

Contributions to automatic configuration
and selection for satisfiability

Josep Pon Farreny

 http://hdl.handle.net/10803/673622

ADVERTIMENT. L'accés als continguts d'aquesta tesi doctoral i la seva utilització ha de respectar els drets

de la persona autora. Pot ser utilitzada per a consulta o estudi personal, així com en activitats o materials
d'investigació i docència en els termes establerts a l'art. 32 del Text Refós de la Llei de Propietat Intel·lectual
(RDL 1/1996). Per altres utilitzacions es requereix l'autorització prèvia i expressa de la persona autora. En
qualsevol cas, en la utilització dels seus continguts caldrà indicar de forma clara el nom i cognoms de la
persona autora i el títol de la tesi doctoral. No s'autoritza la seva reproducció o altres formes d'explotació
efectuades amb finalitats de lucre ni la seva comunicació pública des d'un lloc aliè al servei TDX. Tampoc
s'autoritza la presentació del seu contingut en una finestra o marc aliè a TDX (framing). Aquesta reserva de
drets afecta tant als continguts de la tesi com als seus resums i índexs.

ADVERTENCIA. El acceso a los contenidos de esta tesis doctoral y su utilización debe respetar los

derechos de la persona autora. Puede ser utilizada para consulta o estudio personal, así como en
actividades o materiales de investigación y docencia en los términos establecidos en el art. 32 del Texto
Refundido de la Ley de Propiedad Intelectual (RDL 1/1996). Para otros usos se requiere la autorización
previa y expresa de la persona autora. En cualquier caso, en la utilización de sus contenidos se deberá
indicar de forma clara el nombre y apellidos de la persona autora y el título de la tesis doctoral. No se
autoriza su reproducción u otras formas de explotación efectuadas con fines lucrativos ni su comunicación
pública desde un sitio ajeno al servicio TDR. Tampoco se autoriza la presentación de su contenido en una
ventana o marco ajeno a TDR (framing). Esta reserva de derechos afecta tanto al contenido de la tesis como
a sus resúmenes e índices.

WARNING. Access to the contents of this doctoral thesis and its use must respect the rights of the author. It

can be used for reference or private study, as well as research and learning activities or materials in the
terms established by the 32nd article of the Spanish Consolidated Copyright Act (RDL 1/1996). Express and
previous authorization of the author is required for any other uses. In any case, when using its content, full
name of the author and title of the thesis must be clearly indicated. Reproduction or other forms of for profit
use or public communication from outside TDX service is not allowed. Presentation of its content in a window
or frame external to TDX (framing) is not authorized either. These rights affect both the content of the thesis
and its abstracts and indexes.

http://hdl.handle.net/10803/673622

LOG
Logic and Optimization Group

PhD Thesis

Contributions to automatic configuration
and selection for satisfiability

Josep Pon Farreny

Thesis submitted in partial fulfilment of the degree Doctor of Philosophy
Doctoral program in Engineering and Information Technologies

Supervisor
Dr. Carlos Ansótegui Gil

2021

Acknowledgements

This work would not have been possible without the people who have accompanied
me throughout the process. I want to start by thanking my supervisor, Carlos
Ansótegui, his advice, creativity, and rigor, have shaped this work and laid the
foundations for my development in the challenging task that is research. I also want
to thank my colleagues at UdL, Eduard and Jesus, with them I spent many joyful
moments that made the journey more pleasant.

I also want to express my gratitude for Dr. Meinolf Sellmann for the opportunity
of visiting his research group at IBM. It was an enriching experience that helped me
grow personally and professionally.

To my two dogs, Puc and Valentina, which offered me simple, predicable mo-
ments that served as a safe place to escape and ease my mind.

Finally, I would like to express my deepest gratitude to my close ones. My
family that has been there any time for anything, without your support I would
not have been able to pursue all my goals, and to my life partner, Sandra, for her
unconditional support, guidance, love and for giving me the most precious thing in
my life, my daughter Júlia.

i

Abstract

Within the computer science community, it is well known that algorithms may ex-
hibit completely different behaviours depending on how their parameters are config-
ured. This is even more obvious when the problems being tackled are NP-Complete.
For example it has been proved experimentally that configuring solvers for the SAT-
isfiabilty (SAT) problem, the Maximum SATisfiability (MaxSAT) problem or for
Mixed Integer Programming (MIP), can result in improvements of orders of magni-
tude.

In this thesis, we show how automatically configured metahueristic algorithms
can efficiently solve families of industrial and crafted instances of the MaxSAT prob-
lem. Then, we focus on improving the automatic algorithm configurator GGA
providing a new distributed configurator which outperforms GGA on families of
industrial and crafted SAT and MIP instances.

Finally, in our aim of making this technology more accessible for all research com-
munities and industry we present the tool PyDGGA that implements our new con-
figurator. We additionally introduce the OptiLog framework for rapid prototyping
of SAT-based systems that also incorporates a module for automatic configuration
for the easy application of several configuration tools.

ii

Resum
En l’àrea de les ciències de la computació, és sabut que els algoritmes poden ex-
hibir comportaments completament diferents depenent de com estiguin configurats
els seus paràmetres, fet que s’aguditza quan els problemes que s’aborden són NP-
Complets. Per exemple, s’ha demostrat experimentalment que configurar solvers
pels problemes de la SATisfactibilitat (SAT), la Màxima SATisfactibilitat (MaxSAT)
o la programació lineal d’enters mixta (MIP), pot resultar en millores d’ordres de
magnitud.

En aquesta tesi, mostrem com algoritmes metaheurístics configurats de manera
automàtica poden resoldre de forma eficient diverses families d’instancies industrials
i artificails del problema MaxSAT. A continuació, ens centrem a millorar el config-
urador automàtic d’algoritmes GGA proporcionant un nou configurador distribuït
que el supera en diverses famílies d’instancis industrials i artificials dels problemes
SAT i MIP.

Finalment, per fer aquesta tecnologia més accessible a totes les comunitats cien-
tífiques i la indústria, presentem l’eina PyDGGA que implementa el nostre nou
configurador. A més, presentem el paquet OptiLog, el qual permet la creació ràpida
de sistemes basats en SAT que addicionalment incorpora un mòdul de configuració
automàtica per facilitar l’ús de diverses eines de configuració.

iii

Resumen

En el área de las ciencas de la computación, es sabido que los algoritmos pueden
exhibir comportamientos completamente diferentes dependiendo de como estén con-
figurados sus parámetros, agudizándose este fenómeno cuando los problemas que
se abordan son NP-Completos. Por ejemplo, se ha demostrado experimentalmente
que configurar solvers para los problemas de la SATisfactibilidad (SAT), la Max-
ima SATisfactibilidad (MaxSAT) o la programación lineal de enteros mixta (MIP),
puede resultar en mejoras de órdenes de magnitud.

En esta tesis, mostramos cómo algoritmos metaheurísticos configurados de man-
era automática pueden resolver de forma eficiente diversas familias de instancias
industriales y artificiales del problema MaxSAT. A continuación, nos centramos en
mejorar el configurador automático de algoritmos GGA proporcionando un nuevo
configurador distribuido que lo supera en varias familias de instancias industriales
y artificiales de los problemas SAT y MIP.

Finalmente, para hacer que esta tecnología sea más accesible para todas las
comunidades científicas y la industria, presentamos la herramienta PyDGGA que
implementa nuestro nuevo configurador. Además, presentamos el paquete OptiLog
el cual permite la creación rápida de sistemas basados en SAT que adicionalmente
incorpora un módulo de configuración automática para facilitar el uso de varias
herramientas de configuración.

Contents

1 Introduction 1
1.1 Objectives . 2
1.2 Structure of this thesis . 2
1.3 Publications and Awards . 3

2 State-of-the-art 4
2.1 The Satisfiability Problem . 4
2.2 The Maximum Satisfiability Problem 5
2.3 The Integer Linear Programming Problem 5
2.4 The Automatic Algorithm Configuration Problem 5
2.5 The Automatic Algorithm Selection Problem 6
2.6 GGA: Gender-Based Genetic Automatic Algorithm Configuration . . 7
2.7 SMAC: Sequential Model-Based Algorithm Configuration 8
2.8 IRACE: Iterated Racing for Automatic Algorithm Configuration . . . 9
2.9 ISAC++: Improved Instance-Specific Algorithm Configuration 10

3 Reactive Dialectic Search Portfolios for MaxSAT 12
3.1 Hyper-Parameterization . 13
3.2 Dialectic Search . 13
3.3 Reactive Dialectic Search Portfolios 15
3.4 Experimental Results . 18
3.5 Conclusions . 22

4 Hyper-Reactive Tabu Search for MaxSAT 23
4.1 Hyper-Parameterized Reactive Tabu Search 24

4.1.1 Tabu Search Parameters . 24
4.1.2 Dynamic Search Features . 26
4.1.3 Hyper-Parameterization . 27

4.2 Hyper-Reactive Tabu Search for MaxSAT 28
4.3 Experimental Results . 28
4.4 Conclusions . 35

5 Boosting Evolutionary Algorithm Configuration 36
5.1 Improving Parallel Efficiency Using an Evolution Simulator 37

5.1.1 Experimental Results . 40
5.2 Improving GGA . 41

iv

v CONTENTS

5.2.1 Instance Selection Strategy . 41
5.2.2 Elite Mini-tournament . 42
5.2.3 Experimental Results . 42

5.3 Instance-Specific Parameter Selection 45
5.3.1 A Portfolio of All Parameterizations 46
5.3.2 A Portfolio of Selected Parameterizations 47
5.3.3 Selecting the Portfolio . 47
5.3.4 Experimental Results . 47

5.4 Conclusions . 52

6 PyDGGA: Distributed GGA for Automatic Configuration 53
6.1 Distributed Architecture . 53
6.2 Scheduling & Canceling . 54
6.3 Tool Enhancements . 55
6.4 Using PyDGGA . 55
6.5 Experimental Results . 57
6.6 Conclusions . 57

7 OptiLog: A Framework for SAT-based Systems 58
7.1 OptiLog Framework Architecture . 59
7.2 Formula Module . 59
7.3 SAT Solver Module . 60
7.4 PB Encoder Module . 60
7.5 Automatic Configuration (AC) Module 61
7.6 Adding SAT Solvers to OptiLog through iSAT Interface 62
7.7 Using OptiLog . 63
7.8 Experimental Results . 65
7.9 Conclusions . 65

8 Conclusion and Future Work 66

9 References 68

List of Figures

2.1 Visualization of automatic algorithm configuration. 6

3.1 Statistics recorded during search for two different HRDS parameter-
izations. 20

4.1 Normalized characteristics over the course of running three scpnre
instances, with seconds on the x axis. 32

4.2 Normalized characteristics over the course of running the scpnrg2
instance with two parameterizations, with seconds on the x axis. . . . 33

5.1 Evolution simulation graph . 39
5.2 Timeline of evaluations in GGA-E and GGA 40
5.3 # of Evaluations and Executions on IBM. 44

6.1 Master-Worker architecture . 54

7.1 OptiLog’s architecture. 59

vi

List of Tables

3.1 Average time to best bound and number of best upper bounds found
for HRDS and CDS. 17

3.2 Average time and number of best upper bounds found on MS, PMS
and WPMS crafted (top) and random (bottom) for WPM3, the var-
ious solvers developed in this chapter, and the top 3 solvers of each
category from the MaxSAT Evaluation 2016. 18

3.3 MaxSAT evaluation 2016 winners, with the average solution time
(sec.) and number of best upper bounds found. 22

4.1 Average score and number of instances solved for HRTS and SRTS
on MSE’16 instance families after 300 seconds. We also give number
of solved instances by local search solver ramp and the dsat/wpm3
portfolio from MSE’16. 30

4.2 Head-to-head comparison of maxroster and a maxroster+HRTS port-
folio. 35

5.1 Number of generations after 2 days elapsed time. 41
5.2 Number of generations after 2 days elapsed time. 43
5.3 PAR10 performance (# solved instances). 43
5.4 PAR10 Performance (# solved instances). Def (Default). Solved

(ratio of all solved instances). 48
5.5 Comparison with state-of-the-art, test performances. 51

6.1 PAR10 performance (# solved instances) on the test instances 57

vii

Chapter 1

Introduction

Over the years, researchers and engineers have developed countless algorithms to
address the vast array of problems that exist in computer science, and with the raise
of artificial intelligence technologies we are more aware of the impact they have in
our day-to-day. Nowadays, for many computational problems there are several viable
algorithms with its strengths and weaknesses, and it is the task of computer scientist
to find the ones that best match the domain-specific user requirements. To help the
final users adapt the algorithm to their tasks, these expose several lower-level choices
as parameters. By setting the parameters appropriately the algorithm may exhibit
a completely different behaviour, changing its strengths and weaknesses to improve
its efficiency for a particular task. A good example are constraint programming
solvers, these solvers have to make several decisions while exploring the problem
search space, many of which involve several heuristics. To put it in numbers, the SAT
solver SparrowToRiss [1], that we use later in this thesis, exposes 222 parameters
to the user. In this regard, algorithm configuration has emerged as an essential
technology for the improvement of high-performance solvers.

Other examples of parameterized algorithms can be found in areas as diverse as
sorting [2], linear algebra [3], numerical optimization [4], compiler optimization [5],
parallel computing [6], computer vision [7], machine learning [8, 9], database query
optimization [10], database server optimization [11], protein folding [12], formal
verification [13], and even in areas far outside of computer science, such as water
resource management [14].

Another area were algorithm configuration poses itself as an interesting research
venue is Metaheuristics, which are procedures developed to provide general purpose
approaches for solving hard combinatorial problems. These frameworks often serve
as the starting point for the development of problem-specific search procedures.
However, in practice, they very rarely work straight out of the box. An expert has
to experiment with an approach an tweak parameters, remodel the problem, and
adjust search concepts to achieve a reasonably effective approach.

In this thesis, we explore if automatic algorithm configuration is suited for meta-
heuristics by configuring Dialectic Search [15] and Reactive Tabu Search [16] for the
incomplete MaxSAT problem. As well as, more problem oriented algorithms such
as SparrowToRiss [1] for SAT problems and CEPLEX [17] for MIP problems.

Encouraged by the potential of automatic configuration algorithms we pursue a

1

2 CHAPTER 1. INTRODUCTION

more challenging goal which consist on further improving these sophisticated and
already advanced algorithms. To this end, we introduce several modifications to
GGA [18], an existing state-of-the-art algorithm for automatic configuration, what
constitutes the main result of this thesis. In particular, we improve GGA’s parallel
performance, as well as the configuration process itself.

Last but not least, we take a step forward on making as accessible as possible to
our research community, other fields and industry the algorithms we have designed
and implemented. In this sense, within the Logic & Optimization Group (LOG) at
UdL, we have developed the tool PyDGGA, that resulted of our attempt to im-
prove GGA, and OptiLog, a Python framework for rapid prototyping of SAT-based
systems that leverages the power of automatic configurators by allowing to easily
create configuration scenarios including multiple solvers and encoders. The tool
PyDGGA and Optilog framework have been already applied to several industrial
projects where the LOG group is involved as well as several research papers not part
of this thesis.

1.1 Objectives
The main objective of this thesis is contribute to the advancement of automatic
algorithm configuration technology. In particular, we want to improve their perfor-
mance when configuring constraint programming solvers, as we deem the synergy
between these two technologies will play an important role in the development of
future industrial solutions. In order to reach the main goal, we focus on the following
objectives:

• Study and evaluate if automatic algorithm configuration is capable of config-
uring metaheuristic algorithms for the MaxSAT problem.

• Identify strength and weaknesses of a current state-of-the-art algorithm con-
figurator in order to improve it. In particular we focus on the evolutionary
algorithm GGA [18].

• Propose and evaluate different solutions to boost GGA’s performance.

• Implement and make publicly available tools that let non-expert users integrate
automatic algorithm configuration in their systems.

1.2 Structure of this thesis
The first chapter is devoted to the introduction of this thesis. Chapter 2 details the
algorithm configuration problem, the problems tackled in this thesis using automatic
configuration, and the state-of-the-art algorithms for automatic algorithm configu-
ration. Chapters 3 and 4, evaluate automatic algorithm configuration applied to
the metaheuristic algorithms: Dialectic Search [15] and Reactive Tabu Search [16].
In chapter 5 we present different improvements for GGA and prove its effectiveness
experimentally. The next two chapters 6 and 7 are devoted to the two tools created

3 CHAPTER 1. INTRODUCTION

during the development of this thesis. Finally, in chapter 8 we conclude and present
ways of extending the work done in this thesis.

1.3 Publications and Awards
The research conducted during the development of this PhD thesis has been pre-
sented in articles published or submitted to journals and conferences. In addition,
the solutions developed were submitted to international competitions and won sev-
eral awards. Next, we list our contributions and the achieved awards.

• C. Ansótegui, J. Pon, M. Sellmann, and K. Tierney, “Reactive dialectic search
portfolios for maxsat,” in Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA
(S. P. Singh and S. Markovitch, eds.), pp. 765–772, AAAI Press, 2017

• C. Ansótegui, B. Heymann, J. Pon, M. Sellmann, and K. Tierney, “Hyper-
reactive tabu search for maxsat,” in Learning and Intelligent Optimization -
12th International Conference, LION 12, Kalamata, Greece, June 10-15, 2018,
Revised Selected Papers (R. Battiti, M. Brunato, I. S. Kotsireas, and P. M.
Pardalos, eds.), vol. 11353 of Lecture Notes in Computer Science, pp. 309–
325, Springer, 2018

• C. Ansotegui, J. Pon, and M. Sellmann, “Boosting evolutionary algorithm
configuration,” Annals of Mathematics and Artificial Intelligence, 2021

• C. Ansótegui, J. Pon, M. Sellmann, and K. Tierney, “PyDGGA: Distributed
GGA for Automatic Configuration,” in Theory and Applications of Satisfia-
bility Testing - SAT 2021 - 24th International Conference, Barcelona, Spain,
July 5-9, 2021, Submitted for publication

• C. Ansótegui, J. Ojeda, A. Pacheco, J. Pon, J. M. Salvia, and E. Torres, “Op-
tiLog: A Framework for SAT-based Systems,” in Theory and Applications of
Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Submitted for publication

In addition to the articles, for our first contribution [19] we entered the MaxSAT
evaluation 2016 [24], incomplete track, and won 10 medals: 4 gold, 2 silver and 4
bronze.

Chapter 2

State-of-the-art

To better understand the subjects explored in this PhD thesis, let us introduce
the automatic algorithm configuration problem and the problems tackled by the
algorithms being configured, Boolean Satisfiability (SAT), Boolean Maximum Sat-
isfiability (MaxSAT) and Integer Linear Programming (ILP).

2.1 The Satisfiability Problem
The Boolean satisfiability (SAT) problem was the first problem proven to be NP-
complete by Stephen A. Cook [25] and has since become the quintessentially NP-
complete problem. It consists in determining if there is an interpretation that satis-
fies a Boolean formula. The following definition assumes the formula is in conjunctive
normal form (CNF), which is the format used in the SAT competitions.

A Boolean formula is composed by truth variables, which are variables that either
take true or false as their value. Such an assignment is called a truth assignment.
A literal is a truth variable (positive literal) or its negation (negative literal). A
positive literal is said to evaluate to true iff its variable is set to true, likewise a
negative literal is said to evaluate to true iff its variable is set to false.

In a formula, literals are grouped in clauses. A clause, in CNF, is a disjunction
of zero or more literals, and is said to be satisfied under a truth assignment or
interpretation of its variables, if at least one of the literals in the clause evaluate to
true. Otherwise the clause is said to be falsified.

Finally, A SAT formula in CNF, is a conjunction of zero or more clauses and
is said to be satisfiable if there is at least one interpretation that satisfies all the
clauses. Otherwise the formula is said to be unsatisfiable.

In CNF, the empty clause, denoted �, is equivalent to the identity of the dis-
junction, false. Thereby, the empty clause is always falsified. Following the same
reasoning, the empty formula is equivalent to the identity of the conjunction, true.
Thereby the empty formula is always satisfied.

4

5 CHAPTER 2. STATE-OF-THE-ART

2.2 The Maximum Satisfiability Problem
The Boolean Maximum Satisfiability (MaxSAT) problem is the optimization version
of the SAT problem introduced before, and is further divided in (plain) MaxSAT,
Partial MaxSAT (PMS) and Weighted Partial MaxSAT (WPMS).

MaxSAT is an important problem because several significant practical problems
can be formulated naturally as MaxSAT problems. To name just a few, examples
range from scheduling [26] to FPGA routing [27] to circuit design and debugging [28].

Following the definition of the SAT problem, in MaxSAT a clause is augmented
with a weight to form a weighted clause (C,w), where C is a clause and w is a
natural number or infinity, indicating the cost for fasifying clause C.

A WPMS formula is a set of weighted clauses ϕ = {(C1, w1), ..., (Cm, wm),
(Cm+1,∞), ..., (Cm+m′ ,∞)} where the first m clauses are called soft clauses and
the last m′ clauses are called hard clauses. The objective of the MaxSAT problem
is to find a truth assignment that satisfies all the hard clauses while minimizing the
total cost of all the soft clauses that are falsified.

A PMS is a WPMS formula where the weights of all the soft clauses are equal.
A (plain) MaxSAT formula is a PMS formula with no hard clauses. In both, PMS
and (plain) MaxSAT, it is usual to set the weight of the soft clauses to 1, in fact, for
CNF (plain) MaxSAT formulas the weight is omitted and assumed to have a value
of 1 by the solvers.

2.3 The Integer Linear Programming Problem
Integer Linear Programming (ILP) consists of two parts: a cost function and a set
J of constraints. Both parts involve a set X = {xi} of integer-valued variables, to
form linear functions of the general form shown in 2.1 and 2.2 respectively.

C =
∑
i

aixi with ai ∈ R, xi ∈ Z (2.1)

∀j ∈ J :
∑
i

bi,jxi ≥ cj with bi,j, cj ∈ R, xi ∈ Z (2.2)

The ILP problem is the problem of minimizing/maximizing the cost function,
subject to a set of constraint functions. Notice that ILP is a variant of Linear
Programming (LP), but the variables are restricted take integer values, this subtle
restriction makes ILP an NP-complete problem. There is an extension of ILP were
only some of the variables xi ∈ X are restricted to take on integer values, in such
case the problem is called Mixed Integer Programming (MIP).

2.4 The Automatic Algorithm Configuration Prob-
lem

Given a target algorithm A with parameters {p1, . . . , pn} of domain d(pi). We define
the parameter space Θ of A as the subset d(p1)× . . .×d(pn) of valid parameter com-

6 CHAPTER 2. STATE-OF-THE-ART

binations. Depending on the parameter, d(pi) can be categorical, a discrete domain
of fixed values with no predefined order, or numerical, which represent integer or
real values. Then, we define the Automatic Algorithm Configuration (AAC) prob-
lem as the optimization problem that consists on exploring Θ to find a configuration
θ ∈ Θ of A, which given a set of problem instances Π, minimizes a cost metric
ĉ : Θ× Π→ R, without exceeding a configuration budget B.

It is common for A to be a black-box, meaning it accepts some inputs (the param-
eters) and provides some output (e.g., ĉ), but we cannot see its internal functionality.
This lets AAC generalize to any type of algorithm but makes it more difficult for
algorithm tuners, as they cannot use A to infer additional information about Θ.
Practically speaking, A is implemented as a binary file that outputs its results in a
format adequate for its domain, but likely not for the AAC tool. Moreover, it may
also be necessary to limit the resources that A can use to solve an instance, such as
memory or CPU time. The standard way of addressing these issues in AAC tools
is for the user to replace A with a wrapper script that handles these and any other
aspects that may be necessary.

Problem
Instances

Parameter
Space

Target
Algorithm

Returns solution cost

Configurator

Calls with different
parameters settings
and instances

Figure 2.1: Visualization of automatic algorithm configuration.

2.5 The Automatic Algorithm Selection Problem
The algorithm selection problem was introduced in [29]. An can be defined as, given

• a set Π of instances
• a set of algorithms A
• performance measure for each (instance, algorithm) pair m : Π×A → R

Find a mapping s : Π → A that optimizes the expected performance measure∑
i∈Π m(i, s(i))

In practice, the mapping i often implemented by using so-called instance features,
i.e., numerical characterizations of the instances. These instance features are then
mapped to an algorithm using machine learning techniques. However, the compu-
tation of instance features incurs additional costs, which have to be considered in
the performance measure m.

7 CHAPTER 2. STATE-OF-THE-ART

2.6 GGA: Gender-Based Genetic Automatic Algo-
rithm Configuration

Gender-Based Genetic Automatic Algorithm Configuration (GGA) is a genetic al-
gorithm to search for a high-quality parameterization introduced in [18]. It was one
of the first algorithms to support continuous parameters and introduced the concept
of gender to apply different selection pressures to the individuals of the population.

Algorithm 1 GGA
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Performance Metric ĉ,

Configuration Budget B, # MiniTournaments N
1: function GGA(A,Θ,Π, ĉ, N,B)
2: pop ← initPopulation(Θ)
3: j = 0
4: while B not exhausted and threshold not achieved do
5: j = j + 1
6: Πj ← selectInstances(Π, j)
7: <w1, ..., wN> ← runMiniTournaments(A, pop.comp, Πj , ĉ, pop.comp/N)
8: offspring ← applyCrossoverAndMutate(pop.noncomp, <w1, ..., wN>, Θ)
9: pop ← agingAndDeath(w1, pop) ∪ offspring

10: return w1

In particular, GGA (Alg.1) accepts a parameterized target algorithm A to be
configured, a parameter space Θ, a training set of instances Π, a performance metric
to be optimized ĉ (time, accuracy, quality after a fixed timeout, etc), the numberN of
GGA mini-tournaments (we will explain shortly what those are), and a configuration
time budget B.

Based on this information, GGA then runs its specialized genetic algorithm that
executes the target algorithm with different parameters in order to find a good
setting. The genome is defined by parameter settings and the fitness of each pa-
rameterization is defined as the algorithm performance as measured by the given
metric on the training inputs. GGA partitions the population into a competitive
and non-competitive group. The competitive group (pop.comp) is directly evaluated
on the target algorithm, whereas the non-competitive group simply acts as a source
of diversity. This allows GGA to use strong intensification procedures on one part of
the population while remaining diverse enough to escape local optima. All crossover
takes place between one competitive and one non-competitive individual.

To evaluate the genomes, a subset of the instances is randomly selected (Line 6)
at each iteration of the master loop (Line 4), which we call a “generation”. Then,
for the first generation we select the first k (5 by default) instances and then grow
linearly until roughly 75% of all generations have been carried out and the subset
becomes Π. When tuning for runtime, this procedure is efficient, because the, usually
rather bad, parameterizations at the beginning of the configuration process would
otherwise require a disproportionate fraction of the total configuration time, without
adding much value.

GGA uses a parallel racing scheme, a so-called “mini-tournament”, in which a

8 CHAPTER 2. STATE-OF-THE-ART

set of |pop.comp|
N

parameterizations from the competitive sub-population are evaluated
simultaneously (either by parallel execution on multiple cores or via threaded exe-
cution) on the selected inputs (Line 7). As soon as we have determined the winner
of a mini-tournament, all pending evaluations of other participants in the mini-
tournament are interrupted and terminated or removed from the queue. This racing
saves significant amounts of CPU time that would otherwise be spent evaluating
bad genomes.

The winners from each mini-tournament ({w1, . . . , wN}) are the only competitive
genomes that will parent new offspring in this generation (Line 8). An aging policy
(Line 9) is used to prevent population growth, whereby the overall best competitive
individual (referred as w1) survives as long as it performs better than the other
mini-tournament winners. For further details on GGA, we refer the reader to [18].

2.7 SMAC: Sequential Model-Based Algorithm Con-
figuration

Sequential Model-Based Algorithm Configuration (SMAC) is based on Bayesian
optimization [30]. The core motivation for using Bayesian optimization is that eval-
uations of a solver parameterization take a very significant amount of time: We
need to run the parameterized solver on the training instances to get a new data
point that quantifies the performance of the respective parameterization. This ob-
servation motivates spending a little more time for probing the parameterization
space intelligently. In Bayesian optimization, we use few evaluations of the target
solvers to train a so-called “surrogate model” that predicts the performance of the
solver for a given parameterization. Then, we can use this fast-to-evaluate surrogate
model to search for promising new configurations before we then tediously run a new
candidate parameterization on the training instances.

Algorithm 2 SMAC
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Performance Metric ĉ,

Configuration Budget B
1: function SMAC(A,Θ,Π, ĉ, B)
2: [R, θinc] ← initialize(Θ, Π)
3: while B not exhausted do
4: [M , tfit] ← fitModel(R)
5: [~Θnew, tselect] ← selectConfigurations(M , θinc, Θ)
6: [R, θinc] ← intensify(A, ~Θnew, θinc, R, Π, ĉ)
7: return θinc

SMAC (Alg.2), first initializes a best candidate configuration θinc and the, pos-
sibly empty, history of conducted evaluations of different (configuration, instance)
pairs R (Line 2). Then, until the configuration budget is exhausted, it fits a sur-
rogate model M (Line 4), using the information available in R. Once M has been
created, it uses it to select a new set of promising candidate configurations ~Θnew

9 CHAPTER 2. STATE-OF-THE-ART

(Line 5). Finally, it evaluates ~Θnew and θinc on instances from Π to determine the
next best candidate θinc, according to ĉ (Line 6).

A key point in SMAC is the exploration/exploitation trade-off, handled by mea-
suring how promising a candidate configuration, θ, is using the surrogate model’s
predictive distribution. To quantify it, they proposed a way to compute its expected
positive improvement EI(θ) [31], which is large for θ with low predicted cost (ex-
ploitation) and for those with high predicted uncertainty (exploration). Equipped
with this metric, they conduct a multi-start local search, from which they extract the
configurations with locally maximal EI, and combine them with randomly-sampled
configurations. Finally, they sort the resulting list of configurations in descending
order of EI.

2.8 IRACE: Iterated Racing for Automatic Algo-
rithm Configuration

Iterated Racing for Automatic Algorithm Configuration (IRACE) is an iterated
racing procedure, which is an extension of the Iterated F-race configurator [32].
IRACE iteratively runs the following 3 steps until a termination criterion is met, as
shown in Algorithm 3

1. Sample new configurations according to a particular distribution.
2. Evaluate the sampled configurations using a racing scheme.
3. Update the sampling distribution in order to bias the sampling towards the

best configurations.

Algorithm 3 IRACE
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Performance Metric ĉ,

Configuration Budget B
1: function IRACE(A,Θ,Π, ĉ, B)
2: Θ1 ← sampleUniform(Θ)
3: Θelite ← race(A,Θ1, ĉ, B)
4: j = 1
5: while B not exhausted do
6: j = j + 1
7: Θnew ← Sample(Θ, Θelite)
8: Θj ← Θnew ∪Θelite

9: Θelite ← race(A, Θj , Π, ĉ, B)
10: return Θelite

In IRACE, each parameter has an associated sampling distribution, which is
either a truncated normal distribution for numerical parameters, or a discrete dis-
tribution for categorical parameters. Normal distributions are updated by updating
the mean and standard deviation, while discrete distributions are updated by chang-
ing the probability value of each element. Initially these distributions are uniformly

10 CHAPTER 2. STATE-OF-THE-ART

initialized and used to select the first configurations Θ1 (Line 2), and then updated
during the search and used to sample new configurations (Line 7).

Similar to the idea of increasingly selecting more instances in GGA, IRACE
generates many configurations on the first iterations, where the sampling distribu-
tions are expected to generate configurations with very different performance re-
sults. Then, as more iterations are conducted, fewer and fewer configurations are
generated. The idea is that at some point the distributions will start producing con-
figurations with similar performance results, and more evaluations will be needed to
discern which are better. Hence, it makes sense to generate less configurations and
spend more time evaluating them.

During the racing procedure (Lines 3 & 4), after a minimum number of instances
have been evaluated, IRACE runs a statistical test every time a new instance is
evaluated on all the current configurations, Θj, as a selection heuristic to determine
which configurations should be discarded. Once the number of remaining configu-
rations is below a certain threshold the race stops and those configurations are the
Θelite of that iteration. For the statistical tests, IRACE relies on the non-parametric
Friedman’s two-way analysis of variance by ranks or the paired t-test, both with a
significance level of 0.05 by default.

2.9 ISAC++: Improved Instance-Specific Algorithm
Configuration

ISAC++ is an improvement over the original ISAC [33]. It is based on the assump-
tion that instance features are enough to determine which instances are similar in
nature, and, consequently, by clustering them we should expected groups that be-
have similarly under the same algorithm and configuration.

Algorithm 4 ISAC++ Training
Require: Target Algorithm A, Parameter Space Θ, Instances Π, Instances Features Πfeatures,

Performance Metric ĉ, Algorithm Tuner T
1: function TrainISAC++(A, Θ, Π, Πfeatures, ĉ, T)
2: clusters ← computeClusters(Π, Πfeatures)
3: configs ← []
4: performances ← []
5: for Πc ∈ clusters do
6: conf ← T (A, Θ, Πc, ĉ)
7: configs.append(conf)
8: perf ← evaluate(A, conf , Π, ĉ)
9: performances.append(perf)

10: portfolio ← CSHC(A, Π, Πfeatures, performances)
11: return portfolio

Therefore, when training (Alg.4), ISAC++ first clusters the training instances
according to their features (Line 2). The number of clusters is determined automat-
ically by the g-means [34] algorithm, which determines that a cluster can be split
into two if the projection of the points onto the line, that traverses the two new
centroids, does not follow a normal distribution.

11 CHAPTER 2. STATE-OF-THE-ART

Then, given a target algorithm A, it simply runs an instance-oblivious AAC
(Line 6), such as GGA, to produce a configuration that improves the performance
of A on each cluster. This means that ISAC++ will have to chose among as many
configurations as clusters.

Each of the resulting configurations is then evaluated on the whole training set
(Line 8), and, finally, results are used to train a cost-sensitive hierarchical cluster-
ing (CSHC)[35] algorithm selector (Line 10). At runtime (Alg.5), ISAC++ simply
computes the features (Line 2) and queries CSHC (Line 3) to select the best config-
uration for the given instance.

Algorithm 5 ISAC++ Run
1: function RunISAC++(A, portfolio, i)
2: ifeatures ← computeFeatures(i)
3: conf ← selectAlgorithm(ifeatures, portfolio)
4: return runAlgorithm(A, conf , i)

Chapter 3

Reactive Dialectic Search Portfolios
for MaxSAT

The meta-algorithmics community has seen major advances in recent years. On the
one hand, techniques for algorithm selection [36, 37] have led to major advances in
our ability to solve great ranges of different types of instances in various domains [38,
39, 40, 41, 35, 42]. On the other hand, algorithm configurators have advanced from
limited tuning approaches [43] to scalable, high-powered general methods [44, 18,
30, 45, 32]. Combining portfolios and automatic configuration has led to input-
specific tuners [46, 33, 47] that not only choose superior parameterizations for a
target algorithm, but also create new ones based on the input to be processed.

The methods above all focus on choices made before the actual target algorithm
is run. Approaches that aim at modifying algorithm behavior a posteriori during
the actual run have also been developed. The reactive tabu search (RTS) algorithm
from [16] is the prototypical example. RTS modifies the length of the tabu list dy-
namically during search depending on how the search progresses. Another example
is the Stage approach from [48], a heuristic local search method that analyzes search
trajectories to construct predictive evaluation functions that are used during search
to escape local minima. New theoretical results (e.g. by [49]) prove that dynamic
updates during search can guarantee strictly better asymptotic performance. In
addition, [50] argues that offline configuration can be used to create online control
strategies.

In this chapter we combine automatic, input-specific algorithm configuration
with reactive search to create a hyper-reactive search algorithm. We do so with the
objective of complementing an existing MaxSAT solver with a portfolio of automat-
ically generated search algorithms and thus achieve a more robust, state-of-the-art
heuristic MaxSAT solver.

We first review the concept of hyper-parametrized algorithms, followed by an in-
troduction to dialectic search and our new reactive metaheuristic. Finally, we apply
it to MaxSAT and compare it empirically with state-of-the-art MaxSAT solvers as
well as its non-reactive counterpart, both in combination with the existing solver
and in isolation. In the end, we obtain a solver that outperforms the state of the
art in various categories of heuristic MaxSAT solving, as assessed independently in
the 2016 MaxSAT Evaluation [24].

12

13
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

3.1 Hyper-Parameterization
The goal of reducing the reliance on human experts when solving search problems
has been the focus of a number of communities and works. We provide a brief
overview of the literature in this area.

Hyper-heuristics [51, 52] are “heuristics to choose heuristics”. Given a combina-
torial optimization problem to be solved, hyper-heuristics attempt to dynamically
choose the correct heuristic to apply at any given time, potentially switching be-
tween multiple search paradigms (genetic algorithms, local search, etc.) during
a single solution procedure. Reinforcement learning is used in [53] to adjust the
search strategies and parameters for a hyper-heuristic based great deluge algorithm
applied to a timetable examination problem. A further work in this area, [54], ad-
justs heuristic selections and adapts parameters dynamically with static, reactive
strategies during search.

Doerr and Doerr show that the population size of an evolutionary algorithm
can be optimally controlled for a generalized OneMAX problem [49, 55]. While
this result it not for a “real-world” problem, it provides strong evidence that online
adjustment strategies are much more effective than their static counterparts.

The idea of hyper-parameterizing local search was pioneered in [56] who in-
vented a solver named SATenstein. SATenstein is an approach for tackling the SAT
problem and can be instantiated to process like a number of successful local search
approaches that have been developed for SAT earlier. That is, SATenstein’s hyper-
parameters determine what search strategy is used. Therefore, SATenstein can be
trained for specific families of SAT instances using a parameter tuner. In fact, us-
ing instance-specific tuning, a solver like SATenstein can even be configured to set
its own hyper-parameters based on characteristics of the concrete instance to be
solved [46, 33]. Essentially, different instantiations of the same solver then form an
algorithm portfolio [37].

3.2 Dialectic Search
Dialectic search was introduced in [57], and its parameterized form is shown in
Algorithm 6. The algorithm accepts the following parameters:

f : The objective function to be optimized.
g: The size of the greedy candidate set as percentage of all variables in the prob-

lem.
al, au: A lower and upper bound on the percentage of variables to be changed to

construct an antithesis. The exact size of the change is then chosen uniformly
at random in the interval given whenever a new antithesis is generated.

pa: The probability of greedily improving the antithesis.
pr: The probability of restarting the search.

rl, ru: A lower and upper bound on the percentage of variables to be changed to
construct a new starting point. The exact size of the change is then chosen
uniformly at random in the interval for each restart.

14
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

Algorithm 6 Parameterized Dialectic Search
1: function Dialectic-Search (f, g, al, au, pa, pr, rl, ru)
2: Init(thes)
3: best← thes← Greedy(thes, g)
4: while not timeout do
5: while true do
6: anti←Modify(thes, al, au)
7: if AntiGreedy(pa) then
8: anti← Greedy(anti, g)

9: syn← Greedy(Merge(thes, anti), g)
10: if f(syn) < f(best) then best← syn

11: if f(syn) < f(thes) then
12: thes← syn
13: else if Restart(pr) then break
14: thes← Greedy(Modify(thes, rl, ru), g)

15: return best

The algorithm starts with an initial assignment to all variables, and aims to
improve this assignment in a greedy search, making the best individual variable
change in each step until any such change would lead to a worsening of the objective
function. Depending on the problem addressed, the greedy search itself may take
significant time. In dialectic search, we therefore randomly limit the search for a
best variable to only alter a set of candidate variables that are randomly selected in
each greedy step. If none of these can improve the objective, the greedy algorithm
halts, otherwise we make the best change of a candidate variable.

The resulting assignment is called the “thesis.” Dialectic search now alters parts
of the thesis, thus generating a so-called “antithesis” (function Modify). The an-
tithesis may be improved by a greedy search itself. Thus equipped with a thesis and
an antithesis, dialectic search then aims to generate a “synthesis” by searching the
space between thesis and antithesis (function Merge).

The synthesis is constructed by searching the area between the thesis and an-
tithesis, for example by a nested local search [58] or, our choice for this work, by
path relinking [59]. Starting from the thesis, we greedily select the best (in the sense
that it most favorably affects the objective) variable among those where the current
assignment still differs from the antithesis. We then set this variable to the value it
takes in the antithesis. We repeat this until we arrive at the antithesis. The syn-
thesis is then the best assignment we encountered. Then, we greedily improve the
synthesis. If the resulting synthesis improves the current thesis, it becomes the new
thesis. If the synthesis is worse than the thesis, we restart with a given probability
at a new starting point that obtained by applying some random modification to the
current thesis. If we do not restart, we choose a new antithesis. One such iteration
is called a “move.” Each change in a variable, either within a greedy search or when
traversing from thesis to antithesis, is called a “step.”

There are a number of decisions that dialectic search must make: What is the
best size for the candidate set in the greedy search (parameter g)? How many

15
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

variables should be changed to generate the antithesis (parameters al, au)? With
what probability should we greedily improve the antithesis (parameter pa)? With
what probability should we restart the search (parameter pr)? When a restart is
triggered, how many variables should be changed to new random values to generate
a new starting point (parameters rl, ru)?

Note that the parameters could be set to realize a wide variety of search algo-
rithms, from an iterated local search with an outer random walk over nested greedy
searches (pr = 1, al = au = 0, g = 1) to iterated path relinking between the cur-
rently best known solution and randomly generated local optima (pr = 0, g = 1,
al = au = 0.5, pa = 1).

We could simply employ meta-algorithmics technology to automatically and,
possibly input-specifically, tune our metaheuristic solver for any application. As
such, our starting point is similar to the SATenstein solver that was developed for
SAT [56].

In the following, we go one step further by making all dialectic search parameters
reactive. That is, we do not simply build a portfolio of different dialectic searches
for MaxSAT (and thus build some sort of MaxSATenstein). Instead, we allow the
metaheuristic to change its characteristics dynamically during search based on the
search progression.

3.3 Reactive Dialectic Search Portfolios
To set the parameters that guide the search, we will track the progress of the time-
limited search as it is unfolding. In particular, we propose to track the following
eleven values. We emphasize that other properties could be tracked in addition to
these ones:

1. Time elapsed as percentage of total time before timeout.
2. Number of restarts conducted as a percentage of total restarts expected to be

completed within the time limit.
3. Number of moves as a percentage of the total moves expected to be completed

within the time limit.
4. Number of steps as a percentage of the total steps expected to be completed

within the time limit.
5. Total number of improving syntheses found over the total number of dialectic

moves expected to be completed within the time limit.
6. Number of moves in the current restart over the total number of dialectic

moves expected to be completed within the time limit.
7. Number of moves since the current best known solution was found over the

total number of dialectic moves expected to be completed within the time
limit.

8. Number of moves since the last thesis update in the current restart over the
total number of dialectic moves expected to be completed within the time
limit.

9. Number of steps in the current restart over the total number of steps expected
to be completed within the time limit.

16
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

10. Number of steps since the current best known solution was found over the
total number of steps expected to be completed within the time limit.

11. Number of steps since the last thesis update in the current restart over the
total number of steps expected to be completed within the time limit.

The objective is now to find a way to make the search use these values to set the
seven parameters that guide the search dynamically. Note that all parameters are
values between 0 and 1, either because they represent probabilities or percentages
of the total number of variables in the given problem instance. Naming the values
above v1, . . . , v11, we set

pk =
1

1 + e(wk
0+

∑
i viw

k
i)

for each dialectic search parameter pk, k = 1 . . . 7.
We have thus transformed the configurable dialectic search with seven static

parameters into a hyper-configurable reactive dialectic search (HRDS) with 84 (7
times 12) meta-parameters.

An adequate interpretation of this approach is that the dependence of the di-
alectic search parameters from the statistics of the unfolding search is determined
by a logistic regression (in the original sense, not its common application to classi-
fication). The obvious challenge now is to learn the meta-parameters wki in a way
that will lead to good search performance.

Lacking any other supervision than the total search performance, we employ
ISAC++ [47] for this task. We first cluster training inputs, then run GGA++ [45]
on each cluster, and finally build a portfolio of the parameterizations found using
cost-sensitive hierarchical clustering (CSHC) [35].

It is noteworthy that, until now, nothing in our approach has been MaxSAT
specific. That is, in principle we can employ the reactive dialectic search approach
outlined above on any combinatorial search problem. Additionally, the idea can be
adapted to any reactive search metaheuristic. To use it for time-limited local search
for MaxSAT, however, we need to make some decisions.

Evaluating Parameterization Performance:

We first need to set a metric to ascertain when a parameterization is better than
another. For each MaxSAT training instance, we record the best known-solution
from prior experience. When HRDS finds a truth assignment with that quality, we
will consider the instance solved for training purposes and stop the dialectic search
run.

In the beginning of our tuning, all parameterizations may be so bad that, within
our training time limit, none can find a solution with that best known cost. There-
fore, all parameterizations time out and all we can compare is how well they did
relative to the best known solution within the time limit. Later, when some param-
eterizations get some instances to solve to the best known solution quality before
the time limit, we can count the number of instances the parameterization is able
to solve in this way, and the one with the highest count wins. Finally, towards the

17
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

end of the tuning, we will hopefully have high quality parameterizations that can
solve all instances. In this case, we can consider the average time it took to solve
the instances to determine the winning parameterization.

Algorithm 7 Parameterization Comparison Function
1: function SelectWinner (p1, p2)
2: if num-solved -bk(p1) 6= num-solved -bk(p2) then
3: return argmaxp∈{p1,p2}(num-solved -bk(p))

4: if num-finished(p1) 6= num-finished(p2) then
5: return argmaxp∈{p1,p2}(num-finished(p))

6: G1 ← sort-by-gap(results(p1))
7: G2 ← sort-by-gap(results(p2))
8: for i = 1 . . . |G1| do
9: if G1[i] < G2[i] then return p1

10: else if G1[i] > G2[i] then return p2

11: return argminp∈{p1,p2}(avg-cpu-time(p))

Category Solver MS PMS WPMS
Time # Time # Time #

Crafted HRDS 0.80 79 18.73 48 41.68 24
CDS 6.44 79 24.79 45 17.40 21

Random HRDS 9.67 82 73.44 37 2.29 99
CDS 3.73 76 25.41 24 2.64 99

Table 3.1: Average time to best bound and number of best upper bounds found for
HRDS and CDS.

Algorithm 7 shows the comparison function that guides how we determine top-
performing parameterizations within GGA++ accordingly. Rather than giving each
parameterization a numeric score (such as a penalized runtime, e.g., as done in many
prior applications of algorithm tuners such as [60]) at the end of each tournament,
we have defined a comparison algorithm that allows us to sort the parameterizations
and to determine the winners.

The first criterion is which parameterization solves more instances to the best
known quality within the time limit. If these are the same (for example because
neither p1 nor p2 can solve any instances), then the second criterion is to compare
the number of runs that finished correctly, i.e., where there were no problems with
memory etc. We next compare which parameterization is closer to getting one more
instance solved to best-known quality by considering the quality gap to best-known
solutions. Finally, if all these criteria do not lead to a winner (for example because
both p1 and p2 solve all instances) we return the parameterization that needs lower
average runtime, with ties broken randomly.

We devised this method so as to give the GGA++ tuner a responsive objective
function that guides the tuning search effectively no matter how well the current
pool of parameterizations currently performs. However, this leaves us with a problem
for the surrogate model used to genetically engineer the offspring within GGA++.

18
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

Solver Time #
WPM3 17.73 5
CDS 6.44 79
HRDS 0.80 79
CDS/WPM3 6.56 79
HRDS/WPM3 0.87 79
CCLS 5.69 81
CnC-LS 2.49 80
CCEHC 3.42 80

(a) MS Crafted (81 in-
stances)

Solver Time #
WPM3 17.30 106
CDS 24.79 45
HRDS 18.73 48
CDS/WPM3 18.69 114
HRDS/WPM3 18.52 116
WPM3-2015-in 15.93 107
Optiriss6 37.85 99
Dist 6.97 81

(b) PMS Crafted (136 in-
stances)

Solver Time #
WPM3 26.61 34
CDS 17.40 21
HRDS 41.68 24
CDS/WPM3 19.22 44
HRDS/WPM3 23.20 46
CCEHC 18.54 39
Ramp 12.18 29
SC2016 4.13 27

(c) WPMS Crafted (65
instances)

Solver Time #
WPM3 0.00 0
CDS 3.73 76
HRDS 9.67 82
CDS/WPM3 3.74 76
HRDS/WPM3 11.87 83
CnC-LS 2.05 89
borealis 2.28 89
SC2016 2.37 89

(d) MS Random (89 in-
stances)

Solver Time #
WPM3 34.75 8
CDS 25.41 24
HRDS 73.44 37
CDS/WPM3 12.09 25
HRDS/WPM3 53.49 34
Dist-r 2.07 42
SC2016 2.55 42
CCLS 3.00 42

(e) PMS Random (42 in-
stances)

Solver Time #
WPM3 91.72 1
CDS 2.64 99
HRDS 2.29 99
CDS/WPM3 2.67 99
HRDS/WPM3 2.56 99
SC2016 2.53 99
Ramp 4.22 99
CCLS 4.46 99

(f) WPMS Random (99
instances)

Table 3.2: Average time and number of best upper bounds found on MS, PMS and
WPMS crafted (top) and random (bottom) for WPM3, the various solvers developed
in this chapter, and the top 3 solvers of each category from the MaxSAT Evaluation
2016.

Namely, the surrogate model needs to predict in what regions of the parameter space
we may expect superior parameterizations to be found. We solved this problem by
using relative ranks rather than absolute performance when training the surrogate.

Evaluating Truth Assignments:

HRDS solves the MaxSAT problem using an (incremental) evaluation of a truth
assignment. We simply maintain make-profits and break-costs (the weighted vari-
ants of make-counts and break-counts [61]) for each variable to quickly compute the
effect on the objective when flipping a variable’s truth assignment.

Characterizing MaxSAT Instances:

For instance-specific configuration we need features to characterize the inputs. We
use the features proposed in [47] for this purpose.

3.4 Experimental Results
Having developed our approach in the previous section, we now evaluate it em-
pirically. We run all our experiments on a cluster featured with Intel Xeon CPU
E5-26020 @ 2.6GHz processors, a memory limit of 3.5 GB, and each machine runs an
instance of Rocks Cluster 6.5 (Linux 2.6.32), which is the exact same environment
used in the MSE16.

19
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

3.4.1 Benchmark Set

Recall that we eventually intend to complement a solver that was already designed
for industrial instances, WPM3 [62]. As this solver already achieves state-of-the-art
performance on industrial MaxSAT instances, we focus the training of our hyper-
configurable dialectic search approach on randomly generated instances (Random
category) as well as instances that are derived as encodings of other problems
(Crafted category). Our base set of MaxSAT instances are all instances in the
Random and Crafted categories in the MaxSAT Evaluation 2016 (MSE16) [24].

The three variants of the MaxSAT problem divide the base set further: (plain)
MaxSAT (MS), Partial MaxSAT (PMS), and Weighted Partial MaxSAT (WPMS).
In each category, instances are grouped into families: 3 families for MS crafted, 2 for
MS random, 11 for PMS crafted, 4 for PMS random, 11 for WPMS crafted and 3 for
WPMS random. We cleanly split each group randomly 80 to 20, whereby the 80%
are assigned to our training set while the remaining 20% are set aside for testing.

3.4.2 ISAC++ Setup

We perform algorithm configuration exclusively on the instances marked for training
for each group of instances within the MSE16 dataset that have more than 15
training instances left after the 80/20 split. We use a distributed version of GGA++
with 8 machines with 8 cores each, a population size of 100 individuals and 100
generations, using a 30 second target algorithm timeout. The time limit for the test
instances is as in the MSE16, 300 seconds.

3.4.3 Competitors

We compare the following algorithms. HRDS is the new hyper-reactive dialectic
search. CDS is an ISAC++ generated portfolio of the statically parameterized di-
alectic search with seven parameters. HRDS/WPM3 is a portfolio built from HRDS
parameterizations plus ISAC++-tuned parameterizations of WPM3. CDS/WPM3
is a portfolio built from CDS parameterizations plus ISAC++-tuned parameteriza-
tions of WPM3.

3.4.4 Reactive vs. Non-Reactive Dialectic Search

Our first inquiry is to find out whether making dialectic search hyper-configurable is
at all beneficial. The hyper-configuration space includes all static parameterizations,
which are obtained by setting all 11 weights corresponding to search statistics to
zero and setting the constant weight for each of the seven parameters to the right
value. This means that the best parameterization for HRDS will always be at least
as good as that of CDS. However, there is no guarantee that the ISAC++ tuner is
able to find that parameterization, nor that the best parameterization thus found
for the training set also generalizes well to the test instances.

Table 3.1 shows that our doubts are unfounded. In all categories we tested,
HRDS outperforms CDS. The difference in performance is particularly noticeable in

20
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

two categories. First, on random PMS instances where the reactive dialectic search
finds 37 best upper bounds compared to only 24 for the non-reactive counterpart of
the otherwise identical approach. Second, on random MS instances HRDS solves 82
instances compared to 76 for CDS. This shows that the algorithm configurator can
tune the hyper-heuristic effectively.

0 50 100 150 200 250 300
50

60

70

80

90

100

(a) Avg. antithesis size

0 50 100 150 200 250 300
0

20

40

60

80

100

(b) Avg. greedy size

0 50 100 150 200 250 300
0

20

40

60

80

100

(c) Avg. antithesis size

0 50 100 150 200 250 300
10−4

10−3

10−2

10−1

100

101

102

(d) Avg. restart size

Figure 3.1: Statistics recorded during search for two different HRDS parameteriza-
tions.

Figure 3.1 sheds light on the inner workings of HRDS. On top, we track the
effective running averages of the antithesis size on the left and the greedy candidate
set size on the right for one parameterization, run on a PMS random instance with a
time limit of 300 sec. Not shown here is that this parameterization holds the restart
probability at zero and anti-greedy probability steady at 1. In this parameterization,
the dialectic search thus never restarts, and it always conducts an antithesis greedy
improvement, while during the search decreasing the level of difference between
thesis and antithesis and simultaneously increasing the greedy candidate set size.

Contrast this with another parameterization, shown at the bottom. This one
holds the restart probability and greedy candidate size firmly at 100% (not shown
here). In the beginning, the antithesis size is 100%, which means there is a full greedy
search started on the exact opposite pole from the current thesis and a path-relink
conducted between the thesis and the result of that greedy run. At the same time,
the restart size is somewhere between 20 and 50%, leading to an almost entirely new
random starting point with only a slight bias towards keeping parts of the current

21
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

thesis intact in the antithesis. During the course of the optimization, the restart
and antithesis sizes are then reduced further and further, making the search stay
closer and closer to the current thesis. This behavior, moving from vast exploration
in the beginning to more and more conservative moves in the end, is familiar from
the simulated annealing metaheuristic. Yet this HRDS parameterization was not
invented by a human, but found as an effective method for solving some MaxSAT
instances by an algorithm configurator.

3.4.5 Random Weighted-Partial MaxSAT

The next question of interest is whether a solver that consists of reactive dialectic
search parameterizations, a solver that is based on a local search metaheuristic that
lacks any domain knowledge and only has access to an incremental evaluator of the
target objective function, a solver that was programmed in only two working days
and was then left to be tuned automatically, whether such a solver could outperform
solvers that have been devised by teams of humans that have often developed and
evolved their programs for years.

Table 3.2-(f) gives the answer: on random WPMS instances, HRDS outperforms
all competitors from the MSE16. While multiple solvers manage to solve 99 test
instances within the time limit, it is remarkable to see that the automatically gen-
erated solver can even outperform SC2016, which itself works significantly better
than all other competitors.

Augmenting an Industrial Solver:

We finally arrive at our original objective, namely to make WPM3, a solver designed
for industrial MaxSAT instances, a serious contender in other categories as well. Ta-
ble 3.2 shows how WPM3 by itself compares with HRDS/WPM3 and CDS/WPM3
on all six random and crafted categories from the MSE16.

We observe that for some categories WPM3 is better than HRDS or CDS, while
for others it is the other way around. However, joining WPM3 with HRDS or CDS
parameterizations creates an algorithm portfolio that often exceeds the performance
of the best choice for each category, and otherwise trails the best performance only
slightly. In summary, augmenting a human-developed industrial MaxSAT solver
with a machine-trained solver results in a much more robust and across-the-board
applicable MaxSAT solver.

2016 MaxSAT Evaluation:

Using the methodology above, we entered the MSE16 with an earlier version of
HRDS/WPM3 (DSAT-WPM3 at MSE16) with less HDRS parameterizations. In
Table 3.3 we present the official results. Our two submissions (with one version, *-s,
using a static schedule in the portfolio) won gold medals in 4 out of 9 categories:
WPMS crafted and random, and PMS crafted and industrial. Overall, the two
entrants won 10 medals out of 18 possible.

22
CHAPTER 3. REACTIVE DIALECTIC SEARCH PORTFOLIOS FOR

MAXSAT

1st 2nd 3rd

Random

MaxSAT borealis SC2016 Swcca-ms
2.29 454 2.30 454 2.40 454

Partial Dist-r CCEHC SC2016
2.08 209 3.86 209 2.46 208

W. Partial HRDS/WPM3-s SC2016 HRDS/WPM3
26.04 501 2.60 500 9.12 500

Crafted

MaxSAT CCLS CCEHC SC2016
3.56 402 3.49 399 2.62 398

Partial HRDS/WPM3 WPM3-2015-in HRDS/WPM3-s
20.26 575 13.33 539 17.99 522

W. Partial HRDS/WPM3 CCEHC HRDS/WPM3-s
28.15 204 19.53 192 29.53 183

Industrial

MaxSAT CnC-LS HRDS/WPM3 WPM3-2015-in
49.00 47 40.84 40 22.57 38

Partial HRDS/WPM3 WPM3-2015-in Optiriss6-in
26.70 513 22.29 505 37.57 433

W. Partial WPM3-2015-in HRDS/WPM3 HRDS/WPM3-s
17.80 405 22.98 402 18.37 339

Table 3.3: MaxSAT evaluation 2016 winners, with the average solution time (sec.)
and number of best upper bounds found.

3.5 Conclusions
We introduced hyper-configurable reactive dialectic search portfolios and applied
them to MaxSAT. Moreover, we demonstrated that reactive search methods can be
tuned effectively and outperform static instance-specific configuration in practice.
By itself, the new method was able to define a new state-of-the-art for the random
WPMS category, despite its general ignorance regarding the problem it is solving.
Used to automatically complement an existing industrial MaxSAT solver, it defined a
new approach that works robustly for random, crafted, and industrial instances. The
approach was independently evaluated and compared with state-of-the-art MaxSAT
solvers at the 2016 MaxSAT Evaluation where it won 4 out of 9 possible gold medals.

Chapter 4

Hyper-Reactive Tabu Search for
MaxSAT

Historically, metaheuristics that did not require tuning parameters have been favored
in the literature, as this should liberate the user from tediously searching for an
instantiation of the metaheuristic that leads to good practical performance for the
problem at hand.

To provide good performance even without many parameters, reactive search
approaches (see [63]) have been developed that use built-in strategies to automat-
ically and dynamically adjust key parameters during the search. For example, the
canonical reactive search algorithm, reactive tabu search (RTS) [16], adapts the cen-
tral parameter of tabu search, namely the length of the tabu list. RTS increases
the tabu list length when cycles that occur in the search are shorter than a fixed
threshold. The list length is decreased when all potential moves are tabu as well as
when the number of steps taken since the last list length adjustment grows beyond
the moving average of recent cycle lengths.

Hyper-reactive search replaces the static parameter adjustment strategies of re-
active search with dynamic strategies that are tuned through an offline learning
process. Building on this idea, we proposed a hyper-parameterization of dialectic
search [15] in Chapter 3 (published in [19]), where hyper-parameters are used to
determine how the standard parameters of dialectic search are adjusted dynamically
based on runtime statistics that characterize how the search is progressing. The
resulting hyper-reactive dialectic search (HRDS) algorithm is shown to outperform
state-of-the-art MaxSAT solvers. In the following, we present how this idea can be
realized for the Tabu Search metaheuristic.

Given the success of RTS in the literature, a key question is whether it can
be transformed into a hyper-reactive approach. In this chapter, we pursue three
objectives.

• First, we devise an approach that self-adjusts even more tabu search parameters
than RTS.

• Second, we open the way the approach adjusts its parameters to the outside so that
the overall approach can be customized and tailored for the problem at hand using
a standard parameter tuner.

23

24 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

• Finally, we use the resulting, generally applicable approach to tackle the MaxSAT
problem and demonstrate high quality performance.

In the following, we first devise the hyper-parameterized reactive tabu search
approach that self-adjusts all key tabu search parameters based on dynamic search
statistics. We then show how this new approach can be used to tackle the MaxSAT
problem. Finally, we report on our experimental results on the MaxSAT problem.

4.1 Hyper-Parameterized Reactive Tabu Search
We now describe a hyper-parameterized tabu search that is based on RTS [16].

4.1.1 Tabu Search Parameters

We assume the reader is familiar with tabu search in general. For an introduction, we
refer to [64] and [65]. The key parameters of the general tabu search metaheuristic
are the following:

1. Length of the tabu list(s)
2. Escape rules
3. Neighborhood size
4. Aspiration criterion

The tabu search framework we develop here is calibrated for binary search prob-
lems, meaning unconstrained optimization problems where all variables take two
values (0/1 or true/false). In this context, let us consider the above parameters in
detail.

Length of Tabu Lists:

We use two lists, one that prevents recent solutions from being revisited, and another
that keeps track of recently flipped variables that are kept from flipping again too
quickly (unless an aspiration criterion allows it anyway). The length of the lists is
governed by four dynamically self-updating continuous parameters in [0, 1]; two for
each list.

After every tenth local search step, for each list, we consider the difference be-
tween both parameters. If the difference is positive, the list size is considered to be
increased, otherwise it is considered to be decreased, whereby the absolute value of
the difference determines the probability that a change in list length occurs. If a
change occurs, the list of previously visited solutions grows or decreases by a fac-
tor of 1.01. The list of recently flipped variables increases or decreases by one one
thousandth of the total number of variables.

As an aside: For the list of previously visited solutions we actually only record
the variables that have been flipped. Then, to determine which variables are not
allowed to be flipped in the current step, we simply traverse backwards through the
list and add or remove the variables to/from a set. Every time the set has cardinality

25 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

one, the remaining variable in the set cannot be flipped as otherwise a previously
visited solution recurs.

Consider this example: The variables most recently flipped (most recent first)
had indices [1, 2, 3, 4, 3, 2, 1, 5, 4]. We first add variable 1 to the set: {1}. This set has
cardinality 1, which means that the variable in the set may not be flipped (naturally,
as that would directly undo the most recent move and thus return us directly to a
recently visited solution). Next we add 2, 3, and 4. The set now contains {1, 2, 3, 4}.
Next we consider variable 3, but since it is already in the set, we remove it: {1, 2, 4}.
After also removing 2 and 1, we get: {4}. This set now has cardinality 1, which
means that we cannot flip variable 4 either or we will return to the solution visited
7 steps earlier. We then add 5 and remove 4, leading to the final set of cardinality
1: {5}. Consequently, at the current step we may neither flip variables 1, 4 or 5 if
we want to avoid revisiting a solution that already occurred within the most recent
9 steps.

Escape Rules:

Four dynamically self-updating parameters govern the escape behavior of the tabu
search. After every tabu step, the first parameter, continuous in [0, 1], determines
the probability of an escape move. If an escape move is initiated, the next two
parameters describe the minimum and maximum number of variables to be flipped.
The concrete number of variables to be randomly selected and flipped is chosen
uniformly at random in the given interval.

The last parameter p ∈ [0, 1] then determines whether the new point is accepted
as a new starting point for a new series of regular tabu search steps. To deter-
mine acceptance, we maintain a hash table of all previously visited solutions. The
new potential starting point is hashed using a universal hash function and we then
consider how many previously visited solutions r hash to the same value.

• If this hash value has seen more than the average µ solutions compared to the other
values, the new point is rejected and we repeat the process of building a new starting
solution starting from the original solution where the tabu search last stopped.

• If the new solution falls into a bucket that has seen less than the average number of
solutions µ per bucket, we check if it is even less than (1 + p) standard deviations
(σ) below the average. If so, the new point is accepted as our new starting point.

• If the point hashes to a value that has been hashed to q times before, and q falls
somewhere in the interval [µ− (1 + p)σ, µ], then we consider the ratio r ← µ−q

(1+p)σ ∈
[0, 1]. The new point is then be accepted as new starting point with probability r.

Neighborhood Size:

Especially when tackling problems with many variables, we may not want to consider
all variables for flipping to determine which move would result in the best neighbor-
ing solution. We therefore introduce another continuous, dynamically self-updating
parameter in [0, 1] that determines the percentage of variables that are considered
for flipping. If none of these variables yields a non-tabu solution, we initiate an

26 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

escape move. Otherwise, we choose the first non-tabu variable, in random order,
that results in an objective function improvement, or the variable that results in the
least performance decrease.

Aspiration Criterion:

In a tabu search, when a tabu criteria is used that goes beyond recording which
solutions have already been visited, we may accidentally prevent moves that would
lead to improving solutions. In our case, we use a second tabu list that prevents
recently flipped variables from being flipped again quickly.

After each escape movement, we keep a running average µa of the cost (assuming
a minimization problem) of all solutions as well as the cost of the best solution ba
found so far in the current “regime” (as the search period between two escape moves
is often called in the literature). Then, we override the tabu lists if the solution
we would arrive at has cost of at most ba + (µa − ba) ∗ s, where s is a continuous,
dynamically self-updating parameter in [0, 1].

4.1.2 Dynamic Search Features

Note that all parameters listed above take continuous values in [0, 1], but we did not
explain how they self update. In this section, we explain how.

Over the course of the tabu search, we keep track of a number of dynamic search
features (runtime statistics) that are meant to characterize the status of the search.
In total, we track eleven search features:

PercentTimeElapsed: At runtime, the user must specify how much CPU time is available
for the search. This feature keeps track what percentage of CPU time has already
elapsed.

BestUpdates: This feature counts the number of times we improve the objective function
during the course of the entire optimization.

MovesAfterLastBestUpdate: In this dynamic search feature, we count the number of tabu
search moves that have taken place since the last overall best solution was found.

MovesAfterLastImprovementInCurrentRegime: Analogous to the previous feature, in this
value we count the number of moves that took place since the last improvement was
found within the current regime. That is, after an escape move, we keep track of the
best solution quality found afterwards. In this feature, we record how many moves
have occurred since this improvement was found.

MovesInCurrentRegime: We count the number of tabu search moves after the last escape
move.

TabuSolutions: Here we maintain the current length of the first tabu list which forbids
recently visited solutions to be revisited.

TabuVariables: Anologous to the previous dynamic search features, in this value we record
the current length of the second tabu list, which prevents specific variables that were
recently flipped, from being flipped again.

AverageQualityThisRegime: Starting with the quality of the initial solution after the last
escape move, we keep track of the average solution quality within the current regime.

AverageBestQualityThisRegime: In this statistic, we maintain the average quality of the
best solution found within the current regime. That is, for every tabu search move

27 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

after the last escape action, we make an entry of the best quality that was found
within the current regime until that move. This dynamic search feature is the average
of this list of values.

BestQualityThisRegime: Here we record the best solution seen after the last escape move.
AverageBestQualityAtTheEndOfRegimes: Right before each escape move, we consider the

best solution quality that was found within the regime that is now ending. This
statistic maintains the average over these values for all completed regimes.

Note that the search features listed above may vary a lot from instance to in-
stance, because of differences in instance sizes, different objective scales etc. Conse-
quently, to allow offline training (see below), we need to normalize these features.

To normalize the number of overall best solution updates, we divide that number
by an estimate of the total number of tabu search moves we will be able to conduct
within the given time limit. This estimate is updated based on the actual observed
time for the tabu search moves. This same estimate is also used to normalize the
three following features which all count numbers of tabu search moves. The tabu
list lengths values are divided by the number of binary variables in the problem
instance to be solved.

Finally, to normalize all quality features we maintain the moving average of
the quality of all accepted solutions as well as the quality of the current overall
best quality found. The quality features are normalized by dividing the respective
quality by the difference between average quality and best quality found so far.

4.1.3 Hyper-Parameterization

Given the set of dynamic search features defined in the previous section, the next
core decision is how these features should determine the setting of the tabu search
parameters. More formally, we need to define algorithmically how the search features
as inputs ought to be used to compute the output: the current search parameters.
Note that, historically, this was the task of the algorithm designer. Consider RTS
from [16], for example. Here, the mechanism by which the length of the tabu list is
increased or decreased is prescribed by the authors, whereby the decision to increase
or decrease the length is dependent on search characteristics, such as the average
cycle length observed during the most recent search.

The paradigm shift introduced in [19] is to let the machine learn this functional
dependency between search features and search parameters. The decision that is
left to the algorithm designer is merely what class of functions ought to be consid-
ered by the machine. Given the tremendous success of deep learning, it is tempting
to propose a neural network structure that transforms features into parameters, in
which the weights in the network would be learned during a training phase. The
problem with this approach is the number of weights that would need to be consid-
ered as hyper-parameters. Note that, in the context of a local search metaheuristic,
we do not have a fixed training set with supervised labels available to us. In fact,
earlier search decisions affect the distribution of search decisions that need to be
taken later (this problem was also identified when trying to devise search guidance
for systematic search approaches, see for example [66]). Moreover, the quality of

28 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

the decisions taken can only be judged by running the search multiple times and
possibly on a whole set of problem instances.

That is why we use an algorithm configurator to “learn” the hyper-parameters
that ultimately determine how search features are transformed into search parame-
ters. However, local search performance is not differentiable, and therefore there is
no simple gradient decent approach available to us that would provide high-quality
parameters very quickly. Consequently, the search for superior hyper-parameters
is very tedious (thankfully only for the machine and not the user) and the search
becomes more difficult the more hyper-parameters need to be tuned.

To keep the search for hyper-parameters manageable, we therefore need to choose
a functional dependency between search features and search parameters that requires
few hyper-parameters. A simple concept class consists of logistic regression functions
which were also used in [19]. For each search parameter p, using k search features
f1, . . . , fk, we define a function p ← 1

1+ew
p
0+

∑k
i=1

w
p
i
fi
, in which wp0, . . . , w

p
k denote

the hyper-parameters that govern the relationship between the k search features
and parameter p. Note that, for each search parameter, this choice requires just
one more hyper-parameter than there are features. Moreover, the resulting values
naturally cover the continuous interval [0, 1] that all our parameters fell into.

4.2 Hyper-Reactive Tabu Search for MaxSAT
To evaluate the hyper-reactive meta-heuristic framework that we developed, it is
important for us not to change the general framework to accommodate the particular
problem class at hand. Consequently, the only calibration we allow for the particular
application is the provisioning of an efficient way how to evaluate the objective
function of a new assignment and, incrementally, the objective value change when
one variable is flipped.

For MaxSAT, to enable fast incremental objective updates, we pre-compute once
in the beginning which variables occur in which clauses and we maintain, for each
clause, the set of variables that currently support the clause, if any. Then, when we
flip a variable, we can easily consider only those clauses that the variable appears in
and determine whether the variable is now, or no longer is, supporting the clause.
By looking at the cardinality of the set of supporting variables, we can then quickly
determine for which clauses we must add or subtract its penalty value to or from
the previous objective value due to the variable change.

4.3 Experimental Results
We now report on the results of using the generic HRTS approach described above
for tackling the MaxSAT problem. We first assess our contribution by comparing
HRTS to a static RTS strategy. We then examine how the parameters change over
time in HRTS when solving several MaxSAT instances to better understand the
inner workings of HRTS. Finally, we show how HRTS parameterizations can be
used to augment maxroster [67], the winning solver at MSE’17 [68].

29 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

4.3.1 Benchmark and Evaluation Metric

We use data from the annual MaxSAT Evaluations [24, 68]. In particular, we con-
sider the scenario of a user who wants to build a superior MaxSAT solver after
MSE’17. We train HRTS on the benchmarks from MSE’16. We tune multiple HRTS
parameterizations using the GGA++ algorithm configurator [18, 45], splitting the
training data into 16 families for tuning based on the filenames of the instances.
All tuning was performed with a 60 second target algorithm timeout due to limited
computational resources. Testing is all performed with a 300 second timeout.

We build a portfolio of HRTS parameterizations in combination with maxroster.
To test the performance of the resulting portfolios we evaluate on the MSE’17 data.
Note that all solvers in the portfolios are built and tuned on pre-2017 benchmarks.

We use the same performance metric as at MSE’17, which considers the average
gap in quality. That is, for each instance we compute the ratio of best known solution
to an instance divided by the final assignment cost of the respective solver for that
instance. As the best known solution, we use the better of the two solutions found
when comparing two solvers head-to-head, or the best quality published by MSE
results [24, 68].

4.3.2 Tuning Setup

When optimizing the hyper-parameters, we need to define a function that establishes
which parameterization is better than another when both have been evaluated on
some MaxSAT instances. In the evaluation, we only run the algorithm to the best
known solution quality and consider an instance “solved” if the solution was reached
before the timeout. Parameterizations are first compared on average gap in quality.
If that is equal, we next compare them based on the average time it took them to
solve instances. Any remaining ties are broken randomly during tuning. As in [19],
the surrogate model of GGA++ is trained by using relative ranks based on these
pairwise comparisons.

We use a distributed version of GGA++ with 7 machines with 8 cores each
and a memory limit of 32 GB each. The tuning uses a population size of 100
individuals and runs for 100 generations. In order to reduce experimental variance,
each MaxSAT instance is evaluated with a common random seed.

To train the algorithm selector which picks the parameterizations at runtime,
we use the cost-sensitive hierarchical clustering methodology (CSHC) [35]. We use
the same 37 features from [69] and build 1,000 trees, whereby each is based on a
sub sampling of the training instances with replacement with probability 0.7 and a
subset of 6 features.

Experiments were run on a cluster containing Intel Xeon CPU E5-2670 processors
at 2.6GHz running Scientific Linux 7.2.

4.3.3 Comparison with a Statically Tuned RTS

We create a static reactive tabu search variant, called SRTS, in which we only tune
the full list of hyper-parameters that guide the reactive tabu lengths of the two

30 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

Family Instances HRTS SRTS ramp dsat/wpm3
Score Solved Score Solved Solved Solved

auctions_auc-paths 20 100% 20 99.91% 12 18 17
auctions_auc-scheduling 20 100% 20 100% 20 20 19
frb 34 99.97% 29 99.98% 29 32 15
maxcut 48 100% 48 100% 48 48 47
min-enc_warehouses 18 77.64% 0 83.31% 1 1 3
spot5 42 99.01% 15 98.24% 13 28 30
Total 182 96.10% 132 96.91% 123 147 131

Table 4.1: Average score and number of instances solved for HRTS and SRTS on
MSE’16 instance families after 300 seconds. We also give number of solved instances
by local search solver ramp and the dsat/wpm3 portfolio from MSE’16.

tabu lists used in our approach. For all other tabu search parameters, we only tune
the corresponding hyper-parameter wp0, which means that the corresponding search
parameter is tuned yet stays fixed throughout the tabu search with no dynamically
reactive behavior. This deprives the tuner from access to more dynamic search
strategies, but on the other hand it has the advantage that the number of hyper-
parameters to be tuned is lowered significantly.

Table 4.1 provides a comparison of HRTS and SRTS on several families of MSE’16
instances where local search traditionally works well. We consider an instance to
be solved if the best known solution is reached. All runs are performed using a 300
second timeout.

Since the MSE’16 instances correspond to the training set, we use the results to
assess the potential of the methods. We observe that HRTS provides a better or
approximately the same score (the average ratio of best known quality over quality
found by the solver) on five out of the six groups we consider. Overall, it therefore
appears worthwhile to open more than just the tabu lengths for dynamic updates,
even though the resulting tuning problem is much harder. As we see on family
min-enc_warehouses, at times the tuning problem for the full HRTS may be so
vast that an inferior parameterization is found. Overall, the existing state-of-the-
art tuners (in this case GGA++ [45]) appear able to effectively tune even a fully
hyper-parameterized version of tabu search, although we note that having enough
instances available to tune is critical. With too few instances, HRTS is very prone
to overfitting, although it is unfortunately not possible to exactly define “too few”.

The configurations found for HRTS on these families are very competitive. On
most families, HRTS outperforms the hyper-parameterized dialectic search [19] based
portfolio in MSE’16 and works comparably well as human-developed MaxSAT solvers,
like, e.g., ramp, the local search solver that maxroster employs. Note that the search
guidance in HRTS knows nothing about MaxSAT itself, but is nonetheless compet-
itive with state-of-the-art approaches.

4.3.4 Runtime Log Analysis

We now investigate how the parameters change over the course of a single run of
HRTS, and split our analysis into looking at differences in the same parameters over
different instances, and different parameters on the same instance. For the following

31 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

experiments we use a 250 second timeout.

Dynamic Search Behavior Using the Same Parameterization:

The scpnre instances are based on the well-known set covering problem. Fig-
ure 4.1 tracks eight different values over the course of solving three scpnre instances
(scpnre1 (blue), scpnre2 (green), and scpnre3 (red)), when using the same
hyper-parameterization of HRTS.

We observe that, on all three instances, this parameterization makes quick progress
in improving the solution quality, using a large neighborhood size for the first-
improvement tabu greedy steps that are only diversified by making 5-7% of recently
flipped variables and practically no individual solutions tabu in the beginning. This
small diversification pressure is even further reduced by a very generous aspiration
policy. After the initial phase of fast improvements, the aspiration criterion is made
gradually more restrictive until only best solution improvements are allowed to over-
ride the tabu lists. In turn, however, the tabu variables list length decreases until
this list is practically not used anymore at around half of the available computation
time. Instead, the tabu solutions list length is increased, so that it has a total length
of about 0.8 times the number of variables.

In the second half of the optimization, this list length is adjusted very dynami-
cally, the aspiration is slightly relaxed again, and the probability for escape moves is
increased, whereby the escape path length is controlled carefully. 0.4% of variables
corresponds to roughly 20 variables on these instances. Furthermore, the average
escape size (in two of the three instances) slowly ratchets up before smoothly declin-
ing. As a result of these changes in search behavior, we begin to see new and some
abysmally bad solutions as evidenced by spikes in the average solution quality. This
shows that the method is diversifying effectively, and the success of this strategy
shows in the best solution quality: two of the three runs find improving solutions
during this second half of the optimization.

Overall we see that the search is reactive, yet the overall search strategy (if one
can call it that given its origins in tuning) is comparable on all three instances.

Comparison Of Multiple Parameterizations On the Same Instances:

Having just compared the dynamic search behavior of the same parameterization
on different instances, in Figure 4.2 we now compare two different parameterizations
(solid and dashed lines) which we both run on the same instance, scpnrg2. The
dashed parameterization finds good solutions faster, as seen in the plot of the best
value, although the solid parameterization does end up finding similar solutions later
in its search.

The example shows beautifully how flexible the hyper-parameterized tabu search
framework is. Let us look at the solid lines first. This is almost a pure tabu search
strategy: The number of recently flipped variables that are tabu is kept firm at 5%,
the tabu solutions list is not used. Furthermore, there are no escape moves at all,
and almost all variables are open for flipping at any tabu best neighbor step. The
only difference to a very traditional tabu search approach is the use of the aspiration

32 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

0 50 100150200250300
101
102
103
104
105
106

(a) Best value

0 50 100150200250300
0.0
0.5
1.0
1.5
2.0
2.5
3.0×105

(b) Average solution value

0 50 100150200250300
0

500
1000
1500
2000
2500
3000
3500

(c) Restarts

0 50 100150200250300
0.000
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008

(d) Average escape size

0 50 100150200250300
0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08

(e) Tabu variables length

0 50 100150200250300
0
1
2
3
4
5
6
7

(f) Tabu solutions length

0 50 100150200250300
0.0
0.2
0.4
0.6
0.8
1.0

(g) Aspiration average

0 50 100150200250300
0

20
40
60
80

100

(h) Average neighborhood size

Figure 4.1: Normalized characteristics over the course of running three scpnre
instances, with seconds on the x axis.

33 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

0 50 100150200250300
102

103

104

105

106

(a) Best value

0 50 100150200250300
0.0
0.2
0.4
0.6
0.8
1.0
1.2
1.4
1.6×106

(b) Average solution value

0 50 100150200250300
0

50

100

150

200

(c) Restarts

0 50 100150200250300
−0.06
−0.04
−0.02

0.00
0.02
0.04
0.06

(d) Average escape size

0 50 100150200250300
0.0
0.2
0.4
0.6
0.8
1.0

(e) Tabu variables length

0 50 100150200250300
0

50
100
150
200
250
300
350

(f) Tabu solutions length

0 50 100150200250300
0.0
0.2
0.4
0.6
0.8
1.0

(g) Aspiration average

0 50 100150200250300
0

20
40
60
80

100

(h) Average neighborhood size

Figure 4.2: Normalized characteristics over the course of running the scpnrg2
instance with two parameterizations, with seconds on the x axis.

34 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

criterion which allows practically any best neighbor to override the tabu variables
list as long as the resulting quality is still below average cost. Only after about two
thirds of the available runtime are exhausted, the aspiration criterion is made more
restrictive.

Contrast this strategy with the one that leads to the dashed lines in our plots.
Here, we observe that both tabu lists are used excessively: About 90% of recently
flipped variables are tabu, and the history of “recently” visited solutions that is kept
on file grows from 150 times the number of variables to 350 times the number of
variables. Note further that this massive diversification pressure is not alleviated
by a lax aspiration policy either. At the same time, only 50-60% of variables are
considered for flipping during first improvement tabu steps. Obviously, this very
aggressive, “go after the best you can find that is new” policy may lead to dead ends
quickly. Consequently, the search restarts quickly, whereby, curiously, the method
does actually not diversify at this point by using the hash table to find a good new
starting point. The escape size is held firmly at zero. Merely, the restarts are used
to clear the tabu lists only.

This is the quintessential take-away of hyper-parameterization: It allows the
machine to drive the search in many different ways, explore vastly differing strategies,
more than humans have considered and bothered to implement and test. Within
the context of tuning and algorithm portfolios, it is diversity that makes all the
difference. Any individual strategy is no longer required to work robustly across
many different applications. As long as a certain policy can excel sometimes, it can
become a valuable member of a portfolio of parameterizations.

4.3.5 Comparison With the State Of The Art

Finally, we show what effect the hyper-parameterized tabu search framework can
have in a domain where regular solver competitions have driven the development of
incomplete methods for many years. We apply our framework to MaxSAT, trained
on the MSE’16 benchmarks, and with automatically tuned hyper-reactive tabu pa-
rameterizations added, like the ones studied earlier, to a portfolio of solvers. In
Table 4.2 we show the results when adding our parameterizations to maxroster, the
winning solver at MSE’17, and compare to the virtual best solver (VBS).

In Table 4.2, we can see that entirely self-tuned tabu search hyper-parameteri-
zations, which realize vastly differing search strategies, can effectively complement
the current best MaxSAT solver, maxroster. The score (average ratio of the best
known solution over solver quality) improves from 0.9721 to 0.9771 on the training
set (we use the best quality in a portfolio of maxroster, wpm3 and HRTS parameter-
izations to define the instance best) and from 0.8311 to 0.8321 on the test set. This
is achieved by improving the quality on 7 out of the 156 test instances, or about
4.5% of all instances, without ever decreasing it.

This leads us several important conclusions: First, hyper-parameterized tabu
search can be tuned effectively. This is true even when the training set is not 100%
indicative of the test set (the benchmark used at MSE’17 differed significantly from
prior MaxSAT evaluations). Second, hyper-parameterized tabu search can real-
ize search strategies that differ significantly from existing, human-incepted search

35 CHAPTER 4. HYPER-REACTIVE TABU SEARCH FOR MAXSAT

maxr maxr+HRTS
Training Score 97.21% 97.71%
(961 instances)
Test Percent VBS 99.89% 100%
(156 instances) Head-to-Head Wins 0 7

Score 83.11% 83.21%
Best Found 69 69

Table 4.2: Head-to-head comparison of maxroster and a maxroster+HRTS portfolio.

methods, and thus offer the opportunity for improvements within a portfolio ap-
proach. This conclusion is analogue to the results presented in [56]. And third,
as a consequence of the previous two points, even in entrenched, highly researched
domains, hyper-parameterized tabu search can be applied effectively to achieve per-
formance improvements automatically, without any need of the user to provide any
domain knowledge. In our case, HRTS has access to an incremental cost evaluator
for MaxSAT. That is all that the framework can exploit. Everything that regards
search guidance, how to dynamically adapt, and what overall strategy to run, is
entirely driven by the search experiences that are gathered during training, by mon-
itoring the search features that we described in this chapter and correlating these
with the overall search performance.

4.4 Conclusions
We introduced a framework for the hyper-parameterization of tabu search. Our
framework opens tabu search parameters such as escape rules, neighborhood sizes,
and aspiration criterion for the dynamic adaptation during search, on top of the
length of tabu lists which had been pioneered in [16]. The dynamic self-adaptation is
based on various search features that we introduced. Experimental results show that
portfolios of hyper-reactive tabu search parameterizations work competitively with
human devised local search solvers for MaxSAT. Moreover, these parameterizations
can even improve the most cutting edge MaxSAT solver maxroster in a joint portfolio
approach.

Chapter 5

Boosting Evolutionary Algorithm
Configuration

AI research has created powerful tools, programming libraries as well as cloud and
device services, which are now publicly available to help human decision makers
find information, semantically link it to other information, provide forecasts, and,
most importantly, prescribe favorable courses of action. The paradigm of declarative
programming consists in the idea that a user could be liberated from the task of how
to find such prescriptions. Rather, the user only declares what properties so-called
"solutions" should have. Solvers are key for provisioning this desirable capability of
liberating the user from having to program the actual control flow of a machine’s
reasoning. The solver is the engine that combines search and intelligent reasoning
to find solutions that exhibit the properties the user declared.

Consequently, solvers that effectively tackle hard search problems have been de-
veloped in all communities that study these problems. From logic programming to
constraint programming to mathematical programming, from satisfiability to SAT
modulo theories, from quantified Boolean formulae to maximum satisfiability: in
all communities one of, if not: the core quest is the development of more efficient
solvers that push the boundary of what kind of problem instances can still be solved
in practically feasible computation times before, ultimately, the asymptotic impossi-
bility of provisioning solutions for NP-hard problems in affordable time overpowers
the machine.

Notably, it was found that different algorithmic approaches exhibit strong com-
plementary strengths in their ability to efficiently solve problem instances that ex-
hibit different characteristics [70, 71, 72]. An instance that is solved in seconds by
one approach may take days and months by another - and vice versa! In fact, it
is often observed that the same is true for different parameterizations of the same
algorithm.

In light of this situation, consider the scenario where a company or a research
group has devised a new combinatorial algorithm, a solver, like CPLEX for solving
mathematical programs, or SparrowToRiss, for solving logic programs. Not knowing
the instances their solvers will ultimately be run on by the users of these solvers,
the developers of these tools have three options: They can either aim to find good
default parameters for their solver that work reasonably well, by hand. They can try

36

37
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

to write a users’ manual that explains the solver parameters to the users so that these
can search for good parameterizations for their respective applications. Or they can
employ an automatic solver configurator that finds decent default parameters, as
well as allows users to tune the solver for their respective instance after deployment.

Algorithm tuners were developed that tune and customize solvers to work bet-
ter on specific sets of problem instances [18, 30, 32]. Moreover, managerial dis-
patch technologies were invented that choose, at runtime, which solver to run for
a given instance [35, 37, 73, 40, 74]. And finally, combining self-tuning and selec-
tion technologies, methods have been invented that choose a solver parameterization
instance-specifically at runtime [33, 75].

In this chapter, we aim to improve the automatic solver configurator GGA [18]
in three steps: First, we present a forward simulator that helps improve the perfor-
mance of the configurator on a parallel machine. Second, we introduce the idea of an
“elite mini-tournament” of solver parameterizations to improve the tuning process
itself. And third, we show how the parameterizations encountered during the course
of the configuration process can be utilized to build a solver portfolio.

In the next sections we introduce our new ideas in detail, and eventually evaluate
and compare the new solver configurator in a series of practical experiments.

5.1 Improving Parallel Efficiency Using an Evolu-
tion Simulator

Due to the extremely high computational costs of automatic solver configuration,
these algorithms must run on parallel machines to achieve acceptable configuration
times. In its current form, GGA has a strict synchronization point at the end of each
generation, which limits its parallel efficiency. In this section, we explain how we can
parallelize GGA and obtain the exact same results as GGA, but with significantly
improved parallel efficiency.

Key to this improvement is a forward simulation of the parallel execution which
allows us to safely interleave evaluations from consecutive generations. At first, this
idea may sound speculative, similar to how a processor anticipates which compu-
tations may have to be conducted next, for example, by running the "then"-block
of an "if"-statement before the result of the conditional jump is actually known.
Obviously, this avoids idleness, but it may lead to computations that the original
version of the algorithm would have never executed. Consequently, speculative com-
putations may keep everyone busy, and yet still not lead to good speed-ups over the
original algorithm.

Instead, we suggest to pre-compute which evaluations will surely have to take
place in future generations and only execute those computations that the original
version of GGA would also have conducted. To realize this vision, we need to
somehow pre-compute which future GGA target algorithm computations will have
to be carried out no matter how the currently unfinished mini-tournaments will turn
out. To this end, we introduce the idea of an evolution simulator.

The idea of the simulator is to determine all random decisions as early as possible.
Similar to a sports tournament, or the data flow graphs used in Spark [76], we can

38
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

decide that the winner of some mini-tournament will mate with a specific subset of
non-competitive individuals, and pre-determine the gender of their offspring. Also,
we can decide upfront which inputs will be used in which generation. Then, as soon
as the concrete parents are determined, we can create the offspring. If that offspring
has the competitive gender, we know which target algorithm evaluations need to
be conducted, and we can do it even before all mini-tournaments in the previous
generation are completed.

When we pre-pone the random decisions, we can create an evolution simulator
based on a precedence graph which tells us which target algorithm evaluations need to
be conducted before others. Nodes in this graph are either virtual genomes or virtual
mini-tournaments. Genome nodes would represent individuals in the population and
tournament nodes represent the (unknown) winners of a mini-tournament. Nodes
are virtual, because the actual genomes will only be known at runtime. The arcs
in the graph express which other nodes need to be actualized before a node can be
evaluated.

Genome nodes receive two input arcs from their parents (except for the ini-
tial randomly created genomes which are immediately actualized). A competitive
genome node has as many output arcs as mini-tournaments it competes in. A non-
competitive genome node has as many output arcs as it will have offspring. A
tournament node has as many input arcs as there are competitive genomes it races
and, as it represents the winner in its actualization, as many output arcs as the
winner has offspring.

Algorithm 8 Evolution Simulator
Input: Target Algorithm A, Parameter Space Θ, Instances Π, Number of Generations

NG, MiniTournament Size N
Output: A precedence graph that represents the trace of the GGA algorithm
1: graph, pop ← initPopulation(Θ)
2: for g = 1 to g ≤ NG do
3: inst ← selectInstances(Π)
4: mini_t ← createMiniTournamentNodes(graph, A, pop.comp, inst, N)
5: offspring ← createCrossoverNodes(graph, pop.noncomp, mini_t, Θ)
6: pop ← agingAndDeath(pop) ∪ offspring
7: return graph

The simulator, shown in Algorithm 8, follows the exact same structure as the
original GGA (Alg. 1), with the necessary changes to accommodate the creation of
the precedence graph. First, initPopulation creates the initial population nodes (gx)
and initializes the precedence graph. These initial nodes form the active population
(pop). At Line 4, instead of running the mini-tournaments, it creates the mini-
tournaments nodes (MTx) and sets the appropriate arcs. Similarly, Line 5 creates
new nodes that represent individuals simulating the crossover between the non-
competitive nodes and the recently created mini-tournaments nodes. Finally, at
Line 6, pop is updated with the nodes that survive to the next generation and the
offspring from the crossover operation.

Figure 5.1 shows an artificial example of a simulation graph describing the prece-

39
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

g1 g2 g3 g4 g5 g6 g7 g8

MT1 MT2

g9 g10 g11 g12

first generation

second generation

Figure 5.1: Evolution simulation graph

dence relations that would generate the GGA algorithm. In the first generation,
there are eight genomes which are randomly split into four non-competitive virtual
genomes {g1, g2, g5, g8} (the diamond-shaped nodes) and four competitive virtual
genomes {g3, g4, g6, g7} (the circle nodes). The age they initially have, randomly
assigned from 1 to 3, is {2, 1, 3, 3, 3, 3, 1, 1}, respectively.

The competitive nodes are randomly selected to be raced in two mini-tournaments
{MT1,MT2} (rectangular nodes) of size two each. The mini-tournament nodes rep-
resent the winners. Therefore, MT1 will represent, in its actualization, either g3 or
g4. A priori, we do not know which genome will win, but we know that each winner
has the right to reproduce. Then, the winner is paired at random with some non-
competitive genomes. In our example, the death age limit is 3. Therefore, genomes
g3, g4, g5, g6 are replaced by the new offspring g9, g10, g11, g12, which are randomly
labeled competitive or non-competitive with a 50% probability as done in GGA. At
this point, we have all the information to extend the simulation graph with nodes
of the second generation.

There is one complication: The overall best competitive winner does not die, no
matter its age, as long as it performs best. However, which competitive individual is
the overall best and therefore excluded from age termination can only be identified
at runtime. To address this issue, among the offspring of every mini-tournament,
at least one offspring of each gender is forced to exist. In the actualization, if
the tournament winner exceeds the age limit but is the overall most competitive
individual, then the forced competitive offspring will become a clone of the parent,
at age 0.

In Figure 5.2, we showcase the result of our efforts. The figure shows two block
diagrams of the parallel execution of genomes g on various training instances i. The
bottom of the figure shows the real execution of two generations of the original GGA
using 4 cores, the top shows the execution of the newly proposed algorithm. Note
that we tune the target algorithm for runtime, consequently, the width of the individ-
ual executions of the same instance i may vary with the algorithm parameterization
g that is used to tackle it.

As we see, the evaluations of the second generation start when the evaluation of
genome g4 on instance i2 has finished, leaving three cores idle. Notice that, in GGA,
once an evaluation (with a given timeout) has been initiated, it cannot be canceled
on demand. Moreover, since a given genome can be executed on the same instance
several times across its life period, it can be more efficient to let the evaluation finish

40
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

Time

g2 i1 g2 i2 g2 i3 g7 i4 g7 i5 g7 i6 g7 i7

g1 i1 g1 i2 g1 i3 g3 i4 g3 i5 g3 i6 g3 i7
g4 i1 g4 i2 g6 i4 g6 i5 g6 i6 g6 i7

g3 i1 g3 i2 g3 i3 g5 i4 g5 i5 g5 i6 g5 i7

g1 i1

g2 i2
g3 i2 g3 i3

g7 i6
g3 i4

g1 i2 g1 i3
g4 i1 g4 i2

g2 i1 g2 i3
g3 i1 g5 i4 g5 i5

g5 i6
g5 i7

g7 i4
g7 i5

g7 i7

g3 i5

g3 i6
g3 i7

g6 i4 g6 i5
g6 i6

g6 i7

core 2

core 1

core 3

core 4

core 2

core 1

core 3

core 4

G
G

A
G

G
A

-E

Figure 5.2: Timeline of evaluations in GGA-E and GGA

and access the cache for later re-evaluations.
At the top, we see the new algorithm (referred to as GGA-E) executing the

same mini-tournaments. Notice that GGA-E allocates work opportunistically, i.e.,
GGA-E uses as many cores as possible, therefore individual parameterizations are
no longer tied to just one core. For example, genome g3 is executed on different
instances on cores 2, 3, and 4.

5.1.1 Experimental Results

Here and in the remainder of this chapter, we run our experiments in a computer
cluster with nodes equipped with two octo-core Intel Xeon Silver 4110 @ 2.10 GHz
processors and 96 GiB of RAM. We tune satisfiability (SAT) and mixed-integer
programming (MIP) solvers on standard algorithm configuration benchmark sets
that consist of train/test splits of SAT and MIP instances.

We configure the award-winning SAT solver SparrowToRiss on the industrial
benchmarks used in [77]: Bounded Model Checking (BMC), Circuit Fuzz (CF) and
IBM-Hardware Verification, and crafted benchmarks: Graph Isomorphism (GI),
Low Autocorrelation Binary Sequence (LABS) and N-Rooks, all from the algorithm
configuration library AClib [78].

Furthermore, we tune the commercial state-of-the-art integer programming solver
CPLEX on the Assortment [79], MIRPLib [80] and RCW [81, 82] benchmarks.

Unless otherwise noted, for the configuration phase, the total wall-clock time
is 2 days, the evaluation timeout for each (parameterization/instance) pair is 300
seconds, and the memory limit is 6 GB. GGA and all its variants are run with
population size 100 and mini-tournament size 8.

For the test phase, we use a time limit of 300 seconds for SAT instances and
1,800 seconds for CPLEX, which reflects the relative difficulty of the respective
benchmarks. We report the PAR10 performance and, in parentheses, the number of
instances that were fully solved (including a proof of unsatisfiability, if applicable,
or optimality, in case of optimization problems) within the time limit. The PAR10
metric is defined as follows: When an instance is fully solved within the time limit,
we record the time that was needed to solve the instance. If the time limit is reached

41
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

before the instance is solved, then the run is penalized with a value of 10 times the
time limit. We then aggregate and average over all test instances for which at least
one approach of the ones we compare was able to solve the instance within the time
limit. That is, the PAR10 penalty for an unsolved instance is 0 provided no solver
or solver parameterization considered are able to solve the instance within the time
limit. For each benchmark, we note in bold the best overall approach on the test
set.

In Table 5.1, we first compare the original GGA and the new version GGA-E
that uses the evolution simulator. We show the number of generations after two
days elapsed time tuning SparrowToRiss on benchmarks CF, IBM, GI, BMC and
N-Rooks, as well as CPLEX on benchmarks Assort, MIRP, and RCW. As we can see,
except for MIRP, GGA-E is able to complete more generations than GGA thanks
to the more efficient desynchronized parallelization. In particular, for LABS, GGA-
E performs around 32,000 evaluations, compared to 17,000 evaluations that GGA
is able to conduct in the same time using the same number of processors. This
marks an 88% improvement, which is strong evidence to support that the evolution
simulator can help reduce idle times very significantly.

Moreover, on all benchmarks tested, we found that the system load during the
configuration process was always a little above 16 for GGA-E, which corresponds
almost exactly to the 16 workers, plus some overhead from the operating system.
This implies that, on benchmarks where we do not see a great improvement in
efficiency, for example on MIRP, the original GGA is already making maximal use
of the available compute power. However, whenever this is not the case, we see that
GGA-E has effectively reduced idle times close to zero.

Table 5.1: Number of generations after 2 days elapsed time.

SparrowToRiss CPLEX
CF IBM GI BMC LABS N-Rooks Assort MIRP RCW

GGA 19 12 11 8 11 27 15 12 4
GGA-E 23 14 12 10 15 51 20 12 6

5.2 Improving GGA

5.2.1 Instance Selection Strategy

The original strategy used by GGA is to randomly select the (increasing number of)
instances that competitive genomes are compared on at the beginning of each new
generation. While, in GGA, two consecutive generations can work on a completely
different set of instances, in IRACE and ParamILS [44]/SMAC the most recent set
is a randomly augmented super-set of the previous set. We investigate whether this
strategy also works for GGA: We randomly shuffle the instances only before the first
generation. Then, at the beginning of each new generation, we select instances in
that static random order until the (increasing) size of the training subset is reached.
That is to say, in consecutive generations, a super-set of the instances used in the

42
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

previous generation are being considered for fitness evaluations, just as it is done
in ParamILS/SMAC. This experiment is of interest since the racing mechanism are
different in ParamILS/SMAC, IRACE, and GGA.

Our hypothesis is as follows: Randomly choosing a completely newly sampled
subset of instances in each generation may help with population diversity, as com-
petitive parameterizations with complementary strengths on different instances have
the chance to parent new offspring. On the other hand, using a monotonically in-
creasing set of instances (a strategy that we denote with ’M’) may help focus the
optimization on promising parameterizations. Moreover, GGA’s cache for avoiding
re-evaluations may be far more impactful when reusing instances from the previous
generation.

5.2.2 Elite Mini-tournament

When running GGA, we found that several parameterizations, that used to be over-
all most competitive at one point during the configuration process, would have been
also the best parameterization at the end of the entire configuration process, but had
vanished in an earlier generation when they were outperformed by a competitor when
run on a specific subset of training instances. To prevent GGA from losing high-
performing genomes, we therefore experiment with an "elite" mini-tournament that
we add in each generation where all overall winners from previous generations com-
pete in one champions league (’C’). The downside is that the elite mini-tournament
could possibly cause undue computational overhead.

However, when analysing the additional effort carefully, we can see that the
additional effort is very affordable, and this is not in small part due to the previ-
ously introduced modifications: First, notice that all new champions have already
been evaluated on all instances of the previous generations, as mini-tournament
champions are by definition never interrupted by a competitor that runs faster.
Therefore, thanks to the monotonic ordering of instances and the cache, their eval-
uation is mostly limited to the new instances added in the current generation and
consequently very fast. Second, champions are high-performing parameterizations.
Consequently, the winner of winners, which determines the runtime for the elite
tournament thanks to the parallel racing in GGA, can be expected to run very
fast. Finally, to prevent that the fast elite tournaments run too far ahead of the
progression of other generations, we schedule outstanding tournaments from earlier
generations before we run mini-tournaments on younger generations.

Putting all three improvements together: We refer to the version of GGA that
uses the evolution simulator with GGA-E, the monotone instance selection GGA-M,
and the champions league tournaments GGA-C. The new version that uses all three
strategies is named GGA-EMC, and analogously for any subset of the new strategies
introduced above.

5.2.3 Experimental Results

In Table 5.2, we repeat the assessment of parallel efficiency from Section 5.1.1 by
tuning SAT solver SparrowToRiss and MIP solver CPLEX for various benchmarks

43
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

Table 5.2: Number of generations after 2 days elapsed time.

SparrowToRiss CPLEX
CF IBM GI BMC LABS N-Rooks Assort MIRP RCW

GGA 19 12 11 8 11 27 15 12 4
GGA-E 23 14 12 10 15 51 20 12 6
GGA-EC 22 14 11 9 15 50 20 11 6
GGA-EM 39 22 15 16 23 53 31 19 9
GGA-EMC 39 22 15 16 23 53 31 19 9

Table 5.3: PAR10 performance (# solved instances).

GGA GGA-E GGA-EM GGA-EMC

SA
T

CF Test 121 (280) 121 (280) 119 (280) 89 (283)
CF Train 68 (284) 57 (285) 58 (285) 48 (286)
IBM Test 21 (231) 23 (231) 21 (231) 10 (232)
IBM Train 34 (298) 53 (296) 52 (296) 41 (297)
GI Test 108 (315) 150 (310) 159 (309) 91 (317)
GI Train 117 (922) 161 (907) 176 (902) 73 (937)
BMC Test 159 (268) 134 (270) 192 (265) 171 (267)
BMC Train 121 (547) 92 (552) 132 (545) 133 (545)
LABS Test 200 (255) 275 (248) 197 (255) 275 (248)
LABS Train 267 (255) 290 (253) 193 (262) 267 (255)
N-Rooks Test 6.6 (351) 5.7 (351) 6.5 (351) 6.3 (351)
N-Rooks Train 5.7 (484) 4.8 (484) 5.9 (484) 5.6 (484)

M
IP

Assort Test 3030 (50) 393 (59) 708 (58) 718 (58)
Assort Train 353 (49) 117 (53) 65 (54) 65 (54)
MIRP Test 3340 (70) 5822 (58) 4583 (64) 5164 (61)
MIRP Train 652 (60) 764 (57) 614 (61) 724 (58)
RCW Test 557 (844) 435 (851) 516 (845) 344 (855)
RCW Train 304 (698) 406 (671) 238 (713) 265 (708)

and report the number of generations competed within the configuration time limit
for each variant of GGA. We observe that GGA-EMC consistently completes more
generations than GGA-E. Even though GGA-E had practically eliminated all idle
time that GGA exhibited, it is forced to conduct more work per generation as there
are a lot of new instances in the early generations, rendering the cache less effective.
The use of the caching mechanism in combination with monotone instance selection
clearly allows GGA-EM to work through more generations faster. We also see that
the use of the additional elite mini-tournament ‘C’ does not affect this result, as
the results for GGA-EM and GGA-EMC are the same in terms of the number of
generations that can be computed in a given amount of time. This supports our
earlier analysis that adding the elite tournament does not cause major computational
overhead.

Of course, at the end of the day what matters is not how many generations
the tuner can work through, but how good the resulting parameterizations are. In
particular, in Table 5.3, we report the train and test quality achieved by the different
variants of GGA. The table gives the PAR10 score and, in brackets, the number of
instances solved within the time limit. We observe that performance improves the

44
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

more of the new strategies we add to GGA. Due to the stochastic nature of the
evolutionary algorithm, the behavior is not strictly monotone, and what leads to an
improvement on one tuning benchmark may be detrimental on another. Overall,
we can observe that GGA-EMC provides the best test performance on four out of
the nine benchmarks considered. Moreover, GGA-EMC achieves an average rank
of 1.61, clearly outperforming the other variants (GGA-E 2.56, GGA-EM 2.61, and
GGA 2.78). What this data shows is that the performance of GGA-EMC is not the
result on any one individual modification, but their synergy effect when applied in
concert.

0 4 8 12 16 20 24 28 32 36 40 44 48
Time (hours)

0
11
22
33
44
55
66
77
88
99

110
121

Ex

ec
ut

io
ns

 ·
10

³

0 4 8 12 16 20 24 28 32 36 40 44 48
Time (hours)

0
28
56
84

112
140
168
196
224
252
280
308

Ex

ec
ut

io
ns

/E
va

lu
at

io
ns

 ·
10

³

48 56 64 72 80 88 96
Cores

25434
53526
81618

109710
137802
165894
193986
222078
250170
278262
306354

Ex

ec
ut

io
ns

/E
va

lu
at

io
ns

 ·
10

³ GGA-EMC (evals)
GGA-EMC (exec)
IRACE GGA-EMC 96 - Exec

GGA-EMC 80 - Exec
GGA-EMC 64 - Exec
GGA-EMC 48 - Exec
IRACE 96 - Exec
IRACE 80 - Exec
IRACE 64 - Exec
IRACE 48 - Exec

GGA-EMC 96 - Eval
GGA-EMC 80 - Eval
GGA-EMC 64 - Eval
GGA-EMC 48 - Eval

Figure 5.3: # of Evaluations and Executions on IBM.

We conducted an additional experiment to analyze cache and processor utiliza-
tion as we scale the number of cores. We tuned the SAT solver SparrowToRiss
with GGA-EMC and IRACE v3.0 on the IBM benchmark.1 In Figure 5.3 (top-left),
we plot the number of executions as a function of time, for different numbers of
cores: 48, 64, 80 and 96. We see that, in terms of processor utilization, GGA-EMC
is more efficient than IRACE. After 2 days on 96 cores, GGA-EMC has performed
over 121,000 runs of the target algorithm, while IRACE only conducted a little over
42,000, roughly one third of the executions run by GGA-EMC.

1Note that SMAC conducts independent Bayesian optimization runs on as many workers as
available which trivially causes SMAC’s CPU utilization to scale linearly in the number of workers.
At the same time, though, this trivial parallelization scheme leads to an ever diminishing value of
each additional CPU core for the task of solver tuning.

45
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

On the top-right, we see that GGA-EMC performs many more evaluations than
actual executions (with execution we refer to a real run of the target algorithm on
a given input, while an evaluation is either a real execution or a cache look up).
This shows that GGA-EMC revisits the same parameterization/input pairs rather
frequently, as discussed previously. Thanks to the evaluation cache, these redundant
evaluations no longer require a re-run of the target algorithm. This consequently
leads to a much more effective compute utilization. The total number of evaluations
considered by GGA-EMC during 2 days on 96 cores comes close to 310,000, 2.5
times the number of actual target algorithm executions. On the bottom, we plot
the numbers of evaluations and executions as a function of the number of cores for
GGA-EMC and IRACE. As we see, the utilization advantage of GGA-EMC becomes
ever more pronounced the more cores are available.

5.3 Instance-Specific Parameter Selection
We have introduced strategies to make GGA run faster by reducing idle times, and
have shown how to improve its ability to find a better solver parameterization for a
given set of reference instances. While instance-oblivious tuners greatly improve the
performance of solvers, they still do not address the issue that parameterizations,
even very good default parameterizations, do not work evenly well across heteroge-
neous sets of instances. One fixed parameterization simply does not fit all instances
equally well.

Therefore, we now consider the last step of solver configuration, and that is the
ability of provisioning a solver parameterization that is particularly suited for the
problem instance at hand, at runtime. That is to say, we tune a solver offline,
but search not only for one parameterization, but for a whole variety of different
parameterizations. Then, we provide a method to pick one of the parameterizations
created offline after the concrete instance to be solved in known, at runtime.

This approach obviously offers theoretical potential for further improvements,
provided that we can manage to select a solver parameterization at runtime that
works well for the instance at hand. That is to say: If we had an oracle that could
provide the best parameterization for tackling a given instance, then instance-specific
solver configuration would be a great idea.

The problem is, we do not have such an oracle. We could, for example, try to
learn a surrogate that forecasts solver performance given a parameterization and
instance properties. Then, at runtime, we could search for superior parameteriza-
tions given the instance features observed [83]. However, it has been found that the
surrogates we can learn offline are simply not accurate enough for this approach to
work robustly.

Instead, the current state of the art is to produce, at training time, a small, man-
ageable set of few parameterizations that exhibit complementary strengths in solving
subsets of different problem instances in the training set. At runtime, the task of
the oracle is now reduced to picking one of these relatively few parameterizations,
based on the characteristics of the concrete instance at hand.

One approach that realizes this methodology is ISAC [33]. It is based on the

46
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

assumption that the instance features, which will be used at runtime to select the
best parameterization, ought to give us a good idea already as to which instances are
similar in nature. Consequently, by clustering instances based on their features, we
should be able to group instances together that can be efficiently solved by the same
parameterization. Therefore, ISAC first clusters the training instances described by
a set of computed features and runs an instance-oblivious tuner (like GGA-EMC) for
each cluster of instances to produce as many parameterizations as there are clusters
in the training set (ISAC automatically determines the number of clusters based
on g-means clustering [34]). At runtime, ISAC then simply computes which cluster
of training instances is closest (as measured by Euclidean distance to the feature
vector of the cluster center) to the runtime instance, and uses the parameterization
that was specifically trained for this cluster.

In a later iteration, ISAC++ [69] employed an algorithm selector (portfolio),
namely cost-sensitive hierarchical clustering (CSHC) [35], which lead to performance
improvements. In particular, the portfolio is built on the result of executing the
parameterizations found by ISAC (as many as clusters) on the whole training set.

Another method to pre-compute a set of parameterizations offline and then select
one of these at runtime is Hydra [75]. At training time, Hydra first searches for a
good overall default parameterization. Then, Hydra re-runs the instance-oblivious
tuner, but this time under the assume that the default parameterization that was
just found will already handle all instances for which the new parameterization
cannot improve upon. That is to say, in the second tuning, the performance of all
instances is now assumed to be at least as good as the performance of the initial
parameterization found.

This process is repeated, and in each new iteration we already assume that
the portfolio of already generated parameterizations will handle those instances for
which the new parameterization under construction provides worse performance
than the best parameterization already in the portfolio. In this way, Hydra gives
newly created parameterizations the opportunity to improve for some training in-
stances, at the cost of doing worse on others, which drives the overall portfolio to
exactly the kind of diversity that is required to handle different instances well.

Seeing that algorithm selection technology has greatly advanced since the original
inception of Hydra and ISAC, the question arises if we could not afford to build a
much larger set of parameterizations at runtime from which the algorithm selector
may choose from, without running the risk of overwhelming the selector to the point
where it is no longer able to choose a superior parameterization consistently. This
is the starting point for our study below. Put simply, we propose to run a tuning
algorithm and to collect a whole set of high-performing parameterizations that were
encountered during the optimization process.

5.3.1 A Portfolio of All Parameterizations

Rather than building a large set of parameterizations in a guided approach (like,
e.g., Hydra follows), in this staretgy we harness the accidental variance of parame-
terizations found during the course of instance-oblivious solver configuration. More
precisely, the idea is the following: We run GGA-EMC (or another tuner) and use

47
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

its performance cache of all competitive parameterizations encountered during the
configuration process. For all instances that a parameterization was never evalu-
ated on, we assume it would have timed out. Equipped with this imputed data, we
then employ CSHC (or another algorithm selector) to create a dispatch front-end,
which, based on the features of the instance at hand, chooses one out of these very
many parameterizations at runtime. We refer to this method as AVP-All ("AVP"
for "accidental variance portfolio").

5.3.2 A Portfolio of Selected Parameterizations

The danger in the AVP-All approach is that the many parameterizations encountered
while configuring a solver may pose a big challenge for the algorithm selector to
pick the right parameterization. There is a danger that the selector may badly
overfit the training data as it has too many classes to choose from. We therefore
consider a modification of AVP-All where we reduce the set of parameterizations
before training the algorithm selector: For each instance in the training set, there
is one parameterization that has the best performance for that instance. A perfect
oracle, a so-called virtual best solver (VBS), that chooses the best from the available
parameterizations for each instance, would choose that parameterization for the
respective instance. Consequently, by reducing the set of parameterizations to only
those that are best for at least one training instance, our best possible training
performance remains the same. However, we may have greatly facilitated the task
for the algorithm selector to find the right instance, and may therefore boost training
performance in this way. Our hope is that test performance will also improve as the
selection procedure may now work more robustly as well. In our second approach,
named AVP-VBS, we build an algorithm selector based only on parameterizations
that are best for at least one instance in the training set.

5.3.3 Selecting the Portfolio

We now have three different strategies: The first is to train one parameterization
for the training instances and to stick to it for all test instances. Alternatively, we
can use the AVP-All or the AVP-VBS portfolios. Which method is best for a given
solver and benchmark if instances will depend on how homogeneous the training
instances are, and how well the instance features allow us to predict performance, as
this determines how well the algorithm selectors can work with many constituent pa-
rameterizations. Consequently, as our last variant, we propose to build all portfolios
at training time, and then choose the portfolio that exhibits the best performance
on the training set. For IRACE, SMAC and GGA-EMC, we refer to this approach
as Meta-IRACE, Meta-SMAC and Meta-GGA-EMC, respectively.

5.3.4 Experimental Results

In Table 5.4, we show the impact of building a portfolio from the parameterizations
encountered during the tuning of a solver with three different solver configurators:
IRACE v3.0, SMAC v3 0.8.0, and GGA-EMC. For these experiments, we extend the

48
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

Ta
bl
e
5.
4:

PA
R
10

P
er
fo
rm

an
ce

(#
so
lv
ed

in
st
an

ce
s)
.
D
ef

(D
ef
au

lt
).

So
lv
ed

(r
at
io

of
al
ls

ol
ve
d
in
st
an

ce
s)
.

SA
T

So
lv
ed

D
ef

IR
A
C
E

AV
P
A
ll

AV
P
V
B
S

M
et
a I

R
A
C
E

SM
A
C

AV
P
A
ll

AV
P
V
B
S

M
et
a S

M
A
C

G
G
A
-E

M
C

AV
P
A
ll

AV
P
V
B
S

M
et
a G

G
A
−
E
M
C

B
M
C

Te
st

28
1/

30
2

34
6
(2
62

)
16

6
(2
67

)
16

8
(2
67

)
14
6
(2
69

)*
16

6
(2
67

)
12

1
(2
71

)*
13

9
(2
70

)
13

6
(2
70

)
13

6
(2
70

)
17

1
(2
67

)
14

0
(2
70

)*
14

0
(2
70

)*
14

0
(2
70

)*
B
M
C

Tr
ai
n

56
6/

68
4

44
6
(5
07

)
14

3
(5
42

)
14

9
(5
41

)
15

3
(5
40

)
14

3
(2
52

)
97

(5
50

)
93

(5
52

)
91

(5
52

)
91

(5
52

)
13

2
(5
45

)
10

0
(5
51

)
11

9
(5
47

)
10

0
(5
51

)
C
F
Te

st
29

0/
30

2
29

7
(2
76

)
11

9
(2
80

)
11

2
(2
81

)*
13

0
(2
79

)
11

9
(2
80

)
89

(2
83

)*
12

1
(2
81

)
10

2
(2
82

)
10

2
(2
82
)

89
(2
83

)
73

(2
85

)
72

(2
85

)*
72

(2
85

)*
C
F
Tr

ai
n

28
9/

29
9

30
5
(2
74

)
68

(2
84

)
79

(2
83

)
90

(2
82

)
68

(2
84

)
67

(2
84

)
57

(2
86

)
37

(2
87

)
37

(2
87

)
48

(2
86

)
38

(2
87

)
37

(2
87

)
37

(2
87

)
IB

M
Te

st
23
2/

30
2

11
3
(2
32

)
22

(2
31

)*
23

(2
31

)
36

(2
30
)

22
(2
31

)*
21

(2
31

)*
23

(2
31

)
36

(2
30

)
21

(2
31

)*
10

(2
32

)*
11

(2
32

)
34

(2
30

)
10

(2
32

)*
IB

M
Tr

ai
n

30
0/

38
2

10
8
(3
00

)
43

(2
97
)

53
(2
96

)
43

(2
97

)
43

(2
97

)
32

(2
98

)
35

(2
98

)
32

(2
98

)
32

(2
98

)
41

(2
97
)

52
(2
96

)
51

(2
96

)
41

(2
97

)
G
I
Te

st
32

6/
35
1

24
7
(3
07

)
13

30
(1
82

)*
21

04
(9
8)

20
57

(1
03

)
21

04
(9
8)

16
7
(3
08

)
17

3
(3
08

)
16

3
(3
09

)*
16

7
(3
08
)

91
(3
17

)
84

(3
18

)
75

(3
19

)*
75

(3
19

)*
G
I
Tr

ai
n

95
7/

10
32

26
8
(8
98

)
14

68
(4
90

)
13

57
(5
26

)
14

69
(4
90

)
13

57
(5
26
)

17
2
(9
37

)
17

5
(9
04

)
17

6
(9
03

)
17

2
(9
37

)
73

(9
37

)
63

(9
41

)
57

(9
43

)
57

(9
43

)
LA

B
S
Te

st
27

2/
35

1
30

3
(2
50

)
29
7
(2
46

)
30

8
(2
45

)
28

8
(2
47

)*
28

8
(2
47

)*
23

0
(2
52

)*
26

4
(2
49

)
25

2
(2
50

)
25

2
(2
50

)
27

5
(2
48

)
24

4
(2
51

)
24

3
(2
51

)*
24
3
(2
51

)*
LA

B
S
Tr

ai
n

27
9/

35
0

28
9
(2
58

)
32
0
(2
50

)
32

1
(2
50

)
30

0
(2
52

)
30

0
(2
52

)
17

3
(2
64

)
78

(2
73

)
78

(2
73

)
78

(2
73

)
26

7
(2
55

)
17

3
(2
64

)
16

4
(2
65

)
16

4
(2
65

)
N
-R

oo
ks

Te
st

35
1/

35
1

11
6
(3
48

)
11

6
(3
38

)*
12

5
(3
38

)
11

6
(3
38

)*
11

6
(3
38

)*
5.
8
(3
51

)*
91

(3
51

)
5.
9
(3
51

)
5.
9
(3
51

)
6.
3
(3
51

)
6.
6
(3
51

)
6.
2
(3
51

)*
6.
2
(3
51

)*
N
-R

oo
ks

Tr
ai
n

48
4/

48
4

14
5
(4
76

)
48

(4
77

)
64

(4
76

)
49

(4
77

)
48

(4
77

)
4.
9
(4
84

)
88

(4
84

)
4.
5
(4
84

)
4.
5
(4
84

)
5.
6
(4
84

)
5.
5
(4
84
)

5.
3
(4
84

)
5.
3
(4
84

)
M
IP

A
ss
or
t
Te

st
60
/9

0
24

29
(5
2)

24
37

(5
2)

13
32

(5
6)
*

13
35

(5
6)

13
35

(5
6)

21
50

(5
3)
*

21
58

(5
3)

21
56

(5
3)

21
50

(5
3)
*

71
8
(5
8)

71
2
(5
8)
*

18
85

(5
4)

71
8
(5
8)

A
ss
or
t
Tr

ai
n

55
/8

9
50

(5
5)

34
2
(5
4)

12
8
(5
4)

78
(5
4)

78
(5
4)

11
7
(5
5)

12
2
(5
3)

12
2
(5
3)

11
7
(5
5)

65
(5
4)

69
(5
4)

71
(5
4)

65
(5
4)

C
LS

Te
st

50
/5

0
3.
04

(5
0)

2.
99

(5
0)
*

5.
96

(5
0)

5.
82

(5
0)

2.
99

(5
0)
*

2.
49

(5
0)
*

24
8
(5
0)

5.
59

(5
0)

2.
49

(5
0)
*

2.
01

(5
0)
*

7.
66

(5
0)

6.
27

(5
0)

2.
01

(5
0)
*

C
LS

Tr
ai
n

50
/5

0
3.
14

(5
0)

3.
1
(5
0)

6.
12

(5
0)

5.
83

(5
0)

3.
1
(5
0)

2.
4
(5
0)

25
7
(5
0)

5.
11

(5
0)

2.
4
(5
0)

1.
96

(5
0)

7.
2
(5
0)

4.
54

(5
0)

1.
96

(5
0)

C
O
R
-L
A
T

Te
st

10
00

/1
00

0
37

(9
99

)
56

(9
98

)*
59

(9
98

)
59

(9
98

)
56

(9
98
)*

13
(1
00

0)
*

29
(1
00

0)
23

(1
00

0)
23

(1
00

0)
7
(1
00

0)
*

11
(1
00

0)
11

(1
00

0)
11

(1
00

0)
C
O
R
-L
A
T

Tr
ai
n
10

00
/1

00
0

60
(9
84

)
77

(9
79

)
80

(9
79

)
83

(9
79

)
77

(9
79

)
20

(9
98

)
23

(9
99

)
16

(9
99

)
16

(9
99

)
20

2
(9
46

)
11

(1
00

0)
11

(1
00

0)
11

(1
00

0)
M
IR

P
Te

st
85

/1
50

49
95

(6
2)

84
74

(4
5)

78
45

(4
8)
*
78

45
(4
8)
*
78

45
(4
8)
*

49
84

(6
2)

50
11

(6
2)

48
08

(6
3)
*

50
11

(6
2)

51
64

(6
1)

49
70

(6
2)

33
57

(7
0)
*

33
57

(7
0)
*

M
IR

P
Tr

ai
n

76
/1

50
84

4
(5
5)

11
49

(4
7)

92
2
(5
3)

92
2
(5
3)

92
2
(5
3)

72
7
(5
8)

57
4
(6
2)

60
8
(6
0)

57
4
(6
2)

72
4
(5
8)

68
9
(5
8)

64
6
(6
0)

64
6
(6
0)

R
C
W

Te
st

86
3/

91
5

56
2
(8
44

)
70

2
(8
36

)*
21

98
(7
78

)
23
70

(7
69

)
70

2
(8
36

)*
73

0
(8
35
)

70
2
(8
37

)*
86

8
(8
28

)
73

0
(8
35

)
34

4
(8
55

)*
53

6
(8
45

)
37

9
(8
53

)
34

4
(8
55

)*
R
C
W

Tr
ai
n

75
7/

91
6

29
7
(7
00

)
28

1
(7
02

)
13

01
(4
48

)
12

84
(4
53

)
28

1
(7
02

)
26

1
(7
08
)

29
6
(7
03
)

29
4
(7
03

)
26

1
(7
08

)
26

5
(7
08

)
28

0
(7
05

)
28

0
(7
05

)
26

5
(7
08

)
R
C
W

2
Te

st
49

5/
49

5
40

(4
95

)
46

(4
95

)*
46

3
(4
86

)
33

0
(4
90

)
46

(4
95

)*
37

(4
95
)*

51
(4
95

)
42

(4
95

)
37

(4
95

)*
32

(4
95

)*
40

(4
95

)
37

(4
95

)
32

(4
95

)*
R
C
W

2
Tr

ai
n

49
0/

49
5

11
9
(4
75

)
12

0
(4
75

)
39

3
(4
35

)
40

0
(4
34

)
12

0
(4
75

)
57

(4
85

)
71

(4
85

)
63

(4
85

)
57

(4
85

)
28

(4
90

)
35

(4
90

)
34

(4
90

)
28

(4
90

)

49
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

set of benchmarks with three MIP benchmarks from the AClib: BCOL-CLS, COR-
LAT and RCW2, each using the train/test splits provided as part of the benchmark.

IRACE and GGA-EMC have built-in paralelization and were run with 16 cores
each, using seed 123456. For SMAC, to exploit the 16 parallel cores, we conducted
16 different tuning runs using different start seeds, as recommended by the SMAC
developers in [84]. We choose the seeds consecutively starting at 123456. Addition-
ally, to run SMAC with its full potential, we provided the instance features from the
AClib and used the tool from http://www.cs.ubc.ca/labs/beta/Projects/EPMs/
to compute the features for Assortment and MIRPLib.

After the individual tuning runs are completed, we then evaluated all 16 pa-
rameterizations returned by SMAC on all training instances (notice that during the
tuning not necessarily all the parameterizations are executed on all the training in-
stances) and selected the configuration with the lowest training PAR10 score to be
run on the test set presented in the table. Note that this means that SMAC was given
significant additional computation time when compared to the other approaches.

For each tuner, we noted with ’*’ the best of its variants on the test set, and, for
each benchmark, we noted in bold the best overall approach on the test partitions.
In the second and third column we give the number of instances for which at least
one parameterization could find a solution within the time limit, as well as the total
number of instances in the train and test partitions. For example, for the BMC test
partition, 281 instances can be solved by SparrowToRiss if we chose dynamically the
right parameterization for each instance out of the total set of parameterizations
considered by any of the three tuners. With 302 instances in this partition, this
means that 21 instances cannot be solved within the given time by SparrowToRiss,
no matter which parameterization we use out of any that were ever considered by
any tuner.

In the next column, we show the performance of the default parameterizations,
first measured as PAR10 score over all instances for which at least one parameteri-
zation allows us to solve the instance, and, in brackets, the number of instances the
default allows us to solve within the time limit.

In the following columns, broken down in three times four columns for each
tuner, we show the performance of IRACE, SMAC, and GGA-EMC, as well as the
portfolios derived from each tuner.

As the table shows, SMAC and GGA-EMC are effective tuners. Both provide
substantial speed-ups over the default solver parameterizations for most benchmarks
and solve more instances within the given time limit. This clearly indicates the value
of configuration tools for solvers. To calibrate the impact, consider, for example,
the CF benchmark. The default parameterization of SparrowToRiss solves 276 test
instances within the time limit. Aspirationally, we may hope to solve 290 instances
using this solver, as is, just by tuning. SMAC manages to tune SparrowToRiss to a
point where it can solve 283 instances, the AVP-VBS portfolio generated by GGA-
EMC even solves 285 instances. In other words, merely by tuning the solver and
selecting a parameterization instance-specifically at runtime, we can solve 9 instances
more than the default configuration, closing 64% of the default solver performance
and its realistic maximum capability. At the 2020 SAT competition, a difference of
9 instances corresponds to ranking third or thirteenth in the competition. From our

http://www.cs.ubc.ca/labs/beta/Projects/EPMs/

50
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

own experience, we can state that the effect of tuning is roughly the same as one
full year of algorithmic solver development time, which is very significant.

In Table 5.4, we can see that GGA-EMC performs on par with SMAC and
slightly better than IRACE on SAT benchmarks. On MIP benchmarks, GGA-EMC
is already clearly superior, even without building a portfolio. In terms of the portfolio
versions of each tuner, we observe that SMAC benefits less from building a portfolio
and only sees some slight boost on GI, MIRP and RCW. This result is somewhat
surprising, as GGA (on BMC, CF, GI, LABS, N-Rooks, Assort, MIRP) and IRACE
(on BMC, CF, LABS, Assort, MIRP) both clearly benefit from the ability to switch
solver parameterizations at runtime. Moreoever, SMAC has been used in the past
to build predictive ensembles when configuring the hyper-parameters of machine
learning algorithms.[85]

One possible explanation for these results is that SMAC explores many more
different parameterizations than GGA-EMC, but for each parameterization the ex-
perience of how it fares across the varying instances is more limited. GGA sees
fewer parameterizations, but gains more experience on different instances with each
one. This makes choosing one best parameterization at runtime more problematic
for SMAC, as there are very many to choose from and each one is burdened with
more imputed data for a lot of instances.

The reason why SMAC portfolios perform well in ML [85], on the other hand, is
because the results from all parameterizations are aggregated rather than selected.
That is to say, in an ML application, a portfolio is inherently associated with a
stacking or bagging process, where an ensemble of weak learners can make good
predictions. This is, however, not the case when configuring solvers. We have to
choose and run exactly one highly efficient solver parameterization. In this context,
using SMAC-provided parameterizations does not work well, and it is best to use
SMAC’s final parameters rather than switching these based on instance features.

Considering IRACE, we could expect a higher impact of building portfolios on
top of this tuner since GGA-EMC and SMAC show there is more room for im-
provement. We recall that IRACE is built on the idea of omitting evaluations when
a parameterization is already expected to perform worse than another on a given
set of instances. However, the whole idea of a portfolio is to identify parameter-
izations that have niche high performance on some instances, while they may not
work as robustly across sets of instances. When aiming to build a portfolio, IRACE
suffers from the fact that it never gets to see the excellent niche performance of
some parameterizations on some instances. Consequently, training a portfolio on
this information is inherently limited by the data available to the portfolio trainer.

In terms of choosing whether to use always the same static, tuner-recommended
parameterization or one of the two dynamically choosing portfolios, we see that the
training performance is indeed an excellent criterion for making the final determina-
tion for GGA-EMC. Meta-GGA-EMC performs best on the training and test set on
all but the Assort and COR-LAT benchmarks. Moreover, on these two benchmarks,
Meta-GGA-EMC performs very close to the best GGA-EMC variant.

Encouragingly, Meta-GGA-EMC also shows a substantial speed-up on the chal-
lenging task of configuring CPLEX on the MIRPLib benchmark. Our tuner produces
an approach that, when compared with the default in terms of PAR10 score, pro-

51
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

vides a 5 times performance improvement: 470 (with 70 instances solved within the
time limit) versus 2431 (with only 62 instance solved). In comparison, IRACE is
not able to find a parameterization that comes close to the quality of the default
parameters, and SMAC is not able to improve on the CPLEX default performance.

Overall, if we consider it to be similar performance when the difference in solved
instances is two or less, META-GGA-EMC performs best on all twelve benchmarks,
whereby it is tied with SMAC on two thirds of them. On the remaining third, the
difference in performance is striking:

• RCW: The default configuration solves 844 instances, the maximum we may
realistically hope for on this test set with this solver is 863. If we consider these
19 instances to represent our total tuning entitlement, our META-GGA-EMC
achieves almost 58% of the tuning potential. SMAC cannot find a parameter-
ization that can compete with the default and actually loses over 47% of the
potential by solving only 835 test instances within the time limit.

• MIRP: META-GGA-EMC realizes close to 35% of the tuning potential, SMAC
none.

• Assort: META-GGA-EMC realizes 75% of the tuning potential, SMAC a mere
12.5%.

• GI: META-GGA-EMC realizes over 63% of the potential offered by tuning,
SMAC a little over 5%.

Furthermore, META-GGA-EMC always achieves at least the performance of the
default parameters of the given solver2, while SMAC is unable to do so for 17% of
the benchmarks we tested. We conclude that META-GGA-EMC exhibits a level or
reliability and performance that tuners could not provide before.

Table 5.5: Comparison with state-of-the-art, test performances.

SAT IRACE MetaIRACE SMAC MetaSMAC ISAC++ GGA-EMC MetaGGA−EMC

CF 119 (280) 119 (280) 89 (283) 102 (282) 89 (283) 89 (283) 72 (285)
IBM 22 (231) 22 (231) 21 (231) 21 (231) 21 (231) 10 (232) 10 (232)
BMC 166 (267) 166 (267) 121 (271) 136 (270) 147 (269) 171 (267) 140 (270)
GI 1330 (182) 2014 (98) 167 (308) 167 (308) 161 (309) 91 (317) 75 (319)
LABS 297 (246) 288 (247) 230 (252) 252 (250) 230 (252) 275 (248) 243 (251)
N-Rooks 116 (338) 116 (338) 5.8 (351) 5.9 (351) 39 (347) 6.3 (351) 6.2 (351)
MIP
Assort 2437 (52) 1335 (56) 2150 (53) 2150 (53) 2714 (51) 718 (58) 718 (58)
MIRP 8474 (45) 7845 (48) 4984 (62) 5011 (62) 5607 (59) 5164 (61) 3357 (70)
RCW 702 (836) 702 (836) 730 (835) 730 (835) 571 (844) 344 (855) 344 (855)

This claim is further substantiated by a comparison of the new configurators
GGA-EMC and Meta-GGA-EMC with the most competitive solver configurators

2Note that the tuners were not given access to these default settings and had to rediscover
parameters that perform equally well or better, from scratch. This is the realistic scenario when
developing a new tuner or after a substantial algorithmic update.

52
CHAPTER 5. BOOSTING EVOLUTIONARY ALGORITHM

CONFIGURATION

to date: IRACE, SMAC, GGA, their Meta-versions, and ISAC++3. We compare
on benchmark sets where the default solver parameterization is unable to solve
a significant number of instances in the test set. Table 5.5 shows that the new
solver configuration tool works markedly better than the state of the art for the
benchmarks considered in this chapter. Particularly for MIP problems, we see a
significant improvement in performance. We believe that this makes Meta-GGA-
EMC the currently best tool for configuring constraint satisfaction and optimization
solvers.

5.4 Conclusions
We presented the combination of several contributions to boost the performance
of GGA for combinatorial solvers significantly. Experiments on twelve challeng-
ing benchmarks from SAT and MIP demonstrated the effectiveness of the new
tool, called META-GGA-EMC, that exhibits a level of reliability that could not be
achieved before. On every benchmark we tested, the tuner was able to match, and
usually outperform, the default parameterizations of the respective solver, while the
best performing competitor was unable to do so on 17% of the benchmarks. More-
over, on 33% of the benchmarks tested, the improved tuning tool outperformed even
the closest competitor, while it was tied in performance on the remaining bench-
marks.

3Note that ISAC++ outperforms ISAC and, according to [86], Hydra and ISAC are comparable.
We can therefore use ISAC++ to compare with ISAC and Hydra as well.

Chapter 6

PyDGGA: Distributed GGA for
Automatic Configuration

In previous chapters, we have seen how setting parameters automatically dramat-
ically reduces manual efforts and can result in orders of magnitude improvements
in performance. Over the past decade there have been a number of methods devel-
oped for tuning parameters automatically, such as CALIBRA [43], ParamILS [44],
I/F-Race [87], SMAC [30], ReACT/ReACTR [88, 89] and CPPL [90]. In chapter 5
we focused on GGA, and while previous work has explored parallel algorithm con-
figuration in the context of ParamILS, SMAC [91] and grid search [92], we showed
that the inherent potential for parallelization [93] of genetic algorithms makes them
a good candidate to tackle AAC.

In this chapter we present PyDGGA, a distributed version of GGA written in
Python, adapted to exploit the resources of High Performance Computing (HPC)
clusters. PyDGGA implements all the features that improved the original GGA
in Chapter 5. In what follows, we first describe the distributed architecture and
present other implementation details not introduced previously. Then, we provide
brief instructions on how to use PyDGGA. Finally, we experiment on SAT problems
and conclude.

6.1 Distributed Architecture
To adapt GGA to a distributed computing architecture while preserving the core
algorithm as close as possible to the original description, PyDGGA is implemented
using an event-driven architecture, which is known to be good for horizontal scal-
ability. The events represent steps from the original GGA, such as the generation
of new offspring or the evaluation of a genome on an instance. Each event has the
necessary information attached to it to perform its associated action and triggers
the next event in a way so as to maintain the original GGA execution logic. To
exploit the available computing resources to the fullest extent, PyDGGA uses a
master-worker architecture, shown in figure 6.1, to distribute the genome-instance
evaluations across several machines. The master runs the event-based core, and
the workers wait for parameters and instance data to evaluate and return the re-

53

54
CHAPTER 6. PYDGGA: DISTRIBUTED GGA FOR AUTOMATIC

CONFIGURATION

sult. The workers have none of GGA’s logic and can be added or removed at any
time. The master will simply use the workers still available and rollback incomplete
evaluations, if necessary.

One can find examples of evolutionary algorithms based on a steady-state model
that make maximal use of many parallel processors using a master-worker architec-
ture. However, it has been shown that they tend to be biased towards regions of the
search space [94]. Our contribution preserves GGA’s generational scheme, which
has been shown to be effective for automatic configuration. Moreover, we decided
to use this approach instead of just relying on a batch-queuing system, such as SGE
or SLURM, because these systems are used by multiple users concurrently and their
tasks are interleaved, which add an almost negligible delay when only a handful of
tasks are to be executed. But, since PyDGGA tries to run as many evaluations as
possible, this delay ends up being a burden. The worker approach lets PyDGGA
run on any distributed environment regardless of the batch-queuing system, as long
as there is a shared file system. This ensures computing resources are reserved for
a longer period and allows the user to terminate and re-submit more workers later
to release resources for other jobs temporarily.

Figure 6.1: Master-Worker architecture

6.2 Scheduling & Canceling
A problem arises when we can run evaluations of different generations distributively
at the same time. Which should be run first? It makes sense to run the evaluations in
an order relative to the generation they belong to. This way we keep on fulfilling the
dependencies of later generations, which trigger more evaluations, thus the hardware
rarely idles. However, this static order may break the efficiency of the original GGA
racing scheme.

GGA uses mini-tournaments with size equal to the number of CPU cores on
a single machine, and run the evaluation of each individual on a different core.
Then, as soon as an individual could be declared the winner it simply cancels the
evaluations of the other individuals in the mini-tournament that have not been
started yet.

PyDGGA can handle many more resources than GGA and can evaluate entire
mini-tournaments at the same time, which means that it will waste time running
evaluations that GGA would have skipped. To tackle this issue, PyDGGA keeps

55
CHAPTER 6. PYDGGA: DISTRIBUTED GGA FOR AUTOMATIC

CONFIGURATION

a dynamic priority value that determines the next evaluation to run. How this
value is to be computed to maximize the efficiency is still an open question, but so
far the implementation tries to mimic the racing scheme behaviour. Finally, since
the scheduling is not perfect, we know that PyDGGA will start some evaluations
that will end up being unnecessary. To mitigate this, we also implement a way for
PyDGGA to terminate running evaluations.

6.3 Tool Enhancements
On top of the more profound changes commented above, we also introduce some
additional modifications to make PyDGGA more user-friendly.

• Stop/Resume: PyDGGA keeps a cache of all the evaluations performed so
far inside the scenario directory. If the same scenario is used again it will reuse
the cache whenever possible, which has the effect of resuming the search from
wherever it was stopped as all the evaluations in the simulation graph up to
that point are resolved instantly.

• Enhanced configurations constraints: GGA allows the user to specify
combinations of forbidden values, but it could only express constraints, such
as a = 10 & b = 5 as forbidden, which forced the user to write the Cartesian
product of all the forbidden parameter-value combinations. PyDGGA uses
Python’s abstract syntax tree module, which lets the user write Python log-
ical expressions that must be satisfied (True) by all valid configurations, for
example: 10 <= a < 20 and b in [5, 6, 7].

• Abort Search: GGA only supports two possible evaluation results: SUC-
CESS and CRASHED. The first denotes that the evaluation was successful
and the second captures cases where A failed, but are not critical, for example
because it run out of memory. While CRASHED works fine in most situations,
there are others that leave the user waiting for the algorithm to finish just to
realize at the end that all the evaluations CRASHED. As an example, imagine
that the instances or the target algorithm binary are moved while PyDGGA
is running, or imagine that the user decides to abort if the program detects
something wrong happened that may indicate that the result is not correct and
the same error may arise in the rest of the executions. For these situations,
we add the evaluation result ABORT, which stops PyDGGA immediately.

• Objective function: GGA was designed with runtime tuning in mind. Py-
DGGA extends this to support a different type of objective function. Namely,
the user can pass any value as the evaluation metric (including the runtime)
and PyDGGA will try to configure the target algorithm for that metric.

6.4 Using PyDGGA

PyDGGA is available as a command-line tool from https://ulog.udl.cat/?page_
id=30. There one can download a pre-built binary, the user manual and some

https://ulog.udl.cat/?page_id=30
https://ulog.udl.cat/?page_id=30

56
CHAPTER 6. PYDGGA: DISTRIBUTED GGA FOR AUTOMATIC

CONFIGURATION

examples. For the sake of brevity, we do not describe the details of the whole
process, instead, we explain what a scenario is and show that running PyDGGA
locally or in a distributed environment is quite similar. We encourage the reader to
follow the complete example on how to tune the SAT solver glucose 4 in the user
manual.

A configuration scenario for PyDGGA is just a directory with some special files
that contain the information required to configure the target algorithm. These files
are:

• conf.xml: This file describes the parameter structure of A, as a tree. Addi-
tionally, it may also contain the so-called seed genomes, i.e, the default solver
parameter’s values, and constraints to filter forbidden parameterizations.

• instances.txt: A simple text file that contains the instances that form Π.
Each line of the file contains the path to an instance and the seed that the
target algorithm should use to initialize the pseudo-random number generator
of A when evaluating that instance.

• settings.txt: The configuration of PyDGGA itself, such as the number of
generations, the size of the population, etc. It also contains the name of the
wrapper file.

• wrapper file: This could be the target algorithm A or a script that acts as
the interface between PyDGGA and A.

Once a scenario is set up, running or testing it is as simple as running the
following command to start PyDGGA locally:

pydgga gga -s "/path/to/scenario_dir"

If the scenario works locally, it is almost ready for use in a distributed environ-
ment. The only additional element is a script that PyDGGA will invoke any time
it needs to start a new worker. For example, to run it on an environment that uses
qsub to submit jobs, the script could be:

1 #!/usr/bin/env sh
2
3 QUEUE="yourqueue.q" # System specific configuration
4 PENV="smp"
5 MEM_LIMIT="35840M" # 35 GB
6 RT_LIMIT=172800 # 2 Days
7
8 name=${1} # session name | Extract fixed parameters
9 slots=${2} # number of slots | passed by pydgga

10 shift 2 # remove ’name’ and ’slots’ from ${@}
11
12 olog="/path/to/stdout/directory"
13 elog="/path/to/stderr/directory"
14
15 echo "pydgga dggaw ${@}" | qsub -V -cwd -pe ${PENV} ${slots}\
16 -l h_vmem=${MEM_LIMIT} -l h_rt=${RT_LIMIT} -q ${QUEUE} \

57
CHAPTER 6. PYDGGA: DISTRIBUTED GGA FOR AUTOMATIC

CONFIGURATION

17 -N ${name} -o "${olog}" -e "${elog}"
18
19 exit 0

Then to run the same scenario distributed, one simply runs:

pydgga dgga -s "/path/to/scenario_dir" --worker-script "/path/to/script

" --slots SLOTS_PER_WORKER --num-workers NUM_WORKERS

6.5 Experimental Results
In this section we conduct some experiments to showcase that PyDGGA can outper-
form the default parameters on several SAT scenarios. We focus on minimizing the
runtime of a SAT solver. The experiments are conducted in a compute cluster with
nodes equipped with two octo-core Intel Xeon Silver 4110 @ 2.10 GHz processors and
96 GB of RAM. The selected solver is the award-winning SparrowToRiss [1], which
has a large configuration space with 222 parameters open for configuration. The
instances come from the industrial and crafted benchmarks used in [77]: Bounded
Model Checking (BMC), Circuit Fuzz (CF), IBM-Hardware Verification, Graph Iso-
morphism (GI), and N-Rooks, which are all available, including the train/test splits,
in the algorithm configuration library [78].

To configure the solver, we let PyDGGA run for 2 days. In both the training
and test phases we use a time limit of 300 seconds and 5 GB per evaluation. The
results of our evaluation are shown in Table 6.1, which show that PyDGGA can find
better parameteriztions than the default one for SparrowToRiss on all the evaluated
SAT benchmarks. The cost metric employed is PAR10, which is defined as the
time needed to solve the instance if solved within the time limit, otherwise the run
is penalized with a value 10 times the time limit. We report the results using the
PAR10 metric as well as the number of solved instances. Finally, to make the PAR10
value more readable we remove the constant value post hoc added by instances that
are never solved by any configuration.

Table 6.1: PAR10 performance (# solved instances) on the test instances

BMC CF IBM GI N-Rooks
Default 346 (262) 297 (276) 113 (232) 247 (307) 116 (348)
PyDGGA 171 (267) 89 (283) 10 (232) 91 (317) 6.3 (351)

6.6 Conclusions
PyDGGA is able to exploit the resources of a distributed computing environment.
Experiments using the SAT solver SparrowToRiss demonstrated that it can boost
the performance of an algorithm by automatically finding a parameterization that
yields better results than the default one.

Chapter 7

OptiLog: A Framework for
SAT-based Systems

Python [95] has emerged as one of the most preferred programming languages for
rapid prototyping of applications because of its straightforward syntax and the great
amount of established libraries that provide common functionality for researchers to
readily use. We can find several of these libraries into diverse Artificial Intelligence
disciplines like, for example, Numpy[96], Pandas[97], scikit-learn[98], Pytorch[99] or
Keras[100].

In terms of performance, the core of the critical components of these systems is
implemented with more efficient languages such as C++, although their intercon-
nection is commonly materialized through Python.

Within the area of Constraint Programming, Python has also become quite pop-
ular. CPLEX[17], Gurobi[101], OR-Tools[102], COIN-OR[103], SCIP[104], Z3[105]
and many others have Python bindings. In particular, in the SAT community there
have also been several contributions. PySAT [106] was the first framework, to our
best knowledge, to provide Python bindings for several SAT solvers.

Recently, there have been other contributions that can be queried from Python
such as SAT Heritage [107], intended to serve as an archive and to easily compile
and run all SAT solvers that have been released so far, or cnfgen [108], that produces
hard SAT benchmarks coming from research in Proof Complexity.

Our contribution in OptiLog is two-fold. First, we provide a Python binding
[109] for the PBLib [110] that allows to encode Pseudo Boolean (PB) constraints
into SAT. This binding is also currently integrated into PySAT.

Second, we take a step further, easing both the integration of new C++ SAT
solvers in OptiLog and their end usage into practical environments.

We isolate the development of C++ SAT solvers so that by implementing the
iSAT C++ interface OptiLog gently incorporates the new SAT solver. In contrast,
PySAT requires the user to write some ad-hoc additional Python code plus the
Python bindings. The iSAT interface is inspired by the C interface IPASIR (Reen-
trant Incremental Sat solver API, in reverse) [111] and the PySAT interface.

To optimize the end-SAT-based system, the end-user is commonly forced to play
by hand with a non-negligible amount of adjustable parameters coming from the
solvers or encoders it uses. Automatic configurators should have to be used in this

58

59 CHAPTER 7. OPTILOG: A FRAMEWORK FOR SAT-BASED SYSTEMS

context. Unfortunately, it takes a while to become familiar on how to create the
configuration of the scenarios, which is usually a source of countless bugs. OptiLog
get rids of all this complexity and automatically generates all the pieces needed for
the configuration, delivering a ready-to-tune application.

There have been a number of methods developed for tuning parameters auto-
matically, such as CALIBRA [43], ParamILS [44], I/F-Race [32, 87], SMAC [30] and
GGA [18, 45]. OptiLog currently provides support for SMAC and GGA.

This chapter is structured as follows. First we present the OptiLog framework
with detail about the most important implemented modules, and how a new SAT
solver can be integrated into it. Then, we present a comprehensive example of the
framework. Finally, we provide some closing thoughts.

7.1 OptiLog Framework Architecture
The general architecture of OptiLog is described in Figure 7.1. Four main modules
compose the end-user OptiLog API, which we briefly describe in the following sub-
sections: the Formula module, the SAT Solver module, the PB Encoder module and
the Automatic Configuration (AC) module. Additionally, new C++ SAT solvers can
be integrated into OptiLog by implementing the C++ iSAT interface. Full details
can be found in the OptiLog manual accessible from [112].

Figure 7.1: OptiLog’s architecture.

7.2 Formula Module
The Formula module is designed to ease the implementation and manipulation of
boolean formulas. As such, two specific classes are created: CNF (for the typical
Conjunctive Normal Form) and WCNF (for the Weigthed CNF version). These
Formulas have the common functionality of setting new variables, adding clauses
and exporting to the DIMACS file format.

CNF: The CNF class provides the traditional representation of a Conjunctive
Normal Form fomula, a conjunction of clauses defined as disjunctions of literals. In
code, clauses are provided as lists of integers.

WCNF: The WCNF class provides the interface for partial and weighted partial
CNF formulas. In this case, clauses can be added with a weight. If this is the case,
these clauses are considered soft. Hard clauses are added without weight or by
specifying the weight INF_WEIGHT that represents ∞.

60 CHAPTER 7. OPTILOG: A FRAMEWORK FOR SAT-BASED SYSTEMS

As an example, CNF Formula (x1 ∨ x2) ∧ (x3 ∨ ¬x2) and WCNF Formula (x1 ∨
x2, 1) ∧ (x3 ∨ ¬x2,∞) would be implemented as follows

1 from optilog.sat import CNF, WCNF
2 cnf = CNF()
3 cnf.add_clauses([[1, 2], [3, -2]])
4 wcnf = WCNF()
5 wcnf.add_clause([1, 2], weight=1)
6 wcnf.add_clause([3, -2]) # equivalent to weight=WCNF.INF_WEIGHT

Aside from the typical formula manipulation methods, OptiLog provides addi-
tional methods. In particular, it provides explicit functions load_{cnf|wcnf} from
the optilog.loaders Python module. These functions allow to load the formula
directly into a SAT solver.

7.3 SAT Solver Module
OptiLog is inspired on the interfaces of IPASIR [111] and PySAT. The behaviour
of some functions can slightly change, see the manual [112] for details. The solvers
currently integrated in OptiLog are: Cadical[113], Glucose 4.1 and Glucose 3.0 [114],
Picosat[115], Minisat[116] and Lingeling 18 [117]. Not all the solvers implement all
the methods in the iSAT API, the only one that fully does is a modified version
of Glucose 4.1. Here, we briefly describe some of the additional methods that we
incorporated into the iSAT API and that are currently supported by the modified
version of Glucose 4.1 delivered with the OptiLog tool.
solver.set & solver.get: Used to set and get the value of parameters that modify
the behaviour of the solver.
solver.set_decision_var: Used to set whether the input variable can be used as
a decision variable.
solver.set_static_heuristic: Used to set an static decision heuristic.
solver.solve_hard_limited: Solves the current formula with a strict budget in
terms of conflicts or propagations. This method does not wait for the current restart
to end.
solver.learnt_clauses: This method returns the learnt clauses that are currently
in the solver including learnt unit clauses.

7.4 PB Encoder Module
The PB Encoder module currently integrates the Python binding for PBLib we
developed for this project, which provides the access to PB and Card encoders,
some of them incremental. It also incorporates the Totalizer incremental encoder
implemented in Python in PySAT. The user can transparently create PB/Card con-
straints that are automatically encoded through PBLib and PySAT Card functions
into a set of SAT clauses. If all coefficients (weights) in the constraint are equal to
1, Card constraint encoders are applied.

1 from optilog.sat.pbencoder import IncrementalEncoder
2 L = [1,2,-3]

61 CHAPTER 7. OPTILOG: A FRAMEWORK FOR SAT-BASED SYSTEMS

3 W = [4,3,3]
4 encoder, max_var, C = IncrementalEncoder.init(
5 lits=L, bound=7, weights=W, max_var=3, encoding="seqcounter")

Lines 2-5 in the above example show how to encode the PB constraint 4 · x+ 3 · y+
3 · ¬z ≤ 7 through an incremental encoder into SAT using OptiLog. Currently, we
only support PB constraints with positive coefficients1.

Function IncrementalEncoder.init takes as input the list of literals L, the bound,
the list of weights W , the maximum variable and the encoding to be used. It
returns an encoder object that can be used to refine the upper bound, the maximum
variable used by the encoder and the list of clauses that encode the constraint
C. In our example, to refine the upper bound to ≤ 6 we can use the command
max_var, C = encoder.extend(6), which returns the clauses C to force the new
upper bound and the maximum variable used in C.

The possible encodings supported in PBLib for incremental encoding are bdd
and card for cardinality constraints and seqcounter and adder for PB. PySAT Card
supports totalizer for cardinality constraints. All these encodings are available in
IncrementalEncoder through the parameter encoding in the init method. By default
PBLib automatically overrides the user selected encoding when it detects it can
generate too many clauses. In contrast, OptiLog always applies the encoding selected
by the user.

7.5 Automatic Configuration (AC) Module
The AC module provides an API to generate configuration scenarios for AC tools.
An AC tool searches for a setting, to the configurable parameters of a target function
(algorithm), that optimizes some objective function or run time on a set of instances
(data) under different seeds. We present the module features:

1 import random
2 from optilog.autocfg import ac, Bool, Int, Real, Categorical, CfgCall
3 from optilog.autocfg.configurators import SMACConfigurator
4 @ac
5 def func1(
6 x, data, p1: Bool() = True, p2: Real(-1.3, 2) = 0,
7 p3: Int(-5, 5) = 0, p4: Categorical("A", "B", "C") = "A"):
8 ...
9 @ac

10 def func2(
11 data, seed, l_func1: CfgCall(func1), n: Int(1, 10) = 1):
12 random.seed(seed)
13 res = n * l_func1(random.randint(20,30), data)
14 print("Result:", res)
15 return res
16
17 configurator = SMACConfigurator(
18 func2, global_cfgcalls=[func2], runsolver_path=’./runsolver’,
19 input_data=[’path1’, ’path2’, ’path3’],

1We will add in short a normalization step for general PB constraints.

62 CHAPTER 7. OPTILOG: A FRAMEWORK FOR SAT-BASED SYSTEMS

20 data_kwarg=’data’, seed_kwarg=’seed’,
21 run_obj=’quality’, cutoff=30, time_limit_sec=43200,
22 quality_regex=r"^Result: (\d+)$")
23 configurator.generate_scenario(’./scenario’)

Configurable parameters: Leveraging Python’s type hints we can specify the
type, domain and default value of the parameters to configure. For example, the AC
module will recognize four configurable parameters in func1 (p1, p2, p3, p4), where
parameter p3 is of type optilog.autocfg.Int, and will collect the annotated in-
formation for creating the configuration scenario.
Configurable functions: The AC module allows to gather the configurable pa-
rameters of a configurable function (decorated with @ac). All calls to the same
global CfgCall function will share the same values for the configurable parameters,
while calls to local CfgCall functions can have different values. In the example,
func2 is global while l_func1 is a local call to func1.
Configuration scenario: class SMACConfigurator is used to automatically gen-
erate the scenario for the SMAC configurator. It receives as parameters: (l. 18) the
entry point func2 (i.e., the function that SMAC will call), the list of global config-
urable functions [func2] (notice that in our example func2 is itself configurable),
the path to the runsolver tool, (l. 19) the list of input data (which is printed, item by
item, to a text file and used by SMAC as the description of the set of instances where
the function to be tuned will be evaluated), (l. 20) the parameters (data_kwarg,
seed_kwarg) that will use the AC tool to send the data and seed to the entry point
on which the current configuration will be evaluated, (l. 21) the objective is set to
quality in order to minimize the result of the entry point (runtime is another pos-
sible objective), a set of parameters related to the automatic configuration process
(cutoff, time_limit_sec), and (l. 22) the regular expression to extract the quality
reported to the AC tool.

7.6 Adding SAT Solvers to OptiLog through iSAT
Interface

OptiLog automatically generates bindings to C++ SAT solvers that implement the
iSAT abstract interface. In order to integrate a new SAT solver, the solver source
code has to be included into the compilation pipeline and an implementation to the
abstract iSAT interface has to be provided.

The Extern/sat directory contains the source code of the SAT solver. For
example, in Extern/sat/glucose41 we find the source code for Glucose 4.1.

The Module/sat directory contains the implementation for the iSAT interface.
In particular, the files solver.{cpp|hpp} define the implementation of the iSAT
abstract interface. These files contain macros that will be used to automatically
generate Python bindings. In the Glucose 4.1 example, the implementation of the
interface is located in Module/sat/glucose41.

All the process described above is automatically performed by executing the
new_solver script provided by OptiLog.

63 CHAPTER 7. OPTILOG: A FRAMEWORK FOR SAT-BASED SYSTEMS

7.7 Using OptiLog
SAT-based MaxSAT algorithms reformulate the MaxSAT optimization problem into
a sequence of SAT decision problems. Each SAT instance of the sequence encodes
whether there exists an assignment with a cost ≤ k, encoded as a PB or Card
constraint depending on the weights of the soft constraints. SAT instances with
a k less than the optimal cost are unsatisfiable, the others being satisfiable. In
particular, the subclass of model-guided algorithms iteratively refine (decrease) the
upper bound and guide the search with satisfying assignments (models) obtained
from satisfiable SAT instances.

Left hand side of Program 1 shows an implementation of the Linear algorithm
[118, 119], a SAT-based model-guided algorithm for Weighted MaxSAT formulas,
with OptiLog. The linear function takes as parameters the path to the Weighted
MaxSAT instance in DIMACS format and the seed (lines 7, 8). Lines 10-12 create
the incremental SAT solver, set its seed and load the hard clauses directly into the
solver while the soft clauses are stored in the WCNF formula f .

Lines 15-19 make a relaxed copy of the soft clauses (adding a new blocking
variable per clause) that is added to the SAT solver. Line 22 creates an incremental
PB constraint on the blocking variables B that uses as coefficients W , the weights
of the soft constraints, and the initial upper bound ub as the independent term. It
retrieves the set of initial SAT clauses C for the PB encoding (added to the SAT
solver in line 24), the max_var auxiliary variable used in the encoding and the
object encoder through which we will be able to generate additional SAT clauses to
further restrict the constraint (see line 27).

Lines 26-32 conform the main loop of the algorithm. The new clauses to extend
the incremental PB constraints are generated and added (lines 27,28). Line 29 calls
the SAT solver and, if the current SAT instance is satisfiable, the model is retrieved
using its cost to refine the upper bound (lines 30,31).

Right hand side of Program 1 shows how the definition of the linear function has
to be changed so that it can be automatically configured. There are, in particular,
two main configurable aspects: the SAT solver and the PB encoder to be used plus
their respective adjustable parameters.

Instead of initializing the SAT solver in line 10, we use the configurable function
get_glucose41 that returns a configured Glucose41 solver.

The other aspect to be configured is the incremental encoder that we are using.
We add a configurable categorical parameter called encoding (line 8), which is passed
to the init method of IncrementalEncoder in line 22.

The following lines show how the SMACConfigurator object is created. Line 7
is used to report the quality to the AC tool and line 8 is used to specify the default
quality when there is a crash such as a system timeout or memout.

1 configurator = SMACConfigurator(
2 linear, runsolver_path="./runsolver", global_cfgcalls=[linear],
3 input_data=["inst1.wcnf", "inst2.wcnf", ..., "instN.wcnf"],
4 data_kwarg="instance", seed_kwarg="seed",
5 cutoff=30, memory_limit=6 * 1024,
6 wallclock_limit=43200, run_obj="quality",
7 quality_regex=r"^o (\d+)$",

64 CHAPTER 7. OPTILOG: A FRAMEWORK FOR SAT-BASED SYSTEMS

P
ro
gr
am

1
Li
ne
ar

M
ax

SA
T

al
go

ri
th
m

im
pl
em

en
te
d
w
it
h
O
pt
iL
og

(l
ef
t)

an
d
m
od

ifi
ca
ti
on

s
re
qu

ir
ed

to
th
e
sa
m
e
im

pl
em

en
ta
ti
on

to
en
ab

le
it
s
au

to
m
at
ic

co
nfi

gu
ra
ti
on

(r
ig
ht
).

T
he

im
po

rt
s
fo
r
In
cr
em

en
ta
lE
nc
od
er

an
d
lo
ad
_
w
cn
f
ar
e
om

it
te
d
in

th
e
au

to
m
at
ic

co
nfi

gu
ra
ti
on

ex
am

pl
e.

1
f
r
o
m
o
p
t
i
l
o
g
.
s
a
t

i
m
p
o
r
t
G
l
u
c
o
s
e
4
1

2
f
r
o
m
o
p
t
i
l
o
g
.
s
a
t
.
p
b
e
n
c
o
d
e
r

i
m
p
o
r
t

I
n
c
r
e
m
e
n
t
a
l
E
n
c
o
d
e
r

3
f
r
o
m
o
p
t
i
l
o
g
.
l
o
a
d
e
r
s

i
m
p
o
r
t

l
o
a
d
_
w
c
n
f

4 5 6
d
e
f
l
i
n
e
a
r
(

7
i
n
s
t
a
n
c
e
,

8
s
e
e
d

9
)
:

10
s
=
G
l
u
c
o
s
e
4
1
(
)

11
s
.
s
e
t
(
’
s
e
e
d
’
,
s
e
e
d
)

12
f
=
l
o
a
d
_
w
c
n
f
(
i
n
s
t
a
n
c
e
,
s
)

13
B
,
W
,
m
a
x
_
v
a
r
=
[
]
,
[
]
,
f
.
m
a
x
_
v
a
r
(
)

14 15
f
o
r

w
,
c
i
n

f
.
s
o
f
t
_
c
l
a
u
s
e
s
:

16
m
a
x
_
v
a
r
+
=
1

17
s
.
a
d
d
_
c
l
a
u
s
e
(
c
+
[
m
a
x
_
v
a
r
]
)

18
B
+
=
[
m
a
x
_
v
a
r
]

19
W
+
=
[
w
]

20 21
r
e
s
,
u
b
=
T
r
u
e
,
f
.
t
o
p
_
w
e
i
g
h
t
(
)

22
e
n
c
o
d
e
r
,
m
a
x
_
v
a
r
,
C
=
I
n
c
r
e
m
e
n
t
a
l
E
n
c
o
d
e
r

23
.
i
n
i
t
(
B
,
u
b
,
W
,
m
a
x
_
v
a
r
)

24
s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

25 26
w
h
i
l
e

r
e
s

i
s

T
r
u
e
a
n
d

u
b
>
0
:

27
m
a
x
_
v
a
r
,
C
=
e
n
c
o
d
e
r
.
e
x
t
e
n
d
(
u
b
-
1
)

28
s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

29
r
e
s
=
s
.
s
o
l
v
e
(
)

30
i
f

r
e
s
i
s

T
r
u
e
:

31
u
b
=
f
.
c
o
s
t
(
s
.
m
o
d
e
l
(
)
)

32
p
r
i
n
t
(
"
o
"
,
u
b
)

33 34
r
e
t
u
r
n

u
b

1
f
r
o
m

o
p
t
i
l
o
g
.
a
u
t
o
c
f
g

i
m
p
o
r
t
a
c
,
C
a
t
e
g
o
r
i
c
a
l
,
C
f
g
C
a
l
l

2
f
r
o
m

o
p
t
i
l
o
g
.
a
u
t
o
c
f
g
.
s
a
t

i
m
p
o
r
t
g
e
t
_
g
l
u
c
o
s
e
4
1

3
@
a
c

4
d
e
f

l
i
n
e
a
r
(

5
i
n
s
t
a
n
c
e
,

6
s
e
e
d
,

7
i
n
i
t
_
s
o
l
v
e
r
_
f
n
:
C
f
g
C
a
l
l
(
g
e
t
_
g
l
u
c
o
s
e
4
1
)
,

8
e
n
c
o
d
i
n
g
:
C
a
t
e
g
o
r
i
c
a
l
(
’
b
e
s
t
’
,
’
a
d
d
e
r
’
,
’
s
e
q
c
o
u
n
t
e
r
’
)
=
’
b
e
s
t
’

9
)
:

10
s
=

i
n
i
t
_
s
o
l
v
e
r
_
f
n
(
s
e
e
d
=
s
e
e
d
)

11 12
f
=
l
o
a
d
_
w
c
n
f
(
i
n
s
t
a
n
c
e
,
s
)

13
B
,
W
,
m
a
x
_
v
a
r
=
[
]
,
[
]
,
f
.
m
a
x
_
v
a
r
(
)

14 15
f
o
r

w
,
c
i
n

f
.
s
o
f
t
_
c
l
a
u
s
e
s
:

16
m
a
x
_
v
a
r
+
=
1

17
s
.
a
d
d
_
c
l
a
u
s
e
(
c
+
[
m
a
x
_
v
a
r
]
)

18
B
+
=
[
m
a
x
_
v
a
r
]

19
W
+
=
[
w
]

20 21
r
e
s
,
u
b
=
T
r
u
e
,
f
.
t
o
p
_
w
e
i
g
h
t
(
)

22
e
n
c
o
d
e
r
,
m
a
x
_
v
a
r
,
C
=
I
n
c
r
e
m
e
n
t
a
l
E
n
c
o
d
e
r

23
.
i
n
i
t
(
B
,
u
b
,
W
,
m
a
x
_
v
a
r
,

e
n
c
o
d
i
n
g
)

24
s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

25 26
w
h
i
l
e

r
e
s

i
s

T
r
u
e

a
n
d
u
b
>
0
:

27
m
a
x
_
v
a
r
,
C
=
e
n
c
o
d
e
r
.
e
x
t
e
n
d
(
u
b
-
1
)

28
s
.
a
d
d
_
c
l
a
u
s
e
s
(
C
)

29
r
e
s
=
s
.
s
o
l
v
e
(
)

30
i
f

r
e
s
i
s

T
r
u
e
:

31
u
b
=
f
.
c
o
s
t
(
s
.
m
o
d
e
l
(
)
)

32
p
r
i
n
t
(
"
o
"
,
u
b
)

33 34
r
e
t
u
r
n

u
b

65 CHAPTER 7. OPTILOG: A FRAMEWORK FOR SAT-BASED SYSTEMS

8 cost_for_crash=(2 << 64) - 1, # Max sum WCNF weights
9)

10 configurator.generate_scenario("./scenario")

7.8 Experimental Results
We experimented with the configurable version of the Linear algorithm on a com-
puter cluster with 2.1GHz cores. As benchmarks, we used the set of 600 instances
from the complete weighted track of the MaxSAT 2020 evaluation[120].

We executed SMAC in parallel with 32 runs (one of them with the default con-
figuration of Glucose41 and PB encoder). In 5 out of the 32 runs, SMAC was able to
find a better configuration than the default. These 5 runs provide suboptimal values
for 446, 445, 443, 443 and 424 instances, while the default only on 388. Curiously,
2 out of the 5 best runs (443, 424) set the PB encoder to adder (default value is
best). The rest of the changes are applied on the Glucose41 parameters. This is a
sign of the benefit of using AC tools even on systems that combine several pieces
that already have good default parameters.

7.9 Conclusions
The SAT community has generated amazing tools that we need to make more ac-
cessible to our and other communities. OptiLog contributes in this sense, easing the
access to solvers and encoders, providing the iSAT interface that could become the
basis for an standard SAT API., and the AC module that can potentially be applied
to tune any Python function.

Chapter 8

Conclusion and Future Work

We introduced the hyper-configurable versions of the dialectic search and rective
tabu search algorithms, and showed that automatic configuration could be used to
configure them for the MaxSAT problem. The resulting algorithms worked robustly
on random and crafted instances and were used to extend state-of-the-art solvers
that excelled in the industrial category, providing a solution that worked robustly
in all categories.

Inspired by the previous results, we then shifted towards improving the auto-
matic algorithm configurator GGA. The proposed solutions were evaluated with
satisfactory results, and our efforts boosted GGA’s performance significantly. In
addition, the proposed architecture based on simulating the evolution of the genetic
algorithm could be used on other problems tackled using genetic algorithms.

Another attempt to boost the results of automatic configuration, lead us to
explore how could we use the intermediate results explored by the automatic con-
figuration algorithm, what we call the accidental variance of the search procedure.
We provided a solution that uses simple imputation and filtering methods to build
a portfolio of these configurations, and showed not only that it boosted the result
but also that we could decide which of the different solutions should be used on the
test data by looking at the results on the training data.

Focusing on the objective to bring the technology developed in this thesis to
other communities and the industry, we made the improvements on GGA publicly
available as PyDGGA, a new tool for automatic configuration specially suited to
exploit the resources of high performance computing clusters.

Finally, continuing with our efforts to make automatic algorithm configuration
more accessible, we presented OptiLog, a tool that eases the integration of SAT and
automatic configuration technologies.

We have explored a variety of topics about algorithm configuration and answered
many questions, but there remain open questions, as well as a significant amount of
work to bring the technology to other research areas and the industry.

• Explore tuning other dynamic metaheuristic search features. The results
proved that the configured search features were good candidates to guide the
local search algorithms, but there could be other, even better, features that
could improve the achieved results.

66

67 CHAPTER 8. CONCLUSION AND FUTURE WORK

• Apply automatic configuration to other metaheuristic frameworks. In this
thesis we obtained good results with dialectic search and reactive tabu search.
But we could expect other frameworks, based on Hill climbing, Simulated
annealing or Ant Colony optimization, to achieve similar or better results.

• Include a surrogate model into the new distributed approach for automatic
algorithm configuration. One one hand, we distributed GGA and showed that
the new version was superior. On the other, surrogate models have been
used separately to improve the results of GGA and other algorithms. Hence,
although distributing a surrogate model is a challenging task, we have reasons
to believe that it would prove beneficial.

• Study other imputation methods to build better portfolios that exploit the
accidental variability inherent to the search procedure of automatic configu-
ration algorithms. In the machine learning literature we can find other, more
sophisticated, imputation mechanisms that could be helpful for our approach.

• Try different algorithm selection algorithms to exploit the different configura-
tions explored during the automatic algorithm configuration procedure. Our
approach employed ISAC++, but other alternatives, for example from the
Open Algorithm Selection Challenge [121], could yield other interesting re-
sults

• Improve PyDGGA usability by means of zero-configuration networking pro-
tocols. If the network configuration allows it, these protocols would let the
tool find itself and free the user from the task of manually specifying ports
and IPs

• Extend the OptiLog framework with additional solvers, i.e., MaxSAT solvers,
and integrate random and crafted instance generators.

• Provide support for callback functions into OptiLog, as in Gurobi [101], that
could be applied on critical points: restarts, pick literal decision, conflict anal-
ysis, etc.

Bibliography

[1] A. Balint and N. Manthey, “SparrowToRiss,” in Proceedings of SAT Com-
petition 2014 (A. Belov, D. Diepold, M. J. Heule, and M. Järvisalo, eds.),
vol. B-2014-2 of Department of Computer Science Series of Publications B,
p. 77, University of Helsinki, Helsinki, Finland, 2014.

[2] X. Li, M. J. Garzarán, and D. A. Padua, “Optimizing sorting with machine
learning algorithms,” in 21th International Parallel and Distributed Process-
ing Symposium (IPDPS 2007), Proceedings, 26-30 March 2007, Long Beach,
California, USA, pp. 1–6, IEEE, 2007.

[3] R. Clint Whaley, A. Petitet, and J. J. Dongarra, “Automated empirical op-
timizations of software and the atlas project,” Parallel Computing, vol. 27,
no. 1, pp. 3–35, 2001. New Trends in High Performance Computing.

[4] C. Audet and D. Orban, “Finding optimal algorithmic parameters using
derivative-free optimization,” SIAM J. Optim., vol. 17, no. 3, pp. 642–664,
2006.

[5] J. Cavazos and M. F. P. O’Boyle, “Automatic tuning of inlining heuristics,”
in Proceedings of the ACM/IEEE SC2005 Conference on High Performance
Networking and Computing, November 12-18, 2005, Seattle, WA, USA, CD-
Rom, p. 14, IEEE Computer Society, 2005.

[6] E. A. Brewer, “High-level optimization via automated statistical modeling,” in
Proceedings of the Fifth ACM SIGPLAN Symposium on Principles & Practice
of Parallel Programming (PPOPP), Santa Barbara, California, USA, July 19-
21, 1995 (J. Ferrante, D. A. Padua, and R. L. Wexelblat, eds.), pp. 80–91,
ACM, 1995.

[7] M. Muja and D. G. Lowe, “Fast approximate nearest neighbors with auto-
matic algorithm configuration,” in VISAPP 2009 - Proceedings of the Fourth
International Conference on Computer Vision Theory and Applications, Lis-
boa, Portugal, February 5-8, 2009 - Volume 1 (A. Ranchordas and H. Araújo,
eds.), pp. 331–340, INSTICC Press, 2009.

[8] M. Feurer, K. Aaron, K. Eggensperger, J. Springenberg, M. Blum, and
F. Hutter, “Efficient and robust automated machine learning,” in Advances
in Neural Information Processing Systems (C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, and R. Garnett, eds.), vol. 28, Curran Associates, Inc., 2015.

68

69 BIBLIOGRAPHY

[9] L. Zimmer, M. Lindauer, and F. Hutter, “Auto-pytorch tabular: Multi-fidelity
metalearning for efficient and robust autodl,” CoRR, vol. abs/2006.13799,
2020.

[10] M. Stillger and M. Spiliopoulou, “Genetic programming in database query
optimization,” in Proceedings of the 1st Annual Conference on Genetic Pro-
gramming, (Cambridge, MA, USA), p. 388–393, MIT Press, 1996.

[11] Y. Diao, F. Eskesen, S. Froehlich, J. L. Hellerstein, L. Spainhower, and
M. Surendra, “Generic online optimization of multiple configuration parame-
ters with application to a database server,” in Self-Managing Distributed Sys-
tems, 14th IFIP/IEEE International Workshop on Distributed Systems: Oper-
ations and Management, DSOM 2003, Heidelberg, Germany, October 20-22,
2003, Proceedings (M. Brunner and A. Keller, eds.), vol. 2867 of Lecture Notes
in Computer Science, pp. 3–15, Springer, 2003.

[12] C. Thachuk, A. Shmygelska, and H. H. Hoos, “A replica exchange monte carlo
algorithm for protein folding in the HP model,” BMC Bioinform., vol. 8, 2007.

[13] F. Hutter, D. Babic, H. H. Hoos, and A. J. Hu, “Boosting verification by
automatic tuning of decision procedures,” in Formal Methods in Computer-
Aided Design, 7th International Conference, FMCAD 2007, Austin, Texas,
USA, November 11-14, 2007, Proceedings, pp. 27–34, IEEE Computer Society,
2007.

[14] B. A. Tolson and C. A. Shoemaker, “Dynamically dimensioned search algo-
rithm for computationally efficient watershed model calibration,” Water Re-
sources Research, vol. 43, no. 1, 2007.

[15] S. Kadioglu and M. Sellmann, “Dialectic search,” in Principles and Practice
of Constraint Programming - CP 2009, 15th International Conference, CP
2009, Lisbon, Portugal, September 20-24, 2009, Proceedings (I. P. Gent, ed.),
vol. 5732 of Lecture Notes in Computer Science, pp. 486–500, Springer, 2009.

[16] R. Battiti and G. Tecchiolli, “The reactive tabu search,” ORSA Journal on
Computing, vol. 6, no. 2, pp. 126–140, 1994.

[17] International Business Machines Corporation, “IBM ILOG CPLEX: High-
performance software for mathematical programming and optimization,” 2021.

[18] C. Ansótegui, M. Sellmann, and K. Tierney, “A gender-based genetic algo-
rithm for the automatic configuration of algorithms,” in Principles and Prac-
tice of Constraint Programming - CP 2009, 15th International Conference, CP
2009, Lisbon, Portugal, September 20-24, 2009, Proceedings (I. P. Gent, ed.),
vol. 5732 of Lecture Notes in Computer Science, pp. 142–157, Springer, 2009.

[19] C. Ansótegui, J. Pon, M. Sellmann, and K. Tierney, “Reactive dialectic search
portfolios for maxsat,” in Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, February 4-9, 2017, San Francisco, California, USA
(S. P. Singh and S. Markovitch, eds.), pp. 765–772, AAAI Press, 2017.

70 BIBLIOGRAPHY

[20] C. Ansótegui, B. Heymann, J. Pon, M. Sellmann, and K. Tierney, “Hyper-
reactive tabu search for maxsat,” in Learning and Intelligent Optimization -
12th International Conference, LION 12, Kalamata, Greece, June 10-15, 2018,
Revised Selected Papers (R. Battiti, M. Brunato, I. S. Kotsireas, and P. M.
Pardalos, eds.), vol. 11353 of Lecture Notes in Computer Science, pp. 309–325,
Springer, 2018.

[21] C. Ansotegui, J. Pon, and M. Sellmann, “Boosting evolutionary algorithm
configuration,” Annals of Mathematics and Artificial Intelligence, 2021.

[22] C. Ansótegui, J. Pon, M. Sellmann, and K. Tierney, “PyDGGA: Distributed
GGA for Automatic Configuration,” in Theory and Applications of Satisfia-
bility Testing - SAT 2021 - 24th International Conference, Barcelona, Spain,
July 5-9, 2021, Submitted for publication.

[23] C. Ansótegui, J. Ojeda, A. Pacheco, J. Pon, J. M. Salvia, and E. Torres, “Op-
tiLog: A Framework for SAT-based Systems,” in Theory and Applications of
Satisfiability Testing - SAT 2021 - 24th International Conference, Barcelona,
Spain, July 5-9, 2021, Submitted for publication.

[24] J. Argelich, C. Li, F. Manyà, and J. Planes, “MaxSAT Evaluation 2016,” 2016.
http://www.maxsat.udl.cat/16.

[25] S. A. Cook, “The complexity of theorem-proving procedures,” in Proceedings
of the 3rd Annual ACM Symposium on Theory of Computing, May 3-5, 1971,
Shaker Heights, Ohio, USA (M. A. Harrison, R. B. Banerji, and J. D. Ullman,
eds.), pp. 151–158, ACM, 1971.

[26] M. Vasquez and J. Hao, “A “logic-constrained” knapsack formulation and
a tabu algorithm for the daily photograph scheduling of an earth observa-
tion satellite,” Computational Optimization and Applications, vol. 20, no. 2,
pp. 137–157, 2001.

[27] H. Xu, R. Rutenbar, and K. Sakallah, “sub-SAT: a formulation for relaxed
boolean satisfiability with applications in routing,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, vol. 22, no. 6,
pp. 814–820, 2003.

[28] S. Safarpour, H. Mangassarian, A. Veneris, M. Liffiton, and K. Sakallah, “Im-
proved design debugging using maximum satisfiability,” in Formal Methods in
Computer Aided Design, pp. 13–19, IEEE, 2007.

[29] J. R. Rice, “The algorithm selection problem,” Adv. Comput., vol. 15, pp. 65–
118, 1976.

[30] F. Hutter, H. Hoos, and K. Leyton-Brown, “Sequential model-based opti-
mization for general algorithm configuration,” in Proceedings of the 5th Inter-
national Conference on Learning and Intelligent Optimization, pp. 507–523,
2011.

http://www.maxsat.udl.cat/16

71 BIBLIOGRAPHY

[31] D. R. Jones, M. Schonlau, and W. J. Welch, “Efficient global optimization of
expensive black-box functions,” J. Glob. Optim., vol. 13, no. 4, pp. 455–492,
1998.

[32] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle, “F-race and iterated
F-race: An overview,” in Empirical Methods for the Analysis of Optimization
Algorithms, pp. 311–336, 2010.

[33] S. Kadioglu, Y. Malitsky, M. Sellmann, and K. Tierney, “ISAC–Instance-
Specific Algorithm Configuration,” in ECAI (H. Coelho, R. Studer, and
M. Wooldridge, eds.), vol. 215 of FAIA, pp. 751–756, 2010.

[34] G. Hamerly and C. Elkan, “Learning the k in k-means,” in In Neural Informa-
tion Processing Systems, p. 2003, MIT Press, 2003.

[35] Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann, “Algorithm
portfolios based on cost-sensitive hierarchical clustering,” IJCAI, pp. 608–614,
2013.

[36] C. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelligence,
vol. 126, pp. 43–62, 2001.

[37] K. Leyton-Brown, E. Nudelman, G. Andrew, J. McFadden, and Y. Shoham,
“A portfolio approach to algorithm selection,” in IJCAI-03, Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence, Acapulco,
Mexico, August 9-15, 2003 (G. Gottlob and T. Walsh, eds.), p. 1542, Morgan
Kaufmann, 2003.

[38] L. Xu, F. Hutter, H. Hoos, and K. Leyton-Brown, “SATzilla: portfolio-based
algorithm selection for sat,” JAIR, vol. 32, no. 1, pp. 565–606, 2008.

[39] E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, and B. O’Sullivan, “Using
case-based reasoning in an algorithm portfolio for constraint solving,” Irish
Conference on Artificial Intelligence and Cognitive Science, 2008.

[40] S. Kadioglu, Y. Malitsky, A. Sabharwal, H. Samulowitz, and M. Sellmann,
“Algorithm selection and scheduling,” CP, pp. 454–469, 2011.

[41] L. Xu, F. Hutter, J. Shen, H. Hoos, and K. Leyton-Brown, “SATzilla2012:
Improved algorithm selection based on cost-sensitive classification models,”
2012. SAT Competition.

[42] B. Bischl, P. Kerschke, L. Kotthoff, M. Lindauer, Y. Malitsky, A. Fréchette,
H. Hoos, F. Hutter, K. Leyton-Brown, K. Tierney, and J. Vanschoren, “ASlib:
A benchmark library for algorithm selection,” Artificial Intelligence, vol. 237,
pp. 41–58, 2016.

[43] B. Adenso-Diaz and M. Laguna, “Fine-tuning of algorithms using fractional
experimental design and local search,” Operations Research, vol. 54, no. 1,
pp. 99–114, 2006.

72 BIBLIOGRAPHY

[44] F. Hutter, H. H. Hoos, K. Leyton-Brown, and T. Stützle, “Paramils: An
automatic algorithm configuration framework,” J. Artif. Intell. Res., vol. 36,
pp. 267–306, 2009.

[45] C. Ansótegui, Y. Malitsky, H. Samulowitz, M. Sellmann, and K. Tierney,
“Model-based genetic algorithms for algorithm configuration,” in Proceedings
of the Twenty-Fourth International Joint Conference on Artificial Intelligence,
IJCAI 2015, Buenos Aires, Argentina, July 25-31, 2015 (Q. Yang and M. J.
Wooldridge, eds.), pp. 733–739, AAAI Press, 2015.

[46] L. Xu, H. Hoos, and K. Leyton-Brown, “Hydra: Automatically configuring
algorithms for portfolio-based selection,” AAAI, pp. 210–216, 2010.

[47] C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann, “MaxSAT by improved
instance-specific algorithm configuration,” Artificial Intelligence, vol. 235,
pp. 26 – 39, 2016.

[48] J. Boyan and A. Moore, “Learning evaluation functions to improve optimiza-
tion by local search,” Journal of Machine Learning Research, vol. 1, no. Nov,
pp. 77–112, 2000.

[49] B. Doerr and C. Doerr, “Optimal parameter choices through self-adjustment:
Applying the 1/5-th rule in discrete settings,” in Proceedings of the 2015 An-
nual Conference on Genetic and Evolutionary Computation, pp. 1335–1342,
ACM, 2015.

[50] T. Stützle and M. López-Ibáñez, “Automatic (offline) configuration of algo-
rithms,” in GECCO Companion, pp. 795–818, 2016.

[51] E. Burke, G. Kendall, J. Newall, E. Hart, P. Ross, and S. Schulenburg, “Hyper-
heuristics: An emerging direction in modern search technology,” Handbook of
metaheuristics, pp. 457–474, 2003.

[52] E. K. Burke, M. Gendreau, M. Hyde, G. Kendall, G. Ochoa, E. Özcan, and
R. Qu, “Hyper-heuristics: A survey of the state of the art,” Journal of the
Operational Research Society, vol. 64, no. 12, pp. 1695–1724, 2013.

[53] E. Özcan, M. Mısır, G. Ochoa, and E. K. Burke, “A reinforcement learning:
Great-deluge hyper-heuristic,” Modeling, Analysis, and Applications in Meta-
heuristic Computing: Advancements and Trends: Advancements and Trends,
vol. 34, 2012.

[54] M. Mısır, K. Verbeeck, P. De Causmaecker, and G. V. Berghe, “An intelli-
gent hyper-heuristic framework for chesc 2011,” in Learning and Intelligent
Optimization, pp. 461–466, Springer, 2012.

[55] B. Doerr and C. Doerr, “Optimal static and self-adjusting parameter choices
for the (1 + (λ, λ))(1 + (λ, λ))genetic algorithm,” Algorithmica, Aug 2017.

73 BIBLIOGRAPHY

[56] A. KhudaBukhsh, L. Xu, H. Hoos, and K. Leyton-Brown, “SATenstein: Auto-
matically building local search sat solvers from components,” IJCAI, pp. 517–
524, 2009.

[57] S. Kadioglu and M. Sellmann, “Dialectic search,” in CP, pp. 486–500, 2009.

[58] H. Lourenço, O. Martin, and T. Stützle, “Iterated local search,” in Handbook
of metaheuristics, pp. 320–353, Springer, 2003.

[59] F. Glover, M. Laguna, and R. Marti, “Fundamentals of scatter search and path
relinking,” Control and Cybernetics, vol. 39, pp. 653–684, 2000.

[60] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. Hoos, and K. Leyton-
Brown, “The configurable SAT solver challenge (CSSC),” arXiv preprint
arXiv:1505.01221, 2015.

[61] C. Gomes, H. Kautz, A. Sabharwal, and B. Selman, Satisability Solvers. El-
sevier B.V., 2008.

[62] C. Ansótegui, F. Didier, and J. Gabàs, “Exploiting the structure of unsatisfi-
able cores in maxsat,” in IJCAI, pp. 283–289, 2015.

[63] R. Battiti, M. Brunato, and F. Mascia, Reactive search and intelligent opti-
mization, vol. 45. Springer Science & Business Media, 2008.

[64] F. Glover and M. Laguna, “Tabu search,” in Handbook of Combinatorial Op-
timization, pp. 3261–3362, Springer, 2013.

[65] R. Martí, M. Laguna, and F. W. Glover, “Principles of tabu search,” in Hand-
book of Approximation Algorithms and Metaheuristics (T. F. Gonzalez, ed.),
Chapman and Hall/CRC, 2007.

[66] D. Leventhal and M. Sellmann, “The accuracy of search heuristics: an empir-
ical study on knapsack problems,” Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems, pp. 142–
157, 2008.

[67] T. Sugawara, “Maxroster: Solver description,” MaxSAT Evaluation 2017,
p. 12, 2017.

[68] C. Ansótegui, F. Bacchus, M. Järvisalo, and R. Martins, “MaxSAT Evaluation
2017,” 2017. http://mse17.cs.helsinki.fi.

[69] C. Ansótegui, J. Gabàs, Y. Malitsky, and M. Sellmann, “Maxsat by improved
instance-specific algorithm configuration,” Artif. Intell., vol. 235, pp. 26–39,
2016.

[70] SAT-Competition, 2019. www.satcompetition.org.

[71] MaxSAT-Evaluations, “MaxSAT Evaluations,” 2021. https:
//maxsat-evaluations.github.io/.

http://mse17.cs.helsinki.fi
https://maxsat-evaluations.github.io/
https://maxsat-evaluations.github.io/

74 BIBLIOGRAPHY

[72] F. Hutter, M. Lindauer, A. Balint, S. Bayless, H. Hoos, and K. Leyton-Brown,
“The configurable sat solver challenge (cssc),” Artificial Intelligence, vol. 243,
pp. 1 – 25, 2017.

[73] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Satzilla2009: an auto-
matic algorithm portfolio for sat. solver description,” 2009. SAT Competition.

[74] L. Xu, F. Hutter, J. Shen, H. H. Hoos, and K. Leyton-Brown, “Satzilla2012:
Improved algorithm selection based on cost-sensitive classification models,”
2012. SAT Competition.

[75] L. Xu, H. H. Hoos, and K. Leyton-Brown, “Hydra: Automatically configuring
algorithms for portfolio-based selection,” AAAI, 2010.

[76] M. Zaharia, R. S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave,
X. Meng, J. Rosen, S. Venkataraman, M. J. Franklin, A. Ghodsi, J. Gon-
zalez, S. Shenker, and I. Stoica, “Apache spark: A unified engine for big data
processing,” Commun. ACM, vol. 59, pp. 56–65, oct 2016.

[77] M. Lindauer and F. Hutter, “Warmstarting of model-based algorithm config-
uration,” in Proceedings of the Thirty-Second AAAI Conference on Artificial
Intelligence, (AAAI-18), the 30th innovative Applications of Artificial Intel-
ligence (IAAI-18), and the 8th AAAI Symposium on Educational Advances
in Artificial Intelligence (EAAI-18), New Orleans, Louisiana, USA, February
2-7, 2018 (S. A. McIlraith and K. Q. Weinberger, eds.), pp. 1355–1362, AAAI
Press, 2018.

[78] F. Hutter, M. López-Ibáñez, C. Fawcett, M. Lindauer, H. H. Hoos, K. Leyton-
Brown, and T. Stützle, “Aclib: A benchmark library for algorithm config-
uration,” in Learning and Intelligent Optimization (P. M. Pardalos, M. G.
Resende, C. Vogiatzis, and J. L. Walteros, eds.), (Cham), pp. 36–40, Springer
International Publishing, 2014.

[79] A. Şen, A. Atamtürk, and P. Kaminsky, “A conic integer programming ap-
proach to constrained assortment optimization under the mixed multinomial
logit model,” Research Report BCOL.15.06, IEOR, University of California–
Berkeley, October 2015.

[80] D. J. Papageorgiou, G. L. Nemhauser, J. Sokol, M.-S. Cheon, and A. B. Keha,
“Mirplib – a library of maritime inventory routing problem instances: Survey,
core model, and benchmark results,” EJOR, vol. 235, no. 2, pp. 350 – 366,
2014. Maritime Logistics.

[81] D. Sheldon, B. Dilkina, A. Elmachtoub, R. Finseth, A. Sabharwal, J. Con-
rad, C. P. Gomes, D. Shmoys, W. Allen, O. Amundsen, and B. Vaughan,
“Maximizing spread of cascades using network design,” in UAI-2010: 26th
Conference on Uncertainty in Artificial Intelligence, (Catalina Island, Avalon,
CA), pp. 517–526, July 2010.

75 BIBLIOGRAPHY

[82] K. Ahmadizadeh, B. Dilkina, C. P. Gomes, and A. Sabharwal, “An empirical
study of optimization for maximizing diffusion in networks,” in Proceedings
of the 16th International Conference on Principles and Practice of Constraint
Programming, pp. 514–521, 2010.

[83] F. Hutter and Y. Hamadi, “Parameter adjustment based on performance pre-
diction: Towards an instance-aware problem solver,” Tech. Rep. MSR-TR-
2005-125, Microsoft Research, Cambridge, UK, December 2005.

[84] M. Lindauer, M. Feurer, K. Eggensperger, A. Klein, S. Falkner, and F. Hutter,
“Parallel SMAC (pSMAC),” 2018.

[85] M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, and F. Hut-
ter, “Efficient and robust automated machine learning,” in Advances in Neural
Information Processing Systems 28 (C. Cortes, N. D. Lawrence, D. D. Lee,
M. Sugiyama, and R. Garnett, eds.), pp. 2962–2970, Curran Associates, Inc.,
2015.

[86] H. H. Hoos, M. Lindauer, and T. Schaub, “claspfolio 2: Advances in algo-
rithm selection for answer set programming,” Theory and Practice of Logic
Programming, vol. 14, no. 4-5, p. 569–585, 2014.

[87] M. López-Ibáñez, J. Dubois-Lacoste, L. Pérez Cáceres, T. Stützle, and M. Bi-
rattari, “The irace package: Iterated racing for automatic algorithm configu-
ration,” Operations Research Perspectives, vol. 3, pp. 43–58, 2016.

[88] T. Fitzgerald, Y. Malitsky, B. O’Sullivan, and K. Tierney, “React: Real-time
algorithm configuration through tournaments,” in Proceedings of the Sympo-
sium on Combinatorial Search, 2014.

[89] T. Fitzgerald, Y. Malitsky, and B. O’Sullivan, “Reactr: Realtime algorithm
configuration through tournament rankings,” in Twenty-Fourth International
Joint Conference on Artificial Intelligence, Citeseer, 2015.

[90] A. El Mesaoudi-Paul, D. Weiß, V. Bengs, E. Hüllermeier, and K. Tier-
ney, “Pool-based realtime algorithm configuration: A preselection bandit ap-
proach,” in International Conference on Learning and Intelligent Optimiza-
tion, pp. 216–232, Springer, 2020.

[91] F. Hutter, H. H. Hoos, and K. Leyton-Brown, “Parallel algorithm configura-
tion,” in Proc. of LION-6, pp. 55–70, 2012.

[92] P. Prettenhofer, “Parallel grid search for sklearn Gradient Boosting.” https:
//gist.github.com/pprett/3989337. Accessed May, 2015.

[93] E. Cantu-Paz, “A survey of parallel genetic algorithms,” Calculateurs paralle-
les, reseaux et systems repartis, vol. 10, 1998.

https://gist.github.com/pprett/3989337
https://gist.github.com/pprett/3989337

76 BIBLIOGRAPHY

[94] E. O. Scott and K. A. D. Jong, “Evaluation-time bias in quasi-generational
and steady-state asynchronous evolutionary algorithms,” in Proceedings of the
2016 on Genetic and Evolutionary Computation Conference, Denver, CO,
USA, July 20 - 24, 2016 (T. Friedrich, F. Neumann, and A. M. Sutton, eds.),
pp. 845–852, ACM, 2016.

[95] G. Van Rossum and F. L. Drake, Python 3 Reference Manual. Scotts Valley,
CA: CreateSpace, 2009.

[96] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virta-
nen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern,
M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del
Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy,
W. Weckesser, H. Abbasi, C. Gohlke, and T. E. Oliphant, “Array program-
ming with NumPy,” Nature, vol. 585, pp. 357–362, Sept. 2020.

[97] Wes McKinney, “Data Structures for Statistical Computing in Python,” in
Proceedings of the 9th Python in Science Conference (Stéfan van der Walt
and Jarrod Millman, eds.), pp. 56 – 61, 2010.

[98] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-
sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay, “Scikit-learn:
Machine learning in Python,” Journal of Machine Learning Research, vol. 12,
pp. 2825–2830, 2011.

[99] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen,
Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf, E. Yang, Z. De-
Vito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and
S. Chintala, “Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems 32 (H. Wal-
lach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
eds.), pp. 8024–8035, Curran Associates, Inc., 2019.

[100] F. Chollet et al., “Keras,” 2015.

[101] Gurobi Optimization, “Gurobi.” https://www.gurobi.com/, 2021.

[102] Google, “Google OR-Tools.” https://developers.google.com/
optimization, 2021.

[103] COIN-OR Foundation, “Computational infrastructure for operations re-
search.” https://www.coin-or.org/, 2016.

[104] G. Gamrath, D. Anderson, K. Bestuzheva, W.-K. Chen, L. Eifler, M. Gasse,
P. Gemander, A. Gleixner, L. Gottwald, K. Halbig, G. Hendel, C. Hojny,
T. Koch, P. Le Bodic, S. J. Maher, F. Matter, M. Miltenberger, E. Mühmer,
B. Müller, M. E. Pfetsch, F. Schlösser, F. Serrano, Y. Shinano, C. Tawfik,
S. Vigerske, F. Wegscheider, D. Weninger, and J. Witzig, “The SCIP Opti-
mization Suite 7.0,” ZIB-Report 20-10, Zuse Institute Berlin, March 2020.

https://www.gurobi.com/
https://developers.google.com/optimization
https://developers.google.com/optimization
https://www.coin-or.org/

77 BIBLIOGRAPHY

[105] L. De Moura and N. Bjørner, “Z3: An efficient SMT solver,” in International
conference on Tools and Algorithms for the Construction and Analysis of Sys-
tems, pp. 337–340, Springer, 2008.

[106] A. Ignatiev, A. Morgado, and J. Marques-Silva, “PySAT: A Python toolkit
for prototyping with SAT oracles,” in SAT, pp. 428–437, 2018.

[107] G. Audemard, L. Paulevé, and L. Simon, “SAT heritage: A community-driven
effort for archiving, building and running more than thousand SAT solvers,” in
Theory and Applications of Satisfiability Testing - SAT 2020 - 23rd Interna-
tional Conference, Alghero, Italy, July 3-10, 2020, Proceedings (L. Pulina and
M. Seidl, eds.), vol. 12178 of Lecture Notes in Computer Science, pp. 107–113,
Springer, 2020.

[108] M. Lauria, J. Elffers, J. Nordström, and M. Vinyals, “Cnfgen: A generator
of crafted benchmarks,” in Theory and Applications of Satisfiability Testing -
SAT 2017 - 20th International Conference, Melbourne, VIC, Australia, August
28 - September 1, 2017, Proceedings (S. Gaspers and T. Walsh, eds.), vol. 10491
of Lecture Notes in Computer Science, pp. 464–473, Springer, 2017.

[109] Logic Optimization Group, “PyPBLib: PBLib Python3 bindings.” https://
pypi.org/project/pypblib/, 2019.

[110] T. Philipp and P. Steinke, “PBLib – a library for encoding pseudo-boolean
constraints into CNF,” in Theory and Applications of Satisfiability Testing
– SAT 2015 (M. Heule and S. Weaver, eds.), (Cham), pp. 9–16, Springer
International Publishing, 2015.

[111] T. Balyo and contributors, “The standard interface for incremental satisfiabil-
ity solving.” https://github.com/biotomas/ipasir, 2014.

[112] Logic and Optimization Group, “Optilog official documentation,” 2021.

[113] A. Biere, K. Fazekas, M. Fleury, and M. Heisinger, “CaDiCaL, Kissat, Para-
cooba, Plingeling and Treengeling entering the SAT Competition 2020,” in
Proc. of SAT Competition 2020 – Solver and Benchmark Descriptions (T. Ba-
lyo, N. Froleyks, M. Heule, M. Iser, M. Järvisalo, and M. Suda, eds.), vol. B-
2020-1 of Department of Computer Science Report Series B, pp. 51–53, Uni-
versity of Helsinki, 2020.

[114] G. Audemard and L. Simon, “Predicting learnt clauses quality in modern sat
solvers,” in Proceedings of the 21st International Jont Conference on Artif-
ical Intelligence, IJCAI’09, (San Francisco, CA, USA), p. 399–404, Morgan
Kaufmann Publishers Inc., 2009.

[115] A. Biere, “Picosat essentials,” Journal on Satisfiability, Boolean Modeling and
Computation, vol. 4, no. 2-4, pp. 75–97, 2008.

https://pypi.org/project/pypblib/
https://pypi.org/project/pypblib/
https://github.com/biotomas/ipasir

78 BIBLIOGRAPHY

[116] N. Eén and N. Sörensson, “An extensible sat-solver,” in Theory and Applica-
tions of Satisfiability Testing (E. Giunchiglia and A. Tacchella, eds.), (Berlin,
Heidelberg), pp. 502–518, Springer Berlin Heidelberg, 2004.

[117] A. Biere, “Lingeling, plingeling and treengeling entering the sat competition
2013,” Proceedings of SAT competition, vol. 2013, p. 1, 2013.

[118] N. Eén and N. Sörensson, “Translating Pseudo-Boolean Constraints into SAT,”
Journal on Satisfiability, Boolean Modeling and Computation, vol. 2, pp. 1–26,
Jan. 2006. Publisher: IOS Press.

[119] D. Le Berre and A. Parrain, “The Sat4j library, release 2.2,” Journal on Sat-
isfiability, Boolean Modeling and Computation, vol. 7, pp. 59–64, Jan. 2010.
Publisher: IOS Press.

[120] F. Bacchus, J. Berg, M. Järvisalo, and R. Martins, “MaxSAT Evaluation 2020:
Solver and benchmark descriptions,” 2020.

[121] M. Lindauer, J. N. van Rijn, and L. Kotthoff, “Open algorithm selection chal-
lenge 2017: Setup and scenarios,” in Proceedings of the Open Algorithm Se-
lection Challenge (M. Lindauer, J. N. van Rijn, and L. Kotthoff, eds.), vol. 79
of Proceedings of Machine Learning Research, (Brussels, Belgium), pp. 1–7,
PMLR, 11–12 Sep 2017.

	Introduction
	Objectives
	Structure of this thesis
	Publications and Awards

	State-of-the-art
	The Satisfiability Problem
	The Maximum Satisfiability Problem
	The Integer Linear Programming Problem
	The Automatic Algorithm Configuration Problem
	The Automatic Algorithm Selection Problem
	GGA: Gender-Based Genetic Automatic Algorithm Configuration
	SMAC: Sequential Model-Based Algorithm Configuration
	IRACE: Iterated Racing for Automatic Algorithm Configuration
	ISAC++: Improved Instance-Specific Algorithm Configuration

	Reactive Dialectic Search Portfolios for MaxSAT
	Hyper-Parameterization
	Dialectic Search
	Reactive Dialectic Search Portfolios
	Experimental Results
	Benchmark Set
	ISAC++ Setup
	Competitors
	Reactive vs. Non-Reactive Dialectic Search
	Random Weighted-Partial MaxSAT

	Conclusions

	Hyper-Reactive Tabu Search for MaxSAT
	Hyper-Parameterized Reactive Tabu Search
	Tabu Search Parameters
	Dynamic Search Features
	Hyper-Parameterization

	Hyper-Reactive Tabu Search for MaxSAT
	Experimental Results
	Benchmark and Evaluation Metric
	Tuning Setup
	Comparison with a Statically Tuned RTS
	Runtime Log Analysis
	Comparison With the State Of The Art

	Conclusions

	Boosting Evolutionary Algorithm Configuration
	Improving Parallel Efficiency Using an Evolution Simulator
	Experimental Results

	Improving GGA
	Instance Selection Strategy
	Elite Mini-tournament
	Experimental Results

	Instance-Specific Parameter Selection
	A Portfolio of All Parameterizations
	A Portfolio of Selected Parameterizations
	Selecting the Portfolio
	Experimental Results

	Conclusions

	PyDGGA: Distributed GGA for Automatic Configuration
	Distributed Architecture
	Scheduling & Canceling
	Tool Enhancements
	Using PyDGGA
	Experimental Results
	Conclusions

	OptiLog: A Framework for SAT-based Systems
	OptiLog Framework Architecture
	Formula Module
	SAT Solver Module
	PB Encoder Module
	Automatic Configuration (AC) Module
	Adding SAT Solvers to OptiLog through iSAT Interface
	Using OptiLog
	Experimental Results
	Conclusions

	Conclusion and Future Work
	References

