
Exploring twisted bilayer graphene
with nano-optics

by

Niels Caspar Herman Hesp

Thesis Advisor:
Prof. Dr. Frank H.L. Koppens

ICFO – Institut de Ciències Fotòniques
UPC – Universitat Politècnica de Catalunya

October 2021





Thesis committee:

Prof. Dr. Dmitri Basov (Columbia University, United States)
Prof. Dr. Marco Polini (University of Pisa, Italy)
Prof. Dr. Georgia Papadakis (ICFO – Institut de Ciències Fotòniques, Spain)





Abstract
Nano-optics studies the behaviour of light on the nanoscale. In particular, it probes the
interaction of light with objects, often of nanometre-size, and reveals fine details of the
material’s optical properties. Optoelectronics is an integral part of optics and describes the
interaction between light and electronics, such as the detection of light and subsequent
conversion to an electrical signal. Understanding such mechanisms at the nanoscale is
of importance for improving imaging and light-harvesting applications. In this Thesis, we
apply near-field microscopy to study optics on the nanoscale. It probes optical properties
using light interacting with the near-field electromagnetic field near the material’s surface.

Twisted bilayer graphene (TBG) is formed by stacking two layers of graphene — a one-
atom-thick sheet of carbon atoms — with a small twist angle. This causes an interference
pattern in the atomic lattice called a moiré pattern, which affects the electronic properties
dramatically. The discovery of unconventional superconductivity in TBG in 2018 made it
a thriving field of research. Adding to this, TBG revealed strongly correlating states and
topological features, making it a host of tunable exotic phases that may shed light on the
origins of unconventional superconductivity. These phenomena motivate us to study the
optical properties of TBG on a nanoscale, which have received little attention thus far.

In the first part of this Thesis, I describe spatially oscillating patterns within selected
regions of TBG that we detected using near-field microscopy. We interpret them as a man-
ifestation of plasmons — electrons moving collectively in a wave-like pattern — driven by
interband transitions. We model these areas with a reduced interlayer coupling, which en-
hances the strength of interband transitions and explains the observed plasmon dispersion.

After this, I discuss large-scale periodic features observed in minimally twisted bilayer
graphene (θ < 0.1°) by photocurrent nanoscopy. For these small twist angles, the atoms
rearrange in triangular domains separated by a network of domain walls. We find that
the domain walls convert heat injected in the domains into a measurable current via the
photothermoelectric effect. Our results uncover the sharp changes in electronic properties
at the domain walls, which govern the optoelectronic response.

I focus in the second part of the Thesis on the development of new experimental tech-
niques, which enable nano-optical studies on exotic states of TBG and its relatives. I show
that the semiconducting material WSe2 can be used as an ambipolar transparent top gate
for infrared near-field experiments. This enables full control of the carrier density and
transverse displacement field without blocking near-field access.

Hereafter, I describe a commercial cryogenic near-field microscope with a base temper-
ature of 10 K, which required modifications for reliable operation. I present an active
damping system to oppose the vibrations in the system and enhance the mechanical sta-
bility. We further improve the AFM stability by changing the AFM excitation position.

In the final two Chapters I examine the photoresponse of TBG at low temperature.
We observe semi-periodic modulations across our sample, which we believe manifests a
second-order superlattice arising from TBG aligned to the hBN substrate in combination
with strain. In a different sample, we reveal a spatially inhomogeneous response from
which we deduce a map of the local twist angle.





Resumen
La nano-óptica estudia el comportamiento de la luz en la nanoescala. En particular, mide la
interacción de la luz con objetos, normalmente de tamaño nanométrico, y revela los detalles
de las propiedades ópticas del material. La optoelectrónica es una parte integral de la óptica
y describe la interacción entre la luz y la electrónica, como por ejemplo la detección de
la luz y su sucesiva conversión a una señal eléctrica. Entender estos mecanismos en la
nanoescala es de vital importancia para mejorar sus aplicaciones en imagen y en captación
de luz. En esta Tesis, aplicamos la técnica de microscopía de campo-cercano para estudiar
óptica en la nanoescala. Medimos las propiedades ópticas usando luz que interacciona con
el campo electromagnético cercano a la superficie del material.

Una bicapa de grafeno rotada (TBG por sus siglas en inglés) se forma al apilar dos capas
de grafeno — una lámina de carbono de un solo átomo de grosor — con un pequeño
ángulo entre ellas. Esto provoca un patrón de interferencia en la red atómica que se llama
patrón moiré, que afecta las propiedades electrónicas dramáticamente. El descubrimiento
de superconductividad no-convencional en TBG en el 2018 lo convirtió en un campo de
investigación en auge. Además, el TBG ha revelado estados fuertemente correlacionados
y características topológicas, convirtiéndolo en un portador de fases exóticas ajustable
que podría arrojar luz sobre los orígenes de la superconductividad no-convencional. Estos
fenómenos nos motivan a estudiar las propiedades ópticas del TBG en la nanoescala, que
hasta ahora has recibido poca atención.

En la primera parte de esta Tesis, describo patrones que oscilan espacialmente dentro de
las regiones seleccionadas de TBG que detectamos usando microscopía de campo-cercano.
Los interpretamos como la manifestación de plasmones — electrones moviéndose colecti-
vamente en un patrón ondulatorio — promovidos por transiciones inter-banda. Modelamos
estas áreas con un acoplamiento inter-capa, lo cual mejora la fuerza de las transiciones
inter-banda y explica la dispersión plasmónica observada.

Después de esto, hablo de características periódicas de gran escala observadas en bicapas
de grafeno rotadas mínimamente (θ < 0.1°) usando nanoscopía de fotocorriente. Para
estos pequeños ángulos, los átomos se reagrupan en dominios triangulares separados por
una red de paredes de dominio, que gobiernan la respuesta optoelectrónica.

En la segunda parte de la Tesis me concentro en el desarrollo de nuevas técnicas exper-
imentales, que permiten estudios nano-ópticos en estados exóticos de TBG y familiares.
Enseñaré que el material semiconductor WSe2 puede ser usado como una puerta superior
para experimentos de campo-cercano en el infrarrojo. Esto permite un control completo de
la densidad de portadores y del campo de desplazamiento eléctrico sin bloquear el acceso
del campo-cercano.

Sucesivamente, describo un sistema comercial de microscopía de campo-cercano con
una temperatura base de 10 K, que requirió modificaciones para una operación fidedigna.
Presento un sistema de amortiguación activa para contrarrestar vibraciones en el sistema
y mejorar la estabilidad mecánica. Continuamos mejorando la estabilidad del AFM cam-
biando la posición de su excitación mecánica.

En los dos capítulos finales examino la fotorespuesta del TBG a temperaturas bajas.
Observamos modulaciones semi-periódicas en nuestra muestra, que creemos que manifi-
esta una super-red que proviene del TBG estando alineado con el substrato de hBN en
combinación con deformación. En una muestra diferente, revelamos una respuesta espacial
inhomogénea con la que deducimos un mapa del ángulo de rotación.





Prologue and acknowledgements
In my view, this Thesis comprises a summary of the meaningful and interesting results
that were acquired in the past five years. As some might know, I prefer things to be well
organized and planned, yet, I have to find out that most results were not the outcome of
any well-defined experimental plan. In fact, it turns out that there is practically no overlap
with the Thesis Proposal that was written four years ago. It has taught me to avoid careful
planning where possible. With research being unpredictable, most schedules are not met
and, consequently, only cause stress. Instead, just working systematically with an ordered
task-list is more effective.

Within the largely untouched field of twisted bilayer graphene, conducting the experi-
ments felt like a real exploration, especially with novel optical techniques. This excited me
nearly every day when getting up and walking to the ICFObus. I experienced the finest,
though scarce, moments when conducting experiments that suddenly yielded unexpected
results. Figures 3.1b, 4.2, 5.5a and 7.3 are examples of this, whose appealing patterns
appeared on the measurement screens in nearly the same way. A second round of joy and
satisfaction came in the exact moment of ‘decoding’ the photocurrent maps (Chapters 4, 7
and 8). It felt like solving a puzzle, searching for the underlying structure that fits the
observed patterns. Altogether, this illustrates to me the beauty of science.

This involved quickly adapting to new techniques, which was particularly encouraged by
Frank. Just four weeks after starting my PhD, with a half-day crash course from Achim on
using the s-SNOM, I was sent to Rainer Hillenbrand’s lab in San Sebastián with the most
precious device alive in our group: the ‘Columbia’-device. The week after, the same device
had to be measured in the lab of Miriam Vitiello in Pisa, where the electric sparks were
literally coming from optical tables. Fortunately, after a mental struggle, on the very last
evening we obtained the desired results while keeping the device alive. In a similar fashion,
when I was in Alexey Kuzmenko’s lab in Geneva struggling with electronic noise in their
cryoSNOM, Roshan had to be flown in as the ‘transport-expert’ (just because he did his
PhD in Andre Geim’s lab), three full days after he joined ICFO. However, no fundamental
problems caused the noisy signals: it was a matter of wrapping aluminium foil around the
cables to shield them.

Speaking about the cryoSNOM: this whole project seemed to be plagued by Murphy’s
law (‘Anything that can go wrong will go wrong’). It arrived by the end of 2019, more
than three years after Frank was awarded the required ERC grant. Main culprit was a
near-perfect match of our floor resonance at 16 Hz, with those of the springs inside the
cryoSNOM. These strong floor vibrations came as a surprize, in particular considering that
‘there is no metro passing underneath ICFO’. With all the basement space filled, we had
to be creative in finding a solution for this rather comprehensible problem. To our aston-
ishment, small piezo-ceramic blocks formed key in the solution. A thin 1x1 cm2 layer of
this material is able to set 200 kg into motion under the application of a voltage, which,
when set up correctly, counteracts the disturbing vibrations in the system.



Obtaining the results presented in this Thesis has only been possible with the help of
others, which I like to acknowledge in the following. In addition, I received funding from
the European Union’s Horizon 2020 programme under the Marie Skłodowska-Curie grant
agreement Ref. 665884 and from the ERC grant agreement Ref. 726001.

I first wish to thank Frank for offering me the opportunity to spend the past years in the
nano-optoelectronics group at ICFO. Your approach of presenting a general vision, defined
by the measurement technique and device architecture, while leaving sufficient freedom in
carrying out the experiments, has worked out very well. As soon as something interesting
popped up in a running experiment, your involvement becomes even more apparent by
appearing daily in the lab. Instead of putting pressure on me (to which I am insensitive),
your motivation achieves an encouragement that made experiments successful. To me, it
was without doubt the right choice to pursue a doctorate under your supervision.

Research greatly benefits from collective efforts, and I had the luck to be surrounded
by a fantastic group of people that directly contributed to the scientific results discussed
in this work. In particular, I wish to thank Daniel, Yuan, Petr, Hanan, Pandian and
Yuanda for putting their samples under investigation in our experimental setups. I am
especially indebted to Daniel and Petr, who provided their best pre-characterized magic-
angle samples, and never gave up after numerous of them did not survive the near-field
studies. During the measurements, if any help was needed, David and Hanan always stood
ready, and Sergi has become the new cryoSNOM-expert while I was writing my Thesis.
There was also no shortage of listening ears that were continuously open for discussing new
ideas or results. A five-minute chat with Iacopo, Roshan, Petr or Frank was often more
effective than sitting an hour alone in the office. Likewise, the Python tools developed by
Iacopo and Pietro greatly simplified calculations. Lastly, the welcoming visits to the labs
of Alexey Kuzmenko, Rainer Hillenbrand, Khaled Karrai and Miriam Vitiello were a great
pleasure and insightful in many aspects.

I am thankful for all the institutional support that ICFO has offered, allowing me to
conduct the experiments in an effective manner. In particular, Carlos and his team did
a fantastic job in setting up the heavy equipment in L208 with a non-stop dedication.
In a similar fashion, I am going to miss the blazing-fast purchasing process managed
by Santi and Magda, for whom one reference is sufficient to have the item at ICFO
the next day. I spent a substantial part of my time in the cleanroom facilities, always
well taken care of by Luis, Johann and Xavi. José and this team from the electronic
workshop showed a great craftsmanship, and likewise did Xavi and his team from the
mechanical workshop. Moreover, Laia, Anne and their colleagues smoothly coordinated
the administrative processes and, finally, I thank all the ICFOnians working behind the
scenes in making ICFO a wonderful place to be.

Furthermore, I am pleased with the help I received in writing this Thesis. Iacopo,
Frank, Petr, Roshan, Shuchi and the committee members critically proofread the Thesis
and suggested numerous improvements. Sergi kindly translated the abstract to Spanish,
and Blender-expert Matteo made an artistic illustration of collective excitations in twisted
bilayer graphene, presented on the cover. In addition, Laia and her colleagues arranged
the formalities in the process towards the Thesis defence.

The nano-optoelectronics group led by Frank has been a great team to be part of.
The shared motivation, yet with an informal and easy-going mood, creates an enjoyable
environment to spend every day. The various group outings, dinners and pizza-served
journal clubs testify to this. Notably, throwing snowballs between two jacuzzis in a real



igloo-complex was something new to me. It has been a great time in the office, shared
with Hanan, Iacopo and David, where the number of objects and sheets of paper on (and
under) the table uniquely define everyone’s desk. It was a privilege to share the office with
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1. Introduction

This Chapter introduces the physics of twisted graphene structures. First we
discuss the main features linked to the moiré superlattice, followed by an overview
of the recent experimental developments in this field. We finish by outlining the
aims and structure of this Thesis.

1



1. Introduction

The experimental discovery of graphene in 2004 marked the advent of two-dimensional
(2D) materials as an exciting new field to be explored1,2. By now, the community ef-
forts have led to a rich palette of 2D materials3: semimetals like single- and multilayer
graphene1,2, insulators like hexagonal boron nitride (hBN)4, the class of transition metal
dichalcogenides serving as semiconductors5, superconductors such as BSCCO6, and fer-
romagnets like CrI3 7. Only several years later, it became clear that stacking various 2D
materials leads to a new series of phenomena, linked to their ‘third dimension’3. The
mechanical stability in such heterostructures is guaranteed by the relatively weak van der
Waals forces between these layers3. Whilst such structures are still only nanometres thin,
their properties are strongly modified by the interaction between the different layers, which
has led to various discoveries. Examples include the enhanced phonon-limited mobility in
graphene4,8,9, the fractal-like energy spectrum known as the Hofstadter butterfly10–12, and
the electrons gas acting as a hydrodynamic liquid13,14.

Thus far, the twist angle between different layers remained uncontrolled when creating
these heterostructures. This changed in 2016, when the tear-and-stack technique was
introduced. It consists of cutting a single 2D crystal in two parts, followed by placing
one part on top of the other at a controlled twist angle θ 15,16. In 2018, a breakthrough
was made leading to a new impulse in the field of graphene. By rotating two graphene
monolayers with respect to each other by a ‘magic angle’ θ ≈ 1.05°17, this system can be
brought into a superconducting state for temperatures below 2 K18. This particular state
in magic-angle twisted bilayer graphene (MATBG) shares several similarities with uncon-
ventional superconductivity, while being a highly tunable material via the in situ adjustable
carrier density. The physics behind this discovery originates from the dramatic changes in
the band structure occurring for small twist angles between two graphene sheets17,19–21.
An emerging set of flat bands with high density of states leads to correlated insulator
states, topological physics like the anomalous Hall effect, and superconductivity18,22–31.

This broad variety of phenomena motivates us to study the optical properties of twisted
bilayer graphene, which have retrieved little attention thus far. In particular, we will use a
scanning probe technique to explore them on the nanoscale.

1.1. Moiré patterns in twisted graphene structures
A moiré pattern is an emerging periodicity that arises when two lattices are placed on top
of each other at a small relative angle. This periodicity is determined by the periodicity
of the underlying lattices and twist angle. As illustrated in Figure 1.1a, such superlattice
can be as simple as two sets of lines with a relative rotation. In more complex structures
like a honeycomb lattice, such rotational misalignment causes the formation of a large-
scale triangular superlattice (Fig. 1.1b). By superposing two lattices with slightly different
periodicities a moiré pattern can be obtained without twisting the layers.

The moiré structure does not repeat exactly upon translation by the superlattice period-
icity, as a rigorously periodic structure only occurs for a set of commensurate angles19,32.
However, we can use an approximate description in terms of a periodic lattice, as long as
the superlattice periodicity is much larger than the periodicity of the underlying lattices.
Such a description goes under the name of continuum models and allows the use of all
concepts of periodic lattices, such as the Bloch theorem and the Brillouin zone.

When two real crystals are stacked on top of each other with a certain twist angle, the

2



1.1. Moiré patterns in twisted graphene structures

a

b

Figure 1.1: Formation of moiré superlattices. a By superposing two sets of periodic
lines at a small relative rotation, a new larger periodicity emerges referred to as a moiré
pattern. b By slightly misaligning two honeycomb lattices (such as graphene) a triangular
moiré lattice is formed. The AA sites of this superlattice are those where the two sheets
perfectly overlap with each other, while the AB/BA regions correspond to the Bernal-
stacked areas.

actual positions of atoms can deviate from the ones predicted by the rotation of two rigid
lattices33,34. This rearrangement of atoms minimizes the total energy of the superlattice
and is called lattice relaxation. This causes corrugation and distortion of the superlattice,
and is especially important when the twist angle is small.

Also in twisted bilayer graphene (TBG) such moiré pattern emerges by superposing two
graphene sheets with hexagonal lattices at a small twist angle θ (Fig. 1.1b). The triangular
superlattice has a lattice constant d that is related to θ by d = a/[2 sin(θ/2)], with
a ≈ 0.246 nm being the lattice constant of single-layer graphene17,19–21. For the ‘magic
angle’ θ ≈ 1.05°, the moiré periodicity is about 13 nm. The top view of TBG shown in
Fig. 1.1b reveals regions where the two sheets are locally in the AA-stacking configuration
surrounded by regions where the stacking configuration is of the energetically-favoured
AB- or BA-type (Bernal stacking)34.

Electrons can tunnel from one layer to the other with a tunnelling amplitude that depends
on the local alignment between the two layers17,19. Consequently, the interlayer tunnelling
amplitude is spatially modulated with the periodicity of the moiré lattice. Effectively,
this produces a longitudinal and transverse potential, which both act on graphene’s Dirac
fermions35. These two potentials have an amplitude on the order of 100 meV, and localize
electronic states close to the charge neutrality point (CNP) in the regions where the
alignment between the two layers is an AA-like configuration18,22,32,36.

In a band structure picture and owing to these two potentials, a pair of narrow energy

3



1. Introduction
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Figure 1.2: Electronic band structure of magic angle twisted bilayer graphene. Cal-
culated band structure according to the single-particle description 38 for θ = 1.05°. Solid
(dashed) lines represent the bands in the valley close to the K (K ′) point of the original
graphene layers. The flat bands are plotted red, which lead to a sharp peak in the density
of states (right panel), while the bands in blue are referred to as the remote bands. The
dashed orange line corresponds to the density of states of single-layer graphene.

bands forms close to CNP at the magic angle, as depicted in Fig. 1.2. Because of their
flatness, the electrons move at a greatly reduced speed across the lattice and cause a high
density of states, which is part of the reason why these topological bands are held respon-
sible for the observed correlated phenomena18,22–31. Switching off the scalar potential
enhances the flatness of the bands making them perfectly flat throughout the superlattice
Brillouin zone at the magic angle35,37.

Lattice relaxation in TBG is of importance for the twist angles we are interested in
(θ < 2°)39,40. Especially, minimally twisted bilayer graphene (mTBG, θ < 0.1°) exhibits an
extreme form of lattice reconstruction, wherein the lattice changes radically into alternating
triangular domains of AB/BA Bernal-stacked regions separated by a network of narrow

a

b

Figure 1.3: Lattice relaxation in minimally twisted bilayer graphene. a TEM image of
domain structure formed in minimally twisted bilayer graphene due to lattice reconstruc-
tion. The light/dark triangular regions correspond to the AB/BA domains, separated by
thin domain walls. Scale bar is 150 nm. b Zoom of the registry shift occurring at a domain
wall, where the graphene lattices displace smoothly with respect to each other. Scale bar
is 1 nm. Both panels are adapted from Ref. 33.
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1.2. Recent experiments on twisted graphene

domain walls33,39,41,42 (Fig. 1.3). The changes in the atomic registry through the domain
walls cause a dramatic change of the local electronic properties over a length scale of
∼ 10 nm33. These domain walls are of particular interest due to the topological states
they host42–45. We note that this phenomenon is generic for twisted 2D materials, and
similar extreme reconstruction effects are present in other systems46.

1.2. Recent experiments on twisted graphene
Twisted bilayer graphene has been explored before superconductivity and strongly corre-
lated states were found in 201818,22: initial scanning tunnelling spectroscopy experiments
confirmed the presence of flat bands21. These weakly-dispersive bands lead to van Hove
singularities, which are sharp peaks in ∇kϵk, and manifest themselves as peaks in the
density of states that were seen in these experiments.

Once the right techniques became available to twist the graphene layers in a controllable
fashion15,16, it was shown how the twist angle could easily be determined. This is a typical
starting point for experiments because of the sensitivity of occurring phenomena on the
twist angle, especially near the magic angle. A transport experiment showed that a peak in
the resistance at ‘full filling’ carrier density ns is linked to the twist angle θ ≈

√√
3d2

0ns/8

in radians15. This particular carrier density corresponds to four carriers per superlattice
unit cell and completely fills or empties the flat bands (Fig. 1.2). A more precise approach
to determine the twist angle requires mapping of the Landau levels in a magnetic field22.
Another technique involves measuring Brown-Zak oscillations in the magnetoresistance,
with a frequency dependent on the twist-angle47.

Thus far, a variety of experimental probes has been used to explore the physics of
TBG, including electronic transport18,22–26,39, quantum capacitance27, scanning tunnelling
microscopy21,28–31, scanning magnetometry48 and local compressibility49,50. We discuss
three particular lines of investigations.

Transport experiments laid the first stones towards understanding the phase diagram
of TBG and its relatives, primarily because the lowest temperatures (∼ 10 mK) are only
accessible via this route. It revealed a flavourful phase diagram, shown schematically in
Fig. 1.4. It consists of band insulators at filling factors ν = ±4 (full filling), correspond-
ing to either 4 holes or electrons per moiré unit cell, and correlated insulating states at
integer filling factors that become less resistive in an applied magnetic field. In some
cases (varying between samples), superconducting domes appear adjacent to the corre-
lated insulating states, yielding a strong analogy with unconventional superconductors.
The obvious question arose to what extent the superconducting and correlated states have
a common origin, and to what extent they compete with each other. By varying the degree
of electronic screening in experiments, it became clear that each of the phases can exist
without the presence of the other, suggesting these phases to be not tightly bound to each
other51–54. Especially the superconducting states benefit from stronger electron-electron
(e-e) correlations, in other words, a stronger Coulomb interaction54.

These correlated phases in MATBG arise from strong electron-electron interactions. To
understand its origin, we consider the Hamiltonian H = Hk+Vee, where Hk accounts for the
kinetic energy and the interaction with the lattice, and Vee describes the e-e interactions.
Owing to the flat bands, the kinetic energy of the corresponding states is small. This
causes the single-particle term Hk to quench, which means that Hk can be regarded as a
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Figure 1.4: Phase diagram of twisted bilayer graphene. Schematic illustration of a
typical phase diagram measured in MATBG. The moiré filling factor ν indicates the number
of electrons per moiré unit cell. ν = ±4 corresponds to completely empty or filled flat
bands, at which the system acts as a band insulator (BI). For the other filling factors,
correlated insulating (CI) states occur, with superconducting (SC) domes surrounding
them. At CNP (ν = 0) the system is in a Dirac semimetal (DS) or CI state.

constant and effectively drops out of the Hamiltonian. As a consequence, only the term Vee

remains and e-e interactions dominate the physics in MATBG. A series of electronic phases
emerges from strong e-e interactions, which manifest themselves as correlated insulating
states, superconductivity, and ferromagnetism25,26. The latter is rather peculiar given the
non-magnetic nature of the carbon atoms. The e-e interactions can also be linked to a
degree of nematic order found in MATBG, which was observed as a change in the electronic
properties along different spatial directions28,29,31,55.

In the case of minimally twisted graphene, transport experiments are challenging due to
the inhomogeneous nature of the superlattice. Yet they showed that the topological nature
of the domain wall network has a strong influence on electron transport properties45,56–58.

The main drawback transport experiments face is that they probe physics only on a
global scale, while details on a nanometric scale remain hidden. In particular, twisted het-
erostructures are expected to exhibit twist-angle inhomogeneity, because of its tendency
to rotate back into alignment59–61. Therefore, local scanning probe measurements are of
great value as they allow mapping various properties on a length scale similar to the moiré
unit cell. Scanning SQUID and STM measurements were able to measure locally the twist
angle and determined its variation to be ±0.05°48,62. STM measurements visualized the
periodic potential modulation and provided an insight into details of the band structure
such as the gap sizes and strength of the e-e correlations21,28–31. Local compressibility
measurements revealed that while adding carriers in these bands, a phase transition occurs
at each integer filling, where all carriers are being taken by a single spin/valley flavour49.
Especially for mTBG local probes are essential, given its dramatic structural changes across
relatively long distances (∼ 100 nm or more). It is particularly useful to study the lattice
relaxation dynamics40,63–65 in mTBG, as it helps in understanding the lattice reconstruc-
tion in MATBG40. Scanning probe experiments also extended beyond twisted graphene
structure, demonstrating ferroelectric behaviour modulated across the formed domains in
minimally twisted structures based on hBN crystals66–69.

Optical studies involve exciting an electron from one band to a higher available state,
which in the case of MATBG is interesting due its flat bands (Fig. 1.2). The large degree
of band nesting between the flat and remote bands leads to a resonance in the absorption
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spectrum70,71. As the distance between the bands grows with twist angle (Appendix A.4),
the optical spectrum could in principle serve as a fingerprint to identify the twist angle72.
The energy bands are predicted to change with carrier density73, which could also be
observed optically. In addition, the rotational misalignment allows for an inherently chiral
response74,75. With a distance between the bands or approximately 100 meV between
the M and K points, the dominating region of interest lies in the infrared spectrum. As
the infrared free-space wavelength is similar to typical device sizes, this poses a hurdle
for far-field experiments and explains why most optical experiments performed on TBG
(or graphene on aligned hBN) employed near-field optical probes41,76–79. In particular for
mTBG structures, nano-optical probes were used to visualize the domain wall network
through the reflection of plasmon and phonon polaritons on the domain walls41,78,79.

Currently, one of the main open challenges in the field is the control of twist-angle
disorder80. This is of importance, as for instance modest twist-angle inhomogeneity can
hinder the formation of a continuous superconducting path between two leads. Broadly
speaking, a more uniform moiré lattice will allow more exotic phases to exist. This requires
improvements in fabrication techniques, guided by precise characterizations of the twist-
angle inhomogeneity. Another direction recently attracting more attention is the effect
of a transverse electric field between the two graphene layers. Under such displacement
field, the AB/BA regions open locally a gap, which strongly modifies the physics of magic
angle twisted graphene systems81,82. In the case of minimally twisted bilayer graphene,
the gap opening under a transverse field could enable low-loss plasmon propagation within
the domain wall network83,84.

1.3. Aim and outline of this Thesis
The techniques discussed in the previous Section are sensitive only to the static (very low
frequency) response of the system. In systems like TBG where e-e interactions play a
dominant role, experimental techniques that probe the response to perturbations carrying
a finite in-plane wavevector q and angular frequency ω are expected to be rich sources
of information. One of these techniques is scattering-type scanning near-field optical
microscopy (s-SNOM)76–78,85,86, which enables with a spatial resolution of 20 nm the
measurement of the dispersion relation of collective electronic excitations, such as Dirac
plasmons in doped graphene85–87. Several works have predicted collective excitations
in TBG structures83,84,88–92, for which s-SNOM is particularly suited. These predictions
include interband plasmons in charge-neutral TBG89,91, undamped intraband plasmons
within the gap of TBG90,92, and topologically protected plasmons within a domain wall
network83,84. The advantage of local probing techniques over global transport methods is
an additional reason for us to choose s-SNOM as the main technique for our investigations.

With only minor adaptations, an s-SNOM system allows us to perform nanoscale pho-
tocurrent measurements as well. This technique has proven itself as a tool for optoelec-
tronic studies on graphene-based devices93–96. This encourages us to perform photocurrent
nanoscopy on twisted graphene structures to study its optoelectronic response. A general
prerequisite for such photo-induced currents is the lack of an inversion centre, whether it
is extrinsically defined by doping inhomogeneity in the form of pn-junctions, or due to a
broken inversion symmetry in the crystal structure. In this regard, the structures of moiré
superlattices10–12,15,97 are well suited for photoresponse applications, since the crystal sym-
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metry can be easily reduced by a twist-angle induced atomic-scale reconstruction39,98. The
sharp changes in electronic spectra can serve as local junctions, thus providing an intrinsic
photoactive region created by the moiré superlattice. Such changes can form due to the do-
main structure in mTBG. Likewise, small twist-angle variations typically present in magic
angle samples can act as built-in junctions, allowing for optical mapping of twist-angle
disorder.

Considering the recent development on twisted nanostructures described in this intro-
duction, together with the focus on nano-optoelectronics in the group of Prof. Koppens,
we define two objectives at which we aim the work of this Thesis: i) understanding the
optical and optoelectronic properties of twisted bilayer graphene systems and their connec-
tion to the fundamental structure of these systems; ii) establish new techniques to study
the exotic states of twisted graphene systems at low temperatures.

Keeping this in mind, we structure the work comprised in this Thesis as follows:

• In Chapter 2 we outline the experimental techniques employed in this work. First we
discuss the steps involved in device fabrication, and subsequently describe the princi-
ples behind s-SNOM and photocurrent nanoscopy. Two examples demonstrate how
these tools can be used to measure collective excitations and their characteristics.

• In Chapter 3, we apply s-SNOM to study the optical properties of twisted bilayer
graphene near the magic angle, with an emphasis on collective excitations related
to the moiré minibands. Our data reveal a plasmonic excitation in undoped TBG
directly related to the interband transitions from the flat to remote bands. Its
dispersion points to a reduced tunnelling strength at the AA-stacked regions, which
might originate from screening owing to e-e interactions.

• In Chapter 4 we unravel the optoelectronic response within a single moiré unit cell
of minimally twisted bilayer graphene. Our measurements reveal a spatially rich
photoresponse, whose sign and magnitude are governed by the fine structure of the
moiré lattice and its orientation with respect to measurement contacts. This results
in a strong directional effect and points towards a photothermoelectric induced re-
sponse. We finally show how phonon polaritons are able to interact with domain
walls and influence the measured photoresponse.

• In Chapter 5 we demonstrate the suitability of WSe2 as an ambipolar transparent
top gate electrode for near-field experiments. This study shows that few-layer WSe2
is able to tune the plasmon wavelength of an embedded bilayer graphene layer, with-
out obstructing near-field access. We experimentally extract the gating efficiency of
WSe2, that can be modelled by a combination of quantum and geometric capaci-
tances.

• In Chapter 6 we present a cryogenic near-field microscope, enabling near-field ex-
periments down to 10 K. It is based on a commercial system, to which we made
several modification to improve its performance, with a particular focus on mechan-
ical stability. This will allow future near-field studies of the exotic states of matter
in twisted heterostructures.

• In Chapter 7 we apply cryogenic photovoltage nanoscopy to unveil a second-order
superlattice in MATBG closely aligned to the hBN substrate. We find a structure of
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large-scale modulations covering the entire sample, and interpret it as the interfer-
ence of moiré lattices formed by MATBG and graphene aligned to hBN. Our results
provide a real-space visualization of broken inversion symmetry and our model shows
the importance of small amounts of strain on this superstructure.

• In Chapter 8 we develop a method to measure the local twist angle in TBG using
photovoltage nanoscopy. We measure a strongly varying photoresponse with position
and carrier density in our sample. Guided by s-SNOM and transport measurements,
we interpret the photoresponse on the bases of the photothermoelectric effect. As
a demonstration of this method, we provide a map of the twist angle in our sample.

• We conclude this Thesis by summarizing our work in Chapter 9 and presenting an
outlook to the horizon of this field.
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2. Experimental methods

This Chapter outlines the main experimental techniques used in this work, starting
with the fabrication techniques of van der Waals heterostructures. We continue by
introducing the near-field optical miscrocope, which serves as the main workhorse
of all studies presented here. After discussing the scattered optical signals we
measure, we conclude by showing how this tool is used to measure simultaneously
the photovoltage response of our samples.
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2. Experimental methods

2.1. Fabrication of van der Waals heterostructures
Over the recent years, fabrication of van der Waals heterostructures has become a rather
standardised technique. After the realization that hexagonal boron-nitride (hBN) provides
a much smoother substrate for graphene4,8, and at the same acts as a strong dielectric, it
has become the favourite choice of material for encapsulating graphene. It triggered the
idea that virtually any combination of two-dimensional materials can be stacked on top of
each other, opening a plethora of new phenomena to be explored3.

Figure 2.1: Fabrication of a twisted heterostructure. a We start with a PDMS stamp
covered with a thin PC film, which we use to pick up the top hBN flake, followed by
picking up part of the graphene flake (b). We subsequently rotate the stage by the desired
twist angle (c) and pick up the remaining graphene (d). After picking up the bottom hBN
flake (e), we heat the stage to 165 °C and release the stack onto a pre-patterned local
gate (f). The PC film is removed by dissolving the chip in chloroform (g). All steps before
releasing the stack are performed at 40 °C.

Figure 2.1 schematically illustrates the steps involved in fabricating a stack of twisted
bilayer graphene encapsulated in hBN. It employs a thin polycarbonate film (PC) mounted
via a PDMS slab onto a glass slide, to which most two-dimensional materials tend to stick
well99. By subsequently picking up flakes, we form a heterostructure, which is usually
released onto a metal or graphite local gate. In this process we twist graphene following
the ‘tear-and-stack’ technique, where we pick up only part of a graphene flake, rotate
the stage slightly, and pick up the remaining graphene15,16. By releasing the stack at
an elevated temperature, most air bubbles become sufficiently mobile and are squeezed
towards the side of the stack100,101. We obtain all the employed 2D materials via micro-
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2.1. Fabrication of van der Waals heterostructures

mechanical exfoliation onto a Si/SiO2 chip, and carefully select high-quality flakes using
optical microscopy and atomic force microscopy. Since the near-field coupling to graphene
decays exponentially with distance, we only use thin hBN flakes serving as top layer (<
10 nm).

a

b

c

BN
Graphene
BN

Si/SiO2

Mask

Edge contact

Figure 2.2: One-dimensional edge contact to graphene. a A van der Waals het-
erostructure is fabricated. b We shape the device by reactive ion etching (CHF3 and O2

gas mixture) according to a mask defined with electron-beam lithography. c Metal is
evaporated over the exposed graphene edge, forming a one-dimensional contact. Figure
adapted from Ref. 9.

To make a sample suitable for (opto-)electronic measurements, we pattern one-dimensional
contacts to the graphene layers. Despite the seeming fragility, this technique actually turns
out to yield robust contacts with low resistance in the order of a few 100 Ω·µm9. Figure 2.2
shows the steps involved in creating such contacts. Either photolithography or electron-
beam lithography can be used for defining the masks. Typically, we first shape the stack to
a desired structure (typically a Hall bar), after which we run another lithography process
to define the position of the contacts. The hBN naturally etches at an angle ∼ 45°, which
helps in covering the exposed graphene edge with metal. Since it turns out that chromium
is crucial to form a good bond9, we typically evaporate Cr(5 nm)/Au(50 nm).

To ensure clean and flat surfaces for near-field measurements, we perform AFM-brooming
after the nano-fabrication process has finished. Repeatedly scanning in contact-mode over
the sample removes surface residues originating from the fabrication process102,103. These
residues mask the fine optical and topographic features studied using s-SNOM. Addition-
ally, this AFM-brooming procedure helps to minimize the residues picked up by the apex
of the AFM tip, which reduces the loss of near-field signal during these measurements.
For this cleaning procedure, we use soft tips (Nanoworld Arrow, stiffness 0.2 N/m) and
scan over the surface with a typical force 20-40 nN (corresponding to a pressure of 20-
40 MPa) and speed 2-4 µm/s for several hours. After this procedure, the root-mean-square
roughness is 120-200 pm, which is similar to that of a pristine hBN flake4.
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2.2. Near-field optical microscopy
Accessing the optical and optoelectronic response of materials on a nanoscale is of great
interest, since it offers a wealth of knowledge about their structure and physical mechanisms
at play. Despite the relative easy accessibility to far-field experiments, they typically suffer
from the diffraction limit that restricts the minimum resolvable distance to

d =
λ

2n sin θ
=

λ

2NA
, (2.1)

with free-space wavelength λ and the medium’s refractive index n. NA = n sin θ is the
numerical aperture of the system. For typical optical experiments using visible light, this
limits the resolution to 100s of nanometres. However, as discussed in Sec. 1, the interesting
energy range lies in the infrared to far-infrared. For these wavelengths, d is of similar size
as the typical device size or even well beyond that, which substantially complicates far-field
experiments. In addition, many phenomena have been revealed possessing characteristic
length scales of tens of nanometres, which are invisible in far-field experiments.

This motivates us to use near-field optical microscopy as the main tool for our inves-
tigations, which essentially probes the near-field electromagnetic field, existing only close
to the sample under study. From this, we can resolve the nanoscale spatial variations
of the sample’s properties, and additionally it is able to uncover collective light-matter
phenomena at the nanoscale.
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Figure 2.3: Near-field coupling with an AFM tip. a SEM photograph of a PtIr coated
AFM tip. The apex of the triangular pyramid at the end of the cantilever interacts with
the sample. b Enhancement of the electric field at the apex due to the lightning rod
effect. Figure adapted from Ref. 104. c Momentum distribution of the near-field coupling
strength provided by an AFM tip with a radius of curvature of 25 nm. The red dashed
line marks the momentum corresponding to the inverse of the tip apex’s radius. Figure
adapted from Ref. 105.

More specifically, we employ a scattering-type scanning near-field optical microscope (s-
SNOM), which is built around a sharp metal-coated AFM tip (Fig. 2.3a) that is illuminated
with a focussed laser beam106–109. Due to the lightning rod effect, a sharp hotspot of light
forms at the apex of the tip that can interact with the sample, as shown in Fig. 2.3b. The
main implication is that we can bypass the far-field diffraction limit and couple light into
the sample on a scale only defined by the sharpness of the apex. In fact, the evanescent
waves forming the hotspot of light carry a broad spectrum of momenta105, as depicted in
Fig. 2.3c. This is an essential ingredient for exciting highly confined plasmon-polaritons
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carrying momenta up to two orders of magnitude larger than the momentum of light in
vacuum (for single-layer graphene), and makes s-SNOM an ideal technique for imaging
propagating plasmons in graphene-based devices87,110–112 and phonon polaritons in other
layered materials85,86,113.

Sample positioners

Sample holder

Pair of polarizers

Parabolic mirrorBeamsplitter

Vibrating mirror

Figure 2.4: Commercial s-SNOM system by neaspec. Photo of our s-SNOM system
operated in ambient conditions, with the key components labelled. Samples with electrical
connections are mounted in a 28-pin chip carrier, and connected via a flexible cable. The
complete system is placed in a box for acoustic isolation, and can be flushed with nitrogen
gas to lower the chance of discharges in air caused by the high voltage on the Si gate.

The near-field measurements presented in this work are carried out with a commercial s-
SNOM system (neaspec), as shown in Fig. 2.4. A tunable quantum cascade laser (Daylight
Solutions) and a CO2 gas laser (Access Laser) are used as mid-infrared light sources for
energies between 100-300 meV (4-12 µm) with a typical power of 10-40 mW. In addition,
we can couple in a THz beam generated by gas laser (Edinburgh Instruments) at discrete
energies between 5-15 meV (1-4 THz) at a similar power. This light is focussed on the
metal-coated AFM tip, for which we use the Arrow model shown in Fig. 2.3a to simplify
alignment (Nanoworld, PtIr coating). This model has an apex with a radius of curvature
of ≈ 25 nm, which forms naturally the limit on the spatial resolution we can achieve. The
AFM tip oscillates at a frequency Ω ≈ 250 kHz with a tapping amplitude of 80-100 nm,
and modulates the scattered optical signal s that is measured with a fast liquid-nitrogen
cooled HgCdTe detector (Kolmar Technologies) for mid-infrared light or a closed-cycle
helium-cooled Ge:Ga THz detector (QMC Instruments).

2.3. Principle of operation of s-SNOM
Figure Fig. 2.5 illustrates schematically the optical elements that form in essence an s-
SNOM system. The light from our source is attenuated to a desirable level with a pair
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of infrared wire-grid polarizers, then passes through a beamsplitter and hits the parabolic
mirror that focusses the vertically polarized light onto the apex of the AFM tip. After
interaction with the sample, the light scatters out from the tip, gets collected and colli-
mated by the parabolic mirror, and the beamsplitter directs the light to another parabolic
mirror that focusses the light on a detector. As discussed below, a reference arm allows for
interferometric detection, which we use to measure the acquired phase difference of light
upon scattering in and out of the sample. A pair of polarizers in the reference arm is used
to optimize the power reaching the detector from this arm. All polarizers, beamsplitters
and windows through which infrared light passes are made of ZnSe, which is transparent
from the visible up to 20 µm. A red HeNe laser overlapping with the infrared beams assists
in the alignment procedure.

Figure 2.5: Schematic illustration of an s-SNOM system. The interferometric design
allows for detecting the amplitude and phase of the near-field signal under the AFM tip.
Figure adapted from Ref. 114.

To align this system, we follow a procedure set by the following conditions:

1. The light hits the parabolic mirror parallel to its axis. This is verified by aligning the
back-reflected light (using some flat part of the parabolic mirror) on an iris close to
the laser source.

2. The light hits the parabolic mirror placed in front of the detector parallel to its
axis. We verify this by replacing the parabolic mirror with a flat mirror, aligning the
back-reflected light to an iris near the beamsplitter, and placing back the parabolic
mirror in the same mount.

3. The apex of the AFM tip sits in the focal point of the parabolic mirror. This is
achieved by adjusting the position of the parabolic mirror.

4. The detector sits in the focal point of the parabolic mirror placed in front of the
detector. This is achieved by adjusting the position of the detector.

5. The beam from the reference arm interferes at the detector with the out-scattered
light. For this, we adjust the angle of the reference mirror.

Key in the operation of an s-SNOM system is to separate the far-field contributions
from near-field contributions. To understand the detection scheme that facilitates this, we
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Figure 2.6: Separation of near-field and far-field contributions. a The simulated near-
field amplitude and phase according to Eq. (2.2) shows a strong enhancement upon bring-
ing the AFM tip close to the sample. For the input permittivities of this calculation, we
consider a gold AFM tip and an insulating sample. Figure adapted from Ref. 115. b
The measured optical signals sn at different harmonics nΩ show a strong suppression of
unwanted far-field contributions for higher n. These data are provided by Matteo Cecca-
nti, and taken while approaching the oscillating AFM tip closer to the sample, hence the
tip-sample distance is a time-average of the actual position of the cantilever.

model the tip by a point dipole that interacts with a fictive mirror dipole in an homogeneous
sample116. In this case, the out-scattered electric field Es is proportional to the incoming
field Ei via αeffEi, with

αeff =
α(1 + β)

1− αβ/(16π(a+ z)3))
(2.2)

as the effective polarizability of the coupled tip-sample system for tip-sample distance
z . Here α = 4πa3 ϵt−1

ϵt+2 encodes the dielectic permittivity ϵt of the tip and its radius
of curvature a, while β = ϵs−1

ϵt+1 accounts for the sample permittivity ϵs. α ≡ se iϕ is
proportional to the detected signal s with phase ϕ. We can benefit from the strong non-
linearity of this signal with tip-sample distance, shown in Fig. 2.6a, to separate near- and
far-field contributions. By oscillating the tip at frequency Ω, we can convert the modulated
optical signal into harmonics nΩ, where each Fourier coefficient sne

iϕn corresponds to
the n-th derivative of the optical signal with respect to z 108. For higher harmonics,
this leads to a stronger suppressing of far-field signal. As demonstrated in Fig. 2.6b, by
demodulating the optical signal at 3Ω we obtain an almost pure near-field signal free of
far-field contributions. Most experimental data shown in this thesis have been acquired
at 3Ω, however in some cases 2Ω sufficed. For simplified notation we omit the harmonic
where possible such that s and ∆ϕ refer to the measured near-field amplitude and phase
difference.

In order to obtain phase-resolved data we use a pseudoheterodyne demodulation scheme117.
Rather than obtaining the acquired phase difference at each pixel by repeating and post-
processing a scan at two different positions of the reference arm, the pseudoheterodyne
method does this in situ. In this method, the reference arm vibrates at f ≈ 300 Hz,
which is far below Ω. Fig. 2.7 shows the resulting frequency spectrum of the optical
signal, wherein the additional modulation generates sidebands at multiples of f at each
harmonic of Ω. These sidebands correspond alternately to the real and imaginary part of
the complex optical signal, and can easily be converted to sn and ϕn in real time117.
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Figure 2.7: Fourier spectrum of the optical signal. The black lines indicate the generated
harmonics of the optical signal by oscillating the AFM tip above the sample at frequency
Ω. Sidebands at these harmonics are produced by additionally oscillating the reference
arm mirror at a much lower frequency, as shown by the red lines. Figure adapted from
Ref. 117.

We finally note that it is in general not trivial to relate the measured near-field signal
sne

iϕn to the material properties of the sample under study. By using a thin-film inversion
model it is feasible to retrieve the local permittivity at the tip position118–120, however
this only works for systems with only one layer on a known substrate. More accurate
models have been developed that either treat more carefully the actual response of the
AFM tip (rather than a point dipole) or use a machine learning algorithm, yet it only works
for simple systems and requires a good guess of the permittivity121,122. Fortunately, this
does not turn out to be an issue for the projects discussed in this work, as we are mostly
interested in the periodicity of spatial variations of the near-field signal, which encode for
example the plasmon wavelength.

2.4. Detecting plasmons in graphene using s-SNOM
To illustrate how the system can be used to image collective excitations in van der Waals
heterostructures, we discuss a simple example of plasmonic excitations in highly doped
single-layer graphene encapsulated in WSe2. Figure 2.8a plots the near-field phase contrast
as function of the tip position in a device fabricated by Karuppasamy Soundarapandian.
To be precise, we record the near-field signal while raster-scanning our sample underneath
the tip, while maintaining the tip apex positioned in the focal point of the parabolic mirror.
The hotspot at the tip interacts with the charge carriers in graphene and produces collective
excitations that are reflected by interfaces, return to the tip, and are finally converted into
a scattered field, as measured by the infrared photodetector. This leads to oscillations
in the near-field signal, as seen in Figure 2.8b. Because plasmons make a round trip,
peaks in the near-field signal occur at half the plasmon wavelength, satisfying constructive
interference underneath the tip. In addition to these tip-launched plasmons, the graphene
edge can also act as a launcher. In that case, the near-field signal underneath the tip is
modulated at a spacing equal to the plasmon wavelength. We use the model introduced
in Ref. 87 to account for both contributions in the optical signal:

sopt(x) = A
e i2qx√

x
+ B

e iqx

xa
+ Cx + D (2.3)
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Figure 2.8: Plasmon polaritons in single-layer graphene. a Near-field phase contrast of
single-layer graphene encapsulated in WSe2 at a carrier density of ≈ 1013 cm−2, excitation
energy of 117 meV and in ambient conditions. The bright yellow areas correspond a
graphene flake, cracked in the bottom left corner. We observe fringes running parallel
to the edges of graphene, which decay with distance. The scale bar is 400 nm. b Line
cut along the white arrow in panel a, taken perpendicular to the graphene edge. The
oscillations correspond to edge-launched plasmons (λp period) and tip-launched plasmons
(λp/2 period), both of which we include in the fit according to Eq. (2.3). The dotted
orange line corresponds to the edge position of graphene.

with x as the distance from the graphene edge to the tip position, and q = q1+ iq2 as the
complex plasmon wavevector. The first term describes tip-launched plasmons that decay
on a scale ∝ 1/q2, and takes a geometrical decay factor √x into account. The second term
accounts for edge-launched plasmons with a variable decay factor a ∼ 1. A, B are complex
fit parameters, and Cx +D captures any offsets in the signal. From the fit in Figure 2.8b,
we can extract λp = 2π/q1 = 151 nm, and a decay length Lp = 1/q2 = 550 nm. This
corresponds to an inverse damping ratio γ−1 = q1/q2 = 2πLp/λp ≈ 23, serving as a
rough indication of propagation damping and is in line with results on hBN-encapsulated
graphene87,112. This basic analysis has proven to be a powerful tool to gain insight into
the fundamental properties of plasmons in graphene-based systems87,110–112. We note
that throughout this Thesis, the plasmon wavelength λp always refers to the inverse of the
in-plane wavevector q1, rather than to the equivalent of the plasmon energy in metals.

2.5. Near-field photocurrent nanoscopy
To study the optoelectronic response of our samples, we employed infrared scanning near-
field photocurrent microscopy93–96. The technique involves local photoexcitation of carri-
ers using an s-SNOM system combined with an electrical current read out at one of the
device contacts. We have to follow a similar demodulation scheme making use of higher
harmonics of the cantilever spectrum to extract the near-field components. By measuring
near-field photocurrent signals along with the optically scattered light, we obtain a com-
plementary characterization of the local optical response in our samples. We note that in
some cases we measure photovoltage, which is linearly related to the photocurrent through
the device resistance R as IPC = VPV/R. In this way, we can measure the photoresponse
between two pairs of contact simultaneously.

The dominating mechanism generating an optoelectronic response in graphene-based
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2. Experimental methods

devices is the photothermoelectric effect (PTE)123. To describe the observed photocurrent
features in near-field measurements, we construct a model based on the PTE, in which
photocurrent generation proceeds in four steps. First, the electric field generated by
the tip induces an oscillating current density in the sample at the excitation frequency
ω. Second, this oscillating current causes Joule heating of the electron gas. The power
density produced is proportional to the square of the current and has a rectified component
Q(r, rtip), where r is the position and rtip the position of the tip. Third, the generated heat
spreads in the sample on a characteristic length scale referred to as the cooling length124

(Lcool) before being dissipated to the substrate. Finally, since the heat transport is coupled
to the charge transport via the Seebeck-Peltier effect, the heat flux is able to generate
a net electric current in the presence of Seebeck coefficient gradients. The current and
heat flux are governed (at least for small incident power) by a set of linear equations with
respect to the source term Q(r, rtip). As a consequence, the PTE-induced photovoltage
V

(m)
PTE at the contact m, with respect to a grounded contact used as a common reference,

is then given by a linear relation of the type

V
(m)
PTE =

∫
drR(m)

PTE(r)Q(r, rtip), (2.4)

where R(m)
PTE(r) is the photovoltage responsivity function that encodes the PTE response

of the system (details in Appendix B.3). An analogous formula holds for photocurrents.
In absence of strong resonant features, for example plasmonic excitations, the response
of the system at the energy ℏω, given by Q(r, rtip), rapidly decays with |r − rtip|. This
means that V (m)

PTE ∝ R(m)
PTE(r) and the photovoltage (or photocurrent) maps are essentially

measuring the responsivity (apart from the convolution with a spread function due to the
finite tip dimension).
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Figure 2.9: Simulated photovoltage for a pn-junction in a 1D channel. a In orange:
profile of the Seebeck coefficient for a pn-junction in graphene, which we use as input
for our simulation. In blue: enhancement of the electron gas temperature due to light
coupling in at the tip position xtip (measured relative to the pn-junction), marked by
the silver triangle. Heat spreads with a characteristic cooling length Lcool. b Calculated
photoresponse when scanning the tip across the junction, showing a sharp peak in the
photovoltage at the junction’s interface.

To gain some intuition into the origin of the spatial profile of the photoresponse gener-
ated in our devices, we consider the form of the photovoltage responsivity function for a
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2.5. Near-field photocurrent nanoscopy

one-dimensional device (derivation in Supplementary Note 5 of Ref. 125). This reads

R(x) = − 1

κW

∫
dx ′

Lcool
2

e
− |x′−x|

Lcool ∂xS(x
′), (2.5)

where W is the width of the device and κ its electronic thermal conductivity. In this
example (in open-circuit configuration), an infinitely sharp tip creates a spatial profile
of electron temperature (Fig. 2.9a) in the form δT (x) ≡ T (x) − T0 ∝ e−|x′−x|/Lcool ,
with T0 being the temperature of the substrate. From Eq. 2.5 we see that the PTE
requires an inhomogeneous Seebeck coefficient with a gradient parallel to the path between
measurement contacts (Fig. 4.6 provides an example of this directional sensitivity). In
addition to that, the responsivity decays away from the Seebeck coefficient S fluctuations
on a length scale Lcool, since that is the distance that heat is able to travel in the sample.
To illustrate this, Figure 2.9 plots the calculated photovoltage across a pn-junction. For
such configuration, the step in S at the junction causes a peak in the photovoltage. We
finally note that in a system with particle-hole symmetry, RPTE(x) is an odd function
of the electronic density because S(x) is odd. This behaviour is typically observed in
the gate-voltage dependence of the measured photoresponse, where the photoresponse
changes sign around the Dirac point due to a change in sign of the carriers’ charge.

In our experiments, the measured photocurrent/voltage signal is demodulated with the
driving signal of the AFM cantilever as reference signal. However, the actual motion of
the AFM cantilever can have a phase offset that varies with the position on the sample
(due to tip-sample interaction). This phase offset is given at each pixel by the measured
phase delay between the tip-driving signal and the actually detected motion. To correct
our photocurrent/voltage signal measured at harmonic n, we subtract at every point n

times this phase delay. In addition to this, there remains a global phase offset in the
corrected photocurrent/voltage signal due to the electronics in the circuit. Since the
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Figure 2.10: Photocurrent nanoscopy on a double-gated graphene device. a Pho-
tocurrent map of a graphene device with the left and right side oppositely doped via a
metal split-gate (carrier density in units of cm−2). The bright vertical stripes of negative
photocurrent are generated by the junction formed at the contacts (marked in gold), while
a strong positive photocurrent is produced at the pn-junction in the middle. The vertical
fringes running parallel to the pn-junction are acoustic plasmons launched by the sharp
edges of the gate electrodes 126. The excitation energy is 13 meV (3.11 THz) and the
scale bar is 1 µm. b Line cut along the black arrow in panel a. The peak in photocurrent
corresponds to the position of the pn-junction. We observe acoustic plasmons near this
peak as oscillations on top of the decaying photocurrent signal.
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photocurrent/voltage signal is a real-valued quantity, we subtract this global phase offset,
which we determine by taking the most frequent phase within a scan.

Figure 2.10 shows an example of a near-field photocurrent map recorded in a graphene
device made by Yuanda Gao (device details in Ref. 127). By oppositely tuning the voltages
of the two local gates, we create a pn-junction in the middle of the device, which we observe
as a bright peak in the photocurrent. It additionally demonstrates that photocurrent
nanoscopy can be used to visualize collective excitations94,95,126, shown here as the fringes
running parallel to the junction and corresponding to acoustic plasmons in graphene.

22



3. Observation of interband collective
excitations in twisted bilayer
graphene

The single-particle and many-body properties of twisted bilayer graphene (TBG)
are strongly influenced by the moiré potential induced by the twist angle between
the layers, in particular when the two layers are rotated relative to each other by a
small angle near the ‘magic angle’ θ ≈ 1.1°. In this Chapter, we probe collective
excitations of TBG and find a propagating plasmon mode in charge-neutral TBG
with θ = 1.1− 1.7°, which is different from the intraband plasmon in single-layer
graphene. We interpret it as an interband plasmon associated with the optical
transitions between minibands originating from the moiré superlattice. The details
of the plasmon dispersion are directly related to the motion of electrons in the
moiré superlattice and offer an insight into the physical properties of TBG, such
as the band nesting between flat band and remote band, local interlayer coupling
and losses. We find a strongly reduced interlayer coupling in the regions with
AA-stacking, pointing at screening due to electron-electron interactions.
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3. Observation of interband collective excitations in twisted bilayer graphene

3.1. Optical properties of TBG: host of interband
plasmons

As introduced in Chapter 1, the band structure of twisted bilayer graphene is interesting
from the perspective of optics. Strong band nesting between the nearly flat bands and the
nearest conduction and valence bands causes a high joint density of states for the relevant
interband transitions72,128, especially close to the K point. For the twist angle close to
the magic angle the energy separation between these bands is ∼ 100 meV. This justifies
our interest in the optical properties and collective excitations91,129, as probed by s-SNOM
(Fig. 3.1a-c), in the mid-infrared region of the electromagnetic spectrum where photons
have energies ℏω in the range 80−200 meV, which is comparable to the above-mentioned
energy scale. On the other hand, these energies are much larger than the energy separation
between the pair of nearly-flat bands, considered in Ref. 90.

We can qualitatively understand the optical properties of this system in the following
way. When light impinges on TBG, its time-periodic electric field shakes electrons around
their equilibrium positions (the AA sites, forming a triangular lattice) or — in the more
rigorous language of band theory — it induces an interband transition between the ground
and excited states at the K point of the superlattice Brillouin zone (Fig. 3.1d-e). If the field
carries a finite in-plane wavevector q (provided by the sharp AFM tip), the shaking electrons
will build up an oscillating charge density with the same wavevector (plus harmonics due
to exchange of reciprocal lattice vectors). This oscillating charge density, in turn, creates
an oscillating electric field that adds to the external field. If q and ω are correctly matched,
this induced field can be strong enough to sustain the oscillation even after the external
field has been turned off. This resonant behaviour gives rise to collective modes that are
called interband plasmons, which have been predicted theoretically to emerge in TBG89,91,
but were never studied experimentally so far. At q = 0, this collective excitation has
the same frequency as the bare interband transition. Upon increasing q, as we show in
this work, it acquires a finite dispersion. Thus, these excitations do propagate with a
finite group velocity, akin to graphene Dirac plasmons85,86,130, albeit with very different
dispersion. Here, the dispersion depends on the degree of band nesting, which is the
phenomenon of two bands being parallel in energy-wavevector space, and details of the e-e
interaction potential, which is heavily influenced by screening from nearby dielectrics. We
note that a similar collective mode occurs in topological insulators131,132 or between the
rigorously flat Landau-levels of a two-dimensional (2D) parabolic-band electron gas in a
perpendicular magnetic field. In this case, while single electrons oscillate at the cyclotron
frequency Ωc, e-e interactions induce a collective mode, known as a bulk magnetoplasmon,
which, at long wavelength, has a linear dispersion133 ω(q) = Ωc + sq with group velocity
s > 0 reflecting its propagating character.

3.2. Near-field measurements of interband plasmons
The TBG samples for this study were made by Daniel Rodan and Yuan Cao from the MIT
group using the tear-and-stack method (Sec. 2.1 provides details). These are encapsulated
in hBN, and placed on a metal gate (Table S1 in Ref. 134 provides a list of the studied de-
vices). The twist angle θ is determined at MIT from cryogenic transport measurements15,
as shown in Appendix A.1.
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3.2. Near-field measurements of interband plasmons

Here, we perform s-SNOM measurements with mid-infrared light (free-space wavelength
λ0 in the range 5 − 11 µm) in ambient conditions (T = 300 K). In brief, we generate
a nanoscale light hotspot by focussing a laser beam on the apex of a sharp (apex radius
≈ 25 nm) metallic atomic force microscope (AFM) tip (Fig. 3.1a). This hotspot interacts
with the charge carriers and produces collective excitations that are reflected by interfaces,
return to the tip, and are finally converted into a scattered field, which is measured by a
photodetector. By scanning the tip position, we acquire, simultaneously, a spatial map of
the backscattered light intensity s and AFM topography. Noise and far-field contributions
to the optical signal are strongly reduced by locking to the third harmonic of the tapping
frequency of the tip. The spatial resolution of the obtained images is limited only by the
tip radius, as discussed in Section 2.2.

Figure 3.1b shows a typical near-field image of TBG with no gate voltage applied (at zero
applied voltage the TBG is close to charge neutrality, see Appendix A.1 and Table S1 in Ref.
134) and an average twist angle of θ = 1.35°, obtained from the transport measurements.
Figure 3.1c shows the AFM image recorded at the same time. In the near-field image, for an
excitation energy ℏω = 219 meV two types or regions can be distinguished. Regions with
a rather spatially constant response s (yellow) and regions where s shows clear spatially
varying and periodic features. This contrasts with a near-field map taken at lower energy
ℏω = 146 meV, in which the periodic features are absent (Fig. 3.2e). As reported scanning
SQUID measurements on similar samples have shown48, some regions can exhibit magic-
angle behaviour while some other regions do not (for instance, due to lattice relaxation
into an angle far from magic angle). In this work, we focus on the regions with the varying
and periodic features of this device. Table S1 in Ref. 134 and Appendix A.2 provide results
from 14 other devices with θ = 1.1 − 1.7° and a discussion on the correlation of these
regions with tiny topographic features.

In the regions of interest, s displays an oscillatory spatial behaviour. The latter has a
characteristic period ≈ 80 nm in all of the regions of interest (with a ±10 nm spread),
about one order of magnitude larger than d . We attribute this oscillatory behaviour to
the excitation of a propagating collective electronic mode. The fact that we observe these
interference patterns in ungated TBG is in stark contrast with the intraband collective
electronic excitations (Dirac plasmons) of single-layer and bilayer graphene, where high
doping levels (above 1013 cm−2) are required to propagate at the frequencies we focus on
(ℏω = 200 meV)78,87,130.

To gain insight into the nature of the collective excitations we probe their frequency de-
pendence by repeating the near-field measurements at different excitation energies, chang-
ing λ0 = 2πc/ω. Figure 3.2a-e shows a dramatic change in the interference pattern
for small variations in λ0, while the boundaries of the areas where the sample is opti-
cally active remain at a fixed position. These data show the dispersive character of the
propagating collective excitations that move in Fabry-Pérot-like cavities, due to reflecting
interfaces41,135,136. At the same time, the scan in Fig. 3.2f for ℏω = 170 meV is free of
any features. As ℏω coincides with the lower edge of the Reststrahlen band of hBN, the
near-field signal is dominated by the top hBN layer. Thus, we conclude that the observed
features in Fig. 3.2a-e originate from the TBG itself. If any contamination was present
on top of the sample, or if the hBN would exhibit thickness variations, the 170 meV scan
would not show such a uniform response as we observe.

More quantitatively, we extract one-dimensional (1D) cuts of the measured s along two
specific lines (arrows in Fig. 3.2d). The resulting 1D profiles are shown in Fig. 3.2g as
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Figure 3.1: Collective excitations in twisted bilayer graphene. a Illustration of the
s-SNOM experiment: an AFM metallic tip is illuminated by infrared light, which provides
sufficient momentum to launch a collective excitation in twisted bilayer graphene. The
plasmon can, in turn (for instance, by reflection from an edge or interface), scatter into
light at the tip. This scattered light is detected by a photodetector. Credit: Fabien Vialla.
b Image of the near-field amplitude obtained by scanning the AFM tip and recording
the photodetector signal. Propagating collective excitations are visible in certain areas as
periodic interference fringes. The illumination photon energy is ℏω = 219 meV and the
scale bar is 500 nm. c AFM image of the marked region in panel b. d Square modulus of
the wave function |⟨r|k = K , ν⟩|2, associated with one of the flat bands (bottom) and the
first excited band (top), evaluated at the K point of the moiré superlattice Brillouin zone.
These states are mostly localized around the regions with local AA-stacking (which form
a triangular lattice) and are involved in the relevant optical transitions. e Line cuts of the
wave functions along the white arrows in panel c represented in a harmonic confinement
potential 35 (black dashed line), with the coloured horizontal dashed lines indicating the
energies of the states. An interband transition occurs between the lower-energy state and
the excited state. A similar transition is happening, for holes, between the corresponding
pair of states, approximately related to the illustrated ones by electron-hole symmetry.

lines for a few representative photon energies, while a colour map as a function of tip
position and frequency is reported in Fig. 3.3a (see Supplementary Note 5 in Ref. 134
for other line traces taken in the near-field image). The oscillating signal is well fitted
by the following expression, representing a tip-launched, tip-detected wave reflected at an
interface: sopt(x) = Re(Ax−1/2e2iq)+Bx . Here, x is the tip position along the line cut, as
measured from the interface, A ≡ A1 + iA2 and q ≡ q1 + iq2 are complex fit parameters,
and B represents a linear background (Sec. 2.4). Note the factor of two in the exponential
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Figure 3.2: Controlling the wavelength of interband plasmons. a-f Images of the near-
field amplitude at different excitation energies E of the area marked in Fig. 3.1b. In panels
a-d ℏω > ℏΩexp, while the data in panels e,f correspond to ℏω < ℏΩexp. The colour
scale is the same as in Fig. 3.1b. Solid and dashed arrows in panel d indicate line traces
associated to data in panel g and Fig. 3.3a, and the scale bar is 500 nm. g Line traces
along the solid blue arrow in panel d, visualizing the strong dependence of the plasmon
wavelength on the excitation energy. Lines are vertically separated for clarity.

function that appears because the collective excitation makes a full round trip between the
tip and the reflecting interface. Our fitting procedure yields quantitative results for the
real part q1 of the plasmon wavevector q while the imaginary part q2 is notably smaller
(Supplementary Note 5 in Ref. 134 provides further details). We find the inverse damping
ratio γ−1 = q1/q2 (introduced in Sec. 2.4) to be typically between 20− 50, with a lower
bound of γ−1 = 5. This is similar to the value found in single-layer graphene87, γ−1 = 25.

From the extracted values of q1(ω) we can construct a dispersion curve for the col-
lective excitation as shown in Fig. 3.3b. For energies above 200 meV, the dispersion is
approximatively linear with a group velocity vg ≈ 0.9− 1.3 · 106 m/s (dashed and dotted
lines in Fig. 3.3b), and crosses the q1 = 0 point for ℏΩexp ≈ 190 meV. For lower energies,
the typical discretization pattern of a finite size cavity appears (that is, where the dis-
tance between the reflecting interfaces is comparable to the plasmon wavelength 2π/q1).
Remarkably, the group velocity is larger than theoretically anticipated, see for instance
Ref. 89, where flat plasmonic bands were predicted, and the discussion below. As we will
see, this points to a larger spectral weight in the optical transitions. Clearly, the observed
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Figure 3.3: Extracting the optical conductivity from the plasmon dispersion. a Near-
field amplitude along the dashed red arrow in Fig. 3.2d, for a range of excitation energies.
The colour scale is the same as in Fig. 3.1b and to highlight the plasmonic modes, we
normalize each line to the average near-field amplitude within the reflecting interfaces.
The white gaps are gaps in the spectrum of the excitation laser. b Dispersion relation
q1(ω) determined from fitting individual line traces in panel a to a sinusoidal function
(red points). The blue points are obtained in a similar way but from a slightly different
location (solid blue arrow in Fig. 3.2d). We extract the plasmon group velocity (black
dashed/dotted lines) from a linear fit on the blue data points. The horizontal dashed line
marks the threshold of the Reststrahlen band of hBN. The colour plot represents the loss
function calculated from the chirally-symmetric continuum model 37, and gives a rough
estimate of the inverse damping ratio of the modes. c Extracted values of the optical
conductivity with the same colour coding as in panel b. Dots represent experimental data,
dashed lines are Drude fits, while solid lines are fits with resonant profiles.

nearly-linear dispersion, initiating from a finite energy ℏΩexp for q1 = 0, is very different
from the typical Dirac plasmon dispersion of doped single- and bilayer graphene, as we
discuss in Sec. 3.4. Instead, the observed linear dispersion resembles more the one of a
bulk magnetoplasmon133: ω(q) = Ωexp + vgq1.

3.3. Extraction of the optical conductivity
To relate our observations to the electronic bands in the moiré superlattice, we ex-
tract the value of the optical conductivity σ(ω) for the optically active regions. In
the local approximation137 (that is, where the optical conductivity is taken to be inde-
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3.4. Comparison between plasmons in TBG and single- and bilayer graphene

pendent of q and contributions from reciprocal lattice vectors G ̸= 0 are neglected),
the longitudinal dielectric function138 is given by ϵ(q,ω) = 1 + iq2Vq,ωσ(ω)/ω, where
Vq,ω = 2πF (q,ω)/[ϵ̃(ω)q] is the 2D Fourier transform of the Coulomb potential126, the
permittivity ϵ̃(ω) =

√
ϵ∥(ω)ϵ⊥(ω) takes care of the optical response at frequency ω of

the hBN crystal slabs139 surrounding the TBG sample, and F (q,ω) is a form factor that
takes into account the finite thickness of the hBN slabs (Appendix A.3). Finite-thickness
effects are important close to the upper edge of the Reststrahlen band of hBN where
the in-plane permittivity ϵ∥(ω) vanishes and the out-of-plane decay length of the mode
diverges. Neglecting the finite thickness of hBN would lead to a wrong dispersion relation,
yielding a collective mode that does not enter the upper Reststrahlen band (Fig. 3.3b).
Collective modes can be found by solving138 ϵ(q,ω) = 0, or by looking at the peaks of
the loss function L(q,ω) = −Im( 1

ϵ(q,ω) ). From the measured collective excitation disper-
sion, we can find the imaginary part σ2(ω) of the local conductivity, using the expression
σ(ω) = iω/(q2Vq,ω) and neglecting the imaginary part of q (Appendix A.3 shows that we
can safely do this without changing the results). The results are shown in Fig. 3.3c.

The simplest possible fitting function, of the Drude form σ2(ω) = G0W0/ℏω — where
G0 = 2e2/h is the conductance quantum and W0 is a fitting parameter with dimensions of
energy — yields W0 ≈ 1100 meV (that would correspond, for two uncoupled single-layer
graphene sheets, to a Fermi energy EF ≈ 550 meV in each layer) and a very poor fit.
This confirms that our data are not consistent with a regular intraband graphene Dirac
plasmon. A much better fit is obtained by using the following resonant form: σ2(ω) =

G0Wexp
ℏω

ℏ2ω2−ℏ2Ω2
exp

, with Wexp and Ωexp as fitting parameters. We find ℏΩexp ≈ 180 meV
and a spectral weight Wexp ≈ 300 meV for both presented datasets. Supplementary Note 9
in Ref. 134 further discusses the influence of a Drude response in this analysis.

3.4. Comparison between plasmons in TBG and single-
and bilayer graphene

Single-layer graphene (SLG), as well as Bernal-stacked bilayer graphene (BG), can display
plasmonic excitations87, though there are key differences with the observations made here
for TBG. To make a comparison, we calculate the loss function L(q,ω) as introduced in
the previous Section for the three systems. For SLG we use the local, frequency-dependent
conductivity taken from Ref. 140, while we calculate the local, frequency-dependent con-
ductivity of BG using the Kubo formula from its band structure (Appendix B.4 with
dy = 1), taking into account the non-zero displacement field. For the conductivity of TBG
we employ the chirally-symmetric continuum model as will be introduced in Sec. 3.6. We
perform all calculations with T = 300 K and consider the finite-thickness effect of hBN.
The simulated device structure consists of a metal gate, 47 nm bottom hBN, followed by
SLG, BG or TBG, and 13 nm top hBN. Figure 3.4 displays the results.

We find that only highly doped SLG and BG can host intraband plasmonic excitations
with a dispersion qualitatively (but not quantitatively) similar to what we have found
(Fig. 3.4b-c). For SLG we considered a Fermi level EF = 0.5 eV, which can be reached
via electrostatic gating only at the breakdown voltage of hBN (∼ 1 V/nm). The fact that
we observe the collective excitations in ungated (thus nearly charge-neutral) TBG marks
a strong difference from SLG and BG. Besides interband plasmons, TBG is also predicted
to hosts intraband excitations, as seen for energies below 30 meV in Fig 3.4d. However,
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Figure 3.4: Comparison of calculated loss function for SLG, BG and TBG. a The
loss function of SLG at EF = 0 eV. The strong excitations at low energies are intraband
plasmons at THz-frequencies resulting from thermally excited carriers 126. The data points
are the same as those in Fig. 3.3b. The brown dashed areas indicate the lower and upper
Reststrahlen bands of hBN. b Same as in panel a but for EF = 0.5 eV, corresponding to a
doping level of 1.85·1013 cm−2. The plasmonic mode hybridizes with hBN phonons, as seen
by the crossing near 100 meV. c The loss function of BG for EF = 0.2 eV, corresponding
to a doping level of 1.62 · 1013 cm−2. d The loss function of TBG as calculated from
the chirally-symmetric continuum model 37 for θ = 1.35°. The mode for ℏω < 30 meV
corresponds to an intraband plasmon, while the interband excitations are reflected by the
modes at ℏω > 200 meV. The colour scale is for all panels the same as Fig. 3.3b.

we have not been able to detect such modes in our experiment.
Furthermore, the typical SLG and BG plasmons are predominantly observed near edges

of the device or particular defects within the samples41,135,136. The observation of enclosed
patches of optical activity in TBG, formed by reflecting interfaces possibly linked to local
strain and twist-angle variations (Appendix A.2), is something not seen in SLG.

3.5. Interband plasmons in gated twisted bilayer
graphene

Finally, we measure on one of our devices the carrier-density dependence of the dispersion
of the collective excitation by applying a voltage bias between the TBG and the metallic
gate. To this end, we conduct measurements in a cryogenic near-field microscope (Chap-
ter 6), allowing us to perform near-field imaging and measurements of the global transport
properties at the same time.

Figure 3.5a shows a near-field image of another TBG device at finite doping, recorded
at a temperature of about 10 K. It exhibits one region with an oscillatory pattern inside,
which we interpret as interband plasmons due to the strong similarity with the collective
excitations discussed above. As discussed in Supplementary Note 7 in Ref. 134, we do
not observe a change of the collective excitations with temperature. To study the effect
of doping, we first measure the two-probe resistance of this TBG device (Fig. 3.5b) as
a function of gate voltage VG. Two distinct peaks in the resistance away from the CNP
correspond to the full-filling states of two different regions at θ ≈ 1.1° and θ ≈ 1.3°
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Figure 3.5: Interband plasmons in a gated device. a Near-field image of the scattering
phase in a different TBG device, measured at VG = −9 V. The red square marks a region
exhibiting collective excitations. b Two-probe device resistance between the bottom two
leads as function of gate voltage. The four marked peaks in the resistance correspond to
full-filling states at two different twist angles within the device, and the resistance peak
near 0 V marks the CNP. The y-axis is shared with panel c. c Near-field scattering phase
along the green arrow in panel a for a range of gate voltages. Three line traces at different
voltages show that there is no substantial change in the collective excitations upon gating
the device. The sample temperature in all measurements shown here is 10 K and the
excitation energy is 134 meV.

(Eq. (A.1)), providing a rough indication of the twist angle in the region with collective
excitations.

We now take a line cut through the middle of the device, crossing the region with
collective excitations, and vary the gate voltage while recording the near-field phase signal
(Fig. 3.5c). From this measurement, we see that there is no substantial change in either
the recorded periodicity or near-field phase signal of the collective excitations upon doping
the device beyond its full-filling state. As discussed in Appendix A.4, our calculations only
show minor changes in the loss function upon filling of the bands until ν ≈ 1.5. These data
strengthen the interpretation in terms of collective modes originating from an interband
transition, as those are much less affected by the carrier density than intraband plasmons
(Sec. 3.4).

3.6. Theoretical model for interband transitions in TBG
We now seek a theoretical justification for the resonant lineshape (Fig. 3.3) extracted
from the experimental data and for the values we have found for Ωexp and Wexp. This is
in large part developed by Iacopo Torre, Pietro Novelli and Marco Polini. At the level of
the random phase approximation (RPA) for the dynamical dielectric function138 ϵ(q,ω),
the unknown quantity σ(ω) is approximated by using its value for the non-interacting
2D electron system in TBG. We note that σxx = σyy = σ, since the system has three-
fold rotational symmetry. The latter can be calculated exactly by employing the Kubo
formula138, once the eigenstates |k, ν⟩ and bands ϵk,ν of the single-particle problem are
given. Here k represents the electronic wavevector. The quantities |k, ν⟩ and ϵk,ν can
be found from a band structure calculation for TBG at a given θ. Here, we have used
results obtained from ab initio k · p perturbation theory141, which accurately accounts
for the effects of intrinsic atomic relaxation in pristine samples. The resulting bands ϵk,ν
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3. Observation of interband collective excitations in twisted bilayer graphene

are shown in Fig. 3.6a. We clearly see that band nesting occurs near the K point of the
superlattice Brillouin zone, where two (relatively flat) bands — say ν and ν′, connected
by vertical lines with arrows in Fig. 3.6a — are such that ∇kϵk,ν ≃ ∇kϵk,ν′ in a range
of values of k. In other words, the bands are parallel to each other for a wide range of
k. The joint density of states for these pairs of bands is large at the transition frequency
and the resultant optical absorption spectrum σ1(ω) ≡ Re[σ(ω)] has a peak at a nearby
frequency Ωth as shown in Fig. 3.6b. At the CNP, θ = 1.35°, and T = 300 K (used for
all calculations in this work), we find ℏΩth ≈ 115 meV and an associated spectral weight
Wth ≡ 2ℏ

∫
peak

dω σ1(ω)
πG0

≈ 64 meV. Because of causality, σ1(ω) and σ2(ω) are related by a
Kramers-Kronig transform138. The resonant lineshape introduced above for σ2(ω) yields
σ1(ω) = πG0Wexp[δ(ℏω − ℏΩexp) + δ(ℏω + ℏΩexp)]/2. This implies that our simple reso-
nant fitting formula for σ2(ω) represents the peak seen in the microscopically calculated
σ1(ω) at Ωth — see Fig. 3.6b — with a delta peak at Ωexp with spectral weight Wexp.

While Ωth is in a reasonable agreement with Ωexp, there is notable disagreement with
the spectral weight since Wth ≪ Wexp. The sources of this spectral weight mismatch can
be multiple. To gain understanding, we resort to a more flexible continuum band-structure
model38. This contains two parameters, u0 and u1, denoting the interlayer coupling in
the AA regions and AB/BA regions, respectively. Results based on such continuum model
with the choice38 u0 = 79.7 meV and u1 = 97.5 meV present only minor quantitative
differences with respect to those of ab initio k · p perturbation theory shown in Fig. 3.6b
and are reported in Supplementary Note 10 in Ref. 134. Also, calculations in Ref. 89
give qualitatively similar results. The same continuum model with u0 = 0 and u1 ̸= 0,
which is endowed with unitary particle-hole symmetry, has been introduced in Ref. 37 as
an idealization of reality.

Intriguingly, we find that the conductivity calculated from this chirally-symmetric con-
tinuum model (CS-CM)37 — for u0 = 0 and u1 = 97.5 meV — displays a much bet-
ter agreement with our experimental data. The bands ϵk,ν of the CS-CM are shown in
Fig. 3.6c, while the optical absorption spectrum is reported in Fig. 3.6d. Also here, σ2

displays a resonant profile, but the resonant energy is ℏΩth ≈ 199 meV and the spectral
weight is Wth ≈ 162 meV, in much better agreement with our experimental results. The
loss function, calculated from this CS-CM is shown in Fig. 3.3b and overlaps very well
with the superimposed experimental data. This suggests that the optical spectral weight
is strongly enhanced in the optically active regions and this enhancement can be explained
by an effective suppression of the AA interlayer coupling in the same regions. Appendix A.4
provides additional calculations for different twist angles.

Motivated by this finding, we perform a systematic scan of the AA tunnelling amplitude
in a range going from u0 = 0 meV — corresponding to the CS-CM — to u0 = 79.7 meV,
which is the value given in Ref. 38. For each value of u0 we calculate the band structure,
extract the optical conductivity, and fit it with a resonant profile to extract the parameters
ℏΩth and Wth. The results are shown in Fig. 3.7. The resonant frequency increases
monotonically with decreasing u0 and crosses the experimentally measured value around
u0 ≈ 40 meV. The spectral weight has instead a non-monotonic behaviour but gets closest
to the experimental data approximately in the range 20 < u0 < 40 meV. We performed the
same procedure on the ab initio k · p perturbation theory model by scaling the parameters
corresponding to the AA tunnelling. The results are qualitatively similar, apart from a rigid
shift, as shown in Fig. 3.7. The rigid shift is primarily caused by a small difference between
the models’ effective AB coupling u1. This can also be viewed as a tunable parameter of
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Figure 3.6: Electronic band structure and optical conductivity of twisted bilayer
graphene with θ = 1.35o. a Electronic band structure ϵkν of TBG with θ = 1.35°
along the KΓMK contour of the superlattice Brillouin zone from ab initio k · p pertur-
bation theory 141. The most relevant bands are ν = −2 (orange), ν = −1 (blue), ν = 1

(green), and ν = 2 (red). The corresponding wave functions at the K point for ν = −1

and ν = 2 are shown in Fig. 3.1d. Solid (dashed) lines represent the bands in the valley
close to the K (K ′) point of the original graphene layers. The panel on the right shows
the density of states with the colour shading representing band occupation at room tem-
perature. The orange dashed line represents the density of states of single-layer graphene.
Vertical arrows highlight the most relevant interband optical transitions. b Calculated real
part of the optical conductivity (black thick line) using the Kubo formula and the band
structure in panel a. Orange (blue) shading represents the contribution to the total optical
conductivity of the pair of bands with ν = −2, ν′ = 1 (ν = −1, ν′ = 2), corresponding
to the transition marked by an orange (blue) arrow in panel a. The dashed line is the
Lorentzian fit to the most relevant interband feature and is used to extract the resonance
parameters. The inset shows the imaginary part of the optical conductivity (normalized to
G0), together with the experimental data from Fig. 3.3c. c-d. Same as in panels a-b but
with the band structure of the chirally-symmetric continuum model 37.

the theory and controls the location of the magic angle. An extensive theoretical discussion
of collective modes in TBG as a function of the band-structure parameters can be found
in Ref. 91.

Thus, our experiments suggest that, in particular regions of the sample, the AA tun-
nelling amplitude is substantially reduced with respect to the AB tunnelling amplitude but
still has a non-vanishing value. This finding is compatible with the results of Refs. 15,18,22
that reported on the gap size between the flat bands and the first excited band at the Γ

point of the superlattice Brillouin zone. This quantity provides a direct measure of the
difference u1−u0 and was found to be in the range 30−60 meV. The apparent suppression
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Figure 3.7: Calculated properties of the relevant interband transition as functions
of the tunnelling amplitude in the AA regions. a Interband energy extracted from a
Lorentzian fit of the optical conductivity. The solid (dotted) line corresponds to the model
described in Ref. 141 (Ref. 38). The grey shaded areas represent plus/minus the half width
at half the maximum of the Lorentzian fit. In both theoretical models used in this work
(Ref. 141 and 38), Ωth decreases monotonically upon increasing the AA interlayer coupling
u0. These calculations were performed by setting θ = 1.35° and u1 = 97.5 meV. The blue
and red dashed lines correspond to the experimentally-determined resonant frequencies
(Fig. 3.3c), with the corresponding shaded area indicating the uncertainty. The inset
illustrates a triangular moiré lattice with the interlayer coupling strengths u0, u1 on the
AA (yellow) and AB/BA sites (blue), respectively. b Same as in panel a but for the
spectral weight Wth. The latter displays a maximum for intermediate values of u0.

of tunnelling in the AA regions compared to the one in the AB/BA regions (that is, the
fact that u0 < u1) can stem from e-e interactions or extrinsic effects. It is known35,37 that
u1 is responsible for a (non-Abelian) gauge field acting on the electron system, while u0
induces a scalar potential. Electron-electron interactions act between density fluctuations
and, because of the continuity equation between longitudinal current fluctuations. Con-
sequently, screening due to e-e interactions tends to suppress the longitudinal field due to
u0, while having a smaller impact on the transverse gauge field due to u1.

Extrinsic factors can also alter, locally, the value of u0. We suspect that these include the
way samples are prepared, the AFM-brooming procedure (Appendix A.2), and, possibly, the
hBN encapsulation. It frequently happens that samples prepared in different laboratories
display some macroscopic differences in their physical characteristics, such as twist angle48,
electrical transport18,22–24,26,39 and spectroscopic features28–31.

Before concluding, one may also hypothesize that our samples present a highly inho-
mogeneous strain distribution with patches where the associated pseudo-magnetic field
BS = BSẑ is finite and nearly uniform142 and regions where BS = 0. A resonant conduc-
tivity profile, as observed in experiments, would naturally arise in this case at the frequency
of the pseudo-cyclotron resonance. We analyse this potential explanation of our observa-
tions in Supplementary Note 11 in Ref. 134 and conclude that it is unlikely since it would
require an unreasonably large amount of strain to match the observed resonant frequency.

3.7. Conclusion
In summary, we have observed propagating interband collective excitations in TBG in the
mid-infrared spectral region, with larger-than-expected group velocity and thus a larger
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3.7. Conclusion

spectral weight of the infrared optical transitions. The usefulness of models with reduced
AA tunnelling coupling37,38,141 in interpreting our experimental data could point to the
enhanced role of e-e interactions. We expect that our work will encourage further theoret-
ical and experimental studies to assess the intrinsic (that is, e-e) and extrinsic factors that
can effectively renormalize the band-structure parameters and the reasons for the observed
sample inhomogeneity. Future low-temperature studies can moreover elucidate the role of
electronic correlations in the upper bands and the contribution of collective excitations to
many-body ground states143, while terahertz near-field imaging can offer a local probe of
the electronic phase transitions144.
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4. Nano-imaging photoresponse in a
moiré unit cell of minimally twisted
bilayer graphene

In this Chapter, we perform near-field photocurrent nanoscopy on minimally
twisted bilayer graphene (mTBG). With this, we probe nanoscale photocurrents
in mTBG and observe a unique photothermoelectric effect governed by the sym-
metry breaking of the domain wall network. Our measurements are supported
by simulations of the spatial photocurrent profile in our devices that shows the
photoresponse originates from microscopic variations in the Seebeck coefficient
intrinsic to the moiré lattice. By varying the doping, we observe anomalous sign
reversals in the photocurrent that hints to the importance of strain gradients in
mTBG. In addition, we observe a localized photoresponse close to the domain
walls of the moiré unit cell that is attributed to additional electron heating from
propagating polaritons.
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4. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene

4.1. Experimental scheme and device characterization

Minimally twisted bilayer graphene (mTBG) undergoes symmetry breaking due to the
formation of a domain wall network, which motivates us to study its photoresponse by
means of infrared scanning near-field photocurrent microscopy. As detailed in Sec. 2.5, this
involves local photo-excitation of carriers using an s-SNOM system combined with electrical
current/voltage read out at the device contacts. As we find in this work, the sharp domain
walls act as local junctions converting electronic heat into a current (Fig. 4.1a). Spatially
mapping out the photocurrent/voltage patterns in our samples allows us to unravel the
underlying domain wall network and its properties.

The studied mTBG samples were fabricated using the tear and stack method15,16

(Sec. 2.1). In brief, the heterostructure structure consists of a van der Waals stack of
mTBG fully encapsulated with hBN and deposited on top of a Si/SiO2 wafer. Our sam-
ple (Fig. 4.1b) also contains gold contacts for photocurrent/photovoltage read out and
simultaneous electrostatic gating of the channel with the silicon backgate.

To characterize the local structure in our devices, we first measured the near-field op-
tical scattering signal of our samples (Sec. 2.2). Figure 4.1c shows a near-field image of
the optically scattered light measured at high doping n ∼ 5 · 1012 cm−2 in our mTBG
sample (Appendix B.1 for doping estimation). It reveals a set of bright fringes forming
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SLG
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Figure 4.1: Design of experiment and device. a Schematic illustration of near-field
photocurrent experiments performed in minimally twisted twisted bilayer graphene (credit:
Matteo Ceccanti). The moiré domains of different stacking configurations are highlighted
by yellow and purple shaded areas. The AFM tip couples infrared light into the device,
causing the electron temperature to elevate locally. The photothermoelectric effect con-
verts this heat partially into a current that can be read out by the contacts. Inset: Zoom
of the domain wall structure separating AB-BA domains of the moiré lattice. b Device
schematic of the main device under study. It consists of different regions of single-layer
graphene (SLG) and minimally twisted bilayer graphene (mTBG) due to folding/stacking
faults during the heterostructure assembly. The geometry for photocurrent measurements
in Fig. 4.2 is marked by S (source) and D (Drain). The third contact is left floating.
The purple dot marks the position where the calibration of carrier density is done (Ap-
pendix B.1). c Near-field scattering phase image corresponding to the yellow marked
rectangle in Fig. 4.2, measured at E = 117 meV and n ∼ 5 · 1012 cm−2. The two shaded
triangles mark two domains. Scale bar is 500 nm.
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4.2. Measuring near-field photoresponse in mTBG

a triangular network of alternating AB/BA domains; the purple/yellow triangles highlight
two neighbouring AB/BA domains. These features have already been studied extensively
in near-field scattering experiments and were attributed to enhanced optical conductivity
at the domain walls of mTBG41,78,135. Their observation in our experiment thus confirms
the presence of atomic reconstruction39 expected in mTBG and allows direct structural
mapping of the moiré lattice in our samples.

For the following photocurrent measurements we used a fast current amplifier (Femto
DLPCA-100). For simultaneous measurement of the photovoltage between two pairs of
contacts, we used two differential voltage amplifiers (Ithaco 1201) with one common con-
tact grounded. The carrier doping in our samples is tuned by applying a DC voltage
between the Si backgate and our device. To avoid detecting unwanted far-field contribu-
tions to the scattered or photocurrent/voltage signal, we detect the near-field signals at
the second or third harmonic of the cantilever oscillation.

4.2. Measuring near-field photoresponse in mTBG
Figure 4.2 shows a near-field photocurrent map of our sample measured in the mTBG
region with an excitation energy E = 188 meV, which exhibits a number of interesting
features. First, a clear periodicity in the photocurrent is observed throughout the entire
sample. It can be easily seen by following the zeros in photocurrent (white lines and white
features) that trace the periodicity intrinsic to mTBG. Notably, the periodicity varies from
∼ 100 to ∼ 1000 nm in different regions of the device. We attribute this behaviour to local
variations in the twist angle (θ ∼ 0.1− 0.01°) inherent to twisted moiré superlattices48,64.
Second, the photocurrent exhibits alternating domains of negative response (blue regions)
and positive response (red regions). This is most clearly seen in the device region with
largest moiré periodicity (centre area in Fig. 4.2). Third, in these larger areas a second
fringe can be seen running parallel to the domain walls. This double-step like feature closely
resembles that of propagating polaritons typically observed in near-field scattering and
photocurrent experiments on graphene110,111,127 and hBN95,113 close to crystal edges, and
will be discussed in detail below. Importantly, this periodic structure in the photocurrent
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Figure 4.2: Near-field photoresponse in minimally twisted bilayer graphene. Pho-
tocurrent map of mTBG corresponding to the black rectangle in Fig. 4.1b, measured at
carrier density n ∼ 1 · 1012 cm−2 with an excitation energy E = 188 meV. Scale bar is
500 nm. The map is normalized by the maximum measured IPC.
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4. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene

was characteristic in our other studied mTBG devices (Appendix B.2).
The spatial pattern of photoresponse is highly sensitive to the position of measurement

contacts with respect to the moiré periodicity. Figure 4.3a shows a zoomed photovoltage
map of the region with largest domains in Fig. 4.2d. This triangular pattern resembles
the moiré pattern of mTBG (Fig. 4.1a), with zero crossings seemingly tracing the domain
wall network of the moiré superlattice. However, when comparing our photoresponse
data with our optical scattering data Fig. 4.1c), we find that the actual structure of
the moiré lattice is rather different. The purple/yellow shaded triangles in Figure 4.3a
highlight the positions and orientation of two neighbouring AB/BA domains measured by
optical scattering (corresponding triangles in Fig. 4.1c). From this we can see that this
measurement does not capture the entire structure of the moiré lattice, and we lose a
set of domain walls at 45° to those observed in Figure 4.3a. Strikingly, those additional
domain walls appear simply by measuring between a different pair of contacts (Fig. 4.3b).
In this scheme, the actual structure of the moiré lattice is clearly visible and the spatial
profile of the photoresponse is more complex than anticipated. For example, we find
that the measured photovoltage exhibits sign reversals not only at domain wall boundaries
(Figure 4.3c), but also within the AB/BA stacked domains. Moreover, the spatial patterns
of the photoresponse within each moiré unit cell varies largely between AB and BA stacking
configurations.

To elucidate the role and mechanism of photoresponse in mTBG, we studied the gate-
voltage dependence of the photocurrent within the moiré domains. In Figure 4.4a, we plot
the line trace of the measured photocurrent made across domain walls (black dashed line
in Fig. 4.3a) for different gate voltages VG − VD, where VD is the position of the charge
neutrality point (CNP) determined from the gate dependence of the optically scattered
signal (Supplementary Note 3 in Ref. 125). The positions of domain walls are marked
by the black arrows. The first thing to note, is that the gate-voltage dependence of
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Figure 4.3: Photoresponse in the moiré unit cell of mTBG. a Zoomed map of measured
photovoltage VPV in the same sample presented in Fig. 4.1 (corresponding to the area with
the largest domains in Fig. 4.2), measured at excitation energy E = 117 meV and carrier
density n ∼ 1 ·1012 cm−2. The map is normalized to the maximum measured VPV. Colour
code: blue: -1, red: +1. The yellow/purple shaded triangles correspond to those in
Fig. 4.1c. The gold annotations illustrate roughly the relative position of contacts used
for measuring voltages. Scale bar is 500 nm. b Same as panel a but for a different choice
of contacts (gold annotations) measured simultaneously. c Line cut across a horizontal
domain wall in panel b (blue), together with a line trace of the simulated profile in Fig. 4.6d
(dashed red).
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4.3. Photothermoelectric effect in a domain wall network
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Figure 4.4: Gate dependence of photoresponse in mTBG. a Photocurrent as a function
of gate voltage VG (with respect to the position of the Dirac point VD) measured for a
line trace that crosses several domain walls (black dashed line in Fig. 4.3a). Black arrows
mark the position of observable domain walls for this choice of contacts. The gate voltages
correspond to carrier densities within roughly ±6 · 1012 cm−2. b Gate-voltage response
along the two line cuts highlighted in panel a, on two opposite sides of the domain wall.

the photoresponse is particularly sensitive to the position of the excitation spot within
the moiré unit cell. On top of that, it is extremely non-monotonic, such that for some
excitation positions it exhibits up to three sign changes. Figure 4.4b plots line cuts of
the gate-voltage dependence for two excitation positions (marked by coloured dashed lines
in Figure 4.4a). On one hand, the observed non-monotonic behaviour strongly resembles
that of the photothermoelectric effect in graphene123,145,146 that is strongest for lower n

and exhibits sign reversals around CNP. This is not surprising considering the unit cell of
mTBG is comprised mostly of AB Bernal stacked bilayer graphene, whose photoresponse
is dominated by the photothermoelectric effect in the presence of spatially varying Seebeck
coefficients123,124,145,146. On the other hand, some other features such as the two additional
sign changes away from charge neutrality, which depend on the spatial location, are rather
peculiar.

4.3. Photothermoelectric effect in a domain wall
network

With Figures 4.3 and 4.4 in mind, we constructed a model based on the photothermo-
electric effect (PTE) to describe the observed photocurrent features in mTBG, following
the general description of the PTE introduced in Sec. 2.5. The details of this model are
worked out in large part by Iacopo Torre. In the moiré superlattice of mTBG, the local
layer alignment transitions smoothly in the region of the domain walls, which is expected
to cause local gradients in the Seebeck coefficient, as required for the PTE. To corrob-
orate this, we calculated (Appendix B.4 for full details on the calculation) the Seebeck
coefficient of bilayer graphene as a function of the layer alignment in the Relaxation Time
Approximation91 and mapped the local alignment to the distance from a domain wall using
the result in Ref. 33. By this procedure we obtained the spatial profile of the Seebeck
coefficient across a domain wall, as depicted in Figure 4.5b. This shows that the Seebeck
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Figure 4.5: Simulation of the photothermoelectric response of a single domain wall.
a Profile of the electron temperature increase induced by local photoexcitation as a func-
tion of distance (x) from the excitation position (xtip), for a cooling length of 200 nm. b
Calculated Seebeck coefficient as a function of position within two moiré unit cells sepa-
rated by a domain wall at x = 0 nm. c Line trace of the calculated photovoltage across a
domain wall using the thermal profile and Seebeck coefficient of panel a and b.

coefficient dips sharply at the domain walls of the moiré superlattice. By considering equa-
tion Equation (2.5) and recalling that V

(m)
PTE ∝ R(m)

PTE, we plot the expected photovoltage
profile in the vicinity of the domain walls in Fig. 4.5c for a typical thermal profile induced
by local photoexcitation (Fig. 4.5a). Notably, the photovoltage follows a non-monotonic
dependence with position through the domain wall, changing sign as it crosses the middle
of the domain wall. Such behaviour can indeed be seen in our data along certain domain
walls (Fig. 4.3c).

Whilst the one-dimensional model (Fig. 4.5c) describes well the sign changes across
certain domain walls (Fig. 4.3c), the full two-dimensional spatial map can be more complex
as one must consider the photocurrent contributions from different domain walls due to
the finite cooling length Lcool. The full spatial profile of R(m)

PTE(r) can be calculated if
the entire measurement geometry of the system (Fig. 4.6a) and the spatial profile of the
Seebeck coefficient (Fig. 4.6b) are known. We perform this calculation using the Finite
Element Method (Appendix B.3). The calculation is greatly simplified thanks to a elegant
reciprocity relation147,148.

Figure 4.6c and Fig. 4.6d plot the simulated photocurrent for the two measured contact
configurations (Fig. 4.6a) in the same area corresponding to the measurement in Fig. 4.3a
and Fig. 4.3b respectively. The simulations are carried out at a fixed doping n = 1012 cm−2.
Comparing Fig. 4.6c,d with Fig. 4.3a,b we find good agreement between our measurements
and the simulations. Not only do our simulations accurately capture the spatial sign
changes observed in our sample, but also the differing local photoresponse between AB and
BA stacked regions (Fig. 4.3b and Fig. 4.6d). Importantly, the simulations also capture the
strong directional effect observed. To understand this behaviour, we recall that the PTE
can generate a global current only in regions where the gradients of Seebeck coefficient
contain a part running parallel to the projection of current flows between contacts. This
means that the domain walls perpendicular to the projection of current flows contribute
strongest to the measured photocurrent and are minimum for those that run parallel. The
current projections for the two contact configurations are sketched in Fig. 4.6a, where the
red and white lines depict projections for the contact configuration of Fig. 4.3a and Fig. 4.3b
respectively. They are also drawn in Fig. 4.6b to illustrate their orientation relative to the
domain wall networks measured in Fig. 4.3a,b. In the first configuration (red lines), we find
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Figure 4.6: Simulations of the photothermoelectric response in mTBG. a Illustration
of the geometry used in our photocurrent simulations. The yellow semi-circles indicate
contact probes, the green single-layer graphene regions and the orange mTBG regions.
The red projection of current flows corresponds to a configuration wherein current flows
between contacts 3 and 1, while the white field lines correspond to current flowing between
contacts 2 and 1. The black square highlights the region shown in panels b-d. b 2D spatial
map of the calculated Seebeck coefficient (Appendix B.4) that goes into our model, along
with the projections of current flows shown in panel a. c Zoom of the photovoltage
simulations in the region of mTBG (same area as Fig. 4.3a). Here we convolute the
calculated responsivity with a Gaussian function of width 15 nm to account for the finite
tip radius. Colour code: blue: -1, red: +1. Scale bar is 500 nm. d Same as in panel c
but for a different measurement geometry (same as Fig. 4.3b).

that some domain walls run almost parallel to the current projections. Therefore, photo-
excitation at these domain walls does not contribute to the globally measured current, and
they remain completely hidden in our measurement (Fig. 4.3a). Whereas in the second
case (white lines), there is always a component perpendicular to all sets of domain walls
such that they all contribute to the globally measured current (Fig. 4.3b). This result also
demonstrates the crucial importance of measurement geometry149 in understanding the
nanoscale photoresponse of solid-state crystals.

Good agreement between the simulations and experiment points towards a photother-
moelectric dominated photoresponse in the moiré lattice of mTBG. Indeed, qualitatively
the spatial sign changes across domain walls and doping dependent sign changes around
the CNP are well described by our photothermoelectric model; we attribute the slight
shift of zero crossings from VG − VD (Fig. 4.4) to additional photocurrent mechanisms
that may play a role at the CNP150. Even the additional sign changes observed away
from CNP (purple trace in Fig. 4.4b), can be explained within the framework of the PTE
by considering an enhanced Seebeck coefficient at the domain walls with respect to the
calculated one (Supplementary Note 7 of Ref. 125). That said, it does not accurately
describe the spatial dependence of the gate-voltage response, specifically, the sign reversal
of the photoresponse within the moiré domains shifting with applied gate voltage (dashed
line in Fig. 4.4a). This behaviour points towards a spatially varying parameter not consid-
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4. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene

ered in our model, for example, a spatially varying Seebeck coefficient within the AB/BA
domains themselves that is not localized at the domain walls. Such behaviour might be
expected in the case that lattice reconstruction in mTBG imposes considerable strain in
the AB regions40, which might enhance the Seebeck coefficient of bilayer graphene lo-
cally151. A simplified model, which includes a spatially varying Seebeck within the AB/BA
domains, is presented in Supplementary Note 7 of Ref. 125 and shows similar features as
the experimental data.

Another peculiarity in the data is the high doping behaviour (VG−VD > 40 V), in which
the spatial sign changes across domain walls becomes nearly absent (Fig. 4.4a) and the
spatial profile resembles that of a constant background, which changes sign when changing
carrier polarity. This is illustrated in Fig. 4.7a that plots a photocurrent map for a doping
n = 4 · 1012 cm−2, where we observe large areas of the moiré lattice exhibiting either a
constant positive or negative photoresponse. In the simplest case, we might attribute this
additional photocurrent to nearby pn-junctions caused by deformations/stacking faults
in our heterostructure. However, our measurements of the cooling length from these
interfaces (Lcool = 240 nm) show a fast decay of such contributions (Appendix B.5).
Hence, the data suggests another photocurrent mechanism might be present in mTBG. For
example, we considered the possibility of photogalvanic currents (Appendix B.6). Further
work is required to understand these additional background phenomena.

4.4. Photoresponse from hyperbolic phonon-polaritons
Finally, we address the double step-like feature that is observed close to the domain walls
(Fig. 4.2, Fig.4.4a, Fig.4.7a). At first inspection, those features resemble that of propa-
gating polaritons in graphene/hBN heterostructures typically observed in s-SNOM experi-
ments85,86,110,111,113. As shown in this work, the domain walls also act as local photoactive
junctions which would thus enable thermoelectric detection of polariton modes95,126,152.
For investigation, we studied the wavelength dependence of the double-step feature fo-
cussing on energies 150 − 200 meV where it appeared strongest (Fig. 4.2). Figure 4.7b
plots the photoresponse as a function of excitation wavelength for a line trace made across
several domain walls in one of our mTBG samples. For all energies, we observe the ex-
pected photocurrent profile generated at domain walls by the photothermoelectric effect
(Fig.4.5c). However, we also observe an additional feature that disperses with energy in
the specific range 180− 200 meV but is completely absent for lower energies. This spec-
tral range corresponds to the upper Reststrahlen band of hBN and suggests those features
originate from propagating phonon polaritons in hBN.

For further analysis, we compare in Figure 4.7c line traces of the measured photoresponse
(yellow arrow in Fig. 4.7b) at different energies after subtraction of a smooth background.
Note, whereas we plot the modulus to make analysis easier, we draw attention to the
fact that the actual response is a reduction in the measured photocurrent compared to
the background (Fig. 4.7b). Following this procedure for all traces in Fig. 4.7b, we plot
in Figure 4.7d the distance between peaks and the domain wall as function of excitation
energy (red dots). When the excitation energy is inside the Reststrahlen bands of hBN, the
AFM tip can excite hyperbolic phonon-polaritons that travel in hBN as collimated rays that
propagate with a fixed angle θBM = tan−1

[
Re
(

i
√
ϵx ,y√
ϵz

)]
relative to the vertical direction152

(ϵi being the components of the dielectric function of hBN). This produces a series of
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Figure 4.7: Anomalous photocurrent and non-local heating via polariton rays. a
Spatial map of the normalized photocurrent (IPC) at an excitation energy of 117 meV
and doping n ∼ 4 · 1012 cm−2. Scale bar is 500 nm. b Normalized IPC as a function of
excitation energy and excitation position (xtip) crossing two domain walls (marked by black
arrows) in another of our mTBG samples. Colour code: blue: -1, red: +1. The dashed
lines are guides to the eye showing the dispersive nature of the double-step feature, which
appears as a local reduction of the photocurrent magnitude on either side of the domain
wall. The white area corresponds to a gap in the spectrum of our laser. c Line traces
(as absolute value) of a few energies taken from panel b (yellow arrow in panel b) plotted
after background subtraction; the background is experimentally extracted from the line
trace at 202 meV where the double-step feature is not observed. We define the distance
between the peaks as 2d . d Distance between the domain wall and observed peak (d)
plotted for different excitation energies (red dots), along with a fit to aλray (blue line).
We estimate the error in d to be ±7.5 nm based on the spatial resolution of our scan.
The inset is a schematic showing the thermal profile (purple) induced by light coupled in
via the AFM tip (yellow triangle). In addition to heating the electron lattice, the tip also
excites hBN phonon rays (black arrows), which are able to propagate to the opposite side
of the domain wall (blue dot) and cause additional heating that produces a photocurrent
contribution of opposite sign.

maxima of electric field intensity close to the surface separated by a distance λray = 2t ·
tan θBN, where t is the total thickness of the hBN. We note our photocurrent measurements
are more sensitive to ray-like modes rather than the first eigenmode typically observed in
s-SNOM experiments113,153,154 (details in Appendix B.7). Following this insight, we fit
the distance d between the dispersing feature and the domain wall (Fig. 4.7d) with the
function d(ω) = aλray(ω), with a as a proportionality constant. The fit yields a = 0.63

and shows good agreement with experimental data (Fig. 4.7d) providing strong evidence
that the dispersing feature is caused by hBN hyperbolic phonon-polaritons. We observe
that a <

ttop+2tbot
2ttop+2tbot

= 0.95 (hBN ray passing once through the top-hBN and twice through
the bottom hBN), which suggests that phonon-polariton rays launched by the AFM tip
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4. Nano-imaging photoresponse in a moiré unit cell of minimally twisted bilayer graphene

propagate beyond the domain wall into neighbouring domains. This is consistent with the
fact that the dispersing feature traces a reduction in the measured photocurrent, because
propagating phonon polaritons heat the mTBG on the side of the domain wall opposite
to the tip (sketched in inset of Fig. 4.7d). This produces photocurrents that counteracts
the one generated by the heat directly produced by the tip, leading to a small reduction
of the photocurrent signal (Fig. 4.7b). We note that Fig. 4.4a and Fig. 4.7a also show
a fainter double step feature, while the data are taken outside the Reststrahlen bands of
hBN. We speculate that the double step feature in this case might originate from heating
by propagating plasmon polaritons that have been shown to scatter/reflect from domain
walls of mTBG41,78,135.

4.5. Conclusion
In this Chapter, we showed that near-field photocurrent spectroscopy is a valuable tool
for studying the optoelectronic properties of moiré superlattices. Our moiré-scale resolved
measurements, and related work from the group of Prof. Basov155, reveal a spatially
rich photoresponse governed by the symmetries of the reconstructed lattice that would go
unnoticed in typical far-field photoresponse experiments. Good agreement of our simula-
tions with experimental data shows the importance of hot carriers in the photoresponse
of mTBG and, at the same time, shows the crucial link between global measurements
and local excitation in photocurrent experiments. This work should thus motivate further
near-field photocurrent studies on related moiré superlattices including twisted transition
metal dichalcogenides98 and small-angle twisted bilayer graphene.
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5. WSe2 as transparent top gate for
near-field experiments

Independent control of carrier density and out-of-plane displacement field is es-
sential for accessing various fascinating states in 2D material heterostructures.
While being straightforward in transport experiments, such control has remained
a challenge for near-field studies because metal electrodes block the near-field
access. In this Chapter, we experimentally verify that WSe2 can be used as a
transparent top gate in infrared s-SNOM experiments. We perform nano-imaging
of plasmons in bilayer graphene and tune the plasmon wavelength using a few-
layer WSe2 gate, allowing us to extract the gating efficiency. A minimal model
that takes the quantum capacitance of WSe2 into account explains the observed
gate response.
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5. WSe2 as transparent top gate for near-field experiments

Near-field optical microscopy has proven itself as a rich technique for exploring the optical
properties of materials on the nanoscale. Most near-field studies on 2D materials and their
heterostructures performed these days use scattering-type scanning near-field microscopy
(s-SNOM), where a sharp metallic tip generates a hotspot of light interacting with the
sample. Such sharp tip also bridges the momentum mismatch between free-space light and
collective excitations, making s-SNOM an appealing tool for imaging such excitations85,86.

A key parameter in many s-SNOM experiments on 2D-materials is the carrier density,
which is typically tuned via the field effect induced by a gate electrode below the sample.
A notable example of this tunability is found in single-layer graphene, where the carrier
density has a direct impact on the plasmon dispersion. Varying the carrier density in
these experiments has given crucial information to understand the nature of these collec-
tive excitations, in particular their carrier-density dependence and the role of many-body
effects87,110–112,127. Tuning the carrier density also gave an insight into the plasmonic prop-
erties of a photonic lattice formed by minimally twisted bilayer graphene78. Besides being
a tuning knob in experiments, a modulation of the carrier density can enhance the sensi-
tivity of the near-field signal via a lock-in detection scheme. This technique was employed
to detect intersubband transitions in transition metal dichalcogenides (TMDs)120.

The field effect does not only inject carriers into the sample of interest, it also induces
a perpendicular displacement field. Whilst the effect of such field on the properties of
single-layer graphene is only minor as it is only one atom thick, it can have a more
pronounced effect in other materials. For instance, a displacement field modifies the band
structure of bilayer graphene by opening a band gap156. Hence, independent control of
the carrier density and displacement field is of great relevance for exploring novel states
of matter using s-SNOM. Domain walls in gapped bilayer graphene are predicted to host
long-lived plasmons with lifetimes two orders of magnitude higher than in single-layer
graphene83. Recent experiments have shown tunability of correlated states in twisted
double bilayer graphene using a displacement field157,158, while twisted trilayer graphene
under a displacement field has raised the bar of Tc in graphene-based systems beyond
2 K81,82. Thus far, such independent control of carrier density and displacement field has
remained a hurdle in s-SNOM experiments, as it requires one of the two gate electrodes
to be placed above the material of interest. Since a metal electrode on top of the sample
screens the electric fields, it effectively blocks the near-field access to the sample.

Recent experiments have made advances in realizing a transparent top gate for s-SNOM
experiments, but still face certain drawbacks. While single-layer graphene is sufficiently
transparent to probe near-field signals through it63, its own plasmonic resonance interferes
with the optical response of the material underneath, complicating the interpretation of the
observed near-field signal159,160. Still, for studying structural changes that are insensitive
to the plasmonic modes of graphene this is not an obstacle63. As alternative the TMD
MoS2 has been proposed, which indeed does not host any resonances that disturb the
near-field signal159. However, since this material is unipolar due to Fermi level pinning at
the contacts, it can only introduce p-type doping in the material below161.

5.1. Design of experiment and device
In this experiment we seek for a material acting as an infrared-transparent top electrode,
of which we validate its performance in the most relevant way. By studying the change
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5.1. Design of experiment and device

in induced plasmon wavelength λp (defined by the inverse of the in-plane wavevector)
in bilayer graphene we assess the carrier density induced by the top gate, while at the
same time we characterize to what extent a charged top layer obstructs the observation
of plasmons.

An ideal transparent top gate electrode should be a van der Waals material, ensuring flat
surfaces and easy integration in the stacking procedure. By utilizing a flake of only a few
layers in thickness, our near-field probe can still come sufficiently close to interact with
the exponentially-decaying near-field electromagnetic field of the sample. Furthermore,
it should be free of strong intraband absorbtion and plasmon or phonon resonances in
the infrared region as they might obscure the detected signal. These resonances can
also hybridize with the polaritons of interest originating from other layers, complicating
the interpretation. In this regard a low-mobility material is favoured, as any inherent
plasmonic resonances will be strongly damped, while this does not limit its capacity to
host static charges in its role as top gate. Finally, for complete tunability our top gate has
to be ambipolar, in order to introduce carriers of both electron and hole type.

WSe2
BLG

Figure 5.1: Optical image of device. Opti-
cal image of our device, with the locations of
bilayer graphene (dashed white) and WSe2
(solid purple) indicated.

To overcome the drawbacks faced in pre-
vious experiments and in light of these re-
quirements, the TMD WSe2 seems an ideal
candidate. This semiconducting material
can be exfoliated down to a single layer of
0.7 nm162,163 and has relatively low mobilities
up to 500 cm2/Vs162,164. In contrast to MoS2,
WSe2 is ambipolar and thus allows for injecting
both carrier types165. A common issue aris-
ing with TMDs is the Schottky barrier forming
at the metal-semiconductor interface, typically
severely blocking transport through either the
valence or conduction band. This can be over-
come by making use of two different metals for
either the source and drain contacts166. However, since we intend to use WSe2 solely as
a gate electrode, a highly resistive contact does not pose an issue, provided we do not
modulate the carrier density at high frequencies.

A potential alternative to a TMD could be a thin mono-crystalline film of bulk metal such
as gold. In order to be transparent in the relevant optical range, the electrode thickness
should be well below the skin depth of the material to avoid screening the near-field
electromagnetic field. Typical metals have a skin depth of 10s of nanometres for infrared
frequencies167, which requires the metal film to be only several nanometres thick. Whilst
this has recently been accomplished with silver films168,169, the growth process does not
allow for an easy integration and such thin films tend to show thickness inhomogeneity169.

Figure 5.2 shows a schematic of the dual-gated device used in this experiment using
WSe2 as top gate. Following the same stacking and nano-fabrication techniques outlined
in Sec. 2.1, we built a device consisting of hBN-encapsulated bilayer graphene (BLG).
From commercially available WSe2 crystals (HQ Graphene) we exfoliate a thin staircase
flake acting as a top gate. Given the quick decay of the near-field signal in the out-of-
plane direction, we use a 4 nm thin top hBN flake. The Si/SiO2 bottom gate serves as a
traditional backgate to bring BLG into a highly doped state where plasmons do not suffer
from Landau damping87. In addition, the bottom gate provides a reference for determining

49



5. WSe2 as transparent top gate for near-field experiments

Figure 5.2: Device schematic. Schematic of our near-field experiment on a device con-
sisting of hBN-encapsulated bilayer graphene. By applying a voltage to a staircase flake of
WSe2 (2-6 layers), we tune the carrier density in bilayer graphene without obstructing the
near-field access, as verified by probing the plasmon properties. Together with the Si gate
this allows full control of the carrier density and displacement field in bilayer graphene.

the plasmon wavelength λp as function of the induced carrier density n. Low-resistance
contacts to BLG are made by reactive ion etching in a CHF3/O2 gas mixture, followed by
Cr/Au metallization. The WSe2 flake is contacted with Ti/Au with the aim to avoid a
high Schottky barrier. However, as explained above and more recent in-house experiments
showed, Cr/Au provides an equally well-functioning contact to a WSe2 top gate. Finally,
to prepare the device for s-SNOM measurements, we mechanically cleaned the top surface
using contact-mode AFM brooming102. Figure 5.1 shows a picture of the device. Over the
course of two months, we did not observe any signs of degradation of the WSe2, despite
performing the experiments in ambient conditions.

5.2. Measuring and controlling plasmons through WSe2

Figure 5.3 shows a near-field image of highly doped BLG (n ∼ 1013 cm−2), which we
induce by solely using the bottom gate at VB = 80 V along with photodoping. The latter
involves photoexciting defect states at the SiO2/hBN interface93,170, which effectively sets
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Figure 5.3: Spatial map of plasmon polaritons in BLG. Map of the near-field phase
contrast at the edge of the bilayer graphene, corresponding to the yellow box in Fig. 5.1.
The Si gate induces a high carrier density ∼ 1013 cm−2 (VB − VD = 145 V), allowing
the propagation of plasmon polaritons, as seen by the fringes running parallel to the edge.
The area shown is covered by WSe2 of various thicknesses, as indicated by the number of
layers. The excitation energy is 117 meV and the scale bar is 300 nm.
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Figure 5.4: Controlling plasmon wavelength with a WSe2 top gate. Line cuts along
the white arrow in Fig. 5.3 demonstrate the effect of the WSe2 top gate while keeping
VB−VD = 145 V. Without obstructing near-field access, applying a voltage to WSe2 alters
the carrier density in BLG (VT indicated for each line cut), which affects the measured
plasmon wavelength λp as extracted from a fit (black dashed lines).

the charge-neutrality point VD at −65 V. The fringes running parallel to the BLG edge
are a manifestation of plasmon polaritions, which we observe as both tip-lauched edge-
reflected (λp/2 period) and edge-launched (λp period)87, see Eq. (2.3). In this case the
voltage on the top gate is 0 V, meaning WSe2 acts as a simple dielectric, and hence we
do not expect any alteration/obscuration of the measured plasmons.

As a next step, we apply a voltage VT on the WSe2 top gate while keeping BLG in the
same highly doped state, and record the near-field signal along the arrow in Fig. 5.3. At
this location the top gate consists of three layers of WSe2 with total thickness of ≈ 2.2 nm.
Figure 5.4 demonstrates that by applying a voltage to the top gate we are able to change
the observed plasmon wavelength. By fitting the oscillations to the model introduced in
Sec. 2.4 we determine the change in plasmon wavelength to be ±10 nm for VT = ±0.75 V.
This means that WSe2 is able to induce carriers of both types in BLG, and thus acts as
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Figure 5.5: Systematically measuring the response of the WSe2 top gate. a Line
cut of the near-field phase signal along the white arrow in Fig. 5.3 for a range of top
gate voltages, while VB − VD = 145 V. The edge of bilayer graphene is marked with a
dashed line. Colour scale is the same as in Fig. 5.3, covering 18 degree phase difference. b
The extracted plasmon wavelength shows a piece-wise linear dependence on the top gate
voltage. The error bars represent ±1σ.
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5. WSe2 as transparent top gate for near-field experiments

an ambipolar top gate. In addition, the near-field contrast is not affected in the slightest
manner, validating that it fulfils well the transparency condition.

To study the response of the transparent top gate in more detail, we measure the near-
field signal while systematically scanning the voltage on the top gate, shown in Fig. 5.5a.
Judging by the fringe spacing for different VT, these data suggest that the top gate only
becomes ‘active’ for high |VT|. To examine this quantitatively, we fit the data to Eq. (2.3)
for each voltage, and extract the plasmon wavelength as function of top gate voltage
(Fig. 5.5b). We find indeed a piece-wise linear function with an inactive region for low
|VT|, while the slope of λp(VT) is rather similar for |VT| > 0.4 V.

5.3. Determining the gating efficiency of WSe2

To understand the particular shape of λp(VT) from a perspective of the electrostatics in
our device, we first need to determine the induced carrier density in BLG by the WSe2 top
gate. To do so, we calibrate λp(n) by using the Si bottom gate as a reference. According
to Eq. (5.1) introduced below, when VT = 0 V the induced carrier density can be described
by a simple parallel plate capacitor only dependent on VB. We measure the plasmon fringes
along the same line cut while varying voltage on the bottom gate and keeping VT = 0 V
(Fig. 5.6). By applying the same fitting procedure, we extract a linear dependence of the
plasmon wavelength on VB, as is expected for a two-dimensional conductor with parabolic
bands171. Using the capacitance of the Si gate as mentioned below and VD = −74 V in
this measurement, we estimate the plasmon wavelength in nm as λp = 8.23n+ 34.5 with
n in units of 1012 cm−2, corresponding to the linear fit in Fig. 5.6b.

From this calibration, we can convert the measured change in plasmon wavelength
(Fig. 5.5b) to the induced carrier density ∆n by the WSe2 top gate. Figure 5.7a shows
this, along with a fit to a minimal model that calculates n for given bottom and top gate
voltages.

This model calculates the carrier density n in BLG for given gate voltage VB and VT,
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Figure 5.6: Calibrating the plasmon wavelength to the carrier density. a Near-field
phase signal along the same line as Fig. 5.5a for a range of bottom gate voltages (VT =

0 V), serving as calibration to determine the carrier density induced by the WSe2 top gate.
b The extracted plasmon wavelength scales approximately linear with the bottom gate
voltage and carrier density, as indicated by a linear fit (dashed line). The definitions of
colour scale and error bars are the same as in Fig. 5.5.
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Figure 5.7: Gating efficiency of trilayer WSe2 and band alignment. a Induced shift
in the carrier density ∆n in BLG by applying a voltage to WSe2 through a 4 nm hBN
layer. The flat response for small top gate voltages (|VT| < 0.4 V) arises from the intrinsic
gap in WSe2, while for larger voltages (|VT| > 0.4 V) WSe2 acts as a conductor and the
slope is determined by the geometric capacitance. From a fit according to the electrostatic
model with T = 300 K we extract a gap of 1.04 eV in WSe2 (solid line). The dashed line
represents the calculated ∆n at zero temperature using the same fit parameters. b Band
alignment of semiconducting WSe2 (grey bands) with respect to BLG (blue bands) for
three different positive top gate voltages. For small VT, the chemical potential of WSe2
shifts down by VT (middle panel). Once VT is large enough that the chemical potential
of WSe2 reaches the valence band edge, carriers are injected in BLG moving its chemical
potential upwards (right panel). At the same time, the bands of WSe2 and BLG are
shifted apart such that the VT equals the difference in chemical potentials, indicated by
the vertical bar.

and takes the electrostatics and equilibrium of the electrochemical potential into account.
The latter requires extra attention, since the top gate WSe2 is not an ideal conductor. The
model is worked out by Iacopo Torre, and is presented in detail in Appendix C.1. In this
simplified model we consider both BLG and few-layer WSe2 as perfect two-dimensional
materials neglecting the electrostatic potential drop between the different layers. To be
consistent with this assumption we also neglect the modification of the band structure of
BLG due to the presence of an out-of-plane field and the corresponding opening of a gap.
This leaves us with a simple parabolic band model for BLG with an energy-independent
density of states determined by the effective mass m∗ ≈ 0.046me with me being the bare
electron mass156. It is beyond our scope to accurately model the carrier density dependence
of BLG here, which would require either a more complex screened tight-binding model172,
or various fitting parameters173.

The main result of our model is captured by the following equation

n =
CB(VB − VD)

e
+

CTVT

e
+

CT∆µWSe2(VT)

e2
, (5.1)

where CT ≈ 7.7 mF/m2 and CB ≈ 0.12 mF/m2 are the geometric capacitances corre-
sponding to the top and bottom gate, e is the unit charge and ∆µWSe2 is the shift in
chemical potential of WSe2 and is set to zero for VT = 0 V. From this equation we see
that for VT = 0 V, the carrier density in BLG can be described by the geometric capaci-
tance of the bottom gate (first term), which we used for the calibration of λp(n) above.
On the other hand, once we fix VB, the change in carrier density is determined by the
geometric capacitance of top gate (second term) and the quantum capacitance of WSe2
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5. WSe2 as transparent top gate for near-field experiments

(last term). The interplay of the last two terms causes the step-like behaviour seen in
Fig. 5.7a. Details on the function ∆µWSe2(VT) are presented in Appendix C.1, along with
the full solution of Eq. (5.1) used for the fit in Fig. 5.7a.

A band alignment diagram of WSe2 and BLG explains gating response in more detail
(Fig. 5.7b). Starting with a BLG at a high carrier density induced by the bottom gate,
the chemical potentials of WSe2 and BLG are aligned for VT = 0 V. In this situation
the chemical potential of WSe2 resides within the valence and conduction bands. Upon
increasing VT, owing to the low quantum capacitance of WSe2 in its insulating state,
∆µWSe2 shifts down by VT until it reaches the valence band. Once that happens, holes
are introduced in the valence band and the induced electrons in BLG shift the chemical
potential of BLG upwards. Due to the relatively high density of states of the valence band
of WSe2, its chemical potential remains close to the valence band edge for higher carrier
densities. Since the difference in chemical potential between WSe2 and BLG has to be
equal to VT, the bands of WSe2 and BLG separate in energy for higher carrier densities.

In fitting the data to our model in Fig. 5.7a, we only leave the valence and conduction
band energies as free fit parameters, while the other parameters can be estimated with
sufficient accuracy. The fit yields a band gap of 1.04 eV, and is almost perfectly centred
at VT = 0 V. The error is largely determined by the estimation of the density of states in
WSe2: reducing or increasing this by an order of magnitude changes the extracted band
gap by ±0.1 eV. Even though a gap of 1.04 eV agrees well with DFT calculations174–176,
experimental values typically report higher values around 1.45 eV175,177,178. We believe
that the discrepancy with our results is caused by the charge imbalance present in WSe2
when generating an external electric field. The internal field due to the charge imbalance
can modify the electronic bands and is expected to reduce the gap size174–176.

5.4. Conclusion
In summary, here we have shown that few-layer WSe2 is well suited as ambipolar trans-
parent top gate for near-field experiments. This is demonstrated by tuning the plasmonic
excitations in bilayer graphene via a WSe2 top gate, without hindering near-field access.
Nanoscale measurements of the plasmon wavelength allow us to extract the gating effi-
ciency, which we capture in a minimal model that considers the geometric and quantum
capacitances. We expect other members of the TMD class to be equally suitable as in-
frared transparent top gates due to their similarity, while their scalability via CVD growth
allows for easy device integration179–182. This work paves the way for future cryogenic
near-field experiments on exotic states in dual-gated sample geometries81–83,157,158.
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6. Development of a cryogenic
near-field optical microscope

In this Chapter, we introduce a cryogenic near-field microscope, encompassing a
commercially available system with several modifications. We discuss the techno-
logical challenges in the development of this system, which includes the operation
of AFM in vacuum, and the passive and active vibration isolation schemes. We
conclude the Chapter by demonstrating its performance.
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With near-field optical microscopy proven itself as a robust and versatile technique183,
interest has grown to bring s-SNOM to a cryogenic environment. Several challenges are
to be faced, such as operating an AFM in vacuum and thin layers freezing on the sample
surface in cold environments. In 2013, the first home-built cryoSNOM was capable to
operate down to 20 K184, studying the insulator-metal transition in VO2 and V2O3. A
few years later, more systematic mapping of the insulator-metal transition in V2O3 showed
reliable operation of their home-built system185. In 2018, the same group reported on the
fundamental limits of plasmon propagation in graphene, using s-SNOM at 60 K112. Both
cryogenic s-SNOM systems only cool the sample, while leaving all the surrounding objects
at room temperature. Despite such design giving a partial simplification of operation, it
limits the base temperature to ≈ 20 K. To overcome the issue of ice-deposition on the
sample, the latter system works in ultra-high vacuum, severely complicating modifications
to the system.

The acquisition of neaspec by attocube in 2014 brought s-SNOM and cryogenics ex-
pertise together. Based on the attoDRY800 cryostat and the neaSNOM platform, they
developed a commercial cryogenic s-SNOM system: cryo-neaSNOM. In this section, we
give an introduction to this system, and discuss the two foremost challenges of such sys-
tems: operation of AFM in vacuum, and the passive and active vibration isolation schemes.
To demonstrate the performance we present noise figures and an example of hBN phonon-
polaritons measured at 10 K.

6.1. Description of cryo-neaSNOM
The cryo-neaSNOM uses a radically different design by employing a closed-cycle helium
cryostat, as opposed to the previously mentioned home-built systems that require a con-
stant consumption of liquid helium. This different approach facilitates a constant and
robust operation with a base temperature of 5.5 K, but comes at the cost of relatively
strong mechanical vibrations of several micrometres induced by the cryocooler186. How-
ever, proper vibrational isolation of the attoDRY800 cryostat from the optical table mini-
mizes these vibrations to the order of nanometres187.

Figure 6.1 shows a front-view of the system as installed at ICFO. While the near-field
detection scheme is the same as outlined in Sec. 2.2, there are several notable differences.
With the attoDRY800 cryostat sitting below the optical table, the vacuum chamber leaves
sufficient space on the optical table for the interferometric detection unit and a movable
hood hosting the optics for AFM detection. We place on the corners of the optical table
two masses used for active mechanical stabilization of the optical table as we discuss later.

Inside the system, we find a relatively compact structure forming the core of our system,
as displayed in Fig. 6.2. The sample, AFM tip and parabolic mirror can be independently
moved using cryo-compatible stacks of x,y and z positioners. Additional xy and z scanners
are placed underneath the sample to facilitate raster-scanning during measurements. These
three towers of positioners are placed on a frame that rests on four small springs, which
passively damp the vibrations from the cold plate below. Since these springs are rather
stiff, we have to ensure the frame resting on it finds its ‘relaxed’ position each time an AFM
tip or sample is exchanged. To do so, we move the parabolic mirror to the side, allowing
a red pilot laser to reflect on the flat part of the parabolic mirror. By gently tapping
the structure, we verify that the backreflected light coincides with an iris. Two heaters
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attoDRY cryostat

Active damping

Optics hood Vacuum chamberQCL laser

Detection module

Figure 6.1: cryo-neaSNOM as installed in ICFO. Front view of the system with most
important elements labelled. The two masses on the corners are placed in line with the
vacuum chamber and form part of the home-built active vibration isolation system.

provide independent temperature control of the sample and AFM tip. For achieving proper
vacuum levels, coils with fabric immersed with activated charcoal act as cryopumps when
the system is cold, while a cold shield maintained at ≈ 40 K covers the complete inner
structure and captures any molecules released from the vacuum shroud. This brings the
pressure down to ≈ 5 · 10−6 mbar with the system at base temperature. However, since
this is measured underneath the optical table and far from the cryopumps, we estimate
that the actual pressure near the sample is about one order of magnitude lower, effectively
bringing it close to an ultra-high vacuum environment. This is in line with the fact that
we do not observe any ice growth on the sample, provided we keep the system in a proper
vacuum state at all times possible. A variation of this system is also used for quantum
optics experiments188.

6.2. AFM operation in vacuum
One of the central challenges of such system is the AFM operation in vacuum conditions.
The tight space in the chamber complicates a practical but efficient solution for cantilever
excitation, while at the same time one also has to deal with the greatly enhanced quality
factor due to the lack of air damping. Since we operate the AFM in tapping mode, we
have to excite the cantilever motion with a dither, which is usually a piezoceramic element
attached to the holder of the AFM tip. By driving the dither element with an oscillating
voltage at the cantilever resonance, the tiny deformations of the piezoceramic material
induce vibrations in the nearby holder, sufficient to excite the cantilever resonance.

In the original configuration of the cryo-neaSNOM, the dither is placed on the side of
the AFM tip holder, facilitating a simple exchange of the AFM tip (Fig. 6.3a). However,
we found that this is a very ineffective way of driving the cantilever, as is apparent in
the mechanical spectrum of the cantilever. Figure 6.4a displays the spectrum recorded in
ambient conditions, showing a large number of resonances but making it unclear what the
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Figure 6.2: Inner structure of the cryo-neaSNOM. The parabolic mirror, sample and
AFM tip are each mounted on a tower of nanopositioners, which together sit on a structure
resting on springs.

actual resonance of the tip is. Only in vacuum the main cantilever resonance becomes vis-
ible (Fig. 6.4b), however many additional resonances remain. As we will discuss later, any
nearby resonances interfere and prohibit stable performance when we artificially broaden
the main resonance intending to obtain a more stable AFM operation. Thus, a clean
mechanical spectrum is of pivotal importance and exhibits ideally only one resonance.

In order to understand what causes many resonances to appear in the cantilever spec-
trum, we devise a modified excitation scheme as shown in Fig. 6.3b. Instead of the dither
element placed on the side of the tip holder, we glue a small piezoceramic element slightly
above the AFM tip. Besides this location being much close to the cantilever, it also allows
for inducing vibrations along the same direction as the cantilever motion. The recorded
mechanical spectrum clearly indicates a much more effective excitation, as shown by the
sole presence of the main resonance in Fig. 6.4a,c. This shows the importance of aligning
the directions of motion of the dither and cantilever, which, in the case of perpendicular
alignment, leads to a weak excitation of the main resonance whilst strongly coupling to
unwanted resonances. As alternative route to this piezoacoustic excitation we suggest a
photothermal excitation scheme, where a modulated light beam sets the cantilever into
motion avoiding any resonances of the tip holder189.

Equally important is to drive the cantilever at an optimum Q-factor, defined by f /∆f

with f as the resonance frequency and ∆f as the full-width half-maximum bandwidth of
the squared tapping amplitude. To allow for faster feedback and thus less degradation of
the AFM tip, it is beneficial to reduce the Q-factor. Standard silicon AFM tips have a
Q-factor ∼ 1000 in ambient conditions, yielding satisfying performance. However, upon
changing to a vacuum environment this value shoots up to 10000 − 20000 (Fig. 6.4),
far above what is suitable for our experiments. In order to reduce the effective quality
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a b

Figure 6.3: Dither placement for cantilever excitation. a Top view of the AFM tip
holder in the original design of the cryo-neaSNOM, with the dither placed on the right
side of the AFM tip holder. b In our adapted configuration we glue the dither on top of
the AFM tip holder, with a layer of cigarette paper in between to prevent shorting the
dither to the holder. The white arrow points at the cantilever.

factor in vacuum environment, we feed the dither with an out-of-phase signal. This is an
established technique dubbed as Q-control, where the recorded tip motion is fed into a
circuit shifting the phase by π/2 and adding this contribution with a certain gain factor to
the original drive voltage190,191. As depicted in Fig. 6.5, this built-in feature of the system
brings the Q-factor easily down by more than an order of magnitude. This artificial way
of reducing the quality factor shows the importance to have a clean spectrum in the first
place, since any nearby resonances can actually be amplified by the out-of-phase signal.
We would like to point out that a thicker PtIr coating also helps to reduce the Q-factor
slightly192. For this reason, we prefer to use a 50 nm coated tip in the cryoSNOM, rather
than the 25 nm coated tips used in the room temperature s-SNOM system. We finally
note that in most cases we make use of the tip heater and keep the AFM tip at room
temperature while the system is cold. Although this brings the base temperature of the
system from 5.5 K up to 10.5 K, it makes the operation of the AFM much more reliable,
as the cantilever spectrum tends to change substantially when cooling down the tip.

6.3. Vibration isolation strategy
For proper operation of the cryoSNOM it is essential to minimize the vibrations in the
system. In particular the tip-sample distance variations over time should in the ideal case
not exceed ≈ 1 nm, since the near-field signal is strongly affected by such variations
(Fig. 2.7b). However, placing the system on a non-rigid structure, such as springs, allows
for rotational freedom that disturbs the alignment conditions presented in Sec. 2.3. There-
fore, finding the optimum configuration is not a trivial task. To understand the details of
this aspect, we first give an overview of the apparatus’ features and what can be adjusted,
after which we discuss the actual measured vibrations, and to finish by presenting a novel
active damping scheme.

The attoDRY800 system is designed to minimize the transmission of floor vibrations
to the surface of the optical table, as well as to reduce the impact of the cryocooler
pulses. To this end, the system consist of an optical table and a cryostat that is resting
on the lab floor (Fig. 6.1). Flexible thermal links from the cryostat to the inner structure
of the cryoSNOM provide a weak mechanical connection. However, we suspect that the
flexible vacuum bellow passes most of the vibrations to the surface of the optical table.
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Figure 6.4: Mechanical spectrum of the AFM cantilever. a The recorded tapping
amplitude as function of excitation frequency in ambient conditions does not exhibit a
clear resonance with the dither placed on the side, while placing the dither on top of the
holder recovers the cantilever resonance. b,c In vacuum (10−2 mbar), the main resonance
is clearly visible for both configurations, although many additional resonances remain when
placing the dither on the side. The same AFM tip was used for all spectra.
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Figure 6.5: Artificially damping the cantilever resonance. By turning on Q-control, we
reduce the Q-factor of the cantilever resonance from Q ≈ 18000 to Q ≈ 790.

Especially its mechanical spectrum with resonances between 200-300 Hz allows for easy
transmission of the cryocooler pulses with a similar spectrum. At the cold plate, just below
the inner structure shown in Fig. 6.2, these pulses appear at a repetition rate of 1 Hz with
a peak-to-peak amplitude ≈ 10 nm188.

To further bring down these vibrations, the system is equipped with four springs on which
the inner frame is resting, as shown in Fig. 6.2. To estimate the mechanical isolation this
provides, we calculate the amplitude transmission function according to a damped harmonic
oscillator. Following Ref. 193, for a given frequency f the transmission function is

T (f ) =

√√√√ 1 + 1
Q2 (

f
f0
)2

(1− ( f
f0
)2)2 + 1

Q2 (
f
f0
)2
, (6.1)

with f0 as the effective resonance frequency, and the quality factor Q approximating
T (f0) ≈ Q.

Figure 6.6 depicts the transmission function for f0 = 16 Hz, corresponding to the
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Figure 6.6: Transmission function of a damped harmonic oscillator. Below the spring
resonance, a spring acts as a low-pass filter. On resonance any incoming vibrations are
amplified by Q times, while above the resonance the transmission reduces by 1/f 2 in the
limit Q = ∞. In the limit Q = 1, the transmission scales with 1/f . We can reduce the
Q-factor of the configuration on springs by increasing the number of magnets that form
part of the Eddy-current damping mechanism. The dots indicate the transmission values
at 16 Hz for different configurations.

installed springs, as well as for f0 = 5 Hz. In general, one favours a lower resonance
frequency, as it provides stronger damping for higher frequencies, further reducing the
influence of the cryocooler pulses on the measurements. However, the current version
of the cryo-neaSNOM is not designed for springs with a resonance frequency lower than
16 Hz, as it would render the structure too unstable in the horizontal plane. One could
overcome this limitation by switching to an inner frame hanging on springs, providing
more than an order of magnitude better vibration isolation when shifting f0 to 5 Hz. Given
the space constraints of the cryo-neaSNOM, such configuration with hanging springs is
challenging. Nevertheless, following our suggestion, attocube is designing a configuration
with a structure hanging on springs given its high potential.

Another aspect that requires careful consideration is the Q-factor of the structure on
springs. As shown in Fig. 6.6, a higher Q-factor provides stronger vibration isolation at
higher frequencies, but comes at the cost of higher amplification at the spring resonance.
To reduce the Q-factor, the apparatus can be equipped with an Eddy-current damping
system. Underneath the structure resting on springs, an aluminium cross floats in an
array of small permanent magnets. Any motion of the structure gets induces an electrical
current in the aluminium, which in turn dissipates the mechanical energy. By choosing the
number of magnets, we can adjust the strength of this passive dissipation mechanism, as
illustrated by the reduced Q-factor in Fig. 6.6.

The vibrations that we record in the system are eventually determined by the envi-
ronmental conditions and the applied damping schemes. Due to the lack of basement
space, the cryoSNOM is installed on the second floor at ICFO. Any floor not situated
at ground level comes with certain floor resonances, which for our laboratory turns out
to be at 16 Hz. This is an unfortunate coincidence with the spring resonance frequency
(as discussed above), challenging the performance of our system. Figure 6.7a presents
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Figure 6.7: Vibration spectra of the cryoSNOM. a Acceleration spectrum measured
on the surface of the optical table (on a linear scale). The trace with active damping
turned on is offset for clarity. The broad peak centred around 4 Hz corresponds to the
table resonance, while the sharp peak at 16 Hz is due to the strong floor resonance. b
Spectrum of the tip-sample distance measured via contact-mode AFM at T = 10 K. The
broad resonance at 16 Hz corresponds to the spring resonance, and is excited by the floor
resonance. By turning on our active damping system, we are able to strongly reduce the
vibrations at 16 Hz on the optical table and inside the cryoSNOM.

the measured vibration spectrum on the surface of the optical table, as recorded with an
accelerometer (TableStable VA-2C). A more suitable way to characterize the vibrational
noise is to measure the tip-sample distance using contact-mode AFM, shown in Fig. 6.7b.
This provides elemental information that is easy to interpret, as compared to the noise
in tapping amplitude. We find that the dominating instability comes from the structure
wobbling on springs at 16 Hz, with amplitudes (rms) of several nanometres. We note
that the rms values in Fig. 6.7b and Fig. 6.8 are defined as the square root of the power
spectrum, such that a peak in the amplitude spectrum with magnitude 1 corresponds to
an oscillation in time with peak-to-peak amplitude 2

√
2.

To diminish the strong mechanical vibrations at 16 Hz, we considered several solutions.
This includes a structure hanging on springs with a lower resonance frequency, the in-
stallation of a tuned-mass damper to damp the floor resonance and the installation of an
actively damped platform on which the complete system is placed. However, since these
proposals have practical drawbacks or would require too much time, we designed and built
our own active damping system, which turns out to be rather effective at counteracting
the most severe vibrations.

The idea of our active damping system naturally follows from Newton’s third law:
action = −reaction. It consists of a 30 kg mass placed on three piezoceramic actua-
tors (PI Ceramic), shown in Fig. 6.1. By applying a voltage to these actuators, they lift
the masses on top of them, while at the same time pushing the optical table down. By
placing two of such moving masses in line with the vacuum chamber and driving them
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with the appropriate oscillating voltage, we can counteract the vibrations on the side of
the optical table where it matters. The 16 Hz vibration, measured on the optical table,
has a typical acceleration of ≈ 200 µm/s2 = 20 µg and displacement of ≈ 20 nm. Some
simple considerations show that typical piezoceramic actuators are very capable of gener-
ating sufficiently large forces, provided we avoid operation near their resonance frequency
∼ 1500 Hz (including masses on top). We choose rather flat actuators (10x10x2 mm3)
avoid damaging them when placing the masses on top, and use an amplifier meant for
driving a high capacitive load (Piezosystem Jena 30V300). An accelerometer (TableStable
VA-2C) picks up the vibrations on the floor, which we pass through multiple digital filters
(Red Pitaya STEMlab 125-14) acting as a strong bandpass filter centred at 16 Hz. At the
same time, we fine-tune the gain and phase of the outgoing signal for optimum cancellation
of the vibrations on the optical table. This configuration allows counteracting vibrations
only at one specific frequency, due to the strong phase dispersion with frequency of the
output signal. A consequence is that some resonances between 25 − 30 Hz are actually
being amplified, as seen in Fig. 6.7a. However, since the springs provide adequate damping
at those frequencies, this does not pose any problem.

After trying out various configurations of the damping scheme, we chose to use limited
Eddy-current damping. In this way, we benefit from stronger vibration isolation at higher
frequencies, while the active damping scheme still effectively reduces the vibrations at
16 Hz.

6.4. Performance of the cryo-neaSNOM at ICFO
To evaluate the performance of our cryoSNOM, we collect noise spectra of the topography
and near-field amplitude and phase, shown in Figure 6.8. To obtain these spectra we park
the AFM tip at a fixed location on our sample and record the topography and near-field
signals for a period of about 10 seconds at a readout rate of 300 Hz, and subsequently
take their Fourier transforms. In addition to the spectra, we calculate the rms noise
value for the typical integration time of 10 ms used in our experiments, as shown inside
the figure panels. We note that these amplitude rms values are defined by an integral√∫ fint

0
Pden(f )df of the power spectral density Pden for a given integration time 1/fint.

The measured topographic noise can be described by a 1/f background with a spike at
16 Hz (Fig. 6.8a). Since there are no harmonics of 16 Hz in the topographic noise, we
deduce that the structure on springs follows a harmonic motion. By turning on the active
damping mechanism, we bring the rms value down to ∼ 200 pm, which is only slightly
larger than the typical topographic roughness of hBN substrates4.

To understand the noise spectrum of the near-field signal, we should realize that not
only the tip-sample noise influences this, but also the motion of the structure on springs
relative to the optical table strongly affects this. Any rotation of the structure influences
the position of the focal point of the parabolic mirror and induces aberrations, both of
which change the near-field hotspot at the apex of the AFM tip. This is seen in Fig. 6.8b,
showing peaks at harmonics of 16 Hz in the optical signal, which indicates a non-linearity
occurring in this process. The presence of these harmonics tells us that the oscillating
structure modulates the optical signal in an asymmetric fashion. Since a simple Gaussian
beam should lead to an even response, this indicates an imperfection in focussing the light
that leads to aberrations.
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Figure 6.8: Performance figures of the cryo-neaSNOM at ICFO. a Topographic noise
spectrum consists of a 1/f background noise with prominent peak at 16 Hz. b Noise-to-
signal spectrum of the near-field amplitude shows a rather flat response with multiple peaks
at harmonics of 16 Hz when the active damping is turned off. c Noise spectrum of the
near-field phase shows a considerable improvement once the active damping is turned on.
Further reduction of noise is achieved by post-processing the data with a phase-correction
algorithm developed by neaspec. All data in this figure were acquired with the system in
vacuum (10−2 mbar) at room temperature. Only for the topographic noise, the cryocooler
was temporarily turned on. The near-field noise spectra were obtain at a wavelength of
10.2 µm with a power of 4 mW. The rms values shown in the panels correspond to a
bandwidth of 100 Hz, equivalent to an integration time of 10 ms.

On the other hand, any translation of the structure on springs only influences the mea-
sured near-field phase signal. Since the laser beam remains parallel to the axis of the
parabolic mirror under a translation, it only induces an expansion or contraction of the
arm length of the interferometer, which we measure as a change in the optical phase
(Fig. 2.5). From the strong phase noise as plotted in Fig. 6.8c, we can actually estimate
the extent of the translation of the structure parallel to the laser beam. Assuming that all
the phase noise at 16 Hz can be attributed to this translation, it would convert to an rms
amplitude of ∼ 1 µm in the case without active damping. This is brought to levels that
are more acceptable by switching on the active damping, reducing this figure by almost
an order of magnitude. The final step of phase noise reduction is done using a patented
algorithm by neaspec, which effectively uses the far-field information to compensate for the
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near-field phase noise induced by a translational motion of the structure on springs. This
algorithm is able to reduce the rms noise value to below 1°, setting the cryo-neaSNOM on
par with the room temperature neaSNOM.
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Figure 6.9: Inauguration scan measuring hBN-phonons at 10 K. a Near-field phase
contrast of an isotopically pure hBN flake placed on top of a square grid. The fringes
running parallel to the edges and height steps of the flake correspond to hyperbolic phonon-
polaritons. The excitation energy is 182 meV and the scale bar is 800 nm. b Line cut
along the white arrow in panel a. The oscillations in the near-field phase signal are formed
by edge-launched phonons (λp period) and tip-launched phonons (λp/2 period), both of
which we include in the fit. The dotted orange line corresponds to the edge position of
hBN. The near-field signal corresponds to the third harmonic of the tapping frequency of
the tip.

We finally demonstrate the performance of our cryoSNOM on an actual sample consist-
ing of a flake of isotopically pure hBN. This purified form of hBN hosts hyperbolic phonon
polaritons with a longer lifetime than occurring in naturally abundant hBN crystals194.
Figure 6.9 depicts the recorded optical near-field contrast, measured at a temperature
of about 10 K. We observe a plenty of fringes running across the flake, which we can
interpret in a similar fashion as the plasmon polaritons discussed in Sec. 2.4. Fig. 6.9
shows a line cut, and by applying the same analysis as before, we can extract a phonon
wavelength of 331 nm and a decay length of 2.3 µm. This results in an inverse damping
ratio γ−1 = 43.5± 1.7, which is considerably larger than γ−1 = 32.5± 1.2 found at room
temperature. Recent work attributes this to reduced acoustic phonon scattering195.
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7. Imaging broken inversion symmetry
in magic-angle twisted bilayer
graphene

In this Chapter, we study magic-angle twisted bilayer graphene closely aligned to
the underlying hBN substrate. By means of cryogenic photovoltage nanoscopy,
we reveal a structure of large-scale spatial modulations in the photovoltage maps.
Guided by electronic transport measurements, we interpret it as a manifestation
of a second-order superlattice formed by the underlying moiré lattices, which
provides a direct view of the broken inversion symmetry in our sample.
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Superlattices are formed when superposing two lattices at a small twist angle, or when they
have a slight lattice mismatch. While this was a known effect occurring in rotated graphite
sheets196, it was first demonstrated in two-dimensional materials using twisted graphene
layers21 and graphene aligned to hBN197,198. Such moiré lattice leads to an underlying
periodic potential which has been predicted to create additional Dirac points199,200, as
indeed observed soon after the realization of an hBN-graphene superlattice201. This leads
to interesting phenomena, such as a recursive energy spectrum under the application of an
external magnetic field, known as the Hofstadter’s butterfly10–12. More recently, after the
discovery of superconductivity in magic-angle twisted bilayer graphene (MATBG), a new
field emerged leading to the observation of superconducting, topological and correlated
phases in MATBG and its relatives18,22–31.

The process of forming a superlattice can repeat itself when two superlattices form a
second-order superlattice with an even larger periodicity. To allow such large-scale in-
terference pattern, the superlattice periodicities need to be similar. Coincidentally, the
superlattices of hBN-graphene and MATBG differ only by a few percent in their periodic-
ities, which are close to 14 nm. Thus, when the twist angles between hBN and graphene
layers are tuned correctly, such second-order superlattice should emerge. When this hap-
pens, MATBG will be subject periodic potentials with a different periodicity: those that
are generated by the hBN-graphene superlattice and the second-order superlattice. In turn,
this breaks the inversion symmetry in MATBG. This is of great interest, as broken inversion
symmetry, in combination with broken time-reversal symmetry, facilitates the emergence
of ferromagnetism in MATBG202,203. In transport experiments, this is manifested by the
anomalous Hall effect25,26,204, which, unexpectedly, was also observed in non-aligned hBN
MATBG205. In the latter case, strong Coulomb interactions are held responsible for the
required inversion symmetry breaking, which suggests that the hBN-alignment enhances
the interaction strength in MATBG.

To the best of our knowledge, a second-order superlattice consisting of MATBG has
not yet been observed in real-space. Thus far, only transport signatures confirmed the
close alignment of MATBG to hBN25,26, while others studied the second-order superlat-
tice formed by graphene aligned to two hBN sheets206–208. Here, we present a combination
of cryogenic transport and near-field photovoltage measurements, which we believe mani-
fest a real-space observation of the second-order superlattice in MATBG aligned to hBN,
providing a direct view of the broken inversion symmetry in MATBG.

7.1. MATBG device with graphene and hBN closely
aligned

In this work, we used a TBG device made by Petr Stepanov following the usual fabrication
steps outlined in Sec. 2.1. The device consists of TBG encapsulated in 16 nm bottom
hBN and 10 nm top hBN flakes, altogether placed on top of a graphite flake, serving as
local gate. During the stacking procedure, the graphene flake is cut with an AFM tip, with
the intention to prevent additional strain building up in the tear-and-stack process used
otherwise51,54,209. To minimize the number of bubbles in the stack, we pick up each flake
at a temperature within 100 − 110 °C100,101. In the final step, when dropping the stack
on the target substrate with alignment markers, we repeat the drop-down step at least
once to further squeeze out any bubbles. Figure 7.1a shows an AFM scan of the resulting
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Figure 7.1: Close alignment of graphene and hBN sheets in our device. a AFM image
of our stack with the relative alignment of the upper graphene sheet (black), top hBN
flake (blue) and bottom hBN layer (green). We extract angles of ≈ 0.5° (5.0°) between
the crystallographic axes of the top (bottom) hBN sheet and upper graphene layer. The
rectangle marks the region where the Hall-bar is patterned and the scale bar is 8 µm.
b Optical image of our device after nano-fabrication, patterned in a Hall-bar shape. The
electrical contacts are gold-coloured, and the scale bar is 4 µm.

stack. We choose the cleanest area of the stack to pattern our device in a Hall-bar shape
(Fig. 7.1b).

We can obtain an estimate of the relative alignment of the graphene and hBN sheets
by comparing their crystallographic axes. Each flake features multiple straight edges in
the AFM scan, which correspond either to the zigzag or armchair direction. Based on
two such edges for each flake, we find that the upper graphene sheet is misaligned to the
top (bottom) hBN flake by ≈ 0.5° (5.0°). Since we cannot distinguish between zigzag
and armchair directions, there is a probability of 50% that the layers are actually in close
alignment, rather than being rotated by ∼ 30°. Raman spectroscopy can give decisive
answer to this ambiguity210. We note that the relative orientations between the flakes
can change slightly during the subsequent nano-fabrication steps. However, the following
measurements indicate this did not happen.

7.2. Electronic transport signatures of two coexisting
superlattices

We first characterize our device with transport measurements performed at temperatures
T starting at 5 K and above, shown in Figure 7.2a. A Hall measurement at a magnetic field
of ≈ 1 T provides the calibration of the carrier density n(VG) to the applied gate voltage
VG. We measure the longitudinal four-probe resistance between the four side contacts in
the lower part of our device and identify a series of resistive states. In addition to the usual
resistance maximum at charge-neutrality, we find three smaller peaks and a peak marked
by the black arrow, which are all are equidistant to each other. Furthermore, we identify
a nearby peak at slightly higher carrier density, marked by the red arrow. This maximum
seems to coincide with a shoulder seen at opposite carrier density. These resistive states
disappear upon increasing the temperature.

These transport data suggest that our sample hosts two moiré lattices: one given by
graphene aligned to hBN, and another one owing to twisted bilayer graphene (TBG).
Such moiré lattices are known to exhibit a resistive state at a particular carrier density
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Figure 7.2: Electronic transport signatures of superlattice-induced insulating states.
a Longitudinal resistance for a range of temperatures, measured between the four side
contacts in the lower part of our device. At 5 K we identify multiple resistive states:
at charge neutrality, at intermediate filling factors (vertical marks) corresponding to the
full-filling state of TBG (black arrows), and an additional peak at slightly higher carrier
density attributed to the fulling-filling state of the hBN-graphene superlattice (red arrows,
for negative n it appears as a shoulder). Inset: zoom of the two nearby full-filling states.
b Lattice constant of a moiré lattice (red lines), calculated from Eq. (7.2) for two different
values of the lattice mismatch δ. For TBG, δ = 0%, while we assume a mismatch of
1.64% between the hBN and graphene sheets, limiting the moiré periodicity to ≈ 15 nm
at perfect alignment. Blue lines plot the corresponding full-filling carrier density. From
this graph, we can relate the two nearby peaks seen in panel a to two superlattices: two
graphene layers twisted at ≈ 1.02° (≈ 13.8 nm periodicity) and graphene on hBN twisted
at ≈ 0.5° (≈ 13.5 nm periodicity).

associated with the full-fulling state of the superlattice15,201. For a superlattice formed by
two superposed hexagonal lattices, this full-filling carrier density ns is given by201

ns =
8√
3λ2

M

, (7.1)

where the twist angle θ and lattice mismatch δ define the superlattice periodicity λM as

λM =
(1 + δ)a√

2(1 + δ)(1− cos θ) + δ2
(7.2)

with a = 0.246 nm corresponding to the graphene lattice periodicity. Figure 7.2b depicts
both functions for zero and finite lattice mismatch. It shows that a larger twist angle
reduces the area of the moiré unit cell and increases the density of carriers in the system at
the full-filling state, defined by 4 carriers per unit cell. The properties of TBG are reflected
by the curves with δ = 0%, while we model hBN-graphene superlattice with δ = 1.64%.

70



7.3. Second-order superlattice probed with near-field photovoltage nanoscopy

This value is slightly lower than the value typically stated in literature, δ = 1.8%, however,
we will see that a small strain in the graphene layer of ≈ 0.1% can account for this
difference.

Because the three intermediate resistive states only occur for MATBG samples22, and
since they are equidistant to the resistance peak marked by the black arrow, we identify
this maximum as the full-filling state of TBG. We determine the corresponding ns as half
the distance between the peaks at opposite carrier density (black arrows) to account for
a slight offset with respect to charge-neutrality. This yields ns ≈ 2.44 · 1012 cm−2 and
from Fig. 7.2b we read out that it corresponds to a twist angle θTBG ≈ 1.02° and a
moiré periodicity of ≈ 13.8 nm (black dot). As a consequence, we attribute the resistance
maximum marked by the red arrow as the full-filling state of the hBN-graphene superlattice,
with ns ≈ 2.55 · 1012 cm−2. This relates to a twist angle θhBN ≈ 0.50° with a superlattice
periodicity of ≈ 13.5 nm. Guided by the close hBN-graphene alignment seen in the AFM
scan, we excluded the possibility of TBG hosting two regions with a different twist angle.
Since we observe resistive states at integer filling factors, and θTBG ≈ 1.02°, we consider
our device to be a magic-angle TBG sample. Future transport measurements at lower
temperature could verify the existence of superconductivity in this device.

A consequence of graphene being in close alignment to hBN is the enhanced gap size ∆

of graphene at charge neutrality. This is a known effect in single-layer graphene, with a gap
of 14 meV probed with photocurrent spectroscopy211. A more common approach measures
the thermal activation of the gap via Rxx ∝ e−∆/2kBT , which has been determined to be
as large as ≈ 25 meV12,212 for single-layer graphene. In MATBG this gap was found to be
≈ 0.86 meV for a non-aligned sample24, while a sample with θhBN ≈ 0.6° featured a gap
of ≈ 5.8 meV26. In our sample we extract a thermally activated gap at charge-neutrality
of ≈ 3.6 meV, which indeed suggests that graphene is in close alignment to hBN.

7.3. Second-order superlattice probed with near-field
photovoltage nanoscopy

We continue our quest by performing cryogenic near-field photovoltage nanoscopy on our
sample. This technique has proven to be a sensitive probe of spatial changes in the elec-
tronic structure of the material under study (see Chapters 4,8 and Refs. 93,96,155). In
brief, it consist of a hotspot of light at the apex of an AFM tip that injects heat into the
material with nanoscale precision. In turn, this heat is converted via different pathways
to a measurable current or voltage, which can be read out at the contact electrodes. In
graphene, the predominating mechanism generating such photovoltage is the photother-
moelectric effect (PTE)123. Throughout the measurements shown in this Chapter, we
illuminate the AFM tip with infrared light with an energy of 116 meV and an average
power of ≈ 5 mW. To avoid detecting unwanted far-field photovoltage contributions, we
record the signal at the second harmonic of the AFM cantilever frequency. The magnitude
of the detected signals are within the range 0.01− 1 µV. Details on this method are given
in Section 2.5, and Chapter 6 describes the system we use for the measurements presented
here.

Figure 7.3 shows spatial images of the recorded photovoltage VPV in our sample at
temperatures between 10 K and 70 K with n close to charge-neutrality. We observe
a pattern of fringes running across the complete sample with small variations in their
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Figure 7.3: Visualizing broken inversion symmetry in magic-angle twisted bilayer
graphene. Near-field photovoltage maps of our device at different temperatures within
the dashed area marked in Fig. 7.1b. We observe fringes with a periodicity ∼ 500 nm
running across the entirety of the sample along two direction at a relative angle of ∼ 50°
(two dashed lines). Slight variations in the periodicity and directions occur, notably in
the bottom right corner with the periodicity exceeding 1 µm. These features remain
unchanged at elevated temperatures, except for an increase in the measured response. All
scans are performed with VG = 0 V, thus being close to charge neutrality, except for the
rightmost scan, which is taken with the Fermi level within the remote bands. In that scan,
we observe a global sign reversal and an increased cooling length that causes fine details
seen in the other scans to become obscured. The relative positions of the contacts used to
read out the photovoltage are indicated in gold, and the upper contact grounds the device
(Fig. 7.1b). The excitation energy is 116 meV and the scale bar is 1 µm. We choose the
colour map such to emphasize the small modulations in the measured photovoltage. It
covers the same range for all scans, except for a 16x larger range in the rightmost scan.

periodicity and direction with position. Qualitatively, this pattern does not alter upon
increasing the sample temperature and we only see a gain in magnitude above 30 K.
Even at room temperature, we find faint signatures of the same pattern, although with
a strongly reduced magnitude (not shown here). We use the other tuning knob, the
carrier density, to bring the Fermi level well inside the remote band (right panel). In that
case, whilst the average photovoltage response increases by an order of magnitude, we
visually identify the same underlying pattern. Since photovoltage nanoscopy is sensitive to
gradients of the Seebeck coefficient parallel to the current flow, we simultaneously recorded
the generated photovoltage across a different pair of contacts. We find that the fringes
light up in different regions, but do not change in their underlying properties (Sec. 7.5).
In fact, the presence of Seebeck gradients across the complete sample serves a probe of
the global current flows within the sample. Lastly, we performed simultaneously s-SNOM
and recorded the optical scattering amplitude and phase. The scattering signals do not
reveal any features correlating with the modulations seen in the photovoltage response.
As s-SNOM is mostly sensitive to local absorption changes and collective excitations, this
suggests that features we probe reflect fine modulations on the local electronic structure,
which are more easily picked up with photovoltage nanoscopy93,125,155.

We can describe the observed pattern in the majority of the sample with two sets of
parallel fringes coexisting in two directions. We take a line cut across a set of fringes,
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shown in Fig. 7.4, and find a common periodicity ≈ 480 nm across the different scans.
At 70 K, the profile changes slightly and features a larger-scale modulation at double the
periodicity. Nonetheless, the ≈ 480 nm periodicity remains there. Likewise, upon changing
the excitation energy within 105−120 meV we do not observe any change in the measured
periodicity. Yet, the periodicity is not constant throughout the sample, as is evident from
the bottom-right corner exhibiting modulations exceeding 1 µm in periodicity. The angle
between the two sets of fringes is in the upper part of the sample ∼ 50°, but does change
slightly within the sample.
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Figure 7.4: Extracting the periodic-
ity of second-order superlattice. Line
cut of the photovoltage along the arrow
in Fig. 7.3 at three different tempera-
tures. The dashed line corresponds to
the scan at finite doping. We extract
a common periodicity ≈ 480 nm in the
four traces, as indicated by the arrows.

To interpret these data, we will use the following
qualitative approach. With the PTE predominating
the opto-electronic response in unbiased graphene,
we assume that it is the main effect generating the
observed photovoltage. The PTE is sensitive to gra-
dients in the Seebeck coefficient, which reflects spa-
tial changes in the underlying electronic structure.
Therefore, within this approach, a periodic modu-
lation in the electronic structure manifests itself by
a modulated photoresponse at the same periodicity.
Even though we cannot exclude that other mecha-
nisms provide additional contributions to the pho-
toresponse, they should equally well preserve any un-
derlying periodicity if they are sensitive to it. Under
the assumption of the PTE, we can explain the en-
hanced photoresponse seen at 70 K with the Fermi
level in the remote bands. The higher mobility of
the carriers in the remote band increases the cooling length, which leads to an increased
photoresponse, while also obscuring fine details seen at lower temperatures. Likewise,
when the sample is undoped, thermally excited carriers at 70 K also lead to a slightly
increased photoresponse.

We consider various effects that could cause a periodic spatial modulation of the elec-
tronic structure in our sample. For instance, we could imagine the twist angle to be
modulated spatially, which would generate a modulated photoresponse according to the
model presented in Chapter 8. Scanning magnetometry measurements showed that twist
angle variations can exist in the form of domains of similar length scales (0.1−1 µm) that
host slightly different twist angles48. Yet, these twist angle variations do not show the
particular structure we observe and, especially, they do not exhibit periodic variations in
two direction simultaneously. Another candidate to consider comprises large-scale strain
fields, which have been demonstrated to possess a rather strong influence on the local
superlattice and electronic structure40,62,213,214. However, even in the case of large het-
erostrain of 1%, the extent of certain directional features remained limited to several TBG
moiré unit cells40. Therefore, we do not expect strain to directly modify the TBG lattice
in an ordered manner across the full device. Alternatively, collective excitations also could
give rise to similar features in near-field photovoltage maps94,95. However, they should
possess a clear dependence on the carrier density and excitation energy, while we find the
contrary. Finally, charge puddles near charge-neutrality cause strong spatial modulations
in the photovoltage, however, they do not exhibit a distinct periodicity and disappear away
from charge-neutrality93.
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As none of these effects account for our observations in transport and photovoltage
nanoscopy measurements, we present an alternative interpretation based on the formation
of a second-order superlattice induced by the interference of the first-order superlattices.
As we will see, all our observations are consistent with this explanation. Therefore, to
the best of our knowledge, we believe that we observe for the first time broken inversion
symmetry in real space in a MATBG device.

7.4. Formation of second-order superlattice
Our transport measurements suggest that our sample hosts two coexisting superlattices.
They are formed by graphene closely aligned to hBN and twisted bilayer graphene, with
periodicities of ≈ 13.5 and 13.8 nm, respectively. These two superlattices give rise to a new
triangular superlattice with an even larger periodicity, and occurs because the underlying
superlattices are closely aligned and have similar periodicities206–208. Figure 7.5a shows
an example of such second-order superlattice, mimicking the configuration in our sample.
An hBN flake (green) has a small lattice mismatch and misalignment with respect to a
graphene sheet (red), while a second graphene sheet has only a slight twist (blue). The
black triangles provide a guide to the eye to identify the first- and second-order superlattices
and show a pronounced change in the relative rotation of the superlattices. This rotation
ϕ of a superlattice with respect to the underlying lattices is given by

tanϕ =
sin θ

(1 + δ)− cos θ
, (7.3)

where δ and θ are the lattice mismatch and twist angle, respectively.
To calculate the periodicity of the second-order superlattice, we represent the real-space

lattice (Fig. 7.5a) in reciprocal space. Figure 7.5b shows the lattice vectors k of the hBN
and graphene lattices, from which we take the difference vectors that represent the their
first- and second-order superlattices (in red and blue, respectively). The latter features
a strongly reduced length and by taking the inverse of its modulus (and accounting for
a factor 2π), we find the periodicity λ̃M of the second-order superlattice. Figure 7.6a
depicts the maximum λ̃M along one of the three principal directions for range of θhBN and
θTBG. Since we consider an undistorted triangular lattice, λ̃M is equal in each direction.
We find a limited window of twist angles where a second-order superlattice emerges, that
is, where λ̃M ≫ λM. This can be understood in reciprocal space where the superlattice
vectors, depending sensitively on δ, θhBN and θTBG, need to line up precisely with each
other. For δ = 1.64% and the twist angles extracted from the transport measurements, we
find λ̃M ≈ 350 nm, which is slightly lower than the periodicity extracted in the near-field
maps.

Whilst this reasonable agreement is encouraging, this minimalistic model of a triangular
lattice lacks an explanation for the observation of fringes in only two directions. To account
for this, we introduce a small amount of uniaxial heterostrain ϵ to the graphene layers,
which is commonly present in these heterostructures40,62,213. To this end, we apply the
strain tensor ϵ to the graphene lattice vectors215,216, following (I + ϵ)−1k, where

ϵ = ϵ

(
cos2 α− ρ sin2 α (1 + ρ) cosα sinα

(1 + ρ) cosα sinα sin2 α− ρ cos2 α

)
, (7.4)
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Figure 7.5: Formation of a second-order superlattice. a Top view of two twisted
graphene layers (red and blue) superposed on an hBN sheet (green). A graphene sheet
in close alignment to hBN forms a triangular moiré lattice, likewise do the two twisted
graphene sheets (both superlattices emphasized by small triangles). In turn, by superposing
these two superlattices a second-order superlattice forms with an even larger periodicity
(large triangle). This occurs only for a specific combination of lattice mismatch and twist
angles. b Second-order superlattice shown in panel a represented in reciprocal space. Two
black vectors reflect the graphene lattices twisted at θTBG = 5.2°, while the green vector
corresponds to the hBN lattice with a lattice mismatch of 12% (reducing its reciprocal
length) and θhBN = 2.7°. The corresponding dashed vectors account for lattice periodicities
in other directions (at multiples of 60°). The differences between the mentioned vectors
form the first-order superlattices, indicated by two solid red vectors and its equivalents
at multiples of 60° (dashed red vectors). The blue vectors constitute the second-order
superlattice, defined by the differences of the first-order superlattice vectors. c Same data
as panel b with 4% strain applied to both graphene layers along the zigzag direction. This
small amount of strain has a large impact on the magnitudes of the second-order lattice
vectors: while two of them only change their direction, the third one becomes marginally
small, leading to an amplified lattice constant in that direction.
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Figure 7.6: Calculated periodicity of second-order superlattice. a Lattice periodicity
as function of the two twist angles that describe our system. Only for a narrow window
of twist angles, a second-order superlattice emerges with macroscopic sizes. For the twist
angles in our device, marked by the black dot, the calculated lattice periodicity is slightly
below the measured periodicity. b Under the application of 0.1% strain along the zigzag
direction in both graphene layers, the second-order superlattice becomes anisotropic, as
illustrated in Fig. 7.5c. We plot the maximum periodicity along any of the second-order
superlattice vectors and find three regions wherein a second-order superlattice forms along
one of three lattice directions. For the twist angles found in our device (black dot), we
can expect second-order superlattices in two directions with a periodicity of ≈ 500 nm,
and in the third direction ≈ 250 nm. In both panels we set the lattice mismatch of hBN
to 1.64% with respect to graphene.

in which α is the angle of the principal direction of applied strain with respect to the zigzag
direction, and ρ = 0.165 is the Poisson ratio of graphene217. I is the identity matrix. As
illustrated in Fig. 7.5c, strain has a large impact on the relatively magnitude and direction
of the second-order superlattice vectors. This leads to a deformation of the lattice, such
that superlattices act as ‘magnifying glasses’ of strain218,219. With this insight, we repeat
the calculation of λ̃M with 0.1% strain applied to both graphene layers along the zigzag
direction. Figure 7.6b reveals three windows where the periodicity peaks along one of the
lattice vectors. This means that for any combination of θhBN and θTBG, the superlattice
periodicities are different in each of the three principal direction (except for the central
point between the three windows). For the case of our sample (twist angles indicated
by black dot), we can expect λ̃M ≈ 500 nm in two directions, while λ̃M ≈ 250 nm in
the third direction. The latter can easily be obscured due to the finite cooling length
in our sample, which would explain the presence of photovoltage modulations across two
directions. Likewise, the incorporation of strain could explain the observation of a ≈
1 µm periodicity in the bottom-right of the sample, without the presence of fringes in
another direction. According to our model, such large periodicity is only possible when the
periodicity in the other two directions is strongly reduced.

We note that the result of Fig. 7.6 is sensitive to the imbalance of strain between
the graphene layers and to the direction of applied strain. Changing α rotates the three
windows wherein second-order superlattices form around their centre by an equivalent ro-
tation. Furthermore, increasing the hBN-graphene lattice mismatch moves these windows
towards higher θTBG and θhBN. Therefore, we cannot make an exact comparison of the
lattice orientation to our data. Nevertheless, and most importantly, our simple model
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shows qualitative agreement with our observations for a realistic amount of strain and
hBN-graphene lattice mismatch. The sensitivity of our model to local variations, com-
bined with our observation of a relatively homogeneous structure in large parts of our
sample, suggests that the strain distribution within our sample is rather homogeneous
with minimal twist angle variations. A more refined model potentially allows translating
the variations in the second-order superlattice structure to a map of the local strain and
twist angle of TBG.

7.5. Nano-imaging signatures of nematicity in MATBG
Motivated by the findings above, we acquire additional photovoltage maps at finite carrier
densities. Figure 7.6a shows two photovoltage images recorded simultaneously in the upper
half of our device, between two different pairs of contact. As the PTE is only sensitive to
gradients perpendicular to the projection of the current flow, we need these two distinct
contact pairs to obtain a complete picture of the photovoltage contributions. This is
evident from the configuration in the right panel, where the current flow lines up with one
set of fringes, causing them to disappear. The structure that is revealed for hole-doping is
rather similar to the undoped case (Fig. 7.3), except for an increase in the photoresponse.
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Figure 7.7: Nano-imaging signs of charge-induced nematicity. a Near-field photovolt-
age images of our sample in a hole-doped state (n ≈ −1.3 · 1012 cm−2). This is measured
in the upper half of the device for two different pairs of contacts, whose relative positions
are indicated in gold. By looking at both panels, we identify two sets of fringes running
along two directions, similar to those indicated by the dashed lines in Fig. 7.3. The exci-
tation energy is 116 meV and the scale bar is 2 µm. b Two-dimensional Fourier transform
of the spatial data in panel a. These data reveal two orientations of the fringes, separated
by 50− 80°. The dashed lines mark the directions along which the photovoltage measure-
ment is insensitive, exemplified by the absence of response in the right panel along the
dashed line. c,d Same data as panels a,b but with the sample in an electron-doped state
(n ≈ 0.8 · 1012 cm−2). We observe a change in the directions along which the fringes are
seen (black arrows in bottom right panels). In particular, the horizontal fringes are only
prominently seen for electron-doping, which could be a sign of nematicity.
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By converting these real-space maps to their Fourier transform Ak, we obtain a better
grasp of the geometric properties of the second-order lattice (Fig. 7.6b). A combined look
at both Fourier transforms reveals modulations at two angles with a separation of 50−80°,
reflecting the two sets of fringes seen in the real-space images. Since the superlattice is
not perfectly periodic, peaks occur at different magnitudes of k. However, here we mainly
focus on the angles in Fourier space featuring peaks in Ak. Intriguingly, this picture is
modified drastically when changing from hole- to electron-doping, depicted in Fig. 7.6c,d.
One set of spatial modulations seems to have rotated towards the horizontal axes, while
leaving the other set intact. Repeated measurements at different carrier densities confirm
this behaviour, suggesting it might be induced by the change in carrier type. Above the
full-filling carrier density, the data are not conclusive due to the increased cooling length
that obscures details in the photovoltage response.

Thus far, we considered the observed structure to be a manifestation of a second-order
superlattice. However, since we find a modification with carrier type, this means that
either i) the superlattice changes with carrier type or ii) the arrangement of electrons
on the underlying superlattice structure changes. The first case can occur when partial
lattice relaxation takes place, which involves an energy competition between different
types of local lattice arrangements that defines the resulting structure. For instance, in
trilayer graphene, the size of ABA versus ABC domains changes as function of carrier
density and displacement field63. Since this effect is more pronounced when large-scale
structural variations occur, such as in minimally twisted graphene structures, it could also
play a role in the second-order superlattice considered here. Alternatively, a change in the
electronic arrangement on the atomic second-order lattice could manifest itself directly via
the electronic detection scheme we use. We speculate that the observed nematic order
in transport experiments55, possibly in combination with strong Coulomb interactions in
MABTG, plays a role in facilitating a change in electronic arrangement with carrier type.

7.6. Conclusion
In this Chapter, we presented near-field photovoltage maps of MATBG aligned to hBN,
where we observed a semi-periodic modulation covering the entire device. We built a min-
imalistic model that describes a second-order superlattice formed by the hBN-graphene
and TBG moiré lattices. To the best of our knowledge, this provides the first visualization
of broken inversion symmetry in MATBG, which has been linked before to emerging ferro-
magnetic states. Furthermore, our method potentially allows mapping the local twist angle
variations and strain profile within the sample218,219. These results prove cryogenic near-
field photovoltage mapping to be a useful technique for exploring twisted bilayer graphene
in future studies.

As this type of second-order lattice has not received much attention thus far, we hope
that our findings provide additional guidance for theoretical models aiming to understand
the rich set of phenomena occurring in MATBG. In particular, an open question remains
on the competition between different superlattice potentials. The fact that we observe
signs of correlated states at integer filling factors suggests that the large-scale modula-
tions only provide a weak influence on the magic-angle physics. Yet, the connection of
ferromagnetism in MATBG to broken inversion symmetry demonstrates a non-negligible
effect of the additional potentials. Therefore, the question rises to what extent each super-

78



7.6. Conclusion

lattice potential influences the properties of MATBG. Other techniques, such as cryogenic
terahertz near-field microscopy, might shed more light on this.
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8. Probing twist angle variations in
twisted bilayer graphene with
photovoltage nanoscopy

In this Chapter, we employ near-field photovoltage nanoscopy to measure twist
angle variation in twisted bilayer graphene. We first perform s-SNOM and trans-
port measurements, which serve as a guide to understand the photovoltage maps.
We construct a simplified model based on the photothermoelectric effect, which
we use the built a map of the local twist angle in our device.
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Twist-angle inhomogeneity strongly influences the properties of twisted bilayer graphene
(TBG). As the flat-band physics originates from a periodic potential, any spatial distur-
bance in its periodicity will affect the phase diagram. Therefore, the less disordered a
sample it, the richer its physics tend to be. Currently, such disorder seems to be one of the
limiting factors for making large progress in the understanding of unresolved phenomena
in TBG80. Likewise, heterostrain is widely present in TBG and has a direct impact on
the energy bandwidth of the flat bands213. This reduces the strength of electron-electron
correlations, to which multiple phenomena in TBG are tightly linked22,25,26,28–31,51,53,205.
Thus, techniques that probe the twist angle disorder and map the strain fields are of
importance for improving the device fabrication processes.

Probing twist-angle disorder is possible via different techniques. Transport measure-
ments provide a only rough indication of the inhomogeneity, since they measure a global
property. Instead, local probes such as STM, TEM and scanning magnetometry can reveal
twist angle variations on a much more relevant scale40,48,62. Yet, these techniques either
involve a more complicated sample fabrication procedure with half-encapculated TBG, are
limited in the spatial range, or require highly specialized experimental setups. An alterna-
tive approach uses photovoltage nanoscopy, which thus far has only been used in TBG to
measure the twist angle at an interface between TBG and single-layer graphene96.

Here, we employ cryogenic photovoltage nanoscopy to map the local twist angle with a
spatial resolution limited by the cooling length of ∼ 600 nm. First we show qualitatively
that cryogenic s-SNOM can reveal twist angle variations based on the absorption fingerprint
of TBG. The information we obtain from this, together with transport measurements,
serves as a guide for interpreting our near-field photovoltage measurements. We construct
a model based on the photothermoelectric effect and show that this technique, in principle,
allows determining the local twist angle with a resolution ∼ 0.01°, which is on par with
scanning magnetometry.

8.1. Probing twist angle variations with s-SNOM
Figure 8.1a shows an optical picture of a TBG device fabricated by Petr Stepanov, with a
10 nm thick bottom hBN. Instead of the tear-and-stack technique mentioned in Sec. 2.1,
the graphene flake is cut using an AFM tip. This should reduce unintentional strain induced
by tearing the flakes51,54,209. However, we will see later that this device exhibits rather
large twist angle inhomogeneity. To characterize our device, we first measure the near-field
phase contrast using cryogenic s-SNOM, introduced in Chapter 6, at an excitation energy
ℏω = 121 meV, as depicted in Fig. 8.1b. This measurements, as well as the photovoltage
measurements below, are carried out at a temperature T = 10 K. We observe smooth
changes in the phase contrast, as well as abrupt steps. We can link them to variations in
the properties of TBG by recalling that the near-field scattering phase serves as a local
probe of the absorption118.

Absorption in TBG can occur via intraband and interband excitations. However, due to
the relative flatness of the bands in TBG, only interband absorption plays a major role at
ℏω = 121 meV. As discussed in more detail in Sec. A.4, interband absorption is affected
by the twist angle and the carrier density. Roughly speaking, interband transitions are
strongly reduced when ℏω is smaller than the energy gap between the flat and remote
bands within M − K in the superlatttice Brilouin zone. Because the largest joint density
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Figure 8.1: Twist angle variations revealed with s-SNOM. a Optical image of our
device, patterned in a Hall-bar shape. The electrical contacts are gold-coloured, of which
the pairs with red and blue marks are used to measure the two-probe resistances shown
in Fig. 8.2a. b Near-field scattering phase image of our device revealing both smooth and
sharp variations in the absorption. The illumination energy is 121 meV and the carrier
density is 5.3 · 1012 cm−2, which is approximately equal to nff(θ = 1.5°). The white
dotted line marks a sharp interface. The scale bar is 2 µm, and the noisy area near the
centre is a measurement artefact. c Calculated interband absorption of undoped TBG
from Ref. 91 in units of the conductance quantum G0 = 2e2/h for a range of twist angles
at ℏω = 121 meV. As the remote bands shift up in energy with twist angle, absorption is
quenched for θ ≳ 1.5°.

of states between the flat and remote bands occurs in the M−K part for infrared energies
(Fig. 1.2), we only consider them in this qualitative analysis. As the remote bands shift
up in energy with increasing twist angle, interband transitions become quenched above
a certain twist angle for a given excitation energy. This is reflected in the calculated
interband absorption Re[σinter(ω)] for undoped TBG with ℏω = 121 meV (Fig. 8.1c). We
see a sharp drop of Re[σinter(ω)] near θ = 1.5°, in line with the qualitative description
above. Even though the near-field scattering map was taken at a finite carrier density n,
this description is not altered much as n is not sufficiently large to induce Pauli blocking
of the interband transitions.

With this qualitative picture in mind, we can understand the scattering phase contrast
in Fig. 8.1b. The bright regions absorb relatively strongly the infrared light, hence the
twist angle is below 1.5°, while the darker regions with reduced absorption correspond
to a larger twist angle. A much lower twist angle (< 1°) also could lead to a reduced
absorption, however, we exclude this option based on the transport measurements below.
We will see with photovoltage nanoscopy that the twist angle increases monotonically
from the left side of the device towards the interface in the middle of the device. Yet, the
absorption shows a minimum at a position where the twist angle is not highest. We can
explain this with the calculated absorption (Fig. 8.1c), displaying an increasing absorption
for θ > 1.5°. Enhanced band nesting between the bands towards higher twist angle enables
more interband transitions within the K − Γ −M zone of the superlatttice Brilouin zone.
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8.2. Transport signatures of twist angle disorder
We proceed by measuring the two-probe resistance R2p in our device as function of carrier
density. Figure 8.2a plots R2p as probed between two different pairs of contacts indicated in
Fig. 8.1a. Besides the usual peak at charge neutrality, R2p exhibit multiple peaks at larger
carrier densities, which are partially overlapping between the two traces. We attribute
them to the insulating states at completely filled/emptied flat bands in TBG, leading to
a peak in the resistance at n = ns

15. This full-filling carrier density ns is given for any
triangular moiré superlattice without lattice mismatch by

ns =
8√
3λ2

M

,

λM =
a

2 sin(θ/2)
≈ aθ[rad],

(8.1)

where λM is the periodicity of the moiré lattice and a ≈ 0.246 nm is the lattice constant of
single-layer graphene. The fact that we see multiple peaks in the resistance points at the
presence of different twist angles in our device. This twist angle disorder also manifests
itself by broadening the full-filling resistance peaks. The carrier densities at which the
resistance peaks are related to the twist angle via Eq. (8.1) and are shown in Figure 8.2b.
This demonstrates that the twist angle varies within our device within ≈ 1.2 − 1.8°, in
agreement with the measured near-field phase contrast (Fig. 8.1).
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Figure 8.2: Probing twist angle inhomogeneity with transport measurements. a Two-
probe resistance between two different pairs of contacts in our device, marked by the
coloured contacts in Fig. 8.1a. We identify several prominent peaks in the resistance,
marked by the arrows. b Relation between the twist angle and full-filling carrier density
according to Eq. (8.1). The red dots indicate the twist angles corresponding to three
resistance peaks in panel a.

8.3. Twist angle variations revealed by photovoltage
nanoscopy

To attempt probing the twist angle inhomogeneity with a higher precision and on the
nanoscale, we resort to photovoltage nanoscopy measurements. This technique is intro-
duced in Sec. 2.5 and we use the cryogenic s-SNOM system discussed in Chapter 6 to
perform these measurements. The use of low temperatures is required to avoid thermal
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Figure 8.3: Near-field photovoltage response near full-filling carrier density. Measured
photovoltage at various carrier densities (in units of 1012 cm−2) within the area marked
by the dashed rectangle in Fig. 8.1b. We use the contacts marked in red in Fig. 8.1a, and
show their relative locations in gold. The bottom lead grounds the device. The dotted
line in the right panel marks an interface with a sharp step in twist angle. The excitation
energy is 108 meV and the scale bar is 2 µm. As the photovoltage signal is rather weak
in this device, we lock to the first harmonic of the cantilever motion, which could lead to
unwanted far-field backgrounds. We verified that this is negligible in these measurements.

smearing of the band occupation and derived quantities such as the Seebeck coefficient.
As this property is exactly what provides us a sensitive probe of the local twist angle, we
need to minimize mixing the band occupation. Figure 8.3 shows a series of photovolt-
age maps within the central area of our device. These are taken at carrier densities near
n = 8 · 1012 cm−2, which is close the highest resistance peak seen in Fig. 8.2b. We can
identify the following features: i) near the left contact there is a strong positive photovolt-
age response for lower carrier density (left panel), ii) for slightly higher carrier density the
photovoltage response become stronger towards the centre of the device (middle panel),
iii) at an even higher carrier density, the response near the left contact has changed sign,
while an interface in the middle of the device lights up with a strong positive photovoltage.

Given these strong spatial variations in the measured photovoltage for increasing carrier
density, we measure the photovoltage along the arrow in Fig. 8.3 and systematically sweep
the carrier density. This is depicted in Fig. 8.4a and shows several interesting features.
To guide us through them, we analyze the response at three different positions indicated
by the arrows, with the corresponding line traces shown in Fig. 8.4b. The strongest
photovoltage response occurs near the contact (red arrow and trace), with a sign change
at n = 8 ·1012 cm−2. In addition, there is a prominent sign change at charge neutrality. As
we move into the bulk (yellow arrow and trace), the sign reversal near n = 8 · 1012 cm−2

disappears, and the photovoltage only shows a peak at slightly higher carrier density. Even
further inside the sample (blue arrow and trace), we can identify two peaks in the response
at 5 · 1012 cm−2 and 9 · 1012 cm−2, with a negative response between them. We find
the same qualitative behaviour for negative carrier densities, except that the response is
slightly weaker. A finite cooling length accounts for the spatial broadening of the features.

8.4. Mapping the local twist angle with the
photothermoelectric effect

To understand our results, we try to interpret them using the photothermoelectric effect
(PTE). This is in graphene-based devices the dominant pathway to generate a photovolt-
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8. Probing twist angle variations in twisted bilayer graphene with photovoltage nanoscopy

age123. As outlined in Sec. 2.5 and Chapter 4, the photovoltage response is driven by
spatial gradients in the Seebeck coefficient S . We recall that for metals S is related to the
conductivity σ and temperature T via the Mott formula

S ∝
T

σ

dσ

dµ
, (8.2)

where µ is the chemical potential. To calculate S of TBG qualitatively, we follow a similar
approach used in Ref. 96 and define the resistivity ρ = 1/σ as function of carrier density
as

ρ(n, ns) =
ρff

1 +
(

n+ns
n∗s

)2 +
ρcnp

1 +
(

n
n∗cnp

)2 +
ρff

1 +
(

n−ns
n∗s

)2 . (8.3)

This simple formula describes qualitatively the main features seen in the resistivity of TBG.
One peak at charge neutrality with a magnitude ρcnp and broadening due to disorder density
n∗cnp, and likewise two peaks at positive and negative full-filling carrier density ns. In the
latter case, n∗cnp reflects mainly the broadening of the resistance peak due to thermal
activation of the full-filling gap ∆ according to ρ ∝ e−∆/2kBT . The black dotted line in
Fig. 8.4c depicts the profile of ρ(n) for ns = 8 · 1012 cm−2, which we use in the following
analysis. We simplify the model further by assuming that dσ/dµ is a constant, despite the
sharp changes in µ(n) near n = ns. As long as n∗s is sufficiently small, this simplification
does not impact the analysis. Using the Mott formula and ρ(n, ns) defined above, we
calculate S , shown by the red trace in Fig. 8.4c. It shows a typical profile with sign
changes coinciding with maxima in the resistivity, along with peaks in the magnitude on
either side.

Since photothermoelectric currents are generated by spatial changes in the Seebeck
coefficient, we consider three different types of interfaces, as shown in Fig. 8.4c. Because
the Seebeck coefficient of gold is relatively small compared to S of TBG220, the red trace
also describes the difference in S between TBG and a gold lead. The yellow trace shows
the difference in S(n, ns) for slightly different values of ns, which occurs when there is a
small spatial gradient of the twist angle. The blue traces illustrates the difference in S for
a large change in ns, occurring for a large step in twist angle.

The similarity between the calculated differences in S and the measured photovolt-
age response as function of carrier density is striking (Fig. 8.4b,c). This strengthens the
assumption that the photoresponse is governed by the PTE. Altogether, under the as-
sumption that the measured photovoltage is solely generated by twist angle disorder, we
interpret the data in Fig. 8.4a as follows. Near xtip = 0 µm the photovoltage is generated
by the junction between the gold lead and TBG with ns ≈ 8.0 · 1012 cm−2 corresponding
to θ ≈ 1.85°. Moving further into the bulk, the twist angle increases slightly, leading to
a peak in photovoltage at n = ns and which moves up slowly with position. Finally, at
the blue arrow our device exhibits a step in the twist angle from θ ≈ 1.88° to θ ≈ 1.67°,
corresponding to ns ≈ 8.2 · 1012 cm−2 and ns ≈ 6.5 · 1012 cm−2.

We can take this analysis a step further and make a rough estimation of the twist
angle disorder within our device. Guided by the near-field scattering image (Fig. 8.1b),
we assume that majority of the area of our device only hosts small gradients in the twist
angle. In this case we can deduce the local twist angle from the the carrier density at
which the measured photovoltage shows a maximum (yellow traces in Fig. 8.4). To this
end, we collect a large series of photovoltage maps like those in Fig. 8.3 for carrier densities
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Figure 8.4: Determining the local twist angle from the photovoltage response. a Line
cut of the near-field photovoltage response along the arrow in Fig. 8.3 for a range of carrier
densities, showing a strong response near n ≈ 8 · 1012 cm−2. b Traces of photovoltage
response in panel a at three different positions marked by the colour-matching arrows.
The traces are offset for clarity with the black lines indicating the zero values. The dashed
line indicates the sign-change at n ≈ 8 · 1012 cm−2 in the red trace. c Calculated Seebeck
coefficient according to the Mott equation from the electrical resistivity given by Eq. (8.3)
(dotted line) for a given full-filling carrier density ns (in units of 1012 cm−2). The upper
two traces show the difference in Seebeck coefficient for different ns. d Map of the twist
angle deduced from a series of photovoltage maps at different carrier densities. The area
covers the same as in Fig. 8.3 and the rectangle in Fig. 8.1b. In the central-left area the
twist angle map shows a smooth gradient, while towards the bottom-right a sharp change
in twist angle can be seen. The limited number of photovoltage maps used in the analysis
causes the appearance of terraces. Scale bar is 2 µm.

between 0.6 ·1012 cm−2 and 9.7 ·1012 cm−2. By determining the carrier density that gives
the maximum photovoltage response at each position, we obtain a map of the twist angle
as shown in Fig. 8.4d. It displays a slowly increasing twist angle from the left side towards
the middle of the device, upon reaching a sharp junction at which the twist angle drops.
We note that the finite cooling length leads to an overestimation of the region with larger
twist angle. Advanced algorithms could account for this, but this is beyond the scope of
this work.

The accuracy in determining the local twist angle via this method under the aforemen-
tioned assumptions is limited by the signal-to-noise ratio of the photovoltage. For small
twist angle gradients, the magnitude of the corresponding peak (yellow traces in Fig. 8.4)
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scales linear with the twist angle gradient as we verified numerically. As long as the gra-
dient is sufficiently large, there is a detectable peak in the photovoltage. The resulting
accuracy in determining the local twist angle is then only limited to the step size in carrier
density between the spatial maps. In the case presented here, we were able to probe a
gradient of approximately 0.003 °/µm (1.82° − 1.80° over 6 µm) with a signal-to-noise
ratio of about 10, suggesting that for even smaller gradients the twist angle can be mea-
sured locally. To obtain a twist angle resolution of 0.01°, a step size of 8.4 · 1010 cm−2 is
required for twist angles near 1.8°.

On the other hand, the spatial resolution is limited by the cooling length of the carriers.
By using the interface highlighted in Fig. 8.3, we estimate the cooling length to be ≈
600 nm. Since the flat bands become flatter towards smaller twist angles, the mobility
of the carriers also reduces, leading to a lower cooling length. Consequently, the spatial
accuracy is enhanced for twist angles near the magic angle.

The overall accuracy of this method can be improved by measuring simultaneously the
generated photovoltage between two contacts pairs in perpendicular orientation, analogous
to the method used in Chap. 4. In the measurements presented here, where we use only
one pair of contacts, there are certain directions where the twist angle gradients line
up perpendicular to the current flow; thus, they do not generate any photovoltage. By
measuring along two different projections, any twist angle gradient will always generate a
photovoltage for at least one projection. However, a proper analysis of the photoresponse
from multiple pairs requires calculating the current flows between the different pairs, which
can be a difficult task owing to the large resistivity changes near full-filling carrier density.

8.5. Conclusion
To summarize, we presented in this Chapter combined s-SNOM, transport and photovolt-
age nanoscopy measurements, which allowed us to understand the details of the observed
photovoltage response. Based on this, we created a method that allows mapping the twist
inhomogeneity in TBG via the photothermoelectric effect in combination with the high
sensitivity of the Seebeck coefficient on the local twist angle. It offers an alternative to
scanning magnetometry, with both techniques being able to probe the local twist angle to
an accuracy better than 0.01°. While our method might feature a slightly lower spatial
resolution in the order of 500 nm, its reduced complexity compensates for this. We believe
this method will be of use in developing sample fabrication techniques aimed at reducing
the twist angle inhomogeneity. Since there might be additional contributions to the pho-
tovoltage response at the magic angle, such fabrication techniques should be developed at
slightly larger twist angles but can afterwards still be applied at the magic angle.
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9. Summary and outlook
We set off this Thesis with the aims i) to understand the optical and optoelectronic
properties of twisted bilayer graphene systems and their connection to the fundamental
structure of these systems and ii) to establish new techniques to study the exotic states of
twisted graphene systems at low temperatures. s-SNOM and photocurrent nanoscopy were
chosen as main experimental tools for nanoscale imaging, as outlined in Chapter 2. With
them we explored the optical and opto-electronic response of twisted bilayer graphene,
ranging from minimally twisted bilayer graphene (θ < 0.1°) to samples near the magic
angle (θ ≈ 1°). Here, we summarize the main results of this Thesis.

We first described in Chapter 3 the collective excitations that we discovered in TBG
near the magic angle. By means of s-SNOM, we found in charge-neutral TBG regions that
exhibit periodic oscillations, which we interpreted as interband plasmons. In contrast to
intraband plasmons in single-layer graphene, these excitations follow a dispersion relation
that starts with a finite energy at zero momentum. By associating the dispersion relation to
the optical conductivity, we could link these excitations to the optical transitions between
the flat and remote bands. The enhanced strength of the associated peak in the optical
conductivity provides a hint that band nesting in TBG is stronger than assumed thus
far. This points at a reduced interlayer coupling in the AA-stacked regions, which could
originate from enhanced screening due to electron-electron interactions.

After this, we investigated in Chapter 4 the optoelectronic response of minimally twisted
bilayer graphene using photocurrent nanoscopy. This uncovered a complex photocurrent
pattern that is sensitive to the orientation of the contact electrodes. We linked these
periodic patterns to the underlying domain wall network where the electronic properties
change sharply. Supported by simulations, we showed that the observed photocurrent is
generated by the photothermoelectric effect in combination with the sharp dips in the
Seebeck coefficient at the domain walls. Our results also revealed how hyperbolic phonon
polaritons are able to pass underneath domain walls, causing an apparent local reduction
in the generated photocurrent.

A major challenge in s-SNOM experiments is independent control of the carrier density
and transverse displacement field. In Chapter 5 we show that this can be overcome by
employing WSe2 as an infrared-transparent top gate. Using this semiconducting gate
electrode, we can tune the plasmon wavelength of bilayer graphene without obstructing
the near-field access. The measured plasmon wavelength serves as a local probe of the
carrier density, which allowed us to extract the gating efficiency of the trilayer WSe2 top
gate. We found that the gate voltage needs to overcome a certain threshold related to the
band gap in order to induce carriers in bilayer graphene. This is captured in a model that
uses a combination of geometric capacitances and the the quantum capacitance of WSe2.

Another central challenge in the field of near-field optical experiments is to perform them
in cryogenic conditions. In Chapter 6 we discussed the development of a cryogenic s-SNOM
based on a commercial system. To allow reliable operation, several improvements were
made concerning the AFM operation and vibration isolation of the system. In particular, we
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devised an active damping system to reduce the floor vibrations coupled to the system. At
a current base temperature of 10 K, we found rms noise values of the scattering amplitude
and phase of ≈ 2% and ≈ 1° respectively, in par with room-temperature s-SNOM systems.

We made use of the latter system and performed cryogenic photovoltage nanoscopy on
MATBG. In Chapter 7 our measurements revealed a large-scale semi-periodic structure
across the entire sample, which we interpreted as a manifestation of a second-order su-
perlattice. This is formed by MATBG and graphene closely aligned to hBN, which we
described with a model incorporating a realistic amount of strain in the graphene layers.
These results constitute a direct visualization of broken inversion symmetry, which is a key
requirement for ferromagnetic states in MATBG.

In Chapter 8 we applied cryogenic photovoltage nanoscopy to study a TBG sample with
larger twist angle variations. We found a photoresponse that strongly varies with position
and carrier density. Combined with s-SNOM and transport measurements, we were able
to unravel the photoresponse using the photothermoelectric effect. Our model defines a
method to map the twist angle with TBG samples with a resolution on par with scanning
magnetometry.

From a broader perspective, the results on TBG near the magic angle show that optical
nano-imaging allows spatial probing of interaction effects at the nanoscale, which can po-
tentially elucidate the contribution of collective excitations to many-body ground states143.
We also emphasize that propagating plasmons with strong wavelength suppression, and
without the need for additional doping, are of use for strong light-matter interactions221,
quantum plasmonics222 or the creation of metamaterials and nano-photonic devices. Fur-
thermore, we hope that our observation of a second-order superlattice provides guidance
in developing theoretical models aiming to study different pathways that assist strong
electron-electron interactions in breaking inversion symmetry.

Likewise, our work on mTBG demonstrates that sub-diffraction photocurrent spec-
troscopy is an exceptional tool for uncovering the optoelectronic properties of moiré super-
lattices. Local probing at length scales of the superlattice provides deeper insight into the
microscopic mechanisms that govern the photoresponse and the exact role of the moiré
lattice. With the photoresponse of semiconductor heterostructures being at the heart of
modern optoelectronics223,224, knowledge on the nanoscale is essential for future optoelec-
tronic devices based on twisted bilayer graphene. This technique also proves to be useful
from the perspective of structural characterization, as it allows mapping the twist angle
distribution in TBG, as well as the influence of strain fields.

The two technological advancements we presented here further unlocks the scientific
potential of near-field microscopy. The value of cryogenic s-SNOM systems was proven in
recent experiments with temperatures down to 25 K112,185,195,225,226, wherein the reduced
temperature enabled access to interesting phases of matter and their transitions, and
enhanced lifetimes of collective excitations. Much excitement is anticipated when the
temperature can be reduced further to the vicinity of the correlated states of TBG (1-10 K).
This, in combination with terahertz excitation frequencies227 and independent control over
carrier density and displacement field, paves the way for future experiments on exotic states
in 2D materials thus far untouched by nano-optics18,22,28,29,31,55,81–83,90,92,157,158.
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A. Appendices to Chapter 3

A.1. Low-temperature transport characterization to
determine the twist angle

Daniel Rodan and Yuan Cao from the MIT group characterized the transport properties of
the near-magic angle devices described in Chapter 3 in a dilution refrigerator, with a base
temperature of ≈ 70 mK, which is equipped with a superconducting magnet generating a
magnetic field perpendicular to the TBG electron gas. All the transport data are acquired
using standard low-frequency lock-in techniques with discrete and distributed cryogenic
low-pass filters removing thermal noise from the biasing and measurement lines228. We
bias the device with a fixed current of 10 nA and measure the pre-amplified four-probe
voltages using SR830 lock-in amplifiers that were synchronized to a frequency in the range
1− 20 Hz.

We extract the twist angle and CNP from cryogenic magnetotransport measurements
(Fig. A.1)15,22. For small twist angles 1° < θ < 3°, the band gaps between the nearly-
flat bands and the nearest conduction and valence bands cause strongly insulating states
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Figure A.1: Determination of the twist angle using cryogenic transport measure-
ments. a Longitudinal resistance showing the Landau levels originating from the CNP
(white dashed lines) and from the insulating states at full filling (green dashed lines,
centred at ns = ±4.24 · 1012 cm−2). These transport measurements were performed at
≈ 70 mK. b The carrier density nHall =

B
−eRxy

measured from the Hall resistance Rxy at
a magnetic field B = 1 T (blue curve), which agrees well with the carrier density ncap
calculated from the slopes of the Landau levels (red curve). The extracted capacity be-
tween the sample and the bottom gate, taking into account the measured bottom hBN
thickness of 47 nm, corresponds to an out-of-plane static dielectric constant of the hBN
ϵz(ω = 0) = 2.91.
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in transport measurements at characteristic carrier densities of ±ns
15,22,34. This density

corresponds to the inverse of the superlattice unit cell, and by taking the double spin and
valley degeneracy into account we determine the average twist angle as

θ[rad] ≈

√√
3a2

8
ns, (A.1)

with a = 0.246 nm being the lattice constant of graphene. We determine ns by extrapo-
lating the Landau levels measured at high magnetic fields around these insulating states,
down to zero magnetic field (Fig. A.1a). This yields θ = 1.35° with an uncertainty of
0.02°. As part of this procedure, we calibrate the carrier density to the applied gate volt-
age by fitting the slope of the Landau levels around the CNP, which appear at n = νB/ϕ0,
with filling factors ν = ±4, 8, 12, . . . , where ϕ0 = h/e is the magnetic flux quantum. As a
crosscheck we also extracted the electronic density from Hall measurement near the CNP.
As shown in Fig. A.1b, this second procedure yields a result that agrees well with the
density obtained from the slopes of the Landau levels.
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A.2. Correlation between optical activity and topography

A.2. Correlation between optical activity and
topography

In some cases, we found a correlation between the optically active regions in near-magic
angle samples presented in Chapter 3 and fine features in the sample topography, as
measured simultaneously using atomic force microscopy. Fig. A.2 provides examples of
this correlation and shows the presence of height steps of about 0.4 nm. These coincide
with the boundaries of the optically active regions, which correspond to the higher areas.
In addition, the small bubbles of a few nanometres thick, which are common for these van
der Waals heterostructures, coincide in some cases with the boundaries of the optically
active regions, or are located at the centre of regions where no collective excitations were
measured. Besides that, we note that in the core of one device we did not observe the
collective modes, while being superconducting at low temperatures and not having been

a Device 1, 219 meV
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Figure A.2: Correlation between optical activity and topography in near-magic angle
TBG. a Near-field image of the device shown in Chapter 3, with the corresponding AFM
data shown in panel b. The rectangular area (dashed line) encloses several boundaries of
optically active regions, which have a height step of several Å (inset shows line cut along
the black arrow with the dashed lines 3.5 Å spaced apart). The dashed circles mark small
bubbles within the 2D heterostructure surrounded by regions with collective excitations.
c-f. Same as in a-b but for two other devices. All scale bars are 500 nm.
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touched by contact-mode AFM. This illustrates that being close to magic angle itself is
not the only requirement for the formation of interband plasmons.

We have observed areas of collective excitations appearing and disappearing in response
to the tapping- and contact-mode atomic force microscopy measurements (Fig. A.3).
These changes go along with small, but critical changes in the sample topography. Al-
though it is difficult to deduce precisely which local parameters are changing (such as twist
angle, interlayer distance and coupling), it demonstrates that this system is rather sensitive
to external forces61.

These observations point to the crucial role strain plays in the formation of these regions.
This goes along with variations of the twist angle and interlayer coupling as commonly
found in TBG samples15,31,39,48, and directly affects the properties of the plasmonic modes.
As can be seen from Fig. 3.1b, the boundaries of the optically active areas are typically
formed by sequences of arcs with radii ≈ 120 − 200 nm. This shape may stem from

a Device 3A, 175 meV b

c Device 3A, 214 meV d

e Device 3B, 214 meV f

g Device 3B, 214 meV h

Figure A.3: Changes in optically active areas induced by AFM. a Near-field image
and corresponding topography (panel b) before a structural change occurred during an
s-SNOM measurement with the AFM operated in tapping-mode. The fringes parallel to
the sample edges are hBN phonon-polaritons. After this change, the topography shows a
few alterations and the collective excitations appear (c-d). e-f. Collective excitations in
twisted double bilayer graphene before a second AFM-brooming session, which disappeared
afterwards (g-h). All scale bars are 500 nm and the colour scales are the same as in Fig. A.2
(except in panels f and h, where it spans 10 nm).
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a boundary between two structural phases, such as twist angles near and far from magic
angle as seen in SQUID measurements48. This goes along with an energy-per-area for each
structural phase, together with an energy-per-length for the interface. Since individual
layers in van der Waals heterostructures can rotate with relative ease, it is possible that
the AFM-brooming procedure ‘locks’ regions into particular twist angles. Considering this,
together with the mentioned energy densities, the interfaces might attain shapes that
appear rather irregular. We discuss the sensitivity of propagating interband plasmons to
twist-angle variations in Sec. A.4.
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A.3. Details of the extraction of optical conductivity of
TBG

In the local approximation for the optical conductivity138, the longitudinal dielectric func-
tion is given by

ϵ(q,ω) = 1 +
iq2Vq,ω

ω
σ(ω). (A.2)

Here, σ(ω) is the local, frequency-dependent conductivity and Vq,ω is the electron-electron
(e-e) interaction potential. Note that σ(ω) is a scalar because the system has a vertical C3

symmetry axis. The e-e interaction potential relates a charge density fluctuation ρ(q,ω)

in the electron gas to the electric potential ϕ(q,ω) it induces through

ϕ(q,ω) = Vq,ωρ(q,ω). (A.3)

For the type of structure used in our experiments, the e-e interaction potential can be
calculated following Ref. 126. This yields

Vq,ω =
2π

qϵ̃(ω)
F (q,ω), (A.4)

where ϵ̃(ω) =
√

ϵx,y(ω)ϵz(ω) is the average permittivity of hBN, η =
√
ϵx,y(ω)/ϵz(ω) is

its anisotropy factor, and

F (q,ω) =
[(ϵ̃(ω) + 1) + (ϵ̃(ω)− 1)e−2qη(ω)t2 ](1− e−2qη(ω)t1)

(ϵ̃(ω) + 1) + (ϵ̃(ω)− 1)e−2qη(ω)(t1+t2)
, (A.5)

t1 and t2 being the bottom and top hBN thickness, respectively. We remind the reader
that hBN is an uniaxial crystal with the optical axis ẑ perpendicular to the plane of the
flake. An oscillator model describes its dielectric tensor

ϵi (ω) = ϵi (∞) +
siℏ2ω2

i

ℏ2ω2
i − iℏ2γiω − ℏ2ω2

, (A.6)

with parameters given in Ref. 152 and reported for completeness in Table A.1.
The mode penetrates for a characteristic length Lz = [qη(ω)]−1 in the hBN slab, in the

vertical direction. To couple efficiently to the AFM tip, the thickness of the top hBN layer
t2 has to be smaller than Lz. Note that close to the upper edge of the higher Reststrahlen
band of hBN, at ℏω ≈ 200 meV, Lz diverges due to the vanishing of ϵz.

In determining the imaginary part of the optical conductivity σ2 from σ(ω) = iω
q2Vq,ω

,
we only use the real part q1 of the measured wavevector. To verify that neglecting the
imaginary part q2 does not affect the extracted parameters of the optical conductivity to
a large degree, we repeated the fitting procedure used in Fig. 3.3c with q = q1+ iq1/γ

−1
p ,

where γ−1
p = q1/q2 is the inverse damping ratio87. We find that the introduced damping

reduces ℏΩexp by only ≈ 2% at γ−1
p = 5, which corresponds to the lower bound on γ−1

p

extracted from our data.

ϵi (∞) si ℏωi (meV) ℏγi (meV)
i = x, y 4.9 2.001 168.6 0.87
i = z 2.95 0.5262 94.2 0.25

Table A.1.: Parameters of the model of the hBN permittivity.
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A.4. Calculation of optical properties of TBG
Here we provide additional plots of the band structure, optical conductivity, and loss
function as calculated for different values of the twist angle θ and filling factor ν. The
band structure energies ϵk,ν and its wave functions of the single-particle Bloch problem are
calculated according to the model in Ref. 38, while the optical conductivity is computed
according to the Kubo formula91 (details provided in Supplementary Note 10 in Ref. 134).

In Fig. A.4 we visualize the impact of the twist angle on the results of our calculations.
Upon increasing the twist angle, the interband resonance shifts monotonically to higher
energies. The resonance is sharpest and closest to the experimental data discussed in
Chapter 3 when the angle is close to the independently measured value θ = 1.35° despite
the absence of any fitting parameter in the theory. These calculations show that a small
deviation (0.05°) from the experimentally measured θ = 1.35° has a modest impact on the
resonance energy (compare Figs. A.4d-e and Figs. 3.6c-d). However, due to the relatively
flat dispersion, such a small twist-angle variation can have a rather profound effect on
the plasmon propagation. Conservation of plasmon energy and momentum is crucial for
propagation from the AFM tip to a reflecting interface and backwards229. For typical
excitation energies used in this work, a change in angle of 0.05° corresponds to a change
in plasmon momentum of 10-20 µm−1, thus severely blocking propagation. Therefore, we
hypothesize that the regions where we observe collective excitations are very homogeneous
in twist angle, which might be brought in this state by the AFM-brooming procedure
applied to our samples as discussed in Section 2.1 and Appendix A.2.

Figure A.5 shows the effect of changing the carrier density on the optical properties
of TBG. Since this model does not include e-e interactions, the bands do not shift in
energy upon changing the carrier density, hence only the relative strength of the interband
transitions varies. For example, when changing the Fermi level from inside the flat bands
(Fig. A.5a-c) to slightly above the single-particle gap (Fig. A.5d-f), the lower interband
transition (in orange) quenches due to Pauli blocking, while another transition with slightly
lower energy gains in strength. Increasing the carrier density even further beyond the full-
filling condition allows transitions at lower energies to become dominant (Fig. A.5g-i).

Despite the pronounced changes in optical conductivity with increasing carrier density
(Fig. A.5b,e,h), there are only minor changes in the loss function for different filling factors
(Fig. A.5c,f,i). We can understand these differences in a twofold manner. Firstly, a
reduction in spectral weight causes a reduction of the group velocity, which is apparent as
a change in slope of the resonance (compare Fig. A.5c,f). Secondly, the relative change
in spectral weight of the various transitions causes resonances at a different energy to
dominate (compare Fig. A.5c,i). Ongoing studies reveal that there are modifications of
the band structure upon changing the carrier density once e-e interactions are included73,91,
which is beyond the scope of this thesis.

97



A. Appendices to Chapter 3

K M K
200
100

0
100
200

k
 (m

eV
)

= 1.1°
a

K M K

= 1.3°
d

K M K

= 1.5°
g

0 100 200
Energy (meV)

0
3
6
9

12

Re
[

(
)]/

G
0

b
th = 136 meV

Wth = 199 meV

0 100 200
Energy (meV)

e
th = 186 meV

Wth = 155 meV

0 100 200
Energy (meV)

h
th = 233 meV

Wth = 190 meV

0 20 40 60
q1 ( m 1)

0

50

100

150

200

250

En
er

gy
 (m

eV
)

c
0 L(q, ) 1.4

0 20 40 60
q1 ( m 1)

f

0 20 40 60
q1 ( m 1)

i

Figure A.4: Impact of twist angle on electronic bands, conductivity, and loss function.
a Band structure of TBG calculated according to the model in Ref. 38 with u0 = 0 (CS-
CM) and θ = 1.1°. Colour coding is the same as in Fig. 3.6a. The data points are those
extracted from our device with θ = 1.35° (Fig. 3.3b). b Optical conductivity derived from
the band structure in panel a. Colour coding is the same as in Fig. 3.6b. c Loss function
derived from the band structure in panel a. Panels d-f and g-i are the same as a-c for
θ = 1.3° and for θ = 1.5° respectively.
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Figure A.5: Optical conductivity and loss function for different filling factors. a Band
structure of undoped TBG (ν = 0) calculated according to the model in Ref. 38 with
u0 = 0 (CS-CM), θ = 1.35° and T = 10 K. Colour coding is the same as in Fig. 3.6a,
and the black horizontal line marks the chemical potential. b Optical conductivity derived
from the band structure in panel a. Colour coding is the same as in Fig. 3.6b. c Loss
function derived from the band structure in panel a. Panels d-f and g-i are the same as a-c
with the chemical potential either slightly or far above the single-particle gap respectively,
corresponding to a filling factor of ν = 1.5 and ν = 2.5. In these cases other interband
transitions dominate, as indicated with the coloured arrows and shaded areas.
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B.1. Carrier density calibration through graphene
plasmons

In field-effect transistor geometries, the carrier density n induced by an applied gate voltage
is generally well described by a simple capacitance model. Even so, Hall-effect measure-
ments are usually a pre-requisite in proper characterization of n in any conducting system
and allows one to make a calibration of the n induced by the applied gate voltage VG. In
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Figure B.1: Estimation of the induced carrier density for an applied gate voltage. a
Normalized derivative along the tip position of the measured photovoltage in single-layer
graphene near a contact for a range of gate voltages. The contact (extending up to the
yellow dashed line) serves as a launcher for plasmon-polaritons in SLG, observed as periodic
oscillations in the plot. The excitation energy is 117 meV. b Calculated loss function of SLG
in our sample at an excitation energy of 117 meV for various carrier densities. The green
line corresponds to the plasmon resonance, which changes its wavelength λp = 2π/q1 with
carrier density. Inset: measured photovoltage along the arrow in panel a, together with
a fit (red line) to extract λp. c Extracted carrier density for various gate voltages based
on the data of panel a and the calculated dispersion relation shown in panel b. The blue
dashed lines are linear fits on either side of the CNP, giving an estimation of the induced
carrier density at lower gate voltages. The errorbars represent the ±1σ standard deviation.
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some devices, however, measurement geometries are not well suited for Hall measurements.
To accurately determine the induced n in such devices, we instead perform a calibration by
measuring the plasmon-polariton dispersion in a single-layer graphene (SLG) region. In-
frared plasmon-polaritons have been studied extensively in graphene, and their dispersions
are well known87,126,127. By studying the near-field photocurrent close to a pn-junction, we
directly image graphene plasmons, measure their wavelength, and determine the doping
level n that such an excitation corresponds to. Moreover, tuning the gate-voltage tunes
the plasmon wavelength, which allows us to make a calibration of n(VG). Fig. B.1a plots
a map of the measured photovoltage (we plot the derivative with respect to xtip to make
features clearer) as a function of gate voltage and tip position xtip, where the x-axis corre-
sponds to a spatial line scan made near one of the Au measurement contacts of our device
(purple dot in Fig. 4.1b). The Au-SLG interface is marked by the dashed line in Fig. B.1a.
In line with the photothermoelectric effect, the photovoltage changes sign when the gate
is tuned through the charge neutrality point of graphene. On top of this, we can also see
a set of fringes that become wider spaced at higher gate voltages. They arise from ther-
moelectric detection126,127 of the interfering plasmon-polaritons in graphene. To extract
the plasmon wavelengths, we follow a method similar to the one described in Sec. 2.4,
and involves fitting a polynomial background combined with a sinusoidal function (inset of
Fig. B.1b). The corresponding n for the measured plasmon wavelength is then determined
from the plasmon dispersion relation (Fig. B.1b) calculated in our sample at the excitation
energy used in our measurement (117 meV)95. With this method, we obtain the density
calibration plotted in Fig. B.1c. It shows a linear behaviour with gate-voltage as expected.
We note that n is slightly higher than what is typically expected for the dielectric thickness
of our capacitor, which we attribute to photodoping170 caused by the constant far-field
infrared illumination that is unavoidable in our s-SNOM experiments.
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B.2. Photoresponse in other mTBG devices/regions
The behaviour reported in Chapter 4 was found to be generic to our other measured
mTBG devices. To illustrate this, we plot measured photocurrent maps of another mTBG
device (Fig. B.2a). Although slightly more anisotropic, the triangular patterns of the moiré
lattice intrinsic to mTBG can be seen and are similar to those measured in the contact
configuration used in Fig. 4.3a. We find the same qualitative behaviour including sign
changes across certain domain walls, in line with what is expected from the PTE (Fig. 4.5),
and the double-step feature at domain wall interfaces (dotted lines in Fig. B.2a).

The measurements presented in Chapter 4 were focused on mTBG with moiré struc-
tures of size ∼ 500 nm. However, we also observed structures with smaller periodicities.
Figure B.2b plots the measured photocurrent of the device presented in Chapter 4, but in
the mTBG region on the bottom side of the single-layer graphene region. Again, we find
the same periodic patterns in the photocurrent as observed in larger structures. Whilst the
seemingly square lattice we observe in Fig. B.2b is not representative of the moiré lattice
in mTBG, we recover the triangular lattice (shaded domains) by incorporating the same
directional effect as to that reported in the main text (Fig. 4.3a).

a b

1

0

+1

I P
C (

no
rm

.)

Figure B.2: Near-field photocurrent images in other mTBG devices. a Photocurrent
image taken in one of our other devices at E = 117 meV near charge-neutrality. The profile
is qualitatively the same as in Fig. 4.3a, due to a similar arrangement of domain walls with
respect to the current path lines between measurement contacts. b Photocurrent image
of a higher-density network with moiré domains as small as ∼ 100 nm, measured at
E = 188 meV near charge-neutrality. In both panels the yellow/purple triangles indicate
the location of AB/BA domains, and the gold patches give a rough indication of the
source/drain contacts. Scale bar is 200 nm in both panels.

103



B. Appendices to Chapter 4

B.3. Photothermoelectric effect in two dimensions
Our description of the photothermoelectric effect (PTE) is based on two local linear re-
sponse equations. The first reads

J(r) = −σ(r)∇V (r)− σ(r)S(r)∇δT (r), (B.1)

where J(r) is the electric current density, σ(r) is the local, direct-current (DC) conductivity,
V (r) the electric potential, S(r) the Seebeck coefficient, and δT (r) ≡ T (r) − T0 is the
temperature deviation from the substrate temperature T0, which we assume to be constant.
The first term is simply the local form of Ohms law, while the second represents the Seebeck
effect, that is, an electric current driven by a temperature gradient.

The second equation involves the heat current density q(r) and is given by

q(r) = −κ(r)∇δT (r) + Π(r)J(r), (B.2)

where κ(r) is the thermal conductivity and Π(r) = T (r)S(r) ≈ T0S(r) is the Peltier
coefficient. The first term describes the normal heat conduction (Fourier law) while the
second describes the heat current generated by a flowing electric current, known as the
Peltier effect.

At steady state, the following continuity equations for the two currents hold

∇J(r) = 0,

∇q(r) = −g(r)δT (r) + Q(r).
(B.3)

The first equation simply expresses charge conservation, while the second represents heat
dissipation to the substrate (first term, g(r) being the thermal coupling to the substrate)
or heat generation by light absorption (second term) as described in the main text.

Taking the divergence of Eq. (B.2) and using Eq. (B.3) yields the temperature diffusion
equation

−∇[κ(r)∇δT (r)] + g(r)δT (r) = Q(r)− T0∇S(r)J(r), (B.4)
where we can distinguish two source terms: the external heat introduced into the system

Q(r) and the heat generated by a flow of electric current via the Peltier effect. Note that
the heat generated through the Joule effect by the steady current J(r) is neglected since
it is quadratic in J(r), and hence quadratic in the absorbed power. If we assume that both
κ and g are spatially homogeneous, Eq. (B.4) simplifies to

−∇2δT (r) + L−2
coolδT (r) =

1

κ
[Q(r)− T0∇S(r) · J(r)], (B.5)

where Lcool ≡
√
κ/g is the cooling length that determines how far the heat can travel in

the sample before being lost to the substrate because of out-of-plane conduction.
Equations (B.1-B.5) can be combined into a linear system of Partial Differential Equa-

tions (PDEs) in the form

−∇
[(

σ(r) T0σ(r)S(r)
T0σ(r)S(r) T 2

0 σ(r)S
2(r) + T0κ(r)

)(
∇V (r)

T−1
0 ∇δT (r)

)]
+

(
0

g(r)δT (r)

)
=

(
0

Q(r)

)
.

(B.6)
Here we put the equations in a form that makes explicit the symmetry of the coefficient
matrix due to Onsager relations.
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At the m-th contact the voltage has a constant value V (r) = Vm, while the current
flowing in it is given as Im =

∫
contactm

J(r) · n̂ds, with n̂ being the outward normal unit
vector (we consider positive currents those leaving the device).

In our experiment V1 = 0 and I2 = I3 = 0 (Fig. 4.6a provides contact numbering). These
conditions, together with the boundary conditions on the temperature field δT (r) = 0 in
the contacts, and q(r) · n̂ = 0 on the rest of the boundary, specify uniquely the solution147

of the problem (B.6) given the heat source Q(r).
Solving Eq. (B.6) numerically via finite element method (FEM) allows calculating V2[Q]

and V3[Q] from the solution. Because of the linearity of the problem it is in principle
possible to solve the system (B.6) for a point source located at r0, defined by Qpoint(r, r0) =
δ(r − r0), and obtain the results for a generic source in the form

V2/3[Q] =

∫
dr0R(2/3)

PTE (r0)Q(r0), (B.7)

where the photovoltage responsivities R(m)
PTE(r0) are obtained by evaluating Vm on the

solution corresponding to the point source Qpoint(r, r0). This approach is numerically
intense, since it requires calculating the solution of Eq. (B.6) one time for every position
at which we want to know the responsivities. We can instead make use of the elegant
reciprocity principle147,148 to solve for the responsivities in one shot.

This reciprocity principle affirms, for our experimental configuration, that R(2)
PTE(r0) is

equal to the normalized temperature field δT (r)/I0T0 obtained by solving Eq. (B.6) with
V1 = 0, I2 = I0, and I3 = 0, while R(3)

PTE(r0) is equal to the temperature field obtained by
solving Eq. (B.6) with V1 = 0, I2 = 0, and I3 = I0. Solving these two PDE problems with
the FEM code147 we obtained the responsivity maps shown in the main text. We note
that this picture is modified in presence of resonant response (in either the sample or the
substrate). In this case Q(r, rtip) can spread considerably away from the tip127 giving rise
to additional features.

In the following, we describe the details of the parameters that we feed into the simu-
lations. First, based on sample characterization via AFM/s-SNOM/Raman/photocurrent
measurements, we define the sample geometry with specific regions consisting of SLG, and
other regions of mTBG (Fig. 4.6a). Next, using the scattering data as a guide (Fig. 4.1c),
we draw the network of domains in the region of interest, as reflected by Fig. 4.6b. Using
this geometry, we generate a sample mesh with a variable cell size, with those closest to
the domain walls having the smallest edge size of about 1.5 nm.

We define at each cell of the mesh the input parameters as follows:
• In mTBG we consider the domain wall to be of the shear-type33. This means that we

should take the xx-component of the conductivity and Seebeck tensors56 as defined
in Appendix B.4. We evaluate the Seebeck coefficient Sxx and and DC conductivity
σxx(ω = 0) at T0 = 300 K with an energy broadening η = 10 meV corresponding to
a scattering time of ≈ 400 fs.

• In SLG, we use the Mott formula S(µ) = −π2k2
BT

3e
1
σ

dσ
dµ , with σ ∝ 1+ n(µ)

n∗ as the DC
conductivity, µ = ℏν

√
πn, and n∗ = 8·1010 cm−2 as the impurity density determined

for our device – in agreement with what is expected for graphene on hexagonal-boron
nitride4. To simulate accurately the influence of SLG in the potential landscape, the
conductivity serving as input for the simulation is set to 1.5× the value of AB-stacked
BLG, which is a typical for hBN-encapsulated SLG/BLG devices13.
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• The thermal conductivity κ is given at each point using the Wiedemann-Franz law,
κ =

π2k2
BT

3e2 σ, using the electronic conductivities as defined above.

• The thermal coupling to the substrate is in large part governed via coupling of hot
electrons to hBN phonons230 with a coupling coefficient g ≈ 5 · 104 WK−1m−2.
We take this value for the mTBG and SLG regions, leading to a cooling length
Lcool ≈ 270 nm in mTBG. This compares well with the experimental cooling length
extracted in mTBG (Appendix B.5).

The FEM simulations of the PTE response of the device were performed using an open-
source, homemade, python package (available at gitlab.com/itorre/diffusive_solver)147

based on the FEniCS library231, that allows the solution of coupled diffusion equations
systems in realistic sample geometries.
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B.4. Calculation of thermoelectric transport coefficients
in mTBG

The strategy to calculate the relevant thermodynamic quantities of mTBG in the vicinity
of domain walls, including the DC conductivity tensor σαβ(ω) and the Seebeck tensor
Sαβ , is outlined in three steps. First, we calculate the band structure for different stacking
configurations of bilayer graphene ranging from AB-stacking, to the saddle-point (SP)
configuration, and to the BA-stacking. Each of these configurations corresponds to a
different displacement vector describing the relative lateral displacement between the two
graphene layers, as depicted in Fig. B.3 of a shear-type domain wall. Second, once the band
structures are known, we calculate σαβ(ω) and Sαβ for each of the stacking configurations.
Finally, we define the spatial profile of the displacement vector in mTBG, yielding the spatial
profile of σαβ(ω) and Sαβ .

AB SP BA
x

y

dy

Figure B.3: Local stacking configuration for a shear-type domain wall. The displace-
ment dy increases by a0 when translating from an AB region to a BA region, while crossing
the saddle-point configuration.

Band structure for bilayer graphene

We calculate the electronic band structure of bilayer graphene with an arbitrary displace-
ment between the two layers. Using the model in Ref. 56, we define the displacement
vector dyey along the y-direction. With dy defined in units of nearest-neighbour distance
a0 = 0.142 nm, dy = 1, 1.5, 2 correspond to AB, SP, BA stacking configurations respec-
tively.

For each stacking configuration between the AB and BA sites, we consider an infinite
lattice of that configuration, and solve the eigenvalue problem

H(k)uν(k) = ϵν(k)uν(k), (B.8)

with the effective 4× 4 Hamiltonian matrix given by

H(k) =

(
H+

0 U†

U H−
0

)
, (B.9)

in which H0 is the Hamiltonian of single-layer graphene (SLG), and U describes the inter-
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action potential between the two layers

H±
0 =

(
±∆/2 ℏv(ξkx + iky)

ℏv(ξkx − iky) ∓∆/2

)
,

U = γ1

3

(
1 + 2

[(
cos( 2π3 dy) cos( 2π3 (dy + 1))

cos( 2π3 (dy − 1)) cos( 2π3 dy)

)])
.

(B.10)

Here ∆ is the interlayer potential energy at each of the two layers, v ≈ 1 · 106 m/s is
the band velocity of SLG, ξ = ±1 selects between the K and K ′ valley and γ1 ≈ 0.4 eV
is the interlayer coupling. Since we change the carrier density in mTBG solely with one
gate, the chemical potential µ is always positioned outside the band gap induced by the
out-of-plane displacement field. Therefore, any corrections to this model due to interface
states43,44 are beyond the scope of this work.

In our model we assume the applied back gate voltage fixes the carrier density n every-
where in our mTBG device, and that the chemical potential µ(dy, n) varies spatially due to
the varying density of states found for different stacking configurations present in the moiré
lattice of mTBG. To calculate the chemical potential, we first fix the interlayer potential
through a simple capacitance model for bilayer graphene above a backgate. In this model
n(∆) = ϵ0

e2d0
∆, where d0 = 0.34 nm corresponds to the vacuum distance between two

layers. Knowing the density of states for every stacking configuration and calculated in-
terlayer potential, we then build a spatial profile of the spatially varying chemical potential
in our devices µ(dy, n).

Calculation of the Seebeck and conductivity tensors

Following the same definitions as in Ref. 91, we calculate for each stacking configuration
the Seebeck tensor Sαβ and the optical conductivity σαβ(ω). These tensors relate respec-
tively the heat and current responses in the α direction under an applied electric field in
the β direction. The Seebeck tensor is defined under the Relaxation Time Approximation
as

Sαβ = − 1

eT

W(1)
αβ

W(0)
αβ

, (B.11)

with

W(p)
αβ ≡ −πg

∑
ν

∫
d2k

(2π)2
f ′kν · (ϵkν − µ)p⟨ukν |∂kαH(k)|ukν⟩⟨ukν |∂kβH(k)|ukν⟩. (B.12)

Here, g = 4 corresponds to the fourfold valley/spin degeneracy, f ′ is the derivative of
the Fermi-Dirac distribution f . Furthermore, ν counts over the four bands and ∂kj is the
momentum derivative in the direction j . For the electrical conductivity we used the Kubo
formula91 with an energy broadening η = 10 meV.

Band structure calculations of shifted graphene bilayers and the extraction of the corre-
sponding physical properties were carried out using an open-source python package (avail-
able at gitlab.com/itorre/bandstructure-calculation), which allows the computation of the
spectrum and of optical and thermoelectric properties of simple electronic band-structure
models.
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B.4. Calculation of thermoelectric transport coefficients in mTBG

Profile of the displacement vector

Previous work33 has experimentally determined the profile of the displacement vector
dy(xd) for a distance xd to the middle of a domain wall. This profile can be described as

dy(xd) = 1 +
2

π
arctan(eπxd/LDW) (B.13)

with LDW = 6.2 nm encoding the width of a shear domain wall, and LDW = 10.1 nm
corresponding to the width of the energetically less-favoured tensile domain wall.

By combining the definitions in this Appendix, we obtain a spatial map of σαβ(ω) and
Sαβ in a network of domain walls, by evaluating at each position the distance xd to the
nearest domain.

109



B. Appendices to Chapter 4

B.5. Cooling length in our mTBG devices

The photoresponse generated by the photothermoelectric effect is driven by local tempera-
ture gradients generated in the electron gas in the vicinity of inhomogeneities in the Seebeck
coefficient, which decay over a characteristic length scale from the source. Microscopi-
cally, this corresponds to the distance over which initial photoexcited carriers equilibrate
with the lattice and is referred to as the cooling length Lcool. In the PTE, a photocurrent
can be generated as long as photoexcitation occurs within a typical distance Lcool from
any junction that exhibits gradients in the Seebeck coefficient. In Bernal stacked bilayer
graphene, the cooling length has been measured to be around 250 nm123. This is why in
our mTBG samples the spatial photocurrent profile is so complex, because thermal gra-
dients generated by photoexcitation in the middle of moiré domains can reach different
surrounding junctions, which add linearly and contribute to the globally measured pho-
toresponse. As mentioned in Chapter 4, our samples tend to have extrinsic junctions in
the form of stacking faults that also generate photocurrent and, in the case that they are
located a distance Lcool from the superlattice region, would contribute a background signal
to the photoresponse measured in our moiré domains. They could explain, for example,
the constant negative photoresponse observed in the moiré domains at high doping levels
(Fig. 4.4a and Fig. 4.7a). To rule out such contributions and allow correct interpretation
of the photoresponse from moiré domains alone, we studied how the photoresponse from
stacking faults behaves and measure Lcool in our devices.

Figure B.4a plots an extended photocurrent map of the device presented in Chapter 4
(Fig. 4.7a) at a carrier density n ∼ 4 · 1012 cm−2, that includes the single-layer graphene
(SLG) region. The map clearly shows photocurrent hot spots on one side of the device
originating from SLG-mTBG interface (marked by green dotted line), and on the other side
from cracks/stacking faults (black dotted line). In between these interfaces we observe
the anomalous negative photoresponse in the moiré domains. However, the photocurrent

a

-1

0

+1

I P
C (

no
rm

.)

0 1 2 3
xtip ( m)

0

1

I P
C (

no
rm

.)

b Experiment
Fit

Figure B.4: Extraction of cooling length in mTBG. a Extended photocurrent map of
Fig. 4.7a (E = 117 meV, n ∼ 4 ·1012 cm−2). The yellow dotted line marks partially marks
the interface between SLG on the left side and mTBG on the right side, while the black
dotted line marks a crack/stacking fault in our device. Scale bar is 500 nm. b Line trace
of the photocurrent taken along the black line in panel a. The peak in photocurrent marks
the position of the SLG-mTBG interface. A fit of the photocurrent profile yields a cooling
length of 240 nm, and a background offset whose magnitude is a fraction ∼ 0.1 of the
photocurrent generated from the SLG-mTBG interface.
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hotspots can be seen to decay around 1 µm into the sample, suggesting another possible
origin to the photoresponse observed in the moiré domains. To evaluate this, we extracted
Lcool from the SLG-mTBG interface. Figure B.4b plots a line trace taken across the SLG-
mTBG interface that extends a few microns into the mTBG region. Since the photocurrent
profile is locally invariant under translations along the SLG-mTBG interface, we use the
1D version of our model of the PTE (Eq. (2.5)). This simplifies the analysis, as the
photocurrent on either side of the interface is simply proportional to increase in electron
temperature δT (ignoring the domain walls further away) caused by local heating. That
said, we should consider that heat spreads radially away from the excitation position,
according to the following profile93

δT (x) ∝ K0(
√
((x − xtip)2 + L2tip)/Lcool), (B.14)

where K0 is the modified Bessel function of the second kind, Ltip corrects for the finite
radius of the AFM tip, and Lcool is the cooling length.

Importantly, we find Eq. (B.14) alone does not describe our experimental data (Fig.B.4b).
Instead, a constant offset is needed in our fit of Eq. (B.14) (arrow in Fig.B.4b) to describe
the decay of photocurrent from the SLG-mTBG interface. From the decay of the pho-
tocurrent we extract Lcool = 240 nm. This behaviour, in addition to the constant off-set
needed to describe out experimental data, shows that photocurrent generation from the
SLG-mTBG is not responsible for the anomalous photocurrent observed at high doping in
our devices (Fig. 4.7a).
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B.6. Photocurrent effects beyond the
photothermoelectric effect

All the experimental evidence discussed in Chapter 4 points towards an explanation of the
observed photoresponse data based on the PTE. Indeed, the FEM simulations that include
only this effect are in good agreement with experimental data and small discrepancies
can be explained by a more complicated Seebeck coefficient profile as suggested by the
simplified model in Supplementary Note 7 in Ref. 125. However, even if the general picture
is well described by PTE, we cannot completely exclude that other effects contribute small
additional corrections.

Here, we comment briefly on two other possible mechanisms of photoresponse gener-
ation, namely the photogalvanic effect and the photovoltaic effect. The photogalvanic
effect generates a photocurrent thanks to the intrinsic second-order response of the ma-
terial to the incident electric field that gives rise to a DC current density j)PG(r, rtip) ∝
|E(r, rtip,ωph)|2. Such a response is symmetry-forbidden for homogeneous materials (for
unpolarized light) but can play a role in the presence of strong electronic density gradients
or strain.

This modifies our Equation (B.1) into

J(r) = −σ(r)∇V (r)− σ(r)S(r)∇δT (r) + j)PG(r, rtip), (B.15)

adding another source term.
We can write a relation similar to Eq. B.3 for the PGE that reads

V
(m)
PGM =

∫
drR(m)

PGM(r) · j)PG(r, rtip). (B.16)

Again, R(m)
PGM(r) can be calculated by solving the thermoelectric transport equations us-

ing FEM and taking advantage of the Shockley-Ramo theorem147–149. In fact, R(m)
PGM(r)

is proportional to the gradient of the potential that would be present in the system in
absence of sources and biasing the m-th contact with a constant current. Qualitatively,
R(m)

PGM(r) is a smooth vector field flowing mainly in the direction connecting the contacts
at which photocurrent is measured. Importantly, the cooling length weakly affects it. As
a consequence, we expect PG features (if any) to be sharper with respect to PTE features
that are smoothed on the length scale Lcool.

We note also that the photovoltaic effect can also play a role in the photoresponse of
systems with more than one energy band. Including this effect in our model would require
studying a system of three coupled equations including the imbalance density (electron
density + holes density) and current. While this is outside the scope of this thesis, we
tend to exclude this explanation since photovoltaic contributions should display a threshold
behaviour as a function of the photon energy that is not observed in our experimental data.
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B.7. Heating from hyperbolic phonon polaritons near
domain walls

When the excitation energy lies within the one of the Reststrahlen bands of hBN the
optical response is dominated by the hyperbolic phonon polaritons (HPP) of the hBN.
The wavevectors of the possible eigenmodes in an hBN slab are given by qn(ω) = q0(ω)+

n∆q(ω), with q0 representing the wavevector of the zeroth-order mode typically observed
in s-SNOM experiments113,153, followed by equidistant modes separated by ∆q, n being
an integer. The presence of bilayer graphene minimally affects this spectrum, the main
consequence being an additional damping of the modes due to graphene absorption, as we
checked numerically using transfer-matrix method87.

The AFM tip launches in general a linear combination of these modes (like a ray).
Ignoring losses and considering for the sake of simplicity a 1D problem (qy = 0), this
combination can be written as a Bloch wave Ex(x , z) = e iq0(x−xtip)u(x−xtip, z), where u is
a periodic function of x with periodicity λray ≡ 2π/∆q. The periodicity follows from the
constant spacing in momentum space of the modes. Taking into account the y -dimension
and losses will introduce a geometrical 1/√r attenuation and an exponential damping but
will not alter the general picture.

An important question is whether it is more correct to compare the distance d (as
determined in Fig. 4.7c) with 2π/q0 (representing the fundamental eigenmode) or with
2π/∆q (representing the ray-like mode). When measuring an interference pattern from
reflected HPPs79,113,153, it is correct to use 2π/q0 since the phase e iq0(x−xtip) is the most
important factor in determining the interference. However, our photocurrent generation
mechanism is based on the amount of heat that is locally injected into the bilayer graphene.
As heating is an incoherent mechanism, it is only sensitive to the intensity pattern encoded
in u(x − xtip) while being insensitive to the phase.

In particular, the periodicity of u(x − xtip) creates copies of the field hotspot generated
by the tip at distances multiples of λray. When one of these copies (the first one) comes
close to the domain wall (on the opposite side with respect to the tip), it generates a
photocurrent that partially counteracts the one created by the original tip hotspot, leading
to a reduction of the signal. Therefore, we fitted d (Fig. 4.7d) with d(ω) = aλray(ω).

The length λray has an intuitive geometrical interpretation in terms of rays travelling at
a fixed angle θBN with respect to the anisotropic z-axis of the hBN152. This allows us to
express the in-plane phonon-ray wavelength as λray = 2t · tan(θBN) where t is the total
thickness of the hBN layers, and θBM = tan−1

[
Re
(

i
√
ϵx ,y√
ϵz

)]
determined by the dielectric

function ϵ of hBN (in all the calculations we used the model of the hBN dielectric function
from Ref. 152).

Interference between the HPPs launched by the tip and waves reflected from the domain
wall could in principle modify the heating pattern by producing a reflected Bloch wave
R · e−iq0x ũ(x , z), with ũ(x , z) in general not equal to u(x , z). Such reflected wave could
add a component of the injected power with spatial frequency 2q0. We expect, however,
this effect to be a minor correction with respect to the intensity modulation encoded in
u(x − xtip) inside the Reststrahlen band. As we checked numerically87, the spectrum of
HPPs is almost unaffected even when we remove completely the graphene sheet. This
means that even a large modification of the optical response of graphene is not likely to
strongly reflect waves. Note that this does not conflict with the observation of reflection of
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HPPs at domain walls reported in scattering near field experiments79. Since the contrast
in scattering experiments is only due to interference with the reflected waves even a small
reflected wave (|R| ≪ 1) can produce measurable effects.

The situation is different outside the Reststrahlen band when the periodic structure due
to u(x−xtip) is not present anymore and interference between launched and reflected waves
can lead to the formation of interferences fringes. Previous s-SNOM studies have shown
bright features due to reflected polaritons by domain walls41,135. Therefore, we believe
that the fringes observed in our data outside the Reststrahlen band of hBN (Fig. 4.2,
Fig. 4.4a and Fig. 4.7a) are the result of plasmon polaritons reflection.
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C.1. Carrier density in bilayer graphene as function of
top and bottom gate voltages

Here we derive a minimal model, based on electrostatics and equilibrium of electrochemical
potential, to calculate the density of carriers in bilayer graphene (BLG) as a function of
top and bottom gate voltages. The main source of deviation from a purely electrostatic
behaviour is the quantum capacitance of the semiconducting WSe2. As this becomes very
small when the chemical potential is pushed inside the gap due to the vanishing density
of states, it dominates over all the other capacities (summed in series).

In this simplified model we consider both BLG and few-layer WSe2 as perfect two-
dimensional materials neglecting the electrostatic potential drop between the different
layers. To be consistent with this assumption we also neglect the modification of the
band structure of BLG due to the presence of an out-of-plane field and the corresponding
opening of a gap.

Electrostatics
We start by solving the Poisson equation in our structure. Neglecting edge effects this
reads

− ∂z [ϵ0ϵ⊥(z)∂zϕ(z)] = ρ(z), (C.1)

where ϕ(z) is the electrostatic potential as a function of the out-of-plane coordinate z ,
ρ(z) is the density of charges not bound in dielectrics, ϵ0 ≈ 8.85 ·10−12 F/m is the vacuum
permittivity, and ϵ⊥(z) is the relative dielectric permittivity of the structure. This is given
by

ϵ⊥(z) =

{
ϵSiO2 ≈ 4.1 −t1 − t2 < z < −t2

ϵhBN⊥ ≈ 3.5 −t2 < z < t3,
(C.2)

with the permittivities taken from Refs. 232 and 152, and the thicknesses indicated by
Fig. C.1. Since no free charge is hosted in the dielectrics, we can write the charge density
as

ρ(z) = ρWSe2δ(z − t3) + ρBLGδ(z) + ρSiδ(z + t1 + t2). (C.3)

Note that in writing Eq. (C.3) we neglected the charge density that can build up at the
hBN-SiO2 interface due to photodoping170. This contribution is difficult to quantify and
only results in a rigid shift of the charge neutrality point of BLG.

Because the device is overall charge-neutral, the three surface charge densities sum to
zero

ρWSe2 + ρBLG + ρSi = 0. (C.4)
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Figure C.1: Schematic of the cross-section of our device. The origin of the z-coordinate
is taken at the position of BLG layer. The thicknesses of the layers are t1 = 285 nm,
t2 = 25 nm, and t3 = 4 nm (not drawn to scale).

Under the condition of vanishing electric field for z > t3 and z < −t1 − t2, Eq. (C.1) can
be solved yielding a continuous, piecewise linear function

ϕ(z) =


ϕWSe2

z
t3
+ ϕBLG

z−t3
−t3

0 < z < t3

ϕBLG
z+t2
t2

+ ϕI
z

−t2
−t2 < z < 0

ϕI
z+t2+t1

t1
+ ϕSi

z+t2
−t1

−t1 − t2 < z < −t2,

(C.5)

where the values of the electrostatic potential at the interfaces are given by

ϕWSe2 =
ρWSe2

CT
(C.6)

ϕBLG = 0 (C.7)

ϕI =
ρSit2

ϵ0ϵhBN⊥
(C.8)

ϕSi =
ρSi
CB

. (C.9)

Here, we specified the overall additive constant by requiring the electrostatic potential
to vanish at the position of the BLG layer, while the two capacities are given by CT =

ϵ0ϵhBN⊥/t3 ≈ 7.7 mF/m2 and CB = [(ϵ0ϵhBN⊥/t2)
−1 + (ϵ0ϵSiO2/t1)

−1]−1 ≈ 0.12 mF/m2.

Quantum capacitances
The equilibrium conditions between the different layers are expressed in terms of the elec-
trochemical potential φ. For each layer, this is defined as

− eφα = −eϕα + µα, (C.10)

where e is the unit charge, α = WSe2, BLG,Si and µα is the chemical potential measured
from the vacuum level. To solve this set of equations, we need a relation between the
charge density and the chemical potential in each layer.

In silicon, owing to the large density of states, we can neglect the shift in chemical
potential due to the induced charge density. Therefore, the chemical potential stays at a
fixed value given by the negative of the work function of silicon WSi, in other words,

µSi ≈ −WSi. (C.11)
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In BLG the charge density can be expressed as

ρBLG = −e(nBLG − n̄BLG), (C.12)

where nBLG is the density of mobile carriers (electrons−holes) that determines the measured
plasmon dispersion and en̄BLG is the residual charge density that is left in BLG when the
Fermi level is at the Dirac point due to impurity doping. In the following, bars will
denote quantities related to the isolated materials. Approximating the first valence and
conduction bands of BLG in the vicinity of the Dirac point by parabolic bands yields an
energy-independent density of states156 given by g = 2m∗/(πℏ2) with m∗ ≈ 0.046 me, me

being the bare electron mass, and taking a fourfold spin/valley degeneracy into account.
This allows us to calculate nBLG as function of µBLG at temperature T as

nBLG(µBLG) = g [I (µBLG − ED, kBT )− I (−µBLG + ED, kBT )] = g(µBLG − ED), (C.13)

where ED ≈ −4.5 eV is the energy of the Dirac point of BLG measured from the vacuum
level, kB is the Boltzmann constant, and

I (µ, kBT ) =

∫ ∞

0

dE

1 + e(E−µ)/(kBT )
= kBT ln

(
1 + e

µ
kBT

)
≈

T→0
θ(µ)µ. (C.14)

Imposing that BLG is electrically neutral when the chemical potential equals the negative
of the work function of isolated BLG, W̄BLG, we obtain

− eg(−W̄BLG − ED) + en̄BLG = 0, (C.15)

that we can use to eliminate ED in Eq. (C.13). Solving for the chemical potential gives

µBLG = −W̄BLG +
e2

CQ
(nBLG − n̄BLG), (C.16)

where CQ = e2g ≈ 62 mF/m2 is the quantum capacitance of BLG.
Similarly, in WSe2 we can write the charge density as

ρWSe2 = −e(nWSe2 − en̄WSe2), (C.17)

where nWSe2 is the number of mobile carriers in the bands and en̄WSe2 is a residual charge
density due to doping. Again, by approximating the relevant bands with an effective mass
we get constant densities of states in the conduction and valence bands gc/v, and the
carrier density as function of µWSe2 can be calculated according to

nWSe2(µWSe2) = gcI (µWSe2 − Ec, kBT )− gvI (Ev − µWSe2, kBT ), (C.18)

where Ec/v are the edges of the conduction/valence band edges measured from the vacuum
level. Imposing charge neutrality when the chemical potential equals minus the work
function of isolated WSe2 gives

n̄WSe2 = gcI (−W̄WSe2 − Ec, kBT )− gvI (Ev + W̄WSe2, kBT ). (C.19)

In the following we will express the chemical potential of WSe2 in terms of a deviation
∆µ̄WSe2 from its value in pristine WSe2, in other words

µWSe2 = −W̄WSe2 +∆µ̄WSe2. (C.20)
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Equilibrium of electrochemical potential
The voltage source connected at the bottom gate fixes the electrochemical potential dif-
ference between BLG and silicon to be

φSi − φBLG = VB, (C.21)

and by substituting Eqs. (C.9,C.7,C.11,C.16) we can extract the silicon surface charge
density

ρSi = CB

(
VB − V̄B − e

nBLG − n̄BLG
CQ

)
, (C.22)

where V̄B = (WSi − W̄BLG)/e.
In a similar way we can write for the top-gate voltage

φWSe2 − φBLG = VT, (C.23)

and, substituting Eqs. (C.6,C.7,C.16,C.20), solve for the WSe2 charge density

ρWSe2 = CT

(
VT − V̄T +

∆µ̄WSe2

e
− e

nBLG − n̄BLG
CQ

)
. (C.24)

Here, V̄T = (W̄WSe2 − W̄BLG)/e.
Substituting Eqs. (C.12,C.22,C.24) into the charge neutrality condition given by Eq. (C.4)

yields(
1 +

CT

CQ
+

CB

CQ

)
e(nBLG − n̄BLG) = CT(VT − V̄T)+CB(VB − V̄B)+

CT

e
∆µ̄WSe2, (C.25)

which, together with the equation obtained by eliminating ρWSe2 from Eqs. (C.17) and
(C.24),

− enWSe2[−W̄WSe2 +∆µ̄WSe2] + en̄WSe2 = CT

(
VT − V̄T +

∆µ̄WSe2

e
− e

nBLG − n̄BLG
CQ

)
,

(C.26)
constitutes a system of two non-linear equations in the two variables nBLG and ∆µ̄WSe2

that can be solved numerically.
However, before solving these equations we exploit the fact that CQ ≫ CT,CB and take

the limit CQ → ∞. This gives

e(nBLG − n̄BLG) = CT(VT − V̄T) + CB(VB − V̄B) +
CT

e
∆µ̄WSe2, (C.27)

−enWSe2(−W̄WSe2 +∆µ̄WSe2) + en̄WSe2 = CT

(
VT − V̄T +

∆µ̄WSe2

e

)
. (C.28)

Note that in this approximation the latter equation does not depend on VB.
To simplify the analysis of experimental results the zero bias situation (VB = VT = 0) is

useful as a reference in our equations instead of the flat vacuum level situation (VB = V̄B,
VT = V̄T). This can be done by defining ∆µ̄0

WSe2
as the solution of

− enWSe2(−W̄WSe2 +∆µ̄0
WSe2

) + en̄WSe2 = CT

(
−V̄T +

∆µ̄0
WSe2

e

)
. (C.29)
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Subtracting Eq. (C.29) from Eq. (C.28), and defining W 0
WSe2

= W̄WSe2 − ∆µ̄0
WSe2

, and
∆µWSe2 = ∆µ̄WSe2 −∆µ0

WSe2
, gives our final equation that defines the chemical potential

shift ∆µWSe2

nWSe2(∆µWSe2 −W 0
WSe2

)− nWSe2(−W 0
WSe2

) = −CT

e

(
VT +

∆µWSe2

e

)
. (C.30)

The result can then be fed into

nBLG =
CB(VB − VD)

e
+

CTVT

e
+

CT∆µWSe2(VT)

e2
, (C.31)

that is derived from Eq. (C.27) by defining −CBVD/e = n̄BLG − CBV̄B/e − CTV̄T/e +

CT∆µ0
WSe2

/e2. Here n0BLG = −CBVD/e is the residual carrier density in BLG when VB =

VT = 0, effectively accounting for the offset in the Dirac point VD due to for instance
photodoping.

Solution of Eqs. (C.30,C.31)
To solve Eq. (C.30) for ∆µWSe2 as a function of VT requires in general the use of a
numerical root finding method. However, it is instructive to look at the zero-temperature
limit where an analytical solution can be derived. Making use of Eq. (C.14) the left hand
side of Eq. (C.30) simplifies, at zero temperature, to

nWSe2(∆µWSe2−W 0
WSe2

)−nWSe2(−W 0
WSe2

) =


gv(∆µWSe2 + eVv) ∆µWSe2 < −eVv

0 −eVv ≤ ∆µWSe2 ≤ −eVc

gc(∆µWSe2 + eVc) ∆µWSe2 > −eVc,

(C.32)
where Vc = −(Ec +W 0

WSe2
)/e and Vv = −(Ev +W 0

WSe2
)/e. This expression is plotted in

Figure C.2a as dashed line together with the right-hand side of Eq. (C.30) calculated for
three different values of VT.

The solution of Eq. (C.30) in the zero-temperature limit can be obtained by the inter-
section of these two curves and gives a piecewise linear function

∆µWSe2(VT) =



−eVc−eVT
CT
e2gc

1+
CT
e2gc

≈ −eVc VT < Vc

−eVT Vc ≤ VT ≤ Vv

−eVv−eVT
CT
e2gv

1+
CT
e2gv

≈ −eVv VT > Vv,

(C.33)

where we made use of e2gv,v ≫ CT. Figure C.2a also displays the finite-temperature
curve showing that at finite temperature the solution is always closer to zero than the
zero-temperature one.

Based on this, we can compare in Fig. C.2b the full numerical result at finite temperature
with the analytical, zero-temperature approximation. We see that both solutions agree
qualitatively, showing a linear behaviour for values of the top-gate voltage inside the WSe2
gap and saturation at the conduction and valence band edges. However, finite temperature
effects substantially reduce the value of ∆µWSe2 near the band edges.
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C. Appendices to Chapter 5
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Figure C.2: Graphical solution of Eq. (C.30). a The dashed/solid blue curve represents
the left hand side of Eq. (C.30) evaluated at zero/room temperature, while the red lines
represent the the right hand side of Eq. (C.30) for three different values of VT. b The
solid line displays ∆µWSe2 as a function of VT calculated by solving numerically Eq. (C.30),
while the dashed line corresponds to the zero-temperature solution given by Eq. (C.33).
Both plots make use of the fit parameters as extracted in Fig. C.3.

Finally, from Eq. (C.31) we can calculate the shift in carrier density ∆n produced by
the application of VT. Again, in the zero temperature limit, this gives

∆nBLG = nBLG − CB(VB − VD)

e
=

CT

e
×


VT − Vc VT < Vc

0 Vv ≤ VT ≤ Vv

VT − VV VT > Vv.

(C.34)

We compare the analytical solution with the full numerical solution and experimental data
in Figure C.3, based on the parameters as determined by a fit of our data with the full
numerical solution. In this fit, Vv and Vc are free parameters, while we fix gv = gc =

5.2 eV−1nm−2 and CT = 7.7 mF/m2. This density of states of WSe2 is estimated based
on the effective mass ≈ 1.2me measured in trilayer WSe2 175 and is similar to the calculated
value for monolayer WSe2

233. The fit result is only affected to a large extent when gc/v
changes by an order of magnitude or more and, therefore, a small deviation from its actual
value is irrelevant to our analysis. We finally note that leaving the top gate capacitance
as free parameter leads to a slight underestimation of the band gap in WSe2.
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Figure C.3: Carrier density induced by the application of a top-gate voltage. The
experimental data is fit to our model according to Eq. (C.30), as shown by the solid line.
Making use of the same fit parameters, the dashed curve shows the zero-temperature
solution as in Eq. (C.33).
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