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ABSTRACT

Myeloid malignancies are clonal diseases originated in myeloid
hematopoietic stem cells that are frequently initiated by somatic mutations.
The detection of genetic alterations has considerably improved the diagnostic
accuracy in myeloid neoplasms, however multiple aspects should be further
improved in the diagnostic and classification tools that are used in clinical
practice. The main goal of the research projects presented in this thesis is to
improve the accuracy of the diagnosis and classification of myeloid
malignancies, focused on myeloproliferative neoplasms (MPN),
myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia
(CMML). We explored the role of cell free DNA (cfDNA) analysis as a new non-
invasive diagnostic tool in MPN and MDS patients and detected an equivalent
mutational profile in paired samples of cfDNA and tumoral cells. On the other
hand, we compared the clinical, genomic, and immunophenotypic features of
a series of oligomonocytic CMML (OM-CMML) and overt CMML and observed
similar characteristics supporting the consideration of OM-CMML as a
distinctive subtype of CMML. Finally, we assessed if saliva samples and CD3+
lymphocytes were a suitable source of germline DNA in MPN patients, and
found that the use CD3+ lymphocytes was a better option for germline DNA
obtention than saliva samples, which were frequently contaminated with

tumoral cells.






RESUMEN

Las neoplasias mieloides son enfermedades clonales que se originan en las
células madre hematopoyéticas mieloides y son iniciadas generalmente por
mutaciones somaticas. La deteccién de estas alteraciones genéticas ha
mejorado considerablemente la precision diagnéstica en las neoplasias
mieloides, sin embargo, aun se deben mejorar multiples aspectos en las
herramientas de diagndstico y clasificacion que se utilizan en la practica
clinica. El objetivo principal de los estudios presentados en esta tesis es
mejorar la precision del diagndstico y clasificacion de las neoplasias mieloides,
en concreto en neoplasias mieloproliferativas (NMP), sindromes
mielodisplasicos (SMD) y leucemia mielomonocitica crénica (LMMC). Hemos
explorado el papel del andlisis de ADN libre circulante (cfDNA) como una
nueva herramienta diagndstica no invasiva en pacientes con NMP y SMD, y
hemos detectado un perfil mutacional equivalente en muestras pareadas de
cfDNA vy células tumorales. Por otro lado, comparamos las caracteristicas
clinicas, gendémicas e inmunofenotipicas de una serie de LMMC
oligomonocitica (OM-CMML) y LMMC clasica y observamos caracteristicas
similares entre ambos grupos, lo que apoya la consideracién de OM-CMML
como un subtipo de LMMC. Finalmente, evaluamos si las muestras de saliva
y los linfocitos CD3 + eran una fuente adecuada de ADN de linea germinal en
pacientes con NMP, y observamos que el uso de linfocitos CD3+ era una mejor
opcion para la obtencidon de ADN germinal que las muestras de saliva, que

estaban contaminadas en su mayoria con células tumorales.
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INTRODUCTION

1. MYELOID NEOPLASMS

1.1. Introduction and classification of myeloid
neoplasms

Myeloid malignancies include a heterogeneous group of clonal diseases that
are originated in the myeloid hematopoietic stem cells. Patients with myeloid
malignancies present clonal stem cells with detectable genetic alterations
that affect proliferation, differentiation and homeostasis. The presence of
aberrant hematopoiesis is the main common feature of this disease group,
however, the clinical phenotype is conditioned by the characteristics of the
clonal hematological cells. When these aberrant clonal stem cells have the
capacity to mature and expand, this proliferative disease phenotype is
associated to myeloproliferative neoplasms (MPN). On the other hand,
myelodysplastic syndromes (MDS) are characterized by hematological
progenitors that present ineffective hematopoiesis, impeding correct cell
differentiation. Those cases in which both proliferative and dysplastic
features are observed are included in the myeloproliferative/myelodysplastic
group (MPN/MDS).

The World Health Organization (WHQO) 2017 revision of the myeloid
neoplasms includes 9 categories (Table 1)(1). The research projects presented
in this thesis are focused in the group of chronic myeloid neoplasms including
MPN, MDS and MDS/MPN. Regarding the MDS/MPN group, this thesis is

focused in chronic myelomonocytic leukemia (CMML).



INTRODUCTION

Table 1. WHO 2017 myeloid neoplasm classification. Adapted from Arber et al., Blood, 2016.

Myeloproliferative neoplasms (MPN)
Chronic myeloid leukemia (CML), BCR-ABL1*
Chronic neutrophilic leukemia (CNL)
Polycythemia vera (PV)
Primary myelofibrosis (PMF)
PMF, prefibrotic/early stage
PMF, overt fibrotic stage
Essential thrombocythemia (ET)
Chronic eosinophilic leukemia, not otherwise specified (NOS)
MPN, unclassifiable

Mastocytosis
Myeloid/lymphoid  neoplasms  with  eosinophilia and rearrangement
of PDGFRA, PDGFRB, or FGFR1, or with PCM1-JAK2
Myelodysplastic/myeloproliferative neoplasms (MDS/MPN)

Chronic myelomonocytic leukemia (CMML)

Atypical chronic myeloid leukemia (aCML), BCR-ABL1~

Juvenile myelomonocytic leukemia (JMML)

MDS/MPN with ring sideroblasts and thrombocytosis (MDS/MPN-RS-T)

MDS/MPN, unclassifiable
Myelodysplastic syndromes (MDS)

MDS with single lineage dysplasia

MDS with ring sideroblasts (MDS-RS)

MDS-RS and single lineage dysplasia
MDS-RS and multilineage dysplasia

MDS with multilineage dysplasia

MDS with excess blasts

MDS with isolated del(5q)

MDS, unclassifiable
Myeloid neoplasms with germ line predisposition
Acute myeloid leukemia (AML) and related neoplasms
Blastic plasmacytoid dendritic cell neoplasm
Acute leukemias of ambiguous lineage
B-lymphoblastic leukemia/lymphoma
T-lymphoblastic leukemia/lymphoma

Adapted from Arber et al., Blood, 2016



INTRODUCTION

1.2 Genetic alterations in myeloid neoplasms

The identification of somatic mutations has considerably improved the
diagnostic accuracy of myeloid neoplasms. During the last decades, it has
been possible to identify genetic alterations in the majority of patients with
MPNs, MDS and CMML. The detection of molecular alterations has become
part of the diagnostic criteria in several disease subgroups of myeloid

neoplasms.

The most frequently mutated genes in chronic myeloid neoplasms can be

classified according to the function of the protein in 6 groups:
-Cell signaling (JAK2, CALR, MPL, SH2B3, NRAS, KRAS, CBL, NF1, PTPN11)
-Epigenetic regulation (TET2, DNMT3A, IDH1/IDH2, ASXL1, EZH2)
-Splicing (SF3B1, SRSF2, U2AF1, ZRSR2, PRPF8, DDX41)

-Transcription factors (RUNX1, SETBP1, ETV6, BCOR/BCORL1, PHF6, CUX1,
GATA2)

-DNA repair (TP53, PPM1D, CHEK2, ATM)
-Cohesins (STAG2, RAD21)

The function of each gene group is described in detail in the following sections
(1.2.1 to 1.2.6). The frequency and clinical implications of these genes are
listed in 1.2.7.

1.2.1 Cell signaling

The process of signal transduction in the cell is essential for generating a
cellular response to an external stimulus that activates a cell surface receptor.
When the ligand binds to the receptor, a series of biochemical reactions are
performed from the cell surface to the nucleus to regulate gene expression.
Mutations in proteins involved in signaling transduction generally induce the
constitutive activation of the pathway in absence of ligand, leading to

deregulated gene expression. In myeloid malignancies, the Janus Kinase-
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Signal transducer and activator of transcription (JAK-STAT) and Rat sarcoma

(RAS) are the most frequently altered pathways.
1.2.1.1 JAK-STAT pathway: JAK2, CALR, MPL, SH2B3

Three main proteins constitute the JAK-STAT signaling pathway: cell
receptors, JAK kinases and STAT proteins (Figure 1).

-Cell receptors are located in the cell surface and are activated by type |
cytokines such as erythropoietin (EPO), thrombopoietin (TPO), granulocyte-
macrophage colony-stimulating factor (GM-CSF), and granulocyte colony-
stimulating factor (G-CSF)(2). The binding of these ligands activates the

receptors and induces their homodimerization.

-JAK kinases are activated following the receptor homodimerization,
inducing the binding of the nearest JAK protein to the cytoplasmic domain of
each receptor. Consequently, two JAK kinases are recruited into receptor
complex and phosphorylate each other to activate their kinase activity(3,4).

-STAT proteins are phosphorylated by JAK kinases, triggering the formation
of STAT homodimers, which are able to enter the cell nucleus. Once in the
nucleus, STAT proteins are activated as transcription factors that bind DNA

and regulate gene expression(5).
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Figure 1. JAK-STAT Pathway. (O’Shea et al., Annu Rev Med, 2015)(6)
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Mutations in the JAK-STAT pathway induce the abnormal activation of STAT
proteins and are causative of the MPN phenotype. These mutations are found
in 90% of MPNS, however, they are not exclusive for MPN disease group.
Approximately, 2-10% of CMML show mutations in this pathway, which is
coherent with the proliferative features observed in this disease subgroup. In
MDS, alterations in the JAK-STAT pathway are infrequent (<5%).

JAK2

JAK2 (Janus Kinase 2) gene encodes for the JAK2 protein, a tyrosine kinase
that participates in the JAK-STAT pathway signaling. JAK2 activity is critical for
signaling transduction from receptors to STAT proteins(3).

In 2005, the somatic JAK2 p.V617F (JAK2V617F) mutation was identified for
the first time in MPN patients(7—11). This mutation is a missense mutation
consisting on a change from valine (V) to phenylalanine (F) in the aminoacid
617 of the JAK2 gene. The affected gene region, located in exon 14, is a JH2
(Janus homology-2) pseudokinase domain that regulates the activity of the
JH1 (Janus homology-1) tyrosine kinase domain. The JAK2V617F mutation in
JH2 blocks the regulation of JH1, inducing a constitutive activation of the
kinase domain. Therefore, JAK2V617F is a hyperactivating mutation as it
induces a constitutive activation of JAK2 protein in absence of a ligand (Figure
2)(7,10). It is considered a driver alteration as the constant activation of the

signaling pathway is causative for MPNs.

Posterior studies in 2007 found activating mutations in exon 12 of JAK2 when
analyzing MPN patients with erythrocytosis lacking the JAK2V617F mutation.
These mutations affect the genomic region between the SH2 (Src Homology
2) and JH2 domain of JAK2, and induce a similar effect in protein interaction
to JAK2V617F(12).

CALR

Calreticulin (CALR) gene encodes for the calreticulin protein, involved in
cellular processes in the cytoplasm and in the endoplasmic reticulum (ER). In
the cytoplasm, calreticulin is involved in the regulation of proliferation,

apoptosis, phagocytosis and immune response(13). In the ER, it acts as a
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calcium binding chaperone protein that regulates the correct folding of other
proteins. Calreticulin protein has three key domains to perform its cellular
activity: the N-terminal domain, the proline-rich domain and the C-terminal
domain. The N terminal domain and the proline-rich domain are mainly
implicated in the chaperone functions of CALR. In normal conditions, the C-
terminal domain presents a KDEL (K-lysine, D-aspartic acid, E-glutamic acid, L-
leucine) sequence enriched in negatively charged amino acids that is essential
for protein retention in the ER(14).

In 2013, somatic mutations in CALR were identified for the first time by NGS
in patients with MPNs without JAK2V617F mutation (15,16). The two most
frequent mutations in CALR are frameshift mutations: type 1 mutation is a 52
base pairs (bp) deletion (p.L367fs*46) and type 2 mutation is a 5 bp insertion
(p.K385fs*47). Oher mutations are classified as type 1-like or 2-like based on
the affected region of the protein. Mutated CALR produces the synthesis of
an altered protein with a C-terminal domain that is positively charged,
inhibiting its capacity to bind the ER. In this context, mutated calreticulin
induces the aberrant activation the JAK-STAT pathway by interacting with the
receptor of thrombopoietin (MPL), which leads to the MPN
phenotype(17,18).

MPL

MPL (c-mpl) gene codifies for the TPO receptor protein, which is essential for
blood cell proliferation, especially for megakaryocytes(19). When the TPO
ligand binds to the receptor, this interaction induces the homodimerization
of the MPL receptor and triggers JAK2 activation and the positive signal is
transduced to activate the JAK-STAT pathway(20). MPL receptor presents two
extracellular receptor domains, a transmembrane domain and an intracellular
domain. The transmembrane domain, codified by exon 10 of MPL gene is
essential to keep the receptor inactive as it prevents receptor

homodimerization in absence of the ligand(21).

Mutations in MPL gene, identified for the first time in 2006(19), are frequently
located in exon 10 affecting the transmembrane domain of the MPL receptor.

MPL mutated receptor is aberrantly activated in absence of ligand, inducing
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the receptor homodimerization and activation of the JAK-STAT pathway,
inducing uncontrolled megakaryopoiesis and MPN phenotype(22).
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Figure 2. JAK2, CALR and MPL mutations in the JAK-STAT Pathway.
(Guijarro-Hernéndez et al., Cancers 2021)(23)

SH2B3

SH2B Adaptor Protein 3 (SH2B3) gene, also named lymphocyte adapter
protein (LNK), codifies for the SH3B3 protein which is a key regulator of
normal hematopoiesis. SH2B3 acts as a negative regulator of the JAK-STAT

pathway and therefore is involved in cell proliferation control(24).

SH2B3 mutations are missense mutations that can occur in all exons, but are
more frequently found in exon 2. This exon codifies for the pleckstrin

homology (PH) domain, essential for SH2B3 functions. Mutations are mainly
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changes that reduce the level of activity of SH2B3, increase the activity of the

JAK-STAT pathway and are associated to uncontrolled proliferation(24,25).
1.2.1.2 RAS pathway: KRAS, NRAS, CBL, NF1, PTPN11

RAS pathway (also known as Ras-Raf-MEK-ERK pathway) is implicated in
signaling transduction from cellular receptors including receptor tyrosine
kinases (RTKs) such as epidermal growth factor receptor (EGFR) to the cell
nucleus. When the receptor is activated by the ligand, it triggers the kinase
activity of the cytoplasmic domain of the receptor. This activates a cascade of
protein-protein interaction that leads to SOS activation, which removes a
guanosine diphosphate (GDP) molecule from RAS proteins (such as KRAS and
NRAS). RAS can then bind guanosine triphosphate (GTP) and become active.
Activated RAS triggers a kinase cascade leading to the phosphorylation of
mitogen-activated protein kinase (MAPK). MAPK is then activated and
coordinates the activity of transcription factor implicated in cell cycle
regulation and proliferation (Figure 3). Mutations affecting the RAS pathway

generally lead to uncontrolled proliferation of the mutated clone(26).

RAS pathway mutations are frequent in CMML (30%) and particularly in
proliferative variants of CMML(27). In MDS, these mutations are found in 5-
10 % of cases. In MPNs, RAS pathway mutations are identified mainly in
patients with myelofibrosis (5-10%) (28-32).
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Figure 3. RAS pathway signaling. (Carcavilla et al., An Pediatr, 2020) (33)
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KRAS

Kirsten rat sarcoma virus (KRAS) gene encodes for a GTPase, a protein that is
activated and inactivated by the binding to GTP and GDP, respectively. KRAS
gene is known to be an oncogene and is mutated in several malignancies such

as lung or colorectal cancer(34).

KRAS mutations in myeloid malignancies are generally missense mutations
which occur in the protein positions 12, 13, 61 and 146. These changes are
activating mutations that induce aberrant activation of the RAS pathway in

absence of receptor activation(35).
NRAS

Neuroblastoma ras viral oncogene homolog (NRAS) codifies for the NRAS
protein, which is very similar to KRAS. NRAS is also a GTPase known to be an

oncogene.

Similar to KRAS gene, NRAS activating mutations mainly occur in protein
positions 12,13 and 61. However NRAS mutations in myeloid malignancies are
slightly more frequent than KRAS mutations(35,36).

CBL

Casitas B-lineage Lymphoma (CBL) gene codifies for the CBL protein, a RING
finger E3 ubiquitin ligase. CBL is involved in several signal transduction
pathways that are essential for hematopoietic stem cell maintenance. In
normal conditions, this protein tags the substrates by ubiquitination to trigger

their degradation by the proteasome.

CBL mutations in myeloid malignancies are mainly detected in protein
positions 366-420. This region codifies for the RING finger domain and
hotspot mutations in CBL are known to disrupt its ubiquitin ligase
activity(37,38). In consequence, mutated CBL reduces the ubiquitin mediated
degradation of tyrosine kinases(39) which leads to aberrant activation of the
RAS pathway(40). The JAK-STAT and PI3K pathways are also deregulated by
mutated CBL(41,42). Overall, CBL mutations alter the regulation of cell

proliferation and differentiation.
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NF1

The neurofibromin 1 gene (NF1), encodes for the protein neurofibromin. This
protein is also a RAS GTPase with a key role in cell proliferation regulation.
Neurofibromin is predominantly implicated in the activation and regulation
of the RAS pathway(43,44).

Germline mutations in NF1 are causative of neurofibromatosis type 1
syndrome(45). On the other hand, somatic mutations in NF1 have also been
described, and are frequently truncating or splicing mutations distributed
throughout the gene. They are loss of function mutations that impede its
regulatory function, thus inducing aberrant activation of the RAS
pathway(46). NFI mutations frequently co-occur with a NF1 mutation in the
other allele(47).

PTPN11

The Protein Tyrosine Phosphatase Non-Receptor Type 11 gene (PTPN11)
encodes for the SHP2 protein, a tyrosine phosphatase that regulates signaling
of the RAS pathway. The SH2 domain of SHP2 is the active site of the protein
and is essential for its catalytic function.

Germline mutations in PTPN11 are causative of Noonan syndrome(48). In
myeloid malignancies, somatic mutations in PTPN11 gene have been
described, and occur along the whole codifying region, however, the regions
coding for the SH2 domains are more frequently affected. These are
frequently missense mutations affecting this active site and leading to gain of

function changes that activate several pathways, including RAS(49).

1.2.2 Epigenetic regulation

Epigenetic cell processes are those involved in DNA modifications without the
alteration of the DNA sequence itself and comprise, among others, DNA
methylation (TET2, DNMT3A, IDH1, IDH2) and histone modification (ASXL1,
EZH2, KMT2A).
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1.2.2.1 DNA methylation: TETZ, DNMT3A, IDH1/IDH2

DNA methylation is an epigenetic mechanism in which methyl groups are
added to the DNA, generally to CpG islands. This process is essential to
regulate gene expression. In MDS and CMML, mutations in genes implicated
in DNA methylation (i.e. TET2, DNMT3A and IDH1/2) have been described as
driver alterations in the disease pathogenesis. In this context, DNA
methylation alterations in myeloid malignancies produce hypermethylation

of genes implicated in proliferation and hematopoietic regulation(50).

The DNA methylation and demethylation process is a cyclic reaction to
activate and inactivate gene expression. The addition of a methyl group to
cytosines generates 5-methylcytosines (5-mC) which inhibits gene
expression(51). To reverse this reaction, a previous step of
hydroxymethylation is required: a hydroxyl group is added to 5-mC to
generate 5-hydroxymethylcytosynes (5-hmC). This leads to final DNA
demethylation (Figure 4).

Mutations in DNA methylation genes are frequent in CMML (45-70%)(52-54).
In MDS, these mutations are also common, found in 20-25% of cases (28-30).
In MPN, DNA methylation genes are mutated in 10-20% patients (31,32).

NH, NH,
H,C
ﬁ N DNMTs ’ XN Gene
N /&8\'\]!&41? DNMT3A, DNMT3B N /go Regulation
| [
DNA DNA methylation DNA TETs
c 5-mC
, TDG/ ‘_ ___________________________________
' BER | 3 !
: NH, | NH, OH N, :
: !
9 | SN H | SN | SN :
! -—_— - '
: N /&O TETs N /&O TETs N /&O !
I | | |
: DNA DNA DNA :
}
; 5-caC 5- 5-hmC I
I fc !
' I

DNA Demethylation

Figure 4. Methylation and demethylation process.
(Abe et al., ADV EXP MED BIOL, 2017)(55)
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TET2

The Ten-Eleven Translocation-2 (TET2) gene encodes for the TET2 protein, a
dioxygenase that catalyzes the switch of 5-methylcytosine to 5-
hydroxymethylcytosine. TET2-mediated demethylation is required to

coordinate transcription(56,57).

Mutations in TET2 gene can be missense or truncating mutations that are
distributed all over the gene. TET2 is a large and polymorphic gene which
further complicates accurate variant interpretation. TET2 mutations are
mainly loss of function mutations that impede its catalytic function in
hydroxymethylation. Therefore, TET2 loss of function leads to an increase in
global methylation and in consequence those genes with methylated
promotors are less expressed(58). Mutations in TET2 are the most
characteristic of CMML and frequently co-occur with SRSF2 mutations(52—
54).

DNMT3A

The DNA methyltransferase 3 alpha (DNMT3A) gene codifies for DNMT3A
protein a DNA methyltransferase that is involved in de novo methylation(59).
DNMT3A-mediated methylation is essential for epigenetic silencing of genes
involved in hematopoietic stem cell regulation and differentiation(60).

Mutations in DNMT3A are generally missense or truncating mutations close
to the methyltransferase domain of the protein, although mutations have
been identified throughout the whole sequence. The most frequent mutation
is a missense mutation in position 882 (p.Arg882His). These mutations are
loss on function mutations that impede de novo methylation. DNMT3A
mutations produce global hypomethylation in DNA, inducing aberrant
expression of genes implicated in hematopoiesis regulation. Consequently,
DNMT3A mutated cells are incapable of efficiently differentiate(60). Of note,
DNMT3A mutations are the most frequently found alterations when analyzing
the molecular profile of healthy cohorts, which is further explained in the next

subsection 1.4 Clonal hematopoiesis of indeterminate potential.
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IDH1/IDH2

The isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) encode two similar
proteins (IDH1/2) involved in the metabolism of 2-oxoglutarate, the principal
cofactor of TET2 protein. IDH1/2 proteins catalyze the conversion of isocitrate

a 2-oxoglutarate which is an essential metabolite for hydroxymethylation.

Mutations in IDH1 and IDH2 are generally detected in exon 4, in particular in
protein positions R132 for IDH1 and R140/R172 for IDH2. Mutated IDH1/2
disrupts isocitrate conversion to 2-oxoglutarate altering cell metabolism and
inhibiting correct hydroxymethylation (61). Altered IDH activity also produces
the accumulation of 2-hydroxyglutarate which blocks cell differentiation and
leads to an hypermethylated state of the hematopoietic cells. In line with this,
mutations in IDH genes and TET2 are almost always mutually exclusive(62).

1.2.2.2 Histone modification: ASXL1, EZH2

Histones are DNA binding proteins that wrap DNA to conform chromatin
structure and are crucial for gene expression regulation. The process of
histone modification is a post-transcriptional mechanism that produces
covalent changes to histone proteins, such as methylation or acetylation
(Figure 5). These changes are essential for chromatin structure regulation and
therefore to coordinate gene expression. In myeloid malignancies, the most
frequently altered genes related to histone modification are implicated in the
mechanism of histone methylation (ASXL1 and EZH2).
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Figure 5. Histone modification by the PRC2 complex.
(Adapted form Ogawa, Blood, 2019) (30)
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Mutations in genes implicated in histone modifications have been described
in 15% of MDS and in 40-50% of CMML(28-30,52-54). In MPN, these
mutations are present in 15-25% of cases with myelofibrosis, while they are
infrequent in the other MPN subgroups(31,32).

ASXL1

The ASXL transcriptional regulator 1 (ASXL1) gene codifies for a polycomb-
related protein. ASXL1 protein interacts with the polycomb repressive
complex 2 (PRC2) to trimethylate histones. ASXL1-PRC2 interaction is
required for trimethylation which is a key mechanism to regulate repression

of genes implicated in hematopoiesis.

Mutations in ASXL1 are mainly truncating or nonsense alterations in exon 12
that produce an aberrant C- terminal domain. These alterations result in a
dysfunctional ASXL1 protein and therefore gene repression via PRC2 is
defective leading to a dysregulation of hematopoiesis(63,64).

EZH2

The enhancer of zeste 2 polycomb repressive complex 2 (EZH2) gene encodes
for a subunit of the PRC2 complex. EZH2 protein is a catalytic component of
PRC2 with a key role in histone methylation as a mechanism of gene
repression. Interestingly, EZH2 has also been associated with activation of
DNA methyltransferases, therefore liking the mechanisms of DNA

methylation and histone modifications(65).

Mutations in EZH2 are loss of function missense or truncating mutations
distributed all over the coding sequence. In consequence, EZH2 mutations
impede PRC2 activity and deregulate repression of genes implicated in

hematopoiesis(66,67).
1.2.3 Splicing: SF3B1, SRSF2, U2AF1, ZRSR2, PRPF8, DDX41

The process of RNA modification to generate mature messenger ribonucleic
acids (mRNA) is known as splicing. In this stage, immature RNA (pre-RNA) is
processed to eliminate introns and join exonic regions, which is required for

correct mRNA translation into proteins. This process is performed in the cell
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nucleus by the spliceosome, a large protein complex formed by numerous
proteins and small nuclear RNAs (snRNA) (Figure 6). Alterations in the splicing
machinery can generate aberrant mRNAs, induce exon skipping and alter

protein translation.

Splicing genes are altered across several subgroups of myeloid malignancies.
In MDS, splicing genes are altered in the majority of patients, being the most
frequently mutated gene group (45-83%) (68-71). For CMML patients,
splicing machinery is also frequently altered (30-50%). However, in MPNs
splicing mutations are overall infrequent, except for those cases with
myelofibrosis (5-15%) in which these mutations are generally associated to
poor outcomes(31,32). Splicing mutations occur early in the disease onset of
MDS and CMML, while in MPNs they are associated to a later stage of the

disease and is related to clonal evolution.
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Figure 6. Splicing machinery and most frequent mutations in U2AF1, SRSF2 and SF3B1.
(Anczukow et al., RNA, 2016) (72)
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SF3B1

SF3B1 gene codifies for SF3B1 protein, the largest protein of the spliceosome
factor 3b (SF3B) complex. SF3B1 is a key component in the spliceosome,
essential for intron point sequence identification and for spliceosome

assembly(73).

SF3B1 mutations are predominantly located in exons 14-15, the hotspot of
the gene, which codifies for the HEAT domain of the protein. SF3B1 p.K700E
is the most recurrent mutation in SF3B1 where it is detected in 50% of SF3B1
mutated cases. Other SF3B1 mutations are also frequently detected in the
HEAT domain, mainly in codons from 622 to 700. The HEAT domain is critical
for RNA recognition and binding of the spliceosome to RNA. SF3B1 mutations
produce alterations in the splicing process of genes implicated in several
pathways. Altered SF3B1 protein induces aberrant splicing in several genes
implicated in iron transportation in mitochondria, which is causative of
abnormal iron deposition in the cell around mitochondria. In consequence,
patients with SF3B1 mutations are strongly associated with a specific
phenotype in bone marrow cells, the presence of ring sideroblasts. SF3B1
mutations are detected in 30% of MDS patients, while the frequency rises up
to 80% in the subgroup of MDS with ring sideroblasts(74,75).

SRSF2

The serine and arginine rich splicing factor 2 (SRSF2) gene encodes for the
SRSF2 protein which is part of the spliceosome. SRSF2 recognizes the intron-
exon limits, promotes spliceosome binding to splice sites and regulates

alterative splicing(76,77).

Mutations in SRSF2 are mainly missense mutations affecting the hotspot P95
in exon 1. These mutation affects SRSF2 protein in a proximal position to the
RNA binding domain (RRM), which alters the spliceosome union to RNA(78).
Mutant SRSF2 alters the splicing of thousands of genes, which contributes to
deregulated hematopoiesis (79). SRSF2 mutations frequently co-occur with
mutations in TET2 or ASXL1 genes in CMML (30-50%). These mutations are
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also found in 10-15% of MDS(69,70). In MPNs, they are present in 9-17% of

cases with myelofibrosis but are infrequent in the other disease subgroups.
U2AF1

The U2 Small Nuclear RNA Auxiliary Factor 1{U2AF1) gene encodes for the U2
auxiliary factor protein which is a component of the spliceosome. U2AF1
protein is essential for the spliceosome binding to the pre-mRNA branch site.
It also mediates the interactions between the spliceosome and the subunits
that bind to the mRNAs.

Mutations affecting the U2AF1 gene are missense mutations in protein
positions 34 and 157 located in the region encoding for the two zinc finger
domains. These alterations induce aberrant splicing patters that are
associated to altered hematopoiesis(80,81).

ZRSR2

The Zinc Finger CCCH-Type, RNA Binding Motif And Serine/Arginine Rich 2
(ZRSR2) codifies for the ZRSR2 protein, a pre-mRNA-binding protein. It
recognizes the 3’-splice sites of mMRNA and is essential for the spliceosome
assembly.

Mutations in ZRSR2 are detected all along the coding sequence and are
frequently truncating mutations. These are loss of function mutations that
impede the correct recognition of the splice sites(82).

PRPF8

The pre-mRNA Processing Factor 8 (PRPF8) gene encodes for the PRPF8
subunit of the spliceosome. PRPF8 is the most evolutionary conserved protein
of the spliceosome indicating the relevance of its functionality(83). It is
essential for interactions with the 5’ and 3’ splice sites of pre-mRNA in splicing

and alterative splicing(84,85).

Mutations in PRPF8 are predominantly missense mutations that scatter all
over the gene. Mutations in PRPF8 gene lead to altered pre-mRNA splicing,

producing aberrant splicing in genes involved in iron metabolism and
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hematopoiesis regulation (86). Accordingly, PRPF8 mutations have been

associated with the presence of ring sideroblasts(86).
DDX41

The DEAD-Box Helicase 41 (DDX41) gene codifies for the RNA helicase DDX41.
This protein is involved in splicing, translation and RNA structure

modifications.

Missense and truncating mutations in DDX41 gene have been identified
throughout the coding sequence. Germline and somatic mutations in DDX41
have been detected in MDS. Germline mutations predispose to MDS or AML
and are located close to the C-terminal domain. Somatic DDX41 mutations
frequently co-occur with germline DDX41 mutations, and are closer to de N-
terminal domain(87). Of note, cases with germline DDX41 mutations develop
MDS disease phenotype at approximately 65 years, similarly to de novo MDS
or AML(88,89).

1.2.4 Transcription factors: RUNX1, SETBP1, ETV6,
BCOR/BCORL1, PHF6, CUX1, GATAZ2

Transcription factors are proteins directly involved in initiation of
transcription. These proteins regulate RNA synthesis by binding to DNA at the
promoter sequences and recruiting the transcription complex. The most
frequently altered genes encoding for transcription factors in myeloid
malignancies are RUNX1, SETBP1, ETV6, PHF6 and CUX1.

Alteration in these genes are detected in 10-20% of MDS and CMML cases
(28-30,52-54), while in MPN these mutations are infrequent(<5%)(31,32).

RUNX1

The Runt-related transcription factor 1 (RUNX1) encodes for a protein of the
core-binding factor. RUNX proteins present a runt-homology domain to bind
DNA and promote transcription. RUNX1 participates in regulation of the

expression of several genes implicated in hematopoiesis.
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RUNX1 mutations have been identified throughout the whole sequence, and
can be missense or truncating. These are loss of function mutations that
disrupt the transcription factor function of the protein(90). Consequently,
RUNX1 mutated cases show overexpression of several genes involved in
hematopoiesis, and are associated to abnormal proliferation(91).

SETBP1

The Set-Binding Protein 1 (SETBP1) codifies for a nuclear protein that interacts
with the SET protein, a nuclear oncogene implicated multiple cellular

processes such as DNA replication and transcription regulation(92).

Mutations in SETBP1 are distributed mainly in the hotspot encoding for the
SKI-homologous domain (protein positions 858-871)(93). These mutations
directly affect gene transcription and induce aberrant cell proliferation (94).

ETV6

The ETS Variant Transcription Factor 6 (ETV6) gene encodes for a transcription
factor with DNA binding functions. ETV6 plays a key role in hematopoietic
regulation by acting as a transcription repressor(95).

ETV6 alterations in myeloid malignancies include translocations, deletions
and point mutations. Point mutations are frequently truncating alterations
that disrupt ETV6 interactions either with other proteins or with DNA(96).
ETV6 mutations have been associated to uncontrolled cell proliferation of the

mutated clone(97).
BCOR/BCORL1

The BCL6 Corepressor (BCOR) and BCL6 Corepressor Like 1 (BCORL1) genes
encodes for two transcriptional corepressors. BCOR and BCORL1 have similar

functions and are co-repressors of the BCL6 oncogene(98,99).

BCOR and BCORL1 mutations are truncating or missense mutations
distributed throughout the whole sequence, with BCOR gene showing a
hotspot position in codon N1425(100). These alterations are loss of function

mutations that are associated to Ilate expansion of myeloid
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malignancies(100). BCOR and BCORL1 mutations induce a deregulation of the
hematopoiesis control(101,102).

PHF6

The PHD Finger Protein 6 (PHF6) encodes for a tumor suppressor protein
involved in the regulation of rRNA synthesis. It is also involved in cell

proliferation, cell cycle and DNA damage(103).

PHF6 mutations are truncating or missense mutations that have been
describe throughout the whole sequence(104). These mutations
predominantly affect male gender since PHF6 is located at X chromosome.
This suggests that, in females, PHF6 mutated in heterozygosis is not sufficient
to produce clonal expansion(105).

CUX1

The CUT-like homeobox 1 (CUX1) gene codifies for a transcription factor with
a tumor suppressor function(106). CUX1 is implicated in maintenance of
hematopoietic progenitors and also in the base excision DNA repair
mechanism(107).

CUX1 deletions and point mutations have been identified in myeloid
malignancies. Loss of function mutations in CUX1 lead to deficient DNA repair
and therefore contribute the accumulation of other mutations(108).

GATA2

The GATA Binding Protein 2 (GATA2) gene encodes for a transcription factor

involved in proliferation and maintenance of hematopoietic stem cells(109).

Mutation in GATA2 are frequently germline mutations that lead to
myelodysplasia at early age(110). These alterations are recurrent in the
hotspot encoding for the zinc finger domains (exons 4-6). GATA2 deficiency

alters the self-renewal capacity of hematopoietic stem cells(109,111).
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1.2.5 DNA repair: TP53, PPM1D, CHEK2, ATM

DNA is susceptible to biochemical alterations produced by external agents or
DNA polymerase errors. In this context, DNA repair machinery, cell cycle
regulators or cell death pathways (if damage is unsustainable) are activated.
Dysregulations of genes implicated in these functions have been identified

throughout the majority of cancer types.

In myeloid malignancies, the most frequently altered genes are TP53, PPM1D,
CHEK2 and ATM.

TP53

The tumor protein p53 (TP53) encodes for the TP53 tumor suppressor
protein, which is essential for DNA damage response and regulation of cell
cycle and apoptosis. TP53 is the most frequently mutated gene in cancer since

the disruption of TP53 function affects cell proliferation and survival.

TP53 mutations are distributed all over the coding sequence and are known
to alter the tumor suppressor function of the protein(112). Mutated TP53 in
myeloid malignancies is known to induce genetic instability and is generally

associated to worse outcomes.
PPM1D

The Protein Phosphatase, Mg2+/Mn2+ Dependent 1D (PPM1D) codifies for a
protein phosphatase implicated in cell cycle regulation. PPM1D acts as a
negative regulator of p53 protein to stop G2 checkpoint in response to
stress(113).

Mutations in PPM1D are frequently nonsense and frameshift mutations
occurring in exons 5 and 6. These alterations are loss of function mutations
that disrupt cell cycle regulation. PPM1D mutated cells become tolerant to

DNA damage and resistant to apoptosis(113).
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CHEK2

The Checkpoint Kinase 2 (CHEK2) gene codifies for a cell cycle checkpoint
regulator protein. CHEK2 is a tumor suppressor protein which is activated in
response to DNA damage(114).

The majority of CHEK2 mutations reported are germline alterations that are
associated to an increased risk for cancer(115). However, CHEK2 mutations
can also be somatic and are distributed throughout the whole sequence.
Similar to the other DNA repair genes, these mutations produce a
dysregulation of DNA damage response machinery, which gives selective

advantage to this cells(114).

ATM

The Ataxia Telangiectasia Mutated (ATM) gene encodes for a protein kinase
that is implicated in cell cycle checkpoint through interaction with p53 and
CHEK?2 proteins(116).

Germline mutations in ATM gene in homozygosis are causative of ataxia
telangiectasia(117). Somatic mutations in ATM are found all over the
sequence, but frequently affect the kinase domain. ATM mutated cells have
selective advantage by escaping the traditional cell-cycle checkpoints(116).

1.2.6 Cohesins: STAG2, RAD21

Cohesins are multi-protein subunit complexes that maintain the sister
chromatids together in mitosis and meiosis. They are also implicated in
damaged DNA repair and in gene expression regulation in mitosis and

proliferating cells(118).
STAG2

The Stromal Antigen 2 Gene (STAG2) encodes for a subunit of the cohesin
complex. STAG2 gene is the most frequently altered cohesin gene and has
been found to be mutated across several cancer types, producing chromatid

cohesion defects.
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STAG2 mutations in  myeloid malignancies are loss-of-function
alterations(119,120). These mutations were thought to induce altered
chromosomal separation in cell division, however, this is not observed in
myeloid malignancies. It has been demonstrated that STAG2 mutations
impede hematopoietic stem cell differentiation by regulating chromatin
accessibility and transcription factor activity(121).

RAD21

The RAD21 Cohesin Complex Component (RAD21) gene codifies for a subunit
of the cohesin complex. RAD21 protein is involved in the repair of DNA
double-strand breaks.

RAD21 mutations are generally truncating or missense mutations that impede
its functionality(119,120). Mutated RAD21 is implicated in genomic instability
and induces aberrant hematopoietic self-renewal by epigenetic
repression(122).
1.2.7 Genes, mutational frequency and clinical
implications
The mutational frequency and clinical implications of the most frequently

altered genes in MPN, MDS and CMML are listed in Table 2(123,124).
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Table 2. Most frequently mutated genes in MPN, MDS and CMML.

Mutational

Clinical relevance
frequency

Gene
(location)

Biological
function

Frequent
mutations

Gene
function

CELL SINGALING

EPIGENETIC REGULATION

HISTONE MODIFICATION

JAK-STAT

RAS

DNA METHYLATION

Tyrosine kinase,
hyperactivating

JAK2 mutations produce
9p24.1 abnormal
myeloproliferation
Multi-functional
CALR chaperone,
mutations activate
19p13.2 JAK-STAT via MPL
TPO receptor,
MPL mutations induce
1p34.2 uncontrolled
: megakaryopoiesis
SH2B3 Negative regulator
12¢24.12 of JAK-STAT
KRAS GTPase in RAS/
12p12.1 MAPK pathway
NRAS GTPase in RAS/
1p13.2 MAPK pathway
Ubiquitin ligase,
CBL mutations activate
11g23.3 RAS pathway
RAS GTPase,
NF1 regulates cell
17911.2 proliferation
Tyrosine
PTPN11 phosphatase, RAS
12g24.13 signaling
Methylcytosine, key
TET2 role in DNA
4024 demethylation

DNMT3A Methyltransferase

involved in de novo

2p23.3 methylation
IDH1/IDH2 Dehydrogenases,
metabolism of 2-
2q34/ oxoglutarate,
15926.1 cofactor of TET2
ASXL1 Regulates
20q11.21 transcription via
histone methylation
Key role in histone
EZH2 methylation for
7q36.1 gene repression

JAK2V617F
exon 12
mutations

Ins/del
inexon9

Exon 10:
W515K/L/A,
S505N

Exon 2

Codons:
12,13,61,146

Codons:
12,1361

Codons: 336-
420

Truncating,
all exons

Sh2 domain,
all exons

Loss of
function
mutations,
all exons

R882H,
all exons

R132 for IDH1
R140/R172 for
IDH2

truncating or
nonsense

alterations in
exon 12

missense or

truncating

mutations,
all exons

Capn [ wios Jemvi] wen | wos | cwm |
Vv

p
95-97%
ET
50-60%
PMF
50-60%
ET
15-30%
PMF
23-35%
ET
3-5%
PMF
5-10%
PV 1%

ET/PMF
3-6%

PMF 6%

PMF
5-10%

5%

PMF
5-10%

PV
10-20%
ET
10-15%
PMF
10-20%

PV/ET
1-5%

PMF
5-15%

PMF
3-6%

PV/ET
2-5%

PMF
13-25%

PV
1-3%

<5%

<1%

<1%

<1%

5-10%

5-10%

<5%

1%

<1%

20-30%

12-18%

<5%

5-25%

5-10%
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High VAF
associated to

2:10%  thrombosis and
fibrosis
Associated to
<1% good prognosis
Higher risk of
<1%  thrombosis and
fibrosis
Associated to
5-7% AML
transformation
10-20%
; Higher risk of
fibrosis and
lower overall
10-20% survival
Associated to
8-18% AML
transformation
4% Uncertain
Fibrotic AML
2% transformation
° and lower
overall survival
45-70%  Inconclusive
Associated to
2-10& AML
transformation
5-10% for
IDH2,  Lower overall
<1% for survival
IDH1
Higher risk of
thrombosis and
40:50% fibrosis, lower
overall survival
Fibrosis, AML
transformation
5-12% and lower

overall survival

Associated to
del(5q) and
SF3B1
(MDS/MPN
with RS-T)

Uncertain

Uncertain

Uncertain

Associated to
worse
outcomes

Associated to
worse
outcomes

Associated to
worse
outcomes

Uncertain

higher bone
marrow blasts
and worse
outcomes

Overall good
prognosis, best
response to
HMA

Associated to
worse
outcomes

Associated to
worse
outcomes

Associated to
worse
outcomes

Associated to
worse
outcomes

Associated with
p-CMML

Uncertain

Uncertain

Uncertain

Associated with
p-CMML

Associated with
p-CMML and to
worse
outcomes

Associated to
lower overall
survival

Uncertain

Associated to
lower overall
survival

Uncertain

AML
transformation
and worse
outcomes

Associated to
worse
outcomes

AML
transformation
and worse
outcomes

Associated to
worse
outcomes and
CMML-2



Gene
function

SPLICING

TRANSCRIPTION FACTORS

DNA REPAIR

COHESINS
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Gene

SF3B1
2933.1

SRSF2
17q25.1

U2AF1
21922.3

ZRSR2
Xp22.2

PRPF8
17p13.3

DDX41
5935.3

RUNX1
21q22.12

SETBP1
18q12.3

ETV6
12p13.2

BCOR/

BCORL1
Xp11.4/
Xq26.1

PHF6
Xq26.2

CUX1
7g22.1

GATA2
3921.3

TP53
17p13.1

PPM1D
17923.2

CHEK2
22q12.1

ATM
11922.3

STAG2
Xq25

RAD21
8924.11

(location)

Mutational

Biological
function

Frequent
mutations

Key component in

the spliceosome, K700E AT PE,\.I;'%‘}S{’
intron sequence exons 14-16 PMF 10%
identification 4-7% °
Recognizes intron-
exon limits, key in esggll 9P:’l\/|75/ 10-15%
spliceosome binding °
Spliceosome binding
tothe pre-mRNA  Sogcns34and — PME g 199
branch site J °
Recognizes the 3'- . ET 3%
splice §ites, key for Hﬁpact?g:sg PMF 5.10%
spliceosome all exons. o
assembly 5-10%
Interactions with 5 .
and 3’ pre-mRNA M'SZ%"SE' all 99 1-4%
splice sites
Key in splicing, Missense/
translation and RNA  truncating, 1% 3%
modifications all exons
Subunit of core- . PV/ET
e Missense/
b'"p‘ig‘r% 3;20"’ truncating, 3-5% 10-15%
transcription all exons PMF 5%
Interacts with SET,
implicated in DNA  Codons: 858- 49 o
replication and 871 1-4% <5%
transcription
Transcription factor, T;aé\::gtciztrl‘cs;;\s
bonds DNA to T <1% <5%
repress transcription muptations
Truncating/
Co-repressors of the ~ missense
BCL6 oncogene All exons <1% <5%
BCOR N1425
Tumor suppressor Missense/
protein, regulates truncating, <1% ~3%
rRNA synthesis all exons
Transcription factor, .
B " : ’ Missense,
lmpllcayeq n truncating/ <1% 2%
hematopoiesis and all exons.
DNA repair
Transcription factor: ~ Missense/
proliferation and truncating, <1% <5%
hematopoiesis exons 4-6
DNA damage Loss of P\{é/ET
response, cell cycle function ° 8-12%
and apoptosis mutations, all . °
regulation exons PMF <5%
nonsense and
Bhosphatzse)ips3 frameshift 2% <1%
regulator EEEEE
Cell cycle checkpoint Missense/
V! P truncating, <1% <1%
regulator all exons
. Missense/
Kinase, cell cycle truncating, <1% <1%
regulator e
cohesin subunit, Missense/
affects chromatin truncating, <1% 5-10%
conformation all exons
cohesin subunit / Missense/
hematopoietic truncating, <1% 1-3%
regulation all exons

frequency

e [ wos Jowwi] _won | wos | v |

5-10%

30-50%

5-10%

5-10%

<1%

2%

10-30%

5-10%

<1%

<5%

~5%

3%

<1%

<5%

<1%

<1%

<1%

5-10%

<1%

Clinical relevance

Fibrotic

transformation.

Evolution to
MDS with RS
AML
transformation
and lower
overall survival

Disease
progression

Fibrosis/AML

transformation.

Lower overall
survival

Uncertain

Uncertain

AML
transformation
and lower
overall survival

Uncertain

Uncertain

AML
transformation
and lower
overall survival
AML
transformation
and lower
overall survival
AML
transformation
and lower
overall survival

Uncertain

AML
transformation
and lower
overall survival

Associated to
chemotherapy
resistance
Uncertain

Uncertain

Uncertain

Uncertain

Associated to
RS, good
prognosis

Uncertain

Associated to
worse
outcomes

Associated to
worse
outcomes

Associated to  Associated to

worse worse
outcomes outcomes
Unknown Unknown
Associated to UezrEiin
Associated to )
high risk MDs ~ Uncertain
. AML
Assc‘;%artseed 0 transformation
and worse
outcomes SRS
. AML
Ass?,\fc"artsid 0 transformation
and worse
outcomes outcomes
Associated to
worse .
prognosis and UngarEi
del(7)
Inconclusive Uncertain
Associated to
higher .
molecular UneaEs
complexity
Associated to  Associated to
lower overall  lower overall
survival survival
AML
transformation .
e [Eerar Uncertain

overall survival
Associated to

complex Associated to
karyotype and worse
worse outcomes
outcomes
Associated to
therapy related ~ Uncertain
MDS
Associated to
worse Uncertain
outcomes
Uncertain Uncertain

Lower overall Associated to

N worse
survival outcomes
Lower overall Uil

survival

PV: polycythemia vera, ET: essential thrombocythemia, PMF: primary myelofibrosis, d-CMML: dysplastic CMML, p-CMML:
proliferative CMML, VAF: variant allele frequency, ins: insertion, del: deletion, HMA: hypomethylating agents, RS: ring
sideroblasts, RS-T: ring sideroblasts and thrombocytosis.
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1.3 Role of molecular diagnosis in myeloid
neoplasms. Main limitations.

Genomic characterization holds the potential to further improve clinical
decision making since certain molecular alterations are associated with
distinct clinical manifestations. Moreover, the finding of these molecular
markers has become crucial to understand the pathogenesis of these
diseases. The molecular complexity of myeloid malignancies contributes to

the clinical heterogeneity observed in these patients.

Over the last decade, the widespread use of Next Generation Sequencing
(NGS) has resulted in a revolution in favor of personalized medicine. The
application of genomics in myeloid neoplasms enhances the capacity for
personalized interventions by offering accurate diagnosis, risk stratification
and personalized treatments. A greater number of patients can be studied
using molecular biology techniques, which represents an important advance

in clinical management.

However, molecular diagnosis still presents some clear limitations. The
sensitive of NGS and other classical molecular biology techniques is limited.
In consequence, subclonal or newly acquired mutations poorly represented
in the sample may be missed. Higher sensitivity techniques for point
mutations such as digital PCR (dPCR) are being incorporated in the routine
assessment, however, myeloid malignancies show a complex molecular
landscape that requires the analysis of a broad range of mutations. In this
context, optimization of the molecular biology protocols to improve
sensitivity is necessary until new high sensitivity sequencing approaches are

available for routine analysis.

Another major limitation that may affect sensitivity of molecular studies in
myeloid malignancies is the obtention of optimal samples to extract DNA and
perform these analyses. In MPNs, molecular characterization is
conventionally performed in isolated granulocytes, whole blood samples or
bone marrow specimens. Peripheral blood (PB) granulocytes isolation is time

consuming and implies that mainly mature circulating cells are analyzed.
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Whole blood samples are unpurified and therefore may lead to sensitivity
limitations as non-mutated lymphoid cells can be present. Finally, bone
marrow (BM) samples are suitable for analyzing early hematopoietic tumor
cells, but the obtention of these samples require invasive procedures for the
patients. In MDS and CMML, both PB and BM samples are routinely used for
molecular characterization. PB samples are overall suitable for mutation
analysis in MDS and CMML, however, subclonal mutations present in BM and
poorly represented in PB may be undetected(125,126). Again, similarly to
MPNs, BM sample obtention is invasive specially for frail elderly patients and
could be insufficient in patients with fibrotic or hypocellular BM.

Besides, further studies are required since genetic alterations of unknown
clinical significance are found in some cases. Currently, there is not enough
scientific evidence yet to provide a reliable clinical and biological
interpretation of these variants. Moreover, some of these variants may have
a germline origin and therefore additional studies are required to determine

whether their origin is somatic or germline.

1.4 Clonal hematopoiesis of indeterminate potential

Some of the most frequent molecular alterations of myeloid neoplasms,
described in 1.2, have been recently identified in healthy individuals. The
presence of clonal genetic alterations with a variant allele frequency (VAF) >
2%, in the absence of hematological neoplasms, is known as clonal
hematopoiesis of indeterminate potential (CHIP) (Table 3) (127). CHIP is
characterized by the clonal expansion of blood cells harboring somatic
mutations predominantly in three genes: DNMT3A, TET2 and ASXL1 and to a

lesser extent in other relevant genes in myeloid malignancies(129,130).

The frequency of CHIP is associated with age since these mutations were
observed in only 1% of individuals younger than 50 years but in 10% of those
older than 65. The percentage rises up to 20% in individuals older than 90
years (Figure 7). Of note, cases with CHIP have a higher risk of developing a

subsequent hematologic cancer or cardiovascular disease.
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Acronym

ARCH

CHIP

ICUS

CCUS

Table 3. Acronyms describing clonal hematopoiesis and related conditions.
Adapted from Bejar, Leukemia, 2015(128)

Condition

Aging Related
Clonal
Hematopoiesis

Clonal
Hematopoiesis of
Indeterminate
Potential

Idiopathic
Cytopenia of
Undetermined
Significance

Clonal Cytopenia
of Undetermined
Significance

Description

Presence of detectable, benign clonal hematopoiesis
(defined by the presence of somatic mutations in the
blood or bone marrow) whose incidence increases with
age. No formal definition involving clonal abundance or
types of mutations. No clinical significance is implied

Somatic mutations of myeloid malignancy associated
genes in the blood or bone marrow present at > 2%
variant allele frequency in individuals without a
diagnosed hematologic disorder

Patients with one or more unexplained cytopenias who
do not meet diagnostic criteria for MDS or another
hematologic disorder. Can occur with or without clonal
hematopoiesis although often used to refer to
cytopenias without evidence of clonal hematopoiesis.

Patients with one or more unexplained cytopenias who
do not meet diagnostic criteria for hematologic
disorder, but who have somatic mutations of myeloid
malignancy associated genes in the blood or bone
marrow present at > 2% variant allele frequency. Can be
considered as the intersection between CHIP and ICUS

At the molecular level, mutations identified in CHIP and myeloid malignancies

occurin similar genes. In this regard, two key differences have been observed.

First, the presence of more than one mutation in the same individual was

extremely infrequent in CHIP, while it is a frequent event in myeloid

malignancies. Secondly, VAF of mutations found in healthy cohorts was much

lower when compared with myeloid malignancies. Of note, the mutated gene

is also a decisive feature to differentiate CHIP as mutations in other genes
than DNMT3A, TET2 and ASXL1 (and to a lesser extent JAK2, PPM1D, SF3B1
and TP53) are extremely infrequent(129,130).
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Figure 7. CHIP frequency with age and most frequently mutated genes.
(Adapted from Jaiswal et al., NEJM, 2014) (129)
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2. MYELOPROLIFERATIVE NEOPLASMS (MPN)

2.1. Introduction

Myeloproliferative neoplasms (MPN) are chronic hematological diseases
characterized by the clonal expansion of mature cells from one or more
myeloid lines. They are clinically characterized by a hypercellular bone
marrow, splenomegaly and higher risk of thrombosis. Patients with MPN may

transform to myelofibrosis and acute leukemia(131).

2.2. Classification
According to the 2017 WHO classification, MPN include the following
entities(1):
-Chronic myeloid leukemia (CML), BCR-ABL1+
-Chronic neutrophilic leukemia (CNL)
-Polycythemia vera (PV)
-Primary myelofibrosis (PMF)
PMF, prefibrotic/early stage
PMF, overt fibrotic stage
-Essential thrombocythemia (ET)
-Chronic eosinophilic leukemia, not otherwise specified (NOS)
-MPN, unclassifiable

For the research projects presented in this thesis, only patients with classical
(Philadelphia negative, Ph-) MPN were included: Polycythemia vera (PV),
Essential thrombocythemia (ET) and Primary myelofibrosis (PMF).

2.2.1PV

CLINICAL FEATURES

Polycythemia vera (PV) is a clonal stem cell disease characterized by

proliferation of red blood cells, leukocytes and platelets with a predominance
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of red blood cell production. The disease shows a trend to present thrombotic
and hemorrhagic events. Clinical management is focused to minimize the risk
of thrombosis, being this complication the leading cause of morbidity and

mortality in PV patients(132).
ETIOLOGY/PATHOGENESIS

Erythrocyte overproduction in PV is particular because it develops in the
absence of a detectable physiologic stimulus(133). Levels of EPO, a
glycoprotein responsible of stimulating red blood cell production, are lower
than normal in most PV cases(134).

The discovery of a somatic gain-of-function mutation in the JAK2 gene in 2005
led to the identification of the cause of the disease. PV is a homogeneous
disease group in respect of molecular alterations, since JAK2 mutations are
identified in almost all PV patients. Approximately 96% of PV patients harbor
the activating JAK2V617F mutation and 3% show mutations in exon 12 of JAK2
(135,136).

DIAGNOSTIC CRITERIA

PV diagnostic criteria were revised in the 2017 World Health Organization
(WHO) classification (Table 4)(1). Of note, BM biopsy is not essential for
diagnosis in those cases with sustained absolute erythrocytosis, JAK2
mutation and subnormal serum EPO level. Nevertheless, BM biopsy at
diagnosis might have a predictive value regarding further evolution to

myelofibrosis.
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Table 4. WHO PV diagnosis criteria. Adapted from Arber et al., Blood, 2016.

Major criteria

1. Hemoglobin >16.5 g/dL in men
Hemoglobin >16.0 g/dL in women
or,

Hematocrit >49% in men
Hematocrit >48% in women

or,
increased red cell mass (RCM)

2. BM biopsy showing hypercellularity for age with trilineage growth
(panmyelosis) including prominent erythroid, granulocytic, and
megakaryocytic proliferation with pleomorphic, mature megakaryocytes
(differences in size)

3. Presence of JAK2V617F or JAK2 exon 12 mutation

Minor criterion

1. Subnormal serum erythropoietin level

Diagnosis of PV requires meeting either all 3 major criteria, or the first 2 major
criteria and the minor criteriont

tCriterion number 2 (BM biopsy) may not be required in cases with sustained absolute
erythrocytosis: hemoglobin levels >18.5 g/dL in men (hematocrit, 55.5%) or >16.5 g/dL in women
(hematocrit, 49.5%) if major criterion 3 and the minor criterion are present. However, initial
myelofibrosis (present in up to 20% of patients) can only be detected by performing a BM biopsy;
this finding may predict a more rapid progression to overt myelofibrosis (post-PV MF).

2.2.2ET

CLINICAL FEATURES

Essential Thrombocythemia (ET) is a chronic myeloproliferative disorder
characterized by sustained thrombocytosis, megakaryocytic hyperplasia in
bone marrow and a trend to present thrombotic or hemorrhagic
complications. ET patients may evolve to myelofibrosis and very rarely to
acute leukemia. The disease has a female sex predominance and life
expectancy is near normal when compared to a sex and age-matched
population. The main goal of treatment is to prevent the appearance of

thrombotic complications(137,138).
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ETIOLOGY/PATHOGENESIS

ET patients are mainly characterized by isolated thrombocytosis discovered
incidentally in a routine blood test. From the molecular point of view, the
majority of ET patients present genetic mutations resulting in dysregulated
signaling pathways that disrupt proliferation and survival of hematological
cells. Patients with ET, in contrast to PV, can present driver mutations in three
genes: JAK2, CALR, or MPL. Somatic alterations in these genes are found in
about 90% of ET patients, remaining 10% without any of these driver
mutations what constitutes a group named triple-negative ET. The JAK2V617F
mutation occurs in approximately 50-60% of ET patients. CALR mutations
occur in 15-30% of patients, and MPL mutations are the less frequent, found
in 3-5% of all ET patients(31).

DIAGNOSTIC CRITERIA

ET diagnostic criteria according to the 2017 revision of the WHO classification
are shown in Table 5(1). The main change in the new diagnostic criteria is the
incorporation of CALR mutation into the group of driver mutations. The
analysis of JAK2, CALR and MPL mutations is required for ET diagnosis. In
patients without any of these driver mutations, known as “triple negative”,
the identification of a clonal marker is considered a minor criterion.

Table 5. WHO ET diagnosis criteria. Adapted from Arber et al., Blood, 2016.

Major criteria
1. Platelet count 2450 x 10°/L

2. BM biopsy showing proliferation mainly of the megakaryocyte lineage with
increased numbers of enlarged, mature megakaryocytes with
hyperlobulated nuclei. No significant increase or left shift in neutrophil
granulopoiesis or erythropoiesis and very rarely minor (grade 1) increase
in reticulin fibers

3. Not meeting WHO criteria for BCR-ABL1* CML, PV, PMF, myelodysplastic
syndromes, or other myeloid neoplasms

4. Presence of JAK2, CALR, or MPL mutation

Minor criterion
Presence of a clonal marker or absence of evidence for reactive
thrombocytosis

Diagnosis of ET requires meeting all 4 major criteria or the first 3 major criteria
and the minor criterion
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2.2.3 PMF

CLINICAL FEATURES

Primary myelofibrosis (PMF) is a myeloproliferative neoplasm characterized
by bone marrow fibrosis, proliferation of atypical and dysplastic
megakaryocytes, extramedullary hematopoiesis and splenomegaly. The
disease has the worst prognosis among the Ph-negative myeloproliferative
neoplasms with median survival of 6-8 years. Evolution to acute leukemia
appears in approximately 20% of patients and besides disease progression,
infection, thromboembolic complications, and portal hypertension are the
most frequent causes of death(139). The disease is clinically very
heterogeneous, with patients showing a short survival and others a more
prolonged clinical course. Roughly 5-25% of ET and PV patients may transform
to myelofibrosis, a condition known as post-ET/post-PV myelofibrosis with a
better outcome than de novo PMF but with a similar management(140,141).
Treatment of PMF and secondary forms of myelofibrosis is focused on the

relief of symptoms and improving quality of life.

ETIOLOGY/PATHOGENESIS

PMF is a clonal myeloid proliferation characterized by an increase of
fibroblasts, mesenchymal cells, and collagen deposition secondary to
cytokine stimulation and increased growth factors apparently shed from
clonally expanded megakaryocytes. The abnormal excess of fibers and
collagen stem from fibroblasts. Several cytokines have been implicated in the
pathogenesis of bone marrow fibrosis, among them, transforming growth
factor-beta, platelet derived growth factor, epidermal growth factor and

vascular endothelial growth factor are the main cytokines involved.

PMF is classified in two subgroups: “prefibrotic” and “overtly fibrotic” PMF.
The currently used methods for MF classification are based in the density and
type of BM fibrosis. Prefibrotic PMF and ET have a similar clinical presentation
and molecular profile, hence morphologic examination is required to
distinguish between the two entities, as prefibrotic PMF has a worse

prognosis than ET.
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PMF patients present somatic driver mutations in about 90% of cases,
being JAK2 mutations the most frequent alterations (50-60% of PMF),
followed by CALR (25-35%), and MPL (5-10%)(32). Approximately 10% of PMF
patients are triple negative, in which no driver mutation is identified, a
feature that is associated to worse prognosis (median survival of 3.2
years)(142). Large studies of PMF including molecularly annotated patients
found that PMF patients with CALR mutations have lower risk of developing
thrombocytopenia, anemia or severe leukocytosis(142,143); and a better
overall survival rate than CALR WT (median survival was 17.7 years in CALR
mutated, 9.2 years in JAK2 mutated and 9.1 years in MPL mutated)(142).

DIAGNOSTIC CRITERIA

The diagnostic criteria of PMF are based in the 2017 revision of the WHO
classification and establish two different subgroups: prefibrotic (Table 6) and
overt myelofibrosis (Table 7)(1). The analysis of JAK2, CALR and MPL
mutations is required in both subtypes of PMF as the presence of a driver
mutation is a major criterion. In triple negative patients, genetic studies using
NGS are recommended in order to in order to search for the most frequent
mutations found in PMF, who are helpful in determining the clonal nature of
the disease.

Table 6. WHO prePMF diagnosis criteria. Adapted from Arber et al., Blood, 2016.

Major criteria

1. Megakaryocytic proliferation and atypia, without reticulin fibrosis
>grade 1, accompanied by increased age-adjusted BM cellularity,
granulocytic proliferation, and often decreased erythropoiesis

2. Not meeting the WHO criteria for BCR-ABL1* CML, PV, ET,
myelodysplastic syndromes, or other myeloid neoplasms

3. Presence of JAK2, CALR, or MPL mutation or in the absence of these
mutations, presence of another clonal marker,* or absence of minor
reactive BM reticulin fibrosis¥

Minor criteria

Presence of at least 1 of the following, confirmed in 2 consecutive
determinations:

a. Anemia not attributed to a comorbid condition

b. Leukocytosis >11 x 10%/L
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c. Palpable splenomegaly

d. LDH increased to above upper normal limit of institutional
reference range
Diagnosis of prePMF requires meeting all 3 major criteria, and at least 1 minor
criterion

t In the absence of any of the 3 major clonal mutations, the search for the most frequent
accompanying mutations (eg, ASXL1, EZH2, TET2, IDH1/IDH2, SRSF2, SF3B1) are of help in
determining the clonal nature of the disease.

¥ Minor (grade 1) reticulin fibrosis secondary to infection, autoimmune disorder or other chronic
inflammatory conditions, hairy cell leukemia or other lymphoid neoplasm, metastatic malignancy,
or toxic (chronic) myelopathies.

Table 7. WHO overt PMF diagnosis criteria. Adapted from Arber et al., Blood, 2016.

Major criteria

1. Presence of megakaryocytic proliferation and atypia, accompanied by
either reticulin and/or collagen fibrosis grades 2 or 3

2. Not meeting WHO criteria for ET, PV, BCR-ABL1* CML, myelodysplastic
syndromes, or other myeloid neoplasms

3. Presence of JAK2, CALR, or MPL mutation or in the absence of these

mutations, presence of another clonal marker,t or absence of reactive
myelofibrosist

Minor criteria

Presence of at least 1 of the following, confirmed in 2 consecutive
determinations:

a. Anemia not attributed to a comorbid condition
b. Leukocytosis >11 x 10°/L

c. Palpable splenomegaly

d. LDH increased to above upper normal limit of institutional
reference range

e. Leukoerythroblastosis

Diagnosis of overt PMF requires meeting all 3 major criteria, and at least 1 minor
criterion

t In the absence of any of the 3 major clonal mutations, the search for the most frequent
accompanying mutations (eg, ASXL1, EZH2, TET2, IDH1/IDH2, SRSF2, SF3B1) are of help in
determining the clonal nature of the disease.

¥ BM fibrosis secondary to infection, autoimmune disorder, or other chronic inflammatory
conditions, hairy cell leukemia or other lymphoid neoplasm, metastatic malignancy, or toxic
(chronic) myelopathies.
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2.3. Molecular characterization in MPNs

Molecular profiling is essential in MPNs to ensure the correct diagnosis and
management of these patients. Genetic alterations are involved in MPN
disease pathogenesis, hence gene mutations are classified as driver and non-
driver depending on the affected gene. Driver alterations are known to be
sufficient to generate a MPN phenotype, and they occur in three genes: JAK2,
CALR and MPL, affecting the JAK-STAT pathway(19,144,145). They were
thought to be mutually exclusive, however, there is increasing evidence that
these mutations can co-occur in the same patient, especially in those with low
JAK2 allele burden(146). It has been recently demonstrated that in these

cases, driver mutations are present in different cell clones(147).

Non-driver mutations occur in a high variety of genes, implicated in DNA
methylation, histone modification, DNA repair, splicing, transcription factors
and cell signaling, among others. Non-driver mutations can influence the
phenotype of the disease, induce clonal evolution and cause disease
progression.

2.2.1. Driver Mutations
JAK2

The JAK2V617F mutation is the most frequently identified mutation in MPNs,
and was incorporated as a major diagnosis criterion for the first time in 2008
WHO classification(148). It is observed in approximately 96% of PV patients,
and in 50-60% of ET and PMF patients.

Mouse models harboring the JAK2V617F mutation develop similar features
than PV patients and secondary myelofibrosis(149-153). Of note, other
studies proved that if the variant allele frequency (VAF) of JAK2V617F

mutation was altered, a phenotype similar to ET or PMF is observed(154,155).
o JAK2 exon 12 mutations

Patients with exon 12 mutations in JAK2 (mainly PV) present a more erythroid
dominant expansion, inducing higher hemoglobin and hematocrit values than

JAK2V617F patients. No significant differences were found in the incidence of
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thrombosis, transformation to MF/AML and overall survival between both

groups(156).
o JAK2 lost of heterozygosity (LoH)

The majority of MPN patients carry JAK2V617F mutation in heterozygosity,
that is, clonal cells present one allele of the JAK2 gene affected by the V617F
mutation, while the other JAK2 allele remains unmutated. In approximately
30% of MPN patients, mainly in PV and PMF, loss of heterozygosity (LOH) on
the short arm of chromosome 9 affecting JAK2 (9p24) has been observed. LoH
occurs when, by a mechanism of mitotic recombination in a heterozygous cell,
the WT copy of the JAK2 gene is lost and two JAK2V617F mutated copies are
present in homozygosis in the same cell. JAK2V617F mutations in
homozygosis usually present a VAF higher than 50% in the granulocytic
compartment, due to the loss of JAK2 WT allele in the pathological clones.

PV patients with JAK2V617F in homozygosis have been correlated with
increased erythropoiesis and myelopoiesis, lower platelet count, higher rate
of splenomegaly and higher proportion of patients requiring cytoreductive
therapy(157,158).

Mouse models with low VAF of JAK2V617F were associated with
thrombocytosis while higher JAK2V617F VAFs were associated with
erythrocytosis(149,154). This is in line with clinical observations in PV and ET,
suggesting that the presence JAK2V617F mutation in homozygosis or
heterozygosis plays a role in determining whether the patient phenotype is

mostly erythroid (PV) or megakaryocytic (ET).
e JAK2 variant allele frequency monitoring

JAK2 VAF may be modulated during the disease course as a consequence of
treatment, clonal evolution or disease transformation. Some patients present
a stable JAK2 VAF during the disease course, while other cases present an
expansion or a reduction of the JAK2 mutated clone. These changes in
JAK2V617F VAF have clinical implications in PV and ET. Patients with a
JAK2V617F VAF persistently higher than 50% or with progressively increase in
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JAK2V617F VAF during the follow up have a higher risk of transformation to
MF(159).

o JAK2 early acquisition

MPNs are clonal diseases occurring mainly in elderly patients, therefore, since
the discovery of JAK2 mutation, driver mutations in MPNs were thought to
occur early before the development of the MPN phenotype. The timing of
acquisition of somatic JAK2 mutations was unclear due to sensitivity
limitations in the available technology. A recently published study
reconstructed the phylogeny of hematopoiesis in patients with MPN (Figure
8) (160). Analyzing the whole spectrum of somatic mutations, it was possible
to estimate that the acquisition of JAK2V617F mutation occurred in utero or
during childhood. Moreover, the mean time period between JAK2V617F
acquisition and MPN clinical presentation was 31 years. These findings are of
outmost importance to understand the pathogenesis of MPN and indicate
that the clinical diagnosis occurs after decades of clonal expansion of the
driver clone. These results provide crucial information for early detection and
disease prevention in the future.
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Figure 8. Phylogenetic reconstruction of genetic alterations in MPNs.
(Adapted from Williams et al, BioRxiv, 2020) (160)
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CALR

Since their discovery in 2013, CALR mutations have been detected in
approximately 15-30% of ET patients and 25-35% in PMF. ET patients with
CALR mutations showed a lower incidence or thrombosis, lower leukocyte
count, lower hemoglobin level and higher platelet count than JAK2 mutated
ET patients. (161,162). Moreover, patients with type 1 CALR mutations were
associated to a higher risk of transformation to MF when compared to type 2
CALR(163).

e CALR variant allele frequency monitoring

In contrast to JAK2V617F mutations, CALR mutations are present in
heterozygosis in most cases. The VAF of CALR mutations in both ET and PMF
is usually of 40-50%, suggesting that the CALR mutated clone expands into
the whole granulocytic line but in this case LOH is infrequent. Monitoring of
CALR mutated patients showed that VAF of CALR mutations remains stable in
time, both in untreated cases and in patients receiving cytoreductive
therapy(164,165). Clinical studies with pegylated interferon and ruxolitinib
showed that CALR VAF decreased in a minority of the cases (13/31 and 3/18,
respectively) (164,166).

MPL

MPL mutations are the less frequently detected driver mutations in MPNs,
observed in 3-5% of ET patients and 5-10% of PMF patients. These mutations
occur mainly in exon 10 of MPL gene, being the most frequently identified
mutations MPL p.W515L, p.W515K, p.W515A and p.S505N. Mutations in
exons 4 and 5 of MPL gene have been also identified in triple negative ET. In
MPNs, MPL mutations are acquired somatically, however, MPL germline
mutations have been identified in two hereditary disorders: hereditary

thrombocytosis and amegakatyocytic congenital thrombocytopenia.

In ET patients, MPL mutations have been associated to higher risk of

myelofibrotic transformation (167,168).
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2.2.4. Non-driver mutations

Mutations identified in MPNs in other genes than JAK2, CALR and MPL are
known as non-driver mutations. Mutations in more than 50 non-driver genes
have been identified in approximately 50% of ET and PV patients and in 80%
of PMF patients. These mutations are important in MPN pathogenesis and
disease progression. The most frequently mutated genes are further
described in 1.2.

Non-driver mutations may co-occur in the same cell clone than driver
mutations, but also in a different clone. Of note, it has been observed that in
some MPNs cases that evolve to AML the transformed clone does not harbor
the MPN driver mutation, suggesting that a different cell clone is expanding
and producing the AML phenotype.

Furthermore, the order of mutation acquisition is relevant for the
pathogenesis of MPNs. Founder TET2 mutations induce a limited clone
expansion until a JAK2 mutation occur as a second hit. In these circumstances,
TET2 prevent JAK2 from inducing erythroid proliferation. In contrast, when
JAK2 mutations are the first hit there is a trend to develop PV and increased
risk of thrombosis(169). Mutations in CALR and MPL frequently occur early,
while other mutations such as TP53 or NRAS are later acquired(170).

2.2.5. Risk stratification based on molecular alterations

Larger cohorts of patients have been analyzed in order to to associate this
complex molecular landscape with the disease phenotype and prognosis. A
recently published study has described a classification of MPNs into 8 groups

based on the molecular profile (Figure 9) (170).
Patients with mutations in TP53 or del(17p)/del(5q)/-5 are classified as the

group with worst prognosis. The second group is defined by the presence of
non-driver mutations in 18 genetic aberrations involved in epigenetics,
splicing, cell signaling and transcription (EZH2, IDH1, IDH2, ASXL1, PHFG6,
CUX1, ZRSR2, SRSF2, U2AF1, KRAS, NRAS, GNAS, CBL, Chr7/7qLOH, Chr4qLOH,
RUNX1, STAG2, and BCOR). These two groups (1 and 2) are associated to

worse outcomes regardless the status of the driver genes.
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The next four groups (3 to 6) of the classification are defined by the driver

mutations. CALR mutated cases present the best outcomes followed by JAK2

mutated in homozygosis, MPL mutated and JAK2 in heterozygosis.

Patients without any of the previously described mutations were classified in

two groups (7 and 8): unmutated cases (best prognosis) and cases with other
mutations (such as TET2, DNMT3A).
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3. MYELODYSPLASTIC SYNDROMES (MDS)

3.1 Introduction

Myelodysplastic syndromes (MDS) are clonal diseases characterized by
persistent cytopenia, dysplasia, ineffective hematopoiesis and clonal
proliferation of aberrant hematopoietic stem cells, together with higher risk
of evolution to AML.

CLINICAL FEATURES

Clinical presentations in MDS are heterogeneous but share cytopenia in one
or more cell lineages and morphologic dysplasia in one or more bone marrow
myeloid lineages. The main reason for medical consulting in these patients is
anemia produced by the ineffective hematopoiesis. Not all MDS patients
require treatment at the time of diagnosis, and usually when treatment is
required the main objective is to control anemia and improve the quality of

live.
ETIOLOGY/PATHOGENESIS

The disease origin of MDS occurs in a hematopoietic stem cell that acquires
genomic alterations. These genetic lesions provide selective advantage to the
cell clone, which expands in the bone marrow compartment. Several driver
genes have been identified in MDS, implicated in different cell activities,
which is in line with the clinical and biological heterogeneity observed in these
disorders(90).

The majority of de novo MDS cases are found in patients older than 70.
Although these mutations are thought to occur with the aging process, other
factors are also responsible of MDS development. A proportion of MDS
patients have genetic predisposition and present germline mutations that
may accelerate the acquisition of additional mutations and induce clonal
expansion(171). On the other hand, cases of MDS with a prior history of

cytotoxic therapy or radiotherapy are classified as therapy related MDS, in
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the WHO category of therapy related myeloid neoplasms(1). Exposition to
aggressive therapies like chemotherapy (i.e.: alkylating agents,
topoisomerase Il inhibitors) plays a double role, on the one hand it would
allow the selection of pre-existing clones and on the other hand it would allow
the appearance of new ones as a consequence of the direct damage of DNA
(172).

DIAGNOSTIC CRITERIA

For MDS diagnosis, persistent cytopenia (>6 months) of at least one cell
lineage is required (hemoglobin, <10 g/dL; platelet count, <100 x 10%/L; or
absolute neutrophil count, <1.8 x 10%/L). Other common causes of cytopenia
should be discarded. Bone marrow aspiration is performed to detect
morphologic dysplasia, blast percentage quantification and perform
conventional cytogenetics. In addition to cytopenia, at least one of the
following criteria should be present for MDS diagnosis: either bone marrow
dysplasia (= 10%) in one or more myeloid lineages, 5-19% bone marrow blasts
and/or presence of MDS-defining cytogenetic alterations. The subtype of
MDS is determined depending on the number of dysplastic lineages, BM and
PB blast percentage, presence of ring sideroblasts and cytogenetics. MDS

subtypes are further explained in 4.2.

Precursor conditions of MDS, observed in cases not meeting the MDS criteria,
have been also recently described. As previously mentioned in the first
chapter, the presence of a somatic mutation without detectable cytopenia is
known as CHIP. Moreover, those cases with CHIP and an unexplained
cytopenia but insufficient WHO criteria for MDS diagnosis are known as clonal
cytopenia of undetermined significance (CCUS). These two stages, CHIP and
CCUS, are thought to be the previous stages of the disease that frequently
evolve to MDS (Figure 10).
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Figure 10. Origin and precursor states of MDS (173)
(Adapted from Cazzola, NEJM, 2020)

3.2 Classification

MDS classification and diagnostic criteria were revised in the 2017 WHO
classification (Table 8). MDS disease group includes eight different MDS
groups according to the number of dysplastic lineages, the presence of ring
sideroblasts, the percentage of BM and PB blasts, and cytogenetics. From the
molecular point of view, SF3B1 mutations are relevant in MDS classification.
In SF3B1 wild type patients, a minimum of 15% of ring sideroblasts is required
to classify these cases as MDS with ring sideroblasts (MDS-RS), whereas in
SF3B1 mutated patients 25% of ring sideroblasts is sufficient to establish
MDS-RS diagnosis. Cytogenetics are essential to ensure accurate MDS
classification, especially the presence of del(5q) which defines a unique MDS
subgroup: MDS with isolated del(5q).
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Table 8. WHO classification for MDS. Adapted from Arber et al., Blood, 2016.

Dysplastic . RS BM/PB Cytogenetics
Name y . Cytopenias* o / ytog
lineages (%) blasts (karyotype)
MDS with single Any, unless fulfills
i dvsol g . Lora <1s%/<s  BM<%PB il criteria for MDS
ineage dysplasia or ot o,r(r;gs uer with isolated
(MDS-SLD) del(5q)
MDS with .
; _WI . BM <5%, PB Any,.unl.ess fulfills
multilineage <15%/<5 all criteria for MDS
. 2or3 1-3 o+ <1%, no Auer ith isolated
dysplasia % s W'td Ils(g a)te
ell>q
(MDS-MLD)
MDS with ring sideroblasts (MDS-RS)
MDS-RS with single Any, unless fulfills
li dvsplasi 1 1or2 >15%/>5 <Bll},ﬂ <:Z”AEeBr all criteria for MDS
ineage dysplasia or %t O'rods with isolated
(MDS-RS-SLD) del(5q)
MDS-RS with Any, unless fulfills
Itili dvsplasi Jor3 13 >15%/>5 <Bll},ﬂ fg”Asgr all criteria for MDS
multilineage dysplasia o ot o’rods with isolated
(MDS-RS-MLD) del(5q)
o del(5q) alone or
MDS with isolated 1 12 None or <Bll$ <5% PB \ith 1 additional
- - 6, no Auer b lit ¢
del(5q) any oo abnormality excep
-7 or del(7q)
MDS with excess blasts (MDS-EB)
e BM 5%-9% or PB
MDS-EB-1 0-3 1-3 o 2%-4%, no Auer Any
Y rods
BM 10%-19% or
MDS-EB-2 03 13 N%"n";,m PB 5%-19% or Any
Auer rods
MDS, unclassifiable (MDS-U)
BM <5%, PB =
with 1% blood blasts 13 13 None or 1%, Any
Y ¥ no Auer rods
with single lineage Noneor BM<5%,PB

dysplasia and 1 3 <1%, no Auer Any

! an
pancytopenia Y rods
based on defining BM <5%, PB -
cytogenetic 0 1-3 <15%§  <1%, no Auer “gE:&?S;Ti't”g
abnormality rods y
Refractory cytopenia 13 e None BM <5%, PB <2% R

of childhood

*Cytopenias defined as: hemoglobin, <10 g/dL; platelet count, <100 x 10°/L; and absolute neutrophil
count, <1.8 x 10°/L. Rarely, MDS may present with mild anemia or thrombocytopenia above these levels.
PB monocytes must be <1 x 10°/L

+If SF3B1 mutation is present.

$O0ne percent PB blasts must be recorded on at least 2 separate occasions.

§Cases with 215% ring sideroblasts by definition have significant erythroid dysplasia, and are classified as
MDS-RS-SLD.
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3.3 Cytogenetics in MDS

Cytogenetic abnormalities are found in approximately 30-50% of MDS
patients. They are essential at diagnosis for accurate classification, prognosis
and treatment (174-178). At the time of diagnosis, the presence of a MDS
defining cytogenetic alteration (Table 9, except for -Y, del(20qg) and +8 which
have been also associated to normal aging) together with persistent
cytopenia is sufficient to establish MDS diagnosis. In addition, the presence
of 5q deletions (del5q) at diagnosis defines a distinct MDS subgroup, MDS
with isolated del(5q)), when del(5q) is the only cytogenetic alteration or with
an additional abnormality except -7 or del(7q)(1). Approximately 15% of MDS
presents complex karyotype at the time of diagnosis, defined by the presence
of 3 or more cytogenetic alterations (175,176,178).

Table 9. Cytogenetic alterations associated to MDS.
Adapted from Vardiman et al., Blood, 2009(179).

Unbalanced abnormalities Balanced abnormalities
-7 or del(7q) t(11;16)(q23;p13.3)
-5 or del(5q) t(3;21)(926.2;922.1)

i(17q) or t(17p) t(1;3)(p36.3;921.1)
-13 or del(13q) t(2;11)(p21;923)
del(11q) inv(3)(g21926.2)
del(12p) or t(12p) t(6;9)(p23;034)
del(9q)
idic(X)(gq13)
+8%*
Del(20q)*
y*

*these alterations are not sufficient to establish MDS diagnosis, since they are also present in normal aging.
del: deletion, t: translocation, idic: isodicentric, inv: inversion

Cytogenetic alterations have an independent prognostic impact on MDS. In
the Revised International Prognostic Scoring System (IPSS-R), the best and
widely accepted index score for prognostic stratification of MDS, cytogenetics
is the variable with the highest prognostic value(178) (Table 10) (Table 11).

Cases with very complex karyotype, defined by the presence of > 3
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cytogenetic abnormalities, have been identified as the group with worse

prognosis.
Table 10. IPSS-R prognostic subgroups based on cytogenetics.
Adapted from Arber et al., Blood, 2016.
Prognostic . Median Median AML Hazard Hazard
Cytogenetic . . . .
subgroups, b liti survival,* evolution, ratios ratios
% of patients abnormatties y 25%,*y  OS/AML* OS/AMLT
Very good
=Y, del(11 5.4 NR 0.7/0.4 0.5/0.5
(4%*/3%T) (11q)
Normal, del(5q),
Good
del(12p), del(20q), 4.8 9.4 1/1 1/1
(72%*/66%1) (12p), del(20q)

double including del(5q)
del(7q), +8, +19, i(17q), any

e i other single or double 2.7 25 1.5/1.8 1.6/2.2

*
(13%*/19%*) independent clones

Poor =7,inv(3)/t(3q)/del(3q),
4%* 5%+ double including -7/del(7q), 1.5 1.7 2.3/2.3 2.6/3.4
(4%*/5%1) complex: 3 abnormalities
Very poor .

C lex: >3 ab lit 0.7 0.7 3.8/3.6 4.2/4.9

(7%*/7%1) omplex abnormalities / /

OS indicates overall survival; and NR, not reached.
*Data from patients in this IWG-PM database, multivariate analysis (n = 7012).
tData from Schanz et al. (n = 2754).

Table 11. IPSS-R scores. Adapted from Arber et al., Blood, 2016.

Prognostic variable 0 0.5 1 1.5 2 3 4
Cytogenetics very — Good —  Intermediate Poor  YETY
good poor

BM blast, % <2 — A - 5%10%  >10% < —

Hemoglobin >10 — 8-<10 <8 — — —

Platelets >100 50-<100 <50 — — = —

ANC >0.8 <0.8 — = = — —

— indicates not applicable.

The most frequent cytogenetic abnormalities in MDS are imbalanced
alterations, therefore genomic material is loss or gained, while translocations
are infrequent. In this setting, recent studies demonstrated that is possible to

detect MDS cytogenetic alterations using NGS. Those genomic regions
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affected by a gain of genetic material (for example trisomies) are more
represented in the DNA sample than in unaffected regions, while losses of
genetic material are less represented in the DNA sample. Therefore, when a
gain/loss of genetic information is present in the sample, the read depth by
NGS is altered in the amplicons covering that region, which allows its
detection (180).

3.4 Molecular characterization in MDS

The application of molecular studies in MDS has been recently incorporated
as a diagnostic tool in clinical practice. Indeed, approximately 90 % of MDS
patients show at least one mutation in the most frequently affected genes in
myeloid malignancies (further described in 1.2)(28,29,90). At diagnosis,
mutational profile can be extremely helpful when integrated in the patient
clinical context. The presence of 22 mutations or mutations with 210% VAF in
myeloid associated genes is useful to establish an accurate diagnosis and
discriminate MDS from CCUS and CHIP(181).

In contrast to MPNs, there is not a unique driver mutation or mutations for
MDS but a more complex genetic landscape has been identified at the time
of diagnosis. The average number of mutations per patient at diagnosis is 2.6
(182) and a higher risk WHO subtypes are associated to the presence of a
higher number of mutations(29). The most frequently altered genes in MDS
are implicated in splicing (SF3B1, SRSF2, U2AF1, ZRSR2) and epigenetics
(TET2, DNMT3A, IDH1/IDH2, ASXL1, EZH2) (Figure 11).

Mutations in particular genes are associated to specific disease phenotypes.
SF3B1 mutations are associated with the presence of ring sideroblasts in bone
marrow (74,75), in fact, the detection of a SF3B1 mutation is sufficient to
classify as MDS-RS those cases with 25% of ring sideroblasts(1). Mutations in
splicing machinery genes are almost always mutually exclusive in the same
patient. In this line, SF3B1 and SRSF2 mutations are generally mutually
exclusive, suggesting that cells with this co-mutation are unsustainable. On
the other hand, the presence of TP53 mutations is associated to genetic

instability and therefore to complex karyotype.
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Figure 11. Genetics of MDS. Most frequently mutated genes and cytogenetic alterations
in MDS. Adapted from Ogawa et al., Blood, 2019(30)

The role of molecular alterations in MDS prognosis is not clearly defined,
therefore, mutational profile has not been incorporated to international
prognostic scores yet. To date, molecular information has not shown a
substantial prognostic prediction improvement when added to traditional
prognostic indices, based on clinical, cytological and cytogenetic variables.
This is probably because molecular alterations, as founder events, are already
reflected in the variables included in the prognostic index (cytopenias,
cytogenetic alterations and BM blasts)(183). Recent efforts from the
International Working Group for prognosis in MDS have permitted to show
preliminary data about the molecular IPSS (M-IPSS)(184) that is expected to
show a substantial improvement in the prognostic accuracy of MDS. Studies
including large cohorts of MDS found a clear association between the number
of mutations and overall survival (Figure 12a)(28,90,185). Mutations in SF3B1
gene mutations are the only molecular alterations associated with better
outcomes (Figure 12b)(74,75) whereas the accumulation of mutations in

other genes is generally associated to worse outcomes. TP53
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mutations/deletions, especially with affectation of both alleles, presented

lower overall survival and higher risk of leukemic transformation(112).
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Figure 12. Prognostic implications of gene mutations in MDS. A) Survival analysis of
MDS grouped by number of mutations and SF3B1 mutation as a single alteration B) Hazard
ratio of death for MDS patients with <5% BM blasts, adjusted for IPSS-R risk group. Circle size
indicated the frequency of the mutated gene. Genes above the red line show a significant
association with prognosis (independent of the IPSS-R). Mutations in significant genes with a
hazard ration of greater than 1 are adverse, while SF3B1 is the only prognostically favorable
mutated gene. Adapted from Haider et al., ASCO Educational Book, 2017(185).
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4. CHRONIC MYELOMONOCYTIC LEUKEMIA

4.1 Introduction

Chronic myelomonocytic leukemia (CMML) is a clonal disease affecting
myeloid hematopoietic stem cells, characterized by monocytosis in peripheral
blood together with bone marrow dysplasia, also showing predisposition to
evolve to AML. CMML is a disease subgroup included in the MDS/MPN group
of the 2017 WHO myeloid neoplasms classification with shared characteristics
of myeloproliferative neoplasms and myelodysplastic syndromes(1).

CLINICAL FEATURES

CMML is mainly characterized by the presence of persistent (>3 months)
peripheral blood monocytosis (>1 x 10°/L) with monocytes constituting >10%
of the white blood cell count. CMML bone marrow presents dysplastic
features in most cases; however, it may not be present in a minority of cases.
They frequently present cytopenias, mainly anemia and thrombocytopenia,
in some cases accompanied by splenomegaly. Approximately 30% of CMML
patients present autoimmune diseases such as rheumatoid arthritis or
psoriasis at the time of diagnosis or previous to developing the CMML
phenotype(186,187).

ETIOLOGY/PATHOGENESIS

Patients with CMML show clonal hematopoiesis with aberrant myeloid
differentiation. CMML pathological clone has its origin in HSC, which acquires
genomic alterations that provide selective advantage over the others. TET2
mutations are considered one of these alterations that imply enough
proliferation advantage to trigger clonal expansion in CMML(188). Mouse
models demonstrated that TET2 deficient cells are more prone to stimulate
the granulocyte and monocyte expansion(189). Moreover, SRSF2 mutations
frequently co-occur with TET2 mutations, a co-mutation that is identified as
the molecular signature of CMML(188,190,191). TET2 and SRSF2 mutations in

the same clone are thought to cooperate stimulating the expansion of

55



INTRODUCTION

granulocyte/monocyte progenitors, inducing higher effect than TET2 alone.
Besides, mutations in ASXL1 gene are also thought to be an initiating event in
CMML, both by themselves and co-occurring with TET2(54,188) (Figure 13).
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Figure 13. Molecular alterations acquisition in CMML
(Adapted from Palomo et al., Blood, 2020) (54)

In a subgroup of CMML, known as therapy related CMML (t-CMML), mutation
acquisition has been associated to prior exposure to cytotoxic therapy or
ionizing radiation received due to previous neoplastic disorders in those
patients. t-CMML represents approximately 10% of CMML and is associated
with worse clinical outcomes when compared to de novo CMML(192-194).

DIAGNOSTIC CRITERIA

The CMML diagnostic criteria currently used were published in the 2017 WHO
classification (Table 12)(1), although only minimal changes were made when
compared to previous classifications. The presence of a molecular
abnormality is not essential for CMML diagnosis. Nevertheless, for cases
without dysplasia, CMML diagnosis can be established if a clonal molecular or
cytogenetic abnormality is present or if monocytosis is persistent (> 3
months) and other causes of monocytosis are excluded. In this context, the
presence of mutations in myeloid associated genes can be used to support
diagnosis in certain cases, although integrated with all the other diagnostic

tools as these mutations can be frequently found in the elderly as CHIP.
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Table 12. WHO CMML diagnostic criteria. Adapted from Arber et al., Blood, 2016.

CMML diagnostic criteria

1. Persistent PB monocytosis >1 x 10°/L, with monocytes accounting for
>10% of the WBC count
Not meeting WHO criteria for BCR-ABL1* CML, PMF, PV, or ET*

No evidence of PDGFRA, PDGFRB, or FGFR1 rearrangement or PCM1-
JAK2 (should be specifically excluded in cases with eosinophilia)
4. <20% blasts in the blood and BMt

5. Dysplasia in 1 or more myeloid lineages.
If myelodysplasia is absent or minimal, the diagnosis of CMML may still
be made if the other requirements are met
And

a) Anacquired clonal cytogenetic or molecular genetic
abnormality is present in hemopoietic cells¥
Or

b) The monocytosis (as previously defined) has persisted for
at least 3 months and all other causes of monocytosis have
been excluded

* Cases of MPN can be associated with monocytosis or they can develop it during the course
of the disease. These cases may simulate CMML. In these rare instances, a previous documented
history of MPN excludes CMML, whereas the presence of MPN features in the BM and/or of MPN-
associated mutations (JAK2, CALR, or MPL) tend to support MPN with monocytosis rather than
CMML.

¥ Blasts and blast equivalents include myeloblasts, monoblasts, and promonocytes.
Promonocytes are monocytic precursors with abundant light gray or slightly basophilic cytoplasm
with a few scattered, fine lilac-colored granules, finely distributed, stippled nuclear chromatin,
variably prominent nucleoli, and delicate nuclear folding or creasing. Abnormal monocytes, which
can be present both in the PB and BM, are excluded from the blast count.

¥ The presence of mutations in genes often associated with CMML
(eg, TET2, SRSF2, ASXL1, SETBP1) in the proper clinical contest can be used to support a diagnosis.
It should be noted however, that many of these mutations can be age-related or be present in
subclones. Therefore, caution would have to be used in the interpretation of these genetic results.

For CMML diagnosis, exclusion of all cases of reactive monocytosis is
challenging. Several inflammatory conditions, as well as infections or
neoplasms, may lead to a higher monocyte count in PB. Autoimmunity is also
a frequent feature in CMML that may produce monocytosis (187,195,196). In
this regard, molecular studies are the best strategy to demonstrate clonality
and therefore, are recommended when possible. Flow cytometry (FC)
analysis of PB monocyte subsets has become also a remarkably useful
diagnostic tool(197).
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4.2 Classification

CMML has been historically classified as a subtype of MDS until WHO
classification in 2001, when CMML was included in a new category for
myelodysplastic/myeloproliferative neoplasms (MDS/MPN) due to the
presence of both proliferative and dysplastic features(198). The presentation
of CMML s heterogeneous, thus CMML is sub-classified in proliferative CMML
(p-CMML) and dysplastic CMML (d-CMML), based on a white blood cell count
of 213 x10°/L for p-CMML and <13 x 10°/L for d-CMML(1,27). P-CMML
frequently present leukocytosis, myeloproliferation and
hepatomegaly/splenomegaly; and d-CMML is associated to PB cytopenias,

transfusion dependence and recurrent infections(50,199).

On the other hand, CMML has been also classified into three categories
according to PB and BM blast percentage: CMML-0 (<2% PB and <5% BM
blasts), CMML-1 (2-4% PB and 5-9% BM blasts) and CMML-2 (>5% PB and
10%-19% BM blasts and/or when Auer rods are observed)(200). This
classification is based on the prognostic differences observed between these
three groups. CMML median survival is reduced when higher percentage of
medullary blasts is observed and when presenting as p-CMML(201).

4.2.1 Oligomonocytic chronic myelomonocytic leukemia
(OM-CMML)

As previously described, the CMML diagnosis requires the presence of
persistent PB absolute (>1 x 10°/L) and relative monocytosis (210% of the
leukocytes). These diagnostic thresholds, although are necessary to
distinguish between entities, may be arbitrary and lack biological significance
given that other diagnostic tools are now available to define and understand
CMML.

In 2017, the concept of oligomonocytic chronic myelomonocytic leukemia
(OM-CMML) was defined for the first time as those MDS or MDS/MPNs cases
with relative monocytosis (210% monocytes) and a total monocyte count of
0.5 to <1 x 10°/L(202). These patients with relative monocytosis and mild

absolute monocytosis do not reach the mandatory threshold to diagnose
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classical CMML (21.0x10/L), thus they are currently classified as MDS. It has
been recently demonstrated that OM-CMML and overt CMML present similar
clinical and genomic characteristics. They frequently present TET2, SRSF2 and
ASXL1 mutations, reinforcing the idea of OM-CMML and overt CMML sharing
a similar genetic and biological origin. To further support this idea, the
majority of OM-CMML evolve to overt CMML during the follow-up(203).

Several studies support that the OM-CMML classification should be included
into clinical practice. The correct distinction between CMML and MDS is
clinically relevant and previous investigations defend that OM-CMML would
be better classified as a sub-group of CMML(202,203). Nevertheless, further
studies are required to confirm this hypothesis as previous research
molecular studies were performed in only 24 OM-CMML patients. In addition,
no previous information of the immunophenotypic features of OM-CMML
was provided(202). Additional studies to better characterize OM-CMML are
required to support the consideration of OM-CMML as a distinctive subtype
of CMML.

4.3 Molecular characterization in CMML

Molecular studies have emerged as a useful tool to identify clonality in CMML,
and may be required for diagnosis in those cases without dysplastic features.
Moreover, 80-90% of patients with CMML show mutations in TET2, SRSF2
and/or ASXL1(52,191,204,205). Mutations in genes involved in the RAS
pathway (i.e. NRAS, KRAS, CBL and less frequently NF1 and PTPN11) are
detected in 30% of CMML patients, especially in the p-CMML
subtype(52,191). In this context, the analysis of these genes by NGS allows

the detection of a clonal marker in the vast majority of CMML patients.

The molecular profile of d-CMML and p-CMML presents some interesting
differences that are associated to the dysplastic or proliferative phenotype.
Mutations in RAS pathway, JAK2, ASXL1 and SETBP1 genes are more frequent
in p-CMML while mutations in TET2 and SF3B1 are more frequent in d-
CMML(52).
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Molecular alterations have been incorporated in prognostic scores of CMML.
In 2016, a CMML-specific prognostic scoring system that incorporates
molecular genetic data (CPPS-Mol) was described, where mutations in
RUNX1, NRAS, SETBP1 and ASXL1 were independently associated with worse
outcomes(52). CMML patients were classified into 4 categories according to
genetic score (including cytogenetics and mutations in RUNX1, NRAS, SETBP1
and ASXL1), red blood cell transfusion dependency, white blood cell count,
and BM blasts. These 4 groups presented significant differences in overall
survival and cumulative incidence of leukemic evolution. This score
represented an evolution of the CMML-specific prognostic scoring system
(CPSS), the most widespread and best accepted prognostic stratification
model to date(206).

4.4 Flow cytometry in CMML

Peripheral blood flow cytometry has emerged as a useful diagnostic tool to
help diagnose CMML (197). Patients with CMML show an increase in the
proportion of classical monocytes (CD14+/CD16-) that can be measured by
flow cytometry (Figure 14). Monocytes can be divided in three subsets:
CD14+/CD16- (classical), CD14+/CD16+ (intermediate) and
CD14low/CD16+ (non-classical). In  normal conditions and reactive
monocytosis, classical monocytes constitute approximately 85% of total
monocytes(207). The presence of an increased proportion of classical
monocytes, establishing a cut off value of 94%, showed a 95.1% specificity
and 91.9% sensitivity for CMML diagnosis (197). Of note, this distribution was
independent to the molecular profile of CMML. These observations provide
the basis to incorporate this test into regular clinical practice. The analysis of
monocyte distribution could be a helpful test for screening and for

differentiating between reactive monocytosis and CMML(208).
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Figure 14. Distribution of PB monocyte populations by flow cytometry in healthy
adults, CMML and reactive monocytosis. The presence of >94% of classical monocytes
(CD14+/CD16-) is highly specific (95.1%) and sensitive (91.9%) for CMML diagnosis(197,209).
Adapted from Itzykson et al., I/H, 2017.
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5. LIQUID BIOPSY AND CELL-FREE DNA

Liquid biopsy is known as the analysis of extracellular molecules that harbor
genetic information, including cell free DNA, RNA, circulating tumor cells,
extracellular vesicles (including exosomes) and tumor educated platelets. It
has emerged as an innovative minimally invasive approach that has been
implemented in solid and hematologic tumors (Figure 15).
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Figure 15. Liquid biopsy applications in clinical context.
Adapted from Ignatiadis et al. Nat. Rev. Clin. Oncol., 2021(210).

Treatment selection and
response monitoring in

patients with metastatic
disease

Cell free DNA (cfDNA) molecules are double-stranded DNA fragments
circulating in peripheral blood plasma, that were described for the first time
in 1948(211). These molecules are mainly found in peripheral blood plasma,
although they can be present in other body fluids such as saliva, urine or
cerebrospinal fluid(212—-214). cfDNA is approximately 166 base pairs in length
which corresponds to the section of DNA wrapped around one nucleosome.
To date, cfDNA is the most extended target for liquid biopsy applications in

clinical practice.

In addition to DNA, cell free RNA (cfRNA) molecules are also present in

peripheral blood plasma. However, RNA is less stable in blood and therefore
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it has been less studied than cfDNA. Circulating cell-free miRNA (cfmiRNAs)
are short molecules, more stable than other cfRNAs as they are resistant to
RNase activity. Therefore, cfmiRNAs have the potential to be a new biomarker
for cancer diagnosis and prognosis(215). Other recently described molecules
are circular RNAs (circRNA), which are noncoding RNA molecules with no with
no 5’ end caps or 3’ poly(A) tails and a circular covalently-bonded structure.
CircRNA molecules are involved in transcription regulation, splicing and
protein-protein and protein-RNA interactions(216). These molecules are
promising biomarkers, as they are abundant and highly stable in peripheral
blood. In addition, certain chromosomal alterations produce highly specific
fusion circRNAs(217). In lung cancer, fusion circRNA can be used as non-
invasive biomarkers to detect tumor at early stages and evaluate treatment

response(218).

Another target for liquid biopsy studies are circulating tumor cells (CTCs),
which are tumoral cells present in blood plasma that extravasate from the
tumor into the circulation. These cells are of special interest as they originate
the metastatic processes(219). In fact, the number of CTCs in plasma
correlates with worst outcomes and metastasis in solid tumors(220,221).
However, CTC analysis requires the application of high sensitivity techniques
or CTC cell enrichment, since CTCs are present in a very small proportion in
comparation with the high background of normal blood cells.

An additional analyte of liquid biopsies are extracellular vesicles, and
particularly exosomes. Exosomes are microvesicles containing proteins, DNA,
RNA, lipids and other cellular metabolites. Exosomes are implicated in
intercellular communication, and in oncology, the analysis of exosome
composition has been associated to metastatic processes. These vesicles
participate in the preparation of the pre-metastatic niche(222), and can

educate cells toward a pro-metastatic phenotype in melanoma(223).

Finally, the presence of tumor educated platelets (TEPs) in plasma has been
described. Tumor cells incorporate mutant RNA molecules into platelets to
generate these TEPs(224). In cancer patients, the analysis of RNA isolated

from TEPs allowed the detection of the tumor genetic alterations. Moreover,
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by the location of the primary tumor can be identified by the analysis of the
RNA profile in TEPs(225).

The research projects presented in this thesis are focused on the analysis of
cell-free DNA (cfDNA) (Figure 16).
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Figure 16. Cell-free DNA obtention and analysis(282).
Adapted from Pantel et al, Nat Rev Clin Oncol, 2019.

5.1 Cell-free DNA biology and origin

CfDNA is released into the bloodstream mainly through apoptosis or necrosis
by both healthy and tumor cells. In cancer patients, the proportion of cfDNA
that is released by tumor cells is highly variable, as non-tumoral cells are also
contributing to the total cfDNA present in plasma. Large studies described
that mutational VAF was highly variable (0.03%-97.6%) and disease
dependent(226). The term circulating tumor DNA (ctDNA) is also frequently
used and refers specifically to the cell-free DNA released exclusively by tumor

cells.

In this context, several studies tried to identify the origin of non-tumoral
cfDNA. In 2002, cfDNA of 22 patients was analyzed after receiving a sex-
mismatched BM transplantation(227). Male patients receiving BM from
female donors presented a low percentage of Y-chromosome DNA in cfDNA
(6.9%); while female patients receiving BM from male donors showed a
higher percentage (59.5%). These results indicated for the first time that the

origin of cfDNA was predominantly hematological.
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Posterior studies confirmed that cfDNA has its origin mainly in hematological
cells. Since each tissue presents a distinct nucleosome disposition, Snyder et
al. analyzed the nucleosome footprint in cfDNA and found that hematopoietic
lineages were the main contributors to cfDNA in healthy individuals (Figure
17)(228). A similar conclusion was reached by Ulz et al., who found that the
cfDNA read depth patterns by NGS reflected the expression signature of
hematopoietic cells in healthy donors(229). These two studies also
demonstrated that cfDNA fragmentation is not arbitrary and therefore the
genome is not equally represented in cfDNA. Similar results were later
obtained when analyzing the methylation patterns of cfDNA(230). To further
explain these findings, Sadeh et al. recently published their results about
chromatin immunoprecipitation sequencing (CHIP-seq) analysis of cfDNA.
They found that bone marrow megakaryocytes were the main contributors of
cfDNA in healthy individuals(231).
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Figure 17. Nucleosome footprint in cfDNA. CfDNA was obtained from plasma and
sequenced. Nucleosome distribution in cfDNA was matched to the nucleosome footprint
database to determine the tissue-of origin in healthy and cancer samples(228).

Adapted from Snyder et al., Cell ,2016
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5.2 Applications of cell-free DNA analysis

In the last decade, liquid biopsy has emerged as an innovative approach for
molecular characterization that has been implemented in solid and
hematologic tumors. The analysis of peripheral blood plasma is a less invasive
procedure for molecular profiling than tumor biopsies in solid tumors or
lymphomas. In leukemias, cfDNA isolation is also a more accessible
alternative than BM biopsy or aspirate to perform genetic analysis. Moreover,
liquid biopsy applications are useful at diagnosis, to monitor genetic lesions

and to evaluate treatment response.
5.2.1 cfDNA in myeloid neoplasms

In myeloid neoplasms, most of the liquid biopsy research has been focused
on myelodysplastic syndromes and acute myeloid leukemia(232-236).
Focusing on the most recent research, in 2016 cfDNA from a short series of
16 MDS patients was studied(237). CFDNA analysis showed higher detection
rate and higher VAF than PB cells analysis. Later in 2017, 12 patients with MDS
were monitored in different time points using cfDNA, and presented similar
mutations and clonal dynamics than BM samples(238) (Figure 18).
Additionally, in one case karyotype alterations were also detectable in cfDNA.
In line with this results, a posterior research demonstrated that cfDNA
alterations had a prognostic impact in 14 MDS and 37 AML cases receiving
allogeneic hematopoietic stem cell transplantation(239) (Figure 19). Another
posterior study in AML confirmed that cfDNA allowed reliable molecular
characterization, however, discordant mutations with VAFs lower than 10%
were found in both BM and cfDNA, suggesting that subclonal populations may
be missed(240).

In contrast, there is scarce literature of cfDNA analysis in MPNs. Several
groups demonstrated that JAK2 mutations were detectable in plasma or
serum DNA and presented similar VAF to PB cells, but other driver and non-

driver mutations were not analyzed (241-244).
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Figure 18. Mutational dynamics in cfDNA of a patient receiving azacitidine. Mutant
allele frequency (MAF), platelet count, percentage of BM blasts and remission/progression
time points are also shown(238). Adapted from Yeh et al., Blood, 2017
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Figure 19. Cumulative incidence of relapse based on the presence of mutated
circulating tumor DNA (ctDNA) after allogenic hematopoietic stem cell transplantation in
MDS/AML. Similar results were obtained at 1 month and 3 months after
transplantation(239). Adapted from Nakamura et al., Blood, 2019.

In respect to precursor states of myeloid malignancies, it has been recently
demonstrated that clonal hematopoiesis in healthy individuals can be
detected by the analysis of cfDNA(245). Interestingly, they found that the
concordance between cfDNA and PB cells was overall very high, however, for
variants with low VAF (<10%) there was poor concordance. These findings in
cfDNA in CHIP are in consonance with the presence of clonal hematopoiesis

that has been reported in patients with solid tumors(246,247).
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5.3 Limitations of cell-free DNA analysis

In solid neoplasms and lymphomas, one of the main limitations of liquid
biopsy is that tumoral cfDNA represents a small fraction of total cfDNA(226).
Therefore, high sensitivity techniques are required to detect these
alterations. This makes the application of liquid biopsy analysis more
complex, and may lead to false negative results, especially for the
identification of poorly represented mutations. In addition, the presence of
mutations derived from clonal hematopoiesis (further explained in 1.4)
should be considered, since hematopoietic cells are the main contributors of
cfDNA(247). Other key technical limitation of liquid biopsy studies is that the
obtention of pure cfDNA is dependent of pre-analytical and analytical steps.
When the PB sample is obtained, plasma should be isolated within the first
four hours if conventional EDTAK3 tubes are used for collection, since the
apoptosis of PB cells dilutes the cfDNA with genomic DNA. Otherwise
stabilizing tubes should be used. Nevertheless, the pre-analytical handling of
samples should be standardized to ensure the high quality of cfDNA
samples(248). For gene expression analysis, RNA from tumoral cells is
currently a better option than cfRNA due its low concentration in plasma
samples.

In comparison with traditional tissue biopsies, liquid biopsies are a less
invasive method, allow more frequent samplings and contain a homogeneous
profile of the tumoral genetic alterations. However, liquid biopsy studies are
limited to genomic alterations, therefore tumor biopsies are still required to
evaluate tumor morphology. Most cancer types require an initial histologic
sample for diagnosis. Moreover, some mechanisms of resistance to
treatment show morphology progression(249) that is not reflected in cfDNA.
To date, liquid biopsies in solid tumors may be more helpful as a
complementary tool to confirm malignancy, to perform molecular analysis if
tissue is insufficient and for the follow up of previously identified molecular

alterations.
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HYPOTHESIS AND OBJECTIVES

The identification of somatic mutations provided a better understanding of
the pathogenesis in myeloid neoplasms, but subsequently revealed that
multiple aspects should be further improved in the diagnostic and
classification tools that are used in clinical practice.

The first hypothesis of this doctoral thesis is that the analysis of cell-free DNA,
mainly originated in the hematopoietic cells of the bone marrow, could be a
useful strategy to evaluate the mutational profile in myeloid neoplasms. In
myeloproliferative neoplasms, the analysis of cell-free DNA could reflect
better the mutational profile of hematopoietic tumor cells than the study of
mature populations. In myelodysplastic syndromes, cell-free DNA analysis
could overcome the limitations inherent to the bone marrow analysis and
accompanying cytopenias.

The second hypothesis of this doctoral thesis is that patients with OM-CMMIL,
currently classified as MDS according to the 2017 WHO classification, could
be better defined as a subtype of CMML. Moreover, the integration of clinical,
genomic and immunophenotypic information could support the
consideration of OM-CMML as a distinct subtype of CMML.

GENERAL OBIJECTIVE

The main goal of the research projects here presented is to improve the
accuracy of the diagnosis and classification of myeloid neoplasms.

SPECIFIC OBJECTIVES
1. To explore the accuracy and reliability of cfDNA analysis as a new non-
invasive diagnostic tool in a cohort of MPN patients.

2. To explore the role of cfDNA analysis as a non-invasive diagnostic tool for
the detection and monitoring of molecular and cytogenetic alterations in a
cohort of MDS patients.

3. To compare the molecular, immunophenotypic and clinical profile of a well-
annotated series of OM-CMML and CMML.

4. To ascertain if DNA obtained from saliva samples and CD3+ lymphocytes
from peripheral blood is a suitable source of germline DNA for molecular
studies in MPN patients.
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RESULTS: ARTICLE 1 (CELL-FREE DNA IN MPN)

Article 1:

Circulating cell-free DNA improves the
molecular characterisation of Ph-negative

myeloproliferative neoplasms

Garcia-Gisbert N, Fernandez-lbarrondo L, Fernandez-Rodriguez C, Gibert J,
Andrade-Campos M, Arenillas L, Camacho, L, Angona A, Longardn R, Salar A,
Calvo X, Besses C*, Bellosillo, B*

*equally contributed

British Journal of Haematology, 2021; 192(2):300-9

DOI: 10.1111/bjh.17087
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Background

Philadelphia-negative myeloproliferative neoplasms (MPNs)
are a heterogeneous group of clonal haematopoietic disorders
characterised by clonal proliferation of mature myeloid cells.
In MPN patients, genomic alterations are implicated in the
pathogenesis of the disease and molecular profiling is manda-
tory to establish the correct diagnosis and to optimise their
management. Currently, molecular analysis of MPN patients
is conventionally performed in DNA from isolated granulo-
cytes, whole blood samples and, less frequently, in bone mar-

row specimens.

In recent years, it has been demonstrated that it is possible
to characterise the molecular profile of some solid tumours
and haematological neoplasms by analysing the circulating

First published online 18 September 2020
doi: 10.1111/bjh.17087

Summary

Genetic studies in patients with Philadelphia-negative myeloproliferative
neoplasms (MPNs) are essential to establish the correct diagnosis and to
optimise their management. Recently, it has been demonstrated that it is
possible to detect molecular alterations analysing cell-free DNA (cfDNA) in
plasma samples, which is known as liquid biopsy. We have assessed the
molecular profile of a cohort of 107 MPN patients [33 polycythaemia vera
(PV), 56 essential thrombocythaemia (ET), 14 primary myelofibrosis
(PMF) and 4 unclassifiable MPN] by next-generation sequencing (NGS)
using ¢fDNA and paired granulocyte DNA. A high concentration of ¢fDNA
in plasma was observed in patients with high molecular complexity, in
MPL-mutated cases, and in PMF patients. Targeted sequencing of cfDNA
showed a comparable mutational profile (100% accuracy) to the one
obtained in granulocytic DNA and a strong correlation was observed
between the variant allele frequency (VAF) of gene mutations in both DNA
sources. The median VAF detected in cfDNA (29-0%; range: 0-95-91-73%)
was significantly higher than the VAF detected in granulocytes (median
25-2%; range: 0-10-95-5%), especially for MPL mutations (44:3% vs.
22:5%). In conclusion, our data support the use of cfDNA as a fast, sensi-
tive and accurate strategy for performing molecular characterisation of
MPN patients.

cell-free (cf)-DNA present in plasma samples, which is also
known as ‘liquid biopsy’. This ¢fDNA consists of short DNA
fragments derived from both cancer cells [which is known as
circulating tumoural DNA (ctDNA)] and non-tumoural
cells."* The field of ctDNA is rapidly evolving, with the
expectation of liquid biopsy either complementing or even
replacing invasive tissue biopsies in the near future.

It has been recently reported that the majority of the
cfDNA has its origin in immature haematopoietic and bone
marrow cells.*® Hence, some studies have demonstrated that
it is possible to characterise the molecular profile of primary
bone marrow diseases such as myelodysplastic syndromes by
analysing cfDNA.”® In this context, the analysis of cfDNA in
MPNs could reveal the molecular profile of early haematopoi-
etic tumour cells. This approach has not been tested so far, as

© 2020 British Society for Haematology and John Wiley & Sons Ltd
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mutational analysis in MPNs is routinely performed in the
mature cell population circulating in peripheral blood.

The aim of the study was to assess the accuracy and reliability
of ¢fINA analysis in a cohort of MPN patients, comparing this
technique with the genotype of peripheral blood granulocytes.

Patients and methods

Patients

Peripheral blood samples from 107 patients with MPNs were
prospectively collected for this study at the time of diagnosis:
33 polycythaemia vera (PV), 56 essential thrombocythaemia
(ET), 14 primary myelofibrosis (PMF) and 4 unclassifiable
MPNs (uMPNs). Clinico-biological characteristics of the
patients are shown in Table . We additionally obtained
peripheral blood samples from 33 healthy controls. The study
was approved by the local ethics committee.

Peripheral blood processing and DNA isolation

Peripheral blood samples were collected in K3EDTA tubes
and processed in the first 4 h to isolate plasma and granulo-
cytes (Figure S1). Granulocyte DNA was extracted with Gen-
ovision M48 (Qiagen, Hilden, Germany). CIDNA was
isolated with MagMAX Cell-Free DNA Isolation Kit (Thermo
Fisher Scientific, Foster City, CA, USA) and quantified
(Qubit, Thermo Fisher Scientific). Purity of the ¢fDNA was
assessed by electrophoresis (4200 TapeStation system, Agi-
lent, Santa Clara, CA, USA) to exclude the presence of geno-
mic DNA, All the ¢fDNA samples analysed in this project
were free of genomic DNA contamination.

Next-generation sequencing

Libraries were prepared using a custom panel covering the whole
codifying region of 25 myeloid-associated genes (QIAseq Cus-
tom DNA Panels, Qiagen, Hilden, Germany): ASXLI, CALR,
CBL, CSI3R, DNMT3A, E1V6, EZH2, IDHI, IDH2, JAK2, KIT,
KRAS, MPL, NRAS, PRPF8, RUNXI, SETBP1, SF3B1, SH2B3,
SRSE2, STAG2, TET2, TP53, U2AFI1, ZRSR2, that incorporates
unique molecular identifiers to tag individual DNA molecules.
Libraries were sequenced with a 3000 minimum read depth in
MiSeq/NextSeq (Illumina, San Diego, CA, USA).

The GeneGlobe Data Analysis Center (Qiagen) was used for
FASTQ trimming, alignment and variant calling (smCounter2,
Qiagen}. Variants were annotated and classified using lllumina
VariantStudio 3-0 software and confirmed with Integrative
Genomics Viewer (IGV) v2-4 software. Only pathogenic variants
with a variant allele frequency (VAF) >2% were considered.

Digital PCR

Digital PCR analysis for point mutations was performed in
duplicate using the QuantStudio 3D Digital PCR System
(Applied Biosystems, Foster City, CA, USA).
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Statistical analysis

IBM SPSS Statistics software was used for statistical analysis.
For categorical data, comparisons of proportions were evalu-
ated by the chi-square test or Fisher’s exact test as appropri-
ate. For continuous variables, comparisons were assessed by
the non-parametric Mann-Whitney or Wilcoxon test when
appropriate. We assessed Spearman’s rank correlation coeffi-
cent to evaluate the strength of association between two
variables. P-values < 0-05 were considered statistically signifi-
cant. Coverage metrics were obtained using the DeCovA
library.lu Variant analysis was performed in R version 3-6.2
(R Foundation for Statistical Computing, Vienna, Austria;
https://cran.r-project.org) using the maftools package.'' The
code used in R 3-6.2 to create the figures is displayed in the
Supplemental methods.

Results

The amount of cell-free DNA in plasma varies among
MPN disease phenotypes

Circulating ¢fDNA was isolated from plasma samples of 107
MPN patients and 33 healthy controls. The amount of
cfDNA obtained per ml of plasma was significantly higher in
patients with PMF (median 73-0 ng/ml, range: 3-95-594)
than in PV (median 17-4 ng/ml, range: 4-62-69-96} or ET
patients  (median  14-3 ng/ml,  range:  3-44-292.60)
(P < 0-001). In addition, a significantly lower concentration
was obtained in healthy controls (median 5-16 ng/ml, range:
2:0-11-76), when compared to MPN patients (P < 0-001 in
all comparisons) (Table 1, Fig 1).

We analysed the correlation of the amount of cfDNA with
clinical and biological characteristics. No association was
observed with haemoglobin, haematocrit or platelets. How-
ever, a significant positive correlation was observed between
the amount of ¢fDNA and the leukocyte count (P = 0-023,
r = 0-220). To assess whether the high ¢fDNA concentration
observed in PMF patients was directly related to the periph-
eral blood leukocyte count, the ¢cfDNA concentration values
were normalised by the leukocyte count. The adjusted values
(ratio: ¢fDNA amount per ml of plasma/leukocyte count)
were still significantly higher in patients with PMF than in
PV (P < 0-001) and ET patients (P < 0-001). A positive cor-
relation was also observed between the amount of cfDNA
and the serum lactate dehydrogenase (LDH) levels
(P < 0-001, r= 0-532). This correlation was still observed
when excluding PMF patients from the analysis (P < 0-001,
r= 0442) and among the group of PMF patients
(P = 0-008, r= 0:679). Finally, a higher concentration of
cfDNA was observed in patients who suffered a thrombotic
event at the time of diagnosis or during follow-up (n = 10;
median 37-0 ng/ml of plasma, range: 3-44-292-6) than in the
group of patients without thrombotic events (17-0 ng/ml,
range: 3-61-594) (P = 0-038) (median follow-up: 15 months,

© 2020 British Society for Haematolegy and John Wiley & Sons Ltd
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Fig 1. Amount of ¢fDNA obtained according to disease phenotype.
Total ¢fDNA quantity (ng/ml plasma) obtained for each patient (n =
107) grouped by disease phenotype. For healthy controls (n = 33)
the ¢fDNA quantity per ml was significantly lower than the PV, ET
and PMF group. The PMF group presented a higher quantity of total
cfDNA than PV and ET (P < 0.001, Mann Whitney). ***P < 0.001,
ns: non-significant.

range: 1-60). However, this difference did not reach statisti-
cal significance when analysing the disease phenotypes inde-
pendently.

ofDNA and granulocyte DNA show an equivalent
muttational profile

We next performed mutational profiling of granulocyte DNA
in the 107 patients by next-generation sequencing (NGS).
We observed a median of 2:0 mutations/patient in PV
(range: 1-6 mutations), 1-0 mutation/patient in ET (range:
0—4), 2-5 mutations/patient in PMF (range: 0-7) and 2.0
mutations/patient in unclassifiable MPNs (range: 1-5)
(Table I). Eight cases (six ET and two PMF) were classified
as triple negative (TN) as no mutations were identified in
any of the driver genes; however, mutations in non-driver
genes were observed in one ET and one PMF patient
(Fig 2A). The most frequently mutated non-driver genes in
the whole cohort were TET2 (20/107, 18:7%), ASXLI (16/
107, 15-0%), DNMT3A (11/107, 10-3%), SRSF2 (7/107,
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(A) Distribution of mutations identified in the 107 MPN patients. Results of the sequencing of the 25 genes are shown in the plot where

each column represents a patient and each row represents a gene. The number of mutations identified per patient is represented as columns in
the top row. Genes are ordered from the most to the least frequently mutated, and frequencies for each gene are displayed at the right, as well as
the mutation type (nonsense, missense, insertion/deletion, splice site or multihit). Patients with more than one mutation in the same gene are
represented as shown in the legend (two, three or four mutations in the same gene). The phenotype (PV, ET, PMF, uMPNs) and the driver gene
(JAK2, CALR, MPL, TN) for each patient are depicted in the bottom rows. (B) Mutations detected in a PMF patient by NGS in granulocyte
DNA (GR) and ¢fDNA. *Mutations confirmed by digital PCR. (C) Images show the mutations detected in MPL and ASXLI genes by NGS in
cfDNA visualised using the IGV software. Ins: insertion, Del: deletion, PV: polycythemia vera, ET: essential thrombocythemia, PMF: primary
myelofibrosis, uMPN: unclassifiable myeloproliferative neoplasm, TN: triple negative. [Colour figure can be viewed at wileyonlinelibrary.com|

6:5%), IDH2 (4/107, 3-7%) and SF3B1 (4/107, 3-7%). A
detailed list of the variants detected is provided in Table S1.

Targeted sequencing of ¢fDNA showed, overall, a compa-
rable mutational profile to the one obtained in granulocytic
DNA. All mutations detected in the granulocytic fraction,
considered as the gold standard, were also detected in the
paired c¢fDNA sample, thus resulting in 100% accuracy.
Interestingly, in one PMF patient, two previously undetected
mutations in MPL and ASXLI were detected in cfDNA. We
confirmed these mutations in ¢fDNA with digital PCR as an
orthogonal method, and its high sensitivity allowed us to
detect these mutations also in the granulocyte fraction with a
VAF below the NGS limit of detection (Fig 2B).

The median VAF for the gene mutations detected in
cfDNA was 29:0% (range: 0-95-91:73%), which was signifi-
cantly higher than the granulocyte VAFs (median 25-2%;
range: 0:10-95:5%) (P < 0-001). A strong correlation was
observed between the VAFs of granulocytic DNA and ¢fDNA
(r = 0-897, P < 0-001) (Fig 3).

82

JAK2 and MPL mutations present a higher VAF in
¢/DNA than in granulocytes

Most JAK2V617F cases (58/80) presented a higher VAF in
cfDNA (median 37-4%; range: 2-19-91-7) than in granulo-
cytes (median 32:2%; range: 1-45-95-5) (P < 0-001). This
higher allele frequency in ¢fDNA was mainly observed in ET
patients (Fig S2). Interestingly, all MPL mutations presented
higher VAF in cfDNA (median 44-3%; range: 2-10-69-4)
than in granulocytes (median 22:5%; range: 0:10-38.0;
P = 0-003) (Fig 4A, Fig S2). These VAFs were confirmed by
digital PCR in both granulocytic DNA and ¢fDNA extracted
from an extra plasma tube from the same patient and time
point. No significant differences were observed for CALR
mutations. Regarding non-driver genes, a slightly higher VAF
of SRSF2 mutations was observed in ¢fDNA (median 47-63;
range: 5-58-51-1) than in granulocytic DNA (median 44-14;
range: 7-39-47-91, P = 0-043). No significant differences
were observed for any other non-driver gene. Overall, a
higher VAF observed in  ¢fDNA  compared

was to

© 2020 British Society for Haematology and John Wiley & Sons Ltd
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Fig 3. Scatter plot of the 202 variants detected showing the correla
tion between the variant allele frequency (VAF) of the mutations in
cfDNA and DNA from granulocytes.

granulocytic DNA for MPL (median 66% increase), JAK2
(median 20% increase) and SRSF2 (median 6% increase)
mutations.

We next assessed the representation of the myeloid genes
in ¢flDNA and in granulocytic DNA, as it has been reported
that nucleosome position affects DNA fragmentation and
some genomic regions are overrepresented, hence the cell
genome might not be equally represented in ¢fDNA.” We
compared the depth of coverage obtained for the independent
gene regions, and we observed a higher representation of
MPL fragments in cfDNA libraries than in granulocytic DNA
libraries (Fig 4B, Fig S3), which suggests that MPL regions
are better represented in the ¢fDNA from MPNs patients.

Total ¢(f[DNA correlates with genomic complexity

Regarding the amount of ¢fDNA obtained per ml of plasma,
we observed a positive correlation between the number of
mutations identified per patient and the amount of plasma
cfDNA (r = 0-242, P = 0-012). In our cohort, patients with
more mutations (considering both driver and non-driver
genes) presented a higher concentration of c¢fDNA/ml
(Fig 5). When analysing only PMF patients, who have a
higher incidence of mutations and a higher concentration of
cfDNA, this maintained (r = 0-572,
P = 0-033).

In line with the previous observations for gene mutation
VAFs, MPL-mutated patients presented a higher quantity of
cfDNA (median 36:75 ng/plasma ml; range: 12:9-264) than
the MPL-wild-type MPNs (17-0 ng/plasma ml; range: 3-44—
594; P = 0-034), supporting a higher shedding of cfDNA in
MPL-mutated cases.

correlation  was

© 2020 British Society for Haematology and John Wiley & Sons Ltd

Cell-free DNA in Myeloproliferative Neoplasms

For non-driver genes, patients with ASXLI mutations pre-
sented a larger amount of c¢fDNA (median 35-0 ng/ml;
range: 4-62-594) than non-mutated patients (median
16:9 ng/ml; range: 3-44-292; P = 0-019). No significant dif-
ferences were observed when the remaining non-driver genes
were studied.

Finally, we studied whether there was any correlation
between the amount of plasma ¢fDNA and VAF of the driver
mutation or the higher mutation detected. Of note, no corre-
lation was found between the total ¢fDNA circulating in
plasma and the ¢fDNA mutation VAF or the cfDNA VAF/
granulocytic VAF.

¢/DNA may be useful to monitor response to treatment

Finally, we analysed whether ¢fDNA allele frequencies are
modulated in a similar way to those in granulocytic DNA
during cytoreductive treatment. In two JAK2V617F-mutated
cases (one PV and one ET), the molecular response to treat-
ment was assessed during a follow-up of 35 and 32 months
respectively (Fig 6). For the PV case, who received hydroxy-
carbamide, the JAK2V617F VAF remained stable in both the
granulocytes and cfDNA during the follow-up. For the ET
case, who was treated with interferon, a proportional
decrease in the JAK2V617F VAF was observed in granulo-
cytes and cfDNA.

Discussion

In the present study, we have assessed the genomic character-
isation of MPNs by targeted NGS of plasma c¢fDNA. This is,
to the best of our knowledge, the first report analysing the
mutational profile of MPN patients in c¢fDNA. Of note, all
samples were taken at diagnosis before any kind of cytore-
ductive therapy, thus excluding any potentially modifying
effect on the results. Our data demonstrate an equivalent
repertoire of variants in both driver and non-driver genes
supporting the feasibility of performing the molecular char-
acterisation of MPN patients by c¢fDNA, since all mutations
initially identified in the granulocytic fraction were also
detected in plasma. It is cheaper to use cfDNA than granulo-
cyte DNA: fewer reagents and hands-on time are needed for
sample processing (in our hands 25 min for ¢fDNA process-
ing including two rounds of centrifugation versus a mini-
mum of 1h for granulocyte isolation). Therefore, the
analysis of cfDNA represents a novel strategy that would be
useful for routine testing as cfDNA is obtained fast and easily
from blood plasma, when compared with granulocyte purifi-
cation.

Standardisation of ¢fDNA manipulation is still ongoing;
however, it is generally accepted that samples should be pro-
cessed within the first 6 h after blood collection to avoid
leukocyte lysis and contamination of ¢fDNA with genomic
DNA. Nevertheless, recent studies have reported that ¢fDNA
levels are stable in K3EDTA tubes at room temperature for
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up to 24 h, which would facilitate the incorporation of
cfDNA in routine practice.'>"’

One of the main caveats of liquid biopsy in the study of
solid tumours is that very highly sensitivity methods are
required to assess gene alterations since tumoural ofDNA
represents a small fraction that is frequently challenging to
identify."* To overcome this difficulty, NGS analysis requires
expensive molecular tagging and high-depth sequencing. In
contrast to solid tumours, the VAFs of gene mutations in
cfDNA from MPN patients were similar or superior to those

found in granulocytic DNA. This finding is of utmost impor-
tance as it supports the potential use of cfDNA for molecular
profiling by NGS at an affordable cost and with limited anal-
ysis complexity. However, either in solid tumours or in
haematological neoplasms, if ¢fDNA is used as a screening
procedure, the confounding possibility of clonal haematopoi-
esis of indeterminate potential (CHIP) should be taken into
account and the detection of mutations in myeloid-associ-
ated genes should be integrated in the patient clinical con-
text.”?

© 2020 British Society for Haematology and John Wiley & Sons Ltd
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In our study, the VAFs of mutations detected were higher for SRSF2 (6% increase). These results indicate that the anal-
in ¢fDNA than in granulocytes for MPL and JAKZ mulations ysis of c/DNA could improve mutation detection in MPNs.
(66% and 20% increase respectively), and to a lower extent Our findings are in linc with previous studies showing that
& 2020 British Society for Haematology and John Wiley & Sons Ltd 7
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plasma or serum samples are a better option than peripheral
blood cells to detect JAK2V617F mutation in MPN
patients.'®'” Moreover, in one PMF patient included in our
cohort, two additional mutations in MPL and ASXLI were
identified in ¢fDNA that had not been initially seen in granu-
locytic DNA, suggesting that cfDNA analysis provides a
higher sensitivity to detect both driver and non-driver muta-
tions in MPN patients, especially in MPL-mutated cases. Our
group has already described that the analysis of granulocytes
is not always the best strategy to perform mutational analy-
sis, especially in ET patients, in whom platelets represented
the mutated population better at least for JAK2V617F-mu-
tated patients.'®"
some, whereas the use of ¢fDNA is an easy approach to
implement in routine practice that could potentially become
the method of choice.

Regarding the total amount of ¢fDNA, we observed that
this value differs depending on the clinical or disease pheno-
type and genotype of patients. ¢fDNA is a variable parame-
ter, that even in healthy individuals presents significant
variations due to inflammation, injury or exercise.”” ** How-

However, the use of platelets is cumber-

ever, irrespective of discase phenotype our MPN samples
showed a significantly higher amount of ¢fDNA than those
of healthy controls, indicating a higher release of cfDNA in
plasma from MPN clonal cells. Of note, PMF patients’
plasma contained a higher quantity of ¢fDNA than that of
PV and ET patients, even when adjusting the ¢fDNA concen-
tration values with the leukocyte count. This finding sup-
ports that the ¢fDNA in PMF is not released by peripheral
blood leukocytes, but by haematopoietic cells. This higher
shedding of ¢fDNA is in line with the known increased
release of CD34" cells into circulation and the altered bone
marrow stem cell niche in PMF. Moreover, these differences
in the amount of ¢fDNA are concordant with the fact that
PMEF patients show higher levels of circulating nucleosomes
in blood than those with PV, ET or healthy controls.”*

MPN patients with greater molecular complexity showed a
higher concentration of ¢fDNA in plasma than those patients
with fewer mutations. This higher shedding of ¢fDNA could
be explained in PMF because patients acquire more muta-
tions and release more ¢fDNA than in PV and ET; however,
inside the PMF group, the correlation was still observed. In
this regard, it has been reported that ¢fDNA in plasma has
the capacity to enter cell nuclei and insert itself into the host
cell genome. Previous studies in vivo have reported that it is
possible to generate tumours by injecting ¢fDNA molecules
in mice,” and have found evidence that cfDNA sequences
are capable of inserting into the genome of healthy cells,***¢
which would contribute to genetic instability.”” A possible
hypothesis to explain the correlation between the amount of
¢fDNA and the number of mutations is that this aberrant
production of higher quantities of ¢fDNA is inducing genetic
instability in haematopoietic cells of MPN patients by the
insertion of DNA molecules and hence, inducing a higher
rate of mutations. Nevertheless, we cannot rule out that

genomic instability induced by other mechanisms (e.g. alter-
ations of the DNA repair machinery) could prompt a higher
shedding of cfDNA to peripheral blood.

Interestingly, all MPL mutations were found with a higher
VAF in ¢fDNA than in granulocytes both in ET and PMF
patients. In addition, we observed that MPL-mutated patients
had higher amounts of ¢fDNA than MPL-wild-type patients,
suggesting that this higher shedding of ¢fDNA improves the
detection rate in these patients. Moreover, unlike for other
genes, we observed a higher number of reads covering the
MPL gene in cfDNA samples than in granulocyte DNA sam-
ples. CfDNA fragments result from nucleosome fragmenta-
tion that does not occur randomly. In fact, it has been
reported that specific fragmentation profiles are different
between cancer patients and healthy individuals.™® No pro-
files so far have been described for haematological malignan-
cies, but it seems possible that this fragmentation pattern
may somehow favour the detection of MPL mutations.

The improvement in the detection of MPL mutations with
the use of ¢fDNA may have direct clinical impact, as mutated
ET patients have a higher risk of myelofibrotic transforma-
tion. ¢fDNA genotyping especially in JAK2- and CALR-wild-
type MPN patients will detect with more reliability low-bur-
den MPL mutations and improve the recognition of relevant
prognostic factors.***’

Finally, as molecular monitoring may be of interest in
some MPN patients, we assessed the molecular profile in
sequential samples from two patients who received cytore-
ductive therapy. In both cases, the VAF in ¢fDNA was higher
than in granulocytes in all samples, and cfDNA profiling
mirrored the modulation of the granulocytic JAK2V617F
burden. Additional studies are required to further explore
this application.

In conclusion, our data show that the analysis of cfDNA
allows the characterisation of the molecular abnormalities of
patients with MPNs. The sensitivity and accuracy for muta-
tion detection in driver and non-driver genes were equal or
even superior to that obtained when studying the isolated
granulocytic population, especially regarding the detection of
MPL mutations.
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Fig S1. Sample workflow for DNA extraction and muta-
tional analysis.

Fig S2. Ratio [cell-free (cf)-DNA variant allele frequency
(VAF)/granulocyte VAF] of the detected variants of the most
frequently mutated genes in our cohort, grouped by discase
phenotype. Median VAF for each gene is shown as a black
line. Variants situated in the plot above the line have a
higher VAF in cfDNA than in granulocytes and variants
below the line have a higher VAF in granulocytes.

Fig §3. Read depth for each gene in granulocytes and cell-
free (c)-DNA. The ratio (read depth for the exon/whole
panel read depth for that sample) for each exon of the genes
included in the next-generation sequencing (NGS) panel is
shown for the granulocyte samples and the ¢fDNA samples.
¥, P 2005 ¥, P = 0.01; ¥ P < 0,000 ¥4k P < 0,001,

Table SI. Genetic variants detected by next-generation
sequencing  [NGS;  Human Variation  Society
(HGVS) nomenclature].
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ABSTRACT

Molecular and cytogenetic studies are essential in patients with
myelodysplastic syndromes (MDS) for diagnosis and prognosis. Cell-free DNA
(cfDNA) analysis has been reported as a reliable non-invasive approach for
detecting molecular abnormalities in MDS, however, there is limited
information about cytogenetic alterations and monitoring in cfDNA. We have
assessed the molecular and cytogenetic profile of a cohort of 70 patients with
MDS by next-generation sequencing (NGS) using cfDNA and compared the
results to paired bone marrow (BM) DNA. Sequencing of BM DNA and cfDNA
showed a comparable mutational profile (92.1% concordance) and variant
allele frequencies (VAF) strongly correlated between both sample types. Of
note, SF3B1 mutations were detected with significantly higher VAF in cfDNA
than in BM DNA. NGS and microarrays were highly concordant to detect
chromosomal alterations although with lower sensitivity than
karyotype/FISH. Nevertheless, all cytogenetic aberrations detected by NGS in
BM DNA were also detected in cfDNA. Additionally, molecular and
cytogenetic alterations were monitored and we observed an excellent
correlation between the VAF of mutations in BM DNA and cfDNA across
multiple matched time points. A decrease in the cfDNA VAF was detected in
patients responding to therapy, but not in non-responding patients. Of note,
cfDNA analysis also showed cytogenetic evolution in 2 cases not responding

to treatment. In conclusion, our results support the analysis of cfDNA as an
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accurate strategy for performing molecular characterization, detection of

chromosomal aberrations and monitoring of MDS patients.

INTRODUCTION

Myelodysplastic syndromes (MDS) are hematopoietic stem cell disorders
characterized by dysplasia and ineffective hematopoiesis that are driven by
somatically acquired genomic alterations. Molecular studies and
conventional cytogenetics are essential in MDS to establish a correct
diagnosis and to set up accurate risk stratification(1). Routinely, these
analyses are performed in bone marrow (BM) samples, in particular
cytogenetic analysis as it is difficult to obtain metaphases from peripheral
blood (PB) samples(2).

In recent years, it has been demonstrated that molecular profiling can be
performed robustly using cell-free DNA (cfDNA) analysis in solid tumors and
lymphomas. CfDNA molecules are short DNA fragments present in plasma
samples that are mainly released by immature hematopoietic and bone
marrow cells(3—6). As MDS are characterized by an excessive apoptosis in
bone marrow (7,8), so an increased release of cfDNA to plasma is expected in
these patients. Indeed, several groups have reported that it is possible to

identify the genetic alterations in MDS by analyzing cfDNA(9-12).

However, there is limited information regarding the detection of cytogenetic
alterations in MDS patients by cfDNA analysis. To this aim, we have designed
a targeted gene panel to detect in a single test both molecular and
cytogenetic alterations by NGS and investigated its potential use with cfDNA

in comparison to bone marrow samples in a cohort of MDS patients.

PATIENTS AND METHODS

Patients. BM aspirates and PB samples were prospectively collected from 70
newly diagnosed MDS patients or cases who only received erythropoietin
with the following diagnoses: MDS with single lineage dysplasia (SLD; n=1),
MDS with multilineage dysplasia (MLD; n=35), MDS with ring sideroblasts
(RS)-SLD (n=5), MDS-RS-MLD (n=17), MDS with isolated del(5q) (n=2), MDS
with excess blasts (EB)-1(n=6), MDS-EB-2(n=2), MDS-unclassifiable (MDS-U;
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n=2) (Table 1). The IPSS-R score was calculated for each patient(13). We
additionally analyzed PB samples from 21 healthy controls and 18 acute
myeloid leukemia (AML) patients (Supplementary Table 1). The study was
approved by the local ethics committee (2016/6768/1).

Peripheral blood and bone marrow processing and DNA isolation. BM
aspirates were collected and BM DNA was extracted with MagAttract DNA
Blood Mini M48 Kit (Qiagen, Hilden, Germany). Peripheral blood samples
were collected in K3EDTA tubes and processed in the first 4 hours to isolate
plasma (Supplementary Fig 1). CfDNA was isolated automatically using
QlAsymphony SP (QlAsymphony DSP Virus/Pathogen Kit, Qiagen, Hilden,
Germany) and quantified with Qubit 3.0 (Thermo Fisher Scientific, Eugene,
USA). Purity of cfDNA was assessed by electrophoresis (4200 TapeStation
system, Agilent, Santa Clara, USA) to discard the presence of genomic DNA.
All the cfDNA samples analyzed in this project were free of genomic DNA

contamination.

Next Generation Sequencing (NGS). Genomic characterization was
performed in paired samples of BM DNA and cfDNA by NGS in all patients.
Libraries were prepared using a custom panel including 48 myeloid-
associated genes (ASXL1, ATM, BCOR, BCORL1, CALR, CBL, CEBPA, CHEK2,
CSF3R, CSNK1A1, CUX1, DDX41, DLEU7, DNMT3A, EGR1, ETV6, EZH2, FLT3,
GATAZ2, IDH1, IDH2, JAK2, KIT, KMT2A, KRAS, MPL, NF1, NPM1, NRAS, PHF6,
PPM1D, PRPF8, PTPN11, RAD21, RUNX1, SETBP1, SF3B1, SH2B3, SRSF2,
STAG2, TET2, TNFSF11, TP53, TP53RK, TP53TG5, U2AF1, WT1, ZRSR2) and
genomic regions localized at the most frequently altered chromosomes in
MDS (QlAseq Custom DNA Panels, Qiagen) Genomic regions included in the
NGS Panel are included in Supplementary Table 2. Unique molecular
identifiers were incorporated before targeted amplification to tag individual
DNA molecules. Libraries were sequenced with a 3000x minimum read depth
in MiSeq/NextSeq (lllumina, San Diego, CA, USA).

The GeneGlobe Data Analysis Center (Qiagen) was used for FASTQ trimming,
alignment and variant calling (smCounter2)(14). Variants were annotated and
classified using lllumina VariantStudio 3.0 software and visualized with

Integrative Genomics Viewer (IGV) v2.11 software. Only pathogenic and likely
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pathogenic variants with a variant allele frequency (VAF)>2% were

considered.

Copy number variant (CNV) analysis was performed by NGS to detect
cytogenetic alterations in both cfDNA and BM DNA. Samples from healthy
individuals (2 to 4) were included in all sequencing runs and used as coverage
controls. Gene coverage was compared to each sample using GeneGlobe Data
Analysis Center to identify regions affected by CNVs, where the normalized

coverage is significantly different from the controls(15).

Chromosomal Microarrays (CMA). Cytoscan 750K cytogenetic Solution
(Thermo Fisher Scientific) was used to obtain a genetic gain, loss and regions
of homozygosity (ROH) profile following the manufacturer's
recommendations. This chip consists of more than 750,000 markers for copy
number analysis with 550,000 unique non-polymorphic probes and
approximately 200,000 SNPs that fully genotype with greater than 99 percent
accuracy. Chromosome Analysis Suite v.4.1 (ChAS) software (Thermo Fisher
Scientific) and the hg38 genome version (NA36 annotations) was used to
analyze the results. Gains with a minimum of 25 altered markers in a 150 Kb
region, losses with at least 35 altered markers in a 75 Kb region, and regions
with telomeric copy neutral loss of heterozygosity (CN-LOH) greater than 10
Mb or affecting relevant genes have been collected.

Fluorescence in situ hybridization (FISH) analyses. FISH studies were
performed according to the standard methods used in our laboratory(16).
FISH studies were performed on BM cells from cytogenetic cultures using the
following probes: Vysis CEP8, Vysis EGFR1 FISH probe kit (Abbott Molecular,
IL, US) and XL 20g12/20gter (Metasystems, Altlussheim, Germany).

Statistical Analysis. The IBM SPSS Statistics software was used for statistical
analysis. For categorical data, comparisons of proportions were evaluated by
Chi-square test or Fisher’s exact test as appropriate. For continuous variables,
comparisons were assessed by nonparametric Mann—Whitney or Wilcoxon
test when appropriate. We assessed the Spearman’s rank correlation
coefficient to evaluate the strength of association between two variables. P-
values <0.05 were considered statistically significant. Coverage metrics were

obtained using DeCovA library (17). Variant analysis was performed in R 3.6.2
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version using maftools package (18). The code used in R 3.6.2 to create the
figures is displayed in Supplemental Methods and the required files to
generate the figures and full list of variants identified is shown in

Supplemental Data 1-3.

RESULTS

The amount of cell-free DNA in plasma is higher in MDS than in controls.

A total of 70 plasma samples from MDS patients at diagnosis or in the absence
of any therapy were analyzed. The clinical and biological features of patients
are shown in Table 1. The amount of total cfDNA obtained in MDS patients
(median: 58.4 ng/ml) was significantly higher than that obtained from healthy
controls (median: 32.4 ng/ml) (P = 0.023, Mann-Whitney) (Figure 1). No
significant differences were observed in ¢cfDNA concentration among MDS
patients when comparing by disease subtype or by risk category.
Nevertheless, even low risk MDS patients had a significantly higher cfDNA
concentration than the healthy control group (P = 0.023). On the contrary, a
significantly lower cfDNA concentration was observed in the MDS group when
compared to the cohort of AML patients (P =0.017).

We analyzed the correlation of the concentration of cfDNA with clinical and
biological characteristics. A positive correlation was observed between the
amount of cfDNA and the serum lactate dehydrogenase (LDH) levels (P=0.027,
rs=0.273). No statistically significant association was observed with
hematological parameters (hemoglobin, leukocytes, monocytes, platelets or

blast percentage).
cfDNA and BM DNA show an equivalent mutational profile.

Mutational profiling of BM DNA and cfDNA showed comparable results: 187
mutations were detected in BM DNA and cfDNA, with a 92.1% concordance
(Figure 2). The most frequently mutated genes were TET2 (45.7%), SF3B1
(37.1%), ASXL1 (21.4%), DNMT3A (20.0%), SRSF2 (15.7%), ZRSR2 (11.4%) and
U2AF1 (11.4%). A strong correlation was observed between the VAF of BM
and cfDNA (rs = 0.797, P < 0.001, Spearman) (Figure 3). There were 16

discordant mutations: 8 were only detected in cfDNA and 8 were only
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detected in BM (Figure 4A). These discordant mutations presented a lower
variant allele frequency (VAF) (median 5.60%, range 2.5-25.53%) when
compared to the VAF observed in the whole cohort (median 28.27%, range
0.74-98.28%) (P < 0.001) (Figure 4B). These cases showed that the correlation
between BM DNA and cfDNA mutations may decrease when studying low-

represented subclones.
SF3B1 mutations present a higher VAF in cfDNA than BM DNA.

We compared the VAF of the detected mutations in cfDNA and BM DNA
grouped by gene and observed that VAFs of SF3B1 mutations were
significantly higher in cfDNA than in BM DNA (P=0.016, Wilcoxon) (Figure 5A).
No significant differences were observed in the concentration of total cfDNA
between the SF3B1 mutated and the SF3B1 wild type patients. Mutations in
exon 15 of SF3B1 (NP_036565.2: p.(Lys700Glu) in all cases) presented a
tendency towards a higher VAF cfDNA/BM ratio than mutations in other
SF3B1 exons (median ratio of 1.82 vs. 1.09, P =0.08) (Figure 5B). In this
context, we assessed the representation of SF3B1 exons in cfDNA, as it has
been reported that nucleosome distribution affects DNA fragmentation, and
as a consequence some genomic regions are overrepresented in cfDNA (5).
We compared the depth of coverage obtained for the exons, and we observed
a higher representation of SF3B1 exon 15 in cfDNA libraries than in BM
libraries (Figure 5C). This finding was not observed in other SF3B1 exons,
which suggests that exon 15 is better represented in cfDNA from MDS
patients, thus producing a higher VAF in cfDNA of the SF3B1 p.(Lys700Glu)
mutation. In line with previous studies, we observed that the percentage of
ring sideroblasts in bone marrow correlated with the VAF of SF3B1 mutations,
in both BM DNA and cfDNA (rs = 0.684, P < 0.001 in BM DNA and r, = 0.602, P
= 0.002 in cfDNA) (Supplementary Figure 2).

Moreover, we identified a SF3B1 p.(Lys700Glu) mutation only detectable in
cfDNA in one patient. In this case, the quantification of ring sideroblasts was
not assessable due to lack of cellularity in the BM aspirate, being the analysis
of cfDNA a useful non-invasive alternative to identify the presence of this
pathological clone. This SF3B1 mutation was later confirmed by NGS in a

subsequent PB sample.
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CMA and NGS were highly concordant to detect cytogenetic aberrations

In addition to gene mutations, we assessed the detection of cytogenetic
alterations by NGS. Cytogenetic/FISH alterations were detected at the time
of diagnosis in 20/70 (28.6%) MDS patients (Figure 6A). From those, 2/20
were infrequent alterations in MDS and were not covered by the design of
the NGS panel and in 6/20 cases chromosome Y loss was the only alteration
detected, neither covered by the NGS panel. So, the cohort included
cytogenetic alterations potentially detectable by our gene panel in 12/70

patients.

NGS analysis detected abnormalities in 10/70 MDS patients, in both BM DNA
and cfDNA. Interestingly, in a patient without analyzable metaphases in bone
marrow karyotype, del(20q) was found by NGS and further confirmed by
CMA. Overall, CMA and NGS were highly concordant to detect chromosomal
aberrations although they did not reach the sensitivity achieved by
conventional  cytogenetic analysis  (karyotype/FISH)  (Figure 6B)
(Supplementary Figure 3). Nevertheless, as previously stated, all cytogenetic
aberrations detected by NGS in BM DNA were also detected in cfDNA.

cfDNA is useful to predict transformation and monitor response to

treatment.

Molecular and cytogenetic alterations were monitored in sequential samples
from 7 cases (median follow up: 13 months, range 10-30). We observed an
excellent correlation between the VAF of mutations in BM and cfDNA across
multiple-matched time points. Both sample types showed similar clonal
dynamics irrespectively of the treatment and allowed the monitoring of both

mutations and chromosomal aberrations (Figure 7).

In those cases treated with hypomethylating agents (i.e. azacitidine), a VAF
decrease was detected in patients responding to therapy, but not in non-
responding patients. Of note, cfDNA analysis also showed cytogenetic
evolution in 2 cases not responding to azacitidine (del(12p) and +21), who had
to stop treatment due to lack of response. In the patient treated with FLAG-
IDA followed by hematopoietic cell transplantation (HCT), the 5 mutations

identified at diagnosis were undetectable in cfDNA in a sample collected 7
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months after the HCT. One patient treated with hypoxia-inducible factor (HIF)
inhibitor showed a VAF decrease of DNMT3A and SF3B1 mutations and a
concomitant increase in the RUNX1 and SETBP1 VAF during the follow-up,
who later transformed to chronic myelomonocytic leukemia. In addition, the
emergence of a mutation in ASXL1, undetectable at diagnosis, was identified
in the latest sample available in both cfDNA and BM DNA.

Two patients who were not receiving treatment were also monitored. One
patient, who evolved to AML, showed a clonal expansion of the NF1 mutant
clone at the time of AML transformation. The second patient acquired a
subclonal del(7qg) not detected by NGS and observed only by karyotype in
2/20 metaphases. Although our cohort of AML cases (15/18 were de novo
AML) presented a higher cfDNA concentration than MDS at diagnosis, we did
not observe an increase in the concentration of cfDNA in the 2 MDS patients

that progressed to AML.

DISCUSSION

In the present study we have assessed the genomic characterization of MDS
by targeted NGS of plasma cfDNA compared to bone marrow DNA. This is, to
the best of our knowledge, the largest series of cfDNA analysis in MDS
patients. Of note, all samples were taken at diagnosis or before treatment,
thus excluding any potentially modifying effect on the results. We designed
an NGS gene panel to detect with a single test both molecular and cytogenetic
alterations and investigated its potential use in cfDNA, which would be
particularly useful in several cases such as: non-fit or fragile elderly patients,
in patients with fibrotic or hypocellular BM and in patients with
contraindication or difficult access to bone marrow samples. Our data
demonstrate that the analysis of cfDNA represents a novel strategy that
would be useful for routine testing as cfDNA is obtained fast and easily from
blood plasma, when compared with bone marrow aspirates or purified CD34+
cells(19).

In patients with solid tumors, cfDNA is being incorporated as a non-invasive
strategy to assess molecular alterations in routine clinical practice. It has been

reported that the majority of the cfDNA is released by hematopoietic cells in
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health and disease (3—6). However, MDS patients showed a significantly
higher amount of cfDNA than healthy controls, indicating a higher release of
cfDNA to PB plasma from MDS clonal cells. Of note, even low risk MDS
contained a higher quantity of cfDNA than controls. The ineffective
hematopoiesis in bone marrow stem cell niche and the increased apoptosis
of these cells in MDS (8,9) is in line with this higher shedding of cfDNA to PB.
A significant correlation was observed between the cfDNA concentration and
LDH values, in accordance with previous studies (12,20). However, contrary
to previous findings (12), we did not find a higher concentration of cfDNA in
International Prognostic Scoring System (IPSS) high-risk groups than in low-
risk groups. This discordant observation could be explained because most
MDS patients included in this study were low-risk IPSS-R patients. The
successful analysis of cfDNA in low-risk patients is especially relevant as the
incorporation of this technology in clinical practice would allow frequent
monitoring of these patients without requiring sequential bone marrow

aspirates.

Previous studies comparing the reliability of cfDNA and total PB cellular DNA
analysis to detect molecular abnormalities by NGS (21)(22) showed that
cfDNA analysis was a better option, as additional mutations were detected in
cfDNA and the VAF in cfDNA was significantly higher than in PB DNA(21).

In our study, we observed a similar mutational profile in cfDNA and BM DNA
(93% concordance) and the VAFs of the mutations identified in both sample
types were highly correlated. However, some discordant mutations were also
identified in a small proportion of patients, in some cases mutations that may
have prognostic relevance, such as SF3B1 mutations or mutations in damage
DNA repair (DDR) genes. Cases with mutations detected in cfDNA and not in
BM DNA were all cases in which plasma and BM samples had been collected
at different time points; in addition, some of these discordant cases showed
low VAFs that could reflect small clones emerging or slowly expanding, or de
novo acquired mutations. Overall, cfDNA and BM DNA showed a high
concordance, although they may have a worse correlation in subclonal
alterations, as it has been previously reported for cfDNA in AML (23). Also, it

cannot be ruled out that some of these alterations could derive from clonal
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hematopoiesis of indeterminate potential (CHIP) which reinforces the need
to always integrate the molecular information with the patients’

morphological studies and clinical context (24,25).

Interestingly, the VAFs of SF3B1 mutations were significantly higher in cfDNA
than in BM DNA, especially for exon 15 SF3B1 mutations (i.e. p.(Lys700Glu)).
This observation is clinically relevant, as the analysis of cfDNA could be the
best alternative to detect these mutations when low quality BM aspirates are
obtained or to detect small mutant clones. In these cases, previous studies
agree that cfDNA is a better option than PB cells to assess the molecular
profile in MDS (21). We identified a SF3B1 mutation in cfDNA and not in BM
DNA in a patient in which the presence of ring sideroblasts was not assessable
due to lack of cellularity in the BM aspirate. We hypothesize that the position
of the nucleosomes in exon 15 of SF3B1 could be facilitating the detection of
the SF3B1 p.(Lys700Glu) mutation, as we observed that exon 15 of SF3B1 was
more represented in cfDNA than in BM DNA, whereas exons 14 and 16 were
not. This finding may indicate that chromatin is more condensed in exon 14
of SF3B1, and therefore these fragments are preserved when released into

the bloodstream.

Regarding the detection of cytogenetic alterations in cfDNA of MDS patients,
our results confirm that gains or losses of genetic material are reflected in the
cfDNA and thus we can identify most of them by NGS. This is the first study
assessing the detection of cytogenetic alterations in cfDNA by NGS in a cohort
of MDS patients. Only, one previously published study identified the loss of
chromosome 9 in cfDNA in a patient with MDS using low-coverage whole-
genome sequencing (LC-WGS) (11). Other studies had used NGS to detect
these chromosomal alterations using PB or BM samples (26). We believe that
the identification of cytogenetic alterations in cfDNA using NGS is a useful
technique for those patients without analyzable metaphases in the
karyotype, with a hypocellular BM aspirate or as a non-invasive tool to
monitor these alterations in the follow-up of MDS patients, as it is known that
clonal dynamic acquisition during the follow up of has a significant prognostic
impact on MDS(27). On the one side, we detected a del(20q) in a patient

without analyzable metaphases at diagnosis, which was confirmed by CMA.
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Moreover, in two patients receiving treatment with hypomethylating agents,
cfDNA mirrored the cytogenetic alterations acquired during therapy. Further
validation of these results including high-risk cytogenetic subgroups would
support the value of cfDNA analysis as a useful tool to be implemented in
routine clinical practice that could improve the identification of alterations

required for accurate risk classification.

However, we have also identified some limitations in our CNA analysis. It
should be noted that the design of the NGS panel only covers a selected part
of the genome, so those alterations occurring outside of the covered region
will not be detected. The chromosome Y deletion was not included in the NGS
panel designed since it has been associated with normal aging(28) and is
considered a very good prognosis cytogenetic alteration in IPSS-R score(13).
As NGS comprehensive molecular profiling with broad NGS targeted panels
or even exome or whole genome analyses are implemented in clinical
practice, these limitations will be overcome. We also observed that, in our
experience, patients with subclonal cytogenetic alterations, poorly
represented in the sample, could only be detected by karyotype or FISH, due
to limitations of sensitivity of NGS or CMA. We must recall that, at present,
cytogenetic techniques are still besides morphology the backbone elements
of MDS diagnosis.

One of the plausible applications of cfDNA is disease monitoring. To evaluate
this, we analyzed sequential samples from 7 patients with MDS using NGS.
Previous studies already proved that the clonal dynamics of BM VAFs were
mimicked by cfDNA VAFs (11). This fact, as we observed, indicates whether
the patient is responding to treatment or not in a non-invasive assessment.
The most remarkable result when monitoring these MDS patients was the
finding that in two patients not responding to hypomethylating agents, NGS
of cfDNA allowed us to detect the occurrence of cytogenetic evolution.
Monitoring patients using this less invasive technique could allow early
detection of clinically relevant genomic changes, using only a PB sample. One
of the limitations of this technique is that, as it has occurred in one of the
untreated patients, we do not have sufficient sensitivity to detect alterations

that are present in a low proportion of cells, not being detected by cfDNA
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until the clone has expanded. However, this approach would facilitate
frequent assessment of disease evolution or response to treatment,

especially in fragile elderly patients or cases with hypocellular or fibrotic BM.

In conclusion, we have shown that cfDNA mirrors the molecular profile of BM
in MDS. In our cohort, enriched with low risk IPSS-R patients, cytogenetic
alterations were detectable in most cases by NGS in both BM DNA and cfDNA.
These data support that the analysis of cfDNA is a reliable and feasible
method to characterize and monitor the molecular abnormalities present in
patients with MDS.
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TABLES AND FIGURES

Table 1. Clinical and biological features of MDS patients included in the study.

MDS
Characteristic
N=70
Age, median (range), years 81 (54-94)
Male gender, n (%) 51(72.9)

Hemoglobin, median (range), g/dL
WABC count, median (range), x10°/L
Neutrophil count, median (range), x10°/L

Platelet count, median (range), x10°/L

11.75 (7.6-17.8)

4.58 (1.44-12.28)

2.41(0.31-7.68)
154 (28-584)

BM blasts %, median (range) 2 (0-19)
Presence PB blasts, n (%) 2(2.86)
LDH, median (range) 292 (111-487)
Altered karyotype, n (%) 20 (28.6)
-Y as single alteration, n (%) 6 (8.6)
Altered karyotype (other than -Y), n (%) 14 (20)
IPSS-R risk group
Very low, n (%) 28 (40)
Low, n (%) 31 (44.3)
Intermediate, n (%) 7 (10)
High, n (%) 2(2.9)
Very high, n (%) 2(2.9)
MDS subtype (WHO 2017)
MDS-SLD, n (%) 1(1.4)
MDS-MLD, n (%) 35 (50)
MDS-RS-SLD, n (%) 5(7.1)
MDS-RS-MLD, n (%) 17 (24.3)
MDS-del(5q), n (%) 2(2.9)
MDS-EB-1, n (%) 6 (8.6)
MDS-EB-2, n (%) 2(2.9)
MDS-U, n (%) 2(2.9)
Number of patients with mutations, n (%) 66 (94.3)

Abbreviations; WBC: white blood cells; BM: bone marrow; PB: peripheral blood; LDH: Lactate
dehydrogenase; IPSS-R: Revised International Prognostic Scoring System; MDS: myelodysplastic syndrome;
WHO: World Health Organization; SLD: single lineage dysplasia; MLD: multilineage dysplasia; RS: ring
sideroblasts; EB: excess blasts; U: unclassifiable.
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Figure 1. cfDNA concentration (ng cfDNA/ml) in plasma samples from healthy controls, MDS
and AML. * P <0.05, ** P<0.01
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Figure 2. Distribution of mutations identified in both BM DNA and cfDNA in the 70 MDS
patients. Results of the sequencing are shown in the plot where each column represents a
patient and each row represents a gene. The number of mutations identified per patient is
represented as columns in the top row. Genes are grouped by function and ordered from the
most to the least frequently mutated. Frequencies for each gene are displayed at the right, as
well as the mutation type (nonsense, missense, insertion/deletion, splice site or translation
start site). Discordant mutations are represented with a square as shown in the legend: filled
squares show mutations only identified in cfDNA and empty squares show mutations only
identified in BM DNA. Ins: insertion, Del: deletion, SS: start site, BM: bone marrow, cfDNA: cell-
free DNA
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Figure 3. Scatter plot of the 187 variants detected in cfDNA and BM DNA showing the
correlation between the variant allele frequency (VAF) (rs = 0.797, P < 0.001, Spearman).
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Figure 4. A) Discordant mutations identified in BM DNA and cfDNA. One patient presented two
mutations only detected in cfDNA (marked as # in the figure) and two patients showed two
mutations only detected in BM (marked as * and 7 in the figure). The 10 remaining discordant
alterations were identified in 10 different patients. B) Variant allele frequencies identified in
concordant (blue) and discordant (orange) mutations in BM DNA and cfDNA. BM: bone
marrow, cfDNA: cell-free DNA, VAF: variant allele frequency, ns: not significant, * P < 0.05, **
P <0.01, *** P <0.001
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Figure 5. A) Ratio (cfDNA VAF / BM VAF) of the detected variants of the most frequently
mutated genes in our cohort. Median VAF ratio for each gene is shown as a red line. Variants
situated in the plot above the line have a higher VAF in cfDNA than in BM DNA and variants
below the line have a higher VAF in BM DNA. SF3B1 mutations were detected with a
significantly higher VAF in cfDNA. B) Ratio (cfDNA VAF / BM VAF) of the SF3B1 mutations in
exons 14, 15 and 16. Mutations in exon 15 of SF3B1 (p.(Lys700Glu) in all cases) presented a
higher VAF cfDNA/BM ratio than mutations in exons 14 and 16 SF3B1 exons. ¢) SF3B1 read
depth in BM and cfDNA. The ratio (read depth for the SF3B1 exon/whole panel read depth for
that sample) for exons 14,15 and 16 of the SF3B1 gene is shown for BM DNA samples and the
cfDNA samples. SF3B1 exon 15 is overrepresented in cfDNA libraries when compared to BM
libraries. BM: bone marrow, cfDNA: cell-free DNA, VAF: variant allele frequency, * P < 0.05, **
P <0.01, *** P <0.001, **** P < 0.0001, ns: not significant
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Figure 6. A) Cytogenetic results obtained by karyotype at diagnosis B) Detection of cytogenetic
alterations by conventional karyotype, FISH, CMA and NGS. Two cases presented alterations
not covered by the NGS panel (patients 1 and 2). 9/12 (75%) remaining cases with altered
karyotype/FISH (patients 3-14 in the figure) were detected by NGS. Patient 10 presented a 5g-
detected in few metaphases and confirmed by FISH, and patients 11 and 12 presented a +8
detected by karyotype in few metaphases. In patient 13, +8 and +21 alterations were detected
by NGS, while chromosome 14 is not covered by the design of the NGS panel. In patient 14, 5g-
was the only alteration detected by both CMA and NGS due to sensitivity limitations. In a
patient without analyzable metaphases (patient 15), 20g- was found by NGS and confirmed by
CMA. FISH: Fluorescence In Situ Hybridization, CMA: chromosomal microarrays; NGS: next

generation sequencing, BM: bone marrow, cfDNA: cell-free DNA
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Figure 7. Monitoring of molecular and cytogenetic alterations in 7 patients with MDS. 5
patients receiving treatment (3 azacitidine, 1 FLAG-IDA + HCT, 1 HIF (hypoxia-inducible factor)
inhibitor) and 2 untreated cases were included. BM VAF dynamics are shown with a dotted line
and cfDNA dynamics are shown with a solid line. VAF: variant allele frequency, AML: acute
myeloid leukemia, CMML: chronic myelomonocytic leukemia, CNA: copy number alteration;
BM: bone marrow, cfDNA: cell-free DNA, HCT: hematopoietic cell transplantation, ND: not

detected
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REGULAR ARTICLE

@ blood advances

Oligomonocytic and overt chronic myelomonocytic leukemia show similar
clinical, genomic, and immunophenotypic features

Xavier Calvo,"* Nieves Garcia-Gisbert,>®* lvonne Parraga,' Joan Gibert,? Lourdes Florensa,' Marcio Andrade-Campos,”* Brayan Merchan,*
Sara Garcia-Avila,* Sara Montesdeoca,' Concepcion Femandez-Rodriguez,? Marta Salido,® Anna Puiggros,® Blanca Espinet,®
Luis Colomo,®® David Roman-Bravo,' Beatriz Bellosillo,?® Ana Ferrer,'® and Leonor Arenillas’

"Laboratori de Citologia Hematologica, Servei de Patologia, Grup de Recerca Translacional en Neoplasies Hematologiques (GRETNHE), and “Laboratori de Biologia
Molecular, Servei de Patologia, Grup de Recerca Clinica Aplicada en Neoplasies Hematologiques, IMIM Hospital del Mar Research Institute, Barcelona, Spain; “Departament de
Ciéncies Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, Spain; and “Servei d'Hematologia Clinica, Grup de Recerca Clinica Aplicada en Neoplasies
Hematologiques, °Laboratori de Genética Molecular, and ®Seccio d'Hematopatologi, Servei de Patologia, GRETNHE, IMIM Hospital del Mar Research Institute, Barcelona,

Spain

Key Points

* OM-CMML and overt
CMML show a similar
clinical, morphological,
cytogenetic, molecular,
and immunophenotypic
profile.

* The results support the
consideration of OM-
CMML as a distinctive
subtype of CMML.

Oligomonocytic chronic myelomonocytic leukemia (OM-CMML) is defined as those
myelodysplastic syndromes (MDSs) or myelodysplastic/myeloproliferative neoplasms,
unclassifiable with relative monocytosis (=10% monocytes) and a monocyte count of 0.5 to
<1 x 10%/L. These patients show clinical and genomic features similar to those of overt
chronic myelomonocytic leukemia (CMML), although most of them are currently
categorized as MDS, according to the World Health Organization 2017 classification. We
analyzed the clinicopathologic features of 40 patients with OM-CMML with well-annotated
immunophenotypic and molecular data and compared them to those of 56 patients with
overt CMML. We found similar clinical, morphological, and cytogenetic features. In
addition, OM-CMML mirrored the well-known complex molecular profile of CMML, except
for the presence of a lower percentage of RAS pathway mutations. In this regard, of the
different genes assessed, only CBL was found to be mutated at a significantly lower
frequency. Likewise, the OM-CMML immunophenotypic profile, assessed by the presence of
>949% classical monocytes (MO1s) and CD56 and/or CD2 positivity in peripheral blood
monocytes, was similar to overt CMML. The MO1 percentage >94% method showed high
accuracy for predicting CMML diagnosis (sensitivity, 90.7%; specificity, 92.2%), even when
considering OM-CMML as a subtype of CMML (sensitivity, 84.9%; specificity, 92.1%) in our
series of 233 patients (39 OM-CMML, 54 CMML, 23 MDS, and 15 myeloproliferative
neoplasms with monocytosis and 102 reactive monocytosis). These results support the
consideration of OM-CMML as a distinctive subtype of CMML.

Introduction

Based on the World Health Organization (WHO) 2017 classification, chronic myelomonocytic leukemia
(CMML) diagnosis requires the presence of persistent peripheral blood monocytosis =1 x 10%/L, with
monocytes accounting for =10% of the leukocytes."? Although most CMML cases display
dysmyelopoiesis, it may not be present. In the absence of dysplasia, a diagnosis of CMML can still be
made by the demonstration of clonality by an acquired clonal cytogenetic or molecular abnormality. If no

Submitted 1 May 2020; accepted 20 September 2020; published online 27 October Original data are available by e-mail request to the corresponding author, Xavier Calvo

2020. DOI 10.1182/bloodadvances.2020002206. (e-mail: xcalvo@parcdesalutmar.cat).
*X.C. and N.G.-G. contributed equally to this study. The full-text version of this article contains a data supplement.
Presented at the 62nd annual meeting of the American Society of Hematology, © 2020 by The American Society of Hematology

Orlando, FL, 7-10 December 2019 and at the 24th Congress of the European
Hematology Association, Amsterdam, The Netherlands, 13-16 June 2019.

27 OCTOBER 2020 « VOLUME 4, NUMBER 20 5285

115



RESULTS: ARTICLE 3 (OM-CMML IS A DISTINCTIVE SUBTYPE OF CMML)

clonal marker can be found and dysplasia is not present, the
diagnosis of CMML may also be established if the monocytosis
persists for at least 3 months and all causes of reactive monocytosis
have been excluded.' In this context, a wide spectrum of neoplastic,
infectious, or inflammatory conditions should be ruled out before the
diagnosis of CMML is established. Nevertheless, an autoimmune
or neoplastic disease may appear concomitantly, and its presence
does not exclude a diagnosis of CMML. Next-generation sequencing
(NGS) has emerged as the best tool for establishing diagnostic
certainty, because it allows for the demonstration of clonality in most
cases of CMML, but this technology is not accessible worldwide.
Approximately 90% of patients with CMML display mutations of the
TET2, SRSF2, and/or ASXLT gene.*” By contrast, an accessible
method such as flow cytometry (FC) analysis of peripheral blood {PB)
monocyte subsets has attracted interest as a means of diagnosing
CMML, because an increase in the classical monocyte (MO1)
fraction to >94% shows high sensitivity and specificity for predicting
CMML diagnosis.®

Recently, Geyer et al defined oligomonocytic chronic myelomono-
cytic leukemia (OM-CMML) as cases of myelodysplastic syndrome
(MDSs) or MDS/myeloproliferative neoplasm (MPN), unclassifiable,
with relative monocytosis (=10% monocytes) and a total monocyte
count of 05 to <1 X 10%L* According to the WHO 2017
classification, most of these patients are currently classified within
the different categories of MDS. The researchers demonstrated
that these cases share clinical and genomic features with overt
CMML. To the best of our knowledge, there are no FC data about
the distribution of the PB monocyte subset in OM-CMML.
Selimoglu-Buet et al indicated that the accumulation of MO1
>94% defined a subgroup of patients with MDS that frequently
evolved into CMML.'® Although some of those patients met OM-
CMML criteria, there are no series that explore this aspect in
a homogeneous group of patients with OM-CMML.

The purpose of this study was to provide a comprehensive
comparison between a large series of well-annotated patients with
OM-CMML or CMML, with particularly novel data concerning the
immunophenotypic and molecular characteristics of OM-CMML. In
addition, we assessed the accuracy of the MO1 percentage >94%
method of predicting CMML and OM-CMML diagnosis in a large
series (n = 233) of patients.

Methods

Patients

We prospectively studied 236 patients and assessed the PB
distribution of monocyte subsets by FC in 233 of them. This
assessment has been part of the diagnostic routine in our laboratory
since 2016. The patients were either initially diagnosed or followed
up during this period. All diagnostics were established according to
WHOQO 2017 criteria.

Of the 236 patients, 56 were diagnosed with CMML (16 with
“proliferative type” CMML [p-CMML] and 40 with “dysplastic type”
[d-CMML]), and 40 met OM-CMML diagnostic criteria. According
to the WHO 2017 MDS classffication, patients with OM-CMML
were classified into the following categories: 1 MDS with single-
lineage dysplasia (MDS-SLD), 16 MDS with multilineage dysplasia
(MDS-MLD), 4 MDS with ring sideroblasts and single-lineage
dysplasia (MDS-RS-SLD), 9 MDS with ring sideroblasts and
multilineage dysplasia (MDS-RS-MLD), 9 MDS with excess blasts-1
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(MDS-EB-1), and 1 MDS with excess blasts-2 (MDS-EB-2). In
addition, we identified 23 patients with MDS who did not meet
OM-CMML diagnostic criteria (1 MDS-SLD, 11 MDS-MLD, 3
MDS-RS-SLD, 6 MDS-RS-MLD, 1 MDS-EB-1, and 1 MDS with
isolated deletion of 5¢), 15 had Ph-negative MPNs with =1 x 10%L
monocytes (7 essential thrombocytosis, 6 polycythemia vera, and 2
primary myelofibrosis), and 102 patients had absolute monocytosis of
reactive origin. The study was conducted according to the biomedical
research guidelines of the Declaration of Helsinki.

NGS

Molecular characterization by targeted NGS was performed on
DNA extracted from total PB or bone marrow (BM). Targeted
amplicon libraries (QlAseq Custom DNA Panels; Qiagen, Hilden,
Germany) were prepared from a custom panel covering the full
exonic regions of 25 genes associated with myeloid malignancies
(ASXL1, CALR, CBL, CSF3R, DNMT3A, ETV6, EZH2, IDH1,
IDH2, JAK2, KIT, KRAS, MPL, NRAS, PRPF8, RUNX1, SETBP1,
SF3B1, SH2B3, SRSF2, STAG2, TET2, TP53, U2AF1, and
ZRSR2)."" Libraries were sequenced with MiSeq or NextSeq
{llumina, San Diego, CA) with a 2000 X minimum coverage. The
variant allele frequencies (VAF; proportion of mutated reads out of
the total NGS reads) for each mutation were recorded. The NGS
methodology is described in further detail in the supplemental
Material.

Flow cytometry analysis of monocyte subsets in
peripheral blood

Multiparametric FC analysis of monocyte subsets was performed
on whole PB collected on EDTA. Based on Euroflow Consortium
recommendations we followed the stain-lyse-wash procedure with
FACS Lysing Solution (BD Biosciences, San Jose, CA).'? Cell
surface staining of 2 X 10° cells was performed, and at least
500 000 total events were acquired per tube (FACS Canto Il; BD
Biosciences). Analysis was performed with Infinicyt, version 1.7
{Cytognos SL, Salamanca, Spain). The strategy of analysis and the
5-tube experimental panel are described in the supplemental Data
and supplemental Figure 1.

Statistical analysis

Categorical variables are described by frequencies and percen-
tages and continuous variables as means, medians, and ranges.
For categorical data, comparisons of proportions were evaluated by
x? test, x? test with Yates continuity correction, or Fisher's exact
test, as appropriate, For continuous variables, comparisons were
assessed by nonparametric Mann-Whitney U test. No adjustments
were made to P-values for multiple tests. We assessed the
Spearman rank correlation or the @ coefficient to evaluate the
strength of association between 2 variables. The area under
the receiver operating characteristic (ROC) curve (AUC) of the
percentage of MO1s and MO3s was calculated to assess its
accuracy for predicting CMML diagnosis. We used the Youden
index (J = sensitivity + specificity — 1) for evaluating the balance
between sensitivity and specificity. Survival curves were con-
structed by the Kaplan-Meier method, using the interval from the
date of diagnosis to the date of last contact or death and compared
by log-rank test. Differences were considered statistically significant
when P < .05 in a 2-tailed test. The code used in R v3.6.2 to create
the figures is displayed in supplemental Data 2.
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Results

OM-CMML and overt CMML show similar clinical,
morphological, and cytogenetic features

The clinical findings for the 40 patients with OM-CMML and the 56
patients with CMML are compared in Table 1. As shown, we
observed no significant differences in age, sex, platelet count, BM
dysgranulopoiesis, BM dysthrombopoiesis, percentage of BM
blasts, percentage of abnormal karyotypes, distribution of the
Spanish cytogenetic risk groups,'® and proportion of patients
showing blasts in PB. Patients with OM-CMML showed lower
absolute leukocyte and monocyte count, a predictable finding, given
the definition of OM-CMML. Moreover, they showed a lower
percentage of PB and BM monocytes and BM promenocytes.

Patients with OM-CMML were also more anemic and showed more
evident dyserythropoiesis. In this sense, we observed a higher
proportion of OM-CMML showing SF3B7 mutation and =5% ring
sideroblasts (28% vs 12%; P = .056). Patients with OM-CMML or
CMML who displayed this feature showed a significantly lower
hemoglobin level and a higher median percentage of dyserythro-
poiesis (Hb, median: 11 vs 12 g/dL; P = .010; dyserythropoiesis:
median, 60% vs 22%; P < .001, SF3B7 mutated vs unmutated).

OM-CMML and overt CMML show a similar
mutational profile

Molecular characterization by NGS was performed in all patients
with OM-CMML and in 53 of 56 patients with CMML. As depicted in
Table 1, there were no significant differences in the proportion of
patients showing at least 1 mutation (40 of 40 vs 52 of 53; P = .99;
OM-CMML vs CMML) in the median number of mutated genes per
patient (2 vs 3; P = .407, OM-CMML vs CMML) or in the median
number of mutations per patient (3 vs 3; P = .134, OM-CMML vs
CMML).

The mutation patterns of OM-CMML and CMML are depicted in
Figure 1. The genes mutated at a frequency =>10% in patients with
OM-CMML were TET2 (72%), SRSF2 (30%), SF3B1 {27.5%),
ZRSR2 (20%), ASXL1 (17.5%), DNMT3A (15%), and RUNXT
(12.5%). In patients with CMML, the genes mutated at a frequency
>10% were TET2 (75%), ASXL1 (28.3%), SRSF2 (26.4%), CBL
(20.8%), SF3B1 (17%), NRAS {11.3%), and KRAS (11.3%). The
VAFs were similar between both groups in all genes, except for
DNMT3A (supplemental Table 1). In line with the literature, the
3 most frequently mutated genes in CMML group were TET2,
ASXL1, and SRSF2.4%"* Remarkably, no significant difference was
observed in the proportion of patients showing concurrent TET2
and SRSF2 mutations, the gene signature of CMML'® (27.5% vs
22.6%, P = .591, OM-CMML vs CMML). Only 1 gene mutated at
a significantly different frequency: CBL {2.5% vs 20.8%; P = .011,
OM-CMML vs CMML; Figure 2A). Notably, we found no gene
mutated at a significantly different proportion when comparing OM-
CMML and d-CMML (Table 2). As expected, CMML showed
a higher percentage of mutations in RAS pathway genes (mutations
in CBL, NRAS, and/or KRAS) than did OM-CMML, given that these
genes have been associated with proliferative features'®'” (37.79%
vs 5%; P < .001). Although d-CMML showed a significantly higher
percentage of RAS-pathway mutations than OM-CMML (27% vs
5%; P = .011), this difference was especially evident in p-CMML
(62.5% vs 5%; P < .001), in which genes associated with
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proliferation were present at higher frequencies'®"®: CBL (2.5% vs
31.3%; P = .006), NRAS and/or KRAS (2.5% vs 31.3%; P =
.006), and ASXL 1" (17.5% vs 62.5%; P = .003) (Table 2). These
mutations were also more frequent in p-CMML than in d-CMML
(ASXLT:62.5% vs 13.5, P = .001; RAS-pathway: 62.5% vs 27%,
P = .014) (Table 2). It is also worth noting that the proliferative
condition associated with the presence of ASXLT mutations in our
series could be explained in part by the presence of concomitant
RAS-pathway mutations. In this sense, we found a positive
correlation between mutations in the RAS pathway and ASXL7
(b coefficient, 0.23; P = .029). It would be interesting to explore
this association in larger series of patients with CMML, because
ASXL1 mutation is a well-established independent adverse
prognostic factor in CMML,>® "% but it also seems to be partially
interrelated with RAS mutations and p-CMML type, 2 other well-
accepted independent adverse prognostic factors in this
disease.®'°

As previously reported, mutations in the hydroxymethylation
pathway (mutations in /DH1, IDH2, and/or TET2) are almost
mutually exclusive in acute myeloid leukemia®® and CMML.?" In our
CMML series, we found no concomitant mutations in TET2 and
IDH1 or IDH2, but surprisingly, 3 patients with OM-CMML showed
simultaneous mutations in these genes, 2 with TET2 and IDH2
mutations and 1 with TET2 and /IDH1 mutations (Figures 1A and 3).
The impairment of the hydroxymethylation pathway was present in
the majority of these patients {78%, 83%; OM-CMML, CMML) and,
remarkably, in all p-CMML cases in our series. Moreover, a high
proportion of patients with OM-CMML or CMML showed more than
1 TETZ2 mutation (37.5% vs 52.8%, P = .142, OM-CMML vs
CMML) and the distribution of the different TET2 subtype of
mutations was almost identical in a comparison of both groups
(Figure 2B). These findings suggest that the impairment of this
pathway could be the pathophysiological hallmark of these entities.

Finally, in line with published data, mutations in the assessed
splicing factors in our series (SF3B1, SRSF2, ZRSR2, U2AF1, and
PRPF8) were almost mutually exclusive.??2% In the OM-CMML
group, we cbserved 1 patient with concomitant SRSF2 and SF3B71
mutations and another with simultaneous SRSF2 and ZRSR2
mutations (Figures 1A, and 3). Only 1 patient with CMML showed
simultaneous SF3B1 and ZRSR2 mutations (Figures 1B and3).

Graphic representations of the mutations are depicted in supple-
mental Figure 2, and the full list of variants identified is shown in
supplemental Data 3.

The increase in the fraction of MO1 >94% is shown as
the approach with the highest accuracy for predicting
CMML diagnosis

The repartition of monocyte subsets in PB was assessed in 233
patients {39 OM-CMML, 54 CMML, 23 MDS that did not meet OM-
CMML diagnostic criteria, 15 MPN with =1 X 10%L monocytes,
and 102 with reactive monocytosis). The percentage of MO1s in
these groups of patients is shown in Figure 4. As Selimoglu-Buet
et al and other later studies have shown, the increase in MO1
fraction >94% is a very sensitive and specific predictor of CMML
diagnosis.>?7?® We explored the sensitivity and specificity of this
method in our series. Because the minimum diagnostic criterion for
considering the diagnosis of CMML is the presence of at least 1 X
10%/L monocytes in PB, we first analyzed the 171 patients in our
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Figure 1. Mutational profile in patients with OM-CMML and CMML. Mutations were identified by NGS in 40 patients with OM-CMML (A) and in 63 patients with CMML
(B). Results of the sequencing of the 25 genes are shown in the plot, where each column represents a patient and each row represents a gene. The number of mutations

identified per patient is represented as columns in the top row. Genes are ordered from the most to the least frequently mutated, and frequencies for each gene are displayed

(right), as well as the mutation type (nonsense, missense, insertion/deletion, splice site, or multihit). Patients with more than 1 mutation in the same gene are represented as

shown in the key (2, 3, 4, or 5 mutations in the same gene}. The immunophenotypic profile, assessed by the presence of MO1s upper 84%, is shown (bottom; MO1 =949%,

blue, MO1 =94%, light blue, nonanalyzed, gray). Cytogenetic results are also displayed (bottom row; altered karyotype, lime green; normal karyotype, light green; nonanalyzed,

gray). CMML types are also shown (bottom row: d-CMML, light red; p-CMML, red).

cohort with =1 x 10%L monocytes (54 CMML and 15 MPN with
monocytosis and 102 reactive monocytosis). The presence of MO1
percentage >949% predicted the diagnosis of CMML with a high
sensitivity (90.7%) and specificity (92.2%). Because another group
proposed MO1 percentage >95% as the best cutoff for predicting
CMML diagnosis,®® we assessed according to that criterion in our
series. MO1 percentage >95% showed a lower sensitivity (83.3%)
and a slightly better specificity (95.7%), and the balance between
sensitivity and specificity calculated by the Youden index (J = 79)
was worse than the 94% cutoff (J = 82.9). The AUC of the
percentage of MO1 in our series was 0.941 (Figure 5), in line with
the previous literature.®272% Other authors have proposed the
reduction of the percentage of MO3 as the best predictor for
CMML diagnosis.®® In our series, the MO1 population showed
a better AUC than did the MO3 population {0.933). Moreover, we

@blood advances 27 octoser 2020 - voLUME 4, NUMBER 20

found the cutoff in the percentage of MO3s under 3.18% to have
the best predictive capacity in our series, but it performed worse
than did the MO1 >94% cutoff (sensitivity, 92.6%; specfficity,
83.8%; J = 76.4).

OM-CMML and overt CMML show similar
immunophenotypic features

The comparison between OM-CMML and CMML showed that the
MO1 percentage was significantly lower in OM-CMML, but it is
noteworthy that the median and mean MO1 percentages in OM-
CMML were above the 94% cutoff (median, 96.11 vs 97.96; mean,
94.76 vs 96.93; P = .001, OM-CMML vs CMML). Moreover, the
proportion of patients with MO1 percentage >94% was not
significantly different when OM-CMML was compared with CMML
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Figure 2. Distribution of mutated genes in
A CMML and OM-CMML. (A) Frequencies of the 25
CMML OM-CMML genes analyzed by NGS in the CMML and OM-
TET2 CMML groups. Genes are ordered from the most to
SRSF2 the least frequently mutated, combining the CMML
ASXL1 and OM-CMML cases. CBL was the only gene
SF3B1 mutated at a significantly different frequency in the
ZZS;'ZL’ groups (2.5% vs 20.8%; OM-CMML vs CMML;
RUNX1 P = .011). (B) The plot represents all the mutations
DNMT3A identified in the TET2 gene classified by the type of
IDH2 alteration, with insertions or deletions of nucleotides
KRAS (orange) being the most frequent mutations identi-
,j:’?f fied. Nonsense mutations, producing a stop codon
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(76.9% vs 90.7%; P = .122; Figure 4). Although probably achieved
in the context of a type |l error, this result is impressive because, as
previously mentioned, the specificity of the MO1 percentage >94%
test is ~90% to 95% and, therefore, only a 5% to 10% false-
positive rate should be expected. However, in the group of patients
with OM-CMML, a 76.9% false-positive rate was observed,
because these patients had a current diagnosis of MDS according
to the 2017 WHO recommendation. Likewise, no differences were
observed in the percentage of patients showing CD56 positivity in
monocytes (61.5% vs 63%; P = .889, OM-CMML vs CMML) or in
the percentage of them showing CD2 (28.2% vs 35.2%; P = .477,
OM-CMML vs CMML; supplemental Table 2). On the contrary, we
found significant differences between patients with OM-CMML and
those with MDS who did not meet OM-CMML diagnostic criteria in
MO1 percentage (median: 96.11 vs 89.95; mean: 94.76 vs 89.01;
P <.001, OM-CMML vs MDS), the proportion of patients with MO1
percentage >94% (76.9% vs 8.7%; P < .001, OM-CMML vs
MDS), and the percentage of patients showing CD56 (61.5% vs

5290 CALVO et al

8.7%; P < .001, OM-CMML vs MDS) or CD2 (28.2% vs 0; P =
.005, OM-CMML vs MDS; supplemental Table 2). No patient with
OM-CMML, CMML, or MDS showed CD?7 positivity. It is remarkable
that we found no significant difference in the distribution of patients
with OM-CMML and the comparator group of patients with MDS
(P = .438), among the MDS categories stipulated by the WHO
2017 classification. Therefore, the differences detected between
the OM-CMML and MDS groups are not attributable to their primary
WHO 2017 classification.

Interestingly, a significantly higher proportion of patients with OM-
CMML with TET2 mutations had a MO1 percentage >94% (89.7%
vs 40%, P = .004). Notably, patients with OM-CMML with TET2
mutations demonstrated this feature in a percentage similar to overt
CMML (89.7% vs 90.7%; P = .99). This mutation was the only one
of the assessed mutations that enabled division of the OM-CMML
series into 2 groups, which showed a significant difference in the
proportion of patients with MO1 percentage >94% (supplemental
Table 3).
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Table 2. Distribution of somatic mutations in patients with OM-CMML, d-CMML, or p-CMML

OM-CMML, n = 40,% d-CMML, n = 37,% p-CMML, n = 16,% P (OM-CMML vs d-CMML) P (d-CMML vs p-CMML) P (OM-CMML vs p-CMML)

ASXLY 176 136 626
CALR - - -
CBL 25 16.2 313
CSF3R —_ - —_
DNMT3A 16 64 8.3
ETVE 2.5 2.7 -_—
EZH2 ] - 83
1DH1 6 — —
1DH2 7.6 2.7 18.8
JAK2 5 108 6.3
KT — - =
KRAS 2.5 108 125
MPL - - 6.3
NRAS 2.5 8.1 18.8
RUNXT 126 108 8.3
PRPF8 - 2.7 -
SETBP1 5 2.7 6.3
SF3B1 27.5 18.2 18.8
SH2B83 5 2.7 125
SRSF2 30 18.9 438
STAG2 5 - =
TET2 72 73 81.3
TP53 25 8.1 6.3
U2AF1 26 2.7 126
ZRSR2 20 10.8 -
NRAS andfor KRAS 25" 18.2 313
RAS pathway 6 27 626

767 001 .003
.0561 278 006
.266 00 .B60
09 09 .09
484 302 .09
494 - 99
.B18 077 338
419 09 99
189 .99 193
-_— .302 .286
.348 351 066
.09 09 662
481 .99 -
09 517 .09
279 00 734
09 213 570
.209 123 362
494 = 09
.99 731 734
.346 09 494
89 213 193
.362 .303 .089
051 276 .006
o1 014 <.001

Bold P values are statistically significant.

NRAS and/or KRAS, mutations in both genes or one of them; RAS pathway, mutations in CBL, NRAS, andfor KRAS genes.

*One patient showed concurrent NRAS and KRAS mutations (Figurc 1A).

As published by Cargo et al®*' CDS56 positivity in monocytes

correlated positively with TET2 mutation in our series, both as
a binary value (b coefficient, 0.45; P < .001) or as a continuous
variable (p Spearman, 0.4; P < .001). Likewise, the median
expression of CD56 in monocytes was significantly higher in the
patients with TET2 mutations (34% vs 3%; P < .001), and the
proportion of patients showing CD56 positivity was also higher in
the TET2-mutated group (75% vs 24%; P < .001).

Given the similarities observed between patients with OM-CMML or
CMML, we placed them together in a single category (93 recoded
CMML: 39 OM-CMML and 54 overt CMML) and assessed the
strength of the MO1 >94% method in all 233 patients of our series
(93 recoded CMML, 23 MDS, 15 MPN with monocytosis, and 102
with reactive monocytosis). The presence of MO1 percentage
>94% predicted the diagnosis of these patients with high
sensitivity (84.9%) and specificity (92.1%; J = 77). The AUC of
the percentage of MO1 was 0.908, and the best MO1 cutoff was
=>94% (Figure 5). Because a similar proportion of patients with OM-
CMML or CMML showed CD56 and CD2 positivity and these

@ blood advances 27 ocroser 2020 - voLUME 4, NUMBER 20

findings were rarely seen in the other groups of patients analyzed
(supplemental Table 2), we tried to improve the performance of the
method by using a combined approach: the presence of MO1
percentage >94% and CD56 positivity and/or CD2 positivity. The
presence of at least 1 of these features presented a better
sensitivity (94.6%) with a slightly lower specificity (87.8%), and the
balance between sensitivity and specificity was clearly better (J =
82.4), The sensitivity of this approach when evaluating patients with
OM-CMML was 89.7%, whereas the sensitivity in patients with
CMML increased to 98.1%. Thus, given its sensitivity, this
combined assay may be of high utility as a screening test in this
context.

As previously reported by Tarfi et al,>? we observed a significantly
higher false-negative rate of the MO1 >94% test in those patients
with a concomitant autoimmune disease (44.4% vs 11.9%, patients
with OM-CMML or CMML, analyzed together, with and without an
associated autoimmune disease; P = .027).

Finally, we compared the percentage of plasmacytoid dendritic cells
(pDCs) in PB from total leukocytes among the OM-CMML,

OM-CMML IS A DISTINCTIVE SUBTYPE OF CMML 5291
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d-CMML, and p-CMML groups {median, 0.05%, 0.04%, and
0.015%, respectively). We observed that p-CMML had a signifi-
cantly lower percentage of pDCs than OM-CMML (P = .022).
Likewise, we observed a trend when comparing OM-CMML with
CMML as a whole group (median, 0.05% vs 0.02%; P = .067). In
this regard, progression from low- to high-risk categories or even
leukemic transformation in MDS patients has been associated with
a progressive decrease in pDCs.**?* These data enable us to infer
that the transition of one stage to another may be partially favored by
the progressive decline of pDCs, which would lead to a decrease in
immune surveillance.

Patients with OM-CMMIL that evolved to CMML
showed inferior survival

At a median follow-up of 31.1 months, 18% of patients with OM-
CMML that evolved to CMML showed a median time to evolution of
34.3 months. The overall survival {OS) and cumulative incidence of
evolution to CMML at 3 years of the 40 patients with OM-CMML
were 85.9% and 15.7%, respectively. Seven patients with OM-
CMML that evolved to CMML had a significantly shorter OS than
did those in whom it did not evolve {median OS: not reached vs
64,62 months; P = .026), Patients in whom the disease evolved
showed no significant differences regarding immunophenotypic or
molecular patterns. In this regard, we did not find any variable
showing a significant influence in predicting time to CMML (number
of mutations, number of mutated genes, RAS-pathway mutations,

5292 CALVO et al

number of TET2 mutations, truncating vs nontruncating type TET2
mutations, and molecular CMML-specific prognostic scoring
system). Notably, 4 of 7 patients with OM-CMML that evolved to
CMML died, showing a very short median OS from the moment
of progression (3.42 months; 95% CI, 0.6-6.2). One patient
progressed to acute myeloid leukemia and the other 3 patients
died of severe infections. Although this finding deserves to be taken
into consideration, larger series of patients are needed before
generating wamings in this area.

Discussion

We analyzed the clinicopathologic features of the largest series of
patients with OM-CMML reported to date, with extensively studied
clinical, morphological, cytogenetic, molecular, and immunopheno-
typic data. In addition, we compared the features of these patients
to those of a large series of patients with CMML, with data
concerning immunophenotypic characteristics of OM-CMML being
especially novel. In this sense, we compared the utility of the MO1
>094% test between these 2 groups of patients and collected
a large series of patients with MPN with absolute monocytosis and
reactive monocytosis and a subset of patients with MDS who did
not fulfill OM-CMML diagnostic criteria. Notably, we report one of
the largest published series to assess the MO1 >949% criterion, in
either the total number of patients assessed {n = 233) or in the
number of patients with CMML analyzed (n = 54). The increase of
MO1 >94% provided high sensitivity (90.7%) and specificity
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Figure 4. Percentage of MO1s in the 233 cases grouped by disease. (A] Flow cytometry results are shown as the percentage of MO identified for the 5§ groups
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Figure 5. ROC AUC curves of the percentage of
MO1s in our series. (A) ROC curve analysis of
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diagnostic sensitivity and specificity of the MO1
percentage in 171 patients with =1 X 10°/L PB
monocytes (54 CMML, 15 MPN with monocytosis,
and 102 with reactive monocytosis). (B) ROC curve
analysis of diagnostic sensitivity and specificity of the
MO1 percentage in PB monocytes of 233 patients
(98 recoded CMML, including 39 OM-CMML and 54
overt CMML; 23 MDS not meeting OM-CMML di-
agnostic criteria; 15 MPN with monocytosis; and 102

with reactive monocytosis).
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(92.2%) for CMML diagnosis in our series. Although the 94%
threshold was initially validated by 2 studies,?”"?® some controver-
sial results have recently appeared in the literature. Picot et al*®
detected the 95% cutoff as the one with the best sensitivity and
specificity, and later, Hudson et al® found that the MO3
percentage <1.13% was the best predictor of a diagnosis of
CMML. Although valuable, these studies were based on a small
number of patients with CMML (15 in Picot et al and 16 in Hudson
et al). In addition, the different series in the literature assessing the
performance of the MO1 >94% criterion are not well studied from
a molecular point of view.%'%273% |n contrast, molecular charac-
terization by targeted NGS was performed in all patients with OM-
CMML and in 53 of 56 patients with CMML in our series. The lack of
molecular data could diminish the accuracy of the results of the
MO1 >94% test because, as previously stated, some uncertainty
may exist when establishing a CMML diagnosis in some cases (eg,
absence of dysmyelopoiesis, absence of clonality assessed by
cytogenetics, and coexistence of autoimmune or neoplastic
diseases). In our series, the best cutoff in MO1 percentage was
>94% and the MO1 population showed the best predictive
capacity for the diagnosis of CMML, validating the results of the
French group.®?”

Focusing on the comparison between OM-CMML and CMML, we
found no significant differences in the proportion of patients with
MO1 percentage >94% or in those who showed CD56 or CD2
positivity in monocytes. Based on this, we tried to improve the
performance of the MO1 >94% method by using a combined
approach: the presence of a percentage of MO1s >94% and
CD56 and/or CD2 positivity in monocytes. This method afforded
better sensitivity (94.6%) with slightly lower specificity (87.8%)
than the MO1 >949% cutoff, and the balance between sensitivity
and specificity was clearly superior. Thus, given its high sensitivity,
this combined assay emerged as an excellent screening test in this
context. Interestingly, as previously reported by Tarfi et al,* we
observed a significantly higher false-negative rate of the MO1
>949% test in those patients with a concomitant autoimmune
disease. They showed that a decrease in the 6-sulfo lac-nac (slan)
+ MOS8 monocytes below 1.7% is characteristic of CMML and
persists in those exhibiting an associated inflammatory state.??
Therefore, in future studies, it would be interesting to dispose of
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the anti-slan antibody, to further improve the precision of the
method.

OM-CMML and overt CMML showed similar clinical, morphological,
and cytogenetic features, with the exception that patients with OM-
CMML showed lower hemoglobin levels and more evident
dyserythropoiesis. This finding could be partially explained by
a higher proportion of patients with OM-CMML showing SF3B1
mutation and =5% ring sideroblasts in BM. In our series, patients
with OM-CMML or CMML displaying this feature showed a signif-
icantly lower hemoglobin level and a higher median percentage of
dyserythropoiesis.

OM-CMML and overt CMML show a similar mutational profile. We
found no significant difference in the proportion of patients showing
concurrent TET2 and SRSF2 mutations, the well-accepted gene
signature of CMML."® As previously shown, the impairment of the
hydroxymethylation pathway (mutations in /DH17, IDH2, and/or
TET2 genes) is present in most of these patients. Moreover, in line
with previous data,? a high proportion of patients with OM-CMML
or CMML showed multiple TET2 mutations. Interestingly, patients
with OM-CMML who had TET2 mutations had MO1 percentage
>94% in a rate similar to those with overt CMML. Moreover, as
previously reported by Cargo et al,%' CD56 positivity in monocytes
was significantly associated with TET2 mutation in our series.
These findings suggest that the impairment of this pathway could
be the pathophysiological hallmark of these entities. Hydrox-
ymethylation has been recognized as a physiological passive
DNA demethylation process.>®® Therefore, it is expected that
patients with OM-CMML or CMML will present aberrant DNA
hypermethylation states mediated by an ineffective production of
5-hydroxymethylcytosines.?®3°4° |n future studies, it would be
interesting to explore the implication of DNA methylation, and
especially 5-hydroxymethylcytosine levels, in prognosis, disease
progression, and prediction of response to hypomethylating
agents,?’ in this group of patients.

The only gene mutated at a significantly lower frequency when
comparing OM-CMML with CMML was CBL. This fining was
expected, because mutations in genes of the RAS pathway (CBL,
NRAS, KRAS, NF1, and PTPN11) are well-known secondary
events in CMML and have been associated with proliferative
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features.'®'” This finding is in line with that of Geyer et al® who
found a significantly lower proportion of patients with OM-CMML
with CBL mutations (0% vs 28%; OM-CMML vs CMML). It is also
remarkable that a significantly higher proportion of patients with
p-CMML carried ASXLT mutations when compared to those with
OM-CMML and d-CMML. This result agrees with the published data
showing that patients with CMML harboring ASXL 7 mutations have
more prominent leukocytosis than the group not displaying this
mutation.”*

Finally, in our series, 18% of patients had OM-CMML that evolved to
CMML. This observation supports considering OM-CMML as an
early stage of d-CMML.® If true, it would allow for the establishment
of a continuum of OM-CMML, d-CMML, and p-CMML. In this sense,
as previously mentioned, we inferred that second genetic hits,
such as the acquisition of RAS-pathway mutations, could promote
the transition from one stage to another.'® In addition, immune
dysregulation, together with a progressive decrease in immune
surveillance, could play a pivotal role in the progression of the
disease. In this regard, as previously reported by other
researchers,**** we found a decline in pDCs when comparing
OM-CMML with CMML, and this was especially evident when OM-
CMML was compared to p-CMML. Interestingly, in ours series, the
patients with OM-CMML that evolved to CMML showed a signifi-
cantly shorter overall survival than did those in whom it did not
evolve.

In summary, OM-CMML and overt CMML show similar clinical,
morphological, cytogenetic, molecular, and immunophenotypic
features. In addition, the MO1 percentage >94% method showed
a high accuracy for predicting CMML and OM-CMML diagnosis in
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Analysis of saliva samples and cluster of differentiation
3 (CD3)+ lymphocytes as a source of germline DNA in

myeloproliferative neoplasms

The widespread use of genetic studies in patients with myelo-
proliferative neoplasms (MPN) by next-generation sequenc-
ing (NGS) has led to the identification of new genetic
variants. To establish the potential pathogenic role of these

e204

variants with scarce or inexistent literature, it is important to
assess whether their origin is somatic or germling, as germ-
line variants in myeloid-related genes have been associated
with hereditary disorders™ or germline predisposition, while
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somatic variants are associated with clonal expansion of
haematopoietic stem cells not only in MPNs, but also
most Lypes of myeloid malignancies.

In this context, germline DNA is required to pErfnrm
these analyses, which is frequently obtained from several
sources, ¢.g saliva, buccal mucosa, cluster of differentiation 3
{CD3)+ lymphocyles, fibroblasts or hair. The aim of the pre-
sent study was to ascertain if IXNA obtained from saliva sam-
ples and CD3' lymphocytes from peripheral blood is a
suilable source of germline DNA [or molecular studics of
patients with Philadelphia chromosome (Phl-negative MPNs.

Paited samples of saliva and granulocytes from 191
patients with MPNs |76 polycythaemia wvera (PV), 109
thrombocythaemia (ET), five primary myelofibrosis (PMF),
one unclassifiable MPN| harbouring mutations in Janos
kinase 2 (JAKZ: n = 139}, calreticulin {CALK:; 1 = 26) and
MPL proto-oncegene, thrombopoictin receptor (MPL; # = 6)
were analysed. Saliva DNA was oblained using the Oragene-
DINA Kit {DXNA Genotek), fJAKZVE171 was assessed by allele-
specilic real-time polymerase chain reaction (PCR), CALR
mulations  were  determined by [ragmenl  analysis  elec-
trophoresis and MPL mutations by digital PCR. Methods
and materials are detailed in Data §1.

Analysis of DNA [rom saliva showed that in 69/191
{36:190} cases, neither the wild type nor the mutated form of
the JAK2, CALR or MPL genes were detected, although a large
amount of IINA was present in the sample. The absence of
amplifiable human DNA suggested that it could come from
the microorgamsms present in Lhe oral mucosa, and was con-
firmed by the amplification of the 16s ribosomal gene. Thus,
these 69 samples were considered as uninformative,

In the remaining 122 (63-9%) saliva DNA samples, driver
gene mutations were detected in B9/122 cases (73%) and a
strong correlation hetween the variant allele frequency (VAF)
of the mutation in granulocyles and saliva was observed
{r = 0:706, P < (001, Spearman) (Fig 1).

Of note, in 50 of these 122 saliva samples the VAL
detected was =30%, meaning that in these cases (41% of the
cohort) the use of saliva as a control for germline mutations,
would result in considering acquired variants as germline.

To get further insight into the origin of this mutated
DNA present in saliva, we hypothesised that it might be cell-
[ree tumoral DNA {cADNA), as it has been described that sal-
va is a possible source of ctDDNA. We assessed the size of the
DNA fragments by capillary electrophoresis and found that
most DNA fragments corresponded to high molecular weight
DNA with no evidence of fragments around 166 hase pairs,
indicating that the isolated DNA was not ctDNA. Next, we
analysed the relation with the leucocyte count. Patients with
positive saliva had higher leucocyle counts in peripheral
blood [median {range) 8-48 (2-71-34-8) x 10 cells/l in posi-
tive saliva vs 625 {2-59-21-75) » 10° celll in negative sal-
iva; P — 0-001, Mann-Whitney), supporting the hypothesis
that the positivity for the driver mutation n saliva samples

may be dne to lencocyte presence in the oral mucosa.

& 2020 British Society for Haematology and John Wiley & Sons Ltd
British journal of Haematology, 2020, 189, e194-2221

Correspondence

Previous studies have described that saliva DNA  from
patients with MPN can be positive for JAKZVAIZF muta-
tion*® Moreover, a strong correlation has also  been
described between the VAF of JAKZVE17F n granulocytes
and saliva in a lmited number of patients” Our present
study confirms these observations in a larger cohort and
includes for the first time cases with driver mutations in
CALR and MP1, indicating that this effect wonld be affecting
all patients with MPN. This is of uunost importance as
broad gene panels are being performed in triple-negative
patients, in which the detection of new variants should be
carefully evaluated in germline DNA,

Searching for an alternative sample type for germline stud-
ies, we isolated CD3+ lymphocytes by immunomagnetic
selection in 61 JAK2ZVA17F-positive patients. In all cases
JAKZ2 was amplifiable, and only one sample showed a high
JAK2V617E VAL of 27-3% [median (range) VAL 2-39 (0-01-
27-3)90]. Previous studies described that CD3+ lymphocyles
are negative or present a very low VAL for JAK2V617L, but
in some exceptional cases JAK2ZVEL7E is detected with a high
VAF, suggesting homozygosity in the lymphoid compart-
ment. It is possible that in these positive cases, the JAKZ
mutation appears at an earlier stage of the hasmatopoiesis,
alfecting several blood lineages.”

Additionally, CD3+ cells from 12 CALR- and five MPL-
mutated cases were isolated. For the CALR-mutated cases,
the VAL in CD31 was higher than that observed in the
JAKZ2W617E-positive cases [median {(range) VAF 11-2 (3-66—
28-41%], whereas for the MPL-mulated cases the VAF in
CD31 was lower [median (range) VAL 1-45 {0-43-3-54)%]
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Fig 1. Scatter plot of the 8% cases with positive driver detection in
saliva showing the correlation between the variant allele frequency
(VAT) of the mutation in saliva and granulocytes. In cases above the
line at 30% VAF (m = 50) the use of saliva as a germline control
could result in considering acquired variants as germline.
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Fig 2. ¥AF in granulocytes (GR), saliva and
=t CD3 lymphocytes for JAK2, CALR and MPL
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(Fig 2). The higher VAF in the CD3+ [raction of CALR-mu-
lated cases than in JAK2- or MPL-mutaled cases could be
indicative of an earlier origin of these mutations in the
haematopuoietic lineage. CALR mutations have heen described
Lo originate in the haematopoietic stem cell® and it has been
previously postulated that CALR mutations conld be an early
event in the development of the disease. Mutations in CALR
arc generally present in the whole granulocytic cell compart-
ment with @ VAF of around 50%, suggesting a greater prolil-
erative advantage of the mutated progenitor CALR clone
compared to the JAK2-mutated patients.” In favour of this
hypothesis, CALR mulations are acquired before addilional
mutations in other non-driver genes, while JAKZ mutations
can be preceded by first hits in other genes such as ten—
eleven translocation 2 {74712}, DNA methyltransterase 3 alpha
(DNMT3A) or additional sex combs like-1 (ASXL1).51

As a whole, although we detected some positive cases for
the somatic driver mutation in the C1)31 fraction, the presence
ol the mutated clone was significantly lower [median (range)
VAF 2-83 ((H00-28-37)%] than in the saliva samples [median
(range) VAL 21-7 {0-00-94-64)%; P < 0-001, Wilcoxon].

In concusion, i patients with MPN with somatic mula-
Lons, saliva samples are not a reliable source of germline
control DNA. Moreover, in an important set of cases in our
present cohort (3696), no human DNA was detected in the
saliva samples. Therefore, the use of CD3+ lymphocytes is a
better option than saliva for the study of germline DNA vari-

ants in Ph-negative MPNs.
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DISCUSSION

Myeloid neoplasms are a heterogeneous group of diseases that present some
common features such as aberrant hematopoiesis and presence of genetic
alterations. In the last decades, molecular alterations have been
implemented in MPN, CMML and MDS as part of their diagnostic criteria, and
are also useful for disease classification and prognosis. Nevertheless,
molecular diagnosis still presents some limitations that need to be overcome
to ensure accurate genetic characterization. In this context, the analysis of
cfDNA is a fast and easy strategy that may potentially improve molecular
assessment in routine clinical practice. This will lead to a better understanding
of the pathogenesis of these diseases and facilitate the analysis of each
patient in detail; which is essential to optimize diagnostic groups and define
new entities such as OM-CMML.

In the first article, we analyzed the molecular profile of MPN patients in
plasma cfDNA and compared the results to peripheral blood granulocytes. In
the second article assesses the molecular and cytogenetic profile of MDS
patients in cfDNA and compared the result to bone marrow DNA. In the third
article, we analyzed the molecular and immunophenotypic features of a well-
annotated series of OM-CMML and compared the result to CMML. In the
fourth article, we evaluated the presence of MPN driver mutations in saliva

samples and CD3+ lymphocytes from peripheral blood.

The first part of this thesis is focused on the role of liquid biopsy in
myeloproliferative and myelodysplastic diseases. Overall, we found that
cfDNA mirrors the genetic landscape present in tumoral cells of both disease
types. In MPN patients, we compared the molecular alterations in cfDNA and
in paired granulocytes, which are considered the gold standard, and we found
and equivalent mutational profile in both driver and non-driver genes. In MDS
patients, we compared the genomic profile of cfDNA with BM DNA, including
the analysis of cytogenetic alterations in addition to molecular profiling. We
found a highly concordant genomic profile, although this concordance was

lower for subclonal alterations.

In MPNSs, this was the first published report describing the mutational profile

of a well-annotated series of MPN patients using liquid biopsy. Previous
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analysis of plasma or serum demonstrated that JAK2 mutations were
detectable in plasma or serum samples (241-244). In 2006, JAK2 mutations
were detected in plasma of MPN patients for the first time(241). This study
was later expanded and found that plasma DNA presented a higher
proportion of mutated DNA in comparison to paired peripheral blood
cells(242). These results were later discussed by Salama et al. who argued that
JAK2 mutated DNA in plasma was an artifact of cell lysis(250). They concluded
that the presence of JAK2 mutation in plasma was due to the progressive lysis
of granulocytes during PB storage and did not recommend plasma for JAK2
analysis. However, they found that this artifact was produced after 2-11 days
of PB storage at room temperature(250). In our study, we have processed PB
samples in the first 4 hours to isolate plasma and granulocytes; and found
that JAK2 mutations were detected with a slightly higher VAF in plasma cfDNA
than in granulocytes (medians of 29.0% vs 25.2%, respectively). Moreover, we
performed a quality control by electrophoresis to ensure that pure cfDNA was
obtained (approximately 166 base pairs). In our plasma samples, we did not
find cellular DNA fragments produced by cell lysis, which present higher

molecular weight.

For MPL mutations in MPN patients, we found that cfDNA presented a
significantly higher VAF than granulocyte DNA (medians of 44.3% vs 22.5%,
respectively) in all MPL mutated patients. This difference was higher than that
observed for JAK2 mutations. We confirmed MPL VAFs by high sensitive
digital PCR in all MPL mutated cases. To try to help understand what was
occurring with MPL gene, we analyzed the representation of the genomic
regions covered by the NGS panel in cfDNA and granulocyte DNA. It has been
described that cfDNA fragments result from nucleosome fragmentation that
does not occur randomly. In fact, it has been reported that specific
fragmentation profiles are different between cancer patients and healthy
individuals(251). Fragmentation patterns of healthy patients indicated that
cfDNA is mostly of hematological origin. No fragmentation profiles have been
described yet for hematological malignancies, but we hypothesized that this
fragmentation pattern may facilitate the detection of MPL mutations, when

compared to cellular DNA. In this regard, we observed a higher number of
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reads covering the MPL gene in cfDNA than in granulocyte DNA, unlike in
other genes. Previous results of our group described that platelet RNA
presented a higher proportion of JAK2 mutation than granulocytes(252,253),
however, cfDNA analysis is faster and easier to implement in routine practice
than the use of platelets. On the other hand, in 2021, Sadeh et al. performed
CHIP-seq of plasma cell-free DNA nucleosomes and found that nucleosomes
footprint indicated a major megakaryocytic origin of cfDNA(231).
Megakaryocyte maturation process is mediated by numerous DNA replication
rounds without cell division, resulting in polyploidy cells (2N to 128N)(254).
Mutated megakaryocytes in MPNs may be the main contributors to cfDNA in
plasma, releasing a higher proportion of mutated DNA due to their polyploidy.
This is in line with our results and could explain the high presence of
JAK2/MPL mutations in cfDNA and platelets. Of note, in one patient with PMF
we detected two mutations, in ASXL1 and MPL genes, that were not detected
by NGS in DNA from PB granulocytes. To confirm these findings, we
performed digital PCR. This finding indicates that cfDNA analysis may provide
higher sensitivity detection of driver and non-driver mutations, especially in

MPL-mutated cases.

In this context, we found interesting similarities with MPNs when we analyzed
the genomic profile of cfDNA in MDS patients. Although MPL mutations are
infrequent in MDS, we found three MPL mutations in our MDS cohort, and all
cases presented higher VAF in cfDNA than in BM DNA (median VAF of 26.9%
in cfDNA and 4.5% in BM DNA) which is concordant with our results in MPN
patients. In MDS, one of the main findings was that the VAF of SF3B1
mutations were significantly higher in cfDNA than in BM DNA. This difference
has not been previously reported, which may be due to the lower number of
SF3B1 mutated patients analyzed by other groups(237-239). In the MPN
cohort, we found SF3B1 mutations in 4 patients, and 3/4 presented a higher
VAF in cfDNA than in granulocytes (median VAF of 22% in cfDNA and 13% in
granulocyte DNA), which is concordant with MDS results. Additionally, for the
MDS patients, we confirmed that it is possible to detect cytogenetic
alterations by NGS in cfDNA. Yeh et al. found that, in one MDS patient, the

loss of chromosome 9 was detectable by low-coverage whole-genome

135



DISCUSSION

sequencing of cfDNA, however, this was the only reported case in the
literature. We observed that cfDNA revealed the gain or loss of genetic
material in the clonal MDS cells. Genomic regions affected by a deletion were
less represented in cfDNA while genomic regions in chromosomes affected by
a trisomy were more represented in cfDNA. This finding supports that using a
single NGS test it is possible to detect both molecular and cytogenetic
alterations in cfDNA, although we observed sensitivity limitations in
comparison to karyotype or FISH. On the contrary, in MPN patients, we used
a targeted NGS panel that was not designed to detect cytogenetic alterations.
Despite this, the detection of cytogenetic and molecular alterations using a
single non-invasive test, like we did in cfDNA from MDS, would be of special
interest in MPN. Obtaining sufficient analyzable metaphases by conventional
cytogenetics may be difficult in MPN, especially in PMF cases, in which
cytogenetic alterations are prognostically relevant. In particular, Grinfeld et
al. classification of MPN included the following cytogenetic alterations:
aberrations at chromosomes 17p and 5q in the highest risk group, LOH at
chromosome 4q and 7q9/7 in the second risk group, and deletion at
chromosome 20q in the same group as CALR mutated cases. In this context,
the inclusion of these genomic regions in a NGS panel and its application using
cfDNA in MPN patients may be a useful non-invasive approach for accurate

risk classification.

Moreover, we found that in MPN and MDS patients, the VAF of mutations in
cfDNA were equal or even higher than VAF in cellular DNA, indicating that a
high proportion of tumoral circulating DNA was present in plasma samples.
Contrary to solid tumors, in which tumoral circulating DNA is a minority in
total cfDNA, in myeloid neoplasms mutations were identified with higher VAF.
These results are concordant with the recently published results about the
hematopoietic origin of cfDNA, especially released by immature myeloid cells.
In consequence, one of the main limitations of liquid biopsy analysis in solid
tumors and lymphomas is that tumoral cfDNA may represent a small fraction
of the total cfDNA(255). Therefore, accurate liquid biopsy studies require the

application of high sensitivity techniques to detect mutations. In our
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experience, liquid biopsy analysis in myeloid neoplasms is easier due to the

high percentage of mutated cfDNA present in plasma.

We observed that the concentration of cfDNA in plasma was higher in MPN
and MDS patients than in plasma samples from healthy patients (control
group). Moreover, in MPN, PMF patients presented higher cfDNA
concentration than PV and ET cases. These findings are in accordance with
the results reported by Marin-Oyarzin et al., who evaluated the presence of
circulating nucleosomes in MPNs by enzyme linked immunosorbent assay
(ELISA)(256). They found that MPNs presented a higher presence of
circulating nucleosomes than healthy controls, and PMF presented higher
nucleosome concentration than PV and ET. Interestingly, we found that
cfDNA concentration was higher in cases with greater molecular complexity.
This correlation was still observed in the PMF group. In contrast, for MDS
patients we did not find any correlation between cfDNA concentration and
IPSS-R risk groups, neither with molecular complexity. Suzuki et al. found that
higher risk MDS patients presented a higher cfDNA concentration in plasma
than lower risk cases(257), an observation that was not replicated in our
cohort probably due to the low proportion of higher risk cases. Of note, we
found a significant correlation between lactate dehydrogenase (LDH) levels
and total cfDNA concentration in both the MDS and the MPN group.
Accordingly, high levels of LDH and high cfDNA concentrations in serum or
plasma are both indicators of cell damage(162,257-259).

CfDNA analysis in myeloid neoplasms emerges as a non-invasive strategy to
characterize the molecular profile of early hematopoietic cells. Overall, the
results obtained from cfDNA analysis in MPN and MDS support the
application of liquid biopsy analysis as an accurate, fast and easy method for
routine testing. Moreover, our data, together with previous studies(238,260),
demonstrated that it is possible to monitor molecular dynamics in patients
receiving treatment using cfDNA analysis in MPN and MDS patients. We hope
that liquid biopsy analysis is implemented in clinical routine practice of MDS
and MPN as a helpful tool to characterize and monitor genetic alterations, in
the same way as in other hematological malignancies such as lymphomas.

From a translational perspective, cfDNA analysis is used in lymphomas as a
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real-time minimally invasive approach to evaluate clonal evolution and track

treatment response(261-267).

On the other hand, we analyzed the larges cohort of OM-CMML reported to
date with well annotated clinical, morphological, cytogenetic, molecular and
immunophenotypic data. OM-CMML and overt CMML shared overall similar
characteristics, which supports that those patients fulfilling the criteria for
OM-CMML are mostly being misclassified as MDS.

From the molecular point of view, OM-CMML and CMML showed a similar
mutational profile. The TET2 and SRSF2 co-mutation was found equally in
both groups (27.5% in OM-CMML vs 22.6% in CMML). This co-mutation has
been described as the genetic signature for the development of CMML
disease(188,190,191). Therefore, those TET2 and SRSF2 mutated cases that
do fulfill the diagnostic criteria for OM-CMML showed strong biological

evidence to support their consideration as a distinctive subtype of CMML.

We found that CBL was the only gene mutated with a significantly different
frequency in CMML and OM-CMML. This is in line with previous observations
made by Geyer et al., who did not found any patient with CBL mutations in
their OM-CMML cohort(202). This could be explained by the fact that
mutations in the RAS pathway have been associated to the proliferative
subtype of CMML and are later acquired in disease evolution(52,191). We
believe that OM-CMML s a preliminary step of d-CMML and that is the reason
why RAS mutations are infrequent in OM-CMML. Other groups have reported
their results of cases with OM-CMML. Montalban-Bravo et al. described the
clinical and biological characteristics of 30 patients who met the criteria for
OM-CMML(268). RAS pathway mutations (NRAS, KRAS, CBL, NF1, SETBP1,
PTPN11) were found in a significantly higher proportion in CMML and were
more likely to appear as minor clones in patients with OM-CMML compared
to CMML.

Genes involved in DNA hydroxymethylation pathways (TET2, IDH1, IDH2)
were affected in 83% of CMML and 75% of OM-CMML. We observed that both
OM-CMML and CMML frequently presented multiple TET2 mutations in the

same patient. We are currently further exploring these observation as we

138



DISCUSSION

believe that multiple TET2 mutations in the same patient could be other
genetic signature of these entities, similar to the co-mutation of TET2 and
SRSF2. Clonal cells with both alleles affected by TET2 mutations would
produce the homozygotic loss of TET2 function severely affecting
hydroxymethylation.

We analyzed the utility of the monocyte distribution immunophenotypic test
in a cohort including OM-CMML, CMML, MDS, MPN with relative monocytosis
and cases with reactive monocytosis. We found that the 94% of MO1
threshold was better predictor for CMML diagnosis, consistent with previous
reports(269,270). In our series, the presence of >94% of MO1 provided high
sensitivity and specificity (90.7% and 92.2%, respectively) for CMML
diagnosis. Additionally, we reported for the first time the immunophenotypic
profile of cases with OM-CMML. Most OM-CMML patients (76.9%) presented
more than 94% of MO1 monocytes, with a median of 96.11% of MO1
monocytes. In contrast, only 8.7% of MDS patients (not fulfilling OM-CMML
criteria) presented more than 94% of MO1 monocytes. This is of outmost
importance as the immunophenotypic results, as well as the molecular
profile, reinforce the idea of OM-CMML being more similar to CMML than to
MDS.

Overall, these results are in accordance with findings reported by other
studies, however, we described for the first time a well-annotated series from
the immunophenotypic and molecular point of view, which allowed us to find
some interesting associations between genotype and immunophenotype. We
found that CD56 expression was associated with the presence of TET2
mutations. In addition, OM-CMML cases with TET2 mutations presented a
similar percentage of patients with >94% of MO1 monocytes to those with
overt CMML, which suggest that TET2 mutations may drive to monocyte
expansion and differentiation in CMML and OM-CMML. Focusing on the
comparison between OM-CMML and CMML, we found no significant
differences in the proportion of patients with MO1 percentage >94% or in
CD56 expression. In accordance with these results, CD2 positivity in

monocytes was identified in a similar proportion in OM-CMML and CMML.
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The clinical outcomes of the OM-CMML cohort are currently being analyzed
by our group. We believe that OM-CMML is the first step in the proliferative
continuum of CMML (OM-CMML, d-CMML and p-CMML), which is supported
by the molecular alterations (RAS pathway mutations) acquired in the
transformation from OM-CMML to d-CMML, and from d-CMML to p-CMML.
In line with these results, we observed a reduction of plasmacytoid dendritic
cells (pDC) in CMML when compared to OM-CMML. Previous studies have
reported that a progressive decrease in pDCs in MDS is associated to
progression to higher-risk categories or AML(271,272). Likewise, immune
dysregulation and decrease of pDC in OM-CMML could be implicated in
transition to d-CMML, and in a later stage to p-CMML.

Overall, we hope that, in the future, the presence or absence of genetic
alterations and the immunophenotypic profile play a stronger role in
diagnosis, classification and prognosis of these patients. Disease
classifications should become less dependent of restrictive thresholds that,
although are required for categorization, frequently leave some of these
patients in diagnostic groups that do not correspond to their biological reality,
such as the case of OM-CMML.

Finally, in the last publication included in this thesis we analyzed the presence
of driver mutations in saliva samples and CD3+ lymphocytes from peripheral
blood in a large cohort of MPN patients. These sample types are generally
considered as non-tumoral. The use of saliva samples DNA as a source of non-
tumoral cells is extended, as they are broadly thought to mainly contain
epithelial cells from the mouth mucosa. CD3+ cells are also thought to be non-
tumoral in MPN patients, due to the clear myeloid differentiated profile of
MPN tumoral cells. We analyzed saliva samples from 191 MPN patients to
determine if the DNA obtained from this samples was free of contamination
with tumoral DNA. In a high proportion of saliva samples (36%) human
housekeeping genes were undetectable while bacterial 16S ribosomal DNA
was amplifiable, therefore, these samples were considered as non-
informative. In the remaining samples containing human DNA, JAK2, CARL or

MPL mutations were frequently detected and showed a VAF higher than 30%,
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indicating that clonal cells are abundant in saliva samples. In line with these
results, several studies described that saliva DNA from patients with MPN can
be positive for JAK2V617F mutation (273-275). In fact, in 2012 a large group
of MPN patients were tested for the JAK2V617F mutation using saliva DNA as
a non-invasive source of DNA, and JAK2 mutations were detected with high
specificity and sensitivity(273). Later studies found that saliva samples were
contaminated by myeloid cells (274-276). In this context, these results
suggest that saliva samples in MDS and CMML are probably contaminated
with clonal cells similarly to MPN patients, although no specific studies have
been done. Therefore, the use of saliva DNA as germline control should be
avoided in myeloid malignancies as it could result in considering acquired
variants as germline; and saliva DNA could be more useful as non-invasive
approach for molecular characterization although further studies are
required. Of note, saliva analysis in healthy individuals also showed the
presence of lymphoid cells (276,277), hence it is probable that saliva samples
are also contaminated with tumoral cells in lymphoid malignancies, an issue

that should be explored in future research.

We isolated PB CD3+ lymphocytes by immunomagnetic selection in MPN
cases to find an alternative sample type for germline studies. Overall, low VAF
of driver mutations was detected in CD3+ cells that could help to accurately
discriminate between acquired and germline mutation. The isolation of CD3+
cells is a better option than saliva DNA, however, in a minority of cases we
found high VAF of the driver mutation. These observations can be explained
because some mutations occur in early progenitors that will lead to both
myeloid and lymphoid mutated cells. We found that mutations in CALR
occurred earlier and therefore were represented with higher VAF in CD3+
cells. It has also been reported that in some cases, such as patients with TET2
mutations, genetic alterations can affect both myeloid and lymphoid lineages
(278). This is an important limitation as the identification of mutations in
CD3+ cells could lead to considering somatic variants as germline in these
patients with mutations in common progenitors. Historically, CD3+ cells had
been a target of analysis to identify clonality in MPN female patients based

on X-chromosome inactivation. Analysis of the human androgen receptor
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gene (HUMARA) compares the methylation status of granulocytes (or
peripheral blood mononuclear cells [PBMCs]) and control cells, such as CD3+
cells(279). This technique allows clonality detection in females with MPN,
however since the identification of other markers of clonality, manly somatic
mutations, HUMARA assay has gradually lost its clinical utility.

Other alternatives have been explored to obtain germline DNA, such as
fibroblasts(278,280,281). Cultured skin fibroblasts are a reliable option to
isolate DNA free from hematologic contamination, however, obtention of
sufficient cells in the culture biopsy is time-consuming and requires cell
culture equipment and experience(280).

The identification of a reliable germline sample type is important, as NGS is
evolving to analyze wider regions of the genome and therefore a higher
number of alterations with unknown significance are identified. To clarify the
role of these variants in the disease, a proper germline control is essential and
may have clinical implications for the patient and his family. In this context,
further studies are required to determine and standardize the better option

for germline DNA testing.
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CONCLUSIONS

1. The analysis of cfDNA allows the characterization of the molecular
abnormalities of patients with MPN. The sensitivity and accuracy for mutation
detection in driver and non-driver genes were equal or even superior to that
obtained when studying the isolated granulocytic population, especially
regarding the detection of MPL mutations.

2. The analysis of cfDNA allows the detection and monitoring of molecular
and cytogenetic abnormalities of patients with MDS. In our cohort, enriched
with low risk IPSS-R MDS patients, cytogenetic alterations were detectable in
most cases by NGS in both BM DNA and cfDNA.

3. OM-CMML and CMML presented similar molecular, immunophenotypic
and clinical features, which supports the consideration of OM-CMML as a
distinct subtype of CMML.

4. Saliva samples are not a reliable source of germline DNA in MPNs. The use

of CD3+ lymphocytes is a better option than saliva for the study of germline
DNA variants in MPN patients.
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Supplementary information.

Circulating cell-free DNA improves the molecular characterisation of Ph-negative
myeloproliferative neoplasms.

Garcia-Gisbert N'?, Fernandez-lbarrondo L'?, Fernandez-Rodriguez C'?, Gibert J*, Andrade-Campos M™*, Arenillas L?,

Camacho L*?, Angona A", Longarén RY?, Salar A™, Calvo X3, Besses C***, Bellosillo B ¥3*

xGroup of Applied Clinical Research in Haematology, Cancer Research Program-IMIM (Hospital del Mar Medical Research Institute) Barcelona, Spain 2 pompeu
Fabra University, Barcelona, Spain * Department of Pathology, Hospital del Mar-IMIM, Barcelona, Spain * Department of Haematology, Hospital del Mar-IMIM,

Barcelona, Spain

*equally contributed

Supplementary Figure 1. Sample workflow for DNA extraction and mutational analysis.
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Supplementary Table 1. Genetic variants detected by NGS (HGVS nomenclature).

:3:,“;':; PHENOTYPE GENE MUTATION PROTEIN CHANGE TYPE CONSEQUENCE
1 [ JAKZ NM_004972 3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
2 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
3 PV JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
4 PV MPL NM_005373.2:¢.1544G>T NP_005364.1:p.(TrpG15Leu) shy missense_variant
4 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) sny missense_variant
4 PV DNMT3A NM_175629.2:c.2317C>A NP_783328.1:p.(Leu773lle} snv missense_variant
5 PV JAK2 NM_004972.3:.1849G>T NP_004963.1:p.(Val617Pho) snw missense_variant
6 [ JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
7 PV wPL NIV_005373.2:0.1775G>A NP_005364.1:p.(Arg592GIn) snw missense_variant
7 [ 1DH2 NM_002168.2:¢.419G>A NP_002159.2:p.(Arg140GIn) sh missense_variant
7 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) sny missense_variant
8 PV JAK2 NM_004572.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
9 [ IDH2 NM_002168 2:c 419G>A NP_002159_2:p.(Arg140GIn) snw missense_variant
9 Py SRSF2 NIWV_003016.4:c.284C>G NP_003007.2:p.(Pro@5Arg) snv missense_variant
El Py JAK2 NIM_004972.3:c.1849G>T NP_004963.1:p.(Val617Pha) snw missense_variant
10 PV ASXLL NN_015338.5:¢.1934d upG NP_056153.2:p.(Gly646TrpfsTer12) insertion frameshift_variant
10 PV JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val6 17Phe) shy missense_variant
10 PV cai NM_005188.3:c.1286T>A NP_005179.2:p.(lle429Asn) snv missense_variant
11 [N IDH2 NM_002168.2:c.419G>A NP_002159.2:p.(Arg140GIn) snw missense_variant
11 [ JAKZ NIM_004972.3:c.1843G>T NP_004963.1:p. (Val617Phe) snw missense_varlant
12 PV ASXL1 NM_015338 5:c.2535dupC NP_056153.2:p.(Ser846GInfsTerS) insertion frameshift_variant
12 PV TETZ WIV_001127208.2:¢.4139dupA NP_001120680.1:p.(His1380GInfsTerz1) insertion frameshift_variant
12 PV JAK2 NM_004972.3:¢.1845G>T NP_004963.1:p.(Val617Phe) shy missense_variant
13 PV ASXL1 NM_015338.5:¢.1900_1922del AGAGAGGCGGCCACCACTGCCAT | NP_056153.2:p.(GluG35ArgfsTerl5s) deletion frameshift_variant
13 PV JAK2 NM_004572.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
13 [ ZR5R2 NM_005089 3:c.1119_1120dclcT NP_005080.1:p.(Tyr373Ter) deletion | stop_gained,frameshift_variant
14 PV TETZ NM_001127208.2:c. 2881G>T NP_001120680.1:p.{Glud61Ter) snv stop_gained
14 PV JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) s missense_variant
15 PV JAK2 NM_004972.3:¢.1843G>T NP_004963.1:p.(Val617Phe) shy missense_variant
15 PV EZH2 NM_004456.4:¢.2105C>T NP_004447.2:p.(Ala?02Val) shy missense_variant
15 PV EZH2 NM_004456.4:c.654dupT NP_004447.2:p.(Pro2195erfsTer3) insertion frameshift_variant
16 PV TET2 NM_001127208.2:¢ 5347C>T NP_001120680.1:p (GIn1783Ter) snw stop_gained
16 [ JAKZ NM_004972.3:.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
17 Py ASXLY NM_015338.5:0.4127dupG NP_056153.2:p.(Pro13775erfsTer3) insertion | frameshift_variant
17 PV JAK2 NNM_004972.3:¢.1849G>T NP_004963.1:p.(Val617Phe) SNy missense_variant
18 PV U2AF1 NM_006758.2:¢.470A>C NP_006749.1:p.(GIn157Pro) shy missense_variant
18 [ TETZ NM_001127208.2:c.4138C>T NP_001120680.1:p.(His1380Tyr) snv missense_variant
18 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
18 PV ASXL1 NM_015338.5:c.2955delC NP_056153.2:p.(Asn986ThrfsTer7) deletion | frameshift_variant
19 [ SRSF2 NM_003016 4:c. 284C>T NP_003007.2:p. (Preg5Leu) snv missense_varlant
19 PV ASXLL NM_015338.5:c.1245C>T NP_056153.2:p.(Argd17Ter) SNy stop_gained
19 PY TET2 NM_001127208.2:¢.3232_3233delAC NP_001120680.1:p.(Thr1078ProfsTer25) deletion frameshift_variant
19 [ TETZ NM_001127208.2:c.3733_3737delTACTC NP_001120680.1:p.(Tyr1245GlyfsTer21) | deletion | frameshift_variant
19 PV JAK2 NM_004572.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
19 PV TET2 NM_001127208.2:c 3662G>C NP_001120680.1:p.(Cys12215cr) snw missense_variant
20 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
21 PV JAKZ NM_004972.3:c.1849C>T NP_004963.1:p.(Val617Phe) SNy missense_variant
22 PY ASXLI NM_015338.5:¢.2955_296QinsT NP_056153.2:p.(GlyI87ValfsTerd) insertion | frameshift_variant
22 PV TETZ NM_001127208.2:c.5079C>G NP_001120680.1:p.(Tyr1693Ter) snv stop_gained
22 PV JAK2 NM_004572.3:c.1849G>T NP_004363.1:p.(Val617Phe) snv missense_variant
23 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
23 PV TET2 NM_001127208.2:c 541delA NP_001120680.1:p.(lle181PhefsTer2) deletion frameshift_variant
24 PV JAK2 NM_004972.3:c.1849C>T NP_004963.1:p.(Val617Phe) snw missense_variant
25 PY TETZ NM_001127208.2:¢,5633C>G NP_001120680.1:p.(5er1898Cys) shv missense_variant
25 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
25 PV TETZ NM_001127208.2:¢.3500+1G>A snv splice_donar_variant
26 PV JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
27 [ P53 NM_000546.5:c.731G>A NP_000537.3:p.(Gly244Asp) shw missense_variant
27 PV TET2 NM_001127208 2:c 4138C>T NP_001120680.1:p_(His1380Tyr) snw missense_variant
27 PV JAK2 NM_004972.3:c.1845G>T NP_004963.1:p.(Val617Phe) snv missense_variant
27 PV DNMT3A NM_175629.2:c.878G>T NP_783328.1:p.(Gly293Val) snv missense_variant
28 PV JAK2 NM_004972.3:¢.1843G>T NP_004963.1:p.(Val617Phe} snv missense_variant
29 PV JAK2 NM_004572.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
0 [ JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
31 PV JAK2 NNM_004972.3:¢.1845G>T NP_004963.1:p.(Val617Phe) SNy missense_variant
32 PV JAK2 NM_004372.3:¢.1845G>T NP_004363.1:p.(Val617Phe) shy missense_variant
32 PV SRSF2 NM_003016.4:¢.130T>C NP_003007.2:p.(Tyr44His) s missense_varlant
33 [N DNMT3A NM_175629.2:c.2644C>T NP_783328.1:p.(Arg882Cys) snw missense_variant
33 PV TETZ NM_001127208.2:c.1669C>T NP_001120680.1:p.(GIn557Ter) snw stop_gained
33 PV JAK2 NM_004972.3:c.1845G>T NP_004963.1:p.(Val617Phe) snv missense_variant
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33 PV TETZ NM_001127208.2:c.1207C>T NP_001120680.1:p.(GIn403Tcr) s stop_gained

33 Py NARAS NM_002524.4:¢.34G>A NP_002515.1:p.(Glyl25er) SNy missense_variant
1 ET JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
2 ET Kz NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) shy missense_variant
3 ET JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val617Phe) shy missense_variant
4 ET JAK2 NM_004572.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
5 ET MPL NM_005373 2:c 1544G>T NP_005364.1:p.(TrpS15Lou) snw missense_variant
5 ET 5F3B1 NM_012433.2:c.1876A5G NP_036565.2:p.(Asn626Asp) snv missense_variant
6 ET SRSF2 NIWV_003016.4:c. 284C5A NP_003007.2:p.(Prog5His) snw missense_variant
& ET SF3B1 NM_012433.2:¢.1998G>T NP_036565.2:p.(Lys666Asn] shy missense_variant
& ET JAK2 NM_004872.3:c.1845G>T NP_004363.1:p.(Val617Phe) shy missense_variant
6 ET RUNXT NM_001754.4:¢.493G>T NP_001745.2:p.(Gly165Cys) shv missense_variant
7 ET JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val617Phe) Shv missense_variant
8 ET P53 NM_000536.5:C.818GA NP_000537.3:p.(Arg273His) snv missense_variant
8 ET CALR NM_004343 3:c 1154_1155insTTGTC NP_004334.1:p.(Lys385AsnsTerd7) insertion frameshift_variant
9 ET ASALL NIV_015338.5:¢.1900_1522delAGAGAGGCGGCCACCACTGCCAT | NP_056153.2:p.(Glug35ArgfsTerls) deletion frameshift_variant
El ET ASXLL NM_015338.5:c.1934d upG NP_056153.2:p.(Gly646TrpfsTer12) inserticn frameshift_variant
9 ET TETZ NM_001127208.2:¢.5602C>T NP_001120680.1:p.(His1868Tyr) shv missense_variant
10 ET JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val6 17Phe) shy missense_variant
10 ET TETZ NM_001127208.2:c.1945C>T NP_001120680.1:p.(GIn649Ter) snv stop_gained

11 ET JAK2 NM_004972.3:.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
12 ET CALR NM_004343.3:c.1092_1143del NP_004334.1:p.(Leu3&7ThrfsTerds) deletion | frameshift_variant
13 ET JAK2 NM_004972.3:c.1845G>T NP_004963.1:p.(Val617Phe) snv missense_variant
14 ET DNMT3A NM_175629.2:¢.2390A>G NP_783328.1:p.(Asn7975er) SNy missense_variant
14 ET CALR NM_004343.3:¢.1092_1143del NP_004334.1:p.(Leu3&7ThrisTerd6) deletion frameshift_variant
15 ET CALR NM_004343.3:¢.1154_1155InsTTGTC NP_004334.1:p.(Lys385Asn s Terd7) insertion frameshift_variant
16 ET JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val617Phe) shv missense_variant
16 ET DNMT3A NM_175629.2:c.2602T>C NP_783328.1:p.(Phe868Leu) snw missense_variant
17 ET DNMT3A NM_175629.2:c.709C>T NP_783328.1:p.(GIn237Ter) snv stop_gained

17 ET JAK2 NM_004572.3:c.1845G>T NP_004963.1:p.(Val617Phe) snw missense_variant
18 ET CALR NM_004343.3:¢.1092_1143del NP_004334.1:p.(Leu367ThrfsTerd6) deletion frameshift_variant
19 ET JAK2 NM_004972.3:c.1849G>T NP_004363.1:p.(Val617Phe) shv missense_variant
20 ET JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.([Val617Phe) snv missense_variant
21 ET MPL NM_005373 2:c 1584G>T NP_005364.1:p.(TrpS15Leu) shw missense_variant
21 ET SETBPI NM_015559.2:c.2602G>A NP_056374.2:p.(Asp868Asn] snv missense_variant
21 ET U2AF1 NM_006758.2:c.4700>G NP_006749.1:p.(GIn157Arg) snv missense_variant
21 ET JAK2 NM_004872.3:¢.1845G>T NP_004963.1:p.(Val617Phe) SNy missense_variant
22 ET CALR NM_004343.3:c.1154_1155insTTGTC NP_004334.1:p.(Lys385AsnisTerd7) insertion frameshift_variant
23 ET JAK2 NM_004972 3:c.1845G>T NP_004963.1:p.(Val617Phe) snw missense_variant
24 ET JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val617Phe) shy missense_variant
25 ET ASXLL NM_015338.5:c.2083delC NP_056153.2:p.(GIn695Asnfs Ter8) deletion frameshift_variant
25 ET JAK2 NM_004972.3:c.1843G>T NP_004963.1:p.(Val617Phe) snv missense_variant
26 ET JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
27 ET JAK2 NM_004972.3:c.1845G>T NP_004963.1:p.(Val617Phe) snw missense_variant
27 ET PRPF8 NM_006445 3. 2146G>T NP_006436.3:p.(Ala?165er) snw missense_variant
28 ET JAK2 NM_004872.3:c.1849G>T NP_004363.1:p.(Val617Phe) shv missense_variant
29 ET JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
30 ET PRPFE NN_006445.3:¢.4780T=>C NP_006436.3:p.(Cys1594Arg) shv missense_variant
30 ET JAK2Z NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
a0 ET PRAFS NM_006445.3:c.2071C>T NP_006436.3:p. (His631Tyr) snv missense_variant
31 ET JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
32 ET DNMT3A NM_175629.2:c.2645G>A NP_783328.1:p.(Arg882His) shy missense_variant
32 ET JAK2 NM_004972.3:c.1849G>T NP_004363.1:p.(Val617Phe) snv missense_variant
33 ET JAKZ NM_004972.3:¢.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
34 ET JAKZ NM_004972.3:c.1848G>T NP_004963.1:p.(Val617Phe) snw missense_variant
a5 ET TETZ NM_001127208.2:.694CT NP_001120680.1:p.{GIn232Ter) snv stop_gained

35 ET JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
36 ET JAK2 NM_004972.3:c.1845G>T NP_004963.1:p.(Val617Phe) snv missense_variant
37 ET JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
3% ET JAK2 NW_004972.3:c.1845G>T NP_004963.1:p.(Val617Phe) s missense_variant
30 ET CALR NM_004343.3:c.1154delA NP_004334.1:p.(Lys385ArgfsTer45) deletion | frameshift_variant
a0 ET DNMTIA NM_175629.2:c.1958delT NP_783328.1:p.(Leu653TrpfsTarsz) deletion | frameshift_variant
40 ET JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val6 17Phe) shv missense_variant
a1 ET JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
a1 ET ZRSR2 NM_005089.3:c.840C>G NP_005080.1: p. (Cys280Trp) snw missense_variant
42 ET DNMT3A NM_175629.2:c. 2645C>A NP_783328.1:p.(Arg#&2His) s missense_variant
42 ET JAK2 NM_004972.3:c.1849G>T NP_004363.1:p.(Val617Phe) snv missense_variant
43 ET JAK2 NM_004972.3:¢.1843G>T NP_004963.1:p.(Val6 17Phe) shv missense_variant
44 ET 5r381 NM_012433.2:c.1997A>G NP_036565.2:p.(Lys666Arg) snw missense_variant
aa ET TETZ NM_001127208.2:c.4787dupA NP_001120680.1:p.{Asn1596LysfsTer18) | insertion | frameshift_variant
44 ET DNMT3A NWV_175629.2:c. 26000 upT NP_783328.1:p.(PhegésllefsTerd) insertion | frameshift_variant
aa ET CALR NM_004343.3:c.1092_1143del NP_004334.1:p.(Leu367ThrisTerds) deletion | frameshift_variant
45 ET DNMT3A NM_175629.2:c.1903delC NP_783328.1:p.[Arg635GlyfsTer16) deletion frameshift_variant
45 ET JAK2 NM_004372.3:¢.1845G>T NP_004963.1:p.(Val617Phe) shy missense_variant
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a6 ET TETZ NM_001127208.2:c. 2340dupA NP_001120680.1:p.(Val 7815crfsTers] insertion | frameshift_variant
46 ET TETZ NM_001127208.2:¢ 4636C>T NP_001120680.1:p.(GIn1546Ter) SNy stop_gained

46 ET TETZ WIV_001127208.2:c.5011delA NP_001120680.1:p.(5er1671valfsTar24) deletion frameshift_variant
46 ET K2 NM_004972.3:¢.1849G>T NP_004963.1:p.(Val617Phe) shw missense_variant
a7 ET MPL NM_005373.2:¢.1544G>T NP_005364.1:p.(Trp515Leu) shw missense_variant
47 ET ASXL1 NM_015 5:c.1900_1522del GECGBCCACCACTGCCAT | NP_056153.2:p.(Glué35ArgfsTer15) deletion frameshift_variant
48 ET CALR NM_004343 3:c.1092_1143del NP_004334.1:p_(Leu367 ThrisTerd6) deletion frameshift_variant
ay ET JAKZ NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
50 ET JAK2 NM_004972.3:c.1845G>T NP_004963.1:p.(Val617Pha) s missense_variant
51 ET JAK2 NM_004372.3:¢.1845G>T NP_004963.1:p.(Val617Phe) shv missense_variant
52 ET no mutations found

53 ET no mutations found

54 ET no mutations found

55 ET no mutations found

56 ET no mutations found

1 PMF CALR NN _004343.3:¢.1092_1143del NP_004334.1:p.(Leu367ThrisTerdt) deletion frameshift_variant
1 PMF TET2 NM_001127208.2:¢. 2746C>T NP_001120680.1:p.(GIn316Ter) shy stop_gained

1 PME ASXL1 NM_015338.5:c.1752_1755dupGGTT NP_056153.2:p.(Lys586GlyfsTer2) insertion | frameshift_variant
1 PMF EZH2 NM_004456.4:¢.1682G>A NP_004447.2: p.(Arg561His) shw missense_variant
2 PN wpL NM_005373.2:c.1544G>T NP_005364.1:p.(TrpS15Leu) snw missense_variant
2 PMF MPL NM_005373 2:c. 775G>A NP_005364.1:p.(Glu258Lys) snw missense_variant
2 PMr MPL NM_005373.2:c.1458A>G NP_005364.1:p.(Thrd87Ala) SNV missense_variant
3 PMF CALR NM_004343.3:¢.1092_1143del NP_004334.1:p.(Leu367ThrfsTerd6) deletion frameshift_variant
4 PMF ASXL1 NN_015338.5:¢.1934d upG NP_056153.2:p.(Gly646TrpfsTer12) insertion frameshift_variant
4 PMF TETZ2 NM_001127208.2:¢.3640C>T NP_001120680.1:p.(Arg1214Trp) shv missense_variant
4 PMF JAK2 NM_004972 3:¢.1849G>T NP_004963.1:p.(Val617Phe) snw missense_variant
5 PMF CALR NM_004343.3:c.1092_1143del NP_004334.1:p.(Leu367 ThrisTerd6) deletion frameshift_variant
6 PMI ASXL1 NIW_015338.5:c.1900_1522dclAGAGAGGCGGCCACCACTGCCAT | NP_056153.2:p.(GluB35ArgfsTer1s) deletion | frameshift_variant
6 PMF ASALL NIV _015338.5:¢.1926d up/A NP_056153.2:p.(Gly643ArgfsTer 15) insertion frameshift_variant
6 PMF ASXLI NM_015338.5:c.1969G>T NP_036153.2:p.[Glu657Ter) sny stop_gained

6 PMF ASKL1 NM_015338.5:¢.3187C>T NP_056153.2:p.(GIN1063Ter) shv stop_gained

6 PMF TET2 NM_001127208.2:¢.3947delC NP_001120680.1:p.(Pro1316GInfsTerd7) deletion frameshift_variant
6 PMI cBL NM_005188.3:c.1259G>A NP_005179.2:p.(Argd20GIn) snv missense_variant
€ PMF CALR NM_004343 3. 1092_1143del NP_004334.1:p_(Leu367 ThrisTerds) deletion frameshift_variant
7 PMF NAAS NM_002524.4:c.35G>A NP_002515.1:p.(Gly12Asp) SV missense_variant
7 PMF KRAS NM_033360.2:c.34G>N NP_203524.1:p.(Glyl125er) snw missense_variant
7 PMF CALR NN_004343.3:¢.1092_1143de| NP_004334.1:p.(Leu367 ThrisTerd6) deletion frameshift_variant
8 PMF CALR NM_004343.3:¢.1092_1143del NP_004334.1:p.(Leu367ThrisTerd6) deletion frameshift_variant
9 PMI SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.(Prog5Leu) snv missense_variant
9 PMF ASXL1 NM_015338.5:c.1762C>T NP_056153.2:p.(GIn5R8Ter) snw stop_gained

10 PMI [ NM_005373.2:c.1514G>A NP_005364.1:p.(Ser505Asn) snv missense_variant
10 PMF MPL NM_005373.2:c.1544G>T NP_005364.1:p.(Trp515Leu) snv missense_variant
10 PMF 1DHZ NM_002168.2:c.419G>A NP_002159.2:p.(Arg140GIn) snw missense_variant
10 PMF SRSF2 NM_003016.4:¢.284C>A NP_003007.2: p.(ProS5His) shy missense_variant
10 PMF JAK2 NM_004972.3:¢.1848G>T NP_004963.1:p.(Val617Phe) snv missense_variant
10 PMF ASXL1 NM_015338.5:c.2637_2638insC NP_056153.2:p.(Thr880HisisTer2) insertion frameshift_variant
11 PN JAK2 NM_004572.3:c.1845C>T NP_004963.1:p.(Val§17Phe) snw missense_variant
11 PMF TET2 NM_001127208.2:¢.3880T>C NP_001120680.1:p.{Tyr1254His) snw missense_variant
12 PMIP SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.(ProgS5His) snv missense_variant
12 PMF ASKLL NM_015338.5:¢.1934d upG NP_056153.2:p.(Gly646TrpfsTer12) insertion | frameshift_variant
12 PMF A2 NM_004972.3:c.1849G>T NP_004363.1:p.(Val617Phe) shv missense_variant
13 PMF MPL NM_005373.2:¢.1544G>T NP_005364.1:p.(Trp515Leu) shw missense_variant
13 PMF SF3B1 NM_012433 2:¢ 1997A5C NP_036565_2:p.(Lys666Thr) shw missense_variant
14 PMF no mutations found

1 uMPN JAK2 NIWV_004572.3:c.1845C>T NP_004963.1:p.(Val§17Phe) s missense_variant
2 uMPN JAK2 NM_004372.3:¢.1845G>T NP_004963.1:p.(Val617Phe) SNV missense_variant
2 uMPN PRPF8 NM_006445.3:c.4792G>A NP_006436.3:p.(Asp1598Asn) snv missense_variant
3 UMPN TETZ2 NM_001127208.2:¢.2850C>T NP_001120680.1:p.(GIn364Ter) shv stop_gained

3 UMPN TET2 NM_001127208.2:¢ 5353A>T NP_001120680.1:p.(Lys1785Ter) shv stop_gained

3 uMPN JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.(Val617Phe) snv missense_variant
3 uMPN TET2 NM_001127208 2:¢ 5618T>C NP_001120680.1:p (llc1873Thr) snv missense_variant
3 uMPN EZHZ NM_004456.4:c.2069G>A NP_004447.2:p. (Arg650His) SNy missense_variant
4 uMPN SH2B3 NM_005475.2:c.1566d upC NP_005466.1:p.(Glus23ArgfsTer23) inserticn frameshift_variant
4 UMPN JAK2 NM_004972.3:¢.1843G>T NP_004963.1:p.(Val617Phe) shv missense_variant
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ANNEX II: SUPLEMETARY INFORMATION (CELL-FREE DNA IN MPN)

Supplementary Figure 2. Ratio (cfDNA VAF / granulocyte VAF) of the detected variants of the most frequently
mutated genes in our cohort, grouped by disease phenotype. Median VAF for each gene is shown as a black line.
Variants situated in the plot above the line have a higher VAF in cfDNA than in granulocytes and variants below the
line have a higher VAF in granulocytes.
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ANNEX II: SUPLEMETARY INFORMATION (CELL-FREE DNA IN MPN)

Supplementary Figure 3. Read depth for each gene in granulocytes and cfDNA. The ratio (read depth for the
exon/whole panel read depth for that sample) for each exon of the genes included in the NGS panel is shown for the
granulocyte samples and the cfDNA samples. * P <005, ** P<0.01, *** P <0.001, **** P < 0.0001.
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Supplemental methods. Code used in R 3.6.2 to create the figures.

####l oad packages needed for analysis###
library(readr)

library(maftools)

library(haven)

library(readxl)

library(tidyr)

library(ggplot2)

library(dplyr)

#i oad datasets ##H#HH
Mutaciones_cfDNA_MPNs <- read_excel("/Volumes/UUI/Nieves_mielo/Mutaciones_cfDNA_MPNs.xIsx")

MPNs_INCLUIDOSFIS16 TODOS <- read_sav("/Volumes/UUI/Nieves mielo/MPNs_INCLUIDOSFIS16 TODOS.sav")
MPNs_INCLUIDOSFIS16_TODOS <- MPNs_INCLUIDOSFIS16_TODOS[-1]

MPNs_coverage <- gather(MPNs_INCLUIDOSFIS16_TODOS, condition, Tumor_Sample_Barcode,
DNA_GR:DNA_cfDNA, factor_key=TRUE)

MPNs_INCLUIDOSFIS16_TODOSSDX <- factor(MPNs_INCLUIDOSFIS16_TODOSSDX, levels = ¢(0,1,2,4, 100), labels =
c{"No class", "PV", "ET", "MFP","Control"))

MPNs_INCLUIDOSFIS16_TODOSSDriver_GEN <- factor(MPNs_INCLUIDOSFIS16_TODOSSDriver_GEN, levels =
¢(0,1,2,3,4), labels = ¢("TN", "JAK", "CALR", "MPL","MultiDriver"})

colnames(MPNs_INCLUIDOSFIS16_TODOS)[6] <- "Tumor_Sample_Barcode"

####Recode variables to fit in maftools object####

Mutaciones_cfDNA_MPNsSSample <- gsub("QlAseq-DNA-smCounter2.", "", Mutaciones_cfDNA_MPNsSSample)
Mutaciones_cfDNA_MPNs$Sample <- gsub(".smCounter.anno", "", Mutaciones_cfDNA_MPNs$Sample)
Mutaciones_cfDNA_MPNsSSample <- gsub("~.*\\.", "", Mutaciones_cfDNA_MPNsS$Sample)
Mutaciones_cfDNA_MPNsS$Sample <- gsub("_.*S$", ", Mutaciones_cfDNA_MPNs$Sample)

colnames(Mutaciones_cfDNA_MPNs)[2] <- "Hugo_Symbol"
colnames(Mutaciones_cfDNA_MPNs)[3] <- "Chromosome"

colnames(Mutaciones cfDNA_MPNs)[4] <- "Start_Position"
Mutaciones_cfDNA_MPNsSEnd_Position <- Mutaciones_cfDNA_MPNsSStart_Position
Mutaciones_cfDNA_MPNsSReference_Allele <- gsub(">.*$", ", Mutaciones_cfDNA_MPNsSVariant)
Mutaciones_cfDNA_MPNsSTumor_Seq_Allele2 <- gsub("A.*> *\\/", ", Mutaciones_cfDNA_MPNsS$Variant)
colnames(Mutaciones_cfDNA_MPNs)[19] <- "Variant_Classification"
colnames(Mutaciones_cfDNA_MPNs)[9] <- "Variant_Type"

colnames(Mutaciones_cfDNA_MPNs)[1] <- "Tumor_Sample_Barcode"
unique{Mutaciones_cfDNA_MPNsSVariant_Classification)
Mutaciones_cfDNA_MPNsSVariant_Classification[grepl{"missense_variant",
Mutaciones_cfDNA_MPNsSVariant_Classification)] <- "Missense_Mutation"
Mutaciones_cfDNA_MPNsSVariant_Classification[grepl{"stop_gained",
Mutaciones_cfDNA_MPNs$Variant_Classification)] <- "Nonsense_Mutation"
Mutaciones_cfDNA_MPNsSVariant_Classification[grepl("frameshift_variant",
Mutaciones_cfDNA_MPNsSVariant_Classification)] <- “Frame_Shift_Ins"
Mutaciones_cfDNA_MPNsSVariant_Classification[grepl{"splice_acceptor_variant",

Mutaciones cfDNA_MPNsS$Variant_Classification)] <- "Splice_Site"
Mutaciones_cfDNA_MPNsSVariant_Classification[grepl{"splice_donor_variant",
Mutaciones_cfDNA_MPNsSVariant_Classification)] <- "Splice_Site"

Mutaciones_cfDNA_MPNsSVariant_Type[grepl("snv", Mutaciones_cfDNA_MPNs$Variant_Type)] <- "SNP"
Mutaciones cfDNA_ MPNsSVariant Type[grepl("deletion", Mutaciones c¢fDNA MPNsSVariant Type)] <- "DEL"
Mutaciones_cfDNA_MPNsSVariant_Type[grepl(“insertion”, Mutaciones cfDNA_MPNsSVariant_Type)] <- "INS"
Mutaciones_cfDNA_MPNsSVariant_Type[grepl("mnp"”, Mutaciones_cfDNA_MPNs$Variant_Type)] <- "SNP"
unique{Mutaciones_cfDNA_MPNsSClassification)

#H##Add multihit data for plotting##i#

library(plyr); library(dplyr)

multihit_data <- ddply(Mutaciones_cfDNA_MPNs,.(Tumor_Sample_Barcode,Hugo_Symbol),nrow)
colnames(multihit_data)[3] <- "MultiHit"

Mutaciones_cfDNA_MPNs <- left_join(Mutaciones_cfDNA_MPNs, multihit_data)
#itH oad MAF object##i#
MPN_MAF <- read.maf(Mutaciones_cfDNA_MPNs, clinicalData = MPNs_INCLUIDOSFIS16_TODOS)

genes <- c('JAK2', 'CALR', '"MPL', "TET2', 'ASXL1', 'DNMT3A', 'SRSF2', 'IDH2",
'SF3B1', 'EZH2', 'PRPF8&', 'CBL', 'NRAS', "TP53', 'U2AF1",
'ZRSR2', 'KRAS', 'RUNX1', 'SETBP1', 'SH2B3', 'CSF3R', 'ETV&', 'IDHT,
'KIT', 'STAG2")

library(RColorBrewer)

vc_cols = RColorBrewer::brewer.pal{n = 8, name = 'Paired')
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ve_cols = ¢ "#AGCEE3","darkolivegreen3", "cornflowerblue”, "#33A02C","coral","#E31A1C","#FDBF6F", "#FF7FO0")
names(vc_cols) =

‘Frame_Shift_Del’,

'Missense_Mutation',

'Nonsense_Mutation',

'Multi_Hit',

'Frame_Shift_Ins',

'In_Frame_Ins',

'Splice_Site',

'In_Frame_Del'

)

CL_colors = c("#D53E4F", "#99D594")

CL_colors = RColorBrewer::brewer.pal{n = 5,name = 'Spectral')
DG_colors = RColorBrewer::brewer.pal(n = 5,name = 'Dark2")

names(CL_colors) = ¢("No class", "PV", "ET", "MFP","Control")
names(DG_colors) = ¢{"TN", "JAK", "CALR", "MPL","MultiDriver")

annot_colors = list{DX = CL_colors, Driver_GEN = DG_colors)

fitHHGenerate Oncoplotiiti
pdf("/Volumes/UUI/Nieves_mielo/Oncoplot_ordered.pdf", width = 14)
oncoplot{maf = MPN_MAF, top = 25, colors = vc_cols,
annotationColor = annot_colors, keepGeneOrder = TRUE,
sortByAnnotation = TRUE, groupAnnotationBySize = FALSE,
genes = genes, annotationOrder = c("PV", "ET", "MFP", "No class"),
removeNonMutated = FALSE,
SampleNamefontSize = 0.7,
clinicalFeatures = ¢("DX", "Drlver GEN"),
additionalFeature = list{c("MultiHit", "2") c("MultiHit", "3"),
cf"MultiHit", "4")),
additionalFeatureCol = ¢("white", "gray80", "gray40"),
additionalFeaturePch = ¢{15,16, 17))
dev.off()

#H###Coverage analysis####

colnames(MPNs_coverage)

MPNs_coverageSPANEL <- gsub("CDHS-13593Z-", ", MPNs_coverageSPANEL)
MPNs_coverage$SPANEL <- gsub(" miel", " MPNs_coverageSPANEL)

QlAseq_DNA_panel_CDHS_135937_900_roi <- read_table2("/Volumes/UUI/Nieves_mielo/Paneles/QIASeq_DNA-
panel CDHS-13593Z-900 mieloide/QlAseq_DNA_panel.CDHS-13593Z-900.roi.bed",

col_names = FALSE, skip = 1)
QlAseq_DNA_panel_CDHS 213267_924_roi <-
read_table2("/Volumes/UUI/Nieves_| m|eI0/Pane|es/QIASeqTargetedDnaCustomPaneICDHS 213267-924 mieloide
rutina/QlAseq_DNA_panel.CDHS-21326Z-924.roi.bed",

col_names = FALSE, skip =1)

library(dplyr)
QlAseq_joined <- inner_join(QlAseq_DNA_panel_CDHS_135937_900_roi,
QlAseq_DNA_panel_CDHS 21326Z 924 roi)
#The only difference between panels is PPM1D so coverage analysis is performed using panel 900 bed file
anti_join{QIAseq_DNA_panel_CDHS_21326Z_5924_roi, QlAseq_DNA_panel_CDHS_13593Z_900_roi)
QlAseq_joinedSLenght <- QlAseq_joined$X3 - QlAseq_joinedSX2
geplot(QlAseq_joined, aes(x = X4, y = Lenght))+
geom_boxplot()+ theme({axis.text.x =element_text(size=7, angle = 90))+
ylim(0,500)

QlAseq_DNA_panel_CDHS_13593Z_900_roi_cov <-
read_delim("/Volumes/UUI/Nieves_mielo/QlAseq_DNA_panel.CDHS-13533Z-900.roi.cov.txt",
"\t", escape_double = FALSE, trim_ws = TRUE)

Coverage <- QlAseq_DNA_panel_CDHS_135937_900_roi_cov %>% group_by(X4) %>% mutate(id = row_number())
CoverageSAmplicon_ID <- pasteQO{Coverage$X4, " ", CoverageSid)

Coverage <- Coverage[-c(1,2,3,4)]

columns_names <- colnames(Coverage)

column_names_clean <- columns_names[lcolumns_names %in% grep("X", columns_names, value =T})]

Coverage_clean <- Coverage|, -grep{"min|%", Coverage[1,])]
colnames(Coverage_clean) <- column_names_clean

Coverage_clean <- Coverage_clean[-¢(1,2),]

Coverage_clean$Gene <- gsub("_*", "", Coverage_cleanSAmplicon_ID)
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Coverage_clean[1:199] <-mutate_all(Coverage_clean[1:199], function{x) as.numeric(as.character(x)))
Panel_mean <- t{as.data.frame{colMeans(Coverage_clean[1:199]}))

Coverage_normalized <- Coverage_clean[1:199]/Panel_mean
Coverage_normalized <- chind({Coverage_cleanSAmplicon_ID, Coverage_normalized)

Genes_to_analyze <- t{Coverage normalized)
colnames(Genes_to_analyze) <- Genes_to_analyze[1,]
Genes_to_analyze <- Genes_to_analyze[-1,]

Genes_to analyze <- as.data.frame{Genes_to_analyze)
Genes_to_analyze5Sample_names <- rownames(Genes_to_analyze)

Genes_to_analyze$Sample_names <- gsub{"_S[0-9]+", "", Genes_to_analyze$Sample_names)

Conditions <- MPNs_coverage[c(203,204)]
Conditions$Tumor_Sample_Barcode <- as.character(ConditionsSTumor_Sample_Barcode)

Genes_to_analyze <- left_join{Genes_to_analyze, Conditions, by=c{"Sample_names" = "Tumor_Sample_Barcode"))

Genes_to_analyzeScondition <- factor(Genes_to_analyze$condition)
str(Genes_to_analyzeScondition)
table(Genes_to_analyzeS$condition)

data_long <- gather(Genes_to analyze, Amplicon_|ID, measurement, CSF3R_1:5TAG2 33, factor_key=TRUE)
data_long$Gene <- gsub("_[0-9]+", ", data_longSAmplicon_ID)

data_longSmeasurement <- as.numeric(data_longSmeasurement)

unique{data_longSGene)

str(data_long)

library(ggpubr)

uniq_species = unique({data_long$Gene)

#H###Plot coverage for each genen of the panel####

for (i in unig_species) {

temp_plot <- ggplot(data= subset(data_long, Gene ==}, aes{x=Amplicon_ID, y=measurement, fill=condition)}+
geom_boxplot{outlier.shape = NA)+
geom_jitter(size=0.01, position = position_jitterdodge(jitter.width = 0.3, dodge.width = 0.8))+
# coord_flip()+
ylim(0,6.5)+
stat_compare_means(paired = TRUE, size = 4,
aes(label = ..p.signif..), label.x = 0.5, label.y = 6.4)+
ylab("Ratio to whole panel coverage" )+
xlab("Exon ID"}+
ggtitle(i) + theme_minimal() +
theme(axis.text.x =element_text(size=7, angle = 90))+
scale_fill_manual(values=c("#999999", “firebrick1"), name = "Sample Source", labels = ¢("Granulocytes", "cfDNA"))

gesave(temp plot, file=paste0("/Volumes/UUI/Nieves_mielo/Coverage ", i,".pdf"}))
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SUPPLEMENTARY INFORMATION

MOLECULAR AND CYTOGENETIC CHARACTERIZATION OF
MYELODYSPLASTIC SYNDROMES IN CELL-FREE DNA

Garcia-Gisbert N2, Garcia-Avila S3, Merchan B, Salido M*°, Fernandez-Rodriguez
CY5, Gibert )}, Fernandez-lbarrondo L2, Camacho L**, Lafuente M2, Longarén R%®,
Espinet B*°, Vélez P 3, Pujol RM®, Andrade-Campos M2, Arenillas L*°, Salar A3, Calvo
X*5 Besses C!, Bellosillo B1®
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Supplementary Figure 1. Sample workflow for DNA extraction and mutational analysis.
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Supplementary Figure 2. Correlation between percentage of ring sideroblasts in bone marrow
and VAFs of SF3B1 mutations in BM and cfDNA.
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Supplementary Figure 3. CNV results by NGS in a patient with 20q- y 59- alterations. Results of
the coverage analysis of EGR1 (chr5) and TP53TG5 (chr20) genes are shown, which were
included in the design of the NGS gene panel to cover chr5 and chr20 chromosomal
aberrations. Each dot in the plot represents a genomic region covered by the gene panel. The
green line shows the normal values (two copies of the genomic region). Dots above 2 indicate
a potential gain of genetic material and dots bellow 2 indicate a potential loss of genetic
material. A) CNV analysis of EGR1 and TP53TG5 in BM DNA. B) CNV analysis of EGR1 and
TP53TG5 in cfDNA C) CNV analysis of a patient with normal karyotype. D)CMA results
confirming the 5g- and 20g- in the patient.
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Supplementary Table 1. WHO 2017 classification of AML patients (Arber et al, Blood, 2016).

PATIENT WHO 2017 CLASSIFICATION
1 AML with minimal differentiation
2 AML with myelodysplasia-related changes
3 AML with myelodysplasia-related changes
4 AML with recurrent genetic abnormalities (biallelic
mutations of CEBPA)
5 AML with recurrent genetic abnormalities (NPM1 mutated)
6 AML with recurrent genetic abnormalities (NPM1 mutated)
7 AML with recurrent genetic abnormalities (NPM1 mutated)
8 AML with recurrent genetic abnormalities (NPM1 mutated)
9 AML with recurrent genetic abnormalities (NPM1 mutated)
10 AML with recurrent genetic abnormalities,
t(8;21)(922;922.1);RUNX1-RUNX1T1
11 AML, NOS
12 AML, NOS, Pure erythroid leukemia
13 AML, NOS, with maturation
14 AML, NOS, without maturation
15 AML, NOS, without maturation
16 Therapy-related myeloid neoplasm
17 Therapy-related myeloid neoplasm
18 Therapy-related myeloid neoplasm
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Supplementary Table 2. Genes and genomic regions included in the NGS panel design.

CHROMOSOME
GENES LOCATION COVERED REGION
ASXL1 20q11.21 Full exonic region
ATM 11g22.3 Full exonic region
BCOR Xpll.4 Full exonic region
BCORL1 Xq26.1 Full exonic region
CALR 19p13.13 Exon 9
CBL 11g23.3 Full exonic region
CEBPA 19g13.11 Full exonic region
CHEK2 22g12.1 Full exonic region
CSF3R 1p34.3 Full exonic region
CSNK1A1 5q32 Full exonic region
CUx1 7922.1 Full exonic region
DDX41 5¢g35.3 Full exonic region
DLEU7 13q14.3 Full exonic region
DNMT3A 2p23.3 Full exonic region
EGR1 5qg31.2 Full exonic region
ETV6 12p13.2 Full exonic region
EZH2 7936.1 Full exonic region
FLT3 13q12.2 Full exonic region
GATA2 3g21.3 Full exonic region
IDH1 2934 Exon 4
IDH2 15026.1 Exon 4
JAK2 9p24.1 Full exonic region
KIT 4912 Exon 17
KMT2A 11g23.3 Full exonic region
KRAS 12p12.1 Full exonic region
MPL 1p34.2 Full exonic region
NF1 17q11.2 Full exonic region
NPM1 5¢g35.1 Full exonic region
NRAS 1p13.2 Full exonic region
PHF6 Xq26.2 Full exonic region
PPM1D 17q23.2 Full exonic region
PRPF8 17p13.3 Full exonic region
PTPN11 12g24.13 Full exonic region
RAD21 8q24.11 Full exonic region
RUNX1 21g22.12 Full exonic region
SETBP1 18qg12.3 Full exonic region
SF3B1 2g33.1 Exons 14,15,16
SH2B3 12g24.12 Full exonic region
SRSF2 17925.1 Full exonic region
STAG2 Xq25 Full exonic region
TET2 4924 Full exonic region
TNFSF11 13g14.11 Full exonic region
TP53 17p13.1 Full exonic region
TP53RK 20913.12 Full exonic region
TP53TG5 20913.12 Full exonic region
U2AF1 21922.3 Full exonic region
wri1 11p13 Full exonic region
ZRSR2 Xp22.2 Full exonic region
Polymorphic region close to EGR1 5qg31.2 chr5:137805574-137805662
Polymorphic region in locus D75486 (1) 7q93.1 chr7:115814732-115815082
Polymorphic region in locus D75486 (2) 7q3.1 chr7:115825276-115825301
Polymorphic region in locus D75486 (3) 7q93.1 chr7:115900252-115900830
Polymorphic region in locus D75486 (4) 7q3.1 chr7:115948439-115949024
Polymorphic region in locus D75486 (5) 793.1 chr7:115953508-115953582
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OLIGOMONOCYTIC AND OVERT CHRONIC MYELOMONOCYTIC LEUKEMIA
SHOW SIMILAR CLINICAL, GENOMIC AND IMMUNOPHENOTYPIC
FEATURES

Xavier Calve'”, Nieves Garcia-Gisbert>®", Ivonne Parraga®, loan Gibert?, Lourdes Florensa!, Marcic

Andrade-Campos®, Brayan Merchan®, Sara Garcia-Avila®, Sara Montesdeaca!, Concepcién Fernandez-
Rodriguez?, Marta Salide®, Anna Puiggros®, Blanca Espinet®, Luis Colomo®?, David Roman-Brave!, Beatriz
Bellosillo®3, Ana Ferrer3, Leonor Arenillas!

SUPPLEMENTAL DATA
Morphological Studies

At least, two bone marrow and one peripheral blood May-Griinwald-Giemsa-stained smears
were used for conducting the morphologic analysis. In addition, a Prussian blue-stained bone
marrow smear was used for assessing the percentage of ring sideroblasts. The WHO 2017
proposals for evaluating the morphological diagnosis of myelodysplastic syndrome and chronic
myelomonocytic leukemia were followed strictly. As recommended, peripheral blood and
bone marrow differential counts were performed on at least 200 and 500 cells, respectively.
Following the 2017 WHO recommendations, the threshold used for considering a myeloid cell
line as dysplastic was the presence of 210% abnormal cells in the corresponding myeloid
lineage. For the evaluation of dysplasia, at least 200 neutrophils, 200 erythroblasts, and 30
megakaryocytes were assessed in bone marrow. Multilineage dysplasia was defined by
dysplasia involving two or more lineages. Morphological evaluation of monocytes and their
precursors was made following the current consensus document?, allowing the differentiation
of 4 subtypes: monoblast, promonocyte, immature monocyte, and mature monocyte. As
currently recommended by the Spanish Guidelines for the diagnosis and treatment of
myelodysplastic syndromes and chronic myelomonocytic leukemia, bone marrow biopsy was
conducted only in those cases where fibrosis, hypoplastic myelodysplastic syndromes, or
idiophatic cytopenias of undetermined significance were suspected.

1. Goasguen JE, Bennett JM, Bain BJ, et al. Morphological evaluation of monocytes and
their precursors. Haematologica. 2009;94(7):994-997.

Conventional Cytogenetic Studies

Cytogenetic analyses were performed on G-banded chromosomes obtained from 24h
unstimulated bone marrow cultures. When possible, at least 20 metaphases per sample were
studied. Karyotypes were described according to the International System for Human
Cytogenetic Nomenclature.

Next-Generation Sequencing

The DNA obtained from total PB or BM was quantified by Qubit fluorometer (Thermo Fisher
Scientific, Carlsbad, USA). 40 ng of DNA were required for library preparation. Targeted
amplicon libraries {QlAseq Custom DNA Panels, Qiagen, Hilden, Germany) were prepared using
a custom panel covering the full exonic regions of 25 genes associated with myeloid
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malignancies (ASXL1, CALR, CBL, CSF3R, DNMT3A, ETV6, EZH2, IDH1, IDH2, JAK2, KiT, KRAS,
MPL, NRAS, PRPF8, RUNX1, SETBP1, SF3B1, SH2B3, SRSF2, STAG2, TET2, TP53, U2AF1, ZR5R2).
Library preparation incorporated molecular barcoding technology to tag individual DNA
molecules, which enables variant detection with high confidence by avoiding false positives,
PCR artifacts and library bias. Libraries were sequenced with 2x150-bp paired-end reads using
either MiSeq or NextSeq {lllumina, San Diego, CA, USA) with a 2000x minimum coverage.

Sequencing files were processed using the GeneGlobe Data Analysis Center {Qiagen) for FASTQ
trimming, alignment to the reference genome and generation of variant calling files (.vcf)
(smCounter2, Qiagen). The obtained variants were then annotated and classified using
llumina VariantStudio 3.0 software according to genomic databases (GenomAD, Varsome,
cBioPortal, dbSNP, COSMIC, My Cancer Genome, Cancer Genome Interpreter) and evidence of
pathogenicity in the literature. Variants were classified into five groups: benign, likely benign,
unknown significance, likely pathogenic and pathogenict’. Only variants classified as
pathogenic or likely pathogenic were included in this study. The limit of detection established
for variant detection was 2% variant allele frequency (VAF). In cases with low VAF, variants
were confirmed visually using the Integrative Genomics Viewer {IGV) v2.4 software,

1. Palomo L, Ibafiez M, Abaigar M, et al. Spanish Guidelines for the use of targeted deep
sequencing in myelodysplastic syndromes and chronic myelomonocytic leukaemia. Br.
J. Haematol. 2020;188(5):605-622.

2. Li MM, Datto M, Duncavage EJ, et al. Standards and Guidelines for the Interpretation
and Reporting of Sequence Variants in Cancer: A Joint Consensus Recommendation of
the Association for Molecular Pathology, American Society of Clinical Oncology, and
College of American Pathologists. J Mof Diagn. 2017;19(1):4-23.
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Flow cytometry analysis of monocyte subsets in peripheral blood

Multiparametric flow cytometry analysis of monocyte subsets was performed on whole
peripheral blood collected on EDTA. Based on Euroflow Consortium recommendations we
follow the stain-lyse-wash procedure with FACS Lysing Solution (BD Biosciences, CA, USA). Cell
surface staining of 2 x 10° cells was performed and at least 500,000 total events were acquired
per tube (FACS Canto Il, BD Biosciences). A 4-color experimental panel with five tubes was run
for all samples. Tube 1: CD14 (FITC; clone M®PY), CD16 (PE; clone B73.1), CD45 (PerCP-Cy5.5;
clone 2D1), CD33 (APC; clone P67.6); tube 2: CD&4 (FITC; clone 10.1), CD56 (PE; clone
NCAM16.2), HLA-DR {PerCP-Cy5.5; clone G46-6), CD33 (APC; clone P&7.6); tube 3: CD2 {FITC;
clone §5.2), CD7 (PE; clone M-T701), CD45 {PerCP-Cy5.5; clone 2D1)}, CD33 (APC; clone P67.6);
tube 4: CD56 (FITC; clone NCAM16.2), CD123 (PE; clone 9F5), HLA-DR {PerCP-Cy5.5; clone G46-
6), CD45 (APC; clone 2D1); tube 5: CD2 (FITC; clone S5.2), CD14 (PE; clone M@P9), HLA-DR
{PerCP-Cy5.5; clone G46-6), CD33 (APC; clone P&7.6) (all antibodies from BD Biosciences, San
Jose, CA). Analysis was performed with Infinicyt version 1.7 software {Cytognos SL).

Briefly, we excluded doublets (FSC-A/FSC-H dot plot), debris (FSC/SSC and CD45/SSC dot plots)
and NK-cells (CD16+, CD33-, and FSC/SSC lymphocyte-gate). A proper strategy for excluding
NK-cells is crucial, since some of these may be difficult to differentiate from the nonclassical
monocyte subset (CD14- or dim/CD16+) (Supplemental Figure 1la). For this purpose, we
selected the CD16-B73.1 antibody since this binds to CD16-positive neutrophils with lower
intensity when compared with some other CD16-specific antibodies (e.g.: 3G8, VEP13, NKP15,
G022)%. By using this, the CD16 positive populations of monocytes and NK-cells are better
distinguished from neutrophils. The monocyte gate was determined based on a CD45 vs SSC
plot and CD33 vs SSC plot. Since nonclassical monocytes show dimmer CD33 and brighter CD45
expression than the rest of monocytes, it is important to draw a wide gate on CD33 vs SSC plot
to avoid the loss of this population (Supplemental Figure 1b). Next, as in Selimoglu-Buet et al,
CD14- or dim/CD16- cells were excluded (mainly myeloid dendritic cells are removed in this
step) and finally, the resulting monocyte population was assessed for CD14 and CD16
expression. By this method, we were able to establish the percentage of classical monocytes
(MO1: CD14+/CD16-), intermediate monocytes (MO2: CD14+/CD16+), and nonclassical
monocytes (MO3: CD14- or dim/CD16+) from the total monocyte population (Supplemental
Figure 1c). In addition, we assessed the expression of CD56 (Supplemental Figure 1c), CD7 and
€CD2 in monocytes (cutoff positivity = 20%). The fifth tube of our protocol was especially
designed to quantify myeloid dendritic cells {CD33+ bright, HLA-DR+ bright, CD14-, CD2+). To
properly assess CD2 expression in monocytes, myeloid dendritic cells must be removed, since
these are CD33+ bright, like monocytes, and express CD2 (Supplemental Figure 1d). The fourth
tube was designed to quantify plasmocytoid dendritic cells and to evaluate CD56 expression on
these (Supplemental Figure 1e).

1. Perussia B, Trinchieri G, Jackson A, et al. The Fc receptor for 1gG on human natural
killer cells: phenotypic, functional, and comparative studies with monoclonal
antibodies. J immunof. 1984 Jul;133(1):180-9.
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Supplemental Figure 1. Gating strategy used to identify monocyte subsets in peripheral blood
and to assess CD56 and CD2 expression in monocytes {a-d). Gating strategy used to identify
myeloid dendritic cells (mDCs) in peripheral blood (d). Gating strategy used to identify
plasmocytoid dendritic cells (pDCs) in peripheral blood (e).
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Figure 1d
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Supplemental Figure 2. Lollipop figures of mutations detected in TET2, SRSF2, ASXL1, SF3B1,
ZRSR2, NRAS, KRAS, and DNMT3A genes in 40 OM-CMML and 53 CMML patients.
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Supplemental Table 1. Comparison of the variant allele frequencies (VAFs) of the different
somatic mutations assessed between 40 OM-CMML and 53 CMML patients. The table shows
the median VAFs and the ranges of the different gene mutations analyzed. The only gene that
showed a significantly different VAF when comparing both groups of patients was DNMT3A

{P=0.024).
OM-CMML CMML Pvalue
ASXL1 32.7 (12-44.6) 36.9 (11.3-48.5) 0.581
CALR - - -
CBL 2.8 37.6 (1.5-87.2) 0.545
CSF3R . - -
DNMT3A 40.5 (6.7-48.2) 3(2-4.7) 0.024
ETV6 43.9 46.6 1
FZH2 68.2 (48.5-87.9) 11.9 0.667
IDH1 24 (20.6-27.5) - -
IDH2 12.2 (10.2-39.7) 43.9 (1.9-48.5) 0.400
JAK2 9.4 (3.6-15.3) 7.8 (2.7-36.6) 0.857
KIT - -
KRAS 3.4 29 (12.9-43.3) 0.286
MPL 8.2
NRAS 22.8 11.6 (2.6-19.1) 0.286
RUNX1 29.7 (2.2-37.1) 34.1(6.3-37.7) 0.841
PRPF8 - 44 -
SETBP1 10.3 (4.7-16) 23.4 (2.7-44.2) 1
SF3B1 41.3 (5.4-49) 39.8 {7.3-49) 0.882
$H2B3 39.6 {30.7-48.5) 20.1 (14.8-35.2) 0.400
SRSF2 40.3 (2.1-46.1) 40.9 (9.6-52.5) 0.392
STAG2 56.8 (17.8-95.7) - -
TET2 40.8 (16.6-95.4) 40.4 (2.4-82.9) 0.722
TP53 27.9 14.3 (2.9-71.5) 0.800
U2AF1 47.7 47.4 (43.8-50.6) 1
ZRSR2 61(9.9-91.7) 38.2 (8.9-73.9) 0.368

Supplemental Table 2. Proportion of patients showing CD56 and/or CD2 positivity in
monocytes (220% antigenic expression) among the different groups of patients analyzed (OM-
CMML, CMML, MDS, MPN with monocytosis, and reactive monocytosis).

OM-CMML CMIML MDS MPN Reactive P value
monocytosis
CD56+ 61.5% 63% 8.7% 20% 3.9% < 0.001
(24/39) (34/54) (2/23) (3/15) (4/102)
CD2+ 28.2% 35.2% 0 6.7% 0 <0.001
(11/39) (19/54) (1/15)
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Supplemental Table 3. Influence of the different mutations assessed in the proportion of OM-
CMML patients showing MO1 percentage >94%. A significantly higher proportion of OM-
CMML patients with TET2 mutation presented MO1 percentage >94% (P=0.004). This was the
only one of the assessed mutations that permitted the splitting of the OM-CMML series into
two groups, which showed a significant difference in the proportion of patients with MO1
percentage >94%.

ASXLImut ASXLIwt €BLmut CBLlwt DNMT3Amut | DNMT3Awt ETV6mut ETVEwt
MQ1 >94% 83.3% 75.8% 100% 76.3% 83.3% 75.8% 100% 76.3%
[5/6) {25/33) {1/1) {29/38) (5/6) (25/33) (1/1) (29/38)
MO1 <94% 16.7% 24 2% 0 23.7% 16.7% 24 2% 0 237%
[1/6) (8/33) (9/38) (1/6) 18/33) (9/38)

EZH2mut EZH2wt IDHImut IDHIWt 1DHZmut IDH2wt JAKZmut JAK2wt
MO1 >94% 100% 75.7% 50% 78.4% 66.7% 77.8% 50% 78.0%
12/2) {28/37) {1/2) {29/37) (2/3) (28/36) (1/2) (29/37)
MO1 <94% ] 24.3% 50% 21.6% 33.3% 22.2% 50% 21.6%
(9/37} {1/2) (8/37) (1/3) {8/36) (1/2) (8/37)

KRASmut KRASwt NRASMUt NRASWt RUNXImut RUNXIwt SETBPImut | SETBPIwt
MO1 >94% 100% 76.3% 100% 76.3% 80% 76.5% 100% 75.7%
11/1) {29/38) (1/1) {29/38) (4/5) (26/33) (2/2) (28/37)
MO1 <94% ] 23.7% 0 23.7% 20% 235% 0 24.3%
(5/38) (9/38) (1/5) {8/34) (5/37)

SF3BImut SF3BIWL SH2B3mut SH2B3wt SRSF2mut SRSF2wt STAG2mut STAG2wt
MO1 >94% 81.8% 75% 50% 78.4% 83.3% 74.1% 50% 78.4%
{9/11) {21/28) (1/2) {29/37) (10/12) (20/27) (1/2) (29/37)
MO1 s94% 18.2% 25% 50% 21.6% 16.7% 25.9% 50% 21.6%
(2/11) (7/28) (1/2) (8/37) {2/12) {7/27) (1/2) (8/37)

TET2mut TET2wt TP53mut TPR3wt U2AFImut U2AFIwt ZRSRZmut ZRSR2wt
MO1 »54% 898.7% 40% 100% 76.3% 100% 76.3% 62.5% 80.6%
(26/29) {a/10) {1/1) [29/38) (1/1) {20/38) {5/8) (25/31)
MO1 £94% 10.3% 60% [1] 23.7% 1] 23.7% 37.5% 19.4%,
{3/29) {6/10) (9/38) {9/38) (3/8) {6/31)
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Supplemental Data 3. Genetic variants detected by NGS (HGVS nomenclature)

in OM-CMML and CMML patients.

VARIANT
PACIENT ALLELE

D PHENOTYPE GENE MUTATION PROTEIN CONSEQUENCE FREQUENCY TYPE CONSEQUENCE

(VAF)
1 OM-CMML SF3B1 NM_012433.2:c.1986C>G NP_036565.2:p.His662GIn 45.23 snv missense_variant
1 OM-CMML DNMT3A NM_175629.2:¢.1015-2A>G 42.23 snv. splice_acceptor_variant
2 OM-CMML ZRSR2 NM_005089.3:c.320T>G NP_005080.1:p.Leul07Ter 54.47 snv stop_gained
2 OM-CMML TET2 NM_001127208.2:c.4781delC NP_001120680.1:p.Pro1594LeufsTer2 37.67 deletion frameshift_variant
2 OM-CMML TET2 NM_001127208.2:c.1835delC NP_001120680.1:p.Pro612LeufsTer27 37.41 deletion frameshift_variant
3 OM-CMML ZRSR2 NM_005089.3:¢.827+1G>A 89.28 snv. splice_donor_variant
3 OM-CMML TET2 NM_001127208.2:c.4393C>T NP_001120680.1:p.Arg1465Ter 45.45 snv stop_gained
3 OM-CMML ASXL1 NM_015338.5:¢.2740G>T NP_056153.2:p.Glu914Ter 44.65 snv. stop_gained
3 OM-CMML TET2 NM*OOI1271?2:6?:?;;?9dEIAAAGG NP_001120680.1:p.Glu478ValfsTer6 38.42 deletion frameshift_variant
4 OM-CMML TET2 NM_001127208.2:c.4126G>T NP_001120680.1:p.Asp1376Tyr 41.43 snv. missense_variant
4 OM-CMML TET2 NM_001127208.2:c.1648C>T NP_001120680.1:p.Arg550Ter 40.81 snv. stop_gained
5 OM-CMML STAG2 NM_001042749.1:c.2542C>T NP_001036214.1:p.GIn848Ter 95.71 snv stop_gained
5 OM-CMML ZRSR2 NM_005089.3:c.789delA NP_005080.1:p.Glu263AspfsTer4 91.72 deletion frameshift_variant
5 OM-CMML EZH2 NM_004456.4:c.479delA NP_004447.2:p.Asp160ValfsTer7 87.92 deletion frameshift_variant
5 OM-CMML ASXL1 NM_015338.5:¢.1934dupG NP_056153.2:p.Gly646TrpfsTer12 26.53 insertion frameshift_variant
5 OM-CMML NRAS NM_002524.4:¢.35G>C NP_002515.1:p.Gly12Ala 22.79 snv. missense_variant
5 OM-CMML TET2 NM_001127208.2:c.1246_1247insGAACC NP_001120680.1:p.Pro416ArgfsTer13 20.48 insertion frameshift_variant
5 OM-CMML NRAS NM_002524.4:c.38G>A NP_002515.1:p.Gly13Asp 9.93 snv missense_variant
5 OM-CMML RUNX1 NM_001754.4:c.292delC NP_001745.2:p.Leu98SerfsTer24 6.86 deletion frameshift_variant
5 OM-CMML KRAS NM_033360.2:c.182A>G NP_203524.1:p.GIn61Arg 3.4 snv missense_variant
6 OM-CMML STAG2 NM_001042749.1:c.2265+1G>A 17.89 snv. splice_donor_variant
7 OM-CMML SF3B1 NM_012433.2:¢.2098A>G NP_036565.2:p.Lys700Glu 49.02 snv. missense_variant
7 OM-CMML EZH2 NM_004456.4:c.2233G>A NP_004447.2:p.Glu745Lys 48.5 snv. missense_variant
7 OM-CMML TET2 NM_001127208.2:c.2461C>T 46.6 snv stop_gained
7 OM-CMML TET2 NM_001127208.2:¢.4115C>T 46 snv. missense_variant
7 OM-CMML TP53 NM_000546.5:¢.1024C>T NP_000537.3:p.Arg342Ter 27.86 snv. stop_gained
8 OM-CMML TET2 NM_001127208.2:¢.4100C>T NP_001120680.1:p.Pro1367Leu 94.56 snv. missense_variant
8 OM-CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 47.39 snv missense_variant
9 OM-CMML TET2 NM_001127208.2:¢.3575G>T NP_001120680.1:p.Gly1192Val 95.43 snv missense_variant
9 OM-CMML RUNX1 NM_001754.4:c.127_128insGCGGC NP_001745.2:p.Pro43ArgfsTer7 37.07 insertion frameshift_variant
9 OM-CMML CBL NM_005188.3:c.1211G>A NP_005179.2:p.Cys404Tyr 2.83 snv missense_variant
11 OM-CMML U2AF1 NM_006758.2:¢c.470A>C NP_006749.1:p.GIn157Pro 47.67 snv. missense_variant
11 OM-CMML ETV6 NM_001987.4:c.33+1G>C 43.93 snv splice_donor_variant
11 OM-CMML ASXL1 NM_015338.5:¢.2122C>T NP_056153.2:p.GIn708Ter 42.01 snv. stop_gained
11 OM-CMML ASXL1 NM_015338.5:c.2535dupC NP_056153.2:p.Ser846GInfsTerS 41.42 insertion frameshift_variant
12 OM-CMML ZRSR2 NM_005089.3:¢.812A>G NP_005080.1:p.Tyr271Cys 67.65 snv missense_variant
13 OM-CMML TET2 NM_001127208.2:c.3412C>T NP_001120680.1:p.GIn1138Ter 33.33 snv stop_gained
13 OM-CMML JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.Val617Phe 15.28 snv missense_variant
13 OM-CMML TET2 NM_001127208.2:c.4753_4754delAC NP_001120680.1:p.Thr1585PhefsTer28 14.77 deletion frameshift_variant
13 OM-CMML IDH2 NM_002168.2:c.419G>A NP_002159.2:p.Arg140GIn 12.21 snv missense_variant
14 OM-CMML TET2 NM_001127208.2:c.3893G>A NP_001120680.1:p.Cys1298Tyr 16.57 snv missense_variant
14 OM-CMML SF3B1 NM_012433.2:¢.1873C>T NP_036565.2:p.Arg625Cys 16.36 snv missense_variant
15 OM-CMML TET2 NM_001127208.2:c.3410-2A>G 42.09 snv splice_acceptor_variant
15 OM-CMML TET2 NM_001127208.2:c.3812dupG NP_001120680.1:p.Cys1271TrpfsTer29 40.81 insertion frameshift_variant
16 OM-CMML RUNX1 NM_001754.4:c.676_677delAG NP_001745.2:p.Ser226Ter 29.73 deletion frameshift_variant
16 OM-CMML TET2 NM7001127208.2:c.:65672GGOdupCAGG NP_001120680.1:p.Glu887AspfsTer36 18.97 insertion frameshift_variant
17 OM-CMML TET2 NM_001127208.2:c.4615dupC NP_001120680.1:p.GIn1539ProfsTer39 36.12 insertion frameshift_variant
17 OM-CMML SRSF2 NM_003016.4:c.283C>A NP_003007.2:p.Pro95Thr 2.14 snv missense_variant
18 OM-CMML SF3B1 NM_012433.2:¢.2342A>G NP_036565.2:p.Asp781Gly 41.26 snv missense_variant
18 OM-CMML TET2 NM_001127208.2:¢.3866G>A NP_001120680.1:p.Cys1289Tyr 10.9 snv missense_variant
18 OM-CMML DNMT3A | NM_175629.2:c.939_945dupGTGGATG NP_783328.1:p.Thr316ValfsTer10 34.15 insertion frameshift_variant
19 OM-CMML SH2B3 NM_005475.2:¢.685_691delGGCCCCG NP_005466.1:p.Gly229MetfsTer47 30.72 deletion frameshift_variant
19 OM-CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 24.38 snv missense_variant
19 OM-CMML TET2 NM_001127208.2:c.4042C>T NP_001120680.1:p.GIn1348Ter 23.99 snv stop_gained
19 OM-CMML TET2 NM*OOI127208%2(::2'5:/8&?386“8“%6CrGCC NP_001120680.1:p.Glu283AlafsTer7 19.68 deletion frameshift_variant
19 OM-CMML DNMT3A NM_175629.2:c.709C>T NP_783328.1:p.GIn237Ter 6.65 snv stop_gained
20 OM-CMML | DNMT3A NM_175629.2:c.1924G>T NP_783328.1:p.Gly642Ter 182 snv stop_gained
20 OM-CMML SF3B1 NM_012433.2:c.1876A>G NP_036565.2:p.Asn626Asp 47.83 snv missense_variant
20 OM-CMML SETBP1 NM_015559.2:c.2602G>A NP_056374.2:p.Asp868Asn 4.69 snv missense_variant
21 OM-CMML IDH1 NM_005896.2:c.394C>T NP_005887.2:p.Arg132Cys 27.5 snv missense_variant
21 OM-CMML ASXL1 NM_015338.5:¢.1900_1922del23 NP_056153.2:p.Glu635ArgfsTer15 12.01 deletion frameshift_variant
22 OM-CMML ZRSR2 NM_005089.3:c.868C>T NP_005080.1:p.Arg290Ter 52.92 snv stop_gained
22 OM-CMML TET2 NM_001127208.2:¢.4150G>C NP_001120680.1:p.Asp1384His 32.32 snv missense_variant
22 OM-CMML ZRSR2 NM_005089.3:c.376C>T NP_005080.1:p.Arg126Ter 4.58 snv stop_gained
23 OM-CMML DNMT3A NM_175629.2:¢.2201T>C NP_783328.1:p.Phe734Ser 38.7 snv missense_variant
24 OM-CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 37.57 snv missense_variant
24 OM-CMML TET2 NM_001127208.2:c.1771C>T NP_001120680.1:p.GIn591Ter 35.1 snv stop_gained
24 OM-CMML RUNX1 NM_001754.4:c.1097delT NP_001745.2:p.lle366ThrfsTer228 34.45 deletion frameshift_variant
24 OM-CMML ASXL1 NM_015338.5:¢.1926dupA NP_056153.2:p.Gly643ArgfsTer15 32.74 insertion frameshift_variant
25 OM-CMML SF3B1 NM_012433.2:c.1866G>T NP_036565.2:p.Glu622Asp 27.27 snv. missense_variant
25 OM-CMML TET2 NM_001127208.2:¢.369dupT NP_001120680.1:p.Asn124Ter 22.28 insertion frameshift_variant
25 OM-CMML IDH2 NM_002168.2:c.419G>A NP_002159.2:p.Arg140GIn 10.19 snv. missense_variant
25 OM-CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 9.02 snv. missense_variant
26 OM-CMML TET2 NM_001127208.2:c.2257A>T NP_001120680.1:p.Lys753Ter 56.72 snv. stop_gained
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26 OM-CMML TET2 NM_001127208.2:c.3899T>G NP_001120680.1:p.Phe1300Cys 21.18 snv. missense_variant
26 OM-CMML SF3B1 NM_012433.2:¢.2098A>G _ .2:p.Lys700Glu 5.43 snv missense_variant
27 OM-CMML DNMT3A NM_175629.2:c.703delG NP_783328.1:p.Glu235SerfsTer81 46.05 deletion frameshift_variant
27 OM-CMML TET2 NM_001127208.2:¢.4668_4671delTGTC NP_001120680.1:p.Val1557ThrfsTer13 44.56 deletion frameshift_variant
27 OM-CMML SF3B1 NM_012433.2:¢.2098A>G NP_036565.2:p.Lys700GIu 44.06 snv. missense_variant
27 OM-CMML SETBP1 NM_015559.2:c.2608G>A NP_056374.2:p.Gly870Ser 15.96 snv. missense_variant
28 OM-CMML TET2 NM_001127208.2:c.3985delC NP_001120680.1:p.Leu1329CysfsTer34 49.15 deletion frameshift_variant
29 OM-CMML SH2B3 NM_005475.2:c.622G>C NP_005466.1:p.Glu208GIn 48.49 snv. missense_variant
29 OM-CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 44.38 snv. missense_variant
29 OM-CMML IDH2 NM_002168.2:c.419G>A NP_002159.2:p.Arg140GIn 39.69 snv. missense_variant
29 OM-CMML SH2B3 NM_005475.2:¢.1283_1284delAC NP_005466.1:p.His428ProfsTer27 22.63 deletion frameshift_variant
29 OM-CMML ASXL1 NM_015338.5:c.1552G>T NP_056153.2:p.Glu518Ter 22.05 snv. stop_gained
29 OM-CMML JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.Val617Phe 3.6 snv. missense_variant
30 OM-CMML TET2 NM_001127208.2:c.822delC NP_001120680.1:p.Asn275llefsTer18 52.27 deletion frameshift_variant
30 OM-CMML SRSF2 NM_003016.4:¢.284C>T NP_003007.2:p.Pro95Leu 42.29 snv. missense_variant
30 OM-CMML TET2 NM_001127208.2:c.3384T>A NP_001120680.1:p.Tyr1128Ter 8.64 snv. stop_gained
30 OM-CMML TET2 NM_001127208.2:c.2400_2401delTA NP_001120680.1:p.His800GInfsTer15 2.86 deletion frameshift_variant
31 OM-CMML SF3B1 NM_012433.2:c.1986C>G NP_036565.2:p.His662GIn 36.74 snv missense_variant
32 OM-CMML SF3B1 NM_012433.2:¢c.2098A>G NP_036565.2:p.Lys700Glu 42.29 snv missense_variant
32 OM-CMML TET2 NM_001127208.2:c.1873delA NP_001120680.1:p.Thr625HisfsTer14 41.95 deletion frameshift_variant
32 OM-CMML TET2 NM_001127208.2:c.5562dupT NP_001120680.1:p.Leu1855SerfsTer4 12.08 insertion frameshift_variant
33 OM-CMML SRSF2 NM_003016.4:¢.284C>T NP_003007.2:p.Pro95Leu 403 snv. missense_variant
33 OM-CMML TET2 NM_001127208.2:c.4537G>C NP_001120680.1:p.Glu1513GIn 39.29 snv missense_variant
33 OM-CMML TET2 NM_001127208.2:c.2279_2280delTT NP_001120680.1:p.Phe760SerfsTer8 37.62 deletion frameshift_variant
34 OM-CMML TET2 NM_001127208.2:c.2373T>A NP_001120680.1:p.Tyr791Ter 41.84 snv. stop_gained
34 OM-CMML TET2 NM_001127208.2:c.3732_3733delCT NP_001120680.1:p.Tyr1245LeufsTer22 41.07 deletion frameshift_variant
34 OM-CMML ZRSR2 NM_005089.3:c.771+1G>C 30.92 snv splice_donor_variant
35 OM-CMML SRSF2 NM_003016.4:¢.130T>C NP_003007.2:p.Tyr44His 31.07 snv. missense_variant
35 OM-CMML TET2 NM_001127208.2:c.4020dupT NP_001120680.1:p.Ala1341CysfsTer3 31.01 insertion frameshift_variant
35 OM-CMML TET2 NM_001127208.2:c.3308_3309del AT NP_001120680.1:p.Asn1103llefsTer26 29.2 deletion frameshift_variant
35 OM-CMML ZRSR2 NM_005089.3:c.709delC NP_005080.1:p.Leu237Ter 9.89 deletion frameshift_variant
36 OM-CMML TET2 NM_001127208.2:¢.2671C>T NP_001120680. GIn891Ter 45.34 snv. stop_gained
36 OM-CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 44 snv. missense_variant
36 OM-CMML IDH1 NM_005896.2:¢.394C>T NP_005887.2:p.Arg132Cys 20.59 snv. missense_variant
36 OM-CMML TET2 NM_001127208.2:c.1930C>T NP_001120680.1:p.GIn644Ter 18.48 snv stop_gained
36 OM-CMML TET2 NM7001127%rl:58(.32c:%5c5;)626$(5318delGGGTG NP_001120680.1:p.GIn1834HisfsTer6 438 deletion frameshift_variant
36 OM-CMML RUNX1 NM_001754.4:c.1174C>T NP_001745.2:p.GIn392Ter 2.15 snv. stop_gained
37 OM-CMML TET2 NM_001127208.2:c.4112T>A NP_001120680.1:p.Val1371Asp 47.53 snv missense_variant
37 OM-CMML TET2 NM_001127208.2:¢c.3594+2T>C 46.38 snv. splice_donor_variant
37 OM-CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 42.89 snv missense_variant
38 OM-CMML ZRSR2 NM_005089.3:c.1252delC NP_005080.1:p.His418ThrfsTer? 88.89 deletion frameshift_variant
39 OM-CMML TET2 NM_001127208.2:c.5273C>G NP_001120680.1:p.Ser1758Ter 56.95 snv stop_gained
39 OM-CMML SRSF2 NM_003016.4:c.284C>G NP_003007.2:p.Pro95Arg 46.11 snv. missense_variant
40 OM-CMML TET2 NM_001127208.2:c.5647A>C NP_001120680.1:p.Thr1883Pro 39.77 snv missense_variant
40 OM-CMML SF3B1 NM_012433.2:¢.1873C>T NP_036565.2:p.Arg625Cys 37.85 snv missense_variant
41 CMML TET2 NM_001127208.2:c.3570delT NP_001120680.1:p.GIn1191ArgfsTer35 43.6 deletion frameshift_variant
41 CMML SF3B1 NM_012433.2:¢.2098A>G NP_056374.2:p.Lys700GIu 42.9 snv. missense_variant
41 CMML CBL NM_005188.3:¢.1211G>A NP_005179.2:p.Cys404Tyr 40.5 snv missense_variant
41 CMML TET2 NM_001127208.2:c.4570C>T NP_001120680.1:p.GIn1524Ter 40 snv stop_gained
41 CMML ASXL1 NM_015338.5:c.1900_1922del23 NP_056153.2:p.Glu635ArgfsTer15 27.45 deletion frameshift_variant
42 CMML CBL NM_005188.3:¢.1255T>A NP_005179.2:p.Cys419Ser 46.34 snv. missense_variant
42 CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 45.67 snv missense_variant
42 CMML TET2 NM_001127208.2:c.3743T>G NP_001120680.1:p.Leu1248Arg 42.64 snv missense_variant
42 CMML ASXL1 NM_015338.5:c.2498_2499delGT NP_056153.2:p.Ser833ThrfsTer17 40.83 deletion frameshift_variant
42 CMML CBL NM_005188.3:¢.1618C>T NP_005179.2:p.Arg540Ter 34.86 snv stop_gained
43 CMML DNMT3A NM_175629.2:c.2663T>A NP_783328.1:p.L 4.65 snv missense_variant
14 CMML SF3B1 NM_012433.2:c.1873C>T NP_036565.2:p.Arg625Cys 40.84 snv missense_variant
44 CMML CBL NM_005188.3:c.826G>T NP_005179.2:p.Glu276Ter 2.87 snv stop_gained
15 CMML TET2 NM_001127208.2:¢.3954+1G>A 29.82 snv splice_donor_variant
45 CMML JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.Val617Phe 7.88 snv missense_variant
45 CMML TET2 NM_001127208.2:c.4977_4978dupTA NP_001120680.1:p.Arg1660llefsTer36 4.18 insertion frameshift_variant
46 CMML U2AF1 NM_006758.2:c.470A>G NP_006749.1:p.GIn157Arg 43.79 snv missense_variant
46 CMML RUNX1 NM_001754.4:c.602G>A NP_001745.2:p.Arg201GIn 37.71 snv missense_variant
46 CMML ASXL1 NM_015338.5:¢.1934dupG NP_056153.2:p.Gly646TrpfsTer12 28.35 insertion frameshift_variant
47 CMML CBL NM_005188.3:¢.1290_1292delGGT NP_005179.2:p.Val431del 87.16 deletion inframe_deletion
47 CMML ASXL1 NM_015338.5:¢.3359A>T NP_056153.2:p.Lys1120Met 48.48 snv missense_variant
47 CMML TET2 NM_001127208.2:c.3385delG NP_001120680.1:p.Asp1129IlefsTer8 45.57 deletion frameshift_variant
47 CMML TET2 NM_001127208.2:¢.3781C>T NP_001120680.1:p.Arg1261Cys 44.63 snv missense_variant
47 CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 10.86 snv missense_variant
47 CMML TET2 NM_001127208.2:¢.5079C>G NP_001120680.1:p.Tyr1693Ter 1.99 snv stop_gained
18 CMML SRSF2 NM_003016.4:c.284C>G NP_003007.2:p.Pro95Arg 52.54 snv missense_variant
48 CMML ASXL1 NM_015338.5:¢.1934dupG NP_056153.2:p.Gly646TrpfsTer12 33.33 insertion frameshift_variant
49 CMML SF3B1 NM_012433.2:c.1986C>G NP_036565.2:p.His662GIn 47.18 snv missense_variant
50 CMML ZRSR2 NM_005089.3:¢.91C>T NP_005080.1:p.Arg31Trp 73.94 snv missense_variant
50 CMML TET2 NM_001127208.2:c.331A>T NP_001120680.1:p.Lys111Ter 29.51 snv stop_gained
50 CMML SETBP1 NM_015559.2:¢.2959C>T NP_056374.2:p.Arg987Trp 2.95 snv missense_variant
51 CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 24.32 snv. missense_variant
51 CMML TET2 NM_001127208.2:c.2494delG NP_001120680.1:p.Val832PhefsTer9 20.28 deletion frameshift_variant
51 CMML TET2 NM_001127208.2:c.333A>T NP_001120680.1:p.Lys111Asn 17.32 snv. missense_variant
51 CMML TET2 NM_001127208.2:c.333delA NP_001120680.1:p.Lys111AsnfsTer2 17 deletion frameshift_variant
51 cMmL TET2 NM—Om1272?&@521‘2\?703“'“[66 NP_001120680.1:p.lle1230MetfsTer8 13.04 deletion frameshift_variant
52 CMML TET2 NM_001127208.2:c.1585dupT NP_001120680.1:p.Cys529LeufsTer38 24.09 insertion frameshift_variant
52 CMML TET2 NM_001127208.2:c.1236delT NP_001120680.1:p.Pro413HisfsTer14 19.73 deletion frameshift_variant

217




ANNEX II: SUPLEMETARY INFORMATION (OM-CMML IS A DISTINCTIVE SUBTYPE OF CMML)

53 CMML IDH2 NM_002168.2:c.419G>A NP_002159.2:p.Arg140GIn 48.46 snv. missense_variant
53 CMML U2AF1 NM_006758.2:c.470A>G NP_006749.1:p.GIn157Arg 47.41 snv. missense_variant
53 CMML ASXL1 NM_015338.5:¢.1934dupG NP_056153.2:p.Gly646TrpfsTer12 32.98 insertion frameshift_variant
53 CMML NRAS NM_002524.4:c.38G>A NP_002515.1:p.Gly13Asp 2.63 snv missense_variant
54 CMML TET2 NM_001127208.2:c.4618C>T NP_001120680.1:p.GIn1540Ter 45.1 snv. stop_gained

54 CMML CBL NM_005188.3:¢.1211G>A NP_005179.2:p.Cys404Tyr 36.6 snv. missense_variant
54 CMML ASXL1 NM_015338.5:¢.2338C>T NP_056153.2:p.GIn780Ter 15.5 snv. stop_gained

54 CMML EZH2 NM_004456.4:c.2216T>C NP_004447.2:p.Leu739Pro 11.9 snv. missense_variant
54 CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 9.61 snv. missense_variant
54 CMML CBL NM_005188.3:c.1246T>C NP_005179.2:p.Cys416Arg 8.8 snv missense_variant
55 CMML TET2 NM_001127208.2:c.2713_2716del NP_001120680.1:p.Asp905CysfsTer1l5 44.4 snv missense_variant
56 CMML SRSF2 NM_003016.4:c.284C>G NP_003007.2:p.Pro95Arg 26.11 snv. missense_variant
56 CMML TET2 NM_001127208.2:¢.5582G>T NP_001120680.1:p.Gly1861Val 25.97 snv. missense_variant
56 CMML TET2 NM_001127208 3812dupG Cys1271TrpfsTer29 15.64 insertion frameshift_variant
57 CMML TET2 NM_001127208.2:c.4909delC Leu1637TyrfsTer58 31.2 deletion frameshift_variant
57 CMML SF3B1 NM_012433.2:¢.2098A>G .Lys700GIu 30.2 snv missense_variant
57 CMML TET2 NM_001127208.2:c.2887C>T X 12.9 snv stop_gained

58 CMML TET2 NM_001127208.2:c.3640C>T NP_001120680.1:p.Arg1214Trp 48.23 snv missense_variant
58 cMML TET2 NM—°°1127208‘2:C'¢164—4165de'66'"5A NP_001120680.1:p.MetGln1388lleTer 20.02 mnp stop_gained

58 CMML TET2 NM_001127208.2:c.1876C>T NP_001120680.1:p.GIn626Ter 7.38 snv. stop_gained

59 CMML SF3B1 NM_012433.2:c.1986C>G NP_036565.2:p.His662GIn 7.31 snv missense_variant
59 CMML IDH2 NM_002168.2:¢.352C>T NP_002159.2:p.Pro118Ser 1.89 snv. missense_variant
60 CMML TET2 NM_001127208.2:c.3230dupA NP_001120680.1:p.His1077GInfsTer27 42.45 insertion frameshift_variant
60 CMML SH2B3 NM_005475.2:c.393delG NP_005466.1:p.Cys133AlafsTer64 35.23 deletion frameshift_variant
61 CMML IDH2 NM_002168.2:c.419G>A NP_002159.2:p.Arg140GIn 46.52 snv. missense_variant
61 CMML JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.Val617Phe 35.11 snv. missense_variant
62 CMML TET2 NM_001127208.2:c.5093delA NP_001120680.1:p.Asn1698ThrfsTer21 55.42 deletion frameshift_variant
62 CMML ASXL1 NM_015338.5:c.4180G>T NP_056153.2:p.Glu1394Ter 41.51 snv. stop_gained

62 CMML TET2 NM_001127208.2:c.3640C>T NP_001120680.1:p.Arg1214Trp 25.62 snv. missense_variant
62 CMML SH2B3 NM_005475.2:¢.1174C>T NP_005466.1:p.Arg392Trp 14.81 snv. missense_variant
62 CMML TET2 NM_001127208.2:c.3780delT NP_001120680.1:p.Arg1261AlafsTer5 12.14 deletion frameshift_variant
63 CMML TET2 NM_001127208.2:c.5456T>G NP_001120680.1:p.Leu1819Ter 31.93 snv stop_gained

63 CMML TET2 NM_001127208.2:c.943delT NP_001120680.1:p.Ser315ProfsTer32 30.95 deletion frameshift_variant
63 CMML CBL NM_005188.3:¢.2599C>T NP_005179.2:p.GIn867Ter 16.28 snv. stop_gained

63 CMML TET2 NM_001127208.2:¢.5618T>C NP_001120680.1:p.1le1873Thr 9.95 snv. missense_variant
63 CMML NRAS |_( NP_002515.1:p.Gly12Asp 8.1 snv missense_variant
64 CMML ASXL1 NM_015338.5:¢.1934dupG NP_056153.2:p.Gly646TrpfsTer12 36.29 insertion frameshift_variant
65 CMML TET2 NP_001120680.1:p.Asn836llefsTer4 78.9 deletion frameshift_variant
65 CMML CBL NM_005188.3:¢.1101_1103del p.GIn367_Tyr368delinsHis 42.6 deletion frameshift_variant
65 CMML RUNX1 NM_001754.4:c.167T>C NP_001745.2:p.LeuS6Ser 34.1 snv missense_variant
65 CMML TET2 NM_001127208.2:c.4138C>T NP_001120680.1:p.His1380Tyr 13.5 snv missense_variant
65 CMML TET2 NM_001127208.2:c.3928A>C NP_001120680.1:p.Lys1310GIn 5 snv missense_variant
66 CMML TET2 NM_001127208.2:c.4035T>G NP_001120680.1:p.Tyr1345Ter 29.64 snv stop_gained

66 CMML TET2 NM_001127208.2:c.822delC NP_001120680.1:p.Asn275llefsTer18 25.69 deletion frameshift_variant
66 CMML NRAS NM_002524.4:c.173C>T NP_002515.1:p.Thr58lle 4.85 snv. missense_variant
67 CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 41.48 snv missense_variant
67 CMML KRAS NM_033360.2:¢.437C>T NP_203524.1:p.Alal46Val 41.36 snv. missense_variant
67 CMML TET2 NM_001127208.2:c.3869C>G NP_001120680.1:p.Ser1290Ter 40.35 snv stop_gained

67 CMML JAK2 NM_004972.3:¢.1849G>T NP_004963.1:p.Val617Phe 14.41 snv missense_variant
68 CMML ZRSR2 NM_005089.3:c.575delA NP_005080.1:p.Asn192llefsTer46 54.55 deletion frameshift_variant
68 CMML TET2 NM_001127208.2:c.3892T>G NP_001120680.1:p.Cys1298Gly 38.3 snv missense_variant
68 CMML TET2 NM_001127208.2:c.4210C>T NP_001120680.1:p.Arg1404Ter 38.27 snv stop_gained

69 CMML ASXL1 NM_015338.5:c.1774C>T NP_056153.2:p.GIn592Ter 39.1 snv stop_gained

69 CMML CBL NM_005188.3:c.1111T>A NP_005179.2:p.Tyr371Asn 38.62 snv missense_variant
69 CMML TET2 NM_001127208.2:¢.5059C>T NP_001120680.1:p.GIn1687Ter 34.86 snv stop_gained

69 CMML TET2 NM_001127208.2:c.3273dupA NP_001120680.1:p.Pro1092ThrfsTer12 33.61 insertion frameshift_variant
70 CMML TET2 NM_001127208.2:¢.2191C>T NP_001120680.1:p.GIn731Ter 82.86 snv stop_gained

70 CMML TET2 NM_001127208.2:c.2190_2191insGACA NP_001120680.1:p.GIn731AspfsTer24 77.06 insertion frameshift_variant
70 CMML ASXL1 NM_015338.5:¢.2249_2250delCC NP_056153.2:p.Pro750ArgfsTer23 43.52 deletion frameshift_variant
71 CMML TET2 NM_001127208.2:¢.5140_5141delAA NP_001120680.1:p.Asn1714CysfsTer14 42.62 deletion frameshift_variant
72 CMML SF3B1 NM_012433.2:c.1996A>G NP_036565.2:p.Lys666Glu 45.46 snv missense_variant
72 CMML TET2 NM_001127208.2:c.2674C>T NP_001120680.1:p.GIn892Ter 32.59 snv stop_gained

72 CMML TP53 NM_000546.5:c.817C>T NP_000537.3:p.Arg273Cys 17.43 snv missense_variant
73 CMML SRSF2 NM_003016.4:c.284C>T NP_003007.2:p.Pro95Leu 34.99 snv missense_variant
73 CMML TET2 NM_001127208.2:c.4561delG NP_001120680.1:p.Val1521SerfsTer50 34.2 deletion frameshift_variant
73 CMML TET2 NM_001127208.2:c.4272delT NP_001120680.1:p.Asp1425ThrfsTer23 22.67 deletion frameshift_variant
73 CMML KRAS NM_033360.2:c.35G>A NP_203524.1:p.Gly12Asp 14.67 snv missense_variant
73 CMML DNMT3A NM_175629.2:c.839_840dupAC NP_783328.1:p.Glu281ThrfsTer36 2.71 insertion frameshift_variant
74 CMML ASXL1 NM_015338.5:c.1773C>G NP_056153.2:p.Tyr591Ter 47.36 snv stop_gained

74 CMML TET2 NM_001127208.2:c.5500C>T NP_001120680.1:p.GIn1834Ter 46.06 snv stop_gained

74 CMML ASXL1 NM_015338.5:c.1819G>T NP_056153.2:p.Gly607Cys 29.72 snv missense_variant
74 CMML TET2 NM_001127208.2:c.4210C>T NP_001120680.1:p.Arg1404Ter 24.53 snv stop_gained

74 CMML KRAS NM_033360.2:c.40G>A NP_203524.1:p.Vall4lle 19.25 snv missense_variant
74 CMML TET2 NM_001127208.2:c.3921delG NP_001120680.1:p.Lys1308SerfsTer55 15.62 deletion frameshift_variant
74 CMML TP53 NM_000546.5:.818G>A NP_000537.3:p.Arg273His 10.99 snv missense_variant
74 CMML JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.Val617Phe 3.63 snv missense_variant
74 CMML TET2 NM_001127208.2:c.3845G>A NP_001120680.1:p.Gly1282Asp 2.88 snv missense_variant
75 CMML ZRSR2 NM_005089.3:c.847G>C NP_005080.1:p.Ala283Pro 21.75 snv. missense_variant
75 CMML TET2 NM_001127208.2:¢.5500C>T NP_001120680.1:p.GIn1834Ter 14.36 snv stop_gained

75 CMML TET2 NM_001127208.2:c.1061C>A NP_001120680.1:p.Ser354Ter 14.06 snv stop_gained

75 CMML DNMT3A NM_175629.2:¢.2729C>T NP_783328.1:p.Ala910Val 3.03 snv. missense_variant
75 CMML DNMT3A NM_175629.2:c.2711C>T NP_783328.1:p.Pro904Leu 1.6 snv. missense_variant
76 CMML TET2 NM_001127208.2:c.4165C>T NP_001120680.1:p.GIn1389Ter 49.5 snv. missense_variant
76 CMML SF3B1 NM_012433.2:¢.2098A>G NP_056374.2:p.Lys700Glu 47.2 snv missense_variant
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76 CMML TET2 NM_001127208.2:c.5381delC NP_001120680.1:p.Alal794ValfsTer26 45.9 deletion frameshift_variant
76 CMML SETBP1 NM_015559.2:¢.2900T>C NP_056374.2:p.Phe967Ser 44.2 snv. missense_variant
76 CMML MPL NM_005373.2:¢.1544G>T NP_005364.1:p.Trp515Leu 8.2 snv. missense_variant
76 CMML MPL NM_005373.2:c.1514G>A NP_005364.1:p.Ser505Asn 6.1 snv. missense_variant
77 CMML ASXL1 NM_015338.5:c.2077C>T NP_056153.2:p.Arg693Ter 41.4 snv stop_gained
77 CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 40.25 snv. missense_variant
77 CMML TET2 NM_001127208.2:c.5104C>T NP_001120680.1:p.GIn1702Ter 40 snv. stop_gained
77 CMML TET2 NM_001127208.2:c.3574G>T NP_001120680.1:p.Gly1192Ter 39.9 snv. stop_gained
78 CMML KRAS NM_033360.2:¢.34G>C NP_203524.1:p.Gly12Arg 38.82 snv. missense_variant
79 CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 42.57 snv. missense_variant
79 CMML TET2 NM_001127208.2:c.4075C>T NP_001120680.1:p.Arg1359Cys 39.28 snv. missense_variant
79 CMML CBL NM_005188.3:¢.1210T>C NP_005179.2:p.Cys404Arg 4.23 snv. missense_variant
80 CMML TET2 NM_001127208.2:c.822delC NP_001120680.1:p.Asn275llefsTer18 21.87 deletion frameshift_variant
80 cMmL 7ery | NM-001127208.2:c.4063_4064delGCinsT NP_001120680.1:p.Ala1355Ter 21.39 mnp stop_gained
81 CMML NRAS NP_002515.1:p.Gly12Asp 15.07 snv missense_variant
81 CMML NRAS NP_002515.1:p.Gly12Val 15.07 snv missense_variant
81 CMML KRAS |_( NP_203524.1:p.Gly12Arg 12.93 snv missense_variant
81 CMML NRAS NM_002524.4:¢.190T>G NP_002515.1:p.Tyr64Asp 4.9 snv. missense_variant
81 cMML TET2 NM—Oou27208'2’“‘1268-5274‘13”“”(: NP_001120680.1:p.His1757LeufsTer4 3.93 deletion frameshift_variant
81 CMML JAK2 NM_004972.3:c.1849G>T NP_004963.1:p.Val617Phe 2.7 snv. missense_variant
81 CMML CBL NM_005188.3:c.1211G>A NP_005179.2:p.Cys404Tyr 2.47 snv. missense_variant
81 CMML KRAS NM_033360.2:c.179G>A NP_203524.1:p.Gly60Asp 2.32 snv missense_variant
82 CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 48.15 snv. missense_variant
82 CMML ETV6 NM_001987.4:c.305_306insG NP_001978.1:p.Phe102LeufsTer10 46.62 insertion frameshift_variant
82 CMML TET2 NM_001127208.2:c.1516delA NP_001120680.1:p.Arg506AspfsTer27 42.99 deletion frameshift_variant
82 CMML TET2 NM_001127208.2:c.3869C>T NP_001120680.1:p.Ser1290Leu 37.17 snv missense_variant
82 CMML TET2 NM_001127208.2:c.2474delC NP_001120680.1:p.Ser825Ter 2.54 deletion frameshift_variant
82 CMML TET2 NM_001127208.2:c.3813C>G NP_001120680.1:p.Cys1271Trp 2.16 snv. missense_variant
82 CMML TET2 NM_001127208.2:c.3640C>T NP_001120680.1:p.Arg1214Trp 1.66 snv missense_variant
83 CMML TET2 NM_001127208.2:c.2784delT NP_001120680.1:p.Pro929LeufsTer24 30.43 deletion frameshift_variant
83 CMML TET2 NM_001127208.2:c.3356dupT NP_001120680.1:p.Leu1119PhefsTer11l 10.53 insertion frameshift_variant
84 CMML U2AF1 NM_006758.2:c.467G>A NP_006749.1:p.Arg156His 50.61 snv. missense_variant
84 CMML TET2 NM_001127208.2:c.4132T>C NP_001120680.1:p.Cys1378Arg 47.6 snv missense_variant
84 CMML NRAS NM_002524.4:¢.37G>C NP_002515.1:p.Gly13Arg 15.64 snv. missense_variant
84 CMML RUNX1 NM_001754.4:c.592G>A NP_001745.2:p.Asp198Asn 14.07 snv missense_variant
84 CMML NRAS NM_002524.4:¢.35G>C NP_002515.1:p.Gly12Ala 8.18 snv. missense_variant
84 CMML RUNX1 NM_001754.4:¢.1022_1023insTTGGC NP_001745.2:p.lle342TrpfsTer254 5.98 insertion frameshift_variant
85 CMML TET2 NM_001127208.2:c.2305delC NP_001120680.1:p.GIn769SerfsTer44 42.01 deletion frameshift_variant
85 CMML TET2 NM_001127208.2:c.5140_5141delAA NP_001120680.1:p.Asn1714CysfsTer14 9.09 deletion frameshift_variant
86 CMML SF3B1 NM_012433.2:c.1997A>G NP_036565.2:p.Lys666Arg 34.73 snv. missense_variant
86 CMML TET2 NM_001127208.2:c.4268T>A NP_001120680.1:p.Val1423Asp 2.37 snv missense_variant
87 CMML TP53 NM_000546.5:c.818G>A NP_000537.3:p.Arg273His 71.46 snv. missense_variant
87 CMML PRPF8 NM_006445.3:¢.4792G>A NP_006436.3:p.Asp1598Asn 43.98 snv missense_variant
87 CMML RUNX1 NM_001754.4:¢c.422C>A NP_001745.2:p.Ser141Ter 34.33 snv stop_gained
87 CMML CBL NM_005188.3:c.1259G>A NP_005179.2:p.Arg420GIn 1.54 snv missense_variant
88 CMML SRSF2 NM_003016.4:c.284C>A NP_003007.2:p.Pro95His 49.76 snv. missense_variant
88 CMML TET2 NM_001127208.2:c.2207delC NP_001120680.1:p.Ser736TyrfsTer15 48.55 deletion frameshift_variant
88 CMML TET2 NM_001127208.2:c.4661_4664delCAGA NP_001120680.1:p.Thr1554SerfsTer16 27.45 deletion frameshift_variant
88 CMML TET2 NM_001127208.2:c.1630C>T NP_001120680.1:p.Arg544Ter 12.07 snv stop_gained
88 CMML ASXL1 NM_015338.5:¢.2077C>T NP_056153.2:p.Arg693Ter 11.29 snv stop_gained
88 CMML RUNX1 NM_001754.4:c.425C>T NP_001745.2:p.Ala142val 6.21 snv missense_variant
88 CMML TET2 NM_001127208.2:c.2147dupC NP_001120680.1:p.His717ThrfsTer6 5.05 insertion frameshift_variant
89 CMML TET2 NM_001127208.2:c.4156C>G NP_001120680.1:p.His1386Asp 47.43 snv missense_variant
89 CMML SRSF2 NM_003016.4:¢c.284C>A NP_003007.2:p.Pro95His 39.48 snv. missense_variant
89 CMML NRAS NM_002524.4:c.34G>C NP_002515.1:p.Gly12Arg 19.14 snv missense_variant
920 CMML TET2 NM_001127208.2:c.3283delA NP_001120680.1:p.Arg1095GlufsTer11 35.4 deletion frameshift_variant
90 CMML TET2 NM_001127208.2:c.2155_2156delTT NP_001120680.1:p.Leu719AlafsTer3 28.68 deletion frameshift_variant
920 CMML SF3B1 NM_012433.2:¢.2098A>G NP_036565.2:p.Lys700Glu 22.44 snv missense_variant
90 CMML ZRSR2 NM_005089.3:c.976T>C NP_005080.1:p.Cys326Arg .95 snv missense_variant
90 CMML ZRSR2 NM_005089.3:c.772-1G>A 7.66 snv splice_acceptor_variant
90 CMML ZRSR2 NM_005089.3:C.868C>T NP_005080.1:p.Arg290Ter 514 snv stop_gained
% cMML ZRSR2 NM—Oosose'3:c'1°$g;1013de'CCCAACAA NP_005080.1:p.Pro335llefsTers 25 deletion frameshift_variant
91 CMML SRSF2 NM_003016.4:¢c.284C>A NP_003007.2:p.Pro95His 46.79 snv missense_variant
91 CMML IDH2 NM_002168.2:c.419G>T NP_002159.2:p.Arg140Leu 45.18 snv missense_variant
91 CMML KRAS NM_033360.2:¢.34G>C NP_203524.1:p.Gly12Arg 43.31 snv missense_variant
91 CMML ASXL1 NM_015338.5:¢.2415dupC NP_056153.2:p.Thr806HisfsTer16 36.9 insertion frameshift_variant
92 CMML TET2 NM_001127208.2:c.5618T>C NP_001120680.1:p.Ile1873Thr 43.25 snv missense_variant
92 CMML TET2 NM_001127208.2:c.2677delG NP_001120680.1:p.Alag893LeufsTer28 42.41 deletion frameshift_variant
92 CMML SH2B3 NM_005475.2:¢.933_940delGAGCACAG NP_005466.1:p.Thr313ArgfsTer11 20.09 deletion frameshift_variant
92 CMML SH2B3 NM_005475.2:c.1204G>A NP_005466.1:p.Val402Met 12.64 snv missense_variant
92 CMML SH2B3 NM_005475.2:¢.1038dupG NP_005466.1:p.Leu347AlafsTer38 6.68 insertion frameshift_variant
92 CMML SH2B3 NM_005475.2:¢.20_21insAA NP_005466.1:p.Pro8SerfsTer29 5.43 insertion frameshift_variant
92 CMML P53 NM_000546.5:.476C>G NP_000537.3:p.Ala159Gly 2.06 snv missense_variant
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ANNEX II: SUPLEMETARY INFORMATION (SALIVA AND CD3+ AS GERMLINE CONTROLS IN MPN)

Supplementary Material 1 — Methods

Peripheral blood samples were centrifuged on a density gradient (Biocoll Separating

Solution, 1.077g/ml; BiochromAG, Berlin, Germany) for PBMC separation. Then,

granulocytes were obtained from remaining material by sedimentation on a 2%

dextran solution. Genomic DNA was extracted with an automated procedure using

the BioRobot M48 (Qiagen, Hilden, Germany).

Saliva DNA was obtained using the Oragene-DNA kit (DNA Genotek, Ottawa, Canada)

and quantified using the Nanodrop spectrophotometer (Thermo Fisher Scientific,

Wilmington, USA). The presence of bacterial DNA was studied by 16s ribosomal gene

amplification in 32 saliva samples using the Platinum PCR SuperMix High Fidelity

(Thermo Fisher Scientific) and PCR products were visualized by agarose gel

electrophoresis (E-Gel Agarose Gels 2% SYBR Safe, Thermo Fisher Scientific, Carlsbad,

USA).

CD3+ T lymphocytes were isolated from PBMC by positive selection using MACS

immunomagnetic columns (Miltenyi Biotech, Bergisch Gladbach, Germany) from

cases in which the saliva sample was positive for the driver mutation (64 JAK2, 12

CALR, 5 MPL). Purity of the isolated CD3+ fraction was assessed by flow cytometry in

available samples and was >98% (FACSCanto Il System 8-color, BD Biosciences, San

José, USA).

The mutational status of JAK2 gene was determined by allele-specific real time PCR
(7500 Fast real time PCR System, Applied Biosystems, Foster City, USA), CALR gene by

fragment analysis electrophoresis (3500 Genetic Analyzer, Applied Biosystems, Foster
City, USA) and MPL gene by digital PCR (QuantStudio 3D, Applied Biosystems, Foster

City, USA) for the W515L, S204P, S505N and R592Q mutations.

Statistical analyses were performed using the statistical package for the social

sciences software version 22.0 (SPSS, Chicago, USA). In order to assess the association

between variant allele frequency (VAF) of the mutation in granulocytes and saliva we

used Spearman’s correlation. To analyze leukocyte counts in patients with positive

and negative saliva, the Mann-Whitney test was used. After testing for normality of

the data, a Wilcoxon signed rank test was used for non-parametric paired data.

Statistical significance was set as P < 0.05.

220



