z1, z2)

∣∣ ≤ C |G|1+γ

|z1 − z2|2−γ
.

Now, given w1, w2 ∈ Γ, let d = |w1 − w2| and let D1 = Γ ∩ D(w1, 3d). Then

J(w1)− J(w2) =
∫

Γ
R̂(w1, z′)− R̂(w2, z′)dz′ =

=
∫

D1

R̂(w1, z′)dz′ −
∫

D1

R̂(w2, z′)dz′ +
∫

Γ\D1

(
R̂(w1, z′)− R̂(w2, z′)

)
dz′.

By taking absolute value of the previous equation, and by triangular inequal-
ity, we have

|J(w1)− J(w2)| ≤ C1

[∫
D1

dz′

|w1 − z′|1−γ
+
∫

D1

dz′

|w2 − z′|1−γ
+

+
∫

Γ\D1

∣∣R̂(w1, z′)− R̂(w2, z′)
∣∣ dz′

]
.

(4.21)

The first two integrals in the right hand side of (4.21) can be estimated by
C2 |w1 − w2|γ (note that our domain of integration is close to the points w1, w2
along the curve). For the third integral, we can apply the mean-value theo-
rem and obtain∫

Γ\D1

∣∣R̂(w1, z′)− R̂(w2, z′)
∣∣ dz′ ≤

∫
Γ\D1

∣∣∇R̂(ξ, z′)
∣∣ dz′ |w1 − w2| ≤

≤ C |w1 − w2|
∫

Γ\D1

dz′

|w1 − z′|2−γ
≤ C |w1 − w2| dγ−1 =

= C |w1 − w2|γ .

Hence, J ∈ C1,γ and the other two terms in (4.20) also are bounded by
Theorem 4.6.

In similar fashion with I2 we can write

I3 =
zα(α)

π

(
[C0,0∂G](z(α)) + [C1,0∂̄G](z(α)) + J(z(α))

)
,
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where

J(z(α)) =
∫

Γ

R(z(α), z′)
(z(α)− z′)2 dz′

and R as in (4.19). For the same arguments above, I3 ∈ Lip(γ, Γ).

I4 =
1
π

∫ 2π

0

wα(α)(z(α)− z(α′))
(z(α)− z(α′))2 zα(α

′)dα′ =

=
wα(α)

π

∫
Γ

z(α)− z′

(z(α)− z′)2 dz′ =
wα(α)

π
[C1,01](z(α)),

so, I4 ∈ Lip(γ, Γ) since w ∈ C1,γ. Similarly to I2, we can write

I5 =
2zα(α)

π
p.v.

∫
Γ

(z(α)− z′)(G(z(α))− G(z′))
(z(α)− z′)3 dz′ =

=
2zα(α)

π

(
[C1,0∂G](z(α)) + [C2∂̄G](z(α)) + J̃(z(α))

)
,

where

J̃(z(α)) =
∫

Γ

R(z(α), z′)(z(α)− z′)
(z(α)− z′)3 dz′,

and R is defined as in (4.19). As it is done for J and J, we can see
J̃ ∈ Lip(γ, Γ) as before. Therefore, once again by Theorem 4.6, we can con-
clude that I5 ∈ Lip(γ, Γ).

For the terms related with d
dα II, we get

II1 =
1
π

p.v.
∫ 2π

0

zα(α)

z(α)− z(α′)
wα(α

′)dα′ =

=
zα(α)

π
p.v.

∫ 2π

0

wα(α′)

zα(α′)

zα(α′)dα′

z(α)− z(α′)
=

=
zα(α)

π
p.v.

∫
Γ

wα(z−1(z′))
zα(z−1(z′))

dz
z(α)− z′

=
zα(α)

π

[
C0,0

wα ◦ z−1

zα ◦ z−1

]
(z(α)).

Since z ∈ O and w ∈ B we have that the function wα◦z−1

zα◦z−1 belongs to
Lip(γ, Γ) and hence, by Theorem 4.6, II1 ∈ Lip(γ, Γ). Analogously
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II2 =
zα(α)

π
p.v.

∫ 2π

0

(z(α)− z(α′))
(z(α)− z(α′))2 wα(α

′)dα′ =

=
zα(α)

π
p.v.

∫ 2π

0

(z(α)− z(α′))
(z(α)− z(α′))2

wα(α′)

zα(α′)
zα(α

′)dα′ =

=
zα(α)

π
p.v.

∫
Γ

(z(α)− z′)
(z(α)− z′)2

wα(z−1(z′))
zα(z−1(z′))

dz′ =

=
zα(α)

π

[
C1,0

wα ◦ z−1

zα ◦ z−1

]
(z(α)),

which belongs to Lip(γ, Γ) for the same reasons explained before.
Summing up, F′1(z)w is a bounded linear operator from O to B, and hence

F is locally Lipschitz from O to B.

Remark 4.12. We have just written the proof of Proposition 4.11 for k = 0 and
ε = 0 to keep the expressions simple. Nevertheless, as it can be seen in the proof
of Proposition 4.9 this particular case contain all the information of the proof of the
general case. In fact, the split of the integrals appearing in the proof remain valid
and one just should work with the operators Ck+i,ε instead of Ci,0 when one of them
appears in the computations. But by Lemma 4.6 we know that all of them share the
same regularity properties so the proofs will be valid in general, meaning that we
have the next proposition.

Proposition 4.13. Let F1 : OM → C1,γ([0, 2π]; C) defined in (4.7). Then F1 is
locally Lipschitz continuous.

4.3.3 The local theorem

As in the previous chapters, once we have verified that the hypothesis are
satisfied, we can apply Picard-Lindelöf’s theorem to prove existence and
uniqueness of solution

Theorem 4.14. Let

H(z) :=
1

(1− ε2)(k + 1)
1
π

(z + εz)k+1

(z + εz)k+1 .

Let z0 ∈ C1,γ([0, 2π]; C) a parametrization of ∂D0, where D0 is a simply connected
domain in the complex plane. Then there exists T∗ > 0 such that the ordinary
differential equation {

d
dt z(α, t) = F(z(·, t))(α),
z(·, 0) = z0,
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for

F(z)(α) =
i
2

∫ 2π

0
H(z(α)− z(α′))zα(α

′)dα′+

+ ε
i
2

∫ 2π

0
H(z(α)− z(α′))zα(α′)dα′ =

=
i
2
[F1(z)(α) + εF2(z)(α)],

has a unique solution z(·, t) ∈ C1,γ([0, 2π]; C) for t ∈ (−T∗, T∗).

Proof. It is clear that it suffices to verify the hypothesis in Picard-Lindelöf’s
theorem for F1. By linearity and by the likelihood between F1 and F2 they will
also hold for F. By Propositions 4.9 and 4.13 the functional F1 satisfies those
hypothesis (Proposition 4.13 is proved for k = 0, ε = 0 in Proposition 4.11),
but by Remark 4.12 it is enough to treat this particular case) and hence, by
Picard-Lindelöf’s theorem the statement holds.

We can conclude by establishing the corresponding weak solution to (4.1).

Theorem 4.15. Let K2 as defined in (2.1) and let D0 be a simply connected C1,γ

domain in the complex plane. Then, there exists T∗ > 0 such that the transport
equation 

ρt + v · ∇ρ = 0,
v(·, t) = K2 ∗ ρ(·, t),
ρ(·, 0) = χD0 ,

has a unique weak solution in the sense of (4.8) such that ρ(·, t) = χDt for Dt a
simply connected C1,γ domain in the complex plane, for t ∈ [−T∗, T∗].

Proof. The result holds by setting ρ(·, t) = χDt , where Dt is the domain cor-
responding to the interior of the curve defined by z(·, t).

Remark 4.16. As we said in the introduction, since K2 and K1 are complex conju-
gate kernels it is obvious that all the intermediate results for K2 can be also proved
for K1. Thus, Theorem 4.15 is valid for K1.

4.4 Globalness

In this section we will follow the scheme done in Chapter 3 (Sections 3.4 to
3.7), to prove that the local-in-time solution for the density patch given in
Theorem 4.15 is in fact global. We will skip the arguments that are a repeti-
tion of the ones there but we will stress the new difficulties. For instance, in
Chapter 3 we took advantage of the harmonicity of the the velocity field since
it was obtained by the convolution of the density and a kernel involving par-
tial derivatives of the fundamental solution of the laplacian. Thanks to this
regularity we saw that the annoying solitary term vanishes at the boundary
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of the domain defining the patch. For the kernels K1 or K2 we lose the har-
monicity but a recent result from A. V. Vasin allow us to deal with the solitary
term in a more general situation, as we will explain.

4.4.1 The defining function Φ

As we recently said, we need to control the disturbing term involving the
blow up of second (spatial) derivatives of the velocity field when approach-
ing the boundary of the domain. The next proposition will help us in this
task.

Proposition 4.17. Let D be a C1,γ domain in C. Let T be a smooth homogeneous
Calderón-Zygmund operator defined by the convolution with an even kernel. Then,
there exists C0 such that for each z ∈ D we have

|∂T(χD)(z)| ,
∣∣∣∂T(χD)(z)

∣∣∣ ≤ C0[dist(x, ∂D)]γ−1.

Proof. See [Va, Proposition 5.1] for the proof of a general version of the result.

In the simpler case k = 0, that is, when we have the kernel

(4.22) K(z) =
1
π

1
z + εz̄

we can proof the estimate in the previous proposition directly by making use
of the next lemma.

Lemma 4.18. Let f ∈ Cγ(Ω) such that

(∂− ε∂) f = 0 in Ω.

Then, we have the following bounds

|∂ f (z)| ,
∣∣∣∂ f (z)

∣∣∣ ≤ C
d(z, ∂Ω)1−γ

.

Proof. If ε = 0, then f is holomorphic in Ω and by Cauchy integral formula,
we have, for a ∈ Ω and 0 < r < d(a, ∂Ω),

∂ f (a) =
1

2πi

∫
∂B(a,r)

f (z)
(z− a)2 dz.

Since
∫

∂B(a,r)

1
(z−a)2 dz = 0, we can write

∂ f (a) =
1

2πi

∫
∂B(a,r)

f (z)− f (a)
(z− a)2 dz.
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Now taking absolute value and having into account f ∈ Cγ(Ω), we have

|∂ f (a)| = 1
2π

∫
∂B(a,r)

| f (z)− f (a)|
|z− a|2

|dz| ≤
|| f ||γ

2π

∫
∂B(a,r)

1

|z− a|2−γ
|dz| =

=
|| f ||γ

2π

∫ 2π

0

1
r2−γ

∣∣∣ireiθ
∣∣∣ dθ =

|| f ||γ
2π

∫ 2π

0

1
r1−γ

dθ =
|| f ||γ
r1−γ

,

where we have set z = a + reiθ in the change of variables. To finish just
consider r → d(a, ∂Ω).

If ε 6= 0, then for

s =
1

1− ε2 z +
ε

1− ε2 z

we have ∂s := ∂
∂s = 0.

Then, as in the previous case

|∂s f (a)| :=
∣∣∣∣ ∂

∂s
f (a)

∣∣∣∣ ≤ || f ||γ
d(a, ∂Ω)1−γ

.

So, since derivatives with respect to z i z are linear combination of deriva-
tives with respect to s and s, we can conclude the proof and get

|∂z f (a)| , |∂z f (a)| ≤
c || f ||γ

d(a, ∂Ω)1−γ
.

If k = 0 then v(·, t) = K ∗ χDt with K as in (4.22), then the partial deriva-
tives of v can take the role of f in Lemma 4.18.

Once this detail is solved, we can obtain the same PDE for a C1,γ defining
function (see Definition 3.2 in Chapter 3) associated to Dt.

Proposition 4.19. Given {Dt}0≤t≤T∗ a family of C1,γ domains in C. If we consider
a velocity field v(·, t) = Ki ∗ χDt , i = 1, 2 as defined in (2.1), then the solution
Φ : C→ R of the linear non-homogeneous partial differential equation

(4.23)
DΦ
Dt

= div(v)Φ

is a C1,γ-defining function for Dt whose gradient is continuous.

Proof. We can repeat the proof of Proposition 3.11 but with the next change.
When trying to get a bound of type (3.21), we use Proposition 4.17 (or Lemma
4.18 if k = 0) since the kernels corresponding of derivatives of Ki are even and
hence derivatives of the velocity field are operators as T in Proposition 4.17.
Thus, second derivatives of v should satisfy (3.21) even v is not harmonic
anymore. The rest of the steps in the proof of Proposition 3.11 will follow
then.
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4.4.2 Commutators for ∂Φ

Now, in order to control the spatial derivative of the defining function Φ
we need to check that its material derivative is equal to: first, a commutator
integrating on Dt and second, a commutator on the boundary of Dt. For the
first of them we have the following. Although K1 is not included in the family
of kernels in Chapter 3, the procedure in order to achieve this commutator
expression is very similar to the one there. We write it in full detail.

Proposition 4.20. For K1 defined in (2.1), let v = K1 ∗ χD. Then, for Φ a defining
function of D satisfying (4.23) we have that

D
Dt

(∂Φ)(z) = p.v.
∫

D
∂K2(z− w)(∂Φ(w)− ∂Φ(z))dA(w)−

−
[

p.v.
∫

D
∂K2(z− w)(∂Φ(w)− ∂Φ(z))dA(w)

]
,

(4.24)

that is, the material derivative of ∂Φ is equal to the difference of two commutators.

Proof. Equation (4.23) can be written in complex variable as

Φt + v∂Φ + v∂Φ = div(v)Φ.

Applying the derivative ∂ to the previous expression and rearranging terms
we get

D
Dt

(∂Φ) = (∂Φ)t + v∂(∂Φ) + v∂(∂Φ) =

= ∂(div(v))Φ + div(v)∂Φ− ∂v∂Φ− ∂v∂Φ =

= ∂(div(v))Φ + ∂v∂Φ− ∂v∂Φ,

where we have used that div(v) = 2<(∂v). By Proposition 4.17 and since
|Φ(z)| ≤ Cdist(z, ∂D) (because Φ is a defining function) we have

|∂(div(v))Φ| ≤ Cdist(z, ∂D)γ−1dist(z, ∂D) = Cdist(z, ∂D)γ → 0 if z→ ∂D.

Then we can simply write

(4.25)
D
Dt

(∂Φ) = ∂v∂Φ− ∂v∂Φ,

By Lemma 2.1 we have

(4.26) ∂v = p.v. ∂K1 ∗ χD − εkχD = p.v. ∂K2 ∗ χD − εkχD,

(4.27) ∂v = ∂v = p.v. ∂K1 ∗ χD = p.v. ∂K2 ∗ χD,
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because K2 = K1. Putting (4.26) and (4.27) into (4.25) we get

(4.28)
D
Dt

(∂Φ) = (p.v. ∂K2 ∗ χD)∂Φ− εkχD∂Φ− p.v. ∂K2 ∗ χD∂Φ.

Note that, also by Lemma 2.1 we can write

−εkχD∂Φ = −εkδ0 ∗ (χD∂Φ) =

= ∂(K2 ∗ (χD∂Φ))− p.v. ∂K2 ∗ (χD∂Φ) =

= ∂K2 ∗ (χD∂Φ)− p.v. ∂K2 ∗ (χD∂Φ) =

= p.v. ∂K2 ∗ (χD∂Φ)− p.v. ∂K2 ∗ (χD∂Φ).

(4.29)

Inserting (4.29) into (4.28) we obtain

D
Dt

(∂Φ) = p.v. ∂K2 ∗ (χD∂Φ)− p.v. ∂K2 ∗ χD∂Φ−

−
[
p.v. ∂K2 ∗ (χD∂Φ)− (p.v. ∂K2 ∗ χD)∂Φ

]
which is equal to (4.30).

Furthermore, we can express the difference of commutators in (4.30) as a
difference of commutators acting on the boundary of the domain.

Proposition 4.21. For K1 defined in (2.1), let v = K1 ∗ χD. Then, for Φ a defining
function of D satisfying (4.23) we have that

D
Dt

(∂Φ)(z) = − i
2

p.v.
∫

∂D
K2(z− w)(∂Φ(w)− ∂Φ(z))dw−

− i
2

p.v.
∫

∂D
K2(z− w)(∂Φ(w)− ∂Φ(z))dw̄,

(4.30)

that is, the material derivative of ∂Φ is equal to the difference of two commutators on
the boundary of D.

Proof. First of all, assume Φ ∈ C2. If not check in the proof of Lemma 3.19 to
see how to proceed. Then, since (∂ is the differentiation with respect to w)

∂[K2(z− w)(∂Φ(w)− ∂Φ(z))] =− ∂K2(z− w)(∂Φ(w)− ∂Φ(z))+

+ K2(z− w)∂∂Φ(w)
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we can write the first integral in the right hand side of (4.30) as

p.v.
∫

D
∂K2(z− w)(∂Φ(w)− ∂Φ(z))dA(w) =

= lim
δ→0

∫
D\D(z,δ)

∂K2(z− w)(∂Φ(w)− ∂Φ(z))dA(w) =

= − lim
δ→0

∫
D\D(z,δ)

∂[K2(z− w)(∂Φ(w)− ∂Φ(z))]dA(w)+

+
∫

D
K2(z− w)∂∂Φ(w)dA(w).

If we apply Stokes’ theorem we can write

p.v.
∫

D
∂K2(z− w)(∂Φ(w)− ∂Φ(z))dA(w) =

= − i
2

∫
∂D

K2(z− w)(∂Φ(w)− ∂Φ(z))dw̄+

+
i
2

lim
δ→0

∫
∂D(z,δ)∩D

K2(z− w)(∂Φ(w)− ∂Φ(z))dw̄+

+
∫

D
K2(z− w)∂∂Φ(w)dA(w).

By continuity of ∂Φ we have∫
∂D(z,δ)∩D

K2(z− w)(∂Φ(w)− ∂Φ(z))dw̄→ 0 as δ→ 0

and hence

p.v.
∫

D
∂K2(z− w)(∂Φ(w)− ∂Φ(z))dA(w) =

= − i
2

∫
∂D

K2(z− w)(∂Φ(w)− ∂Φ(z))dw̄+

+ K2 ∗ (χD∂∂Φ)(z).

(4.31)

Analogously for the second integral in the right hand side of (4.30)

p.v.
∫

D
∂K2(z− w)(∂Φ(w)− ∂Φ(z))dA(w) =

=
i
2

∫
∂D

K2(z− w)(∂Φ(w)− ∂Φ(z))dw + K2 ∗ (χD∂∂Φ)(z).
(4.32)

Finally, putting (4.31) and (4.32) into (4.30) we get

D
Dt

(∂Φ)(z) = − i
2

∫
∂D

K2(z− w)(∂Φ(w)− ∂Φ(z))dw−

− i
2

∫
∂D

K2(z− w)(∂Φ(w)− ∂Φ(z))dw̄,
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which proves the Proposition.

4.4.3 Global Theorem

As a consequence of being the material derivative of ∂Φ a commutator and
making use of Whitney’s Extension theorem (see Section 3.6 in Chapter 3 for
more details) we get the same a priori estimates than in the previous chapter,
but for ∂Φ.

Lemma 4.22. Let v(·, t) = K1 ∗ χDt and let Φ(·, t) the defining function for Dt
determined by

(4.33)
DΦ
Dt

= div(v)Φ.

Then, for ‖∂Φ(·, t)‖L∞,∂Dt := ‖∂Φ(·, t)χ∂Dt‖L∞ we have

(4.34) ‖∂Φ(·, t)‖L∞,∂Dt ≤ ‖∂Φ(·, 0)‖L∞,∂Dt exp
(

4
∫ t

0
‖∇v(·, s)‖L∞ ds

)

(4.35) |∂Φ(·, t)|inf ≥ |∂Φ(·, 0)|inf exp
(
−2

∫ t

0
‖∇v(·, s)‖L∞ ds

)
,

and

(4.36) |∂Φ(·, t)|γ,∂Dt
≤ |∂Φ(·, 0)|γ,∂D0

exp
(

C
∫ t

0
‖∇v(·, s)‖L∞ ds

)
.

Besides, the well-known logarithmic inequality for the velocity fields of
the form v = K ∗ χD can be derived provided the derivatives of the kernel are
even, smooth and produce a Calderón-Zygmund operator. This is the case
for K1 and K2 in (2.1) and for this reason we have the following.

Theorem 4.23. Let D a domain in C with a C1,γ-defining function Φ. If
v = K1 ∗ χD, then for R := m(D)1/2 we have

||∇v||L∞ ≤
c
γ

(
1 + log+

(
R
|∂Φ|γ,∂D

|∂Φ|inf

))
.

Proof. See [BGLV, Theorem 6.2] and also check Section 3.2 for the adaptation
done in order to get the precise quotient inside the logarithm in the estimate
in Theorem 4.23.

We prove now the global version of the main theorem of the chapter.
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Theorem 4.24. Let K1 as defined in (2.1) and let D0 be a simply connected C1,γ

domain in the complex plane. Then the transport equation
ρt + v · ∇ρ = 0,
v(·, t) = K1 ∗ ρ(·, t),
ρ(·, 0) = χD0 ,

has a unique weak solution in the sense of (4.8) such that ρ(·, t) = χDt for Dt a
simply connected C1,γ domain in the complex plane, for every time t ∈ R.

Proof. First of all, we check that the L∞ norm of the gradient of the velocity
field is finite for every time.

Combining inequality (4.35), (4.36) and the logarithmic inequality in The-
orem 4.23 we get (see the proof of Theorem 3.1 in Section 3.7 for details)

(4.37) ‖∇v(·, t)‖L∞ ≤ C exp(Ct).

Then, by (4.36) again, we can bound also the Hölder norm of the derivative
of the defining function as

‖∂Φ(·, t)‖γ,∂Dt ≤ C exp(C exp(Ct)).

We know that, for z ∈ ∂Dt, the complex number ∇Φ(z, t) points in the
direction of the normal vector to ∂Dt at z (see (3.18) and (3.19)). Then, for
n⊥(z, t) = ∇⊥Φ(z, t), a tangent vector to ∂Dt at z we have

‖n⊥(·, t)‖γ,∂Dt = ‖∇
⊥Φ(·, t)‖γ,∂Dt =

1
2
‖∂Φ(·, t)‖γ,∂Dt ≤

1
2

C exp(C exp(Ct)).

So, the Hölder norm of the tangent vector n⊥(·, t) is finite for every time
t ∈ R. Since zα is comparable to n⊥ we then have that ‖zα(·, t)‖γ,∂Dt is also
bounded by the double exponential term. On the other hand, since

d
dt

(
α− α′

z(α, t)− z(α′, t)

)
= − (α− α′)(v(z(α, t), t)− v(z(α′, t), t))

(z(α, t)− z(α′, t))2 ,

taking absolute value we get

d
dt

∣∣∣∣( α− α′

z(α, t)− z(α′, t)

)∣∣∣∣ = ∣∣∣∣ (α− α′)(v(z(α, t), t)− v(z(α′, t), t))
(z(α, t)− z(α′, t))2

∣∣∣∣ =
=

∣∣∣∣v(z(α, t), t)− v(z(α′, t), t)
z(α, t)− z(α′, t)

∣∣∣∣ ∣∣∣∣ α− α′

z(α, t)− z(α′, t)

∣∣∣∣ ≤
≤ ‖∇v(·, t)‖L∞

∣∣∣∣ α− α′

z(α, t)− z(α′, t)

∣∣∣∣ ,

(4.38)
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by the Mean Value Theorem. By direct integration on (4.38) and using the
exponential bound for ‖∇v(·, t)‖L∞ in (4.37) once more, we have∣∣∣∣ α− α′

z(α, t)− z(α′, t)

∣∣∣∣ ≤ exp
(∫ t

0
‖∇v(·, s)‖L∞ ds

)
≤ exp(C exp(Ct)),

and therefore the bilipschitz norm of z(·, t) is bounded for any time t. Hence
by the Continuation Theorem 1.22 the solution z(α, t) in Theorem 4.14 is
global in time, which proves the theorem.
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5 Skeleton of a one-dimensional
aggregation patch

5.1 Introduction

In the present chapter, we want to study the limit behavior of aggregation
patches, that is, we want to take the limit as t → ∞ of the solution
ρ(·, t) = χDt of the transport equation

(5.1)


ρt + v · ∇ρ = 0,
v(·, t) = −∇N ∗ ρ(·, t),
ρ(·, 0) = ρ0 = χD0 ,

where N is the fundamental solution of the laplacian. In [BLL, Section 4.2]
–after a change of variables in the time coordinate and by a renormalization
of the unknowns ρ and v– it was shown that the aggregation equation in
its divergence form was equivalent to the transport equation (5.1). In order
to show this equivalence it was completely necessary that the kernel was
exactly −∇N (so the divergence of the velocity field was equal to −ρ) and
that we were in the patch setting (so ρ2 = ρ). Alternatively, the transport
equation (5.1) and the continuity equation below are equivalent also if the
velocity field is incompressible.

To achieve the equivalent partial differential equation in the aggregation
case that we are concerned in, consider explicitly

s = 1− e−t, ρ = (1− s)ρ̃, v = (1− s)ṽ.

Then, equation (5.1) can be written as

(5.2)


ρ̃s + div(ρ̃ṽ) = 0,
ṽ(·, s) = −∇N ∗ ρ̃(·, s),
ρ(·, 0) = ρ0 = χΩ0 .

Since we have changed the time scale t → s(t) = 1− e−t it is clear that the
limit time t → ∞ corresponds now to s → 1, which is, of course, the time of
the blow-up for the aggregation equation in its divergence form (see [BLL]
for details).
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We can compute an explicit solution to (5.2) along the flow map

ρ(X(α, s), s) =
(

1
ρ0(α)

− s
)−1

=
ρ0(α)

1− sρ0(α)
,

where X(·, s) defined, as usual, by the ODE{
d
ds X(α, s) = v(X(α, s), s),
X(α, 0) = α.

As we said, we are interested in the case of the evolution of an aggregation
patch, that is, when ρ0 = χΩ0 for some bounded domain Ω0. In this case we
simply have

ρ(·, s) =
1

1− s
χΩs

where Ωs = X(Ω0, s). With this expression, it is clear that the blow-up occurs
at time s = 1. It is well known that equation (5.1) preserves the L1 norm of
the scalar ρ, then

‖ρ(·, s)‖L1 =
1

1− s
|Ωs| = ‖ρ0‖L1 = |Ω0| ,

and therefore
|Ωs| = (1− s) |Ω0| → 0 as s→ 1.

We want to study in detail the structure of the skeleton, that is, the blow-up
domain

Ω1 = lim
t→1−

X(Ωs, s).

We consider a toy model which corresponds to equation (5.2) but just for
dimension 1. In this case, the fundamental solution of the laplacian is simply
N(x) = 1

2 |x| , and so the kernel is

K(x) = −N′(x) = −1
2

sign(x) =

{
1/2 if x < 0,
−1/2 if x ≥ 0.

The reason to reduce to this case is the following: as we will see later, the
velocity v(X(α, t), t) is independent of t and hence it can be computed at the
original time as v0(α) = (K ∗ χD0)(α). So the particle trajectories are “straight
lines” (as a function of t) in the sense that it can be written as

X(α, t) = α + v0(α)t.

In dimension 2 or bigger we lose this nice property which is fundamental to
develop explicit computations around the behavior of the skeleton.
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5.1.1 Outline of the chapter

This chapter has a simple structure: in Section 5.2 we prove the evolution of
an open set towards a numerable collection of Dirac deltas and in Section 5.3
we consider the evolution of a compact set.

5.2 Open domain

As we said in the introduction, we are just considering the one-dimensional
aggregation equation. Explicitly, we have

(5.3)


ρt + (ρv)x = 0,
v(·, t) = −N′ ∗ ρ(·, t),
ρ(·, 0) = ρ0,

where ρ : R×R+ → R and v : R×R+ → R, and N is the fundamental solu-
tion of the Laplace operator, i.e. N(x) = 1

2 |x|, and therefore
N′(x) = 1

2sign(x).
Then we have the following theorem, stating the evolution of a general

open domain in R under equation (5.3).

Theorem 5.1. Let Ω0 = ∪∞
i=1 I0

i ⊂ R be an open domain satisfying the following:

1) the intervals {I0
i }i∈N are open and pairwise disjoint,

2) |Ω0| = ∑∞
i=1
∣∣I0

i

∣∣ = 1,

3) Ω0 ⊂ [0, 2] and |Ω0 ∩ [δ, 2− δ]| < 1 ∀δ > 0.

4) Given x ∈ Ij, y ∈ Ik amb j 6= k, we have

|I(x, y) ∩Ω0| < |x− y| ,

where I(x, y) indicates the minimum interval containing x and y.

Therefore,

a) X(Ω0, 1) ⊂ [1/2, 3/2].

b) X(Ω0, 1) = ∪∞
i=1{xi}.

c) If dµt = ρ(·, t)dx, then µt → µ1 = ∑∞
i=1
∣∣I0

i

∣∣ δxi .

Proof. First of all, let us see that under these assumptions, there exists spatial
derivative for the trajectory map at least for α ∈ Ω0. Recall that, for any
0 ≤ t < 1 the trajectory map X(·, t) is the unique homeomorphism solution
to the ODE {

dX(α,t)
dt = v(X(α, t), t),

X(α, 0) = α.
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Hence, differentiating with respect to α the previous equation, we obtain

d
dα

(
dX(α, t)

dt

)
=

d
dα

(v(X(α, t), t)) =

=
d

dα

[
1
2

∫ +∞

X(α,t)
ρ(y, t)dy− 1

2

∫ X(α,t)

−∞
ρ(y, t)dy

]
= −ρ(X(α, t), t)

dX(α, t)
dα

= − 1
1− t

ρ0(α)
dX(α, t)

dα
.

(5.4)

Since Schwarz lemma holds for the trajectory map, we can state

d
dt

(
dX(α, t)

dα

)
= − 1

1− t
ρ0(α)

(
dX(α, t)

dα

)
.

Integrating and using that the homeomorphism X(·, 0) is the identity
map, we obtain the spatial derivative (for any α ∈ Ω0).

dX(α, t)
dα

= 1− t.

Secondly, we can prove that the velocity of a particle is constant along the
trajectory, this is,

(5.5) v(X(α, t), t) = v(α, 0) =: v0(α).

This just requires a simple computation, involving a change of variable
y = X(α′, t).

v(X(α, t), t) =
1
2

∫ +∞

−∞
sign(X(α, t)− y)ρ(y, t)dy =

=
1
2

∫ +∞

−∞
sign(X(α, t)− X(α′, t))ρ(X(α′, t), t)

dX(α′, t)
dα

dα′ =

=
1
2

∫ +∞

−∞
sign(X(α, t)− X(α′, t))

1
1− t

ρ0(α)
dX(α′, t)

dα
dα′ =

=
1
2

∫
α′∈Ω0

sign(X(α, t)− X(α′, t))
1

1− t
dX(α′, t)

dα
dα′ =

=
1
2

∫
α′∈Ω0

sign(X(α, t)− X(α′, t))
1

1− t
(1− t)dα′ =

=
1
2

∫
α′∈Ω0

sign(X(α, t)− X(α′, t))dα′ =

=
1
2

∫
α′∈Ω0

sign(α− α′)dα′ = v0(α);

where we have used that X(α, t) − X(α′, t) and α − α′ have the same sign
since X(·, t) is a non-decreasing homeomorphism. By (5.5) it is clear that all
particle trajectory maps are straight lines. Indeed, for 0 ≤ t < 1, we have
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X(α, t) = α +
∫ t

0
v(X(α, s), s)ds = α +

∫ t

0
v0(α)ds = α + v0(α)t.

Now we can see that any x ∈ [αi, βi] has the same limit point

lim
t→1−

X(x, t).

In fact,

v0(x) =
1
2

∫ ∞

x
ρ0(y)dy− 1

2

∫ x

−∞
ρ0(y)dy =

=
1
2

[∫ ∞

αj

ρ0(y)dy−
∫ x

αj

ρ0(y)dy−
∫ αj

−∞
ρ0(y)dy−

∫ x

αj

ρ0(y)dy

]
=

= v0(αj)−
∫ x

αj

ρ0(y)dy = v0(αj)− (x− αj),

(5.6)

where we have used the fact that ρ0 ≡ 1 in (αj, x). Hence, for any x ∈ [αi, βi] ,
we have

(5.7) X(x, t) = x +
(
v0(αj)− (x− αj)

)
t t→1−−→ αj + v0(αj),

which does not depend on the choice of x. From now on, we denote the limit
point for each interval as xj := αj + v0(αj). Finally, we have to see the conver-
gence of the measure µt defined as dµt = ρ(x, t)dx towards
µ1 = ∑∞

i=1
∣∣I0

i

∣∣ δxi .
In order to prove this, let f be a continuous function on R. Then, recall

ρ(x, t) =
∞

∑
i=1

1
1− t

χ(αi,t,βi,t)
,

where αi,t = X(αi, t) and βi,t = X(βi, t). Summing up, we have

〈 f , µt〉 =
1

1− t

∞

∑
i=1

∫ βi,t

αi,t

f (x)dx.

Let mi,t := min
x∈(αi,t,βi,t)

f (x) and Mi,t := max
x∈(αi,t,βi,t)

f (x). Then, it is clear that

for any i,

1
1− t

mi,t(βi,t − αi,t) ≤
1

1− t

∫ βi,t

αi,t

f (x)dx ≤ 1
1− t

Mi,t(βi,t − αi,t).

On the other hand, from (5.7) we can see that

βi,t − αi,t = (1− t)(βi − αi)
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and hence

mi,t(βi − αi) ≤
1

1− t

∫ βi,t

αi,t

f (x)dx ≤ Mi,t(βi − αi).

Both the left and the right hand sides of the previous inequality clearly tend
to the same value f (xi)(βi − αi), by definition of mi,t and Mi,t. Therefore, by
Sandwich rule we have

1
1− t

∫ βi,t

αi,t

f (x)dx −→ f (si)(βi − αi),

as t→ 1−. Then

〈 f , µt〉 −→ 〈 f ,
∞

∑
i=1
|Ii| δxi〉,

which proves the result.

We can also formulate the converse theorem.

Theorem 5.2. Let {xj}∞
j=1 a numerable collection of separate points such that

∪∞
j=1{xj} (

[
1
2
+ ε,

3
2
− ε

]
.

Let µ1 = ∑∞
j=1 cjδxj , for cj > 0 and such that ∑∞

j=1 cj = 1, where δxj is the Dirac
delta centered at xj. Then there exists an open and bounded set Ω0 ⊆ [0, 2] such that

i) X(Ω0, 1) = ∪∞
i=1{xi}.

ii) for Ωt = X(Ω0, t), and for the measure

dµt = ρ(x, t)dx =
1

1− t
χΩt(x)dx

we have that µt → µ1 as t→ 1.

Proof. For any i ∈N, let li := ∑xj<xl
cj and define{

ai := xi + li − 1
2 ,

bi := ai + ci.

Then, if we set Ω0 := ∪∞
i=1(ai, bi), repeating the construction in the proof of

Theorem 5.1 the theorem is proved.

Remark 5.3. It is trivial to check that in Theorems 5.1 and 5.2, the original set Ω0
is not unique and the result also holds for any Ω̃0 such that

Ω0 ⊆ Ω̃0 ⊆ ∪∞
i=1 Ii

0
= ∪∞

i=1[ai, bi].
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5.3 Compact domain case

On the previous section we have seen that, when Ω0 is an open domain,
the limit measure is a numerable combination of Dirac deltas. Therefore,
the Hausdorff dimension of the skeleton Ω1 is 0. Now, we shall prove that
if we do not require the domain to be open, we can obtain a skeleton of any
Hausdorff dimension. Specifically, we shall prove that given µ1 supported on
Ω1 with zero length (but no necessarily having Hausdorff dimension equal
to 0) we can construct Ω0 such that, if ρ0 = χΩ0 , then the solution ρ of (5.3)
evolves towards µ1 as a measure.

Theorem 5.4. Given µ1 supported on K1 ⊆ [1/2, 3/2] such that

|K1| = 0 and µ1(R) = µ1(K1) = 1.

Then, there exists K0 with |K0| = 1 and such that the solution ρ(·, t) to the transport
equation (5.3) with initial data

ρ0 = χK0

satisfies
lim
t→1

ρ(x, t)dx → dµ1.

Proof. Since K1 is compact, then the set U1 = [1/2, 3/2] \ K1 is open. Then it
can be written as a numerable union of open intervals as

U1 = ∪∞
j=1(aj,1, bj,1).

Then, for a point x ∈ (ai,1, bi,1) we associate the following velocity (recall that
in Theorem 5.1 we saw that velocity is constant along trajectories)

vi =
1
2

{
µ1

(
K1 ∩

[
ai,1 + bi,1

2
,

3
2

])
− µ1

(
K1 ∩

[
1
2

,
ai,1 + bi,1

2

])}
.

Now we define{
ai,0 = ai,1 − vi,
bi,1 = ai,0 + (bi,1 − ai,1) = bi,1 − vi.

and also we let U0 = ∪∞
i=1(ai,0, bi,0) and set K0 = [0, 2] \U0.

The spirit of this procedure is the following: we have observed in the
proof of Theorem 5.1 that the intervals in the complementary set of K0 just
move by keeping its length, because the velocity is constant in these inter-
vals. What we have done here is keeping the length of the intervals in the
complementary of K1 and move them with the expected velocity (constant
for each interval) for them.
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Consider now the uniform measure defined on K0, that is, dµ0 = χK0 dx.
It remains to check that µ0 → µ1. Let

v(x) = (−sign ∗ χK0)(x) =
1
2
{|K0 ∩ (x, 2)| − |Ω0 ∩ (0, x)|} .

Then, the flow can be written as

X(α, t) =


x + t

2 if x ≤ 0,
x + v(x)t if 0 < x < 2,
x− t

2 if 2 ≤ x.

It is clear by construction that U1 = X(U0, 1) and hence K1 = X(K0, 1) too.
We define µt = (X(·, t))#µ0, that is, for a measurable set A we have

µt(A) = (X(·, t))#µ0(A) = µ0(X−1(A, t)).

We have seen in Theorem 5.2 that the length of Kt = X(K0, t) is uniformly
shrinking with a ratio 1− t, meaning that for any set K̃ ⊆ K0 we have∣∣X(K̃, t)

∣∣ = (1− t)
∣∣K̃∣∣ .

Then we clearly have

µt(A) =
∫

X−1(A,t)∩K0

dx =
1

1− t

∫
A∩Kt

dx =
1

1− t
|A ∩ Kt| .

Hence, given (a, b) ⊆ (0, 2) we have

µt(a + v(a)t, b + v(b)t) =
1

1− t
|(a + v(a)t, b + v(b)t) ∩ Kt| =

= |(a, b) ∩ K0| ,
(5.8)

which is indepenent of t. We want to check that whenever t → 1− then
µt(A) → µ1(A) for a set A. Without loss of generality we can reduce to the
case when A is an interval. An interval (y, z) can be written as
(a + v(a), b + v(b)) for some a, b since X(·, t) is a homeomorphism. Then,

µt(a + v(a),b + v(b))− µ1(a + v(a), b + v(b)) =
=µt(a + v(a), b + v(b))− µt(a + v(a)t, b + v(b)t)+
+µt(a + v(a)t, b + v(b)t)− µ1(a + v(a), b + v(b)) =
=µt(a + v(a), b + v(b))− µt(a + v(a)t, b + v(b)t)→ 0

where we have used equation (5.8). So µt(A) → µ1(A). Since {µt}0≤t≤1
are probability measures we can conclude that µt → µ1, which proves the
result.
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