

Connectivity sharing for
wireless mesh network

Khulan Batbayar

ADVERTIMENT La consulta d’aquesta tesi queda condicionada a l’acceptació de les següents
condicions d'ús: La difusió d’aquesta tesi per mitjà del repositori institucional UPCommons
(http://upcommons.upc.edu/tesis) i el repositori cooperatiu TDX (h t t p : / / w w w . t d x . c a t /) ha
estat autoritzada pels titulars dels drets de propietat intel·lectual únicament per a usos privats
emmarcats en activitats d’investigació i docència. No s’autoritza la seva reproducció amb finalitats
de lucre ni la seva difusió i posada a disposició des d’un lloc aliè al servei UPCommons o TDX.
No s’autoritza la presentació del seu contingut en una finestra o marc aliè a UPCommons
(framing). Aquesta reserva de drets afecta tant al resum de presentació de la tesi com als seus
continguts. En la utilització o cita de parts de la tesi és obligat indicar el nom de la persona autora.

ADVERTENCIA La consulta de esta tesis queda condicionada a la aceptación de las siguientes
condiciones de uso: La difusión de esta tesis por medio del repositorio institucional UPCommons
(http://upcommons.upc.edu/tesis) y el repositorio cooperativo TDR (http://www.tdx.cat/?locale-
attribute=es) ha sido autorizada por los titulares de los derechos de propiedad intelectual
únicamente para usos privados enmarcados en actividades de investigación y docencia. No
se autoriza su reproducción con finalidades de lucro ni su difusión y puesta a disposición desde
un sitio ajeno al servicio UPCommons No se autoriza la presentación de su contenido en una
ventana o marco ajeno a UPCommons (framing). Esta reserva de derechos afecta tanto al
resumen de presentación de la tesis como a sus contenidos. En la utilización o cita de partes
de la tesis es obligado indicar el nombre de la persona autora.

WARNING On having consulted this thesis you’re accepting the following use conditions:
Spreading this thesis by the institutional repository UPCommons (http://upcommons.upc.edu/tesis)
and the cooperative repository TDX (http://www.tdx.cat/?locale- attribute=en) has been authorized
by the titular of the intellectual property rights only for private uses placed in investigation and
teaching activities. Reproduction with lucrative aims is not authorized neither its spreading nor
availability from a site foreign to the UPCommons service. Introducing its content in a window or
frame foreign to the UPCommons service is not authorized (framing). These rights affect to the
presentation summary of the thesis as well as to its contents. In the using or citation of parts of the
thesis it’s obliged to indicate the name of the author.

http://upcommons.upc.edu/tesis
http://www.tdx.cat/
http://upcommons.upc.edu/tesis)
http://www.tdx.cat/?locale-attribute=es
http://www.tdx.cat/?locale-attribute=es
http://upcommons.upc.edu/tesis
http://www.tdx.cat/?locale-attribute=en
http://www.tdx.cat/?locale-attribute=en

Connectivity Sharing for
Wireless Mesh Network

Khulan Batbayar

Thesis submitted in partial ful�llment of the requirements for
the Degree of Doctor in Applied Sciences

September 2021

Distributed Systems Group (DSG)

Departament d’Arquitectura de Computadors (DAC)

Universitat Politècnica de Catalunya (UPC)

Barcelona

Spain

ICTEAM

Louvain School of Engineering

Université catholique de Louvain

Louvain-la-Neuve

Belgium

Thesis advisors:
Dr. Roc Meseguer Supervisor, Universitat Politecnica de Catalunya, Spain

Pr. Ramin Sadre Co-supervisor, UCLouvain/ICTEAM, Belgium

Connectivity Sharing for Wireless Mesh Network

by Khulan Batbayar

© Khulan Batbayar 2021

Distributed Systems Group

Universitat Politecnica de Catalunya

Jordi Girona, 1-6

08033, Barcelona

Spain

Acknowledgments

This thesis has been a challenging and enriching journey that has been pos-

sible, thanks to the guidance and support of many people I am very grateful

for.

First and foremost, I would like to thank my advisors Roc Meseguer and

Ramin Sadre, for guiding me through my doctoral journey and being patient

with me. I want to sincerely thank Roc and Ramin and give them credit for

their time, e�ort, and encouragement to my research, for embracing me as

their student. Their understanding and expertise in my area of research sig-

ni�cantly improved the contents of this thesis,

I would like to thank my �rst advisor, Roc, for the professional guidance

and consistent encouragement from the �rst day we met. I am grateful for

his helpful comments, suggestions, and constructive criticism throughout this

entire research. Above all, his positive attitude towards everything, saying,

"It is no problem, It is easy!" always kept me going.

I would like to thank my second advisor, Ramin, for the patience and

con�dence that you placed in me. He let me pursue my ideas freely and pro-

vide consistent guidance. Thank you for the countless hours dedicated to my

research. My thesis has bene�tted substantially from his insightful recom-

mendations.

I am grateful to my colleagues at Distributed Systems Group at UPC, Men-

nan Selimi, Emmanouil Dimogerontakis, Joao Neto, Nuno Apolonio, Jawad

Manzoor, Roger Pueyo, for all the ping pong games, late Spanish univer-

sity lunches at Unity, co�ee at the FIB bar. I am thankful for the friends I

made during the journey, Sana Imtiaz, Zainab Abbas, Dur Zahra, Atika Zul-

�qar, Rosana Veroneze, Juhee Bae, Francois Aubry, Michael Saint-Guillain,

Igor Zavalyshyn, Paolo La�ranchini.

I thank the Mongolian community in Barcelona for taking care of Iveel

and me while adjusting to a new life in Spain. Especially, Battulga, Suvd-

Erdene Byambajav, Erdenezaya Myagmar, Nomin Batzolboo for their emo-

tional support, Saturday basketball games, overnight daaluu, Mongolian food.

I would like to thank my family for their support, love, and sacri�ce. For

my son, Iveel, thank you for being my motivation and source of energy. I

apologize for all the times we spent together on UPC Lab C6-E208, for all

the times I could not spend with you while I was working, went away for

conference and research exchange. And for my sister, Javkhlan, thank you

i

ii Acknowledgments

for having my back, coming to the rescue, believing in me without any doubt.

Your support has meant more to me than you could possibly realize. For my

parents, Batbayar and Gereltuya, I am forever indebted to you for making

me who I am today. For my boyfriend, Raziel Carvajal, thank you for your

emotional support, professional feedback, understanding, and being my best

friend.

Abstract

Internet access is still unavailable to one-third of the world population due

to the lack of infrastructure, high cost, and the digital divide. Many access-

limited communities opt for shared Internet access where they build com-

mon network infrastructures to mitigate the cost. Internet connectivity in

such infrastructures is typically provided by several limited, sometimes non-

dedicated, gateways. Client nodes, i.e., the end-user hosts, use one gateway

and switch to another when the �rst fails. In this scheme, the gateway con�g-

uration is done manually on the end-user side. This form of Internet connec-

tivity is widespread and has the advantage that no central control is required,

but it is also unreliable and ine�cient due to several factors, such as unbal-

anced tra�c load across the gateways. There is no doubt that the network

would bene�t from a gateway selection mechanism that can provide good

connectivity to the client node as well as balanced load distribution and a dy-

namic adaptation to the current network state. However, providing such a

dynamic gateway selection is complicated: since the perceived performance

of the gateways changes frequently and might depend on the location of the

client node in the network, and optimal selection would require the continu-

ous monitoring of the gateway performance by the client node. The cost of

such network-wide performance monitoring is high in large-scale networks

and can outweigh the bene�ts of the dynamic gateway selection.

The thesis’s goal is to design a low-cost, distributed mechanism that pro-

vides an e�cient and dynamic gateway selection while considering the over-

all balanced gateway selection distribution. To this end, we have split the

problem of gateway selection into di�erent sub-problems. First, we focus on

reducing the cost of gateway performance monitoring. We propose an ap-

proach to reduce the number of monitoring requests generated by each node

and analyze its e�ect on the gateway selection. Then, we present a collab-

orative monitoring method that allows neighbor nodes to share the load of

the gateway monitoring. We show that every node can carry out the nec-

essary tasks: performance monitoring, collaboration with its neighbors, and

fault tolerance measures, with little computation and communication over-

head. Second, to improve the gateway selection, we focus on making a se-

lection decision that ful�lls the individual performance requirements of the

client nodes as well as global load balancing requirements. The solutions de-

veloped by us for the di�erent sub-problems are embedded into a general and

iii

iv Acknowledgments

extensible, layered framework for gateway selection that we have called the

Sense-Share-Select framework.

Experimental validation and comparison with existing methods show that

our framework provides accurate collaborative performance monitoring, im-

proves the Quality of Experience (QoE) for the nodes, and distributes the

client nodes over the gateways in a balanced manner. The simplicity and �ex-

ibility of the framework make it adaptable to other network domains such as

Internet of Things (IoT) networks and other scenarios where resource moni-

toring and load balancing are required.

Contents

Acknowledgments i

Abstract iii

Table of Contents v

1 Introduction 1
1.1 Problem statement . 2

1.2 Main objectives . 5

1.3 Contributions . 6

1.4 Publications . 7

1.5 Thesis structure . 9

2 Background and Related work 11
2.1 Background . 11

2.2 Related work . 13

3 General framework: Sense-Share-Select framework 19
3.1 Introduction . 19

3.2 Objectives . 21

3.3 Overview of the framework 22

4 Sensing layer 25
4.1 Introduction . 25

4.2 Design requirements . 25

4.3 Design overview . 26

4.4 Results . 30

4.5 Conclusion . 34

5 Collaborative layer 35
5.1 Introduction . 35

5.2 Design requirements . 36

5.3 Design overview . 37

5.4 Results . 44

5.5 Conclusion . 57

v

vi Contents

6 Selection layer 59
6.1 Introduction . 59

6.2 Design requirements . 60

6.3 Design overview . 62

6.4 Results . 67

6.5 Conclusion . 75

7 Production network integration 77
7.1 Community network . 77

7.2 Implementation of Sense-Share-Select in gui�.net environment 79

7.3 Conclusion . 93

8 Conclusion 95
8.1 Main conclusions . 95

8.2 Future work . 96

8.3 Discussion . 96

8.4 Financial support . 97

List of Figures

1.1 Internet gateway in the network 1

1.2 Hourly requests passed through gateways 3

1.3 Gui�.net gateway latency variance 4

1.4 Herd behavior in selection example 5

2.1 Coping algorithm example . 16

2.2 Vivaldi based algorithm example 17

3.1 The layered architecture of Sense-Share-Select framework . . 20

3.2 Example of Sense-Share-Select collaboration 22

3.3 Sense-Share-Select framework structure 23

4.1 Experiment with di�erent gateway performance measurements 27

4.2 Total gateway measurements 32

4.3 Sensitivity analysis of RTT threshold value and size of close

neighbors cluster . 33

4.4 Client perception of the selected gateway’s performance. . . . 34

5.1 Example scenario for forming a group of collaborating nodes . 36

5.2 Layered structure of the collaborative algorithm 38

5.3 Bootstrapping and periodic sensing phase 39

5.4 Performance table obtained through collaborative sensing . . 41

5.5 Layered sensing framework 42

5.6 Network topology for experiments 48

5.7 Similarity results for di�erent collaboration schemes 49

5.8 Sensitivity analysis (nodes leaving/joining) 50

5.9 Gateway performance change (Collaborating with all) 51

5.10 Gateway performance change (Collaborating with)>?) . . . 52

5.11 Collaborating node change . 52

5.12 Faulty nodes e�ect (Collaborating with all) 53

5.13 Faulty nodes e�ect (Collaborating with)>?) 54

5.14 Behavior of the faulty nodes 54

5.15 Sensitivity towards the number of service nodes 55

5.16 Gateway selection result . 57

vii

viii LIST OF FIGURES

6.1 Selection algorithm design . 63

6.2 Estimated gateway capacity classi�cation 64

6.3 Gateway latency variance. 66

6.4 Experiment network topology. 67

6.5 Wireless - Performance prediction result. 69

6.6 Client node distribution over the gateway nodes. 70

6.7 Wireless gateway distribution 70

6.8 Number of gateway selection changes in 100 rounds. 71

6.9 Download time through the gateway nodes. 71

6.10 Wireless - Client node distribution with gateway delay. 72

6.11 Download times with di�erent gateway delays 73

6.12 Wireless - Download size sensitivity. 74

6.13 Wireless - Gateway distribution. 74

7.1 Number of new nodes (Data from www.gui�.net) 78

7.2 Experimental nodes topology 81

7.3 Collaborative sensing similarity 81

7.4 Vivaldi accuracy . 82

7.5 Collaborative message exchange 83

7.6 Download time . 84

7.7 Gateway distribution per round 84

7.8 Number of gateway changes 85

7.9 Download time . 87

7.10 Node unavailable test . 88

7.11 In the presence of faulty nodes 89

7.12 Collaborative sensing accuracy 90

7.13 Download latency . 91

7.14 Wireless experiment distribution 91

7.15 Full collaboration vs full isolation 93

7.16 Experiment with di�erent bandwidth 94

List of Tables

3.1 Example of gateway performance table at each node 23

4.1 Gateway performance categories 28

4.2 Message overhead per selection round. 31

5.1 Messages cost & gateway visibility at individual nodes per

measurement round, 6 : number of gateways, =: number of

close neighbors, A : number of repetitions of the message ex-

change in one measurement round. 46

5.2 Average message exchange at individual node per measure-

ment round . 50

5.3 Sensitivity towards the RTT threshold vs increasing the num-

ber of samples . 56

6.1 Partial gateway performance table, every round 62

6.2 Gateway performance categories 64

6.3 Example gateway performance table after Step 1 64

ix

Introduction 1
Internet connectivity is an essential part of our daily life; teleworking, on-

line learning, accessing public services, purchasing everyday essentials, or-

dering food, so forth. However, many studies [ITUStat; A�20] show that the

worldwide Internet penetration rate is 61%, and there is a clear gap in the

coverage between urban areas (72%) and rural areas (51%). Internet A�ord-

ability Drivers Index (ADI) has increased in many countries from the Alliance

for A�ordable Internet (A4AI) report. ADI scores are calculated by the inter-

net infrastructure, broadband adoption, and equitable access policies [A�20].

However, the price of Internet subscriptions is still high for the many devel-

oping country incomes threshold.

There are many initiatives to connect the unconnected communities to

the Internet through �ber optics, Internet hotspots, mobile broadband ser-

vice, Google’s Project Loon [Loon], Facebook Connectivity initiatives [FB-

Con]. However, most of them are technologically unattainable, �nancially

infeasible, and not self-sustainable. All these initiatives are still not enough

for the global demand for a�ordable Internet access. Establishing wireless

networks in the areas lacking connectivity is the most popular Internet con-

nectivity approach. In the last years, Wireless Mesh Network (WMN) infras-

tructure has been widely adopted as a cost-e�ective technology to provide

large-scale Internet access networks.

Figure 1.1: Internet gateway in the network

The Internet access in large-scale WMN is arranged through Internet gate-

1

2 Chapter 1. Introduction

ways (see Figure 1.1). The Internet gateway is a node in the network that

connects the local network nodes to the Internet. In WMN, the mesh nodes

are not all connected to the Internet, but speci�c nodes connected to the In-

ternet act as an Internet gateway to provide access to the others. A good

example of such networks is Wireless Community Network (WCN) or Do-

It-Yourself access networks are gaining more popularity for self-provision of

Internet access in underserved regions [Rey+13]. WCN allows community

members to build their local network infrastructure by utilizing over-the-

counter equipment with minimal technical expertise and provides various

free, neutral, secure communication services (including shared Internet ac-

cess). There are many successful Community Network (CN)s uses Internet

gateways such as gui�.net community network [gui�] (>36000 nodes, 450

Internet proxies/gateways), Roofnet [Bic+05](36 mesh nodes), Freifunk com-

munity network [HDS17], and many more. Such large-scale networks are

built with heterogeneous devices, and the Internet gateway acts as a transla-

tor between infrastructure-less local networks to the Internet. We focus on

the large-scale Wireless Mesh Network with mesh nodes sharing their spare

Internet connectivity through Internet gateways.

All the tra�c to/from the Internet passes through the Internet gateway

nodes; often, the number of gateways is comparatively smaller than the num-

ber of client nodes. As the network grows, the tra�c load at the Internet gate-

ways increases immensely, and gateways become susceptible to congestion,

failure, and overcrowding. As the demand for the gateway node increases,

the Internet connectivity perceived at the client nodes can become excru-

ciatingly slow. These problems are further aggravated by the fact that the

gateways might be heterogeneous with di�erent capacities to handle client

tra�c. Furthermore, the performance of a gateway will depend on the num-

ber of clients that send their tra�c through that gateway. Measurements have

shown that the performance of a gateway will vary dynamically depending

on the number of active clients at a time, rush hours, etc. [DMN17; Bat+19a].

Internet gateways are con�gured automatically by Internet Service Provider

companies, common in the home Internet access. There are multiple gate-

ways available in the large-scale network, and choosing the “right” gateway

can improve the Quality of Service perceived at the client node.

1.1 Problem statement

Selecting the best Internet gateway is key to provide good Internet connectiv-

ity for the end-user. State-of-the-art algorithms provide the optimal selection,

but there is a gap to achieve good Internet gateway selection with low cost

and fair distribution. Here are the following problems we are addressing in

this thesis:

1.1. Problem statement 3

1.1.1 Static gateway selection

The common practice in the network is to con�gure the Internet gateway is

to associate the default gateway given by the ISP companies or, in the CN’s

example, the default gateway in the region. The manual gateway selection,

more likely all the nodes in the same locality select the default gateway even

though there are equally good performing gateways that exist. In gui�.net,

the nodes choose the gateway depending on the locality (zone), popularity,

previous experience, and word-of-mouth knowledge. The gateway distribu-

tion imbalance is inevitable since the gateways are con�gured on the client-

side without prior knowledge of their performance. Often gateways have lim-

ited capacity to handle client requests as the demand for the proxy increases,

and the performance is likely to degrade.

Figure 1.2: Hourly requests passed through gateways

In Figure 1.2, we show the total number of hourly requests that pass

through three di�erent gateways in the gui�.net for a one-month duration.

The log is collected anonymously at the gateway node. From the result, the

blue gateway is more popular as the number of requests per hour is noticeably

high, while the green and the red gateways remain barely used. Therefore,

there is a clear imbalance between the available gateways in terms of selec-

tion.

1.1.2 Frequent gateway performance changes

Gateway performances change frequently depending on the request size, the

number of users, and the time of the day. In Figure 1.3, we measured �ve dif-

4 Chapter 1. Introduction

ferent gui�.net gateway latency to download 0.1MB �le from the dedicated

server on the Internet every 2 minutes. From the result, we see that the perfor-

mance of the green and red gateways is inconsistent. Also, the best gateway

selection is changing over time. Therefore, to select a good-performing gate-

way, the nodes should keep up with the latest gateway performances. The

Figure 1.3: Gui�.net gateway latency variance

best-performing gateway should be selected based on periodic performance

monitoring. Active performance monitoring becomes costlier as the network

size grows. Every node’s gateway performance perception is di�erent; there-

fore, advertising gateway performance regularly is unsuitable. On the other

hand, monitoring the performance of all gateways by the client nodes is costly

and can become an essential source of network tra�c congestion as the net-

work size grows.

1.1.3 Unfair distribution of gateway usage

The gateway selection algorithms often choose the best-performing gateway

to achieve a good result. The best selection leads to the situation called "herd

behavior," where most nodes select the same gateway and quickly degrade

its performance and then move to the next best option. Doing so creates an

imbalance in the gateway distribution and short-term performance degrada-

tion. Even in the load-balanced selection algorithms, the nodes select the least

loaded gateway.

Consider the selection scenario shown in Figure 1.4,�1,�2,�3 gateways

are given with its current performance and the load. There are�1,�2,�3,�4

1.2. Main objectives 5

Figure 1.4: Herd behavior in selection example

nodes in the network; each has a di�erent gateway measurement list. With

the performance-oriented selection, all nodes select �1, whereas the nearly

equally well-performing�2 is selected only by �4. Any client node does not

select �3 although it is less loaded. With the load-oriented selection, the

client nodes try to select the least loaded gateway node. In this case, the

clients select�3 even though its performance is the lowest. Let us consider a

hybrid gateway selection that gives equal weight to both metrics. In this case,

the majority of the client nodes select�3. The main problem in choosing the

locally optimal gateway at the time of selection is that other nodes choose the

same gateway node. In every selection example, the algorithm favors some

gateways over others. The greedy selection is not an ideal selection scenario

for the end-users as the frequent gateway selection change creates short-term

performance jitters. Load balancing focused selection algorithms [HLT04;

Nan+06] propose algorithms to calculate the load of the gateway nodes, but

in the end, select the least loaded gateway node and su�er from herd behavior.

1.2 Main objectives

The main objective of this thesis is to propose a general-purpose Internet

gateway selection framework for large-scale, heterogeneous networks. It

aims to provide the best-e�ort Internet connectivity in a shared Internet ac-

cess network for all the network nodes, meanwhile achieving an overall fair

(i.e., balanced) distribution of the nodes on the gateways. It should be easily

implementable in the client node without disrupting network performance

and require minimal technical knowledge by the users. The framework should

have a small network footprint, meaning it should reduce the cost of perfor-

mance monitoring and communication. Finally, as one of the most concerning

features in collaborative performance monitoring, it should provide accurate

measurements.

6 Chapter 1. Introduction

1.3 Contributions

Main contribution of our thesis can be summarized as follows:

C1 Client-side, lightweight gateway selection framework. We facil-

itate each node to be involved in their gateway selection process to

provide customized gateway selection. The nodes are responsible for

gateway monitoring, collaboration, and selection. The framework uses

simple calculations to make the framework �t for heterogeneous net-

work devices. The collaborative monitoring algorithm focuses on re-

ducing inter-network communication and reusing the gateway mea-

surements for the local selection decision. Our framework is scalable

and suitable for heterogeneous network environments.

In Chapter 3, we formulate the Sense-Share-Select framework to achieve
this contribution. Detailed descriptions of the framework are given in the
following chapters.

C2 Accurate collaborative monitoring algorithm A middle layer of

our framework uses the collaborative performance sensing algorithm.

We proposed a collaborative performance monitoring algorithm with

our twist. Instead of collaborating with a wider, �xed number of nodes,

each node selects its collaborator nodes. Doing so reduces the range of

collaboration of each node, a.k.a, reducing the inter-node communica-

tion while utilizing other measurements for their bene�t. In a collabo-

rative monitoring algorithm, there is a chance that other nodes might

send malicious/wrong measurements to lure nodes to other gateways.

However, in our monitoring algorithm, a node collaborates periodically

with others. Therefore, it has a collaboration history to judge the be-

havior of trusted neighbors. We demonstrate that close neighbor col-

laborative monitoring provides >90% accurate performance measure-

ment on average for each node.

The main results related to this contribution are presented in Chapter 5
and were originally reported in [Bat+19a; Bat+19b].

C3 Balance between better performance and fair distribution. Build-

ing upon the accurate measurements from Chapter 5, the Internet gate-

way selection focused on the best-e�ort, balanced gateway selection.

We studied that optimal gateway selection algorithms often lead to

over-popularization and equally degrade all selected nodes’ Internet

performance. Often in decentralized, bottom-up networks such as com-

munity networks, the gateways are selected manually based on previ-

ous experience, popularity, or word-of-mouth knowledge of the gate-

ways. By examining the anonymous log �les of the gui�.net gateways

1.4. Publications 7

as well as shown in [Dim+17b], many gateways are not selected by the

nodes because they are not well known or a bit further away from the

user node. Our selection algorithm gives an equal opportunity for the

gateways to perform well but not the best. Results show that our se-

lection algorithm result shows our selection algorithm gives a better

Internet latency compared to selecting the best performing gateway at

a time.

C4 Maintain a long-term, stable selection. With the manual gateway

selection, the selected gateway does not change unless the gateway

becomes unresponsive. In this case, the node moves on to the next

gateway on the web browser list. State-of-the-art gateway selection

algorithms do not guarantee future performance. Therefore, we imple-

mented the feature in the framework to categorize the gateways based

on their performance capacity and avoid selecting the unstable gate-

ways. This feature allows nodes to have stable, good Internet connec-

tivity and avoid changing the gateways frequently.

Themain results related to C3 and C4 contributions are presented in Chap-
ter 6 and were originally reported in [Bat+20]

C5 Production network implementation. We implemented the gate-

way selection framework in the gui�.net CN environment with testbed

network nodes and production network gateways with real background

tra�c. The implementation result is consistent with the Mininet em-

ulation network result. We designed di�erent scenarios in the testbed

user nodes to test our framework’s adaptability and resilience.

The main results related to this contribution are presented in Chapter 7,
and the implementation and the results are under IEEE Access journal
submission.

1.4 Publications

In this section, we summarize our list of publications.

Accepted

P1 "The RIMO gateway selection approach for mesh networks: To-
wards a global Internet access for all"[Bat+18], The 12th Interna-

tional Conference on Ubiquitous Computing and Ambient Intelligence,

2018, �rst author. This paper covers the client-side, non-collaborative

gateway selection based on randomized performance sensing. The al-

gorithm focuses on the drawbacks of the manual gateway selection in

8 Chapter 1. Introduction

gui�.net and o�ers an algorithm, RIMO, a periodic randomized sam-

pling of the gateway performance to select the best gateway. The RIMO

algorithm de�nes the base layer of the Sense-Share-Select gateway se-

lection framework.

P2 "Collaborative informed gateway selection in large-scale andhet-
erogeneous networks"[Bat+19a], IFIP/IEEE Symposium on Integrated

Network and Service Management (IM), 2019, �rst author. The �rst

prototype of the low-cost collaborative performance monitoring algo-

rithm. The algorithm builds on top of the RIMO [Bat+18]’s performance

sensing and adds close neighbors’ collaborative sensing. The experi-

ments are designed in the community-lab
1

gui�.net’s testbed with pro-

duction network gateways. (CORE2018 RANK A)

P3 "Sense-Share: A Framework for Resilient Collaborative Service
Performance Monitoring" [Bat+19b], 15th International Conference

on Network and Service Management (CNSM), 2019, �rst author. Im-

proved collaborative service performance monitoring algorithm that

covers the fault tolerance and implementation of the performance-based

sensing. The experiments were designed using the Mininet emulation

environment. (CORE2019 RANK B)

P4 "GateSelect: A novel Internet gateway selection algorithm for
client nodes" [Bat+20], 16th International Conference on Network and

Service Management (CNSM) 2020, �rst author. Final informed gate-

way selection algorithm to provide long-term, balanced gateway selec-

tion for the client nodes. The algorithm is tested in the wired, wireless,

and wireless mobile network environment to prove the compatibility.

(CORE2020 RANK B)

Pending review

P5 "Sense-Share-Select: Sharing the access to the Internet within
Community Network", IEEE Access, 2021, �rst author. Integration of

the di�erent algorithms into a single Internet gateway selection frame-

work. The experiments are conducted using experimental nodes in the

gui�.net and production network gateways.

Workshops

W1 Connectivity sharing for wireless mesh networks, The 6th Net-

working Networking Women Workshop (N2Women), 2017

1
https://community-lab.net/

1.5. Thesis structure 9

W2 Sense-Share: Resilient collaborative service performance mon-
itoring framework, 8th Networking Networking Women Workshop

(N2Women), 2019

1.5 Thesis structure

The thesis is structured as follows:

Chapter 3 introduces the general structure of the framework and design

requirements for the whole architecture.

Chapter 4 presents the Sensing layer algorithm, focusing on the individ-

ual node’s gateway performance sensing, how to reduce the number of gate-

way performance monitoring requests. The algorithm is compared with the

distributed performance sensing, the Brute-Force performance sensing algo-

rithm. The e�ectiveness of the algorithm is shown in the Experimental result

section. The collaboration algorithm further reduces the collaboration within

more similar collaborators, which in turn increases the accuracy of the collab-

orative measurements and reduces the in-network communication (message

exchange).

Chapter 5 proposes the Collaborative layer algorithm, which manages the

sending/receiving measurements, �nding the collaborator nodes, and build-

ing the gateway performance table. The trust-based collaborator ranking and

performance smoothing components are integrated with the proposal.

Chapter 6 covers the Selection layer algorithm, GateSelect, where the �-

nal gateway selection is made. The algorithm categorizes the gateway nodes

and creates a gateway selection candidate list by removing the unlikely candi-

dates. The GateSelect o�ers better Internet latency as compared to the greedy

selection and manual selection algorithms.

Chapter 7 is the �nal chapter where it covers the integration of the Sense-

Share-Select framework in the gui�.net environment with production gate-

way nodes. The framework is tested under di�erent network uncertainties

and real network loads.

In Chapter 8, the main contributions of this thesis are summarized, and

potential directions for future research are suggested.

Background and Related
work 2
2.1 Background

2.1.1 Internet gateway selection

The large-scale Internet network has multiple Internet gateways to distribute

the connectivity, and network nodes should select one of the gateways to con-

nect to the Internet. There are two main ways for Internet gateway selection;

static gateway selection and dynamic gateway selection. The static Inter-

net gateway selection is used in networks such as wireless mesh network,

home access network, and community network which contains mostly static

nodes. The gateway is selected based on the locality of the nodes, the num-

ber of hops to the gateway, the previous selection experience, the popularity

of the nodes, or the word-of-mouth knowledge. The advantage of the static

gateway selection is zero management, plus no need for performance mon-

itoring, load balancing, and resource allocation. The disadvantages are over

popularization, unbalanced load distribution, and uneven QoS at the client

nodes.

Dynamic Internet gateway selection algorithms focus on changing the

gateway selection based on the network dynamics such as gateway perfor-

mance, load balance, and node mobility, etc. Dynamic gateway selection algo-

rithms are divided further into centralized gateway selection and distributed

gateway selection. Centralized gateway selection algorithm is where the

central entity recommends gateway to the nodes [GRS08; HMW09]. The al-

gorithm proposed in [GRS08] uses central monitoring, which monitors all

gateway tra�cs and provides load balancing on the �ow level by redirecting

the nodes. The algorithm proposed in [HMW09] used Mixed Integer Linear

Programming to calculate the minimum node utilization to avoid selecting

the overloaded or likely to be congested gateways. The advantage of the cen-

tralized algorithm is the low-cost monitoring and dedicated gateway perfor-

mance monitoring available for all nodes. The disadvantages of the central-

ized gateway selection algorithms include a single point of failure and do not

provide tailored gateway selection for each node. Distributed gateway se-
lection algorithms involve network nodes for the gateway performance mon-

itoring, which provides a more tailored gateway selection. Distributed algo-

11

12 Chapter 2. Background and Related work

rithms use clustering algorithms, collaborative performance monitoring algo-

rithms to divide the monitoring tasks among the nodes. Distributed gateway

selection algorithms provide the best gateway selection tailored for network

nodes. However, the selection algorithm has more cooperation/coordination

between nodes (a.k.a, more network management), more communication cost,

and is not suitable for scaling.

2.1.2 Collaborative performance monitoring

The main goal of the Internet selection algorithm is to provide the best gate-

way for each node in the network. For that, every node needs to know the

latest performance of all gateways. The large-scale network gateways are

susceptible to frequent performance �uctuations depending on the amount

of tra�c that passes through them, rush hours, and the locality of the gate-

way.

The periodic, active performance monitoring should be done at each node

that is unsuitable for a large-scale network since the cost of measurement can

outweigh the bene�ts of gateway selection. Even though the overhead of a

single measurement request is small, in a resource-constrained, large-scale

network, the overall tra�c generated by measurement requests from every

node becomes a signi�cant contributor to network congestion.

Many algorithms propose collaborative performance monitoring to re-

duce the cost of distributing the performance monitoring tasks and sharing

their measurements among other nodes. Instead of increasing the gateway

monitoring tra�c, the collaborative monitoring algorithms utilize the com-

munication between the nodes to share measurements. The collaborative

monitoring algorithm’s performance is measured by the accuracy of the mea-

surements collected at each node. There are two di�erent collaborative mon-

itoring algorithms, centralized and the distributed collaborative monitoring.

Centralized collaborative monitoring algorithms [HCB00; HCB02; YF04;

Lia+16; SRS12; FM02; ZC08] often involve a clustering mechanism where the

group of nodes selects a representative node (cluster head) to measure the

performance of the gateways and distribute it to the others. Each node ad-

justs the measurement based on the relationship between the cluster head.

Centralized algorithms reduce the monitoring cost, but the accuracy of the

measurements is often not high. Meaning the performance measurements

received at each node end are not tailored to them. There is a chance the end

gateway selection is not the best one. Additionally, every node in the same

cluster might end up selecting the same gateway and over-popularize it.

The distributed collaborative monitoring algorithms [Abu+15; Dim+17b;

Ko+13] require multiple management operations to achieve accurate perfor-

mance monitoring, such as �nding the collaborative nodes, scheduling the

2.2. Related work 13

gateway monitoring (who measures which gateway), distributing the mea-

surements, and �nally adjusting the measurements sent by others. This re-

sults in an increased in-network tra�c to/from the network nodes, increasing

network congestion. Additionally, not all the nodes in the network are capa-

ble of carrying out complex tasks as they have di�erent capacities.

2.1.3 Gateway discovery

A few conventional ways gateway discovery has been done and mostly done

in the network with mobile nodes. Proactive gateway discovery [TSC03;

Jon+00; SBP02] where gateway itself periodically announces its performance

through Gateway Advertisement (GWADV) messages �ooding through the

network. The nodes receive the messages and compare them with their pre-

vious GWADV message to update the gateway list or dismiss it. This way

is expensive, generating periodic mass gossiping where some nodes might

not be interested. Reactive gateway discovery [BMJ99] is a reverse pro-

cedure of the proactive discovery when the node initiates the discovery pro-

cess. The node generates a Gateway Solicitation (GWSOL) message, and gate-

ways that hear this message replies with a direct, unicast message. This is an

inexpensive approach, but there is a waiting period where the node has to

wait for any gateway to reply. There are many hybrid gateway discov-
ery [RK03; Lee+03; Bin+05] algorithms proposed in the literature that com-

bines both proactive and reactive gateway discovery. A distributed gateway

discovery [Jav+08; RG04; AR08] where nodes extract gateway information

from the IP header and save the gateway information for the other interme-

diary nodes to pass on.

Our target network is the large-scale wireless network such as a commu-

nity network, where the only mobility is gateway is becoming online/o�ine.

In other words, the gateways are planned, and the nodes are aware of the

available gateways. For example, gui�.net uses a service node registry for

advertising all available internet gateways. The nodes choose their gateway

based on their network zone, locality. Therefore, in our framework, we did

not cover the gateway discovery component, and this information is the input

to the sensing algorithm.

2.2 Related work

2.2.1 Gateway performance sensing

To our understanding, most of these works have some important limitations.

Proposals like [BH11; AJB10] fail in heterogeneous environments since they

are based on solutions that operate on the mesh routing layer and require

modi�cations to the infrastructure routers. A similar work presented in [AAJ09a]

14 Chapter 2. Background and Related work

also operates on the mesh routing layer and requires additional software on

the gateways’ side. In [Wan+17] the authors present �exible and not only

network-based criteria (e.g., economical features or user preferences) for gate-

way selection. However, it cannot be easily implemented and deployed on a

heterogeneous and distributed community network because it is a concep-

tual proposal based on game theory. The proposal in [Sal+18] fails on the low

monitoring overhead requirement since it uses a kind of brute-force approach

periodically probing all the available gateways.

There are many di�erent metrics used to make an e�cient gateway selec-

tion. In [Kim+07], gateway selection is based on the load of the gateway while

the authors of [AAJ09a] use a combination of gateway load, route interfer-

ence, and expected link quality metrics to estimate the gateway performance.

Recent work in [Wan+17] presents a �exible gateway selection based on not

only network-based criteria (e.g., economical features or user preferences)

for gateway selection. It is a conceptual proposal based on game theory with

a thorough information processing at the client node, therefore di�cult to

implement and deploy on a large-scale network. The PAWS [Abu+15] algo-

rithm redirects node requests over gateways based on the �ow demand and

residual capacity of the gateway. In [HXA08] proposes two graph-based gate-

way selection algorithms, a degree-based greedy dominating tree set where

the gateway is selected based on the connectivity degree and a weight-based

greedy dominating tree set that assigns weights to the gateways based on

their coverage and number of hops.

2.2.2 Gateway performance monitoring

There are many ways to monitor the performance of the gateways. However,

not all of them are suitable with the large-scale network, especially, Brute-

Force performance sensing algorithms [Sal+18; Aou+06] where all nodes mea-

sure the performances individually. Other algorithms [Ko+13; Abu+15; AAJ09b]

uses representative nodes to measure the performance, and other nodes re-

quest the measurement from the node, but the collaborative measurements

are not accurate.

Collaborative sensing algorithms aim to reduce the cost of monitoring

and assist nodes in making an informed selection decision. The most com-

mon collaborative algorithms are cluster-based collaboration, where nodes

are grouped into di�erent sections of nodes. Similarity-based clustering al-

gorithms were �rst proposed in [JP73] and improved over time in [MK04;

HCB00; YF04; XV07; OV17; LZ10]. The selected cluster head node performs

the performance monitoring and is responsible for the performance measure-

ment distribution over the cluster nodes. The clustering algorithms impose

additional processing overhead such as frequent cluster head election, recal-

2.2. Related work 15

culation of the cluster members, adjustment of the measurements, and often

not scalable.

Decentralized collaborative sensing algorithms are suitable for large-scale,

heterogeneous networks such as gui�.net. The main idea is that every node

in the network is responsible for the performance monitoring, and they �nd

a common feature to distribute the performance measurement task and dis-

tribute amongst each other. The works represented in [Bat+19a; Dim+17b]

have similar features to our proposed framework and in the collaborative In-

ternet gateway selection domain, and we explained each algorithm in detail

later in this section. Collaborative algorithms are susceptible to the faulty

collaborator nodes [Lin+17; ZSL13]. In [Lin+17; ZSL13] the nodes create a

reputation mechanism to rank the collaborators to improve the quality of

the collaboration. Other algorithms focus on anomaly detection [Zha+18;

Sun+13; Lyu+16] to stop collaborating with the faulty nodes. We address

both of the concerns in the Sense-Share-Select framework to encourage the

nodes to select their trusted neighbors while staying away from the di�erent

nodes.

2.2.3 Gateway selection

In [Wan+17], the authors present a �exible gateway selection based on more

than just network-based criteria (e.g., economic features or user preferences)

for gateway selection. The gateway selection is based on Greedy selection
where the node selects the best performing gateway without considering

the other nodes selection [Dim+17b; Ko+13; Liv+10]. However, in the race

of choosing the best Internet gateway, algorithms often eliminate the other

equally good performing gateways out of the selection. Doing so creates a

situation called herd behavior where the majority of the nodes choose the

same gateway and quickly degrades its performance and moves to the next

best option. This behavior enforces overall network load imbalance, con-

gestion, and short/long term performance degradation [RT02; SK03; AJO07;

Zam+16]. This behavior enforces overall network load imbalance, congestion,

and short/long term performance degradation [RT02; SK03; AJO07; Zam+16].

Therefore, in a distributed gateway selection algorithm, the individual nodes

have to consider the other nodes’ selection impact.

Many algorithms introduce a load balancing mechanism to cope with the

herd behavior [HLT04; Nan+06; AAJ09b; Yan+13; KBM12; NMS15; ZC08].

Di�erent metrics used for the load balancing algorithm such as Load Balanc-

ing Index in [HLT04] using total tra�c and the gateway capacity, in [Nan+06]

using queue length and hybrid load measurements [AAJ09b; Yan+13] combin-

ing gateway load, path quality, number of hops, so on. Learning Automata-

based Load Balancing (LALB) [KBM12] uses an algorithm similar to reinforce-

16 Chapter 2. Background and Related work

ment learning to �nd the perfect combination of performance and load bal-

ancing. Load balancing algorithms need load monitoring which is a resource-

intensive task and not suitable for the large-scale network. Cluster-based re-

source allocation algorithms [SRS12; Lia+16; YG19] reduces the complexity

of the load balancing, resource selection and often used for the resource-

constrained network scenario. In [SRS12] proposes the energy-e�cient re-

source allocation considering the cluster node’s residual energy. In [Lia+16]

uses two-step resource allocation consists of resource block allocation and

game-based power allocation for the sensor nodes. Besides the clustering

complexity, cluster-based algorithms propose a top-down approach where

cluster head nodes decide the resource allocation.

2.2.4 Compared algorithms

Following algorithms are most related to our thesis and we refer these algo-

rithms to compare our results.

2.2.4.1 Coping algorithm

Figure 2.1: Coping algorithm example

CoPing algorithm [Ko+13] stands for C̈ooperative Pingänd designed for

the hybrid wireless network. The primary motivation is to help mobile ad-

hoc nodes to �nd a gateway node based on up-to-date network performance

metrics without incurring an additional cost in the network. Thus, Coping in-

troduces cooperation between mobile nodes where they obtain gateway mea-

surements from their upstream node as shown in Figure 2.1. For this example

scenario, node C wants to know the gateway G’s performance. Node B and

node A are on the path to reach gateway G. Therefore, the closest upstream

node to the gateway G, in this case, node A measures the gateway perfor-

mance and distribute the measurement to B, and B sends the measurement

2.2. Related work 17

to its downstream node C. Upon receiving measurement from the upstream

node, each node update the measurement by adding their ping latency be-

tween the two nodes. The algorithm performs better with lower node mo-

bility and fewer intermediary nodes between the node and the gateway. The

measurement frequency in the experiment is every 5 seconds, and the gate-

way performance is measured by the ping latency.

The downside of the CoPing algorithm is if any node becomes o�ine or

any other topology change requires a reorganization between the nodes. The

accuracy of the collaborative sensing reduces as the number of intermediary

nodes increases; therefore, not suitable for a multi-hop mesh network like the

gui�.net CN environment.

2.2.4.2 Synthetic coordinate based gateway selection algorithm

Figure 2.2: Vivaldi based algorithm example

Vivaldi algorithm-based collaborative Internet gateway selection algo-

rithm is proposed in [Dim+17b]. Vivaldi algorithm [Dab+04] creates a network-

wide coordinate system by assuming the distance between 2 nodes’ coordi-

nates will accurately measure their latency between them. By doing so, every

node can determine the distance (latency) between any node. The algorithm

incorporates proactive random node probing and adjusting the synthetic co-

ordinates of the network nodes slowly. From the Vivaldi paper [Dab+04], the

accuracy of the synthetic coordinate system stabilizes from the 100th rounds,

thus a slow start solution. In Vivaldi-based Internet gateway selection algo-

rithm [Dim+17b] utilize Vivaldi algorithm and combine gateway nodes and

all the other nodes in the network to create a whole synthetic coordinate

system. After creating the synthetic coordinate system, every node knows

the performance of the gateway without measuring it, which is the main ad-

vantage of using the Vivaldi algorithm in [Dim+17b] (shown in Figure 2.2).

18 Chapter 2. Background and Related work

However, the gateway performances change frequently; thus, continuous ad-

justment of the synthetic coordinates is necessary. The result in [Dim+17b]

shows that gateway estimation error is low and over 80% of the experiment

estimation has lower than 2.5ms median error.

The main disadvantage is that the algorithm has a long bootstrapping

phase of the collaborative measurements to adjust to the acceptable (>80%)

accuracy. The collaboration between the nodes is global; therefore, lots of

unnecessary inter-node communication goes in the background. As the size

of the network grows, the cost of communication grows exponentially as well;

therefore, not suitable for large CN like the gui�.net scenario.

General framework:
Sense-Share-Select
framework

3

3.1 Introduction

The gateway is a node in the network (router) that provides access to di�erent

networks. The Internet gateway is a speci�c gateway node where all the

tra�c to the Internet passes. The Internet gateways regulate the network

tra�cs directed towards the Internet and act as a translator between Internet

Service Providers (infra-structured network) and the heterogeneous network

nodes (infrastructure-less network). In the home network setting, the internet

gateway is assigned by default by the Internet Service Provider. Nevertheless,

this is not the case in the large-scale network where Internet connectivity is

shared with many others. Sharing access is an option for areas where Internet

connectivity is scarce. Instead of a single default Internet gateway with ample

capacity, many local access networks rely on multiple but limited connections

shared across all clients, with a high ratio of nodes per gateway.

We propose a collaborative, informed Internet gateway selection frame-

work, Sense-Share-Select, with a lightweight and accurate gateway perfor-

mance monitoring coupled with a reliable, balanced gateway selection. There

are three main sections (we call it layers) in the Sense-Share-Select frame-

work, shown in Figure 3.1 that seamlessly support the gateway selection.

The main idea of the Sense-Share-Select is to enable nodes to make an in-

formed, individual Internet gateway selection with the help of collaborative

performance monitoring. The large-scale network is heterogeneous, hav-

ing di�erent topology, devices, localized network planning. Therefore, the

framework is designed to be infrastructure-agnostic and easily integrated

with the existing network. For example, gui�.net decentralized community

network in Spain (explained in Chapter 7) already has 36000 nodes utilizing

approximately 400 internet gateways, and the existing users are often reluc-

tant to new changes, making the implementation process slow. Therefore,

we designed our framework to work independently, but our algorithm shines

19

20 Chapter 3. General framework: Sense-Share-Select framework

Figure 3.1: The layered architecture of Sense-Share-Select framework

when collaborating with the other nodes. The framework runs periodically in

rounds to measure, share and select the gateway for each node. The bottom

layer is the Sensing layer, responsible for providing an individual gateway per-

formance monitoring and manages the orchestration of the randomized sam-

pling and �nding the close neighbors to assist the Collaborative layer. The

middle layer is the Collaborative layer where the business logic of sharing

measurements, ranking neighbors, receiving measurements. The upper layer

is the Selection layer to �nalize and provide the gateway selection to provide

the best-e�ort gateway node while maintaining the global fair distribution of

gateways.

However, in the framework, we do not cover the following features:

1. Gateway discovery - The gateway nodes in the large-scale network

have prior planning, and the network under consideration is mostly

static (non-mobile). The gateway nodes are often known to the public

through the registry service. However, there are plenty of algorithms

in the literature that focus on gateway discovery through broadcasting,

node registry services for the other type of networks.

2. Node discovery - Similarly with the gateway discovery, the neighbor

node discovery is not part of the framework. The available nodes are

given as input to the framework. For example, gui�.net and Freifunk

networks have a node registry service that provides nodes based on

their zone, area, and locality.

3.2. Objectives 21

3.2 Objectives

The main objective behind the framework is to equip each node with the lat-

est gateway performance measurements to select a stable, good-performing

gateway for a more extended period. To achieve this objective, we have the

following mini objectives.

3.2.1 Low-cost performance monitoring

Selecting the best gateway implies that every node should be fully informed

about the latest gateway performance, which requires periodic performance

monitoring. Moreover, if the gateway performance is not stable, the fre-

quency of the measurement period should be short. The objective to keep

track of the performance �uctuations generates a considerable amount of

monitoring requests at the gateways; the demand increases exponentially

with the size of the network.

In this thesis, Low-cost performancemonitoring refers to reducing the amount

of performance monitoring requests as well as the number of messages ex-

changed between the network nodes. We propose an individual node per-

formance monitoring algorithm using randomized sampling, client-side per-

formance prediction, and gateway capacity-based performance sensing. The

general objective of each node is to utilize its capacity for improving the vis-

ibility of the gateway performances and not to strive to achieve the complete

performance measurement. At the performance monitoring level, each node

should think about their performance monitoring without relying on the oth-

ers while not creating too much congestion at the gateways.

3.2.2 Accurate collaboration

With the low-cost performance monitoring, each node is equipped with pro-

ducing its performance measurement. Usually, in the large-scale network set-

ting, the density of nodes is high, and the nodes in the same locality often

share the same path to the gateways. Therefore, their perception of the per-

formance of the gateways is often similar. We use this common feature to

our advantage to share the measurements among close neighbors. Doing so

improves each node’s available gateway performances at a time and allows

them to choose the appropriate gateway. Many collaborative monitoring al-

gorithms have to choose between accuracy and management overhead. We

propose a simple, local collaboration with low overhead; less scheduling yet

achieves high accurate monitoring.

22 Chapter 3. General framework: Sense-Share-Select framework

3.2.3 A good gateway selection

The best gateway selection is not an ideal solution (explained previously),

as they overload speci�c gateways. Our main idea for the �nal selection is to

create a list of viable gateway candidates and choose one randomly. Each node

creates its own gateway selection candidates as their performance perception

of the gateway might be di�erent from the others. Taking away the power

of selecting the best gateway from the nodes gives the other less popular

gateways an opportunity to be selected and creates a balance in the overall

network gateway distribution.

3.2.4 Fair gateway distribution

The Internet gateway distribution in a large-scale network is not e�cient,

leaving some gateways unused. Some gateways are good performing and

able to handle multiple requests but not the best performing gateway. The

manual gateway selection leads to the uneven distribution of the gateways.

The nodes should give a chance for those equally good performing gateways

to be selected instead of overloading the default local gateway.

3.3 Overview of the framework

In WCN, most of the physically close nodes will share a similar path towards

the gateway nodes, which means their performance perception of the gate-

way nodes is similar. If the node can �ne-tune their similar neighbors, the se-

lected close neighbors will have very similar measurements. Therefore, nodes

can use each other’s measurements as if their own without modi�cation, sim-

plifying the reorganization process at the node. This is the main foundation

of the Sense-Share-Select framework. The example scenario is shown in Fig-

ure 3.2, where node A and node B are close neighbors and node C and node

D are close neighbors, and they exchange measurements with each other.

Figure 3.2: Example of Sense-Share-Select collaboration

3.3. Overview of the framework 23

Figure 3.3 shows the detailed structure of the Sense-Share-Select frame-

work. Every round, the node sense gateway performances, share measure-

ments with the collaborator nodes, receive measurements from the others

and select the gateway node. Every node works for their own bene�t to re-

ceive the best Quality of Service from their selected gateway. The framework

allows nodes to work independently on the client node side by choosing the

"Good" Internet gateway and avoiding the bad ones. This thesis refers to

a Good Internet gateway for the client node as the Internet gateway node,

which provides good performance (end-user experience) with minimal per-

formance deviation over the extended period.

Figure 3.3: Sense-Share-Select framework structure

The framework runs periodically in rounds, measuring the gateway and

stores in the gateway performance table, similarly shown in Table 3.1.

Table 3.1: Example of gateway performance table at each node

Gateway Latency Timestamp
Gateway 1 0.6ms 2018-07-01 14:39:14

Gateway 2 0.4ms 2018-07-01 14:37:27

This gateway performance measurement consists of measuring the time

(called "latency" in the following) needed to download a 0.1MB resource via

HTTP from a �le server located on the Internet. The end-users (a.k.a nodes)

24 Chapter 3. General framework: Sense-Share-Select framework

care about the end Internet quality, and the "Internet latency" is an end-to-

end metric to measure the gateway performance accurately. Many state of

the art algorithms use network-level metrics such as Round Trip Time, band-

width, signal-to-noise ratio, packet delivery rate, so on, but they only cover

the network path condition. The download �le size (0.1MB) is an example; it

could be smaller in the production network.

Sensing layer 4
4.1 Introduction

The Sensing layer is the fundamental layer of the framework that provides

the periodic gateway performance measurements.

There are two extremes for the gateway selection algorithm related to the

cost of performance monitoring. The �rst one where every node measures all

of the gateway performances (Brute-Force). However, the cost of the Brute

Force measurement is high, especially in large-scale networks. In the end, the

node chooses only one gateway as their default Internet gateway and discards

other measurements. Thus, plenty of measurements are left unused to pro-

vide one gateway[SSK97]. The other extreme is manual gateway selection,

where the node does not measure any gateway performance and select the

gateway based on the locality, word-of-mouth knowledge, or previous expe-

rience. Manual selection leads to load imbalance over di�erent gateway nodes

by over-popularizing some gateways and provide bad or uneven performance

for the selected nodes.

The ideal situation is to �nd a balance between a simple non-informed

gateway selection method (random), which has zero communication over-

head but can lead to poor performance, and a comprehensive informed gate-

way selection (brute-force), which has a signi�cant communication overhead

but can achieve the best overall performance. Therefore, it is unavoidable to

reduce the measurement costs generated by each node to reduce the overall

performance measurement cost.

In the Sensing layer, we tackle reducing the measurement overhead gen-

erated by the network nodes to select a suitable gateway node.

4.2 Design requirements

There are two main design requirements for the Sensing layer algorithm.

� Reduce the performance monitoring overhead - The gateway’s

main purpose is to serve Internet requests. Therefore, the active prob-

ing algorithm should avoid generating too many measurement requests

per gateway. Ultimately, the sensing layer algorithm should focus on

25

26 Chapter 4. Sensing layer

distributing the overall gateway probing requests generated by all nodes

in a balanced manner, requiring a great deal of scheduling and organiz-

ing among the nodes.

� Reuse the previous measurements to better the monitoring pro-
cess - Active probing enables the node to collect measurements over

time, and there is plenty of room to analyze the collected measure-

ments to reduce the probing cost. For example, some gateways are too

far away and should not even be considered for speci�c nodes as a se-

lection candidate and, therefore, not to waste resources on it.

In the sensing layer, we aim to �nd a good balance of the right number of

measurements to be done from the client node.

4.3 Design overview

The fundamental principle in gateway performance sensing we use is "ran-

dom sampling." Instead of measuring the performance of all gateways, each

node only samples a random subset. When coupled with the collaboration

among close neighbors described in Chapter 5, good visibility of the gateway

nodes can still be achieved. Existing work suggests that a small number of

samples per node can be su�cient [Mit01; Zha+17a; Gho+17; Nas+15].

4.3.1 Gateway performance monitoring

The fact that some choice is good doesn’t necessarily mean that

more choice is better. by Barry Schwartz in "Paradox of Choice"

We argue that a partial knowledge of the gateways’ performance can select a

"good-enough" gateway and avoid the worst choices. The idea of exploiting

partial knowledge while providing some options to the client node led us to

explore approaches based on the PoTC [Mit01]. In the PoTC algorithm, every

entity randomly selects two resources, measures its performances, and selects

the best out of two options for the resource allocation and has been used for

many resource load balancing algorithms [Gho+15; Zha+17b; Ber+17] and

job scheduling [Ous+13] algorithms for balanced resource distribution with

minimal complexity.

The Sensing layer algorithm is designed where the node monitors gateway

performance independently and e�ciently (with as few overhead as possible)

a gateway node to connect while considering the global network-wide load

balancing. Every round, the node selects two random gateway performances

and store them in the gateway performance table. The new measurements

4.3. Design overview 27

will be distributed to the close neighbors. As a result, the number of individ-

ual performance measurements to the gateways reduces from = down to 2 per

measurement period, being = the number of available gateways. Two is the

minimum number of measurements that an isolated node should make to al-

low an informed decision. Measuring two random gateways in each measure-

ment period reduces the probability that two neighbor nodes will measure the

same gateway. Every node has a small sample of its own measurements ac-

cumulated over time to better judge the gateway performance.

The algorithm’s objective is to promote the individual node’s gateway

performance monitoring with low complexity and low cost. Randomization
is a technique often used for removing the complexity of scheduling tasks in

distributed algorithms and is scalable without incurring too much tra�c. We

employ each node measuring random gateway performance to distribute the

overall measurement requests to the gateways per round.

Figure 4.1: Experiment with di�erent gateway performance measurements

We conducted a small experiment with four client nodes in the university

lab selecting from 5 di�erent Internet gateways from the production network

environment. We ran the Internet gateway selection algorithms for one day.

Performance monitoring requests to the �ve gateways are made every 3 min-

utes, and for each algorithm, clients request 0.1 MB content from the Internet

through the selected gateway every 1 minute. Experiment consists of 4 dif-

ferent gateway selection:

� Static (Worst case scenario) - Static gateway selection where nodes do

not have any gateway performance measurements. Zero communica-

tion would lead to zero overhead, but also to a non-informed proxy

selection.

� Random (Baseline scenario) - Client selects one random gateway node

28 Chapter 4. Sensing layer

every round, distributes the loads over the gateways.

� Random (Power of Two choices) - Measures 2 random gateway perfor-

mances and selects the best performing gateway.

� Deterministic (Best case scenario) - Measuring all gateway performances

and selects the best performing gateway.

In the results depicted in Fig. 4.1 shows that the randomized proxy selec-

tion algorithm (Power of Two) achieves better results than the worst case

scenario and random gateway selection (baseline), and provides download

results closer to the Best case scenario.

4.3.2 Capacity based service monitoring

Nodes learn the behavior of gateways from the past measurements and mea-

surements collected from the others. With collected measurements, nodes can

remove unreliable (i.e., bad performing or inconsistently performing) service

node candidates to lower the monitoring cost. We consider two features to

characterize a service node’s capacity to provide satisfying performance:

1. Current service performance " : The service measurement result.

2. Performance deviation BC34E ("): The standard deviation of the service

performance over the previous measurement rounds. The higher the

variance, the worse the reliability of the network service.

The reason behind the categorization is to save the node from monitor-

ing the unnecessary gateway performance. For example, as nodes are try-

ing to �nd a "good" gateway, there is no reason to frequently measure the

performance of the "bad" performing gateway. On the other hand, the gate-

way deemed "bad" might be experiencing slight congestion, or the client is

downloading a large �le then performs well after some time. In this case,

the node cannot eliminate measuring the "bad" gateways. The node assigns

Performance Deviation Perf. category
"C 9 ≤ ` BC34E (" 9 , :) ≤ BC34E (") Good

"C 9 ≤ ` BC34E (" 9 , :) > BC34E (") Inconsistent

"C 9 > ` BC34E (" 9 , :) ≤ BC34E (") Inconsistent

"C 9 > ` BC34E (" 9 , :) > BC34E (") Bad

Table 4.1: Gateway performance categories

a performance category to gateway node� 9 based on its current performance

"C 9 and the standard deviation BC34E (" 9 , :) of its performance in the last :

4.3. Design overview 29

rounds (: = 10 by default), following the rules in Table 4.1. The thresholds

` and BC34E (") are the average performance over all gateways at round C8
and the standard deviations of all gateway performances within the last :

rounds, respectively. The classi�cation is done every time a node receives a

new measurement "8 9 . For example, if the current performance of the gate-

way is lower than the threshold and the current gateway standard deviation

is lower than the threshold standard deviation, the gateway performance is

categorized as Good.

The average service performance value and the average performance de-

viation, as shaped after every round based on the measurements received

from the trusted)>? collaborators, de�ne the threshold value of the High,
Low category of the service node and performance deviation.

The Good category gateways have a high probability of being a selection

candidate for the node. Therefore, the Sensing layer component senses the

Good category gateways more frequently by adding them into the sensing

list of gateways upon every round. The Inconsistent and Bad category service

nodes are added into the sensing list of gateways every other measurement

round. The Prototype applies constraints on the Bad and Inconsistent service

nodes, probing them with less frequency, therefore, making more di�cult

their transition to the Good category gateway. Depending on the number of

Inconsistent and Bad gateways, the gateway selection list contains a smaller

number of candidates resulting in fewer measurement requests.

4.3.3 Close neighbor sensing

Sense neighbors component provides the list of neighbors to collaborate.

The main idea is that close neighbor nodes have similar performance percep-

tions of the gateways; therefore, they bene�t from exchanging performance

measurements. The list of neighbor nodes is given as an input for our algo-

rithm; in other words, every node knows the network nodes. However, there

are di�erent possible ways for a node to identify its neighbors. A node can

broadcast or multicast discovery messages, passively listen to wireless com-

munication in its neighborhood in promiscuous mode, or use a node discov-

ery service. For example, the gui�.net CN has a central node registry service.

In our implementation of this component, we rely on the registry service.

In addition, in order to decide whether a neighbor node is a close neighbor,

we propose to perform round-trip time (RTT) measurements. We de�ne the

RTT as the ping delay between two nodes which is relatively stable in WCN.

As explained, WCN can be geographically very extended with multiple hops

between nodes, and the RTT can be used as a simple metric roughly corre-

lated to the physical or logical distance between two nodes. A node regards

neighbors with an RTT below a certain threshold as close neighbors.

30 Chapter 4. Sensing layer

The main challenge in this approach is the �ne-tuning of the RTT thresh-

old value. As shown later in the experiments, the smaller the threshold value,

the more accurate the gateway performance perception will be since there is a

higher probability that the identi�ed close neighbors of a node share the same

paths to the di�erent gateways. On the other hand, a big threshold value leads

to a large set of close neighbors and, therefore, more available measurement

results, leading to a more informed gateway selection on a node.

4.3.4 Randomized Informed Minimized Overhead algorithm

We designed the Sense-Share-Select framework to function individually as a

separate algorithm. For the Sensing layer’s case, we proposed an algorithm

called RIMO (Randomized Informed Minimized Overhead) where every node

individually �lters the gateway before the measurement and combines with

the PoTC gateway performance monitoring component.

The idea of Algorithm 1 is to assign weight and �lter all the available

gateways to improve the result of the randomized selection by eliminating

bad choices. The user’s preferences (Filter procedure, line 1) are some user-

based reasons (e.g., the economic cost and the trust) to �lter the available

gateway list Γ and obtain a subset of gateways Γ�ltered. The impact to the
network (HOPStoGateways procedure, line 9) is minimized by a weighted

mechanism that reduces the network usage. The weight of each gateway has

an inverse linear relationship with the number of hops between the client and

the gateway: "0G�$%(+ 1 − ℎ>?B (line 12), which can be explained since

communication with a close gateway uses fewer network resources (tra�c

on links) than communication with a far one. As a secondary impact of this

weighting mechanism, we expect a slightly better network performance, as

shown in [DMN17]. The output of the Algorithm 1 is the weighted gateway

list Γweighted. We use network hops as a quasi-static client-gateway distance,

so the result of the algorithm is also quasi-static.

4.4 Results

4.4.1 Experimental setup

We performed experiments in Mininet [LHM10] emulation framework with

ten gateways and 50 client nodes. To simulate the performance variations, we

used Linux Network Emulator (tc netem) [tc-] by adding 10ms delay for the

"Bad" gateways (68, 69, 610), 3ms delay with 1-3ms delay distribution for the

"Inconsistent" gateways(64, 65, 66, 67) and 1ms delay for the "Good" gateways

(61, 62, 63). The gateway performance measurement is done every 2 minutes

for 100 rounds.

4.4. Results 31

Algorithm 1 Weighting gateways

Input: Γ = {�1,�2, . . . ,� 9 } ⊲ Available gateway list

Input: ?A4 5 4A4=24B ⊲ User preferences

1: procedure Filter(Γ, ?A4 5 4A4=24B)
2: for all 60C4F0~ ∈ Γ do
3: if 60C4F0~ ∈ ?A4 5 4A4=24B then
4: Γ5 8;C4A43 ← ADD(60C4F0~)
5: return Γ5 8;C4A43

6: procedure HOPStoGateways(Γ5 8;C4A43)

7: for all 60C4F0~ ∈ Γ5 8;C4A43 do
8: ℎ>?B ← HOPS(60C4F0~)
9: ΓF486ℎC43 ← Add(< 60C4F0~,"0G�$%(+ 1 − ℎ>?B >)

10: return ΓF486ℎC43

Output: ΓF486ℎC43 ⊲ Weighted gateway list

4.4.2 Experiments

4.4.2.1 Overhead

Strategy Analytical Experimental
Brute force $ (B8I4 (Γ) ∗ B8I4 (C)) 59.39

Our proposal $ (B8I4 (C)) 9.95

Random $ (0) 0

Table 4.2: Message overhead per selection round.

Each client performs a gateway selection process every round for vali-

dation purposes. The algorithm is compared to Random- Not informed se-

lection, Brute-force- Best informed selection based on complete knowledge

of the gateways’ performance. Probing all gateways, PoTC- Randomized in-

formed selection based on partial knowledge of the gateways’ performance.

Probing only two gateways, Omniscient-based- Post-experiment selection

based on the best selection using the Omniscience metric.

From the overhead perspective, Table 4.2 shows the network cost of the

di�erent selection approaches in terms of messages per selection round, where

Γ is the set of gateways and C is the set of clients. Our algorithm is signif-

icantly better than the Brute-force approach, close to zero communication

overhead approaches (e.g., Random). It is important to note that the cost of

32 Chapter 4. Sensing layer

the Brute-force approach depends linearly on the number of available gate-

ways and the number of clients involved in the selection process at the current

round.

4.4.2.2 Measurement distribution

Figure 4.2: Total gateway measurements

Figure 4.2 shows the total gateway performance measurement requests

per gateway and the experiment for 20 rounds. The result is compared with

the PoTC, randomized sampling (sample size=2) algorithm. The advantage of

using the PoTC algorithm for the gateway performance monitoring is evident

from Figure 4.2. From the result, our Sensing layer algorithm sends fewer mea-

surement requests to "Bad" gateways [68, 69, 610] as compared to the other

gateways. The PoTC algorithm (without performance bias) distributes the

performance measurement requests equally over all gateways without per-

formance bias. Thus, our performance categorization component works e�-

ciently to reduce the number of measurements.

4.4.2.3 Accuracy of the RTT threshold

We studied the two main factors that in�uence the precise estimation of the

gateway performance, 1) the RTT threshold value used for creating a close

neighbors cluster and 2) the number of nodes in the same close neighbors set.

We run our experiment for 100 rounds with three di�erent RTT threshold

values to form a close neighbor set, 5ms, 10ms, and 20ms, having an aver-

age of 10, 15, 20 close nodes respectively at each node to see the e�ect of the

number of nodes and the threshold values. The latency between the nodes

are added based on the experiments carried in gui�.net in [DMN17] where

average latency between network nodes in the same zone was less than 15ms

4.4. Results 33

in 80% nodes. In our evaluation, we used the cosine similarity function (0 to 1,

1 being higher similarity), which is the similarity between the received mea-

surement against the node’s perception of the gateway performance when

receiving information. This experiment conveys how precise estimations our

collaborative sensing approach can achieve. Figure 4.3 shows the precision of

(a) ')) < 5<B, B8I4 = 10 (b) ')) < 5<B, 2;DBC4A = 15 (c) ')) < 5<B, B8I4 = 20

Figure 4.3: Sensitivity analysis of RTT threshold value and size of close
neighbors cluster

the gateway performance estimation of our collaborative sensing algorithm

and Vivaldi-based algorithm proposed in [Dim+17b]. From Figure 4.3a, both

of the collaborative approaches result in the near-optimal estimation of the

performance of gateway nodes, which is important for the selection of the

best suitable gateway for a client node. With Vivaldi based algorithm, the

average gateway similarity estimation starts below 0.05 to reach almost 0.98

after 60 rounds, showing a progressive increase of the precision of the esti-

mation as time passes. Comparatively, our collaborative sensing algorithm

provides more than 0.8 performance monitoring accuracy throughout the ex-

periment, as shown in Figure 4.3a. When increasing the close neighbors RTT

threshold value in Figure 4.3b and Figure 4.3c, the precision of the gateway

performance estimation drops down to average 0.6-0.8. As the RTT threshold

value increases, the similarity between nodes in the close neighbors set de-

creases. The peak values result from measurement received from the closer

nodes in the close neighbors set, and similarly, lower values result from per-

formance measurement received from the distant node in the close neighbors

set. On the other hand, the Vivaldi-based algorithm outperforms our algo-

rithm in the 20-25th round, and in Figure 4.3c, the precision of estimation

stays constantly above 0.8 duration of the experiment.

4.4.2.4 Download performance of RIMO algorithm

Figure 4.4 shows an empirical cumulative distribution function (ECDF) of the

performance of the di�erent selection gateway approaches. For the 80% of

the requests (0.8 of the y axis), the download latency is lower than 0.03, 0.09,

0.18, 0.21, and 0.54sec for the Omniscient-based, Brute-force, RIMO, PoTC,

and Random approaches, respectively. The RIMO algorithm result is better

34 Chapter 4. Sensing layer

than the Random and the PoTC selection algorithms and very close to the

Brute-force selection. Analyzing the results deeper, we observe that a user

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.5 1 1.5 2

E
C

D
F

Content Latency [s]

Random
The power of two

RIMO
Brute-force

Omniscient-based

Figure 4.4: Client perception of the selected gateway’s performance.

perceives an additional delay when the best gateway is not selected. This

cost in time can be de�ned as the di�erence between the Content Latency of

the approach and the Omniscient-based as a best one. For the 80% of the re-

quests, the di�erence is lower than 0.06, 0.14, 0.18 , and 0.5 sec for Brute-force,

RIMO, PoTC, and Random approaches, respectively. These additional delays

are small enough not to have any impact on the users QoE.

4.5 Conclusion

The Sensing layer algorithm puts importance on the node’s own performance

sensing coupled with performance-based sensing candidates. The algorithm

improves network utilization, achieving low tra�c overhead to the gateways.

The randomized gateway performance monitoring achieves good distribution

of the requests to the gateways and reduces unnecessary performance moni-

toring requests.

The outcome of the Sensing layer is the partially full gateway performance

table with the latest performance of the gateway nodes and the list of the close

neighbors to share measurements.

The proposed individual gateway selection algorithm, RIMO, provides a

good-enough gateway selection because the selection list is limited. The col-

laborative monitoring algorithm proposed in Chapter [chap:collaborative]

is essential for improving the gateway selection candidates.

Collaborative layer 5
This chapter explores the design and experiments of the collaborative per-

formance monitoring problem. It is shown that creating a customized close

neighbors list to collaborate is the simple way to assure high accurate per-

formance monitoring. Large parts of the work presented in this chapter have

been previously published by us in [Bat+19a; Bat+19b].

5.1 Introduction

The explicit measurement of all gateways by each node is not suitable for a

large-scale network setting since the cost of measurement can outweigh the

bene�ts of gateway selection. Even though the overhead of a single mea-

surement request is small, in a resource-constrained, large-scale network, the

overall tra�c generated by measurement requests from every node becomes

a major contributor to network congestion. Many performance monitoring

algorithms [Dim+17b; Ko+13; BH11; AJB10] pursue providing full visibility

of the gateways just to select one best suitable gateway for the node. Thus, in

the end, a signi�cant amount of measurements and message exchanges is left

unused. As we have seen from Section 4, a partial view of gateways is also

e�ective in terms of reducing in-network tra�c, measurement overhead, and

balancing the client nodes over the gateways.

More concretely, the problem of gateway selection in Wireless Commu-

nity Network, we want nodes to share their gateway performance measure-

ments to reduce the number of measurements needed to make an informed

gateway selection. In collaborative monitoring, nodes share measurement

results to build a common ground of information while keeping the mea-

surement overhead low. Unfortunately, in large networks such as a WCN or

a Wireless Sensor Network, collaborative sensing between all nodes is not

scalable. Instead, nodes are typically organized into smaller groups, and col-

laboration happens only inside those groups. Di�erent solutions have been

proposed to (self-)organize nodes into groups in order to achieve network-

wide objectives such as load balancing, fault tolerance, or energy e�ciency

[HCB02; NWZ16; FM02; LQL13; ZC08].

Sharing measurements only makes sense among nodes that similarly per-

ceive the gateway performance, but the grouping process is tricky. For ex-

35

36 Chapter 5. Collaborative layer

Figure 5.1: Example scenario for forming a group of collaborating nodes

ample, a simple topological grouping applied to the network shown in Fig-

ure 5.1a might lead to the two groups of nodes N1–N5 shown in Figure 5.1b.

Depending on the characteristics of the network links, the nodes N1, N2 and

N3 might see or not see a similar performance of gateway N5. Algorithms

like the Synthetic coordinate-based algorithm and CoPing algorithm perform

complex measurements and adjustments to organize the nodes and compen-

sate for the nodes’ di�erences.

We propose a more straightforward mechanism for collaborative sensing

that avoids such adjustments. Instead, we allow each network node to choose

close neighbors to collaborate with, resulting in individual groups such as

the ones depicted in Figure 5.1c. The underlying assumption is that nodes

that are close to each other (in terms of, e.g., round trip time) probably also

share most of the paths to the gateway nodes, and therefore they see similar

gateway performance.

5.2 Design requirements

Low collaborativemonitoring overhead (R1). Collaborative performance

monitoring introduces a di�erent set of communication such as exchanging

measurements, scheduling, adjusting measurements, continuous node check-

ing, and more. Inter-node communication creates congestion in the network,

which also harms the QoE of the nodes. Therefore, the algorithm should avoid

creating an extensive amount of tra�c within the network.

Accuracy (R2). Ideally, the collaboratively collected measurements at

5.3. Design overview 37

each node should be as accurate as the node’s own measurements. We express

the accuracy of a collaborative sensing algorithm for a node by the cosine

similarity index de�ned as

2>B (""",���) = """ ·���
| |""" | | · | |���| | (5.1)

where��� = [�0, �1, . . . , �?] is the real performance metric of the ? servers that

the node would measure without collaboration, and""" = ["0, "1, . . . , "?] is

the estimation obtained by sharing measurement results with other nodes.

As a result, an index of 1 (or 100%) would mean that the performance mea-

surement results obtained through collaboration are identical to those that a

node would obtain when performing its own (more expensive) measurements

without sharing.

Scalability (R3). The gateway monitoring framework should be able to

adapt to large networks with heterogeneous devices. The distributed collab-

orative monitoring algorithms generates a lot of tra�c within the network,

therefore, not scalable. The monitoring process should not in�uence other

network tra�c negatively, therefore the cost of monitoring should be kept

minimal.

Resilience (R4). The collaborative monitoring algorithm is subject to

faulty or malicious collaborators. We consider a node faulty or malicious if it

sends wrong measurements consequently over a certain period of time. The

framework should be resilient to sel�sh (or lazy) nodes that accept measure-

ments from other nodes but do not perform their own measurements or do

not share them.

Elasticity (R5). There are many uncertainties associated with the dy-

namic behavior of networks and services caused by, amongst others, link fail-

ure, service downtimes, or congestion [DMN17]. Timely reaction to changes

is, therefore, crucial. State-of-the-art algorithms react to such changes with

increased computational complexity caused by, for example, cluster head re-

elections.

5.3 Design overview

We propose a client-side collaborative performance monitoring algorithm

where network nodes collaborate with closely located neighbor clients to

sense the performance of the gateways. Each node keeps a table, called gate-
way performance table, where it stores the results of its own gateway per-

formance measurements for the di�erent gateways as well as the gateway

measurement results obtained from its neighbor nodes. The main objective

of collaborative monitoring is to reduce the in-network tra�c and increase

awareness about gateway nodes at each client node.

38 Chapter 5. Collaborative layer

5.3.1 Sharing measurements

The overview of the Collaborative layer is shown in Figure 5.2. The bottom

layer provides the performance monitoring covered in Chapter 4. The mid-

dle layer, Collaborative layer, is in charge of the actual collaboration between

network nodes, i.e., the exchange of measurement results where our main col-

laborative monitoring logic resides. The top layer selects one gateway from

the table of measured gateways.

Figure 5.2: Layered structure of the collaborative algorithm

All components of the algorithm run on the client-side, i.e., on the net-

work nodes, and their execution roughly divided into two phases, the boot-
strapping phase and the periodic sensing phase. When a node is activated, it

starts with an empty gateway performance table. Therefore, the goal of the

bootstrapping phase is to identify the set of close neighbors and receive their

measurement results to �ll the node’s table. With this initial version of the

table, the node can make a �rst gateway selection. After the bootstrapping

phase, the node enters the periodic sensing phase, where it performs its own

measurements (sensing) and exchanges measurement results with neighbor

nodes.

The interaction of the di�erent layers during these two phases is depicted

in Figure 5.3. We will now explain the di�erent components in more detail.

Collaboration, i.e. the exchange of gateway measurement results, is lim-

ited to close neighbors, assuming that the performance perception of the gate-

ways between close neighbors is similar. The collaboration consists of three

parts: (a) Sending own measurement information to close neighbors, (b) re-

ceiving information from those nodes, and (c) updating the node’s gateway

5.3. Design overview 39

Figure 5.3: Bootstrapping and periodic sensing phase

40 Chapter 5. Collaborative layer

performance table.

Algorithm 2 Collaborating with close neighbors

Input: 2;>B4_=486ℎ1>AB = {�1,�2, . . . ,�: }
Input: 60C4F0~_C01;4 ⊲ Gateway measurement table item[]

1: procedure Receive(B4=34A ,<4BB064)

2: if B4=34A ∈ 2;>B4_=486ℎ1>AB then
3: if <4BB064 ==′ Fℎ>;4 C01;4 A4@D4BC ′ then
4: send(60C4F0~_C01;4)
5: else
6: for all 8=5 > ∈<4BB064 do
7: 6F_033A4BB ← 8=5 >.6F_033A4BB

8: if 8=5 >.C8<4BC0<? > 60C4F0~_C01;4 [6F_033A4BB] .C8<4BC0<?
then

9: 60C4F0~_C01;4 [6F_033A4BB] ← 8=5 >

10: else
11: 8B#486ℎ1>A ← SenseNeighbor(B4=34A)
12: if 8B#486ℎ1>A then
13: goto line 3

14: procedure Send(<4BB064)

15: for all =486ℎ1>A ∈ 2;>B4_=486ℎ1>AB do
16: send_direct(=486ℎ1>A,<4BB064)

Sending: Whenever a node has performed its performance measurements

in the gateway sensing component, the measurement results are directly sent

to its close neighbors identi�ed by the neighbor sensing component.

Receiving and updating: Information reception from neighbors is handled

by the Receive procedure in Algorithm 2. This procedure distinguishes be-

tween information received from nodes known to be close neighbors of the

current node (line 2) and unknown senders (line 13). In the former case, two

types of messages are supported: During the bootstrapping phase, a node

can request the whole gateway performance table from its closest neighbors

to quickly obtain an initial version of the table. Such a message is handled

in lines 3–5. The second type of message is messages sent during the peri-

odic sensing phase. They contain performance measurement results from a

neighbor node. If a contained measurement result is more recent than the in-

formation currently stored in the node’s table, the corresponding entry in the

table is overwritten (lines 6–11). The message is not simply discarded when

the sender is unknown to the receiving node (lines 14-17). Instead, the node

requests the sensing layer to check whether the sender is a close neighbor. If

this is the case, the message is processed.

5.3. Design overview 41

It should be noted that collaboration between nodes is not transitive in the

sense that a node will not forward a copy of the information received from

a neighbor node to its other neighbors. This choice enforces the precision

of the estimation within a neighborhood and reduces unnecessary network

tra�c generated by gossiping.

5.3.2 Trust-based collaborative monitoring

Periodic collaborative monitoring algorithm builds historical gateway perfor-

mance measurements. When collaborating with multiple close neighbors, the

probability of measurement overlaps in the gateway performance table. As an

example, let’s assume that four clients �81 through �84 have performed per-

formance measurements on the six gateways�1 through�6. Table 5.4 shows

the results ! of the individual probing actions at time C8 . After sharing the re-

sults, each client can construct a combined measurement table (Figure 5.4b)

which is updated through periodical measurements (Figure5.4c). As can be

Figure 5.4: Performance table obtained through collaborative sensing

seen, by the above example, the overhead is not optimal: in the case that both

the clients �81 and �84 have a similar perception of the performance of �1

their measurement results !11 and !41 will be redundant, and there is no need

to share them. When sharing the measurement, the node assumes that all

collaborators are benevolent, i.e., no node distributes false information. This

assumption can result incorrect for various reasons:

� The node might be simply faulty.

� A node could be malicious and try to perform a DoS attack by directing

other nodes toward the same service instance.

� A node could also be unfair and try to maximize its access to a particular

service instance by leading other nodes away from it.

In the Collaborative layer, we added few components shown in Figure 5.5 to

ensure the trusted and accurate collaborative sensing.

42 Chapter 5. Collaborative layer

Figure 5.5: Layered sensing framework

5.3. Design overview 43

5.3.2.1 Trust based �ltering

The main idea of the �ltering component is to avoid collaborating with less

similar nodes. Each node calculates a trust score for its neighbors that indi-

cates con�dence towards their collaboration. In the Sense-Share-Select frame-

work, collaboration is limited within the close neighbor nodes; therefore,

trust computation can be done locally at each node. The trust is non-transitive;

the node considered as reliable for the one node might not be considered the

same by another. Moreover, considering that the trust values �uctuate in a dy-

namic environment and degrade over time [CSC09; Che+14], the trust score

is updated every time the node receives a measurement from a collaborator.

Algorithm 3 is added to the Algorithm 2 when the node receives measure-

ment from the neighbor. It calculates the trust score for a neighbor =486ℎ1>A

from which the node has received <40BDA4<4=CB . The trust score is calcu-

lated as the mean absolute di�erence between the measurements received

from that node for the di�erent services and the average of the correspond-

ing service measurements received from other trusted nodes. Trust scores are

used for further reducing the number of close collaborating nodes by ranking

the close neighbors and collaborating with the top trusted ones. We de�ne

 = <8=(=/2 + 1, :), where = is the number of services to measure, and : is

the number of close neighbors.

Algorithm 3 Filter trusty collaborator nodes

Input: CADBC_B2>A4 = {#1 :)1, #2 :)2, . . . , #: :): } ⊲ Trust scores of

neighbors

1: procedure Update_Trust(=486ℎ1>A,<40BDA4<4=CB)

2: Score = 0

3: for all (B4AE824,<40BDA4<4=C) ∈<40BDA4<4=CB do
4: < = average of all measurements for B4AE824 by other neighbors

5: Score = Score + |<40BDA4<4=C −< |
6: (2>A4 = (2>A4/B8I4 (<40BDA4<4=CB)
7: CADBC_B2>A4 [=486ℎ1>A] = (2>A4

5.3.2.2 Fault tolerance

The objective of the fault-tolerance component is to reduce the impact of false

(relatively higher or lower than the real measured value) measurements sent

by the trusted nodes. Instead of storing the measurement result for a gateway

directly into the gateway performance table, we use a weighted moving aver-

age of the results " (8) of the last A measurement rounds (with default A = 2),

44 Chapter 5. Collaborative layer

with ∀F8 <= F8+1,F8 < 1 andF8 =
8

A∗(A+1)/2 :

60C4F0~_?4A 5 >A<0=24_C01;4 [60C4F0~] =
A∑
8=1

F8 ·"8 (5.2)

In case of sudden performance changes, the moving average catches up

within a few measurement rounds, depending on the frequency of received

measurements from the trusted neighbors for the speci�c service. On the

other hand, intentional false measurements are smoothed out by the mov-

ing average until the Trust based �ltering component detects the deviating

behavior of the sending node.

5.3.3 Gateway selection

Based on the Collaborative layer outcome, we proposed two di�erent gateway

selection algorithms which rely on the measurements stored in the gateway

performance table.

The �rst algorithm is collaborative-best. It selects the best gateway, i.e.,

the gateway with the lowest latency measure, from the gateway performance

table within the last measurement period. The algorithm is simple and sel�sh

since it does not consider overall load balancing: Since all nodes in a close

neighborhood choose similar gateway performance tables, they will likely

select the same gateway with this algorithm. As a possible result, the gateway

might get overloaded, and performance may degrade for all.

The second selection algorithm is collaborative-fair where a node will ran-

domly choose a gateway among the best performing gateway nodes according

to some latency threshold, as shown in Algorithm 4. The algorithm builds a

list of all gateways for which recent measurements are available and whose

measured latency is below the speci�ed threshold (line 4). The procedure is

restarted with a doubled threshold if the search does not return at least two

gateway candidates (lines 6–8).

We have designed collaborative-fair to be conservative in the choice of the

gateway. Frequent changes of the gateway could result in sudden short-term

performance variations at the gateways, perturbing the performance mea-

surements of the other nodes. Therefore, if the previously selected gateway

still belongs to the list of good gateway candidates, the current gateway is not

changed (lines 8–9).

5.4 Results

We evaluated the feasibility, performance of the algorithm in this section

and compared with the other collaborative and non-collaborative approaches.

5.4. Results 45

Algorithm 4 Collaborative-Fair

Input: 60C4F0~_C01;4

Input: ;0C4=2~CℎA ⊲ Threshold for gateway category

Input: 2DAA4=C_60C4F0~
Input: <40BDA4<4=C_?4A8>3

1: procedure SelectGateway(;0C4=2~CℎA)

2: 6>>3_60C4F0~B = []

3: for all 6F ∈ 60C4F0~_C01;4 do
4: if (NOW − 6F.C8<4BC0<?) < <40BDA4<4=C_?4A8>3 &

6F.;0C4=2~ < ;0C4=2~;8<8C then
5: 6>>3_60C4F0~B ← ADD(6F)
6: if Size(good_gateways)<2 then
7: return SelectGateway(2 ∗ ;0C4=2~CℎA)
8: if 2DAA4=C_60C4F0~ ∈ 6>>3_60C4F0~B then
9: return 2DAA4=C_60C4F0~

10: else
11: return Random(6>>3_60C4F0~B)

First, we explain the analytical comparison of the Collaborative layer algo-

rithm compared with other algorithms in terms of message exchange and

computation complexity. Then we conducted general and parameter-speci�c

experiments to test the performance of the proposal.

5.4.1 Analytic comparison

The idea behind collaborative sensing is that a node can make an informed

gateway selection thanks to gateway performance measurements performed

by it and by other nodes in the network. This reduces the number of mea-

surements the individual nodes have to make. On the other hand, it also

introduces an overhead due to the messages exchanged between the nodes.

This overhead is absent in non-collaborative approaches.

The simplest non-collaborative approach is brute-force selection: In order

to obtain the maximum visibility of the gateway performances, a node has

to measure all gateways periodically. Alternatively, the node can decide to

only measure two gateways, which gives us the PoTC [Dab+04] approach. Its

advantage is the reduction of the number of measurements, and if the two

gateways are chosen randomly, a distribution of the measurement load over

all available gateways. However, the approach only gives partial visibility of

the gateway performance to the node. Finally, a node that could not make

any measurements at all would simply select randomly one gateway.

46 Chapter 5. Collaborative layer

For the collaborative approaches, we consider our approach, sensing based

on the synthetic coordinates [Dim+17b] (referred to as Vivaldi-based algo-

rithm), and the CoPing algorithm [Ko+13] as they are both informed and col-

laborative gateway selection algorithms in the heterogeneous wireless net-

work. Due to the random selection and the small number (two) of measure-

ments, our approach cannot guarantee full visibility of the performance of all

gateways. On the other hand, its measurement and collaboration overhead is

the smallest among the compared collaborative approaches discussed here.

In the Vivaldi-based algorithm, each node measures a di�erent set of

(more than two) gateway nodes, e�ectively leading to full visibility of the

performance of all gateways. The measurement results are distributed within

a set of close neighbors and additional random neighbors. This distribution

is done frequently (= times) within one measurement period to improve the

estimation of the so-called synthetic coordinates between nodes.

In CoPing, ancestor nodes are identi�ed as responsible for measuring the

performance of all gateways, thus leading to full visibility. Those ancestor

nodes then distribute the performance information down to the descendant

nodes. The cost of the collaborative layer of our proposal and the CoPing

algorithm is similar. However, the child nodes in the CoPing algorithm need

to adjust the information received from the ancestor node according to their

RTT between them. The same applies to the Vivaldi-based algorithm, requir-

ing adjustments of the measurement information depending on the sender

nodes’ synthetic coordinates. As compared to other collaborative algorithms,

our collaborative sensing algorithm eliminates this last step, signi�cantly re-

ducing the complexity of our proposal.

Table 5.1 summarizes the characteristics of the di�erent approaches.

Message exchange
Sensing Collaboration Adjustment Visibility

Our proposal 2 = No Partial

Vivaldi based > 2 A · (= + #A0=3>< =>34B) Yes Full

CoPing 6 #34B24=30=C =>34B Yes Full

Brute-Force 6 0 # /� Full

PoTC 2 0 # /� 2

Single random 0 0 # /� 1

Table 5.1: Messages cost & gateway visibility at individual nodes per mea-
surement round, 6 : number of gateways, =: number of close neighbors, A :
number of repetitions of the message exchange in one measurement round.

For our Collaborative layer algorithm, the nodes can function indepen-

dently with little collaboration with the other nodes. The framework runs pe-

5.4. Results 47

riodically in every< minute and could be adjusted depending on the dynam-

ics of the network. Total communication overhead (gateway performance

measurement, inter-node communication) of each node stands for Equation 5.3,

A is the total number of rounds, >E4Aℎ40A3<>=8C>A is equal to 2 gateway per-

formance measurement and >E4Aℎ4036>BB8? is the cost of collaboration.

>E4Aℎ4032><< = A ∗ (>E4Aℎ403<>=8C>A + >E4Aℎ4036>BB8?) (5.3)

The gateway performance measurement overhead adds a bit of challenge in

the network as it is measured by time to �nish downloading 0.1MB �le from

the Internet through the gateway nodes. Every node creates 0.2MB upstream

requests to the gateway in every round.

>E4Aℎ4036>BB8? =<4BB064B4=C +<4BB064A4248E4 (5.4)

The collaboration overhead is also minimal due to the close neighbor collab-

oration. <4BB064A4248E4 is a total number of measurements received from all

close neighbors, and <4BB064B4=C is the total number of measurements sent

to the trusted neighbors. <4BB064B4=C = =60C4F0~B/2 + 1 and smaller than the

detected number of close neighbors. The number of measurements received

at the node varies for each node as other node’s trusted neighbors are di�er-

ent. Even though the number of nodes increases, the amount of collaboration

is kept within the close circles, therefore, our algorithm is scalable, and com-

munication overhead is static.

Besides collaboration, the node does the following operations during the

Collaborative layer : construct a gateway performance table, update the trust

score of the neighbors, and update the capacity categorization of gateways.

This process is done every time node receives measurements from the other

neighbors. The calculations use simple mathematical formulas and could be

done with every heterogeneous device. Space complexity for the gateway

measurement log at each node is $ (: ∗< ∗ 2) where : is the latest number

of measurements retained at the node (by default : = 10),< is the number of

neighbors sending measurements.

5.4.2 Experimental setup

We emulate a network with 100 client nodes and ten gateway nodes in Mininet

v2.3 [LHM10]. We consider a balanced tree topology where each branch has

ten client nodes and a custom tree topology where each branch has 5-15

randomly assigned nodes, as shown in Figures 5.6a and 5.6b. The RTT be-

tween client nodes is uniformly distributed between 5 and 20 ms, and the

RTT between the gateway nodes and the client nodes ranges from 10 to 20

ms. The RTT between client nodes and the gateway nodes is determined from

48 Chapter 5. Collaborative layer

anonymous daily live gateway log �les collected over a period of 1 year in the

gui�.net community network [DMN17; Veg+15]. The gateways are randomly

assigned with 0.3, 0.8, and 1.0 CPU capacity to create performance variations

throughout all the presented experiments. The duration of a measurement

round is set to two minutes, and the RTT-threshold to identify close neigh-

bors in the Sensing layer is set to 10 ms. The resulting average number of

close neighbors for each client node is 8 in the balanced tree topology and 10

in the custom tree topology. Each node chooses to collaborate with)>? = 6

trusted neighbor nodes to achieve full performance measurements of all gate-

way nodes.

(a) Balanced tree topology
(b) Custom tree topology

Figure 5.6: Network topology for experiments

We evaluate our framework by studying the e�ect of faulty nodes, re-

siliency, service performance change, network node failure, and sensitivity

towards the framework parameters. Each experiment runs for 100 measure-

ment rounds (i.e., 200 minutes), and experiments are repeated ten times for

each topology.

5.4.3 Experiments

The experiments in this section focus on the precise estimation of the pro-

posed collaborative algorithm as it estimates the performance of the gateway

nodes according to their selected close neighbors. We conducted di�erent

sensitivity experiments of the algorithm, sensitivity towards RTT threshold,

close neighbor nodes size, and performance change.

5.4.3.1 Accuracy

We, �rst, compare the accuracy of the)>? neighbors’ collaborative perfor-

mance monitoring with collaborating with all the neighbors. Figure 5.7 shows

the bene�t of collaborating with more similar nodes using our trust-based ap-

proach instead of collaborating with a �xed number of close neighbors. Col-

5.4. Results 49

Figure 5.7: Similarity results for di�erent collaboration schemes

laborating with all close neighbors (red, dashed line) gives an average 83%

cosine similarity index of the constructed gateway measurement table. The

top trusted collaborators for the balanced tree topology (green, straight line)

result in an average similarity index of 94%. Under the custom tree topology

(blue, dotted line), we observe that the cosine similarity index has an aver-

age value of 90%, showing a di�erence of 4% compared to the balanced tree

topology. Based on their results, we argue that the Sense-Share framework

provides the same quality of collaborative measurements in the di�erent net-

work topology with consistent high accurate measurements.

5.4.3.2 Sensitivity of nodes o�line/online

Our collaborative sensing algorithm’s precision of estimation is shown to

reach faster precise performance sensing during the initial stage of the al-

gorithm and maintained stable performance throughout the experiment. The

Vivaldi-based algorithm is stable after 15-20 rounds, where it requires thor-

ough (reactive) information exchange between network nodes and gateway

nodes and information processing at every node.

Figure 5.8 shows the e�ect of the number of nodes in the close neighbors

set leaving (decrease) and joining (increase). The experiment runs with the

average close neighbors set the size of 8 (RTT<5ms) and ten gateways. Each

measurement round, the number of measured gateways are di�erent depend-

ing on what gateways the nodes in the close neighbors set are sampling. In

round 20, we removed two client nodes from the experiment. However, the

size of the measured gateways and precision of estimation is not a�ected. We

further removed two clients at the 32nd round, then the number of measured

gateways decreased, but the precision of estimation remains the same. We ob-

50 Chapter 5. Collaborative layer

Figure 5.8: Sensitivity analysis (nodes leaving/joining)

served that the ideal number of the nodes in the close neighbors set should be

around (0E08;01;4_60C4F0~B)/2 to provide enough gateway measurements.

5.4.3.3 Number of messages exchanged

In Table 5.2, we explore the average number of messages exchanged between

Sensing layer and Collaborative layer at individual node per measurement

round in the testbed of Figure 4.3b, with the close neighbors set containing

an average of 15 close neighbors. For our algorithm, each round, the node

senses the performance of 2 gateway and sends and receives two new gateway

measurements from close neighbors. Meanwhile, the Vivaldi-based algorithm

senses the majority of the gateways and all the neighbor nodes, then sends

whole gateway table entries to the neighbor nodes and receives information

from others. Table 5.2, as compared to Vivaldi based algorithm, shows that

our algorithm reduces sensing overhead by 10x, message exchange between

network nodes by 5x on average.

Collaborative layer

Sensing layer Send Receive

Our algorithm 2 30 30

Vivaldi based algorithm 22 110 156

Table 5.2: Average message exchange at individual node per measurement
round

5.4. Results 51

Figure 5.9: Gateway performance change (Collaborating with all)

5.4.3.4 Self-adaptation of the collaborative sensing

As mentioned earlier, the gateways in the large-scale network are susceptible

to performance changes, including the scenario of a short-termed valley on

gateway performance and the e�ect of congestion. In Figure 5.9, we intro-

duced a 200ms delay to the selected gateway after 100 rounds and removed

the delay after 150 rounds. We plotted the estimated gateway performance

perceived at our proposed solution (solid line) with the actual measurement

of the node (dashed line) and Vivaldi-based algorithm estimation (dotted-dash

line). The Vivaldi-based algorithm took 30 rounds to adjust to the actual gate-

way performance change; comparatively, our proposed algorithm can sense

the gateway performance increase after two rounds upon receiving the mea-

surement from the nearest neighbor node and adjust its gateway table. When

eliminating the delay, the Vivaldi-based algorithm took 20 rounds to adjust to

the normal performance change while our algorithm sensed the performance

change at the same round.

In our proposed algorithm, the adaptation period to any performance

change depends on the probability of receiving the speci�c gateway per-

formance information from the other nodes, resulting in faster convergence

within a few rounds. On the other hand, the Vivaldi-based algorithm is slower

to adapt to changes, moving towards the direction of the change, therefore

not able to timely react to the gateway performance change.

Figure 5.10 plots the result of the gateway performance change adapta-

tion when collaborating with trusted)>? neighbors. The introduced per-

formance change on the gateway node is captured within 2-3 rounds. During

the added delay period, the mean estimated latency follows the shape of the

actual latency and stays very close to the latency change curve. When re-

52 Chapter 5. Collaborative layer

Figure 5.10: Gateway performance change (Collaborating with)>?)

moving the netem delay at round 80, the nodes can adjust to the performance

change within the same round. The performance change adaptation is con-

sistent with collaborating with all neighbors where changes are captured in

0-3 rounds.

We simulate sudden performance changes on the node side, causing col-

laborator nodes to leave (link down) and join the network again (link up). As

depicted in Figure 5.11, at the 15th round, two nodes become o�ine. The Col-
laborative layer algorithm responds to the change at the 18th round, where

the number of collaborators is decreased to 8. As a result of this change, the

Figure 5.11: Collaborating node change

number of available gateways is decreased from 15 to 13, but the cosine sim-

ilarity index of the service table is stable. During round 30, two other nodes

5.4. Results 53

become o�ine, and the total numbers of collaborating nodes and available

gateways decrease to 6 and nine correspondingly. At the 45th round, two

nodes become online again, and we can see corresponding changes in the

number of gateways. Overall, we observe that the cosine similarity index has

not been compromised by nodes leaving or joining the network. As soon as

the node’s link is down, the Collaborative layer sense the absence of the node

within 1-2 rounds, while when the link is up again within the same round, as

soon as the nodes send measurements.

5.4.3.5 Fault tolerance

We performed two di�erent experiments to explore the fault tolerance of

our proposal. We introduce faulty nodes (10%, 20%, and 30% faulty network

nodes) that are programmed to send false measurement values (original value

multiplied by 5 or 10 randomly) to their collaborators in random periods.

Figure 5.12: Faulty nodes e�ect (Collaborating with all)

Figure 5.12 exempli�es the impact of faulty nodes on the collaborative

sensing algorithm when collaborating with all close neighbors. For di�erent

ratios of faulty nodes in the network, the ECDF of the accuracy of the sens-

ing results. As can be seen, the accuracy decreases signi�cantly even if the

number of faulty nodes is small.

Figure 5.13 depicts the ECDF of the collaboratively achieved service per-

formance table’s cosine similarity result. As observed, our trust-based �lter-

ing component rules out the faulty nodes and continues collaborating with

the other similar (trusted) nodes in the neighbor list. As depicted in Fig-

ure 5.13, the average cosine similarity index is reduced from 95% on average

to 93%, 92%, and 90% as the number of faulty collaborators increases. This

slight decrease of the similarity index results from our approach where each

54 Chapter 5. Collaborative layer

node chooses to collaborate with less similar nodes.

Figure 5.13: Faulty nodes e�ect (Collaborating with)>?)

In the second experiment, we study the e�ect of smoothing non-faulty

peaks and valleys applying a moving average. During the experiment, a node

receives from the random trusted neighbor short-burst of high measurement

where the original measurement values multiplied by a factor of 5 to a ran-

domly chosen neighbor, measuring the e�ect on cosine similarity of the con-

structed service performance table. In the results of the experiment presented

in Figure 5.14, we observe approximately 10 points in time during the exper-

iment where the node receives high values. During that time, the similarity

of the measurements stays relatively stable, maintaining 92% of the cosine

similarity index on average. The results of the two experiments presented

Figure 5.14: Behavior of the faulty nodes

above show that our proposal accomplishes the requirement R5 of providing

5.4. Results 55

resilience towards faulty behavior.

5.4.3.6 Sensitivity analysis

In this section, we present our study concerning the sensitivity of the pro-

posed framework in terms of the number of available services, the close neigh-

bor sensing threshold, and the number of randomized sampling, which are the

parameters that a�ect the accuracy of the proposal.

Figure 5.15: Sensitivity towards the number of service nodes

Figure 5.15 shows the number of measurements sent from each client

node and the average number of the measurement requests received at ten

gateways. The average number of close neighbors for each client node is

8, while we test 5, 10, and 15 available gateways accessible by each client

node. For �ve gateways available at each node, the average number of col-

laborating neighbors is 3, and the number of measurement requests at each

gateway node is 33 on average. When increasing the number of available

gateways to 10, the number of collaborating neighbors becomes average 6,

and the number of measurement requests is reduced to 18. When the number

of gateways increased to 15, the number of collaborating neighbors increases

to 8, and the number of measurement requests are 11 on average at each gate-

way node. The number of service measurement requests at each gateway, on

average, decreases as the number of gateways increases since performance

measurement requests are distributed over the client nodes. The requirement

R2 is achieved through the result presented in Figure 5.15 that our framework

scales the number of collaborations with the demand of the increased number

of gateway nodes.

On the other hand, when there are not enough neighbors to provide full

visibility of the performance, the algorithm could either 1) increase the close

56 Chapter 5. Collaborative layer

No of samples Cosine similarity Standard deviation

RTT<5ms 3 0.95 0.01

RTT<15ms 2 0.91 0.02

RTT<20ms 2 0.875 0.035

Table 5.3: Sensitivity towards the RTT threshold vs increasing the number
of samples

neighbor sensing RTT threshold value to create a wider range of collaboration

or 2) increase the number of samples from each client node to sense. Increas-

ing the close neighbor sensing threshold results in receiving less accurate col-

laborative measurements at each node with the expense of reducing the cost

of measurements shown in Table 5.3. As the RTT threshold increases, the sim-

ilarity of the performance measurements received from the other nodes de-

creased to 91% and 87.5% shown in Table 5.3. The performance measurements

received from the other nodes contain more variations increasing, therefore,

the standard deviation value.

5.4.3.7 Download latency

We compared the collaborative and non-collaborative algorithms with our

proposed Collaborative-Best and Collaborative-Fair algorithms. Figure 5.16

shows the Empirical Cumulative Distribution Function (ECDF) of download-

ing 0.1 MB �le from the selected gateway for each of the studied algorithms. In

the result, the PoTC algorithm sets the lower bound, where the gateway per-

formance table consists of each node’s own two measurements. On the other

hand, the Brute-Force gateway selection algorithm sets the upper bound,

where the node selects the best gateway at the time of selection out of all

gateway nodes’ performance. As shown by non-collaborative algorithms in

Figure 5.16, both our proposed gateway selection algorithms outperform the

worst-case scenario 60% of the time. Moreover, the Collaborative-Best gate-

way selection performs slightly slower (0.1ms slower) than the Brute-Force

gateway selection. Among the collaborative algorithms in Figure 5.16, the

Vivaldi-based algorithm performs better than our selection algorithms. Brute-

Force and Vivaldi-based algorithms perform better than our proposed selec-

tion algorithm because they o�er full visibility of the gateway nodes at the

cost of more management overhead (more messages and computation). In

comparison, our algorithm achieves partial visibility with less management

overhead.

5.5. Conclusion 57

Figure 5.16: Gateway selection result

5.5 Conclusion

Collaborative layer is a gateway monitoring algorithm based on the close

neighbor’s collaboration, a simple collaborative monitoring algorithm tai-

lored for each client node. The similarity-based close neighbors collaborative

sensing reduces the service monitoring overhead and the inter-node commu-

nication dramatically. Experiments show that the accuracy of collaborative

monitoring is very high (94% on average) despite the network topology. The

proposed algorithm is resilient towards the faulty collaborators by limiting

the collaboration with more trusted nodes and adapts to any performance

changes within the �rst 1-3 rounds of the sensing without compromising the

quality of the collaborative measurement.

At the end of the chapter, we also proposed two selection algorithms,

Collaborative-Best and Collaborative-Fair. Both algorithms provide good gate-

way selection, but the average download latency experiment result is not bet-

ter than the Brute-Force algorithm. In the Selection layer, we tackle the chal-

lenge of achieving as good download latency as the Brute-Force algorithm

while also achieving good distribution and stable gateway selection.

Selection layer 6
Due to theCollaborative layer in the previous chapter, the nodes have partially-

full gateway performance measurements readily available. Therefore, the �-

nal gateway selection verdict is easy. In Sensing layer and Collaborative layer,
we proposed an optimal gateway selection algorithm and showed the down-

load latency of the proposal. Each download latency result shows close to

the Brute-Force (optimal gateway selection) selection result, but not better.

We present an optimized selection algorithm, GateSelect, the gateway selec-

tion algorithm based on balanced distribution and capacity estimation of the

gateways. For di�erent network scenarios, the performance of the proposed

Selection layer is compared to the existing distributed gateway selection al-

gorithms presented in this chapter.

6.1 Introduction

The process of choosing a gateway for a client node among the available gate-

ways in a network is called gateway selection. The Internet gateway selection

problem is becoming very important as the number of Internet-connected

devices increases and stresses the limited number of Internet gateway nodes.

The gateway nodes often experience frequent performance �uctuations, and

the best gateway selection candidate frequently changes with growing net-

work dynamics. Consequently, choosing the “right” gateway can improve the

Quality of Service perceived at the client node.

State-of-the-art algorithms for gateway selection are often based on mon-

itoring the performance or state of the available gateways to help client nodes

make an informed decision. Many monitoring algorithms use an active mon-

itoring approach where nodes periodically probe the available gateways to

keep up with the network dynamics. The algorithms aim to provide the

clients with an accurate, up-to-date view on the gateway performance to en-

able them to select the best performing [Bat+19a; Dim+17b; Ko+13; Liv+10],

the least-loaded [HLT04; AAJ09b; Yan+13; Del+12] or the nearest gateway [XJJ15;

Xu+19]. The idea behind the above algorithms is that client nodes should aim

to select the gateway node that is the best for them, be it in terms of perfor-

mance, load, or distance. However, from a network point of view, this is not

e�cient. Selecting the best gateway means that similar or "nearly as good”

59

60 Chapter 6. Selection layer

gateways are ignored, potentially resulting in load imbalances and frequent

changes in the network.

We introduce GateSelect (Selection layer), a client-side distributed gate-

way selection method to tailor the gateway selection for each client node

by utilizing the measurements collected locally at their side. The algorithm

categorizes available gateway nodes down to the potential good candidates

based on their ability to provide good, stable performance for the future and

then selects the gateway from the candidate list with minimal selection bias.

We compare the proposed method with a greedy gateway selection, random

(load-balanced) gateway selection, and static gateway selection in di�erent

network scenarios. The experimental results show that our method results

in long-term stable Internet connections and balances the overall gateway

allocation.

6.2 Design requirements

In the type of networks we consider in this paper, client nodes connect to the

Internet through gateway nodes. For cost or security reasons, the number of

gateway nodes is typically much smaller than the number of client nodes. Use

cases for such networks are large IoT installations or open community-driven

networks like gui�.net [gui�]. In such scenarios, it is not desired to have a

�xed assignment of client nodes to speci�c gateways. Instead, a client node

should be dynamically assigned to a gateway depending on network condi-

tions and gateway loads. The goal of the gateway selection is to map the client

nodes to those gateway nodes that provide long-term Internet connectivity

with good performance. In this context, good performance means that the

gateway provides better long-term performance than the average at a given

time. Otherwise, its performance is called bad. Depending on the users’ goals

or the network operator, the performance can be de�ned in di�erent ways,

such as latency, achievable throughput, and more. The instantaneous per-

formance of a gateway as perceived by a client node can vary over time; it

not only depends on the capacity and load of the gateway itself but also on

external and internal factors such as the quality of the connections of the

gateway to the Internet or the network condition inside the client network.

Every node’s gateway selection is to choose a good gateway, but the following

problems occur when each client selects its locally optimal gateway.

6.2.1 Herd behavior

Selection algorithms where a client selects its locally optimal gateway are

considered sel�sh since they ignore the impact of the selection on the other

nodes. Performance-oriented selection algorithms select the gateway with

6.2. Design requirements 61

the currently best performance [Ko+13; Dim+17b; Bat+19a]. Load-oriented

algorithms choose the gateway with the lowest load [HLT04; Nan+06; KBM12].

Between those two extremes, the hybrid selection algorithms [Abu+15; AAJ09a]

combine both metrics. The main problem in choosing the locally optimal

gateway at the time of selection is that other nodes choose the same gateway

node. This situation is called herd behavior. The result is that the selected

gateway becomes overloaded, and its performance degrades.

6.2.2 Frequent gateway selection changes

Typically, the decision of a gateway selection algorithm is not static. Many

algorithms proposed in the literature are based on continuous active moni-

toring of the gateways, where the selection is periodically reevaluated based

on the measurement results [Dim+17b; Ko+13; Abu+15; GRS08]. Such peri-

odic reevaluations are called rounds in the following. In large-scale networks,

the gateway performance as perceived by the clients will vary over time due

to changes in network conditions, the appearance or disappearance of client

nodes, or simply the activity of the client nodes. For a selection algorithm

aiming at �nding the locally optimal gateway, this would mean changing the

selected gateway in every round. Not only would this create an imbalance

in the gateway allocation, but it would also force each client node to �nd a

new route to its selected gateway repeatedly. As a result, locally, each node

experiences short-term performance degradation while waiting for the new

route, and globally, within the client network, additional management tra�c

is generated due to frequent rerouting and mass migration.

6.2.3 Instability of gateway performance

Here, stability means that the gateway selected by a client node should ex-

hibit good performance over time. Heterogeneous networks contain gate-

ways with di�erent capacities, some capable of handling many client nodes,

others only a few. Gateways with limited capacity might show good perfor-

mance at a time, but a slight increase in demand, e.g., new clients joining or

existing clients increasing their network activity, would cause a performance

drop. The current performance and load of a gateway, therefore, do not nec-

essarily indicate its future performance.

6.2.4 The objective of the algorithm

The goal of gateway selection is to select the gateway that provides a good

Internet connection. We focus on the following requirements:

1. Individual selection decision - Nodes perform their selection with-

out coordinating the selection decision with the other nodes or gate-

62 Chapter 6. Selection layer

ways. Adding coordination means extra communication, scheduling

among the nodes for the load balancing, which could be costly in terms

of the number of messages and additional processing.

2. Stable gateway selection - Unless the performance of the selected

gateway deteriorates too much, a change of the selection should be

avoided. Client nodes should give gateways with similarly good per-

formance a chance to get selected.

3. Load balancing - A node’s decision should not negatively in�uence

the overall stability of the gateway distribution as well as the perfor-

mance perceived by the other client nodes.

4. Minimum knowledge - Client nodes do not know the network topol-

ogy or the speci�cations of the gateways. In particular, the latter means

that the clients do not know how many clients a speci�c gateway can

handle, nor can they directly query its current load.

6.3 Design overview

From the Sensing layer and Collaborative layer, the node is equipped with a

partially full gateway performance table, shown in Table 6.1. It is important to

note that, as visible in Table 6.1, measurements are not complete, i.e., a client

node does not measure every gateway in every round. Doing so would result

in unacceptable overhead in the network. Instead, di�erent strategies can re-

duce the number of measurements, such as random sampling or the usage

of dedicated measurement nodes that perform measurements and distribute

the results to the other nodes. In previous chapters, we proposed a collabo-

rative scheme where each client node would measure the performance of a

randomly selected subset of gateways and share the results with its neighbor

nodes, assuming that close neighbors have a similar perception of the gate-

way performance. As a result, the list of gateways to choose from varies in

each round.

�1 �2 �3 �4 . . . �"−1 �"

C1 0.8 0.6 . . . 0.9

C2 0.7 1.3 ... 0.8 0.4

. .

C 0.4 0.8 0.2 . . . 0.5

Table 6.1: Partial gateway performance table, every round

The aim of Selection layer is to �nd a gateway for each client node that

provides good performance for a long time. We call such a gateway a sta-

6.3. Design overview 63

ble gateway. The proposed algorithm’s structure is shown in Figure 6.1. Its

main advantage is that the selection is performed locally by each node, with-

out speci�c knowledge of the network topology or the decisions of the other

nodes. The algorithm runs periodically and consists of 3 steps:

1. Build an initial list of candidate gateways by classifying them based on

their performance;

2. Increase the number of candidates by �lling the gaps in the partial per-

formance table;

3. Select a gateway to obtain (a) a good Internet connection for the client

and (b) a balanced gateway distribution, i.e., a nearly equal number of

nodes per good performing gateway.

Figure 6.1: Selection algorithm design

6.3.1 Gateway capacity estimation - Classi�cation

This step’s goal is to identify gateways that consistently provide good perfor-

mance. For this, we extend our previous Sensing layer’s performance-based

64 Chapter 6. Selection layer

categorization. The node already assigned a performance category to the gate-

ways following the rules in Table 6.2 in the Sensing layer. The gateways are

categorized into Good, Inconsistent and Bad performing gateways.

Performance Deviation Perf. category
"C 9 ≤ ` BC34E (" 9 , :) ≤ BC34E (") Good

"C 9 ≤ ` BC34E (" 9 , :) > BC34E (") Inconsistent

"C 9 > ` BC34E (" 9 , :) ≤ BC34E (") Inconsistent

"C 9 > ` BC34E (" 9 , :) > BC34E (") Bad

Table 6.2: Gateway performance categories

We propose to further classify the gateways according to the evolution of

their performance category over time. Again, we use a time window of the

last : rounds. The possible classes are shown in Figure 6.2. If a gateway’s

performance is categorized as Good in the majority of the last : rounds, it is

classi�ed as a Good gateway and assumed to provide stable and good perfor-

mance in the future. If it is categorized mostly as Inconsistent with a few cases

of Good, then the algorithm classi�es it as a gateway of Limited capacity. The

classi�cation is motivated by the idea that gateways with high capacity are

less sensitive to performance �uctuations. Similar reasoning is used to clas-

sify gateways as Inconsistent and Bad. Inconsistent and Bad gateways are not

considered as suitable candidates for the gateway selection.

Figure 6.2: Estimated gateway capacity classi�cation

Table 6.3: Example gateway performance table after Step 1

Table 6.3 shows a possible outcome of the classi�cation step. In the ta-

6.3. Design overview 65

ble, the entries with Inconsistent and Bad classi�cation are shown with a grey

background. In the latest round C , the gateways �3, �4, and �9 are not clas-

si�ed due to missing measurements.

6.3.2 Extend the candidate list

The �rst step reduces the number of viable selection candidates (gateways)

to a small list of Good and Limited category gateways. However, in this step,

we can use previously collected performance measurements to �ll the gap.

To extend the list of candidates, we propose a performance prediction step

to �ll the missing entries of the current round in the performance table. The

prediction uses the last : measurements. Since we are only interested in Good
and Limited gateways, we only perform the prediction for gateways with a

missing measurement in the current round that was classi�ed as Good or Lim-
ited in the previous round. We then repeat step 1 for those gateways. In our

example (Table 6.3), this is done for �3 and �4 and increases the number of

candidates from 4 to 6.

Figure 6.3 shows empirical measurements for three gateways from the

real large-scale community network gui�.net. Measurements are performed

every 2 minutes. The top plot shows the timeseries of the latency of down-

loading a �le of 0.1MB from the Internet with the selected gateway. The bot-

tom plot shows the ECDF of the standard deviation of the latency for : = 10.

Since we only perform this step on gateways classi�ed as relatively stable in

the previous round, we can expect that the prediction provides reasonably

good estimations of the gateways’ current performance. Gateways 6F1 and

6F2 are stable, and we consider 6F3 an unstable gateway as its performance

varies signi�cantly over time.

We use Linear Regression (LR) with ~ = V0 + V1- + n to predict the per-

formance ~ of a gateway from its past : measurements - . V0 is the intercept

term, V1 is the slope of the line, and n is the error.

6.3.3 Gateway node selection

Every node wants to achieve the best Internet performance through the gate-

way nodes, so selecting the best performing gateway is natural. As explained

earlier, this is not always desirable. To limit this sel�sh behavior, we propose

restricting the node’s ability to select the best gateway. After Steps 1 and 2,

the gateway selection candidates narrowed down to Good and Limited nodes.

Therefore, any of these gateways provide good performance for the node.

Algorithm 5 shows how the gateway is selected from the list of candidates.

The algorithm does not change the gateway if the currently selected gateway

of the client node is among the candidates (lines 2-3). In this way, frequent

66 Chapter 6. Selection layer

Figure 6.3: Gateway latency variance.

changes are avoided unless the current gateway’s performance deteriorates

such that it is eliminated from the list of candidates.

Algorithm 5 Gateway selection

Input: 60C4F0~_20=3830C4B

Input: 2DAA4=C_60C4F0~
Input: � = 2

1: procedure SelectGateway
2: if 2DAA4=C_60C4F0~ ∈ 60C4F0~_20=3830C4B then
3: return 2DAA4=C_60C4F0~
4: 6>>3_60C4F0~B = {� ∈ 60C4F0~B_20=3830C4B | � is �>>3}
5: if Size(6>>3_60C4F0~B) < � then
6: 6>>3_60C4F0~B = 60C4F0~_20=3830C4B

7: 20=3830C4B = Random(6>>3_60C4F0~B, �)

8: 2DAA4=C_60C4F0~ = BEST(20=3830C4B)

9: return 2DAA4=C_60C4F0~

As nodes are oblivious to the decisions of their peers, it is not easy to

ensure a fair distribution of the clients over the good gateways. We incorpo-

rate a randomized load balancing to reduce the selection bias. The algorithm

randomly samples � candidates from the list (line 7) and selects the best-

performing one (line 8). By default, the random sample size is � = 2 by using

the Power of Two Choices (PoTC) algorithm [Mit01]. Many network load bal-

6.4. Results 67

ancing [Zha+17b; Gho+17; Ber+17] and job scheduling [Ous+13] algorithms

use PoTC for balanced resource distribution. The Good gateways are given

priority for the selection (line 4). However, if the number of good gateways

is too small (line 5), the algorithm also considers the Limited gateways (line

6).

6.4 Results

6.4.1 Experimental setup

We test the Selection layer algorithm in a simulated network with 40 client

nodes and ten gateway nodes. We test three di�erent client network con-

�gurations: wired, wireless, and wireless mobile networks. Gateway perfor-

mance is measured every round by recording the time clients need to down-

load a 0.1MB �le through the gateways from an HTTP Server connected to

the gateways through wired links. The client nodes also download a 1MB �le

through their selected gateways every minute to mimic client activities.

Figure 6.4: Experiment network topology.

In the wired con�guration, we use MiniNet [LHM10] to simulate a wired

client network where every ten nodes connect to one switch. Random link

delays between 1ms and 3ms (chosen at the beginning of each simulation run)

are set for all links between nodes and switches, and a �xed 5ms delay is set

for the links between two switches. In addition, gateways add a random delay

between 1ms and 3ms to each response.

For the wireless con�guration, we use Mininet-Wi� [Fon+15] to simulate

a wireless IEEE 802.11 network in a 150m×150m area with the network topol-

ogy shown in Figure 6.4. We place the client nodes at random positions and

68 Chapter 6. Selection layer

four access points (AP) at �xed locations. The gateways are connected to the

APs by a wired link with a delay between 1 - 3ms (chosen at the beginning

of the simulation run). Again, a random delay of 1ms to 3ms is added dy-

namically when a client downloads a �le. The wireless interference model is

provided by mac80211_hwsim in Mininet-Wi�. The transmission range is

250m.

Finally, we also simulate a wireless mobile con�guration that is identical

to the above wireless con�guration, but client nodes move according to a

Random Walk mobility model with 1m/s and connect to the nearest access

point.

We compare four di�erent selection algorithms:

1. GateSelect: Our algorithm;

2. Greedy (Brute-Force) selection: Clients always select the best gateway

every round;

3. Random selection (Power of 2 choices): Clients choose two random

gateways and select the best every round;

4. Static selection: Clients select the best gateway at the beginning of the

experiment and never change the selection unless the gateway becomes

unresponsive.

Experiments are repeated �ve times with di�erent random positions and de-

lays, and each experiment runs for 100 selection rounds, where a selection

round has a duration of two minutes.

6.4.2 Results

6.4.2.1 Prediction of missing values

In our �rst experiment, we test the impact of Step 2 of the Selection layer al-

gorithm on the size of the candidate list. To this end, we run "Step 1" of the

Selection layer with gateway selection tables �lled to 50%, 60%, 70%, 80%, and

90% with gateway measurements at any selection round. Figure 6.5a shows

the average resulting number of candidates at a node without (i.e., after Step

1) and with (i.e., after Step 2) predictions for the wireless network. With-

out prediction, the number of candidates shrinks down to 3-4 candidates on

average for gateway performance tables �lled to 50%. The number of candi-

dates increases with the degree of �lling. When the prediction step is added,

the number of candidates increases by 10 to 20%, depending on the degree of

�lling. We quantify the impact of the prediction on the overall system perfor-

mance by measuring how much time the clients need to download the 1MB

�le through their selected gateways. Figure 6.5b shows the results when we

6.4. Results 69

(a) Prediction selection candidates (b) Prediction download latency

Figure 6.5: Wireless - Performance prediction result.

run the algorithm with and without the prediction step (Step 2) for the same

network settings. We observe that the download time improves with predic-

tion because the prediction step increases the number of selection candidates

for each node. As a result, the tra�c load is distributed more evenly over the

gateways.

6.4.2.2 Gateway selection distribution

We compare the distribution of the client node over the gateways for the dif-

ferent selection algorithms. To this end, we calculate the average distribution

of the clients after a single simulation (100 rounds). For all three network con-

�gurations, identical start positions were chosen for the nodes. Figure 6.6a

shows the obtained distribution for the wired network. The gateway distri-

bution is similar for GateSelect and the Greedy and Random selection algo-

rithms. The 40 client nodes are more or less evenly distributed over the ten

gateways, i.e., four clients per gateway. This is because, in the wired network,

the impact of the variances of the link delays is very small. Therefore all gate-

ways have an equal chance of being selected. In the static selection, we see

an unequal distribution due to random e�ects when the clients chose their

gateway at the beginning of the simulation.

For the wireless network without mobility (Figure 6.6b), Greedy selection

shows a more uneven distribution with higher variances for several gateways

than the other algorithms due to the herd behavior. These variances are in-

creased in the wireless network with mobility (Figure 6.6c) where the move-

ments of the client nodes cause the Greedy algorithm to change the selection

frequently. In general, GateSelect behaves like the Random selection, which

is expected since both algorithms use PoTC to achieve load balancing.

Figure 6.7 shows the overall distribution of client nodes per gateway per

round in the wireless and wireless mobile network. The simulation runs are

repeated �ve times with random positions of nodes. The results show that

70 Chapter 6. Selection layer

(a) Wired network (b) Wireless network (c) Wireless mobile

Figure 6.6: Client node distribution over the gateway nodes.

both networks behave similarly. In most rounds, the number of clients per

gateway is between 2 and 5, which corresponds to a relatively balanced dis-

tribution of the clients over the gateways. At the beginning of each simula-

tion run, network nodes only have a limited number of gateway performance

measurements. Therefore, there is a small fraction of rounds with a higher

number of clients for some gateways.

(a) GateSelect - Wireless (b) GateSelect - Mobile

Figure 6.7: Wireless gateway distribution

6.4.2.3 Gateway selection changes

Figure 6.8 shows the average number of gateway selection changes over 100

rounds for the di�erent selection algorithms. The simulations were run �ve

times for each network and selection combination with di�erent random po-

sitions and link delays. Greedy and Random selection algorithms change the

default gateway signi�cantly more frequently than our approach in all three

network con�gurations since they always try to �nd the best gateway among

all gateways (Greedy) or two randomly chosen gateways (Random). GateS-

elect reduces the number of changes by a factor of four. The static selection

performs, by design, the smallest number of selections. It only changes the

selected gateway if it becomes unresponsive. In the wired network, gate-

way changes are slightly less frequent because the links are stable, and the

6.4. Results 71

Figure 6.8: Number of gateway selection changes in 100 rounds.

wireless network is noisy; thus, more selection changes occur. The wireless

mobile network shows fewer changes because the gateways are within the

access range of every node, and depending on the mobility direction, the per-

formance of the selected gateway stays stable for some nodes.

6.4.2.4 Gateway selection performance

We measure the e�ectiveness of the gateway selection by how long it takes a

client node on average to load content (1MB �le) through the selected gate-

way. The results after �ve simulation runs are shown in Figure 6.9.

(a) In a wired network (b) In a wireless network(c) In a wireless mobile net-
work

Figure 6.9: Download time through the gateway nodes.

In the wired network (Figure 6.9a), the download time of GateSelect is

less than 0.09 seconds on average and is better than that of the other algo-

rithms for 90% of the downloads. Other compared algorithms’ results show

performance close to our proposal due to the stability of the links in the wired

network. In wireless networks without mobility (Figure 6.9b), GateSelect of-

fers a signi�cantly better download time for the majority of the downloads

72 Chapter 6. Selection layer

compared to the other algorithms. The Greedy algorithm’s download time is

the worst due to herd behavior, resulting in overloaded gateways. The ad-

vantage of our approach is even clearer in wireless networks with mobility

(Figure 6.9c). The download time stays below 2 seconds in 80% of the down-

loads because fewer selection changes and mobile nodes do not have to �nd

a new route to the new gateway. The other algorithms show download times

between 4 to 5 seconds.

Overall, GateSelect shows better download times than the others by com-

bining a conservative approach to selection changes and balancing the load.

6.4.3 Sensitivity analysis

In the following experiments, we study the sensitivity of the GateSelect algo-

rithm to its parameters and the simulated scenario. We use the wireless net-

work con�guration with client nodes equally distributed over the 150x150m

area at �xed positions to better show the impact of the di�erent parameters.

We show the results of single experiment runs.

6.4.3.1 Link performance changes

(a) Normal (b) 20ms delay added

(c) 40ms delay added (d) 40ms delay + 2x download

Figure 6.10: Wireless - Client node distribution with gateway delay.

This experiment aims to see if GateSelect can correctly identify the capac-

ity of the gateways and distribute the nodes accordingly. The normal scenario

6.4. Results 73

is shown in Figure 6.10a. On average, 4-5 nodes are assigned per gateway per

round.

Next, we assign a �xed 20ms delay to gateways 6F1, 6F4, and 6F7 and a

random 5ms to 10ms delay to 6F2 and 6F5. As a result, the client nodes tend

to avoid selecting those gateways (Figure 6.10b). If we further increase the

latency for 6F1, 6F4, and 6F7 to 40ms, this e�ect is intensi�ed (Figure 6.10c).

Consequently, the other gateways have to serve more client nodes. However,

if we increase the download frequency by a factor of two while keeping the

40ms latency, the distribution becomes again more even, as shown in Fig-

ure 6.10d. As download frequency increases, the performance of the normal

gateways degrades as well. As a result, the high-latency gateways become

more attractive again and are selected by some nodes.

Figure 6.11: Download times with di�erent gateway delays

Figure 6.11 shows the download times with the di�erent link delays. As

the link delay increases, the download time increases because every client’s

gateway selection pool is narrowed down to a few good gateway nodes. When

increasing the download frequency, the download time increases due to queue-

ing delays and network congestion. We conclude that GateSelect can cor-

rectly detect the capacity of the gateways based on the measurements col-

lected over the selection rounds and allocates the nodes evenly to the good

gateways.

6.4.3.2 Varying download �le size

In this experiment, the nodes download �les of di�erent random sizes (0.25MB,

0.5MB, 1MB, 3MB, 5MB) instead of the 1MB �le used in the other experi-

ments. Figure 6.12a shows that the achieved throughput per download is

slightly lower than with the 1MB �le. The gateway distribution (Figure 6.12b)

74 Chapter 6. Selection layer

(a) Throughput (b) Gateway distribution

Figure 6.12: Wireless - Download size sensitivity.

is nearly identical for both scenarios. We conclude that the gateway selection

is not a�ected by the tra�c load.

6.4.3.3 Power of D choices for the selection decision

By default, GateSelect selects � = 2 gateways randomly from the selection

candidate list, but this number is con�gurable. We run experiments with

� = [1, 2, 3, 4]. As shown in Figure 6.13, when � is lower, the gateways are

distributed equally over the nodes. However, the greater � , the higher the

probability that many clients will select the same gateway. For � = 3, this

is the case for 6F3 and 6F5, and for � = 4, 6F1, 6F5, and 6F6 are in high

demand. We conclude that � = 2 is a good choice.

Figure 6.13: Wireless - Gateway distribution.

6.5. Conclusion 75

6.5 Conclusion

We present our Selection layer algorithm is called GateSelect, a distributed

gateway selection algorithm tailored to ful�ll each client node’s Internet gate-

way selection using the following techniques: performance-based classi�ca-

tion and random sample selection. GateSelect is simple yet e�ective, infrastructure-

and technology-agnostic, and supports incremental implementation. We demon-

strate GateSelect’s adaptability in di�erent network scenarios and compared

the performance with a greedy, random, and static selection to show im-

proved Internet gateway performance while maintaining gateway selection

balance.

Production network
integration 7
Previous chapters described the individual layers of the Sense-Share-Select

framework and presented the experiments in the emulated network environ-

ment. The Internet gateways did not have background tra�c in the emu-

lated network experiments; thus, the behavior of the gateways is stable, pre-

dictable. However, the production network gateways experience di�erent

tra�c patterns, loads, and requests regularly. Therefore, this chapter aims

to test the Sense-Share-Select framework in the real large-scale network en-

vironment. We implemented the framework in the gui�.net community net-

work environment with gui�.net gateways with real tra�c. The implemen-

tation aims to whether our proposed framework holds the same result in the

real large-scale network environment.

7.1 Community network

Community networks happen when people come together to build

and maintain the necessary infrastructure for Internet connec-

tion. Internet by the people, for the people. (source, Internet

society)

A Wireless Community Network (WCN) is an a�ordable, alternative net-

work infrastructure built by the local community members where they share

the price of the Internet connectivity instead of opting for the ISP (top-down

approach). Network devices have become a�ordable in recent years, and the

number of local community networks is gaining popularity in developing

countries to provide last-mile connectivity. Examples of successful CNs are

gui�.net from Spain, Detroit Community network, NYC Mesh from the USA,

Coopesur from Argentina, Freifunk from Germany, Zenzelini networks from

South Africa, and many more.

Technically, a CN is a decentralized wireless mesh network built with

interconnected rooftop routers [Mac+; Dim+17a]. The general network man-

agement and organization are nonexistent, and everybody is free to join/leave

the CN. The size of the network grows organically. WCN is built with over-

the-counter, inexpensive devices with di�erent hardware, software, and ca-

77

78 Chapter 7. Production network integration

pacity, therefore, highly heterogeneous. There are two main functionalities

WCN provides. First, it provides local communication services (VoIP, �le

server, local chat, so on) with more neutral, secure communication. The

members of the CN could communicate directly through the secure medium

instead of the Internet servers. It is one of the main advantages of CN in

the era of data privacy. Second, it provides Internet access to the community

members and closes the gap of the Digital Divide. Internet connectivity in

CN is typically built, instead of a single dedicated default gateway, from the

combination of several limited, sometimes non-dedicated gateways. Clients

use one of these gateways and switch to another when the �rst fails. Internet

connectivity in this form is widespread but uncertain and ine�cient due to

several factors, including unbalanced tra�c load across the gateway nodes.

7.1.1 gui�.net community network

One of the largest CN is called gui�.net, located in Spain, consists of over

36000 nodes where community members built up the network using simple

network devices. The gui�.net was established in 2004, and the main concept

of the network is to provide a free, open, and neutral network focused on pro-

viding local network services within the community. The technical overview

of gui�.net is studied in [Veg+15]. Gui�.net nodes are wireless with few �ber-

optic links. People are free to join the network and access information about

the available nodes and services through the node registry service. The num-

ber of nodes in gui�.net grows organically, about 30 nodes are added weekly,

and many are in the planning and deploying stage, see Figure 7.1.

Figure 7.1: Number of new nodes (Data from www.gui�.net)

7.2. Implementation of Sense-Share-Select in gui�.net environment 79

The Internet gateway selection in gui�.net has been studied in detail in [Veg+15;

Dim+17b; DMN17]. Clients connect to the supernodes through Wi�, and then

the supernodes are connected through dedicated links [Veg+15]. The commu-

nity members share their Internet access with the other members with the

help of the Internet gateway nodes (Internet proxies), the most commonly

used local service in gui�.net. "Sharing Internet access" is when the primary

user turns their network router into an Internet proxy node, registers the

gateway in the network node registry, and allows other members to access

the Internet. There are currently over 450 active Internet gateways available

which serve approximately 12500 registered users (in 2016) [DMN17]. Most

of the registered Internet gateways in gui�.net are municipal o�ces or public

libraries donating their Internet access to the community members. All fed-

erated Internet gateways use the same authentication service, and users have

freedom of movement within available proxies. The web proxy information

is available in gui�.net’s node registry system. The gateways serve multiple

nodes simultaneously, and the number of nodes increases 2x, 3x higher dur-

ing rush hours and holidays. Therefore, end-users receive uneven Quality of

Service from the selected gateway.

The proxies are con�gured in the user browser, and the node has a list

where it changes the primary gateway selection if the �rst one fails. Nodes of-

ten choose the default Internet gateway within the community. Default gate-

ways thus become overloaded/over-popularized while there are other equally

good gateways left unused. Manual selection leads to the gateway distribu-

tion imbalance in the network, which is connected to slow Internet connec-

tivity at the end-users (bad Quality of Experience).

7.2 Implementation of Sense-Share-Select in gui�.net
environment

Large-scale, heterogeneous networks like gui�.net have many issues related

to the gateway selection, such as manual selection, imbalanced distribution,

uneven QoS, and gateways with di�erent capacities [Veg+15; Veg+12; DMN17].

Providing the best QoS for every node in the network is next to impossible.

In the previous studies [Dim+17b; Dim+17a], the dynamic Internet gateway

selection mechanism improves the quality of the Internet connection at the

end-users. Gui�.net is the perfect network infrastructure to implement the

Sense-Share-Select framework due to the following reasons.

� The gui�.net network is densely populated, and there are plenty of

nodes to collaborate. In urban areas, gui�.net has more nodes; for ex-

ample, the Osona zone has more than 8512 nodes and 36 internet prox-

ies.

80 Chapter 7. Production network integration

� Our framework is lightweight and implementable on the client node

side, suitable for a heterogeneous network like gui�.net built with o�-

the-shelf, cheap devices with di�erent capacities.

� The gui�.net has a node and Internet proxy(gateway) registry service

required for our framework.

7.2.1 Experiment setup

We assess the performance of our proposal by deploying experimental nodes

in gui�.net with the real production gateways. Our experiments are designed

to test the following aspect of the Sense-Share-Select framework.

1. Accuracy of the collaborative performance monitoring

2. Number of messages created within the nodes

3. Distribution of the gateway nodes

4. QoE received at nodes through selected gateway

5. Handling network uncertainties, link failure, sudden performance change;

In total, we deployed 50 virtual nodes inside gui�.net’s supernode at Univer-

sitat Politecnica de Catalunya
1
. Experimental nodes are distributed in three

di�erent servers in Universitat Politecnica Catalunya’s supercomputing cen-

ter. For all the experiments, we choose ten production gateways from the

gui�.net CN. To add latency variance between the nodes shown in Figure 7.2

using Linux’s network emulator tool (netem) consists of 4 groups (cluster) of

nodes with no delay added, 3ms delay, 5ms delay, and 7 ms delay added in all

incoming/outgoing requests. We compare our framework with the Vivaldi-

based Internet gateway selection algorithm [Dim+17b], Coping [Ko+13] algo-

rithm. We created small-scale experiments with 20 nodes and increased the

size of the network up to 50 nodes. We measured the accuracy, cost of col-

laboration and the gateway selection distribution, and download time. In the

Coping experiment setup, the outermost cluster nodes perform the measure-

ments and distribute the measurements to the next-hop (next cluster) nodes,

so on. Experiments run 100 rounds for each compared algorithm, 1 round =

2 minutes.

7.2.2 General experiments

7.2.2.1 Collaborative sensing accuracy

In the Sense-Share-Select framework, we strive to provide each node with

close to its performance sensing result (Brute-Force sensing) through our Col-
1
https://gui�.net/en/UPCC6lab104

7.2. Implementation of Sense-Share-Select in gui�.net environment 81

Figure 7.2: Experimental nodes topology

(a) 20 nodes experiment (b) 50 nodes experiment

Figure 7.3: Collaborative sensing similarity

82 Chapter 7. Production network integration

laborative layer. This section shows the accuracy of the collaborative sensing

of each node compared with the Brute-Force performance sensing. Figure 7.3

shows the accuracy of the collaborative performance sensing.

Figure 7.4: Vivaldi accuracy

Both experiments in Figure 7.3 show that the accuracy of the collabora-

tive monitoring is consistently higher for the Sense-Share-Select result than

the others. In Figure 7.3a, the Coping algorithm’s accuracy is on average

>80% because the nodes have a maximum of 2 hops. In the 50 nodes experi-

ment in Figure 7.3b, the average accuracy drops to >60% because the number

of hops increased to 3 hops. The Coping algorithm’s accuracy drops as the

number of hops increases which is not suitable for multi-hop gui�.net net-

work. In the Vivaldi-based algorithm experiment, the accuracy increases as

the number of nodes increase in Figure 7.3 results. The nodes bene�t from

the higher collaboration because the synthetic coordinates adjust faster and

become more accurate. However, high accuracy comes with the high cost of

inter-node communication. The average accuracy of the Vivaldi-based algo-

rithm is >80%, but the algorithm requires around 70-80 rounds to stabilize

the synthetic coordinates. Our experiment stopped at the 100th round, which

is not enough to provide accurate monitoring. However, after the bootstrap

period, the average estimation accuracy is kept above 90% (see Figure 7.4).

Compared to the Vivaldi-based algorithm, the Sense-Share-Select frame-

work and the Coping algorithm provide higher collaborative monitoring ac-

curacy without the bootstrap phase. The collaborative monitoring accuracy

is the best in the Sense-Share-Select framework, consistently kept higher and

not a�ected by the number of nodes, the number of hops, nor the number of

rounds.

7.2. Implementation of Sense-Share-Select in gui�.net environment 83

7.2.2.2 Number of messages

(a) Messages sent per round (b) Messages received per round

Figure 7.5: Collaborative message exchange

We counted the average number of performance measurement messages

per round exchanged between the nodes in this experiment. Overall, from

both �gures, the number of messages sent is higher than the received mes-

sages. Because the collaboration is not mutual, neighbor nodes are not obliged

to send their measurements back. In the Coping algorithm, the root node per-

forms the measurement and disseminates the measurements to the descen-

dent neighbor nodes. In our experimental setup of the Coping algorithm,

every node transmits to one node. From Figure 7.5, the Sense-Share-Select

framework (blue bin) sends measurement on average to 4 close neighbors

and receive from 2 di�erent neighbors in both 20-node and 50-node experi-

ment. From the result shown in Figure 7.5, the Vivaldi-based algorithm ex-

changes the highest number of messages, and the Coping is the lowest. In

Vivaldi based algorithm result, the number of sent messages is higher than

others, but there are no signi�cant di�erences in the 20-node experiment and

the 50-node experiment. However, in received messages, the 50-node exper-

iment result shows a lower number of messages received than the 20-node

experiment result because some nodes are left out from the collaboration.

The Coping algorithm produces comparatively fewer gossip messages,

and so does our framework. However, the Vivaldi-based algorithm is the

most expensive one, which requires constant, mass gossiping within network

nodes to keep the balance. Additionally, the Sense-Share-Select achieves a

high accuracy of monitoring than the others.

7.2.2.3 Download time

The QoE at the nodes through the selected gateway is assessed by down-

loading a 0.1MB �le from the Internet. The download frequency is in ev-

ery 1 minute for 100 rounds (1 round = 2 minutes). The results are shown

84 Chapter 7. Production network integration

(a) 20 nodes experiment (b) 50 nodes experiment

Figure 7.6: Download time

in Figure 7.6, and the Sense-Share-Select framework provides better down-

load time as compared to the others in both. The Coping algorithm and the

Vivaldi-based algorithm provide similar download time in the 20-node exper-

iment (see Figure 7.6a). However, in the 50-node experiment in Figure 7.6b,

the Coping algorithm provides better download time. The download latency

is linked to the "herd behavior" as they select the best gateway in both com-

pared algorithms. But the Vivaldi-based algorithm’s high latency is linked to

the slow adjustment to the network dynamics.

7.2.2.4 Gateway selection

We compare the node distribution over gateways for three di�erent gateway

selection algorithms, greedy selection, manual selection, and Sense-Share-

Select framework. The gateway distribution experiment is done in the 40-

Figure 7.7: Gateway distribution per round

7.2. Implementation of Sense-Share-Select in gui�.net environment 85

node network scenario with nine production gateways. [61, 62, 64] gateways

are good, [67, 68, 69] are bad, and [63, 65] are unstable performing. The result

of the distribution is shown in Figure 7.7. With the greedy selection algorithm

(blue bar), the nodes select the good-performing gateways and avoid unstable

gateways. Thus, [61, 62, 64] have a higher number of nodes per gateway. Sim-

ilar selection behavior is repeated in the manual selection algorithm (orange

bar), but there is no deviation in the selection since it is static. The Sense-

Share-Select framework (green bar) equally distributes the good-performing

gateways and varied performing gateways and distributes a few nodes to the

bad performing gateways.

Figure 7.8: Number of gateway changes

The gateway selection stability is shown in Figure 7.8. Out of 50 rounds

of experiment, the greedy selection changes the selection every two rounds

on average. Our gateway selection algorithm reduces the gateway selection

changes by 60%, changing the gateway selection every �ve rounds. The man-

ual selection is close to 0 since the algorithm does not change the gateway

unless the current gateway is unavailable.

The Sense-Share-Select framework keeps the balanced distribution over

the good performing and limited capacity gateways and allocates some nodes

to the bad performing gateways. At the same time, the framework maintains

a stable gateway selection by not allowing frequent selection changes.

7.2.2.5 General experiment conclusion

All experiment results in Section 7.2.2 show that our proposed framework

provides the best collaboration accuracy with the fastest download latency.

The framework e�ectively reduces inter-node communication even the net-

86 Chapter 7. Production network integration

work size increases. The Vivaldi-based algorithm results are unfavorable as it

is expensive, provides the worst download latency, and has a long bootstrap-

ping period. Both compared algorithms show insu�cient accuracy, unstable

gateway selection, and do not scale.

7.2.3 Parameter speci�c experiments

This section focuses on testing the features of the Sense-Share-Select frame-

work under di�erent network conditions such as adding delay on the gate-

way, nodes sending false measurements, nodes becoming o�ine, etc. This

section’s purpose is to test the resilience, adaptability of the Sense-Share-

Select framework.

7.2.3.1 Introducing delay at the gateway

In the collaborative sensing algorithm, the collaboration accuracy should not

change when the performance changes suddenly. As gui�.net gateways are

unstable, the framework should catch the performance �uctuations as soon as

possible. In the experiment, we added a 200ms delay at one gateway around

the 100-150th round (based on the stabilization period) and removed it after

the 50th round to see the reaction of our collaborative sensing algorithm’s

accuracy. The results of the experiment in three di�erent algorithms are in

Figure 7.9. The orange dotted line represents the actual gateway performance,

and the straight blue line is the estimated performance through the collabo-

rative algorithm.

From the result of the Sense-Share-Select framework is in Figure 7.9a, the

gateway performance change caught immediately and stayed in line with the

actual latency curve. When removing the delay, the change is caught in the

same round. On few occasions, the estimated performance is slightly di�erent

from the actual due to the smoothing factor of the trust-based collaboration

component.

The actual gateway performance change is caught within 1-5 rounds later

in the Coping algorithm (see Figure 7.9b) because nodes wait for the upstream

node to send the measurements. The estimated delay and the actual gateway

delay have a 0.5 seconds estimation gap because the accuracy of collabora-

tion degrades in the downstream nodes (see Figure 7.3). Overall, the CoPing

algorithm responds to the gateway performance change quickly within less

than �ve rounds.

The Vivaldi-based algorithm does not cope well with the sudden gateway

performance change, shown in Figure 7.9c since it is not reactive. Any change

in the synthetic coordinate system re�ects all nodes in the network, and the

nodes update the coordinates slowly using small steps towards the direction

7.2. Implementation of Sense-Share-Select in gui�.net environment 87

(a) Sense-Share-Select

(b) CoPing algorithm

(c) Vivaldi based algorithm

Figure 7.9: Download time

88 Chapter 7. Production network integration

of the change. Therefore, the changes are caught after 150 rounds approxi-

mately. The same pattern repeated when removing the delay the algorithm

is caught with the change after 50 rounds.

7.2.3.2 Removing nodes

Figure 7.10: Node unavailable test

The technological survey conducted in gui�.net [Veg+15] shows that half

of the nodes in gui�.net have less than 10% reachability. The Barcelona area

nodes have more than 60% of reachability. Therefore, the nodes becoming

unreachable/o�ine is common in gui�.net. We removed 10%, 20%, and 30%

of the nodes from the experiment at the three stages of rounds noted in black

dots in Figure 7.10. We skipped the CoPing implementation because the ex-

periment requires active node discovery in the mobile ad-hoc network (out of

the scope). Removing nodes has no impact on the accuracy of both algorithms

in the result obtained in Figure 7.10. For our framework, the o�ine nodes are

replaced by the others from the neighbor list ranked higher, and the collabo-

ration accuracy is still high. For the Vivaldi-based algorithm, every node is a

collaborator node sending measurements, and once the algorithm’s synthetic

coordinate system stabilizes, losing the collaborator node does not a�ect the

accuracy.

7.2.3.3 Faulty collaborators

We rank the nodes based on their sending behavior and collaborate with the

nodes with a higher similarity of measurements in the Sense-Share-Select

7.2. Implementation of Sense-Share-Select in gui�.net environment 89

Figure 7.11: In the presence of faulty nodes

framework. We tested the fault tolerance of our proposal in Figure 7.11 and

introduced 10%, 20%, 30% of the faulty nodes in the network where they inten-

tionally send 10x higher measurements than the others. In the Sense-Share-

Select framework, as we increase the faulty neighbors, we see that the av-

erage similarity of the collaboration drops from >95% accuracy to >94% and

>91% on average. Still, the average similarity of collaborative sensing is more

than 90%, and the accuracy drop is due to shifting the collaboration with less

similar nodes. In the Vivaldi-based algorithm, once the synthetic coordinates

stabilize, the availability of the nodes has almost no e�ect on the accuracy of

the estimation.

7.2.3.4 Di�erent network topology

The Sense-Share-Select framework is designed for a large-scale, heteroge-

neous network, and adaptability is important in the implementation. We de-

signed experiments with di�erent topologies such as star topology, tree topol-

ogy in the wired and wireless mesh topology using Mininet and Mininet-Wi�

framework. The emulation environment consists of 20 nodes and 10 exper-

imental gateways. In a wireless network experiment, nodes were placed in

a 100x100m area with two access points. In a wireless mobile network ex-

periment, all nodes are within their access range since our algorithm is not

designed for mobile network scenarios.

In the experiment in Figure 7.12 the result of the star topology shows more

than 90% accuracy on average, while the tree topology experiment shows

>74% accurate measurements. In tree topology, any link congestion in middle

90 Chapter 7. Production network integration

Figure 7.12: Collaborative sensing accuracy

links a�ects the descendant nodes’, and they will have higher latency even

though the RTT value is small. Therefore, in Figure 7.12 the accuracy of the

collaboration is lower than the other topologies.

Figure 7.13 shows that wired network experiments show similar down-

load latency about 90% of results as the network links are more stable. In the

wireless network, download latency is 10x higher than the wired network

result due to the interference between nodes.

Overall, the Sense-Share-Select framework works well in di�erent net-

work scenarios without losing the high collaborative monitoring accuracy.

7.2.3.5 Isolated nodes

The Sense-Share-Select algorithm works best when nodes voluntarily collab-

orate. However, in the production network, the adoption of the new frame-

work is slow, reluctant to change. In that case, the nodes might not �nd close

neighbors to collaborate and ends up isolated. This experiment aims to cover

di�erent isolation e�ects on the gateway selection distribution. We experi-

mented with the following settings:

1. 100% of the nodes are collaborating with our framework,

2. 70% of the nodes are collaborating with our framework, 30% are with

manual selection,

3. 50% nodes are collaborating with our framework, 50% are with manual

selection

7.2. Implementation of Sense-Share-Select in gui�.net environment 91

Figure 7.13: Download latency

Figure 7.14: Wireless experiment distribution

92 Chapter 7. Production network integration

4. 100% of the nodes are with manual selection

The experiment consists of 50 nodes and �ve gateways, distributed uniformly

in a 150x150m area. [61, 62] are "Good" performing gateway,63, 64 are "Limited-

Capacity" gateway, and 65 is "Bad" performing gateway. The experiment re-

sults shown in Figure 7.14.

In the 100% isolated nodes result in Figure 7.14, the nodes avoid the bad

performing gateways and select "good enough" gateway. As the number of

the manual nodes increases, the popularity of the "good" gateway increases

(see Figure 7.14. In the "50/50" experiment, on average, 30 nodes are allocated

to the "Good" gateways, while in the "30/70" and "Full collaborated" experi-

ment, it is approximately 20 nodes. In the "Fully collaborative" experiment,

the nodes avoid selecting the "Bad" gateways, and four nodes on average se-

lected 65 gateway per round.

Another problem with the implementation is that some nodes might be

far from the others’ RTT threshold. In such circumstances, the node has to

rely on its periodic performance measurements. We run our algorithm with

the following conditions.

1. Full collaboration of nodes using our framework

2. Full isolation where all nodes out of each others’ RTT range and using

our framework

In the isolation experiment, the node selects from the two gateway per-

formances and previous measurements collected (no collaborating nodes).

Therefore in Figure 7.15, all gateways were selected equal, including 65, be-

cause of the limited measurements. In the collaborative experiment result,

the nodes avoid selecting 65 gateway and are distributed to the "Good" and

"Limited capacity" gateways in a balanced manner.

7.2.3.6 Gateways with di�erent bandwidth

Figure 7.16 shows an experiment with di�erent bandwidths and delays on the

gateways. In the blue bar experiment, [61, 62] gateways have 50mbps band-

width, [63, 64] have 30mbps bandwidth, and 65 has 10mbps bandwidth. In

the orange bar experiment, on top of the bandwidth, 61, 62 are added 1ms

delay, 63, 64 are added 3ms delay, and 65 is added 5ms delay. The distinc-

tion between the gateways is not clear with di�erent bandwidth experiment

results in Figure 7.16 because the nodes do not exhaust gateway capacities.

However, the result in the orange bar shows a clear di�erence where nodes

avoided from the 65 gateway.

7.3. Conclusion 93

Figure 7.15: Full collaboration vs full isolation

7.3 Conclusion

We implemented the Sense-Share-Select framework in the gui�.net commu-

nity network environment with production gateways to demonstrate the ef-

�ciency of the proposed framework. The Sense-Share-Select framework im-

proves the current manual gateway selection of the gui�.net by improving

the QoE of all client nodes and performs better than the state-of-the-art al-

gorithms. We tested the framework with di�erent network scenarios such as

node failure, gateway service degradation, faulty collaborators, and di�erent

network topologies. The results obtained from the implementation are con-

sistent with the emulated network experiments, proving the e�ciency of the

Sense-Share-Select framework.

94 Chapter 7. Production network integration

Figure 7.16: Experiment with di�erent bandwidth

Conclusion 8
8.1 Main conclusions

By nature, the shared Internet gateway network consists of a high number

of heterogeneous nodes, and manual gateway selection doesn’t do any jus-

tice for bettering the Internet QoE. The majority of the nodes are built with

over-the-counter network devices with limited capacity, the gateway selec-

tion mechanism requires to be simple and e�ective. The Sense-Share-Select

framework speci�cally designed for the large-scale network with low com-

plexity, fair resource distribution as the main goals.

Concerning the cost reduction of the gateway monitoring, we presented

close neighbors collaboration and randomized performance sampling. Allow-

ing the node to select the close neighbors to collaborate improves the accu-

racy of the collaborative monitoring and reduces the impact of the faulty col-

laborators. Every round, the nodes monitor di�erent gateway performance

which reduces the overall monitoring tra�c to the gateway and eliminates

the scheduling, reorganization within the collaborators.

Concerning the balanced, fair distribution of gateways, the Selection layer
evaluates the gateway candidates �lters good selection candidates based on

their previous performance history. The selection algorithm doesn’t allow

node to select the best-performing gateway and let them settle with a good-

performing gateway. Doing so signi�cantly reduces the over popularization

of the gateways and provides long-term, sustainable gateway selection.

Overall, we believe that our framework signi�cantly improves the QoE

of the end-users without complex technical knowledge such as gateway load,

routing protocol, etc. We look at the problem from the client node perspec-

tive and improve the gateway selection. The Sense-Share-Select framework

is designed for the Internet gateway selection domain but the real applica-

tion is much more versatile. The main logic is simple enough for IoT network

gateway selection for inter-device communication. The user could con�gure

the framework based on their needs. For example, in mobile network, the

neighbor discovery component should be done frequently and the duration

of the performance sensing should be increased to match the network dynam-

ics. In sensor network, the frequency of the measurement should be adjusted

di�erently for each node based on the battery life.

95

96 Chapter 8. Conclusion

8.2 Future work

Along with the further development and analysis of the designed prototypes,

there are several future directions that we would like to investigate in the

future.

1. Adaptive performance monitoring - We show that nodes collects

signi�cant measurements through periodic collaboration in Collabora-
tive layer. The majority of the measurements are stable and have per-

formance patterns peak/o�-peak period. Further �exible performance

monitoring period adjustment is possible. Timeseries based perfor-

mance prediction coupled with close neighbors collaborative perfor-

mance monitoring can be a low-cost solution suitable in client-side

framework solutions.

2. Towards secure, anonymous collaboration - Sense-Share-Select is

not an anonymous collaborative framework and is focused on bottom-

up initiatives, local networks. The framework is not 100% secure since

the foundation of the collaboration is based on the similarity of the mea-

surements. Security is one of the biggest concerns in the Sense-Share-

Select framework since nodes are aware of the collaborating nodes’

physical addresses. Blockchain-based secure collaboration, or similar

to the ToR network, is open for further investigation.

8.3 Discussion

The Sense-Share-Select framework is designed for the nodes in large-scale,

bottom-up wireless mesh networks to improve each node’s individual Inter-

net gateway experience. The implementation in the real large-scale network

is challenging to achieve due to technical and social aspects. From the techni-

cal point of view, the algorithms implemented in the routing protocol might

be more manageable than the client-side solution. However, client-side im-

plementation is more suitable for the heterogeneous network with di�erent

routing protocols, capacities. From the social point of view, existing users

are often reluctant to change to new features, shown in a feasibility study

conducted in [Sat+14]. According to the study, local network users are ac-

customed to the existing network functionality and often do not have tech-

nical/network experience to implement the framework in their nodes.

The experiments are designed for the local Wireless Mesh network with

non-mobile network. For the mobile network environment, node discovery

component is crucial to identify the collaborating nodes and gateway nodes

within the range. The frequency of the gateway performance monitoring and

8.4. Financial support 97

collaboration should be increased in mobile network to ensure accuracy of the

collaborative monitoring.

8.4 Financial support

This work was funded by European Commission (EACEA) through the Eras-

mus Mundus doctoral fellowship, via Erasmus Mundus Joint Doctorate in Dis-

tributed Computing (EMJDDC) programme. This work was supported by the

EU Horizon 2020 Framework Program project netCommons (H2020-688768),

by the Spanish Government under contract TIN2016-77836-C2-2-R, and by

the Generalitat de Catalunya as Consolidated Research Group 2014-SGR-881.

The �nal year of the doctoral program was funded from the European Union’s

Horizon 2020 research and Next Generation Internet (NGI) Explorers innova-

tion programme under the Grant Agreement No 825183.

Bibliography

[AAJ09a] U. Ashraf, S. Abdellatif, and G. Juanole. “Gateway selection in

backbone wireless mesh networks”. In: Wireless Communica-
tions andNetworking Conference, (WCNC). IEEE, 2009. isbn: 9781424429486.

doi: 10.1109/WCNC.2009.4917735.

[AAJ09b] U. Ashraf, S. Abdellatif, and G. Juanole. “Gateway selection in

backbone wireless mesh networks”. In: Wireless Communica-
tions and Networking Conference (WCNC). IEEE, 2009, pp. 1–6.

[Abu+15] A. Abujoda, D. Dietrich, P. Papadimitriou, and A. Sathiaseelan.

“Software-de�ned wireless mesh networks for internet access

sharing”. In:Computer Networks 93 (2015), pp. 359–372. doi: 10.
1016/j.comnet.2015.09.008.

[A�20] A. for A�ordable Internet. 2020 A�ordability Report. 2020. url:

https://a4ai.org/affordability-report/report/
2020/.

[AJB10] P. A. Acharya, D. L. Johnson, and E. M. Belding. “Gateway-aware

routing for wireless mesh networks”. In: Mobile Adhoc and Sen-
sor Systems (MASS). IEEE. 2010, pp. 564–569.

[AJO07] D. Acemoglu, R. Johari, and A. Ozdaglar. “Partially optimal rout-

ing”. In: IEEE Journal on selected areas in communications 25.6

(2007), pp. 1148–1160.

[Aou+06] B. Aoun, R. Boutaba, Y. Iraqi, and G. Kenward. “Gateway place-

ment optimization in wireless mesh networks with QoS con-

straints”. In: IEEE Journal on Selected Areas in Communications
24.11 (2006), pp. 2127–2136.

[AR08] V. Ayyadurai and R. Ramasamy. “Internet Connectivity for Mo-

bile Ad Hoc Networks Using Hybrid Adaptive Mobile Agent

Protocol.” In: International Arab Journal of Information Technol-
ogy (IAJIT) 5.1 (2008).

[Bat+18] K. Batbayar, E. Dimogerontakis, R. Meseguer, L. Navarro, E. Med-

ina, and R. M. Santos. “The RIMO gateway selection approach

for mesh networks: Towards a global Internet access for all”. In:

Multidisciplinary Digital Publishing Institute Proceedings. Vol. 2.

19. 2018, p. 1258.

99

https://doi.org/10.1109/WCNC.2009.4917735
https://doi.org/10.1016/j.comnet.2015.09.008
https://doi.org/10.1016/j.comnet.2015.09.008
https://a4ai.org/affordability-report/report/2020/
https://a4ai.org/affordability-report/report/2020/

100 BIBLIOGRAPHY

[Bat+19a] K. Batbayar, E. Dimogerontakis, R. Meseguer, L. Navarro, and

R. Sadre. “Collaborative informed gateway selection in large-

scale and heterogeneous networks”. In: 2019 IFIP/IEEE Sympo-
sium on Integrated Network and Service Management (IM). IEEE.

2019, pp. 337–345.

[Bat+19b] K. Batbayar, E. Dimogerontakis, R. Meseguer, L. Navarro, and

R. Sadre. “Sense-Share: A Framework for Resilient Collaborative

Service Performance Monitoring”. In: 15th International Confer-
ence on Network and Service Management(CNSM). IEEE, 2019.

[Bat+20] K. Batbayar, R. Meseguer, R. Sadre, and S. Subramaniam. “Gate-

Select: A novel Internet gateway selection algorithm for client

nodes”. In: 2020 16th International Conference on Network and
Service Management (CNSM). IEEE. 2020, pp. 1–9.

[Ber+17] P. Berenbrink, P. Kling, C. Liaw, and A. Mehrabian. “Tight load

balancing via randomized local search”. In: 2017 IEEE Interna-
tional Parallel andDistributed Processing Symposium (IPDPS). IEEE.

2017, pp. 192–201.

[BH11] M. Boushaba and A. Ha�d. “Best path to best gateway scheme

for multichannel multi-interface wireless mesh networks”. In:

Wireless Communications and Networking Conference (WCNC).
2011, pp. 689–694. isbn: 978-1-61284-255-4.

[Bic+05] J. Bicket, D. Aguayo, S. Biswas, and R. Morris. “Architecture and

evaluation of an unplanned 802.11 b mesh network”. In: Proceed-
ings of the 11th annual international conference on Mobile com-
puting and networking. 2005, pp. 31–42.

[Bin+05] S. Bin, S. Bingxin, L. Bo, H. Zhonggong, and Z. Li. “Adaptive

gateway discovery scheme for connecting mobile ad hoc net-

works to the internet”. In: Proceedings. 2005 International Confer-
ence on Wireless Communications, Networking and Mobile Com-
puting, 2005. Vol. 2. IEEE. 2005, pp. 795–799.

[BMJ99] J. Broch, D. Maltz, and D. Johnson. “Supporting hierarchy and

heterogeneous interfaces in multi-hop wireless ad hoc networks”.

In: Proceedings Fourth International Symposium on Parallel Ar-
chitectures, Algorithms, and Networks (I-SPAN’99). 1999, pp. 370–

375. doi: 10.1109/ISPAN.1999.778966.

[Che+14] I. Chen, F. Bao, M. Chang, and J. Cho. “Dynamic Trust Manage-

ment for Delay Tolerant Networks and Its Application to Se-

cure Routing”. In: IEEE Transactions on Parallel and Distributed
Systems 25.5 (May 2014), pp. 1200–1210. issn: 1045-9219. doi:

10.1109/TPDS.2013.116.

https://doi.org/10.1109/ISPAN.1999.778966
https://doi.org/10.1109/TPDS.2013.116

BIBLIOGRAPHY 101

[CSC09] J. Cho, A. Swami, and I. Chen. “Modeling and Analysis of Trust

Management for Cognitive Mission-Driven Group Communica-

tion Systems in Mobile Ad Hoc Networks”. In: 2009 International
Conference on Computational Science and Engineering. Vol. 2. Aug.

2009, pp. 641–650.

[Dab+04] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. “Vivaldi: A decen-

tralized network coordinate system”. In: ACM SIGCOMM Com-
puter Communication Review 34.4 (2004), pp. 15–26.

[Del+12] A. Y. Delgado, M. Gadeo-Martos, J. Fernandez-Prieto, and J. Canada-

Bago. “A fuzzy balancing load system to improve hybrid ad hoc

networks”. In: 2012 IEEE 17th International Workshop on Com-
puter Aided Modeling and Design of Communication Links and
Networks (CAMAD). IEEE. 2012, pp. 66–69.

[Dim+17a] E. Dimogerontakis, R. Meseguer, L. Navarro, S. Ochoa, and L.

Veiga. “Design trade-o�s of crowdsourced web access in com-

munity networks”. In: 2017 IEEE 21st International Conference on
Computer Supported CooperativeWork in Design (CSCWD). 2017,

pp. 24–29. doi: 10.1109/CSCWD.2017.8066665.

[Dim+17b] E. Dimogerontakis, J. Neto, R. Meseguer, L. Navarro, and L. Veiga.

“Client-side routing-agnostic gateway selection for heteroge-

neous Wireless Mesh Networks”. In: Integrated Network and Ser-
vice Management (IM). 2017, pp. 377–385. doi: 10.23919/INM.
2017.7987301.

[DMN17] E. Dimogerontakis, R. Meseguer, and L. Navarro. “Internet Ac-

cess for All: Assessing a Crowdsourced Web Proxy Service in a

Community Network”. In: Passive andActiveMeasurement (PAM).
2017, pp. 72–84. doi: 10.1007/978-3-319-54328-4_6.

[FBCon] Facebook. Facebook connectivity: Bringing more people online to
a faster internet. url: https://connectivity.fb.com.

[FM02] Y. Fernandess and D. Malkhi. “K-clustering in Wireless Ad Hoc

Networks”. In: Proceedings of the SecondACM InternationalWork-
shop on Principles of Mobile Computing. POMC ’02. Toulouse,

France: ACM, 2002, pp. 31–37. isbn: 1-58113-511-4. doi: 10.
1145/584490.584497.

[Fon+15] R. R. Fontes, S. Afzal, S. H. Brito, M. A. Santos, and C. E. Rothen-

berg. “Mininet-WiFi: Emulating software-de�ned wireless net-

works”. In: 2015 11th International Conference on Network and
Service Management (CNSM). IEEE. 2015, pp. 384–389.

https://doi.org/10.1109/CSCWD.2017.8066665
https://doi.org/10.23919/INM.2017.7987301
https://doi.org/10.23919/INM.2017.7987301
https://doi.org/10.1007/978-3-319-54328-4_6
https://connectivity.fb.com
https://doi.org/10.1145/584490.584497
https://doi.org/10.1145/584490.584497

102 BIBLIOGRAPHY

[Gho+15] S. Ghorbani, B. Godfrey, Y. Ganjali, and A. Firoozshahian. “Micro

Load Balancing in Data Centers with DRILL”. In:ACMWorkshop
on Hot Topics in Networks. Philadelphia, PA, USA: ACM, 2015,

17:1–17:7. isbn: 978-1-4503-4047-2. doi: 10.1145/2834050.
2834107.

[Gho+17] S. Ghorbani, Z. Yang, P. B. Godfrey, Y. Ganjali, and A. Firoozshahian.

“Drill: Micro load balancing for low-latency data center net-

works”. In: Proceedings of the Conference of the ACM Special In-
terest Group on Data Communication. 2017, pp. 225–238.

[GRS08] J. J. Galvez, P. M. Ruiz, and A. F. Skarmeta. “A distributed algo-

rithm for gateway load-balancing in Wireless Mesh Networks”.

In: Wireless Days. 2008, pp. 1–5. doi: 10.1109/WD.2008.
4812861.

[gui�] Open, Free and Neutral Network Internet for everybody.

[HCB00] W. R. Heinzelman, A. Chandrakasan, and H. Balakrishnan. “Energy-

e�cient communication protocol for wireless microsensor net-

works”. In: Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences. Jan. 2000, p. 10. doi: 10.1109/
HICSS.2000.926982.

[HCB02] W. B. Heinzelman, A. P. Chandrakasan, and H. Balakrishnan.

“An Application-speci�c Protocol Architecture for Wireless Mi-

crosensor Networks”. In: Trans. Wireless. Comm. 1.4 (Oct. 2002),

pp. 660–670. issn: 1536-1276. doi: 10 . 1109 / TWC . 2002 .
804190.

[HDS17] T. Hardes, F. Dressler, and C. Sommer. “Simulating a city-scale

community network: From models to �rst improvements for

Freifunk”. In: 2017 International Conference on Networked Sys-
tems (NetSys). IEEE. 2017, pp. 1–7.

[HLT04] C.-F. Huang, H.-W. Lee, and Y.-C. Tseng. “A two-tier heteroge-

neous mobile ad hoc network architecture and its load-balance

routing problem”. In:Mobile networks and applications 9.4 (2004),

pp. 379–391.

[HMW09] F. Ho�mann, D. Medina, and A. Wolisz. “Two-step delay based

Internet gateway selection scheme for aeronautical ad hoc net-

works”. In: 2009 IEEE 20th International Symposium on Personal,
Indoor and Mobile Radio Communications. 2009, pp. 2638–2642.

doi: 10.1109/PIMRC.2009.5449871.

https://doi.org/10.1145/2834050.2834107
https://doi.org/10.1145/2834050.2834107
https://doi.org/10.1109/WD.2008.4812861
https://doi.org/10.1109/WD.2008.4812861
https://doi.org/10.1109/HICSS.2000.926982
https://doi.org/10.1109/HICSS.2000.926982
https://doi.org/10.1109/TWC.2002.804190
https://doi.org/10.1109/TWC.2002.804190
https://doi.org/10.1109/PIMRC.2009.5449871

BIBLIOGRAPHY 103

[HXA08] B. He, B. Xie, and D. P. Agrawal. “Optimizing deployment of in-

ternet gateway in wireless mesh networks”. In: Computer Com-
munications 31.7 (2008), pp. 1259–1275.

[ITUStat] ITU. ITU: Statistics. url: https://www.itu.int/en/ITU-
D/Statistics/Pages/stat/default.aspx.

[Jav+08] U. Javaid, T. Rasheed, D.-E. Meddour, and T. Ahmed. “Adaptive

distributed gateway discovery in hybrid wireless networks”. In:

2008 IEEE Wireless Communications and Networking Conference.
IEEE. 2008, pp. 2735–2740.

[Jon+00] U. Jonsson, F. Alriksson, T. Larsson, P. Johansson, and G. Q.

Maguire. “MIPMANET-mobile IP for mobile ad hoc networks”.

In: 2000 First Annual Workshop on Mobile and Ad Hoc Network-
ing and Computing. MobiHOC (Cat. No. 00EX444). IEEE. 2000,

pp. 75–85.

[JP73] R. Jarvis and E. Patrick. “Clustering Using a Similarity Measure

Based on Shared Near Neighbors”. In: IEEE Transactions on Com-
puters 22.11 (Nov. 1973), pp. 1025–1034. issn: 0018-9340. doi:

10.1109/T-C.1973.223640.

[KBM12] M. Kashanaki, Z. Beheshti, and M. R. Meybodi. “A distributed

learning automata based gateway load balancing algorithm in

wireless mesh networks”. In: 2012 international symposium on
instrumentation & measurement, sensor network and automation
(IMSNA). Vol. 1. IEEE. 2012, pp. 90–94.

[Kim+07] Y. Kim, Y. Jeong, M. Seo, and J. Ma. “Load-balanced Mesh Por-

tal Selection in Wireless Mesh Network”. In: MILCOM 2007 -
IEEE Military Communications Conference. Oct. 2007, pp. 1–6.

doi: 10.1109/MILCOM.2007.4454919.

[Ko+13] B. J. Ko, S. Liu, M. Zafer, H. Y. S. Wong, and K.-W. Lee. “Gate-

way selection in hybrid wireless networks through cooperative

probing”. In: Integrated Network Management (IM). IEEE, 2013,

pp. 352–360.

[Lee+03] J. Lee, D. Kim, J. Garcia-Luna-Aceves, Y. Choi, J. Choi, and S.

Nam. “Hybrid gateway advertisement scheme for connecting

mobile ad hoc networks to the internet”. In: The 57th IEEE Semi-
annual Vehicular Technology Conference, 2003. VTC 2003-Spring.
Vol. 1. IEEE. 2003, pp. 191–195.

https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://www.itu.int/en/ITU-D/Statistics/Pages/stat/default.aspx
https://doi.org/10.1109/T-C.1973.223640
https://doi.org/10.1109/MILCOM.2007.4454919

104 BIBLIOGRAPHY

[LHM10] B. Lantz, B. Heller, and N. McKeown. “A Network in a Laptop:

Rapid Prototyping for Software-de�ned Networks”. In: Proceed-
ings of the 9th ACM SIGCOMM Workshop on Hot Topics in Net-
works. Hotnets-IX. Monterey, California: ACM, 2010, 19:1–19:6.

isbn: 978-1-4503-0409-2. doi: 10.1145/1868447.1868466.

[Lia+16] L. Liang, W. Wang, Y. Jia, and S. Fu. “A cluster-based energy-

e�cient resource management scheme for ultra-dense networks”.

In: IEEE Access 4 (2016), pp. 6823–6832.

[Lin+17] H. Lin, J. Hu, J. Ma, L. Xu, and Z. Yu. “A Secure Collabora-

tive Spectrum Sensing Strategy in Cyber-Physical Systems”. In:

IEEE Access 5 (2017), pp. 27679–27690. issn: 2169-3536. doi: 10.
1109/ACCESS.2017.2767701.

[Liv+10] H. Livingstone, H. Nakayama, T. Matsuda, X. Shen, and N. Kato.

“Gateway selection in multi-hop wireless networks using route

and link optimization”. In: 2010 IEEE Global Telecommunications
Conference GLOBECOM 2010. IEEE. 2010, pp. 1–5.

[Loon] Google. Loon: Connect people everywhere. url:https://loon.
com/.

[LQL13] Y. Liao, H. Qi, and W. Li. “Load-Balanced Clustering Algorithm

With Distributed Self-Organization for Wireless Sensor Networks”.

In: IEEE Sensors Journal 13.5 (May 2013), pp. 1498–1506. issn:

1530-437X. doi: 10.1109/JSEN.2012.2227704.

[Lyu+16] L. Lyu, Y. W. Law, S. M. Erfani, C. Leckie, and M. Palaniswami.

“An improved scheme for privacy-preserving collaborative anomaly

detection”. In: 2016 IEEE International Conference on Pervasive
Computing and CommunicationWorkshops (PerComWorkshops).
Mar. 2016, pp. 1–6. doi: 10.1109/PERCOMW.2016.7457159.

[LZ10] C.-H. Lung and C. Zhou. “Using hierarchical agglomerative clus-

tering in wireless sensor networks: An energy-e�cient and �ex-

ible approach”. In:AdHoc Networks 8.3 (2010), pp. 328–344. issn:

1570-8705. doi: https://doi.org/10.1016/j.adhoc.
2009.09.004.

[Mac+] L. Maccari, P. Magaudda, S. Crabu, and F. Giovanella. “Hack-

ivism, Infrastructures and Legal Frameworks in Community Net-

works: the Italian Case of Ninux. org”. In: ().

[Mit01] M. Mitzenmacher. “The power of two choices in randomized

load balancing”. In: IEEE Transactions on Parallel and Distributed
Systems 12.10 (Oct. 2001), pp. 1094–1104.

https://doi.org/10.1145/1868447.1868466
https://doi.org/10.1109/ACCESS.2017.2767701
https://doi.org/10.1109/ACCESS.2017.2767701
https://loon.com/
https://loon.com/
https://doi.org/10.1109/JSEN.2012.2227704
https://doi.org/10.1109/PERCOMW.2016.7457159
https://doi.org/https://doi.org/10.1016/j.adhoc.2009.09.004
https://doi.org/https://doi.org/10.1016/j.adhoc.2009.09.004

BIBLIOGRAPHY 105

[MK04] Miin-Shen Yang and Kuo-Lung Wu. “A similarity-based robust

clustering method”. In: IEEE Transactions on Pattern Analysis
andMachine Intelligence 26.4 (Apr. 2004), pp. 434–448. issn: 0162-

8828. doi: 10.1109/TPAMI.2004.1265860.

[Nan+06] D. Nandiraju, L. Santhanam, N. Nandiraju, and D. P. Agrawal.

“Achieving load balancing in wireless mesh networks through

multiple gateways”. In: 2006 IEEE international conference onmo-
bile Ad Hoc and sensor systems. IEEE. 2006, pp. 807–812.

[Nas+15] M. A. U. Nasir, G. D. F. Morales, N. Kourtellis, and M. Sera�ni.

“When Two Choices Are not Enough: Balancing at Scale in Dis-

tributed Stream Processing”. In:CoRR abs/1510.05714 (2015). arXiv:

1510.05714.

[NMS15] S. Nasre, P. Malathi, and M. Sharma. “Wireless mesh network

deployed in disaster area using gateway selection”. In: Interna-
tional Journal of Research in Computer and Communication Tech-
nology (IJRCCT) 4.6 (2015), pp. 405–409.

[NWZ16] C. Nie, H. Wu, and W. Zheng. “Latency and Lifetime-Aware Clus-

tering and Routing in Wireless Sensor Networks”. In: 2016 IEEE
41st Conference on Local Computer Networks (LCN). Nov. 2016,

pp. 164–167. doi: 10.1109/LCN.2016.33.

[Ous+13] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. “Sparrow:

distributed, low latency scheduling”. In: Proceedings of the Twenty-
Fourth ACM Symposium on Operating Systems Principles. 2013,

pp. 69–84.

[OV17] I. Okeke and F. Verdicchio. “Shape-based clustering in wireless

sensor networks”. In: 2017 IEEE SENSORS. Oct. 2017, pp. 1–3.

doi: 10.1109/ICSENS.2017.8233989.

[Rey+13] C. Rey-Moreno, W. Tucker, N. Bidwell, and. “Experiences, Chal-

lenges and Lessons from Rolling Out a Rural WiFi Mesh Net-

work”. In: (Jan. 2013).

[RG04] P. M. Ruiz and A. F. Gomez-Skarmeta. “Maximal source coverage

adaptive gateway discovery for hybrid ad hoc networks”. In: In-
ternational conference on ad-hoc networks and wireless. Springer.

2004, pp. 28–41.

[RK03] P. Ratanchandani and R. Kravets. A hybrid approach to internet
connectivity for mobile ad hoc networks. Vol. 3. IEEE, 2003.

[RT02] T. Roughgarden and É. Tardos. “How bad is sel�sh routing?” In:

Journal of the ACM (JACM) 49.2 (2002), pp. 236–259.

https://doi.org/10.1109/TPAMI.2004.1265860
https://arxiv.org/abs/1510.05714
https://doi.org/10.1109/LCN.2016.33
https://doi.org/10.1109/ICSENS.2017.8233989

106 BIBLIOGRAPHY

[Sal+18] S. Salsano, F. Patriarca, F. Lo Presti, P. L. Ventre, and V. Gentile.

“Accurate and e�cient measurements of IP level performance to

drive interface selection in heterogeneous wireless networks”.

In: IEEE Transactions on Mobile Computing (2018), pp. 1–1.

[Sat+14] A. Sathiaseelan, R. Mortier, M. Goulden, C. Grei�enhagen, M.

Radenkovic, J. Crowcroft, and D. McAuley. “A feasibility study

of an in-the-wild experimental public access wi� network”. In:

Proceedings of the Fifth ACM Symposium on Computing for De-
velopment. 2014, pp. 33–42.

[SBP02] Y. Sun, E. M. Belding-Royer, and C. E. Perkins. “Internet connec-

tivity for ad hoc mobile networks”. In: International Journal of
Wireless Information Networks 9.2 (2002), pp. 75–88.

[SK03] M. Seshadri and R. Katz. Dynamics of simultaneous overlay net-
work routing, UC Berkeley. Tech. rep. CSD-03-1291, 2003.

[SRS12] Sonam Palden Barfunga, P. Rai, and H. K. D. Sarma. “Energy

e�cient cluster based routing protocol for Wireless Sensor Net-

works”. In: 2012 International Conference on Computer and Com-
munication Engineering (ICCCE). 2012, pp. 603–607.

[SSK97] S. Seshan, M. Stemm, and R. H. Katz. “SPAND: Shared passive

network performance discovery”. In: USENIX Symposium on In-
ternet Technologies and Systems. 1997, pp. 1–13.

[Sun+13] B. Sun, X. Shan, K. Wu, and Y. Xiao. “Anomaly Detection Based

Secure In-Network Aggregation for Wireless Sensor Networks”.

In: IEEE Systems Journal 7.1 (Mar. 2013), pp. 13–25. issn: 1932-

8184. doi: 10.1109/JSYST.2012.2223531.

[tc-] tc-netem. Tra�c controller NetEm, Linux.

[TSC03] Y.-C. Tseng, C.-C. Shen, and W.-T. Chen. “Integrating Mobile IP

with Ad Hoc Networks”. In: Computer 36.5 (May 2003), pp. 48–

55. issn: 0018-9162. doi: 10.1109/MC.2003.1198236.

[Veg+12] D. Vega, L. Cerdà-Alabern, L. Navarro, and R. Meseguer. “On the

topology characterization of Gui�.net”. In: International Confer-
ence onWireless andMobile Computing, Networking and Commu-
nications (WiMob). 2012, pp. 389–396. doi: 10.1109/WiMOB.
2012.6379103.

[Veg+15] D. Vega, R. Baig, L. Cerdà-Alabern, E. Medina, R. Meseguer, and

L. Navarro. “A technological overview of the gui�. net commu-

nity network”. In: Computer Networks 93 (2015), pp. 260–278.

https://doi.org/10.1109/JSYST.2012.2223531
https://doi.org/10.1109/MC.2003.1198236
https://doi.org/10.1109/WiMOB.2012.6379103
https://doi.org/10.1109/WiMOB.2012.6379103

BIBLIOGRAPHY 107

[Wan+17] X. Wang, D. Qu, K. Li, H. Cheng, S. K. Das, M. Huang, R. Wang,

and S. Chen. “A �exible and generalized framework for access

network selection in heterogeneous wireless networks”. In: Per-
vasive and Mobile Computing 40 (2017), pp. 556–576.

[XJJ15] H. Xu, L. Ju, and Z. Jia. “Enhance internet access ability for ad

hoc network with on-demand gateway broadcast strategy”. In:

International Journal ofWireless InformationNetworks 22.4 (2015),

pp. 415–427.

[Xu+19] H. Xu, Y. Zhao, L. Zhang, and J. Wang. “A bio-inspired gateway

selection scheme for hybrid mobile ad hoc networks”. In: IEEE
Access 7 (2019), pp. 61997–62010.

[XV07] D. Xia and N. Vlajic. “Near-Optimal Node Clustering in Wire-

less sensor Networks for Environment Monitoring”. In: 21st In-
ternational Conference on Advanced Information Networking and
Applications (AINA ’07). May 2007, pp. 632–641. doi: 10.1109/
AINA.2007.97.

[Yan+13] Y. Yan, L. Ci, Z. Wang, and W. He. “QoS-based gateway selec-

tion in MANET with Internet connectivity”. In: 2013 15th In-
ternational Conference on Advanced Communications Technology
(ICACT). IEEE. 2013, pp. 195–199.

[YF04] O. Younis and S. Fahmy. “HEED: a hybrid, energy-e�cient, dis-

tributed clustering approach for ad hoc sensor networks”. In:

IEEE Transactions on Mobile Computing 3.4 (Oct. 2004), pp. 366–

379. issn: 1536-1233. doi: 10.1109/TMC.2004.41.

[YG19] M. Yemini and A. J. Goldsmith. “Virtual Cell Clustering with Op-

timal Resource Allocation to Maximize Cellular System Capac-

ity”. In: 2019 IEEE Global Communications Conference (GLOBE-
COM). IEEE. 2019, pp. 1–7.

[Zam+16] R. U. Zaman, M. Waseem, A. Farokhi, A. V. Reddy, et al. “Tra�c

priority based gateway selection in Integrated Internet-MANET”.

In: 2016 2nd International Conference on Applied and Theoreti-
cal Computing and Communication Technology (iCATccT). IEEE.

2016, pp. 18–21.

[ZC08] F. Zeng and Z. Chen. “Load Balancing Placement of Gateways

in Wireless Mesh Networks with QoS Constraints”. In: 2008 The
9th International Conference for Young Computer Scientists. 2008,

pp. 445–450. doi: 10.1109/ICYCS.2008.15.

https://doi.org/10.1109/AINA.2007.97
https://doi.org/10.1109/AINA.2007.97
https://doi.org/10.1109/TMC.2004.41
https://doi.org/10.1109/ICYCS.2008.15

108 BIBLIOGRAPHY

[Zha+17a] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury. “Re-

silient Datacenter Load Balancing in the Wild”. In: Special Inter-
est Group on Data Communication (SIGCOMM). 2017, pp. 253–

266.

[Zha+17b] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury. “Re-

silient Datacenter Load Balancing in the Wild”. In: Special Inter-
est Group on Data Communication (SIGCOMM). 2017, pp. 253–

266. doi: 10.1145/3098822.3098841.

[Zha+18] J. Zhao, Q. Liu, X. Wang, and S. Mao. “Scheduling of Collab-

orative Sequential Compressed Sensing Over Wide Spectrum

Band”. In: IEEE/ACMTransactions onNetworking 26.1 (Feb. 2018),

pp. 492–505. issn: 1063-6692. doi: 10.1109/TNET.2017.
2787647.

[ZSL13] T. Zhang, R. Safavi-Naini, and Z. Li. “ReDiSen: Reputation-based

secure cooperative sensing in distributed cognitive radio net-

works”. In: 2013 IEEE International Conference on Communica-
tions (ICC). June 2013, pp. 2601–2605. doi: 10.1109/ICC.
2013.6654927.

https://doi.org/10.1145/3098822.3098841
https://doi.org/10.1109/TNET.2017.2787647
https://doi.org/10.1109/TNET.2017.2787647
https://doi.org/10.1109/ICC.2013.6654927
https://doi.org/10.1109/ICC.2013.6654927

	Acknowledgments
	Abstract
	Table of Contents
	Introduction
	Problem statement
	Main objectives
	Contributions
	Publications
	Thesis structure

	Background and Related work
	Background
	Related work

	General framework: Sense-Share-Select framework
	Introduction
	Objectives
	Overview of the framework

	Sensing layer
	Introduction
	Design requirements
	Design overview
	Results
	Conclusion

	Collaborative layer
	Introduction
	Design requirements
	Design overview
	Results
	Conclusion

	Selection layer
	Introduction
	Design requirements
	Design overview
	Results
	Conclusion

	Production network integration
	Community network
	Implementation of Sense-Share-Select in guifi.net environment
	Conclusion

	Conclusion
	Main conclusions
	Future work
	Discussion
	Financial support

