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ABSTRACT 

Supplying sufficient food to an increasing population is one of the most important 

challenges over the next century. To meet this demand, crop productivity will need to 

increase while it is being threatened by climate change effects like the increase of 

temperatures and the intensity of drought periods. Improving crop performance is key for 

an efficient adaptation to these challenging growing conditions, with crop breeding being 

one of the pillars. In that sense selecting more productive varieties for specific 

environments requires a better understanding of plant acclimation to stress conditions, 

including efficient phenotyping approaches. Plant phenotyping research pursues the 

development of new methods with high-throughput capacity and affordable to 

characterize non-destructively plant traits of interest. The main focus of this thesis was to 

develop and study versatile and precise methodologies with high-throughput capacity in 

order to improve crop performance assessments, while saving time and costs in the 

phenotyping tasksof two of the most important cereal crops: maize and wheat. The use of 

unmanned aerial vehicles (UAV) equipped with imaging sensors (including RGB, 

multispectral and thermal) permits covering simultaneously hectares of experimental 

fields fast, precisely, and in a non-destructive way. However, ground evaluations may 

still be an alternative in terms of cost and spatial resolution. The performance of these 

methodologies to assess genotypic differences in grain yield was evaluated in maize and 

wheat under different agronomical and environmental growing conditions such as 

nutrient deficiency, conservation agriculture, drought and heat stress. On one side, maize 

studies were performed in trials in Zimbabwe focused on the evaluation of genotypes 

under either low and normal phosphorus conditions or the application of conservation 

agriculture together with different top-dressing nitrogen fertilization regimes, to 

overcome the nutrient poverty of soils. In these studies, vegetation indices, related to 



parameters informing on the above-ground biomass and assessed during early stages of 

development, performed well as grain yield indicators. Moreover, during more advanced 

phenological stages, indices informing on the leaf and the canopy color were the traits 

that reported a better association with grain yield and N content in leaves. For the case of 

wheat, evaluations were performed in different latitudes in Spain covering a range of 

environments and grown under different management conditions, and sampling was 

performed during the reproductive stage (heading, anthesis and grain filling). In general 

terms, biomass indicators, such as canopy green biomass inferred from vegetation indices, 

together with water status indicators, such as canopy temperature, were the most critical 

traits predicting GY. The delay of senescence in water-limited environments and the 

photosynthetic efficiency measured by multispectral indices like the photochemical 

reflectance index (PRI) during anthesis were also relevant traits for GY under the rainfed 

and late-planting trials, respectively.  
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INTRODUCTION 

Food Security in the face of Climate Change 

During the past half-century, a marked growth in food production helped to kept 

pace with the increase on food demand despite a doubling of the total world population. 

The so-called Green Revolution involved a conjunction of advances, such as the 

development of high yielding varieties, the massive synthesis and use of chemicals 

fertilizers, as well as an increase in the level of mechanization in cultivation that led to an 

unprecedented increase in agricultural productivity (Khush, 1999). Nevertheless, 

prospects show that global food security is not ensured for the near future (McKersie, 

2015). The Food and Agriculture Organization (FAO) of the United Nations defined food 

security as when all people, at all times, have physical, social and economic access to 

sufficient, safe and nutritious food that meets their dietary needs and food preferences for 

an active and healthy life (FAO, IFAD, UNICEF, WFP, 2020). Current demands for crop 

production are experiencing an acceleration, mainly driven by trends in population 

growth, which anticipate that humans will reach near 11.2 billion by 2100 (Figure 1). 

Also hampered with a shift of diets away from staples and increasingly towards livestock 

and dairy products, vegetables and fruit, and fats and oils, and a greater competition for 

land, water, and energy for biofuel production (Cole et al., 2018). This has placed pressure 

on food production globally, which would need to be increased by 60%–110% to meet 

these increasing demands (Figure 2). However, the current rates of yield increase are 

insufficient to meet the anticipated demands, as agricultural production is being highly 

limited by biotic and abiotic stresses (i.e., diseases and water, nutrient and energy 

scarcity) as result of the impact of climate change (Charles et al., 2010). These constraints 

have very diverse effects on global agriculture due to a very strong regional component, 

but also vary by crop. For example, to optimize the attainable yields of the main staple 
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crops in Sub-Saharan Africa would primarily require addressing nutrient deficiency for 

maize, while in the Mediterranean Basin there has been observed a co-limitation of both 

nutrient and water for wheat (Mueller et al., 2012).  

 

Figure 1. World population growth rate (red line) and total world population (blue shaded 

area) from 1950 to 2100. Figure adapted from the source “Our World in Data”. 

The principal factors that will contribute most to the productivity of agricultural 

crops are changes in precipitation and temperature (Von Braun, 2007; Calzadilla et al., 

2013). Variations in rainfall patterns determine the availability of freshwater and soil 

moisture, critical for crop growth, particularly in rainfed agriculture. At global scale, 

according to the last report of the Intergovernmental Panel on Climate Change (IPCC) 

human-induced global warming is likely to reach 1.5°C between 2030 and 2052 (IPCC, 

2019). Temperature determines the length of growing season and control the crop’s 

development with higher temperatures shortening the frost period and promoting 

cultivation in cool-climate marginal croplands but reducing crop cycles and yields in 

semi-arid areas (IPCC, 2019).  
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Figure 2. World-wide average yield trends in wheat (brown line) and maize (yellow line) 

from the period 1960-2015 measured in tonnes per hectare. From the period 2015-2050, 

brown and yellow lines represent the linear extrapolations of the current trends for wheat 

and maize, respectively. Green line represents the projected food demand by 2050 and 

the red line the potential effect of climate change on the yield trends. Figure adapted from 

FAO resources. 

For the Sub-Saharan Africa (SSA) region, together with increasing threats of 

climate change with more frequent dry spells and increased heat stress, the loss of soil 

and its fertility is expected to become more critical makes particularly vulnerable due the 

low adaptive capacity of their current cropping systems. Traditional practices of 

monoculture and soil tillage have led to a decline in soil fertility (Thierfelder et al., 2015), 

causing the use of phosphorus and nitrogen fertilizers to become essential. Yet, this 

situation cannot be considered sustainable given the economic and environmental impact 

associated with high fertilization rates. 
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In the case of southern Europe, projected changes in temperature and precipitation 

patterns in the coming decades are positioning the Mediterranean Basin as one of the most 

prominent climate change hotspots (Diffenbaugh and Giorgi, 2012), where severe 

impacts on agriculture are expected (Asseng et al., 2015). Of particular concern for the 

Iberian Peninsula is an increase in the frequency and severity of droughts associated with 

a decrease in precipitation and coupled with an increase in evapotranspiration caused by 

rising temperatures (Vicente-Serrano et al., 2014). For wheat, the success of breeding in 

the second half of the last century was made possible by the introduction of dwarf genes, 

increasing the harvest index and thus yield. However, since then, the rate of genetic 

advance has declined. Focusing on drought and temperature stress, one key factor to 

increasing wheat may be extending the duration of grain filling by maintaining healthy 

green.  

Challenges for maize and wheat breeding 

Accelerating crop improvement is an issue of increasing urgency to satisfy the 

ever-increasing global food demand and for that purpose wheat and maize breeding 

success depends on developing high-yielding varieties better adapted to the changing 

climate conditions. How crop yields are affected by the stress conditions caused by 

climate change has received a great deal of attention (Mittler, 2006; Mosa et al., 2017; 

Lamers et al., 2020), as the effect of abiotic stress can lead to deficiencies in growth, crop 

yields or permanent damage. 

One of the major abiotic stressors that affects crops growth is water deficit. Water 

stress is primarily caused when the water supply to the roots becomes limiting or the 

transpiration rates becomes excessive (Osakabe et al., 2014). When an episode of drought 

shock occurs, the osmotic and metabolic imbalance of the plant leads to turgor loss and 

stomatal closure. In addition to the degree of the water deficit experienced, the timing of 
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the stress is crucial at certain development stages that are particularly sensitive for cereals. 

Water stress during early phenological stages will comprise a reduction in cell growth 

and leaf area with a consequent decrease in photosynthetic area. Drought events affecting 

heading and flowering time will reduce yield potential (Snape et al., 2001), as it is when 

number of kernels is determined. Finally, water stress will cause a shortening of the grain 

filling period and results in early senescence (Christopher et al., 2014). Usually, in field 

conditions, crops are subjected to a combination of different stresses, and it is very 

common to encounter drought together with heat stress under semi-arid areas. Episodes 

of elevated temperatures cause an acceleration of plant development, dysfunctional 

photosynthesis, lower fertility and poor fruit formation, having subsequent effects on crop 

yield (Asseng et al., 2015).  

Deficiencies of major nutrients like nitrogen or phosphorus are usual in 

agroecosystems and can cause containment for normal growth and development of plants 

(Evans, 1983; Carstensen et al., 2018). As N represents a large portion of the 

photosynthetic proteins and phosphorus is a key element for the formation of ATP during 

photosynthesis, the insufficient availability will reduce the photosynthetic capacity 

leading to symptoms chlorosis, necrosis, reduced growth and reduced tillering. 

Therefore, the intrinsic uncertainty of climate change predictions poses a challenge to 

achieve the target increase for wheat and maize production.  

Closing yield gaps through plant phenotyping 

The main approaches by which productivity of staple crops can be boosted include 

both the continued exploitation of the natural genetic variability and the adoption of better 

management practices (Araus et al., 2018). From the beginning of the development of 

agriculture, humanity evolved with crop species by the selection of most favorable plants 

available leading to a continuous improvement of production. Likewise, strategies to deal 
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with future environmental scenarios include the breeding selection of crop varieties, 

shifting plant characteristics to increase their resilience and reduce risks of yield shortfalls 

(Araus and Kefauver, 2018). Contemporary plant breeding programs require the analysis 

of hundreds of lines to develop new crop varieties with high yield and quality. 

Alternatively, the other pathway involves adjusting agronomic management practices for 

mitigating the exposure of crops to environmental stresses. The alteration of agronomy 

practices may include actions ranging from the implementation of more efficient 

irrigation and fertilization schemes, adjusting cultivation in terms of sowing and harvest 

times to adapt the whole cropping system to the application of the principles of other 

agronomic planning as the conservation agriculture (CA) (i.e., minimum soil disturbance, 

permanent soil cover and diversified crop rotations).  

Phenotyping is the foundation of any breeding selection process. Plant 

phenotyping comprise the assessment of complex traits such as growth, development, 

stress tolerance and resistance, architecture, physiology, and yield, in order to study the 

of phenotypes with the spatially and temporally dynamic environment (Costa et al., 

2019). To identify the adequate implementation of phenotyping is required hundreds of 

genotypic lines grown under diverse environmental scenarios, making the 

characterization of each plant phenome the main bottleneck for the crop improvement 

process (Araus and Cairns, 2014). The main object of field phenotyping is to capture 

information on structure, function and performance of a plant to characterize the plasticity 

of its phenome (genome x environment) when exposed to a range of growing conditions. 

Plant phenotyping purchases the generation of generate high-throughput and valuable 

phenotypic plant traits trough the development of and application of the suite of tools and 

methods together with their environment, to finally develop models able to assist in 

genotype selection, precision agriculture and yield forecast (Crain et al., 2017). Modern 
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plant phenotyping aims to guide the genome selection in basis of genetics, epigenetics, 

environmental pressures and crop management (Costa et al., 2019). The characterization 

of the plant phenotype includes diverse structural and functional traits related to growth, 

yield and adaptation to stress, from molecular to canopy assessments. Due to the 

integration of a diversity of information, phenotyping is considered at the forefront of 

plant breeding and selection.  

High-throughput phenotyping programs (HTPP) imply the use of different  non-

invasive remote sensing (RS) approaches (Atzberger, 2013; Reynolds and Langridge, 

2016), which enable the screening larger populations faster and more precisely than 

conventional phenotyping procedures. Traditional phenotyping procedures were based on 

the measurement on observable crop characteristics while is growing (i.e., crop 

establishment or date of flowering) and agronomical and yield traits after the harvest (i.e., 

harvest index), which are not only laborious and time-consuming but also the monitoring 

by eye was subjective and error-prone.  

The evaluation of chlorophyll (Chl) concentration always has been one of the 

more common measurement made by plant scientists, traditionally assessed by the 

extraction of leaf materials and after by spectrophotometric determination. The 

development of hand-held and portable devices like the SPAD-502 from Minolta-Konica 

led the assessment Chl concentration from leaf transmittance in a fast and non-destructive 

manner. Habitually, SPAD readings have been used as indicators of crop nutritional 

status, such as chlorophyll concentration is strongly related to the N status of the plant 

(Bullock and Anderson, 1998). The SPAD-502 meter utilizes two light-emitting diodes 

(650 and 940 nm) and a photodiode detector to sequentially measure transmission through 

leaves of red and infrared light (Markwell et al., 1995). A newer alternative is the three-

in-one instrument Dualex from Force-A, that, besides chlorophylls (Chl a + b), also 
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measures leaf epidermal flavonoids (Flav) and anthocyanins (Anth) (Cerovic et al., 2012). 

More recently, a newly leaf-clip sensor called MultispeQ has been development, that 

apart from assess pigment content, works as a fluorimeter that provides photosynthetic 

parameters, as well as environmental and location information (Kuhlgert et al., 2016). 

Leaf Chl readings are useful to diagnosticate nutrient restrictions, especially when N is 

the limiting factor (Buchaillot et al., 2019) as changes in leaf N content result in to 

changes in the photosynthetic proteins, that represents a large portion of the total leaf N 

(Evans, 1983). Despite this, operating at leaf level might be time-consuming and with low 

repeatability, as it only can be measured in 5-10 leaf flags.  

Basis of remote sensing techniques for plant phenotyping 

For that reason, remote sensing tools have received more attention as a fast and 

non-destructive method to estimate plant traits by the characterization the spectral 

reflectance of light to determine the amount and condition of the above biomass of a crop 

(Xie et al., 2020). Plants have a characteristic spectral behavior as most of the radiation 

in the near-infrared region is reflected in contrast to the visible wavelengths where 

absorption is predominant (Figure 2). Thus, the interaction of light as electromagnetic 

radiation is measured as transmittance at leaf level and reflectance at both leaf and canopy 

level has been demonstrated to provide quantitate and robust information of the 

physiological status of a plant. 
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Figure 2. Typical spectral reflectance curve for vegetation. 

Formulation of spectral vegetation indices 

Vegetation indices (VIs) use two or more spectral bands formulated to enhance a 

particular vegetation signal, while reducing the solar irradiance and soil background 

effects (Table 1). One of the formulations most used is an index based on the combination 

of the characteristic low reflectance in the visible region of the spectrum (400 – 700nm) 

and the high reflectance in the near-infrared (NIR) (700-1100nm) region (Hassan et al., 

2019). The normalized difference vegetation index (NDVI) is extensively used for 

measurements of vegetative cover and vigor, as well as indicators of biotic/abiotic stress 

levels. There are an elevated number of reformulations of the NDVI, including slights 

modifications and other spectral parameters to decrease the effect of soil or the problem 

of saturation with dense canopies. Beyond morphological and plant architecture aspects, 

another of the main focuses of the formulation of vegetation indices is the assessment of 

plant pigment content, including chlorophylls, carotenoids and anthocyanins, using 

reflectance information from the visible region (Gitelson et al., 2001). VI that use 

reflectance information at the red region (625-700nm) of the spectrum, apart from being 

indicators of chlorophyll content, are also used as N content predictors (Frels et al., 2018). 

The assessment of the photosynthetic capacity is also possible using specific narrow 
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bands from 510 to 550nm that are very sensitive to changes in the de-epoxidation of the 

xanthophyll cycle, as the case of the photochemical reflectance index (PRI) (Penuelas et 

al., 1993). Concerning to the NIR wavelengths, the reflectance is determined by other 

biochemical characteristics as water content, protein or sugar content. For example, the 

turgor of the leaves, as a water absorption indicator, can be assessed with the water band 

index (WBI) using information from the 900 and 950nm (Penuelas et al., 1993). Hence, 

a better understanding of the different reflectivity patterns and peaks for the calculation 

of vegetation indices is of a critical importance to improving the assistance to model and 

predict crop yields.  

Low-cost assessment of VI through conventional RGB cameras 

Besides the use of multispectral or hyperspectral information, further 

opportunities are found in the use of information derived from conventional digital Red–

Green–Blue (RGB) cameras for the calculation of VI based on the color properties of the 

canopy. Despite being a low-cost and a low-technology methodology, RGB-derived 

indices have demonstrated their potential assessing plant traits for the forecasting of yield 

by formulating VI in relation to assess the canopy greenness according to different color 

model representations. The versatility, in addition to the affordable costs, of these 

technologies makes its application in expansion (Araus and Kefauver, 2018).   
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Table 1. Plant physiological traits and the spectral information used to assess them, a 

list of example indices and their possible applications in phenotyping studies. 

Target trait Spectral Information Example indices Applications 

Vegetation 

cover,  

Plot greenness 

RGB; HIS color model, 

CIElab color model 

GA, GGA, Hue, 

CSI, Ndab, NGRI, 

TGI, GLI 

Stress detection 

Canopy cover, LAI 

Shoot green biomass 

Growth dynamics 

Senescence 

Canopy greenness 

Agronomic and yield 

traits 

Plant emergence 

Phenology 

Stress detection 

Chlorophyll content 

Leaf nitrogen content 

 
Red, NIR NDVI, SAVI, 

OSAVI 

Chlorophyll 

content 

Green, Red, NIR CARI, TCARI, 

MCARI, 

TCARI/OSAVI 

Shoot green biomass 

Senescence 

Canopy greenness 

Stress detection 

Chlorophyll content 

Leaf nitrogen content 

Anthocyanin 

and carotenoids 

content 

Blue, Red, NIR ARI, ARI2, CRI, 

CRI2 

Photosynthetic status 

Chlorophyll content 

Anthocyanin and 

carotenoids content 

Leaf nitrogen content 

Stress detection 

Photosynthesis 

traits 

Green, NIR PRI, CCI Photosynthetic status 

Senescence 

Chlorophyll content 

Stress detection 

Water content Water content WBI, WDVI WBI, WDVI 
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Figure 3. RGB image of a maize canopy and the calculations of the GA and GGA indices 

based on the HIS color model.  

Canopy temperature as an indicator of crop water status 

Alternative applications of RS methodologies involve the assessment of the 

canopy temperature (CT) through measurements of emitted thermal infrared radiation 

(TIR). CT can be measured by infrared thermometry (Idso et al., 1981) or thermography 

(Jones, 2002), both methodologies detecting radiation in the long range of the 

electromagnetic spectrum (9–14 µm). CT measurements are used for the detection of 

changes in stomatal conductance as a response to the water status of the plant, since 

transpiration is the main factor used for balancing leaf temperature (Jackson et al., 1988; 

Moran et al., 1994). As stomatal regulation is highly influenced by the environmental 

conditions, the stomata closure will cause an increase of CT. Thus, low CT values (i.e. 

cooler canopies) have been associated to higher stomatal conductance and maximum 

photosynthetic rates under non-water-limited conditions (Fischer et al., 1998), and 



17 
 

therefore CT performs as a good estimator of phenotypic differences of yield (Pinto et al., 

2017). Another common expression of CT is though the difference between the air and 

the canopy temperature, known as canopy temperature depression (CTD) (Smith et al., 

1986).  

UAVs as high-throughput plant phenotyping tools 

In recent years, there is an increasing number of multiscale phenotyping studies 

that focus on the discussion of the potential use of different reflectance measurement 

platforms to assess crop parameters related to yield (Araus et al., 2018). VI can be 

formulated from leaf level using leaf-clip instruments (e.g. Spectrapen, PhotosynQ) or 

from canopy level, using cameras or sensors (e.g. GreenSeeker) at ground or aerial level 

(from a drone, an airborne or a satellite). In large experiments, the use of hand-held 

instruments is laborious, time-consuming and the measurements can be sensitive to 

weather fluctuations over time. While the number of measurements at the leaf scale may 

be limited, canopy measurements permit assessing the whole plot variability at once, but 

depending on the distance from the target, the spatial resolution could affect the precision 

of the VIs calculated. Other limitations associated with the canopy measurements at 

ground level are related to the maintenance of a constant view angle of the sensor/camera 

to the crop canopy. Hence, unmanned aerial vehicles (UAV) platforms (Figure 4) allow 

the simultaneous characterization of larger number of cultivars faster than the 

conventional phenotyping procedures and minimizing the effect of the changing 

environmental conditions (Araus et al., 2018).  
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Figure 4. OktoXL 6S12 unmanned aerial platform equipped with the Tetracam 

multispectral sensor. 

Isotope composition as laboratory analysis to complement VI 

In order to improve the knowledge on the genome adaptation on the HTPP, the application 

of RS approaches can be complemented with the analysis of stable isotopes. Although 

these techniques can be considered costly, time-consuming and require extensively 

laboratory work, their application could be reliable information for phenotyping purposes 

(Araus et al., 2013a) as it constitutes an integrative indicator of plant status over the crop 

cycle (Farquhara and Richardsb, 1984). The stable carbon (δ13C) and nitrogen (δ15N) 

isotope compositions, when analyzed in plant matter, inform on the water regimen and 

nitrogen metabolism conditions, respectively, of the plant (Yousfi et al., 2012). On one 

hand, the δ13C is an indicator of the water status of the plant, that provide information of 

photosynthesis and transpiration efficiency decreasing  with stress (Yousfi et al., 2016). 

The values of δ13C are different for wheat and maize, as the plants with a photosynthetic 

metabolism C3 show smaller values than the C4 plants (Farquhar, 1983). On the other 

hand, the δ15N is used to study dynamics of N in soil–plant systems (Choi et al., 2002), 

with δ15N reporting values closer to zero when the origin of the N-fertilizer is synthetic 

(Bateman et al., 2005). The evaluation of C and N isotope composition in dry matter is a 
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promising phenotyping tool, exhibiting high heritability and genetic correlation with yield 

in several studies (Condon et al., 2004; Araus et al., 2013b), and some others highlighting 

their synergies when are measured in conjunction to canopy vegetation indices (Vergara-

Díaz et al., 2016; Yousfi et al., 2016, 2019). The procedure of isotope analysis requires 

the oven-dry and grind the samples, a precision weighing sealing at the lab prior to 

detection with an isotope-ratio mass-spectrometry elemental analyzer.  
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OBJECTIVES 

The main objective of this thesis is to advance in the implementation of 

phenotyping in practice, with the focus placed in maize and wheat, the two main crops 

worldwide. To this end, this work studied the development of a versatile phenotyping 

platform, of high capacity and moderate cost, consisting of an unmanned aerial vehicle 

(UAV) carrying thermal, multispectral and RGB cameras. The performance of wheat and 

maize genotypes was assessed using this platform under a range of growing conditions. 

A further objective was to deepen into the relationship between the remote sensing (RS) 

measurements and the physiological mechanisms involved in the adaptative response of 

durum wheat and maize genotypes against a wide range of environmental conditions. 

Moreover, RS measurements from ground were used to calibrate the aerial platforms and 

thus, evaluate the benefits and disadvantages of the UAV assessments. In addition, stable 

carbon and nitrogen isotopes were assessed as time-integrated proxies for water 

performance and nitrogen metabolism. Furthermore, we worked on the development of 

applications to facilitate the transfer of information from the platform and enhance the 

use of RGB images as powerful alternative for phenotyping. 

Specific aims 

Chapter 1. The aim of this study was to test the efficiency of different remote sensing 

methods and tools in assessing the yield performance and the phosphorus status of a total 

of 26 maize hybrids under optimum and no phosphorus fertilization at the seedling stage. 

Different categories of sensors were tested, including RGB cameras (placed on an aerial 

platform as well as at ground level), alongside a multispectral camera (on the aerial 

platform) and a spectrometer with an active sensor designed to measure the NDVI at 

ground level. Field trials were carried out at the Southern Africa regional station of 
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CIMMYT (International Maize and Wheat Improvement Center) located in Harare, 

Zimbabwe.  

Chapter 2. The aim of this study was to evaluate the efficiency of a set of remote sensing 

indexes in assessing the yield differences of different maize hybrids at early growth stages 

under conventionally ploughed (CP) and zero-tillage (conservation agriculture, CA) 

conditions. Different categories of sensors were tested, including RGB cameras (placed 

on an aerial platform as well as at ground level), alongside multispectral and thermal 

cameras (both installed on the aerial platform) and an active sensor portable field 

spectrometer designed to measure the NDVI at ground level. Additionally, canopy 

temperature, leaf chlorophyll content, and dry matter isotopic composition were 

evaluated. The effect of the different CA practices (as the soil vegetation cover) on the 

imaging sensor was also evaluated. Field trials were carried out at the Southern Africa 

regional station of CIMMYT (International Maize and Wheat Improvement Center) trial 

located in Domboshawa, Zimbabwe. 

Chapter 3. The aim of this study was to compares the performance of different UAV 

remote sensing technologies (RGB, multispectral, and thermal) measured during the 

reproductive stage for assessing the genotypic performance of durum wheat under  

Mediterranean conditions. To that end a wide range of growing conditions 

(supplementary irrigation, rainfed, or late-planting) were tested. Field trials were carried 

out at the experimental station of the Instituto Nacional de Investigación y Tecnología 

Agraria y Alimentaria (INIA) of Colmenar de Oreja situated at 40 km south of Madrid, 

Spain. For the processing of this large amount of data we also present the MosaicTool 

software, for high-throughput data extraction and processing of UAV phenotyping data. 

The final objective was to provide guidance as to the appropriate RGB, multispectral, and 

thermal image indexes (i.e., appropriate traits) for the identification of high-yielding as 
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well as resilient varieties. Besides studying phenotypic correlations, the heritability of 

these traits and their genetic correlations with grain yield have been analyzed. Moreover, 

the benefits and disadvantages of the use of phenotyping platforms in terms of aerial 

versus ground positioning were evaluated for their potential to discriminate between 

cultivars and also regarding their throughput capacity and cost.  

Chapter 4. The aim of this study was to compare the performance of a set of single-leaf 

and canopy-based remote sensing indices for assessing the influence of the top-dressing 

levels and the combination of tillage and residue levels on maize grain yield and leaf 

nitrogen content. Two different specialized portable leaf pigment-meters, as well as leaf 

scans for measuring the color of the leaves were used to assess the leaf N content. 

Concerning the canopy-scale assessments, RGB images were taken at the ground level, 

using a pheno-pole, and from the aerial level, using a UAV. As a complementary selection 

strategy, carbon and nitrogen stable isotope signatures were analyzed in the leaves, as a 

potential tool for evaluating water and nitrogen status or differences in N assimilation. 

Field trials were carried out at the Southern Africa regional station of CIMMYT 

(International Maize and Wheat Improvement Center) located in Harare, Zimbabwe.  

Chapter 5. The aim of this study was to evaluate the performance of a set of wheat 

cultivars grown in a wide range of Spanish latitudes for three consecutive crop seasons, 

with very diverse climatic conditions, and in trials under different growing conditions 

(well-irrigated, rainfed, late-planting and low-nitrogen). Apart from the GY, the 

evaluation was carried out through leaf pigments readings and canopy field evaluation 

using RGB (Red-Green-Blue) and multispectral vegetation indices and thermal 

measurements evaluated from ground and using a unmanned aerial vehicle- 

Measurements were performed at different phenological stages during the reproductive 

part of the crop, since Mediterranean agro-environments are characterized by the 
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occurrence of terminal (i.e. during the last part of the crop cycle) stresses, such as drought 

and heat. Thereafter, variables measured were used to perform GY prediction models 

within environments using the LASSO model and the detection rate was used to the 

design of wheat ideotypes. 
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REPORT OF THE THESIS DIRECTORS 

 

Integrative Crop Ecophysiology Group  

https://integrativecropecophysiology.com  

Plant Physiology Section, Department of Evolutionary Biology, Ecology and 

Environmental Sciences, Faculty of Biology, University of Barcelona, Diagonal 643, 

08028, Barcelona, Spain. Tel. 934 021 465 

 

Dr. José Luis Araus and Dr. Shawn Carlisle Kefauver, as directors of the thesis entitled 

“Advances in high throughput and affordable crop phenotyping for adapting maize 

and wheat to climate change” which was developed by the doctoral student Adrian 

Gracia Romero, report about the impact factor and the participation of the doctoral student 

in the different chapters included in this doctoral thesis. 

Chapter 1. The article “Comparative performance of ground vs. aerially assessed 

RGB and multispectral indices for early-growth evaluation of maize performance 

under phosphorus fertilization” published in Frontiers in Plant Science in 2017 with an 

impact factor of 3.677, is a journal placed within the first decile of the Science Area: 

Agricultural and Biological Sciences: Plant Science. To date, this work has accumulated 

53 citations (Google Scholar, revised in April 2021). In this study, we evaluated the 

performance of a set of remote sensing indices derived from Red-Green-Blue (RGB) 

images and multispectral (visible and infrared) data as phenotypic traits and crop 

monitoring tools for early assessment of maize performance under phosphorus 

fertilization. This work reinforces the effectiveness of canopy remote sensing for plant 

phenotyping and crop management of maize under different phosphorus nutrient 

conditions and suggests that the RGB indices are the best option. Adrian Gracia-Romero 

https://integrativecropecophysiology.com/
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took a role participating in the field evaluation, and further processing the information 

and had a key role writing the draft of the manuscript. 

Chapter 2. The article “Phenotyping conservation agriculture management effects on 

ground and aerial remote sensing assessments of maize hybrids performance in 

Zimbabwe” published in Frontiers in Plant Science in 2018 with an impact factor of 

4.106, is a journal placed within the first decile of the Science area: Agricultural and 

Biological Sciences: Plant Science. To date, this work has accumulated 25 citations 

(Google Scholar, revised in April 2021).  We present the results of a study in which Red-

Green-Blue (RGB) and multispectral indexes were evaluated for assessing maize 

genotype performance under conventional ploughing (CP) and CA practices. Most of the 

calculated indexes (e.g., Green Area, GA) and Normalized Difference Vegetation Index, 

NDVI)) were significantly affected by tillage conditions increasing their values from CP 

to CA. Indexes derived from the RGB-images related to canopy greenness performed 

better at assessing yield differences, potentially due to the greater resolution of the RGB 

compared with the multispectral images, although this performance was more evident for 

CP than CA. As in the first Chapter, Adrian Gracia-Romero took a role participating in 

the field evaluation, and further processing the information and writing the draft. 

Chapter 3. The article “UAV and ground image-based phenotyping: a proof of 

concept with Durum wheat” published in Remote Sensing in 2019 with an impact factor 

of 4.509, is a journal placed within the first decile of the area: Earth and Planetary Science 

To date, this work has accumulated 33 citations (Google Scholar, revised in April 2021). 

We compared the performance of red–green–blue (RGB), multispectral, and thermal data 

of individual plots captured from the ground and taken from an UAV, to assess genotypic 

differences in yield. Our results showed that crop vigor, together with the amount and 

duration of the canopy green biomass that contributed to grain filling, were critical 
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phenotypic traits for the selection of germplasm that is better adapted to present and future 

Mediterranean conditions. The effect from platform proximity (distance between the 

sensor and crop canopy) was evaluated on the vegetation indexes, and both ground and 

aerial measurements performed similarly in assessing yield. Again, Adrian Gracia-

Romero took an active role in the field evaluation and further data processing, and he was 

the responsible of writing the draft. 

Chapter 4. The article “Leaf versus whole-canopy remote sensing methodologies for 

crop monitoring under conservation agriculture: a case of study with maize in 

Zimbabwe” published in Scientific Reports in 2020 with an impact factor of 3.998, is a 

journal placed within the first decile of the science area: Multidisciplinary. To date, this 

work has not been citated. This study compares maize leaf and canopy-based approaches 

for assessing N fertilization performance under different tillage, residue coverage and 

top-dressing conditions in Zimbabwe. Canopy measurements from both ground and aerial 

platforms performed very similar, but indices assessed from the UAV performed best in 

capturing the most relevant information from the whole plot and correlations with GY 

and leaf N content were slightly higher than similar indices measured at ground level. 

Leaf-based measurements demonstrated utility in monitoring N leaf content, though 

canopy measurements outperformed the leaf readings in assessing GY parameters, while 

providing the additional value derived from the affordability and easiness of using a 

pheno-pole system or the high-throughput capacities of the UAV. As before, Adrian 

Gracia-Romero took an active role in the field evaluation and further data processing, and 

he was the responsible of writing the draft. 

Chapter 5. The article “High-throughput phenotyping to define of durum wheat 

ideotypes adapted to Mediterranean environments” will be submitted to date to The 

Plant Journal, with and impact factor of 6.141. This study aimed the evaluation of the 
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performance of a set of wheat cultivars grown in a wide range of Spanish latitudes for 

three consecutive crop seasons, with very diverse climatic conditions, and in trials under 

different growing conditions (well-irrigated, rainfed, late-planting and low-nitrogen). 

Measurements were performed at different phenological stages during the reproductive 

part of the crop, since Mediterranean agro-environments are characterized by the 

occurrence of terminal (i.e. during the last part of the crop cycle) stresses, such as drought 

and heat. Together with GY, the evaluation was carried out through leaf pigments 

readings and canopy field evaluation using RGB (Red-Green-Blue), multispectral 

vegetation indices and thermal measurements evaluated from ground and using a 

unmanned aerial vehicle. Thereafter, variables measured were used to perform GY 

prediction models within environments using the LASSO model and the detection rate 

across 100 validations was used to the design of wheat ideotypes. Adrian Gracia-Romero 

took an active role in the field evaluation and further data processing, and he has been the 

responsible of writing the draft. 

 

Other articles where the doctoral student participated as a co-author: 

- Rezzouk, F.Z., Gracia-Romero, A. et al. Ideotypic characteristics of durum wheat 

grown in Mediterranean environments differing in water and temperature 

condition. (under review). 

- Kamphorst, S. H. et al. Heterosis and reciprocal effects for physiological and 

morphological traits of popcorn plants under different water conditions (under 

review) 

- Jairo, V., Gracia-Romero, A. et al. Adaptation of high yielding European wheat 

cultivars to Mediterranean conditions (under review).  
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- Segarra, J., Gracia-Romero, A. et al.  Multiscale monitoring of wheat grain 

nitrogen content (under review).  

- Ben-Jabeur, M., Gracia-Romero, A., et al. 2020. The promising MultispeQ device 

for tracing the effect of seed coating with biostimulants on growth promotion, 

photosynthetic state and water–nutrient stress tolerance in durum. Euro-

Mediterranean Journal for Environmental Integration 6 (1), 1-11 

- Rezzouk, FZ., Gracia-Romero, A., et al. 2020. Remote sensing techniques and 

stable isotopes as phenotyping tools to assess wheat yield performance: Effects of 

growing temperature and vernalization. Plant Science (IF: 3.785) 

10.1016/j.plantsci.2019.110281 

- Ben-Jabeur, M., Gracia-Romero, A., et al. 2019. A Novel Aspect of Essential Oils: 

Coating Seeds with Thyme Essential Oil induces Drought Resistance in Wheat. 

Plants (IF: 2.632) 8 (10), 371 doi:10.3390/plants8100371 

- Yousfi, S., Gracia-Romero, A., et al. (2019). Combined use of low-cost remote 

sensing techniques and δ13C to assess bread wheat grain yield under different 

water and nitrogen conditions. Agronomy (IF: 1.419) 9(6), 285; DOI: 

10.3390/agronomy9060285 

- Buchaillot, ML., Gracia-Romero, A., et al. 2019. Evaluating the performance of 

different commercial and pre-commercial maize varieties under low nitrogen 

conditions using affordable phenotyping tools. Sensors (IF: 2.475) 19(8), 1815. 

DOI: 10.3390/s19081815 

- Fernandez-Gallego, JA. et al. (2019). Cereal crop ear counting in field conditions 

using zenithal RGB images. JoVE (Journal of Visual. Experiments). (IF: 1.325) 

(144), e58695 DOI: 10.3791/58695 



 

34 
 

- Yousfi, S., Gracia-Romero, A., et al. 2016. Comparative performance of remote 

sensing methods in assessing wheat performance under Mediterranean conditions. 

Agricultural Water Management (IF: 3.182). 164 (2016) 137–147 

Internships 

- 09/2019 - 12/2019. PhD Student, research visit in Hyperspectral Remote Sensing 

& Precision Agriculture Laboratory (Univ. of Melbourne, Australia).   

School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences 

(FVAS), and Department of Infrastructure Engineering, Melbourne School of 

Engineering (MSE), University of Melbourne, Melbourne, Victoria 3010, 

Australia. Under the guidance of Professor Pablo J. Zarco-Tejada 

Training courses, courses and workshops: 

- 01/2020. Workshop on “Writing effective research manuscripts”, organized by 

the Dep. Evolutive Biology, Ecology and Environmental Sciences of the 

University of Barcelona, Barcelona, Spain. 

- 01/2020. Course “Statistical tools for plant phenomic data analysis”, organized by 

IAMZ-CIHEAM with the collaboration of the European Plant Phenotyping 

Network (EPPN2020), Zaragoza, Spain. 

- 10/2019. Course “Learn Python in a Day” - Simpliv courses, organized by the 

University of Melbourne, Melbourne, Australia. 

- 10/2018. Course “Training course for new teachers UB”, organized by the Institut 

de Desenvolupament Professional (IDP-ICE) – UB in Barcelona. 

- 09/2018. Course “Harmonized UAS techniques Training Course: Introduction to 

data acquisition and preprocessing”, organized by the HARMONIOUS COST 
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Action on UAS Data Preparation and Calibration and held by Svarmi Efh, 

Reykjavik, Iceland. 

- 01/2018. Course “Accredited Drone Pilot Course 5-15kg” approved by AESA, 

organized by HEMAV, Castelldefels, Spain. 

- 02/2017. Course “Breeding Small Grain Cereal Crops in A Climate Change 

Scenario”, organized by the International Center for Agricultural Research in the 

Dry Areas (ICARDA) in Zaragoza (Spain) 

Communications in symposiums and conferences 

- Gracia-Romero, A. et al. (2020). Assessing relationships between hyperspectral 

imagery and wheat parameters. Oral presentation. III Spanish Symposium on 

Cereal Physiology and Breeding. Pamplona, Spain. November 14th – 15th 2020.  

- Rezzouk F.Z., Gracia-Romero A. et al. (2020). Durum wheat ideotypes to Spanish 

environments differing in water and temperature conditions. Oral presentation. III 

Spanish Symposium on Cereal Physiology and Breeding. Pamplona, Spain. 

November 14th – 15th 2020.  

- Kefauver, S.C., Gracia Romero, A. et al. (2020). Tailor-made software to meet 

challenges of phenotyping. Oral presentation. III Spanish Symposium on Cereal 

Physiology and Breeding. Pamplona, Spain. November 14th – 15th 2020.  

- Kefauver, S.C., Gracia Romero, A. et al. (2020). (September 26 - October 2, 2020, 

Virtual Symposium). OPEN-SOURCE SOFTWARE FOR CROP 

PHYSIOLOGICAL ASSESSMENTS USING HIGH RESOLUTION RGB 

IMAGES. In Proceedings of the IGARSS 2020 IEEE International Geoscience 

and Remote Sensing Symposium (In press). IEEE.  
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- Formiga, D., Gracia-Romero, A. et al. (2019). Remote Sensing Techniques for the 

Future of Plant Science. In the VIII Jornada Ambiental. Universitat de Barcelona 

and Bodegas Torres. Poster presentation. 5 May 2019.  

- Silva-Sánchez, A., Gracia-Romero, A., et al. (2019). Comparison of Proximal 

Remote Sensing Devices for Estimating Eggplant response to Root-Knot 

Nematodes. Online presentation and Proceedings Paper. 3rd International 

Electronic Conference on Remote Sensing, 22 May – 5 June.  

- Gracia-Romero, A., et al. (2019). Leaf vs. Whole-Canopy Remote Sensing 

Methodologies for Nitrogen Monitoring and Grain Yield Prediction: A Case of 

Study with Maize in Zimbabwe. Oral presentation. II Simposio Español de 

Fisiología y Mejora de Cereales, Córdoba (Spain), 6-7 March 2019. 

- Rezzouk, F. Z., Gracia-Romero, A., et al. (2019). Remote sensing techniques and 

stable isotopes as phenotyping tools to assess wheat yield performance: effects of 

growing temperature and vernalization needs. Oral presentation. II Simposio 

Español de Fisiología y Mejora de Cereales, Córdoba (Spain), 6-7 March 2019. 

- Gracia-Romero, A., et al. (2018). Aerial versus ground phenotyping quiz: a proof 

of concept with durum wheat. Oral presentation and poster. In Evolution of 

Mediterranean Agriculture: Interdisciplinary Perspectives on Historical 

Developments and Future Visions, Barcelona (Spain), 22-24 November 2018. 

- Gracia-Romero, A., et al. (2018). Smartphones to estimate plant water status 

CerealMobile app. Oral presentation. In Iwater International Integrated Water 

Cycle Show, Barcelona (Spain), 13-15 November 2018. 

- Kefauver, SC., Gracia-Romero, A., et al. (2018). Technology Industry and 

Education: Citizen Science. Oral presentation. In Geoscience and Remote Sensing 

Symposium, 2018. IGARSS 2018. (presented July 2018 – Forum Session Chair). 
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- Gracia-Romero, A. and Rezzouk, FZ. Phenotyping under Drought Stress. Oral 

presentation in III Workshop Young Researchers of the Institut de Recerca del 

Aigua (IdRA), Barcelona (Spain), 24 May 2018.   

- Gracia-Romero, A.  et al. Remote Sensing Phenotyping for Estimating Grain 

Yield of Wheat Growing Under Different Water and Temperature Conditions. 

Poster. In I Spanish Symposium on Cereal Physiology and Breeding, Zaragoza 

(Spain), 9-10 April 2018.  

- Kefauver, SC., Gracia-Romero, A. et al. UAV and Proximal Sensing for 

Phenotyping Maize in African Breeding Programs. Oral Presentation. In I Spanish 

Symposium on Cereal Physiology and Breeding, Zaragoza (Spain), Spain 9-10 

April 2018. 

- Pallavicini, Y., Gracia-Romero, A. et al. Aerial platforms as a new approach to 

select resistant lines for yellow rust in bread wheat breeding program.  Oral 

Presentation. In I Spanish Symposium on Cereal Physiology and Breeding, 

Zaragoza (Spain), 9-10 April 2018.  

- Martinez-Peña, R., Gracia-Romero, A. Canopy Vegetation Indices to assess yield 

in durum wheat. Poster. In I Spanish Symposium on Cereal Physiology and 

Breeding, Zaragoza (Spain), 9-10 April 2018. 

- Gracia-Romero, A. et al. Phenotyping agriculture management effects on remote 

sensing assessments of maize hybrids performance. Online presentation. In 2nd 

International Electronic Conference on Remote Sensing, 22 March – 5 April 2018.  

- Kefauver, SC., Gracia-Romero, A. et al. UAV Phenotyping and Proximal Sensing 

for Maize Assessments in Breeding Programs. Oral presentation. ES1309 

OPTIMISE COST Action - Final Conference, Sofia, Bulgaria, 19 February 2018. 
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- Plant Phenotyping Symposium. Next generation plant phenotyping for trait 

discovery, breeding and beyond: transnational access European platform. Public 

attendance. European Plant Phenotyping Network, Barcelona, Spain, 11-12 

November 2015. 
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Comparative Performance of
Ground vs. Aerially Assessed RGB
and Multispectral Indices for
Early-Growth Evaluation of Maize
Performance under Phosphorus
Fertilization
Adrian Gracia-Romero 1, Shawn C. Kefauver 1, Omar Vergara-Díaz 1,

Mainassara A. Zaman-Allah 2, Boddupalli M. Prasanna 2, Jill E. Cairns 2 and José L. Araus 1*

1 Integrative Crop Ecophysiology Group, Plant Physiology Section, Faculty of Biology, University of Barcelona, Barcelona,

Spain, 2 International Maize and Wheat Improvement Center, CIMMYT Southern Africa Regional Office, Harare, Zimbabwe

Low soil fertility is one of the factorsmost limiting agricultural production, with phosphorus

deficiency being among themain factors, particularly in developing countries. To deal with

such environmental constraints, remote sensing measurements can be used to rapidly

assess crop performance and to phenotype a large number of plots in a rapid and

cost-effective way. We evaluated the performance of a set of remote sensing indices

derived from Red-Green-Blue (RGB) images and multispectral (visible and infrared)

data as phenotypic traits and crop monitoring tools for early assessment of maize

performance under phosphorus fertilization. Thus, a set of 26 maize hybrids grown under

field conditions in Zimbabwe was assayed under contrasting phosphorus fertilization

conditions. Remote sensing measurements were conducted in seedlings at two different

levels: at the ground and from an aerial platform. Within a particular phosphorus level,

some of the RGB indices strongly correlated with grain yield. In general, RGB indices

assessed at both ground and aerial levels correlated in a comparable way with grain

yield except for indices a∗ and u∗, which correlated better when assessed at the aerial

level than at ground level and Greener Area (GGA) which had the opposite correlation.

The Normalized Difference Vegetation Index (NDVI) evaluated at ground level with an

active sensor also correlated better with grain yield than the NDVI derived from the

multispectral camera mounted in the aerial platform. Other multispectral indices like the

Soil Adjusted Vegetation Index (SAVI) performed very similarly to NDVI assessed at the

aerial level but overall, they correlated in a weaker manner with grain yield than the

best RGB indices. This study clearly illustrates the advantage of RGB-derived indices

over the more costly and time-consuming multispectral indices. Moreover, the indices

best correlated with GY were in general those best correlated with leaf phosphorous

content. However, these correlations were clearly weaker than against grain yield and

only under low phosphorous conditions. This work reinforces the effectiveness of canopy

remote sensing for plant phenotyping and crop management of maize under different

phosphorus nutrient conditions and suggests that the RGB indices are the best option.

Keywords: maize, remote sensing, UAV, RGB Vis, multispectral Vis, phosphorous fertilization
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Gracia-Romero et al. Ground vs. Aerial Phosphorous Phenotyping

INTRODUCTION

Sub-Saharan Africa (SSA) has one of the world’s fastest growing
populations but the growth rate of food production has not
kept pace with this, leading to a food deficit (Mclntyre et al.,
2009). Low levels of soil phosphorous (P) and nitrogen (N), are
the main constraints to crop growth in these areas (Buerkert
et al., 2001). Phosphorous fertilizers are relatively costly in
SSA and are scarce in some countries, partly due to poorly
developed markets, and so phosphorous application is low
(1 kg ha−1 compared with 14.3 kg ha−1 in Asia) (Smalberger
et al., 2006). Plant scientists face the challenge of solving these
limitations while taking into account the additional implications
of climate change on food security (Cairns et al., 2012, 2013a).
In that sense, affordable technologies capable of monitoring crop
performance for agronomical purposes, yield prediction or to
assess phenotypic variability for breeding are bottlenecks in the
pathway to full exploitation of this technology (Reynolds et al.,
2012; Araus and Cairns, 2014).

Remote sensing has become an important methodology for
the application of agricultural monitoring and to improve
precision and throughput in phenotyping. There is a growing
body of literature demonstrating the usefulness of remote
sensing for a wide range of applications in agriculture: growth
monitoring, yield prediction, stress detection, nutrient deficiency
diagnosis, and control of plant diseases (Fiorani and Schurr,
2013). In the case of phenotyping, these methodologies offer the
opportunity to screen large numbers of genotypes at a lower
cost and faster than conventional phenotyping and provide to
breeding programs the opportunity to assess genetic diversity
under field conditions. Remote sensing methods enable detailed
non-invasive information to be captured throughout the plant
life cycle. Among the different remote sensing techniques,
the most usual indices used are derived from Red-Blue-
Green (RGB) images (Casadesús et al., 2007) and multispectral
(Thenkabail et al., 2002), hyperspectral (Blackburn, 2007) and
thermal sensors and images (Araus and Cairns, 2014; Deery
et al., 2016). However, large differences exist in the price
of the different equipment deployed (e.g., spectrometers vs.
conventional red/green/blue cameras).

The traditional procedure has involved the use of
multispectral sensors and the development of numerous
vegetation indices associated with vegetation parameters such
as above-ground biomass, water and nutrient deficiency, and
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crop yield (Petropoulos and Kalaitzidi, 2012). The Normalized
Difference Vegetation Index (NDVI) is one of the most well-
known vegetation indices derived from multispectral remote
sensing, as it includes visible and near infrared radiation.
Although, it was originally developed for satellite remote
vegetation sensing, it has also been found useful in ground-
based and aerial applications. In fact, several groups of spectral
variables have been identified as being of value in characterizing
plant performance and empirical indices have been defined.
Among these, some are modifications of the NDVI that takes
atmospheric effects and/or soil influences into account in order to
increase their sensitivity, like the Soil-adjusted Vegetation Index
(SAVI) or the Renormalized Vegetation Index (RDVI) (Wu,
2014). Others, like the Photochemical Reflectance Index (PRI),
aim to assess how efficiently the radiation is used by plants during
photosynthesis, while the Modified Chlorophyll Absorption in
Reflectance Index (MCARI) or the Transformed Chlorophyll
Absorption in Reflectance Index (TCARI) (Haboudane et al.,
2002), are focused on quantifying photosynthetic pigments.
Further, other indices also have been used to determine the water
status of plants, like the Water Index (WI) (Peñuelas et al., 1993;
Babar et al., 2006).

The use of information derived from conventional digital
RGB (of red, green, blue) images may represent a low-
cost alternative to the use of multispectral or hyperspectral
information for formulating vegetation indices. The images
can be processed to convert RGB values into indices based
on the models of Hue-Intensity-Saturation (HIS), CIELab, and
CIELuv cylindrical-coordinate representations of colors. The
RGB indices implementation has been extensive and successful
for providing a wide-range of phenomic data about genotypic
performance under different growing conditions (Casadesús
et al., 2007; Casadesús and Villegas, 2014; Vergara-Díaz et al.,
2015, 2016; Zaman-Allah et al., 2015; Zhou et al., 2015; Yousfi
et al., 2016).

The environmental variability throughout the day, like
changes in radiation, temperature or the occurrence of clouds,
affects the phenotypic observations inconsistently and may limit
the accuracy of the time-consuming proximal measurements
at ground level (e.g., the relative chlorophyll content). The
incorporation of these methodologies into aerial based platforms
enables the simultaneous characterization of a larger number of
plots (i.e., spectral reflectance at solar noon), which may help
to minimize the effect of changing environmental conditions
(Araus and Cairns, 2014). This becomes extremely important
with regards to the increasing demand to support and accelerate
progress in breeding for novel traits, which at the same time
requires accurate high throughput phenotyping of a large
numbers of plants. Furthermore, the added cost of the aerial
platforms may be offset by time savings by reducing manual field
labor.

The vegetation indices, formulated from the visible and
infrared spectrum of the light reflected by plants or derived
from RGB conventional digital images are the most usual remote
sensing method to assess plant nutrient status (Vergara-Díaz
et al., 2016). However, while most studies that have focused on
the spectral evaluation of nutrient deficiencies of crops have
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concerned analysis of nitrogen content, such evaluations are
far less common with other nutrients, including phosphorous
(Osborne et al., 2002; Mahajan et al., 2014). In addition to the
reduction in the total biomass, the lack of other mineral nutrients
can also influence the color of leaves. In the case of phosphorus,
it is well-known that leaf darkening is caused by a phosphorous
deficiency, but the relationship between symptoms and leaf color
is less evident than for nitrogen deficiency.

Because maize is among the major crops globally, and the
main staple for direct human consumption in SSA (Cairns
et al., 2013b), the aim of this study was to test the efficiency of
different remote sensing methods and tools in assessing the yield
performance and the phosphorus status of a total of 26 maize
hybrids under optimum and no phosphorus fertilization. The
performance of remote sensing assessment from an unmanned
aerial platform and from the ground was compared. Different
categories of sensors were tested, including RGB cameras (placed
on an aerial platform as well as at ground level), alongside a
multispectral camera (on the aerial platform) and a spectrometer
with an active sensor designed to measure the NDVI at ground
level. Measurements were performed at the seedling stage in
order to assess early predictions of plant performance and yield.
Phosphorus fertilization affects plant growth which subsequently
may alter water status (e.g., through differences in the amount
transitive area or in root development) and nitrogen uptake
and assimilation. In that sense, the stable isotope compositions
of C and N (δ13C and δ15N) were measured in leaf samples
as a complementary selection traits, aiming to assess any effect
of phosphorous assimilation on the water status and nitrogen
metabolism of the plant. Thus, for a C4 species such as maize in
spite δ13C composition while barely reflects genotypic variability
in water performance, it may still catch differences between
treatments in the plant water status (Cabrera-Bosquet et al.,
2009); while δ15N may reflect the effect of the treatment on the
uptake and further assimilation of N (Evans, 2001).

MATERIALS AND METHODS

Plant Material and Growing Conditions
Field trials were carried out at the Southern Africa regional
station of CIMMYT (International Maize and Wheat
Improvement Center) located in Harare (−17.800, 31.050,
1498 masl), Zimbabwe. The soil in the station is characterized
by a pH slightly lower than 6, nitrogen as nitrate (NO−

3 ) of
around 4 µg g−1 and phosphorous contents of nearly 20 µg g−1

(Vergara-Díaz et al., 2016).
A set of 25 maize hybrids developed at CIMMYT plus a

local check (CZH131001, CZH0524, CZH141042, CZH0631,
CZH131002, CZH0513, CZH131007, CZH03042, CH12716,
CZH03004, CZH15020, SC513, CZH132210, CZH142125,
CZH132218, CZH142153, CZH142159, SC719, CZH142186,
CZH142212, CZH142074, CZH142003, CZH142206,
CZH142195, and CZH142210) were sown during the wet
season on December 2015. These maize hybrids reflect a large
variability in plant performance to different phosphorous
conditions. The experimental design consisted of two separated

phosphorous treatments with 26 plots each corresponding to
each maize genotype studied (52 plots in total).

Seeds were planted on December 21st 2015, in three rows
per plot; rows were 4m long and 75 cm apart (9 m2/plot), with
17 plants per row and 25 cm between plants in each a row.
A split-plot in a randomized complete block design without
replicates was used. The field was fertilized with 200 kg·ha−1 of
ammonium nitrate (AN) and 250 kg·ha−1 of muriate of potash
before sowing (basal fertilizer), followed with 250 kg·ha−1 AN
for top dressing. In order to generate differential phosphorus
conditions, 400 kg/ha of superphosphate fertilizer were added at
pre-sowing to one half of the trial, corresponding to the optimum
phosphorous fertilized conditions (OP). The other part of the
trial corresponded to the non-phosphorus fertilized conditions
(NPF). The trial was depleted of phosphorus for 1 year. A two-
row border of a commercial maize variety was sown on the
edges of the trial to prevent border effects. Trials were gathered
following the standard procedures of CIMMYT. The central
3.5m of each row was harvested discarding 2 plants at each end,
thus the collected grain yield (t·ha−1) corresponded to the weight
of 7.87 m2.

In addition, these hybrids were also tested in other trials in
Zimbabwe under optimal fertilization conditions comparable to
those of the OP trial of the experimental station. Evaluations
were performed at the Agricultural Research Trust site in Harare
(−17.716, 31.716, 1,516 masl). For these trials, the fertilization
conditions were basically the same than at the OP conditions of
the main study (CIMMYT Station).

Proximal and Aerial Data Collection
Remote sensing evaluations were performed on seedlings (<5
leaves) during the last week of January. Vegetation indices
derived from RGB images were evaluated for each plot at ground
and aerial levels. At ground level one conventional digital picture
was taken per plot, holding the camera about 80 cm above the
plant canopy in a zenithal plane and focusing near the center
of each plot. The digital camera used was an Olympus OM-
D (Olympus, Tokyo, Japan). Pictures were acquired at a 16-
megapixel resolution with a sensor using a 14-mm focal length,
triggered at a speed of 1/125 s with the aperture programmed
in automatic mode. NDVI was also determined on individual
plots at ground level using a portable spectrometer (GreenSeeker
handheld crop sensor, Trimble, USA). Additionally, the leaf
chlorophyll content (LCC) of the last developed leaf was
measured using a Minolta SPAD-502 portable chlorophyll meter
(Spectrum Technologies Inc., Plainfield, IL, USA). Eight leaves
were measured for each plot (four per row), each leaf being
the last fully expanded within a plant. For each leaf four
measurements were taken from the middle portion of the lamina.

Further, RGB and multispectral aerial images were acquired
using an unmanned aerial vehicle (UAV) (Mikrokopters OktoXL,
Moormerland, Germany) flying under remote control at around
50m (Figure 1). The camera used for the aerial images was
a Lumix GX7 (Panasonic, Osaka, Japan), a digital single lens
mirrorless camera with an image sensor size of 17.3 × 13.0mm.
Images were taken at 16-megapixel resolution using a 20-
mm focal length. In addition, a multispectral camera covering
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FIGURE 1 | RGB (A) and false-color infrared (B) ortho-mosaics of the plot

images under P fertilization (right plots) and no fertilization (left plots).

wavelengths in the visible and near infrared regions of the
spectrum (MCA12, Tetracam Inc., Chatsworth, CA, US) was also
mounted in the drone. The camera consisted of 12 independent
image sensors, and optics with user configurable filters. It
captured 15.6-megapixels of image data and transferred this to 12
separate flashmemory cards. Both RGB andmultispectral images
were taken at the rate of one every 5 s.

Image Processing
To obtain correct image mosaics from the multispectral images a
3D reconstruction approach was needed to produce an accurate
ortho-mosaic and remove the effects of the UAV flight. Agisoft
PhotoScan Professional (Agi- soft LLC, St. Petersburg, Russia)
was employed for this task using 20–30 overlapping images for

both mosaics (RGB and multispectral) with at least 80% overlap.
Through the open source image analysis platform FIJI (Fiji is Just
ImageJ; http://fiji.sc/Fiji), regions of interest were established at
each row for the plots to be cropped.

RGB pictures were subsequently analyzed using a version
of the Breedpix 0.2 software adapted to JAVA8 and integrated
as a plugin within FIJI; https://github.com/George-haddad/
CIMMYT). This software enables the extraction of RGB
vegetation indices (VIs) in relation to different properties of
color (Casadesús et al., 2007). Essentially, the indices are based
on either the average color of the entire image, in diverse units
related to its “greenness,” or on the fraction of pixels classified
as green canopy relative to the total number of pixels in the
image. In HSI color space, the Hue (H) component describes
the color itself traversing the visible spectrum in the form of
an angle between 0◦ and 360◦, where 0◦ means red, 60◦ means
yellow, 120◦ means green and 180◦ means cyan. Derived from
the Hue, Green Area (GA), and Greener Area (GGA) analyze the
proportion of green pixels in the image. GA is the percentage
of pixels in the image in the hue range from 60 to 180◦, that is,
from yellow to bluish green. Meanwhile, GGA is somewhat more
restrictive because the range of hue considered by the index is
from 80 to 180◦, excluding yellowish-green tones. In the CIELab
color space model, dimension L∗ represents lightness, and the
green to red range is expressed by the a∗ component, with a
more positive value representing a purer red, and conversely a
more negative value indicating a greener color. Meanwhile, blue
to yellow is expressed by the b∗ component, where the more
positive the value the closer it is to a pure yellow, whereas the
more negative the value the closer it is to blue. Similarly, in the
CIELuv color spacemodel, dimensions u∗ and v∗ are perceptually
uniform coordinates, where the visible spectrum starts with blue
at the bottom of the space, moving through green in the upper left
(mostly scaled by v∗) and out to red in the upper right (mostly
scaled by u∗). The multispectral indices, formulated with the
Tetracam camera and detailed in Table 1, were calculated from
the multispectral images using a custom FIJI macro code.

Leaf Phosphorous Content
Similar leaves to those used for leaf chlorophyll measurements
were sampled and subsequently oven dried at 70◦C for 24 h
and ground to a fine powder. For the analysis of P content, a
total of 100mg of sample were digested in acid for 24 h at 90◦C
within Teflon vessels, using 2ml of NHO3 and 0.5ml of hydrogen
peroxide, with samples subsequently re-suspended in 30ml
of deionized water. Analyses were performed by Inductively
Coupled PlasmaOptical Emission Spectroscopy (ICP-OES) using
a Perkin-Elmer Optima 3200RL Spectrometer (Perkin-Elmer,
Massachusetts, EEUU) at the Scientific Facilities of the University
of Barcelona. Leaf phosphorous content was expressed in mg of
P per g of dry mass.

Total Nitrogen Content and Carbon and
Nitrogen Stable Isotope Compositions
The same ground material was also used to analyze the total
nitrogen content together with the stable isotopic abundances
of carbon and nitrogen in the leaves. Samples of about
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TABLE 1 | Indices derived from the multispectral visible and near infrared bands.

Target group Index Equation Wavelengths References

Broadband

greenness

Normalized difference vegetation index (NDVI) (B840 – B670)/(B840 + B670) Red, NIR Rouse et al., 1973

Soil adjusted vegetation index (SAVI) (B840 – B670)/(B840 + B670 + L)*(1 + L) Red, NIR Huete, 1988

Low vegetation, L = 1, intermediate, 0.5, and high 0.25

Optimized soil-adjusted vegetation index

(OSAVI)

((1 + 0.16)*(B780 – B670))/((B780 + B670 + 0.16)) Red, NIR Rondeaux et al.,

1996

Renormalized difference vegetation index

(RDVI)

(B840 – B670)/((B840 + B670)∧1/2) Red, NIR Roujean and Breon,

1995

Enhanced vegetation index (EVI) 2.5*(B840 – B670)/(B840 + (6*B670) − (7.5*B450) + 1) Blue, Red, NIR Huete et al., 2002

Light Use

efficiency

Photochemical reflectance index (PRI) (B550 – B570)/(B550 + B570) Green Gamon et al., 1997

Leaf pigments Modified chlorophyll absorption ratio index

(MCARI)

[(B700 – B670) – 0.2*(B700 – B550)]*B700/B670 Green, Red Daughtry, 2000

Transformed chlorophyll absorption in

reflectance index (TCARI)

3*(B700 – B670)-0.2*(B700 – B550)*(B700/B670) Green, Red, NIR Haboudane et al.,

2002

Anthocyanin reflectance index 2 (ARI2) B840*(1/B550 – 1/B700) Blue, Red, NIR Gitelson et al., 2001

Carotenoid reflectance index 2 (CRI2) 1/B550 – 1/B700 Blue, Red Gitelson et al., 2002

Canopy water

content

Water band index (WBI) (R840 – B670)/(B840 + B670)∧(1/2) Red, NIR Peñuelas et al., 1993

0.7mg of dry matter and reference materials were weighed
into tin capsules, sealed, and then loaded into an elemental
analyzer (Flash 1112 EA; ThermoFinnigan, Schwerte, Germany)
coupled with an isotope ratio mass spectrometer (Delta C
IRMS, ThermoFinnigan), operating in continuous flow mode.
Measurements were carried out at the Scientific Facilities of the
University of Barcelona. The 13C/12C ratios (R) of plant material
were expressed in composition (δ13C) notation (Coplen, 2008) as
follows:

δ
13C (‰) = [(R sample/Rstandard) − 1] x1000 (1)

Where: sample refers to plant material and standard to Pee
Dee Belemmite (PDB) calcium carbonate. International isotope
secondary standards of a known 13C/12C ratio (IAEA CH7,
polyethylene foil, IAEA CH6 sucrose and USGS 40 l-glutamic
acid) were calibrated against Vienna Pee Dee Belemnite calcium
carbonate (VPDB) with an analytical precision of 0.1‰. The
15N/14N ratios of plant material were also expressed in δ

notation (δ15N) using international secondary standards of
known 15N/14N ratios (IAEA N1 and IAEA N2 ammonium
sulfate and IAEA NO3 potassium nitrate), with analytical
precision of about 0.2‰. Further, the C/N ratio was obtained
from these analyses.

Statistical Analysis
Statistical analyses were conducted using the open source
software, RStudio 1.0.44 (R Foundation for Statistical
Computing, Vienna, Austria). Data for the set of physiological
traits were subjected to factorial analyses of variance (ANOVAs)
to test the effects of growing conditions on the different traits
studied. A bivariate correlation procedure was used to calculate
the Pearson correlation coefficients of the different remote
sensing indices against the grain yield and the leaf phosphorus

content. Multiple regressions were calculated via a forward
stepwise method with GY and P content as dependent variables
and the different indices as independent parameters. The figures
were also drawn using the Rstudio software.

RESULTS

The Effect of Phosphorous Availability on
Grain Yield and Leaf Parameters
Omission of phosphorous fertilizer significantly decreased yield
from amean value (across genotypes) of 7.50 to 5.64 t ha−1 under
optimum and no-phosphorous fertilizer conditions, respectively
(Table 2). Moreover, the varieties presented a wide range of yield
and leaf phosphorus content within the fertilization conditions.
Despite this, the phosphorus content of the leaves only correlated
significantly against grain yield under non-phosphorus-fertilized
conditions (Supplementary Figure 1).

The effect of phosphorous fertilization was also significant
for the different leaf parameters studied. Thus, leaf total
phosphorous content (P content) and chlorophyll content (LCC)
strongly decreased in response to a lack of phosphorous fertilizer.
The total nitrogen content (N) also decreased significantly (P <

0.000), although in a weaker manner, whereas the total carbon
content (C) together with the C/N ratio increased slightly without
phosphorous fertilizer, and the stable carbon and nitrogen
isotopic composition did not change.

The Effect of Phosphorous Fertilization and
the Sensor Altitude on Vegetation Indices
Phosphorous-input also affected the RGB and multispectral
indices (Table 3). All RGB indices derived from aerial images
were significantly affected by phosphorous fertilization except
v∗. For the RGB indices measured from the ground, only Hue,
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TABLE 2 | Effect of supplemental phosphorus fertilization on the grain yield (GY),

leaf chlorophyll content (LCC), phosphorous content (P), leaf carbon and nitrogen

concentration (C and N), leaf C/N ratio, and the stable carbon (δ13C) and nitrogen

(δ15N) composition within the non-phosphorous fertilized (NPF) and the optimal

phosphorous (OP) conditions.

NPF OP p-value

GY (t ha−1) 5.64 ± 0.20 7.5 ± 0.20 0.000***

LCC 32.01 ± 0.99 46.19 ± 0.78 0.000***

P (mg/g DW) 2.06 ± 0.08 4.81 ± 0.11 0.000***

C (%) 43.62 ± 0.10 43.03 ± 0.23 0.021*

N (%) 3.95 ± 0.04 4.30 ± 0.06 0.000***

C/N 11.08 ± 0.11 10.06 ± 0.13 0.000***

δ13C (‰) −11.66 ± 0.03 −11.61 ± 0.04 0.428

δ15N (‰) −1.32 ± 0.23 −1.09 ± 0.30 0.541

Values are means ± standard error of the 26 hybrids. Levels of signification: *P < 0.05;
***P < 0.001.

Saturation, a∗, u∗, GA and GGA were significantly affected.
Regardless of how images were collected, GA and GGA exhibited
the strongest changes, decreasing more than the half with the
absence of phosphorous fertilization. In contrast, the CIE-XYZ
color space indices, particularly a∗ and u∗, increased significantly
in absence of phosphorous fertilization (P < 0.0001). Besides,
the values of the vegetation indices varied significantly (P <

0.0001) with imaging height (ground vs. UAV), except for GA
(ground/aerial; GA: NPF 0.08/0.07, OP 0.21/0.20; GGA: NPF
0.08/0.02, OP 0.20/0.12). Hue and GGA were lower when they
were assessed on the ground rather than from the aerial platform,
while the other indices showed the opposite behavior.

The multispectral index NDVI also decreased significantly
(P < 0.0001) as response to lack of phosphorus fertilizer
(Table 3). The values of NDVI were slightly lower when this
index was measured with the hand-held sensor at ground level
compared with the same index assessed from the multispectral
camera placed in the aerial platform. Apart from EVI, which
was not affected by phosphorus fertilization, the values of the
other multispectral indices measured via the UAV’s multispectral
images (Table 1) were also significantly smaller (P < 0.000) in
the absence of phosphorous fertilizer compared with optimum
phosphorous.

Correlations between the remote sensing indices Hue, a∗, u∗,
GA, GGA, and NDVI assessed at ground level against the same
indices measured from the UAV were very strong (Table 4).
Moreover, most of these indices exhibited a slope close to 1
(Supplementary Figure 2). In contrast, relationships reported for
the remaining RGB indices (Intensity, Saturation, Lightness, b∗,
and v∗) were much lower.

Performance of Remote Sensing Indices
Assessing Grain Yield and Leaf
Phosphorous
Correlation coefficients for the relationships of grain yield
with both the RGB (Table 5) and the multispectral indices
(Table 6) were calculated. Within both phosphorus conditions
and regardless of the imaging height (ground or from UAV) of

TABLE 3 | Effect of phosphorous fertilization on remote sensing indices derived

from RGB and spectral measurements within the non-phosphorous fertilized

(NPF) and the optimal phosphorus (OP) conditions.

NPF OP p-value

RGB INDICES/GROUND

Intensity 0.36 ± 0.00 0.36 ± 0.00 0.861

Hue 30.63 ± 0.45 39.34 ± 1.23 0.000***

Saturation 0.19 ± 0.00 0.18 ± 0.00 0.000***

Lightness 42.35 ± 0.11 42.67 ± 0.25 0.243

a* 1.18 ± 0.15 −1.93 ± 0.37 0.000***

b* 18.88 ± 0.23 18.48 ± 0.20 0.200

u* 10.82 ± 0.22 6.34 ± 0.49 0.000***

ν* 20.38 ± 0.24 20.65 ± 0.26 0.440

GA 0.08 ± 0.01 0.21 ± 0.01 0.000***

GGA 0.08 ± 0.00 0.20 ± 0.01 0.000***

RGB INDICES/UAV

Intensity 0.50 ± 0.00 0.49 ± 0.00 0.003**

Hue 23.53 ± 0.37 29.64 ± 0.72 0.000***

Saturation 0.24 ± 0.00 0.22 ± 0.00 0.000***

Lightness 55.13 ± 0.25 53.94 ± 0.40 0.014**

a* 9.39 ± 0.22 4.42 ± 0.42 0.000***

b* 26.53 ± 0.22 25.18 ± 0.23 0.000***

u* 28.05 ± 0.34 19.54 ± 0.69 0.000***

ν* 28.28 ± 0.24 27.82 ± 0.25 0.192

GA 0.07 ± 0.01 0.20 ± 0.01 0.000***

GGA 0.02 ± 0.00 0.12 ± 0.01 0.000***

SPECTRAL INDICES

NDVI g 0.30 ± 0.03 0.49 ± 0.03 0.000***

NDVI 0.35 ± 0.01 0.50 ± 0.01 0.000***

SAVI 0.16 ± 0.01 0.24 ± 0.01 0.000***

OSAVI 0.23 ± 0.01 0.34 ± 0.01 0.000***

RDVI 0.16 ± 0.00 0.25 ± 0.01 0.000***

EVI 0.22 ± 0.01 0.35 ± 0.01 0.000***

PRI 0.16 ± 0.01 0.18 ± 0.00 0.001**

MCARI 0.05 ± 0.04 0.06 ± 0.00 0.000***

TCARI 0.08 ± 0.00 0.09 ± 0.00 0.012*

TCARI/OSAVI 0.36 ± 0.01 0.26 ± 0.01 0.000***

ARI2 0.75 ± 0.02 0.67 ± 0.02 0.010*

CRI2 6.65 ± 0.12 6.03 ± 0.20 0.009**

WBI 0.92 ± 0.00 0.94 ± 0.01 0.000***

These indices are defined at section Material and Methods. Values are means ± SE of

the individual values of the 26 genotypes. Levels of signification: *P < 0.05; **P < 0.01;

***P < 0.001.

data acquisition, GA and GGA were best correlated with grain
yield, followed by Hue and a∗. The u∗ index also correlated
well with grain yield but only when measured from the aerial
platform. The rest of the RGB indices correlated far more
weakly or did not correlate with grain yield, irrespective of the
phosphorus fertilization status or the imaging height of index
assessment. Combining both fertilization levels also gave similar
results. The correlations of these indices against leaf phosphorus
content within both phosphorus treatments were in general weak
or absent. It was only under the combination of both fertilization
levels that the remote sensing indices had a clearly improved
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TABLE 4 | Regression coefficients (r) of the relationships between the remote

sensing indices measured at ground against the same VIs measured at aerial level.

r p-value

Intensity 0.275 0.000***

Hue 0.902*** 0.000***

Saturation 0.466 0.000***

Lightness 0.126 0.000***

a 0.919*** 0.000***

b 0.316 0.000***

u 0.903*** 0.000***

ν 0.310 0.000***

GA 0.970*** 0.509

GGA 0.942*** 0.000***

NDVI 0.889*** 0.000***

Correlations were studied across plots within both trials conditions in combination. Levels

of signification: ***P < 0.001.

TABLE 5 | Regression coefficients of the relationships between the RGB-indices,

measured at ground and aerial levels, with grain yield and P content.

Grain yield P content

NPF OP Comb. NPF OP Comb.

RGB INDICES/GROUND

Intensity 0.194 −0.217 −0.084 −0.014 −0.067 −0.041

Hue 0.777*** 0.732*** 0.827*** 0.336 −0.370 0.594*

Saturation 0.468* −0.027 −0.179 0.065 0.247 −0.429*

Lightness 0.459* −0.014 0.205 0.086 −0.152 0.126

a* −0.601** −0.725*** −0.818*** −0.334 0.405* −0.643**

b* 0.572** 0.226 0.171 0.110 −0.020 −0.157

u* −0.300 −0.729*** −0.786*** −0.267 0.425* −0.667**

ν* 0.642*** 0.362 0.434** 0.151 −0.152 0.094

GA 0.816*** 0.817*** 0.878*** 0.111 −0.369 0.707**

GGA 0.822*** 0.816*** 0.877*** 0.122 −0.367 0.711**

RGB INDICES/AERIAL

Intensity −0.223 −0.715*** −0.620*** 0.166 0.021 −0.359

Hue 0.731*** 0.798*** 0.868*** −0.062 −0.361 0.624**

Saturation 0.149 0.266 −0.235 −0.539* −0.112 −0.581*

Lightness −0.102 −0.653*** −0.526*** 0.109 −0.047 −0.316

a* −0.856*** −0.784*** −0.883*** −0.284 0.339 −0.750**

b* 0.192 0.002 −0.292* −0.466* −0.221 −0.575*

u* −0.830*** −0.777*** −0.873*** −0.424* 0.284 −0.777**

ν* 0.318 0.084 0.016 −0.333 −0.337 −0.283

GA 0.837*** 0.814*** 0.891*** 0.139 −0.343 0.693**

GGA 0.790*** 0.752*** 0.837*** 0.206 −0.309 0.697**

Correlations were studied across plots within the non-phosphorus fertilization (NPF) and

the optimal phosphorus (OP) trials, as well as both in combination (Comb.). Levels of

signification: *P < 0.05; **P < 0.01; ***P < 0.001.

correlation with leaf P concentration, particularly for the indices
that exhibited the best correlations with grain yield. However, the
correlations against P content were in all cases weaker than with
grain yield.

Concerning NDVI, and regardless the fertilization level,
the highest correlation with GY was found with ground

TABLE 6 | Regression coefficients of the relationships between the

multispectral-indices and the multispectral with grain yield, P and N content.

Grain Yield P Content

NPF OP Comb. NPF OP Comb.

MULTISPECTRAL INDICES

NDVI.ground 0.734*** 0.711*** 0.863*** 0.058 −0.423* 0.669***

NDVI 0.628*** 0.643*** 0.823*** 0.324 −0.347 0.800***

SAVI 0.652*** 0.644*** 0.823*** 0.159 −0.269 0.790***

OSAVI 0.657** 0.655** 0.829*** 0.216 −0.303 0.797***

RDVI 0.658*** 0.650*** 0.829*** 0.198 −0.286 0.795***

EVI 0.613*** 0.529** 0.798*** 0.119 −0.220 0.782***

PRI 0.039 0.312 0.406** 0.428* 0.032 0.466*

MCARI 0.358 −0.019 0.452** −0.035 −0.033 0.463*

TCARI 0.172 −0.200 0.238 −0.147 0.055 0.314

TCARI/OSAVI −0.401* −0.618** −0.748*** −0.368 0.283 −0.700***

ARI2 −0.012 0.286 −0.133 −0.286 −0.002 −0.363

CRI2 0.016 0.359 −0.091 −0.162 −0.064 −0.364

WBI 0.241 0.595** 0.598*** −0.014 −0.064 0.414*

MULTISPECTRAL BANDS

B450 −0.348 −0.688*** −0.638*** −0.459 0.318 −0.383

B550 0.261 −0.505** −0.102 −0.205 0.371 0.036

B570 0.032 −0.529** −0.419** −0.498* 0.212 −0.354

B670 −0.302 −0.566** −0.739*** −0.540* 0.398 −0.731***

B700 −0.116 −0.525** −0.602*** −0.463* 0.324 −0.567**

B720 0.269 −0.045 0.153 −0.319 0.125 0.047

B780 0.465* 0.477* 0.741*** −0.020 −0.122 0.688***

B840 0.496* 0.550** 0.779*** 0.010 −0.137 0.744***

B860 0.442* 0.492* 0.753*** −0.051 −0.129 0.736***

B900 0.425* 0.537** 0.761*** −0.063 −0.083 0.739***

B950 0.390* 0.411* 0.724*** −0.024 −0.091 0.741***

Correlations were studied across plots within the non-phosphorus fertilization (NPF) and

the optimal phosphorus (OP) trials, as well as both in combination (Comb.). Levels of

signification: *P < 0.05; **P < 0.01; ***P < 0.001.

spectroradiometer measurements, although the NDVI derived
from the UAV was still highly correlated with GY (Table 6).
Multispectral indices SAVI, RDVI, OSAVI, EVI, and WBI were
also significantly correlated with GY within the two phosphorus
conditions alone, or when both levels were combined. Individual
multispectral bands presented significant correlations with yield,
particularly under optimal phosphorus. Correlations of these
indices with leaf P content were weak or absent, regardless of the
phosphorus level, whereas spectral bands around 570, 670, and
700 nm significantly, but weakly, correlated with P content at the
low fertilization level. In the case of the RGB indices, combining
both treatments strongly increased the correlations between the
multispectral indices and P content, particularly for the indices
that best correlated with grain yield (NDVI, SAVI, RDVI, EVI, or
OSAVI). However, the strengths of the correlations were always
lower than for grain yield.

For the purpose of testing how the combination of different
indices measured from the aerial platform may improve
the strength and accuracy of the assessment of grain yield
and phosphorous concentration, stepwise regressions were
performed (Table 7). The best predictive equations of grain yield
were achieved using RGB indices, which were themost significant
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TABLE 7 | Multilinear regression (stepwise) of grain yield (GY) as dependent variable and the different categories of remote sensing traits (RGB VIs, multispectral VIs, and

specific multispectral bands) measured from the unmanned aerial vehicle within the non-phosphorus fertilization (NPF) and the optimal phosphorus (OP) trials.

Equation R2 RSE p-value Portion of variance

GY NPF Aerial RGB VIs GY = −0.25·u* + 13.99·GA + 11.65 0.821 0.590 0.000 u* = 0.49

GA = 0.50

Multispectral VIs GY = 59.08·MCARI – 12.46·TCARI/OSAVI + 7.38 0.463 0.769 0.000 MCARI = 0.46

TCARI/OSAVI = 0.53

OP Aerial RGB VIs GY = 12.31·GA + 5.00 0.662 0.596 0.000 GA = 1.00

Multispectral VIs GY = −43.94·NDVI + 189.93·RDVI – 59.62·EVI + 3.36 0.652 0.632 0.000 NDVI = 0.31

RDVI = 0.40

EVI = 0.28

P content NPF Aerial RGB VIs P content = −0.26·Hue – 0.49·a* + 13.00 0.436 0.337 0.001 Hue = 0.41

a* = 0.58

Multispectral VIs P content = −146.66·NDVI – 995.36·SAVI + 1289·RDVI + 0.53 0.311 0.381 0.038 NDVI = 0.39

SAVI = 0.29

RDVI = 0.31

OP Aerial RGB VIs P content = 0.47· b* – 0.56·ν* + 8.82 0.210 0.520 0.065 b* = 0.34

v* = 0.65

Multispectral VIs P content = 77.16· SAVI – 86.16·RDVI + 7.20 0.151 0.539 0.150 SAVI = 0.46

RDVI = 0.53

R2, determination coefficient; RSE, Residual Standart Error.

measurements in the absence of phosphorous fertilizer. The
multispectral bands and indices performed better at predicting
grain yield under optimum phosphorus conditions than the non-
fertilized conditions. In contrast, the prediction of P was not as
good as GY and the only significant equations were found at the
non-phosphorous fertilization conditions (P < 0.050).

In order to check the ability of the remote sensing indices
to predict genotypic differences in yield, we correlated the
genotypic values of the different categories of remote sensing
traits evaluated in the seedlings with the yield of each hybrid
determined from multi-location trials developed in parallel
(Table 8). Every index that correlated with yield in our
experiment, in either the absence of phosphorous fertilizer or
in optimum conditions, also showed significant correlations
with the genotypic yield data of the multilocation study.
The correlation coefficients calculated with the RBG and the
multispectral indices against the yield of the multilocation study
were very similar to those found between these indices and the
grain yield in the present study. The best correlated RGB VI’s
were GA and GGA again, both ground and aerial measurements.
Also, the spectral indices associated with the greenness and
densitymeasurements correlated greatly with the genotypic yield,
and to a similar extent as the correlation with grain yield in the
same trials. On the other hand, the RDVI and theWBI correlated
even better with grain yield from the multilocation trials than
with the grain yield of the present remote sensing trial.

DISCUSSION

Phosphorus Fertilization Effect on Grain
Yield
Phosphorous is an essential nutrient for plant growth and
development (Manschadi et al., 2014). For that reason, the yield
of the hybrids was strongly affected by the lack of phosphorus

fertilizer, and leaf phosphorous content correlated with grain
yield across hybrids in the non-phosphorus-fertilized trial. The
large variability in plant performance across the hybrids that was
revealed in our results presumably reflects differences in P use
efficiency as well as genotypic differences in yield potential (i.e.,
productivity under optimal agronomical conditions). In general,
most reports state that P deficiency reduces photosynthetic
capacity and efficiency through different mechanisms (Brooks
et al., 1988).

Yield variations caused by differences in the water status

of the plants can be ruled out through the lack of differences

in δ13C. Even for a C4 plant like maize, differences in plant

water status, and intrinsic photosynthetic metabolism may be

reflected in the δ13C of the plant matter, with δ13C decreasing
in response to water stress (Farquhar et al., 1989; Monneveux

et al., 2007). We did not found differences in δ13C associated to
fertilization. In contrast, significant differences between the two
fertilization conditions were detected in the WBI values. This
index uses the reflectance spectra at the near and far-infrared
region as an indication of water absorption. Hence, higher WBI
values indicate a better water status. Optimal growing conditions
had enabled faster seedling growth and therefore turgid leaves
(i.e., more watered), although past studies have also indicated
that WBI can predict the leaf area index (Roberts et al., 1998;
Qiu et al., 2007). Thus, higher WBI values at optimum P
conditions must be due to a larger canopy area rather than water
status differences. Nevertheless, some reports have indicated
that phosphorus fertilization can help crops to use water more
efficiently under limited moisture conditions (Waraich et al.,
2011).

Phosphorous and nitrogen content in the leaves correlated
within each fertilization levels (Supplementary Figure 3)
and both contents were higher under optimal compared
with non-phosphorous fertilization conditions. Differences in
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TABLE 8 | Regression coefficients (r) of the relationships across the genotypes of

the VI’s measured in seedlings at non-phosphorus fertilization (NPF) and optimal

phosphorous (OP) conditions in this study against grain yield data from other trials.

NPF OP

RGB INDICES/GROUND

Intensity 0.079 −0.237

Hue 0.494* 0.695***

Saturation 0.562** −0.039

Lightness 0.311 −0.047

a* −0.232 −0.677***

b* 0.592** 0.187

u* 0.057 −0.685***

ν* 0.602** 0.314

GA 0.738*** 0.830***

GGA 0.741*** 0.828***

RGB INDICES/UAV

Intensity −0.465* −0.643***

Hue 0.767*** 0.766***

Saturation 0.491** 0.360

Lightness −0.317 −0.570**

a* −0.705*** −0.721***

b* 0.423* 0.137

u* −0.625*** −0.692***

ν* 0.450* 0.209

GA 0.848*** 0.779***

GGA 0.785*** 0.730***

SPECTRAL INDICES

NDVI g 0.752*** 0.594**

NDVI 0.656*** 0.629***

PRI −0.207 0.223

SAVI 0.658*** 0.630***

MCARI 0.399* −0.017

WBI 0.486* 0.573**

RDVI 0.721*** 0.630***

EVI 0.403* 0.334

ARI2 0.133 0.162

CRI2 0.112 0.243

TCARI 0.304 −0.157

OSAVI 0.552** 0.611***

Levels of signification: *P < 0.05; **P < 0.01; ***P < 0.001.

nitrogen content may account for the variation across genotypes
and fertilization levels in LCC and the fact that at least under
NPF chlorophyll content and phosphorous content correlated
positively.

Comparative Performance of Ground vs.
Aerially Assessed Indices at Determining
Genotypic Differences in Grain Yield
The vegetation indices derived from conventional digital RGB
images have been proposed as a means of estimating green
biomass and grain yield in maize and other cereals under stress
conditions (Ahmad and Reid, 1996). As the ground and aerial

measurements were taken at the same time on the same day,
variation in environmental variables such as light intensity and
brightness can be almost negligible. Thus, the main differences
are due to the resolution of the pictures (Figure 2). Besides
using cameras with the same sensor size (17.3 × 13mm) that
capture images at the same resolution (16-megapixels), the final
resolution of the images was also affected (by the square of) the
distance between the camera and the object (in this case the
plots). While the images collected in our study from the UAV
only reached a resolution of 488× 193 pixels per plot, the spatial
resolution of the images taken from the ground was 4,608 ×

3,072 pixels per plot. When the spatial resolution is very high,
plants in the image are well-defined; however, when the spatial
resolution is poorer, the boundaries between plants and soil are
fuzzy, and consequently, there is usually a higher portion of pixels
including information of both vegetation and bare soil (Torres-
Sánchez et al., 2014). Despite such differences in resolution,
some indices like a∗ and u∗ assessed aerially correlated better
against grain yield, whereas others exhibited similar performance
to ground determined indices, except for GGA which correlated
slightly weaker when assessed from the aerial platform. The a∗

and u∗ indices aremore likely to reflect color components that are
more sensitive to the scene’s illumination and the camera’s self-
adjustments (Casadesús et al., 2005), thus being more limited by
soil lightness and therefore performing better at the aerial level
with reduced image resolution. Conversely, a reduction in the
number of pixels in the image makes it more difficult to identify
differences in vegetation color, so GGA performed better at
ground level. Nevertheless, advances in digital photography allow
sufficiently high resolution for low-altitude aerial imaging to be a
viable and economical monitoring tool for agriculture (Sankaran
et al., 2015). Moreover, aerial photographs enable coverage of
the whole plot (which usually is not the case for images taken
at ground level) and therefore, to some extent, may compensate
for the loss of spatial resolution. In this sense, correlations with
grain yield by indices derived from aerial imaging were generally
only slightly weaker than indices measured at ground level. Some
of the RGB indices like Hue, a∗, u∗, GA, or GGA and the NDVI,
produced correlation coefficients higher than R2 = 0.900 when
compared to the same indices measured at ground level and
from the aerial platform (Supplementary Figure 2). This is despite
the methodological differences between index determination at
ground level (on an individual plot basis) and the aerial platform
(across a whole trial and further segmented into individual plots).
Therefore, both approaches are able to offer essentially similar
kinds of information.

Comparative Performance of the RGB vs.
Multispectral Indices at Determining
Genotypic Differences in Grain Yield
The RGB-based indices, GA and GGA, were the best at GY
prediction, outperforming other RGB indices, NDVI and the rest
of the spectral indices. Considering that the data of our study
was collected at an early phenological stage, the plants were
not able to cover the soil completely. Therefore, the superior
performance of these indices should be attributable, at least in
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FIGURE 2 | Examples of the differences in resolution between images taken at

ground level and aerially.

part, to their insensitivity to soil color (Casadesús et al., 2007).
GA quantifies the portion of green pixels to the total pixels of
the image and is a reliable estimator of vegetation cover (Lukina
et al., 1999). By contrast, GGA does not incorporate the yellowish
green fraction of vegetation when the GA becomes saturated
during late phenological periods. Therefore, elevated GA and
GGA indices, probably driven by a higher biomass, seem to be
more relevant for predicting higher yield. Although these indices
performed in a very similar way at both measurement locations,
when the GGA was measured at ground level it tended to be
more highly correlated to GY. Besides other considerations the
far higher resolution of the RGB compared with the multispectral
images may be also relevant when working from an aerial
platform.

A recent study has concluded that RGB images performed
better than NDVI in determining genotypic differences in hybrid
maize yield under different nitrogen fertilization conditions
(Vergara-Díaz et al., 2016). The results of our research include
the NDVI and its reformulations as the SAVI, OSAVI, EVI,
and RDVI indices, which were best correlated with GY. These
indices, which are based on the strong contrast between the
near infrared (NIR) and (R) bands, are optical measurements
of canopy greenness and canopy cover (Tucker, 1979). NDVI
is a widely accepted approximation for assessing crops under
different growing conditions, but it can fail to distinguish changes
in soil cover and plant density from changes in vegetation color
(Steven et al., 1996). As our study was made at an early stage
of development, the plants did not have enough biomass to
cause this saturation problem. The SAVI was developed as a
modification of the NDVI, to correct the brightness incidence
of the soil (Huete, 1988). Notwithstanding the reduction in
soil noise problems, correlations of the SAVI with GY were
not improved in comparison to the NDVI. The optimization
of this index, which applied an adjusting coefficient (Rondeaux
et al., 1996) that resulted in the OSAVI, also did not improve
the correlation with GY, but rather caused the opposite. The
RDVI and the EVI are another indices based on the NDVI,

which have been developed with the intention of correcting
the rapid saturation due to dense vegetation (Liu and Huete,
1995). Even though this was not a problem in our study,
the fact that those indices emphasize the vigor of vegetation
has enabled achieving quite strong correlations, similar to
NDVI.

MCARI is an index that measures the depth of chlorophyll
absorption at 670 nm relative to the reflectance at 550 and
700 nm (Daughtry, 2000). TCARI is a transformation developed
to counteract the effect of soil background (Haboudane et al.,
2002). However, both indices are still sensitive to the background
reflectance properties. The plots studied were particularly
characterized by a low leaf area index, so neither the MCARI
nor the TCARI were adequate for our experiment. Anthocyanin
and carotenoid pigments were also detected by the ARI2
and the CRI2 indices, but no valuable information has been
obtained.

The complementary metal-oxide-semiconductor (CMOS)
image sensor of the micro-MCA12 camera is optimized to collect
wavelengths at ∼800 nm, dropping in a smooth curve to a low
relative efficiency at 400 nm in the visible wavelengths and a
smaller reduction in efficiency at 1050 nm in the NIR, at the
limits of its range. As a consequence, the efficiency of the
measurements in the blue band (450 nm) is considerably lower
(20%) in comparison to the measurements of the NIR or the
R bands (85% both). Due to this limitation in the blue region
sensitivity, more noise is included in the measurements of the
blue band. Moreover, inadequate phosphorus content can result
in a darkening of the leaves to a purple color. This would explain
why the single band measurement in the blue region correlated
with GY at optimum conditions but it failed to do so under
non-fertilized conditions. The correlation analysis between each
multispectral band and yield has identified sensitive wavelengths
under both phosphorus levels, and this ranges from 780 to
950 nm of the near-infrared (NIR, 750–1,350 nm) region of the
spectrum.

The results obtained proved that measurements at an early
growing date, while the plants are still seedlings, are optimal for
the assessment of the future yield.

Performance of RGB and Multispectral
Indices at Determining Genotypic
Differences Derived from Leaf Phosphorus
Concentration
The strength of the correlations inside each treatment between
the indices and the P content were far lower than of these
indices with GY. Distribution of values is not uniform and
in fact the linear correlation has not any sense besides to
show these vegetation indices are able to clearly differentiate
between the two different groups of phosphorous fertilization
(but not across genotypes within each fertilization level). The
same happened with the LCC and the leaf nitrogen content
(Supplementary Figure 3). The two different fertilization levels
caused differences in leaf phosphorous content but indirectly
also differences in leaf chlorophyll and total nitrogen contents
(and at that with an abundance of N fertilizer applied to
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both treatments). Therefore, differences in leaf color between
treatments are evident (less chlorophyll and nitrogen content
in the leaves on non-phosphorous fertilized plants). However,
similar to a∗, GA, and GGA (Supplementary Figure 4), leaf
chlorophyll and nitrogen contents did not correlate or just did
marginally (SPAD values within NPF) against leaf phosphorous
content. Again, the differences between fertilization levels
accounted for the significant relationship of leaf chlorophyll
and N contents against leaf phosphorous content when data
of both fertilization levels were combined. Moreover, there
is a lack of consistency between the ground and aerial RGB
index correlations in regard to phosphorous content (Table 5).
In contrast, the correlations with grain yield follow the same
patterns for both fertilization levels. Therefore, the significance
of the correlations of the indices with phosphorus concentration
may be related to the relationship between leaf phosphorus
concentration and green biomass due to phosphorous is an
essential element in plant growth (Manschadi et al., 2014;
Gemenet et al., 2016). Indices better assessed differences in leaf
phosphorous concentration at the low phosphorous conditions
compared to optimum conditions due to the primary capacity of
these indices to strongly correlate with green biomass and thus
grain yield.

Similarly, the multispectral indices didn’t show significant
correlations with P content within each fertilization level, while
several of these indices correlated with GY. Only the PRI
correlated with leaf phosphorous content (and just under low
P conditions). The PRI is a spectral index increasingly used as
an indicator of photosynthetic efficiency because it is based on
the short-term reversible xanthophyll pigment cycle (Peñuelas
et al., 2011). Low phosphorus levels can lead to an increase in
the de-epoxidation process, which augments the relative amount
of zeaxanthin and decreases violaxanthin (Goodwin, 1980;
Tambussi et al., 2002). Zeaxanthin is essential for dissipation
of excess energy as heat in chloroplasts (Demmig-Adams et al.,
2013). The weak but still significant correlations between the PRI
and the P content suggest a similar photoprotection response. In
other studies, similar findings have been reported that associate
nutrient deprivation with increased zeaxanthin levels and thus
lower PRI values (Filella et al., 1996). In reference to the
multispectral bands, only the bands located at 570, 670, and
700 nm correlated with the leaf phosphorous content, and these
were a weakly correlation with the leaf phosphorous content.
These bands correspond to the green (570 nm) and red regions
(670 and 700 nm) and they have been used to assess non-stressed
vegetation (Thenkabail et al., 2002). Higher values of reflection
at these bands might correspond to vigorous plants with higher
P content. These results are in conflict with the results obtained
by Osborne et al. (2002), who reported a significant spectral
response in the NIR region to the P concentration in corn.

CONCLUSIONS

There is a need for phenotyping tools which increase the selection
efficiency and to understand mechanisms of phosphorous
tolerance. This study clearly shows a genotypic variability for

low phosphorous tolerance, with a reduction in yields of 25% in
average in comparison with the optimum conditions. Previous
studies in the literature suggests that only when reduction is
75% or more, selecting for specific adaptation to tolerance to low
nutrient availability is the strategy (Bänziger et al., 1997; Masuka
et al., 2012). However, selecting for yield potential instead than
for specific adaptation to low phosphorous, still makes sense
when the yield reduction associated was moderate, like in this
study, which is the usual situation in agronomical scenarios.
Hence, indices also correlated with the yield of the hybrids when
they were performed under the high yielding conditions.

This study emphasizes the capabilities of RGB vegetation
indices as phenotypic traits for predicting maize performance
during early stages of crop growth. GA was the vegetation
index best correlated with grain yield across maize hybrids and
regardless the phosphorous fertilization level and therefore this
index may serve to select the most productive hybrids for the
SSA. RGB indices assessed at ground level were comparable
to those measured from an aerial platform. Moreover, RGB
indices performed better than multispectral vegetation indices.
The use of vegetation indices derived from RGB images may
represent a very affordable approach for phenotyping and may
become even more economical due to the similarity between
results obtained from ground evaluation and those achieved from
aerial platforms. The phenotypic correlations found between
the remote sensing indices of seedlings and the genotypic
yield data collected in the multi-location trials confirm their
usefulness. Despite its comparatively low tech and low-cost
nature, digital photography is a promising approach, and its
derived indices have demonstrated potential for the assessment
of crop management in maize, making it ideal for developing
countries in particular.

Additionally, RGB-derived vegetation indices are also
amenable for monitoring the effects of phosphorous fertilizer
applications. However, only some of the indices best correlated
with grain yield exhibited significant, albeit weaker, correlations
with leaf phosphorus content. Moreover, these correlations were
only present under low phosphorus fertilization, which suggests
that they were linked to differences in biomass and grain yield
caused by phosphorous fertilization.
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Abstract: In the coming decades, Sub-Saharan Africa (SSA) faces challenges to sustainably increase
food production while keeping pace with continued population growth. Conservation agriculture
(CA) has been proposed to enhance soil health and productivity to respond to this situation.
Maize is the main staple food in SSA. To increase maize yields, the selection of suitable genotypes and
management practices for CA conditions has been explored using remote sensing tools. They may play
a fundamental role towards overcoming the traditional limitations of data collection and processing in
large scale phenotyping studies. We present the result of a study in which Red-Green-Blue (RGB) and
multispectral indexes were evaluated for assessing maize performance under conventional ploughing
(CP) and CA practices. Eight hybrids under different planting densities and tillage practices were
tested. The measurements were conducted on seedlings at ground level (0.8 m) and from an unmanned
aerial vehicle (UAV) platform (30 m), causing a platform proximity effect on the images resolution that
did not have any negative impact on the performance of the indexes. Most of the calculated indexes
(Green Area (GA) and Normalized Difference Vegetation Index (NDVI)) were significantly affected
by tillage conditions increasing their values from CP to CA. Indexes derived from the RGB-images
related to canopy greenness performed better at assessing yield differences, potentially due to the
greater resolution of the RGB compared with the multispectral data, although this performance was
more precise for CP than CA. The correlations of the multispectral indexes with yield were improved
by applying a soil-mask derived from a NDVI threshold with the aim of corresponding pixels with
vegetation. The results of this study highlight the applicability of remote sensing approaches based
on RGB images to the assessment of crop performance and hybrid choice.

Keywords: maize; remote sensing; UAV; RGB; multispectral; conservation agriculture; Africa

1. Introduction

Traditional practices of land preparation involve soil tillage through moldboard ploughing to
soften the seedbed, ensure uniform germination, remove weed plants, and release soil nutrients
through mineralization and oxidation. However, this mechanical disturbance is leading to a decline in
organic matter, an increase of the loss of water by runoff, and, finally, to soil erosion [1]. Together with
increasing threats of climate change, the loss of soil and its fertility is expected to become more critical
for global agricultural production [2]. Over the next century, Sub-Saharan Africa (SSA) is expected to
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be particularly vulnerable due to the range of projected impacts: e.g., the multiple stresses and low
adaptive capacity of current cropping systems, as well as population increase [3]. Maize (Zea mays L.)
is the principal staple food crop in large parts of SSA and is usually grown in small-holder farming
systems under rainfed conditions. The limited availability of inputs is a leading factor that contributes
to low yields that in turn are not able to keep pace with the food demand [4]. Hence, one of the most
effective pathways for adaptation is to focus on breeding new varieties and also on changing crop
management [5–8].

In light of soil degradation, conservation agriculture (CA) practices have been proposed as
an alternative to tillage-based agriculture in SSA as a pragmatic solution to increasing production
while conserving the natural resource base [9]. CA is a set of core principles, including minimum soil
disturbance, permanent soil cover, and diversified crop rotations supported by integrated soil, crop,
and water management, which aims to reduce and/or revert many negative effects of conventional
farming practices [10]. Besides the control of soil erosion, CA has become increasingly popular as
the crop management system conserves soil moisture, reduces fossil fuel use, lowers costs and, once
established, increases yield permanently [11]. Recent literature has shown the potential of CA to
improve resilience against seasonal drought events and thereby reduce the risk of crop failure in
SSA [8,12–16]. However, most crop cultivars currently grown under CA have been developed under
conventional or full tillage conditions, and it is likely that relevant genetic adaptations of CA conditions
may have been removed during previous breeding efforts. Furthermore, large scale phenotyping
studies under zero-tillage conditions are missing.

For the selection of genotypes with high-performing yield components under CA, accurate
phenotyping tools capable of estimating yield at early crop stages are needed. During early growth
stages, environmental factors such as temperature or soil moisture have a vital influence on germination
rate, seedling vigor, and, consequently, on yield [17]. However, assessing those traits usually requires
destructive laboratory measurements and/or visual scoring assessments that are laborious under field
conditions. They are also prone to be subjective and incur additional associated costs.

Specialized sensors have become an important component for crop monitoring, particularly
for improving precision, efficiency, and throughput in phenotyping [18]. Remote sensing indexes
have largely demonstrated their various applications in agriculture, including yield prediction,
stress detection, and control of plant diseases under a wide range of growing and environmental
conditions [19]. The classical approach has involved the use of multispectral data for the development
of numerous vegetation indexes to measure biomass (e.g., Normalized Difference Vegetation Index,
NDVI), water content (e.g., Water Band Index, WBI), or pigment composition (e.g., Modified
Chlorophyll Absorption Ratio Index, MCARI) in yield studies. At present, the use of information
derived from RGB images (using red, green, and blue color bands) acquired with conventional digital
cameras represents a low-cost alternative. The images can be processed to convert RGB values into
indexes based on the models of Hue-Intensity-Saturation (HIS), CIELab, and CIELuv cylindrical
coordinate representations of colors [20]. Moreover, recent technological advances have led the
incorporation of these sensors into aerial based platforms, enabling the simultaneous characterization
of specific crop physiological traits for a larger number of plots, which may help to minimize the effect
of changing environmental conditions during critical sampling moments [18,21–24].

Alternative applications of remote sensing techniques include the measurement of canopy
temperature [25]. This can provide high-value information of the crop water status, since transpiration
is a principal factor reducing the leaf’s temperature. The use of thermal cameras has been proposed as
an easy approach in crop management, and in breeding it can replace other more laborious techniques
like the use of stable isotopes, which are costly, time-consuming, and require extensive laboratory
work [26]. Moreover, in case of C4 crops like maize, the usefulness of stable isotopes for breeding is
questionable [27]. The possibility of applying these methodologies in CA systems could be critical in
improving our knowledge and supporting the full implementation of crop phenotyping for CA in
developing countries.
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The aim of the present study was to evaluate the efficiency of a set of remote sensing indexes in
assessing the yield differences of different maize hybrids at early growth stages under conventionally
ploughed (CP) and zero-tillage (CA) conditions. Different categories of sensors were tested, including
RGB cameras (placed on an aerial platform as well as at ground level), alongside multispectral and
thermal cameras (both installed on the aerial platform) and an active sensor portable field spectrometer
designed to measure the NDVI at ground level. Additionally, canopy temperature, leaf chlorophyll
content, and dry matter isotopic composition were evaluated.

2. Materials and Methods

2.1. Site Description

The experiment was conducted at Domboshawa Training Centre (17◦37’S, 31◦10’E and
1560 m.a.s.l.), situated at the north-east of Harare (Zimbabwe), during the 2015/2016 crop season
(Figure 1). This site is characterized by moderately deep Arenosols and Luvisols under FAO
classification [28]. It has approximately 5% clay content and is derived from granite parent material [29].
The climate conditions correspond to the Zimbabwean agro-ecological region II [30], with generally
long dry periods (April to October), in which April to July is cool and August to October is warm.
This region receives an average rainfall of between 700 and 1000 mm and mean maximum daily
temperatures of 32 ◦C during summer.
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Figure 1. Landsat satellite (left) and CNES Airbus (right) images of the study area acquired using
Google Earth Pro. The photographs are from the 31st of December 2015. The image on the left shows the
location of the Domboshawa Training Center in Zimbabwe. The image on the right shows the field site.

2.2. Plant Materials and Experimental Design

Seven maize drought tolerant commercial hybrids (SC621, Pan53, 30G19, Zap55, Pristine601,
PGS61, and Zap61) and one drought-sensitive commercial control variety (SC513) were manually
planted on 14 December 2015 in plots of 23 m2 (5 × 4.6 m) with four lines per plot. Two differential plot
management regiments have been applied to the field since 2009 (Figure 2). One half was managed

59



Remote Sens. 2018, 10, 349 4 of 21

using no-tillage and the application of 2.5–3.0 Mg ha−1 of maize stover to all the plots. Rotation,
a critical component for CA, was not practiced in this trial. Weed control was done by applying
a combination of 2.5 L ha−1 of glyphosate, 3 L ha−1 of atrazine, and 1 L ha−1 of dual immediately after
planting, if there were weeds present. The other half was conventionally ploughed and without any
residue management.
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Figure 2. Map of the experimental design showing alternating High Density (HD) and Low Density
(LD) plots per replicate, with Conservation Agriculture (CA) on the left and Conventional Ploughing
(CP) on the right. Each square corresponds one plot dedicated to each of the different hybrids used.
Complete details of the experimental design are explained in Section 2.2.

Both cropping systems were fertilized twice equally with 200 kg ha−1 using Compound D (7:14:7)
as a basal NPK dressing and top dressed with ammonium nitrate (200 kg ha−1, 46% N) in a split
application four weeks and seven weeks after seeding. Maize plants seeded at different density
sub-treatments were applied: one low-planting density (44,444 plants ha−1) and one high-planting
density (53,333 plants ha−1). Each sub-treatment was repeated in three replicates in which varieties
were ordered in a completely randomized block design. A total of 96 plots were studied (2 agricultural
practices × 2 density conditions × 8 varieties × 3 replicates, 24 plots per growing conditions).

2.3. Agronomical Traits and Proximal (Ground) Data Collection

The crop was harvested at physiological maturity. Grain yield (Mg ha−1) and total above-ground
biomass (Mg ha−1) were determined as corresponding to the central 3.6 m of the two central rows
of each plot (6.48 m2), omitting the border plants. The harvest index was calculated as grain yield as
a portion of total biomass.

Proximal (ground) data was collected 45 days after sowing on 28 January 2016 when the hybrids
reached the stage of 4 to 6 leaves. Leaf chlorophyll content (LCC) was measured using a Minolta
SPAD-502 portable chlorophyll meter (Spectrum Technologies Inc., Plainfield, IL, USA). For each plot,
five leaves were selected randomly (being the last fully expanded leave within a plant) and were
measured in the middle portion of the lamina and averaged. The Normalized Difference Vegetation
Index was determined at ground level using a portable spectrometer (GreenSeeker handheld crop
sensor, Trimble, Sunnyvale, CA, USA) by passing the sensor over the middle of each plot at a constant
height of 0.5 m above and perpendicular to the canopy (NDVI.g).
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One RGB picture was taken per plot, holding the camera at 80 cm above the plant canopy in
a zenithal plane and focusing near the center of each plot. The conventional digital camera used
was an Olympus OM-D (Olympus, Tokyo, Japan), a digital single lens mirrorless camera with an
image sensor size of 17.3 × 13.0 mm of 16-megapixel (MP) resolution. The images were saved in JPEG
format with a resolution of 4608 × 3072 pixels. As the plots were too big for a single photograph,
three different images samples were taken of each central row.

RGB images were subsequently analyzed using a version of the Breedpix 2.0 software
(Jaume Casadesús, https://bio-protocol.org/e1488, IRTA, Lleida, Spain) adapted to JAVA8 and other
RGB image analyses together integrated as freely available CIMMYT MaizeScanner plugin within FIJI
(https://imagej.net/Fiji and https://github.com/George-haddad/CIMMYT). This software enables
the extraction of RGB vegetation indexes in relation to different color properties [20]. Essentially,
the indexes are based on either the average color of the entire image, in diverse units related to its
“greenness”, or on the fraction of pixels classified as green canopy relative to the total number of pixels
in the image. In HIS color space, the Hue (H) component describes the color value itself by traversing
the visible spectrum in the form of an angle between 0◦ and 360◦. Derived from the Hue portion of
HIS color space, Green Area (GA) and Greener Area (GGA) analyze the proportion of green/yellow
and green pixels in the image. GA is the percentage of pixels in the image in the hue range from 60◦ to
180◦, that is, from yellow to bluish green. Meanwhile, GGA is somewhat more restrictive, because the
range of hue considered by the index is from 80◦ to 180◦, thus excluding the yellowish-green tones.
Additionally, those two indexes are used to formulate the Crop Senescence Index (CSI), which provides
a scaled ratio between yellow and green vegetation pixels [31], as follows:

CSI =
(GA − GGA)

GA
× 100

In the CIELab color space model, dimension L* represents lightness, and the green to red range is
expressed by the a* component, with a more positive value representing a purer red, and conversely
a more negative value indicating a greener color. Meanwhile, blue to yellow is expressed by the b*
component, in which the more positive the value the closer it is to a pure yellow, whereas the more
negative the value the closer it is to blue. Similarly, in the CIELuv color space model, dimensions u*
and v* are perceptually uniform coordinates, in which the visible spectrum starts with blue at the
bottom of the space, moving through green in the upper left (mostly scaled by v*) and out to red in the
upper right (mostly scaled by u*) [32].

2.4. Aerial Data Collection

Furthermore, aerial measurements were acquired during the same visit as the ground data
using an unmanned aerial vehicle (UAV) (Mikrokopter OktoXL 6S12, Moormerland, Germany) flying
under manual remote control at an altitude of 30 m (Figure 3). Two flights were performed; on one
flight only, the RGB digital camera was mounted, and the other included both the multispectral and
thermal cameras.

The RGB aerial images were obtained using a Lumix GX7 (Panasonic, Osaka, Japan) digital
mirrorless camera with an image sensor size of 17.3 × 13.0 mm using a 20 mm lens. Images were taken
at 16-MP and were saved in JPEG format, on this occasion with a resolution of 4592 × 3448 pixels.
For the multispectral data, a Tetracam micro-MCA (Tetracam Inc., Chatsworth, CA, USA) was used.
The camera consists of twelve independent image sensors and optics each with user configurable
filters of center wavelengths and full-width half-max band-with (450 ± 40, 550 ± 10, 570 ± 10,
670 ± 10, 700 ± 10, 720 ± 10, 780 ± 10, 780 ± 10, 840 ± 10, 860 ± 10, 900 ± 20, 950 ± 40 nm),
and one sensor dedicated to calibration (Light Incident Sensor, ILS). That sensor uses micro-filters
housed in the ILS module behind a diffusor plate that corresponds to the same spectral characteristic of
the 11 downwards looking sensors, thus providing an accurate band-by-band reflectance calibration in
real-time. It captures 15.6-MP of image data as 12 × 1.3-MP images transferred to twelve separate flash
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memory cards. The multispectral images acquired were aligned and calibrated to reflectance using
PixelWrench II version 1.2.2.2 (Tetracam, Chatsworth, CA, USA). Canopy temperature was measured
using a FLIR Tau2 640 (FLIR Systems, Nashua, NH, USA) with a VOx uncooled microbolometer
equipped with a TEAX Thermal Capture model (TEAX Tecnology, Wilnsdorf, Germany) for recording
of full resolution thermal video (640 × 520 pixels at 20 frames per second). The thermal images were
first exported using the TeAx ThermoViewer v1.3.12 (TeAx Technology, Wilnsdorf, Germany) to raw
16-bit TIFF format as Kelvin × 10,000 and converted to 32-bit temperature in Celsius using a custom
batch processing macro function in FIJI [33].Remote Sens. 2018, 10, x FOR PEER REVIEW  6 of 21 
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Figure 3. Mikrokopter OktoXL 6S12 unmanned aerial platform equipped with the micro-MCA12
Tetracam multispectral sensor, showing the placement of the Incident Light Sensor (ILS) module
with white diffusor plate connected by a fiber optic cable to the top of the UAV facing upwards
while the other 11 multispectral sensors are positioned on a dual axis gimbal camera platform for
zenithal/nadir image capture. The RGB (Red-Green-Blue) and TIR (thermal infrared) cameras were
alternately mounted on the same gimbaled platform for image capture.

To obtain an accurate orthomosaic of the pre-processed aerial images from each sensor, a 3D
reconstruction was produced using Agisoft PhotoScan Professional (Agisoft LLC, St. Petersburg,
Russia, www.agisoft.com) [34]. A total of 30 overlapped images were needed for each orthomosaic.
Then, the procedure of cropping the plots was done using the open source image analysis platform
FIJI (Fiji is Just ImageJ; http://fiji.sc/Fiji), in which regions of interest were established at each plot
and then exported, taking care that exactly the same ground area was segmented for each plot across
all treatments. The RGB aerial exported plots were processed the same way as the ground images
as described previously in Section 2.3. For the formulation of the different multispectral indexes,
as detailed in Table 1, we developed a customized FIJI macro code. This macro code enabled the
calculation of the multispectral indexes through two different approaches: on the one hand, measuring
the mean value of the plot image of each band (plot measurements), and on the other hand, in order
to make more accurate measurements, we applied a threshold of NDVI values of 0.4–1 to focus the
measurements of all the indexes on only the pixels corresponding to maize and lower NDVI values
(<0.4) corresponding to bare-ground; other background image components were discarded. Therewith,
percentage of vegetation cover was estimated by the inverse of the implementation of the soil mask.
Finally, the thermal average temperature of the whole exported plots was also measured using FIJI.
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Table 1. Indexes derived from the multispectral visible and near infrared bands. The wavelengths
used in the formulation of the indexes are adapted slightly based on the multispectral micro-MCA
Tetracam camera. * Note that for the PRI index, B550 is used instead of the original B531 by the cited
reference study.

Group Index Equation Wavelengths References

Broadband
Greenness

Normalized Difference Vegetation
Index (NDVI)

(B840 − B670)
(B840 + B670)

Red, NIR [35]

Soil Adjusted Vegetation Index (SAVI)
(B840 − B670)

(B840 + B670 + L)
Intermediate vegetation, L = 0.5

Red, NIR [36]

Optimized soil-adjusted vegetation
index (OSAVI)

(1 + 0.16)·(B780 − B670)
(B780 + B670 + 0.16)

Red, NIR [37]

Renormalized Difference Vegetation
Index (RDVI)

(B840 − B670)√
(B840 + B670)

Red, NIR [38]

Enhanced Vegetation Index (EVI)
2.5·(B840 − B670)

(B840 + (6·B670)− (7.5·R450) + 1)
Blue, Red,

NIR [39]

Light Use
Efficiency

Photochemical Reflectance Index
(PRI) *

(B550 − B570)
(B550 + B570)

Green [40]

Leaf
Pigments

Modified Chlorophyll Absorption
Ratio Index (MCARI) (B700 − R670) − 0.2·(B700 − B550)·

(
B700
B670

)
Green, Red,

NIR [41]

Chlorophyll Content Index (CCI)
(B550 − B670)
(550 + B670)

Green, NIR [42]

Transformed Chlorophyll Absorption
Ratio Index (TCARI) 3·(B700 − B670)− 0.2·(B700 − B550)·

(
B700
B670

)
Green, Red,

NIR [43]

TCARI
OSAVI

Green, Red,
NIR

Anthocyanin Reflectance Index 2
(ARI2) B840·

(
1

B550
− 1

B700

)
Blue, Red,

NIR [44]

Carotenoid Reflectance Index 2 (CRI2)
(

1
B550

− 1
B700

)
Blue, Red [45]

Water
Content Water Band Index (WBI)

(
B970
B900

)
Red, NIR [46]

2.5. Carbon and Nitrogen Stable Isotope Compositions

Similar leaves were sampled for LCC, carbon, and nitrogen measurements, and were subsequently
oven dried at 70 ◦C for 24 h and ground to a fine powder. Samples of approximately 0.7 mg of dry matter
and reference materials were weighed into tin capsules, sealed, and then loaded into an elemental
analyzer (Flash 1112 EA; ThermoFinnigan, Schwerte, Germany) coupled with an isotope ratio mass
spectrometer (Delta C IRMS, ThermoFinnigan), operating in continuous flow mode. Measurements
were carried out at the Scientific Facilities of the University of Barcelona. The 13C/12C ratios (R) of
plant material were expressed in composition (δ13C) notation [47] as follows:

δ13C (‰) = [(Rsample/Rstandard) − 1] × 1000

in which sample refers to plant material and standard to Pee Dee Belemmite (PDB) calcium carbonate.
International isotope secondary standards of a known 13C/12C ratio (IAEA CH7, polyethylene foil,
IAEA CH6 sucrose and USGS 40 l-glutamic acid) were calibrated against Vienna Pee Dee Belemnite
calcium carbonate (VPDB) with an analytical precision of 0.1‰. The 15N/14N ratios of plant material
were also expressed in δ notation (δ15N) using international secondary standards of known 15N/14N
ratios (IAEA N1 and IAEA N2 ammonium sulfate and IAEA NO3 potassium nitrate), with analytical
precision of about 0.2‰. Furthermore, total carbon and nitrogen (%) were analyzed in the same
samples, and the C/N ratio was calculated.
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2.6. Statistical Analysis

Statistical analyses were conducted using the open source software, R and RStudio 1.0.44
(R Foundation for Statistical Computing, Vienna, Austria). Data for the set of physiological traits
were subjected to factorial completely randomized analyses of variance (ANOVAs) to test the effects
of growing conditions on the different traits studied. A bivariate correlation procedure was used to
calculate the Pearson correlation coefficients of the different remote sensing indexes against the grain
yield. Multiple linear regressions were calculated via a forward stepwise method with GY as the
dependent variable and the different indexes as independent parameters. The figures were also drawn
using the RStudio software.

3. Results

3.1. Differences in Yield Parameters and Conventional Phenotyping Measurements within Growing Conditions
and Genotypes

Means of yield, biomass, and traits informing on the water and nitrogen status of the crop are
presented in Table 2. Grain yield was significantly greater under CA conditions (p < 0.0001), by almost
20% relative to the CP. Harvest index was also significantly higher, but no differences were found for
biomass between the two treatments. Concerning planting density, it did not affect any yield parameter.
Even so, the highest-yielding conditions were recorded at high-density CA plots (3.07 Mg ha−1 on
average), and the least on low-density CP plots (2.29 Mg ha−1). The genotypic variability for grain
yield (Table 3) was only significant under CA (p < 0.001) at high density conditions (p < 0.01).

ANOVA analysis showed no significant differences in LCC between management practices or
density levels. Meanwhile, canopy temperature showed a significant increase in plots grown under
CA (p < 0.05) and when the plant density was high (p < 0.001), although the increment was small.
Finally, neither the percentage of carbon nor nitrogen nor their isotopic signatures showed significant
changes across the different growing conditions.

3.2. The Effect of Conservation and Conventional Agricultural Practices and the Sensor Altitude on
Vegetation Indexes

The mean of the RGB and multispectral indexes for the ground and aerial images at each
growing condition are shown in Tables 4 and 5. There were no significant differences across the
indexes reported due to changes of planting density; mean data of low and high densities is not
presented. The differential tillage practices, however, affected all the RGB indexes for both sensor
levels (Table 4). Hue increased greatly from the CP to the CA (ground 20.22%/aerial 21.89%), and
its derived indexes GA and GGA also showed a similar rise of their values. Otherwise, the indexes
derived from the CIE-Lab and CIE-Luv reduced their values, particularly a* and u*. The height level
from which the indexes were measured (either from ground or the aerial platform) affected their
values at both agricultural practices conditions, except for the Saturation (Supplementary Table S1).
Differences were highly evidenced in the Hue and GGA values, which decreased greatly when
they were calculated from the aerial images in comparison to the ground images. Even considering
those differences, the correlations between the measurements from both platforms were very strong
in general, only showing low relationship coefficients with Intensity, Lightness, and the v* index.
Moreover, the correlations were higher at CP conditions in comparison with CA.
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Table 2. Effect of the tillage conditions and planting density conditions on the yield parameters (GY, Biomass and Harvest Index), leaf chlorophyll content (LCC), leaf
carbon and nitrogen concentration (C and N), leaf C/N ratio and the stable carbon (δ13C), and nitrogen (δ15N) isotopic composition. Values are means ± standard error.
Level of significance (p-value): *, p < 0.05; ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional agriculture; LD, low density; HD, high density.

GY Biomass Harvest Index SPAD Temperature C δ13C N δ15N C/N

(Mg ha−1) (Mg ha−1) (◦C) (%) (‰) (%) (‰)

Treatment
CA 2.99 ± 0.10 2.66 ± 0.11 0.49 ± 0.01 42.71 ± 0.38 25.02 ± 0.10 45.8 ± 0.50 −11.98 ± 0.03 3.77 ± 0.04 0.52 ± 0.08 12.14 ± 0.06
CP 2.42 ± 0.14 2.50 ± 0.14 0.44 ± 0.01 42.24 ± 0.38 24.64 ± 0.15 44.64 ± 0.49 −11.93 ± 0.03 3.69 ± 0.04 0.59 ± 0.07 12.11 ± 0.05

p-value 0.000 *** 0.351 0.000 *** 0.395 0.017 * 0.097 0.287 0.161 0.518 0.673

Density
LD 2.61 ± 0.12 2.45 ± 0.12 0.47 ± 0.01 42.37 ± 0.36 24.59 ± 0.12 45.32 ± 0.58 −11.95 ± 0.03 3.74 ± 0.05 0.51 ± 0.07 12.13 ± 0.05
HD 2.81 ± 0.13 2.71 ± 0.13 0.46 ± 0.01 42.45 ± 0.40 25.14 ± 0.11 45.08 ± 0.41 −11.96 ± 0.03 3.72 ± 0.04 0.59 ± 0.08 12.12 ± 0.06

p-value 0.230 0.145 0.820 0.712 0.000 *** 0.724 0.922 0.760 0.453 0.988

Combinations
CA * LD 2.92 ± 0.13 2.59 ± 0.17 0.49 ± 0.01 42.61 ± 0.56 24.80 ± 0.13 46.64 ± 0.48 −11.97 ± 0.04 3.83 ± 0.04 0.53 ± 0.11 12.18 ± 0.07
CA * HD 3.07 ± 0.14 2.73 ± 0.15 0.49 ± 0.01 42.81 ± 0.52 24.32 ± 0.21 44.99 ± 0.85 −11.98 ± 0.04 3.72 ± 0.07 0.50 ± 0.12 12.10 ± 0.09
CP * LD 2.29 ± 0.19 2.31 ± 0.18 0.44 ± 0.01 42.14 ± 0.47 25.25 ± 0.13 44.1 ± 0.97 −11.94 ± 0.04 3.66 ± 0.08 0.49 ± 0.09 12.07 ± 0.08
CP * HD 2.55 ± 0.20 2.69 ± 0.21 0.44 ± 0.01 42.34 ± 0.61 24.99 ± 0.17 45.18 ± 0.08 −11.93 ± 0.05 3.72 ± 0.02 0.68 ± 0.11 12.14 ± 0.07
p-value 0.751 0.484 0.931 0.999 0.489 0.051 0.812 0.146 0.312 0.353

Table 3. Genotypic yield variability of the eight maize hybrids for each growing condition. Values are means ± standard error. Level of significance: **, p < 0.01.
Treatments: CA, conservation agriculture; CP, conventional agriculture; LD, low density; HD, high density.

CA CP LD HD

SC513 2.50 ± 0.18 1.52 ± 0.19 2.12 ± 0.34 1.90 ± 0.20
SC621 2.32 ± 0.18 2.60 ± 0.39 2.54 ± 0.19 2.38 ± 0.40
PAN53 3.26 ± 0.13 2.71 ± 0.36 2.82 ± 0.23 3.16 ± 0.33
30G19 2.52 ± 0.15 2.12 ± 0.34 2.22 ± 0.26 2.42 ± 0.29
Zap55 3.72 ± 0.18 3.03 ± 0.39 3.23 ± 0.36 3.52 ± 0.31

Pristine 601 3.16 ± 0.26 2.02 ± 0.37 2.19 ± 0.39 2.98 ± 0.34
PGS61 3.23 ± 0.25 2.61 ± 0.29 2.76 ± 0.25 3.07 ± 0.34
Zap61 3.24 ± 0.29 2.74 ± 0.53 2.95 ± 0.51 3.03 ± 0.35

p-value 0.001 ** 0.147 0.155 0.007 **
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Table 4. Effect of tillage practices and placement of the sensors (ground versus aerial) on the RGB indexes. These indices are defined in Materials and Methods. Values
are means ± standard error. Level of significance (p-value): ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional agriculture.

Intensity Hue Saturation Lightness a* b* u* v* GA GGA CSI

Ground
CA 0.37 ± 0.00 48.04 ± 0.97 0.19 ± 0.00 44.01 ± 0.23 −4.44 ± 0.28 20.14 ± 0.35 3.59 ± 0.42 22.91 ± 0.36 0.26 ± 0.01 0.24 ± 0.01 8.83 ± 0.60
CP 0.36 ± 0.00 39.96 ± 0.91 0.25 ± 0.00 42.81 ± 0.19 −1.27 ± 0.38 23.13 ± 0.24 9.12 ± 0.57 24.79 ± 0.21 0.19 ± 0.01 0.18 ± 0.01 6.48 ± 0.46

p-value 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.002 ***

Aerial
CA 0.49 ± 0.00 38.25 ± 0.75 0.19 ± 0.00 54.96 ± 0.35 −0.54 ± 0.32 24.21 ± 0.13 11.67 ± 0.54 28.10 ± 0.14 0.22 ± 0.01 0.15 ± 0.01 32.87 ± 1.19
CP 0.49 ± 0.00 31.38 ± 0.49 0.25 ± 0.00 55.25 ± 0.48 4.99 ± 0.39 28.77 ± 0.27 22.2 ± 0.76 31.34 ± 0.27 0.16 ± 0.01 0.10 ± 0.01 42.43 ± 2.41

p-value 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 *** 0.000 ***

Table 5. Effect of tillage practices (CA versus CP) and the application of the soil mask (plot measurements versus vegetation measurements) on the multispectral
indexes. These indexes are defined in Materials and Methods. Values are means ± standard error. Level of significance (p-value): *, p < 0.05; **, p < 0.01; ***, p < 0.001.
Treatments: CA, conservation agriculture; CP, conventional agriculture.

Vegetation NDVI.g NDVI SAVI OSAVI RDVI EVI PRI MCARI CCI

Plot
CA 66.25 ± 0.93 0.55 ± 0.01 0.42 ± 0.01 0.27 ± 0.01 0.34 ± 0.01 4.19 ± 0.10 0.54 ± 0.01 0.16 ± 0.00 19.54 ± 0.47 0.08 ± 0.01
CP 72.30 ± 1.04 0.48 ± 0.01 0.38 ± 0.01 0.25 ± 0.01 0.31 ± 0.01 3.85 ± 0.11 0.39 ± 0.01 0.13 ± 0.00 16.89 ± 0.38 −0.01 ± 0.01

p-value 0.000 *** 0.000 *** 0.006 ** 0.031 * 0.013 * 0.026 * 0.000 *** 0.000 *** 0.000 *** 0.000 ***

Vegetation
CA 0.66 ± 0.01 0.45 ± 0.01 0.55 ± 0.01 6.85 ± 0.11 0.88 ± 0.02 0.21 ± 0.00 32.16 ± 0.66 0.27 ± 0.01
CP 0.62 ± 0.01 0.44 ± 0.01 0.53 ± 0.01 6.68 ± 0.11 0.74 ± 0.01 0.19 ± 0.00 31.74 ± 0.61 0.20 ± 0.01

p-value 0.001 ** 0.343 0.049 * 0.263 0.000 *** 0.000 *** 0.624 0.000 ***

TCARI TCARI/OSAVI ARI2 CRI2 WBI

Plot
CA 36.40 ± 0.67 0.42 ± 0.01 0.47 ± 0.01 0.01 ± 0.00 0.94 ± 0.01
CP 35.68 ± 0.74 0.47 ± 0.02 0.73 ± 0.01 0.01 ± 0.00 0.93 ± 0.00

p-value 0.461 0.030 * 0.000 *** 0.000 *** 0.558

Vegetation
CA 46.75 ± 0.82 0.33 ± 0.01 0.23 ± 0.02 0.00 ± 0.00 1.01 ± 0.01
CP 50.15 ± 1.10 0.38 ± 0.01 0.51 ± 0.02 0.01 ± 0.00 0.99 ± 0.00

p-value 0.012 * 0.001 ** 0.000 *** 0.000 *** 0.06
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Excluding WBI and TCARI and the vegetation measurement of SAVI, RDVI, and MCARI, all the
vegetation indexes based on multispectral data could distinguish the plots where different agricultural
practices were applied (Table 5). The indexes considered as indicators of green biomass, like NDVI
(both ground and aerial), SAVI, or OSAVI, exhibited a large increase (p < 0.050) in their values at the
CA plots in comparison with CP. Contrary to this, CA showed a significant decrease (p < 0.001) in
the percentage of vegetation cover (CA 66.25%/CP 72.30%). Indexes more related to leaf pigments,
like PRI or MCARI, were also significantly higher under CA compared with CP, but it was much less
pronounced. Conversely, the stress index ARI2 decreased significantly (p < 0.0001) from the CA to
the CP. The application of soil mask, to direct the multispectral measurements to only the vegetation,
resulted in significant variation in vegetation index values. The mean values of the green biomass
and the vegetation pigments indexes both increased regardless of tillage conditions; the differences
between the two growing conditions was much less severe than when they were measured at the
whole plot level. In comparison with measurements made by GreenSeeker, raw NDVI measurements
taken with the UAV were slightly lower, while those where NDVI was calculated through the mask
were higher. The relationships between the measurements of NDVI at both platform levels were
robust, but the correlation using the masked values were stronger (Supplementary Table S1). Moreover,
these correlations were higher under CP conditions as compared with CA.

3.3. Performance of Remote Sensing Index as Predictors of Grain Yield

To test the accuracy of remote sensing indexes for assessing differences in yield, correlations
are presented for grain yield against indexes. RGB indexes measured on the CP plots, regardless of
height level of image taking; Hue and its derived indexes were the ones that correlated best with grain
yield. Indeed, nearly all aerial indexes worked very similarly as the ground indexes, showing almost
identical correlation coefficients (Table 6). Only b* and v* correlations varied considerably, going from
low (ground) to extremely strong (aerial) correlations. On the other hand, even though these indexes
performed much better under the conventional practices, some significant and strong correlations
could be found under CA. For both ground and aerial levels, those indexes related to the greenness of
the vegetation color, as Hue, GA, GGA, a*, and u* were best correlated to yield.

Likewise, as happened with the RGB, multispectral indexes performed better when assessing
yield at the conventional tillage conditions (Table 7). However, in this case CA conditions showed
much lower correlations in comparison with the RGB derived indexes. Under CP conditions, NDVI
and its optimized indexes (SAVI, OSAVI and RDVI) were very closely related to GY, but the strongest
correlation was found with the combination of two indexes, TCARI/OSAVI (R = −0.779, p < 0.0001).
For both tillage conditions, CA and CP, the application of the soil mask helped to improve the
correlation between indexes related to the light use efficiency (PRI) and to the leaf pigments (TCARI)
and grain yield.

In terms of density conditions, both RGB and multispectral indexes worked slightly better
with higher plant densities compared to the low-density conditions. Moreover, a deeper analysis of
the results showed that the best conditions in which to correlate the remote sensing indexes was the
combination of high density planting at the CP plots. Under these conditions, most of the R2 coefficients
were near or even higher than 0.800.

The ability of remote sensing indexes assessing grain yield was further tested by multivariate
linear models (Table 8). All the equations presented were obtained using four or less indexes, all of them
measured from the UAV. The best predictive equation was achieved using CP data, explaining 75.6%
of the variation in yield. Besides this, the equation derived from the CA plots could only explain 35.1%
of yield variation. Equations derived from the high-planting density conditions predicted yields more
efficiently than low density conditions (65.4 and 52.6%, respectively).
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Table 6. Regression coefficients of the relationships between the RGB-indices, measured at ground and aerial levels, with grain yield. These indices are defined at
section Material and Methods. Level of significance (p-value): *, p < 0.05; **, p < 0.01; ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional
agriculture; LD, low density; HD, high density.

Intensity Hue Saturation Lightness a* b* u* v* GA GGA

Ground
measurements

Tillage

CA −0.065 0.484 *** −0.317 * −0.021 −0.509 * −0.226 −0.544 *** −0.137 0.487 *** 0.507 ***
CP 0.503 *** 0.741 *** −0.478 *** 0.568 *** −0.742 *** −0.206 −0.717 *** 0.157 0.777 *** 0.783 ***

Planting density

LD 0.342 * 0.597 *** −0.483 *** 0.366 * −0.633 *** −0.350 * −0.623 *** −0.152 0.660 *** 0.662 ***
HD 0.361 * 0.754 *** −0.509 *** 0.410 ** −0.785 *** −0.326 * −0.771 *** −0.100 0.767 *** 0.767 ***

Combinations

CA * LD −0.054 0.422 * −0.386 −0.032 −0.498 * −0.310 −0.539 ** −0.213 0.511* 0.513 *
CA * HD −0.054 0.580 ** −0.247 0.020 −0.570 ** −0.138 −0.585 ** −0.052 0.493 * 0.528 **
CP * LD 0.419 * 0.622 −0.304 0.456 * −0.596 ** −0.032 −0.567 ** 0.218 0.627 ** 0.636 ***
CP * HD 0.565 ** 0.827 *** −0.594 ** 0.671 *** −0.850 *** −0.318 0.830 *** 0.176 0.894 *** 0.898 ***

Aerial
mesurements

Tillage

CA −0.393 ** 0.548 *** −0.149 −0.363 * −0.567 *** −0.265 −0.554 * −0.145 0.562 *** 0.561 ***
CP −0.776 *** 0.754 *** −0.719 *** −0.777 *** −0.796 *** −0.818 *** −0.812 *** −0.794 *** 0.784 *** 0.798 ***

Planting density

LD −0.555 *** 0.614 *** −0.495 *** −0.565 *** −0.651 *** −0.606 *** −0.658 *** −0.617 *** 0.653 *** 0.664 ***
HD −0.627 *** 0.684 *** −0.440 ** −0.631 *** −0.739 *** −0.667 *** −0.751 *** −0.697 *** 0.776 *** 0.786 ***

Combinations

CA* LD −0.468 * 0.582 ** −0.292 −0.444 * −0.600 ** −0.395 −0.594 ** −0.296 0.578 ** 0.572 **
CA * HD −0.360 0.519 ** −0.105 −0.331 −0.544 ** −0.262 −0.533 ** −0.116 0.545 ** 0.557 **
CP * LD −0.606 ** 0.577 ** −0.649 *** −0.610 ** −0.654 *** −0.694 *** −0.674 *** −0.662 *** −0.662 ** 0.633 ***
CP * HD −0.907 *** 0.881 *** −0.793 *** −0.906 *** −0.900 *** −0.920 *** −0.913 *** −0.905 *** 0.916 *** 0.920 ***
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Table 7. Regression coefficients of the relationships between the multispectral-indices, measured at ground and aerial levels, with grain yield. These indices are defined
at section Material and Methods. Level of significance (p-value): *, p < 0.05; **, p < 0.01; ***, p < 0.001. Treatments: CA, conservation agriculture; CP, conventional
agriculture; LD, low density; HD, high density.

Vegetation
area NDVI.g NDVI SAVI OSAVI RDVI EVI PRI MCARI CCI TCARI TCARI/OSAVI ARI2 CRI2 WBI

Plot
measurements

Tillage
CA −0.386 ** 0.490 ** 0.361 * 0.389 ** 0.379 ** 0.390 ** 0.368 * 0.435 ** 0.215 0.355 * 0.094 −0.334 * −0.321 −0.299 * 0.116
CP −0.727 *** 0.812 *** 0.751 *** 0.729 *** 0.747 *** 0.734 *** 0.676 *** 0.697 *** 0.105 0.710 *** −0.454 ** −0.785 −0.479 0.066 0.412 **

Planting density
LD −0.592 *** 0.740 ** 0.577 *** 0.477 *** 0.532 *** 0.493 *** 0.488 *** 0.641 *** 0.127 0.610 *** −0.253 −0.671 *** −0.549 *** −0.372 * 0.269
HD −0.737 *** 0.795 ** 0.750 *** 0.748 *** 0.753 *** 0.749 *** 0.714 *** 0.713 *** 0.495 *** 0.731 * −0.285 −0.755 *** −0.500 *** −0.26 0.364 *

Combinations
CA * LD −0.38 0.464 * 0.298 0.281 0.289 0.285 0.251 0.398 0.108 0.327 0.006 −0.379 −0.483 * −0.359 0.065
CA * HD −0.393 0.526 * 0.402 0.481 * 0.444 * 0.475 * 0.528 * 0.473 * 0.415 0.397 * 0.143 −0.367 −0.263 −0.19 0.284
CP * LD −0.602 ** 0.793 ** 0.630 *** 0.582 ** 0.614 ** 0.590 ** 0.490 ** 0.617 ** −0.079 0.589 ** −0.445 * −0.726 *** −0.478 * 0.033 0.622 **
CP * HD −0.850 *** 0.850 *** 0.860 *** 0.847 *** 0.858 *** 0.849 *** 0.830 * 0.780 *** 0.363 0.818 *** −0.587 ** −0.869 −0.488 * 0.141 0.443 *

Vegetation
measurements

Tillage
CA 0.383 ** 0.390 ** 0.395 ** 0.396 ** 0.29 0.456 ** 0.13 0.344 * 0.072 −0.234 −0.38 −0.390 ** 0.107
CP 0.767 *** 0.664 *** 0.731 *** 0.673 *** 0.507 *** 0.729 *** −0.323 * 0.738 −0.641 *** −0.785 *** −0.695 −0.643 *** 0.445 **

Planting density
LD 0.617 *** 0.358 * 0.489 *** 0.384 ** 0.333 * 0.620 *** −0.234 0.599 *** −0.516 *** −0.704 *** −0.608 −0.533 *** 0.238
HD 0.791 *** 0.717 *** 0.768 *** 0.723 *** 0.640 *** 0.801 *** −0.062 0.803 *** −0.562 *** −0.752 *** −0.74 −0.740 *** 0.503 ***

Combinations
CA * LD 0.324 0.257 0.273 0.254 0.175 0.328 −0.021 0.245 −0.097 −0.404 −0.307 −0.248 0.011
CA * HD 0.468 * 0.579 ** 0.543 * 0.577 ** 0.388 0.614 ** 0.222 0.541 ** 0.131 −0.238 −0.609 −0.658 *** 0.344
CP * LD 0.650 *** 0.489 *** 0.588 *** 0.505 * 0.245 0.613 ** −0.402 0.596 ** −0.610 ** −0.732 *** −0.614 −0.517 ** 0.444 *
CP * HD 0.866 *** 0.788 *** 0.837 *** 0.793 *** 0.702 ** 0.828 *** −0.374 0.854 *** −0.787 *** −0.874 *** −0.763 −0.738 *** 0.582 **
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Table 8. Multilinear regression (stepwise) of grain yield (GY) as dependent variable and the remote
sensing traits (RGB and multispectral vegetation indexes) measured from the unmanned aerial vehicle
as independent variables. These indexes are defined at section Material and Methods. R2, determination
coefficient; RSE, Residual Standard Error.

Equation R2 RSE p-Value

Conservation GY = −4.37 + 0.11·Lightness + 9.23·GA − 0.04·MCARI 0.351 0.521 0.000

Portion of variance
Lightness 0.237

GA 0.164
MCARI 0.159

Conventional GY = 16.56 −0.36·b* − 16.28·SAVI + 2.06·RDVI − 0.02·TCARI/OSAVI 0.757 0.491 0.000

Portion of variance

b* 0.237
SAVI 0.164
RDVI 0.159

TCARI/OSAVI 0.195

Low density GY = 5.36 − 0.26·b* + 10.21·OSAVI − 13.99·CCI 0.516 0.609 0.000

Portion of variance
b* 0.203

OSAVI 0.166
CCI 0.147

High density GY = 0.517 + 6.44·GGA + 3.14·OSAVI 0.654 0.531 0.000

Portion of variance
GGA 0.353

OSAVI 0.300

4. Discussion

4.1. Implications of Growing Conditions on Yield Parameters

Conservation agriculture practices have been proposed as potential systems to increase crop
yield, [1,2,48,49]). As can be seen in our results, CA plots out-yielded conventional agriculture.
Positive responses to CA are principally the result of the interacting effect of soil characteristics
and climate [1]. One of these benefits is attributed to the water-harvesting effects of minimum-tillage
practices [50,51]. Underwater limited conditions increased soil moisture, leading to comparably higher
yields under CA [9]. We did not report any water data in our study but indirectly derived these through
sensors that measure related parameters. We attributed significant differences in plot temperature due
to residue cover under CA. It is very likely that the residue cover, even though it helps to maintain the
humidity of the top-layers of the soil, dries faster than the soil and thus presents a higher temperature
than both soil and vegetation. Also, better water availability of CA should have been reflected in
a significant decrease in the carbon isotopic composition of the leaves of this C4 species in comparison
with CP agriculture plots due to a decrease of the leakiness of the bundle-sheath cells or by an increase
of the Ci/Cc as a consequence of an increase of the photosynthetic capacity [27]. Therefore, due to the
fact that the trial has been running under CA since 2009, yield improvements were likely not related
due to increased soil moisture or decreased temperature but due to a long-term improvement in soil
health and fertility.

Since crop management has led to a considerable increase in yield, changes in genotype may be
an option to make use of the enhanced yield potential provided by this environmental factor. While the
literature related to CA is mostly focused on crop management, the study of the genetic crop adaptation
is limited and usually concludes that the interaction between the tillage practice and the genotype is
absent [7,52–54]. Crops have been grown on conventional tillage for many years and genes governing
the adaptation to CA either have been lost over time through untargeted selection or have become
redundant [55]. However, the varieties used in this experiment only showed significant differences in
yield under CA, not under conventional agriculture management (CP). This may suggest the existence
of some traits linked to tillage with a direct effect on improving yield. Herrera et al. (2013) [56]
conclude that traits associated with emergence (early vigor) and resistance to diseases may increase
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genotype performance under CA. Thus, these results reinforce the need to further evaluate genotypic
performance of varieties developed and selected in CP and test them under no-tillage conditions.

4.2. Comparative Performance of the Vegetation Indexes at Determining Differences in Grain Yield under CP
and CA Conditions

RGB imaging and processing have become a major tool for phenotyping, and its ability to
determine plant performance in terms of biomass and yield has been demonstrated again in this study.
The indexes that performed better in assessing differences in yield were the ones more related to
canopy greenness (such as a* or GGA) and thus to vegetation cover [20]. Therefore, elevated values of
these indexes, driven by higher biomass levels, help to anticipate higher yields even at early growing
stages [57]. Just like RGB, the multispectral indexes that are more sensitive to the green biomass
(e.g., NDVI) and its reformulations such as the SAVI, OSAVI, and RDVI were the best correlated with
GY. Those indexes contain information from the red reflectance region [35,37,38], which increases with
a reduction of the biomass density, making them ideal for identifying differences in vigor at early
growing stages.

Other multispectral indexes that worked well in assessing differences in GY were PRI and
TCARI/OSAVI. The Photochemical Reflectance Index (PRI) is a spectral index increasingly used
as an indicator of photosynthetic efficiency [58], because it is closely related to ∆F/Fm’ [59,60].
Low PRI values reflect a lower light use efficiency of PSII that will finally be translated in a yield
loss. Meanwhile, the Transformed Chlorophyll Absorption in Reflectance Index (TCARI), based on
the Modified Chlorophyll Absorption in Reflectance Index (MCARI), is a depth measure of the
chlorophyll absorption at 670 nm relative to the reflectance at 550 and 700 nm [43]. This pigment
index did not correlate with yield until the background was corrected and normalized with the OSAVI.
The TCARI/OSAVI ratio is an index very sensitive to changes in chlorophyll content but very resistant
to the variations in LAI at the same time [43].

Although significant results were obtained, these indexes did not perform equally when assessing
yield differences within the different tillage growing conditions. The strengths of the indexes’ (both RGB
and multispectral) correlations against yield were much lower in CA compared with CP. The reason
for this is assumed to be the added noise derived from the crop residue coverage of the soil.
According to the FAO definition, the soil surface has to be covered at least by 30% to qualify as
CA in principle [61], which may have influenced remote sensing readings under CA. Due to this
fundamental difference between CA and CP, it is difficult to segregate the biomass from the plant
and residue cover. The application of an NDVI mask on the multispectral images effectively reduced
background reflectance and increased their correlations statistically, although the improvements were
minor (Figure 4). Indexes linked to the pigment content such as the CCI, ARI2, and CRI2 benefited most
from the use of a soil mask. As can be seen in Figure 5, even with its distinct color, the CA background
influenced the images mildly and supported the assessment of vegetation area, particularly in RGB
images that are based on the portion of green pixels of the image.

Meanwhile, the use of the near-infrared (NIR) region by some spectral indexes, which greatly
decreases its reflectance over soil, helps to increase the sensibility to the canopy cover [62]. Despite
these appreciations, the RGB-based indexes GA and GGA outperformed NDVI and the rest of spectral
indexes at predicting GY under CA conditions. The far higher resolution of the RGB compared
with the multispectral images may be the critical factor here when working from an aerial platform
(Figure 2) [33,57].
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4.3. Platform Proximity Effects on the Performance of the Vegetation Indexes Assessing Grain Yield Differences

The possibility to incorporate remote sensing methodologies onto unmanned aerial based
platforms enables the characterization of a larger number of plots in much less time, helping to
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minimize the effect of the changing environmental conditions during the sampling [18]. Moreover,
aerial photographs facilitate the coverage of the whole plot (which usually is not possible for the
images taken at ground level, particularly with tall crops such as maize). Yet, the altitude of the sensor
from the canopy of the crop has a negative effect on the resolution of the images when using cameras
with the same resolution (16-megapixels with both airborne and ground). While the RGB images
collected from the UAV only reached a resolution of 825 × 1210 pixels per plot, the spatial resolution
of the images taken from the ground was of 4608 × 3072 pixels per plot. Despite this loss of resolution,
aerial indexes performed very similarly or even better than the ground measurements. This may
also help to explain why the ground to aerial correlation for the RGB data was higher in CP than
in CA, especially if the added background complexity of CA requires higher spatial resolution for
accurate quantification. Limited resolution due to the height level can also constrain the performance
of NDVI. Our results show how the use of an active sensor (i.e., with its own source of light), such as
the GreenSeeker at ground level, helped to improve the correlation with GY in comparison with the
NDVI formulation from the aerial images, although this improvement was rather small. This may be
due to the improved normalization of the light and other environmental conditions while using field
sensors that take some time to cover all of the study plots.

5. Conclusions

Conservation agriculture management practices had a positive effect on increasing yields as
compared to conventional ploughed system. These results may help support the adoption of CA to
combat declining yields that affect SSA agriculture. Henceforth, in order to fully exploit the yield
potential, future efforts should focus on the study of the impact of the genotype selection for a particular
management system (e.g., Genotype x Environment x Management interaction). The main point of
field phenotyping is to understand the genotypic responses and dissect that traits associated with
a better performance under CA as a management system. Thus, further work is required before
breeding programs invest resources into a whole new management system.

The use of remote sensing technologies, as presented here, would be increasingly useful for
large-scale phenotyping studies. The results suggest, even at early crop growth stages, that the different
RGB and multispectral indexes have the potential to effectively assess yield differences under CA
conditions, even if their performance is lower than under CP conditions. This is assumed to be mainly
due to the residue cover effect on the measurements; however, applying a soil (and stover) mask to the
images could help in overcoming this technical problem, which may be best accomplished by the fusion
of high resolution RGB with multispectral and/or thermal data or by employing advanced image
segmentation algorithms not explored in this study. Nevertheless, the performance of the RGB indexes
in predicting yield was less affected by tillage conditions than the multispectral indexes. The indexes
that best correlated with yield were mostly related to the greenness of the canopy vegetation, such as
the RGB indexes GA and a*, and the multispectral indexes NDVI and RDVI. Finally, the platform
proximity effect on the image resolution did not have a negative impact on the performance of the
indexes, reinforcing the usefulness of UAV and its associated image processing for high throughput
plant phenotyping studies under field conditions.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/10/2/349/s1,
Table S1: Regression coeficients (r) and P-value from ANOVA for the relationships between the remote sensing
indexes measured at ground against the same indexes measured at aerial level within the conservation (CA),
conventional (CP) and the combination of both conditions. These indexes are defined in detail in the Material and
Methods. GA, Greener Area; GGA, Greener Green Area; NDVI, Normalized Difference Vegetation Index.
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Abbreviations

The following abbreviations are used in this manuscript:

SSA Sub-Saharan Africa
RGB Red-Blue-Green
CA conservation agriculture
CP conventional ploughed
NDVI Normalized Difference Vegetation Index
UAV unmanned aerial vehicle
GY grain yield
HIS Hue-Intensity-Saturation
GA Green Area
GGA Greener Area
CSI Crop Senescense Index
CIMMYT International Maize and Wheat Improvement Center
m.a.s.l. meters above sea level
CP-OES Inductively Coupled Plasma Optical Emission Spectroscopy
LCC leaf chlorophyll content
PRI Photochemical Reflectance Index
SAVI Soil Adjusted Vegetation Index
MCARI Modified Chlorophyll Absorption Ratio Index
WBI Water Band Index
RDVI Renormalized Difference Vegetation Index
EVI Enhanced Vegetation Index
ARI2 Anthocyanin Reflectance Index 2
CRI2 Carotenoid Reflectance Index 2
TCARI Transformed Chlorophyll Absorption in Reflectance Index
OSAVI Optimized Soil-Adjusted Vegetation Index
∆F/Fm’ Effective fluorescence quantum yield
NIR near-infrared.
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Abstract: Climate change is one of the primary culprits behind the restraint in the increase of cereal
crop yields. In order to address its effects, effort has been focused on understanding the interaction
between genotypic performance and the environment. Recent advances in unmanned aerial vehicles
(UAV) have enabled the assembly of imaging sensors into precision aerial phenotyping platforms, so
that a large number of plots can be screened effectively and rapidly. However, ground evaluations may
still be an alternative in terms of cost and resolution. We compared the performance of red–green–blue
(RGB), multispectral, and thermal data of individual plots captured from the ground and taken from
a UAV, to assess genotypic differences in yield. Our results showed that crop vigor, together with the
quantity and duration of green biomass that contributed to grain filling, were critical phenotypic traits
for the selection of germplasm that is better adapted to present and future Mediterranean conditions.
In this sense, the use of RGB images is presented as a powerful and low-cost approach for assessing
crop performance. For example, broad sense heritability for some RGB indices was clearly higher
than that of grain yield in the support irrigation (four times), rainfed (by 50%), and late planting (10%).
Moreover, there wasn’t any significant effect from platform proximity (distance between the sensor
and crop canopy) on the vegetation indexes, and both ground and aerial measurements performed
similarly in assessing yield.

Keywords: wheat; grain yield; High-Throughput Plant Phenotyping; UAV; RGB; multispectral;
canopy temperature

1. Introduction

Projected changes in temperature and precipitation patterns in the coming decades are positioning
the Mediterranean Basin as one of the most prominent climate change hotspots [1], where severe
impacts on agriculture are expected [2]. Of particular concern for the Iberian Peninsula is an increase
in the frequency and severity of droughts associated with a decrease in precipitation and coupled with
an increase in evapotranspiration, caused by rising temperatures [3]. Yields of small-grain cereals,
such as wheat, will be largely influenced by these scenarios, especially in the rainfed regions that
represent nearly 90% of the land under wheat cultivation (MAPAMA https://www.mapama.gob.es/,
2017), and which are already characterized by low and irregular precipitation events during late spring
and summer. Hence, improving crop yield under drought and/or high temperature conditions is the
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principal goal for breeders. Durum wheat is, by extension, the main cereal cultivated on the southern
and eastern shores of the Mediterranean Basin and one of the main cereals in southern Europe [4].

Yield is a phenotypically complicated trait, not only because of its genetic complexity [5], but also
due to the relative magnitude of gene–environment interactions [6,7], and it is one of the most integrative
traits influenced by known and unknown factors. Thus, genotype evaluations in multi-environment
trials are needed, at least in the advanced (generations) stages of selection. However, the major
point at issue is that high-throughput plant phenotyping (HTPP) may still represent a bottleneck in
breeding programs [7], owing to the need to increase the accuracy, precision, and throughput of the
methodologies used, while reducing costs and minimizing labor [8,9]. Furthermore, HTPP approaches
should allow multi-temporal trait-specific measurements to evaluate the yield components at different
phenological moments.

Nowadays, and almost by definition, HTPP implies the use of non-invasive remote sensing
approaches of different nature [5,10], given the possibility of screening larger populations faster than
conventional phenotyping procedures. Moreover, recent progress and advances in the technology
of aeronautics and sensors have allowed the adoption of unmanned aerial vehicle (UAV) platforms,
capable of precisely screening hundreds of plots in a short period of time [7,11]. Further benefits of
the simultaneous characterization of many plots are found by minimizing the effect of the changing
environmental conditions associated with time-consuming ground measurements. This is evident
especially when measuring the canopy temperature [12], which greatly varies throughout the day.
In recent years, a considerable bulk of the literature has clearly demonstrated the potential of unmanned
airborne platforms for large-scale crop monitoring, mainly due to the high spatial and spectral resolution
of the sensors [13,14]. So far, the implementation of aerial platforms in HTPP programs has been
extensive and successful in assessing crop performance under different management conditions. As a
counterpart, even if potentially of lower throughput, ground-based phenotyping on single plots
using cameras or sensors held by hand [15–17] or a pole [18] represent low-cost alternatives to aerial
assessments. In addition, shorter distances between sensors and plant targets increase the data spatial
resolution [19].

The formulation of different wavelength indexes derived from multispectral and hyperspectral
sensors and cameras is well established, and their applications to phenotyping range from measurements
of biomass (e.g., normalized difference vegetation index, NDVI [20]) or water content (e.g., water band
index, WBI [21]), to assessments of pigment composition (e.g., modified chlorophyll absorption ratio
index, MCARI [22]). Canopy temperature measurements are used for the detection of changes in
stomatal conductance and transpiration rates, as a response to the water status of the plant [23,24].
At present, the use of red–green–blue (RGB) images may represent a low-cost alternative to the
expensive tools just mentioned [25]. The implementation of visible imaging has been extensive and
successful for providing a wide range of phenomic data to assess aspects related to the architecture
and the color of the plant [26].

All these remote sensing HTPP methodologies are amenable to high-throughput phenotyping
in multi-environment trials. Identifying and monitoring plant parameters critical to assessing crop
production at key developmental stages will be of great assistance to model and predict yields.
The novelty of this study, with respect to recently published work, is that it compares the performance
of different UAV remote sensing technologies (RGB, multispectral, and thermal) measured at four
different phenological stages for assessing the genotypic performance of durum wheat under a wide
range of growing conditions (supplementary irrigation, rainfed, or late-planting). For the processing
of this large amount of data we also present the MosaicTool software, for high-throughput data
extraction and processing of UAV phenotyping data. The final objective is to provide guidance as
to the appropriate RGB, multispectral, and thermal image indexes (i.e., appropriate traits) for the
identification of high-yielding as well as resilient varieties. Besides studying phenotypic correlations,
the heritability of these traits and their genetic correlations with grain yield have been analyzed.
Moreover, the benefits and disadvantages of the use of phenotyping platforms in terms of aerial versus

82



Remote Sens. 2019, 11, 1244 3 of 25

ground positioning will be evaluated for their potential to discriminate between cultivars and also
regarding their throughput capacity and cost.

2. Materials and Methods

2.1. Plant Material, Site Description and Growing Conditions

Twenty-three semi-dwarf varieties of durum wheat (Triticum turgidum L. subsp durum (Desf)
Husn.) marketed in Spain during the last four decades (Mexa, Vitron, Simeto, Gallareta, Pedroso,
Regallo, Arcobaleno, Claudio, Burgos, Dorondon, Avispa, Amilcar, Saragolla, Solea, Euroduro,
Don Ricardo, Core, Kiko Nick, Sculpur, Athoris, Don Norman, Olivadur, and Iberus) were evaluated at
the experimental station of the Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
(INIA) of Colmenar de Oreja (41◦42′44.99”N, 4◦41′47.70”O, 590 masl), situated at 40 km south of
Madrid (Spain). Climatic data from 2017 was recorded through the Spanish platform SIAR (Servicio
de Informacion Agroclimática para el Regadio, www.siar.es) from meteorological stations next to the
field. Monthly temperature and rainfall averages are plotted in Figure 1. Colmenar de Oreja presented
high temperatures accompanied with low precipitation during the reproductive period (April, May,
and the first half of June).
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Figure 1. Cumulative monthly rainfall (blue line) and maximum, minimum, and mean temperature
(bars) in Colmenar de Oreja for the 2016–2017 crop cycle.

The panel was grown under three different growing treatments: a supplementary irrigation trial,
to simulate optimal growing conditions; a rainfed trial without supplementary irrigation, to implement
drought stress; and a late-planting trial, leading to higher-than-optimal temperatures throughout the
entire crop development period, in order to induce heat stress. The experimental set up consisted of an
alpha-lattice design with three replicates in 6 m long and 1.5 m wide plots (a total of 69 plots of 9 m2),
where seeds were planted with a sowing density of 250 seeds m−2 in 6 rows per plot on 22 December
2016 for the normal planting trials and on 1 March 2017 for the late-planting. Before sowing, the
field was fertilized with 400 kg ha−1 of 15:15:15 N:P:K fertilizer (15% N + 15% P2O5 + 15% K2O) and
a second application of 150 kg ha−1 of urea in a 46% dilution was applied before stem elongation.
The rainfed conditions were only provided with one emergency irrigation of 60 mm in order to ensure
full plant emergence. Both the supplementary irrigation and late-planting trials were watered every
two weeks with irrigations of 60 mm. For all three trials, the crop was harvested on 19 July 2017. Grain
yield (GY) (Mg ha−1) was determined for the entire plot, using a harvester. The water content in the
grains was between 9.2% and 10.7%.

Aerial and ground phenotyping measurements and sampling were performed during four
different visits, planned for assessing crops at the specific development phases of interest (Table 1).
At each visit, Zadocks scale values [27] were determined visually for each plot. Moreover, days
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after sowing (DAS) and growing degree days (GDD) were counted. GDD was calculated as follows
(Equation (1)):

GDD =
∑

(
Tmax + Tmin

2
) − Tbase, (1)

where Tmax corresponds to the highest daily temperature, Tmin to the lowest, and the Tbase used was 0 ◦C.

Table 1. Phenology information of the crop across the measuring/sampling visits, presented as days
after sowing (DAS), the growing degree days (GDD), and the developmental period of the crops,
expressed with the Zadocks growth scale and the phenological stage.

Sampling Date DAS GDD Zadocks Scale Phen. Stage

Supplementary
Irrigation

1st 26/04/2017 125 2224.05 55–59 Heading
2nd 04/05/2017 133 2399.68 61 Anthesis
3rd 18/05/2017 147 2767.24 75 Milk Grain Filling
4th 06/06/2017 166 3377.17 87 Senescence

Rainfed

1st 26/04/2017 125 2224.05 55–57 Heading
2nd 04/05/2017 133 2399.68 61–65 Anthesis
3rd 18/05/2017 147 2767.24 77–79 Late Grain Filling
4th 06/06/2017 166 3377.17 90–99 Senescence

Late-Planting

1st 26/04/2017 56 1270.57 30–32 Stem Elongation
2nd 04/05/2017 64 1446.21 45–47 Booting
3rd 18/05/2017 78 1813.76 58–59 Heading
4th 06/06/2017 97 2423.69 75–79 Milk Grain Filling

2.2. Aerial Platform Description and Orthomosaic Reconstruction Procedure

The aerial UAV system, also commonly known as a drone, was an eight rotor Mikrokopter
Oktokopter 6S12 XL (HiSystems GmbH, Moomerland, Germany). Flights were performed under clear
sky conditions, with image data captured at an altitude of 50 m. The payload configuration allowed
the measurements to be gathered in two flights per trial: the first included the red–green–blue (RGB)
cameras, and the second one with both multispectral and thermal cameras that were mounted at the
same time. An active two servo gimbal was used to correct for the effect of pitch and roll movements
during the flight. Pre-processed aerial images from each sensor were combined to obtain an accurate
orthomosaic (Figure 2) by producing a 3D reconstruction with Agisoft PhotoScan Professional software
(Agisoft LLC, St. Petersburg, Russia, www.agisoft.com) [28]. To that end, images with at least 80%
overlap were used (Table 2). Then, regions of interest corresponding to each plot were segmented
and exported using the MosaicTool (Shawn C. Kefauver, https://integrativecropecophysiology.com/

software-development/mosaictool/, https://gitlab.com/sckefauver/MosaicTool, University of Barcelona,
Barcelona, Spain) integrated as a plugin for the open source image analysis platform FIJI (Fiji is Just
ImageJ; http://fiji.sc/Fiji).

Table 2. Number of images comprising each orthomosaic. *, the values refer to the flights conducted
over the late-planting trial.

Date of Sampling RGB Multispectral Thermal

26/04/2017 133 24 * 543 *
04/05/2017 184 61 605
18/05/2017 182 71 804
06/06/2017 97 * 36 * 585 *
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Figure 2. Red–green–blue (RGB) (A), false-color normalized difference vegetation index (NDVI) (B),
and false-color thermal (C) orthomosaic examples corresponding to the late-planting trial during the
heading stage at the third sampling visit. Both the multispectral and thermal mosaics have been given
false colors: in the former, low NDVI values have been colored red and high values colored green, in
the latter, warmer temperature values have been colored red and the colder values colored blue.

2.3. RGB Vegetation Indixes

Vegetation indexes derived from RGB images were evaluated for each plot, from the ground
and aerially. At ground level, one picture was taken per plot, holding the camera at 80 cm above the
plant canopy, in a zenithal plane and focusing near the center of each plot between 11:00 and 13:00 h.
To facilitate the procedure, the camera was attached to a monopod Sony Monopod VCTMP1 (Sony
Corporation, Minato, Japan) to adjust and to stabilize the distance between the camera and the top of
the canopy to 1 m (Table 3). The conventional digital camera used was a 20.1-megapixel Sony ILCE-QX1
(Sony Corporation, Minato, Japan), with images saved in JPEG format at a resolution of 4608 × 3072
pixels. Aerial RGB images were obtained using a 16-megapixel Lumix GX7 (Panasonic, Osaka, Japan)
and saved in JPEG format at a resolution of 4592 × 3448 pixels. According to the used camera, the
ground sample distance (GSD) for a flight of 50 m altitude was 0.941 cm/pixel. The color calibration
of both cameras with the ColorChecker Passport Photo (X-Rite, Inc., USA) reported correlations R2

between 0.88 and 0.94 for all the RGB parameters (data not shown).
Segmented ground and aerial images were subsequently analyzed using the MosaicTool plugin.

This software includes a JAVA8 version of Breedpix 2.0 (Jaume Casadesús, https://bio-protocol.org/e1488,
IRTA, Lleida, Spain) that enables the extraction of RGB indexes in relation to different color properties
of potential interest [29]. Derived from the HIS (hue–intensity–saturation) color space, average values
from all the pixels of the image were determined for hue, referring to the color tint; saturation, an
indication of how much the pure color is diluted with white color; and intensity, as an achromatic
measurement of the reflected light. In addition, the portion of pixels with hue classified as green
was determined with the green area (GA) and greener area (GGA) indexes. GA is the percentage of
pixels in the image with a hue range from 60◦ to 180◦, including yellow to bluish-green color values.
Meanwhile, GGA is more restrictive, because it reduces the range from 80◦ to 180◦, thus excluding the
yellowish-green tones. Both indexes are also used for the formulation of the crop senescence index
(CSI) [30], which provides a scaled ratio between yellow and green pixels to assess the percentage of
senescent vegetation. From the CIELab and the CIELuv color space models (recommended by the
International Commission on Illumination (CIE) for improved color chromaticity compared to HIS
color space), dimension L* represents lightness and is very similar to intensity from the HIS color
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space, whereas a* and u* represent the red–green spectrum of chromaticity, and b* and v* represent
the yellow–blue color spectrum [31]. Besides the Breedpix indexes mentioned, two other indexes
were measured with digital values of the red, green, and blue bands derived from the RGB color
model. The normalized green–red difference index (NGRDI) is similar to the NDVI, but uses green
instead of near-infrared (NIR) bands [32]. The triangular greenness index (TGI) estimates chlorophyll
content based on the area of a triangle with the three points corresponding to the red, green, and blue
bands [33].

Table 3. Sensors and cameras used during this experiment and their major specifications.

Measure Sensor/Camera and
Approximated Cost

Image Major Specifications

RGB indexes

Sony ILCE-QX1
<500 €
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2.4. Multispectral Vegetation Indexes

The normalized difference index was determined first at ground level (NDVI.g) for each plot using
a portable active sensor, the GreenSeeker handheld crop sensor (Trimble, Sunnyvale, CA, USA), by
passing the sensor over the middle of each plot at a constant height of 0.5 m above and perpendicular to
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the canopy, between 11:00 to 13:00 h. Alongside this, a Tetracam micro-MCA (Multiple Camera Array)
12 (Tetracam Inc., Chatsworth, CA, USA) was used for assessment of the aerial multispectral data.
The camera consists of twelve independent image sensors and optics, each with user configurable filters
of center wavelengths and full-width half-max bandwidths (450 ± 40, 550 ± 10, 570 ± 10, 670 ± 10,
700 ± 10, 720 ± 10, 780 ± 10, 840 ± 10, 860 ± 10, 900 ± 20, 950 ± 40 nm). The images captured were
passed to twelve separate flash memory cards. Moreover, it has one camera sensor dedicated to ILS
(incident light sensor) facing upwards, that uses micro-filters to provide an accurate band-by-band
reflectance calibration in real-time. The flights with the multispectral camera were performed at noon
(between 12:00 and 14:00 h). After flights for data acquisition, the multispectral images from each band
were aligned and calibrated to reflectance using PixelWrench II version 1.2.2.2 (Tetracam, Chatsworth,
CA, USA). A suite of multispectral indexes was calculated from the different bands using custom code
developed in FIJI and integrated within the MosaicTool software. The formulation of both the RGB
and multispectral indexes is detailed in Table 4.

Table 4. Indexes derived from the RGB and multispectral cameras. The wavelengths used in the
formulation of the multispectral indexes have been adapted slightly based on the multispectral
micro-MCA Tetracam camera. * Note that for the PRI index, B550 is used instead of the original B531
by the cited reference study.

Target Group Index Formula Type; Bands Ref

V
eg

et
at

io
n

co
v

er

Green Area (GA) 60o < Hue < 180o RGB; HIS color model [29]
Greener Area

(GGA) 80o < Hue < 180o RGB; HIS color model [29]

G
re

en
n

es
s

Crop Senescence
Index (CSI)

(GA−GGA)
GA

RGB; HIS color model [30]

a*; b* RGB; CIElab color model [29]
u*; v* RGB; CIEluv color model [29]

Normalized
Green-Red

Difference Index
(NGRDI)

(Green DN−Red DN)
(Green DN+Red DN)

RGB; Red and Green bands [33]

Triangular
Greenness Index

(TGI)

−0.5·[190·(Red DN −Green DN)
−120· (Red DN − Blue DN)]

RGB; Red, Green and
Blue bands [33]

Normalized
Difference

Vegetation Index
(NDVI)

(B840−B670)
(B840+B670) Multispectral; Red, NIR [34]

Soil Adjusted
Vegetation Index

(SAVI)

(1+L)·(B840−B670)
(B840+B670 + L)

Intermediate vegetation,
L = 0.5

Multispectral; Red, NIR [35]

Optimized
soil-adjusted

vegetation index
(OSAVI)

(B780−B670)
(B780+B670+0.16) Multispectral; Red, NIR [36]

Renormalized
Difference

Vegetation Index
(RDVI)

(B840−B670)
√
(B840+B670)

Multispectral; Red, NIR [37]

Enhanced
Vegetation Index

(EVI)

2.5·(B840−B670)
(B840+(6·B670)−(7.5·B45))

Multispectral; Blue,
Red, NIR [38]
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Table 4. Cont.

Target Group Index Formula Type; Bands Ref
L

ea
f

P
ig

m
en

ts

Modified
Chlorophyll

Absorption Ratio
Index (MCARI)

(B700− B670) −
0.2·(B700− B550)·

(
B700
B670

) Multispectral; Green,
Red, NIR [22]

Transformed
Chlorophyll

Absorption Index
(TCARI)

3·(B700− B670) −
0.2·(B700− B550)·

(
B700
B670

) Multispectral; Green,
Red, NIR [39]

TCARI/OSAVI
ratio

TCARI
OSAVI

Multispectral; Green,
Red, NIR [39]

Anthocyanin
Reflectance Index 2

(ARI2)
B840·

(
1

B550 −
1

B700

) Multispectral; Blue,
Red, NIR [40]

Carotenoid
Reflectance Index 2

(CRI2)

(
1

B550 −
1

B700

)
Multispectral; Blue, Red [41]

P
h

ot
os

yn
th

et
ic

A
ct

iv
it

y

Photochemical
Reflectance Index

(PRI)*

(B550−B570)
(B550+B570) Multispectral; Green [42]

Chlorophyll
Carotenoid Index

(CCI)

(B550−B670)
(B550+B670) Multispectral; Green, NIR [43]

Water content Water Band Index
(WBI)

(B970)
(B900) Multispectral; NIR [21]

2.5. Canopy Temperature

Canopy temperature (CT) was measured at noon (12:00–14:00 h) from ground level and aerially.
For the ground measurements, a PhotoTempTM MXSTM TD infrared thermometer (Raytek, Santa Cruz,
USA) was used, pointing towards the canopy at a distance of about 1 m and in the opposite direction to
the sun. Simultaneously, air temperature was measured across the plots using a thermos-hygrometer
(Testo 177-H1 Logger, Lenzkirch, Germany). The difference between the ambient and the canopy
temperature, known as the canopy temperature depression (CTD) [44], was calculated as follows
(Equation (2)):

CTD = AT −CT. (2)

For the aerial measurements, the canopy temperature was measured using a FLIR Tau2 640
thermal imaging camera (FLIR Systems, Nashua, NH, USA) with a VOx uncooled microbolometer
equipped with a TeAx Thermal Capture 2.0 (TeAx Technology, Wilnsdorf, Germany), for recording
full resolution thermal video (640 × 520 pixels at 20 frames per second). This camera included a
thermal couple sensor that measured the actual temperature of the camera sensor, which was used to
correct for temperature fluctuations of the VOx sensor during the flight. The thermal images were first
exported using TeAx ThermoViewer v1.3.12 software (TeAx Technology, Wilnsdorf, Germany) in raw
16-bit TIFF format as Kelvin × 10,000, and converted to 32-bit temperatures in celsius using a custom
batch processing macro function in FIJI [45], also integrated within the MosaicTool software. CT aerial
measurements corresponded to average temperature over all the pixels of the plot images. CTD was
also calculated using the UAV CT data using the same formula as in Equation (2).

2.6. Leaf Pigment Assessment

Leaf pigment contents were measured using a leaf-clip portable sensor Dualex Force-A (Dualex,
Orsay, France) that measured chlorophyll non-destructively, and flavonoids and anthocyanins, as
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unitless indexes [46]. In addition, it calculated the nitrogen balance index (NBI), which is the
chlorophyll/flavonoids ratio related to the nitrogen and carbon allocation [47]. The Dualex operated
with a UV excitation beam at 357 nm, corresponding to the maximum absorption for flavonoids; another
LED that operated in the green band for anthocyanins; a red reference beam at 650 nm, corresponding
to the absorption for chlorophyll; and two other references in the near-infrared. For each plot, five flag
leaves were selected randomly, and the values were averaged. The measurements were done at the
adaxial leaf side and in a middle position of the blade between the leaf base and the apex. Dualex
measurements were carried out from 10:00 to 12:00 h.

2.7. Statistical Analysis

Data was analyzed statistically using the open source software R [48] and RStudio 1.0.44 [49]
(R Foundation for Statistical Computing, Vienna, Austria). Means and standard errors of the GY and
all the measurements and indexes were calculated. The effects of growing conditions (water regime
and late-planting), genotypes, and their interaction with GY and the remote sensing measurements
were determined through a two-factor analysis of variance (ANOVA) for each sample. Differences
were considered significant at p-value ≤ 0.05. Fisher’s LSD (Least significant difference) test was
used to determine post hoc differences at each growing condition between the cultivars. To analyze
the relationship between the measurements and GY, bivariate Pearson correlation coefficients were
calculated. For a further dissection of the genotypic effect on these correlations, broad-sense heritabilities
(H2) and genetic correlations (rg) were computed using Meta-R (Multi-Environment Trial Analysis with
R for Windows), version 6.01 [50]. Genetic variance components were computed across the genotypes
for each growing condition as the ratio of the square root of the among genotype variance to the mean
value of the corresponding GY or measurement across all genotypes and across the interaction of
genotypes and replicates. The broad-sense heritability was calculated as follows (Equation (3)):

H2 =
σ2

g

σ2
g + σ2

g∗Rep +
σ2

e
nRep

, (3)

where σ2
g, σ2

g*Rep, and σ2
e are the genotype, genotype*replicate, and error variance components, and

nRep is the number of replicates. Genetic correlations (rg) between remote sensing indices and GY were
calculated as follows (Equation (4)):

rg =
COVIndex∗GY√
σ2

Index + σ2
GY

, (4)

where COVindex*GY is the covariance between the index and the GY, σ2
index is the variance component

of the index, and σ2
gy is the variance component of GY.

3. Results

3.1. Effects of the Growing Conditions on Yield

Significant differences in grain yield were reported in relation to the growing conditions and
the genotypes used (Table 5). The highest-yielding conditions were found under normal planting
supported with irrigation—lack of irrigation reduced the yield by almost half. The heat stress effect
caused by late-planting also reduced the yields of all the genotypes in comparison to the normal
planting with supplementary irrigation conditions.
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Table 5. Grain yield (Mg/ha) of the set of modern (semi dwarf) durum wheat cultivars across the
imposed growing conditions. Cultivars are ordered from the highest-yielding to the lowest. Values are
mean ± standard error of three replicates per cultivar. Different letters (a, b, c, d) indicate significant
differences between cultivars within each growing condition according to Fisher’s LSD test. Significance
levels of the ANOVAs: ** P < 0.01; *** P < 0.001.

Supplementary Irrigation Rainfed Late-Planting

Olivadur
Burgos
Sculpur
Euroduro
Iberus
Claudio
Vitron
Athoris
Kiko Nick
Regallo
Dorondon
Pedroso
Amilcar
Avispa
Saragolla
Gallareta
Mexa
Sole
D. Ricardo
Simeto
D. Norman
Arcobaleno
Core
Mean
ANOVA

6.03 ± 0.18 a
5.67 ± 0.23 ab
5.34 ± 0.03 abc
5.31 ± 0.12 abc
5.21 ± 0.06 abc
5.19 ± 0.07 abc
5.14 ± 0.12 abc
5.08 ± 0.22 abc
5.07 ± 0.19 abc
5.02 ± 0.14 abc
4.96 ± 0.16 abcd
4.92 ± 0.22 abcd
4.80 ± 0.11 abcd
4.76 ± 0.16 abcd
4.74 ± 0.17 abcd
4.71 ± 0.25 abcd
4.59 ± 0.13 abcd
4.55 ± 0.17 abcd
4.48 ± 0.06 bcd
4.11 ± 0.14 cd
4.10 ± 0.09 cd
4.05 ± 0.11 cd
3.46 ± 0.04 d
4.84 ± 0.04
0.003 **

Olivadur
Athoris
Claudio
Kiko Nick
Avispa
Burgos
Amilcar
Dorondon
Sculpur
Regallo
Vitron
Iberus
D. Ricardo
Euroduro
D. Norman
Simeto
Gallareta
Mexa
Pedroso
Arcobaleno
Saragolla
Solea
Core
Mean
ANOVA

3.58 ± 0.13 a
3.28 ± 0.08 ab
3.22 ± 0.10 ab
3.14 ± 0.14 ab
3.08 ± 0.17 ab
3.06 ± 0.11 ab
3.06 ± 0.06 ab
3.04 ± 0.07 ab
2.88 ± 0.05 abc
2.83 ± 0.15 abc
2.81 ± 0.08 abc
2.73 ± 0.15 abcd
2.72 ± 0.14 abcd
2.65 ± 0.10 abcd
2.63 ± 0.12 abcd
2.59 ± 0.20 abcd
2.57 ± 0.06 abcd
2.52 ± 0.12 abcd
2.50 ± 0.11 abcd
2.34 ± 0.15 bcd
2.27 ± 0.14 bcd
1.82 ± 0.06 cd
1.61 ± 0.08 d
2.74 ± 0.04
0.002 **

Euroduro
Burgos
Claudio
Olivadur
Sculpur
Iberus
Athoris
Solea
D. Norman
Regallo
Vitron
Saragolla
D. Ricardo
Dorondon
Kiko Nick
Gallareta
Avispa
Amilcar
Mexa
Arcobaleno
Pedroso
Simeto
Core
Mean
ANOVA

5.06 ± 0.07 a
4.87 ± 0.12 ab
4.62 ± 0.08 abc
4.44 ± 0.09 abcd
4.31 ± 0.05 abcd
4.21 ± 0.13 bcde
4.19 ± 0.04 bcde
4.01 ± 0.12 cdef
3.98 ± 0.03 cdef
3.89 ± 0.11 cdefg
3.78 ± 0.02 cdefg
3.74 ± 0.17 defgh
3.69 ± 0.11 defghi
3.50 ± 0.10 efghi
3.45 ± 0.10 efghi
3.43 ± 0.11 efghi
3.24 ± 0.05 fghi
3.18 ± 0.06 ghi
3.08 ± 0.13 hi
3.08 ± 0.05 hi
3.06 ± 0.07 hi
2.95 ± 0.08 i
3.05 ± 0.18 hi
3.78 ± 0.04
0.000 ***

3.2. Phenotypic Variability of the Vegetation Indexes, Canopy Temperature, and Pigment Measurements
Assessing GY Differences

Over the growing season, large amounts of phenotypic data were generated from each of the
experimental conditions (Supplementary Tables S1–S5). The performance of the remote sensing indexes
varied considerably across the growing conditions. Differences in the relationships of the indexes
with yield underlay the variation in phenology (Figure 3). For most of the indexes calculated there
was a genotypic growing effect, particularly for the RGB and multispectral measurements. Genotypic
differences in the thermal approximations were clearly found at the beginning of heading in the
rainfed trial. For the rest of the conditions, genotypic differences in the CT were only revealed for the
aerial measurements.

Under the high-yielding conditions corresponding to the support irrigation plots, all of the
measured indexes presented significant correlations to yield before anthesis. GA was the RGB index
measured from ground that best correlated with GY during anthesis (r = 0.545), increasing in strength
at grain filling (r = 0.684) and decreasing again with maturity (r = 0.435). In terms of multispectral
measurements, during anthesis the correlations obtained were very low but increased during grain
filling (Figure 4), with the best GY assessments being achieved by the NDVI (r = 0.639 measured
from the ground, and r = 0.545 aerially) and its reformulations, the soil adjusted vegetation index
(SAVI, r = 0.651) and the renormalized difference vegetation index (RDVI, r = 0.647). The thermal
measurements showed a negative correlation with GY but the correlation coefficients were low. Finally,
no significant correlations were reported from the pigment measurements derived from the Dualex
(Supplementary Table S6).
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reformulations (SAVI, optimized soil-adjusted vegetation index (OSAVI), and RDVI) were the best 
indexes in assessing GY, showing correlation coefficients higher than 0.630 at anthesis and very close 
to 0.700 at grain filling. Indexes more targeted towards assessments of the photosynthetic capacity of 
the crop canopy, such as the photochemical reflectance index (PRI) at grain filling (r = 0.662) and the 
chlorophyll carotenoid index (CCI) at both anthesis and grain filling (r = 0.548 and r = -0.658, 
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Figure 3. Pearson correlation coefficient heatmap of grain yield with parameters measured from
ground and aerial platforms throughout the different phenological stages and treatments. Correlations
are scaled according to the key above. Correlations were studied across the 72 plots from each
growing condition.

Higher correlations were reported in the rainfed trial than in the supplementary irrigation trial.
During heading, the indexes derived from the UAV with the RGB camera were u* (r = −0.609) and
NGRDI (r = 0.684). Similar to the supplementary irrigation conditions, the RGB indexes that best
correlated with GY during anthesis were GA (r = 0.665) and GGA (r = 0.643), both measured at ground
level. Using the aerial images, only GGA remained highly significant (r = 0.565). At grain filling,
both ground and aerial RGB indexes had correlations that were very similar to those produced by
anthesis data. During maturity, all of the indexes derived from the ground RGB images were closely
correlated with GY. As happened within the supplementary irrigation conditions, the NDVI and its
reformulations (SAVI, optimized soil-adjusted vegetation index (OSAVI), and RDVI) were the best
indexes in assessing GY, showing correlation coefficients higher than 0.630 at anthesis and very close
to 0.700 at grain filling. Indexes more targeted towards assessments of the photosynthetic capacity
of the crop canopy, such as the photochemical reflectance index (PRI) at grain filling (r = 0.662) and
the chlorophyll carotenoid index (CCI) at both anthesis and grain filling (r = 0.548 and r = −0.658,
respectively) also correlated with GY. Regarding the thermal measurements, the canopy temperature
and aerial measurements of the CTD had high negative correlations with GY at both anthesis (r =−0.762
and r = 0.675, respectively) and at grain filling (r = −0.627 and r = 0.510, respectively). The pigment
measurements did not correlate with GY (Supplementary Table S6).

With respect to late-planting, early measurements made during booting showed high correlations
with yield using the RGB ground indexes. However, the correlation coefficient values dropped
significantly when the indexes were calculated from the aerial HTPP images. Further, during heading,
the RGB ground indexes maintained correlation coefficients of similar strength. Finally, the RGB
measurements made during the milk grain filling stage, at both ground level and aerially, reported very
high correlations with grain yield. The multispectral image indexes followed a very similar pattern to
the RGB indexes, with increasing correlation coefficients throughout the crop cycle—from very low
correlations at the stem elongation and booting phases to high correlations at heading and at grain
filling. The best thermal measurement in terms of assessing GY was reported with CT measurements at
heading (r = −0.644). As observed at the other two experimental conditions, the pigment measurements
did not correlate with GY (Supplementary Table S6).
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broad-sense heritability was estimated. The GY heritability calculated for the stressed conditions 
corresponding to rainfed conditions (H2 = 0.620) and late-planting (H2 = 0.855) was much higher than 
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between the broad-sense heritability and the determination coefficient of the genetic correlations (rg 

Figure 4. Relationships between grain yield with the RGB index green area (GA) (left), the multispectral
index NDVI (middle) and the canopy temperature (right), measured from the ground level (red points)
and from the aerial level (blue points) during grain filling for the supplementary irrigation (top), the
rainfed (middle), and the late-planting (bottom) growing conditions. Correlations were studied across
the 72 plots from each growing condition.

3.3. Evaluation of GY and Remote Sensing Traits Heritability

To characterize the impact of the genetic diversity on GY and the remote sensing measurements,
broad-sense heritability was estimated. The GY heritability calculated for the stressed conditions
corresponding to rainfed conditions (H2 = 0.620) and late-planting (H2 = 0.855) was much higher than
the GY heritability calculated for the supplementary irrigation condition (H2 = 0.206). Besides this, to
validate the strength of the indexes as predictors of GY differences between genotypes, the products
between the broad-sense heritability and the determination coefficient of the genetic correlations
(rg × H2) were calculated for a selection of measurements that correlated highly to yield (Figure 5).
For the support irrigation trial, most of the values of that product exceeded the H2 of GY, whereas in
the case of rainfed conditions, the product values were generally lower than the H2 of GY, although
some were still higher. Regarding late-planting conditions, the indexes during anthesis had lower H2

and rg × H2 products than the H2 of GY, but both approximations overtook during grain filling.
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× rg (blue) indexes of a

selection of indexes.

3.4. GY Predictive Models

Using these indexes, which presented the highest correlations with GY at every phenological
stage, step-wise linear regression models were calculated in order to generate GY prediction models
(Table 6). The results indicated that grain filling was the optimal stage for predicting GY in this study,
particularly in the late-planting conditions, where the models explained more than 50% of the yield
variability. Additionally, a stepwise analysis was performed within each growing condition, with GY
as a dependent variable and the full set of RGB, multispectral, and thermal indexes and measurements
from all the sampling dates as independent variables. For the irrigation trial, the equation combined
the NGRDI from anthesis, the PRI from grain filling, and the hue from late grain filling. For the rainfed
trial, the connection between assessment of the NGRDI at heading, the CT during anthesis, and the
NDVI at grain filling far outperformed any of the previous regressions. In the case of late-planting, the
combined equation was also a better predictor of GY, using the ground vegetation cover measurement
via GGA, the SAVI during anthesis, and the CCI at grain filling.

Finally, for the purpose of testing how accurately the prediction models were, the success
rate of prediction for the five highest yielding varieties with each equation was calculated. Most
of the equations were correct 60% of the time. Unexpectedly, the equation derived from the CT
measurement during anthesis under rainfed conditions, which was the equation explaining most the
GY variation, only managed to predict two of the five highest-yielding cultivars correctly. The only
equation that achieved a 100% success rate was the one using the CCI during grain filling under
late-planting conditions.
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Table 6. Multilinear regression (stepwise) of grain yield (GY) as a dependent variable and the remote
sensing traits (RGB and multispectral indexes and the thermal measurements) measured both from the
ground and aerially as independent variables. Regressions were studied across plots (n = 72) within
each growing condition (supplementary irrigation, rainfed, and late-planting). The strength in the
prediction of the five highest-yielding cultivars was determined (PS%). R2, determination coefficient;
RSE, residual standard error; A, anthesis; GF, grain filling; LGF, late grain filling; H, heading.

Trial Phenological
Stage Equation R2 RSE p-Value PS%

Su
pp

le
m

en
ta

ry
Ir

ri
ga

ti
on

Anthesis GY = 64.84 NGRDI + 1.68 0.254 0.652 0.000 60

Grain Filling

GY = 8.69 GA − 2.85 0.468 0.551 0.000 60
GY = 0.00096 TGI − 2.00 0.270 0.645 0.000 40
GY = 12.19 SAVI − 1.83 0.423 0.573 0.000 80
GY = 26.29 PRI − 0.32 0.287 0.637 0.000 60

Senescence
GY = 0.07 Hue + 1.98 0.361 0.603 0.000 60
GY = −0.14 a* + 2.43 0.201 0.675 0.000 60

Combination
GY = 33.64 NGRDI.A +
11.72 PRI.GF + 0.04
Hue.LGF − 0.92

0.421 0.583 0.000 80

R
ai

nf
ed

Heading
GY = 0.0009 TGI + 2.00 0.270 0.645 0.000 80
GY = −0.466 u* − 0.63 0.371 0.478 0.000 40
GY = 63.80 NGRDI + 0.29 0.468 0.440 0.000 60

Anthesis

GY = −0.08 u* + 1.83 0.340 0.490 0.000 60
GY = 4.06 GA − 0.28 0.442 0.450 0.000 60
GY = 42.97 NGRDI + 1.59 0.453 0.446 0.000 60
GY = 7.95 NDVI − 3.56 0.440 0.451 0.000 60
GY = −0.36 CT + 11.71 0.581 0.390 0.000 40

Grain Filling

GY = −0.10 a* + 2.40 0.413 0.462 0.000 60
GY = 2.22 GA + 2.02 0.413 0.462 0.000 60
GY = 7.79 NGRDI + 3.12 0.386 0.472 0.000 60
GY = 5.18 NDVI + 0.07 0.489 0.431 0.000 60
GY = 28.12 PRI − 1.67 0.438 0.452 0.000 60
GY = 8.88 CCI + 1.76 0.433 0.454 0.000 60
GY = −2.94 TCARIO/SAVI
+ 4.45 0.488 0.431 0.000 80

GY = 22.09 NGRDI.A −
0.28 CT.GF − 0.57 NDVI.GF
+ 9.45

0.632 0.371 0.000 60Combination

La
te

-P
la

nt
in

g

Heading
GY = −0.11 u* + 1.88 0.366 0.555 0.000 60
GY = 5.90 GGA − 0.63 0.376 0.551 0.000 60
GY = 9.19 NGRDI + 1.95 0.349 0.563 0.000 60

Anthesis

GY = 7.16 GA − 2.38 0.434 0.524 0.000 60
GY = 64.79 NGRDI + 0.43 0.398 0.541 0.000 80
GY = 11.52 SAVI − 2.27 0.406 0.537 0.000 80
GY = −0.43 CT + 15.46 0.414 0.533 0.000 60

Grain Filling

GY = −0.15 a* + 2.46 0.588 0.447 0.000 80
GY = 2.82 GA + 2.16 0.559 0.463 0.000 80
GY = 0.0009 TGI + 1.80 0.533 0.476 0.000 80
GY = 9.29 SAVI − 0.19 0.563 0.461 0.000 80
GY = 13.89 CCI + 0.56 0.568 0.458 0.000 100
GY = −1.08 CRI2 + 6.45 0.488 0.499 0.000 80

Combination
GY = 1.13 GGA.H + 4.03
SAVI.A + 10.05 CCI.GF −
1.51

0.625 0.433 0.000 80

4. Discussion

4.1. Implications of Growing Conditions on Final GY

Drought (understood as the combination of water stress and heat) and heat stress alone are among
the most limiting environmental factors that impact wheat development, inducing many biochemical,
molecular, and physiological changes that affect crop yield [51]. In this study, stressed conditions
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(rainfed and late-planting) reduced yield substantially in contrast to optimal conditions (supplementary
irrigation at the normal planting date), with drought being the most restrictive factor that affected
yield. The delay in the sowing date exposed cultivars to increased temperatures during the entire
growth cycle, but particularly during the reproductive stages. Meanwhile, grain filling occurred during
May in the normal planting trials, with the mean temperature for this month being 19.95 ◦C; this
development stage in the late planting trials took place during late May and the first half of June, and
the temperatures rose to 25.62 ◦C. The temperature established as optimal for the phases of grain filling
is around 22 ◦C and exposure to higher temperatures can significantly decrease GY due to the reduction
in the time to capture resources [52]. Moreover, an increase in temperature also results in increases
in respiration losses, including dark respiration [53,54] and photorespiration [55], therefore affecting
yield negatively. Previous studies have concluded that the response of the crop to shifting the planting
date is a region-specific adaptation strongly influenced by climate conditions [56–58]. The loss of yield
reported in this study agrees with the model-predicted winter wheat yields in semi-arid regions [59].

4.2. Ability of the Remote Sensing Measurements to Assess Genotypic Differences in Yield under Different
Growing Conditions

Given their versatility, remote sensing techniques are currently the most commonly used
approaches in HTPP [9], leading to the possibility of generating large amounts of data, as can
be observed in this study. The considerable variation in the range of management practices used has
greatly influenced wheat cultivar performance, proving that finding the most suitable timing of growth
stages to measure remote sensing indexes remains entirely dependent on the target environment [60].
The measurements were performed at critical growth stages for the prediction of yield, as previously
reported by Fernandez-Gallego et al. [61]. Post-analysis of this information indicates how crop
development can be visualized through the evolution of the indexes and, thus, these trends can be
related to crop parameters. Therefore, it is necessary to dissect all these data to determine what needs
to be measured, when it needs to be measured, and how it should be measured in relation to our
purpose, which in this instance is forecasting yield.

During the phases of ear emergence and flowering, the highest correlations with GY (for the three
conditions) were obtained with indexes that were associated with the assessment of vegetation cover.
Heading and anthesis are two critical growing stages because an appropriate heading and flowering
time will help cultivars maximize their yield potential [62]. As most of the carbohydrates for grain
filling are formed after heading [63], a larger leaf area is positively correlated with GY, determining
the future number of grains and their weight [64,65]. Derived from the RGB images, the GA and
GGA indexes are reliable estimations of the crop coverage of the soil, because they represent the
percentage of green pixel values per plot [29,66]. Besides this, vegetation cover can also be determined
by assessing how green the plot is on average, such as the a* and u* measurements from the CIElab
and the CIEluv color spaces, where the values go from high negative values (green) to low negative or
even positive values (lack of green), or the NGRDI index, which is the normalized difference between
green and red reflectance. Alongside this, the multispectral indexes use the difference between the
NIR and red bands, because this difference is larger for green vegetation and declines to near 0 for
soil, making the NDVI suitable for vegetation coverage [67]. The NDVI correlations were improved
through the index’s reformulations as SAVI and OSAVI, which include parameters for reduction of the
brightness effect of the soil [35,36]. In accordance with Duan et al. [68], who dynamically monitored
NDVI during a growing season for contrasting wheat cultivars and growing conditions, we also
reported a higher correlation with GY during the anthesis period. In most cases, the spectral-resolution
precision of the multispectral indexes provides benefits in assessing genotypic differences in GY, but
when canopies were found to be very dense (for example under support irrigation during most of
the reproductive period), the vegetation indexes reported values near their saturation point. In these
cases, the much higher spatial resolution offered by the RBG images allowed indexes like the NGRDI
or TGI to perform close to or even surpass the multispectral indexes. However, the values of these
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indexes responded greatly to stress applications, with drought and heat stress decreasing the index
values notably, exhibiting a wider range of values corresponding to the genotypic performance of the
cultivars under each treatment and reporting more robust correlations.

Moving on to grain filling, the total photosynthetically active area (i.e., the green vegetation area)
during this stage has been reported as being very closely related to the final GY [69]. The decrease
in canopy greenness due to the ripening process was markedly synchronized with the values of
the vegetation indexes. Therefore, as senescence varies considerably depending on genotype [70],
stay-green and early senescence phenotypes can be easily identified, for example, with the NDVI [71,72].
This is of importance for selecting genotypes with an extended duration of active photosynthesis,
particularly under conditions that tend to accelerate senescence [73]. With regard to the assessment of
genotypic differences in GY, our results showed that the most suitable phenological stage for conducting
measurements was around the last stages of grain filling, detecting genotypic differences in canopy
greenness and, thus, stay-green, similar to previous studies monitoring wheat trials repeatedly over
the entire growing season [74]. Stay-green has been principally associated with extended periods of
photosynthetic activity and maintaining the supply of assimilated carbon in order to ensure that grain
mass is maximized. Thus, a longer duration of flag leaf greenness through GF has been associated with
an increased yield wheat [75]. Moreover, Christopher et al. [72] also concluded that, for wheat, the
high correlations between NDVI and yield obtained during GF were due to the fact that this was the
key phenological stage for assessing genotypic differences in senescence dynamics. However, some
studies in bread wheat, such as Kichey et al. [76] and Derkx et al. [77] have reported a lack of yield
increase while retaining green leaf area for longer during GF. To overcome these inconsistencies may
require examining plant biomass, additional information about pigment content, and the regulatory
processes of photosynthesis, which could help to further understand the genetic differences in yield.

Indeed, assessing differences in the photosynthetic capacity, independently of the green biomass,
can be of a great importance. For instance, changes in photosynthesis nearly parallel changes in
chlorophyll content. The chlorophyll-related indices measured (chlorophyll from the leaf sensor,
and the TGI, transformed chlorophyll absorption index (TCARI), MCARI, and CCI assessed at the
canopy level) showed how the pigment content increased until anthesis, and then started decreasing
during grain filling. Regarding its performance in assessing yield, on one side, the leaf relative
chlorophyll content measured with the leaf sensor did not correlate well with GY. These readings
provide useful information for diagnosing plant N status and, by the time N is a limiting factor, it may
work efficiently as a GY predictor [78]. However, without nutrient restrictions, the leaf chlorophyll
content–GY relationship is not so clear. Moreover, it is only measured in the flag leaf, not across the
canopy. Based on similar results, Monostori et al. [79] concluded that relative chlorophyll content
values should be calibrated according to the cultivars used and depending on their performance.
On the other hand, chlorophyll measurements derived from the RGB and multispectral images did
show some significant correlations with GY. Taking into account that, while pigment-meters like the
Dualex estimate the chlorophyll concentration using the last developed leaves and thus the last to
senesce, the HTPP reflectance indexes related to pigment content are assessed at the canopy level.
Thus, while still being sensitive to chlorophyll content, any differences present in green biomass may
also influence the pigment measurements and the indexes will measure the total physical volume of
chlorophyll at the canopy.

Apart from chlorophyll assessments, the actual photosynthetic capacity can be determined with
the CCI and PRI indexes. Both indexes use narrowband reflectance at 531 nm, located between two
broad bands of strong pigment absorption related to chlorophylls a and b, and they help to separate
more steady-state photosynthetic pigments from those related to photosynthetic stress and efficiency.
The photochemical reflection index (PRI) was formulated to assess how efficiently radiation is used by
plants during photosynthesis [80], as it is highly sensitive to changes in the short-term xanthophyll
cycle [81]. Distinct from the PRI, the chlorophyll carotenoid index (CCI) also includes information
from red reflectance, indicating changes in the chlorophyll to carotenoid ratio [43]. Therefore, these
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indexes are suitable measurements for estimation of the photosynthetic variability induced by heat
and drought. The best performance of these indexes occurred with measurements made during the
grain filling stage, owing to their potential to detect the photoprotective response to excess light [82].
Because radiation is available in excess in the Mediterranean Basin [83], photo-protection mechanisms
are needed to prevent cell damage and to ensure that plant metabolism continues normally [42], so
radiation use efficiency is a key trait under such conditions [84].

Stomatal regulation is a key determinant of plant photosynthesis and is highly influenced by the
surrounding environment. As an alternative to the direct assessment of leaf stomatal conductance,
measuring the canopy temperature (CT) provides an instantaneous proxy of plant water status [85].
Stomatal closure induced by environmental stress will cause an increase in leaf temperature. Thus,
negative correlations were reported between the canopy temperature and GY. Assuming that the
normal season planting and the support-irrigated trial represented close to optimal growing conditions,
there should have been no disturbances affecting stomatal conductance. Still, considering the low
correlations observed, the pattern observed can be related to the capability of genotypes to be
more or less photosynthetically active. Under non-water-limited conditions, a cooler CT has been
associated with genetic gains in wheat yield due to higher stomatal conductance and greater maximum
photosynthetic rates [86]. On the other hand, the CT correlation with grain yield for the stressed
conditions (rainfed and late-planting) was clearly stronger than in the supplemental irrigation trial,
which reported negative correlations. The genotypes that produced the lowest GY presented elevated
CT during the anthesis and grain filling periods, and vice versa. Hence, genotypes with a higher
resistance to drought and heat can be identified as plants with cooler leaves [87]. Therefore, CT
measurements characterize the crop physiologically and in a way that is complimentary to assessing
plant density or greenness.

To effectively utilize the remote sensing measurements to assess GY, predictive models were
calculated using step-wise regressions. Most of the best grain yield predictors obtained were formulated
using traits measured during grain filling. Even so, models combining various measurements taken at
different phenological stages greatly improved the prediction capacity. The potential yield of a crop is
given by the interception of irradiance of the canopy, but it is also determined by the conversion of that
irradiance into chemical energy [88]. The incorporation of high-throughput monitoring into prediction
models enables more accurate selection of superior breeding lines [89,90]. The models developed here
incorporated a vegetation cover measurement during the pre-anthesis and anthesis phases to assess
crop density, an approximation of the rate of photosynthesis applied to the estimation of the light use
efficiency (PRI, CCI) or the stomatal conductance (CT) during grain filling, and finally a measurement
of the delay in senescence of the plants. In accordance with our findings, Crain et al. [74] concluded
that NDVI and CT could be used for indirect selection for GY under heat and drought, based on their
results of trait heritability and correlation to GY.

4.3. Comparative Performance of Ground Versus Aerially Assessed Indexes

The main benefit of incorporating imaging methodologies into aerial-based platforms is that
researchers are then able to cover larger experimental areas in less time, thus minimizing the effects
of diurnal variation in environmental variables, like changes in radiation and temperature, or the
occurrence of clouds [44]. The aerial indexes worked very similarly to the ground measurements,
reinforcing their usefulness for high-throughput plant phenotyping in the field.

As counterbalance to the high-throughput capacity of aerial imaging, the platform distance from
the canopy led to a loss in image resolution. In the case of RGB measurements, even though the sensor
size of the cameras used was very similar (23.20 × 15.40 mm for the Sony QX1 and 17.3 × 13 mm for
the Olympus OM-D), the distance between the crop and the camera reduced the resolution of the
resulting plot level images when they were captured from the aerial HTPP. As an illustration, while the
aerial plot images had a resolution of 473 × 129 pixels, the resolution of the images taken from the
ground was 5456 × 3632 pixels. Despite this restriction, aerial indexes were still highly correlated with
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grain yield, especially at grain filling. The reduction in the number of pixels had a greater effect on
the assessments related to fractional vegetation cover, such as the indexes derived from the HIS color
model, including information of both vegetation and bare soil [91], so the yield prediction capacities of
the GA, GGA, and CSI were generally lower when measured from the aerial platform. The other RGB
indexes seemed to be less sensitive to this loss in spatial resolution and were better at maintaining the
correlation coefficients across platforms. Besides this, it is also important to take into consideration the
fact that aerial images are able to assess the whole plot (therefore overcoming canopy heterogeneity),
while the ground-based approaches only allow for assessment of less than a tenth of the total plot, and
for this reason more than one measurement may be needed. A similar trend was observed with the
NDVI assessments, with the GreenSeeker measurements on the ground being slightly better correlated
than the aerial measures derived from the multispectral images. This is because this hand-held sensor
produces data covering almost the whole plot, with the final value corresponding to the average of
10–20 measurements captured while walking across the plot. When comparing the performance of
CT measured from the ground and aerially for GY, a clear difference was found between the two
approaches, with CT measured from the UAV showing better results. Traditionally, hand-held infrared
thermometers have been used but they can be problematic in large field studies due to the temporal
changes during the time required to measure all plots [12]. Because temperature can fluctuate quickly,
it is of profound importance to screen the whole trial as quickly as possible, in order to have comparable
data across all the plots. The use of UAVs permits the acquisition of thermal images of a large number
of plots in a short time, overcoming this environmental variability restriction.

In that sense, aerial remote sensing platforms are an effective way to rapidly monitor crops,
particularly in large fields. However, even when UAVs have reached comparatively affordable prices,
the associated cost entailed in their employment still makes them a relatively expensive approach
in some cases. Besides the price of the platform and the sensors, it is compulsory to pay for vehicle
insurance, and a certified pilot and trained operator must be engaged to carry out the flights. Thus,
the implementation of an aerial platform in a phenotyping study might demand a considerable
initial investment, but later savings in manpower will compensate for the initial investment because
there will be fewer employees to pay. Another aspect to consider is the sizeable technical capacity
necessary for data processing, from radiometric calibration of the images and the creation of a
georeferenced ortho-mosaic to ensure effective and efficient data extraction and analysis. For these
reasons, ground-based or hand-held methodologies might be more feasible alternatives in certain
circumstances due to their low cost and ease of management. In addition, most ground-based
sensors generate measurements with no need for extra time for data processing and index calculation.
As proposed by Araus and Kefauver [9] and applied in this study, an innovative option could be the
attachment of a camera to a “pheno-pole”. The camera is controlled remotely with a smartphone by
Wi-Fi, so it is possible for the pole to be as high as 4 m, allowing measurements of tall crops, like
maize or fruit trees. Using ground-based phenotyping methodologies requires more time for data
acquisition, but the staff require fewer technical skills, and as indicated above, the post-image treatment
is minimal and frequently the software needed for extracting vegetation indices from the images is open
access. The RGB indices are clear examples where a range of open access software is already available
(https://integrativecropecophysiology.com/software-development/). One last point is that drones as
objects in airspace are still under discussion within regulatory frameworks and UAV-related laws are
in a constant evolutionary progress [92], thus their full implementation in many countries is limited.
For these reasons, users need to take stock of the strengths, opportunities, and limitations associated
with each sensor and platform and make a choice depending on their objectives. Future improvements
will make these technologies more user-friendly and available for all types of end-users [93], and
smartphones may play a central role in these solutions.

The time spent on fieldwork in the current study using the aerial platform for RGB imaging was
approximately 10 min, including five minutes for pre-flight preparation procedures and five minutes
for the flight itself. Before conducting any flight, it is essential to complete certain pre-flight checklist
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tasks to ensure that the flight will perform correctly without any technical incidents. The alignment of
the raw images onto georeferenced orthomosaics took 15 min. Finally, the semi-automatic extraction
and processing of the data took another 15 min. In contrast, the time required for capturing images
manually from the ground or using a hand-held sensor, such as the GreenSeeker or a thermal gun,
was around 12 min, and the RGB data processing only took five minutes. Nonetheless, leaf clamp
meters like the Dualex require longer periods of time because the estimated time per plot is around one
minute to capture at least six individual measurements. In small field trials, the throughput differences
between the two approaches might seem small, but in large studies the time/cost differences become
much greater. Considering this task’s calculated time for aerial images acquisition as a reference, we
have simulated how long it would take to measure a larger field of 300 plots. Without changing the plot
dimensions, a 300-plot field would cover more or less an area of 0.4 Ha. However, the time would not
increase much and in less than 10 min the whole field would be screened. Similarly, the pre-processing
would also be increased only a bit.

4.4. Repeatability and Applicability of Remote Sensing Measurements for Assessing GY

Success in collecting accurate phenotyping data is intimately connected with heritability of
the trait [94]. Broad-sense heritability is a reflection of both the genetic variance and the level of
precision that can be achieved within and across trials [95], and sometimes it is termed as repeatability.
The heritability metrics assess the quality of the measurements, and these are a key element for
implementing such new technologies in breeding programs, because they will help plant breeders to
forecast the grain yield behavior of the succeeding generation. The possibility of being able to promptly
evaluate the improvement target, in this case grain yield, with an index would permit breeders to
make well-informed decisions about the cultivars. According to the results obtained, the most robust
measurements were made in the rainfed and the late-planting trial, during grain filling, increasing the
confidence of using such measurements for selection under suboptimal growing conditions. Traditional
and time-consuming manual measurements of plant height have been used as selection traits for yield
improvement. The high estimates of H2 reported in our results suggest the possibility of using remote
sensing measurements to forecast the grain yield behavior of the succeeding generation.

5. Conclusions

It is particularly important to evaluate the response of the remote sensing indexes to the crop
genotypic performance in order to implement correctly those methodologies in phenotyping. Knowing
which are the remote sensing parameters that best predict genotypic variability in yield and when
to measure them will help to develop accurate yield prediction models for phenotyping, which may
help to accelerate the selection process in breeding programs. Moreover, a better understanding of the
strengths and limitations of these indices may help to forecast production or to improve crop monitoring
associated with management practices. In our study, the performance of the set of vegetation indexes
studied varied widely across the growing conditions and the phenological stages. Measurements
related to the greenness of the canopy were the best for assessing genotypic differences in GY according
to the phenotypic and genotypic correlations and heritabilities calculated, regardless of the nature of the
data collected (RGB or multispectral). Furthermore, our results proved that grain filling was the best
phenological stage to forecast GY among those evaluated. At the beginning of grain filling, vegetation
indexes can assess the amount of biomass present, and thus the photosynthetically active area that
contributes to the filling of the grain. Moreover, at the end of the stage, we can evaluate the length of
this period and see which cultivars stay green (i.e., photosynthetically active) for longer, with their
concomitant delay in senescence. Therefore, the RGB-derived vegetation indexes are presented as the
most suitable traits to be measured, because despite being a low-cost tool, this set of indexes performed
as well as, and sometimes better than, indexes derived from more expensive devices (i.e., multispectral
and thermal indexes). Besides this, when studying crop and genotype responses to drought and heat,
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canopy temperature assessed from an aerial platform has proven to be a useful addition to the other
two categories of remote sensing techniques.

As has been proven in this work, the ground and aerial measurements performed very similarly in
terms of assessing GY. For this reason, when scaling to large scale studies, the selection of the platform
may depend not only on its cost, but also the time and skill required to conduct the measurements
properly. The only exception is canopy temperature, where the simultaneous evaluation of all the
plots from the UAV (T.a) performed much better than the temperature measured sequentially from the
ground (T.g) in individual plots.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/11/10/1244/s1,
Table S1: Effect of growing conditions across phenological stages for the RGB indexes assessed from the ground
level, Table S2: Effect of growing conditions across phenological stages for the RGB indexes assessed aerially, Table
S3: Effect of growing conditions across phenological stages for the multispectral indexes assessed aerially, Table
S4: Effect of the growing conditions across phenological stages for the thermal measurements, Table S5: Effect of
growing conditions across phenological stages for the Dualex measurements, Table S6: Correlation coefficients of
the relationships between the pigment measurements with the Dualex and the GY.
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UAV Unmanned Aerial Vehicle
RGB Red-Green-Blue
NDVI Normalized Difference Vegetation Index
GA Green Area
CCI Chlorophyll Content Index
TGI Triangular Greenness Index
GY Grain Yield
HTPP High-Throughput Plant Phenotyping
MET Multi-Environment Trials
INIA Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria
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CTD Canopy Temperature Depression
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Leaf versus whole‑canopy remote 
sensing methodologies for crop 
monitoring under conservation 
agriculture: a case of study 
with maize in Zimbabwe
Adrian Gracia‑Romero1,2, Shawn C. Kefauver1,2, Omar Vergara‑Díaz1,2, Esnath Hamadziripi3, 
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José L. Araus1,2*

Enhancing nitrogen fertilization efficiency for improving yield is a major challenge for smallholder 
farming systems. Rapid and cost-effective methodologies with the capability to assess the effects 
of fertilization are required to facilitate smallholder farm management. This study compares maize 
leaf and canopy-based approaches for assessing N fertilization performance under different tillage, 
residue coverage and top-dressing conditions in Zimbabwe. Among the measurements made on 
individual leaves, chlorophyll readings were the best indicators for both N content in leaves (R < 0.700) 
and grain yield (GY) (R < 0.800). Canopy indices reported even higher correlation coefficients when 
assessing GY, especially those based on the measurements of the vegetation density as the green 
area indices (R < 0.850). Canopy measurements from both ground and aerial platforms performed very 
similar, but indices assessed from the UAV performed best in capturing the most relevant information 
from the whole plot and correlations with GY and leaf N content were slightly higher. Leaf-based 
measurements demonstrated utility in monitoring N leaf content, though canopy measurements 
outperformed the leaf readings in assessing GY parameters, while providing the additional value 
derived from the affordability and easiness of using a pheno-pole system or the high-throughput 
capacities of the UAVs.

Currently, Sub-Saharan Africa (SSA) has one of the lowest cereal self-sufficiency ratios of the world while also 
having one of the greatest projected increases in population1. By 2050, the population in SSA is expected to 
grow 2.5-fold, requiring a tripling of the actual cereal production in order to meet demand2. The staple crop in 
SSA is maize, but its production is being limited by a decline in soil fertility. Particularly, Zimbabwe has been 
considered a hotspot for both nutrient and water limitation in agricultural production3. Traditional practices 
of monoculture and soil tillage have led to a decline in soil fertility4, causing the use of N fertilizers to become 
essential. Yet, this situation cannot be considered sustainable given the economic and environmental impact 
associated with high fertilization rates5.

In this context, reducing N fertilizer rates without implicating major losses in grain yield (GY) is a way of 
preserving natural resources and the environment without compromising food security while facing the projected 
changes in temperature and precipitation patterns. To that end, apart from breeding for improved plant varieties, 
changes in agricultural management must be considered, too. Conservation agriculture (CA), characterized by 
minimum soil disturbance, permanent soil cover and diversified crop rotations, has being promoted as a prag-
matic solution for increasing yields while conserving natural resources. Conventional tillage (CT) practices (i.e. 
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conventional plough-based practices) improves the aeration of the soil but may result in detrimental effects to 
the environment and hence lead to yield decreases in long term6. Soil compaction is managed by deep tillage, 
but this mechanical disturbance has also been shown to lead to long-term declines in organic matter, an increase 
in water loss by runoff, and soil erosion4. Reducing or avoidance of soil erosion helps to retain soil moisture and 
reduces the use of fossil fuels, thus lowering costs and chances of total crop loss due to drought7. On the other 
hand, the application of plant residues usually leads to an increase in crop yields due to its benefits to water 
retention and improved soil fertility, but its success relies on the amount and quality of the residues and the 
initial fertility status of the soil7. The application of residue resources, such as crop stover, in combination with 
mineral fertilizers is being increasingly implemented to address declines in soil fertility8. However, an important 
drawback of the promotion of CA practices is the competing uses of crop residues (e.g. livestock feed, as fuel 
or for construction) that act against their use in CA mulch applications9–12. Also, poorer farmers often sell their 
residues to livestock keepers13. A better understanding of the minimum crop residue mulching thresholds that 
are required in order to provide CA benefits to farmers would allow farmers the flexibility to remove biomass for 
other purposes. Moreover, improvements in crop residue management practices may produce relevant changes 
towards enhancing the potential sequestration of organic carbon by farmlands, as an option for mitigation of 
greenhouse emissions.

Still, an appropriate N fertilizer use regimen under CA is crucial to promote microbiological activity14. For 
this reason, N management programs must be critically evaluated, including application rate and timing as well 
as the type of the N fertilizer used. On-field, fast and non-destructive indicators of crop nutritional status, such 
as leaf chlorophyll meters have been used for N fertilization monitoring, as chlorophyll concentration is strongly 
related to the N status of the plant15. The most often used leaf-clip device is the SPAD-502 from Minolta-Konica 
that assesses Chl concentration from leaf transmittance16. A newer alternative is the three-in-one instrument 
Dualex from Force-A, that, besides chlorophylls (Chl a + b), also measures leaf epidermal flavonoids (Flav) and 
anthocyanins (Anth)17. However, the main limitation of the leaf-clip-type instruments for large-scale studies is 
that these techniques are time consuming. One potential solution is the use of remote sensing methodologies 
for data collection at the canopy level, which have become valuable tools for precision agriculture and high-
throughput plant phenotyping18. Besides multispectral sensors and imagers, further opportunities are found in 
the use of conventional digital Red–Green–Blue (RGB) cameras as low-cost tools for crop monitoring. Images 
are used to produce RGB indexes based on the color properties of the canopy, which have become very useful in 
forecasting yield and assessing crop variability19. The assessment of the photosynthetic area of the canopy as well 
as the stay-green capacity during the crop cycle are important factors for determining grain yield20. The successful 
implementation of aerial platforms with the assembly of imaging sensors has been extensive for assessing crop 
performance under different growing conditions, permitting the screening of a large number of plots precisely 
and efficiently. In terms of monitoring/phenotyping platforms, the use of unmanned aerial vehicles (UAVs, a.k.a. 
drones) represents an increasingly common option, particularly considering the popularization of drones21. 
Nevertheless, the adoption of drone technology can be limited by both lack of economic resources and restrictive 
laws associated with the use of aerial vehicles (manned and unmanned). In such cases, an innovative option for 
canopy assessments of tall crops like maize or fruit trees is the attachment of a camera to a pole that may reach 
several meters above the crop. This alternative might require more time for data acquisition compared to UAV 
measurements, but less technical skills are required by the staff for image acquisition and further processing, in 
terms of the image alignment in orthomosaics, the posterior extraction of the individual plots or other image 
processing that may be required when using UAVs. Thus, for example in the case of CA and maize, increases in 
the performance of vegetation indices for assessing crop yield has been reported when the images were subject to 
pre-processing, such as applying a soil cover mask for segregating the crop biomass from the soil residue cover22.

Besides remote sensing evaluations, laboratory (i.e. analytical) traits, may be also deployed for crop phenotyp-
ing and monitoring23. The stable carbon (δ13C) and nitrogen (δ15N) isotope compositions, when analyzed in plant 
matter, inform on the water regimen and nitrogen metabolism conditions, respectively, of the plant24,25. Even 
in the case of a C4 species like maize, δ13C may still differentiate between water growing conditions26. In fact, 
both isotopic signatures have been used before in maize for assessing the effect of tillage practices22 and nitrogen 
fertilization25 on the water and nitrogen growing conditions of the crop, even when treatments differences for 
both traits were only found when comparing different N fertilization levels within a common tillage system25.

The main focus of this study is to compare the performance of a set of single-leaf and canopy-based remote 
sensing indices for assessing the influence of the top-dressing levels and the combination of tillage and residue 
levels on maize yield and N leaf content. Two different specialized portable leaf pigment-meters, as well as leaf 
scans for measuring the color of the leaves were used to assess the leaf N content. Concerning the canopy scale 
assessments, RGB images were taken at the ground level from a height of 4 m a.g.l. (above the ground level) 
using a pheno-pole and from the aerial level at a height of 30 m a.g.l. using a UAV. As a complementary selection 
strategy, carbon and nitrogen isotope signatures were analyzed in the leaves, as a potential tool for evaluating 
water and nitrogen status or differences in N assimilation.

Results
Crop yield response to tillage, the residues and top‑dressing application and the associated 
interactions.  Tillage, residue application and the top-dressing levels effects on the grain yield (GY) were 
evaluated (Fig. 1). The factor residue application did not report significant effects on GY (p value = 0.657), but 
no-tillage plots responded with increasing yield to the residue application up to 6 Mg ha−1, but GY decreased 
when the residue application was increased to 8 Mg ha−1. Within each residue treatment, the increase of top-
dressing applications resulted in a significant yield improvement (p value = 0.000***), except for in the applica-
tion of 2 Mg ha−1 of residues, where the plots without N fertilization were still outperformed in terms of yield by 
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those plots with 4 or 6 kg ha−1 AN in the top-dressing. The interaction of both, treatment and sub-treatments, 
which had a significant effect on GY (p value = 0.007**) was grouped in four homogeneous groups. Of these, the 
treatment combining the application of 6 Mg ha−1 of residues together with the highest top-dressing level was 
clearly identified alone as the highest-yielding condition (4.76 Mg ha−1 of GY). The lowest yield was achieved 
under the application of 6 Mg ha−1 of residues but without N fertilizer (1.29 Mg ha−1 of GY). When the levels of N 
were null or low at the top-dressing treats, the CT produced higher yields than the no-tillage (with the exception 
of the 30N conditions). However, the application of fertilizers with elevated N fertilization levels increased yields 
in the conditions with 4, 6 and 8 Mg ha−1 of residues in comparison to the CT conditions. The higher the residue 
application was, the higher the positive effect of the top-dressing N treatment on grain yield.

Effects of growing conditions on leaf total nitrogen content and carbon and nitrogen stable 
isotope compositions.  Tillage and residue treatment as well as the top-dressing fertilization had a signifi-
cant effect on the total N leaf content (Fig. 2A) and its isotope signature composition (Fig. 2B). The main differ-
ences in the leaf N content were caused by the top-dressing (p < 0.000***), with the highest values at 90N (2.83%) 
in comparison to the other two sub-treatments (1.17% for 0N and 1.98% for 30N) (Supplemental Table  1). 
Comparing the soil preparation conditions, when the residue application was the same, conventional tillage 
plots showed higher N content in their leaves. The leaf N content decreased significantly (p = 0.044*) across the 
residue application, with the highest values at 0 Mg ha−1 and the lowest at 8 Mg ha−1. A strong positive correla-
tion between the N leaf content and the GY was found. The CT treatment presented higher values of δ15N than 
the no-tillage treatments at the same residue conditions. In contrast to the N content, the correlation of the 
δ15N with GY was weaker and negative. On the other hand, the δ13C exhibited significant differences across the 
application of top-dressing reporting more negative values with the increase of AN fertilizer, but no significant 
differences were attributed to the residue levels (Fig. 2C). More negative δ13C values corresponded to higher GY, 
reporting higher correlations.

Implications of growing conditions on the leaf pigments readings and the RGB index derived from 
the scans.  The conditions derived from both residue and the top-dressing applications significantly influenced 
the leaf pigment readings (Table 1). The variance analysis showed there were significant differences in the effects of 
growing conditions on all the leaf pigments. The chlorophyll values, from both devices, were clearly benefited by 
the top-dressing applications (p < 0.001***), reporting the highest values in the plots grown under 90N conditions 
(SPAD: 48.31 and Dualex: 38.27) (Supplemental Table 1). Regarding the differences between the two devices, the 
SPAD readings were slightly higher than the measurements with the Dualex, whereas the value difference between 
both sensors moved by the same percentage through the experimental conditions (Supplemental Figure 1).

Figure 1.   Average maize grain yield across the growing conditions. CA corresponds to plots grown under 
conservation agriculture management and CT to conventional tillage plots. T + R corresponds to the levels of 
the combination effect of tillage and residue application, TD to the Top-dressing levels and T + R * TD to the 
interaction of both factors. The error bars show the standard error of the five replicates. Different letters (a, b, 
c, d) indicate significant differences between the residue and top-dressing treatments according to Fisher’s LSD 
test. Significance levels of the ANOVAs: p < 0.05; **p < 0.01; ***p < 0.001; ns no significant.
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Figure 2.   Relationship between the leaf N content (A), the N (B) and the C isotope (C) composition with grain 
yield. Correlations were studied across the 90 plots from all the growing conditions. CA corresponds to plots 
grown under conservation agriculture management and CT to conventional tillage plots. T + R corresponds 
to the levels of the combination effect of tillage and residue application, TD to the Top-dressing levels and 
T + R * TD to the interaction of both factors. Significance levels of the correlations and ANOVAs: ns, p > 0.05; 
*p < 0.05; **p < 0.01; ***p < 0.001.
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By contrast, the measurements of the Flav and Anth content responded significantly to top-dressing, showing 
a reduction with increasing N top-dressing (negative correlation). Finally, the Chl/Flav ratio represented as the 
NBI index increased with the nitrogen top-dressing (Supplemental Figure 1).

Leaf scan images were processed to measure different indices describing color parameters (Supplemental 
Table 2). Indices related to the greenness of the image (Hue, a*, u*, GA, GGA and NGRDI) were very close to 
their saturation limits (Table 2), but an increase in the green parameters pairing with the increase of the residue 
application could still be noticed in Hue, a* and v* indices. Conversely, most of the calculated indices reported 
significant differences across the top-dressing levels, except for the indices derived from the combination of the 
reflectance of the R, G and B bands, NGRDI and TGI. Darker shades of green could be observed at the scans 
of leaves grown under 90N conditions (Supplemental table 2) through the Hue (90.09° ± 0.43) or the a* values 
(− 20.67 ± 0.43), in comparison with the shades of green reported under the 0 N conditions (Hue: 86.23° ± 054 
and a*: − 25.54 ± 0.39). The only index that responded significantly for both treatments and their interactive 
effect was Saturation. Saturation values increased with the residue application (p = 0.016*) but decreased with 
the top-dressing application (p < 0.000***). The indices GA and GGA were completely saturated showing values 
at their highest ranges beyond 0.95.

Effects of growing conditions on the whole‑canopy RGB indices measured from the ground 
and from the air.  With regard to the ground RGB evaluation (Supplemental Table 3), all the indices coin-
cided in informing that the treatment of conventional tillage with the application of 4 Mg ha−1 of residues exhib-
ited the greenest canopies (Hue: 77.66° ± 3.22 and a*: − 13.49 ± 0.94). Concerning the indices derived from the 
aerial images, however, the greenest plots were reported under the no-tillage conditions with 6 Mg ha−1 of resi-
dues (Hue: 64.94 ± 2.57° and a*: − 10.83 ± 0.62). For both levels (ground and aerial) of measurement, the values 
of the indices that estimated the greenness of the canopy under CA increased with the application of residues 
till 6 Mg ha−1 and started to decrease with 8 Mg ha−1. Contrarily to the RGB indices derived from the scans 
on single leaves, the greenness measurements at canopy level decreased significantly as the top-dressing lev-
els diminished, presenting the lowest values at the 0N conditions (from the ground level = Hue: 60.35° ± 1.62 
and a*: − 8.16 ± 0.62; from the aerial level = Hue: 56.97° ± 1.77 and a*: − 8.53 ± 0.39). Besides, the shades of yel-

Table 1.   Effect of the combination of the tillage and residue application (T + R), the top-dressing (TD) and the 
combination of both factors (T + R * TD) on the leaf pigment readings. Significance levels of the ANOVAs: no 
significant (ns), p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

T + R TD T R * TD

Dualex

SPAD ns 1.017e−13*** ns

Chl ns 1.426e−11*** ns

Flav ns 4.384e−06*** ns

Anth ns 1.241e−11*** ns

NBI ns 2.612e−09*** ns

Table 2.   Effect of the combined effect of the tillage conditions with the residue applications levels (T + RL) 
and the top-dressing (TD) on the RGB indices derived from the leaf scans, and the plot images taken from 
the ground and the aerial level. These indices are defined in the “Methods” section. Significance levels of the 
correlations and ANOVAs: no significant (ns), p > 0.05; *p < 0.05; **p < 0.01; ***p < 0.001.

RGB scans RGB ground RGB aerial

T + RL TD T + RL * TD T + RL TD T + RL * TD T + RL TD T + RL * TD

Hue ns 2.249e−07*** ns 0.02878* 5.304e−15*** ns ns 1.878e−15*** ns

Intensity ns 6.742e−11*** ns ns ns ns 6.958e−05*** 2.685e−16*** ns

Saturation ns 3.308e−11*** ns 0.01413* 4.244e−12*** ns 0.033* 2e−16*** ns

GA 0.033* 0.0002957*** ns ns 2e−16*** ns ns 2e−16*** ns

GGA​ ns 8.792e−08*** ns ns 2e−16*** ns ns 2.2e−16*** 0.008**

CSI ns 9.696e−08*** ns 0.044* 2.85e−11*** ns ns 2e−16*** 0.019*

Lightness ns 9.798e−12*** ns ns ns ns 1.337e−06*** 2.2e−16*** ns

a* ns 3.99e−11*** ns 0.039* 1.652e−15*** ns ns 6.981e−09*** ns

b* ns 3.504e−12*** ns 0.005** 4.472e−09*** ns 9.912e−05*** 2.2e−16*** ns

u* ns 2.268e−09*** ns 0.041* 5.324e−15*** ns ns 3.996e−14*** ns

v* ns 3.915e−12*** ns 0.004** 2.634e−05*** ns 5.568e−06*** 2.2e−16*** ns

NGRDI ns ns ns ns 2e−16*** ns ns 1.658e−14*** 0.010*

TGI ns ns ns 0.001** 3.825e−08*** 0.006** 0.0001*** 1.56e−06*** ns
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low, expressed by the b* component, increased significantly with the residue application but were significantly 
reduced with the increment of the top-dressing level, for both levels (ground and aerial) of measurement.

Performance of the leaf and canopy‑based measurements monitoring N and predicting 
GY.  To assess the accuracy of the leaf and canopy-based measurements for the assessment of the leaf N 
content and the GY prediction, the determination coefficients across the growing conditions were performed 
(Fig. 3). Chlorophyll readings, regardless the leaf clip used, showed very similar behavior as the leaf N content, 
reporting high and positive correlations between them. The correlations between chlorophyll measurements 
and GY were slightly lower, but still strong and significant. Nevertheless, the chlorophyll measurements derived 
from the Dualex were slightly better correlated to the N content and GY than the SPAD readings. Flav and Anth 
readings correlated negatively to N content, but only Anth correlated negatively to GY. The NBI reading highly 
correlated positively with both N content and GY.

Correlation coefficients for the relationships of the leaf N content and GY with the RGB indices derived from 
the leaf scans and the ground and aerial canopy images are presented in Fig. 4. According to the RGB leaf scans, 
greenness measures corresponding to Hue, a* and u* indices correlated positively to N content. The measures 
more related to the yellow color of the leaf, as the b* and the v*, and the Intensity, Saturation and Lightness 
reported negative correlations against GY. Regardless of the platform (from the ground or from the UAV), GA 
and GGA were the best correlated with the leaf N content, followed by Hue and NGRDI. Besides, CSI, a* and u* 
also correlated well, but negatively, against leaf N content. Except for the CSI, the prediction of the N content was 
slightly higher when measured from the ground. With reference to predicting GY, the performance of the indices 
was stronger than in estimating leaf N content and for most of the indices, excluding the a* and the NGRDI 

Figure 3.   Heat map of Pearson correlation coefficients (R values) between the leaf-clip sensor readings with 
the grain yield (GY) and the N leaf content inside each growing condition, across treatments (Across T) and 
across the combination of reside levels and treatments (Across R + T). CA corresponds to plots grown under 
conservation agriculture management and CT to conventional tillage plots. Correlations colors are scaled 
according to the key above.
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indices, the aerial assessments outperformed the ground measurements. Among all, the best correlated indices 
measured at ground level were the GA and the NGRDI. On the other hand, the best GY predictors measured 
form the aerial level were all the indices derived from the HSI color model (the Hue, the GA, the GGA and the 
CSI). For both (ground and aerial) platforms, the index that performed the worst in terms of assessing GY was 
the TGI. The canopy greenness-related indices derived from the HSI, RGB CIELab* and CIELuv* color systems 
presented a very similar capacity for assessing GY differences across the residue and top-dressing treatments. 
Moreover, almost all the correlation coefficients calculated were very high and consistent for both ground and 
aerial platform levels but being generally slightly higher at aerial level. The highest correlations were achieved 
at the no-tillage conditions with a residue application between 4 and 6 Mg ha−1. Besides, the lowest correlations 
were achieved at the no-tillage plots without any residue applications and under 90N top-dressing conditions.

Figure 4.   Heat map of Pearson correlation coefficients (R values) between the RGB indices derived from leaf 
scans, and from the ground and aerial canopy images against the GY and the leaf N content inside each growing 
condition, across treatments (Across T) and across the combination of reside levels and treatments (Across 
R + T). CA corresponds to plots grown under conservation agriculture management and CT to conventional 
tillage plots. Correlations colors are scaled according to the key above.
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Leaf, canopy and aerial measurement calibrations.  In order to validate the relationship between the 
parameters measured at different scales (leaf vs canopy) and placements (ground vs aerial) a pairwise compari-
son was performed (Fig. 5). The parameters selected were those measurements that best correlated to N leaf con-
tent and GY. The chlorophyll content measured with the Dualex was highly correlated to the greenness of the leaf 
derived from the a* index measured from the scans. When the GA and GGA canopy measurements were used, 
the correlations against Chl were still strong, regardless the observation height level (ground vs aerial). However, 
the relationship against the aerial measurements of GA and GGA were much weaker. The greenness indices of 
the leaf derived from the leaf scans paralleled the corresponding indices measured at canopy level; thus, strong 
correlations were found, particularly for the measurements at ground level, while for the aerial measurements 
the correlations inside each top-dressing treatment were low. Finally, the comparison between the canopy GA 
and GGA indices from the ground and aerial images resulted in very high correlation coefficients. Along with 
the scatter plot charts and correlation coefficients, density plots to assess the measurements distribution are also 
provided in the same panel.

Discussion
Influence of tillage, crop residues and top‑dressing with non maize yield.  Top-dressing with 
N fertilizer induced the most notable effect on the parameters assessed: GY, leaf N content, signature of stable 
C and N isotopes, leaf pigment content and the different vegetation indices measures at single leaf and canopy 
levels. Nitrogen is a major nutrient for crop production and our results showed a positive yield response to N 
application (Fig. 1). Albeit the effect of the residue level alone did not improve yield, the combination of top 
dressing with N resulted in a significant yield increase. Among the plots fertilized with the higher amounts of 
N, increasing the residue level had a positive effect on yield, reaching the top at 6 Mg ha−1 but decreasing with 
8 Mg ha−1. Permanent residue soil cover helps to ensure better rainfall infiltration while reducing evaporative 
water losses27, therefore improving yields in low rainfall areas28. Moreover, the use of cereal stover increased 
short-term immobilization of N, having a potential positive effect on crop nutrient response29. However, an 
excess of residues can also be detrimental to crop emergence given the physical obstacles for seedlings or may 
provide a favorable habitat for plant pathogens30. Besides, the application of residues may also decrease, at least 
temporary, the availability of N for the plant, since it is used by microorganisms that decompose the residues into 
organic matter31 and thus limit GY. Fonte et al.32 presented similar results from the combination of fertilizer and 
residue effects on yield and also reported that the addition of N had the most consistent effect of increasing yield.

Figure 5.   Diagnostic panel of each variable by itself and their relationship to each other categorized according 
the top-dressing treatments: 0N in red, 30N in green and 90N in blue. Bottom-left charts represent the scatter 
plot correlations and the upper-right represent the correlation coefficients. The Cor value corresponds the 
correlation across all treatments, the value 1 to the correlation inside the 0N plots, the value 2 to the correlation 
inside the 30N plots and the value 3 to the correlation inside the 90N plots. The diagonal shows a smoothed-out 
histogram of the values of the measures.
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Differences in leaf N content and N and C isotopic signatures.  The top-dressing fertilizer rate incre-
ment resulted in an increase in the leaf N content, where the maximum leaf N content was obtained under the 
no-tillage conditions without residue application and the 90N fertilizer treatment (Fig. 2A). Once the leaves 
reach a threshold in N concentration, the plant aims to increase the biomass rather promoting the increase of the 
N concentration of the leaves, while the N concentration in the leaves further increase when the plant achieves 
its maximum growth33. The decrease reported in the N content of the leaves across the residue levels might be 
related to an increase of the microbiological activity at the top layers of the soil31. The nitrogen isotope compo-
sition has been used to study the dynamics of N in soil–plant systems34. Depending on the N source used as a 
N fertilizer the δ15N will vary, reporting values closer to zero when the origin of the N-fertilizer is synthetic35. 
As the top-dressing rate of N fertilization increased, the δ15N reported lower values, proving that δ15N can be 
used to characterize the level of N fertilization36. The decrease of the δ15N due the increase of the residue levels 
might be explained by the discrimination of the microorganism with the remaining soil N being impoverished 
in 15N37. The carbon isotope composition (δ13C) is an indicator of the water status of the plant; in the case of C4 
species usually decreasing in response to water stress26,38–40. Even if at a much lesser extent than in C3 species, 
δ13C in the plant matter of C4 plants also depends on the intercellular to the atmospheric CO2 concentration 
of the leaf, which is affected by differences in water regime or in intrinsic photosynthetic capacity26. The lack of 
differences in δ13C discarded any improvement effect on the water status of the plants due to the residue level 
coverage. However, our results showed how a higher N concentration in leaves caused a decrease in δ13C. These 
results agree with Vergara-Díaz et al.25 This effect may be attributed to a boost in the photosynthetic capacity 
due to the increase of N concentration or alternatively to a greater associated transpiration area, causing some 
degree of water stress and a decrease in stomatal conductance. Both factors may lower the ratio of intercellular to 
atmospheric CO2, which, in the case of a C4 plant like maize, may cause a small decrease in δ13C41.

Evaluation of leaf‑based and whole‑canopy measurements for monitoring leaf N content and 
predicting GY.  Chlorophyll measurements exhibited the same trend as the leaf N content. Changes in leaf 
N content resulted in changes in the photosynthetic proteins, that represents a large portion of the total leaf 
N42. The close positive relationships between leaf chlorophyll values and N content demonstrated the poten-
tial to estimate in-season leaf N content of leaf tissues based on the SPAD or Dualex readings. As leaf chloro-
phyll content is very sensitive to variations in N supply, this parameter can be used for a quick detection of N 
deficiency43,44. Conversely, the response of Flav and Anth to leaf N content was negative (Fig. 3). Similar findings 
were presented in Zhang el al.45 where Flav and Anth were found to be particularly sensitive and consistent 
indicators of N fertilization conditions.

Grain yield comparisons to the leaf pigment readings also resulted in significant correlations. This agreed 
with the results presented in Cairns et al.46 where SPAD readings were significantly correlated with GY during 
grain filling. However, the potential of the relative leaf chlorophyll readings for predicting GY in maize could vary 
depending on the phenological stage when measurements are taken. Buchaillot et al.47 studied the variations in 
SPAD measures in assessing GY differences over two phenological stages before grain filling and reported higher 
correlations during the vegetative stage rather than during flowering. Monneveux et al.48 reported no significant 
correlations between SPAD and GY during neither middle nor late grain filling. Thus, it is very important to 
consider the timing of the measurement of leaf pigment contents for performing reliable GY predictions.

Because the color of the maize leaves is mainly determined by their content in chlorophylls and carotenoids49, 
digital color analysis might be also considered as a potential method for evaluating foliar nutrition. The leaf scans 
showed how the more N fertilizer was added, the greener the leaves were and the correlations of RGB indices 
(Hue, a* and u*) against N and chlorophyll were very high. The color tendency across the residue levels was 
lighter green tones (yellowish) as the amount of residue is increased. This is consistent with the above results, 
as the darker is the leaf ’s green, higher is the amount of chlorophylls and the nitrogen content50,51. This can be 
clearly seen through the indices derived from the RGB scans. The CIE a* and u*components establish the color 
position between the red/magenta and the green, with negative values indicating green52, where inside this green 
range, more negative values indicate lighter green while less negative values indicate darker green. On the oppo-
site way, the b* and v* positive values represent the yellow color spectrum52 and thus, the correlation of these 
indices against N content and GY is negative. Concerning the HSI parameters, lower Hue degrees correspond 
to more yellowish colors, and higher degrees correspond to darker green tones. The other two HSI parameters, 
Intensity and Saturation, inform about the brightness of the color53,54 and a decrease of their values matched 
with darker leaves (i.e. with higher chlorophyll contents and higher N content). Concerning the GA, GGA or 
CSI indices, while they are frequently used as good predictors of GY in field canopy measurements, which was 
confirmed in our study, they correlated poorly against GY when these indices were assessed at the single leaf 
level through the image scans. Similarly, the NGRDI and the TGI indices, as estimations of image greenness and 
indices formulated for canopy images, have been successfully applied for assessing GY at the canopy level55,56 
but failed here at the leaf level due to saturated values.

Canopy color related indices acquired from both the ground level and aerially performed worse for examin-
ing leaf N content than the single leaf-based indices, but, in terms of predicting GY, the canopy measurements 
performed better than those same indices at the leaf level. Conversely, at the canopy level, leaf color differences 
are less relevant and thus, the estimation of N content or chlorophylls resulted a bit more problematic (Fig. 6). 
However, considering that RGB canopy derived indices are known as effective measurements of green biomass, 
the strong correlations reported with the leaf N content might be more related to the N fertilization effects on 
growth rather than the leaf N content itself. Gracia-Romero et al.57 came to the same conclusion while studying 
the performance of RGB and multispectral indices assessing leaf phosphorous content in a maize trial. Never-
theless, one of the main benefits of the canopy images is to enable assessing the heterogeneity of the plot as a 
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whole. Thus, canopy measurements have the potential to minimize the influences of the sampling location of 
the leaf better than the leaf-clip sensors, where the averaged values of 5–10 leaves and a sampling area of solely 
6 mm2 (for both Dualex and SPAD) is assumed to be a representative measure of the plot. Attempts to improve 
the representativity of the single-leaf measurements, imply measuring always the same kind of leaves (flag leaves, 
top leaves…), while paying attention that leaves are fully intact, clean and free of signs of disease or damage58. 
However, the variability within the canopy is assumed to be captured with few measurements of individual leaves.

The indices that performed better assessing differences in GY were the ones related to vegetation cover, as the 
GA and the GGA. Both indices quantify the portion of green pixels, being GGA more restrictive by excluding 
the yellowish green fraction of vegetation, and therefore are considered reliable estimators of vegetation cover59. 
Another biomass-assessment index is the NGRDI, which is formulated similarly to the well-known Normalized 
Difference Vegetation Index (NDVI), but instead of using information from the near-infrared reflection bands, 
it incorporates information from the green band and thus it can be calculated with images from conventional 
RGB cameras56. The strength in assessing GY in the indices capturing green tonalities values (like the Hue or the 
a*) has a different explanation. Although these indices are not strict vegetation-density indicators as the GA or 
the GGA, the differences in crop cover between plots were the main source of variability rather than the canopy 
color itself. The measurements derived from those indices are indicators of the greenness of the image derived 
from the combination of effects of the chlorophyll concentration, the canopy green leaf area and the canopy 
architecture60. Otherwise, the Crop Senescence Index (CSI), as it is formulated from the combination of GA and 
GGA indices61, provides truthful information about the variation of the canopy color derived from the develop-
ment of leaf senescence caused by growing conditions. The CSI reported a wide change across the growing con-
ditions and highly correlated to GY. Earlier senescence due to low N fertilization conditions resulted in elevated 
CSI values, providing efficacy in plant stress detection. In fact, RGB canopy indices have been proven to perform 
far better in predicting GY than the NDVI or other multispectral indices in other maize and wheat studies22,57,62.

Comparison of measurements scales (leaf vs canopy based, and ground vs aerial) in assessing 
maize performance.  The canopy remote sensing methodologies, when applied from aerial platforms, can 
be considered as robust approaches for rapidly assessing a large number of plots, particularly for large scale field-
based studies. In this study, the ground level images taken with a 4 m pole only permitted coverage of a portion 
of the plot and therefore did not account for the possible heterogeneity of the plot; the time spent on fieldwork 
to cover the 90 plots was approximately one hour. On the other hand, the aerial images permitted assessing the 
totality of the plot area and the flight duration for covering the whole trial was less than 10 min (including the 
pre-flight procedures). However, aerial images require preparation before image processing, including building 
the image mosaics and segmenting the plots, compared to the ground images, which can be processed directly. 
In terms of accuracy, ground evaluation images had a much higher spatial resolution (5456 × 3632 pixels), while 
aerial images had much lower resolution (478 × 379 pixels for a flight at 30 m a.g.l.). Despite these differences, 
the RGB indices from both platforms were highly correlated and their precision in assessing leaf N content was 
very similar and for GY prediction even higher in the case of the aerial measurements. Thus, UAV imagery is 

Figure 6.   RGB leaf scans and canopy images taken from the ground and aerial level.
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presented as a very promising methodology for mapping stress detection in crops. Nevertheless, the cost of the 
aerial platform and the requirement of qualified operators (or the existence of legal restrictions) might limit the 
adoption of these methodologies in development countries. For this reason, using ground-based approaches like 
attaching a camera to a pheno-pole might be considered a good alternative.

Conclusions
Proper nitrogen management is crucial to conservation agriculture as evidenced by the significant yield increase 
recorded when the application of residues is combined with N fertilizer application as top-dressing. Quantify-
ing the optimal quantity of stover that can be incorporated as a residue cover will beneficiate yield and will be 
of economic importance for the small holder farmers. This study demonstrated the potential of remote sensing 
tools at leaf and canopy scale to predict GY and assess leaf N content. This would enable the adjustment of N 
fertilizer inputs for optimizing GY, therefore making the N fertilizer applications more efficient.

In this study, leaf-based measurements proved to be good indicators of leaf N content, mostly because chloro-
phylls are tightly associated with leaf proteins, and thus to the N concentration. This is also reported as leaf color 
changes in the RGB scans. Despite performing robustly for leaf N content monitoring, operating at the leaf scale 
is time-consuming and its application in large scale studies and in assessing GY is limited. The other limitation 
to consider is that the selection of the leaves to be assessed can be subjective. On the other hand, canopy based 
RGB indices were shown to be effective measurements of crop density, as a direct effect of the soil N availability 
in the plot. As a low-cost tool in comparison to the more specialized leaf-clip sensors, digital photography is a 
promising approach for precision agriculture and crop management. Regarding the comparison between the 
ground and aerial platform-based measurements, both performed very similarly in terms of assessing leaf N 
content and GY. The selection of the platform would depend on its costs and the skills required, but with the use 
of drones there is certainly an improved high-throughput capacity. Stable nitrogen isotope composition, and, 
despite the C4 nature of the crop, carbon isotope composition, provided relevant information of the effect of 
crop management conditions in maize.

Methods
Site description and plant material.  The experiment was located at the Southern Africa Regional 
Office of CIMMYT (International Maize and Wheat Improvement Center) located in Harare (17° 43′ 32″  S, 
31° 00′ 59″ E, at an altitude of 1498 m above sea level), during the crop season 2016/2017 (Fig. 7). The soil type 
at the field site is characterized by a pH slightly below 6. The previously sown crop was maize with no tillage and 
without residue application and fertilized using compound D with 200 kg ha−1 ammonium nitrate (AN). The 
plant material used in this experiment was the commercial maize variety “PGSG3”.

Experimental design and crop management.  The experiment was arranged in a split-plot design with 
five replications. Maize residue management in combination with two tillage treatments and nitrogen levels were 
two factors of interest. The maize residue treatments were randomly assigned to main plots and nitrogen levels 
treatments were randomly assigned to sub-plots. Overall, 90 plots were studied (6 main treatments × 3 sub-treat-
ments × 5 replicates). The plot size was 6 rows × 0.9 m × 6 m long (5.4 m × 6 m = 32 m2). No tillage was employed 
during the experiment, except for the first treatment plots, that were managed using conventional tillage and the 
application of 4 Mg ha−1 of residue. The other five treatments were managed without soil tillage and an increase 
of the residue application from 0 to 8 Mg ha−1 (0 Mg ha−1, 2 Mg ha−1, 4 Mg ha−1, 6 Mg ha−1, 8 Mg ha−1). Maize 
stover treatments produced by the previous crop was weighed using a hanging scale KERN® (Kern, Balingen, 
Germany), spread (flat) uniformly over the soil surface immediately after harvest in June at the respective rates. 
Three different fertilization regimens were established in order to generate a range of N soil levels in the growing 
conditions (Table 3).

Split application of top dressing was done using ammonium nitrate (AN) (34.5%N), first applied at 4 weeks 
after planting (WAP) and second at 7 WAP. Post emergence herbicides and hand pulling was used to control 
weeds. Complementary irrigation was provided when necessary to avoid unwanted drought stress.

The planting was done during the summer season 2016–2017 after receiving sufficient rainfall (20 mm 
received within two consecutive days). A ripper was used to open planting rows followed by hand planting. 
Seeds of PGS 63 were sown two seeds per station on 17th November 2016 and thinned to 1 plant per station at 
V3 targeting 44,444 plants ha−1.

Data collection.  The date of emergence was recorded when 50% of the crop emerged. At harvest maize 
grain and stover yield were recorded from final harvest area of 4 rows × 4 m in the middle of each plot. Maize 
cobs were removed manually from the stalks and weighed. Sub-samples of ten cobs were randomly selected from 
each plot and weighed, air-dried and shelled; moisture content was determined using a Dickey–John mini GAC 
moisture tester (Döscher Microwave Systems GmbH, Rellingen, Germany) and then dry weight determined 
(at 0.1 g precision). Maize grain yield was calculated, converted to mass ha−1 at 125 g kg−1 moisture content. 
Total maize stalks and leaves of each sample was weighed using a hanging scale KERN®. A sub-sample of three 
plants(stalks) were randomly selected from each sample and grinded using mulcher into small pieces and a rep-
resentative sub-sample of approximately 500 g was collected and weighed immediate to obtain field weight then 
air dried. Stalk sub-sample was re-weighed after drying to determine dry weight (at 0.1 g precision).

The field data measurements with different methodologies and sensors were taken during the 5th February 
2017. The crop was between the R1–R2 phenological stages.
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Leaf‑clip sensors.  Two different clip sensors were used in order to estimate the chlorophyll content. On the 
one hand, the SPAD-502 chlorophyll meter (Konica Minolta Inc., Japan) that measures the light transmitted by 
the plant leaf when the sensor provide light from a red LED (650 nm) and an infrared LED (940 nm). On the 
other, the Dualex Scientific (Force-A, Orsay, France) sensor operates with a red reference beam at 650 nm and 
a UV light at 375 nm. This latter sensor, besides chlorophylls a + b (Chl), it also produces relative measures of 
flavonoids (Flav) and anthocyanin (Anth) content and the nitrogen balance index (NBI), which is the ratio Chl/
Flav related to the nitrogen and carbon allocation17,63. The plot measurements derived from both sensors cor-
respond to the average of five measurements of five different leaves from five different plants. The measurements 
were taken from the middle portion of the leaves, a mix between the upper and the lower leaves around the cob.

RGB images and RGB indices calculation.  RGB indices were formulated from images taken at three 
different scales. On one side, the central part of the leaf placed just below the ear of six different plants per plot 
were scanned using a flatbed scanner CanonScan Lide 120 (Canon, Tokyo, Japan). At the ground level, one 
picture was taken per plot, holding the camera at 4 m above the plant canopy in a zenithal plane and focusing 

Figure 7.   (A) Map of Zimbabwe with the location of Harare and the Southern Africa Regional Station of 
CIMMYT. (B) Landsat-8 satellite image of the study area acquired from DigitalGlobe using Google Earth Pro 
on the 28th of March 2017. (C) Aerial image Red–Green–Blue (RGB) orthomosaic at 30 m of the trial.

Table 3.   Top-dressing fertilizer treatments.

Subtreatments Top-dressing fertilizer

0N 28 kg ha−1 P2O5 and 14 kg ha−1 K20

30N 200 kg ha−1 Compound D (7:14:7) and 46 kg ha−1 AN

90N 200 kg ha−1 Compound D (7:14:7) and 220 kg ha−1 AN
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near the center of each plot using a “pheno-pole” (camera extension pole) Megaview Lite (Megaview Photomast 
Systems, Twello, Netherlands) made of glass fiber (Fig. 8). The conventional digital camera used was a 20.1-meg-
apixel Sony ILCE-QX1 (Sony Corporation, Minato, Japan) with images saved in JPEG format at a resolution of 
5456 × 3632 pixels. The camera was controlled remotely using a smartphone. At the aerial level, an eight rotor 
Mikrokopter Oktokopter XL 4S (HiSystems GmbH, Moomerland, Germany) equipped with a 16-megapixel 
Lumix GX7 (Panasonic, Osaka, Japan) was used and images were taken at 30 m above the ground level. Images 
were saved in JPEG format at a resolution of 4592 × 3448 pixels. In order to correct the effect of pitch and roll 
movements of the drone during the flight, an active two-servo gimbal was used to steady the camera.

The scanned images were cropped semi-automatically using the open source image analysis platform FIJI 
(Fiji is Just ImageJ; https​://fiji.sc/Fiji) into six different images of 1176 × 1286 pixels corresponding to each sec-
tion of the six leaves from six different plants. The measurements were taken from the middle portion of the 
leaves. For the orthomosaic reconstruction procedure with the aerial images, a 3D reconstruction model was 
produced using the Agisoft PhotoScan Professional software (Agisoft LLC, St. Petersburg, Russia, www.agiso​
ft.com)64  by using aerial images with at least 80% overlap. Then, regions of interest corresponding to each plot 
were segmented and exported using the MosaicTool (Shawn C. Kefauver, https​://integ​rativ​ecrop​ecoph​ysiol​ogy.
com/softw​are-devel​opmen​t/mosai​ctool​/, https​://gitla​b.com/sckef​auver​/Mosai​cTool​, University of Barcelona, 
Barcelona, Spain) integrated as a plugin for FIJI. Finally, segmented scans, ground images and segmented aerial 
images were subsequently analyzed using also the MosaicTool plugin62, that enables the extraction of RGB indices 
in relation to different color properties of potential interest59. Derived from the HSI (Hue–Saturation–Intensity) 
color space, the parameters Hue, referring to the color tint; Saturation, an indication of how much the pure color 
is diluted with white color; and Intensity, as an achromatic measurement of the reflected light, where extracted. 
In addition, the portion of pixels classified as green by their Hue values was determined by the Green Area (GA) 
and the Greener Area (GGA) indices. The GA corresponds to the percentage of pixels that have a Hue value 
between 60° and 180°. Meanwhile, the GGA is more restrictive, because it reduces the range from 80° to 180°, 
thus excluding the yellowish-green tones. Both indices are also used for the formulation of the crop senescence 
index (CSI)61, which provides a scaled ratio between yellow and green pixels to assess the percentage of senescent 
vegetation. The CSI index was calculated as follows:

From the CIELab and the CIELuv color space models (recommended by the International Commission on 
Illumination—CIE—for improved color chromaticity compared to HSI color space), the following parameters 

(1)CSI =
(GA− GGA)

GA
× 100

Figure 8.   Ground level RGB canopy images system using the pheno-pole.
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were calculated: L*, that represents lightness and is very similar than the intensity from the HSI color; the a* 
and u*, that represent the red green spectrum of chromaticity; and the b* and v* represent the yellow–blue color 
spectrum52. Further, besides those indices calculated with the Breedpix software, two additional indices derived 
from the RGB color model were calculated using the digital numbers (DN) of the red, green and blue bands. 
One, the normalized green–red difference index (NGRDI) is formulated very similarly than the well-known 
normalized difference vegetation index (NDVI), but instead of using the near-infrared information, it uses the 
information from the red and green bands55. It is formulated as follows:

The other index is the triangular greenness index (TGI), that estimates chlorophyll content based on the 
area of a triangle with the three points corresponding to the red, green, and blue bands56, and it is formulated 
as follows:

Therefore, this set of indices was calculated at three different scales: scan, ground and aerial.

Total nitrogen content and nitrogen and carbon stable isotope compositions.  The same maize 
leaves scanned and used for leaf clip sensor measurements were oven dried at 70 °C for 24 h and were grounded 
to a fine powder using a ball mill. Then, samples of approximately 0.7 mg of dry matter were weighed into tin 
capsules, sealed, and then loaded into an elemental analyzer (Flash 1112 EA; ThermoFinnigan, Schwerte, Ger-
many) coupled with an isotope ratio mass spectrometer (Delta C IRMS, ThermoFinnigan), operating in con-
tinuous flow mode. Measurements were carried out at the Scientific Facilities of the University of Barcelona. The 
13C/12C ratios of plant material were expressed in composition (δ13C) notation65 as follows:

in which Rsample refers to plant material and Rstandard to Pee Dee Belemmite (PDB) calcium carbonate. International 
isotope secondary standards of a known 13C/12C ratio (IAEA CH7, polyethylene foil, IAEA CH6 sucrose and 
USGS 40 l-glutamic acid) were calibrated against Vienna Pee Dee Belemnite calcium carbonate (VPDB) with 
an analytical precision of 0.1‰. The 15N/14N ratios of plant material were also expressed in δ notation (δ15N) 
using international secondary standards of known 15N/14N ratios (IAEA N1 and IAEA N2 ammonium sulfate 
and IAEA NO3 potassium nitrate), with analytical precision of about 0.2‰.

During the same process, nitrogen content was determined through the combustion of dry matter. Nitrogen 
was expressed as a concentration per unit dry weight.

Statistical analysis.  Statistical analyses were conducted using the open source software, R and RStudio 
1.0.44 (R Foundation for Statistical Computing, Vienna, Austria). Means and standard errors were calculated 
using the summarySE() function from the “Rmisc” package. Tukey’s HSD test was used to determine post hoc 
differences at each growing condition using the HSD.test() function from the “agricolae” package. Data for the 
set of physiological traits were subjected to factorial completely randomized analyses of variance (ANOVAs). 
to test the effects of growing conditions on the different traits studied using the anova() function with a linear 
model. A two-ways linear model ANOVA was used to examine the influence of the top-dressing levels (0, 30 and 
90N) and the combination of tillage and residue level (CA + 4 Mg/Ha Residues and CP + 0, 2, 4, 6 and 8 Mg/Ha 
Residues). Differences were considered significant at p value ≤ 0.05. A bivariate correlation procedure was used 
to calculate the Pearson correlation coefficients of the different remote sensing indices against GY and leaf N 
content using the cor.test() function. All the chart figures were designed using the package “ggplot2”.
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Abstract 

Durum wheat is one of the main staple crops in the Mediterranean, where abiotic stresses 

such as water stress, high temperature and soil fertility are main factors limiting 

productivity. Understanding the complex interactions between the genotypic, 

environmental and agronomic management factors (G x E x M) is crucial for the success 

of yield improvement programs. Plant breeders seek to define ideotypes understood as 

selection criteria based on a combination of physiological and morphological traits that 

may help crops to perform optimally within a given agro-climatic context. The present 

study aims to define ideotypes specific for different Mediterranean agroclimatic 

conditions. A set of 24 modern cultivars of durum wheat were grown over three 

consecutive crop seasons (from 2016 to 2019), at three different sites located across a 

wide range of latitudes in Spain (Coria del Rio, Aranjuez and Valladolid) and grown 

under different management conditions (support irrigation, rainfed, low-nitrogen and late 

planting) and a wide range of productivity. Phenology (heading time) was assessed. In 

addition, different remote sensing methodologies including canopy temperature (CT) and 

vegetation indices (Vis) derived from RGB (Red-Green-Blue) and multispectral images 

taken at ground and aerial levels and pigment content at single leaf level. Measurements 

were performed during the reproductive stage (heading to grain filling). At maturity grain 

yield (GY) and the stable C (δ13C) and N isotope composition and total N content of 

mature grains analyzed. A feature selection based on a detection rate over 100 cross-
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validation runs of LASSO regression was performed across all the measurements along 

the phenology to assess which traits were more critical predicting GY. In general terms, 

indicator of a higher biomass, such as plant height or canopy green biomass inferred from 

VIs, together with indicators of better water status, such as lower CT and δ13C, were the 

most incorporated traits of the GY models. Under water-limited environments, best 

cultivars also exhibited higher levels of protective pigments (during anthesis and the delay 

of canopy senescence. For the late-planting conditions, exposed to higher temperatures, 

a higher photosynthetic efficiency, inferred from the photosynthesis reflectance index 

was also involved.  However, phenology was not chosen in any case. We conclude that 

the idiotypic traits identified and the high throughput methods to phenotype them may be 

useful for identifying high performing wheat cultivars under a wide range of 

Mediterranean conditions.   

Introduction 

Resilience of staple food crops as wheat to the variability of climatic and field conditions 

plays a vital role to ensure food security. This is particularly evident for durum wheat one 

of the main herbaceous crops in the Mediterranean, frequently submitted to abiotic 

stresses such as water stress and high temperature and other unfavorable conditions which 

limit its productivity. As crop performance gets disturbed through different mechanisms, 

a diversity of responses to growing conditions can be considered as key determinant for 

boosting yield and stability in breeding programs (Kahiluoto et al., 2019). The 

susceptibility of wheat to stress caused by climatic variability is dependent on the degree 

of adaptation of a cultivar to the local growing conditions (B. et al., 2003). Understanding 

the complex interactions between the genotype, the environment conditions and the 

specific agronomic management (G x E x M) is crucial for the success of crop 

improvement programs. This includes not only to characterize the target trait, usually the 

grain yield, but eventually also phenotypic traits of diverse nature, such as phenology and 

other morphophysiological traits putatively associated with the yield.  

The definition of a combination of morphological and physiological traits which 

theoretically optimize crop performance under a particular environmental condition is 

known as crop ideotype. The first wheat ideotype was proposed by (Donald, 1968) for 

non-limiting agronomical conditions and defined as plants of short stature, strong stem, 

low tillering capacity and large and erect ears. According to this approach, the breeding 

of new cultivars resulted in an improvement of lodging prevention, amenable for high 
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nitrogen fertilization inputs, and a boost of harvest index (Hamblin, 1993). When focus 

on Mediterranean conditions phenological adjustment, including earlier heading, anthesis 

and maturity, and to a lesser extend early vigor, have been recurrent traits when designing 

“Mediterranean ecotypes” (Loss and Siddique, 1994; Sadras and Richards, 2014). 

However, the benefits accounted by shorter crop cycles appear as a nearly exploded 

(Chairi et al., 2018), so other traits conferring adaptation to Mediterranean conditions 

have to be exploded.  

The concept of crop ideotype allow breeders to focus their selection process on specific 

trait-based model, rather than just the traditional empirical method of selection for yield.  

However, the concept of ideotype has to move a step ahead, from the empirical 

enumeration of potential traits putatively associated with crop performance, by 

beneficiating of the current developments on high throughput phenotyping, including 

statistical models (Paleari et al., 2020). Modern breeding strategies are moving from the 

development of high-plasticity genotypes to improve performance under a wide range of 

environments, to model the specified set of characteristics of a genotype for a particular 

environmental growing condition (Jaradat, 2018). Therefore, a more modern definition 

of the concept of ideotype can be referred to the seeking of the best crop phenotype to 

grow in a given environment, with a defined cropping system (Martre et al., 2015). 

Ideotype design for a target environment implies a concrete guideline of traits 

determining yield through the crop cycle. To that end, the main objective of crop 

phenotyping in support of the idiotypic characterization is to measure a key set of traits, 

informing on crop growth and agronomic performance, and that will determine yield. 

Hence, the phenotyping process seek the identification of which traits should be measured 

and how to measure them (Watt et al., 2020). Plant phenotyping pursues the non-invasive 

characterization of genotypes interacting with the environment, and studies are focusing 

in developing high-throughput plant phenotyping (HTPP)  methodologies at affordable 

costs, issue often regarded as a major bottleneck in the breeding process (Araus and 

Cairns, 2014). Broadly, high-throughput phenotyping is currently mostly based in non-

destructive (mainly of remote sensing nature) evaluations at different levels, from 

measurements on single leaves, such as for example their pigment content, or their 

chlorophyll fluorescence, to the more and more frequent evaluation at the canopy level 

using sensors and imagers of different nature, either from ground or placed in aerial 

platforms (Gracia-Romero et al., 2019). The formulation of vegetation indices (VIs) 
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based, for example, on the combination of different spectral bands is well stablished 

assessing morphological and physiological plant aspects at both, canopy and single-leaf 

levels. Currently, the implementation of low-cost conventional cameras to formulate 

vegetation indices derived from red-green-blue image (i.e., information from the visible 

range) is increasingly successful as Vis in studying aspects related to the above-canopy 

architecture and color (Jose A. Fernandez-Gallego et al., 2019). Moreover, canopy 

temperature (CT) has been related to water-use and yield formation in crops, since 

transpiration is the main factor reducing leaf’s temperature (Jackson et al., 1988; 

González-Dugo et al., 2006). However, phenotyping is not necessarily restricted to the 

use of a panoply of different remote sensing techniques, but also some analytical (i.e. lab) 

traits may be very useful. Thus, the analysis of stable isotopes, when performed on plant 

dry matter, constitutes an integrative indicator of plant status over the crop cycle. The 

stable carbon (δ13C) and nitrogen (δ15N) isotope compositions, when analyzed in plant 

matter, inform on the water regimen (Farquhara and Richardsb, 1984) and nitrogen 

metabolism (Yousfi et al., 2012) of the plant. 

At the present, one of the major challenges, related with the successful implementation 

of HTPP defining ideotypes, lies on unlocking the potential of the huge amounts of data 

generated by the high-through phenotyping platforms (Coppens et al., 2017). The 

interpretation of data and the extraction of useful information relies on the development 

of algorithms. Conventionally, these statistical models are based on response functions 

between yield and some input variables, estimating production reasonably well (Filippi 

et al., 2019). New insights in machine learning (ML) aim the interpretation of data by the 

development of algorithms built from training sets (van Klompenburg et al., 2020) and 

are increasingly being used for agricultural applications (Liakos et al., 2018). Least 

absolute shrinkage and selection operator (LASSO) is a regression analysis method that 

choose models that both fit well and minimize the number of predictors by performing a 

variable selection (Tibshirani, 1996). This approach is being presented as an effective 

strategy to selecting relevant measured features to build a GY prediction model.   

This study aimed the evaluation of the performance of a set of wheat cultivars grown in 

a wide range of Spanish latitudes for three consecutive crop seasons, with very diverse 

climatic conditions, and in trials under different growing conditions (well-irrigated, 

rainfed, late-planting and low-nitrogen). Apart from the GY, the evaluation was carried 

out through leaf pigments readings and canopy field evaluation using RGB (Red-Green-
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Blue) and multispectral vegetation indices and thermal measurements evaluated from 

ground and using a unmanned aerial vehicle- Measurements were performed at different 

phenological stages during the reproductive part of the crop, since Mediterranean agro-

environments are characterized by the occurrence of terminal (i.e. during the last part of 

the crop cycle) stresses, such as drought and heat. Thereafter, variables measured were 

used to perform GY prediction models within environments using the LASSO model and 

the detection rate across 100 validations was used to the design of wheat ideotypes. 

2. Materials and Methods  

2.1. Experimental design and varieties  

Experiments were carried out under field conditions in three experimental stations located 

across a wide range of latitudes in Spain (Figure 1): two belonging to the Spanish 

“Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria” (INIA) and 

placed in Coria del Rio, Seville (37°14´N, 06°03´W, 5 masl) and Colmenar de Oreja – 

Aranjuez, Madrid (40°04´N, 3°31´W, 590 masl), and one at the headquarters of the 

“Instituto Tecnológico Agrario de Castilla y León” (ITACyL) in Zamadueñas, Valladolid 

(41°41´N, 04°42´W, 700 masl) during three consecutive crop seasons between 2016 and 

2019.  

 

Figure 1. Map of Spain with the location of the experimental stations. 
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Climatic data from the different crop seasons at each experimental station was recorded 

through the Spanish platform SIAR (Servicio de Informacion Agroclimática para el 

Regadio, www.siar.es) from meteorological stations next to the fields. Monthly 

temperature and rainfall averages are plotted in Figure 2. The trial of Coria del Rio 

recorded an average temperature of 14.5, 13.1 and 14.4 ºC, an accumulated precipitation 

of 188.2, 380.6 and 134.6 mm and a potential evapotranspiration of 660.6, 561.3 and 

700.9 mm from sowing to physiological maturity for each growing season. The trials in 

Aranjuez achieved an average temperature of 11.4, 9.5 and 10.4ºC, an accumulated 

precipitation of 86.4, 300.7 and 89.8 mm and a potential evapotranspiration of 595.8, 

512.4 and 588.3 mm for each growing season. Finally, the fields of Valladolid recorded 

11.7, 9.6 and 10.1ºC, an accumulated precipitation of 107.3, 420.5 and 103.3 mm and a 

potential evapotranspiration of 580.3, 459.5 and 537.9 mm.  

 

Figure 2. Mean temperature (red) and rainfall (blue) in Coria del Rio, Aranjuez and 

Valladolid for the crop seasons 2016/2017, 2017/2018 and 2018/2019. 

A panel of 24 semi-dwarf varieties of durum wheat marketed in Spain, France and Italy 

during the last four decades was grown at each experimental station (Table 1), sown in a 

randomized blocks design with three replicates.  

http://www.siar.es/
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Table 1. Set of modern semi-dwarf durum wheat cultivars tested in this study with year 

of release, country of origin and available information on provenance and/or pedigree. 

Genotype 

Year 

of 

release 

Country Provenance/Pedigree 

    
Mexa 1980 Spain GERARDO-VZ-469/3/JORI(SIB)//ND-61-130/LEEDS 

Vitron 1983 Spain 
TURCHIA-77/3/JORI-

69(SIB)/(SIB)ANHINGA//(SIB)FLAMINGO 

Simeto 1988 Italy CAPEITI-8/VALNOVA[1620][1622][1623][1625][1666] 

Gallareta 1994 Spain RUFF/FLAMINGO//MEXICALI-75/3/SHEARWATER 

Pedroso 1993 Spain Batlle seeds 

Regallo 1990 Spain Diputación General de Aragón 

Arcobaleno 1996 Spain Chen/Altar84 

Claudio 1998 Italy SEL.CIMMYT-35/DURANGO//ISEA-1938/GRAZIA 

Burgos 1999 Spain SUDDEUTSCHE SAATZ 

Dorondon 1990 Spain Genética y Gestión,S.C. 

Avispa 2001 Italy Limagrain-CIMMYT 

Amilcar 2002 Spain ZEGZAG-1/LUNDE-5//GREENSHANK-32 

Saragolla 2004 Italy Iride/0114 

Solea 2005 Spain Monsanto Agriculture Spain 

Euroduro 2007 Spain IRTA 

Don Ricardo 2008 Spain Agrovegetal-CIMMYT 

Core 2009 Spain Eurogen, PROSEME seeds 

Kiko Nick 2009 Spain SEL.CIMMYT-35/DURANGO//ISEA-1938/GRAZIA 

Sculptur 2011 France RAGT Semence 

Athoris 2011 Italy Limagrain Europe 

Don Norman 2012 Spain Agrovegetal - CIMMYT 

Olivadur 2013 Spain RAGT 2N SAS seeds 

Iberus 2014 Spain Agromonegros 

Haristide 2015 France Caussade Semences S.A. 

        
 

Supplemental irrigation, rainfed and late-planting conditions were imposed in the fields 

of Aranjuez and Valladolid, while in Coria del Rio, due to the presence of a shallow water 

caused by proximity to the Guadalquivir River, genotypes were evaluated under rainfed 

conditions. Additionally, a low nitrogen and rainfed conditions were also imposed in 

Valladolid during the last two cropping seasons. Field management information of each 

growing conditions at each field station is presented in Table 2. 
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Table 2. Agronomic information for each study site during each growing season. L, Location; T, Trial; Y, Year. 

L T Y 
Sowing 

date  

Harvest 

date 

Irrigation  Precip. 
Water 

received 
Basic dressing  Top dressing 

(mm) (mm) (mm) 
(8-15-15 NPK 

kg ha-1) 
(46% Urea kg ha-1) 

C
o
ri

a
  

Rainfed 

2016/17 14/12/16 12/06/17 0 188.2 188.2 450(12/12/16) 227(15/03/17) 

2017/18 20/12/17 19/06/18 0 380.6 380.6 450(18/12/17) 227(13/03/18) 

2018/19 18/12/19 18/06/19 0 134.6 134.6 450(14/12/18) 227(14/03/19) 

A
ra

n
ju

ez
 

Irrigation 

2016/17 14/12/16 19/07/17 395 595.8 990.8 450(16/12/16) 227(15/03/17) 

2017/18 28/11/17 04/07/18 140 512.4 652.4 450(23/11/17) 185(28/02/19) 

2018/19 29/11/18 28/06/19 540 588.3 1128.3 450(23/11/17) 230(27/02/18) 

Rainfed 

2016/17 14/12/16 19/07/17 0 595.8 595.8 450(16/12/16) 227(15/03/17) 

2017/18 28/11/17 04/07/18 0 512.4 512.4 450(26/02/18) 185(28/02/19) 

2018/19 29/11/18 28/06/19 0 588.3 588.3 450(26/11/18) 230(27/02/18) 

Late 

2016/17 01/03/17 19/07/17 425 595.8 1020.8 450(16/12/16) 227(15/03/17) 

2017/18 26/02/18 10/07/18 220 512.4 732.4 450(26/11/18) 185(16/04/19) 

2018/19 27/02/19 05/07/19 680 588.3 1268.3 450(23/02/19) 230(23/04/18) 

V
a
ll

a
d

o
li

d
 

Irrigation 

2016/17 29/11/16 06/07/17 155 107.3 262.3 300(07/11/16) 150(17/02/17) + 150(21/03/17) 

2017/18 13/11/17 25/07/18 109.8 420.5 420.5 300(12/11/17) 150(20/02/18) + 150(17/04/18) 

2018/19 03/12/18 15/07/19 152.7 103.3 103.3 300(16/11/18) 150(28/02/19) + 150(12/04/19) 

Rainfed 

2016/17 29/11/16 06/07/17 55 107.3 162.3 300(07/11/2016) 150(17/02/17) + 150(21/03/17) 

2017/18 23/11/17 20/07/18 0 420.5 420.5 300(12/11/17) 150(20/02/18) + 150(17/04/18) 

2018/19 03/12/18 03/07/19 0 103.3 103.3 300(16/11/18) 150(28/02/19) + 150(12/04/19) 

Late 2016/17 09/02/17 20/07/17 155 107.3 107.3 300(07/11/16) 150(21/03/17)  

Low-N 
2017/18 23/11/17 20/07/18 0 420.5 420.5 0 0 

2018/19 03/12/18 03/07/19 0 103.3 103.3 0 0 
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2.2 Data collection 

Phenology information, plant heigh and remote sensing measurements were recorded 

during various sampling visits at each site along the crop seasons in order to assess wheat 

performance at different growing stages (Table 3). The development of cultivars was 

determined by using Zadoks scale values (Zadoks et al., 1974), as well as the counting of 

days after sowing (DAS) and growing degree days (GDD). GDD was calculated as 

follows (Equation (1)): 

𝐺𝐷𝐷 =  ∑ (
𝑇𝑚𝑎𝑥+𝑇𝑚𝑖𝑛

2
) − 𝑇𝑏𝑎𝑠𝑒       (1) 

where Tmax corresponds to the highest daily temperature, Tmin to the lowest, and the Tbase 

used was 0 oC. Days to heading (DTH) were determined when approximately 50 % of 

ears had emerged. Plant height (PH) was measured using a ruler placed zenithally in the 

central rows of each selected plot, and values were taken by observing the whole canopy 

and averaging the distance from the ground to the overall tip of the ears, excluding the 

awns. Grain yield (GY) (Mg ha−1) was determined for the entire plot, using a harvester. 

The set of sensors and cameras used will be described in the following sections. 

Table 3. Dates of the sampling visits to the field and the approximate phenological stages 

(across the set of 24 genotypes), the count of days after sowing (DAS) and accumulated 

growing degree days (GDD) of the crops. L, Location; T, Trial; Y, Year. 

L T Y 
Samplin

g date 

Phenological 

Stage 
DAS GDD 

 
        

C
o
ri

a
  

Rainfed 

2016/17 
05/04/17 Heading 112 1360.12  

25/04/17 Grain filling 132 1680.20  

2017/18 

18/04/18 Anthesis 119 1440.45  

15/05/18 

Late grain 

filling 146 1884.88 
 

2018/19 
04/04/19 Anthesis 107 1425.84  

02/05/19 Grain filling 135 1863.46  

A
ra

n
ju

ez
 

Irrigation 

2016/17 

26/04/17 Heading 125 2224.05  

04/05/17 Anthesis 133 2399.68  

18/05/17 

Milk grain 

filling  147 2767.24 
 

06/06/17 Senescence 166 3377.17  

2017/18 

20/04/18 

Stem 

elongation 143 990.67 
 

16/05/18 Anthesis 169 1387.76  

28/05/18 

Milk 

development 181 1622.30 
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11/06/18 

Medium 

dought 195 1864.20 
 

2018/19 

13/05/19 Anthesis 165 1511.91  

27/05/19 Grain filling 179 1769.29  

11/06/19 Senescence 194 2070.86  

Rainfed 

2016/17 

26/04/17 Heading 125 2224.05  

04/05/17 Anthesis 133 2399.68  

18/05/17 

Late grain 

filling  147 2767.24 
 

06/06/17 Senescence 166 3377.17  

2017/18 

20/04/18 

Stem 

elongation 143 990.67 
 

16/05/18 Anthesis 169 1387.76  

28/05/18 

Milk 

development 181 1622.30 
 

11/06/18 

Medium 

dought 195 1864.20 
 

2018/19 

13/05/19 Anthesis 165 1511.91  

27/05/19 Grain filling 179 1769.29  

11/06/19 Senescence 194 2070.86  

Late 

2016/17 

26/04/17 

Stem 

Elongation  56 1270.57 
 

04/05/17 Booting  64 1446.21  

18/05/17 Heading 78 1813.76  

06/06/17 

Milk Grain 

Filling 97 2423.69 
 

2017/18 

20/04/18 

Stem 

Elongation  53 990.67 
 

16/05/18 Heading 79 1387.76  

28/05/18 Pre-anthesis 91 1622.30  

11/06/18 Soft dought 105 1864.20  

2018/19 

13/05/19 

Stem 

Elongation  75 1511.91 
 

27/05/19 Anthesis 89 1769.29  

11/06/19 

Milk Grain 

Filling 104 2070.86 
 

V
a
ll

a
d

o
li

d
 

Irrigation 

2016/17 
16/05/17 Anthesis 168 1382.38  

07/06/17 Grain filling 190 1794.34  

2017/18 

17/05/18 Pre-anthesis 185 1176.57  

30/05/18 

Milk 

development 198 1385.46 
 

13/06/18 Late Milk 212 1599.35  

2018/19 

15/05/19 Pre-anthesis 163 1274.48  

29/05/19 

Milk 

development 177 1473.95 
 

12/06/19 

Late grain 

filling  191 1708.50 
 

Rainfed 
2016/17 

16/05/17 Anthesis 168 1382.38  

07/06/17 Grain filling 190 1794.34  

2017/18 17/05/18 Pre-anthesis 534 1176.57  



139 
 

30/05/18 

Milk 

development 198 1385.46 
 

13/06/20

18 Late Milk 212 1599.35 
 

2018/19 

15/05/19 Pre-anthesis 163 1274.48  

29/05/19 

Milk 

development 177 1473.95 
 

12/06/19 Late Milk 191 1708.50  

Late 2016/17 
16/05/17 Heading 96 1382.38  

07/06/17 Anthesis 118 1794.34  

Low-N 

2017/18 

17/05/18 Pre-anthesis 185 1176.57  

30/05/18 

Milk 

development 198 1385.46 
 

13/06/18 Mid Milk 212 1599.35  

2018/19 

15/05/19 Pre-anthesis 163 1274.48  

29/05/19 

Milk 

development 177 1473.95 
 

12/06/19 Late Milk 191 1708.50  

               

 

2.3 Leaf pigments  

The content of different leaf pigments was assessed using the Dualex Scientific (Force-

A, Orsay, France), a sensor that operates with a red reference beam at 650 nm and a UV 

light at 375 nm (Cerovic et al., 2012). This sensor produces relative measures of 

chlorophylls a + b (Chl), flavonoids (Flav) and anthocyanin (Anth) content, and also 

calculates the nitrogen balance index (NBI), which is the ratio Chl/Flav related to the 

nitrogen and carbon allocation. For each visit and plot five measurements of five different 

leaves from five different plants were performed. The measurements were taken from the 

middle portion of the leaves. 

2.4 RGB images and derived vegetation indices  

Vegetation indices derived from RGB images were evaluated for each plot from the 

ground and aerial levels. Ground evaluations were conducted using a 20.1-megapixel 

Sony ILCE-QX1 (Sony Corporation, Minato, Japan) attached to a Sony Monopod 

VCTMP1 (Sony Corporation, Minato, Japan) and the distance to the crop canopy adjusted 

to 1 m. Aerial RGB images during the three consecutive crop seasons were captured with 

a 16-megapixel Lumix GX7 (Panasonic, Osaka, Japan) with the ground sample distance 

(GSD) for a flight of 50 m altitude as 0.941 cm/pixel. During the crop seasons 2018/2019, 

aerial images were captured using a DJI Mavic 2 Pro (DJI Corporation, Shenzhen, China) 

with a 20-megapixel camera with the GSD for a flight of 50 m altitude as 0.201 cm/pixel. 
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The color calibration of both cameras with the ColorChecker Passport Photo (X-Rite, 

Inc., USA) reported correlations (R2) between 0.88 and 0.94 for all the RGB parameters 

(data not shown). 

The processing of the RGB images for the calculation of the vegetation indices in relation 

to different color properties of potential interest was perform with the MosaicTool (, 

https://gitlab.com/sckefauver/MosaicTool/. University of Barcelona, Barcelona, Spain) 

integrated as a plugin for FIJI (Fiji is Just ImageJ; https://fiji.sc/Fiji/) (Gracia-Romero et 

al., 2019). Derived from the HSI (Hue–Saturation–Intensity) color space, the parameters 

Hue, referring to the color tint; Saturation, an indication of how much the pure color is 

diluted with white color; and Intensity, as an achromatic measurement of the reflected 

light, were extracted (Table 4). In addition, the portion of pixels classified as green by 

their Hue values was determined by the Green Area (GA) and the Greener Area (GGA) 

indices (Casadesús et al., 2007). The GA corresponds to the percentage of pixels that 

have a Hue value between 60° and 180°. Meanwhile, the GGA is more restrictive, because 

it reduces the range from 80° to 180°, thus excluding the yellowish-green tones. Both 

indices were also used for the formulation of the crop senescence index (CSI) (Zaman-

Allah et al., 2015), which provides a scaled ratio between yellow and green pixels to 

assess the percentage of senescent vegetation. From the CIELab and the CIELuv color 

space models (recommended by the International Commission on Illumination—CIE—

for improved color chromaticity compared to HSI color space), the following parameters 

were calculated: L*, that represents lightness and is very similar than the intensity from 

the HSI color; the a* and u*, that represent the red-green spectrum of chromaticity; and 

the b* and v* that represent the yellow–blue color spectrum (Pointer, 2009). Further, 

besides those indices calculated with the Breedpix software, two additional indices, 

derived from the RGB color space, were calculated using the digital numbers (DN) of the 

red, green and blue bands. One, the normalized green–red difference index (NGRDI) is 

formulated very similarly than the well-known normalized difference vegetation index 

(NDVI), but instead of using the near-infrared information, it uses the information from 

the red and green bands (Hunt et al., 2005). The other index is the triangular greenness 

index (TGI), that estimates chlorophyll content based on the area of a triangle with the 

three points corresponding to the red, green, and blue bands (Hunt et al., 2012). 

 

 

https://gitlab.com/sckefauver/MosaicTool/
https://fiji.sc/Fiji/
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2.5 Multispectral Vegetation Indices  

Ground-based multispectral sensing was conducted through measurements of the 

GreenSeeker (Trimble, Sunnyvale, CA, USA), by passing the sensor over the middle of 

each plot at a constant height of 0.5 m above and perpendicular to the canopy calculates 

NDVI. For the aerial assessments, a Tetracam micro-MCA (Multiple Camera Array) 12 

(Tetracam Inc., Chatsworth, CA, USA) consisting of twelve independent image sensors 

and optics, each with user configurable filters (450 ± 40, 550 ± 10, 570 ± 10, 670 ± 10,700 

± 10, 720 ± 10, 780 ± 10, 840 ± 10, 860 ± 10, 900 ± 20, 950 ± 40 nm) was used. The 

twelfth sensor is dedicated to ILS (incident light sensor) facing upwards and uses micro-

filters to provide an accurate band-by-band reflectance calibration in real-time. 

PixelWrench II version 1.2.2.2 (Tetracam, Chatsworth, CA, USA) was used to pre-

process the multispectral images by aligning and calibrating each band. A suite of 

multispectral indexes was calculated from the different bands using custom code 

developed in FIJI and integrated within the MosaicTool software (Table 4).  

2.6 Canopy Temperature  

Ground-based canopy temperature (CT) assessments were performed using the infrared 

thermometer PhotoTempTMMXSTMTD (Raytek, Santa Cruz, USA), pointing towards 

the canopy at a distance of about 1 m and in the opposite direction to the sun. 

Simultaneously, air temperature was measured across the plots using a thermos-

hygrometer (Testo 177-H1 Logger, Lenzkirch, Germany). The difference between the 

ambient and the canopy temperature, known as the canopy temperature depression 

(CTD). The CT measurements from the UAV system were performed using the FLIR 

Tau2 640 thermal imaging camera (FLIR Systems, Nashua, NH, USA) with a VOx 

uncooled microbolometer equipped with a TeAx Thermal Capture 2.0 (TeAx 

Technology, Wilnsdorf, Germany), that records thermal couple sensor readings of the 

actual temperature of the camera sensor and has a resolution thermal video of 640 × 520 

pixels at 20 frames per second. This camera included a correct for temperature 

fluctuations of the VOx sensor during the flight. The thermal images were first exported 

using TeAx ThermoViewer v1.3.12 software (TeAx Technology, Wilnsdorf, Germany) 

in raw 16-bit TIFF format as Kelvin × 10000 and converted to 32-bit temperatures in 

celsius using a custom batch processing macro function in FIJI (Kefauver et al., 2017), 

also integrated within the MosaicTool software. CT aerial measurements corresponded to 
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average temperature over all the pixels of the plot images. CTD was also calculated using 

the UAV CT data. 

 

Table 4. Indices derived from the RGB, multispectral and thermal cameras with their 

targered trait, the spectral information used and their formulations. The wavelengths used 

in the formulation of the multispectral indexes have been adapted slightly based on the 

multispectral micro-MCA Tetracam camera. * Note that for the PRI index, B550 is used 

instead of the original B531 by the cited reference study. 

Target 

trait 

Spectral 

information 
Index name Abbev. Formula Reference 

      

V
eg

et
at

io
n
 c

o
v

er
, 
C

an
o
p

y
 g

re
en

n
es

s 

RGB; HIS 

color model, 

CIElab color 

model 

Green Area  GA 60o < Hue < 180o (Casadesús et al., 

2007) Greener Area  GGA 80o < Hue < 180o 

Crop 

Senescence 

Index  

CSI (GA - GGA)/100 
(Zaman-Allah et 

al., 2015) 

Hue - -  

a* - - 
(Pointer, 2009) 

u* - - 

Multispectral 

Indices 

based on 

RGB values 

Normalized 

Green Red 

Difference 

Index  

NGRDI 

(Green DN - Red 

DN)/(Green DN 

+ Red DN) 

(Hunt et al., 2005) 

Triangular 

Greenness 

Index  

TGI 

−0.5·[190·(Red 

DN− Green DN) 

−120· (Red DN− 

Blue DN)] 

(Hunt et al., 2012) 

Multispectral 

Indices 

Normalized 

Difference 

Vegetation 

Index  

NDVI 
(B840−B670)/(B

840+B670) 

(Rouse, J. W. et 

al., 1976) 

Soil Adjusted 

Vegetation 

Index  

SAVI 

(1+L)·(B840−B6

70)/(B840+B670

+L) 

(Huete, 1988) 

Optimized soil-

adjusted 

vegetation 

index  

OSAVI 
(B780−B670)/(B

780+B670+0.16) 

(Rondeaux et al., 

1996) 

Renormalized 

Difference 

Vegetation 

Index  

RDVI 
(B840−B670)/√(

B840+B670) 

(Roujean and 

Breon, 1995) 

Enhanced 

Vegetation 

Index  

EVI 

2.5·(B840−B670

)/(B840+(6·B670

)−(7.5·B45)) 

(Huete et al., n.d.) 
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P
h
o
to

sy
n
th

et
ic

 c
ap

ac
it

y
  

Multispectral 

Indices 

Modified 

Chlorophyll 

Absorption 

Ratio Index  

MCAR

I 

(B700-B670) - 

0.2·(B700-

B550)·(B700/B6

70) 

(Daughtry et al., 

2000) 

Transformed 

Chlorophyll 

Absorption 

Index  

TCARI 

3·(B700-B670) - 

0.2·(B700-

B550)·(B700/B6

70) 
(Haboudane et al., 

2002) 

TCARI/OSAVI 

ratio 

TCARI

/OSAV

I 

TCARI/OSAVI  

Anthocyanin 

Reflectance 

Index 2  

ARI2 
B840·(1/B550 - 

1/B700) 

(Gitelson et al., 

2001) 

Carotenoid 

Reflectance 

Index 2  

CRI2 
(1/B550 - 

1/B700) 

(Gitelson et al., 

2002) 

Photochemical 

Reflectance 

Index* 

PRI 
(B550−B570)/(B

550+B570) 

(Gamon et al., 

1992) 

Chlorophyll 

Carotenoid 

Index 

CCI 
(B550−B670)/(B

550+B670) 

(Gamon et al., 

2016) 

W
at

er
 s

ta
tu

s 

Multispectral 

Indices 

Water Band 

Index 
WBI B970/B900 

(Penuelas et al., 

1993) 

Thermal 

information 

Canopy 

temperature 
CT - 

(Costa et al., 

2013) 
Canopy 

Temperature 

Depression 

CTD - 

            
 

2.3 Aerial platforms description and orthomosaic reconstruction procedure 

Two different unmanned aerial vehicles (drones) were used: the oktokopter 6S12 XL 

(HiSystems GmbH, Moomerland, Germany) and the compact quadcopter Mavic 2 Pro 

(DJI Corporation, Shenzhen, China).  Flights were performed under clear sky conditions, 

with image data captured at an altitude of 50 m. The payload configuration of the 

Mikrokopter Oktokopter allowed the measurements to be gathered in two flights per trial: 

the first included the red–green–blue (RGB) cameras, and the second one with both 

multispectral and thermal cameras that were mounted at the same time. Meanwhile, the 

Mavic 2 Pro only was configured with the RGB camera. Both UAVs have an active two 

servo gimbal was used to correct for the effect of pitch and roll movements during the 

flight. Pre-processed aerial images from each sensor were combined to obtain an accurate 

orthomosaic by producing a 3D reconstruction with Agisoft PhotoScan Professional 
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software (Agisoft LLC, St. Petersburg, Russia, http://www.agisoft.com) (Bendig et al., 

2014). To that end, images with at least 80% overlap were used. Then, regions of interest 

corresponding to each plot were segmented and exported using the MosaicTool. 

2.7 Stable carbon and nitrogen isotope composition and total C and N contents 

Mature grains collected at harvest were dried 60 °C for a minimum of 48h and pulverized 

to a fine powder, from which 1 mg was enclosed in tin capsules, and analysed using an  

elemental analyser (Flash 1112 EA; ThermoFinnigan, Schwerte, Germany) coupled with 

an isotope ratio mass spectrometer (Delta C IRMS, ThermoFinnigan), operating in 

continuous flow mode at the Scientific and Technical facilities of the University of 

Barcelona (Centres Científics i Tecnològics de la Universitat de Barcelona, CCiTUB). 

The 13C/12C ratios of plant material were expressed in δ notation as stable carbon isotope 

composition (δ13C) as follows (Equation (2)): 

𝛿13𝐶 = [(
𝑅𝑠𝑎𝑚𝑝𝑙𝑒

𝑅𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑
) − 1] 𝑥1000       (2) 

where Rsample refers to plant material and Rstandard to Pee Dee Belemmite (PDB) calcium 

carbonate. International isotope secondary standards of a known 13C/12C ratio (IAEA 

CH7, polyethylene foil, IAEA CH6 sucrose and USGS 40 l-glutamic acid) were 

calibrated against Vienna Pee Dee Belemnite calcium carbonate (VPDB) with an 

analytical precision of 0.1‰. The 15N/14N ratios of plant material were also expressed in 

δ notation (δ15N) using international secondary standards of known 15N/14N ratios (IAEA 

N1 and IAEA N2 ammonium sulfate and IAEA NO3 potassium nitrate), with analytical 

precision of about 0.2‰. During the same process, total nitrogen and carbon contents 

were determined through the combustion of dry matter, expressed as a concentration per 

unit dry weight. 

2.8 Statistical Analysis  

The statistical analysis was performed using the open-source software R and RStudio 

1.0.44 (R Development Core Team., 2010)(R Foundation for Statistical Computing, 

Vienna, Austria). Means and standard errors of the agronomic data were calculated. The 

effects of managing conditions, growing seasons, genotypes, and their interaction with 

GY and the remote sensing measurements were determined through a two-factor analysis 

of variance (ANOVA) for each sample. Differences were considered significant at p-

value ≤ 0.05. To analyze the relationship between the measurements and GY, bivariate 

http://www.agisoft.com/
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Pearson correlation coefficients were calculated. Grain yield predictive models were 

developed by using the least absolute shrinkage and selection operator (LASSO) 

regression (Figure 3). In a first step the data was randomly separated into a training set 

containing 80% of genotypes and a hold-out test set comprised of the remaining 20% of 

genotypes. Optimal lambda to be used in the regression model was obtained using 10 

times 10-fold cross-validation on the training set. The prediction variables included in the 

final model were extracted. To determine the predictive ability of the full model for grain 

yield, the trained model was applied to the independent test set. The predictive ability was 

defined to be the squared Pearson product-moment correlation between predicted and 

observed phenotypic values of the test set. As a measure of accuracy, the root mean square 

error (RMSE) was calculated. To enable easy comparison a normalized RMSE obtained 

by dividing the RMSE by the mean of the grain yield observed in the test set was 

computed. Given the limited size of the available data set, to avoid potential bias 

introduced by the splitting of the full data set into training and test set, the described 

workflow was repeated 100 times. The final RMSE and r-squared value were defined to 

be the mean of these measures across all 100 data splits. To obtain a measure of the 

importance of each predictive variable, the count of each prediction variable over all 100 

trained models was recorded. The most sixth used variables across the 100 trained models 

were selected and used to create a reduced set of highly important prediction variables.  

 

Figure 3. The experimental workflow of model development and validation 
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3 Results 

3.1 Genotype x Environment interaction on GY 

The combined analysis of variance across years, locations, management treatments and 

genotypes revealed that mean squares were significant for grain yield (Table 5). 

Considering all the experiments between the crop seasons 2016/2017 to 2018/2029, most 

of the variance was caused by the growing conditions due the difference management 

trials, followed by the factor year and location. For each individual crop season, also the 

management was the factor that most contributed to GY, with the exception of the 

cropping season 2017/2018 when the highest influence on GY was due the Location*Trial 

interaction. The genotype factor accounted a low but significant effect on GY. 

Table 5. Analysis of variance for grain yield based on the set of cultivars across locations 

and management trials between each individual and the conjunction of crop seasons. 

Values presented are the mean square values, the P-values and the calculation of 

percentage contribution to total variation (CTV). Significance levels: ns, no significant; 

*, P<0.05; **, P<0.01; ***, P<0.001.  

Source of 

variation 

2016/17-2018/19 2016/2017 2017/2018 2018/2019 

MS Pv CTV MS Pv CTV MS Pv CTV MS Pv CTV 
             
Y 506.34 *** 28.62          
L 262.85 *** 14.86 289.09 *** 42.94 113.518 *** 20.83 14.94 *** 3.315 

T 635.17 *** 35.90 338.93 *** 50.34 121.015 *** 22.20 420.36 *** 93.28 

G 4.29 *** 0.24 3.77 *** 0.56 1.836 *** 0.337 1.94 *** 0.43 

LxT 9.24 *** 0.52 37.73 *** 5.604 303.998 *** 55.78 9.24 *** 2.05 

LxG 2.09 *** 0.11 1.68 *** 0.25 2.512 *** 0.461 0.82 * 0.182 

TxG 1.17 *** 0.06 0.95 ns 0.141 0.513 ns 0.094 1.11 *** 0.246 

LxTxG 1.16 *** 0.06 0.46 ns 0.068 1.016 * 0.186 1.7 *** 0.377 

LxYxG 183.95 *** 10.40          
LxYxT 1.35 *** 0.07          
LxY 87.72 *** 4.95          
YxT 70.3 *** 3.97          
YxG 1.47 *** 0.08          
YxTxG 0.68 ns 0.03          
LxYxTxG 0.73 ns 0.04          
Residuals 0.61  0.03 0.7  0.104 0.594  0.109 0.55 0.122 

                      
 

In Table 6, the ANOVA comparison between all genotypes for each testing experimental 

trial is presented with the ranking of the highest and lowest yielding genotypes. 

Significant differences in GY were reported in all trials, except with the irrigation and 
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rainfed conditions in Valladolid 2016/2017, the rainfed conditions of Aranjuez 

2017/2018, the rainfed and low-nitrogen conditions of Valladolid 2017/2018. The 

irrigation trials were the most yielding environments in each location, achieving the 

highest yields in Valladolid during the crop seasons 2018/2019 (Olivadur, 9.06 ± 0.66 

Mg ha-1 as the top genotype) and 2019/2020 (Avispa, 9.02 ± 0.30 Mg ha-1 as the top 

genotype). The next highest yielding conditions were in Coria, despite growing under 

rainfed conditions, during 2016/2017 (Don Ricardo, 8.52 ± 0.51 Mg ha-1 as the top 

genotype) and after that, the irrigation trial in Aranjuez during 2017/2018 (Mexa, 8.28 ± 

0.38 Mg ha-1 as the top genotype). On the other side, the lowest yielding trials were those 

grown under rainfed conditions. Particularly, the lowest yields were achieved in the 

rainfed trails in Aranjuez during 2018/2019 (Simeto, 0.80 ± 0.06 Mg ha-1 as the top 

genotype). To a lesser extent than the rainfed environments, the late-planting and the low-

nitrogen trials also contributed to reduce yields in comparison to the well irrigated trials 

at the same locations. However, and despite representing both irrigation and fertilization 

limitations, low-N plots reported higher yields than the rainfed trials in Valladolid.  

Table 6. Grain yield (Mg ha-1) and phenology (days from planting to heading) ± standard 

error of the top three highest yielding genotypes and the top 3 lowest yielding genotypes 

for each of the 21 environments tested. P-values inform about the ANOVA analysis of 

the effect of the genotypes tested on grain yield and days to heading.  

L T Y Highest yielding genotype Lowest yielding genotype p-value 

C
o

ri
a 

R
ai

n
fe

d
 

2016/2017 

DRicardo 8.52 ± 0.51 Simeto 5.83 ± 0.24 

*** Amilcar 8.26 ± 0.04 Core 5.07 ± 0.26 

Euroduro 8.22 ± 0.32 Pedroso 4.74 ± 0.26 

2017/2018 

Olivadur 6.65 ± 0.05 Pedroso 4.16 ± 0.05 

*** KikoNick 6.46 ± 0.28 Gallareta 4.58 ± 0.38 

Athoris 6.46 ± 0.25 Vitron 4.95 ± 0.03 

2018/2019 

Athoris 5.08 ± 0.07 Arcobaleno 3.41 ± 0.59 

* Iberus 4.80 ± 0.33 Saragolla 3.37 ± 0.43 

KikoNick 4.73 ± 0.39 Pedroso 3.08 ± 0.25 

A
ra

n
ju

e
z 

Ir
ri

ga
ti

o
n

 

2016/2017 

Olivadur 6.03 ± 0.42 DNorman 4.10 ± 0.22 

** Burgos 5.67 ± 0.53 Arcobaleno 4.05 ± 0.26 

Sculptur 5.34 ± 0.08 Core 3.46 ± 0.10 

2017/2018 

Mexa 8.28 ± 0.38 Pedroso 5.93 ± 0.68 

** Amilcar 8.25 ± 0.29 Olivadur 5.51 ± 0.78 

Vitron 7.97 ± 0.21 Haristide 3.83 ± 1.17 

2018/2019 

Amilcar 5.75 ± 0.22 Haristide 3.52 ± 0.43 

*** Dorondon 5.38 ± 0.71 Sculpdur 3.50 ± 0.28 

Euroduro 5.34 ± 0.31 Pedroso 3.48 ± 0.18 

R
ai

n
fe d
 

2016/2017 Olivadur 3.58 ± 0.30 Saragolla 2.27 ± 0.32 ** 
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Athoris 3.28 ± 0.20 Solea 1.82 ± 0.14 

Claudio 3.22 ± 0.24 Core 1.61 ± 0.20 

2017/2018 

KikoNick 4.19 ± 0.15 Solea 2.97 ± 0.43 

ns Avispa 3.93 ± 0.43 Saragolla 2.65 ± 0.53 

Claudio 3.91 ± 0.14 Haristide 2.49 ± 0.38 

2018/2019 

Solea 1.65 ± 0.07 Regallo 0.87 ± 0.06 

** Olivadur 1.63 ± 0.05 Pedroso 0.87 ± 0.22 

Amilcar 1.62 ± 0.09 Simeto 0.80 ± 0.06 

La
te

 

2016/2017 

Euroduro 5.06 ± 0.16 Pedroso 3.06 ± 0.17 

*** Burgos 4.87 ± 0.27 Simeto 3.05 ± 0.42 

Claudio 4.62 ± 0.19 Core 2.95 ± 0.19 

2017/2018 

Core 4.98 ± 0.12 Sculpdur 2.76 ± 0.24 

*** KikoNick 4.75 ± 0.22 Haristide 2.57 ± 0.38 

Athoris 4.63 ± 0.26 Olivadur 2.27 ± 0.16 

2018/2019 

Euroduro 5.65 ± 0.36 Haristide 3.34 ± 0.27 

*** Solea 5.02 ± 0.14 Pedroso 3.14 ± 0.26 

KikoNick 4.62 ± 0.36 Simeto 2.99 ± 0.12 

V
al

la
d

o
lid

 

Ir
ri

ga
ti

o
n

 

2016/2017 

Arcobaleno 7.81 ± 0.05 Amilcar 6.23 ± 0.59 

ns Olivadur 7.81 ± 0.53 Core 6.23 ± 0.64 

Mexa 7.53 ± 0.53 Pedroso 5.92 ± 0.25 

2017/2018 

Haristide 7.82 ± 0.52 Saragolla 5.77 ± 0.25 

* Olivadur 7.20 ± 0.30 Pedroso 5.74 ± 0.52 

Claudio 6.94 ± 0.13 Simeto 5.50 ± 0.15 

2018/2019 

Olivadur 9.06 ± 0.66 DRicardo 5.01 ± 1.39 

*** Athorix 8.07 ± 0.77 Vitron 4.91 ± 0.44 

Avispa 7.88 ± 0.92 Sculptur 4.21 ± 0.26 

R
ai

n
fe

d
 

2016/2017 

Arcobaleno 3.79 ± 0.66 Euroduro 1.94 ± 0.33 

ns Dorondon 3.66 ± 0.28 Pedroso 1.75 ± 1.40 

Claudio 3.57 ± 0.08 Iberus 1.71 ± 0.70 

2017/2018 

Amilcar 8.41 ± 0.19 Pedroso 6.03 ± 0.31 

ns Burgos 7.86 ± 0.68 Simeto 5.85 ± 0.81 

Sculpdur 7.85 ± 0.59 Saragolla 5.23 ± 0.85 

2018/2019 

DRicardo 2.90 ± 0.48 Haristide 1.46 ± 0.16 

ns Arcobaleno 2.73 ± 0.07 Euroduro 1.42 ± 0.12 

Solea 2.52 ± 0.46 Olivadur 1.40 ± 0.21 

La
te

 

2016/2017 

Athoris 6.93 ± 0.59 Gallareta 4.12 ± 0.76 

*** Olivadur 6.54 ± 0.41 Pedroso 4.09 ± 0.32 

Euroduro 6.19 ± 0.36 Simeto 4.09 ± 0.55 

Lo
w

-N
 2017/2018 

KikoNick 4.23 ± 0.44 Sculpdur 5.90 ± 0.31 

ns Regallo 4.48 ± 0.34 Amilcar 6.48 ± 0.47 

Gallareta 4.51 ± 0.83 Haristide 6.48 ± 0.29 

2018/2019 

Saragolla 3.33 ± 0.46 Simeto 1.54 ± 0.60 

ns Amilcar 3.16 ± 0.87 Haristide 1.53 ± 0.49 

Dorondon 2.83 ± 0.40 DNorman 1.43 ± 0.36 
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3.2 Climatic data description during the experimental seasons 

The experiment sites covered a wide range of Spanish latitudes and thus, the climatic 

conditions were very diverse during the different crop seasons. The location-agronomical 

conditions- year combinations were considered as 21 different environments for the 

expression of the genotypes tested. Such differences represented by daily mean 

temperatures and water inputs (precipitation and irrigation). In the case of Coria, the crop 

cycles were characterized by high temperatures during the first development stages 

(January-April) and abundant precipitations during the 2016/2017 and 2017/2018 cycles, 

but more reduced in the 2018/2019 cycle. The environmental conditions of the trials in 

Aranjuez were constant for the three years studied in terms of temperature characterized 

as a semi-arid climate, with cold temperatures during winter and with low precipitations 

during the whole cycle. The Valladolid environments are the coldest with also low 

precipitations. The 2018/2019 was the season with the highest values of accumulated 

rainfall concentrated in spring. 

3.3 Crop phenology 

In terms of crop phenology, differences in crop behavior as consequence of climatic 

variance and the imposition of management trials became apparent by the relation 

between the accumulation of DAS and GDD achieved at each phenological stage. 

Overall, the late-planting trials reported the shortest crop cycles, reporting higher GDD 

in less DAS during the reproductive and grain filling phenological stages in comparison 

with the normal-planting trials of the same locations during the same crop seasons. Beside 

the late-planting trials, higher mean temperatures during the cycles of Coria reported the 

achievement of the phenological stages earlier in terms of DAS but with similar GDD 

than the normal-planting trials in Aranjuez. Finally, the irrigation, rainfed and low-N 

trials in Valladolid showed a higher accumulation of both DAS and GDD when achieving 

anthesis and grain filling stages.  

3.4 Phenotypic data analysis and variable selection for the GY prediction 

The performance of the proposed approaches as phenotyping methodologies for yield 

prediction varied significantly across environments. In order to assess which combination 

of variables and for what particular environment were more critical to predict yield, the 

set of vegetation indices (VIs) and other measurements were ranked using the feature 

selection strategy described in the Materials and Methods section 2.8 and the top 6 
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variables with the highest detection rate (DR) are shown in Table 7 The LASSO variable 

selection was calculated using the training data set and revealed a wide variation across 

the environments. The most repeated variables across the environments were plot 

greenness indices (NGRDI, NDVI and GA) measured at heading, anthesis and grain 

filling stages. CT measures together with the multispectral indices WBI and PRI also had 

a stable performance across the environments particularly when measured during anthesis 

and early stages of grain filling. In addition, leaf-based pigment content measures showed 

highest importance to the GY models under the limiting growing conditions. Out of all 

the phenological moments measured, measures in anthesis and grain filling were the more 

times reported in the GY models. The highest correlations against individual traits against 

GY were reported with measurements related to plot greenness in grain filling stages.  

Table 7. Top 6 indices selected by the LASSO algorithms showing the highest detection 

rates (DR) in yield prediction models based on 100 cross-validation runs, correlation 

coefficient (r) against yield and the ANOVA test between genotypes. L, Location; T, 

Trial; Y, Year. 

L T Y Variable 
Phenological 

Stage DR r anova 

C
o

ri
a 

R
ai

n
fe

d
 

2016/2017 

CSI Heading 100 -0.153 0.3185 

WBI Heading 100 0.369 ** 

NGRDI Grain filling 99 0.236 *** 

PRI Heading 99 0.143 ns 

NGRDI Heading 98 -0.089 *** 

PRI Grain filling 94 0.215 ns 

2017/2018 

GA.a Late grain filling 100 0.477 *** ns 

EVI Late grain filling 95 0.331 ** ns 

EVI Anthesis 92 -0.053 ns 

Height Anthesis 92 0.207 ns 

Anth Late grain filling 90 0.018 ns 

Zadocks Late grain filling 87 0.129 *** 

2018/2019 

Carbon Maturity 100 0.069 *** 

δ13C Maturity 100 -0.483 *** *** 

Height Grain filling 100 0.092 *** 

Anth Anthesis 98 0.383 ** ** 

Height Anthesis 96 0.367 ** *** 

CT.g Anthesis 96 -0.310 ** ns 

A
ra

n
ju

e
z 

Ir
ri

ga
ti

o
n

 

2016/2017 

Chl Grain filling 100 -0.074 *** 

CSI.a Grain filling 99 -0.630 *** *** 

NDVI.g Grain filling 99 0.452 *** *** 

CTD.g Heading 92 -0.142 ns 

T.g Anthesis 90 -0.405 *** ns 
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v.g Grain filling 90 0.377 ** *** 

2017/2018 

CRI2 Pre-anthesis 93 0.481 *** ns 

WBI Pre-anthesis 91 0.23 ns 

CSI.a Pre-anthesis 90 -0.307 ** ns 

v.g Anthesis 87 -0.035 ns 

WBI Grain filling 85 0.417 ** 

Anth Anthesis 83 -0.101 ** 

2018/2019 

Flav Anthesis 100 0.293 * *** 

Height Anthesis 100 0.194 *** 

Carbon Maturity 99 -0.061 ns 

Flav 
Milk 

development 99 -0.109 ** 

CSI.g 
Milk 

development 96 -0.335 ** ns 

NDVI.g Anthesis 91 -0.109 ** 

R
ai

n
fe

d
 

2016/2017 

CTD.a Anthesis 92 0.674 *** ns 

NDVI.g Heading 89 0.628 *** *** 

R780 Anthesis 89 0.576 *** *** 

Anth Heading 82 0.004 *** 

GGA.a Anthesis 82 0.564 *** ** 

GGA.g Grain filling 75 0.584 *** ns 

2017/2018 

PRI Anthesis 98 -0.380 *** ns 

NDVI.g 
Milk 

development 92 0.553 *** ns 

NGRDI.a Pre-anthesis 92 0.429 *** ns 

Zadocks 
Milk 

development 92 -0.151 ns 

WBI Anthesis 91 0.643 *** ns 

Anth Anthesis 86 -0.400 *** *** 

2018/2019 

Carbon Maturity 100 -0.028 ns 

Chl Anthesis 100 0.024 ns 

CSI Grain filling 100 -0.181 ns 

CTD.g Anthesis 100 0.111 ns 

CTD.g Grain filling 100 0.136 ns 

δ13C Maturity 100 -0.265 * NS 

La
te

 

2016/2017 

EVI Anthesis 99 -0.253 * ns 

u.a Heading 99 -0.334 ** * 

PRI Heading 97 0.395 * ns 

Flav Anthesis 91 -0.019 *** 

R720 Heading 90 -0.273 * ns 

ARI2 Heading 83 0.175 ns 

2017/2018 

Flav 
Milk 

development 100 0.517 *** ns 

TGI.g Pre-anthesis 100 0.034 *** 

PRI 
Milk 

development 94 0.082 ns 

WBI 
Milk 

development 88 0.029 ns 
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Carbon Maturity 88 0.137 ns 

CSI.a Stem elongation 88 0.029 ns 

2018/2019 

Anth Anthesis 100 -0.255 * ns 

Flav Grain filling 100 -0.256 * ns 

Anth Grain filling 99 -0.001 ns 

Chl Anthesis 98 0.027 * 

Height Anthesis 98 0.311 ** * 

v.a Anthesis 98 0.019 *** 

V
al

la
d

o
lid

 

Ir
ri

ga
ti

o
n

 

2016/2017 

Anth Anthesis 100 -0.124 ** 

T.a Grain filling 100 -0.587 *** ns 

Hue.a Anthesis 97 0.289 * *** 

Flav Anthesis 96 0.274 * ** 

NGRDI.g Anthesis 96 0.247 * * 

CSI.g Anthesis 93 0.354 ** ns 

2017/2018 

CSI.g Anthesis 99 -0.314 ** ns 

δ15N Maturity 92 -0.181 ns 

NGRDI.a Pre-anthesis 90 0.500 *** *** 

δ13C Maturity 88 -0.085 *** 

CTD.g Late Milk 87 0.013 ns 

PH Late Milk 86 0.132 ns 

2018/2019 

T.g Late Milk 99 -0.370 *** ns 

GGA.g Late Milk 95 0.392 *** ns 

δ13C Maturity 94 -0.407 *** * 

TGI.a Late Milk 91 0.135 ns 

CTD.g Late Milk 88 0.301 ns 

NGRDI.a Pre-anthesis 88 0.052 ns 

R
ai

n
fe

d
 

2016/2017 

Flav Anthesis 100 0.393 *** ns 

NBI Anthesis 100 0.036 ns 

PRI Grain filling 100 0.301 * ns 

T.g Grain filling 100 -0.640 *** ns 

NDVI Grain filling 99 -0.063 * 

T.a Grain filling 99 -0.270 * ns 

2017/2018 

Anth Pre-anthesis 100 -0.275 * ns 

CSI.g Anthesis 98 -0.415 *** * 

Chl Anthesis 96 0.245 * ** 

WBI Pre-anthesis 95 0.330 ** ns 

δ13C Maturity 93 -0.280 * ns 

GA.g Anthesis 93 0.758 *** * 

2018/2019 

Anth Pre-anthesis 100 -0.313 ** ** 

Anth 
Milk 

development 99 0.387 ** ns 

NGRDI.a Late Milk 98 0.114 ns 

Nitrogen Maturity 97 -0.541 *** ns 

δ15N Maturity 94 0.307 ** ns 

PH Pre-anthesis 89 0.714 *** ns 

La
te

 

2016/2017 
Date 

heading Heading 100 -0.026 ns 
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EVI_plot Anthesis 99 0.644 *** ns 

u.a Anthesis 98 -0.802 *** ns 

PRI_plot Anthesis 95 0.759 *** ns 

Flav Anthesis 91 -0.182 ns 

u.a Heading 91 0.624 *** ns 

Lo
w

-N
 

2017/2018 

WBI 
Milk 

development 99 0.269 ** ns 

Carbon Maturity 98 0.330 ** ns 

CTD.g Pre-anthesis 98 0.351 ** ns 

δ13C Maturity 98 0.019 *** 

δ15N Maturity 98 0.102 ns 

NDVI.g Pre-anthesis 98 0.533 *** ns 

2018/2019 

NGRDI.g Late Milk 100 0.146 *** 

Nitrogen Maturity 100 -0.297 * ns 

Flav 
Milk 

development 97 0.161 ns 

Flav Pre-anthesis 96 0.068 ** 

Carbon Maturity 95 -0.295 * ns 

δ13C Maturity 93 -0.141 ns 
 

In Coria, the models highlighted the importance of cultivars with both dense and 

photosynthetically active crop cover across the seasons (from heading to late phases of 

grain filling). Higher correlations against GY were reported with the GA aerial 

calculations during late grain filling stage in 2017/2018 (r=0.477***) and δ13C during 

20218/2019 (r=-0.483***). 

In the environments studied in Aranjuez, the models did not focus on crop cover during 

heading and anthesis, instead indices more sensitive to stress response were selected. 

Thus, during the crop season of 2016/2017, when the precipitations were low and the 

accumulated potential evapotranspiration were high, CT assessments during the 

reproductive stages reported high correlations against yield in both irrigation (r=-

0.405***) and rainfed trials (r=0.674***). Instead, during the following crop seasons, the 

best correlations were achieved with the measurements of stress protective pigments, but 

those correlations were positive in the irrigation trials (CRI2 in 2017/2018, r=0.481***; 

Flav in 2018/2019, r=0.293*) and negative in the rainfed trials (Anth in 2017/2018, r=-

0.400). Likewise, in the rainfed trials of Aranjuez of 2017/2018, high correlations against 

GY were reported during anthesis with the PRI (r=-0.380***) and WBI (r=0.643***). 

For both irrigation and rainfed trials in Aranjuez, indices that assessed cultivars with delay 

senescence reported the best correlations against GY during grain filling, like the CSI 

assessed aerially during 2016/2017 in the irrigation trial (r=-0.630***) or the NDVI 
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assessed at ground level during 2017/2018 in the rainfed trial (r=0.533***). During 

2018/2019, despite most of the indices measured in the rainfed trials reported weak 

correlations, the best correlations against GY were reported from δ13C values calculated 

from the grains (r=-0.265*). Under the late-planting conditions of Aranjuez, assessments 

performed during anthesis of crop biomass, through the u* index from the UAV RGB 

images in 2016/2017 (r=-0.334**) and plant heigh measurements in 2018/2019 

(r=0.311**) were among the best predictors of GY. However, the selection and 

performance of some of the indices under the late-planting conditions in Aranjuez were 

also dependent on the climatic variability across the different years studied; while Flav 

measurements during 2017/2018 were correlated positively to yield (r=0.417***), in 

2018/2019 Anth measurements correlated negatively (r=-0.255*).  

Finally, the calculated models highlighted the importance of values of high biomass 

during the reproductive stages of all the trials in Valladolid across the crop seasons. 

Specially, very high correlations were reported during anthesis in the rainfed trials. This 

is the case of GA assessed at ground level during 2017/2018 (r=0.758***), and in the 

late-planting trial, with u* assessed at aerial level during 2016/2017 (r=-0.802***). 

Regarding the leaf readings of photoprotective pigments during anthesis, results were 

dependent on the environmental conditions. Under rainfed conditions, when there was a 

limited access to water Anth readings correlated positively with GY like in 2016/2017 

(r=0.393***), while the relation was negative when the drought stress was less severe 

like in 2017/2018 (r=-0.275*) and 2018/2019 (r=-0.313**). Nevertheless, Flav readings 

recorded during anthesis under the irrigation trials responded positively to GY 

(r=0.274*). Furthermore, measurements during anthesis under the late-planting trial 

reported a very high correlation between PRI and GY (r=0.759***). About the 

measurements performed during the grain filling, under both irrigation and rainfed trials 

of Valladolid, CT assessments were the bestcorrelated measurements against GY, as it 

was shown in the irrigation trials 2016/2017 with CT assessed aerially (r=-0.587***) and 

in 2018/2019 with CT assessed at ground level (r=-0.370***) or in the rainfed trials with 

CT values at ground level in 2016/2017 (r=-0.640***). The water status of the cultivars 

across the crop seasons was also reflected on the δ13C values of the grains, reporting high 

correlations with GY during 2018/2019 in the irrigation (r=-0.407***) and rainfed 

conditions (r=-0.280*), but also on WBI values of low-N conditions of 2017/2018 

(r=0.269***). Results of nitrogen content in grains reported high correlations to GY, 
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negative in rainfed trials in 2018/2019 (r=-0.541***) but positive in low-N trials in same 

season (r=-0.295*). 

3.5 Model performance and accuracy predicting GY 

Prior to the evaluation of the parameter’s importance, GY predictive models were 

described using all the available variables for each field. Them, the sixth best-performing 

features were iteratively added into ML models to their accuracy predicting GY. The test 

accuracies obtained are shown in Table 8 and widely varied across environments. In 

comparison to the models using all the variables available, predictions using the selected 

features performed slightly better, except in few cases. Thus, the best prediction model 

was reported using all the variables under the irrigation conditions of Valladolid during 

2016/2017 (R2= 0.759, RMSE=0.445). Overall, the best yield predictions were achieved 

under the rainfed conditions of Valladolid, where models with feature selection explained 

63.2, 54,9 and 59,5% of GY variability, respectively for each crop season. In the same 

location, GY predictions were also high in 2016/2017 under the late-planting conditions 

(R2= 0.657, RMSE=0.564) and in 2018/2019 under the low-N conditions (R2= 0.595, 

RMSE=0.384). Regarding to the environments of Aranjuez, high predictions were only 

achieved in 2016/2017 under the irrigation (R2= 0.561, RMSE=0.383) and rainfed 

conditions (R2= 0.703, RMSE=2.152). 
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Table 8. Least absolute shrinkage and selection operator (LASSO) regression models for 

the prediction of grain yield. Two regression models were performed for each 

environment: one using the full set of measurements across the sampling visits and an 

another only using the six most selected variables. The stadistics represent the mean 

across the 100 cross-validation runs. RMSE, root mean square error; R2, coefficient of 

determination; MAE, mean absolute error. 

L T Y 
All the indices Selected indices 

RMSE R2 MAE RMSE R2 MAE 

C
o

ri
a

 

Rainfed 

2016/2017 1.390 0.238 0.984 0.931 0.244 0.748 

2017/2018 1.609 0.164 0.941 0.689 0.230 0.533 

2018/2019 0.743 0.252 0.620 0.639 0.287 0.506 

A
ra

n
ju

ez
 

Irrigation 

2016/2017 0.622 0.425 0.493 0.480 0.561 0.383 

2017/2018 1.000 0.456 0.804 0.905 0.438 0.746 

2018/2019 1.249 0.170 0.838 0.864 0.152 0.703 

Rainfed 

2016/2017 128.742 0.673 33.496 7.482 0.703 2.152 

2017/2018 0.505 0.484 0.407 0.486 0.473 0.399 

2018/2019 0.587 0.111 0.453 0.463 0.098 0.347 

Late 

2016/2017 0.878 0.457 0.531 0.556 0.396 0.448 

2017/2018 0.876 0.193 0.709 0.685 0.236 0.551 

2018/2019 1.063 0.158 0.774 0.768 0.153 0.628 

V
a

ll
a

d
o

li
d

 

Irrigation 

2016/2017 0.551 0.759 0.445 0.613 0.675 0.468 

2017/2018 0.845 0.276 0.649 0.738 0.267 0.561 

2018/2019 2.045 0.157 1.640 1.391 0.254 1.072 

Rainfed 

2016/2017 0.690 0.657 0.564 0.677 0.632 0.535 

2017/2018 0.742 0.576 0.560 0.724 0.549 0.561 

2018/2019 0.630 0.419 0.489 0.480 0.595 0.384 

Late 2016/2017 0.581 0.543 0.410 0.690 0.657 0.564 

Low-N 
2017/2018 1.148 0.229 0.848 0.955 0.282 0.729 

2018/2019 0.754 0.473 0.602 0.480 0.595 0.384 

 

4. Discussion 

The complex and interactive effects on yield of the wheat genotypes and the specific 

environment where they grow hampers the correct selection of phenotypic traits to define 

specific ideotypes. In our study, the environment effect was understood as the 

combination of location, year and the managing conditions, and the results obtained 

reported significant differences on the genotypic performance in terms of GY and the 

capacity of phenotypical (morphological and physiological) traits to predict yield. The 

aim of the present study was to determine guidelines for plant phenotyping of well 

adapted genotypes based on the analysis a set of remote sensing traits measured during 
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the reproductive stage together with stable isotope signature in mature kernels. Final 

objective was to understand which specific traits are the most critical to develop GY-

prediction models in a wide range of environmental growing conditions. For that, a set of 

24 commercial semidwarf (i.e., post Green Revolution) cultivars of durum wheat 

cultivated in Spain during the past four decades were tested. 

4.1 Environment effect on genotypic performance of GY and traits  

The wide range of growing conditions provided for the different environments tested in 

this study allowed an extensive evaluation of the yield performance of the set of wheat 

genotypes and for the identification of the physiological traits involved. The growing 

conditions set as management trials had the highest impact on yield, accounting for 

88.10% of the total variation, when all crop seasons were considered. Under 

Mediterranean conditions, water regime and temperature have been described as the 

factors that explain a major portion of GY variation in cereals (Voltas et al., 2002) (. The 

drought stress imposed by the rainfed trials highly reduced GY in comparison to the well-

irrigated trials of the same locations. Whereas, year-to-year variation in weather has a 

great impact on the GY of rainfed trials (other than that of Coria, which reaches the water 

table from the Guadalquivir river), as quantity and distribution of rainfall along the three 

cropping seasons was different. Climatic variability, in precipitation and temperature, is 

known as responsible of affecting crop yields and phenology. The delay in the planting 

date implies higher temperatures during all the crop cycle and particularly during the 

reproductive and grain filling phases of wheat (Farooq et al., 2011), which reduces the 

duration of crop cycle, increases respiration rates and eventually the occurrence of heat 

stress, overall decreasing GY in comparison to the normal planting with supplementary 

irrigation conditions. Meanwhile, the combination of lower N-fertilizer without irrigation 

conditions in Valladolid reported higher yields than the rainfed trials across the years 

(except for the 2017/2018 season). This could be explained by the lack of fertilizer 

reducing vegetative biomass, and potential transpiration losses, therefore making less 

severe the drought stress during the reproductive stage. Since the average GY under 

stressed conditions was reduced in comparison to the well-watered irrigation conditions, 

the importance of breeding for resilience to these stresses is emphasized (Juliana et al., 

2019).  
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4.2 Significance of biomass, stay-green, photosynthetic efficiency, water status and 

leaf pigments monitoring for GY prediction 

The present study aimed to prove the applicability of a set of phenotypic traits to predict 

GY throughout the growing seasons. Our findings showed a wide variability in terms of 

phenotypic traits chosen within each growing conditions. The year-to-year variation in 

weather not only modify the degree of stress experienced by crops but also its timing. 

Therefore, for each specific condition, it is necessary to dissect what traits need to be 

measured, when they need to be measured, and how they should be measured in relation 

to the breeding target, which in this instance is forecasting yield.  

Before than any disturbance of photosynthetic performance, an abiotic stress such as 

water stress affects leaf expansion and crop growth. Above ground biomass, as a measure 

of crop development, have been used as a useful selection trait for yield improvement in 

wheat, particularly under stressing conditions (Jose A Fernandez-Gallego et al., 2019) 

(Fernandez-Gallego et al. 2019). Both multispectral and RGB indices generated measures 

of canopy cover that reported high correlations to GY. The NDVI is one of the most used 

indices due to its  combination of the characteristic low reflectance in the visible region 

of the spectrum (400 – 700nm) and the high reflectance in the near-infrared (NIR) (700-

1100nm) region (Hassan et al., 2019), which permits the effectively assessment of 

vegetative cover and vigor. The NDVI together with some of its reformulations based on 

slights modifications decrease the effect of soil or the problem of saturation with dense 

canopies, were repeatedly selected in the GY prediction models. Further, the calculation 

of RGB indices based on the color properties of the canopy as the NGRDI also were 

reported as great predictors of GY. Therefore, cultivars exhibiting lower values of leaf 

area growth, as measured through Vis, indicated poorer genotypic performance in terms 

of GY Oppositely, cultivars with higher aboveground biomass may be related to a better 

water and nutrient availability, and consequently to a higher GY. Moreover, those VIs, 

when measured during grain filling, monitor leaf/canopy photosynthesis duration and 

become a critical approach to detect cultivars with delayed senescence (Gracia-Romero 

et al., 2019). In fact, under terminal stress conditions, stay-green attitude is generally 

associated with lower yields (Sadras and Richards, 2014; Gregersen et al., 2013). To this 

end, VIs derived from the RGB cameras performed very well as the elevated image 

resolution permits the assessment of stay-green in a very precise manner (Fernandez-

Gallego et al. 2019). GA, GGA and CSI, as representations of the percentage of green 



159 
 

pixels, when measured at the plot level, are the most frequently chosen indices with higher 

detection rates in the LASSO models across the environments, particularly when 

measured during grain filling (Gracia-Romero et al., 2019). Moreover, these indices 

presented the highest correlations against GY. However, under environments without 

major growth limitations, corresponding to the conditions of the years with more 

precipitations in Coria or the well irrigated trials of Aranjuez and Valladolid, those VIs 

related to the above biomass were not reported as the most critical for the GY models. 

VIs, when measured during the grain filling phases of the crop, may also capture 

differences in stay green being very useful to identify cultivars retaining leaves greener 

longer after anthesis. Our results reported this as a common trait of the high-yielding 

phenotypes among the environments assessed. Delaying the ripening process and 

maintaining the canopy greenness has been reported as being very closely related to the 

final GY (Gregersen et al., 2013). But only functional stay-green is of interest for crop 

improvement, meaning that photosynthesis and accumulation of assimilates to harvested 

tissues are prolonged (Christopher et al., 2016). Canopy-based indices were selected over 

the chlorophyll assessments at leaf level. Hence, early senescence phenotypes were easily 

identified using indices evaluated at the plot level such as GA or NDVI. The GY models 

developed in the environments under suboptimal conditions, as the rainfed and the late-

planting trials, highlight the importance of selecting genotypes with extended duration of 

active photosynthesis. 

Besides the assessment of green plant biomass, our results highlighted the importance of 

detecting the actual plant photosynthetic capacity for predicting yield. The actual carbon 

fluxes were analyzed through two approaches. On one side, multispectral indices more 

targeted towards the photosynthetic capacity of the crop canopy such as PRI, CRI2 or 

ARI2 were measurements selected repeatedly in the GY predictive models. Thus under 

the heat stress conditions induced by the late-planting trials of both Valladolid and 

Aranjuez, our results reported the estimation of the photosynthetic variability by the index 

PRI as a good indicator of higher yielding cultivars. Other mechanisms that inform how 

active are the plants is measuring the water status. Our results reported the turgor of the 

leaves assessed with the water band index (WBI) as one of the most selected indices 

particularly under the rainfed and late-planting trials showing positive correlations against 

GY. Another proxy of water status is CT, that provides an instantaneous proxy of crop 

water conditions and any stress that induces a stomatal closure will be translated into an 



160 
 

increase of leaves temperature. Significant and negative correlations of CT measurements 

against GY were reported across all the environments studied. Thus, CT measurements 

are reported as an effective tool to assess genotypic response to stress and then, a good 

predictor of yield (Araus et al., 2002).  

The evaluation of pigment concentration using hand-held portable devices is one of the 

more common measurements, especially chlorophyll readings are considered very useful 

to diagnosticate environmental stress as indicators of leaf senescence (Xiong et al., 2015; 

Neufeld et al., 2006) or lack of nitrogen (Buchaillot et al., 2019).. However, our results 

reported that the leaf chlorophyll content–GY relationship only worked efficiently as 

indicator of stay-green. The behavior of the Flav and Anth leaf readings against GY varied 

across the environments measured. Flavonoids and anthocyanins are polyphenolic 

secondary metabolic compounds with various functions in growth, development, 

reproduction, and stress defense (Ma et al., 2014b). Several studies have reported 

flavonoids accumulation after drought treatment, which were similar to the results of Ma 

et al., (2014a), supporting a protective role when plants are exposed to drought. 

According to this, our results showed a positive relation between Flav and Anth readings 

during the anthesis and early grain filling stages with GY, indicating those cultivars more 

capable to confront the stress exhibit higher content of these protective pigments. 

However, when leaf pigments were measured before anthesis, elevated Flav and Anth 

values were reported on those cultivars more affected by stress and then lower yields were 

expected. This was the case of the rainfed and late-planting conditions of Aranjuez during 

2017/2018. Another example is the rainfed conditions of Valladolid during 2017/2018, 

where Anth correlation against GY was negative during pre-anthesis (r=-0.313**) and 

positive during the milk development (r=0.387**).  

Carbon isotope composition, when analyzed in mature kernels, is proposed as an 

integrative indicator of cultivars water status along the crop cycle (Araus et al., 2013). 

Negative correlations reported between δ13C and GY are associated to the better water 

status of the higher-yielding cultivars, exhibiting lower δ13C, being capable to maintain 

higher stomatal conductance and then, fixing more CO2 and yielding more.  

In the case of nitrogen, its mature grain concentration together with its isotope 

compositions as δ15N are used to study the dynamics of N in the soil-plant system 

informing also about the N source used (Serret et al. 2008) and the nitrogen metabolism 

of the plant as affected by growing conditions (Yousfi et al. 2012). Positive correlations 
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between δ15N and GY have been reported for durum wheat have been reported, 

particularly under the irrigation environments, showing the ability of cultivars to access 

better to soil resources (Yousfi et al. 2009; Araus et al. 2013).  

4.3 GY prediction models for specific environment ideotype description  

Development of precise crop yield prediction models is a major challenge of the modern 

agriculture as it provides timely information for optimum agronomical practices 

application and management decisions but also allows market prices to be modelled 

(Kumar, 2016; Peng et al., 2015). Crop models can also be practical for exploring the 

opportunities of different cultivars on specific cultivation areas, as the assessment of the 

phenotypic profile will help to understanding the interactive effects of genotypes with the 

agronomic and environmental factors on crop performance and then, final yield. 

Therefore, the proposed methodology consisted in the phenotypic characterization of 

traits involved with tolerance/resistance to the environmental conditions to design the 

ideotypes. Previous characterization of phenotypic profile by a set of remote sensing traits 

to define an ideotypes can be found in (Paleari et al., 2020). Results indicated that 

algorithms with a selection of variables performed similar to the algorithms based on the 

full set of measurements. Overall, the feature variable selection according to LASSO 

incorporated to the GY-prediction models (i) measurements of canopy size during the 

pre-anthesis and anthesis phases, as approximation to the potential crop photosynthesis, 

(ii) the estimation of the light use efficiency (PRI, CCI) and (iii) or the transpiration (CT, 

δ13C of mature kernels) during grain filling, and finally a measurement of the delay in 

senescence of the plants (NDVI, GA). These findings are in the line with the component 

analysis proposed by (Passioura, 1977; Passioura, 1996) about the traits to select for 

increasing yield: (1) the capacity to capture more water; (2) the efficiency for producing 

dry matter per unit of absorbed water; and (3) the ability to allocate an increased 

proportion of the biomass into grains. 

Reproductive period embracing from heading to physiological maturity is critical to 

maximize yield under Mediterranean conditions, which are frequently characterized by 

the occurrence of terminal abiotic stresses such as drought, when most of the 

carbohydrates for grain filling are formed (Snape et al., 2001). In agreement with that 

traits assessing vegetation cover during these stages were selected in the majority of the 

environments. Cultivars with larger canopies were determinant to GY, especially on those 

environments were drought stress affected the grain filling, whereas for well-watered 
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trials it was less important Genotypes with larger canopy at anthesis or beginning of grain 

filling are those able to use more of the available water and therefore potentially better 

suited to yield more (Condorelli et al., 2018). During anthesis, leaf pigment 

measurements indicating stress protection also were reported to be significant to GY. 

Along the cropping season with less precipitation, and thus less water supply to the 

rainfed trials, higher Flav readings marked the cultivars with higher tolerance to the 

growing conditions. Moreover, these cultivars exhibited lower CT, which means are able 

to maintain higher rates of transpiration which suggest they use more water. In fact, 

during grain filling, the estimation of the photosynthetic variability became an important 

predictor in the GY models. Thus, the indices with highest detection rate in the GY 

models were indicators s of photosynthetic capacity and water status, such as the 

multispectral indices PRI or WBI, together with CT.  

4.4 Formulation of ideotype recomendation for each agro-environement based on 

the measurements performed 

After the evaluation of the performance assessing GY of all the measurements under each 

environmental condition, the most relevant traits were used for defining the best yielding 

ideotypes for each of the eight specific combinations of location-and management 

conditions (Table 9).  
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Table 9. Summary of potential traits contributing to the development of well adapted 

wheat ideotypes under the eight different environmental conditions, understood as the 

combinations of location and management practices. Except for late-planting conditions 

in Valladolid, for each of these combinations data of three consecutive crop seasons has 

been used. Environments are presented from the most (left column) to the less yielding 

(far right column).  

  Valladolid Aranjuez Coria Valladolid Aranjuez Valladolid Valladolid Aranjuez 

  Irrigation Irrigation Rainfed Late Late Nitrogen Rainfed Rainfed 

Heading/ 

Pre-anthesis 

NGRDI ↑ NDVI ↑   u.a u* CT ↓ Anth NDVI ↑ 

        PRI ↑ NDVI ↑ PH ↑   

Anthesis 

NGRDI ↑ CT ↓ PH ↑ EVI ↑ Anth   Anth ↑ CT ↓ 

  Anth ↑ PRI ↑ PH ↑  GA ↑ GGA ↑ 

    CT ↓       Chl ↑   

Grain filling 

CT ↓ NDVI ↑ GA ↑   Flav CT ↓ PRI ↑ GGA ↑ 

GGA ↑  CSI ↓   PRI ↑  CT ↓  

            Anth ↑   

Maturity 

13C ↓   13C ↓   Carbon ↑ Nitrogen ↓ 13C ↓ 13C ↓ 

     Carbon ↓ 15N ↑  

            Nitrogen ↑   

 

Under the support irrigation conditions in Valladolid, the most productive genotypes 

exhibited enhanced crop cover (higher NGRDI or GGA) through the reproductive cycle 

in synchrony with a better water status (lower CT and δ13C in mature grains). Cultivars 

with higher yields under the irrigation conditions provided by the irrigation trials of 

Aranjuez exhibited enhanced growth (higher NDVI) with a better water status (lower CT) 

during anthesis, but especially the grain filling periods were reported to be longer in 

relation to the stay-green VIs (lower CSI). Results obtained across the crop seasons in 

Coria, suggests that high-yielding ideotypes would be represented by cultivars with 

higher biomass (higher PH) values that present better water status (lower CT and δ13C) 

together with the development of photoprotective pigments (higher Anth) during the 

anthesis stages and the ability of delaying senescence (higher GA) during grain filling. 

Therefore, those genotypes able to use more water were the most productive.  

In the late-planting conditions, elevated temperatures expected around anthesis induces 

grain sterility and thus, lower GY (John and Megan, 1999). From the only season assessed 

for the late-planting conditions in Valladolid, best cultivars exhibited enhanced crop 

biomass and canopy greenness (higher EVI) with better photosynthetic activity during 

anthesis (higher PRI). The ideotypes suggested for late-planting trials in Aranjuez were 
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characterized for having larger biomass (higher NDVI and PH) through all the 

reproductive periods. Here, the development of protection pigments plays an important 

role higher Anth), defining those cultivars better prepared to confront the heat stress while 

the photosynthetic capacity is maintained elevated (higher PRI).  

Wheat genotypes with better nitrogen use efficiency will help to reduce the need for N 

fertilizers (Frels et al., 2018). Among the cultivars studied in the low-N trials in 

Valladolid, the main difference of the high-yielding cultivars, apart from the improved 

biomass and water status, were associated to the C and N content of the grains.  

In relation to the rainfed conditions of Valladolid, besides improved crop biomass (higher 

PH and lower CSI) and water status measures (lower CT and δ13C) along the season, the 

changes in protection pigments played an important role on the definition of the high-

yielding ideotypes decreasing before (lower Anth) and increasing during anthesis (higher 

Anth). Regarding to the rainfed conditions in Aranjuez, higher-yielding ideotypes were 

cultivars capable to produce more dense and greener canopies (higher NDVI and GGA 

values) while ensuring higher photosynthetic rates (lower CT at anthesis and lower δ13Cof 

mature kernels), while delaying senescence (higher GGA during grain filling).  

5. Conclusions 

The results of the present study showed that environmental conditions caused a significant 

influence on the agronomical performance of wheat cultivars and GY highly varied 

between years, locations and treatments. The reported phenotypic plasticity of the 

cultivars studied highlighted the importance selecting genotypes with specific idiotypic 

characteristics for each environment. This is in spite the fact that some common 

characteristics emerged as a key phenotypic traits across a wide range of growing 

conditions. This is the case for example of higher biomass, better water status, stay green 

or a better photosynthetic efficiency. In the context of cultivars recommendations, crop 

models based on high-throughput phenotyping data have an important role assessing the 

integration G x E x M interactions. The assessment of different physiological traits via 

remote sensing approaches and the isotopic signature of the mature grain served to 

describe ideotypes of durum wheat for specific Mediterranean conditions varying in water 

availability and growing temperature¡. The LASSO approach permitted the selection of 

the most critical remote sensing indices to the definition of specific agroclimatic 

ideotypes based on the phenotypic profile of the cultivars. In this sense, higher values of 
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indices informing about crop cover and canopy greenness through the growing cycle 

together with the assessment of a water status indicator as low CT during anthesis were 

common traits critical to GY across the environments studied. When drought was a 

limiting factor, the most productive cultivars reported higher stay-green indicator and 

hence, exhibited longer grain filling periods. High Ant and Flav readings also were 

reported critical to GY, anticipating the cultivars response to drought and their ability to 

deal with it. Although higher temperatures during the cycles of late-planting trials reduced 

GY, as water was not a limited factor, ideotype designed highlighted elevated rates of 

photosynthesis activity, using indices like PRI. The results obtained in this study represent 

the successful use of UAV-derived data with leaf-based pigment readings and PH as an 

effective methodology to evaluate wheat cultivars under water and heat stress. LASSO 

models showed the importance of the combined use VIs, even derived from an RGB 

camera, with CT assessments during reproductive stages of the crop on accurate GY 

predictions. Moreover, and for a wide range of growing conditions, lower δ13C were 

associated to higher-yielding cultivars as integrates the performance through the whole 

cycle, and particularly during the reproductive stages and supported the definition of more 

precise ideotypes.    

Author contributions 

A.G.-R., S.C.K. and J.L.A. conceived and designed the experiment. M.T.N.-T. managed 

and directed the wheat trials at the INIA experimental stations of Aranjuez and Coria del 

Rio; and N.A. the ITACyL experimental station in Valladolid. A.G.-R., T. V., F.Z.R., 

J.S., S.C.K. and J.L.A. conducted the field measurements. A.G.-R. and S.C.K .carried out 

the flights for the obtainment of the aerial measurements. F.Z.R. conducted the stable 

isotope composition of the mature grains. A.G.-R. processed and analyzed the images. 

T.V. developed the R code for the LASSO analysis. A.G.-R. did the statistical analysis 

and wrote the paper under the supervision of J.L.A. and S.C.K. and the contributions from 

all the other authors. J.L.A. is the head of the Integrative Crop Ecophysiology research 

group and Principal Investigator of the MINECO project which funds this research. 

Funding 

We acknowledge the support of the Spanish project PID2019-106650RB-C21 from the 

Ministerio de Ciencia e Innovación.  A.G.-R. is a recipient of a FPI doctoral fellowship 

from the same institution. We also acknowledge the support from the Institut de Recerca 



166 
 

de l’Aigua and the Universitat de Barcelona. J.L.A. acknowledges support from the 

Institució Catalana de Investigació i Estudis Avançats (ICREA) Academia, Generalitat 

de Catalunya, Spain. 

Acknowledgments 

The authors of this research thank the personnel from the experimental stations of INIA 

in Coria and Aranjuez and ITACyL in Valladolid for their continued support of our 

research. We thank the Integrative Crop Ecophysiology Group members their assistance 

during the collection of phenotic data during the study. Finally, we thank Jaume 

Casadesus for providing the Breedpix software. 

References 

Araus, J.L., Cabrera-Bosquet, L., Serret, M.D., Bort, J. and Nieto-Taladriz, M.T. 

(2013) Comparative performance of δ13C, δ18O and δ15N for phenotyping durum 

wheat adaptation to a dryland environment. Funct. Plant Biol., 40, 595–608. 

Available at: https://doi.org/10.1071/FP12254. 

Araus, J.L. and Cairns, J.E. (2014) Field high-throughput phenotyping: The new crop 

breeding frontier. Trends Plant Sci., 19, 52–61. 

Araus, J.L., Slafer, G.A., Reynolds, M.P. and Royo, C. (2002) Plant breeding and 

drought in C3 cereals: What should we breed for? Ann. Bot., 89, 925–940. 

B., W., J.R., P. and J., S. (2003) Lack of interaction between extreme high-temperature 

events at vegetative and reproductive growth stages in wheat. J. Agron. Crop Sci., 

189, 142–150. 

Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S. and Bareth, G. (2014) 

Estimating biomass of barley using crop surface models (CSMs) derived from UAV-

based RGB imaging. Remote Sens., 6, 10395–10412. 

Buchaillot, M.L., Gracia-Romero, A., Vergara-Diaz, O., Zaman-Allah, M.A., 

Tarekegne, A., Cairns, J.E., Prasanna, B.M., Araus, J.L. and Kefauver, S.C. 

(2019) Evaluating maize genotype performance under low nitrogen conditions using 

RGB UAV phenotyping techniques. Sensors (Switzerland), 19. 

Casadesús, J., Kaya, Y., Bort, J., et al. (2007) Using vegetation indices derived from 

conventional digital cameras as selection criteria for wheat breeding in water-limited 

environments. Ann. Appl. Biol., 150, 227–236. 

Cerovic, Z.G., Masdoumier, G., Ghozlen, N. Ben and Latouche, G. (2012) A new 

optical leaf-clip meter for simultaneous non-destructive assessment of leaf 

chlorophyll and epidermal flavonoids. Physiol. Plant., 146, 251–260. 

Chairi, F., Vergara-Diaz, O., Vatter, T., Aparicio, N., Nieto-Taladriz, M.T., 

Kefauver, S.C., Bort, J., Serret, M.D. and Araus, J.L. (2018) Post-green 

revolution genetic advance in durum wheat: The case of Spain. F. Crop. Res., 228, 

158–169. 



167 
 

Christopher, J.T., Christopher, M.J., Borrell, A.K., Fletcher, S. and Chenu, K. 

(2016) Stay-green traits to improve wheat adaptation in well-watered and water-

limited environments. J. Exp. Bot., 67, 5159–5172. 

Condorelli, G.E., Maccaferri, M., Newcomb, M., Andrade-Sanchez, P., White, J.W., 

French, A.N., Sciara, G., Ward, R. and Tuberosa, R. (2018) Comparative aerial 

and ground based high throughput phenotyping for the genetic dissection of NDVI 

as a proxy for drought adaptive traits in durum wheat. Front. Plant Sci., 9. 

Coppens, F., Wuyts, N., Inzé, D. and Dhondt, S. (2017) Unlocking the potential of 

plant phenotyping data through integration and data-driven approaches. Curr. Opin. 

Syst. Biol., 4, 58–63. 

Costa, J.M., Grant, O.M. and Chaves, M.M. (2013) Thermography to explore plant-

environment interactions. J. Exp. Bot., 64, 3937–3949. 

Daughtry, C.S.T., Walthall, C.L., Kim, M.S., Colstoun, E.B. de and McMurtrey, J.E. 

(2000) Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy 

Reflectance. Remote Sens. Environ., 74, 229–239. Available at: 

https://www.sciencedirect.com/science/article/pii/S0034425700001139. 

Donald, C.M. (1968) The breeding of crop ideotypes. Euphytica, 17, 385–403. Available 

at: https://doi.org/10.1007/BF00056241. 

Farooq, M., Bramley, H., Palta, J.A. and Siddique, K.H.M. (2011) Heat stress in 

wheat during reproductive and grain-filling phases. CRC. Crit. Rev. Plant Sci., 30, 

491–507. 

Farquhara, G.D. and Richardsb, R.A. (1984) Isotopic Composition of Plant Carbon 

Correlates with Water-use Efficiency of Wheat Genotypes,. 

Fernandez-Gallego, Jose A, Kefauver, S.C. and Vatter, T. (2019) Low-cost 

assessment of grain yield in durum wheat using RGB images. Eur. J. Agron., 105, 

146–156. 

Fernandez-Gallego, Jose A., Kefauver, S.C., Vatter, T., Aparicio Gutiérrez, N., 

Nieto-Taladriz, M.T. and Araus, J.L. (2019) Low-cost assessment of grain yield 

in durum wheat using RGB images. Eur. J. Agron., 105, 146–156. 

Filippi, P., Jones, E.J., Wimalathunge, N.S., et al. (2019) An approach to forecast grain 

crop yield using multi-layered, multi-farm data sets and machine learning. Precis. 

Agric., 20, 1015–1029. 

Frels, K., Guttieri, M., Joyce, B., Leavitt, B. and Baenziger, P.S. (2018) Evaluating 

canopy spectral reflectance vegetation indices to estimate nitrogen use traits in hard 

winter wheat. F. Crop. Res., 217, 82–92. Available at: 

https://doi.org/10.1016/j.fcr.2017.12.004. 

Gamon, J.A., Huemmrich, K.F., Wong, C.Y.S., Ensminger, I., Garrity, S., Hollinger, 

D.Y., Noormets, A. and Peñuelask, J. (2016) A remotely sensed pigment index 

reveals photosynthetic phenology in evergreen conifers. Proc. Natl. Acad. Sci. U. S. 

A., 113, 13087–13092. 

Gamon, J.A., Peñuelas, J. and Field, C.B. (1992) A narrow-waveband spectral index 

that tracks diurnal changes in photosynthetic efficiency. Remote Sens. Environ., 41, 

35–44. Available at: 



168 
 

https://www.sciencedirect.com/science/article/pii/003442579290059S. 

Gitelson, A.A., Merzlyak, M.N. and Chivkunova, O.B. (2001) Optical Properties and 

Nondestructive Estimation of Anthocyanin Content in Plant Leaves. Photochem. 

Photobiol., 74, 38. 

Gitelson, A.A., Zur, Y., Chivkunova, O.B. and Merzlyak, M.N. (2002) Assessing 

Carotenoid Content in Plant Leaves with Reflectance Spectroscopy¶. Photochem. 

Photobiol., 75, 272. 

González-Dugo, M.P., Moran, M.S., Mateos, L. and Bryant, R. (2006) Canopy 

temperature variability as an indicator of crop water stress severity. Irrig. Sci., 1–8. 

Gracia-Romero, A., Kefauver, S.C., Fernandez-Gallego, J.A., Vergara-Díaz, O., 

Nieto-Taladriz, M.T. and Araus, J.L. (2019) UAV and ground image-based 

phenotyping: A proof of concept with durum wheat. Remote Sens., 11. 

Gregersen, P.L., Culetic, A., Boschian, L. and Krupinska, K. (2013) Plant senescence 

and crop productivity. Plant Mol. Biol., 82, 603–622. 

Haboudane, D., Miller, J.R., Tremblay, N., Zarco-Tejada, P.J. and Dextraze, L. 

(2002) Integrated narrow-band vegetation indices for prediction of crop chlorophyll 

content for application to precision agriculture. Remote Sens. Environ., 81, 416–426. 

Available at: 

https://www.sciencedirect.com/science/article/pii/S0034425702000184. 

Hamblin, J. (1993) Chapter 77 The Ideotype Concept : Useful or Outdated ? 

Hassan, M.A., Yang, M., Rasheed, A., Yang, G., Reynolds, M., Xia, X., Xiao, Y. and 

He, Z. (2019) A rapid monitoring of NDVI across the wheat growth cycle for grain 

yield prediction using a multi-spectral UAV platform. Plant Sci., 282, 95–103. 

Available at: https://doi.org/10.1016/j.plantsci.2018.10.022. 

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X. and Ferreira, L.G. 

Overview of the radiometric and biophysical performance of the MODIS vegetation 

indices, Available at: www.elsevier.com/locate/rse. 

Huete, A.R. (1988) A soil-adjusted vegetation index (SAVI). Remote Sens. Environ., 25, 

295–309. Available at: 

https://www.sciencedirect.com/science/article/pii/003442578890106X. 

Hunt, E.R., Cavigelli, M., Daughtry, C.S.T., McMurtrey, J.E. and Walthall, C.L. 

(2005) Evaluation of digital photography from model aircraft for remote sensing of 

crop biomass and nitrogen status. Precis. Agric., 6, 359–378. 

Hunt, E.R., Doraiswamy, P.C., McMurtrey, J.E., Daughtry, C.S.T., Perry, E.M. and 

Akhmedov, B. (2012) A visible band index for remote sensing leaf chlorophyll 

content at the Canopy scale. Int. J. Appl. Earth Obs. Geoinf., 21, 103–112. 

Jackson, R.D., Reginato, R.J. and Idso, S.B. (1988) Wheat canopy temperature: A 

practical tool for evaluating water requirements. Water Resour. Res., 13, 651–656. 

Available at: https://doi.org/10.1029/WR013i003p00651. 

Jaradat, A.A. (2018) Statistical Modeling of Phenotypic Plasticity under Abiotic Stress 

in Triticum durum L. and Triticum aestivum L. Genotypes. Agron. , 8. 

John, R.P. and Megan, G. (1999) Temperatures and the growth and development of 



169 
 

wheat: a review. Eur. J. Agron., 10, 23–36. Available at: 

%5C%5CGRAEFE%5CJournals%5CEuropean_Journal_of_Agronomy%5C_3.pdf

. 

Juliana, P., Montesinos-López, O.A., Crossa, J., et al. (2019) Integrating genomic-

enabled prediction and high-throughput phenotyping in breeding for climate-

resilient bread wheat. Theor. Appl. Genet., 132, 177–194. Available at: 

https://doi.org/10.1007/s00122-018-3206-3. 

Kahiluoto, H., Kaseva, J., Balek, J., et al. (2019) Decline in climate resilience of 

european wheat. Proc. Natl. Acad. Sci. U. S. A., 116, 123–128. 

Kefauver, S.C., Vicente, R., Vergara-Díaz, O., Fernandez-Gallego, J.A., Kerfal, S., 

Lopez, A., Melichar, J.P.E., Serret Molins, M.D. and Araus, J.L. (2017) 

Comparative UAV and field phenotyping to assess yield and nitrogen use efficiency 

in hybrid and conventional barley. Front. Plant Sci., 8. 

Klompenburg, T. van, Kassahun, A. and Catal, C. (2020) Crop yield prediction using 

machine learning: A systematic literature review. Comput. Electron. Agric., 177, 

105709. Available at: https://doi.org/10.1016/j.compag.2020.105709. 

Kumar, M. (2016) Impact of climate change on crop yield and role of model for 

achieving food security. Environ. Monit. Assess., 188. Available at: 

http://dx.doi.org/10.1007/s10661-016-5472-3. 

Liakos, K.G., Busato, P., Moshou, D., Pearson, S. and Bochtis, D. (2018) Machine 

Learning in Agriculture: A Review. Sensors , 18. 

Loss, S.P. and Siddique, K.H.M. (1994) Morphological and Physiological Traits 

Associated with Wheat Yield Increases in Mediterranean Environments. Adv. 

Agron., 52, 229–276. 

Ma, D., Sun, D., Wang, C., Li, Y. and Guo, T. (2014a) Expression of flavonoid 

biosynthesis genes and accumulation of flavonoid in wheat leaves in response to 

drought stress. Plant Physiol. Biochem., 80, 60–66. Available at: 

https://www.sciencedirect.com/science/article/pii/S0981942814001120. 

Ma, D., Sun, D., Wang, C., Li, Y. and Guo, T. (2014b) Plant Physiology and 

Biochemistry Expression of fl avonoid biosynthesis genes and accumulation of fl 

avonoid in wheat leaves in response to drought stress. Plant  Physiol. Biochem., 80, 

60–66. Available at: http://dx.doi.org/10.1016/j.plaphy.2014.03.024. 

Martre, P., Quilot-Turion, B., Luquet, D., Memmah, M.-M.O.-S., Chenu, K. and 

Debaeke, P. (2015) Chapter 14 - Model-assisted phenotyping and ideotype design. 

In V. O. Sadras and D. F. B. T.-C. P. (Second E. Calderini, eds. San Diego: 

Academic Press, pp. 349–373. Available at: 

https://www.sciencedirect.com/science/article/pii/B9780124171046000145. 

Neufeld, H.S., Chappelka, A.H., Somers, G.L., Burkey, K.O., Davison, A.W. and 

Finkelstein, P.L. (2006) Visible foliar injury caused by ozone alters the relationship 

between SPAD meter readings and chlorophyll concentrations in cutleaf coneflower. 

Photosynth. Res., 87, 281–286. 

Paleari, L., Vesely, F.M., Ravasi, R.A., Movedi, E., Tartarini, S., Invernizzi, M. and 

Confalonieri, R. (2020) Analysis of the Similarity between in Silico Ideotypes and 



170 
 

Phenotypic Profiles to Support Cultivar Recommendation—A Case Study on 

Phaseolus vulgaris L. Agronomy, 10, 1733. 

Passioura, J.B. (1977) 1977passiouraJAIAS. J. Aust. Inst. tagricultural Sci., 43, 117–

120. 

Passioura, J.B. (1996) Drought and drought tolerance. Plant Growth Regul., 20, 79–83. 

Available at: https://doi.org/10.1007/BF00024003. 

Peng, Y., Hsu, C. and Huang, P. (2015) Developing Crop Price Forecasting Service 

Using Open Data from Taiwan Markets. , 172–175. 

Penuelas, J., Filella, I., Biel, C., Serrano, L. and Save, R. (1993) The reflectance at the 

950-970 nm region as an indicator of plant water status. Int. J. Remote Sens., 14, 

1887–1905. 

Pointer, M.R. (2009) A comparison of the CIE 1976 colour spaces. Color Res. Appl., 6, 

108–118. Available at: http://doi.wiley.com/10.1002/col.5080060212 [Accessed 

December 15, 2017]. 

R Development Core Team. (2010) R a language and environment for statistical 

computing : reference index, R Foundation for Statistical Computing. 

Rondeaux, G., Steven, M. and Baret, F. (1996) Optimization of soil-adjusted vegetation 

indices. Remote Sens. Environ., 55, 95–107. Available at: 

https://www.sciencedirect.com/science/article/pii/0034425795001867. 

Roujean, J.-L. and Breon, F.-M. (1995) Estimating PAR absorbed by vegetation from 

bidirectional reflectance measurements. Remote Sens. Environ., 51, 375–384. 

Available at: 

https://www.sciencedirect.com/science/article/pii/0034425794001143. 

Rouse, J. W., J., Haas, R.H., Schell, J.A. and Deering, D.W. (1976) Monitoring 

vegetation systems in the Great Plains with ERTS. In NASA. Goddard Space Flight 

Center 3d ERTS-1 Symp., Vol. 1, Sect. A. pp. 24–26. 

Sadras, V.O. and Richards, R.A. (2014) Improvement of crop yield in dry 

environments: Benchmarks, levels of organisation and the role of nitrogen. J. Exp. 

Bot., 65, 1981–1995. 

Snape, J.W., Butterworth, K., Whitechurch, E. and Worland, A.J. (2001) Waiting for 

fine times: genetics of flowering time in wheat,. 

Tibshirani, R. (1996) Regression Shrinkage and Selection Via the Lasso. J. R. Stat. Soc. 

Ser. B, 58, 267–288. Available at: https://doi.org/10.1111/j.2517-

6161.1996.tb02080.x. 

Voltas, J., Eeuwijk, F. a van, Igartua, E., García Del Moral, L.F., Molina-cano, J.L. 

and Romagosa, I. (2002) Genotype by environment interaction and adaptation in 

barley breeding: Basic concepts and methods of analysis. Barley Sci. Recent Adv. 

from\nMolecular Biol. to Agron. Yield Qual., 205–241. 

Watt, M., Fiorani, F., Usadel, B., Rascher, U., Muller, O. and Schurr, U. (2020) 

Phenotyping: New Windows into the Plant for Breeders. Annu. Rev. Plant Biol., 71, 

689–712. 

Xiong, D., Chen, J., Yu, T., Gao, W., Ling, X., Li, Y., Peng, S. and Huang, J. (2015) 



171 
 

SPAD-based leaf nitrogen estimation is impacted by environmental factors and crop 

leaf characteristics. Sci. Rep., 5, 1–12. 

Yousfi, S., Serret, M.D., Márquez, A.J., Voltas, J. and Araus, J.L. (2012) Combined 

use of δ 13C, δ 18O and δ 15N tracks nitrogen metabolism and genotypic adaptation 

of durum wheat to salinity and water deficit. New Phytol., 194, 230–244. 

Zadoks, J.C., Chang, T.T. and Konzak, C.F. (1974) A decimal code for the growth 

stages of cereals. Weed Res., 14, 415–421. 

Zaman-Allah, M., Vergara, O., Araus, J.L., et al. (2015) Unmanned aerial platform-

based multi-spectral imaging for field phenotyping of maize. Plant Methods, 11, 35. 

 



 

172 
 

 



DISCUSSION

173



174



 

175 
 

DISCUSSION 

Advances in high-throughput phenotyping will enable the screening, of a large 

number of lines in a fast, accurate and inexpensive manner, and thus, will help 

accelerating the advancement of the rate of genetic improvement of the breeding process. 

Phenotyping platforms based on unmanned aerial vehicles (UAVs) with a variety are 

becoming widely used to monitor genotype performance. The current thesis represents 

the practical implementation of a set of phenotyping procedures to assess their capabilities 

to predict genotypic differences regarding yield and the physiological response maize and 

wheat cultivars to environmental conditions involving water and nutrient deficiencies and 

management techniques.  

Breeding for yield, a phenotypically complex trait  

The magnitude of the gene-environment-management interactions makes yield a 

phenotypically complex trait (Araus & Cairns, 2014; Quintero et al., 2018), resulting from 

the integration of multiple morphological and physiological processes and their 

integration through the crop cycle. The substantial need of increasing yield to meet the 

expectations of food demand face the additional challenge of climate change with 

drought, extreme temperature events, nutrient deficiencies and land degradation among 

the main abiotic stresses with major impacts on crop yield. In the field, crops are usually 

subjected to a combination of different abiotic stresses that may cause extensive 

production losses. Those abiotic stresses cause limiting conditions for achieving the yield 

potential, arising the importance of understanding the implications between cultivars, 

agronomic conditions and the environment in order to design future breeding strategies. 

The results presented in this thesis demonstrated the high levels of influence of 

environmental conditions, agricultural management practices and genotype used on the 

yield performance of the maize and wheat studies. The presented work demonstrated that 
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the relative performance of a genotype varies with the environmental conditions and with 

crop management. 

Studies of maize were performed in the Sub-Saharan Africa (SSA) research 

station of the International Maize and Wheat Improvement Center (CIMMYT). Together 

with increasing threats of climate change, the loss of soil fertility is critical for agricultural 

production in SSA as the limited availability of fertilizers is a leading factor that 

contributes to low yields. Low levels of soil phosphorous (P) and nitrogen (N), are the 

main constraints to crop growth in these areas (Buerkert et al., 2001). In Chapters 1, 2 

and 4, the deficit of P and N significantly reduced the maize yield in comparison with the 

control conditions. Phosphorous and nitrogen are essential nutrients for plant growth and 

development, and their deficiency reduces photosynthetic capacity and thus yield. Since 

the use of fertilizers cannot be considered always a sustainable practice, given the 

economic and environmental costs (Good & Beatty, 2011), the genotypic differences 

reported suggest that changes in the cultivars used may contribute to enhancing yield 

potential.  

Under these conditions where fertilizers become essential, field management can 

contribute greatly to crop yield growth. Efforts to decrease overuse of inputs by 

agricultural management strategies could increase the cereal production while 

minimizing the environmental impacts of intensification. In Chapters 2 and 4, in light of 

soil degradation, conservation agriculture (CA) practices have been proposed as 

alternatives to tillage-based agriculture in SSA as a pragmatic solution to increasing 

production while conserving the natural resource base. CA consists of a set of core 

principles, including minimum soil disturbance, permanent soil cover, and diversified 

crop rotations supported by integrated soil, crop, and water management, which aims to 

reduce and/or revert many negative effects of conventional farming practices. In this 
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sense, remote sensing techniques similar to those used for phenotyping may be also 

deployed to monitoring the performance of crop management techniques such as CA. In 

addition, as CA is more and more widely used, crop breeding under these specific 

conditions become a priority. However, phenotyping performance using remote sensing 

techniques may be affected by the specific conditions of residue cover. Our work in maize  

showed the benefits of CA as a potential system to increase yield, where the combination 

of minimal tillage with residue coverage produces higher yields compared to the plots 

grown under conventional conditions. The effect of the CA conditions was also shown in 

the VIs measured as more dense/green canopies. One of these benefits is attributed to the 

water-harvesting effects of minimum-tillage practices (Mupangwa et al., 2008; 

Thierfelder & Wall, 2009), but even any direct measurement of water status was reported 

in none of the studies. 

In the case of study in the Chapter 4, the combined effects of tillage, the amount 

of residue cover and N fertilizer on grain yield was evaluated as the success of the CA 

practices relies on the amount and quality of the residues and the initial fertility status of 

the soil (Thierfelder et al., 2016). The appropriate use of N top-dressing fertilizers to 

promote soil microbiota activity (Chivenge et al., 2011) and the competing use of crop 

residues (Giller et al., 2011; Jaleta et al., 2013) might be drawbacks for the promotion of 

CA practices. Our results reported that a proper combination of N-fertilizer with an 

optimal quantity of stover incorporated as residue cover resulted in a significant yield 

increase.  

Moving to the wheat experiments, trials were conducted in a wide range of 

Spanish latitudes for several consecutive crop seasons (with very diverse climatic 

conditions) and in trials under different growing conditions (well-irrigated, rainfed, late-

planting and low-nitrogen). Agriculture in Spain is particularly sensitive to climate 
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because of the low average precipitation level and its marked interannual variability. 

Therefore, the combination of location, management conditions and year were considered 

as different environments that provided a wide range of climatic conditions for the 

phenotypic expression of the genotypes tested. Under Mediterranean conditions, water 

regime and temperature have been described as the main factors that explain a major 

portion of GY variation in cereals (Voltas et al., 2002). The drought stress imposed by 

the rainfed trials greatly reduced GY in comparison to the well-irrigated trials of the same 

locations, while yield reductions related to the heat stress imposed by the late planting 

treatments where less severe. Regarding to the combination of low N-fertilizer and 

without irrigation conditions in Valladolid, the studies concluded that the lack of fertilizer 

reduced the plot biomass and then the drought stress was not that much severe during 

grain filling. 

Remote sensing ability to assess genotypic differences in yield under different 

growing conditions 

Remote sensing approaches have become fundamental methodologies for 

agricultural monitoring and to improve precision and throughput in phenotyping. Remote 

sensing methods enable detailed non-invasive information to be captured throughout the 

plant life cycle. This is proved by the growing body of literature demonstrating the 

usefulness of remote sensing for a wide range of applications in agriculture: growth 

monitoring, yield prediction, stress detection, nutrient deficiency diagnosis, and control 

of plant diseases (Fiorani & Schurr, 2013). Moreover, the results presented reported that 

all these remote sensing methodologies are amenable to high-throughput phenotyping 

under different conditions.  

According to the FAO definition, the soil surface of crops under CA must be 

covered at least by 30% of stover (Kosmowski et al., 2017). This characteristic makes use 
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of these remote sensing techniques for monitoring CA as a particular case, as the crop 

residue coverage add noise to the measures. The results shown in Chapter 2 reported an 

accuracy decrease of the VIs assessing yield under CA conditions in comparison to the 

conventional ploughing conditions. The main reason that explains this limitation is the 

difficulty in segregating what is biomass from the plants and what is the coverage. To 

solve this constraint, the application of a vegetation mask using a NDVI threshold on the 

VIs helped to avoid the soil background reflectance and then the performance assessing 

yield improved.    

Multispectral VIs performance determining differences in grain yield 

Traditionally, the use of multispectral sensors for the development of VIs 

associated with vegetation parameters such as above-ground biomass, water and nutrient 

deficiency, has been involved for phenotyping purposes. In our work, the normalized 

difference vegetation index (NDVI) performed among the best GY predictors for both 

wheat and maize studies. The strong contrast between the near infrared (NIR) and red 

bands make such index good measurement of canopy greenness and canopy cover 

(Tucker, 1979). The effect of the abiotic stresses studied produced reduction in leaf 

expansion and crop growth, and thus, above ground biomass, which estimated with NDVI 

and its reformulations (soil adjusted vegetation index, SAVI; optimized soil adjusted 

vegetation index, OSAVI; enhanced vegetation index, EVI) performed well determining 

genotypic differences in growth and yield among the wheat and maize cultivars studied. 

Besides the assessment of green plant biomass, the use of specific narrow bands from 510 

to 550 nm that are very sensitive to changes in the de-epoxidation of the xanthophyll cycle 

permitted the assessment of the photosynthetic capacity of the cultivars. Thus, our work 

also highlighted the performance of indices like the photochemical reflectance index 

(PRI) and chlorophyll carotenoid index (CCI) as indicators of photosynthetic efficiency. 
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Particularly, high and positive correlations were reported in Chapter 2 between PRI and 

GY, indicating that low PRI values reflected a lower light use efficiency of PSII that will 

finally be translated in a yield loss. Finally, the assessment of NIR wavelengths permitted 

the calculation of the water band index (WBI) as an indicator of the turgor of the leaves. 

The feature selection performed in Chapter 5 reported WBI as a good yield indicator 

under arid environments.  

RGB Indices performance determining differences in grain yield 

The use of information derived from conventional digital RGB (of red, green, 

blue) images may represent a low-cost alternative to the use of multispectral or 

hyperspectral information for formulating vegetation indices. The studies presented in 

this PhD thesis emphasize the capabilities of RGB vegetation indices as phenotypic traits 

for predicting both maize and wheat performance under different field conditions. 

Particularly, indices that performed better in assessing differences in yield were the ones 

more related to canopy greenness (such as a* or GGA) and thus to vegetation cover. 

Green area (GA) and greener area (GGA) indices quantify the portion of green pixels 

being a reliable estimator of vegetation cover (Lukina et al., 1999). In our work with 

maize, the indices that performed better assessing differences in GY were the ones related 

to vegetation cover, as the GA and the GGA, as the crop cover was main source of 

variability rather than the canopy color itself. In Chapters 1 and 2, as measurements were 

performed in seedlings, RGB indices were reported as good indicators initial vigor at 

early growing stages as response to the lack of phosphorus (Chapter 1) and to the CA 

management (Chapter 2). Whereas in the Chapter 4, maize was in a reproductive stage, 

then RGB were estimating differences in biomass. Regarding to the wheat studies, RGB 

indices performed as a good indicators of plot biomass during the stage of anthesis, but 

specially indices performed well as early-senescence indicators during grain filling. 
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Lastly, in Chapter 4, RGB indices calculated from maize leaves scans were reported as a 

potential method for evaluating foliar nutrition. Results reported how the leaf colors 

tended to be in darker green tonalities as the more N fertilizer was added to the plot. 

Hence, more yellowish tones measured as low NGRDI values for example, were related 

to N deficiency.  

Canopy Temperature performance determining differences in grain yield 

The assessment of canopy temperature (CT) holds a great promise for and indirect 

selection of maize and wheat cultivars with optimized water status. CT measurements in 

maize studies where only assessed at seedling stage in Chapter 2, and results did not report 

any benefits of CA on the soil moisture. Meanwhile. the results presented with wheat 

reported greater transpiration measured as cooler canopies, as a major driver leading to 

higher yields. Particularly under the more stressed conditions, high and negative 

correlations between CT and GY can be related to the capability of genotypes to be more 

photosynthetically active by keeping higher stomatal conductance and lower canopy 

temperature. Hence, genotypes with a higher resistance to drought and heat can be 

identified as plants with cooler leaves (Berger et al., 2010). 

Comparative Performance of Ground Versus Aerially Assessed Indexes 

Considering that time has been one of the largest limitations to phenotyping under 

field conditions, the possibility to incorporate remote sensing methodologies onto UAVs 

enabled the characterization of a larger number of plots, precisely and efficiently, while 

helping to minimize the effect of the changing environmental conditions during the 

sampling (Araus & Cairns, 2014). The successful implementation of aerial platforms with 

the assembly of imaging sensors has been extensive for assessing crop performance under 

different growing conditions, for phenotyping and precision agriculture purposes.  
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In all of our studies, ground and aerial measurements were taken at the same time 

on the same day in order to reduce the most the variation in the environmental factors 

such as light intensity. Though, main differences are due to the resolution of the images: 

even using cameras with the same sensor size, the distance between the camera and the 

crop canopy will affect the spatial resolution of the image. This might be relevant because 

as higher is the image resolution the plants in the image are better defined, while in low 

resolution images the boundaries between soil and vegetation could be diffuse (Torres- 

Sánchez et al., 2014). When indices of vegetation cover are calculated, as GA or GGA, 

the reduction in the number of total pixels in the image could negatively affect the 

identification of differences in vegetation color.  

In our results with maize studies, particularly in Chapters 1 and 2 when the 

measurements were taken in early stages, these limitations are underlined since the 

densities of the canopies were low, more soil background was captured in the images and 

accurate plant cover are more important. In terms of spatial resolution, the performance 

of RGB indices measured at ground level was better than that of the same VIs assessed 

from aerial platforms. Nevertheless, advances in digital photography allow new sensors 

with higher resolutions which may overcome the inherent problem of a low resolution 

when images are acquired from aerial platforms. Another important issue is that aerial 

photographs facilitate the coverage of the whole plot and therefore overcoming canopy 

heterogeneity, while this is usually not possible for the images taken at ground level, and 

then the whole variability of the plot might not be captured in just one image. In Chapter 

4, and together with the RGB images, NDVI was assessed from both levels (aerial and 

ground). The ground measurements with the GreenSeeker performed slightly better than 

the NDVI derived from the aerial images. Despite those methodological differences, both 

approaches offered essentially similar kinds of information as indicated the correlation 
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coefficients calculated between the same indices measured at ground and aerial level in 

both maize and wheat studies. However, in the case of tall crops such as maize, ground 

evaluations might result difficult in advanced phenological stages. In Chapter 4, an 

innovative option has been proposed by the attachment of a camera to a very long “pheno-

pole”. However, it only permitted coverage of a portion of the plot and therefore did not 

account for the possible heterogeneity of the plot. 

In the case of CT, measurements performed clearly much better as GY predictors 

when were assessed at aerial level than at ground level, arising the benefits of UAV 

platforms overcoming environmental variability restriction by the characterization of a 

large number of plots faster. Because temperature can fluctuate quickly due to 

miscellaneous factors (e.g., sun illumination angle, wind, occurrence of clouds), it is of 

profound importance to screen the whole trial as quickly as possible, in order to have 

comparable data across all the plots. Manual evaluations at ground level, even taken in 

short time intervals, can be affected by the constant changes in the environmental 

conditions. Thus, hand-held infrared thermometers can be problematic in large field 

studies due to the temporal changes during the time required to measure all plots (Deery 

et al., 2016).  

For the implementation of the phenotyping platform, apart from the accuracy of 

the measurements, there are other methodological approaches to consider. Firstly, despite 

UAVs have reached comparatively affordable prices, the associated cost entailed in their 

employment (the cost of the aerial platform and the requirement of qualified operators) 

still makes them a relatively expensive approach in some cases. Moreover, the existence 

of legal restrictions limits the adoption of these methodologies in some countries, 

particularly their deployment from aerial platforms. Another aspect to consider is the 

sizeable technical capacity necessary for data processing, from radiometric calibration of 
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the images and the creation of a georeferenced ortho-mosaic to ensure effective data 

extraction and analysis. For these reasons, ground-based or hand-held methodologies 

might be more feasible alternatives in certain circumstances due to their low cost and easy 

management. To overcome the limitations of segmentation the aerial images, in this thesis 

the MosaicTool software was developed for a semi-automatic segmentation of the 

complete field images and to formulate vegetation indices for both RGB, multispectral 

and thermal images. We included an easy mechanism to select a field column, then 

segment plots into images with the same dimensions and replicate the same for the whole 

columns.  

Assessment of plant traits across the crop season: when is the best moment to 

measure 

After dissecting what to measure and how to do it, another important issue is 

decide when to measure. The crop phenology varies due its growth dynamics; likewise, 

the potential trait estimation of the different VI shifts in time (Fernandez-Gallego et al., 

2019). While in early stages VIs might be driven mainly by differences in early vigor, 

crop establishment and in general crop density; in more advanced phenological phases, 

when the canopies have a higher cover density, differences in VIs will respond to 

differences in crop status. Initial crop vigor measurements would help to monitor a better 

crop establishment and growth, but during more advances stages the measurements are 

more affected by how photosynthetically active the crop is. This is the case for example 

of the stay green, which occurs during the last part (usually the reproductive one) of the 

crop. However, and unless a determined phenotypic trait is targeted, it may be worth to 

explore the application of these VIs across the phenology of the crop and identify which 

VIs and in what moment may be key to predict final yield. Therefore the power of these  
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traits predicting yield could vary, not only across crops, but also across environments, 

which have to be taken into consideration (Gracia-Romero et al., 2019).  

The high correlations against grain yield obtained in the VIs measured at seedlings 

stages of the maize studies of Chapters 1 and 2, highlight the importance of cultivars with 

a good early establishment under unfavorable soil conditions such as phosphorus 

limitations. Otherwise, Chapter 4 reported also good correlations against yield using crop 

coverage and canopy greenness measurements, by detecting those plants with better 

nitrogen status.  

Finally, the wheat studies performed in Chapters 3 and 5 permitted the evaluation 

of different phenological moments. The performance of the proposed approaches as 

phenotyping methodologies was tested during the stages of heading, anthesis and grain 

filling, and the yield prediction reported varied significantly in each environment. Such 

variability can be related to differences in crop development, due to the wide range of 

environmental and growing conditions associated to the combination of location, year 

and agronomical trials factors on the environment. Climatic variability in precipitation 

and temperature is responsible of affecting crop development, and thus, the timing of the 

stress affects the accuracy of a trait assessing GY. The first symptoms of drought stress 

experienced by the wheat cultivars were related to leaf expansion and crop growth. 

Therefore, during heading and anthesis the most useful selection traits for yield 

improvement were biomass measurements, as the RGB indices like GA or multispectral 

like NDVI. In most cases assessed, the spectral-resolution precision of the multispectral 

VIs performed well assessing genotypic differences in GY, but when canopies were found 

to be very dense (for example under support irrigation), VIs were saturated. In these cases, 

higher spatial resolution of the RBG images allowed indexes like the NGRDI or TGI to 

perform close to or even surpass the multispectral VIs. A low crop area growth of the 
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cultivars assessed through VIs have been reported to be significant for limiting yields due 

a marked reduction in growth caused by stress, whereas cultivars with higher 

aboveground biomass may be related to a better water and nutrient availability. Moving 

to anthesis and early phases of grain filling, measures of the actual photosynthetic 

capacity of the cultivars were highlighted as critical traits for GY. At the final stages of 

grain filling, results reported the delay of the ripening process and maintaining the canopy 

greenness as one of the most important traits of the high-yielding phenotypes. Despite 

this was quite regular among the trials assessed, the performance of the measurements 

depends directly on the environmental conditions. In certain conditions as the rainfed N 

limited trials of Valladolid, the detection with VIs of shorter phenology cycles was 

correlated with higher yields, letting cultivars scape drought.  Therefore, it is necessary 

to dissect all these data to determine what needs to be measured, when it needs to be 

measured, and how it should be measured in relation to our purpose, which in this instance 

is forecasting yield. A better understanding of the strengths and limitations of these 

indices may help to forecast production, but also to improve crop monitoring associated 

with management practices. 

Application of stable isotopes for plant phenotyping 

In addition to proximal sensing approaches, the analysis of stable isotopes may 

complement direct phenotyping under field conditions. The stable carbon (δ13C) and 

nitrogen (δ15N) isotope compositions, when analyzed in plant matter, inform on the water 

regimen and nitrogen metabolism conditions, respectively, of the plant (Yousfi et al., 

2012). When breeding for yield potential and adaption to abiotic stresses such as drought, 

δ13C in dry matter is a promising tool estimating the effect of water status on stomatal 

conductance thorough the crop cycle (Monneveux et al., 2007).  
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For both maize, δ13C positively correlated with yield, and for wheat correlations 

were reported negative, whatever the growing conditions. It is important to note that the 

fractionation of maize, as a C4, plant is less severe than wheat, as a C3, and thus, δ13C 

values will be more negative in wheat than in maize (Farquhar et al., 1989). For maize, 

in Chapter 1, 2 and 4, significant differences were not found in δ13C from the cob leaf 

between the P fertilization treatments nor the CA and CP practices, as those conditions 

did not affect the water status of the crops. However, in Chapter 4, higher N concentration 

in leaves caused a decrease in δ13C, as result of rather increase of biomass and then 

increase stress or as response of a photosynthetic capacity boost (Vergara-Díaz et al., 

2016). For wheat, in Chapter 5, high negative correlations between δ13C analyzed in 

mature grains and GY suggested that the best genotypes in all tested environments were 

these exhibiting better water status and thus higher stomatal conductance. The δ15N has 

been used to study the dynamics of N in soil–plant systems (Choi et al., 2003), reporting 

values closer to zero when the origin of the N-fertilizer is synthetic. This effect was 

reported in maize in Chapter 4, as the δ15N was higher as the top-dressing rate of N 

fertilization increased. For wheat, in Chapter 5, positive significant correlations were 

reported between δ15N and GY in the rainfed and low-N conditions, suggesting those 

cultivars with better ability to uptake soil N.  

Challenges and opportunities of grain yield prediction models based on phenotyping 

data 

Unlocking the potential of the amounts of data collected from HTTP is one of the 

major challenges of phenotyping (Coppens 2017). Since the main goals of most breeding 

programs focuses on increasing grain yield, most of the efforts for the extraction of useful 

information from the phenotyping assessments relies on the development of algorithms 

of GY forecasting. Conventionally, crop yield models are based in response functions 
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between yield and some input variables. In our studies with both maize and wheat, GY 

prediction models were built by the combination of different variables into step-wise 

regressions models, which the choice of predictive variables is carried out by an automatic 

procedure. In Chapters 1 and 2, the ability of remote sensing indices measured from the 

UAV platform was tested using multivariate linear models built using the step-wise 

regression approach. The combination of different indices improved the strength and 

accuracy of the assessment of grain yield of simple correlations using a single trait. In 

Chapter 3, step-wise regressions performed combining indices measured at different 

phenological stages of wheat reported higher accuracies than the predictions using 

information of the same phenological stage.   

Owing to the needs of achieving accurate prediction models, recent approaches 

are involving the use of machine learning to aid the interpretation of data by the 

development of algorithms built from training sets (van Klompenburg et al., 2020). In the 

wheat study of Chapter 5, a feature selection method regression was performed across all 

the measurements along the phenology to assess which measurements were more critical 

to predict GY. To do so, the method used was the least absolute shrinkage and selection 

operator (LASSO). LASSO is a method for the estimation of linear models proposed by 

(Tibshirani, 1996) that minimizes the sum of square errors and performs an automated 

feature selection as part of the estimation procedure. The performance prediction yield of 

all the variables measured was estimated across 100 repetitions and the more times 

selected variables were used to build the models.  

Several empirical and mathematical yield modeling using machine learning 

methods have been implemented for different crops (Dourado-Neto et al., 1998), and 

given its flexibility and the limited number of inputs required, LASSO-based approaches 

are reported as one with the highest potential for being operationally used to support 
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breeders in the identification of the best varieties for production (Ogutu et al., 2012). 

Vergara-Diaz et al., 2020 proven the performance of LASSO models with metabolic data 

to predict yield as well as providing relevant information to the understanding of wheat 

physiology. 
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CONCLUSIONS 

The development of field-based phenotyping technologies with the capability to non-

destructively capture of plant traits and their incorporation into aerial based platforms to 

improve high throughput capacities should become an integral and key component in the 

breeding pipeline. However, to correctly implement these methodologies in phenotyping 

studies, it is important to determine which parameters to measure and the optimal 

phenological moments to measure them for obtaining the best predictors of genotypic 

variability. The advances on phenotyping will help to develop accurate yield predictions 

models, fundamental to accelerate the selection process. 

- Advances in remote sensing technologies have enhanced the phenotyping process 

through the development of low-cost and easy-to-handle tools. Field deployment 

of various sensors enhances the capacity and impact of agricultural studies by 

increasing the number and variety of genotypes tested. The use of devices like the 

GreenSeeker to assess NDVI, infrared thermometers or chlorophyll and other 

pigments using leaf-clip sensors help to characterize biomass parameters, water 

status or photosynthetic capacity easily, and were reported as good indicators of 

maize and wheat yield.  

- Increasing the throughput capacity of phenotyping platforms is key for reducing 

the efforts associated to measuring elevated numbers of plots in a frequent basis. 

In that sense, UAVs present an excellent opportunity to monitor large areas with 

high spatial and temporal resolution. In the cases that the adoption of UAV 

technology can be limited, the attachment of a camera to a pole represents an 

innovative option for canopy assessments of tall crops such as maize. 

- Imaging methodologies play a vital role for the phenotyping data collection of 

complex traits related to the growth, yield and adaptation to abiotic stress. Ground 
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and aerial assessments of the same traits performed very similarly assessing 

genotypic GY differences. Nevertheless, incorporating imaging methodologies 

into aerial-based platforms permits to cover larger experimental areas in less time, 

minimizing the temporal variation in environmental variables, like occurrence of 

clouds, while the effect platform distance to the target canopy on the image 

resolution have a low impact on the measurements. Most clear benefits were 

reported in the canopy temperature assessments, which aerial measurements 

performed better predicting GY than the ground evaluations. 

- There is a need for phenotyping tools which increase the selection efficiency and 

to understand mechanisms of nutrient deficiency tolerance. In that sense, the 

calculation of above-ground biomass VIs of maize development will help in the 

selection of better performing cultivars and to monitor yields. 

- Significant yield benefits in Sub-Saharan Africa are possible under conservation 

agriculture practices with an adequate nitrogen and residue cover management. 

Here, remote sensing tools could help to monitor N fertilizer input efficiency to 

optimize GY, but the application of these techniques under CA can be affected by 

the noise of the soil cover with stover. The application of a vegetation mask based 

on NDVI values helped to overcome that limitation and improved the grain yield 

predictions.  

- A better understanding of the strengths and limitations of the measurements across 

crop phenology will help to find the best moments to perform the samplings and 

thus improve the GY forecasting. Increasing wheat yield potential under water-

limited environments is possible through delaying leaf senescence and extending 

the duration of grain filling. Stay-green traits derived from higher values of Vis, 
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particularly during grain filling, reported to be indicative of higher grain yields in 

the Mediterranean type climates where the trials were conducted. 

- Independently of the measurement of green biomass amounts, which informs on 

the potential photosynthetic capacity, differences in photosynthetic efficiency 

reported to be of great importance while assessing genotypic differences in wheat 

yield. Changes in concentration of leaf pigments, canopy multispectral VIs like 

PRI and water status indicators like CT were key traits for estimation of the 

photosynthetic variability induced by heat and drought when measured during 

flowering and reproductive stages.  

- Since data collection is no longer considered as a bottleneck concern partly thanks 

to the use of UAVs platforms, new tools to overcome the data analysis barrier are 

needed. The goal is about automating the image processing and analysis for the 

extraction of VIs. In the case of image segmentation for UAV plant phenotyping 

studies, in this thesis we developed the MosaicTool software, that permitted the 

semi-automatic segmentation of the complete field images (RGB, multispectral 

and thermal) and then the rapid formulating of VIs. 

- Despite being a low-cost tool, VIs derived from conventional RGB cameras are 

presented as a robust alternative to the use of other more expensive and 

sophisticated methodologies. The colour properties calculations of the canopy in 

high resolution images are valuable information of crop variability, even 

performing better than the multispectral and thermal approximations.  

- Yield forecasting statistical models, aside from predict crop production, can be 

practical for exploring the opportunities of different cultivars on specific 

cultivation areas. Models based on phenotypic data help to understanding the 

interactive effects of genotypes with the agronomic and environmental factors on 
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crop performance by the description on ideotypes for specific agro-climatic 

conditions.  
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RESUM DE LA TESI 

La producció de suficient aliment per a una població cada cop més gran és un dels reptes 

més importants per al pròxim segle. Per assolir la demanda, la productivitat dels cultius 

han d’augmentar alhora que fan front als efectes del canvi climàtic com increment de les 

temperatures i la intensitat dels períodes de sequera. La millora de la capacitat dels cultius 

és un element clau per a l’adaptació a aquestes condicions més exigents i la selecció de 

varietats més productives sota ambients específics requereix una millor comprensió de 

l’aclimatació dels cultius als estressos. La recerca en fenotipatge de cultius té com 

objectiu el desenvolupament  de noves metodologies d’alt rendiment capaces de 

caracteritzar característiques d’interès de les plantes d’una manera no destructiva. Sota 

condicions de camp, l’aplicació de metodologies tradicionals en experiments grans 

laboriós i requereix molt de temps. El principal objectiu d’aquesta tesi ha estat el 

desenvolupament i estudi diferents metodologies de caràcter versàtil, precises i d’alta 

capacitat per a millorar les mesures de com es desenvolupen els cultius, alhora de que es 

redueixen els costos i el temps requerit per a fer els mostrejos. El treball es basa en dos 

dels principals cereals: el blat i el blat de moro. L’ús de vehicles aeris no tripulats (UAV, 

del anglès Unmanned Aerial Vehicles) equipats amb càmeres i sensors (RGB, 

multiespectrals i termals) permet mesurar simultàniament hectàrees de camps 

experimentals d’una manera ràpida, precisa i sense la destrucció de mostra. Tot i així, les 

mesures a nivell de terra també són una alternativa prou potent pel que fa el cost i la 

resolució espacial. La capacitat d’aquestes metodologies per a mesurar diferencies 

genotípiques en el rendiment del blat de moro i el blat ha estat analitzada sota diferents 

condicions de creixement com la deficiència de nutrients, pràctiques de agricultura de 

conservació, sequera i altes temperatures. Per una banda, els estudis de blat de moro es 

van desenvolupar a Zimbabwe i estaven focalitzats en l’avaluació de genotips sota 



 

200 
 

condicions diferents de fòsfor o en l’aplicació de l’agricultura de conservació per 

combatre la pobresa mineral dels sòls. En aquests estudis, les mesures relacionades amb 

paràmetres de biomassa aèria durant estadis primerencs de desenvolupament va funcionar 

bé com a indicadors de rendiment. A més, durant estadis fenològics més avançats, 

mesures de color de la capçada del cultiu van estar associats tant amb el rendiment com 

amb el contingut de nitrogen en les fulles. En el cas del blat, les evaluacions es van dur a 

terme a diferents latituds d’Espanya, cobrint un ampli rang de condicions climàtiques i 

agronòmiques. Els mostrejos es van realitzar en diferents estadis fenològics. En termes 

generals, els indicadors de biomassa i d’estat hídric del cultiu han estat de les mesures 

més correlacionades amb el rendiment. L’endarreriment de la senescència del cultiu en 

els ambients on l’aigua era el factor més limitant i el potencial fotosintètic mesurat per 

index multispectrals durant la floració del cultiu han estat rellevants sota condicions de 

sequera i sembra tardana, respectivament.  
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