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The first principle is that you must not fool yourself and you are the
easiest person to fool.

— Richard Feynman
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Abstract
Protein-ligand binding prediction is one of the cornerstones of computa-
tional chemistry. A software capable of accurately modeling the inter-
action between proteins and small molecules would have a large impact
on the pharmaceutical industry, as it could replace expensive and slow
in-vitro experiments, reducing costs and time. In this work, we have de-
veloped methods to model the binding mode of a ligand to its target, to
assess the feasibility of that prediction with machine learning methods
and to understand what features of the protein-ligand complex these ma-
chine learning methods are using to guide their predictions.

Resum
La predicció del mode d’unió proteı̈na-lligand és una de les pedres an-
gulars de la quı́mica computacional. Un programari capaç de modelar
amb precisió la interacció entre aquestes dues parts tindria un gran im-
pacte en la indústria farmacèutica, ja que podria substituir els costosos i
lents experiments in vitro, reduint costos i temps. En aquest treball, hem
desenvolupat mètodes per modelar el mode d’unió d’un lligand a la seva
proteı̈na, per avaluar la viabilitat d’aquesta predicció amb mètodes d’a-
prenentatge automàtic i per entendre quines caracterı́stiques del complex
proteı̈na-lligand utilitzen aquests mètodes d’aprenentatge automàtic per
guiar les seves prediccions.
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Preface
The physiological changes that pharmaceutical agents elicit on the body
are mediated by the binding of the agent – a small molecule – to a host’s
macromolecule, typically, a protein. Hence, a profound understanding
of this binding event would allow the development and design of better
drugs. This is the fundamental premise of structure-guided drug design.[1,
2] Ideally, we would like to understand the precise interactions that the
ligand establishes with the protein, the binding pathway that if follows,
the strength with which the ligand binds to the protein and the changes
that the protein conformation undergoes upon ligand binding.[3, 4]

The complexity involved in the process of protein-ligand binding cannot
be overstated; the desolvation of the ligand [5], the displacement of struc-
tural waters [6, 7], the interplay of enthalpy and entropy components in
the energetics of binding [8, 9] or the flexibility of the ligand and the pro-
tein [10, 11] are only some of the factors that play a role in this process.
However, despite this complexity, there are some simple rules that this
process must obey and that can be easily modeled, like steric constraints
or electrostatic complementarity.[12, 13] This fact, combined with the im-
pressive improvements in hardware of the last decades [14], has opened
the possibility to develop algorithms that can model the binding of a small
molecule to a target, like molecular docking [15, 16, 17, 18] or molecular
dynamics simulations [19].

An accurate and fast in-silico protocol that could model such phenom-
ena and estimate the binding affinity of the system would be of enormous
value to the pharmaceutical industry, by virtue of substituting expensive
and relatively slow high-throughput screening hardware with much more
scalable computational hardware, as well as offering the possibility to
evaluate virtual, not yet existent molecules, on demand, without the need
to synthesize or purchase them.[20, 21] Hence, predicting these proper-
ties has become one of the holy grail of computational chemistry.

Far from being a vague promise, current state-of-the-art in-silico proto-
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cols have already proven successful and valuable at tasks such as iden-
tifying active compounds among large libraries of mainly inactive com-
pounds (virtual screening),[22, 23, 24] or at predicting the binding mode
of a ligand to its protein. [25, 26, 27, 28] Yet, limitations in these tools
prevent further success. The objective of this thesis is to tackle some of
these limitations and develop new software applications to improve the
modeling of protein-ligand binding.
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Chapter 1

INTRODUCTION

One of the key properties of a drug is its affinity to the target protein.[4]
Such property leads the efforts in the early stages of drug discovery, where
the sole objective is to identify compounds that can bind to the protein or
macromolecule of choice.[29] Later on, these hits will be evaluated in
terms of other properties, like ADMET profile, synthetic accessibility or
intellectual property rights [30, 31, 32], but affinity is a condition that
the compound must meet since the very beginning of the drug discovery
process until the end. Under these premises, the amount of effort that
has been devoted to predict this property with in-silico methods is not
surprising. The literature on this topic is rich and the number and di-
versity of algorithms, protocols and methodologies that are centered in
solving this problem is the best evidence supporting the importance of
this task.[15, 16, 33, 34, 35, 36]

These algorithms usually follow one of two main paradigms: structure-
based or ligand-based. Structure-based methods rely on the principle that
the affinity of the ligand to its target can be approximated by accurately
scoring the different interactions that the ligand establishes with the tar-
get, like hydrogen-bonds or pi-stacking contacts.[12, 37] This family of
methods requires, of course, a structure where the interactions between
protein and ligand are specified. This structure can be experimentally de-
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termined, with methods such as NMR or X-ray [9] or predicted with soft-
ware like molecular docking [38, 18] or molecular dynamics (MD) simu-
lations [39, 40]. On the other hand, ligand-based methods rely on the prin-
ciple that structurally similar compounds bind in similar ways,[34, 35]
and that affinity can be estimated by leveraging this similarity, without
the explicit use of the protein. Canonical examples of this paradigm are
molecular fingerprints [34] and shape comparison methods [35]. Given
that the methods presented in this work are all structure-based, we will
focus on this paradigm.

1.1 In-silico binding mode prediction

Note: Parts of this section come from my review 3.3

Structure-based methods require a model of the protein-ligand complex to
estimate its affinity. Unfortunately, although empirical methods exist that
can provide high resolution structures, like X-ray, NMR or cryo-electron
microscopy, [9, 41] they are expensive, time-consuming and lack the
throughput necessary to provide structures for large numbers of compounds.[42]
For that reason, in-silico methods have been developed to predict the bind-
ing mode of a ligand to a protein.

A binding mode predictor must succeed in two tasks: sampling a diverse
set of possible binding modes (exploration), and evaluate them correctly
based on their energetic profile (scoring). Depending on how extensive
the sampling of binding modes is, and the number of terms and atoms
involved in the scoring, the speed or throughput of each algorithm will
vary. Hence, they can be classified as fast and slow.[43]

2
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1.1.1 Fast: Molecular docking

Fast methods, referred as molecular docking, have become very popular
because they can predict the binding mode of a compound and its affinity
to the target in a matter of seconds or minutes, allowing them to screen
large chemical libraries in a reasonable time. Some of the most popular
docking programs include DOCK,[15] GOLD, [16] Glide,[17] AutoDock
Vina,[38] and rDock,[18]. Docking programs predict the binding mode
of small molecules in the binding site of a protein in terms of its location,
orientation, and internal conformation. The protein is considered rigid
or semi-rigid, allowing only the movement of selected groups to improve
hydrogen bonding.[18, 16] Docking software uses a search algorithm to
explore different ligand poses which are then evaluated by a scoring func-
tion. This function tries to approximate the free energy of binding by
incorporating the enthalpic (scoring positively interactions like hydrogen
bonds or salt bridges while penalizing clashes) and entropic terms, essen-
tially penalizing highly flexible ligands based on their number of rotatable
bonds [12] and by identifying hydrophobic contacts between protein and
ligand that could lead the expulsion of waters from the cavity with the
subsequent entropy increase. [44]

Because the exploration part of docking algorithms is typically limited
to the ligand’s degrees of freedom (location, orientation and dihedral an-
gles), and the location dimension is sampled only in the vicinity of a given
binding site, a large number of compounds can be evaluated in little time.
Furthermore, regarding the scoring, interactions with waters are not con-
sidered explicitly, and only interactions between ligand atoms and nearby
residues in the defined binding site are taken into account, saving more
time. This allows for immense throughput [28], however, by neglecting
protein flexibility, [10, 45], the role of structural waters [6, 7], coordinat-
ing metals [46], or desolvation effects [5], the accuracy of the predictions
suffers.

Previously, we mentioned that ligand-based methods rely on the princi-
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ple that structurally similar compounds bind in similar ways. A particular
subfamily of docking algorithms, known as template docking or scaffold
docking, exploits this principle to model the binding mode of a compound
using a similar molecule, for which its binding mode to the protein is
known, as a template or guide. One of the methods we describe in this
thesis, SkeleDock (section 3.2) does precisely this. These methods can
improve dramatically the pose prediction accuracy but they require the
existence of a compound similar to the query for which the binding mode
is known. Although such knowledge is not always available, the rise in
popularity of fragment based drug discovery [47], and methods like crys-
tal soaking [48], might increase the number of scenarios to which tem-
plate docking might be applied.

1.1.2 Slow: Molecular Dynamics

Slow methods, based on molecular dynamics, offer a more realistic and
detailed view of the binding event. MD simulates the dynamics of a sys-
tem through time by means of Newton’s equations of motion and a force
field, which describes the interactions between the different atoms. In
reality, these methods range from slow, microsecond long, all-atom MD
simulations [39] through adaptive sampling [49] to faster coarse-grained
simulations [50] and biased MD methods [40]. Most of these methods can
provide valuable insights, like the binding and unbinding pathways that
a ligand follows [51, 52, 53] or the high-energy barriers that it crosses
[39]. Each conformation sampled by the MD represents a binding mode,
and its feasibility can be directly derived from the forcefield, although
more sophisticated approximations exist to evaluate the sampled binding
mode, like metadynamics[54], dynamic undocking [55, 56] and Markov
state models (MSM).[57]

Protocols leveraging MD simulations to predict binding mode and affin-
ity have been successful [39, 52, 58, 59] and they can naturally account
for challenging scenarios like water behaviour, protein flexibility or ion
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coordination.[58] The major trade-offs of MD based protocols are the lack
of high-throughput, the need for relatively expensive hardware (GPUs)
and a steep learning curve.[43] However, some new and promising ap-
proaches have been developed to address some of these limitations [33,
49, 60], and if the improvements that we have seen in hardware in the last
decades continue, these protocols could eventually meet the pace required
by the industry. It is worth mentioning that until the appearance of GPUs,
MD simulations were practically limited to the nanosecond-scale. [19]

1.2 Major limitations and challenges

Note: Parts of this section come from my review 3.3

We have now discussed the two main families of algorithms used to per-
form in-silico binding mode prediction: docking and molecular dynamics
based protocols. In order to understand which tool might be better suited
for a particular task, if any, it is important to be aware of both the limita-
tions of the modeling tools and the underlying complexity of the reality
we are trying to model. The two main challenges in pose prediction are
protein flexibility and scoring or affinity prediction.

1.2.1 Protein flexibility

Several models exist that explain protein-ligand binding: lock-key paradigm,
induced-fit and the more recent conformational selection theory.[3]

The lock-key paradigm is the oldest and arguably the simplest, as it as-
sumes a rigid protein pocket to which a compound will bind by virtue
of having a complementary shape to that of the pocket. Most molecular
docking algorithms are based on this model and treat the protein as a rigid
entity [61]. Hence, if the target of interest, or its pocket, is known to be
very rigid or its flexibility is limited to a small degree of breathing [10],
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a protein-rigid docking software or the use of a soft potential might be
the best fit. Soft potentials [62] reduce or attenuate the penalty for steric
clashes. Practically, this allows for minor clashes between the ligand and
the protein, assuming that the protein will make room to accommodate
the clashing atoms. Despite the fact that it can only account for small
variations in protein structure, soft docking is an appealing way to ac-
count for protein flexibility. It is easy to implement, as it only requires
manipulating the parameters of the scoring function, and does not reduce
docking speed, which makes it practical in high-throughput applications.
An equivalent approach is the modification of the VdW radii of the atoms
in the protein, ligand, or both. [63].

The conformational selection paradigm incorporates protein flexibility
and understands the protein as an ensemble of different conformations
which are visited with different frequencies, including the one to which
the ligand actually binds. This view can, to some extent, be easily incor-
porated into molecular docking by using several protein conformations,
instead of just one. This approach is known as ensemble docking [64].
The ensemble of conformations can be obtained through side-chain ro-
tamer sampling, MD simulations or from structural databases.[65, 66, 64].
The method comes, however, with its own limitations, namely, increased
computational cost, the risk of docking ligands into conformations not
visited by the protein in reality (artifacts), increased number of poses from
which the right one will have to be selected, or issues with the generation
of conformations and selection of the ensemble.[63, 60, 64]

Finally, induced fit postulates that, in some cases, it is the initial bind-
ing of the ligand that changes the protein conformation and allows the
formation of the final protein-ligand complex [3, 42]. This last model
is perhaps the most challenging one to account for and, although MD
simulations might be the best fit for these scenarios [51], some docking
software exist to tackle these use cases, too. [33, 63, 42]. For instance,
the Induced Fit Docking (IDF) protocol described by Sherman et al. can
capture induced fit effects in a computationally efficient manner.[63] In
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this protocol, the ligand is first docked into a rigid pocket with a soft po-
tential using Glide.[17] In addition to the use of a soft potential, up to
three residues in the pocket can be mutated to alanine if their position is
suspected to be ambiguous, allowing the ligand to occupy that space. In
the second step, Prime software [67, 68, 69] explores different confor-
mations of the protein structure in docked complexes by means of side
chain sampling, followed by structure minimization. A second round of
docking follows, where the ligand is redocked to the protein conforma-
tions sampled in the first round, this time using a hard potential. The final
docked solutions are then scored accounting for the docking energy, the
strain of the protein and the solvation terms.

Another protocol able to handle induced-fit effects is Protein Energy Land-
scape Exploration (PELE).[33] PELE is a search protocol which includes
protein and ligand flexibility explicitly. Local perturbations of the ligand
are introduced via displacements, rotations or changes in dihedral angles,
followed by side chain sampling. The best conformation is minimized,
which allows the movement of the backbone, and scored, leading to the
acceptance or rejection of that conformation. Finally, a new round of lo-
cal perturbation begins, starting a new cycle. This series of cycles result
in a collection of highly redundant local minimas (a trajectory), however,
large changes do occur from the start of the trajectory until its last frame.
Although much slower than docking, PELE is still orders of magnitude
faster than a typical MD run. Authors have reported success in reproduc-
ing entry and exit pathways of several protein-ligand complexes, and in
sampling protein-ligand poses in close proximity to crystal structures for
very challenging targets such as GPCRs.[70]

1.2.2 Accurate scoring

Although several binding modes might exist for a given protein-ligand
combination, the one with the lowest energy will be the most populated
one and, as a consequence, the one most likely to be responsible for the

7
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therapeutic effect. The energy of the binding mode is determined by the
balance between two components: enthalpy and entropy.[8, 9] The en-
thalpic component is determined by the interactions that the ligand cre-
ates with the protein upon binding to it, like hydrogen bonds or van der
Waals contacts, but also by the interactions that it loses with the solvent
(water). Hence, the interactions established with the protein must com-
pensate the ones lost with the solvent in order for the enthalpic compo-
nent to be a positive contributor for binding. The entropic component is
related to disorder; when the ligand binds to the surface of the protein,
the waters that were bound to the surface are displaced, usually leading
to a more disordered system. However, the protein-ligand bound system
has become more ordered, as they both lose rotation, translation and con-
formational freedom. [9] For a ligand binding process to occur, either the
two components have to favour the bound state, or one has to be large
enough to compensate the other.

The energy and, hence, the feasibility of a binding mode can then be
estimated by approximating those two components. The enthalpic com-
ponent is typically approximated by identifying the non covalent interac-
tions that the ligand establishes with the protein and giving a weight to
each, for instance, salt-bridges are more favourable than hydrogen-bonds
or pi-stacking interactions.[71] The entropic component is perhaps more
challenging, and its mostly accounted for by counting the number of ro-
tatable bonds that the ligand has, as that influences the different number
of microstates (rotamers) that the ligand can adopt [72] and by identifying
hydrophobic contacts between the protein and the ligand, as such contacts
would displace structural waters in the pocket, leading to a higher disor-
der. [44] These are, of course, simplifications that are far from perfectly
modeling the complex scenario that we depicted in the previous para-
graph, however, they are needed in order to obtain results in reasonable
timescales.

As with pose prediction methods, there is a large spectrum of proposed
algorithms that balance accuracy and throughput to score a pose or pre-
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dict its energy or binding affinity. For instance, a Markov state model can
be built from a series of MD simulations to estimate binding energy and
kinetics by identifying the bound state and the bulk state and computing
the transitions between the two. This has proven successful [73] but it is
very computationally expensive and requires some degree of human su-
pervision.

The scoring functions used by molecular docking algorithms are, in con-
trast, much faster. Essentially, these functions are constructed by defining
a set of rules based on atom type pairs and distances; for instance, one
can group all protein and ligand atoms by their pharmacophoric profiles
(aromatic, hydrogen bond donor and acceptor, hydrophobic, negatively or
positively charged) and create a set of functions to penalize unfavourable
contacts (two negative charges together) and reward favorable ones (two
aromatic groups close by). Weights for each contact can be derived via
statistical methods, like linear regression [74] or more sophisticated, non-
linear machine learning models [75] using binding affinity data, or by
measuring the frequency of such contacts in crystal structures [76]. Alter-
natively, physics-based scoring functions approximate the binding energy
with just a couple of terms, namely, the sum of the electrostatic and van
der Waals interactions; although recently, some physics-based methods
have included terms to approximate entropy and solvation effects to bet-
ter estimate binding affinity.[77]

These scoring functions are orders of magnitude faster than those based
on MD methods and affinity can be estimated rapidly for any structure
allowing for immense throughput, which is the reason why they are used
by docking algorithms. Modern docking software like VINA [38] and
rDock [18] can evaluate libraries of hundreds of thousands of compounds
in a matter of days with a modest number of CPUs using such scoring
functions. This speed has allowed the screening of ultra-large libraries,
involving more than 170 million compounds.[28]

Although in terms of speed, docking scoring functions can be said to

9
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be close to the requirements of the industry, in terms of accuracy, they
are still far away. Current state-of-the-art scoring functions show poor
correlation with real affinity data, they have little power to discriminate
actives from non actives, and usually, cannot distinguish the true bind-
ing mode from other reasonable poses.[12] This should not come as a
surprise considering the major simplifications that scoring functions as-
sume. Nonetheless, successful prospective virtual screening campaigns
have been reported using such functions [25, 26, 27, 28] which suggests
that their performance might be dependent on some variable like the target
class or family [78, 79] or whether the binding of compound is entalphy or
entropy driven.[8] Hence, developing better scoring functions is an area
of intense research and new approaches have been proposed which we
discussed extensively in the review included in this thesis (section 3.3)
and which we now summarize in the following sections.

Exploiting prior knowledge

Going back to the ”similar compounds bind in similar ways” principle,
one way to improve scoring accuracy is by evaluating the overlap of the
proposed binding modes against the structure of a known binder. If the
contacts that the reference binder establishes with the protein are mirrored
or cloned by the query compound, it is reasonable to assume that it has a
higher chance of binding with high affinity. Following the lock-key anal-
ogy, if a compound is able to push the same pins of the lock as the key,
then it might be capable of opening the lock.

There are two main ways of evaluating this similarity: with a pharmacophore,[80,
81] and using protein-ligand fingerprints.[82, 83] Pharmacophores can
be built by defining a series of locations in space where a given phar-
macophoric feature is expected within a tolerance radius. If the query
ligand places the right feature inside the sphere, a reward is given. On
the other hand, protein-ligand interaction fingerprints encode the binding
mode as a sequence of bits, where each bit describes the type of inter-

10
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action, the atoms involved in the interaction and the role of participating
atoms (i.e., acting as hydrogen bond donor or acceptor).[84] Fingerprints
can then be constructed for the reference and query compounds and evalu-
ate their similarity easily. Da and Kireev[82] reported that using a protein-
ligand interaction fingerprint (named SPLIF) was the best method at dis-
criminating active compounds from decoys in 10 targets of the DUD-E
database.[85]

Pharmacophores and fingerprints benefit from existing knowledge, and,
hence, require the existence of a structure of an active bound ligand,
which is not always available. One of the articles presented in this the-
sis, LigVoxel (section 3.1) aims to obtain an accurate pharmacophore, or,
more precisely, a pharmacofield, based on the protein structure alone, cir-
cumventing the need for an active-bound complex structure. LigVoxel
returns 8 cubes or matrices of side size 16 Å. Each cube accounts for one
pharmacophoric property (hydrophobic, aromatic, hydrogen bond donor,
hydrogen bond acceptor, positively charged, negatively charged, metal
and excluded-volume). Each voxel in this cube or matrix has a value
ranging from 0 to 1, signifying whether or not the given pharmacophoric
feature is expected at that location. This is what we refer to as pharma-
cofield.

Another way to tackle limitations in scoring functions is the addition of
restraints. This can be achieved by adding new terms to the scoring func-
tion to reward a particular contact. Such an approach was used by Ca-
poruscio et al. [86] to force an interaction between an aromatic nitrogen
of bifonazole and a heme iron in the pocket of cytochrome P450, which
stand-alone Glide was failing to capture appropriately. After the addi-
tion of the constraint, the binding mode was correctly predicted with an
RMSD value of 1.02 Å. Adding restraints can compensate certain defi-
ciencies in the scoring function itself, and it also can further limit the
exploration of certain poses, reducing the chances of sampling unreason-
able binding modes, which could end up being ranked as the best. In
that sense, scaffold docking algorithms, like SkeleDock [87], constitute

11
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convenient protocols to greatly limit the number of explored poses by
restraining the atoms of the scaffold that query ligand and reference com-
pound share to occupy the same place. As long as the binding site of the
common scaffold is conserved, scaffold docking algorithms can greatly
improve the accuracy of binding mode prediction.

Leveraging Molecular Dynamics

More precise -and expensive- computational methods can be used to bet-
ter assess binding mode and affinity predictions. For instance, some meth-
ods evaluate the stability of a docked pose through metadynamics[54]
or dynamic undocking.[55, 56] These protocols assume that compounds
with great affinity are strongly anchored to the protein and will remain in
the same pose after a series of short simulations, while poorly predicted
poses will leave the pocket. Other methods are based on binding free
energy estimations and have shown success improving hit rates in vir-
tual screening campaigns.[88, 89, 90] Free energy methods went through
major improvements over the last years,[91, 92, 93] with free energy per-
turbation (FEP) standing out. FEP methods compute the binding free en-
ergy of a ligand by performing an MD simulation with the simultaneous
alchemical transformation from one ligand to a reference structure with
known affinity.[94, 95, 96] These methods can reach affinity predictions
accuracies that fall in the range of 1-2 kcal · mol-1, [97, 98], which allows
medicinal chemists to effectively shortlist the set of compounds for syn-
thesis and testing.

Adopting computer vision

Recently, thanks to advancements in hardware and, more importantly, to
the impressive growth of deposited structures of protein-ligand complexes
in the Protein Data Bank [99], modern machine learning algorithms have
entered the scene with great success.[100, 75, 101] Particularly, convo-
lutional neural networks (CNN) have recently been applied to the scor-
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ing problem due to their success in the field of computer vision. Here,
the protein-ligand complex is converted into a discretized 3D space com-
posed of voxels, where the value of each voxel depends on the proximity
and type of the nearest atoms around it. The resulting matrix can then be
passed to the CNN, either to train it, or to obtain a prediction. KDEEP [75]
was one of the first applications of CNNs to the scoring problem, obtain-
ing a Pearson’s correlation coefficient of 0.82 with real binding affinity
data. Furthermore, it was also validated in the D3R Grand Challenge
4th edition, where it ranked first in two blind sub-challenges. One of the
articles presented in this thesis, SkeleDock (section 3.2) describes the par-
ticipation in this contest.

Despite achieving great success, machine-learning based methods have
their own caveats. One such caveat is their black-box nature; while tradi-
tional scoring functions are based on human-engineered functions, CNNs
develop their own functions during training, which are hard or impossible
to interpret, requiring the researcher to trust the result at face value. The
last article of this thesis, Glimpse (section 3.4), describes an application
that tackles this problem and improves the explainability of CNNs.

1.3 In-silico modeling in current drug discov-
ery

Note: Parts of this section come from my review 3.3

Despite these limitations, fast docking protocols have proven successful
in a number of prospective studies [25, 26, 27, 28], and they have done
so for the right reasons; that is, by predicting the right pose and assigning
its compound a great affinity that ranked it amongst the best in the library
[102]. However, one could argue that such success might not be directly
attributable to docking itself, but rather to the additional steps taken by the
practitioner, such as visual inspection, the addition of prior knowledge or

13
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rescoring with alternative methods. This would mean that docking per-se
is not that powerful, showcasing it as a simple ”pose generator” that re-
quires further work to provide meaningful results. However, unsupervised
or largely-unsupervised docking campaigns have been successful too.

In a recent article, Lolli and Caflisch used the docking software SEED
to screen 350 fragments against the target BAZ2B.[103] Of these, 12
fragments were prioritized for testing. Soaking experiment resulted in
4 fragments bound in the binding pocket. Furthermore, the authors re-
port that the binding mode predicted by their docking software was cor-
rect for three of the four fragments, two of them being practically iden-
tical according to the figure. This example is particularly impressive for
two reasons: (1) Fragments are believed to be particularly challenging for
docking algorithms [60] and (2) there was no use of prior knowledge nor
visual inspection.

In another work, Hermann et al. discovered a substrate of an orphan
enzyme Tm0936 by docking a library of metabolites into its catalytic
site.[104] They performed docking using DOCK3.5.54 into an apo struc-
ture, which is more challenging than docking to a ligand-bound conforma-
tion. The molecule which was then confirmed to be the substrate (SAH)
was ranked 6th among 4,207 molecules. Moreover, the crystal structure
of the selected molecule agreed almost completely with the docking pre-
diction, highlighting the success of such approach.

Another valuable example is the initiative of Continuous Evaluation of
Ligand Protein Prediction (CELPP).[105] In this program, a set of fully
automated docking protocols is challenged with predicting the binding
modes of a new group of protein-ligand complexes on a weekly basis.
The ligands are docked to a structure of a close homolog bound to a sim-
ilar molecule, which makes it a difficult cross-docking experiment. Al-
though it is not a typical virtual screening campaign, it offers valuable in-
formation regarding docking power for several reasons. First, the docking
protocols are fully automated, which allows for a more fair comparison

14
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among them and removes the impact of the human expert. Second, the
evaluation is blind and prospective, therefore unintended biases do not
affect the results. Finally, the challenge showcases the strengths and lim-
itations of using docking as an out-of-the-box tool, without any manual
parameter tweaking. Although the number of adopters is still low, some
protocols have already docked over 3000 molecules. One of them, named
kauoh, has a Q1 value of RMSD 1.81, meaning that a large fraction of the
predicted poses were under the cutoff value of 2.0 Å.

Despite this success, it is true that classical docking algorithms, due to
their need to be fast paced, will probably not be able to deal with partic-
ular challenging scenarios, like those where structural waters or coordi-
nation atoms play a key role, or those involving cryptic pockets [106] or
major changes in pocket conformations [107]. This is where MD based
methods have an edge, as they can naturally account for all these sce-
narios, with the additional benefit of providing valuable mechanistic and
thermodynamics insights, like reconstructing binding pathways, shedding
light into the desolvation process, or identifying high-energy barriers or
metastable states. Some of these insights can not even be obtained by
crystallography experiments.

The two paradigms, fast and slow, can easily be combined and used in dif-
ferent stages of the virtual screening campaign: while docking can filter
the vast majority of the library, MD can provide more accurate predictions
for a subset of it, re-scoring the best compounds or providing mechanistic
insights into their binding pathways. [108]

Most drug discovery projects today rely to some extent in in-silico model-
ing [109, 110], typically combining different approaches and techniques
(ligand based and structure based virtual screening, FEP, ADMET predic-
tion, etc.) in parallel or in a hierarchical fashion [111]. Several companies
performing in-silico modeling have appeared in the market, and those us-
ing AI to help drug discovery raised $1 billion in funding in 2018 [112],
signaling a strong trust in computational methodologies.

15
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With the advent of new protocols, improvements in hardware and the
adoption of new technologies, like artificial intelligence, and the increase
of structures and binding affinity data for more protein-ligand complexes,
in-silico methods will keep improving and becoming progressively more
valuable for drug discovery. The recent success of AlphaFold [113] in
protein folding is perhaps the best proof of how powerful in-silico ap-
proaches can become.

16



“output” — 2021/11/18 — 14:59 — page 17 — #29

Chapter 2

OBJECTIVES

The objective of this thesis is to address some of the limitations we have
presented in the introduction. Namely:

1. Improve accuracy in protein-ligand binding mode prediction in sce-
narios where the pose of a similar compound is known (Skele-
Dock).

2. Validate the capacity of a pharmacofield generator (LigVoxel) to
identify the right pose among a set of decoy poses.

3. Improve the interpretability of scoring functions based on CNNs
(Glimpse).

17
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Chapter 3

PUBLICATIONS

3.1 LigVoxel: inpainting binding pockets us-
ing 3D-convolutional neural networks

Skalic, M., Varela-Rial, A., Jiménez, J., Martı́nez-Rosell, G., de Fabritiis,
G. LigVoxel: inpainting binding pockets using 3D-convolutional neural
networks. Bioinformatics. 2019; 35(2):243-250.

Summary

In this article we described LigVoxel, a convolutional neural network au-
toencoder that predicts a pharmacofield for a given protein pocket. My
contribution was limited to designing and executing experiments to eval-
uate the scoring capacity of the predicted pharmacofields, which we did
by measuring their capacity to recover the right binding pose from a set
of decoy poses.
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Voxelization algorithm

The voxelization algorithm is the same as described in Jiménez et. al. 2017
and it is implemented in HTMD sotware (htmd.org).

Algorithm 1 Descriptor pseudo-code computation.

1: function Occupancy(atomCoords, centerCoords, radii, channels)
2: for each atom A in compound do
3: a← atomCoordsA
4: h← channelsA
5: rvdw ← radiiA
6: for each center c in centerCoords do
7: r ← L2Dist(c, a)
8: x← rvdwr
9: n← 1− exp(−x12)

10: for each channel p in h do
11: Oc,p ← max {n,Oc,p}
12: end for
13: end for
14: end for
15: end function

Neural network implementation

Listing 1: Python implementation of neural network.

# theano ==0.9.0
# keras ==1.2.2.

from keras . l a y e r s import Conv3D
from keras . models import Sequent i a l

def r e t r i e v e m o d e l ( ) :
model = Sequent i a l ( )
model . add (Conv3D(32 , (3 , 3 , 3 ) , a c t i v a t i o n=’ r e l u ’ , padding=’ same ’ ,

input shape =(12 , 16 , 16 , 16) , name=’ p ro t e in ’ ) )
model . add (Conv3D(64 , (3 , 3 , 3 ) , a c t i v a t i o n=’ r e l u ’ , padding=’ same ’ ) )
model . add (Conv3D(80 , (3 , 3 , 3 ) , a c t i v a t i o n=’ r e l u ’ , padding=’ same ’ ) )
model . add (Conv3D(20 , (3 , 3 , 3 ) , a c t i v a t i o n=’ r e l u ’ , padding=’ same ’ ) )
model . add (Conv3D(20 , (16 , 16 , 16) , a c t i v a t i o n=’ r e l u ’ , padding=’ same ’ ) )
model . add (Conv3D(16 , (3 , 3 , 3 ) , a c t i v a t i o n=’ r e l u ’ , padding=’ same ’ ) )
model . add (Conv3D(4 , (3 , 3 , 3 ) , a c t i v a t i o n=’ s igmoid ’ , padding=’ same ’ ,

name=’ g e n l i g ’ ) )
return model

2
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Figure S1: Median sample Jaccard index as a function of threshold cut-off.
Ground truth values are at thresholded at 0.75

Complexes in each split

Supporting file splits.txt list PDB IDs of complexes used in the scPDB
database as test in each split. Astex lists PDB ids that were not used dur-
ing training in tests (ii-iv). PDB complex 1GRB was excluded due to .pdbqt
conversion failure.
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Figure S2: Per split 10-fold cross-validation results of predicted and actual
physico-chemical voxel values in the scPDB database, for channels aromatic,
hydrogen-bond acceptor, hydrogen-bond donor and total excluded volume, using
a Jaccard index thresholded at 0.75. Results for the the (A) conditional and
(B) unconditional model respectively. Random baseline includes samples from
all folds.
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Figure S3: Variance in generated properties by changing input property count
for PDB entry 1FPU. Ligand occupancy is displayed in black wireframe while
aromatics, H-bond acceptors and donors are in yellow, red and violet, respec-
tively. Each row shows 3 variational predictions, 4th prediction is generated us-
ing property count of crystal ligand followed by the crystal ligand itself. Other,
not displayed, input properties are kept the same as in crystal structure. Dis-
played are predictions using property counts Aromatic: 0, 6, 12, 20; H-bond
acceptor: 0, 1, 3, 5; H-bond donor: 0, 1, 5, 2.
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3.2 SkeleDock: A Web Application for Scaf-
fold Docking in PlayMolecule

Varela-Rial A., Majewski M., Cuzzolin A., Martı́nez-Rosell G., De Fab-
ritiis G. SkeleDock: A Web Application for Scaffold Docking in Play-
Molecule. Journal of Chemical Information and Modeling. 2020; 60(6):2673-
2677.

Summary

In this article we described SkeleDock, a new scaffold docking algorithm
that allows the modeling of the binding mode of a query ligand using
the structure of a similar protein-ligand complex as a template. Besides
describing the algorithm itself, we also present the results obtained in the
4th edition of the D3R Grand Challenge.
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SkeleDock: A Web Application for Scaffold Docking in PlayMolecule
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and Gianni De Fabritiis*
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ABSTRACT: SkeleDock is a scaffold docking algorithm which uses the
structure of a protein−ligand complex as a template to model the binding
mode of a chemically similar system. This algorithm was evaluated in the D3R
Grand Challenge 4 pose prediction challenge, where it achieved competitive
performance. Furthermore, we show that if crystallized fragments of the target
ligand are available then SkeleDock can outperform rDock docking software at
predicting the binding mode. This Application Note also addresses the capacity
of this algorithm to model macrocycles and deal with scaffold hopping.
SkeleDock can be accessed at https://playmolecule.org/SkeleDock/.

■ INTRODUCTION

Predicting the binding mode of small molecules in a protein
pocket is one of the main challenges in the field of
computational chemistry. Accurate predictions can substan-
tially reduce the costs of drug development and speed up the
process.1 Several software solutions exist that address this
problem, including AutoDock Vina,2 Glide,3 Gold,4 or rDock.5

Typical docking protocols use the protein cavity and the query
ligand to generate poses that are later evaluated with a
generalized scoring function. However, structural knowledge
about the target system is usually available, such as protein
homologues with similar cocrystallized ligands. Hence, given
that the binding mode of similar molecules is usually
conserved,6,7 it is reasonable to exploit this information to
increase the accuracy of the prediction. Considering the
growing amount of structural data available in the Protein Data
Bank (PDB)8 and the popularity of fragment-based drug
discovery,9 we expect this knowledge-rich scenario to become
increasingly prevalent.
Docking algorithms which make use of such knowledge are

usually referred to as similarity docking or scaffold docking.10

Scaffold docking methods usually rely on maximum common
substructure (MCS) approaches, such as fkcombu.11 MCS
methods try to find the largest common substructure
(subgraph) between two molecules. When found, the
conformation of that substructure in the query ligand can be
modeled by simply mimicking the conformation of that same
substructure in the template, while the position of the
remaining atoms is decided by a general scoring function.
However, due to the characteristics of the MCS methods, two
almost identical molecules that only differ in minor
modification can return disappointingly short subgraphs. A

shorter MCS means that more atoms in the query ligand would
have to be modeled without any reference by the docking
software, which is not desirable. Additionally, such minimal
mismatches can be of critical interest in medicinal chemistry, as
they can constitute scaffold hops that can, potentially, improve
the pharmacological properties of a compound or circumvent
intellectual property.12 Therefore, there is a need to maximize
the use of structural information. We present here SkeleDock,
a new scaffold docking algorithm that can overcome local
mismatches.

■ FEATURES

Algorithm. The SkeleDock web application provides a
user-friendly interface to perform scaffold docking, starting
from files with the structure of the receptor (PDB), a template
molecule (PDB), and a set SMILES representing query ligands
(CSV). After submission, these files follow SkeleDock’s
algorithm, whose main steps are summarized in Figure 1.
The algorithm begins by building a graph for the query and the
template molecules. These two graphs are then compared to
identify a common subgraph, that is, a continuous set of atoms
whose element (node) and bonds (edges) are equivalent in
both the query and the template molecules. Hence, if this step
is successful, a mapping linking several atoms in the query

Received: February 10, 2020
Published: May 14, 2020

Application Notepubs.acs.org/jcim
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molecule to their template counterparts will be returned. In the
following step, tethering, this mapping is used to change the
position of the atoms of the query molecule. This is done by
creating a force in each query atom that points toward the
location of its template counterpart, effectively biasing the
conformation of the query ligand toward that of the template.
Finally, in order to find an appropriate location for those atoms
in the query molecule for which no template equivalent was
found, the tethered template docking protocol of rDock5 is used.
This protocol allows the user to constrain the degrees of
freedom of the docking run (orientation, position, and dihedral
angles of the ligand) based on the initial conformation of the
provided molecule and a set of atom indexes. These indexes
correspond to the atoms that the user wants to be fixed, in our
case, those atoms for which we have found a template
counterpart. If a given dihedral is composed by atoms whose
indexes belong to this set, its dihedral angle will not be
sampled at all or only within a user-defined range.
Autocompletion Step. As previously discussed, one

limitation of methods based on MCS is its sensitivity to
small changes: two molecules which are almost identical,
except for some minor modifications, will return a smaller
mapping, as the common subgraph shared by both is now
smaller. Figure 2a depicts such a scenario. To avoid this
problem, we added an optional step called dihedral
autocompletion. As shown in Figure 2b, the mapping found
in the graph comparison step has stopped just before the atom
whose element differs between the query and template
molecules, depicted as X in Figure 2a. However, this
mismatching atom belongs to a dihedral (highlighted in a
ball−stick representation) in which three consecutive atoms
are already mapped to the template. We can then assume that
the mismatching atomthe fourth atom of this dihedral
matches the fourth atom of the equivalent dihedral in the
template. This is what we refer to as dihedral autocompletion.
After each dihedral autocompletion cycle, a new nonmapped
fourth atom appears, and this step is repeated recursively until
no more atoms are available. If the template dihedral offers

several possibilities for the fourth atom, all of them are
explored and evaluated. This functionality is key to overcome
local mismatches, which makes SkeleDock able to handle some
minor scaffold hops. Some MCS methods can overcome
simple mismatches as the one shown in Figure 2, as they could
identify the two disconnected, common subgraphs. However, if
these disconnected subgraphs are not highly similar, typical
MCS methods could fail.

Application Options. Different options are available to
change the behavior of the application. The rDock ref inement
step is enabled by default, but it might not be necessary if every
query atom has a template equivalent. The scaf fold-hopping
tolerant mode enables or disables the dihedral autocompletion
step. Users can also modify the magnitude of the force applied
to each atom during tethering. Higher values result in a better
alignment but might introduce some artifacts, like a change of
chirality. The last option is probe radius that defines the radius
of the spheres used to define the size of the docking cavity for
rDock.5 After execution, the best pose of each ligand can be
displayed together with the protein and the template ligand
(Figure 3). Results can be downloaded in a tar.gz file.

Time Performance. We assessed the efficiency of
SkeleDock by docking congeneric series for two different
targets: Cathepsin S (459 ligands, average of 46.6 heavy
atoms) and BACE-1 (154 ligands, average of 38.4 heavy
atoms). We used rDock as a baseline, and each test was run

Figure 1. Main steps of SkeleDock algorithm. The dihedral
autocompletion step is optional.

Figure 2. Dihedral autocompletion step. (a) Chemical structure of
template and query molecules. The mismatching atom is depicted as
X. (b) Overlap between query molecule (opaque licorice) and
template molecule (transparent texture) before (top image) and after
(bottom image) the autocompletion step. The semicompleted
dihedral (atoms depicted with a ball) propagates to the right side,
improving the overlap with the template. Template molecule is PDB
code, 1UVT; resname, I48. Rings have to be broken to allow this step,
but they are restored before the tethering. These conformations are
not the final docked poses.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note
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using 4 and 30 cores. SkeleDock is two to three times slower
than rDock, but we believe that the increase in accuracy
compensates for it. Table 1 sums the results of the time
performance evaluation.

■ VALIDATION
Fragment-Based Docking. We evaluated SkeleDock’s

ability to recover the native pose of a ligand using a fragment as
a template. Due to the lack of crystal structures of protein with
ligands and corresponding fragments, we decided to artificially
generate fragments for complexes from the refined set of
PDBbind (version 2018)13 and use them as templates for
SkeleDock. The ligands were fragmented by breaking a
selected rotatable bond. We prepared three sets of fragments
of increasing difficulty by excluding from the fragment 1, 3, or
5 rotatable bonds of the complete ligand. Deleting more atoms
from the template increases the difficulty of predicting the right
pose, as there is no reference for them.
We compared SkeleDock’s performance with two MCS-

based methods and with an unconstrained docking protocol.
The MCS-based methods are two different settings of
RDKit’s14 findMCS function: The first, where the element of
the atoms must match (strict MCS), and the second, where the
element and bond-order mismatches are allowed (agnostic
MCS). The function returns a mapping (just as the graph

comparison step of SkeleDock), which is then directly passed
as an input to the tethering and pose refinement steps. Finally,
for the unconstrained docking protocol, we used rDock with
free rotation, translation, and dihedral angle exploration (free
rDock). The performance of docking algorithms is evaluated
by the number of correct predictions. By convention, poses are
considered correct if their RMSD from their crystal pose is
under 2.0 Å.15 We report two levels of success: Top 1, where
only the top pose was selected, and Top 5, where the best
among the top five poses was selected (Figure 4). A full report
of the docking results can be found in Table S1.
In terms of success rate, SkeleDock outperforms other

approaches in all fragmentation scenarios (Figure 4). Strict

Figure 3. SkeleDock’s graphical user interface. Docked molecules (line representation) are shown overlapped with the template used (ball and stick
representation).

Table 1. Time Performance of SkeleDock and rDock for
BACE-1 and CathepsinS Congeneric Seriesa

BACE-1 (154) CatS (459)

Method #CPU Yield [Lig/min] Yield [Lig/min]

SkeleDock 4 15.2 13.9
30 43.8 50.7

rDock 4 50.5 53.4
30 102.0 127.5

aNumber of simulated ligands is listed in parentheses.

Figure 4. Self-docking performance of SkeleDock, strict MCS,
agnostic MCS, and free rDock. Different shades correspond to the
different success levels: Top 1, opaque; Top 5, transparent.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00143
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MCS is comparable to SkeleDock, and they both outperform
agnostic MCS and free rDock. This result is expected because
the less-strict nature of the agnostic MCS setting might find
mappings which are feasible in terms of equivalence in other
features (as ring−ring) but lead to wrong orientations of the
ligand. These results suggest that when the binding mode of
the query ligand and its fragments are conserved then biasing
the prediction using SkeleDock or MCS approaches can
substantially increase the success rate of binding mode
prediction.
D3R Grand Challenge 4. In order to evaluate SkeleDock

prospectively, we engaged in the D3R Grand Challenge 4
(GC4) pose prediction subchallenge. The D3R Grand
Challenge is an international contest where participants
complete different computational tasks of pharmaceutical
interest.16 In its fourth edition, the objective was to predict
binding modes of 20 ligands of BACE-1 protein. As templates
for SkeleDock, we used crystal structures of close homologues
and their cocrystallized ligands from PDB (Table S2). At the
time the challenge took place, the final rDock pose refinement
step was not implemented in the protocol. Instead, we run a
short molecular dynamics (MD) simulation to relax the poses
(see MD Simulation in the SI for further details). To asses the
performance of the final protocol, a retrospective analysis was
run using SkeleDock’s web application at PlayMolecule.
This subchallenge was particularly complicated for two

reasons: (1) All ligands except one had a macrocycle. (2) Most
of the ligands had a shortened MCS with their template due to
certain atoms differing in elements or the presence of rings.
Conformational changes in macrocycles involve the concerted
rotation of several dihedrals, making them difficult to model.17

The gold standard among docking practitioners is to first
sample different conformations of a macrocycle and then dock
each one independently. This was not needed in our case, as
SkeleDock can simply use the macrocycle of the template to
model the one in the query ligand. Regarding the shortened
MCS, the autocompletion step of SkeleDock can handle these
mismatches, leading to a greater mapping and overlap with the
templates both in the macro and nonmacro fractions of the
molecules, as can be seen in Figure 5. We actually compared
the RMSD of the poses generated by SkeleDock and the two
MCS methods described in f ragment-based docking. Both the
global RMSD and the macrocycle RMSD is lower in
SkeleDock poses thanks to the bigger mapping with the
template (Tables S3 and S4).
SkeleDock’s submission (code: qqou3) finished among the

top-performing participants, ranking ninth out of 74 according
to median RMSD (1.02 Å) and 15th according to mean
RMSD (1.33 Å). In the retrospective analysis, the SkeleDock
web application performed slightly worse with a mean RMSD
of 1.47 Å. Given that this test was run in a fully automated
fashion and with no human supervision, the gap between the
two results is understandable.

■ CONCLUSIONS
SkeleDock algorithm offers four main features: (1) docking of
molecules based on their analogues or fragments, (2) an
autocompletion step that can handle local mismatches and,
hence, model minor scaffold hops, (3) the ability to model
macrocycles without having to pregenerate ring conformations,
and (4) a user-friendly GUI that enables efficient scaffold
docking and results exploration. The protocol can be accessed
at https://playmolecule.org/SkeleDock/.

■ ASSOCIATED CONTENT
*sı Supporting Information
The Supporting Information is available free of charge at
https://pubs.acs.org/doi/10.1021/acs.jcim.0c00143.

Table S1: Detailed results of the retrospective validation
analysis. (XLSX)
Table S2: PDB codes used as template for SkeleDock in
the D3R GC4 pose prediction challenge. MD simu-
lation: Description of the MD protocol used to refine
the poses in D3R GC4 pose prediction challenge. Table
S3: Mean RMSD obtained by the different methods
used to model macrocycles. Table S4: Mean RMSD
(computed for macrocycle atoms only) obtained by the
different methods used to model macrocycles. (PDF)

■ AUTHOR INFORMATION
Corresponding Author

Gianni De Fabritiis − Computational Science Laboratory,
Universitat Pompeu Fabra, Barcelona, Spain; Acellera Labs,
Barcelona, Spain; Institucio ́ Catalana de Recerca i Estudis
Avanca̧ts (ICREA), Barcelona, Spain; orcid.org/0000-
0003-3913-4877; Email: gianni.defabritiis@upf.edu

Authors
Alejandro Varela-Rial − Acellera Labs, Barcelona, Spain;
Computational Science Laboratory, Universitat Pompeu Fabra,
Barcelona, Spain; orcid.org/0000-0002-6918-1765

Figure 5. Overlap between predicted poses (gold) and template
(violet) using three different methods: (a) SkeleDock, (b) Element
Agnostic, and (c) Strict MCS. RMSD is the average RMSD value of
the poses, and mRMSD is the mean value of the RMSD of the
macrocycle atoms.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00143
J. Chem. Inf. Model. 2020, 60, 2673−2677

2676

“output” — 2021/11/18 — 14:59 — page 37 — #49



Maciej Majewski − Computational Science Laboratory,
Universitat Pompeu Fabra, Barcelona, Spain; orcid.org/
0000-0003-2605-8166

Alberto Cuzzolin − Acellera Labs, Barcelona, Spain
Gerard Martínez-Rosell − Acellera Labs, Barcelona, Spain;

orcid.org/0000-0001-6277-6769

Complete contact information is available at:
https://pubs.acs.org/10.1021/acs.jcim.0c00143

Notes
The authors declare no competing financial interest.

■ ACKNOWLEDGMENTS

The authors thank Acellera Ltd. for funding and the D3R
organizers for their efforts. G.D.F. acknowledges support from
MINECO (BIO2017-82628-P) and FEDER. This project has
received funding from the European Union’s Horizon 2020
research and innovation programme under Grant Agreement
No. 823712 (CompBioMed2) and from the Industrial
Doctorates Plan of the Secretariat of Universities and Research
of the Department of Economy and Knowledge of the
Generalitat of Catalonia.

■ REFERENCES
(1) Pinzi, L.; Rastelli, G. Molecular Docking: Shifting Paradigms in
Drug Discovery. Int. J. Mol. Sci. 2019, 20, 4331.
(2) Trott, O.; Olson, A. J. AutoDock Vina: improving the speed and
accuracy of docking with a new scoring function, efficient
optimization, and multithreading. J. Comput. Chem. 2010, 31, 455−
61.
(3) Friesner, R. A.; Banks, J. L.; Murphy, R. B.; Halgren, T. A.;
Klicic, J. J.; Mainz, D. T.; Repasky, M. P.; Knoll, E. H.; Shelley, M.;
Perry, J. K.; Shaw, D. E.; Francis, P.; Shenkin, P. S. Glide: A New
Approach for Rapid, Accurate Docking and Scoring. 1. Method and
Assessment of Docking Accuracy. J. Med. Chem. 2004, 47, 1739−
1749.
(4) Jones, G.; Willett, P.; Glen, R. C.; Leach, A. R.; Taylor, R.
Development and validation of a genetic algorithm for flexible
docking 1 1Edited by F. E. Cohen. J. Mol. Biol. 1997, 267, 727−748.
(5) Ruiz-Carmona, S.; Alvarez-Garcia, D.; Foloppe, N.; Garmendia-
Doval, A. B.; Juhos, S.; Schmidtke, P.; Barril, X.; Hubbard, R. E.;
Morley, S. D. rDock: A Fast, Versatile and Open Source Program for
Docking Ligands to Proteins and Nucleic Acids. PLoS Comput. Biol.
2014, 10, No. e1003571.
(6) Drwal, M. N.; Jacquemard, C.; Perez, C.; Desaphy, J.;
Kellenberger, E. Do Fragments and Crystallization Additives Bind
Similarly to Drug-like Ligands? J. Chem. Inf. Model. 2017, 57, 1197−
1209.
(7) Malhotra, S.; Karanicolas, J. When Does Chemical Elaboration
Induce a Ligand To Change Its Binding Mode? J. Med. Chem. 2017,
60, 128−145.
(8) Berman, H. M.; Westbrook, J.; Feng, Z.; Gilliland, G.; Bhat, T.
N.; Weissig, H.; Shindyalov, I. N.; Bourne, P. E. The Protein Data
Bank. Nucleic Acids Res. 2000, 28, 235−242.
(9) Lamoree, B.; Hubbard, R. E. Current perspectives in fragment-
based lead discovery (FBLD). Essays Biochem. 2017, 61, 453−464.
(10) Fradera, X.; Mestres, J. Guided Docking Approaches to
Structure-Based Design and Screening. Curr. Top. Med. Chem.
(Sharjah, United Arab Emirates) 2004, 4, 687−700.
(11) Kawabata, T.; Nakamura, H. 3D Flexible Alignment Using 2D
Maximum Common Substructure: Dependence of Prediction
Accuracy on Target-Reference Chemical Similarity. J. Chem. Inf.
Model. 2014, 54, 1850−1863.
(12) Hu, Y.; Stumpfe, D.; Bajorath, J. Recent Advances in Scaffold
Hopping. J. Med. Chem. 2017, 60, 1238−1246.

(13) Wang, R.; Fang, X.; Lu, Y.; Yang, C.-Y.; Wang, S. The PDBbind
Database: Methodologies and Updates. J. Med. Chem. 2005, 48,
4111−4119.
(14) Landrum, G. RDKit: A Software Suite for Cheminformatics,
Computational Chemistry, and Predictive Modeling. http://www.rdkit.
org (accessed 1 April 2020).
(15) Cross, J. B.; Thompson, D. C.; Rai, B. K.; Baber, J. C.; Fan, K.
Y.; Hu, Y.; Humblet, C. Comparison of Several Molecular Docking
Programs: Pose Prediction and Virtual Screening Accuracy. J. Chem.
Inf. Model. 2009, 49, 1455−1474.
(16) Gaieb, Z.; Parks, C. D.; Chiu, M.; Yang, H.; Shao, C.; Walters,
W. P.; Lambert, M. H.; Nevins, N.; Bembenek, S. D.; Ameriks, M. K.;
Mirzadegan, T.; Burley, S. K.; Amaro, R. E.; Gilson, M. K. D3R Grand
Challenge 3: blind prediction of protein-ligand poses and affinity
rankings. J. Comput.-Aided Mol. Des. 2019, 33, 1−18.
(17) Allen, S. E.; Dokholyan, N. V.; Bowers, A. A. Dynamic Docking
of Conformationally Constrained Macrocycles: Methods and
Applications. ACS Chem. Biol. 2016, 11, 10−24.

Journal of Chemical Information and Modeling pubs.acs.org/jcim Application Note

https://dx.doi.org/10.1021/acs.jcim.0c00143
J. Chem. Inf. Model. 2020, 60, 2673−2677

2677

“output” — 2021/11/18 — 14:59 — page 38 — #50



Supplementary Information
SkeleDock: A Web Application for Scaffold

Docking in PlayMolecule

Alejandro Varela-Rial,†,‡ Maciej Majewski,‡ Alberto Cuzzolin,† Gerard
Mart́ınez-Rosell,† and Gianni De Fabritiis∗,‡,†,¶

†Acellera Labs, Doctor Trueta 183, Barcelona, Spain
‡Computational Science Laboratory, Universitat Pompeu Fabra, Barcelona Biomedical

Research Park (PRBB), Barcelona, Spain
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Table S2: PDB codes used as template for SkeleDock in the D3R GC4 pose prediction
challenge

PDB code used as template D3RGC4 ligand identifier
3DV1 BACE19
3DV5 BACE2, BACE3, BACE4, BACE5
3K5C BACE7, BACE8, BACE9, BACE10,

BACE11, BACE12, BACE13,
BACE14, BACE15, BACE16, BACE17

4DPF BACE1
4DPI BACE6
4GMI BACE18
5MCO BACE20

2
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MD simulation. In the pose prediction subchallenge, SkeleDock’s predicted poses un-

derwent a short MD equilibration protocol to relax the system. MD simulations were pre-

pared as follows: charges for the 20 molecules were set manually, then the Parameterize

tool1 was used to get the force field parameters of these molecules. Systems were build using

AMBER force field2 and prepared with HTMD3 proteinPrepare protocol4 at pH 5.1, as it

was the pH at which the PDB structure 3DV1 (mentioned in the challenge description) was

crystallized. A 10 Å padding was added to the system to then solvate using explicit TIP3

water. Heavy constraints were imposed in the heavy atoms of the backbone of the protein,

softer constraints were applied to atoms in the side-chains and atoms in the ligand were left

free to adopt a lower energy conformation. Under these constraints, 3 ns of equilibration at

300K with timestep 2 fs were run after 1000 steps of minimization with ACEMD.5 Among

the frames generated during the simulation, the first half was discarded, and from the second

half, the frame whose conformation was closest to the starting system (SkeleDock’s result)

was selected as the submitted pose. The rationale behind this approach is that the poses

will benefit from the mapping found by SkeleDock, while the most unfavourable interactions

will be solved. No pose deviated more than 1.5Å with respect to the starting point.

3
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Table S3: Mean RMSD obtained by the different methods used to model macrocycles. Units
are in Angstroms. The error of SkeleDock is the standard deviation of the 5 replicas run.
The other methods are deterministic.

BACE ID SkeleDock Element-Agnostic Strict-MCS
BACE1 1.89 ± 0.01 2.03 3.84
BACE2 1.27 ± 0.08 5.09 1.64
BACE3 1.42 ± 0.01 1.5 1.67
BACE4 1.12 ± 0.03 1.31 2.27
BACE5 1.5 ± 0.02 2.05 2.88
BACE6 1.0 ± 0.07 1.34 2.15
BACE7 1.52 ± 0.04 4.26 1.57
BACE8 0.88 ± 0.01 0.78 0.83
BACE9 0.65 ± 0.02 0.7 0.67
BACE10 0.78 ± 0.02 0.79 0.77
BACE11 0.81 ± 0.01 0.86 0.93
BACE12 0.76 ± 0.01 0.64 1.02
BACE13 1.81 ± 1.13 1.0 1.43
BACE14 0.69 ± 0.01 0.64 0.74
BACE15 0.73 ± 0.04 0.71 0.79
BACE16 0.94 ± 0.02 0.98 1.89
BACE17 0.76 ± 0.01 1.12 1.28
BACE18 1.24 ± 0.01 1.26 1.57
BACE19 2.07 ± 0.01 1.95 4.58
BACE20 3.59 ± 0.02 1.82 1.53
Mean 1.27 1.54 1.70

4
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Table S4: Mean RMSD (computed for macrocycle atoms only) obtained by the different
methods used to model macrocycles. Units are in Angstroms. The error of SkeleDock is the
standard deviation of the 5 replicas run. The other methods are deterministic.

BACE ID SkeleDock Element-Agnostic Strict-MCS
BACE1 1.63 ± 0.02 1.15 2.11
BACE2 1.15 ± 0.02 4.65 1.63
BACE3 0.93 ± 0.01 1.35 1.5
BACE4 1.09 ± 0.01 1.59 2.75
BACE5 0.89 ± 0.04 0.98 3.59
BACE6 1.11 ± 0.06 1.13 1.59
BACE7 1.2 ± 0.06 2.31 1.31
BACE8 0.85 ± 0.01 0.82 0.83
BACE9 0.67 ± 0.01 0.68 0.65
BACE10 0.92 ± 0.07 0.95 0.93
BACE11 0.82 ± 0.01 0.84 0.91
BACE12 0.7 ± 0.01 0.58 0.78
BACE13 0.6 ± 0.25 0.46 0.45
BACE14 0.61 ± 0.03 0.47 0.58
BACE15 0.92 ± 0.01 0.91 0.94
BACE16 0.78 ± 0.01 0.79 0.94
BACE17 0.58 ± 0.01 0.59 0.55
BACE18 0.53 ± 0.01 0.54 1.33
BACE19 1.47 ± 0.01 0.86 1.67
BACE20 - - -
Mean 0.92 1.14 1.32
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3.3 Structure based virtual screening: Fast and
slow

Varela-Rial A., Majewski M., De Fabritiis G. Structure based virtual screen-
ing: Fast and slow. Wiley Interdisciplinary Reviews: Computational
Molecular Science. 2021;e1544.

Summary

In this review we covered different modalities of structure-based virtual
screening, discussing their advantages, limitations and their different speed
profiles.
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Abstract

For many decades virtual screening methods have provided a convenient and

cost effective in silico solution in the early stages of drug discovery. In particu-

lar, molecular docking uses structural inform ation to approximate protein–

ligand recognition, providing valuable inform ation for large chemical libraries

at a fast pace with multiple success stories to validate the approach. Neverthe-

less, fast turnaround of results required assumptions and approximations

which compromise the accuracy of these algorithms. On the other side of the

spectrum, physical-based molecular simulat ions offer more precise and realis-

tic models of protein ligand binding at the cost of being slower and requiring–

more expensive computing infrastructure. Both fast and slow approaches are

useful and solve different aspects of the same problem. Here, we aim to review

these approaches focusing on their capabilities, context of usage and limita-

tions, presenting multiple examples along the way.

This article is categori zed under:

Molecular and Statistical Mechanics > Molecular Mechanics

Software > Molecular Modeling

Structure and Mechanism > Computational Biochemistry and Biophysics

KEYWORD S

molecular docking, molecular dynamics, virtual screening

1 | INTRODUCTION

Since Horvath reported the first virtual screening (VS) campaign in 1997, 1 a lot of progress has been made in the devel-
opment of new methods 2 6– and their global adoption as fundamental techniques in the field of drug discovery. While
high throughput screening requires large budgets, VS is relatively inexpensive, reducing the costs of the early stage drug
discovery. This initially enabled small biotech companies and acad emic groups to enter the field. Since then in silico
drug discovery evolved into a multimillion dollar market, making an indispu table impact on the pharmaceutical indus-
try. 7,8 Despite their simplicity and many limitations, VS algorithms have led to multiple success stories such as identi fy-
ing hit compounds in the low-medium micromolar range 9 11– and recovering true binding modes of pharmaceutically
relevant complex es. 12 15–

VS methods can be classi fied into two groups based on their approach: ligand-based virtual screening (LBVS) and
structure-based virtual screening (SBVS). LBVS methods rely on the principle that similar ligands bind in similar fash-“

ion. Examples of this group are molecular fingerprints”

5 and shape comparison methods, 6 which are used to evaluate a
library of molecules against a reference molecule or a collection of known binders. SBVS methods take the advantage
of structu ral data of the protein and can be further divided into two types which we refer to as fast and slow.
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Fast metho ds, referred as molecular docking, are particularly popula r because they can process large chemical
libraries in a reasonable time. Some of the most popular docking programs include DOCK, 2 GOLD,3 Glide,16 AutoDock
Vina, 17 and rDock.18 Docking programs predict the binding mode of small molecules in the bindi ng site of a protein in
terms of its location, orientation, and internal confor mation. The protein is considered rigid or semi-rigid, allowing only
the movemen t of selected groups to improve hydrogen bonding. 3,18 Docking software uses a search algor ithm to explore
different ligand poses which are then evaluated by a scoring function. This function tries to approximate the free energy
of bindin g by incorporating the enthalpic (scoring positively interactions like hydrogen bonds or salt bridges while
penalizing clashes) and entropic terms, essentially penalizing highly flexible ligands based on their number of rotatable
bonds. 19

Slow methods, based on molecular dynamics (MD), offer a more realistic and detailed view of the binding event.
MD simulates the dynamics of a system through time by means of Newton 's equations of motion and a force field,
which describes the interactions betwee n the different atoms. In reality, these methods range from slow, microsecon d
long, all-atom MD simulations 20 through adaptive sampling21 to faster coarse-grained simulations 22 and biased MD
methods. 23 Most of these methods can provide valuable insights, like the binding and unbinding pathways that a ligand
follows, 24 26– the high-energ y barriers that it crosses, 20 or the discovery of allosteric pockets or cryptic sites. 27,28

In this review we will explore some of the recent advances in SBVS methods, focusing on their strengths and weak-
nesses. Table 1 summarizes them. First, we will discuss fast molecular docking approaches and take a closer look at
scoring functions and ways to address protein flexibility. The second part will cover slower molecular dynamics
approaches, discussing in detail their impact on modeling pocket flexibility and their application in in silico binding
assays.

2 | SEMI-RIGID FAST VIRTUAL SCREENING

Several models exist that explain pro tein ligand binding: lock key paradigm, induced-fit, and the more recent confor-– –

mational selection theory. 42 Despite it being a comp lex phenomenon, there are very simple rules that this process obeys
and that docking can easily model, steric constraints being one of them. The conformati on that the ligand adopts insid e

TABLE 1 Summary of the main strengths and weaknesses for the two groups of methods (fast and slow) studied in this review, together
with proposed solutions to alleviate these problems

Group of methods Strengths Weaknesses Solutions

Semi-rigid fast virtual
screening

Fast Accessible Adaptable Inaccurate scoring Constraints 16,29

Template docking 30

Visual inspection31

Pharmacophores18

Protein ligand fingerprints–

32

Machine learning33,34

MD based rescoring 35

Consensus scoring36,37

Rigid receptor Soft potentials 38

Ensemble docking 39

Protein flexible algorithms–

4,40

Physics-based molecular
simulations

Accuracy Modeling
of binding pathways

Slow Computationally expensive Adaptive sampling21

Coarse graining 22

Replica exchange41

Biased MD methods23
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the pocket must not clash with the protein atoms, nor can the ligand atoms clash with each other. This can quickly dis-
card plenty of poses and compounds, and can be easily modeled using the Van der Waals (VdW) radius of the atoms
involved and a distance cutoff to detect clashes. The VdW potential alone might already give predictions below 2 Å in
terms of root mean square deviation (RMSD) with respect to the crystal structure in some cases.18 In addition to steric
constraints, there are a number of well described interactions which also critically affect protein and ligand binding,
like hydrogen bonds, ionic interactions, pi-stacking, or dispersion-type interactions.19 Adding these interactions to the
scoring function provides greater discriminatory ability as a pose or a compound establishing favorable interactions, for
example, salt bridge or pi-stacking, can be prioritized over another molecule with none or weaker interactions. This is
shown by many state-of-the-art docking tools.43 45–

These tools have, however, limitations caused by the technical difficulties of modeling chemistry itself and the high-
throughput requirements needed to evaluate millions of compounds in a reasonable amount of time. The most remark-
able limitations are neglecting protein flexibility,45,46 the role of structural waters,47,48 and coordinating metals,49 as
well as poor modeling of the entropic component, largely driven by the loss of ligand flexibility inside the pocket50 and
desolvation effects,51 among others.52 The impact of ligand flexibility in the entropic term is usually only addressed by
correcting the final score with the number of rotatable bonds,53 while desolvation effects are accounted for by identify-
ing hydrophobic contacts between protein and ligand that could lead the expulsion of waters from the cavity with the
subsequent entropy increase.54

Furthermore, the success of docking methods is often tested with self-docking exercises, not in real-life VS cam-
paigns. Self-docking is done by extracting the ligand from the structure of a complex and re-docking it into the binding
site. This eliminates the problem of protein flexibility as the protein is already in the bound conformation. The much
harder task, known as cross-docking, is when a ligand is docked to an apo protein or a protein bound to a different
compound. In this case success rates at predicting the true binding mode are in the range of 20% 30%,–

43,44 although
Verdonk et al. reports 61%.45 It must be noted that docking algorithms can usually sample the right pose (GOLD reports
91% in self-docking and 72% in cross-docking45), meaning the ranking of generated poses is one of the main problems
of molecular docking..55,56 The large gap between self-docking and cross-docking performance highlights the other
great challenge of docking: protein flexibility. These two major limitations will be further discussed now, together with
approaches on how to alleviate them. We will also discuss the current high-throughput capabilities of docking and
strategies on how to deal with large libraries.

2.1 Scoring functions|

The ranking problem, that is, prioritizing the right pose over all the other sampled binding modes, showcases the limits
of scoring functions. Scoring functions are responsible for evaluating the different binding modes proposed during
docking by estimating their affinity to the target. Poor affinity prediction can therefore lead to incorrect discrimination
of active compounds against inactive ones in VS campaigns,19 as well as ineffective identification of the true binding
mode among the proposed solutions. All these issues show the need for better scoring functions, that should finely dif-
ferentiate the strengths of different hydrogen bond donors and acceptors, be robust enough to not be misled by small
changes in distances between the two parties, and accurately account for desolvation effects and water-mediated
interactions.19,31,57

New protocols have been developed to address such limitations. Typically, a docking campaign involves a prepara-
tion step and a post-docking analysis step. In these steps, practitioners can use their prior knowledge of the system to
modify the parameters of the docking software or its results. We will now discuss some of these methods, the rationale
behind them and how they can impact the results.

2.1.1 Adding constraints|

Prior to docking, a number of techniques can be used to influence the outcome of the docking campaign. One of the
simplest is manipulating the partial charges of the atoms in the protein. This can help in prioritizing some interactions
in the complex over others, acting effectively as a soft constraint. For instance, an interaction with atoms in the back-
bone of the protein might be desirable as it can decrease drug resistance.58 In other cases, it might be known that esta-
blishing a hydrogen bond with a particular residue is key for a molecule to have an effect on the target. In the
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campaign reported in Ref. 13, the partial charges of some residues were manually increased to improve the polar com-
plementary between the ligands and the protein. Out of the total 66,661 compounds docked using DOCK, 2 the first
500 compounds (as ranked by the scoring function) included all the positive controls added. Visual inspection of these
500 compounds was performed and 16 compou nds were selected based on complementary with the binding site and
chemical diversity. One of the compounds (compound 3), ranked 97th, inhibited the target ( -lactamase) with a IC50β

value of 140 M and its predicted pose resembled closely the crystal structure (RMSD 0.9 Å ). The study by Chen et al. 59

offers another successful example, where the partial charges of some protein atoms were increased. These atoms were
known to be invol ved in hydrogen bonds with different known binders.

A n o t h e r m e t h o d t o f a v o r a g i v e n i n t e r a c t i o n i s t h e u s e o f e x p l i c i t c o n s t r a i n t s , 2 9 w h i c h c r e a t e a n a r t i f i c i a l f o r c e
b e t w e e n t w o a t o m s . S u c h a  n a p p r o a c h w a s u s e d b y C a p o r u s c i o e t a l . 6 0 t o f o r c e a n i n t e r a c  t i o n b e t w e e n a n a r o m a t i c
n i t r o g e n o f b i f o n a z o l e a n d a h e m e i r o n i n t h e p o c k e t o f c y t o c h r o m e P 4 5 0 , w h i c h s t a n d - a l o n e G l i d e w a s f a i l i n g t o
c a p t u r e a p p r o p r i a t e l y . A f t e r t h e a d d i t i o n o f t h e c o n s t r a i n t , t h e b i n d i n g m o d e w a s c o r r e c t l y p r e d i c t e d w i t h a n R  M S D
v a l u e o f 1 . 0 2 Å . S i m i l a r l y , p h a r m a c o p h o r e s c a n b e d e f i n e d b y a s e t o f p o s i t i o n s i n s p a c e f o r w h i c h a p h a r m a c o p h o r i c
f e a t u r e o f a d e s i r e d t y p e i s e x p e c t e d w i t h i n a t o l e r a n c e r a d i u s . 1 8 I n t e r e s t i n g l  y , p r e c i s e k n o w l e d g e o f w h e r e t o e x p e c t
e a c h p h a r m a c o p h o r e f e a t u r e c a n b e o b t a i n e d b y r  e l a t i v e l y f a s t M D m e t h o d s l i k e C r y p t i c S c o u t 2 7 a n d M i x M d .6 1 I t c a n
a l s o b e d e r i v e d b y a h u m a n e x p e r t o r b y s o f t w a r e t o o l s , 6 2 i n c l u d i n g m a c h i n e l e a r n i n g m e t h o d s l i k e L i g V o x e l ,6 3 a n d
L i G A N N . 6 4 A d d i n g c o  n s t r a i n t s o  r p h a r m a c o p h o r e s c a n c o  m p e n s a t e i n a c c u r a c i e s i n t h e s c o r i n g f u n c t i o n , l i k e a p o o r
m o d e l i n g o f a p a r t i c u l a r i n t e r a c t i o n ( a s i n t h e i r o n e x a m p l e b y C a p o r u s c i o ) a n d f a v o r a g i v e n i n t e r a c t i o n k n o w n t o
b e r e l e v a n t f o r t h e t a r g e t . H o w e v e r , t h i s r e q u i r e s i n t h e f i r s t p l a c e a g o o d k n o w l e d g e o f t h e t a r g e t w h i c h m i g h t n o t
b e a v a i l a b l e .

2.1.2 Template docking|

Extreme cases of constrained docking are template docking or scaffold docking. 65 These protocols guide the
docking using a reference ligand, for which the binding mode to the target is known. First, the common scaffold
between the reference ligand and the query molecule is identified. Then, the atoms of the scaffold in the query ligand
are constrained to occupy the same location as their counterparts, determining the position and orientation of the pose.
The remaining atoms can be modeled following the usual sampling and scoring steps. Similarly to LBVS methods, these
docking protocols rely on the principle that similar ligands bind in a similar fashion, and can drastically improve perfor-
mance over unconstrai ned docking. 30 Similarity driv en docking greatly limits the number of solutions and reduces the
role of the scoring function to a minimum. Although the need for a structure of a close protein ligand complex reduces–

the usability of such protocols, the popularity of fragment based screening 66 could make this scenario rather common.
In the 4th edition of D3R Grand Challeng e, 67 the two targets proposed by the organizers had several homologs with
bound ligands whose structures were available in the PDB. 68 For the target BACE-1, in the tasks of predicti ng the abso-
lute free energy of binding and ranking a series of compounds based on their affinity, the most accurate protocol con-
sisted of two steps, a scaffold docking protocol to generate the poses (SkeleDock) 30 and a convolutional neural network
to predict their affinity (KDeep). 33

2.1.3 Visual inspection|

A common practice in VS is the visual inspection of the top ranked compounds by an experienced researcher, who
looks for the interactions that the docking software might have not accurately captured. In particular one assesses the
impact of the pocket environment on hydrogen bonds, usually more favorable in hydrophobi c pockets, the presence of
unmatched hydrogen bond acceptors or donors which can negatively impact the binding affinity due to non-
compensated desolvation and ligand and protein strain, among many others. 31 The structure of related protein ligand–

complex can also be used to guide the visual inspection.31 For instance, in the VS screening campaign against a target
of tuberculosis (Mtb-ThyX) Luciani et al. 12 docked 2000 compounds with Autodock 4.2. 69 After the visual inspection,
13 compounds were selected based on the similarity of their binding mode with that of known binders, enforcing an
interaction with a key arginine and with the cofactor FAD present in the pocket. One of the selected molecules (com-
pound 7) was crystallized to a similar target (Tm-ThyX). The pose predicted by Autodock correctly captured most of the
interactions present in the X-ray structure.
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2.1.4 | Pharmacophore matching

Visual inspection is, of course, slow and only feasible for a small set of compounds. Some methods can imitate this pro-
cess, making them faster and more scalable, like evaluati ng the overlap of the poses with a pharma cophore, 62,70 and
using protein ligand fingerprints.–

32,71 Protein ligand interaction fingerpri nts try to describe the bindi ng mode as a–

sequence of bits, which can encode the info rmation about the type of interaction (polar or not pola r), the location of
residues and atoms involved in the interaction and the role of participating atoms (hydrog en bond donor s or accep-
tors). 72 The fingerprints can be used to prioritize compounds whose interaction fingerprints are similar to the ones of
known binders. In a benchmarking study, Da and Kireev 32 reported that using a protein ligand interaction fingerprint–

(SPLIF) was the best method at discriminating active compounds from decoys in 10 targets of DUD-E database.73

2.1.5 Machine learning scoring|

Machine learning methods, whether based on random forest74 or modern convolutional neural networks (CNN),33,75 allow
for an automatic training o f data-driven scoring functio ns. They benefit from fas t developments in the fie ld of machine learn-
ing as well as large and growing experimental databases.68 These methods have pushed the state-of-the-art forward, o ffering
greater accuracy than conventional methods. Interestingly, they can b e fine-tuned by training on a tailored dataset containing
only ligands for a particular target. The resulting scoring function is more aware of t he specifics o f the targ et. Such an
approach is used by DeltaDelta,34 which is trained on a congeneric s eries of ligands docked to the target and offers more accu-
rate results than more computationally expensive methods like FEP. Finally, the possibility of easily ad ding new examples to
the training set allows the model to be up-to-date with the new structures that are deposited in private or public databases.
The main drawback is t he lack of interpretabi lity of most ML models which makes it impossible to deduce the rationale
behind the prediction. 76 Some promising work, however, has tried to address this pr oblem by usin g me thods such as m as king
(evaluating how the deletion of some atoms affects the prediction) or by studying the gradients of the prediction with respect
to the atoms used as input.77 Another problem is over-fitting to the training set, which can result in a poor prediction.

2.1.6 Molecular dynamics rescoring|

Another way to improve docking predictions is to re-score the top poses with more precise computational methods. Some
approaches assess the stability of a docked pose through metadynamics 78 or dynamic u ndocking.79,80 These methods fol-
low the rationale that stable, well-docked poses are strongly anchored to the protein and will remain docked after a series
of short simulations, while poor poses will leave the pocket. Other methods are based on binding free energy estimations
and have been successful at improving hit rates of VS.81–83 In particular MM-GBSA was developed to more accurately
assess the relative binding free energy from MD simulations.84–86 Over the years free energy methods went through major
improvements,87–89 with free energy perturbation (FEP) standing out. FEP methods allow to compute the binding free
energy of a ligand by performing a MD with the simultaneous alchemical transformation from one ligand to a reference
structure with known affinity.90–92 These methods can reach affinity predictions with accuracies of 1–2 kcal/ mol ,93,94 all-
owing medicinal chemists to shortlist the set of compounds for synthesis and testing. Further improvements were made by
applying machine learning to FEP. As demonstrated by Rufa et al., the researchers managed to reduce the error of abso-
lute binding free energies from 0.97 to 0.47 kcal/mol for a congeneric ligand series for non-receptor tyrosine kinase TYK2
by correcting the conventional MM simulation with a neural network potential. 95

2.1.7 Consensus scoring|

Finally, another method to compensate the defects of scoring functions is to use several different scoring funct ions at
once and look for a consensus among them. This protocol has proven valuable in mult iple studies 36,37 but it requires
having access to mult iple doc king pack ages, some lev el of expertise on each of them, ensuring file compatibility
between packages and more compu ting time. Furthermore, the selection of which programs to use can be problematic:
if their scoring functions suffer from the same problems (for being trained in similar datasets), their errors can add up
instead of compensate each other.
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2.2 Protein flexibility and docking|

Protein flexibility is particularly challenging bec ause it is hard to know how a ligand might impact the conformation of
the protein pocket, that is, which side chains might flip or rearrange as a result of interacting with it (induced fit), or
which of all the possible protein conformations the ligand will bind to (conformation selection). 96 Even subtle changes
in the volume of the pocket, like pocket breathing 46 can directly impact the docking results as it influences the steric
constraints in the binding pocket. In extreme cases, large changes in the backbone of the protein take place, leading to
the opening or closing of entire subpockets. 97 Figure 1 shows an example of a tyrosine kinase adopting two drastically
different pocket conformations. 98 Cryptic sites are not usually apparent on the crystallographic structu res of the
target, 99 but can become visible in the presence of some molecules that either trigger their opening or stabilize that con-
formation. 27 Therefore, docking a ligand into such pockets might be simply impossible without sampling its opened
conformation first. We will now discuss some methods that try to address protein flexibility in docking and its
limitations.

2.2.1 Soft potentials|

The volume and shape of the binding pocket might change upon binding. One approach to deal with these minor
changes is the use of soft potentials, 38 which reduce or attenuate the penalty for clashes. Practically, this allows for
minor clashes betwee n the ligand and the protein, assuming that the protein will make room to accommodate the
clashing atoms. Despite the fact that it can only acc ount for smal l vari ations in protein structure, soft docking is an
appealing way to account for protein flexibility. It is easy to implement, as it only requires manipulating the paramet ers
of the scoring function, and does not reduce docking speed, which makes it practica l in high-throughput applications.
An equivalent approach is the modification of the VdW radii of the atoms in the protein, ligand, or both. 40

2.2.2 Ensemble docking|

Ensemble docking 39 is another solution that accounts for protein flexibility. In this method, ligands are docked to an
ensemble of conformati ons of the target protein. It is convenient and powerful, because it inc orporates multiple protein
conformations in the docking pipeline, allowing the docking pr otocol to explore both minor and major protein pocket

FIGURE 1 An example of a large change in the conformation
of a pocket. Abl tyrosine kinase can adopt two dramatically different
pocket conformations named DFG-in and DFG-out. In the DFG-out
conformation (top left panel, DFG motif is shown in bright blue
cartoon; PDBid: 3KFA), an extra allosteric pocket next to the main
cavity becomes accessible, and the ligand B91 (purple licorice) can
fit into it, while the DFG-in conformation (bottom left panel, DFG
motif in red cartoon; PDBid: 3KF4) does not. On the right panel,
zoomed in overlapped structures show that the purple ligand (B91)
clashes with phenylalanine (F382) in the DFG motif in the DFG-in
conformation 98

6 of 17 VARELA-RIAL .ET AL

“output” — 2021/11/18 — 14:59 — page 51 — #63



rearrangements. Mod eling large changes that involve both side chains and backbone is challenging for any docking
algorithm or even MD protocols; hence, in some cases, ensemble docking might be the only possibility to approach the
conformational div ersity of the target. The ensemble of conformations can be obtained through side-chain rotamer sam-
pling, MD simulations and from structural databases. 39,100,101 The method comes, however, with its own limitations,
namely, increased compu tational cost, the risk of docking ligands into conformations not visited by the protein in real-
ity (artifacts), increased number of poses from which the right one will have to be selected, or issues with the generation
of conformati ons and selection of the ensemble.39,40,102

2.2.3 Explicit flexibility in docking|

Flexibility of the pocket can also be accounted for explicitly. Induced fit docking (IDF) protocol described by Sherman
et al. can capture induced fit effects in a computationally efficient manner.40 In this protocol, the ligand is first doc ked
into a rigid pocket with a soft potential using Glide. 16 In addition to the use of a soft potential, up to three residues in
the pocket can be mutated to alanine if their position is suspected to be ambiguous, allowi ng the ligand to occupy that
space. In the second step, Prime software 103 105– explores different conformations of the protein structure in doc ked
complexes by means of side chain sampling, followed by structu re minim ization. A second round of docking follows,
where the ligand is redocked to the protein conformations sampled in the first round, this time using a hard potential.
The final docked solutions are then scored accounting for the docking energy, the strain of the protein and the solvat ion
terms.

Another protocol able to handle induced-fit effects is prote in energy landscape exploration (PELE).4 PELE is a sea-
rch protocol which includes protein and ligand flexibility explicitly. Local perturbat ions of the ligand are introduced via
displacements, rotations or changes in dihedral angles, followed by side chain sampling. The best conformation is mini-
mized, which allows the movement of the backbone , and scored, leading to the acceptance or rejection of that confor-
mation. Finally, a new round of local perturbation begins, starting a new cycle. This series of cycles result in a
collection of highly redundant local minim as (a trajectory), however, large changes do occur from the start of the trajec-
tory until its last frame. Although much slower than docking, PELE is still orders of magn itude faster than a typical
MD run. Authors have reported success in reproducing entry and exit pathways of several protein ligand complexes,–

and in sampling protein ligand poses in close proximity to crystal structures for very challenging targets such as–

GPCRs.106 Providing the entry pathways and identifying possible meta-stab le transition states adds more value than just
predicting the binding mode. 102

2.3 High-throughput methods for large chemical libraries|

Docking as a high-throughput tool became very fast and efficient, with less than a minute needed to dock a compound
against a recepto r on a single CPU core. This has recentl y enabled the exploration of ultra-large libraries in the order of
hundred million compounds.15 However, a large computational infrastructur e is required to exhaustively sample the
ever-growing space of commercially available compou nds in a reasonable amount of time, effectively limiting most
docking campaig ns to much smal ler libraries.

Some protocol s have been developed to alleviate this problem. One such protocol consists in the use of a series of
subsequent, hierarchical filters. 107 The first filters in the hierarchy are usually very fast but also relatively inaccurate.
Their main objective is to quickly disca rd the least promising comp ounds in the library and avoid modeling them with
more expensive methods. The reduced set of molecules is then promoted and undergoes a series of more accurate and
computationally demanding steps. For instance, Ashutosh Kumar et al. used a hierarchical approach where a library of
compounds was first docked using a fast, rigid protein approach. Then, the top-ranking compounds from that campaign
were re-docked again using a protein flexible methodology. Finally, an MD protocol was used to further refine the
ranking.108

Other approaches use active learning to train a machine learning model, on the fly, while the docking campaign is
running. 109 111– The model is trained on a sample of the molecules which have already been docked, predicts which of
the remaining ligands will not dock favorably and removes them from the docking library. These models can be simple
random forests or more complex, deep neural networks, 109 and work with molecular fingerprints or other descriptors.
The rationale behind these approaches is that, after docking a subset of the librar y, the model can learn which ligand
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features lead to good docking scores and which ones lead to bad docking scores. For inst ance, if the pocket is highly
hydrophilic, the model could learn to discard ligands which are very hydrophobi c. The recent study by Graff et al.
reported that by evaluating only the 2.4% of a library of 100 million compounds, 87.9% of the top 50,000 ligands
(as identified by the original VS protocol) were recovered by the active learning approach.110 Such result indicates that
there is a great potential in active learnin g protocols to drastically reduce the amount of compu tations needed to screen
a library of compounds.

These two approaches, hierarchical and active learning, can actually be combined, as exemplified in the study by
Konze et al.111 In the protocol descr ibed in the study, a library of comp ounds is first genera ted via retrosynthesis and
then docked against the target. The best compounds und ergo an expensive FEP simulation to better evaluate their bind-
ing affinity. Here, active learning is applied to predict the FEP score that the remaining compounds will obtain. Subse-
quent FEP simulations are only executed for the most promising molecules.

Both met hodologies, active learning and hierarchical docking, can dramatically reduce the computational costs of
evaluating a library of compounds, allowi ng for broader sampling of the chemical space, which is key to fin d new
chemical scaf folds.

3 | PHYSICS-BASED MOLECULAR SIMULATIONS IN VIRTUAL
SCREENING

The second group of algorithms is based on molecula r dynamics methods. All atom molecular simulations allow to
address some of the major problems of docking: protein flexib ility, structural waters, and even coordinating atoms. 112

Unfortunately, the entry barrier in terms of expertis e required for running MD simulations is probably higher than that
for docking. Furthermore, MD algorithms are slower and they need large computing resources. However, as we will
see, methods like coarse-graining and adaptive sampling strategies can alleviate this problem, and even short,
nanosecond-long MD simulations can provide useful insight s in protein flexibilit y.

3.1 Pocket discovery|

Cryptic sites represent a challen ge for docking algorithms, but have great pharmaceutical significance because they can
act as allosteric pockets, might be the only druggable site in a target and can be involved in protein protein interac-–

tions.113 115– MD protocols have proven successful at identifying these pockets, 27,61,113,116 118– and probably are the only
in silico methods that can sample their opened conformations.119 These approaches range from nanosecond 27 to
microsecond-long simulations complemented with Markov State Model analysis. 113 This long spectr um of timescales is
aligned with the kinetics of the pocket opening. While some cryptic pockets only need some fast rearrangement of the
side-chains, others require larger and slower changes in the protein conformation. 27,118

Mixed solvent molecular dynamics (MSMD) protocols, like pyMDMix,120 mixMD, 61 and CrypticScout,27 simulate a
protein in a solution of water and a co-solvent, which is typically a small organic molecule. The co-solvent molecules
interact with the surface of the protein over the simulation and can trigger the opening of hidden pockets (Figure 2).
Mapping the occupancy and residence time of the probe leads to identification of binding hotspots on a protein surface
that can discriminate binding pockets. The study by Martinez-Rosell et al. showed that benzene binding hotspots identi-
fied by CrypticScout corresponded to experimental ly determined cryptic pockets in a set of 18 different systems. 27 The
hotspots can be transla ted to a minimal pharmacophore and used as restrains in VS.

T h e u s e o f l o n g e r t i m e s c a l e s c o u p l e d w i t h M a r k o v s t a t e m o d e l s ( M S M ) w a s s t u d i e d b y B o w m a n a n d G e i s s l e r t o
i d e n t i f y a l l o s t e r i c c r y p t i c p o c k e t s i n β- l a c t a m a s e . 1 1 3 I n t h i s s  t u d y , t h e y r u n h u n d r e d s o f s i m u l a t i o n s o f 5 0 0 n a n o s e c -
o n d s e a c h , l e a d i n g t o a t o t a l a g g r e g a t e d t i m e o f 1 0 0 s . T h e d a t a w e r e t h e n a n a l y z e d b y M S M , w h e r e k i n e t i c a n d
s t r u c t u r a l i n f o r m a t i o n i s u s e d t o c l u s t e r t h e s i m u l a t i o n s i n t o a s e t o f d i s c r e t e s t a t e s , r e p r e s e n t i n g l o c a l m i n i m a s .
E q u i l i b r i u m p o p u l a t io n s o f e a c h s t a t e a n d t r a n s i t i o n p r o b a b i l i t i e s b e t w e e n t h e m c a n t h e n b e e s t i m a t e d f r o m t h e t r a -
j e c t o r i e s . A f t e r b u i l d i n g a M S M f o r t h e s i m u l a t i o n s o f t h e β- l a c t am a s e , a p o c k e t d e t e c t o r a l g o r i t h m ( L I G S I T E 1 2 1 ) w a s
a p p l i e d t o r e p r e  s e n t a t i v e s o f e a c h o f t h e s t a t e s . T h i s a p p r o a c h w a s a b l e t o c o r r  e c t l y i d e n t i f y t h e k  n o w n c r y p t i c s i t e a s
a t r a n s i e n t p o c k e t . M o r e i n t e r e s t i n g l y , i n a f o l l o w u p s t u d y , H a r t e t a l . u s e d t h e o p e n c o n f o r m a t i o n s o f t h e c r y p t i c
p o c k e t s a m p l e d b y t h e M D t o r u n a d o c k i n g c a m p a i g n . 1 1 9 T h e y i d e n t i f i e d t w o m o d u l a t o r s o f t h i s e n z y m e , o n e a c t i v a -
t o r w i t h E C 5 0 v a l u e s o f 6 3 ± 9 M a n d o n e i n h i b i t o r w i t h E C 5 0 o f 5 7 ± 3 M . T h i s i s a c l e a r a n d s u c c e s s f u l e x a m p l e
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o f M D m e t h o d s c o m p l e m e n t i n g d o c k i n g . M o r e i n f o r m a t i o n a b o u t M S M a  n a l y s i s c a n b e f o u n d i n t h e r e v i e w b y
P a n d e e t a l . 1 2 2

Another method, developed by Oleinikovas et al., called Sampling Water Interf aces through Scaled Hamiltonians
(SWISH), makes the nonbonded interactions between water molecules and apolar protein residues more favorable. 118

This approach makes the water molecules more ligand-like and hydrophobic, and in consequence allows them to open
cryptic pockets. The effectiveness of this protocol was further improved by the incorporation of fragments into the solu-
tion. The authors hypothesize that this additional success is a result of the fragments stabilizing and further opening
the cryptic pockets exposed by the waters.

Finally, MD simulations can be used to study other relevant conformation al changes. As we have discussed before,
some kinases can switch between two states: DFG-in and DFG-out, which dramatically affect the conformation of the
main and allosteric pockets (see Figure 1). Shan et al. run microsecond long MD simula tions to explore the transition
between active and inactive states of a kinase, 124 demonstrating the capacity of MD to sample drastically diff erent pro-
tein conformations for the most challenging targets. Similarly, Lovera et al. used MD simulations to sample the active
states of a GPCR starting from an inactive, crystal structure.125

3.2 In-silico binding assays|

In addition to opening hidden pockets and sampling the conformational landscape, MD can also simulate the entire
binding process of a ligand to the target of interest in what we call in silico binding assay (ISBA). This approach has
been successful at recovering the native binding mode of the ligand, 20,25,112 and estimating kinetics and binding free
energies.126 Importantly, valuable metrics can be obtained from the simulations, like the population of the different
binding modes, which can then be used to select one of them, alleviating the scoring problem we discussed in
docking. 102

In the pioneer work, Shan et al. reproduced the binding pathway of two molecules, the cancer drug dasatinib and
the kinase inhibitor PP1, to the target Src kinase, with long, unbiased MD simulations. 24 In both cases, the simula tions
started with the unbound ligand and the resulting bound poses were virtually identical to those found by X-ray crys-“ ”

tallography. Furthermore, the simulations correctly identified the locations of structural waters in the Src kinase PP1–

complex and shed ligh t on the desolvation of the cavity upon ligand binding.
In another study from D. E. Shaw Research, Dror and cowor kers used a similar approach to reconstruc t the binding

of several ligands of 2-adrenergic receptor ( 2AR), as a result obtaining binding modes practically identical to the crys-β β

tal ones. 20 In fact, authors discove red a common binding pathway for all the ligands and identified the two main bar-
riers of the binding process: (a) the protein and ligand dehydration associated with the entry of the ligand into the
extracellular vestibule and (b) going from the vestibule to the pocket trough a narrow passage. Buch et al., offered simi-
lar insights for the trypsin-benzamidine binding process. 25 They reconstruc ted the full pathway from unbound to bound
states, revealed a series of metasta ble states through which benzamidine travels to reach the final pose and in result
achieved a pose with a RMSD below 2 Å. The same system was further studied by Plattner and Noé, revealing a large

FIGURE 2 Opening of a small cryptic pocket in GTPase KRas with CrypticScout. The binding of the benzene probe disrupts the
contacts between three residues (Gln, Met, Tyr) and opens the cavity. (PDB code: 4L8G123 )
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degree of plasticity for trypsin and discovering an extra S1* pocket. 127 Additionally, six different metastable apo struc-
tures were identified, which were in close accordance with the crystallogra phic structures of other serine pro teases. In
the work by Guixa-Gonzalez et al., the authors used MD simulations to show that cholesterol molecules from the extra-
cellular leaflet can diffuse through helices TM5 6 into the orthosteric pocket of a GP CR, and occupy a key area the–

pocket. 128 This discovery was confirmed by further experimental (non in silico) validation. The study by Ferruz and
coworkers offers a great example of the advantages of MD over docking.28 They started by docking a ligand into dopa-
mine D3 receptor. The predicted pose did not agree with mutagenesis experiment s. Theref ore, the authors followed up
with an ISBA, starting with an unbound ligand. The molecule then diffused toward the binding site, leading to a bind-
ing mode that differed from the docked one. Furthermore, a cryptic pocket opened up on binding, allowi ng the ligand
to bind deeper into the cavity. This new pose was in agreement with mutagenesis information.

Another study by Ferruz et al. showcases the capa bilities of MD to naturally approach a challenging case of ion
coordination.112 They investigated the binding mode of the substrate of Myo-inositol monophosphata se (IMPase) . It
was known that the catalysis of this enzyme requires 3 Mg2+ ions acting as cofactors. However, the binding process by
which the substrate enters the catalytic site in cooperation with these ions was unknown. To shed light on this process,
the authors simulated the diffusion of individual magnesium ions to the cavity one at a time. Then, they explored the
binding of the substrate to the complex with two (IMPase-II) and three magnesium ions (IMPase-III). The substrate
was seen to bind to both IMPase-III and IMPase-II, in coordination with Mg 2+ or alone. Furthermore, one of the poses
obtained from the MSM analysi s showed great agreement with the crystallogra phic structure. This shows the capabili-
ties of MD protocols to accurately describe complex scenarios where several bodies (protein, ligand, and cofactor)
cooperate.

The previo us articles demonstrate the capabilities of MD to predict binding modes and binding pathways. The study
by Martinez-Rosell and coworkers tests ISBA in a VS campaign for a small library of comp ounds. They screened
129 fragments against the target CXCL12, where they predicted their binding modes, as well as kineti c rates (kon and
koff ) and ligand efficiencies. 126 Eight of the fragments had an estimated ligand efficienc y higher than 0.3. The predicted
binding modes agreed with the available structural data of that target, in terms of placement of pharmacophoric fea-
tures, but no experiment al validation could be performed.

3.3 Improving sampling|

Some of these ISBA experiments used an adaptive sampling protocol, which can decrease the amount of time needed
for the simulation to converge by an order of magnitude.21 This protocol uses multiple, parallel short simulations of
around 80 ns long instead of a single, long one. These initial simulations are used to build a MSM which clusters the
sampled conformational space. Subsequent short simulations are launched starting from conformations belonging to
underpopulated clusters. This allows the protocol to avoid re-sampling of already explored areas, reaching convergence
faster and, hence, reducing the compu tational costs. Another method that helps to increase the performance of MD is
the use of coarse-grained potentials, where several atoms are represented and parameterized as a single en tity. Such an
approach was used in the recent study, where Souza et al. reported success in predicting binding modes for several tar-
gets of pharmaceutical interest, including a GPCR.22

Another method, known as replica exchange, can greatly accelerate the sampling of the energetic landscape. This
method begins with multiple, short simulat ions (replicas) of the same system at different temperatures. After a
predefined number of steps, the conformations from different replicas are exchanged based on the Metropolis crite -
rion. 41 Simulating at diff erent temperatures helps exploring different wells of the energy landscape, quickly overcoming
large barriers and avoiding getting stuck in local minima.

One more way to accelerate ISBA is biased MD. In these protocols, the simulation is biased by an appropriate collec-
tive variable (CV). 129 For most of these methods, prior knowl edge of the system is necessary to define the CV. However ,
the protocol proposed by Spitaleri et al. offers a generalized bias that could work on any protein ligand system.–

23 Such
bias creates an artificial electrostatic interaction between the atoms of the ligand and the atoms of the binding site. The
combination of the regular forces and artificial ones helps to identify a path leading to the binding site, which the
ligand is invited to follow. Following such path, instead of diffusing around the simulation box, avoids wasting time“ ”

in the transition phase. When the ligand is close to the binding site, the strength of those artificial forces is decreased to
allow a non-biased mo lecular recognition. The authors report a speed up of 2 3 orders of magnitude with the respect–

to unbiased MD. The method correctly predicted the binding modes of all six s tudied ligand, identifying all main

10 of 17 VARELA-RIAL .ET AL

“output” — 2021/11/18 — 14:59 — page 55 — #67



interactions, including a water mediated interactions, and resulted in poses with RMSD values below 2.5 Å with re spect
to the crystal structure. Furthermore, the predicted bindin g pathways of three prote in ligand complexes were similar to–

those repor ted by plain, unbiased MD simulations.

4 | DISCUSSION

Despite the limitations we have addressed in this review, classical, fast docking pro tocols have proven successful in a
number of pros pective studies, 12 15– and they have done so for the right reasons; that is, by predicti ng the right pose and
assigning its compound a great affinity that ranked it among the best in the library. 44 However, one could argue that
such success mig ht not be directly attributabl e to docking itself, but rather to the additional steps taken by the practi-
tioner, such as visual inspection, the addition of prior knowledge or rescori ng with alternative methods. This would
mean that docking per-se is not that powerful, showcasin g it as a simple pose generator that requires further work to“ ”

provide meaningful results. However, unsupervised or largely-unsupervised docking campaigns have been
successful too.

In a recent article, Lolli and Caflisch used docking software SEED to screen 350 fragments against the target
BAZ2B.130 Of these, 12 fragments were prioritized for testing. Soaking experiment resulted in 4 fragments bound in the
binding pocket. Furthermore, the authors repor t that the binding mode predicted by their docking software was correct
for three of the four fragments, two of them being practically identical acco rding to the figure. This example is particu-
larly impressive for two reasons: (a) fragments are believed to be particularly challenging for docking algorithms, 102

(b) there was no use of prior knowledge nor visual inspection. In another work, Hermann et al. discovered a substrate
of an orphan enzyme Tm0936 by docking a library of metabolites into its catalytic site. 131 They performed docking
using DOCK3.5.54 into an apo structure , which is more challenging than docking to a ligand-bound conformation. The
molecule which was then confirmed to be the substrate (SAH) was ranked 6th among 4207 molecules. Moreover,
the crystal structure of selected molecule agreed almost completely with the docking prediction, highlighting the suc-
cess of such approach. Another valuabl e example is the initiativ e of Continuous Evaluation of Ligand Protein Predic-
tion (CELPP). 132 In this program, a set of fully automated docking protocol s is challenged with predicting the binding
modes of a new group of protein ligand complexes on a weekly basis. The ligands are docked to a structure of a close–

homolog bound to a similar molecule, which makes it a difficult cross-docking experiment . Although it is not a typical
VS campa ign, it offers valuable information regarding docking power for severa l reasons. First, the docking protocols
are fully automated, which allows for a more fair comparison among them and removes the impact of the human
expert. Second, the eva luation is blind and prospective, therefore unintended biases do not affect the results. Finally,
the challenge showcases the strengths and limitations of using docking as an out-of-the-box tool, without any manual
parameter tweaking. Although the number of adopters is still low, some protocol s have already docked over 3000 mole-
cules. One of them, named , has a Q1 value of RMSD 1.81, meaning that a large fraction of the predicted poseskauoh

were under the cutoff value of 2.0 Å. Figure 3 shows the current status of the contest.
Despite this success, it is true that classical docking algorithms, due to their need to be fast paced, will probably not

be abl e to deal with particular challenging scenarios, like those where structural waters or coordination atoms play a
key role, or those involvi ng cryptic pockets or major changes in pocket conformati ons. This is where MD based
methods have an edge, as they can naturally account for all these scenarios, with the additional benefit of providing
valuable mechanistic and therm odynamics insights, like reconstructing binding pathways, shedding light into the deso-
lvation process, or identifying high-energy barriers or metastable states. Some of these insights cannot even be obtained
by crystallography experiments. Although the experti se required to run MD simulations is still high and their speed is
still very limited, improvements in hardware and new methods like those we have discussed could drastically change
this. It must be remembered that until the appearance of GPUs, MD simulations were practically limited to the
nanosecond-scale. 133

The two paradigms, fast and slow, can easily be combined, and we have seen examples of such in this review, like
using MD simulations to rescore poses, or sampling the opened conformation of a cryptic pocket to then run a VS cam-
paign. Furthermore, they can be used in different stages of the VS campaign: while docking can filter the vast majority
of the library, MD can provide more accurat e predictions for a subset of it, re-scoring the best compounds or providing
mechanistic insights into their binding pathways. 129

Most drug discovery projects today rely to some extent in in silico modeli ng,134,135 typically combining different
approaches and techniques (LBVS, SBVS, FEP, ADMET prediction, and so on) in parallel or in a hierarchical
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fashion.108 Several companies performing in silico modeling have appeared in the market, and those using AI to help
drug discovery raised $1 billion in funding in 2018,136 signaling a strong trust in computational methodologies.

5 | CONCLUSIONS

From multiple success stories discussed in this review, it is apparent that computational methods can be powerful tools
in drug discovery. Docking algorithms can screen large chemical libraries in a high-throughput manner. However, a
series of approximations and poor parametrization of scoring function can lead to high false positive rates and ineffi-
cient selection of candidates. On the other hand, physics-based molecular simulations can overcome several of the
docking issues, at the expense of speed and throughput. Both approaches are orthogonal in their features and speed
profiles. Moreover they provide valuable information about different aspects of protein ligand binding, and can com-–

plement each other in VS campaigns.119 Although a huge variety of computational methods already exist, the field is
very active and many more are still being developed. Better hardware and innovative approaches, especially from the
field of machine learning, will keep improving the performance of VS algorithms.
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3.4 PlayMolecule Glimpse: Understanding protein-
ligand property predictions with interpretable
neural networks

Varela-Rial, A., Maryanow I., Majewski M., Doerr S., Schapin N., Jiménez,
J., de Fabritiis, G. PlayMolecule Glimpse: Understanding protein-ligand
property predictions with interpretable neural networks. Journal of Chem-
ical Information and Modeling. Accepted for publication.

Summary

In this article we presented Glimpse, an application to perform model
interpretability using the Integrated Gradients method. In addition to de-
scribing the application, we also presented the results obtained apply-
ing this method to three different neural networks and draw conclusions
regarding whether such networks were learning some structural biology
principles or not.
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Abstract

Deep learning has been successfully applied to

structure-based protein-ligand affinity predic-

tion, yet the black box nature of these mod-

els raises some questions. In a previous study,

we presented KDEEP, a convolutional neural

network that predicted the binding affinity of

a given protein-ligand complex while reaching

state-of-the-art performance. However, it was

unclear what this model was learning. In this

work we present a new application to visualize

the contribution of each input atom to the pre-

diction made by the convolutional neural net-

work, aiding in the interpretability of such pre-

dictions. The results suggest that KDEEP is able

to learn meaningful chemistry signals from the

data, but it has also exposed the inaccuracies

of the current model, serving as a guideline for

further optimization of our prediction tools.

Introduction

Machine-learning methods have been widely ap-

plied in the field of chemoinformatics, ranging

from simple, regressor-based QSAR models1–4 to

more complex neural networks. These latter meth-

ods have been reported to increase performance

in some critical tasks for drug discovery, such as

toxicity assessment,5,6 pharmacokinetics, physic-

ochemical property prediction,7–10 and protein-

ligand binding affinity prediction11–15

In a previous work, we developed KDEEP - a 3D

convolutional neural network (CNN) that accepts

as input a voxelized representation of a protein-

ligand complex and outputs a prediction of binding

affinity with state-of-the-art accuracy.11 However,

it was unclear whether KDEEP was learning mean-

ingful chemistry or just exploiting shortcuts such as

the positive relationship between molecular weight

and affinity.16 Learning these shortcuts instead of

the underlying nature of the problem is a topic of

concern in the field.17 It is then comprehensible for

many machine learning methods to spark criticism

regarding the difficulty to understand the rationale

1
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behind their predictions. It has been questioned

whether a pharmaceutical company would promote

a given molecule into a portfolio based only on an

opaque prediction made by a neural network, with-

out any clear explanation to support it.18 Provid-

ing such explanation would undoubtedly increase

the value, trustworthiness and usability of machine

learning models in drug discovery.

Recently, advances in model interpretability,19,20

as well as the availability of software libraries such

as Captum21 and Alibi,22 have allowed researchers

to get a first glimpse of what features of the in-

put are more influential towards predictions made

by neural networks (i.e. feature attribution assign-

ment). One natural approach to measure this in-

fluence is to look at the gradients of the output

neuron with respect to the input. In fact, in a

CNN trained to discriminate accurate from inac-

curate binding poses and to predict binding affin-

ity, visually inspecting these gradients can reveal in

which direction the atoms should move to improve

the score that the network assigns it,23 providing

some degree of interpretability.

However, backpropagating the prediction rela-

tive to the input layer can produce very low gra-

dients in the vicinity of the input vector,19 a pro-

cess which is known as “gradient saturation”. The

Integrated Gradients (IG) feature attribution tech-

nique19 helps to mitigate this problem, providing

a better measure of how each input feature influ-

ences the prediction. Instead of evaluating the gra-

dients at one particular input value (the image in

a traditional 2D-CNN), gradients are computed for

several variants of that image, ranging from a user-

defined baseline (typically, an image with all its

pixel-channel values set to zero) to the actual im-

age. In each variant, the values of all its pixels are

multiplied by a scalar α, ranging from the zeroed-

out input to the original image. At low values of

α, the resulting input vector is far from the usual

input space the network has been exposed to dur-

ing training, circumventing the gradient saturation

issue.

In this article, we present an application to visu-

alize the contribution of the input features for the

prediction of KDEEP and similar CNNs. In addi-

tion to describing the methodology used herein, we

also showcase several relevant examples of attribu-

tions which match with structural biology knowl-

edge. We analyse the prediction of three distinct

models: a clash detector, a docking pose clas-

sifier and KDEEP. The clash detector provides

a baseline to which we compare the other mod-

els and allowed us to validate the implementa-

tion of this application. The docking pose clas-

sifier and KDEEP models were evaluated to see

if CNNs trained to perform chemically relevant

tasks were learning meaningful chemistry. The

application, called Glimpse, is available to use at

https://www.playmolecule.org/Glimpse/.

Methods

Model Training

KDEEP is a 3D CNN which accepts as input a grid

of size 24Å
3
. This grid is generated by mapping

the atom positions of the ligand and its surround-

ing protein residues to the corresponding voxel

and channel in the grid. KDEEP uses 8 different

channels: hydrophobic, aromatic, hydrogen bond

donor, hydrogen bond acceptor, positive ionizable,

negative ionizable, metals and excluded volume

(occupancy) for both protein and ligand. This

gives a total of 16 channels and a grid of dimen-

sions 16 × 24Å
3

(see Jiménez et al.11,24 for more

details). The network was trained on the latest

version of the refined set of PDBbind ,25 achiev-

ing a Pearson’s correlation coefficient of 0.79 in the

test set. Details on the training and evaluation of

the different models can be found in SI.

We also trained a clash detector. The objective

behind it is two-fold. First, there is a clear expec-

tation in terms of what attributions should look

2
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like: clashing regions or close contacts would ap-

pear highlighted, while the remaining voxels would

be of little importance. We were able to validate

the implementation of Glimpse by checking if the

computed attributions matched this expectation.

Second, the computed attributions of this simple

model served as a reference point to which we com-

pare the other models, both visually and quantita-

tively. This model was trained to discriminate reg-

ular protein-ligand poses from clashed poses and

achieved 0.97 classification accuracy and 0.98 pre-

cision in a held-out validation set.

We trained a third model — a docking pose clas-

sifier — for two reasons: i) it is a challenging task,

comparable to that of predicting binding affinity;

ii) there is much more data available from which

the model can learn. This model was trained on

a large set of good (RMSD < 1 Å) and bad poses

(RMSD > 3 Å), showing an accuracy and precision

of 0.94 and 0.83 on the validation set.

It must be noted that the performance of these

three models was evaluated on a random test and

validation sets. In some cases protein-ligand com-

plexes in these sets might be similar to those in the

training set, either in terms of protein structure or

ligand composition. This yields overoptimistic re-

sults. In fact, when trained and evaluated in more

strict splits which ensured sequence and ligand dis-

similarity, KDEEP performance ranged from r=0.09

to r=0.7 (see SI for details).

The models analysed in this work have been up-

loaded to Glimpse with the names:“KDEEP”, “Pose

classifier” and “Clash detector”. Attributions for

these models can be computed and visualized in

the app for any valid protein-ligand complex.

Implementation

Integrated Gradients

The IG method works by computing gradients of

the output neuron with respect to the input layer

along an interpolated path from a given input base-

line (x′i) to the original input (xi) taking α infinites-

imal steps as in:19

IGi(x) ::= (xi − x′i)
∫ 1

α=0

∂F (x′ + α (x− x′))
∂xi

dα,

(1)

where F denotes the forward pass of the neural

network.

This effectively circumvents the issue of low gra-

dients (gradient saturation) in the vicinity of the

input by averaging the gradients along a range of

different input values. Gradient saturation can oc-

cur if a given input value leads to a neuron be-

ing activated in a region of the activation function

which is very flat, for instance, the extremes of a

sigmoid. Hence, using the gradients of the predic-

tion with respect to a given input could assign an

importance of zero to it, regardless of its real im-

portance.

The computed attributions provide a value for

each voxel representing their importance towards

the prediction. Glimpse uses the IG implementa-

tion from the Captum library.21 Attributions are

computed by approximating the integral as a series

of discrete steps along the interpolated path from

the selected baseline (an input vector in which all

voxels are set to zero) to the evaluated, voxel map

corresponding to the original protein-ligand com-

plex. In this implementation, we used 100 steps,

as it was shown to offer a good balance between

computational expense and attribution quality.

Graphical User Interface

Glimpse provides a web-based graphical user in-

terface (GUI) that helps to trace attributions to

voxel maps. An overview of the GUI is provided

in Figure 1. The computed attributions for the

input channels are displayed as mesh isosurfaces

whose isovalue can be tuned with a slider. A de-

tailed description of the input channels is provided

in the Model Training section of this manuscript.

3
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To offer a summary of the results, the interface dis-

plays by default only the most contributing regions.

These regions are the result of identifying, for each

of the 16 channels, the voxel with the highest abso-

lute attribution value and the neighbours around

it. In this summary, only the channels contain-

ing the best 5 voxels are displayed, for simplicity.

Additionally, the user can display the attributions

for the different input channels individually, and

the raw attribution maps can be downloaded as a

Gaussian cube format file (.cube) and explored in

VMD26 or other molecular visualization software.

Usage

Glimpse requires a protein-ligand complex struc-

ture, either experimentally determined or pre-

dicted by a docking software. The protein must

be correctly protonated and provided as a .PDB

file. PlayMolecule platform offers proteinPrepare27

to protonate the protein. The ligands have to be

provided as a valid .SDF file. If needed, Glimpse

provides an option for protonation of these ligands.

Only 100 ligands are allowed per job. Finally, users

can select which model to use from a list, which by

default is “KDEEP”. In terms of time, evaluating

10 protein-ligand complexes takes around 150 s.

When inspecting the attributions, one would typi-

cally start looking at the visual summary, followed

by an inspection of individual channels. It is worth

paying particular attention to the voxels with the

highest and lowest attribution values and checking

if the nearby atoms are involved in an interaction.

The occupancy channels offer a good overview of

the whole picture and constitute a good place to

start.

Analysis

For each model, we visually inspected the attri-

butions computed for several protein-ligand com-

plexes to evaluate how well they match with struc-

tural biology knowledge. We focused on interac-

tions known to contribute towards binding free en-

ergy, e.g. hydrogen bonds, π-stacking. Another

aspect we inspected was the reciprocity in the attri-

butions, that is, whether the two parties involved in

the protein-ligand interaction are reflected in their

attribution values.

While visual inspection can provide valuable in-

sights, it can also be misleading and prone to un-

intended biases. Therefore, we designed a quanti-

tative analysis, in which we computed the IG for

all the crystal structures (not clashed or docked)

coming from PDBbind database. For each of the 16

channels, the voxel with the highest, absolute value

of the IG values was identified. Then, we measured

the distance between the top contributing voxels in

the complementary channels. We evaluated the fol-

lowing pairs of channels: protein hydrophobic and

ligand hydrophobic, protein aromatic and ligand

aromatic (π-stacking), protein acceptor and ligand

donor, protein donor and ligand acceptor (hydro-

gen bonds), protein occupancy and ligand occu-

pancy (steric component). As a baseline, we took

the distance between two randomly selected voxels

from the appropriate channels, whose occupancy

value was over 0.75, ensuring that an atom was

nearby the voxel.

Results

As a leading example for the analysis we selected a

complex of a molecular chaperone, heat shock pro-

tein 90 kDa (Hsp90) sourced from PDB (PDBid:

3D0B).28 This well studied oncology target has

been a subject of numerous structure based virtual

screening campaigns.29,30 In the analyzed exam-

ple HSP90 forms a potent complex with an ana-

logue of benzamide tetrahydro-4H-carbazol-4-one

(SNX), with an affinity of 290 nM. Additionally,

the complex possesses few features that facilitate

tight binding, mainly π-stacking and a hydrogen

4
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Figure 1: Main view of the graphical user interface. The protein-ligand complex is displayed, with
the attributions of the most contributing voxels superimposed. The attributions for the different
channels can be seen individually using the corresponding sliders in the menu on the right, which
display isosurfaces at different isovalues. The full protein is shown in a cartoon representation, while
residues in the binding site (defined by being within 5Å to the ligand) are shown in a transparent
ball-stick representation (only heavy atoms and polar hydrogens). The all-atom representation of
the ligand is shown in a bold ball-stick. The region of space seen by the model (voxelization cube)
is delimited by a transparent, grey box.

bond with a conserved aspartate (D93) - a very fre-

quent interaction among HSP90 inhibitors.31 This

helped us to relate the predictions to structural

features of the complex.

Clash detector

As a sanity check, we started by evaluating the

attributions of the simplest model, the clash detec-

tor. The visual inspection of multiple complexes re-

vealed that, in all inspected cases, clashing regions

or close contacts were highlighted while residues

far apart from the ligand remained ignored. The

clashes were clearly indicated by occupancy chan-

nels of both protein and ligand, showing reciprocity

(Fig.2.1A). An example of HSP90 with a clashed

pose clearly highlights clashed region between the

ligand and a leucine (L92) in the pocket (Fig.2.1B).

This confirmed that the protocol was working cor-

rectly and gave us a baseline for the analysis of the

following models.

Docking pose classifier

The next model was trained to discriminate good

and bad docking poses. The true binding mode de-

pends on an enthalpic factor which is determined

by formation of strong an stable interactions be-

tween the ligand and the protein, like hydrogen

bonds or π-stacking.32 Hence, we expect models

5
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trained to perform such tasks to have learned these

interactions.

We found several examples where the attribu-

tions correctly matched these expectations. Figure

2.2B shows a hydrogen bond being highlighted in

the appropriate channels: hydrogen bond accep-

tor in the protein and donor in the ligand. An

amide moiety in the ligand is establishing a hy-

drogen bond with the nearby aspartate (D93). It

is indeed a key interaction frequently featured in

HSP90 inhibitors. In addition to this hydrogen

bond, a π-stacking interaction takes place between

the aromatic ring of the ligand and a phenilala-

nine (F123) in the protein, as highlighted by the

attributions for the occupancy (Figure 2.2A) and

aromatic channels (not shown) of both the protein

and the ligand.

After inspecting several examples, we saw that,

as in the clash detector model, residues far from

the ligand were ignored for the most part (Figure

S7 shows one exception) and reciprocity between

the ligand and the protein atoms was observed in

the majority of inspected cases. However, the over-

all picture was less clear than in the clash detec-

tor model as can be seen by comparing the global

view of the three models (sections 1A, 2A and 3A

of Figure 2). While in the clash detector model

high attributions are well focused on the clashing

regions and close contacts, the other two models

exhibit a more disperse view.

KDEEP

Similarly to the previous model, KDEEP is ex-

pected to predict binding affinity by detecting and

correctly weighting the molecular interactions be-

tween protein and ligand. In the majority of in-

spected cases we saw reciprocity between the lig-

and and the protein atoms that formed interactions

(Fig.2.3A), while protein residues distant from the

ligand remained ignored (Figure S8 shows one ex-

ception). The overall attribution maps seem to be

more disperse than for docking pose predictor.

For the example of HSP90, the predicted affinity

value was 75 nM, reasonably close to the experi-

mental value of 290 nM, making it a suitable ex-

ample for attribution analysis. As in the case of

pose classifier, the network correctly identified the

key hydrogen bond with D93 (Fig.2.3B), as well as

π-stacking between the aromatic ring of the ligand

and F123 (Fig.2.3A). In this case, however, only

phenylalanine ring is highlighted. Nonetheless, the

attributions of the aromatic channels highlight the

aromatic residues in close proximity to the ring sys-

tem of the ligand, including that Phe, ignoring all

the other aromatic residues in the box.

Quantitative analysis

The quantitative analysis confirmed, for the most

part, the conclusions obtained by the visual inspec-

tion. Figure 3 shows the distribution of distances

between the top voxels from protein occupancy and

ligand occupancy channels. Figures S1 to S6 show

the distance distribution for the remaining relevant

combinations of channels. We can see that models

have learned that ligand and protein atoms close to

each other are important, which is exemplified by

the different distributions being shifted towards the

contact range (< 4 Å). This hints that the networks

are learning relevant features of the complex: close

contacts in the case of clash detector and interac-

tions for the two remaining models. This is particu-

larly clear for the clash detector, where the distance

distribution is radically shifted towards the range

under 3 Å. The pose classifier model follows, and

shows a similar, shifted distribution, although not

as clear as in the clash detector. In these two mod-

els, the cloud of points describes a 3-line pattern

at 0, 1 and around 1.5 Å, showing that the most

contributing voxels were in a very close proximity.

In fact, the high number of examples observed at

distance 0 Å indicates that, in a large fraction of

complexes, the same voxel in the two relevant chan-

6
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Figure 2: Comparison of computed attributions obtained for a complex of HSP90 with an analogue
of benzamide tetrahydro-4H-carbazol-4-one (PDB code: 3D0B) by the three models: Clash detector
(1A and 1B), Pose classifier (2A and 2B) and KDEEP (3A and 3B). Pictures on the top row show
the attributions for the protein and ligand occupancy channels, in red and blue, respectively. The
bottom row focuses on particular interactions. 1B shows a clash between the ligand and the leucine
and the attributions for the occupancy channels of protein and ligand (red and blue). 2B and 3B
show the hydrogen bond between the benzamide moiety in the ligand and the aspartate (D93)
residue in the protein. Attributions for the ligand donor channel are shown in pink, while for the
protein acceptor channel are shown in blue.

nels was the most highlighted. The distance distri-

bution for KDEEP is slightly shifted towards higher

values, but is still much better than the random

baseline. This difference could be related to the

fact that, during training, KDEEP is only exposed

to crystal poses, in which the distances between

ligand and protein atoms should be uniform across

examples. This is not obviously the case in the

clash detector, nor in the pose classifier, as docking

might generate poses which, in some areas, might

be slightly too close or too far away from the sur-

face, which might correlate with a bad pose. Hence,

these two models would benefit more from paying

attention to this low range of values, while KDEEP

might not. A similar scenario occurs to the other

combinations of channels (Fig.S1-S6): The clash

detector is usually the best, followed closely by the

pose classifier and KDEEP, which show similar dis-

tributions. The distributions of all three models

are significantly different from the random baseline

in all channel combinations studied according to a

two-sided Mann-Whitney U Test (all combinations

had a p-value lower than the significance threshold

0.0001). These results provide evidence support-

ing the hypothesis that KDEEP and the pose clas-

sifier models have learned to focus on the interface

between the ligand and the protein, as a trained

chemist or biologist would do.

After this test, we checked if there was any cor-

relation between the magnitude of the attribution

of the two best voxels and the distance between

them as a means to test if the quality of the expla-

nation (reciprocity between the two parties) was

correlated with the magnitude of the attribution.

As in the prior experiment, we identified the vox-

els with the highest attribution values in the same

pairs of channels and annotated the distance be-

tween them. We then evaluated the correlation be-
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tween the sum of the attributions in those two vox-

els and their distance. For all models and combina-

tions of channels studied, the Pearson’s correlation

coefficient ranged between -0.48 and -0.15 (Figure

S9). Hence, the higher the attribution value of the

two voxels, the more likely it is that those two vox-

els are in proximity.

Furthermore, for the KDEEP model, we also eval-

uated if there was a correlation between the at-

tribution values and the accuracy of the predic-

tion (measured as an absolute difference between

predicted and actual pKD values). Neither the

maximum attribution value across all channels nor

the sum of the absolute attribution values corre-

lated with the accuracy of the prediction in the

KDEEP model (Pearson’s r was -0.05 and -0.02, re-

spectively). There was not any strong correlation

either between far away residues being highlighted

and prediction accuracy (r=0.05, see SI for details).

Finally, we evaluated how sensitive the attribu-

tions were to minor changes in the input, namely:

(1) rotations of the complex and (2) slight modifi-

cations of the protein-ligand pose. Ideally, the at-

tributions should be consistent across different ori-

entations and pose variants, hence, the same atoms

should be highlighted in the different variations.

All three models show a greater consistency than

the expected by random, both for protein and lig-

and atoms. Although on average, the same atom

was selected just around 2 times out of the 10 in-

put variants (random baseline is close to 1.0), in all

three models, in a great fraction of complexes, the

same atom is picked more than 4 times, which is

not the case in the random baseline (Figures S10-

S13). These results show that the attributions tol-

erate some degree of input variability. Details on

these experiments can be found in SI.
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Figure 3: Distance distribution between the two
voxels with highest, absolute value in protein
and ligand occupancy channels.

Conclusion

The results indicate that the trained networks

are able to learn meaningful chemical interactions.

However, for the pose classifier model and KDEEP,

some cases were observed where the network had

ignored strong interactions, highlighted residues far

from the ligand (Fig.S7-S8) or highlighted ligand

atoms whose interaction counterpart in the pro-

tein had low attributions. This can be the result of

the difficulty of associating the occurrence of cer-

tain contacts or interactions with affinity or with

the quality of the pose prediction, leading to short-

cut learning. For instance, if all the complexes for

8
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kinases in the training set have a pKd of 5.0, the

network might learn to identify this family by us-

ing a set of characteristic residues (which could be

far from the ligand) and simply predict 5.0. In

this sense, PDBbind is not an ideal training set,

as the total number of examples contains few sam-

ples for deep-learning standards, pKd values are

distributed in a large range from 2 to 12, scarcely

populated in both extremes. In the case of the

clash detector model, we have more examples for

each class and the two classes belong to very dif-

ferent distributions, and it is very easy to associate

the occurrence of a given pattern in the input (a

clash) to the correct class, discouraging shortcut

learning, which manifests in the attributions of this

model being much clear.

Furthermore, voxelization is limited to only 8

properties and excludes crystallographic waters.

Given that the latter are known to mediate certain

protein-ligand interactions (e.g. water bridges), a

fraction of the variability in the binding affinity can

only be explained by the presence of these waters.

Additionally, hydrogen-bond donors and acceptors

have diverse strengths (thiol being a weak donor

and hydroxyl being a strong one), however, in the

featurization they are grouped together in just two

entities (donor and acceptor). The same reason-

ing applies for the positive and negative ionizable

channels.

In this study, we have shown that Glimpse dis-

plays the capability to expose some of the flaws

of the networks herein analysed, suggesting that it

can act as an useful diagnostic tool for structure-

based 3D-CNN models. We were also able to iden-

tify atoms or regions of the protein-ligand complex

that play a bigger role on the predictions made by

the networks, which is key to improve the usability

of CNNs in computational chemistry.
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Data and Software Availabil-

ity

Glimpse is available free of charge at https://www.

playmolecule.org/Glimpse/. The three models

studied in this article (“KDEEP”, “Pose classifier”

and “Clash detector”) can be found and used in

the web interface. The protein-ligand complexes

we used as input for generating the images are

available to download in the “Examples” tab in

the web interface. The databases used for train-

ing and validating the models (BindingMoad33 and

PDBbind25) are publicly available, as well as the

docking software (rDock34).

Supporting Information Avail-

able

”Model training” and ”Quantitative analysis” con-

tain additional information for these sections. Fig-

ures S1 to S6: Distance distribution between the

two voxels with highest, absolute attribution value

for the different channel combinations studied.

Figure S7 and S8: Examples of protein residues

far from the ligand having high attribution values.

Figures S9 Correlation between magnitude of the

attributions of the two best voxels and distance

between them. Figures S10 to S13: Attribution

consistency distributions.

9

“output” — 2021/11/18 — 14:59 — page 72 — #84



References

(1) Dudek, A. Z.; Arodz, T.; Gálvez, J.

Computational methods in developing

quantitative structure-activity relation-

ships (QSAR): a review. Comb. Chem.

High Throughput Screening 2006, 9, 213–

228.

(2) Cherkasov, A.; Muratov, E. N.;

Fourches, D.; Varnek, A.; Baskin, I. I.;

Cronin, M.; Dearden, J.; Gramatica, P.;

Martin, Y. C.; Todeschini, R., et al.

QSAR modeling: where have you been?

Where are you going to? J. Med. Chem.

2014, 57, 4977–5010.

(3) Lo, Y.-C.; Rensi, S. E.; Torng, W.; Alt-

man, R. B. Machine learning in chemoin-

formatics and drug discovery. Drug discov-

ery today 2018, 23, 1538–1546.

(4) Neves, B. J.; Braga, R. C.; Melo-

Filho, C. C.; Moreira-Filho, J. T.; Mura-

tov, E. N.; Andrade, C. H. QSAR-Based

Virtual Screening: Advances and Applica-

tions in Drug Discovery. Front. Pharma-

col. 2018, 9, 1275.

(5) Zhang, L.; Zhang, H.; Ai, H.; Hu, H.;

Li, S.; Zhao, J.; Liu, H. Applications of

Machine Learning Methods in Drug Tox-

icity Prediction. Curr. Top. Med. Chem.

(Trivandrum, India) 2018, 18, 987–997.

(6) Ma, H.; An, W.; Wang, Y.; Sun, H.;

Huang, R.; Huang, J. Deep Graph Learn-

ing with Property Augmentation for Pre-

dicting Drug-Induced Liver Injury. Chem.

Res. Toxicol. 2020,

(7) Montanari, F.; Kuhnke, L.; Ter Laak, A.;

Clevert, D.-A. Modeling physico-chemical

ADMET endpoints with multitask graph

convolutional networks. Molecules 2020,

25, 44.

(8) Peng, Y.; Lin, Y.; Jing, X.-Y.; Zhang, H.;

Huang, Y.; Luo, G. S. Enhanced Graph

Isomorphism Network for Molecular AD-

MET Properties Prediction. IEEE Access

2020, 8, 168344–168360.

(9) Feinberg, E. N.; Joshi, E.; Pande, V. S.;

Cheng, A. C. Improvement in ADMET

prediction with multitask deep featuriza-

tion. J. Med. Chem. 2020, 63, 8835–8848.

(10) Skalic, M.; Varela-Rial, A.; Jiménez, J.;
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Model Training

KDEEP

KDEEP was trained on the latest version of the refined set of PDBbind1 comprising of 4749

protein-ligand complexes after filtering of duplicates and complexes that failed the prepara-

tion. A validation set was created for hyperparameter tuning and early stopping by taking a

random sample of 10% of the codes in the refined set. As a test set, the core set of PDBbind

was used, which is comprised of 272 complexes.
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For all three models, during training and validation, the protein-ligand complex was

rotated around the geometrical center of the ligand before generating the final grid, in

order to augment the existing training set and compensate for the fact that CNNs are not

rotationally invariant.2

Clash detector

To train the clash detector model, we used the complexes available in the refined set of the

2019 version of PDBbind. The clashed poses were artificially generated by randomly rotating

the ligand on its own geometrical center while ensuring that at least one atom in the ligand

was within a distance of 1.5Å to the protein. We used the same architecture as for KDEEP,

and the binary cross-entropy loss function.3 We trained the model for 50 epochs with a

batch size of 32 and a starting learning rate of 10−3. This model achieved 0.97 classification

accuracy and 0.98 precision in a held-out validation set, constituted by a randomly selected

group of 10% of the protein-ligand complexes, for which clashed poses were also generated.

Both the training and validation sets were constructed in a balanced way, so that half the

examples were crystal poses and the other half were clashed poses.

Pose classifier

The pose classifier model was trained on BindingMoad database,4 which contains 38, 702

protein-ligand complexes. Ten docked poses were generated for each complex using the

rDock docking software,5 which led to more than 310, 110 examples after removing failed

jobs. This set was split into two classes, one featuring “good” poses (poses with RMSD below

1 Å) and “bad” poses (RMSD greater than 3 Å). Poses between 1 and 3 Å were discarded,

similar to the work by,2 to create a greater separation between the two distributions and

ease the classification task. The final number of examples was 270, 225, constituting a much

larger training set than the other two models. This model was trained with the same hyper-

parameters, loss function and architecture as the previous one.

2
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A validation set was created, composed by all the good and bad poses generated for

a random selection of 10% of the protein-ligand complexes in the BindingMoad database,

so that poses for the same protein-ligand complex cannot be found in both training and

validation sets. Because most of the poses belonged to the “bad” category, a sampling

correction was introduced in the training and a number of bad poses in the validation were

removed to reach a 1:1 ratio, reaching a total of 17, 478 examples in the validation set.

Strict split: KDEEP

For KDEEP, we designed a more strict split, where the PDBbind refined set was clustered

by sequence similarity using a 70% threshold. The three biggest clusters were selected for

testing. A final filter was applied to these three clusters to discard complexes whose ligands

had a fingerprint similarity greater than 0.6 with any ligand in any other cluster ensuring

that these test sets were different both in terms of protein sequence and ligand composition

from any other cluster. Finally, three different KDEEP models were trained using one of the

three clusters as test set (leaving one cluster out and training in all the others). Pearson’s

correlation coefficient in these three test sets was 0.70 (N=29), 0.28 (N=152) and 0.09

(N=81). Hence, predictive performance is lower than on the less strict split and it might be

family-dependent.

Quantitative analysis

Correlation between far away residues and accuracy

We tried to measure if any correlation existed between the presence of far protein residues

being highlighted and prediction accuracy. We summed the attributions of all protein chan-

nels for the voxels that were further than 8 Åfrom any ligand atom (bad attributions) and

divided it by the sum of all protein attributions, obtaining a percentage of the attributions

falling far from the ligand. The Pearson’s correlation with the prediction error was just 0.05

meaning that the presence of far away residues being highlighted does not correlate well with

3
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prediction accuracy.

Attribution consistency across rotations and pose variations

In order to check how sensitive attributions were to changes in the protein-ligand complex’s

orientation, attributions were computed for 10 different orientations for each system. Then

the ligand and protein atoms closest to the voxel with the highest attribution in the occu-

pancy channels were identified in each rotation. This allowed us to evaluate how consistent

was the selection in comparison to a random baseline, where the ligand and protein atoms

were selected randomly among those inside the 24Å
3

box. A similar experiment was per-

formed to evaluate attribution’s sensitivity to changes in the pose. Here, instead of 10

rotations, we applied minor rotations (up to 12º) and displacements (sampled from a normal

distribution with mean 0 and std 0.2Å) to the ligand alone, leading to 10 small variants

of the same pose. Due to the computational cost of these experiments, both of them were

performed in a random subset of 300 complexes sampled from PDBbind refined set.

4
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Figure S1: Distance distribution between the two voxels with highest, absolute attribution
value in protein hydrophobic and ligand hydrophobic channels.
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Figure S2: Distance distribution between the two voxels with highest, absolute attribution
value in protein aromatic and ligand aromatic channels.
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Figure S3: Distance distribution between the two voxels with highest, absolute attribution
value in protein acceptor and ligand donor channels.
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Figure S4: Distance distribution between the two voxels with highest, absolute attribution
value in protein donor and ligand acceptor channels.
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Figure S5: Distance distribution between the two voxels with highest, absolute attribution
value in protein positive and ligand negative channels.
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Figure S6: Distance distribution between the two voxels with highest, absolute attribution
value in protein negative and ligand positive channels.
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Figure S7: Attributions computed for the pose classifier model for the protein and ligand
aromatic channels (yellow and brown, respectively). In addition to highlighting the aromatic
ring in the Tyr residue engaging in a pi-stacking interaction with the ligand (lower right
corner), two other regions in the aromatic protein channel appear highlighted (red dots
at the top), despite being far apart from the ligand. A His residue can be found at that
location (not shown for clarity) but no interaction with the ligand is possible as a beta sheet
sits between the two parties. PDB code: 5JVD
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Figure S8: Attributions computed for KDEEP model for the protein and ligand aromatic
channels (yellow and brown, respectively). In addition to highlighting the aromatic ring
in the Tyr residue engaging in a pi-stacking interaction with the ligand, two extra regions
appear highlighted in the protein aromatic channel (identified by two red dots), despite being
far apart from the ligand. The aromatic residues present at those locations (not shown for
clarity) are a Trp (left red dot) and a Tyr (bottom right dot). Both are far away and shielded
from the ligand by other protein residues. PDB code: 5JVD
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Figure S9: Correlation between the sum of the attributions of the two best voxels and
distance between them. Each column represents a model and each row represents a protein-
ligand channel combination (P is for protein, L for ligand, occ is occupancy, aro is aromatic,
hydropho is hydrophobic, acc is acceptor, don is donor, neg is negative and pos is positive.)
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Protein consistency across rotations

Figure S10: Consistency in protein atom attributions across 10 different orientations. The
protein atom closest to the best voxel in the protein occupancy channel is identified in each of
the 10 orientations. For each complex, we plot how many times the same atom was selected.
As can be seen, in the clash detector and pose classifier models, for some complexes, the
exact same protein atom is picked in all 10 rotations. In all three models, the distribution
is clearly shifted upwards (more consistent) compared to the random baseline.
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Ligand consistency across rotations

Figure S11: Consistency in ligand atom attributions across 10 different orientations. The
ligand atom closest to the best voxel in the ligand occupancy channel is identified in each of
the 10 orientations. For each complex, we plot how many times the same ligand atom was
selected. All three models show a distribution more shifted towards greater values than the
random baseline.
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Protein consistency across pose variants

Figure S12: Consistency in protein atom attributions across 10 pose variations. The protein
atom closest to the best voxel in the protein occupancy channel is identified in each of the
10 variants. For each complex, we plot how many times the same atom was selected. In
KDEEP, the exact same protein atom is select in all 10 pose variants for a large number of
complexes.
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Ligand consistency across pose variants

Figure S13: Consistency in ligand atom attributions across 10 pose variations. The ligand
atom closest to the best voxel in the ligand occupancy channel is identified in each of the
10 poses. For each complex, we plot how many times the same ligand atom was selected.
Although all three models show a distribution better than the baseline, unfortunately, there
are few complexes on which the exact same ligand atom is picked in all 10 poses.
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Chapter 4

DISCUSSION

In this thesis, we have presented new methods to predict the binding mode
of a ligand to a protein, to validate the capacity of a predicted pharma-
cofield to recover the right binding mode among several variants and to
identify which atoms contributed the most to the prediction made by a
convolutional neural network. All these tasks are important in computa-
tional chemistry research and the focus of strong research efforts.

4.1 LigVoxel
Previously, we discussed the benefits of using a pharmacophore when
scoring compounds, as well as their limitations, namely, the need for, at
the very least, one protein-ligand structure. LigVoxel eliminates that lim-
itation by constructing a pharmacofield from the protein structure alone.
My contribution to this work was limited to evaluating the capacity of
the predicted pharmacofield to distinguish the right pose (RMSD below
2 Å with respect to the crystal pose) among several decoy poses. In all
tests where poses of the crystal conformer were included among the set
of decoy poses, the correct pose was recovered among the decoys in a
great fraction of cases. Importantly, the recovery was still high when the
voxelization center was modified by up to 3 Å, which indicates that the
autoencoder is tolerant to such modifications, and when poses of non-
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crystal conformers were included as decoys. However, when the crystal
conformer was not included among the conformers, performance fell to
almost zero, although this seems to be due to sampling limitations in the
conformer generation, and not the autoencoder.

These results are evidence supporting the capacity of the autoencoder to
generate reasonable pharmacofields from the protein structure alone, but
also indicate that they could be used to re-score poses and compounds in
a virtual screening campaign. In fact, if the voxelization of the poses was
fast enough, one could build a docking software where each sampled pose
would be scored based on the overlap with the predicted pharamacofield,
which needs to be computed only once. Actually, the last experiment of
that article, where we only generated poses for non-crystal conformers,
can be thought of as a toy example of a docking algorithm.

Furthermore, improvements in machine learning –like generative adver-
sarial networks– and increases in the number of structures to train on
might lead to greater discriminatory capacity. Additionally, one benefit
of pharmacofields is the ease to interpret the score, as one can simply
visually inspect the overlap between the predicted clouds and the atoms
in the pose. However, it must be stated that these experiments were all
done in protein conformations where a ligand was bound and was simply
extracted before performing the pharmacofield prediction. The question
remains of how different protein conformations will impact LigVoxel’s
prediction.

4.2 SkeleDock

Although several protocols already existed to perform scaffold docking,
they were not readily available or had some limitations; for instance,
while they aligned the query compound to the template, its conforma-
tion was not modeled after it, losing accuracy. Furthermore, the dihedral
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autocompletion step proposed in SkeleDock is novel and helpful when
modeling congeneric series where minor modifications are introduced in
the scaffold, and particularly valuable when modeling macrocycles. An
extra benefit of this protocol is that the resulting conformation closely re-
sembles the crystal geometry, which could be key if downstream affinity
predictors are expecting such geometries, like KDEEP.

When using structure-based affinity predictors, and particularly when us-
ing CNNs, one must keep in mind the geometry distribution they expect.
For instance, KDEEP was trained only on crystal poses, hence, applying
KDEEP on docked poses where the predicted geometry might belong to a
distribution slightly different from that found in crystals, could be detri-
mental for performance. More generally, scoring functions are made of
various distance based functions, and during docking, the search engine
produces poses that fall in local and global minima of these functions.
Although scoring functions might be overall similar, slight changes in the
shape of these functions might lead to different scores, similarly to how
an hydrogen bond might be classified as such or not depending on the
criteria used by the researcher.

An additional consideration to keep in mind is the difference between
pose prediction and affinity prediction. In a congeneric series, SkeleDock
will place the common scaffold in practically the exact same conforma-
tion for all the compounds in the series, as there is no extra minimization
for those atoms; while this might not yield the best poses, it is probably
beneficial when scoring, as the geometry of the common scaffold is no
longer a source of noise, and only the atoms that are different contribute
to the differences in score.

Additionally, SkeleDock was validated in a blind setup, which we believe
to be key to improve reproducibility and increase trust in computational
approaches. The results of the challenge also point out the necessity to
use ”the right tool for the job”, as all best performing solutions use some
variation of template docking. This hints the importance of understanding
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the scenario that the practitioner faces: is there any binding affinity data
that can be used to validate the predicted binding mode? Are there any
crystal poses for a similar compound or fragment? Is there any literature
describing the flexibility of the pocket? These and many other questions
must be asked by the researcher and taken into account to select the soft-
ware solution that better fits its situation.

Finally, it must be recognized that SkeleDock is limited to use cases where
the structure of a similar compound is known. However, as discussed in
the article, the rising popularity of fragment based drug discovery could
result in an abundance of seed or template structures, which could be then
used by SkeleDock to grow fragments into lead compounds. Overall, we
believe that SkeleDock is a valuable tool with a narrow, but well defined,
scope.

4.3 Glimpse

The adoption of computer vision algorithms, like CNNs, by computa-
tional chemistry has inherited both its advantages and its disadvantages:
state-of-the-art has improved, but the black-box nature of these algorithms
clouds this success, hampering its value, as the opacity of these predic-
tions is in direct conflict with the nature of scientific thinking. Glimpse
is an attempt to alleviate this problem by identifying the features in the
input (atoms) which influence the prediction the most, improving the in-
terpretability of the predictions. Although this is far from being a perfect
explanation of the internal logic on the neural network, it provides a use-
ful explanation of it.

Besides offering this application online, which includes the three mod-
els we presented in the article, so that users can extract attributions for
their own predictions, we also studied if CNNs were engaging in shortcut
learning or not when applied to chemistry problems. We were able to con-
clude that the interface of the protein-ligand complex accumulated most
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of the attributions, which is where the interactions that determine affinity
and binding mode occur. Furthermore, we were able to show reciprocity
between protein and ligand atoms, further supporting the hypothesis that
chemistry principles are learned by CNNs. However, some hints of short-
cut learning were also identified, like far-away residues being highlighted.
This constitutes a great argument for the use of Glimpse -and other inter-
pretability methods- as diagnostics tools to improve model training.

Finally, it is also worth mentioning the benefits of providing this appli-
cation, and others presented here, to the public, in a platform like Play-
Molecule.org. First and foremost, it increases the value of the software by
virtue of making it available to any user with an internet connection and
a web browser. Second, it facilitates the evaluation of the reproducibil-
ity of the results reported in the article, as any user can potentially use
the application and check if he or she obtains the same or comparable re-
sults. Third, users provide feedback, report bugs and ask for new features,
inducing continuous improvement cycles which, ultimately, improve the
software.
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Chapter 5

CONCLUSIONS

The algorithms and applications presented here are novel and, when tested
against other state-of-the-art methods, they compared favourably. Hence,
we believe that they provide value for the scientific community. Impor-
tantly, they are publicly available to use at PlayMolecule.org. From the
results presented here, we can draw some conclusions:

1. SkeleDock is a valuable application to model the binding mode of
a ligand when the structure of a similar compound is available. Its
dihedral autocompletion step allows it to overcome minor differ-
ences between the scaffold of the template and that of the query
compound. It was validated in a blind setup, the D3R Grand Chal-
lenge, where it achieved first place in two tasks.

2. The pharmacofields predicted by LigVoxel are capable of discrim-
inating the right pose among several decoy poses, proving that the
predicted pharmacofield is accurate and that it has value as a scor-
ing function.

3. Glimpse can identify which regions or atoms of the protein-ligand
complex used as input influence the prediction the most, helping
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users to understand the rationale behind the prediction they ob-
tained from a neural network like KDEEP. It can also be used as
a diagnostics tool to evaluate if a neural network is learning what is
expected or not.

4. Convolutional neural networks trained to predict affinity, detect steric
clashes or discriminate accurate and inaccurate binding modes learn
to focus on the interface between protein and ligand. Computed at-
tributions show reciprocity, as the protein and ligand atoms in con-
tact are both highlighted, supporting the idea that these networks
can internally derive structural biology principles.

5. Making these applications available for free online increases their
value and facilitates reproducibility evaluations.
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[5] Klebe G, Böhm HJ. Energetic and Entropic Factors Determining
Binding Affinity in Protein-Ligand Complexes. Journal of Recep-
tor and Signal Transduction Research. 1997 jan;17(42007):459–
473. Available from: https://www.tandfonline.com/
doi/abs/10.3109/10799899709036621.

[6] Roberts BC, Mancera RL. Ligand - protein docking with wa-
ter molecules. Journal of Chemical Information and Modeling.
2008 feb;48(2):397–408. Available from: https://pubs.
acs.org/doi/abs/10.1021/ci700285e.

103

https://europepmc.org/article/med/8895597
https://europepmc.org/article/med/8895597
https://link.springer.com/chapter/10.1007/978-3-642-41199-1_1
https://link.springer.com/chapter/10.1007/978-3-642-41199-1_1
https://www.tandfonline.com/doi/abs/10.3109/10799899709036621
https://www.tandfonline.com/doi/abs/10.3109/10799899709036621
https://pubs.acs.org/doi/abs/10.1021/ci700285e
https://pubs.acs.org/doi/abs/10.1021/ci700285e


“output” — 2021/11/18 — 14:59 — page 104 — #116

[7] Michel J, Tirado-Rives J, Jorgensen WL. Prediction of the water
content in protein binding sites. Journal of Physical Chemistry
B. 2009 oct;113(40):13337–13346. Available from: https://
pubs.acs.org/doi/abs/10.1021/jp9047456.

[8] Chodera JD, Mobley DL. Entropy-Enthalpy Compensation: Role
and Ramifications in Biomolecular Ligand Recognition and De-
sign. Annual Review of Biophysics. 2013 5;42:121–142. Avail-
able from: https://www.annualreviews.org/doi/
abs/10.1146/annurev-biophys-083012-130318.

[9] Du X, Li Y, Xia YL, Ai SM, Liang J, Sang P, et al. Insights into
Protein-Ligand Interactions: Mechanisms, Models, and Methods.
International Journal of Molecular Sciences 2016, Vol 17, Page
144. 2016 1;17:144. Available from: https://www.mdpi.
com/1422-0067/17/2/144.

[10] Stank A, Kokh DB, Fuller JC, Wade RC. Protein Binding Pocket
Dynamics. Accounts of Chemical Research. 2016 may;49(5):809–
815. Available from: https://pubs.acs.org/doi/abs/
10.1021/acs.accounts.5b00516.

[11] Zhou T, Commodore L, Huang WS, Wang Y, Sawyer TK, Shake-
speare WC, et al. Structural Analysis of DFG-in and DFG-out
Dual Src-Abl Inhibitors Sharing a Common Vinyl Purine Tem-
plate. Chemical Biology & Drug Design. 2010 jan;75(1):18–
28. Available from: http://doi.wiley.com/10.1111/
j.1747-0285.2009.00905.x.

[12] Pantsar T, Poso A. Binding Affinity via Docking: Fact and Fiction.
Molecules. 2018 jul;23(8):1899. Available from: http://www.
mdpi.com/1420-3049/23/8/1899.

[13] Bauer MR, Mackey MD. Electrostatic Complementarity as a
Fast and Effective Tool to Optimize Binding and Selectivity of
Protein-Ligand Complexes. Journal of Medicinal Chemistry. 2019

104

https://pubs.acs.org/doi/abs/10.1021/jp9047456
https://pubs.acs.org/doi/abs/10.1021/jp9047456
https://www.annualreviews.org/doi/abs/10.1146/annurev-biophys-083012-130318
https://www.annualreviews.org/doi/abs/10.1146/annurev-biophys-083012-130318
https://www.mdpi.com/1422-0067/17/2/144
https://www.mdpi.com/1422-0067/17/2/144
https://pubs.acs.org/doi/abs/10.1021/acs.accounts.5b00516
https://pubs.acs.org/doi/abs/10.1021/acs.accounts.5b00516
http://doi.wiley.com/10.1111/j.1747-0285.2009.00905.x
http://doi.wiley.com/10.1111/j.1747-0285.2009.00905.x
http://www.mdpi.com/1420-3049/23/8/1899
http://www.mdpi.com/1420-3049/23/8/1899


“output” — 2021/11/18 — 14:59 — page 105 — #117

3;62:3036–3050. Available from: https://pubs.acs.org/
doi/abs/10.1021/acs.jmedchem.8b01925.

[14] Li D, Sun M, Li M, Li Z, Jiang Z. The impact of hardware im-
provement for molecular modeling in a grid environment. Ex-
pert Opinion on Drug Discovery. 2009 8;4:873–877. Avail-
able from: https://www.tandfonline.com/doi/abs/
10.1517/17460440903061246.

[15] Ewing TJA, Makino S, Skillman AG, Kuntz ID. DOCK
4.0: Search strategies for automated molecular docking of
flexible molecule databases. Journal of Computer-Aided
Molecular Design. 2001;15(5):411–428. Available from:
https://link.springer.com/article/10.1023/A:
1011115820450.

[16] Verdonk ML, Cole JC, Hartshorn MJ, Murray CW, Taylor RD. Im-
proved protein-ligand docking using GOLD. Proteins: Structure,
Function, and Bioinformatics. 2003 aug;52(4):609–623. Available
from: http://doi.wiley.com/10.1002/prot.10465.

[17] Friesner RA, Banks JL, Murphy RB, Halgren TA, Klicic JJ, Mainz
DT, et al. Glide: A New Approach for Rapid, Accurate Dock-
ing and Scoring. 1. Method and Assessment of Docking Accu-
racy. Journal of Medicinal Chemistry. 2004 mar;47(7):1739–
1749. Available from: https://pubs.acs.org/doi/abs/
10.1021/jm0306430.

[18] Ruiz-Carmona S, Alvarez-Garcia D, Foloppe N, Garmendia-Doval
AB, Juhos S, Schmidtke P, et al. rDock: A Fast, Versa-
tile and Open Source Program for Docking Ligands to Pro-
teins and Nucleic Acids. PLoS Computational Biology. 2014
apr;10(4):e1003571. Available from: http://dx.plos.org/
10.1371/journal.pcbi.1003571.

105

https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.8b01925
https://pubs.acs.org/doi/abs/10.1021/acs.jmedchem.8b01925
https://www.tandfonline.com/doi/abs/10.1517/17460440903061246
https://www.tandfonline.com/doi/abs/10.1517/17460440903061246
https://link.springer.com/article/10.1023/A:1011115820450
https://link.springer.com/article/10.1023/A:1011115820450
http://doi.wiley.com/10.1002/prot.10465
https://pubs.acs.org/doi/abs/10.1021/jm0306430
https://pubs.acs.org/doi/abs/10.1021/jm0306430
http://dx.plos.org/10.1371/journal.pcbi.1003571
http://dx.plos.org/10.1371/journal.pcbi.1003571


“output” — 2021/11/18 — 14:59 — page 106 — #118

[19] Harvey MJ, Giupponi G, De Fabritiis G. ACEMD: Accelerat-
ing biomolecular dynamics in the microsecond time scale. Jour-
nal of Chemical Theory and Computation. 2009 jun;5(6):1632–
1639. Available from: https://pubs.acs.org/doi/abs/
10.1021/ct9000685.

[20] Mestres J. Virtual screening: a real screening complement to high-
throughput screening. Biochemical Society Transactions. 2002
8;30:797–799. Available from: https://europepmc.org/
article/med/12196200.

[21] Ackloo S, Al-awar R, Amaro RE, Arrowsmith CH, Azevedo
H, Batey RA, et al. CACHE (Critical Assessment of Com-
putational Hit-finding Experiments): A public-private part-
nership benchmarking initiative to enable the development
of computational methods for hit-finding. 2021 10;Available
from: https://chemrxiv.org/engage/chemrxiv/
article-details/6168ba62f718dfc39bdee0db.

[22] Zhu T, Cao S, Su PC, Patel R, Shah D, Chokshi HB, et al.. Hit iden-
tification and optimization in virtual screening: Practical recom-
mendations based on a critical literature analysis. American Chem-
ical Society; 2013. Available from: https://pubs.acs.
org/doi/abs/10.1021/jm301916b.

[23] Al Olaby RR, Cocquerel L, Zemla A, Saas L, Dubuisson J, Viel-
metter J, et al. Identification of a novel drug lead that inhibits
HCV infection and cell-to-cell transmission by targeting the HCV
E2 glycoprotein. PLoS ONE. 2014 oct;9(10). Available from:
https://pubmed.ncbi.nlm.nih.gov/25357246/.

[24] Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li SG, et al. A
virtual screen discovers novel, fragment-sized inhibitors of my-
cobacterium tuberculosis InhA. Journal of Chemical Informa-
tion and Modeling. 2015 mar;55(3):645–659. Available from:
https://pubs.acs.org/doi/10.1021/ci500672v.

106

https://pubs.acs.org/doi/abs/10.1021/ct9000685
https://pubs.acs.org/doi/abs/10.1021/ct9000685
https://europepmc.org/article/med/12196200
https://europepmc.org/article/med/12196200
https://chemrxiv.org/engage/chemrxiv/article-details/6168ba62f718dfc39bdee0db
https://chemrxiv.org/engage/chemrxiv/article-details/6168ba62f718dfc39bdee0db
https://pubs.acs.org/doi/abs/10.1021/jm301916b
https://pubs.acs.org/doi/abs/10.1021/jm301916b
https://pubmed.ncbi.nlm.nih.gov/25357246/
https://pubs.acs.org/doi/10.1021/ci500672v


“output” — 2021/11/18 — 14:59 — page 107 — #119

[25] Luciani R, Saxena P, Surade S, Santucci M, Venturelli A, Bor-
sari C, et al. Virtual Screening and X-ray Crystallography
Identify Non-Substrate Analog Inhibitors of Flavin-Dependent
Thymidylate Synthase. Journal of Medicinal Chemistry. 2016
oct;59(19):9269–9275. Available from: https://pubmed.
ncbi.nlm.nih.gov/27589670/.

[26] Babaoglu K, Simconov A, Irwin JJ, Nelson ME, Feng B,
Thomas CJ, et al. Comprehensive mechanistic analysis of hits
from high-throughput and docking screens against β-lactamase.
Journal of Medicinal Chemistry. 2008 apr;51(8):2502–2511.
Available from: https://pubs.acs.org/doi/abs/10.
1021/jm701500e.

[27] Pereira HM, Berdini V, Cleasby A, Garratt RC. Crystal struc-
ture of calf spleen purine nucleoside phosphorylase complexed to
a novel purine analogue. FEBS Letters. 2007 oct;581(26):5082–
5086. Available from: http://doi.wiley.com/10.1016/
j.febslet.2007.09.051.

[28] Lyu J, Wang S, Balius TE, Singh I, Levit A, Moroz YS, et al.
Ultra-large library docking for discovering new chemotypes. Na-
ture. 2019 feb;566(7743):224–229. Available from: https:
//www.nature.com/articles/s41586-019-0917-9.

[29] Kairys V, Baranauskiene L, Kazlauskiene M, Matulis D,
Kazlauskas E. Binding affinity in drug design: ex-
perimental and computational techniques. Expert Opin-
ion on Drug Discovery. 2019 8;14:755–768. Available
from: https://www.tandfonline.com/doi/abs/10.
1080/17460441.2019.1623202.

[30] Di L, Kerns E, Carter G. Drug-Like Property Concepts in Pharma-
ceutical Design. Current Pharmaceutical Design. 2009 7;15:2184–
2194.

107

https://pubmed.ncbi.nlm.nih.gov/27589670/
https://pubmed.ncbi.nlm.nih.gov/27589670/
https://pubs.acs.org/doi/abs/10.1021/jm701500e
https://pubs.acs.org/doi/abs/10.1021/jm701500e
http://doi.wiley.com/10.1016/j.febslet.2007.09.051
http://doi.wiley.com/10.1016/j.febslet.2007.09.051
https://www.nature.com/articles/s41586-019-0917-9
https://www.nature.com/articles/s41586-019-0917-9
https://www.tandfonline.com/doi/abs/10.1080/17460441.2019.1623202
https://www.tandfonline.com/doi/abs/10.1080/17460441.2019.1623202


“output” — 2021/11/18 — 14:59 — page 108 — #120

[31] Shen C, Weng G, Zhang X, Leung ELH, Yao X, Pang
J, et al. Accuracy or novelty: what can we gain from
target-specific machine-learning-based scoring functions in virtual
screening? Briefings in Bioinformatics. 2021 9;22. Available
from: https://academic.oup.com/bib/article/22/
5/bbaa410/6070382.

[32] Santana K, do Nascimento LD, e Lima AL, Damasceno V, Nahum
C, Braga RC, et al. Applications of Virtual Screening in Bio-
prospecting: Facts, Shifts, and Perspectives to Explore the Chemo-
Structural Diversity of Natural Products. Frontiers in Chemistry.
2021 4;9:155.

[33] Borrelli KW, Vitalis A, Alcantara R, Guallar V. PELE: Protein en-
ergy landscape exploration. A novel Monte Carlo based technique.
Journal of Chemical Theory and Computation. 2005;1(6):1304–
1311. Available from: https://pubs.acs.org/doi/pdf/
10.1021/ct0501811.

[34] Muegge I, Mukherjee P. An overview of molecular fingerprint sim-
ilarity search in virtual screening. Taylor and Francis Ltd; 2016.
Available from: https://www.tandfonline.com/doi/
abs/10.1517/17460441.2016.1117070.

[35] Kumar A, Zhang KYJ. Advances in the development of
shape similarity methods and their application in drug
discovery. Frontiers Media S.A.; 2018. Available from:
https://www.frontiersin.org/articles/10.
3389/fchem.2018.00315/full.

[36] Wang DD, Zhu M, Yan H. Computationally predicting
binding affinity in protein-ligand complexes: free energy-
based simulations and machine learning-based scoring func-
tions. Briefings in Bioinformatics. 2021 5;22:1–24. Available
from: https://academic.oup.com/bib/article/22/
3/bbaa107/5860693.

108

https://academic.oup.com/bib/article/22/5/bbaa410/6070382
https://academic.oup.com/bib/article/22/5/bbaa410/6070382
https://pubs.acs.org/doi/pdf/10.1021/ct0501811
https://pubs.acs.org/doi/pdf/10.1021/ct0501811
https://www.tandfonline.com/doi/abs/10.1517/17460441.2016.1117070
https://www.tandfonline.com/doi/abs/10.1517/17460441.2016.1117070
https://www.frontiersin.org/articles/10.3389/fchem.2018.00315/full
https://www.frontiersin.org/articles/10.3389/fchem.2018.00315/full
https://academic.oup.com/bib/article/22/3/bbaa107/5860693
https://academic.oup.com/bib/article/22/3/bbaa107/5860693


“output” — 2021/11/18 — 14:59 — page 109 — #121

[37] Maia EHB, Assis LC, de Oliveira TA, da Silva AM, Taranto AG.
Structure-Based Virtual Screening: From Classical to Artificial In-
telligence. Frontiers in Chemistry. 2020 4;8:343.

[38] Trott O, Olson AJ. AutoDock Vina: Improving the speed and
accuracy of docking with a new scoring function, efficient opti-
mization, and multithreading. Journal of Computational Chem-
istry. 2009 jan;31(2):NA–NA. Available from: http://doi.
wiley.com/10.1002/jcc.21334.

[39] Dror RO, Pan AC, Arlow DH, Borhani DW, Maragakis P,
Shan Y, et al. Pathway and mechanism of drug binding
to G-protein-coupled receptors. Proceedings of the National
Academy of Sciences of the United States of America. 2011
aug;108(32):13118–13123. Available from: https://www.
pnas.org/content/108/32/13118.

[40] Spitaleri A, Decherchi S, Cavalli A, Rocchia W. Fast Dynamic
Docking Guided by Adaptive Electrostatic Bias: The MD-Binding
Approach. Journal of Chemical Theory and Computation. 2018
mar;14(3):1727–1736. Available from: https://pubs.acs.
org/doi/abs/10.1021/acs.jctc.7b01088.

[41] Aguirre C, Brink TT, Guichou JF, Cala O, Krimm I.
Comparing Binding Modes of Analogous Fragments Us-
ing NMR in Fragment-Based Drug Design: Application
to PRDX5. PLOS ONE. 2014 7;9:e102300. Avail-
able from: https://journals.plos.org/plosone/
article?id=10.1371/journal.pone.0102300.

[42] Miller EB, Murphy RB, Sindhikara D, Borrelli KW, Grisewood
MJ, Ranalli F, et al. Reliable and Accurate Solution to the In-
duced Fit Docking Problem for Protein-Ligand Binding. Jour-
nal of Chemical Theory and Computation. 2021 4;17:2630–2639.
Available from: https://pubs.acs.org/doi/abs/10.
1021/acs.jctc.1c00136.

109

http://doi.wiley.com/10.1002/jcc.21334
http://doi.wiley.com/10.1002/jcc.21334
https://www.pnas.org/content/108/32/13118
https://www.pnas.org/content/108/32/13118
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b01088
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.7b01088
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102300
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0102300
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.1c00136
https://pubs.acs.org/doi/abs/10.1021/acs.jctc.1c00136


“output” — 2021/11/18 — 14:59 — page 110 — #122

[43] Varela-Rial A, Majewski M, Fabritiis GD. Structure based vir-
tual screening: Fast and slow. Wiley Interdisciplinary Re-
views: Computational Molecular Science. 2021;p. e1544. Avail-
able from: https://onlinelibrary.wiley.com/doi/
full/10.1002/wcms.1544.

[44] Huey R, Morris GM, Olson AJ, Goodsell DS. A semiempirical
free energy force field with charge-based desolvation. Journal of
Computational Chemistry. 2007 apr;28(6):1145–1152. Available
from: http://doi.wiley.com/10.1002/jcc.20634.

[45] Verdonk ML, Mortenson PN, Hall RJ, Hartshorn MJ, Murray
CW. Protein-ligand docking against non-native protein con-
formers. Journal of Chemical Information and Modeling. 2008
nov;48(11):2214–2225. Available from: https://pubs.acs.
org/doi/abs/10.1021/ci8002254.

[46] Hu X, Balaz S, Shelver WH. A practical approach to docking of
zinc metalloproteinase inhibitors. Journal of Molecular Graphics
and Modelling. 2004 mar;22(4):293–307.

[47] Lamoree B, Hubbard RE. Current perspectives in fragment-based
lead discovery (FBLD). Portland Press Ltd; 2017. Available from:
https://doi.org/10.1042/EBC20170028.

[48] Mizutani R, Shimizu Y, Saiga R, Ueno G, Nakamura Y, Takeuchi
A, et al. Spatiotemporal development of soaked protein crys-
tal. Scientific Reports 2014 4:1. 2014 7;4:1–7. Available from:
https://www.nature.com/articles/srep05731.

[49] Doerr S, De Fabritiis G. On-the-fly learning and sampling of
ligand binding by high-throughput molecular simulations. Jour-
nal of Chemical Theory and Computation. 2014 may;10(5):2064–
2069. Available from: https://pubs.acs.org/doi/abs/
10.1021/ct400919u.

110

https://onlinelibrary.wiley.com/doi/full/10.1002/wcms.1544
https://onlinelibrary.wiley.com/doi/full/10.1002/wcms.1544
http://doi.wiley.com/10.1002/jcc.20634
https://pubs.acs.org/doi/abs/10.1021/ci8002254
https://pubs.acs.org/doi/abs/10.1021/ci8002254
https://doi.org/10.1042/EBC20170028
https://www.nature.com/articles/srep05731
https://pubs.acs.org/doi/abs/10.1021/ct400919u
https://pubs.acs.org/doi/abs/10.1021/ct400919u


“output” — 2021/11/18 — 14:59 — page 111 — #123

[50] Souza PCT, Thallmair S, Conflitti P, Ramı́rez-Palacios C, Alessan-
dri R, Raniolo S, et al. Proteinâligand binding with the
coarse-grained Martini model. Nature Communications. 2020
dec;11(1):1–11. Available from: https://doi.org/10.
1038/s41467-020-17437-5.

[51] Shan Y, Kim ET, Eastwood MP, Dror RO, Seeliger MA, Shaw DE.
How does a drug molecule find its target binding site? Jour-
nal of the American Chemical Society. 2011 6;133:9181–9183.
Available from: https://pubs.acs.org/doi/abs/10.
1021/ja202726y.

[52] Buch I, Giorgino T, De Fabritiis G. Complete reconstruction of
an enzyme-inhibitor binding process by molecular dynamics sim-
ulations. Proceedings of the National Academy of Sciences of the
United States of America. 2011 jun;108(25):10184–10189. Avail-
able from: https://www.pnas.org/content/108/25/
10184.

[53] Zhu J, Lv Y, Han X, Xu D, Han W. Understanding the differ-
ences of the ligand binding/unbinding pathways between phos-
phorylated and non-phosphorylated ARH1 using molecular dy-
namics simulations. Scientific Reports. 2017 dec;7(1):1–14.
Available from: https://www.nature.com/articles/
s41598-017-12031-0.

[54] Clark AJ, Tiwary P, Borrelli K, Feng S, Miller EB, Abel R, et al.
Prediction of protein–ligand binding poses via a combination of in-
duced fit docking and metadynamics simulations. Journal of chem-
ical theory and computation. 2016;12(6):2990–2998.

[55] Ruiz-Carmona S, Schmidtke P, Luque FJ, Baker L, Matassova
N, Davis B, et al. Dynamic undocking and the quasi-bound
state as tools for drug discovery. Nature Chemistry. 2017
mar;9(3):201–206. Available from: https://www.nature.
com/articles/nchem.2660.

111

https://doi.org/10.1038/s41467-020-17437-5
https://doi.org/10.1038/s41467-020-17437-5
https://pubs.acs.org/doi/abs/10.1021/ja202726y
https://pubs.acs.org/doi/abs/10.1021/ja202726y
https://www.pnas.org/content/108/25/10184
https://www.pnas.org/content/108/25/10184
https://www.nature.com/articles/s41598-017-12031-0
https://www.nature.com/articles/s41598-017-12031-0
https://www.nature.com/articles/nchem.2660
https://www.nature.com/articles/nchem.2660


“output” — 2021/11/18 — 14:59 — page 112 — #124

[56] Majewski M, Barril X. Structural Stability Predicts the Bind-
ing Mode of Protein-Ligand Complexes. Journal of Chem-
ical Information and Modeling. 2020 mar;60(3):1644–1651.
Available from: https://pubs.acs.org/doi/abs/10.
1021/acs.jcim.9b01062.

[57] Martinez-Rosell G, Harvey MJ, De Fabritiis G. Molecular-
Simulation-Driven Fragment Screening for the Discovery of New
CXCL12 Inhibitors. Journal of Chemical Information and Model-
ing. 2018 mar;58(3):683–691. Available from: https://pubs.
acs.org/doi/abs/10.1021/acs.jcim.7b00625.

[58] Ferruz N, Tresadern G, Pineda-Lucena A, De Fabritiis G. Multi-
body cofactor and substrate molecular recognition in the myo-
inositol monophosphatase enzyme. Scientific Reports. 2016
jul;6(1):1–10. Available from: https://www.nature.com/
articles/srep30275.

[59] Ferruz N, Doerr S, Vanase-Frawley MA, Zou Y, Chen X, Marr ES,
et al. Dopamine D3 receptor antagonist reveals a cryptic pocket
in aminergic GPCRs. Scientific Reports. 2018 dec;8(1):1–10.
Available from: https://www.nature.com/articles/
s41598-018-19345-7.

[60] Gioia D, Bertazzo M, Recanatini M, Masetti M, Cavalli A. Dy-
namic Docking: A Paradigm Shift in Computational Drug Discov-
ery. Molecules. 2017 nov;22(11):2029. Available from: http:
//www.mdpi.com/1420-3049/22/11/2029.

[61] Tripathi A, Bankaitis VA. Molecular Docking: From Lock
and Key to Combination Lock. Journal of molecular
medicine and clinical applications. 2017;2. Available from:
https://www.sciforschenonline.org/journals/
molecular-biology-medicine/IJMBM-2-106.php.

[62] Ferrari AM, Wei BQ, Costantino L, Shoichet BK. Soft dock-
ing and multiple receptor conformations in virtual screening.

112

https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b01062
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.9b01062
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00625
https://pubs.acs.org/doi/abs/10.1021/acs.jcim.7b00625
https://www.nature.com/articles/srep30275
https://www.nature.com/articles/srep30275
https://www.nature.com/articles/s41598-018-19345-7
https://www.nature.com/articles/s41598-018-19345-7
http://www.mdpi.com/1420-3049/22/11/2029
http://www.mdpi.com/1420-3049/22/11/2029
https://www.sciforschenonline.org/journals/molecular-biology-medicine/IJMBM-2-106.php
https://www.sciforschenonline.org/journals/molecular-biology-medicine/IJMBM-2-106.php


“output” — 2021/11/18 — 14:59 — page 113 — #125

Journal of Medicinal Chemistry. 2004 oct;47(21):5076–5084.
Available from: https://pubs.acs.org/doi/abs/10.
1021/jm049756p.

[63] Sherman W, Day T, Jacobson MP, Friesner RA, Farid R.
Novel procedure for modeling ligand/receptor induced fit ef-
fects. Journal of Medicinal Chemistry. 2006 jan;49(2):534–553.
Available from: https://pubs.acs.org/doi/abs/10.
1021/jm050540c.

[64] Amaro RE, Baudry J, Chodera J, Demir Ö, McCammon JA, Miao
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