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Adrià Pérez Culubret

TESI DOCTORAL UPF / year 2021

THESIS SUPERVISOR
Dr. Gianni De Fabritiis
Department of Experimental and Health Sciences



“output” — 2021/11/18 — 12:47 — page ii — #2



“output” — 2021/11/18 — 12:47 — page iii — #3

“Time — yet not the time told by the station clock,
moving with a jerk five minutes at once, but rather,
the time of a tiny timepiece, the hand of which one
cannot see move, or the time the grass keeps when
it grows, so unobservably one would say it does not
grow at all, until some morning the fact is
undeniable — time, a line composed of a succession
of dimensionless points, time, we say, had gone on,
in its furtive, unobservable, competent way,
bringing about changes.”

— Thomas Mann, The Magic Mountain

iii



“output” — 2021/11/18 — 12:47 — page iv — #4



“output” — 2021/11/18 — 12:47 — page v — #5

Acknowledgements

First and foremost, I would like to thank my mother, Montserrat. God
knows where I would be right now if it wasn’t for her strength and re-
silience. I owe her everything.

I would like to thank Gianni, my supervisor, for trusting in me and
my capacities, and granting me the confidence I needed during my PhD.
Obviously, I would also like to thank my labmates Pablo, José, Miha, Ste-
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Abstract
Characterizing protein dynamics is critical to understand the connec-

tion between sequence and function. Molecular dynamics simulations
are one of the predominant techniques to study protein dynamics due to
their capacity to capture dynamical processes of proteins across differ-
ent timescales with atomic resolution. However, molecular dynamics has
limitations that so far limited the ability to become a surrogate model of
real protein dynamics, mainly sampling limitations due to the high com-
putational cost and force field accuracy.

In this thesis we tackle these issues with the latest advances in ma-
chine learning. In the first part of this thesis, we will develop a novel
adaptive sampling algorithm inspired by reinforcement learning methods,
and we will later apply it to reconstruct the full binding event between
an intrinsically disordered protein and its binding partner. In the second
part of this thesis, we develop TorchMD, a deep learning framework for
molecular simulations and apply it to learn a coarse-grained potential for
protein folding simulations.
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Resum
Caracteritzar la dinàmica de les proteı̈nes és essencial per tal d’entendre

la connexió entre seqüència i funció. La simulació de dinàmiques mole-
culars és una de les tècniques principals per a estudiar la dinàmica de
proteı̈nes per la seva capacitat de capturar processos dinàmics computa-
cionals en diferents escales temporals amb resolució atòmica. Tanmateix,
hi ha limitacions que impedeixen que la simulació de dinàmiques molecu-
lars es converteixi en un model substitutiu de les dinàmiques reals de pro-
teı̈nes, principalment per limitacions de mostreig, causades per l’alt cost
computacional de les simulacions, i la inexactitud dels camps de força
utilitzats.

En aquesta tesi doctoral tractem aquestes limitacions mitjançant els
últims avenços en aprenentatge automàtic. En la primera part de la te-
si, desenvoluparem un nou algoritme de mostreig adaptatiu inspirat en
mètodes d’aprenentatge reforçat, que aplicarem per a reconstruir la unió
entre una proteı̈na desordenada i la seva parella d’unió. En la segona
part de la tesi, desenvoluparem TorchMD, una llibreria d’aprenentatge
profund per a simulacions de dinàmica molecular, que aplicarem per a
aprendre un potencial ”coarse-grained” per a simulacions de plegament
de proteı̈nes.
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Preface
The question of life, its existence, functioning, or even its meaning.

Those are the reasons that, diffusely, brought me to science, to study bio-
chemistry, bioinformatics, and to finally end up here, writing my thesis.

When I started learning about molecular biology and the complex
functioning of cells, I was marveled by all the intrinsic machinery hap-
pening there, but also quite astonished at its vast complexity. Metabolism,
signaling, replication, all happening in imperceptible scales. What most
perplexed me was how this set of interconnected processes and functions,
which appeared to me as a massive and chaotic, but yet incredibly coor-
dinated system, was entirely defined by the most basic and essential rules
of chemistry and physics.

A couple of years ago I discovered an article, titled ”Life’s Irreducible
Structure”, that brought me a bit sense to my perplexity. In there, the
Hungarian-British polymath Michael Polanyi argues that life cannot be
described solely by the most basic physicochemical laws, and proposes
instead a dual-control system, where boundary conditions impose restric-
tions onto the physicochemical laws to, paraphrasing Polanyi, ”harness”
them. These boundary conditions cannot be defined in terms of the physic-
ochemical laws they harness, in the same way that one cannot define the
content of this text solely by the vocabulary or the individual letters used
in it. In other words, these boundary conditions are irreducible to the
lower laws and principles that they are harnessing, and constitute them-
selves a higher level, structuring and organizing whatever is left indeter-
minate by the lower level. Life itself is irreducible, can’t be explained
with just atoms interacting with each other. No physical or chemical rule
differentiates our genetic code from a random sequence of nucleotides.
Understanding life goes through deciphering how biology imposes these
boundary conditions and maintains itself.

The thesis you are about to read makes a small step towards this direc-
tion, and focuses on the study of protein function by means of molecular
dynamics simulations. Paradoxically, to do so, we are going to play with
atoms interacting with each other. From the bottom-up, we will try to in-
tegrate, with the help of machine learning algorithms, all the small steps
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we take, atom by atom, femtosecond by femtosecond, in order to under-
stand the high level principles of molecular biology.
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Chapter 1

INTRODUCTION

1.1 Understanding protein function

Proteins are considered the machinery of life, as they are responsi-
ble of almost all of the processes happening in cells [1]. Let’s take a
synapse between two nerve cells as an example (Figure 1.1). The machin-
ery behind a synapse happens through the combined effort of a network of
proteins interacting with each other, with a diverse set of functions, rang-
ing from structural and transport functions to chemical reaction catalysis
and signal transduction. Deficiencies in protein function, related to their
misfolding, denaturation and aggregation, are the cause behind various
diseases [2, 3]

Proteins are polymeric chains formed by the concatenation of any of
the 20 essential amino acids. For any given protein and its unique se-
quence of amino acids, the poly-peptide chain folds into a specific struc-
ture, named the native structure. A critical aspect of proteins is their func-
tional specificity, that is, how they are specialized into particular func-
tions. Enzymes, antibodies, transporters and receptors are all tailored to
interact only with molecules within a narrow set of chemical characteris-
tics. Specificity also means that a single mutation or a slight change in
a ligand’s atomic composition can be translated into an abrupt change in
affinity or bioactivity. Diversity and specificity of function are essential

1
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Figure 1.1: Illustration of a synapse between neurons Illus-
tration depicting an excitatory synapse (left) and an inhibitory
synapse (right) at a cellular scale. Several different types of
proteins are shown, such as membrane receptors, transporters,
enzyme complexes or protein filaments. The overall picture
serves as a graphical example on how a synapse is the result
of the combined effect of various cell functions, happening
through a dense network of protein machinery. Illustration by
David S. Goodsell, the Scripps Research Institute.

characteristics for protein biological function, and all of this unfolds from
the unique amino acid arrangement in the poly-peptide chain, which is
ultimately encoded in DNA sequences. Understanding how sequence de-
termines protein function, still remains a fundamental problem of biology.

1.1.1 Functional role of protein dynamics
Ever since the first crystal structure was resolved in 1958 [4], there

has been an exponential increase in our structural knowledge of proteins.

2
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The three-dimensional structure of proteins have been extensively used
to explain the molecular mechanisms of numerous protein functions [5].
However, all these static snapshots of proteins can give the false impres-
sion of proteins as rigid macromolecules, stabilized at their native fold
during their lifetime. On the contrary, as our structural insight continues
to grow, it is becoming increasingly clear that proteins behave as dynamic
systems, existing as an equilibrium of conformational states, and that this
dynamic behaviour is critical for their biological function [6, 7, 8, 9, 10].

One exemplar case of proteins functioning as dynamic systems can
be found with intrinsically disordered proteins (IDPs). These particu-
lar type of proteins are able to perform their function without having a
stable folded state, proving that a stable folded structure is not needed
for function [11, 12] and providing further proof of the functional im-
portance of protein dynamics. IDPs account for 30% of the human pro-
teome [13, 14], and have roles mostly in cellular signaling and regulation
[11, 15, 16]. Because they do not have a clear global minimum, their
structure fluctuates between several conformational states. Many IDPs
stabilize into a stable folded structure once they bind to their binding part-
ners [17, 18, 19, 20, 21, 22, 23].

Defining proteins as dynamics systems means that to completely char-
acterize a protein’s structure, we must be able to describe its entire con-
formational energy landscape, quantifying the relative probabilities of all
conformations that coexist in equilibrium (thermodynamics) and the en-
ergy barriers separating them (kinetics). To put it simply, we must add a
fourth dimension, time, into our structural analysis, and describe how the
three-dimensional atomic coordinates change through time [7].

Dynamic processes can be classified depending on their length scale
(from local fluctuations to global motions) or on their time scale (from
fast to slow timescales) (Figure 1.2) [6, 7] . Generally, local motions oc-
cur in faster timescales, while global large-scale motions are encountered
in slower timescales. Fast timescales go from bond vibrations at the fem-
tosecond timescale and side-chain rotations at the picosecond timescale to
local collective motions of atoms at a nanosecond timescale (such as loop
motions or backbone fluctuations). On the other hand, slow timescales

3
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Bond vibrations 

Side-chain rotations 

Local motions 

Conformational changes 

Large domain motions 

Membrane transport 

Protein folding 

Signal transduction 

Cellular transport 

Figure 1.2: Time and size scale of different biomolecular
events. Different structures and structural models are shown,
along with their related timescales and biomolecular events,
showing the multiscale nature of proteins and their cellular
functions. Adapted from [24].

define events happening at the microsecond timescale or slower, and they
go from small conformational changes and allosteric transitions at the
nanosecond to microsecond timescales to larger domain motions, up to
the complete folding of the polypeptidic chain, at the range of millisec-
onds to seconds. These slower timescales are also directly related to the
relevant biological functions proteins perform, such as enzyme catalysis,
membrane transport or signal transduction through protein-protein inter-
actions and, consequently, they are the subject of interest of biological
investigation.

4
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Dynamic processes on protein systems occur through a hierarchy of
events across different time and length scales. Such hierarchy is linked
to the hierarchical structure of proteins [6, 8, 7], as the slower timescales
arise from the collective effect of many smaller local fluctuations. In their
review, Henzler-Wildman and Kern [7] indicate that the improbability of
slower processes results from the collective nature of their local origin,
and suggest that the hierarchical dynamics of proteins is defined by the
structural restrictions encoded in the amino acid sequence. They even go
further, and define the dynamic landscape of a protein as its ”personality”,
and propose that the conformational substates sampled by a protein are the
result of evolutionary selection on states needed for protein function.

1.1.2 Methods for investigating protein dynamics

Ideally, for a complete description of the dynamic landscape of a pro-
tein, one would like to determine both its conformational states and the
rates of interconversion between them. Due to the structural heterogene-
ity of proteins and the time and length scales in which their dynamics
occur, there is not a single technique that is able to obtain full coverage
of the whole spatio-temporal scale, and thus a diverse set of experimental
and computational methodologies is required depending on the dynamic
events at study.

From the experimental side, the most popular method by far is X-ray
crystallography. It was the first methodology that allowed to obtain mod-
els of protein structure at an atomic resolution [4]. Since then, more than
158.000 structures have been deposited in the Protein Data Bank (PDB)
[25] (which account for nearly 88% of the structures). X-ray crystallogra-
phy is the main factor behind the exponential growth of structural biology
in the past 70 years. Although the majority of structures obtained are sin-
gle snapshots of the averaged low energy conformations, nowadays there
are time-resolved X-ray crystallography methods that enable the study of
protein dynamics (X-ray free electron lasers, or XFEL) [26, 27]. Despite
its huge popularity, X-ray crystallography still carries the major inconve-
nience of requiring a homogeneous crystal of the protein, which it is not

5
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always possible to obtain. That is specially true for membrane proteins
[28] , highly relevant for drug discovery.

Secondly, representing the 7.45% of structures in PDB, we have nu-
clear magnetic resonance (NMR). The advantages of NMR are the possi-
bility to obtain dynamic timescales and to perform measurements directly
in solution, without needing to crystallize the protein. However, the size
of systems that can be studied through NMR is limited, as the spectral
processing gets complicated for large macromolecules. NMR has been
very useful for the study of IDPs [29, 30] due to their inherent flexibility
and the impossibility to observe them through X-ray crystallography.

Lastly, we got 3D cryo-electron microscopy (cryoEM). Although it
only accounts for 4.5% of the structures in PDB, it has been rising in pop-
ularity over the last five years due to technical improvements that have
been increasing the achievable resolution [31, 32]. In 2017, the Nobel
prize recognized the developments on cryoEM for biomolecule structure
resolution, and since then, the number of uploaded cryoEM structures sur-
passes the NMR ones. As with NMR, crystallization is not required, and
only needs small amounts of sample. Additionally, cryoEM enables the
possibility to perform single-particle studies [33, 34], that avoid having to
average out over all structures present in samples. The main drawback of
cryoEM has always been its low resolution compared to other methods,
up until now. By the end of 2020, atomic resolution structures (<1.25A)
were obtained using single-particle cryoEM [35, 36], which will probably
result in yet even more novel cryoEM structures.

There are other complementary methods, such as FRET [37] or SAXS
[38, 39], that can help in obtaining dynamic information from more chal-
lenging systems, but usually at the expense of lower resolution. An exten-
sive review of additional methods to study protein dynamics in solution
can be found here [40].

On the computational side, the main method to study protein dynam-
ics is molecular dynamics (MD) simulations. This thesis is centered
around MD simulations, and they will be discussed more deeply in the
next section. Compared to experimental methods, the main advantage of
MD simulations is their unique ability to obtain a complete description

6
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of dynamics with atomic resolution and to explain slow events at the mil-
lisecond to microsecond timescale with a femtosecond level of time reso-
lution. But we should not see MD simulations as a complete substitute for
experiments. Rather than an alternative method, MD simulations are used
as a complement to experiments, mainly because MD simulations depend
on experimental results to be performed (although this is likely to change
with the arrival of AlphaFold [41]), but also because MD simulations can
give a deeper understanding of experimental results, guiding and inspir-
ing new experiments to perform, in a combined effort for understanding
protein dynamics.

7



“output” — 2021/11/18 — 12:47 — page 8 — #22

1.2 Simulating biological timescales: balanc-
ing accuracy and efficiency

” The underlying physical laws necessary for the mathemati-
cal theory of a large part of physics and the whole of chem-
istry are thus completely known, and the difficulty is only
that the exact application of these laws leads to equations
much too complicated to be soluble. It therefore becomes
desirable that approximate practical methods of applying
quantum mechanics should be developed, which can lead
to an explanation of the main features of complex atomic
systems without too much computation.

— Paul Dirac [42] (1929)

The complete description of the dynamic landscape of a protein re-
quires to determine 1) its conformational states, 2) the relative proba-
bilities of states and 3) the rates of interconversion between them. The
main computational method to do so is molecular simulations, which is
a numerical approach to obtain a microscopic description of the atomic
motions in a system, allowing us to compute the macroscopic properties
of it. There are many ways to perform molecular simulations, and they
mainly differ in their accuracy to describe the potential energy of the sys-
tem, the forces acting between atoms (molecular modeling) and the meth-
ods used to sample the conformational landscape. The predictive power
of simulations is only as good as the description of the potential energy.
Nevertheless, an accurate potential energy description is of no use if we
cannot obtain enough samples from it due to computational limitations.
Choosing the correct molecular model or sampling method mainly de-
pends on the system to simulate, and the balance between the required
accuracy and the computational cost of simulation.

8
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1.2.1 Molecular modeling

The main purpose of molecular models is to produce a fully predic-
tive model of the physical properties of a molecular system. However,
no such perfect model exists, and approximations are needed, especially
when used for simulations of biomolecules at the microsecond timescale.

Ideally, to predict any physical property of a molecular system, the
time-dependent Schrödinger equation can be solved to obtain the wave
function of the system and observe how it evolves dynamically through
time [43]. In practice, exact solutions for it are impossible to obtain, and
several approximations are required to model molecular systems. De-
pending on the level of detail required to describe a particular system,
we will have to choose between different levels of approximation. How-
ever, each level of approximation involves a compromise with its accu-
racy. Consequently, there are several different molecular models avail-
able, with varying accuracy, system size capacity and computational cost.
Here, I will broadly divide the possible molecular models into three main
categories: quantum mechanics (QM) models, classical mechanics mod-
els and coarse-grained models.

QM models are the most accurate, since they are able to provide in-
formation of the electronic structure of molecules. QM calculations are
widely applied on small molecules (around tens of atoms) to compute
their electronic energy, with accuracy often close to experimental meth-
ods. Density functional theory (DFT) methods [44, 45, 46] are one of the
most relevant and common approaches for QM calculations, providing
energy estimates with sufficient accuracy at an affordable computational
cost, handling systems of around hundreds of atoms. The application of
QM methods for atomic models of protein dynamics is very limited, as
the system sizes are prohibitive.

QM calculations are always computationally demanding, and their ap-
plicability is only limited to small systems. In order to extend our reach to
larger molecules, we have to resort to molecular mechanics models, were
atomic systems are modeled using classical mechanics, treating atoms as
classical particles and electronic degrees of freedom as bonds. Assum-

9
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Figure 1.3: Force terms in classical force-fields. Figure
shows the basic equations for bonded and non-bonded terms
used to compute the potential energy of a system. Figure from
[49].

ing the Born-Oppenheimer approximation, the potential energy of atomic
systems is calculated as a function of atomic coordinates using classi-
cal force fields. These simple classical force-fields are parameterized us-
ing QM calculations and experimental data [47], and their accuracy has
drastically improved over the years [48]. Classical force-fields provide a
significant improvement in computational efficiency, but come at the ex-
pense of neglecting quantum phenomena, as electronic structure is com-
pletely ignored. Events such as bond formation or cleavage, chemical
reaction mechanisms or charge and spin distribution cannot be computed
with these types of force-fields.

Classical force-fields are the best option when dealing with biologi-
cal systems, as it enables the possibility to simulate single proteins at a
microsecond to millisecond timescale, with atomic resolution. The exact
functional form of these force-fields varies over different implementa-
tions, but the basic formulation behind them is the same. Essentially, the
potential energy is calculated as the sum of individual terms describing
different atomic interactions. These terms are separated between bonded
and non-bonded terms. Bonded terms include bonds, angles and dihe-
drals, where the first two are modeled through harmonic potentials. Non-
bonded terms include electrostatic and Van der Waals forces, modeled
through Coulomb and Lennard-Jones potentials.

10
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However, even with molecular mechanics approximations, obtaining
a detailed dynamic description of large biomolecular systems and related
processes of biological relevance remains intractable. For these cases,
the complexity of the molecular model can be reduced even further to
the so-called coarse-grained models, forgiving the atomistic resolution,
and grouping together several atoms in a single particle or ”bead” [50].
In general, we can divide coarse-graining approaches between bottom-up
and top-down approaches. Bottom-up approaches construct the coarse-
grained model based on a ”fine-grained” higher-resolution model, such
as an atomistic model. Top-down approaches, instead, try to reproduce
macroscopic properties of the system, commonly measured by experi-
ments, where the coarse-graining model is itself a ”finer-grained” model
of such macroscopic observations. Some of the most successful coarse-
graining models are MARTINI [51, 52], Rosetta [53], AWSEM [54] and
CABS [55]. Some of the most successful applications of coarse-grained
models include protein structure prediction [56, 57], protein-protein protein-
lipid interactions in cellular membranes [58, 59] and DNA hybridization
[60].

Combined methods using different modeling approaches also exists,
with great success. Hybrid QM/MM simulations combine QM calcula-
tions for small regions in the system, such as catalytic sites, that require
information on the electronic configuration with molecular mechanics
onto the rest of the system. Hybrid QM/MM is key where electronic
effects are essential for the dynamics at study, such as enzyme catalysis
or pH dependant events. The main contributors of this method received
a Nobel Prize in 2013 [61]. There is a huge variety of multiscale models
available, depending on the size and time scales. An extensive review on
multiscale modeling methods, from a molecular to a cellular level, can be
found in[24]

11
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1.2.2 Molecular Dynamics simulations

Due to the size and timescales involved, Molecular dynamics (MD)
simulations is the main computational method to study protein dynam-
ics. The concept behind MD simulations is fairly simple. A molecular
system (in our case, a protein of interest) is represented with atoms as
point masses, with an initial randomized velocity, under the influence of
a classical force field. The system is then propagated through time , in
the order of a few femtoseconds, by integrating Newton’s equations of
motion in small discrete time steps, using numerical schemes such as Ve-
locity Verlet [62]. The propagator moves the system forward in time,
using the forces obtained by differentiating the potential defined by the
force field over the many-body interactions between atoms and obtaining
new velocities and positions for all particles. This results in a trajectory
of our molecular system, describing its evolution through time and the
ensemble of conformations sampled from it.

While MD is the best suited computational method for protein dy-
namics, it is far from perfect. As with any molecular simulation method,
it comes with its limitations in speed and accuracy. First of all, the as-
sumption of a molecular mechanics model comes with the aforemen-
tioned limitations of not being able to represent chemical reactions or
bond cleavage, making enzyme catalysis impossible to describe or totally
neglecting the effect of pH, with side-chain protonation states remaining
fixed throughout the simulation. Secondly, and despite the simplicity be-
hind the simulation algorithm, it is computationally expensive to sample
relevant biological timescales of proteins. Due to the numerical nature of
integration methods, and to maintain numerical stability in the simulation,
the integration time step has to be smaller than the fastest dynamic pro-
cess occurring in the system. Thus, the integration time step cannot grow
larger than a few femtoseconds, as bond vibrations happen in the order of
tens of femtoseconds. This limitation then causes that to reach relevant
timescales, a large number of integration steps have to be performed, in
the order of nanoseconds (106 fs) or microseconds (109 fs). Performing
a hundred million integration steps over 10.000 ∼ 100.000 atoms is no

12
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trivial task, even for modern computers, and thus the reason why compu-
tational cost is one of the main limiting factors of MD simulations.

Despite this, MD is the only way we can simulate protein dynam-
ics. Much of the work done in the MD field is going towards pushing
its boundaries, both in accuracy and sampling capabilities. The first MD
simulation of protein dynamics ever performed, back in 1977, consisted
only of a 9.2 ps long trajectory of the bovine pancreatic trypsin inhibitor
(BPTI) in vacuum [63]. Nowadays, thanks to the many improvements
accomplished in the field of MD simulations, microsecond long trajecto-
ries are within reach of desktop computers and simulations in the order of
milliseconds can be obtained using high performance computing (HPC)
resources. The incremental capacities of MD simulations are the result
of both software/hardware improvements and novel algorithms for im-
proved sampling and analysis, transforming MD simulations into a high-
throughput approach.

Hardware and software improvements

Even though MD simulations are very simple to execute, the com-
putational cost for reaching relevant timescales for protein dynamics is
large, due to the aforementioned issue with integration steps. During the
first three decades of MD simulations, conventional CPUs were the only
available processing units. In order to reach the necessary timescales,
MD codes were parallelized and optimized to run on multiprocessor su-
percomputers in HPC systems [64]. Some effort was even invested in
the development of specialized hardware, such as the development of the
special-purpose supercomputer Anton [65] (which recently has released
its new iteration, Anton-3 [66], able to perform 100 microseconds per day
in a 1 million atom system). However, HPC systems were not a consis-
tent solution. Many researchers interested in performing MD simulations
do not have the resources to perform such long simulations, nor access to
HPC resources, and could only perform nanosecond trajectories in their
commodity desktop computers.

Fortunately, this is not the case anymore. Back in 1995, the indus-
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try of computational 3D graphics was revolutionized by the release of
the first modern graphical processing unit, or GPU (although the term
was first coined by Nvidia in 1999). GPUs were a specialized type of
processors prepared to deal with extremely parallel computation, such
as computational 3D graphics. These type of specialized processors al-
ready existed in professional environments, but the release of GPUs were
a game-changer for personal computer graphics due to their low cost and
performance. The industry of computational 3D graphics kept growing,
and GPUs evolved to a more general device, especially with the release
of OpenCL and CUDA development environments, which allowed pro-
grammers to use GPU computing. This transported GPU computing to
many other fields and applications outside of computer graphics. One of
the fields that benefited from it was MD simulations, with the develop-
ment of GPU-based MD simulation codes, such as ACEMD [67], AM-
BER [68, 69], Desmond [70] or OpenMM [71], that made use of GPU’s
intrinsic parallelization to massively increase the speed of simulations.
Nowadays, a single GPU produces simulations at the rate of microsec-
onds per day on systems of around ∼ 20.000 atoms.

The arrival of GPU computing to MD simulations did not only im-
pact the domestic capabilities of performing MD simulations. GPU-based
HPC resources, GPU clusters or distributed computing projects such as
Folding@Home or GPUGRID started to appear, allowing researchers to
perform simulation experiments that reached aggregate times at the order
of milliseconds [72, 73]. Instead of performing one single long trajectory,
the most optimal way to use these computational resources in terms of
total aggregate time produced is by performing hundreds or thousands of
short parallel simulations. Although clearly powerful, parallel MD sim-
ulations entail additional issues in terms of data analysis and sampling.
Switching a single long trajectory for many short trajectories is an incon-
venient if we are interested in sampling slow timescales from our systyem.
Notwithstanding this, hardware and software improvements in MD sim-
ulation also came with the development of new analysis and sampling
methodologies, making the change from a single trajectory paradigm to
high-throughput MD simulations possible.
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Markov state model analysis

Performing high-throughput MD simulations is only valuable if we
can integrate all the information obtained across all the generated trajecto-
ries. Markov state model (MSM) analysis [74, 75] constitutes the corner-
stone of high-throughput MD, as it enables the possibility to combine sev-
eral independent short trajectories into a single kinetic model, building an
accurate and interpretable description of the system’s dynamics. MSMs
appeared as a necessity to describe complex kinetic events from MD sim-
ulations, where single trajectories and basic featurizations (RMSD, radius
of gyration, principal component decomposition, etc) failed to do so. The
basic concept behind MSMs is that they model the dynamics of the system
as a memory-less jump process, where future states are only conditioned
on the current state, hence Markovian.

In order to build an MSM, first we need to discretize the sampled con-
formational space of the system into discrete states, and secondly, use the
discretized states to count transitions between them and estimate a tran-
sition probability matrix. In other words, to assign each conformation
into a state and count all transitions between them. Discretization itself
is a multi-step process that tries to simplify the high-dimensional confor-
mational space into a few discrete states so that the transition probability
matrix estimation can be performed. Consequently, discretization is criti-
cal to correctly model the slow timescales of the system, as it can greatly
affect the outcomes of the MSM [74, 76, 77, 78]. The current state-of-the-
art process for discretization consists of a combination of dimensionality
reduction and clustering of our simulation data. Dimensionality reduction
is performed in two steps, were the three-dimensional coordinate space
are first projected into simpler features, such as distance between specific
atoms or dihedral angles, and later an unsupervised dimensionality reduc-
tion method is applied to reduce the dimensionality of the featurized data
into less than 10 dimensions. The most used projection method for MSM
construction is time-lagged independent component analysis (TICA) [79],
an extension of principal component analysis (PCA) that makes use of a
time-lagged covariance matrix to better estimate the slowest degrees of
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freedom.
Once the simulation data has been discretized, we can count transi-

tions from one state to another and build a count transition matrix, that we
can use to estimate the transition probability matrix of the MSM. Since
the model estimation is done over the count transition matrix, and transi-
tions are counted independently of the trajectory they come from, the dy-
namical information from several trajectories can be integrated together.
Furthermore, the eigenvectors of the transition matrix correspond to the
slow processes of the system, and therefore they can used to identify the
metastable states in it and the timescales at which slow processes occur.
Besides that, the transition matrix can also be used to compute other inter-
esting properties of the system, such as free energies, transition pathways
and kinetic properties such as on/off rates between two sets of states.

Adaptive Sampling

Performing high-throughput parallel simulations is not straightforward.
Because of the shorter lengths of each individual trajectory, it is common
that such trajectories are way shorter than the slow timescales of interest,
making the sampling of rare events much more difficult in some cases, no
matter how many replicas are running in parallel. This is particularly true
in cases where we are using MD simulations as a predictive tool, in cases
such as protein-ligand binding or protein conformational analysis, where
neither the end state or the dynamical path to it is known. To put it in other
words, parallel sampling can be a very inefficient way of characterizing
equilibrium, sometimes even worse than just a single long MD trajectory.

However, the possibility to perform several independent simulations
in parallel, thanks to Markov state modelling, brings us the opportunity to
choose different starting points for this simulations. In high-throughput
MD, this type of methodology is termed adaptive sampling, and it is
widely used to optimize sampling and computational resources. The fun-
damental idea behind adaptive sampling methods is to perform rounds
(or epochs) of parallel simulations and, in between each round, leverage
the generated simulation data to make an intelligent selection of the start-
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ing conformations for the next round of simulations. By making these
decisions, we bias the sampling of our system towards the areas we are
interested, avoiding redundant sampling and waste of computational re-
sources. However, despite this sampling bias, no actual force or physical
bias is introduced into the system and therefore simulations will still be-
have under the correct kinetics.

The most relevant part of an adaptive sampling algorithm is the de-
cision making step, as it will define the direction we want to take with
our simulations. Usually, this direction is towards an optimal equilibrium
characterization of the system at the minimal computational cost possible.
There have been several adaptive sampling methods developed which use
different decision-making criteria. The first adaptive sampling methods
were aimed at reducing the statistical error of the MSM, selecting start-
ing conformations by either the error in mean first passage time [80] or
eigenvalues and eigenvectors [81]. One of the most common applications
of adaptive sampling methods is to stimulate the exploration of the con-
formational space [82, 83], particularly important if we need to sample
slow and rare events. These type of adaptive sampling algorithms usually
rely on discretizing the simulation data and selecting the least sampled
regions as new starting points. However, a naive exploration-based cri-
teria might not work in all cases, and additional knowledge is needed to
correctly direct sampling. Some algorithms utilize prior knowledge on the
system [84, 85, 86] in their selection criteria in order to speed up sampling
of certain slow events, such as protein folding [85] or protein-protein in-
teraction [73]. Instead of prior knowledge, geometric features computed
from the simulation data itself can also be used in a similar fashion, such
as RMSD to the starting structure or pocket volume, in applications such
as mutation stability prediction [87] or cryptic pocket detection [88]. It
is also worth mentioning the weighted-ensemble algorithms, which dis-
tribute sampling along collective variables [89, 90, 91].

In general, adaptive sampling methods have always been designed
empirically, and they are not based on any mathematically optimal de-
cision process. There is no theoretical proof that these algorithms are
performing optimally in the problem they are trying to solve, the ex-
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ploration versus exploitation dilemma often found in optimization algo-
rithms. Some theoretic similarities have been recognized with the multi-
armed bandit problem [86, 92] and reinforcement learning [93], but they
have not been used to fully describe adaptive sampling under these theo-
retical frameworks.

1.3 Simulations meet machine learning in struc-
tural biology

Note: Parts of this section and the title were taken from my publication
3.4

Without doubt, MD simulations have the potential to become a sur-
rogate model for protein dynamics. The possibility to study protein dy-
namics and function at biologically relevant timescales with atomic reso-
lution is unparalleled by any other method. In the course of the past two
decades, the advances in hardware and software, as well as the develop-
ment of novel MD sampling and analysis methodologies, have shifted the
paradigm of MD simulations towards a high-throughput approach, greatly
increasing their capabilities and applications. Today, high-throughput
MD simulations are starting to scratch their current boundaries, and new
challenges are faced in order to push this boundaries forward.

Despite the technological advances, molecular simulations still consti-
tute a trade-off between accuracy and efficiency. Even with the capacity
to generate tens of milliseconds of aggregate simulations, a lot of highly
relevant biological timescales are still out of reach. Porting MD simu-
lation engines from CPUs to GPUs meant a huge performance leap, but
there is no similar hardware upgrade in sight at the present day. We can-
not rely solely on hardware improvements (or in huge HPC facilities) to
improve MD sampling capabilities. Furthermore, the accuracy of clas-
sical mechanics cannot be improved by computational brute force or by
any improvement in simulation efficiency. In order to bring simulations
of protein dynamics to new horizons, we must find ways to increase their
accuracy, so that they can properly handle phenomena such as bond cleav-
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age, pH or enzymatic reactions.

In a recent review we estimated that MD would reach seconds of ag-
gregated sampling using commodity hardware by 2022 [94], generating
petabytes of simulation data. For instance, the file size of one second of
simulation data of a 60 000-atom system (e.g. a GPCR system) at 0.1 ns
per frame is 7.2 Petabytes (reduced to a third using compressed trajectory
file formats). This amount of data constitutes a valuable source of infor-
mation, but the knowledge extracted from it is mainly used to rationalize
a particular protein system at hand, not to generalize it to other systems.
This thesis envisions a paradigm change for molecular simulations in the
near future, where expensive simulations (QM and MD) are not solely
used to predict but also to learn general models from where further pre-
dictions can be drawn. By doing so, the large computational cost required
by simulations becomes justifiable, in particular if the results are more
accurate by the use of more expensive simulation methods. The key to
build general models and learn from simulations can be found in mod-
ern machine learning. By combining the extensive data generated from
molecular simulations and the latest machine learning advances, simula-
tions can go beyond a single-use, high-lagged predictive tool.

Synergies between machine learning and simulations are not new.
Particularly, in MD simulations, a great example can be found within
the Markov state model estimation pipeline, where unsupervised learning
methods are used to cluster and reduce the dimensionality of simulation
data [95]. However, the reason we can now envision simulations as a
data-generation method is primarily because of the recent uprise of deep
learning methods [96, 97]. Their capacity to learn complex functions and
patterns from massive datasets has revolutionized several fields. The most
notable and famous examples can be found in image processing [98] or
natural language processing [99]. Deep learning is based on artificial neu-
ral networks, a simple mathematical framework organized in layers, each
of them performing a matrix multiplication and a non-linear function of
the input variables x. The output of a single neuron φ in each layer is
given by φ = f(wtx + b), where w are learnable weights, b is a bias and
f is some nonlinear function. Neural networks can have from several to
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hundred nested layers, and in such cases is called “deep”. Given enough
parameters, a neural network is capable of interpolating any continuous
function [100, 101].

There are many different ways to tackle molecular simulations with
deep learning [102, 103]. One of the most interesting applications is
Boltzmann Generators [104], where MD or Monte Carlo methods are
substituted with a neural network that learns to sample conformations
from equilibrium, bringing novel ways for sampling rare events. Neu-
ral networks have also been used to reproduce the free-energy surface of
molecules [105]. Another interesting approach are VAMPnets [106, 107],
where a variational score is used to optimize a neural network for Markov
state model generation, avoiding the general MSM estimation pipeline,
very prone to several rounds of trial-and-error searching for the optimal
hyperparameters.

1.3.1 Neural Network potentials: learning accurate en-
ergy potentials

For this thesis, we are going to be looking at one of the most promising
and powerful machine learning applications for molecular simulations,
neural network potentials (NNPs). The core concept behind NNPs is to
use a deep neural networks or machine learning models to approximate
the potential energy surface of a system and predict forces based on its
atomic coordinates. The model is trained using QM data, so that the en-
ergy potential is learned with the accuracy of first-principle based meth-
ods. In the same way as MD force fields do, forces are true derivatives of
the interpolated potential energy surface using the gradients of the neu-
ral network. This guarantees that the forces produced by the NNs yield
a conservative field [108]. Therefore, NNPs can be used as a force-field
and run MD simulations with it. Because inferring from a trained neu-
ral network is many orders of magnitude faster than performing ab-initio
QM calculations, we could avoid the necessity to use classical mechanis-
tic approximations and greatly improve the accuracy of protein dynamic
simulations.
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The early work from Behler and Parrinelo [109] has been critical
for the development of NNPs, and has sprouted a lot of research on it
[110, 108, 111, 112]. The initial effort went in guaranteeing basic phys-
ical principles like rototranslational invariance, atom permutation invari-
ance and transferability to the learned potentials. One of the most limiting
factors for NNPs is the large amount of training data required to train ac-
curate models. Nonetheless, the cost of generating such datasets is vastly
compensated by the benefits of having an accurate and fast NNP-based
force-field for protein dynamic simulations. At the moment, NNPs have
only been applied to water, small molecules and amino acids, with some
reports on a 50ns protein simulation, but there are still many challenges
to face in order to routinely perform protein dynamics simulations with
NNPs.

In the same way QM data can be used to train machine learning based
atomistic force-fields, MD simulation data can be used instead to define
coarse-grained potentials. In publication 6.1, a bottom-up force-matching
approach is used to train a neural network based coarse-grained poten-
tial, and publication 6.2 leverages the SchNet architecture [112, 113] to
make the potential transferable. Machine learning can also be applied to
automatically learn the coarse-grained mapping [114, 115].

It is clear that NNPs will play a central role in molecular simulations
on the coming years. Although there has been a lot of research on de-
veloping different potentials and optimized network architectures, there
is no available software infrastructure for their application for molecular
simulations. The continuous improvement of NNPs requires an infras-
tructure that supports their usage, validation and continuous development
for molecular simulations
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Chapter 2

OBJECTIVES

The objective of this thesis has been to look for machine learning so-
lutions to address the sampling limitations of MD simulations, and push
its boundaries for its application in the study of protein dynamics. The
advancements proposed here try to leverage the synergies between molec-
ular simulations and machine learning, emphasizing the data generation
side of MD simulations. First, sampling is tackled directly by defining
a novel adaptive sampling algorithm inspired by reinforcement learning,
based on the multi-armed bandit theoretical framework. Second, by con-
structing the framework needed to combine deep learning and molecu-
lar dynamics simulation code, in order to advance in the development of
NNPs and coarse-grained potentials.

2.1 Define adaptive sampling algorithms un-
der a strong mathematical framework

Adaptive sampling is a key method for high-throughput MD. It has
been demonstrated that the opportunity to direct sampling by selecting
the starting conformations can accelerate the obtention of slow events
by orders of magnitude more. However, most adaptive sampling algo-
rithms are based on empirical rules, without any guarantee of optimality.
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Adaptive sampling algorithms face a trade-off between exploration and
exploitation. Most of the existing sampling algorithms are fully explo-
rative, which depending on the system, it can be more detrimental than
beneficial. There are algorithms that introduce exploitative decisions,
but again they work as acquisition functions, and usually require exter-
nal knowledge of the system.

In the first publication, we introduce high-throughput MD simulations
under a reinforcement learning framework, and we describe it in terms of
the the multi-armed bandit problem, defining the actions and their cor-
responding rewards intrinsically from the system, without any external
knowledge. After that, we solve the bandit problem by means of an upper
confidence bound algorithm, which performs optimally in this environ-
ment. The main objective is to provide a framework for adaptive sam-
pling algorithms so that they can be adapted for optimal performance in
any system.

In the second publication, we test AdaptiveBandit in the complex sim-
ulation scenario of IDPs, where we reconstruct the coupled folding and
binding of the IDP c-Myb with the KIX domain of the CREB protein.
This system has proven to be challenging over the course of the thesis, as
standard adaptive sampling algorithms were failing to sample the whole
process. Experimental values for binding and kinetics are used to validate
the results obtained.

2.2 Build a deep learning framework for molec-
ular dynamics simulations

Machine learning potentials are one of the most promising applica-
tions of modern machine learning methods for molecular simulations.
These potentials are a great example of using simulations as a data-generation
tool, from where knowledge is extracted to construct reliable and fast
models, able to generalize. Even though there has been a lot of research
on these potentials, and several different neural network architectures
have been developed, there is still a need for a unified computational
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framework to combine these machine learning potentials with MD simu-
lations.

In the third publication, we present TorchMD, a deep learning frame-
work for molecular dynamics simulations. At its core, TorchMD is an MD
simulations code entirely written in PyTorch, a popular machine learning
Python library. Our objective is to create an MD code that can be eas-
ily combined with trained models, acting as external force-fields, and to
provide an accessible framework from where to model, train and validate
machine learned potentials, as well as performing end-to-end differen-
tiable simulations.
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Chapter 3

PUBLICATIONS

3.1 AdaptiveBandit: A multi-armed bandit frame-
work for adaptive sampling in molecular
simulations

Pérez A, Herrera-Nieto P, Doerr S, De Fabritiis G. AdaptiveBandit: A
multi-armed bandit framework for adaptive sampling in molecular simu-
lations. Journal of Chemical Theory and Computation. 2020;16(7):4685-
4693

Summary

In this paper, we frame adaptive sampling in terms of a multi-armed
bandit problem and propose AdaptiveBandit, an algorithm that uses an
action-value function and an upper confidence bound selection algorithm,
improving adaptive sampling’s performance and increasing its versatility
when faced against different free-energy landscapes. The algorithm is
first tested against two different 2D toy models in order to showcase its
capabilities. Finally, we compare it against state-of-the-art adaptive sam-
pling methods in the exemplar case of protein folding, where Adaptive-
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Bandit is able to sample the folding of villin while the other algorithms
fail to do so.
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AdaptiveBandit: A Multi-armed Bandit Framework for Adaptive
Sampling in Molecular Simulations
Adria ̀ Peŕez,∥ Pablo Herrera-Nieto,∥ Stefan Doerr, and Gianni De Fabritiis*

Cite This: J. Chem. Theory Comput. 2020, 16, 4685−4693 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: Sampling from the equilibrium distribution has always
been a major problem in molecular simulations due to the very high
dimensionality of the conformational space. Over several decades, many
approaches have been used to overcome the problem. In particular, we
focus on unbiased simulation methods such as parallel and adaptive
sampling. Here, we recast adaptive sampling schemes on the basis of
multi-armed bandits and develop a novel adaptive sampling algorithm
under this framework, AdaptiveBandit. We test it on multiple simplified
potentials and in a protein folding scenario. We find that this framework
performs similarly to or better than previous methods in every type of
test potential. Furthermore, it provides a novel framework to develop
new sampling algorithms with better asymptotic characteristics.

1. INTRODUCTION

In computational biology, macroscopic measurements by
computer simulations are obtained by simulating microscopic
molecular systems made of the order of a hundred thousand
degrees of freedom. Statistical mechanics tells us the analytical
form of the equilibrium distribution given the macroscopic
constraint of the environment, e.g., constant temperature,
pressure, and number of atoms. Therefore, the problem
consists in generating samples from such a distribution.
Molecular simulation methods have always been hampered

by sampling limitations over the equilibrium distribution due
to their computational cost.1,2 The two main methods used to
obtain samples are molecular dynamics (MD), a numerical
scheme where the propagator of the dynamical system is
discretized in time and iterated for billions of steps, and Monte
Carlo sampling (MC), where the Monte Carlo rule is used to
draw samples from the distribution. These sampling methods
are also commonly used in other fields to sample for arbitrary
probability distributions, and many of the methods developed
for molecular simulations have been exploited in such contexts
later, for instance, umbrella sampling,3 biased Monte Carlo
methods,4 or biased molecular dynamics like replica
exchange,5,6 steered MD,7,8 metadynamics,9 etc. Progress in
molecular simulation sampling has therefore shown its
relevance to a broader field of problems. Recently, a new
generative method based on normalizing flows10 has been
proposed to sample from the Boltzmann distribution.11

Due to the difficulties in determining the bias a priori,
practically equivalent to having a good prior, unbiased methods
such as adaptive sampling12−15 have been recently developed
and used successfully.16,17 Similarly, due to the difficulty in

generating good Monte Carlo moves, molecular dynamics is
almost always preferred to Monte Carlo methods, largely due
to the current efficiency of generating trajectories rooted in the
capability of modern hardware. Specialized computer chips like
Anton18 have made it possible to run long simulations of the
order of hundreds of microseconds, sampling reversibly fast
processes and exploring longer timescales.19 The advent of
GPUs and GPU molecular dynamics software20−23 was a
notable improvement, greatly increasing the computational
efficiency of simulations. This, combined with Markov state
models (MSMs),24,25 allowed us to reconstruct a complete
statistical description of the full dynamical system from many
shorter trajectories, obtaining a description that is equivalent to
reversible sampling, once at convergence.
Running not one but hundreds or thousands of simulation

trajectories26,27 created a new opportunity to decide the
starting conditions of these simulations to obtain the best
equilibrium characterization at the minimal computational
cost, i.e., adaptive sampling. Initially, adaptive sampling
algorithms12,15 were used to reduce the statistical uncertainty
by choosing conformations that contributed the most to the
error in the mean first passage time of an MSM,12 eigenvalues,
and eigenvectors,13 or by choosing low state populations.14,15
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MSMs were also used to detect those conformations that were
kinetically farthest to the starting point to the increase
sampling of high-barrier transitions.28 Furthermore, similar
algorithms appeared recently, which introduced prior knowl-
edge to the selection criteria,29−31 seeking to further speed up
the sampling toward equilibrium. One notable example is
where contact information is used for protein folding32 or
bound state contacts in protein−ligand or protein−protein
binding.17 Other applications have used alternative geometric
features, such as RMSD or pocket volume, to improve
conformational exploration33 and to find cryptic pockets.34 It
is also worth mentioning the weighted-ensemble algorithms,
which distribute sampling across regions in a collective
variable.35−37 In general, the adaptive sampling policy was
always empirical, not based on any mathematical decision
process, even though similarities have been recognized with the
multi-armed bandit problem31,38 and reinforcement learning39

before.
Here, we frame adaptive sampling in terms of a multi-armed

bandit problem and propose AdaptiveBandit, an algorithm that
uses an action-value function and an upper confidence
bound40,41 selection algorithm, improving adaptive sampling’s
performance and increasing its versatility when faced against
different free-energy landscapes. Our main goal is to provide
strong fundamentals when facing the exploration−exploitation
dilemma by redefining it in terms of reinforcement learning,
creating a solid framework from where to easily develop novel
algorithms. AdaptiveBandit is available in HTMD (https://
github.com/Acellera/htmd).42

2. METHODS

2.1. MD Simulations. The configurational space of a
molecular system for MD simulations is given by

χ = { = ∈ }x r r( , ..., )N
N

1
3 , where N is the number of

atoms of the system. Experimental observables O are measured
as equilibrium expectations <O> = ∫O(x)μ(x)dx, where μ(x)
is the equilibrium distribution. The form of this distribution is
known; for instance, the Boltzmann distribution in the
canonical ensemble at temperature T is

μ = −x
Z

( )
1

e U x k T( )/ B

(1)

where U(x) is the molecular potential energy, kBT is the
Boltzmann constant multiplied by the temperature, and Z is
the normalization factor. MD numerically solves Newton’s
equation over the potential U(x) for the variable x, plus a
Langevin stochastic term accounting for thermal fluctuations.43

Now consider the state x(t) ∈ χ as a specific conformation
inside the configurational space χ at time t; the probability of
finding the molecule in configuration xt+τ at a later time can be
expressed by the conditional transition density function pτ, xt+τ
∼ pτ(xt+τ|xt), which describes the probability of finding state
xt+τ given state xt at time t after a time increment τ. When
performing an MD simulation, the dynamics of the molecular
system propagates the state xt across time. Therefore, MD
samples from the transition density pτ given discrete time steps
τ to obtain the next state xt+τ. This process is repeated for
many steps, generating a trajectory of conformations.
The main goal of performing MD simulations is to obtain a

good representation of the system’s equilibrium distribution
μ(x), i.e., the probability to find conformation x under
equilibrium conditions, to measure the average of observable

<O>. If an MD trajectory τ is long enough, sampling from pτ is
equivalent to sampling from μ(x) (eq 1)

μ| =
τ τ τ→∞ +p x x xlim ( ) ( )t t (2)

Generating long enough trajectories is computationally
expensive, and often practically impossible when trying to
sample slow events. However, long trajectories can be
substituted by short parallel trajectories. While in principle
one could model directly the conditional probability in eq 2, in
practice this is not possible due to the very high dimensional
space. Fortunately, it can be shown that the dynamics can be
separated into a slow and fast set of variables,24 and because
the contributions of fast variables decay exponentially in τ, a
reliable MSM can be constructed in terms of the slow variables
to compute the thermodynamic averages. Usually, time-
independent component analysis (tICA)44 and clustering
methods are used to study this set of variables during
sampling, which is necessary to build the MSM. Once we
obtain the MSM, computed by estimating the transition
probabilities from discrete conformational states, one can
derive the thermodynamic and kinetic properties, just
assuming local, not global, equilibrium (i.e., τ is much shorter
than what is necessary to satisfy eq 2).

2.2. Multi-armed Bandit Problem. The multi-armed
bandit problem is a simplified reinforcement learning setting
where one faces the exploration versus exploitation dilemma.
The problem is defined as a tuple γ⟨ ⟩, , , where is a set
of k actions = { }a a a, , ..., k1 2 and is an unknown
probability distribution = [ | ]r aa of rewards given the
chosen action. We choose γ = 0 for totally discounted rewards.
At each time step t, the agent applies a policy π = [ ]aa to
select an action ∈at , based on previous actions taken and
the respectively obtained rewards. Subsequently, the environ-
ment returns a reward rt ∼ Rat. Given that we set γ = 0, we
define the value of an action Qπ(a) as its instantaneous mean
reward

= [ | ]π πQ a r a( ) (3)

The goal is to find the optimal policy π* that maximizes the
cumulative reward ∑t=1

T rt. Policies must take into account the
exploration versus exploitation dilemma and combine both
explorative actions, to sample their associated unknown reward
function to update their value estimates, and greedy actions, to
increase the total cumulative reward by choosing the action
with the highest value estimate. The main advantage of
describing adaptive sampling in terms of a multi-armed bandit
is that we can benefit from the extensive literature on bandits
to find solutions and replace heuristic policies with more
mathematically sound ones.

2.3. AdaptiveBandit. Standard adaptive sampling algo-
rithms work by performing several rounds or epochs of short
parallel simulations. In each round, the algorithm is faced with
the decision to select any of the sampled conformations from
where to respawn a new round of simulations. The objective of
these decisions is to avoid any redundant sampling and
optimize our simulations to obtain the desired goal (which can
be anything from a full equilibrium characterization of a
molecular system to sampling a specific conformation or
dynamic event) at the minimum computational cost.
Here, we recast adaptive sampling in bandit terms, defining

its tuple γ⟨ ⟩, , . We define the action space in terms of
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all possible conformations that are respawnable, i.e., they have
been visited at least once

= = { ∈ = }x k K, 1, ...,m k
N

m
3

(4)

where Km is the number of sampled configurations at epoch m.
There are different possible choices for the a priori unknown

reward function that the policy will try to maximize, and it
will mostly depend on your objective with the simulation
experiment.
Because most of our MD experiments are usually aimed at

sampling metastable states of interest, e.g., folded states of
proteins or bound states between proteins and ligands, we have
defined the reward to be proportional to minus the free
energy so that the optimal policy always picks conformations
from the low-free-energy, stable states. Therefore, we define
the reward a of action a as the mean of the minus free
energies of each configuration x visited in the trajectory started
with action a, i.e.,

μ= < >
τ

k T xlog( ( ))a a x xB ( , ,..., )1 (5)

where μ(x) is the equilibrium distribution over a partition of
the configuration space containing the conformation x, e.g.,
MSM microstates. The average is computed over the
succeeding frames in the trajectory starting from a.
The action space would be too large to compute meaningful

value estimations for each conformation, and there is no way to
know the exact equilibrium distribution. To address this issue,
we take advantage of MSM analysis to redefine the tuple

γ⟨ ⟩, , in a more practical form. We define a reduced and
tractable action space using the MSM’s discretized conforma-
tional space and use the stationary distribution of each state to
obtain an estimate of their free energy to compute the rewards.
We count each trajectory frame as an action taken, and use the
succeeding frames to assign the reward. Because rewards
strongly depend on how accurate the MSM estimation is, we
use the latest MSM to recompute all past rewards from all
trajectories at each epoch, differently from the common Q-
learning approaches.45 Not only does it ensure the best free
energy estimation possible but it also addresses the increasing
action space problem due to new conformations being
sampled. For every epoch, the discretized conformational
space is redefined, all frames are reassigned, and rewards are
recomputed on the newly defined states. Respawning
conformations for the next epoch are picked randomly from
the selected state.
2.4. Solving the Multi-armed Bandit Problem. With

the bandit tuple defined, we now need to deal with the
exploration−exploitation trade-off and optimally solve it. To
do so, AdaptiveBandit relies on the UCB1 algorithm41 to
optimize the action-picking policy, which defines the upper
confidence bound for action values based on the number of
times the agent has picked that action and the total number of
actions taken. Therefore, actions are selected based on

= +
∈
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where t denotes the total number of actions taken, Qt(a) is the
estimated action-value for action a, Nt(a) is the number of
times action a has been selected (prior to time t), and c is a
parameter controlling the degree of exploration. UCB1 follows
the principle of “optimism in the face of uncertainty”,

prioritizing actions with uncertain value estimations, even if
those values are not the greatest. To select an action, UCB1
takes into account not only the estimated value of that action
but also the amount of uncertainty on such value. By doing so,
the algorithm not only promotes action exploration but also
prioritizes the exploration of the most promising ones. In the
long term, as our knowledge of action-values increases, the
exploration term will decrease, and more greedy actions will be

selected. UCB1 has a theoretical bound of O kT L( log( ) )t on
its total regret Lt.

41

2.5. AdaptiveBandit with Knowledge-Based Initiali-
zation. AdaptiveBandit also has the option to initialize action-
value estimates with external knowledge from the system,
providing an initial value estimation to new actions, aiding to
prioritize the most valuable actions. While in previous
methods17,31 this is done by forcing the algorithm to sample
from conformations based on a fixed empirical ranking, here
we use the bandit formalism to initialize Q in eq 6 with an
empirical action-value function. This notably allows for the
MSM to correct the initial prior suggestion for Q given enough
sampling. This is not true in previous schemes, where a
partially wrong prior can affect sampling to the point of
nonconvergence to the intended results due to its degeneracy,
i.e., even just some wrong contact information could kinetically
bias the simulations far from the folding funnel. We
demonstrate this aspect in the Results section. The initial
prior Qprior(a) is defined as the maximum score in a state, and
it is recalculated at each epoch, after reclustering. Qprior(a) is
used to initialize Q(a), converted from a scoring function to
free energy by converting the score into a probability, given a
maximum Q. Therefore, AdaptiveBandit will already start with
non-zero Q(a) and will act greedily on the scoring function
preferred actions. States are assigned an initial pseudocount
N0(a), representing the statistical certainty of Qprior(a). When
selecting the next action at, Qprior(a) is averaged with the other
rewards obtained with action a, and the initial pseudocount
N0(a) is added to the action count Nt(a).

2.6. Other Adaptive Sampling Algorithms. To evaluate
AdaptiveBandit’s performance, we have tested it against several
different adaptive sampling strategies, mainly the standard low-
counts adaptive sampling, FAST,31 and Exploration−Exploita-
tion.
The low-counts adaptive sampling is a simple and intuitive

strategy that is optimal in pure exploration scenarios.42 The
method works by selecting conformations from the least
populated clusters at each adaptive epoch. The other two
methods, FAST and Exploration−Exploitation, are goal-
oriented, where external knowledge on the system is used to
guide sampling.
FAST is also inspired by the multi-armed bandit problem,

but the implementation differs as it uses an acquisition
function to rank discrete conformational states rather than a
reward function by definition, and actions (and their
outcomes) do not influence their value estimates. The
acquisition function contains an exploitation term, defined by
the goal-scoring function that assigns a fixed value to each
state, and an exploration term, based on state counts. The
FAST implementation we used works as

ρ α ϕ αψ= − +(1 )i i i (7)

where ρi is the score for state i, ϕ is the exploitative value
obtained from the goal function for state i, ψ is the exploration
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value defined by state i counts (as in low-counts adaptive
sampling), and α is a parameter regulating the weight of both
terms. Both ϕ and ψ terms are scaled to values that range from
0 to 1. The states are defined as the microstates obtained by
the constructed Markov model at each epoch.
Finally, we have Exploration−Exploitation, a strategy

inspired by the popular method for multi-armed bandits ϵ-
greedy, implemented in HTMD’s AdaptiveGoalEG.42 Simu-
lations are restarted ϵ times from the top goal ranking states,
and 1 − ϵ times from the least sampled states (i.e., the low-
counts strategy).
2.7. Langevin Dynamics on 2D Potentials. We

designed a set of experiments in a simple simulation set up,
performing Langevin dynamics on a single point mass of 1000
amu and a diffusion coefficient of 10 Å2/ns at 300 K on two
different potentials: a 2-wells potential (Figure 1a) inspired
from ref 46, given by

= − −
+ + +
+

− − − − + −

− + + +

− −

U x y

x y

( , ) 3e 3e

15e 0.0512( )
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and a funnel potential (Figure 1c) given by

= + − +
+
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x y2 2 ( )
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A reference baseline for each 2D potential was calculated using
an MSM built with 10 and 500 μs of aggregate simulation time
for the 2-wells and funnel potential, respectively, spawning
trajectories from conformations covering the whole surface.
The equilibrium probability was determined to be 50 and 85%,
respectively, on each of the global minima.

A total of 1 μs was simulated for each combination of
method and potential, spawning 25 trajectories of 0.1 ns at
each epoch for a total of 400 epochs. The performance at each
epoch was measured as the mean of the equilibrium
probabilities for the macrostate containing the targeted
minimum for 10 independent MSMs built with 80% of the
bootstrapped data. All of the MSM calculations were
performed using HTMD.42

For the goal methods, we simulated a total of 2 μs for each
method, spawning 10 trajectories per epoch with trajectories of
0.05 ns. Values of α = 0.1 for FAST and ϵ = 0.1 for
Exploration−Exploitation were selected. In AdaptiveBandit,
the exploration rate was set to c = 0.01 and the initial
pseudocounts to N0(a) = 50. The c value was selected so that

the scale of both Q(a) values and the UCB part t N aln( )/ ( )t
is the same, based on estimates for Q, related to the maximum
free energy we would expect, and t, related to the number of
total samples we can afford for the experiment.

2.8. MD Simulation Setup. The simulation system for the
chicken villin headpiece (PDB:2F4K) was built with HTMD.42

We solvated villin in a 64 Å cubic box with a NaCl
concentration of 0.05 M. The starting unfolded conformations
for the runs were selected from a villin unfolding trajectory at a
high temperature (500 K).
In this context, we tested AdaptiveBandit with c = 0.01 and

N0(a) = 100, against two different FAST setups, α = 0.5 and
0.1. A goal-scoring function was used to guide the algorithms,
based on the number of native Cα contacts formed. For each
setup, we ran parallel simulations of 10 ns, with 5−10
simulations per epoch, until we reached a total aggregate time
of 4 μs. All simulations were run with ACEMD,22 using the
CHARMM22* force field47 on a local GPU cluster. A short
HTMD code listing is provided as an example to run
AdaptiveBandit for villin simulations (Listing 1).

Figure 1. Performance comparison between random, low-counts, and AdaptiveBandit in the experiments with 2D potentials. (a, c) 3D view and
top view of the 2-wells and funnel potentials. Global minima are located at (−1, 0) and (0, 0) coordinates, respectively. The gray dot indicates
starting points for the simulations and the red dot indicates the target global minima where the population is measured at every epoch. (b, d)
Performance comparison of the total aggregate simulation time needed for random, low-counts, and AdaptiveBandit sampling methods in the 2-
wells and funnel potential, respectively, to achieve correct population estimates at their global minimum. The population is set to 0 when the
targeted minima are not detected in half of the bootstrapped MSMs for that specific aggregate time.

Journal of Chemical Theory and Computation pubs.acs.org/JCTC Article

https://dx.doi.org/10.1021/acs.jctc.0c00205
J. Chem. Theory Comput. 2020, 16, 4685−4693

4688

32



“output” — 2021/11/18 — 12:47 — page 33 — #47

3. RESULTS

3.1. Performance Testing on 2D Potentials. The initial
objective is to compare the performance of a set of adaptive
sampling algorithms in a simple environment defined by 2D
potentials. For this purpose, we performed Langevin dynamics
on two different potentials: the 2-wells potential, composed of
two minima separated by a high energetic barrier (Figure 1a),
and a funnel potential, composed of concentric isoenergetic
regions with the global minimum located at its center (Figure
1c). The funnel potential is a useful benchmark to test the
exploration−exploitation balance, as a purely exploratory
strategy would tend to guide toward the outer circular wells,
while the minimum is in the center. The objective of these
experiments is to predict the equilibrium population of the
targeted minima. The equilibrium populations are computed

with MSM analysis to assess how different sampling strategies
affect the MSM estimation.
First, AdaptiveBandit was compared with two other

common sampling policies, based on simple heuristics: random
selection and the low-counts policy. The results for the 2-wells
potential (Figure 1b) show a similar performance for the low-
counts policy and AdaptiveBandit. Both converge at the
baseline population (50%), while random sampling under-
estimates it. Because the potential just contains two large
minima, comprising almost the entire conformational space, a
fully explorative heuristic algorithm like the low-counts is
optimal, as there is no need to prioritize anything besides
exploring the two minima. AdaptiveBandit is able to reach the
same optimal performance.
For the funnel potential (Figure 1d), the relative size of the

minima is much smaller compared to the conformational
space; hence, its detection by random sampling is more
inefficient than for the other two algorithms. The low-counts
method is able to reach the minima faster, as it is to cover the
space quickly. Both these algorithms obtain a slight under-
estimation of the equilibrium population. On the other hand,
AdaptiveBandit achieves a more accurate estimation and
reaches convergence with 4 times less aggregate time than
the other algorithms, highly reducing the computational
resources needed to obtain accurate estimations of the
equilibrium distribution.
This first test here showcases how introducing an

exploitation term to quantify an action-value, besides the
exploration term, either increases or equals the performance of
fully exploratory algorithms on obtaining correct equilibrium
estimations in the tested systems. Value estimations of each
action help in prioritizing sampling on the most relevant areas

Figure 2. Performance comparison between goal-oriented algorithms FAST, Exploration−Exploitation, and AdaptiveBandit in the experiments
with 2D potentials. (a, c) Top view of the 2-wells potential. Goal distribution across the potential is shown. Gray dots indicate the starting
conformations for the runs. Red dots indicate the minima where the population is measured. (b, d) Performance comparison of total aggregate
simulation time needed for FAST, Exploration−Exploitation, and AdaptiveBandit methods to correctly estimate the populations at their target
minimum. The population is set to 0 when the targeted minima are not detected in half of the bootstrapped MSMs for that specific aggregate time.
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of the conformational space, rather than just exploring
everything and sampling irrelevant conformations. Although
in the 2-wells potential this does not make a big difference, it
does in the funnel potential, where AdaptiveBandit focuses
sampling on the minima by identifying its relevance with
action-value estimates and does not waste resources on
exploring irrelevant conformations.
3.2. Using System External Knowledge. Next, we want

to test how AdaptiveBandit performs in the 2-wells potential
against two existing methods that incorporate an exploitative
term by employing external knowledge on the system. The pair
of tested algorithms, also known as goal-oriented methods, are
FAST31 and Exploration−Exploitation. To make sure
AdaptiveBandit is at the same level of system knowledge as
the other methods, the information provided by the goal
function was used in AdaptiveBandit through knowledge-based
initialization (as explained in Methods).
The goal function employed in the experiments with the 2-

wells potential increases the score linearly with the x-axis
(Figure 2a,c), thus creating a gradient of reward pushing to the
right boundary of the potential. Two tests were performed in
different scenarios. In the first test, the target minimum has a
greater score than the starting coordinate (Experiment A,
Figure 2a). In the second one, the target minimum has a lower
goal than the starting conformations and, therefore, requires
opposition to the goal’s influence to obtain accurate
estimations on the target minimum (Experiment B, Figure 2c).
For experiment A, all methods reached the reference

population, with AdaptiveBandit needing slightly less simu-
lation time to reach the correct population estimation in the

target (Figure 2b). Differences in the algorithms can be
visualized by a distribution plot of the spawning conformations
in Figure 3. During the initial epochs, both FAST and
Exploration−Exploitation follow the goal, spawning new
simulations pushing against the energy barrier. AdaptiveBandit,
on the other hand, quickly discovers the target minima and
starts exploring other areas and directs sampling not only in
the high score region but also in its surroundings. Even though
the performance of all three algorithms is similar, differences in
the spawning patterns between the three algorithms can be
appreciated throughout the experiment. FAST presents a more
explorative behavior and respawns simulations from all along
the conformational space (Figure 3a). On the other hand,
Exploration−Exploitation presents a highly exploitative behav-
ior, strongly focusing on the highest goal-scoring region once it
is discovered (Figure 3c). In between, AdaptiveBandit presents
an overall greedy behavior, but with higher levels of
exploration than the Exploration−Exploitation method,
which translates into a small boost in its performance. It is
interesting to point out the few resources invested by
AdaptiveBandit in the origin minima, which demonstrates
that the algorithm quickly identifies it as a noninteresting area
(Figure 3b).
For experiment B, AdaptiveBandit reaches the target

minimum faster, and equilibrium populations are estimated
more accurately (Figure 2d). Both Exploration−Exploitation
and FAST require more simulation time to reach the target
minima and fail to converge on the correct equilibrium
populations. In this scenario, Exploration−Exploitation is
greatly focused in the high scoring region (Figure 3f), resulting

Figure 3. Simulation respawning distribution by algorithm across the 2-wells potential. Each plot depicts the probability distribution of selected
conformations throughout the runs, obtained by the kernel density estimate.48 The starting points for each run are represented with a gray dot and
the target minimum with a red one. The goal distribution (not shown) is the same as in Figure 2. Subplots (a−c) represent the spawning
probability distribution across the potential surface on experiment A, target minima at coordinates (1, 0), for FAST, AdaptiveBandit, and
Exploration−Exploitation algorithms, and (d−f) for experiment B, target minima at coordinates (0, −0.5).
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in a marginal exploration of the target minimum, while FAST
and specially AdaptiveBandit do perform a more significant
search on it (Figure 3d,e). Comparison between Adaptive-
Bandit and FAST spawning patterns (Figure 3d,e) reveals the
differences in the exploration profile, where again FAST
thoroughly spawns conformations from every explored point in
the surface, while AdaptiveBandit, following the goal, explores
the boundaries of the conformational space. Even if differences
in performance are not substantially large, the experiment
shows us the inability of FAST and Exploration−Exploitation
to update the initial action-value estimates, translating into a
lack of adaptation to the system being sampled. In opposition,
AdaptiveBandit is able to correct the prior action-value
estimates and readjust the sampling policy to a more optimal
one, as it uses exploitation intrinsically based on MSM
estimations from the available simulation data and external
knowledge is introduced as prior information, rather than as
the function to optimize. The ability to update the system
knowledge at each epoch is crucial in experiments where the
goal-scoring function used has high levels of degeneracy or is
directly wrong. Asymptotically, AdaptiveBandit should always
be better as it is logarithmically bound on the number of trials
to the total regret41 (the difference between the maximum
possible reward and the current reward), whereas Explora-
tion−Exploitation and FAST are linearly bound.
3.3. Testing on Protein Folding Simulations. Besides

testing in simple 2D potentials, we explored AdaptiveBandit’s
performance in a more realistic and challenging scenario.
AdaptiveBandit was tested on protein folding simulations,
using villin as a benchmark. The chicken villin headpiece
consists of a chain of 35 residues that folds into a three α-
helical bundle, sharing a common hydrophobic core.49 It is
known to have a fast-folding rate of (0.7 μs)−1.49 Our target for
this test is to reach the folded state with the minimum amount
of aggregate time and compare how AdaptiveBandit and FAST
distribute sampling across the conformational space of villin.
Because we are testing the algorithm’s effect rather than the

technical capabilities of reaching villin’s folding state with MD,
we set up very short simulation times to increase the number
of epochs and ensure we are evaluating the algorithm’s
performance. The goal function used for the algorithms
maximizes the number of native Cα contacts formed to guide
sampling on to the folded state. Thirty microseconds of villin
folding simulations was used to build some reference tICA
dimensions to evaluate the sampled conformational space from
each method. The first two tICA dimensions reveal three main
states (Figure 4a): the unfolded state (random coil), the folded
structure, and a misfolded state.
Figure 4b shows the distinctive behavior of AdaptiveBandit

and FAST while sampling the folding path. AdaptiveBandit
clearly reaches the crystal structure. FAST struggles to do so
due to the very short trajectories used, which produces a
sampling bias, as indicated in ref 50. The results showcase how
AdaptiveBandit is able to select the most relevant con-
formations to reach the folded state, prioritizing the most
promising actions from the subset of undersampled actions.
On the contrary, FAST, even in its most greedy setting (α =
0.1), is not able to correctly prioritize the most relevant states
and keeps exploring over random coil states, even in the latest
epochs (Figure 4c). The greedy setting also presents a slight
misdirection toward the misfolded state, which suggests that
the used goal-scoring function has degeneracy, and it does not
differentiate enough between native-like structures and
misfolded structures that are very far dynamically. As
commented in the previous experiment using external
knowledge on the 2-wells potential, methods like FAST or
Exploration−Exploitation that rely only on external informa-
tion can be severely hampered when the provided information
does not represent the true energetic gradient. AdaptiveBandit
prevents this by updating the prior information with rewards
coming from interacting with the system and observing its
response to our actions.

Figure 4. Villin folding simulations. (a) Conformational space for the folding of villin on the baseline data set. The tICA space includes large
regions of random coil (the initial conformations are located within the red circle), misfolded conformations (green circle), and crystal-like
structures (blue circle). (b) Exploration of the conformational space by sampling algorithms. Each plot includes the baseline exploration depicted
on gray and the explored space with a colored heatmap. (c) Spamming coordinates for new epochs. Scattered points indicate starting
conformations for new epochs, colored from first (purple) to last (yellow).
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4. CONCLUSIONS

AdaptiveBandit formally introduces adaptive sampling into
reinforcement learning by describing it in terms of multi-armed
bandits and builds upon it to deliver a novel algorithm with
increased performance and flexibility across different energy
landscapes. AdaptiveBandit is able to perform equally or better
than previous adaptive sampling algorithms in a diverse set of
systems, and it has demonstrated the ability to learn from
simulation results. AdaptiveBandit works both with and
without external knowledge of the system, and it can update
prior beliefs in the system based on the results obtained during
the experiment.
Goal-oriented adaptive sampling methods, as in ref 31, also

get inspiration from exploration−exploitation strategies, like ϵ-
greedy. The context, however, is quite different as there is no
definition of a multi-armed bandit framework and a reward per
action; rather it is more akin to directly defining an acquisition
function. Furthermore, the greediness is toward predetermined
states given from external knowledge on the system.
AdaptiveBandit, as used here, uses exploitation intrinsically
without requiring external information. It is, however, a
possibility to do so and use the experimental data to provide
a prior for the sampling.
We have exemplified here cases where AdaptiveBandit works

better due to its adaptability and flexibility, but this does not
mean that it could underperform in other scenarios. Our
implementation of AdaptiveBandit relies on good MSM
estimates and, therefore, the action-value estimates carry on
with errors caused not only by discretization and dimension-
ality reduction but also by the sampling bias, especially on
estimations of equilibrium populations.50 Additionally, Adapti-
veBandit’s performance also depends on the c hyperparameter
to regulate exploration and it is not very intuitive, as it must be
tuned according to the scale of both terms in eq 6.
The version of AdaptiveBandit presented here defines a

reward proportional to the free energy of each state and utilizes
the UCB1 algorithm to optimize the action-picking policy.
However, this is not the only possible way to apply
AdaptiveBandit, and the algorithm can be changed to better
adapt to the experiment and systems. We hope that our work
inspires the development of new adaptive sampling algorithms
built under theoretical fundamentals instead of using simple
heuristic policies.
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3.2 Binding-and-folding recognition of an in-
trinsically disordered protein using adap-
tive molecular dynamics

Herrera-Nieto P, Pérez A, De Fabritiis G. Binding-and-folding recog-
nition of an intrinsically disordered protein using adaptive molecular dy-
namics. Manuscript pending for submission

Summary

In this paper we make use of AdaptiveBandit to simulate the coupled
binding and folding of the disordered protein cMyb with the KIX do-
main. The newly developed sampling algorithm succeeds in recovering
the entire event, where other sampling algorithms failed. We construct
a Markov state model in order to understand how the binding and fold-
ing occurs, validating the model using experimental values. The model
helps us to identify a mixed binding and folding process that combines
conformational selection and induced fit mechanisms. Results bring new
insights to disordered proteins and their mechanisms of function with
atomic resolution.
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Intrinsically disordered proteins participate in many biological pro-
cesses by folding upon binding with other proteins. However, cou-
pled folding and binding processes are not well understood from an
atomistic point of view. One of the main questions is whether folding
occurs prior or after binding. Here we use a novel unbiased high-
throughput adaptive sampling approach to reconstruct the binding
and folding between the disordered transactivation domain of c-Myb
and the KIX domain of the CREB-binding protein. The reconstructed
long term dynamical process highlights the binding of a short stretch
of amino acids on c-Myb as a folded α-helix. Leucine residues, spe-
cially Leu298 to Leu302, establish initial native contacts that prime
the binding and folding of the rest of the peptide, with a mixture of
conformational selection on the N-terminal region with an induced fit
of the C-terminal.
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Intrinsically disordered proteins (IDPs) participate in many1

biological functions despite lacking a stable tertiary struc-2

ture (1). Initial clues for the function of IDPs were revealed3

by structural studies (2, 3), showing that proteins that were4

disordered in isolation became folded upon interacting with5

their partners, opening to question how folding couples with6

binding.7

Recently, molecular dynamics (MD) simulations have been8

successfully applied to reconstruct biological dynamic events in9

problems such as protein-ligand (4) and protein-protein (5, 6)10

binding, as well as protein folding (7, 8). MD has also been11

applied in the field of IDPs (9–12). In particular, the Mdm212

protein and the disordered 12-residue N-terminal region of13

p53 were studied using implicit solvent simulations(9), parallel14

full-atom simulations totalling 831 µs (11), biased free-energy-15

based sampling (10), and both biased and unbiased simulations16

in order to estimate kinetics on the second timescale (12). For17

another system, KIX-pKID, a single event of binding (13) has18

been sampled at all-atom resolution.19

The KIX—c-Myb binding-and-folding mechanism has been20

extensively studied experimentally as an exemplar case of21

protein-IDP interaction (14–20). The KIX domain of the22

CREB-binding protein is a short 87-aa region composed of23

three α-helices (designated as α-1, α-2 and α-3, from N-24

terminal to C-terminal) forming a compact bundle (3). KIX25

represents a paradigm of binding promiscuity: it binds to26

many IDPs, including the proto-oncogene c-Myb (3) (Figure27

1.a), with multiple binding conformations (14). However, the28

system composed by KIX—c-Myb remained outside of the29

scope of all-atom molecular simulations due to the extension30

of the IDP (it doubles the lengths of p53) and the existence of 31

multiple binding modes between them (14). In particular, it is 32

unclear whether the interaction takes place by conformational 33

selection, i.e. c-Myb needs to be folded before binding to its 34

partner, or by induced-fit, where binding not only happens 35

independently of c-Myb’s secondary structure but also trig- 36

gers its folding, as shown for other IDPs (KIX-pKID) (13, 21). 37

Understanding these aspects has implications on the drug- 38

gability of disordered proteins. Another important factor is 39

c-Myb’s high helicity in isolation and the consequences it might 40

exert on the final complex structure, which features an ex- 41

tended α-helical c-Myb bound to KIX. Some reports support 42

the induced-fit approach based on kinetics and mutagenesis 43

studies (15, 16, 20), while others advocate for a mixed mecha- 44

nism (14); yet not a detailed model for the binding process is 45

available. 46

In this paper, we take advantage of a novel algorithm 47

which frames the MD sampling problem from a reinforcement 48

learning perspective (see Methods) to reconstruct multiple 49

binding modes between c-Myb and KIX. This new sampling 50

algorithm was key for us to reconstruct the binding process, as 51

previous attempts over the years using other state-of-the-art 52

adaptive sampling methods (22, 23) were not successful, always 53

failing to recover the NMR bound structure. Results provide 54

insights in the binding mechanism between these two proteins, 55

Significance Statement

Many intrinsically disordered proteins fold upon interacting with
their protein partners. Molecular dynamic simulations have
been extensively applied in the challenging task of recreating
experimentally determined structures. Here, we take advan-
tage of a novel adaptive sampling algorithm to reconstruct
the binding and folding between the disordered transactivation
domain of c-Myb and the KIX domain of the CREB-binding
protein. We report the full reconstruction of binding of c-Myb
to KIX and the various pathways underlying the process, and
we determine whether it happens through a conformational
selection or an induced-fit process. We believe that the use of
molecular simulations and adaptive sampling methods can sig-
nificantly impact the understanding of conformational dynamics
of disordered proteins.
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c-Myb

KIX

Fig. 1. Exploration performance. a) KIX—cMyb NMR structure. KIX domain is shown as a white surface and ribbon and c-Myb bound to KIX as a red helix (PDB code
1SB0). Exploration performance by b) Counts Adaptive (∼ 480 µs) , and AdaptiveBandit (∼ 225 µs) is shown by plotting the mean RMSD (on the x axis) and standard
deviation (on the y-axis) for each of the MSM’s microstates, color mapped accordingly to their macrostate assignment. Dashed square indicates the bound zone, placed in the
region corresponding to low mean RMSD and standard deviation.

supporting a mixed model that combines both conformational56

selection and induced-fit.57

Results58

Adaptive sampling the KIX—c-Myb binding-and-folding pro-59

cess. Simulations to reconstruct the KIX—c-Myb binding60

mode were performed following an adaptive sampling strategy.61

In adaptive sampling, successive rounds of simulations are per-62

formed in an iterative step-wise manner, where an acquisition63

function over the currently sampled conformation is defined.64

Initially, we compare two acquisition functions: a count-based65

one and another inspired by reinforcement learning.66

The new AdaptiveBandit method (24) is framed into a67

simplified reinforcement learning problem, the multi-armed68

bandit problem (see Materials & Methods). We use the upper69

confidence bound (UCB) algorithm (25) to optimize an action70

picking policy in order to maximize future rewards, optimally71

balancing the exploration of new higher rewarding actions72

with the exploitation of the most known rewarding ones. The73

reward function, which associates the action to the reward74

given by the system, defines what we want to optimize. In75

this work, we choose the reward to be minus the free energy76

of each configuration visited in the trajectory spawn from a77

given action (see Eq.2 in Materials & Methods), where the free78

energy of a conformation is given by the corresponding MSM79

microstate computed with the data available at the current80

sampling epoch.81

Standard low counts adaptive sampling (22) (called Counts82

Adaptive) can be shown to be optimal in pure exploration83

conditions (23). Counts are computed over clusters of con-84

formations; this method is, however, noisy as clusters can be85

poorly populated. Therefore, in the implementation available86

in (23), counts are computed over a smaller subset by grouping87

clusters (microstates) into macrostates, constructing a Markov88

State Model (MSM) (26) with the available data at each round.89

The acquisition function is given by proportionally choosing90

macrostates as 1/c, where c represents macrostate counts, and91

by randomly selecting conformations within them.92

A comparison between Counts Adaptive and AdaptiveBan-93

dit is provided in Figure 1.b. The batch based on Counts 94

Adaptive (48 epochs) failed to connect microstates similar 95

to the NMR structure in over ∼ 480 µs, reaching at best 96

an RMSD around 7 Å, indicating excessive exploration. For 97

us, it was impossible to build an MSM with the bound state 98

with previous methods, and novel approaches were needed 99

to reconstruct the binding-and-folding process between KIX 100

and c-Myb successfully. AdaptiveBandit provides converged 101

estimates of kinetics and thermodynamics after just 150 µs of 102

sampling (Supplementary Figure 5). 103

Identification of the bound state. The full data set of the Adap- 104

tiveBandit run accounted for a total simulation time of ∼450 105

µs, split across 40 epochs, and was the one used to study 106

the molecular features of KIX—c-Myb binding-and-folding. 107

An MSM was built based on all-pair Cα + Cβ distances be- 108

tween KIX and c-Myb, self distances between Cα of c-Myb, 109

secondary structure of c-Myb and RMSD to the NMR bound 110

conformation (PDB ID: 1SB0 ). The MSM defines three kinet- 111

ically similar sets of conformations, referred as macrostates 112

(Figure 2.a and Supplementary Figure 1.b): a highly popu- 113

lated state with an heterogeneous mixture of conformations 114

(unbound), a well defined c-Myb bound state (bound) and, 115

finally, a secondary bound state (secondary). Representative 116

structures of all states can be found in Figure 2.b. The bound 117

macrostate contains structures with a minimum RMSD of 3.00 118

Å with respect to the NMR structure. 119

The bound state identifies the primary cMyb bound pose 120

in the hydrophobic groove between α-1 and α-3) of KIX. On 121

average, it shares 36% of the fraction of native inter-molecular 122

contacts (Qint) with the original NMR structure, as shown in 123

Figure 2.c. These contacts mainly involve the interaction of 124

c-Myb residues Leu298 and Leu302 with residues across the 125

primary binding interface: Leu302 contacts Leu603, Leu653, 126

and specially Leu607 of KIX, which is buried down in the 127

pocket, whereas Leu298 establishes additional native contacts 128

with Ala610, Ile657, and Tyr658. Qint reaches up to 80% in 129

those microstates exhibiting the tightest bound conformations, 130

and, in addition to the leucine binding, they feature most of 131

the contacts between the C-terminal half of c-Myb and KIX, 132

40



“output” — 2021/11/18 — 12:47 — page 41 — #55

DRAFT

a c d

b

Fig. 2. KIX & c-Myb binding model. a) States distribution across the TICA space: microstates are represented as dots and are colored following their macrostate
assignment. b) Representative structures: PDB structure 1SB0 is depicted with KIX as gray surface, c-Myb bound to the primary interface as a yellow ribbon, and c-Myb
bound to the secondary interface as a blue ribbon. c-Myb backbones for 30 representatives MD structures of bound and secondary states are displayed with blurry yellow and
blue clouds, respectively. c) Macrostate contact fingerprint: profile of contacts established between c-Myb and KIX in each macrostate in at least 50% of the structures. Blue
color represents contacts present in the state but not in the original NMR structure; green indicates original NMR contacts not found in the MSM state; and yellow squares
represent contact matches, found in both NMR and MD structures. d) Macrostate cMyb helicity: helicity fraction per residue of c-Myb in each macrostate. Helicity for the
cMyb peptide alone is depicted in grey in each plot for comparison.

which are not that prevalent across the bound macrostate133

(Supplementary Figure 2). The main contacts missing account134

for the electrostatic interactions established between Arg294135

and the region on α-3. There are some conformations where136

these interactions occur, but their are prevalence in those137

microstates is less than 50%.138

Secondary structure profile for MD derived states matches139

the experimental description of c-Myb (14, 19), as shown in140

Supplementary Figure 3: the 25 residues are separated in two141

halves by residues Met303 and Ser304. The N-terminal half142

shows a high helical tendency, around 20-30% for residues143

in positions 297 to 302 with c-Myb in isolation, being max-144

imal in bound states. Experimentally, this N-terminal half145

in isolation reaches even higher helicity levels (∼70%) when146

using an extended construct of c-Myb (14). On the other147

hand, the C-terminal section exhibits low helical propensity148

when in isolation, and increases when bound to KIX,. The149

full helix conformation only appears in those microstates with150

the tightest bound conformations.151

Secondary binding mode. The existence of alternative bind-152

ing poses between c-Myb and KIX has also been reported153

(14). The MSM shows the presence of a secondary binding154

mode (referred as secondary), occupying a novel interface,155

located between α-1 and α-2 (Figure 1.b and Supplementary156

Figure 9). The interaction of the secondary state resembles157

the bound binding mode: the N-terminal half is folded in the158

typical α-helix, while the C-terminal section remains mostly159

unstructured. The presence of a native contact in this sec-160

ondary binding mode is due to the penetration of Leu302,161

locating close to Leu603’s backbone in KIX, rather than by162

side-chain proximity. Leu298 and Leu302 of c-Myb are deeply163

buried in an hydrophobic pocket composed by residues Val604,164

Val608, Leu620 (found in the G2 helix, which connects α-1165

and α-2) and Val629. Kinetically, there is a 10-fold differ- 166

ence in the mean first passage time for binding between both 167

sites — (9.96 ± 3.57) · 103 ns for binding to bound site and 168

(1.05±0.46) ·105 ns for the secondary site — that may account 169

for the preferential binding of c-Myb to the primary interface. 170

Model validation. To validate the model, we compared the ki- 171

netic parameters derived from it with available information 172

(17). Experimental values from Shammas et al. were cal- 173

culated at temperatures ranging from 278 to 298 K, while 174

simulations were executed at physiological temperature (310 175

K). kon values display a temperature independent tendency, 176

whereas for temperature dependent variables koff and kd val- 177

ues had to be extrapolated to 310K (Supplementary Figure 4). 178

Hence, reference values for koff and free energy (obtained from 179

kd) resulted in 866 s−1 and -6.81 kcal mol−1 respectively. 180

Due to the size of the peptide compared to the solvation 181

box it is hard for the MSM to automatically define the correct 182

bulk state. We therefore defined a bulk state that contains 183

conformations where the distance between KIX and cMyb is 184

maximized. Bulk state was defined by taking those microstates 185

where the minimum distance between KIX and cMyb is higher 186

than a threshold. Consequently, some kinetic and thermody- 187

namic estimates have a dependency on such distance threshold 188

(Supplementary Figure 6a) as this affects the definition of 189

the bulk state. However, the computed koff and free energy 190

estimates are practically stable after a minimal separation dis- 191

tance of just 4 Å. The MSM estimation of kon is not affected 192

by the bulk state distance threshold. The obtained estimate 193

is (3.61 ± 1.56) · 107M−1s−1, in agreement with the experi- 194

mental value (2.2 ± 0.2) · 107M−1s−1 (17). koff estimates 195

range from 6.73 · 103 s−1 to 21.73 · 103 s−1, overestimating 196

the extrapolated experimental value by an order of magni- 197

tude. Free energy estimates range from −6.27 kcal mol−1 to 198
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Fig. 3. Complete c-Myb binding process to KIX domain. Main pathways leading from Bulk (macrostate 14) to the Bound state (macrostate 12). Fluxes are shown as
percentages near the arrows. Only those fluxes higher than 5% are shown. The arrow thickness is proportional to the flux percentage. Straight arrows indicate the maximum
flux path, while dashed arrows show other fluxes. Each macrostate structure shows KIX as the white surface and ribbons and c-Myb as the orange ribbon and tubes. For each
macrostate, 25 conformations are shown as thin tubes with one structure highlighted as a ribbon structure that includes the side chain of Leu302, colored by atom element.
Additionally, for macrostate 7 and 12, the reference NMR c-Myb structure is shown as a transparent red ribbon for comparison.

−7.09 kcal mol−1, containing the extrapolated experimental199

value inside the interval.200

We further verified the reproducibility of the kinetic and201

thermodynamic measurements to ensure model convergence by202

building multiple MSMs using incrementally more trajectories.203

Convergence is reached at 150 µs on all the aforementioned204

estimates (Supplementary Figure 5). The discrepancy between205

the experimental reference and computed koff values translate206

into a faster dissociation in our model. We also verified if this207

was due to normal discretization errors in the MSM projection208

or to the fact that our simulations did not obtain a complete209

bound conformation between KIX and cMyb. In order to210

test this hypothesis, additional long trajectories (8 replicas211

of 2 µs each) were run starting from bound NMR and MD212

derived conformations. We constructed an MSM using both213

simulation datasets. However, the free energy estimations are214

only marginally improved (Supplementary Figure 6b). Thus,215

we concluded that the additional bound simulations do not216

add additional information and we restrict the analysis with217

just the AdaptiveBandit set of simulations as this is the most218

general case where no NMR information is available.219

Binding follows both induced-fit and conformational selec-220

tion. In order to gain additional structural insight of the bind-221

ing process, we constructed an MSM with a higher number of222

macrostates, using the same lag time. We used transition path223

theory (27, 28) to calculate fluxes leading from the purely bulk224

state to the bound conformations. Out of the 15 macrostates225

of the new MSM, only a reduced set of 6 is sufficient to ex-226

plain binding to the primary interface. The other macrostates227

describe either the secondary binding mode or other unstable228

interactions between KIX and cMyb. The network generated229

by the flux interchanges between macrostates (Figure 3) can230

be separated into three events: the establishment of the initial231

contacts, binding and folding of the N-term section of cMyb232

and finally, reaching the bound conformation by binding and 233

folding of the C-term section of cMyb. The first step of the 234

binding process features the first native contacts found across 235

the KIX—c-Myb binding pathway, which involves residues 236

Leu302 of c-Myb. The role of Leu302 as the main driving 237

force for the interaction has already been described (3), and 238

is due in part to the kink in the helix created by neighbours 239

residues Met303 and Ser304, which exposes Leu302 allowing 240

for a deep penetration inside the binding pocket. Besides, on 241

the KIX residues contacted at this stage is Leu603, which is 242

one of the most exposed residues in the hydrophobic pocket 243

later occupied by Leu302. 244

To determine if cMyb folding precedes or follows binding 245

at this step, we looked at the flux passing through different 246

cMyb conformations in macrostate 13 (Supplementary Figure 247

8). We see that almost half of the flux goes through N- 248

term helical conformations, suggesting that the presence of 249

helix in residues 297 to 302 facilitates these first binding step, 250

following a conformational selection mechanism. There is 251

also a considerable flux going through unfolded conformations, 252

meaning there is also Leu302 binding through induced-fit. 253

The second step of the binding process goes from macrostate 254

13 to macrostate 11, where several contacts are formed across 255

the N-term of cMyb. The last step, which goes from macrostate 256

11 to 12 (the bound state), involves forming the last contacts on 257

the C-term and completely folding cMyb. Here, we also looked 258

at the flux passing through macrostate 11 (Supplementary 259

Figure 8c) to discern between conformational selection and 260

induced-fit on the C-term folding and binding mechanism. 261

Here, all the flux goes through conformations where the C- 262

term is unfolded, meaning that only when the C-term native 263

contacts start to happen we see a complete cMyb folding to 264

an alpha helix, following a clear induced-fit mechanism. 265

The overall mechanism works as an induced-fit binding 266

and folding, but we can see a mixed mechanism during the 267
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first binding steps, where both conformational selection and268

induced-fit seem to take a part in facilitating the first contacts269

through cMyb’s Leu302. In summary, initial steps can be270

greatly benefited from pre-folded helical structures of c-Myb271

(Figure 3), although Binding before folding is also observed.272

Binding of helical conformations dominates the initial steps273

of the interaction, but for the interaction of the C-terminal274

tail, folding follows binding. No limiting steps in the binding275

process are observed; hence no possible transition states can276

be defined, as pointed out by experimental reports (17).277

Conclusion. The analysis presented here provides a detailed278

molecular description of binding of c-Myb to the primary279

interface of KIX, summarized as a two-step process, where280

initially the N-terminal region of c-Myb binds with a preferred281

helical conformation, allowing the formation of native contacts282

and, in the last step, folding and binding of the C-terminal.283

Study of the fluxes derived from the MSM show the relevance284

of residue Leu302, not only in the final bound structure, but285

also as the responsible of establishing the first contacts and286

serving as an anchoring point between c-Myb and KIX.287

The model describes an overall induced-fit binding mecha-288

nism, as the complete folding of cMyb is only observed when289

native contacts have been formed. Conformational selection290

would only affect the first binding stage on residues 298 to 302291

and not the whole length of the peptide, whereas the latter292

stages of binding follow an induced-fit mechanism.293

Overall, our results provide a detailed mechanistic model294

for the binding of c-Myb to the primary interface of KIX,295

as well as showing the interaction with a secondary binding296

site, by using unbiased full-atom MD simulations and MSM297

analysis. The novel MD sampling approach used in this work,298

AdaptiveBandit, had a crucial role in resolving this type of299

folding and binding process. The method is implemented and300

available in the HTMD python package (23). However, more301

algorithms can be derived within the same adaptive bandit302

framework. While here we choose the reward to be minus the303

free energy, other choices could optimize different costs, for304

example, improving the precision of the off-rate or optimizing305

sampling in the context of structure prediction.306

Materials & Methods307

Molecular dynamics simulations. In order to generate initial confor-308

mations for c-Myb (residues 291 to 315), we ran multiple parallel309

simulations. The peptide was solvated in a cubic water box of 64 Å310

side with a NaCl concentration of 0.05 M . First, the peptide was311

simulated at 500 K for 120 ns to unfold the initial structure.312

Then, 200 systems were built by placing one random unstruc-313

tured c-Myb conformation in conjunction with KIX in opposite314

corners of a 64 Å side cubic water box with a NaCl concentration315

of 0.05 M , resulting in final protein concentration of ∼3.2 mM.316

All systems were built using HTMD (23) and simulated with317

ACEMD (29), the CHARMM22* force field (30) and TIP3P water318

model (31). A Langevin integrator was used with a damping con-319

stant of 0.1 ps-1. The integration time step was set to 4 fs, with320

heavy hydrogen atoms (scaled up to four times the hydrogen mass)321

and holonomic constraints on all hydrogen-heavy atom bond terms.322

Electrostatics were computed using PME with a cutoff distance of 9323

Å and grid spacing of 1 Å. After energy minimization, equilibration324

for all systems was done in an NPT ensemble at 303 K, 1 atm, with325

heavy atoms constrained at 1 kcal mol−1 Å2. Energy minimization326

was run for 500 steps and equilibrated for 2 ns.327

Production runs of 250 ns were performed at 310 K using the328

distributed computing project GPUGrid (32), following an adaptive329

sampling strategy. The final data set included 1,809 trajectories of330

250 ns, resulting in a aggregated simulation time of ∼450 µs. Addi- 331

tionally, a set of long MD runs were performed starting from bound 332

structures. Four models of the NMR determined structure and 333

four random bound conformations were selected and equilibrated as 334

previously described. A total of 8 long trajectories of ∼ 2 µs each 335

were generated. 336

Markov state model analysis. The projected space used for building 337

the MSM included four different featurizations: all pair Cα + Cβ 338

atoms distances between KIX and c-Myb to account for the inter- 339

action between the two proteins, self-distances between every Cα of 340

c-Myb and its secondary structure, to monitor its conformation, and 341

finally, RMSD to the bound structure. TICA was used at a lag time 342

τ = 20 ns (implied timescales are shown in Supplementary Figure 343

1.a) for both the distance features and the secondary structure 344

features, taking the 4 most relevant components from the distance 345

features (both inter-distances and cMyb self-distances) and the 3 346

most relevant components from the secondary structure features. 347

The 8-dimensional projected data was discretized into 2,000 clus- 348

ters using the mini batch k-means algorithm (33). The microstates 349

defined in the MSM were coarse-grained into larger meta-stable 350

macrostates by using PCCA++ (34). For the estimation of kinetic 351

values, the original MSM was modified by creating an additional 352

macrostate, considered as the bulk state for all subsequent calcula- 353

tions to obtain the kinetics of binding. The bulk state was created by 354

taking those microstates where the minimum distance between KIX 355

and cMyb was higher than a threshold. Error in kinetic measures 356

was estimated by creating 50 independent MSMs using a random 357

set containing 80% of the simulation data. 358

To obtain the kinetic pathway of binding and folding, we in- 359

creased the number of macrostates in the MSM using PCCA++ 360

again. Fluxes between macros were estimated using transition path 361

theory (27, 28). For the intra-macrostate flux analysis, we computed 362

the mean helicity of cMyb for each microstate in it, and clustered 363

them into 4 main states which describe the peptide’s grade of helix 364

formation. All analysis were performed with HTMD (23). 365

AdaptiveBandit sampling. The multi-armed bandit problem is de- 366

fined by 〈A,R, γ〉, where an action at ∈ A and Ra is a (stochastic) 367

reward function. We choose γ = 0 for totally discounted rewards. 368

The optimal policy πa ∼ P[a] selects actions at in order to maxi- 369

mize the cumulative future rewards. The construction of an optimal 370

selection strategy requires handling the exploration-exploitation 371

problem. AdaptiveBandit relies on the UCB1 algorithm (25), defin- 372

ing an upper confidence bound for each action-value estimate based 373

on the number of times an action has been picked and the total 374

amount of actions taken 375

at = argmax
a∈A

[
Qt(a) + c

√
ln t
Nt(a)

]
, [1] 376

where t denotes the total number of actions taken, Qt(a) = Eπ [r|a] 377

is the action-value estimation, Nt(a) is the number of times action 378

a has been selected (prior to time t) and c is a constant controlling 379

the degree of exploration. As for the reward definition, there are 380

different choices depending on the objective, e.g. here, the interest 381

is sampling the bound metastable state, hence, we rewarded actions 382

based on the stability of conformations using MSM estimations of 383

the free energy for each state 384

Ra =< kBT log(µ(x)) >(a,x1,...,xτ ), [2] 385

where µ(x) is the equilibrium distribution estimated by the MSM 386

with the current available data and the average is performed over 387

the frames in the trajectory starting from a. AdaptiveBandit uses 388

the MSM discretized conformational space to define the action set 389

and at each round acquires a random conformation from the selected 390

states to respawn new simulations. A more formal description of the 391

bandit framework and AdaptiveBandit in the context of adaptive 392

sampling as well as analysis in simpler, analytical potentials are 393

available at (24). The AdaptiveBandit sampling algorithm is made 394

available in the HTMD (23) Python package. 395

Adaptive Sampling parameters. For both the AdaptiveBandit and 396

the count Adaptive runs, the construction of MSMs at each epoch 397

was done using the residue-residue contacts between KIX and c-Myb 398
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measured as the minimum contacts between residues at a threshold399

of 5 Å, and the backbone dihedral angles of c-Myb. Time indepen-400

dent component analysis (TICA) (35) was used for dimensionality401

reduction using a lag time of τ = 20 frames and keeping the 3 first402

dimensions, which were later clustered with a k-centers algorithm.403

AdaptiveBandit was performed during 40 epochs with a c value of404

0.01.405
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a

d

b c

Fig. S1. Markov state model summary a) Implied time scales of the MD data. b) Microstate distribution across the first two TICA dimensions. Each microstate is colored by
their corresponding macrostate. Legend shows the population of each macrostate. c) AdaptiveBandit exploration of the TICA space. Each colored point indicates a starting
point selected by AdaptiveBandit to respawn a new trajectory. Color indicates the epoch number. In grey, the area covered by the projected simulation data without clustering,
both in b) and c). d) Flux pathway from bulk to bound. Nodes are placed according to the committor probability. The y axis is manually set for better visualization of the graph.
Node size is proportional to the equilibrium distribution. Node color corresponds to macrostate assignment as in b). Flux percentage is shown near each arrow. Main pathway is
indicated with black, thicker arrows.
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Fig. S2. Maximum Qint microstates contact fingerprint. Profile of contacts established between c-Myb and KIX in microstates with maximum fraction of native binding
contacts Qint. Blue color represents contacts present in the state but not in the original NMR conformation, green indicates native contacts not found in the MSM state and
yellow squares represent a match on that contact, found in both the NMR model and MD microstate. A contact is considered present in a microstate when it appears in at least
50% of the conformations in that state.
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Fig. S3. c-Myb helicity. Comparison of the by-residue helicity fraction of c-Myb between the four microstates with maximum Qint. The helicity profile for the peptide in
isolation is depicted in grey.
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Fig. S4. Extrapolations of a) kd and b) koff values from experimental data.
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Fig. S5. Statistics convergence across the MD run of a) kon, b) koff, c) free energy and d) microstate minimum RMSD, e) bound state maximum Qint and f) bound state
population, computed by the MSM. Each data point was calculated by building 10 different MSMs, bootstraping 80% of the trajectories each time.
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a

b

Fig. S6. a) Bulk state variability of kon, koff, free energy and metastability term, depending on the maximum distance threshold between KIX and cMyb used. The metastability
term is defined as the bulk state self-transition probability (named for plot simplicity). Blue line shows the variable estimate, red line shows the reference experimental value and
yellow line shows the defined threshold for deciding whether the bulk state is stable enough or not. b) Free energy estimates at different MSM lag times for the AdaptiveBandit
simulations alone and together with the long trajectories starting from the NMR structures. The models were performed without defining a bulk state.
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ba

c

Fig. S7. Complete binding process of c-Myb to KIX. Structural analysis of the states involved in the main binding flux pathway on the 15 macrostate MSM. a) Mean helicity
per residue and b) mean contacts profile is shown for the macrostates present in the binding process. c) Main pathways leading from Macrostate 14 (Bulk ) to Macrostate 12
(Bound). Nodes are placed according to the fraction of native contacts Qint with respect to the NMR model on the x axis, and mean helicity on the y axis. Arrows represent
the connection between macrostates, and their color, thickness and trace the percentage of the total flux traversing them.
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a b

c

Fig. S8. Detailed intra-macrostate flux analysis. a) Cluster centers corresponding to the four main cMyb folded states: Full helix, Unfolded, N-terminal helix, C-terminal helix.
These centers were computed using the mean helicity of all microstates. The centers are displayed with bar plots showing the helicity per residue. b,c) Flux pathways across
clustered macrostates 13 (b) and 11 (c). The selected macrostates were clustered using the four centers defined in a), and the flux was recomputed using these newly defined
clusters. Node colours and names indicate which cluster center from a) they correspond. Node positioning was manually set for visualization purposes. Arrows represent the
connection between macrostates/clusters, and their color, thickness, and trace the percentage of the total flux traversing them.
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c

a b

Fig. S9. Secondary binding path of KIX and c-Myb. Study of the states involved in the secondary binding pathway, using the 15 macrostate MSM. For selected macrostates
the a) mean helicity and b) KIX—c-Myb contacts profile is shown. Contact and helicity data for macrostates 10 and 13 are shown in FigS7. c) Main pathways leading from
Macrostate 14 (Bulk) to Macrostate 6 (Secondary). Nodes are placed according to the maximum distance between KIX and cMyb of each state on the x axis. The y axis is
manually set for better visualization of the graph. Arrows represent the connection between macrostates, and their color, thickness, and trace the percentage of the total flux
traversing them.

10 of 10 Pablo Herrera-Nieto, Adrià Pérez and Gianni De Fabritiis

54



“output” — 2021/11/18 — 12:47 — page 55 — #69

3.3 TorchMD: A Deep Learning Framework
for Molecular Simulations

Doerr S, Majewski M, Pérez A, Krämer A, Clementi C, Noé F, Giorgino
T, De Fabritiis G. TorchMD: A Deep Learning Framework for Molecular
Simulations. Journal of Chemical Theory and Computation 2021;17(4):2355-
2363

Summary

In this paper, we present TorchMD, a framework made to combine
molecular simulations with machine learned potentials. TorchMD is a
molecular dynamics code made entirely with PyTorch, which allows for
an easy integration with other machine learning potentials based in the
same library. The common bonded and non-bonded terms of MD are ex-
tended with an additional term for neural-network based potentials. Ad-
ditionally, due to the intrinsic nature of PyTorch, TorchMD is able to per-
form end-to-end differentiable simulations.
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3.4 Simulations meet machine learning in struc-
tural biology

Pérez A, Martı́nez-Rosell G, De Fabritiis G. Simulations meet ma-
chine learning in structural biology. Current Opinion in Structural Biol-
ogy 2018;49:139-144.

Summary

In this opinion article we precede the upcoming scenario of molec-
ular simulations being used as a data generation tool, where machine
learning methods will be used to construct predictive models based on
expensive simulation data. We discuss the data generation capacity of
MD simulations, as well as its limitations in sampling and accuracy, and
we envision the combination of simulations with novel machine learning
algorithms to fix the of low-throughput, high-latency predictions of MD
simulations.
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ABSTRACT: Molecular dynamics simulations provide a mechanistic description of molecules by relying on
empirical potentials. The quality and transferability of such potentials can be improved leveraging data-driven
models derived with machine learning approaches. Here, we present TorchMD, a framework for molecular
simulations with mixed classical and machine learning potentials. All force computations including bond, angle, dihedral, Lennard-
Jones, and Coulomb interactions are expressed as PyTorch arrays and operations. Moreover, TorchMD enables learning and
simulating neural network potentials. We validate it using standard Amber all-atom simulations, learning an ab initio potential,
performing an end-to-end training, and finally learning and simulating a coarse-grained model for protein folding. We believe that
TorchMD provides a useful tool set to support molecular simulations of machine learning potentials. Code and data are freely
available at github.com/torchmd.

1. INTRODUCTION

Classical molecular dynamics (MD) is a compute-intensive
technique that enables quantitative studies of molecular
processes. Of the possible modeling approaches, classical all-
atom MD represents all of the atoms of a chosen system
explicitly (including solvent) and accounts for interatomic
forces through classical bonded and nonbonded potentials. It
has seen remarkable developments due to its fidelity, and it has
been applied with success to problems such as conformational
changes, folding, binding, permeation, and many others.1 It
has, however, faced two significant challenges: first, the
calculation of the tables of interatomic potentials known as
force fields2 has traditionally been highly time-consuming and
requires significant fine-tuning; second, it is compute-intensive,
and despite heroic efforts and progress in accelerating MD
codes,3 it still struggles to reach the temporal scales of several
important physiological processes.
Machine learning (ML) potentials have become especially

attractive with the advent of deep neural network (DNN)
architectures, which enable the example-driven definition of
arbitrarily complex functions and their derivatives. As such,
DNNs offer a very promising avenue to embed fast-yet-
accurate potential energy functions in MD simulations, after
training on large-scale databases obtained from more expensive
approaches. One particularly interesting feature of neural
network potentials is that they can learn many-body
interactions. The SchNet architecture,4,5 for instance, learns a
set of features using continuous filter convolutions on a graph
neural network and predicts the forces and energy of the
system. SchNet was originally used in quantum chemistry to
predict energies of small molecules from their atomistic
representations. A key feature of using SchNet is that the
model is inherently transferable across molecular systems.
More recently, this has been extended to learn a potential of
mean force which involves averaging of a potential over some

coarse-grained degrees of freedom,6−12 which however pose
challenges in their parametrization.13,14 Indeed, molecular
modeling on a more granular scale has been tackled by so-
called coarse-graining (CG) approaches before,15−20 but it is
particularly interesting in combination with DNNs.
Here, we introduce TorchMD, a molecular dynamics code

built from scratch to leverage the primitives of the ML library
PyTorch.21 TorchMD enables the rapid prototyping and
integration of machine-learned potentials by extending the
bonded and nonbonded force terms commonly used in MD
with DNN-based ones of arbitrary complexity. The two key
points of TorchMD are that, being written in PyTorch, it is
very easy to integrate other ML PyTorch models, like ab initio
neural network potentials (NNPs)5,22 and machine learning
coarse-grained potentials.8,9 Second, TorchMD provides the
capability to perform end-to-end differentiable simula-
tions,14,23,24 being differentiable on all of its parameters.
Similarly, Jax25 was used to perform end-to-end differentiable
molecular simulations on Lennard-Jones systems26 and for
biomolecular systems as well.27 Other efforts have tackled the
integration of MD codes with DNN libraries, although in
different contexts. For all-atom models, Wang et al.23

demonstrated the use of graph networks to recover empirical
atom types. Ab initio QM-based training of potentials is being
tackled by several groups, including Gao et al.,22 Yao et al.,28

and Schütt et al.29 but not using a differentiable PyTorch
environment.
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This paper provides an account of the capabilities of
TorchMD (Section 2), highlighting the functional forms
supported and an effective fitting strategy for data-driven
DNN potentials. All of the TorchMD code, including a tutorial
on coarse-graining the chignolin protein and the corresponding
training data, is open-source and available at github.com/
torchmd.

2. METHODS
2.1. TorchMD Simulations. TorchMD is, at first glance, a

standard molecular dynamics code. It offers NVT ensemble
simulations including a Langevin thermostat. Starting atomic
velocities are derived from a Maxwell−Boltzmann distribution.
Integration is done using the velocity Verlet algorithm. Long-
range electrostatics are approximated using the reaction field
method.30 TorchMD also supports simulations of periodic
systems. Minimization is done using the L-BFGS algorithm.
Because it is written in Python using PyTorch arrays, it is also
very simple to modify, and simulations can be run on any
devices supported by PyTorch (CPU, GPU, TPU). However,
unlike specialized MD codes31 it is not designed for speed.
TorchMD uses chemical units consistent with classical MD
codes such as ACEMD,31 namely kcal/mol for energies, K for
temperatures, g/mol for masses, and Å for distances.
2.2. Analytical Potentials. TorchMD supports reading

AMBER force-field parameters through parmed.32 In addition
to that, to allow for faster prototyping and development, it
implements its own easy to read YAML-based force-field
format. An example YAML force-field file for the simulation of
a water box is given in Figure 1. Currently, TorchMD’s missing
features include hydrogen bond constraints and neighbor lists.
TorchMD implements the functional form of the AMBER

potential.33 It offers all basic AMBER terms: harmonic bonds,
angles, torsions, and nonbonded van der Waals and electro-
static energies. The above potentials are implemented as
follows. The bonded potential terms are calculated as

= −V k r r( )bonded eq0
2

where k0 is the force constant, r is the distance between the
bonded atoms, and req is the equilibrium distance between
them.
The angle terms are calculated as

θ θ= −θV k ( )angle eq
2

where θ is the angle between the three bonded atoms, kθ is the
angular force constant, and θeq is the equilibrium angle.
The torsion terms are calculated as

∑ ϕ γ= + −
=

V k n(1 cos( ))torsion
n

n

n
1

max

where ϕ is the dihedral angle between the four atoms, γ is the
phase offset, and kn is the amplitude of the harmonic
component of periodicity n.
The nonbonded van der Waals (VdW) terms are calculated

as

= −V
A

r
B
rVdW 12 6

where A = 4ϵσ12 and B = 4ϵσ6 with ϵ being the well depth of
the interaction of two atoms, and σ is the distance at which the
energy is zero. The VdW potential also supports a cutoff by

using a switching distance. Its energy is then obtained by
multiplying the VVdW term with the scaling factor

= − + −S x x x1 6 15 105 4 3

= − −x r r r rwith ( )/( )s c s

where rs is the switching distance, and rc is the cutoff distance.
Electrostatics without cutoff are implemented using the

following potential

=V k
q q

relectrostatic e
i j

where =
πϵke
1

4 0
is Coulomb’s constant, qi and qj are the

charges of the two atoms, and r is the distance between them.
Electrostatics with cutoff are modified to use the reaction field
method30 as follows
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Figure 1. An example YAML force field for water molecules.
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where rc corresponds to the cutoff distance, and ϵsol
corresponds to the solvent dielectric constant.
In addition to the above, TorchMD also trivially allows the

use of any other external potential Vext written in PyTorch
which takes atomic coordinates as input and output energy and
forces.
Thus, the total potential is calculated as

∑ ∑ ∑
∑ ∑ ∑
= + +

+ + +
<

V
n

V
n

V
n

V

V V
n

V( )

total

bonds

bonded

angles

angle

torsions

torsion

i

n

j i

n

VdW electrostatic

ext

ext

atoms atoms

(1)

Since PyTorch offers automatic differentiation, there is no
need to calculate analytical gradients from the forces. Forces
can be obtained with a single autograd PyTorch call on the
total energy of the system. Analytical gradients have been
nevertheless implemented for all analytical AMBER potential
terms for performance reasons.
2.3. Training Machine Learning Potentials. TorchMD

provides a fully usable code for training neural network
potentials in PyTorch called TorchMD-Net (github.com/
torchmd/torchmd-net). Currently we are using a SchNet-
based4 model. However, it would be straightforward to derive
the forces from nonparametric kernel methods like FCHL,34

by providing a simple force calculator class, or other ML
potentials. This object just takes as input the positions and box
every time step and returns the external energies and forces
computed with the method of choice.
For the present work, we took the featurization and atom-

wise layer from SchNetPack29 but rewrote entirely the training
and inference parts. In particular, to allow training on multiple
GPUs, the network is trained using the PyTorch lightning
framework.35 TorchMD can also run concurrently a set of
identical simulations by just changing the random number
generator seed, arranging the neural network potential into a
batch for speed, thus recovering, at least partially, the efficiency
of optimized molecular dynamics codes.
For the QM9 data set,36 we trained the model using a

standard loss function using mean square error over the
energies. For the coarse-grained model, training is performed
using the bottom-up “force matching” approach, focused on
reproducing thermodynamics of the system from atomistic
simulations, as described in previous work.8,9

3. RESULTS
To demonstrate the functionalities of TorchMD, here we
present some application examples. First, a set of typical MD
use cases (water box, small peptide, protein, and ligand) is
used mainly to assess speed and energy conservation. Second,
we validate the training procedure on QM9, a data set of 134k
small molecule conformations with energies.36 In this case,
however we cannot run any dynamical simulations as the data
set only presents ground state conformations of the molecules,
so we are mainly validating the training. Then, we demonstrate
end-to-end differentiable capabilities of TorchMD by recover-
ing force-field parameters from a short MD trajectory. Finally,
we present a coarse-grained simulation of a miniprotein,
chignolin,37 using NNP trained on all-atom MD simulation
data. Here, we also describe how to produce a neural network-
based coarse-grained model of chignolin, although the
methods exposed are general to any other protein. A step-

by-step example of the training and simulating CG model is
presented in the tutorial available in the github.com/torchmd/
torchmd-cg repository.

3.1. Simulations of All-Atom Systems and Perform-
ance. The performance of TorchMD is compared against
ACEMD3,31 a high-performance molecular dynamics code. In
Table 1, we can see the three different test systems comprised

of a simple periodic water box of 97 water molecules, alanine
dipeptide, and trypsin with the ligand benzamidine bound to it.
As it can be seen, TorchMD is around 60 times slower on the
test systems than ACEMD3 running on a TITAN V NVIDIA
GPU. Most of the performance discrepancy can be attributed
to the lack of neighbor lists for nonbonded interactions in
TorchMD and is currently prohibitive for much larger systems
as the pair distances cannot fit into GPU memory. This is not a
strongly limiting factor for the CG simulations conducted in
this paper as the number of beads remains relatively low for the
test case. However, we believe that, with an upcoming
implementation of neighbor lists, TorchMD can reach a
much better performance, albeit still slower than highly
specialized codes as ACEMD3 due to the generic nature of
PyTorch operations in addition to the PyTorch library
overhead.
Despite the low performance of the current TorchMD

implementation, its end-to-end differentiability allows re-
searchers to perform experiments which would not be possible
with traditional much faster MD codes as demonstrated in the
following sections.
To evaluate the correctness of the TorchMD implementa-

tion of the AMBER force field, we compared it against
OpenMM for 14 different systems ranging from ions, water
boxes, and small molecules to whole proteins, thus testing all
the different force-field terms. In all 14 test cases, the potential
energy difference between OpenMM and TorchMD was lower
than 10−3 kcal/mol when computed with the same parameters.
Energy conservation was validated with TorchMD by running
an NVE simulation of a periodic water box for 1 ns with a 1 fs
time step. Energy conservation normalized per degree of
freedom was calculated as Etotal/ndofR where ndof = 870 is the
number of degrees of freedom of the system, and R is the ideal
gas constant. We obtained a mean value of 1.1 × 10−5 K per
degree of freedom showing a good energy conservation.

3.2. Training Validation on the QM9 Data Set. We
trained and evaluated the performance on the QM9 bench-
mark data set36 in order to validate the training procedure of
TorchMD-Net. QM9 comprises 133,885 small organic
molecules with up to nine heavy atoms of type C, O, N, and
F reporting several thermodynamic, energetic, and electronic
properties for each molecule. We trained on the energy U0 and
excluded 3,054 molecules due to failed geometric consistency
checks as suggested by the data set. The remaining molecules
were split into a training set with 110,000 samples and a
validation set with 6,541 samples (5%), leaving 14,290 samples
for testing.

Table 1. Performance Comparison for 50,000 Steps at 1 fs/
timestep on Different Systems

system atoms TorchMD ACEMD

water 291 6 min 56 s 7 s
alanine dipeptide 688 8 min 44 s 8 s
trypsin 3,248 13 min 2 s 16 s
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The network was trained using an Adam optimizer38 with a
learning rate scheduler on multiple GPUs by using PyTorch
Lightning.35 An example of the configuration file for QM9
training is presented in Figure 2. We performed multiple

trainings using TorchMD-Net with different amounts of
training data (Figure 3). The learning rate scheduler was

determined with a patience of 10 on a validation subset of 5%
of all data chosen at random. The performance reported is for
the randomly chosen test set. The linear shape of the test
performance in the log−log scale demonstrates the correctness
of the training.39 With the current set of hyperparameters
(Figure 2), we report a best performance of 10 meV for
110,000 training points, marginally better than the reported
best performance of SchNet for QM9.29

3.3. Demonstration of End-to-End Differentiable
Simulations. The availability of automatic differentiation
(AD) within a molecular dynamics package is beneficial
beyond ML applications. Being able to compute gradients for
all numerical operations opens up new avenues for sensitivity
analysis, force-field optimization, and steered MD simulations,
as well as simulations under highly complex constraints and
restraints. To demonstrate these capabilities, the present
example infers force-field parameters from a short MD
trajectory.

First, a small water box containing 97 water molecules and
one Na+/Cl− ion pair was simulated using the TIP3P water
model with flexible bonds and angles. After energy
minimization and NVT equilibration at 300 K, the simulation
was run for 10 ps in the microcanonical ensemble. The
simulation used a 1 fs time step, a 9 Å cutoff with a 7.5 Å
switch distance, and reaction field electrostatics. Coordinates
and velocities were saved every 10 steps.
Next, all partial atomic charges q in the system were

annihilated (in practice, they were scaled by 0.01 to ensure
nonvanishing gradients of the electrostatic potential). In order
to infer q from the MD trajectory, the integrator was initialized
with snapshots r(ti), v(ti) from the trajectory. Then, 10 steps of
simulation were run with the modified charges, and the final
positions from this short simulation were compared with the
respective subsequent trajectory snapshot r(ti+1). In other
words, the simulation served as a parametrized propagator Q:
(r(t), v(t); q)|→r(t + δt) with δt = 10 fs. Due to the AD
capabilities within TorchMD, this propagator is end-to-end
differentiable.
To recover the charges, we minimized the loss function

= − +L r t v t q Q r t v t q r t( ( ), ( ); ) ( ( ), ( ); ) ( )i i i i i 1 2
2

i.e., the mean-squared distance between the ground-truth
trajectory and the propagated coordinates (taking into account
periodic boundary conditions). This loss function is differ-
entiable with respect to the charges q so that gradients can be
obtained via backpropagation. Training was performed using
Adam with a learning rate of 10−3 over one snapshot at a time.
To enforce net neutrality, the positive charges (qH and +qNa )
were implicitly obtained from the oxygen and chlorine charges,
and only qO and −qCl were explicitly optimized. Figure 4 shows
the evolution of the training loss and the partial atomic charges

Figure 2. An example of a training input file for training QM9.

Figure 3. Learning curve for the QM9 data set.

Figure 4. Inference of partial atomic charges q from a short trajectory.
Training loss (top) and charges (bottom) during training.
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during training. After just one epoch (1000 iterations), the
original charges were recovered up to 3% accuracy.
3.4. Coarse-Graining All-Atom Systems. For our last

application example, we built two coarse-grained models of
chignolin: one solely based on α-carbon atoms (CA) and
another one based on α-carbon and β-carbon atoms (CACB)
(Figure 5).

3.4.1. Training Data. We selected the CLN025 variant of
chignolin (sequence YYDPETGTWY), which forms a β-
hairpin turn while folded (Figure 5). Due to its small size (10
amino acids) and fast folding, it has been extensively studied
with MD.40−45 Training data was obtained from an all-atom
simulation of the protein in explicit solvent with ACEMD31 on
the GPUGRID.net distributed computing network.46 The
system containing one chignolin chain was solvated in a cubic
box of 40 Å, containing 1881 water molecules and two Na+

ions. The system was simulated at 350 K with the
CHARMM22* force field47 and the TIP3P model of
water.48 A Langevin integrator was used with a damping
constant of 0.1 ps−1. The integration time step was set to 4 fs,
with heavy hydrogen atoms (scaled up to four times the
hydrogen mass) and holonomic constrains on all hydrogen-
heavy atom bond terms.49 Electrostatics were computed using
Particle Mesh Ewald with a cutoff distance of 9 Å and a grid
spacing of 1 Å. We used an adaptive sampling approach50

where new simulations were started from the least explored
states. As a result, we obtained a total simulation time of 180
μs with forces and coordinates saved every 100 ps giving a total
of 1.8 × 106 frames.
To obtain the training data for the CA model, the initial

training set of coordinates and forces was filtered to retain only
CA atoms positions and forces. In this example, a coarse-
grained system contains 10 beads, built out of seven unique
types of beads, one for each amino acid type. The training set
for the CACB model as prepared in a similar fashion, filtering
both CA and CB atoms and achieving 19 beads and 8 unique
types of beads, as all CA atoms was classified as one bead type
with the exception of glycine, and each CB was assigned an
amino acid-specific bead type. Details of bead selection for
both models are described in Supporting Methods.
3.4.2. Neural Network Potential Training. For coarse-

grained simulations, it is important to provide some prior
(fixed) potentials in order to limit the space that the dynamics
can visit to the space sampled in the training data.9 All the
terms of the force field could be applied, but for simplicity, we
limit them to bonds and repulsions. Bonds prevent the protein
polymer chain from breaking, and repulsions stop computing
NNP on very close atom distances where there is no data.

For pairwise bonded terms, we used the all-atom training
data to construct distance histograms for each pair of bonded
bead types. Specifically, for each bonded pair, we counted the
fraction of time that the respective distance spent in an equally
spaced bin in a distance range appropriate to the bead
selection, 3.55 and 4.2 Å for all bonds between α carbon beads
and 1.3 and 1.8 Å for all bonds between α carbon and β
carbon. The distance distributions were Boltzmann-inverted to
obtain free-energy profiles, and these were used to fit the
equilibrium distance r0 and the spring constant k of the
respective harmonic potential

= − +V r k r r V( ) ( )harmonic
(prior)

0
2

0

where r is the distance between the beads involved in the bond.
Prior potentials for nonbonded repulsive terms were derived

analogously. Distance histograms were constructed with 30
equally spaced distance bins between 3 Å and 6 Å and were
used to fit the parameter ϵ of the repulsive potential

= ϵ +−V r r V( ) 4repulsive
(prior) 6

0

where r, as above, is the distance between the nonbonded
beads. In fitting the potential curves, we corrected for the
reference state by normalizing counts of each bin by the
volume of the corresponding spherical shell. Nonlinear curve
fits were performed with the Levenberg−Marquardt method of
the SciPy package.51

The parameters of the prior forces are stored in a YAML
force-field file. Plots presenting the quality of fits are included
in the Supporting Information (Figures S1−S4) as well as
YAML files describing the prior force field.
Based on the resulting prior force field and input

coordinates, we calculated a set of prior forces acting on the
beads and then deducted them from true forces, resulting in a
set of forces that we refer to as delta-forces. Along with
coordinates, delta-forces were used as the input for training. In
the case of the CA model, embeddings correspond to integers
unique for each amino acid type. For the CACB model, all α
carbons have the same embedding with the exception of
glycine, and each β carbon has an embedding unique for each
amino acid type.
The network was trained using a force matching approach,

where a predicted force is compared to a true force from the
training set.8,9 In the example presented here, the network
consisted of 3 interaction layers, 128 filters used in continuous-
filter convolution, 128 features to describe atomic environ-
ments, a 9 Å cutoff radius, and 150 Gaussian functions for the
CA model and 300 Gaussians for the CACB model as the basis
set of the convolutions filters. Increasing the number of
Gaussian functions for the CACB model was found to provide
a higher stability of the model and prevent forming collapsed
nonphysical structures during the simulation. Models for
simulation were selected when the validation loss reached a
plateau. The training and validation loss as well as learning
rates are presented in Supporting Figure 5.

3.4.3. Simulation of the NNP. The combinations of the
force fields covering prior forces and the trained networks are
used to simulate both CA and CACB systems with TorchMD.
We introduce the parameters of the simulation as a YAML-
formatted configuration file (Figure 6), although the
simulation can be also started from the command line. The
network is introduced to TorchMD as an external force, with
the specified network’s location, embeddings, and a calculator.

Figure 5.Miniprotein chignolin: heavy-atom representation (left) and
coarse-grained representations: CA beads connected by bonds
(middle) and CA and CB beads connected by bonds (right). The
beads in coarse-grained representations were colored by bead type.
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An external force calculator class must have a “calculate”
method that returns a tuple with energy and forces tensors. In
our case, for both models, we run the simulation at 350 K for
10 ns with a 1 fs time step, saving the output every 1000 fs.
Note that while the simulations use a small time step, the
effective dynamics of the coarse-grained systems is much faster
than the all-atom MD system as the coarse-grained model is
supposed to reproduce the energetics but with much faster
kinetics. Since TorchMD can easily handle parallel dynamics,
we concurrently run ten simulations, of which five start from
the folded state and five start from unfolded conformations.

The free energy surfaces obtained with a time-lagged
independent component analysis (TICA)52 for the all-atom
baseline simulations and the coarse-grained simulations
obtained with TorchMD are presented in Figure 7. The
energy landscapes are obtained from binning the config-
urations over the first two TICA dimensions and computing
the average of the equilibrium probability on each bin,
obtained by Markov state model analysis of the microstate of
each configuration. To support TICA plots, we included plots
with RMSD values for the first 2 ns of representative
trajectories for both models with different starting points
(Figure 8). Plots presenting full trajectories are included in the
Supporting Information (Figures S6−S9). Neither SchNet nor
prior energy terms can enforce chirality in the system, because
they both work purely on the distances between the beads.
Therefore, the RMSD plots were supplemented with RMSD
values of the trajectory’s mirror image.
Results show that the coarse-grained simulations for both

models were able to obtain several folding and unfolding
events for chignolin. The energy landscapes for the CA model
show that it captured the folded state as a global minimum of
energy. The simulations also covers other minima representing
unfolded and misfolded states. However, they do not recreate
the energy barriers connecting these basins (as expected),
which is better seen on the one-dimensional free energy
surfaces (Figure S10). The CACB model also detects the
global minimum correctly but fails at guessing the free energy
of the unfolded region. Overall the simulation is less stable
than for the CA model, and the misfolded state minimum is
incorrectly located.

4. CONCLUSION

In this paper, we demonstrated TorchMD, a PyTorch-based
molecular dynamics engine for biomolecular simulations with
machine learning capabilities. We have shown several possible
applications ranging from Amber all-atom simulations to end-
to-end learning of parameters and finally a coarse-grained
neural network potential for protein folding. In particular,
building an NNP for protein folding requires supplementing it
with asymptotic, analytical potentials for bonds and repulsions
to prevent exploring conformations not visited in the training

Figure 6. An example of a simulation input file.

Figure 7. Two-dimensional free energy surfaces for the reference all-atom MD simulations (left) and the two coarse-grained models, CA (center)
and CACB (right). The free energy surface for each simulation set was obtained by binning over the first two TICA dimensions, dividing them into
a 120 × 120 grid, and averaging the weights of the equilibrium probability in each bin computed by the Markov state model. The reference MD
simulations plot displays the locations of the three energy minima on the surface, corresponding to folded state (red dot), unfolded conformations
(blue dot), and a misfolded state (orange dot). Both reference MD and coarse-grained simulations were performed at 350 K.
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data in which the predictions of NNP are unreliable. We have
shown how to coarse-grain a protein into either α-carbon
atoms or α-carbon and β-carbon atoms. Currently, the CA
model seems to work the best, but future research will indicate
which models are better suited for a more diverse set of targets.
TorchMD end-to-end differentiability of its parameters is a
feature that projects such as the Open Force Field Initiative53

can potentially exploit. Furthermore, for additional speed, we
plan to facilitate the integration of machine learning potentials
in OpenMM54 and ACEMD31 and possibly develop a plug-in
to extend support to more MD engines in the future.
Meanwhile, we believe that TorchMD can play an important
role by facilitating experimentation between ML and MD
fields, speeding up the model-train-evaluate prototyping cycle,
and promoting the adoption of data-based approaches in
molecular simulations. All the code machinery to produce the
models is made available for practitioners at github.com/
torchmd.
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Supporting Methods

Coarse-Graining

Coarse-grained models were constructed based on only α-carbons (CA model) or both α-

and β-carbons (CACB model) of chignolin. For CA model each α-carbon was assigned a

bead_name based on the amino acid of origin, resulting in 7 unique bead types (Tab.S1).

For CACB model all α-carbons, except for glycine, were classified as the same bead type

and each β-carbon was assigned a bead_name based on the amino acid of origin, resulting

in the total of 8 unique bead types (Tab.S2). These selections of beads were then used to

filter the coordinates and forces from full-atomistic simulations and to compute parameters

of the prior energy terms in the simulation force field. Each bead_name has an embedding

associated with it that is later used as an input for the neural network.

Table S1: A set of coarse-grained beads building CA model, along with the embeddings
required for the network.

index atom_name residue bead_name embedding
1 CA TYR CAY 4
2 CA TYR CAY 4
3 CA ASP CAD 5
4 CA PRO CAP 8
5 CA GLU CAE 6
6 CA THR CAT 13
7 CA GLY CAG 2
8 CA THR CAT 13
9 CA TRP CAW 7
10 CA TYR CAY 4

2
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Table S2: A set of coarse-grained beads building CACB model, along with the embeddings
required for the network.

index atom_name residue bead_name embedding
1 CA TYR CA 30
2 CB TYR CBY 4
3 CA TYR CA 30
4 CB TYR CBY 4
5 CA ASP CA 30
6 CB ASP CBD 5
7 CA PRO CA 30
8 CB PRO CBP 8
9 CA GLU CA 30
10 CB GLU CBE 6
11 CA THR CA 30
12 CB THR CBT 13
13 CA GLY CAG 31
14 CA THR CA 30
15 CB THR CBT 13
16 CA TRP CA 30
17 CB TRP CBW 7
18 CA TYR CA 30
19 CB TYR CBY 4

3
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Figure S1: Each plot presents a fit of a function representing harmonic potential (orange line)
to a free energy profile obtained form the distribution of distances of bonded α-carbon beads
in full atom training data (blue dots). The fits were used to obtain force field parameters
for bonded interactions in CA model.

Figure S2: Each plot presents a fit of a function representing harmonic potential (orange
line) to a free energy profile obtained form the distribution of distances of bonded α-carbon
and β-carbon beads in full atom training data (blue dots). The fits were used to obtain force
field parameters for bonded interactions in CACB model.
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Figure S3: Each plot presents a fit of a function representing repulsive potential (orange line)
to a free energy profile obtained form the distribution of distances between a given α-carbon
atom and all non-bonded beads in full atom training data (blue dots). The fits were used to
obtain force field parameters for non-bonded interactions in CA model.

Figure S4: Each plot presents a fit of a function representing repulsive potential (orange line)
to a free energy profile obtained form the distribution of distances between a given α-carbon
or β-carbon atom and all non-bonded beads in full atom training data (blue dots). The fits
were used to obtain force field parameters for non-bonded interactions in CACB model.
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Figure S5: Top panel: Loss curves for CA model (left) and CACB model (right) of chignolin.
Blue curves represent training loss values (train_loss) and orange curves represent validation
loss values (val_loss). The models selected are marked with a red star. Bottom panel:
learning rate values across the training of the corresponding models.
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Figure S6: Full trajectories simulated with neural network for CA model starting from folded
conformation. Each one of five panels represents a full analysis of energy (top right plot) and
RMSD (bottom right plot) across the 10 ns simulation. The energy plot presents potential
energy (Epot, blue), kinetic energy (Ekin, orange) and total energy (Etot, green). The RMSD
plot presents RMSD values across the simulation for the unmodified trajectory (True, red)
and a mirror image of the original trajectory (Mirror, gray). A moving average of 100 frames
is represented as darker lines. The left plot on each panel presents a two-dimensional free
energy surfaces for the trajectory.
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Figure S7: Full trajectories simulated with neural network for CA model starting from
an elongated chain. Each one of five panels represents a full analysis of energy (top right
plot) and RMSD (bottom right plot) across the 10 ns simulation. The energy plot presents
potential energy (Epot, blue), kinetic energy (Ekin, orange) and total energy (Etot, green).
The RMSD plot presents RMSD values across the simulation for the unmodified trajectory
(True, red) and a mirror image of the original trajectory (Mirror, gray). A moving average
of 100 frames is represented as darker lines. The left plot on each panel presents a two-
dimensional free energy surfaces for the trajectory.
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Figure S8: Full trajectories simulated with neural network for CACB model starting from
folded conformation. Each one of five panels represents a full analysis of energy (top right
plot) and RMSD (bottom right plot) across the 10 ns simulation. The energy plot presents
potential energy (Epot, blue), kinetic energy (Ekin, orange) and total energy (Etot, green).
The RMSD plot presents RMSD values across the simulation for the unmodified trajectory
(True, red) and a mirror image of the original trajectory (Mirror, gray). A moving average
of 100 frames is represented as darker lines. The left plot on each panel presents a two-
dimensional free energy surfaces for the trajectory.

9

74



“output” — 2021/11/18 — 12:47 — page 75 — #89

Figure S9: Full trajectories simulated with neural network for CACB model starting from
an elongated chain. Each one of five panels represents a full analysis of energy (top right
plot) and RMSD (bottom right plot) across the 10 ns simulation. The energy plot presents
potential energy (Epot, blue), kinetic energy (Ekin, orange) and total energy (Etot, green).
The RMSD plot presents RMSD values across the simulation for the unmodified trajectory
(True, red) and a mirror image of the original trajectory (Mirror, gray). A moving average
of 100 frames is represented as darker lines. The left plot on each panel presents a two-
dimensional free energy surfaces for the trajectory.
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Figure S10: One-dimensional free energy surfaces of the first two TICA dimensions for the
reference MD simulations (left), CA model (center) and CACB model (right). First row
corresponds to the first TICA dimension while the second row corresponds to the second
TICA dimension. The plot was performed the same way as the two-dimensional one (Fig.6),
but only binning a single dimension. Coarse-grained models surface lines are depicted with
a specific color (green for CA model, red for CACB model). Surfaces for the reference MD
simulations are displayed at each plot as a shade for comparison with the coarse-grained
surfaces.

11

76



“output” — 2021/11/18 — 12:47 — page 77 — #91

Chapter 4

DISCUSSION

In the work presented in this thesis, we have successfully applied a
data-driven approach for MD simulations, where we leveraged the lat-
est machine learning advances to learn from simulation data. By using
a reinforcement learning approach, we provide a strong framework for
adaptive sampling algorithms, which enabled us to characterize a slow
and complex event, the coupled binding and folding of the disordered
protein cMyb with the KIX domain. We have also designed TorchMD,
a deep learning framework to perform and interact with MD simulations.
We used it to train and simulate successfully a coarse-grained potential
for protein folding. Here we discuss the implications and future prospects
of the previously presented work.

4.1 AdaptiveBandit
The results of the various tests performed show that AdaptiveBandit

is a flexible algorithm, performing as good as fully exploratory methods
even in exploration-limited scenarios and better in others. The 2D toy
models were important for the development and validation of the algo-
rithm. The experiments comparing AdaptiveBandit with other algorithms
using external knowledge of the system show an interesting comparison
between the different strategies, where we can appreciate different be-
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haviours and results regarding the exploration versus exploitation deci-
sions made. One of the interesting conclusions we can extract from these
results is that no single algorithm is going to perform optimally for all
types of systems. By providing a more flexible approach like Adaptive-
Bandit, we can adapt to different types of systems and sampling require-
ments.

By recasting adaptive sampling in terms of a multi-armed bandit prob-
lem, we can bring a more solid approach to the adaptive sampling prob-
lem. The key factor of AdaptiveBandit is that it defines an intrinsic reward
from the simulations, not a predefined one. Rewards are computed based
on the outcomes of actions instead of being fixed throughout the run. This
is useful if, for example, the system gets stuck in a local minima. An ex-
ternal, static reward will keep wasting resources there, and the action will
still be valued equally, while AdaptiveBandit is able to update on-the-fly
the estimated reward for a certain action. This is exemplified in the toy
models using external knowledge and very clearly on the villin experi-
ment. However, AdaptiveBandit is highly sensible to the MSM estima-
tion. If the MSM used at each action-picking stage is poorly estimated,
it will influence the action-picking strategy and affect its performance.
Moreover, AdaptiveBandit’s performance at its current state also depends
on the c hyperparameter, which is not very intuitive to define. Overall,
the essential result of AdaptiveBandit is the successful establishment of
the adaptive sampling algorithm under a robust mathematical framework,
with proofs of optimality, which hopefully will inspire and incentivize
better algorithms, more prepared for specific types of systems and MD
experiments.

With the simulations for KIX and cMyb, we bring AdaptiveBandit to
a real case application. This system features a complex binding event cou-
pled with the folding process of the disordered peptide cMyb. We started
simulating the system way before we developed AdaptiveBandit, and we
did not have any success, being unable to sample even conformations
close to the bound pose. It is a solid proof of AdaptiveBandit’s power
to be able to recover the entire folding-and-binding event. By means of
MSM modelling, we are able to describe the whole binding and folding
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process with detail, identifying the intermediate states and the flux be-
tween them. Results show a combined mechanism between induced fit
and conformational selection. While an initial folding of the cMyb pep-
tide is required for the first binding to occur, the complete formation of
the α-helix is only possible when bound to KIX. We are also able to detect
secondary binding modes, some entirely new.

The constructed model is validated by comparing the predicted ther-
modynamic and kinetic parameters with experimental values. However,
some of the predictions are dependant on the manual bulk state definition.
We believe there might be several factors for that. First, it can be a pure
discretization problem. Because the whole process contains a lot of de-
grees of freedom, as cMyb can have a lot of different conformations if
compared to a small molecule, its hard to get the optimal features and a
correct discretization of the bound and unbound states. Second, the sim-
ulation box used might have been too small, and therefore its hard for the
model to automatically separate the bulk state.

4.2 TorchMD

With TorchMD, we provide an accessible framework to train machine
learning based potentials and perform MD simulations with them. Be-
cause the simulation code is entirely written in PyTorch, it facilitates the
interface between simulations and any deep learning model based on the
same library. This is very useful when developing neural network po-
tentials due to the constant iteration between training, testing and adjust-
ing the model’s architecture or hyperparameters. TorchMD has already
proven to be very useful inside our group, where we are using it to de-
velop a coarse-grained potential for protein folding, testing new archi-
tectures for neural network potentials for MD, or evaluating the poten-
tial of end-to-end differential simulations to re-train existing potentials.
The only caveat of the current TorchMD implementation is its simula-
tion speed when compared to common MD simulation codes, mostly due
to the lack of neighbor lists for non-bonded interactions and the generic
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nature of PyTorch operations. TorchMD was not made with speed as an
objective, and that is left for future work on machine learning potentials
integration with specialized MD codes.
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Chapter 5

CONCLUSIONS

1. AdaptiveBandit is able to perform equally or better than previous
adaptive sampling algorithms in a diverse set of systems, and it has
demonstrated the ability to learn from simulation results.

2. We were able to simulate the binding and folding of c-Myb with
KIX by using unbiased full-atom MD simulations, where Adap-
tiveBandit had a crucial role in resolving this type of folding and
binding process.

3. Analysis of the simulation data provides a detailed molecular de-
scription of binding of c-Myb to the primary interface of KIX, sum-
marized as a two-step process, where initially the N-terminal region
of c-Myb binds to KIX via conformational selection, and finally
folds into an α-helix by binding of the C-terminal via induced-fit.

4. The deep learning framework provided by TorchMD can play an
important role in facilitating experimentation between machine learn-
ing and MD fields, promoting the adoption of data-based approaches
in molecular simulations.

5. We have shown several possible applications for TorchMD, ranging
from all-atom MD simulations, end-to-end learning of parameters,
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training of neural network potentials and finally a coarse-grained
neural network potential for protein folding.
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Chapter 6

APPENDIX: OTHER
PUBLICATIONS

In this chapter you can find other publications were I had minor con-
tributions, but that are still relevant to the thesis.

6.1 Machine Learning of Coarse-Grained Molec-
ular Dynamics Force Fields

Wang J, Olsson S, Wehmeyer C, Pérez A, Charron NE, De Fabritiis
G, Noé F, Clementi C. Machine Learning of Coarse-Grained Molecular
Dynamics Force Fields ACS Central Science. 2019;5(5):755-767.

Summary

In this paper, we introduce CGnet, a deep learning based coarse-
grained potential trained by a force-matching scheme. We demonstrate
that CGnet can reproduce the coarse-grained mean force and free energy
for a 2D toy model, alanine dipepdite and the fast-folding protein chig-
nolin. CGnet is able to capture all-atom explicit-solvent free energy sur-
faces with a potential defined with only a few coarse-grained beads and
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no solvent, while classical coarse-graining methods fail to capture crucial
features of the free energy surface.
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6.2 Coarse graining molecular dynamics with
graph neural networks

Husic BE, Charron NE, Lemm D, Wang J, Pérez A, Majewski M,
Krämer A, Chen Y, Olsson S, De Fabritiis G, Noé F, Clementi C. Coarse
graining molecular dynamics with graph neural networks. The Journal of
Chemical Physics. 2021;153(19):194101.

Summary

In this paper, we leverage the work performed in Publication 6.1 and
the inherently transferable SchNet [112] to bring up CGSchNet, a trans-
ferable coarse-grained potential that is able to learn their own features.
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