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Abstract

Many important theories in modern physics can be stated using the tools of differen-
tial geometry. It is well known that symplectic geometry is the natural framework to
deal with autonomous Hamiltonian mechanics. This admits several generalizations
for nonautonomous systems and classical field theories, both regular and singular.
Some of these generalizations are the subject of the present dissertation.

In recent years there has been a growing interest in studying dissipative mechani-
cal systems from a geometric perspective by using contact structures. In the present
thesis we review what has been done in this topic and go deeper, studying symme-
tries and dissipated quantities of contact systems, and developing the Lagrangian—
Hamiltonian mixed formalism (Skinner—Rusk formalism) for these systems.

With regard to classical field theory, we introduce the notion of k-precosymplectic
manifold and use it to give a geometric description of singular nonautonomous field
theories. We also devise a constraint algorithm for k-precosymplectic systems.

Furthermore, field theories with damping are described through a modification of
the De Donder—Weyl Hamiltonian field theory. This is achieved by combining both
contact geometry and k-symplectic structures, resulting in what we call the k-contact
formalism. We also introduce two notions of dissipation laws, generalizing the concept
of dissipated quantity. The preceding developments are also applied to Lagrangian
field theory. The Skinner—Rusk formulation for k-contact systems is described in full
detail and we show how to recover both the Lagrangian and Hamiltonian formalisms
from it.

Throughout the thesis we have worked out several examples both in mechanics and
field theory. The most remarkable mechanical examples are the damped harmonic
oscillator, the motion in a constant gravitational field with friction, the parachute
equation and the damped simple pendulum. On the other hand, in field theory, we
have studied the damped vibrating string, the Burgers’ equation, the Klein—-Gordon
equation and its relation with the telegrapher’s equation, and the Maxwell’s equations
of electromagnetism with dissipation.

Keywords: contact manifold, k-contact structure, De Donder—Weyl theory, dissi-
pation law, field theories, Hamiltonian formalism, Lagrangian formalism, k-symplectic
structure, Skinner—Rusk formulation, symmetries, k-precosymplectic structure
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Introduction

Geometric mechanics and field theories

The study of dynamical systems has always had a great impact on some branches of
mathematics, physics and engineering. Until the second half of the twentieth century,
the main advances in this field were based on analytical and numerical methods.
However, in the 60’s, J. Klein [110], A. Lichnerowicz [115][116], J. M. Souriau [144]
and W. M. Tulczyjew [148][149][150] among others began to use modern methods in
differential geometry in order to study physical systems.

This geometrization of physical systems provides a correspondence between phys-
ical concepts and well-known intrinsically defined geometric objects. For instance,
the differential equations defining a physical system can be thought as vector fields
in the phase manifold of the system, symmetries can be identified with actions of Lie
groups on the phase manifold and the constraints arising in a physical system pro-
vide submanifolds of the phase space. Ultimately, physical concepts must not depend
on coordinates, which justifies the use of geometric, coordinate-free formulations of
physical theories.

Mechanical systems can be formulated in terms of differential geometry. For
instance, the natural framework for autonomous mechanical systems is symplectic
geometry [2][5]/27][30/[55[76](95,[114][118|[120]. One of the main results in symplectic
geometry is the so-called Darboux theorem [1}[17}[35]. The proof can be extended to
presymplectic manifolds [34]. Time-dependent mechanical systems can be described
by using cosymplectic and precosymplectic or contact geometry |1} (8} 125,|57(61} |72
107] 118].

Geometric covariant descriptions of first-order classical field theories can be per-
formed by appropriate generalizations of these structures. The simplest one is k-
symplectic geometry introduced by A. Awane [6] 7], and used later by M. de Ledn
et al. [53][54] [51], and L. K. Norris [122] [125] to describe first-order field theories.
They coincide with the polysymplectic manifolds described by G. C. Giinther [96]
(although these last ones are different from those introduced by G. Sardanashvily et
al. [75][140] and I. V. Kanatchikov [106], that are also called polysymplectic). This
structure is applied to first-order regular autonomous field theories [18][62[137]. The
degenerate case can be dealt with through the notion of k-presymplectic structures,
which allows to describe the corresponding field theories where the Lagrangian is
singular [85].

A natural extension of the above are k-cosymplectic manifolds, which allow to

X
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generalize the cosymplectic description of non-autonomous mechanical systems to
regular field theories whose Lagrangian and/or Hamiltonian functions, in local de-
scription, depend on the space-time coordinates [50,[52]. The singular case of these
theories is described in [92]. See [56] [86][124] for more details on the k-symplectic
and k-cosymplectic formalisms.

Finally, one can consider the multisymplectic formalism, which is a more general
formalism for classical field theories that can be constructed using multisymplectic
geometry, which was first introduced by J. Kijowski, W. M. Tulczyjew and other
authors [77,/108,/109]. See also [3}(24}146}/62| 63|65/ 78//100,|111}/128!|135}/138}|141].
Although there are some partial results [21] [45] [121], a Darboux-type theorem for
multisymplectic manifolds in general is not available.

Contact mechanics and field theories

The interest in dissipative systems has grown significantly in the recent years. In
part, this is because of the adjunction of contact geometry [8/172,|107| to the study
of non-conservative Lagrangian and Hamiltonian dynamical systems |13} [15] |26)
39, 141} 168}, [117]. It has been seen that this geometric approach using contact ge-
ometry is very useful in many different areas such as thermodynamics [14] [142],
quantum mechanics [31], circuit theory [82] and control theory [132] among others
116l 381 [42] [43] 57, [64] [107] [147]. In [40], a constraint algorithm to deal with singu-
lar contact Hamiltonian systems is developed. This constraint algorithm is used in
136] to describe a generalization of the Skinner—Rusk formalism for contact systems.
A generalization of this formalism to higher-order contact systems is developed in
I37]. The Herglotz principle [37) [94] [99] gives a variational formulation for contact
Hamiltonian systems. There have been several attempts to generalize this variational
principle to field theories [74][112].

Constraint algorithms

Singular systems play a very important role in modern physics, both in mechanics
and, particularly, in classical field theory. Actually, many of the most important
physical theories are singular. For instance, Maxwell’s theory of electromagnetism,
Einstein’s general relativity and, in general, every gauge theory. Singular theories
have a main problem: the failure of usual existence or uniqueness theorems for the
solutions of the differential equations describing them. However, sometimes we can
solve this problem by finding a submanifold of the phase manifold where we can
ensure the existence of solutions by means of a constraint algorithm.

The first constraint algorithm for the Hamiltonian formalism of singular au-
tonomous mechanics was developed by P. A. M. Dirac and P. G. Bergmann [4] |58].
These articles were written using local coordinates and were later generalized [12]
591 97] 105} [145] [146]. Many contributions in the geometric version of this algorithm
have been done for autonomous mechanical systems [79}/80} (81} [87,[88}[119][123}[151].



Introduction xi

The constraint algorithm was also generalized to deal with nonautonomous mechan-
ical systems [25] [29] [48] [84] (see also [47] for the formulation using jet bundles).
This constraint algorithms were also adapted to work with field theories described
by singular Lagrangians in both the k-symplectic [85] and multisymplectic [46] [49]
formalisms.

Skinner—Rusk formalism

R. Skinner and R. Rusk developed a unified formalism to deal with singular sys-
tems more efficiently by combining in a single description both the Lagrangian and
Hamiltonian formalisms of mechanical systems [143] (although a previous description
using local coordinates had been made in [105]). The main goal of this formalism
is to obtain a common framework for both regular and singular systems. This for-
malism is sometimes called unified formalism because it describes simultaneously
the Lagrangian and Hamiltonian formulations of the dynamics. The Skinner-Rusk
formalism has been generalized to time-dependent systems |10} 20, |84]. In 33| it
was used to study vakonomic systems and compare the solutions of vakonomic and
nonholonomic mechanics. This formalism has also been extended to higher-order
autonomous and nonautonomous mechanical systems [90} [91} [129] [130], to describe
control systems [9] [32] and to field theory [19]44] [60] 131} [133}[134,[152]. In partic-
ular, in (22} [23][71] it was used to describe different models of gravitational theories.

The Skinner—Rusk formalism, in its original version for first-order autonomous
mechanical systems, is based on the Whitney sum of the tangent and the cotan-
gent bundles (the velocity and momentum phase spaces of the system respectively)
W = TQ xq T*Q, called the Pontryagin bundle of (). The bundle W is endowed
with a canonical presymplectic structure w, which is the pull-back of the canonical
symplectic form of the contangent bundle T*(@). Given a Lagrangian function L in
the tangent bundle T(Q), we can construct a Hamiltonian function H = C — L in the
Pontryagin bundle W, where C is the so-called coupling funcion. Thus, we have a
presymplectic Hamiltonian system (W, w,H). Now we can write the Hamiltonian
equation i(X)w = dH, where X is the vector field containing the dynamics of the
system.

This formalism has several advantages with respect to the Lagrangian and Hamil-
tonian formalism. In the first place, we recover the Legendre map F L as constraints
from the compatibility condition. We also obtain the holonomy condition as a di-
rect consequence of applying the constraint algorithm (even if the Lagrangian is
singular). Finally, it is important to point out that both the Lagrangian and Hamil-
tonian formalisms can be easily recovered from the Skinner—Rusk formalism. The
main drawback of this formalism is that the presymplectic system obtained is always
singular, and hence we need a suitable constraint algorithm |79} (80} [81].
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Goals of the thesis

In the preceeding paragraphs we have mentioned several problems in geometric me-
chanics and field theories. The present thesis aims to offer advances on those topics.
In particular, the main goals of this thesis are the following:

e To develop a constraint algorithm to deal with singular nonautonomous field
theories in the k-cosymplectic framework, generalizing the one given in [85] for
singular autonomous field theories using the k-symplectic framework.

e To complete the contact Lagrangian formalism for dissipative mechanical sys-
tems. In particular, to give a complete study of contact Lagrangian functions
with holonomic dissipation term and study the different notions of symme-
try and infinitesimal symmetry for contact systems and see how we can find
dissipated and conserved quantities from these symmetries.

e Generalize the Skinner—Rusk formalism to contact systems and apply it to
different examples of both regular and singular dissipative mechanical systems.

e Extend the notion of contact manifold and k-symplectic structure to deal with
dissipative field theories. This new geometry has been called k-contact geome-
try.

e Use the framework of k-contact geometry to develop a Hamiltonian formal-
ism and a Lagrangian formalism for dissipative field theories and study their
symmetries and dissipation laws.

e Generalize the Skinner—Rusk mixed formalism to the case of k-contact systems
and apply it to many different examples, both regular and singular.

Structure of the dissertation

This thesis is divided in two different parts. The first one, Chapters is devoted
to the study of contact mechanical systems.

In Chapter [I]we study contact systems. We begin by reviewing the most impor-
tant notions of contact geometry. We define the notions of contact manifold, Reeb
vector field and state the existence and uniqueness of the Reeb vector field and give
the Darboux theorem for contact manifolds. With this geometric background, we
can define the notion of contact Hamiltonian system and write the contact Hamilton
equations for both vector fields and integral curves in many different ways. One of
them, which is partially equivalent to the others, is formulated without using the
Reeb vector field. The last section of this chapter is devoted to the study of contact
Lagrangian systems, paying special attention to the Lagrangians with a holonomic
dissipation term.

Chapter |2| is devoted to present several kinds of symmetries for both contact
Hamiltonian and Lagrangian systems. It is well-known that symmetries of symplec-
tic systems yield conserved quantities. In this case, some symmetries of contact
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systems give dissipated quantities. We also analyze some properties of symmetries
and dissipated quantities. In particular, we see that the quotient of two dissipated
quantities is a conserved quantity. We finish this chapter by studying the relation
between the symmetries of a symplectic systems and its conserved quantities and the
corresponding contactified system.

Chapter |3|is devoted to generalize the formalism developed by R. Skinner and
R. Rusk in [143] to the case of contact mechanical systems. We begin by defining
the phase bundle of the Skinner—-Rusk formalism: the extended Pontryagin bundle
W. We describe the precontact structure of this Pontryagin bundle and define the
Hamiltonian function in W associated to a Lagrangian function. Thus, we can state
the Lagrangian-Hamiltonian problem. As this system is singular, we need to apply a
suitable constraint algorithm in order to deal with it. We study the constraints that
arise and, in particular, we recover the holonomy condition and the Legendre map.
Finally we show that both the Lagrangian and Hamiltonian formalisms described in
the previous chapters can be recovered from the Skinner—Rusk formalism.

In Chapter |4| we analyze several examples of dissipative mechanical systems. In
every example we study different aspects of the theory developed in the previous
chapters. The list of examples treated in this chapter is:

e the damped harmonic oscillator,

e the motion of a particle in a constant gravitational field with friction,
e the parachute equation,

e Lagrangians with holonomic dissipation term,

e central force with dissipation,

e the damped simple pendulum using the Lagrange multipliers method,
e Cawley’s Lagrangian with dissipation.

The second part, consisting of Chapters [5H10] is devoted to the study of field
theories. In particular, we deal with field theories described by singular Lagrangians
and we develop a geometric formalism to work with dissipative field theories.

Chapter |5|is a review of the k-symplectic and k-cosymplectic formulations of
first-order classical field theories. We describe both the Lagrangian and Hamiltonian
descriptions. We define the notions of k-symplectic and k-cosymplectic manifold and
state their corresponding Darboux theorems.

In Chapter [6] we summarize the constraint algorithm for autonomous field theo-
ries and develop a generalization of this algorithm to deal with nonautonomous field
theories. We begin by defining the notion of k-presymplectic manifold and prove
its corresponding Darboux theorem. Then, we describe the constraint algorithm for
singular autonomous field theories. In order to develop a constraint algorithm for
singular nonautonomous field theories, we first define the notion of k-precosymplectic
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manifold and prove the existence of global Reeb vector fields in them. Next, we gener-
alize the constraint algorithm previously described to nonautonomous field theories.
Finally, we present some examples in order to illustrate how does the constraint al-
gorithm work. In particular, we deal with Lagrangians affine in the velocities and a
singular quadratic Lagrangian.

Chapter |7|is devoted to present the k-contact Hamiltonian formalism for dissi-
pative field theories. We begin by introducing the framework of k-contact geometry,
proving the existence and uniqueness of Reeb vector fields and the existence of two
types of coordinates: adapted coordinates and Darboux coordinates. Then, we use
the geometric framework of k-contact geometry to develop the Hamiltonian formalism
for dissipative field theories. Finally, we generalize the different notions of symmetry
introduced in Chapter [2]for contact systems to k-contact Hamiltonian systems.

In Chapter [8] we develop the Lagrangian formalism for dissipative autonomous
field theories. In particular, we write the k-contact Euler-Lagrange equations. We
also give a brief summary on how to deal with dissipative field theories described
by singular Lagrangians and the correspondending constraint algorithm. Finally,
we define several notions of symmetry for k-contact Lagrangian systems and relate
them to dissipation laws. In particular, we pay attention to the symmetries of the
Lagrangian function.

Chapter[9] generalizes the Skinner—Rusk formalism for contact systems introduced
in Chapter |3| to the framework of k-contact systems. First of all, we define the
extended Pontryagin bundle VW and give a complete description of its canonical k-
precontact structure. This allows us to state the Lagrangian-Hamiltonian problem
and apply to it the constraint algorithm described in the previous chapter. In partic-
ular, we give a complete descriptions of the constraints arising, including the SOPDE
condition and the Legendre map. We also see how to recover both the Lagrangian
and Hamiltonian formalisms from the Skinner—Rusk formalism.

Finally, Chapter is devoted to analyze several examples of dissipative field
theories. In each example we study different topics of the theory developed in the
previous chapters. The list of examples studied in this chapter is:

e the damped vibrating string,
e two coupled vibrating strings with damping,
e Burgers’ equation as a contactification of the heat equation,

e the inverse problem for a type of elliptic and hyperbolic partial differential
equations,

e a comparison between Lorentz-like forces and dissipative forces on a vibrating
string,

e Klein—Gordon and the telegrapher’s equation,

e Maxwell’s equations with dissipation and damped electromagnetic waves.
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Throughout this thesis, all the manifolds are real, second countable and of class
% >°. Manifolds and mappings are assumed to be smooth and the sum over crossed
repeated indices is understood.
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Part 1

Mechanics






Chapter 1

Survey on contact mechanics

This first chapter is devoted to review the main notions on contact geometry and
contact mechanics and to detail some of our contributions on these topics. In Section
we recall the notion of contact manifold, which is the main geometrical object
when dealing with contact dynamical systems. We state the existence and uniqueness
of the Reeb vector field and we also give the Darboux theorem for contact manifolds.
This theorem states that every contact manifold is locally diffeomorphic to the prod-
uct manifold T*@ x R. In Sectionwe define de concept of contact Hamiltonian
system and we write the contact Hamiltonian equations for vector fields and integral
curves in many different ways. One of them, which is partially equivalent to the oth-
ers, is formulated without using the Reeb vector field. Section[1.3]is the one devoted
to the study of contact Lagrangian systems. We begin by extending the canonical
structures of the tangent bundle TQ of a manifold to TQ x R.

We see how these structures allow us to construct a contact structure (if the
Lagrangian is singular, the structure is precontact |40]) in T@Q x R. We can also
define the notion of second-order differential equation. With all these geometric
tools, we can define the concept of contact Lagrangian system and write the contact
Euler-Lagrange equations. We will pay special attention to a particular case of
contact Lagrangian functions: the Lagrangians with holonomic dissipation term.
These Lagrangians are of great interest as they appear in many applications, as we
will see in Chapter Some references on these topics are [13}14//15}31}139//57} 68|
720182 117).

1.1 Contact geometry

In this section we define some geometric structures that will be necessary to describe
the contact formalism of dissipative mechanical systems.

Definition 1.1.1. Consider a smooth manifold M of odd dimension 2n + 1. A
differential form n € QY (M) such that nA(dn)"™ is a volume form in M is a contact
form. In this case, (M,n) is said to be a contact manifold.

Remark 1.1.2. If 5 is a contact form, ' = fn is also a contact form for every

3
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nonvanishing function f € €>°(M):

0 Adn)N = oA (df An+ fdp)™ = P A (dy) " #£ 0.

Notice that the condition nA (dn)"™ # 0 implies that the contact form 7 induces a
decomposition of the tangent bundle TM in the form TM = ker n@ker dn = D@DR.

Y

Proposition 1.1.3. Given a contact manifold (M,n), there exists a unique vector
field R € X(M), called Reeb vector field, such that

(1.1)

The Reeb vector field R generates the distribution D, called the Reeb distri-
bution.

Remark 1.1.4. It is easy to check that Zgn = 0 and hence, Zrdn = 0.

Proposition 1.1.5. Let (M,n) be a contact manifold. Around every point p € M
there exist local coordinates (z!,s) such that the contact form n and the Reeb vector
field R are written

0
RZ%’ n:ds—ff(x)dxl,

where the functions f; depend only on the x!

. These coordinates are called adapted
coordinates of the contact structure.

Proof. Consider the coordinates (z!,5s), I =1,...,2n rectifying the Reeb vector field
R in an open set U C M. In these coordinates, R|, = 0/0s.

Then, n = ads — fr(x,s)dz!. Imposing conditions we see that ¢ = 1 and
dfr/0s = 0, and hence the result is proved. O

Nevertheless, one can go even further and show that for every contact manifold
there exist Darboux-type coordinates:

Theorem 1.1.6 (Darboux theorem for contact manifolds). Consider a contact man-
ifold (M,n) of dimension 2n + 1. Then, around every point p € M there exists a
local chart (U,q",p;,s), i =1,...,n, such that

Ny = ds — pidg’.

These coordinates are called Darbouz, natural or canonical coordinates of the
contact manifold (M,n).

Notice that Darboux coordinates are a particular case of adapted coordinates and
hence, in Darboux coordinates, the Reeb vector field is

0
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Now we are going to introduce a couple of specially relevant examples of contact
manifolds.

Example 1.1.7 (Canonical contact structure). Let @ be a smooth manifold of di-
mension n. Then, the product manifold T*(@) x R has a canonical contact structure
given by the 1-form n = ds — 6, where s is the canonical coordinate of R and 6 is the
pull-back of the Liouville 1-form 6, € Q}(T*Q) by the projection T*Q x R — T*Q.
Taking coordinates (¢°) on @Q and natural coordinates (¢*, p;) on T*Q, the local ex-
pression of the contact 1-form is

n=ds—pidq.
We also have that dn = dq* A dp; and hence, the Reeb vector field is R = 8/0s.

Example 1.1.8 (Contactification of a symplectic manifold). Consider a symplectic
manifold (N, w) such that w = —df. Let us define the product manifold M = N x R.
Denoting also by 6 the pull-back of § to the product manifold, the 1-form n € Q(M)
given by

n=ds—4#0,
where s is the cartesian coordinate in R, is a contact form on M. Thus, (M,n) is a
contact manifold called the contactification of V. The previous example, is

just the contactification of the cotangent bundle T*@Q) with its canonical symplectic
structure.

Given a contact manifold (M, n), we have the vector bundle isomorphism

b: TM — T*M
v d(v)dn + (i(v)n)n

which can be extended to a (M )-module isomorphism

b: X(M) — QM)
X = u(X)dn+ (@((X)n)n

Remark 1.1.9. Notice that with this isomorphism in mind, we can define the Reeb
vector field in an alternative way as R = b~1(n).

1.2 Contact Hamiltonian systems

This section introduces the concept of contact Hamiltonian system and gives three
different characterizations of the contact Hamiltonian vector field. We also offer a
new way of writing the contact Hamilton equations without using the Reeb vector
field R. This can be useful when dealing with singular systems, where we do not
have a uniquely determined Reeb vector field.
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Theorem 1.2.1. Given a contact manifold (M,n), for every H € €°°(M), there
exists a unique vector field Xy € X(M) such that

i(Xp)dn=dH — (ZLrH)n, 13
i(Xg)n=—H. '
The integral curves v: I CR — M of Xy satisfy equations
i(y)dn = (dH — (ZLrH)n) o, (1.4)
2(7/)77 =—-Ho RE

where v': I C R — TM 1is the canonical lift of the curve v to the tangent bundle
TM.

Definition 1.2.2. The vector field Xy defined by equations 1s the contact
Hamiltonian vector field associated to the Hamiltonian function H. FEquations
and are the contact Hamiltonian equations for vector fields and in-
tegral curves, respectively.

The triple (M,n, H) is a contact Hamiltonian system.

Proposition 1.2.3. Given a contact Hamiltonian system (M,n, H), the contact
Hamiltonian vector field satisfies

Zx,H=—(Z%rH)H , (1.5)
which expresses the dissipation of the Hamiltonian function.

Proof.

Lxy,H=—Lx,i(Xug)n
= —i(Xug)Lxuyn
= —i(Xg) (d(i{(Xg)n + i(Xg)dn))
= —i(Xy)(—dH +dH — (Z£rH)n)
=i(Xpg)((LrH)n)
=—(Z%rH)H.

O

The following proposition gives us two equivalent ways of writing equations l)

Proposition 1.2.4. Consider the contact Hamiltonian system (M, n, H) and a vector
field X € X(M). The following are equivalent:

(1) X s the contact Hamiltonian vector field of the contact Hamiltonian system
(M,n,H) (i.e., it satisfies equations (1.3)).
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(2) X satisfies that
(X)=dH — (ZrH + H)n.

(3) X is a solution to the equations

{zxn = —(ZLrH)n,
i(X)n=—-H.

Taking Darboux coordinates (¢°, p;, s) in the contact manifold (M, n), the contact
Hamiltonian vector field has local expression
_0H 0 <8H GH) 0 <'8H ) 0

Xy = _ 9% _u
T 8p; dg Op;

aq P os

P o, s

Let v(t) = (¢*(t),p:i(t),s(t)) be an integral curve of Xg. Then, it is a solution to
equations (1.4), which in Darboux coordinates read

q _81%7

OH OH
i — — (A ) 1
p (aﬁrp 88) (1.6)
5080 _
=pig

Example 1.2.5. Consider the Hamiltonian system (T*Q x R, n, H) where n = ds —
p;idg® and the Hamiltonian function H is given by

»?
H=_—+4+V(qg)+s,
5y, T V(D) +
where m represents the mass of a particle and v is a constant. This Hamiltonian
functions corresponds to a mechanical system with a friction force linear with respect

to the momenta. Writing equations (1.6) we obtain the dynamical equations

(=2,
m
v
Pi= =g 8
2
. D
(§= 5, ~ V(@) —7s,

which are the damped Newtonian equations.

Now we are going to see a different way of writing equations without using
the Reeb vector field. This might be useful when dealing with systems defined by
singular Lagrangians, because in this case we do not have a uniquely determined
Reeb vector field.
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Proposition 1.2.6. Consider the contact Hamiltonian system (M,n, H) and let U
be the open set defined as U = {p € M |H(p) # 0} € M. Consider the 2-form
Q€ Q%2(U) given by Q = —Hdn + dH An. A vector field X € X(U) is the contact
Hamiltonian vector field if, and only if,

i(X)Q=0,
(1.7)
i(X)n=-H
Proof. Let X be a vector field in M satisfying equations . Then,
0=i(X)Q=—-Hi(X)dn+ (i(X)dH)n+ HdH .
Hence,
Hi(X)dn = (i(X)dH)n+ HdH . (1.8)

Contracting with the Reeb vector field R,
0= Hi(R)i(X)dn = (i(X)dH)i(R)n+ Hi(R)dH ,
and i(X)dH = —Hi(R)dH. Combining this with equation {1.8), we obtain
Hi(X)dy = H(AH — ((R)AH)y) = H(AH — (LrH)n),

and then i(X)dn = dH — (ZLrH)n. Conversely, suppose that X satisfies equations
(1.3). Then,

i(X)Q = i(X)(—Hdn + dH A n)
= —Hi(X)dn + (i(X)dH)n + HIH
= H(ZrH)n+ (ZxH)n
— (HYrH + %xH)n,

and thus (X )2 = 0 bearing in mind the dissipation of the Hamiltonian (1.5). O

Consider p € M such that H(p) = 0. The second equation in both and
implies that X, € kermn,. The remaining equation in is i(X,)d,n =
dpH — (£», H)np, while the corresponding one in is i(X,)Q, = (ZLx, H)np = 0.
It is clear that these equations are not equivalent. However, the first one implies the
second using the dissipation of the Hamiltonian , but not conversely.

Proposition 1.2.7. Let (M,n,H) be a contact Hamiltonian system and consider
the open subset of M U = {p € M |H(p) # 0} C M. A curve v: I C R — M is
an integral curve of the contact Hamiltonian vector field Xy if, and only if, it is a
solution to equations

{iw)ﬂ =0
i(y)n=—-Hoxy.
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1.3 Contact Lagrangian systems

Lagrangian phase space and geometric structures

Let Q be a manifold with dimension n and coordinates (¢°). Consider the product
manifold T¢) x R with the canonical projections

s:TOQXR—=R, 71:TOQXR—->TQ, 7:TQxR—-QxR.

Notice that 7 and 79 are the projection maps of two different vector bundle struc-
tures. In what follows, we will usually have the second one in mind. In fact, with
this structure, TQ x R is the pull-back of the tangent bundle T@Q with respect to
the projection Q@ x R — Q. We will denote by (¢*,v%, s) the natural coordinates in
TQ x R.

We want to develop a contact Lagrangian formalism. First of all, we need to
extend the usual geometric structures of Lagrangian mechanics to the contact La-
grangian phase space TQ x R. We can write T(TQ xR) = (T(TQ) xR) & (TQ x TR)
and hence every operation acting on tangent vectors of T() can act on tangent vectors
of TQ x R.

For instance, the vertical endomorphism of T(TQ) yields a vertical endomor-
phism

J: T(TQ x R) — T(TQ x R).

In a similar way, the Liouville vector field A, on TQ yields a Liouville vector
field A € X(TQ x R), which coincides with the Liouville vector field of the vector
bundle structure defined by 79. The local expressions of these objects in Darboux
coordinates are
J = 0 ® dg* A=t 0
v’ ’ vt

Definition 1.3.1. Consider a path v: I C R — Q x R, where v = (v1,7). The
prolongation of v to TQ x R is the path

Y =0"1%): I CR—-TQ xR,

where ] is the prolongation of v, to TQ. The path ~' is said to be holonomic.

Definition 1.3.2. A vector field field T' € X(TQ x R) is said to satisfy the second-
order condition or to be a SODE if all its integral curves are holonomic.

The following proposition gives an alternative characterization of SODEs using the
canonical structures defined above:

Proposition 1.3.3. A vector fieldT' € X(TQ xR) is a SODE if and only if JoI' = A.

If a path has local expression () = (7(t), s(t)), then its prolongation to TQ x R
has local expression

Vi) = (20, g 0.5
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The local expression of a SODE is

0 0

i 0 i
F=v +f61;i+g%'

oq’

Hence, in coordinates, a SODE defines a system of differential equations of the form

d2qi ; )
a2 = f"(¢:¢,5)
ds .

a - g(Q?Q?‘S) .

Contact formalism for Lagrangian systems

Definition 1.3.4. Given a Lagrangian function L£: TQ x R — R, we define its
associated Lagrangian energy as Ep = A(L) — L € €°(TQ x R). The Cartan
forms associated to L are

0 ="'TodL e QYTQ xR), wr=—di; € Q*(TQ xR).
The contact Lagrangian form is
ne =ds — 0, € QY(TQ x R),

and satisfies that dny = we. The couple (TQ xR, L) is called a contact Lagrangian
system.

In natural coordinates (¢%,p;,s) on TQ x R, the contact Lagrangian form 7. is

oL . .
=ds — —dq¢’
"7[: S 8'1}1 q )
and hence,
02/ . 2 . 92 .
= - T __ J T __ 7 1
dn, Ded ds A dq qi v dg¢’ Adg S0i Dui dv’ Adqg’.

Definition 1.3.5. Let E, F' be two vector bundles over a manifold B. Given a bundle
map f: E — F, the fibre derivative of f is the map

Ff: E— Hom(E,F)~ F®E*,

obtained by restricting the map f to the fibers fy: Ep — Fy, and computing the usual
deriative:

.Ff(eb) = be(eb) .

In particular, when the second vector bundle is trivial of rank 1, that is for
a function f: F — R, then Ff: F — E*. This fiber derivative also has a fiber
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derivative F(Ff) = F2f: E — E*® E*, which is called the fiber Hessian of f. For
every e, € E, F2f(ep) is a symmetric bilinear form on Ej. It can be checked that
Ff is alocal diffeomorphism at a point e € E if, and only if, the Hessian F2f(e) is
non-degenerate (see [83] for details).

Definition 1.3.6. Let L: TQ x R — R be a Lagrangian function. The Legendre
map of L is the fiber derivative of L, considered as a function on the vector bundle
T0: TQ XR — Q x R.

The Legendre map of a Lagrangian function £: TQ xR — R is the map FL: TQ x
R — T*@ x R given by
J—_.E(’Uﬂs) = (.Fﬁ(',S)('U),S),

where L(-, s) is the Lagrangian function with s freezed.
Notice that taking into account the Legendre map of £, we can alternatively
define the Cartan forms as

O =FL (m0), we=FL (mw).

Proposition 1.3.7. Let L be a Lagrangian function on TQ xR. Then, the following
are equivalent:

(1) The Legendre map FL is a local diffeomorphism.

(2) The fiber Hessian F2L: TQ xR — (T*Q xR)®oxr (T*Q xR) of L is everywhere
non-degenerate.

(3) The couple (TQ x R,n,) is a contact manifold.

The previous proposition can be easily proved using natural coordinates (q*, v?, s)
in TQ x R and taking into account that

o Y
Fﬁ(qz,vz,s) = (qz7%) 3

and hence,
‘T_Qﬁ(qia Ui7 8) = (qia Wijv S) P
0*L

where W” = W
v Ov

Definition 1.3.8. A Lagrangian function is regular if the equivalent statements in
Proposition[1.5.7 hold. Otherwise, the Lagrangian L is singular. In particular a
reqular Lagrangian is hyperregular if its Legendre map FL is a global diffeomor-
phism.

From the previous definitions and results, we get that every regular contact La-
grangian system (TQ x R, L) has associated a contact Hamiltonian system (TQ X
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R, 7z, Ez). From (1.1), we have that the Reeb vector field R; € X(TQ x R) for this
contact Hamiltonian system is given by the conditions

Its local expression in natural coordinates (q¢*,v?, s) is

0 i 0L D

Re= g =W 50 o

where W% is the inverse of the matrix of fiber Hessian of the Lagrangian W;;, that
is, WOW;, = 05

Notice that the Reeb vector field is not as simple as in the Hamiltonian case lb
This is because the natural coordinates in TQ) x R are not adapted coordinates for
the contact Lagrangian form 7.

Remark 1.3.9. The Lagrangian energy satisfies the relation

oL
gRgEﬂ - —E .

The contact Euler—Lagrange equations

Definition 1.3.10. Consider a regular contact Lagrangian system (TQ xR, L). The
contact Fuler—Lagrange equations for a holonomic curve 4v: I C R — TQ x R
are

{i(’?’)dnc = (dB; — (LR Ec)ne) o7, (1.9)

i(¥)ne =—-Eco7,
where 4': I C R — T(TQ x R) is the canonical lift of 4 to T(TQ x R).
The contact Lagrangian equations for a vector field X € X(TQ x R) are

{i(X)dUL =dE; — (Lr.Ec)nc . (1.10)

i(X)ne = —E¢.

A wvector field X, € X(TQ xR) solution to these equations is a contact Lagrangian
vector field (it is a contact Hamiltonian vector field for the function Er ).

Taking into account Propositions|1.2.6| a][1d|1.2.7|7 in the open subset U = {p €
M | Er(p) # 0} C M, the above equations are equivalent to

i(¥)Qe =0,
i(¥)ne =—Eco7,
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and

{“Aﬁgﬁ::o’ (1.11)

Z(X)UL - _Eﬁv
where Qp = —Egdne +dEz Ane.

Let ¥(t) = (¢*(t),4'(t), s(t)) be a holonomic curve on TQ x R in natural coordi-
nates. Then, equation 4' reads

0%L g 0*L gy 82£é_8ﬁ_i oL\ 0L _0LOL (1.12)
viou 1 6qjaviq dsovt dgt  dt \ ov* dgt  Os Ovt’ '
§=1L, (1.13)
which coincide with the generalized Euler-Lagrange equations stated in [99].
Consider a vector field X € X(TQ x R) with local expression
o, o, 0
X=f—+F'— —.
/ aq* + o' +g83
Then, equations (1.10) for the vector field X read
, 0L
J gy _
(f v )av]as 07 (1‘14)
, 0L
J gy _
- . 0%L oL 0*L 0L . 0’L . 0L IL
T —) — 4+ — — -g — — 7 — —— [+ —— =0 1.16
(F —w >8q181ﬂ + oq* 9s0vi aqﬂavlf OvI vt + 0s O’ . (1.16)
oL . )
- (f*—=")—g= 1.1
Lt om(fi—v) =g =0, (117)
where we have used the relation
oL
E,=——. 1.1
LR Er s (1.18)

Proposition 1.3.11. Consider a reqular Lagrangian function £ and let X be its
contact Lagrangian vector field. Then X is a SODE and equations (1.16) and (1.17)
become

PL Ly L L. 0L _0LIL

OvI Ovt + Oqj(%iv + dsdvi~ B¢t Ds vt
g==L, (1.20)

(1.19)

which, for the integral curves of X, are the Euler-Lagrange equations (1.12) and
(1.13). This SODE I'y = X s called the Euler—Lagrange vector field associated
to the Lagrangian function L.

Proof. 1t follows from the coordinate expressions. If £ is a regular Lagrangian,
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equations (1.15) lead to v* = f, which are the SODE conditions for the vector field
X. Then, (1.14) holds identically and (1.16) and (1.17) give equations (1.19) and

1.20) or, equivalently, for the integral curves of X, the Euler—Lagrange equations

1.12) and (1.13). |

In this way, the local expression of the Euler—Lagrange vector field X for a regular

Lagrangian L is

X:L’ﬁ—kvii—kwik(

oL 0’L 0L oL 0L\ O
0s oq’

ogk  0g7 Ovk 0sOvk s Ovk ) Ovt
Remark 1.3.12. It is interesting to point out how, in the Lagrangian formalism of
dissipative systems, the expression in coordinates relates the variation of the
“dissipative coordinate” s to the Lagrangian function and, from here, we can identify
this coordinate with the Lagrangian action, s = [ Ldt.

Remark 1.3.13. If the Lagrangian function £ is singular (TQ x R,7.) is not a
contact manifold, but a precontact one. Hence, the Reeb vector field is not uniquely
defined. It can be proved that the contact Lagrangian equations are indepen-
dent on the Reeb vector field chosen [40]. Alternatively, Propositionholds also
in this case and hence, the Reeb-independent equations can be used instead.
In any case, solutions to the contact Lagrangian equations are not necessarily SODE

and, in order to obtain the Euler-Lagrange equations (1.19) (or (1.12)), the condition

J(X) = A must be added to the above contact Lagrangian equations. Furthermore,
these equations are not necessarily consistent everywhere on TQ x R and a suitable
constraint algorithm must be implemented in order to find a final constraint subman-
ifold Sy — TQ x R (if it exists) where there are SODE vector fields X € X(TQ x R),
tangent to Sy, which are (not necessarily unique) solutions to the above equations
on Sy. All these problems are studied in detail in [40].

The canonical Hamiltonian formalism for contact Lagrangian
systems

In the (hyper)regular case, we have a diffeomorphism between (TQ x R,7n.) and
(T*Q x R,n) such that FL*n = ne. Furthermore, there exists (at least locally) a
function H € €°°(T*Q x R) such that FL*H = E;. Then, we have the conctact
Hamiltonian system (T*@Q xR, n, H), for which FL, R, = R. Then, if Xy € X(T*Qx
R) is the contact Hamiltonian vector field associated to H, we have that FL,I'y =
X, where I' is the Euler-Lagrange vector field defined in Proposition

For singular Lagrangians, following [79] we define

Definition 1.3.14. A singular Lagrangian L is almost-regular if P := Im(FL) =
FL(TQ x R) is a closed submanifold of T*Q x R, the Legendre map FL is a sub-
mersion onto its image, and the fibers FL Y (FL(vq,s)) C TQ x R are connected
submanifolds for every (vq,s) € TQ x R.
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In the almost-regular case, we have (P,np), where np = jin € Q'(P) and
jp: P — T*Q x R is the natural embedding. Furthermore, the Lagrangian energy
E( is FL-projectable; i.e. there is a unique Hp € ¥°°(P) such that £, = FL:Hp,
where FL,: TQ x R — P is the restriction of FL to the closed submanifold P,
defined by FL = jp o FL,. Then, there exists a Hamiltonian formalism associated
to the original Lagrangian system, which is developed on the submanifold P, and the
contact Hamiltonian equations for Xp € X(P) are adapted to this situation or,
equivalently,

(Xp)Q2p =0
1'( P)p ) (1.21)
i(Xp)np = —Hp,

where Qp = —Hpdnp +dHp Anp. As in the Lagrangian formalism, these equations

are not necessarily consistent everywhere on P and we must implement a suitable
constraint algorithm in order to find a final constraint submanifold Py — P (if it
exists) where there exist vector fields X € X(P), tangent to Py, which are (not
necessarily unique) solutions to on Py. See 40| for a deeper analysis.

Lagrangians with holonomic dissipation term

In a recent paper [31] by Ciaglia et al. a Lagrangian description for some systems
with dissipation was given using a modification of the Lagrangian formalism inspired
by the contact Hamiltonian formalism. In this section we are going to prove that
this description coincides with the general formalism developed in section [1.3]|when
applied to a particular class of contact Lagrangians.

Definition 1.3.15. A Lagrangian with holonomic dissipation term in T(Q xR
is a function L =L+ ¢ € €°(TQ xR), where L = 7 Lo, for a Lagrangian function
L, € €°°(TQ) and ¢ = 7§ o, for ¢o € €°(Q x R).

Taking natural coordinates (q°,v?,s), a Lagrangian with holonomic dissipation
term has the form

L(q",v",s) = L(¢",v") + ¢(q", 5).

Notice that this implies that the momenta defined by the Legendre map are indepen-
2°L
=0

dent of the coordinate s. In addition, for these Lagrangians the conditions 575

hold. This motivates the name given in the definition.

Remark 1.3.16. The Lagrangian formalism developed in [31] is a little less general
than the one treated here. In [31] only the case ¢ = ¢(s) is taken into consideration.

Proposition 1.3.17. Consider the Lagrangian with holonomic disspation term L =
L+ ¢. Then, its Cartan 1-form, contact form, Lagrangian energy and Reeb vector
field as a contact Lagrangian are

=0, nc=ds—0,, E=Er—¢, Rg=—,
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whre 0y, is the Cartan 1-form of L considered (via pull-back) as a 1-form on TQ xR,
and Ey, is the energy of L as a function on TQ x R.

The Legendre map of L, FL: TQXR — T*Q xR, can be expressed as FL = FL x
Idg, where FL is the Legendre map of L. The Hessians are related by f2£(vq, s) =
F2L(vy). Moreover, L is regular if, and only if, L is regular.

Proof. The proof of this proposition is immediate taking coordinates. In particular,
the assertion about the Legendre map is a direct consequence of the fact that

oc oL
ot ot

In a similar way, the relation between the Hessians is expressed in coordinates as

Pro oL
s A D

This shows that the Lagrangian £ is regular if, and only if, L is regular. O

It is also clear that L is hyperregular if, and only if, L is also hyperregular. This
means that the Legendre map FL is a diffeomorphism, and the canonical Hamiltonian
formalism for the Lagrangian with holonomic dissipation term can be formulated as
stated above.

Consider the contact Lagrangian system (TQ x R,n., Er) where L=L+ ¢ is a
Lagrangian function with holonomic dissipation term. The dynamical equations for
vector fields of this system are

Z'(X)dﬂg = dEg — (gRﬁEg)UE,
i(X)nﬁ == —EE .

Taking coordinates (¢°,v%,s) in TQ x R, if X = f? a?f + F'2; + g2, the second

contact Lagrangian equation for X reads

oL

L+ v

(fi_vi)_gzoa

and this is equation (1.17) for the Lagrangian £ = L+¢. The first contact Lagrangian
equation is

(f' =) g5 =0, (1.22)
and
2 2 2 2
FLPLY L BL PL o 0L 06 000
Oq*ovi  OgI Ovt 0qtovJ ovI Qv* oq¢* 0q*  0s Ov*

which corresponds to equation (1.16) for the Lagrangian £. Notice that equations
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(1.14) are identities as

o*L

ovids
Finally, as in Proposition if the Lagrangian £ is regular (i.e., if L is regular),
equation implies that f* = v?, that is, the vector field X is a SODE and the
equations of motion become

s=L,
0’L . 0’L . 0L d [OL oL 0¢ 0¢ 0L
— ¢ + —G¢ — — = — ] - — = — 4+ — .
ovI Qv* 0q’ Ov* dqt  dt \ ov* oq¢t  0q¢*  0s Ov*

These are the expression in coordinates of the contact Euler-Lagrange equations

(1.12) and (1.13) for the Lagrangian £ = L + ¢.



18 Xavier Rivas — Geometrical aspects of contact systems and field theories




Chapter 2

Symmetries, conserved and dis-
sipated quantities in contact sys-
tems

In this chapter we will introduce the notions of symmetry, conserved and dissipated
quantity for both Hamiltonian and Lagrangian contact systems. We will see that
these concepts are closely related. In Section [2.1] we define two different types of
symmetries: dynamical symmetries and contact symmetries and we prove that ev-
ery contact symmetry is also a dynamical symmetry. In Section we introduce
the concepts of conserved and dissipated quantity. Then, we prove that every in-
finitesimal dynamical symmetry gives rise to a dissipated quantity. In particular, we
see that the Hamiltonian function of a contact Hamiltonian system is a dissipated
quantity and that the quotient of two dissipated quantities is a conserved quantity.
Section [2.3] we deal with the symmetries of canonical contact Hamiltonian systems.
In particular, we prove the momentum dissipation theorem. In Section We study
the symmetries of contact Lagrangian systems. Finally, in Section we analyze
the relations between the symmetries and the conserved and dissipated quantities
of a symplectic Hamiltonian system and its corresponding contactified system. This
chapter is based in [68]. See [41] for another approach to these topics.

2.1 Symmetries of contact Hamiltonian systems

Given a dynamical system, there are many different concepts of symmetry depending
on the underlying structure they preserve. Thus, one can consider the transforma-
tions that preserve the geometric structure of the dynamical system, or those pre-
serving its solutions [89|136/. In this chapter, we discuss these subjects for contact
systems. See also [41] for a complementary approach on these topics.

Definition 2.1.1. Consider a contact Hamiltonian system (M,n, H) and let X be
its contact Hamiltonian vector field. A dynamical symmetry of this system is a

19
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diffeomorphism ®: M — M such that
b Xyg=Xpy.
According to the definition above, a dynamical symmetry maps solutions into
solutions.

Definition 2.1.2. An infenitessimal dynamical symmetry of a contact Hamil-
tonian system (M,n, H) is a vector field Y € X(M) whose local flow is a dynamical
symmetry; that is, Ly Xg = [Y, Xg| = 0.

There are other kinds of symmetries that leave the geometric structures invariant.
They are the following:

Definition 2.1.3. A contact symmetry of a contact Hamiltonian system (M, n, H)
18 a diffeomorphism ®: M — M satisfying

d*n=n, O¢,.H=H.

An infinitesimal contact symmetry is a vector field Y € X(M) whose local flow
1S a contact symmetry; i.e.,

gyﬂzo, ngZO.

Furthermore, we have:

Proposition 2.1.4. FEvery (infinitesimal) contact symmetry preserves the Reeb vec-
tor field; that is, ®*R =R (or [Y,R] =0).

Proof. We have that

(@) (@*dn) = ©*(i(R)dn) =0,
(1) (%) = *(i(R)n) =1

and, as ®*n = n and the Reeb vector field is unique, from these equalities we get that
®_ 'R = R. The proof for the infinitesimal case is immediate from the definition. [

Now, taking into account everything stated above, we can see the relation between
contact symmetries and dynamical symmetries:

Proposition 2.1.5. (Infinitesimal) contact symmetries are (infinitesimal) dynamical
symmetries.

Proof. If Xy is the contact Lagrangian vector field,
(@, Xpr)dly = (@, X3 ) (D) = O (i( X1 )dn)

=®(dH — (ZrH)n) = dH — (ZLrH)n,
(@ Xp)n = i(PuXp)(P"n) = " (i(Xg)n) = @*(
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The proof for the infinitesimal case is straightforward from the definition. O

2.2 Dissipated and conserved quantities of contact
Hamiltonian systems

Associated to symmetries of contact Hamiltonian systems are the concepts of dissi-
pated and conserved quantities.

Definition 2.2.1. A dissipated quantity of a contact Hamiltonian system (M, n, H)
with contact Hamiltonian vector field X g is a function F € €°° (M) such that

Ly F = —(LRH)F. (2.1)

In a contact Hamiltonian system, symmetries and dissipated quantities are related
as follows.

Theorem 2.2.2 (Dissipation theorem for contact Hamiltonian systems). Let Y €
X(M) be a vector field. If Y is an infinitesimal dynamical symmetry, [Y, Xg] = 0,
then the function F' = —i(Y)n is a dissipated quantity.

Proof. This is a consequence of

Lxy F=—%x,i1(Y)n
= —i(Y)ZLx,n —i(Lx,Y)n
= (ZLrH)i(Y)n + «([Y, Xul)n
= —(ZRH)F +i([Y, Xu]|)n
= —(ZrH)F,

where we have used the third statement in Proposition O

Remark 2.2.3. The last equality reveals that [Y, Xy] € kern is a necessary and
sufficient condition for F' to be a dissipated quantity. This fact has been noted in
[41]. Nevertheless, it is important to point out that such transformations are not
dynamical symmetries in the sense of Deﬁnition since in general they do not
map solutions into solutions.

In particular, as we pointed out in Proposition [1.2.3| the contact Hamiltonian
vector field X is trivially an infinitessimal dynamical symmetry and its associated
dissipated quantity is the energy, F' = —i(Xg)n = H:

Theorem 2.2.4 (Energy dissipation theorem for contact Hamiltonian systems).

Zx.H=—(%H)H.
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Notice that these are non-conservation theorems. We are dealing with dissipative
systems and hence, dynamical symmetries are not associated to conserved quantities
but to dissipated quantities. In particular, as stated in the theorem above, the energy
is not a conserved quantity.

Definition 2.2.5. A conserved quantity of a contact Hamiltonian system (M, n, H)
is a function G € €°°(M) such that
Zx,G=0.
Notice that every dissipated quantity changes with the same rate — %%z H. Hence,
we have the following:

Proposition 2.2.6. (1) If Fy and Fy are two dissipated quantities and Fy # 0,
F\/Fs is a conserved quantity.

(2) If F is a dissipated quantity and G is a conserved quantity, FG is a dissipated
quantity.

Proof. (1)
¥ P\ BYx,F -2,
X E — F22
hYrH FF,YrH
= — + 5 = O,
F F

(2)
DgXH(FG) = GZXHF—}-FD?XHG = —(DgRH)FG

O

Remark 2.2.7. Taking into account the previous theorem, if H # 0, it is possible
to assign a conserved quantity to an infinitesimal dynamical symmetry Y. Indeed,

using Theorem and Proposition|2.2.6] it is clear that

is a conserved quantity.

Finally, contact symmetries can be used to generate new dissipated quantities
from a given dissipated quantity. The following result is a direct consequence of
Definitions|2.1.1}and [2.2.1}

Proposition 2.2.8. If &: M — M is a contact symmetry and F € € (M) is a
dissipated quantity, then so is ®*F.

Proof. We have

Ly, (P F) = &* Ly x, F = &* Ly, F = & (—LrH)F = —(LrH)(®*F).
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The proof for the infinitesimal case is straightforward from the definition. O

2.3 Symmetries of canonical contact Hamiltonian
systems

Consider the canonical contact manifold (T*Q x R,n) with contact form
n= ds — pquz )

as in Example If o: Q — Q is a diffeomorphism, we can construct the diffeo-
morphism
&= (T*p,1dg): T"Q xR = T*Q x R,

where T*p: T*Q — T*Q is the canonical lift of ¢ to T*(Q). Then ® is said to be
the canonical lift of ¢ to T*Q x R. Any transformation ® of this kind is called a
natural transformation of T*(Q x R.

In the same way, consider a vector field Z € X(Q). Its complete lift to T*Q x R
is the vector field Y € X(T*Q x R) whose local flow is the canonical lift of the local
flow of Z to T*Q x R; that is, the vector field Y = Z¢* where Z°* denotes the
complete lift of Z to T*(Q), identified in a natural way as a vector field in T*Q x R.
Any infinitesimal transformation Y of this kind is called a natural infinitesimal
transformation of T*Q x R.

It is well known that the canonical forms 0, € QY(T*Q) and w, = —df, €
O%(T*Q) are invariant under the action of canical lifts of diffeomorphisms and vector
fields from @) to T*(@Q). Now, taking into consideration the definition of the contact
form n € Q1(T*Q x R), we have the following results.

Proposition 2.3.1. If & € Diff(T*Q x R) (resp. Y € X(T*Q x R)) is a canonical
lift to T*Q x R of a diffeomorphism ¢ € Diff(Q) (resp. of Z € X(Q)), then

(1) @*n=mn (resp. Lyn=0).
(2) If, in addition, ®*H = H (resp. Ly H = 0), then it is a (infinitesimal) contact
symmetry.

In particular, we have

Theorem 2.3.2 (Momentum dissipation theorem). If 0H/dq' = 0, then aiqi is an
infinitesimal contact symmetry, and its associated dissipated quantity is the corre-
sponding momentum p;; that is,

Lxupi =—(LrH)p; .

Proof. A simple computation in coordinates shows that . (6 / 8qi) n=0and.Z ((9 / 6qi) H =
0. Therefore, it is a contact symmetry and, in particular, a dynamical symmetry.
The other results are a consequence of the dissipation theorem. O
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2.4 Symmetries of contact Lagrangian systems

Let (TQ x R, L) be a regular contact Lagrangian system with Reeb vector R, and
contact Euler-Lagrange vector field X, (i.e. solution to equations )

Everything said above about symmetries and dissipated quantities for contact
Hamiltonian systems holds when it is applied to the contact system (TQ xR, n., Er).
Thus, we have the same definitions for dynamical and contact symmetries and the
dissipation theorem states that —i(Y)n, is a dissipated quantity for every infinites-
imal dynamical symmetry Y. In particular, the energy dissipation theorem [2.2.4]
applied to the contact system (TQ x R, 7., Fr) states that

$XLE£ = —(ZRﬁEE)Eﬁ .
If p € Diff(Q) is a diffeomorphism, we can construct the diffeomorphism
& = (T, Idg): TQ xR — TQ x R,

where Ty is the canonical lift of ¢ to T(). Under these hypotheses, the map ® is
said to be a natural transformation of TQ x R.

On the other hand, given a vector field Z € X(Q), we can define its complete
lift to TQ x R as the vector field Y € X(TQ x R) whose local flow is the canonical
lift of the local flow of Z to TQ x R; that is, the vector field Y = Z€, where
ZC denotes the complete lift of Z to TQ, identified in the natural way as a vector
field in TQ x R. An infinitesimal transformation of this type is called a natural
infinitesimal transformation of TQ x R.

It is well known that the vertical endomorphism J and the Liouville vector field A,
in T@ are invariant under the action of canonical lifts of diffeomorphisms ¢ € Diff(Q)
and vector fields Z € X(Q). Taking into account the definitions of the canonical
endomorphism J and the Liouville vector field A in TQ x R, it can be seen that
canonical lifts of diffeomorphisms and vector fields from @ to TQ x R preserve these
canonical structures. They also preserve the Reeb vector field R .

As an immediate consequence, we get a relation between Lagrangian-preserving
natural transformations and contact symmetries:

Proposition 2.4.1. If ®: Diff(TQ xR) (resp. Y € X(TQ x R)) is the canonical lift
of p € Diff(Q) to TQ xR (resp. of Z € X(Q)) that leaves the Lagrangian invariant,
then it is a (infinitesimal) contact symmetry, that is,

e =mnc, ®E.=E, (resp. Lyne =0, LEc=0).
As a consequence, it is also a (infinitesimal) dynamical symmetry.

As a corollary of the previous result, we have a similar result to the momentum

dissipation Theorem
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Theorem 2.4.2. If 9L/dq" = 0, then 6%1' s an infinitesimal contact symmetry and
its associated dissipated quantity is the momentum OL/Ov':

oL oL oL oL
Z ) = (LR, Er)— = ——.
Xe <81ﬂ) (Lr. 5)81)’ s Ov'
In [73], a similar problem is considered where the dissipation factor used is %—?

which, as we have seen in (1.18)), is the same that we have obtained.

2.5 Symmetries of a contactified system

The dissipation theorem provides a dissipated quantity from an infinitesimal
dynamical symmetry Y with no additional hypotheses, in contrast to Noether sym-
metries, where the generator of the symmetry is required to fulfill some additional
conditions in order to yield a conserved quantity. Our will is to understand this
different behaviour.

Consider a Hamiltonian system (P,w, H,) on an exact symplectic manifold P,
with symplectic form w = —df € Q?(P) and Hamiltonian function H, € €°°(P). Its
associated Hamiltonian vector field X, is defined by

i(Xo)w = dH, .

The contactified of (P, w) is the contact manifold (M, n), where M = P xR is endowed
with the contact form 1 = ds — 6; here s is the canonical coordinate of R and we use
6 for the pull-back of the 1-form § € Q!(P) to the manifold M (see Example .

The pull-back of the Hamiltonian function H, to M defines a contact Hamiltonian
function H = H, on M. The corresponding contact Hamiltonian vector field can be
written as

Xg=Xo+ E% ,
where X, is the Hamiltonian vector field of H, as a vector field on the product
manifold M, and ¢ = (6, X,) — Ho.
Consider now a vector field Y, € X(P) and build the vector field Y = Y, + b2
with b € €(P).

Lemma 2.5.1. The vector field Y is a dynamical symmetry of the contact Hamilto-
nian system (M,n, H) (Zy Xy = 0) if, and only if, the vector field Yo is a dynam-
ical symmetry of the symplectic Hamiltonian system (P,w,H,) (Zy,Xo = 0) and
Ll = Lx,,b.

Proof. The proof of this lemma is a simple computation:

0
[Y,XH] = [YO,XO] + (gyf —ngb)&.
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Now let us consider the quantity
G = —i(Y)n = —i(Yo)y —b.
Computing,

LxpG = —i(Y)ZLxyn —i([Xu, Y])n
= (LrH)i(Y)n —i(Y)(Lxyn + (LrH)n) +i([Y, Xu])n
= (LrH)i(Y)n —i(Y)(Lxyn+ (LrH)n) +i([Yo, Xo])n + (Ll — Lx b)) .

Let us analyze the vanishing of these summands: the first one is zero because H = H,
does not depend on s, the second one also is because X is the contact Hamiltonian
vector field (see Theorem(1.2.4), and, according to the previous lemma, the third and
fourth ones vanish if 2y Xy = 0. Hence, we can conclude that if Y is a dynamical
symmetry, G is a conserved quantity of the contact Hamiltonian system (M,n, H).
It is conserved instead of dissipated because the Hamiltonian H does not depend on
the variable s. Now,

Ly G = Lxi(Y)0 — Ly, b

We obtain the following: when Y, is a dynamical symmetry of the symplectic Hamil-
tonian system, the function G, = i(Y)# is not necessarily a conserved quantity be-
cause the hypotheses of Noether’s theorem are not necessarily fulfilled. However, in
the contactified Hamiltonian system (M,n, H) with Y a dynamical symmetry under
the conditions of the previous lemma, we have

ZXHGO IXXH(G—F[)) :ngbzgyf,

and the time-derivative of G, is compensated with the time-derivative of b.

Now the question is when is GG, conserved under the action of X,? The answer is
when %y ¢ = 0. This happens, for example, when Y, is an exact Noether symmetry,
i.e. when %y, 0 =0 and %, H, = 0, since

Lyl = Ly (i(Xo)0 — H)) = 0.



Chapter 3

Skinner—Rusk formalism for con-
tact systems

This chapter is devoted to generalize the formalism first introduced in local coordi-
nates in [105] and later developed by R. Skinner and R. Rusk in [143] to the case of
contact mechanical systems. The Skinner—Rusk formalism was developed in order to
find an alternative way to deal with both regular and singular Lagrangians. This can
be achieved by mixing in one unified formalism both Lagrangian and Hamiltonian
formalisms.

In Section we define the extended Pontryagin bundle W and describe its
canonical precontact structure, introducing its canonical contact 1-form, the cou-
pling function and the canonical 1- and 2-forms. This will allow us to introduce in
Section the contact dynamical equations for the precontact Hamiltonian system
(W,n,H). Then, as the system is singular, we need to apply the constraint algo-
rithm described in [40]. We study the constraints that arise and, in particular, we
recover the holonomy condition and the Legendre map. Finally, in Section we
show that both the Lagrangian and Hamiltonian formalisms can be recovered from
the Skinner-Rusk formalism. See [36].

3.1 The extended Pontryagin bundle: precontact
canonical structure

For a contact dynamical system, the configuration space is ) x R, where @) is an
n-dimensional manifold with coordinates (¢°,s). Consider not the bundles TQ x R
and T*Q x R endowed with natural coordinates (q*,v?,s) and (¢%, p;, s) adapted to
the bundle structures. Consider also the canonical projections

T1: TQXR—->TQ , 7:TQXR—=>Q xR,
m:T"QXxR—-T'Q , mm: T"QxR—Q xR.

27
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We denote by ds the volume form in R, and its pull-backs to all the product manifolds.
Let 0, € QY(T*Q) and w, = —df, € Q?(T*Q) be the canonical forms of the cotangent
bundle T*Q, whose expressions in coordinates are 6, = p;d¢* and w, = dg* A dp;.
Denote § = 730, € QYT*Q x R) and w = 7w, € Q?(T*Q x R). Notice that
w = —df.

Definition 3.1.1. We define the extended Pontryagin bundle
W:TQ XQT*QXR7
endowed with the natural submersions

p1: W —=TQ xR,
p2: W —=T"Q xR,
po: W —Q xR,
s: W —=R.

The extended Pontryagin bundle has natural coordinates (¢°, v?, p;, s).

Definition 3.1.2. Consider a path v: R — W. The path v is said to be holonomic
in W if the path pyov: R — TQ x R is holonomic.

A wvector field X € X(W) is said to satisfy the second-order condition or to be
a SODE in W if its integral curves are holonomic in V.

A holonomic path in W has local expression

v=(¢"(t). 4" (), pi(t), s(t)) .
A SODE in W reads as
0 0

X—vaqi—l-Favi-i-Gzapi—i—fas.

The extended Pontryagin bundle W defined in has the following natural struc-
tures:

Definition 3.1.3. (1) The coupling function in W is the map C: W — R defined
as

C(w) = (pg, Vq),
where w = (pq,Vq,5) €W, ¢ € Q, pq € T*Q, and vq € TQ.

(2) The canonical 1-form is the po-semibasic form © = p30 € QY (W). The
canonical 2-form is Q = —dO = piw € Q*(W).

(3) The canonical contact 1-form is the pi-semibasic form n = ds—© € QY (W).
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Taking natural coordinates,
O=pdg', n=ds—pd¢, dp=dg' Andp;=Q.

Definition 3.1.4. Let L € €°(TQ x R) be a Lagrangian function and consider the
Lagrangian L = piL € €°°(W). The Hamiltonian function associated to L is
the function

H=C—L=pv' —L(g,v,s) € €°W).

Remark 3.1.5. Notice that the canonical contact 1-form 7 is a precontact form in
W. Thus, (W, n) is a precontact manifold and (W, n, H) is a precontact Hamiltonian
system. These concepts where introduced in [40]. Then, equations l) do not have
a unique solution and the Reeb vector field is not uniquely defined. Actually, in
natural coordinates, the general solution to equations is

o .0
R= o+ Fon,

for arbitrary coefficients F*. Nevertheless, the formalism is independent on the choice
of the Reeb vector field. In this particular case, as W is a trivial bundle over R, the
canonical vector field 9/0s € X(R) can be canonically lifted to W and used as Reeb
vector field.

3.2 Contact dynamical equations

Definition 3.2.1. The Lagrangian—Hamiltonian problem associated to the pre-
contact system (W,n,H) consists in finding the integral curves of a wvector field
Xy € XOW) such that

b(Xn) =dH — (LrH +H)n,

that is, which is a solution of the contact Hamiltonian equations 1} :

{Z:(Xﬁ)dn =dH — (ZrH)n, (3.1)

or, what is equivalent,
gXHU = _(ZRH),'?7
i(Xp)n = —H.

Then, the integral curves v: I C R = W of Xy are the solutions to the equations

(3.2)

{i(v’)dn = (dH — (LrM)n) o,
i(Y)n=—-Her,

As (W,n,H) is a precontact Hamiltonian system, equations (3.1) are not nec-
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essarily consistent everywhere in V. Hence, we need to implement the standard

constraint algorithm in order to find the final constraint submanifold (if it exists)

in which there exist consitent solutions to equations (3.1). In what follows, we will

detail this procedure.

Take a natural chart (¢, v?, p;,s) in W. The vector field X3, € X(W) has local

expression

o 0 o .0
P G+ .

Xu=1 oq’ ovt Op; 0s

Therefore we have

i(Xu)n=f—fpi,
i(X3)dn = f'dp; — Gidq",

and

— dq' — —d
87}1 q S?

dH = Uidpi + (pi — oL dov® — aﬁ 9L
0q* 0s

oL ,
(ZLrH)n = —g(ds —pidg").

Then, the second equation in 1} gives
f=" =i+ L,

while the first equation in 1) leads to

fi=0 (coefficients in dp;),
pi = gfz (coefficients in dv'),
G; = 2_5 ‘H%‘aa—f (coefficients in dqi) ,

(3.3)

(3.4)

(3.5)

(3.6)

and the conditions from the coefficients in ds hold identically. From these conditions,

we have:

e Equations (3.4) are the holonomy conditions. This implies that X4, is a SOPDE.
As usual, the SOPDE condition arises straightforwardly from the Skinner—Rusk

formalism. This reflects the fact that this geometric condition in the Skinner—

Rusk formalism is stronger than in the standard Lagrangian formalism.

e Conditions 1' are algebraic equations defining a submanifold W, — W,
the first constraint submanifold of the Hamiltonian precontact system
W,n,H). Wy is the graph of the Legendre map FL introduced in Defini-

tion [1.3.6]
Wi = {(vg, FL(vq,8)) €W [ (vq,s) € TQ x R},
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Notice that this implies that the Skinner—Rusk formalism includes the definition
of the Legendre map as a consequence of the constraint algorithm.

Hence, the vector fields solution to equations || have the form

X'H:’Ui

-+ P — —
g + D O + £3s (on Wy),

oq’ tpi 0s

0 ;0 (E)E EM) 0 0
_l’_ .

where F' are arbitrary functions.

Now, the constraint algorithm continues by imposing the tangency of X% to Wy,
to ensure that the dynamic trajectories remain in W,;. The constraints defining W,
are

oL
f;zpj—%e(g w).

The tangency condition X (§]1) =0 on W reads

’L o, L ., 9L oL OC

0= _qué)vﬂ'v CQvidvi T T 9sovd + oq7 +pj$

(on Wi).  (3.7)

Once we get to this point, we have to distinguish two different cases:

e If the Lagrangian L is regular, equations (3.7) allow us to determine all the
functions F* = dd—”tl. In this case, the algorithm ends and the solution is unique.

e On the other hand, if the Lagrangian L is singular, these equation establish
relations among the coefficients F'*: some of them may remain undetermined
and the solutions may not be unique. Moreover, new constraints 53 €eE>W)
may appear. These new constraints define a submanifold Wy — W; — W.
The algorithm continues by demanding that X3, must be tangent to the new
submanifold W, and so on until we find a final constraint submanifold Wy (if
it exists) where we have tangent solutions Xy.

Let v(t) = (¢'(t),v*(t), pi(t),s(t)) be an integral curve of X5. We have that

fi=4¢q" F' =9', G; = p; and f = §. Then, equations (3.3), (3.4), (3.5) and (3.6)

lead to the coordinate expression of equations . In particular,
e Equation implies that v* = ¢°, that is, the holonomy condition.
e Using , equation gives
s=L, (3.8)

which is equation (1.13)).

e Conditions (3.2) are

5 L 85__(87{ ‘a_H)

~ag "Pas ~ " \oag TP as
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which are the second group of Hamilton’s equations (1.6). Now, using (3.5),
that is, on the submanifold Wy, these equations are

da oLy _oc  ococ

dt \ovi)  0¢®  Ovtds’
which are the Euler-Lagrange equations (1.12). The first group of Hamilton’s
equations (1.6) arises from Definition taking into account the holonomy
condition.

e Using conditions (ie. on Wi) and (3.8), the tangency condition (3.7)
gives again the contact Euler-Lagrange equations 1) Notice that if the
Lagrangian L is singular, these equation might be incompatible.

3.3 Recovering the Lagrangian and Hamiltonian for-
malisms and equivalence

In this section we are going to the equivalence between the Skinner—Rusk formalism
and the Lagrangian and Hamiltonian formalisms. First of all, notice that if we denote
J1: Wi = W the natural embedding, we have

(prog) W) =TQ xR, (p2on)Wi) =P CTQxR.

Figure 3.1: Recovering the Lagrangian and Hamiltonian formalisms

In particular, P; C T*@Q xR is a submanifold if the Lagrangian L is almost-regular,
an open subset of T*Q x R if L is regular or P, = T*Q x R if L is hyperregular.
Furthermore, as the first constraint submanifold W; is the graph of the Legendre
map F L, the restriction projection p; 0 71: Wy — TQ x R is a diffeomorphism. In
the same way, if L is almost-regular, for every submanifold j,: W, < W obtained
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from the constraint algorithm, we have
(11 090)Wa) =Sa = TQ xR, (p2090)Ws) =P, — P CT*Q xR.

Notice that W, C Wy = graph FL implies FL(S,) = P,. Now, let j;: Wy — W be
the final constraint submanifold and

(progr) W) =8S; = TQ xR, (proygs)(Wy)=Pr— P CT*Q xR.

This situation is represented in diagram in Figure

Every function or differential form on W or vector field on W and tangent to W,
can be restricted to W;. Hence, they can be translated to the Lagrangian side using
that W1 =2 T@Q x R or to the Hamiltonian side projecting to the second factors of the
product bundle, T*Q x R. With all this in mind, we have the following result:

Theorem 3.3.1. Let v: I C R — W be a path taking values in Wy. It can be split
as v = (yo,vm), where y, =proy: I CR - TQ xR and yy = FLovy,: I CR —
P, CT*Q x R.

Consider a path v: I CR — W, with Im(v) C W, satisfying equations (at
least on a submanifold Wy C W, ). Then, vy, is the prolongation to TQ x R of the
projected curve o = pgoy: R — Q xR (7 is holonomic), and it is a solution to .
In addition, the path vy = FL oo’ is solution to (on Py).

Conversely, if o: R — @Q xR is a path such that o’ is a solution to (on Sy ),
then the path v = (o/, FLo ') is a solution to (3.2). Moreover, FLoo' is a solution

to (1.4) (on Py).

It is important to point out that in the case the Lagrangian L is singular, these
results hold on the submanifolds Wy, Sy and P.

Considering that the paths v: R — W solution to are the integral curves of
SOPDEs X3 € X(W) solution to (3.1) and that the paths v,: R — TQ x R are the
integral curves of SOPDEs X, € X(TQ x R) solution to , then we have:

Theorem 3.3.2. Consider a vector field X4 € X(W) solution to (at least
on Wy) and tangent to Wy (resp. to Wy). Then, X1 € X(TQ x R), defined as
X1 op1 = Tpi o Xy, is a SOPDE tangent to Sy solution to (on Sy), with
H = p’{EL

Furthermore, every SOPDE solution to (on S¢) can be obtained in this way
from a vector field X9y € X(W) (tangent to Wy ) solution to (on Wy ).

We can also recover the Hamiltonian formalism in a similar way having in mind
that the paths vg: R — T*Q x R are the integrals curves of vector fields Xy €

X(T*Q x R) solution to (1.3).

Theorem 3.3.3. Consider a vector field X3y € X(W) solution to equations (at
least on Wy ) and tangent to Wy (resp. to Wy ). The vector field Xg € X(T*Q x R)
defined as Xpg o po = Tpy o Xy is a solution to (on Py and tangent to Py),
whith H = p3H.
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These results correspond to those obtained from the Skinner—Rusk formalism for
non-autonomous dynamical systems. See [10][20].

It is important to remark that, in the case of singular Lagrangians, we only
have equivalence between the constraint algorithms in the Skinner—Rusk and in the
Lagrangian formalisms if we impose the second-order condition to the Lagrangian
formalism as an additional condition. This is because, unlike in the Skinner—Rusk
formalism, the holonomy condition cannot be recovered from the Lagrangian formal-
ism when dealing with singular Lagrangians. See [123}|143|.



Chapter 4

Examples in mechanics

This last chapter of the first part is devoted to study some examples of contact
mechanical systems. We will analyze them with different levels of detail.

The first exampleis the damped harmonic oscillator. We will consider the
Lagrangian function of the harmonic oscillator and add to it a holonomic dissipation
term. In this way we can obtain the equation of a damped harmonic oscillator. In
this first example, we will give a complete description of the Lagrangian, Hamiltonian
and Skinner—Rusk formulations. We will also see the energy dissipation law for this
system.

In the second examplewe will describe the motion of a particle in a con-
stant gravitational field with friction. We will develop the Lagrangian formalism
of this system give its energy dissipation law. We will also find a contact symmetry
which will allow us to obtained its associated dissipated quantity. With these two
dissipated quantities, we will find a conserved quantity.

The third example describes the fall of a parachute. This example is a
particularly interesting one, because in it we consider a Lagrangian function which
is not a Lagrangian with holonomic dissipation term. We see that when we make
the friction go to zero, we recover the Lagrangian used in the previous example. We
develop the Lagrangian formalism for this system and give its energy dissipation law.

In the fourth example [4.4] we give a complete description of the Skinner-Rusk
formalism for Lagrangians with holonomic dissipation term, including the con-
straint algorithm. These Lagrangians were introduced in [31] and [68| and are very
common.

The fifth example[4.5]develops the Skinner—Rusk formalism of a system consisting
of a particle submitted to a central potential with friction. The corresponding
Lagrangian function is regular and thus the constraint algorithm finishes in one step.

In the sixth example We deal with a damped simple pendulum. We use the
method of Lagrange multipliers to obtain a Lagrangian function describing the
behaviour of the pendulum restricted to the circumference r = ¢. The Lagrangians
obtained this way are always singular because the velocities associated with the
Lagrange multiplier do not appear in the Lagrangian. We develop the Skinner—Rusk
formalism for this system.

Finally, Example develops the Skinner—Rusk formalism for the Cawley’s La-

35
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grangian [28] modified by adding a dissipation term. This is a singular Lagrangian.

4.1 The damped harmonic oscillator

Consider the configuration space ) = R. The Lagrangian description of the one-
dimensional harmonic oscillator is given by the Lagrangian function L: TQ — R,

where . .
L(q,v) = EmUZ — Emquz.

The Euler-Lagrange equation for this Lagrangian is
G+wq=0,

which is the equation of a harmonic oscillator.

Contact Lagrangian formulation

Consider now the Lagrangian function £: TQ x R — R given by

1 1
L(q,v,8) = L(q,v) —vys = §mv2 - §mw2q2 —9s. (4.1)
Since 5 9
A=vs, 7= wa
Yov v ©

we have that

dL = mvdv — mw?qdq — vds,
1

1
Er=AL)—-L= §mv2 + §mw2q2 + s,

dE; = mvdv + mw?qdg + vds,
O, ="Jodl = mudg ,
ne = ds — muodg,
dngs = mdg Adv,
0
R = 75
Consider a generic vector field X € X(TQ x R) with local expression

0 0 0
X—fa—q%—F%—l—g%

The left-hand side of the first contact Lagrangian equation (1.10) is

i(X)dne = mfdv —mFdq,
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while the right-hand side is
dE; — R(Ez)ne = mudv + mw?qdq + moydg .

Equating both expressions, we get the conditions

f=v,
F=—w?q—v.

On the other hand, the second equation in (1.10) yields

1 1
g= §mv2 — §mw2q2 —vs=L.
Then, if the vector field X is a solution to the contact Lagrangian equations (1.10)),
it has local expression
0 0 0
X =v—+ (—w?q—y0)=— + L—.
U8q+( wq ')/v)av—k s
Notice that the SODE condition for X is automatically satisfied as the Lagrangian £
is regular.
Let o(t) = (q(t),v(t),s(t)) be an integral curve of the vector field X. Then, it
satisfies the following system of differential equations:

¢g=v,
b =—w’q— v,
s=L.

The first two equations of this system can be combined to obtain the second-order
differential equation
+vi+wiqg=0,

which corresponds to a damped harmonic oscillator.
The dissipation of the energy is given by Theorem

fxEL = —”}/EL.

Contact Hamiltonian formulation

Consider the contact manifold (T*Q x R, n) with natural coordinates (g, p, s), where
n = ds — pdg. The Reeb vector field is R = 9/0s.

The Legendre map associated to the Lagrangian function £ given in (4.1) is the
map FL: TQ x R — T*Q x R given by

FL(q,v,8) = (q,p=mv,s) € T"Q x R.



38 Xavier Rivas — Geometrical aspects of contact systems and field theories

The Hamiltonian function defined by FL*H = E is

1 1
H=—p*+ —mw?¢* +s.
2m 2

Its differential is
dH = £dp + mw?qdq + ~ds.
m

Consider the vector field Y € X(T*Q x R) with local expression

0 0

0

The left-hand side of the first contact Hamiltonian equation 1) reads
i(Y)dn = fdp — Gdg,
while the right-hand side is
dH — R(H)n = %dp + ypdq + mw?qdgq,
and equating them we obtain the conditions
p
f =
m
G = —mw?q—p.

On the other hand, the second equation in (1.3) gives

1 1
g= %ﬁ — §mw2q2 —s.

Hence, the vector field Y has local expression

p 0 2 9 Loy 1 9, 9
y=L9% B e (Rl s ) =
m 9 + (—mwq vp)ap + <2mp 5W°q =8 | o
An integral curve o(t) = (q(t),p(t), s(t)) of the vector field YV satisfies the system of

differential equations

._ D
q=—,
m
p=—mwiq—p,
1 1
s = %pz — §mw2q2 — s

Combining the first two equations in of the system above, we obtain the second-order
differential equation
G+7i+wiqg=0,
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which is the equation of a damped harmonic oscillator. The dissipation of the Hamil-
tonian function is given by Theoremm

ZyH=—~H.

Contact Skinner—Rusk formulation

We have already seen the contact Lagrangian and Hamiltonian formulations of the

damped harmonic oscillator. Now, we are going to state the Skinner-Rusk formula-

tion and we will also recover the Lagrangian and Hamiltonian cases from it.
Consider the extended Pontryagin bundle

W=TQ xqT*Q x R,

with natural coordinates (q,v,p,s). The coupling function is C = pv. The 1-form
n = ds — pdq defines a precontact structure on W with Reeb vector field R = 9/0s.
We have that dn = dg A dp. The Hamiltonian function associated to the Lagrangian
L given in (4.1) is the function

1 1
’H:C—Ezpv—§mv2+§mw2q2+’ys€‘€oo(l/\/).

We have
dH = pdv + vdp — mudv + mw?qdg + vds,

and hence
dH — R(H)n = (p — mv)dv + vdp + (mw?q + yp)dq .

Given a vector field Z € X(WW) with coordinate expression

0 0 0 0
Z=f—+F—+G—+g+—
f0q+ 8v+ @p+gas’
equations (3.1) give the conditions

G = —mw?q—p, f=wv,

p=muv, 9=

Hence, the vector field Z is a SODE and has local expression

) ) ) o .0

and we have the constraint function
&L=p—mv=0

defining the first constraint submanifold W; — W. Now, we have to impose the
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tangency of the vector field Z to the submanifold Wj:
0=Z(&) = —mw’q —yp —mF,

we get the condition
F=—w?q—v

and no new constraints appear. Then, we have the unique solution

0 0 0 0
Z = 02 4 (—w?q — )= + (—mw?q — vp)— + L.
vaq+( w?q fyv)av+( mw?q 'yp)ap—kﬁas

Projecting onto each factor of W = TQ xg T*Q x R using the projections p1, pa,
we recover the Lagrangian and Hamiltonian formalisms described above. In the
Lagrangian formalism we obtain the holonomic vector field X € X(TQ x R) given by

. ) d )
X—an+(—w q—vv)aerﬁaS,

while in the Hamiltonian formalism we get the vector field Y € X(T*Q x R) given by

_32 2 Q iz_l 2 2 Q
Y—maqﬂqu vp)aer(Qmp 5wq 78)88'

4.2 Motion in a constant gravitational field with
friction

Consider the motion of a particle in a vertical plane under the action of constant
gravity. In this case, @ = R? with coordinates (x,%). This motion can be described
by the Lagrangian function

1
L= imv2 —mgy, (4.2)

where v? = v2 + vg in the fiber bundle TQ with coordinates (z,y, v, vy).

In order to introduce air friction, we consider the Lagrangian with holonomic
dissipation term £ = L—vsin M = TQ xR endowed with coordinates (z,y, vz, vy, s).
In this case, we have the differential forms

0c = mv,de + mv,dy,
ne =ds — 0, =ds — mv,dr — mvy,dy,
dng = mdx A dv, +mdy A do,, .
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The Reeb vector field is R = 90/0s and the Lagrangian energy is

1
E, = §mv2 +mgy + ys.

The dynamical equations for a vector field X € X(M) with coordinate expression

0 0 0 0 0
X=a—+b=—+c=— —
a88+bam+68y+d8vx+68vy

are
i(X)dne =dE; — Re(Ec)ne,
i(X)ne = —Ec.

Using the fact that
dE; = mvgdv, + mv,dv, +mgdy + vds

and that
Re(Ep)ne = yds — ymuzde — ymu,dy,,

we obtain the relations

(a:bvx+cvy—EL,
b=uv,,

c =0y,

d=—vg,
le=—7vy —g.

The second and third conditions imply that a = £. Hence, the contact Lagrangian
vector field is

r —££+v 2+v 9 vi—( + v)i
£ %0s T or T oy T " on, VY ,yy(%y'

This gives the following system of differential equations:

F4yt =0,
y+yy+9=0,
$=L.

As in the previous example, the energy dissipation is given by Theorem
gl" EE[: = —’)/E L -

Notice that 0L/0x = 0. Thus, it is immediate to check that 9/0x is a contact
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symmetry. Its associated dissipated quantity is its corresponding momentum:

R
- Oz

xT

p =muy,.

The dissipation of this quantity is given by Theorem m

€T

Zr.p" = —yp".

Now, taking into account Proposition[2.2.6] as we have two dissipated quantities, we
can obtain the conserved quantity

CopT mu,

a %va + mgy + s

4.3 The parachute equation

In this example we are going to consider a contact Lagrangian function which is not
a Lagrangian with holonomic dissipation term.

Consider the vertical motion of a particle falling in a fluid under the action of
constant gravity. In the friction is modeled by the drag equation, the friction force
is proportional to the square of the velocity. This motion can be described as the
contact Lagrangian system (M, L), where M = TR x R endowed with coordinates
(y,v,s) and

1 5 myg

L=— —
5™ o

where 7 is the friction coefficient, which depends on the density of the air, the shape
of the object, etc.

(e — 1) + 2us,

Remark 4.3.1. Notice that

. I 5
%g%ﬁ = gmv” —mgy,
which is the mechanical Lagrangian (4.2) considered at the beginning of the previous
example.

In this case, we have

0 = (mov + 27s)dy,
ne =ds — 0, =ds — (mv + 2vs)dy,
dngs = mdy Adv + 2ydy A ds,

1
Eﬁ = EmUQ =+ 7;1—;](627:9 — 1),
0 2y 0
Re=—
£7 9s

m Oov
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Consider the vector field

0 0 0

Taking into account that
dE; = mvdv + mge*?¥dy

and that
Re(Ec)ne = —2yv(ds — (mv + 2ys)dy)
we obtain the conditions
a=(mv+2y)b—E¢,

b=w,

2 4?2
c=—ge?V — 1a+2702+ivs.
m m

The first two condition imply that a = £. Using this fact, the third equation becomes

¢ = —g + vv?. Summing up, we get that the contact Lagrangian vector field is
0 0 0
I'p=v—+ (1 —g)=— +L=.
‘ y (v 9) ov 0s

Hence, we have the following system of differential equations:

§—9°+9=0,
s=1L.

The energy dissipation is given by Theorem|2.2.4]

gFLEL = 2’71)EL .

Remark 4.3.2. Equation (4.3) describes an object falling (y < 0). To describe an
object ascending it is enough to change v for —v in the Lagrangian function.

4.4 Lagrangian with holonomic dissipation term

Let @ be a smooth manifold of dimension n. Consider a Lagrangian function L, €
¢ (TQ) either regular or singular and v € R. Let £L = 7L, —ys € € (TQ x R)
be a Lagrangian with holonomic dissipation term [31][68]. Let W = TQ xo T*Q xR
be the Pontryagin bundle with coordinates (¢*, v, p;, s). Denote £ = piL € € (W),
which is regular or singular Lagrangian depending on the regularity of L,. If the
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Lagrangian is singular, we will assume it is almost-regular. Then,
H = pv' — Lo(q",v") +vs € € (W),

and

; 0L, . 0L .
dH = Uzdpi + (pz - LI ) dv* — 6_qquz + ’YdS .

i_0
+ P2

Consider a vector field X3 € X(W) with local expression X3 = f* £i

Giaipi +f %. Then, equations give the conditions

ffi:,v’i,
_ 9L
p’t_ a’l}i )
0L,
G’i_ 8(]1 _’ypl'

We have the submanifold W; = graph FL — W, and

0 .0 0L, 0 0
-+ F'— — —vp; | — L, — —.
aqz + 81}1 + (aqz fyp) apl +( 78) (98

XH’WI = vi

Imposing the tangency of X3 to Wy, we get

0L, _, 0L,
F'+ o0 —yp; =0 (onW).

%

Y YT i

0L, 9L,
Xn (pj B a_) =

In Sectionwe pointed out that if the Lagrangian is regular, the tangency condition
allows us to determine all the coefficients F* and we have a unique solution. On the
other hand, if the Lagrangian is singular, the tangency condition establishes some
relations between the functions F'. Also, new constraints may appear, defining a
new constraint submanifold Wy — W; < W. The constraint algorithm continues
by imposing tangency to this new submanifold and so on. Eventually, we may find
(if it exists) a final constraint submanifold W, where there exist tangent solutions
X'H-

Let o(t) = (¢'(t),v*(t),p:i(t), s(t)) be an integral curve of a solution X3, € X(W)
tangent to W;. Then, equations , on Wy, are

$=1Lo—1s,

i =,

) d /0L 0L, 0L, 0L,
Pi= g (avi) - oq’ _Vpi:a_qi_vavi ’

The next three examples are of this kind: one regular system and two singular
systems.
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4.5 Central force with dissipation

Consider a particle of mass m in R? submitted to a central potential with dissipation.
Taking @ = R?® — {(0,0,0} with coordinates (q¢'), the Lagrangian describing the
dynamics of the system is

1 ,
L= imvivl —U(r) —vs € €°(TQ x R),

where v; = gijvj, gi; is the natural extension of the Euclidean metric of R3 to the
extended Pontryagin bundle W = TQ xqo T*Q x R, and r = \/ﬁ In W, with
local coordinates (¢%,v*, p;,s), we denote £ = p{L € €°°(W), which has the same
coordinate expression as L and is a hyperregular Lagrangian. Hence,

. 1 :
H =pv' — §mviv’ +U(r)+ys€€(W),

and

U'(r)
,

Consider a vector field Xz € X(W) with local expression Xy = f° 8?12- + P2+

Giaipi + f%. Then, equations give

dH = v'dp; + (p; — mv;)dv’ + qidg" + ~ds.

(fi:'Ui,
f=(f=vpi+L=CL,
pPi = Mmu; ,
U'(r
| Gi = — ( )Qi—”Ypi-
r

The first constraint submanifold W; — W is
Wi = {(qivviapius) eW | pi—mv; =0} =graph FL,

and

. 0 0 U’ d 1 . o
Xolwy, =055 +F - (71%‘ + #%) + (—mvw’ —U(r) — 73) —.

oq’ ov't Op; 2 0s
The tangency condition of X% to the first constraint submanifold W; reads

U'r - 1 - U(r)
Xy (pi—muv;) = —7pi—¥qi—mFi =0e=F'=—— (wz + %qz) (on W),

and the algorithm finishes with the unique solution

;0 1 ;, U'(r) ;)\ 0 U'(r) 0 0
XH|W1_U8_qi E(Wp +TCI>@ (sz—i- . qi 8pi+£%'
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Hence, if o(t) = (¢'(t),v"(t), pi(t), s(t)) is an integral curve of Xy, equations (3.2),
on Wi, read

s=L,

i = ot

| VPR q U(r)
—p’zv":qzz—vq"——(qz,
m mr

which are the Euler—Lagrange equations for the motion of a particle in a central
potential with friction.

We are now going to recover the Lagrangian and Hamiltonian formalisms from
the Skinner—Rusk formalism, as stated in Section[3.3] by projecting onto each factor
of the Pontryagin bundle W. As L is hyperregular, the Legendre map FL: TQ X
R — T*Q x R is a global diffeomorphism, and the constraint algorithm finishes
with the first constraint submanifold W;. In the Lagrangian formalism, the contact
Lagrangian vector field is the SOPDE

)(L:UZ

0 , U'(r) ;)\ 0 1 ; 0
o7 (fyv + —q) %4— <§mvlv —Ul(r) —’78) s € X(TQ xR),

mr

and, in the Hamiltonian formalism, we obtain the contact Hamiltonian vector field

p; O U'(r) 0 pip’ 0 .
Xpg=—-—— + ——2q; — = — — T R).
7 m aq" ('ypz + r b op; + 2m Ur) =7 0s €XTQxR)

4.6 Lagrange multipliers. The damped simple pen-
dulum

The method of Lagrange multipliers is used to incorporate constraints to a system.
This leads to singular Lagrangians in a very natural way, since the velocities asso-
ciated to the Lagrange multipliers do not appear in the Lagrangian. We will use a
simple case, the pendulum with friction, to explain how to apply the Skinner—Rusk
formalism to these systems.

Consider a pendulum of length ¢ and mass m. Its position in the plane can
be described using polar coordinates (r,6), where § = 0 is the position at rest.
The motion of the pendulum is restricted to the circumference r = ¢. Hence, the
corresponding Lagrangian is

1
L= §m(vf +1r203) —mgr(1 — cos0) + A(r — ) —vs € €7 (TR> x R),
where A is the Lagrange multiplier. It is a singular Lagrangian since the velocity
vy does not appear in the Lagrangian function. In the Pontryagin bundle W =
TR3 xps T*R3 x R, with local coordinates (r, 0, \,v,, vy, U, Pr, Do, Px,S), We have
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L =piL € €>*(W). Then,

1
H = prvy + povg + Prv — §m(v +7203) +mgr(1 —cos ) +vs — \(r —£) € €°(W).

Consider a vector field Xy € X(W) with local expression

0 0 0 0 0 0
+F\—+G, —+Gyg—+G\—+f—

O
G P L Ape apy * Ds

fr +f6’ +f)\ a

Then, equations (3.1 give the conditions

(f=L,

fr=0v,
fo =,
Ix =,
Pr = muy,

po = r’mug

pr=0,

G, = mrvg —mg(1 —cos@) + X\ — yp,.,
Gy = —mgrsinf — ypy ,

(Gr=71—L—px.
The first constraint submanifold is W; < W given by
Wl = {(7”,(9, Aav’ravaavkaprapeap>n 5) | Pr = MUy, Pg = mr2v9, bx = O} = graphFLa

and the vector field X4 is

o 0. 0. 9 0 9 9
K, = Lgg Torgy T rogg T gy gy, T g, TG

+ (mrvj — mg(1 —cos @) + X — ”Ypr)a—
Pr

. )
— (mgrsin® + ypg) m— + (r — £ — )

Ope apx

Imposing tangency of X3 to W, we obtain the following conditions (on Wj):

A
F, =rvi —g(1 —cosf) + — — v, ,
m

2u,v9 + 1Fy = —gsinf — yrug, (4.4)

r=>4{.

Notice that we have dinamically recovered the constraint r = ¢, defining a new
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constraint submanifold Wy — W; — W. The tangency condition to W, gives
v, =0 (onWs),

defining a new constraint submanifold Ws3. Imposing tangency of X4 to W3 we
obtain the equation
F. =0,

allowing us to compute the Lagrange multiplier \:
A =mg(1 —cosf) — mlv (on Ws).

This is a new constraint, which defines a new constraint submanifold W,. The
tangency condition to Wy gives a last constraint

vy = m(3gvg sin @ + 20yv3)  (on Wy).

Finally, imposing the tangency condition to this las constraint, we determine the
coefficient F) :

Fy =mg <3v9 cos 0 — 3% sin @ — 5yvg sin 6 — 2691)3) (on Wy),

and no new constraints appear. Hence, the constraint algorithm ends with the final
constraint submanifold Wy = Wy, which is defined as

Wf = {(Tvev>\7UT7U97U)\>pT7p97p>\7S) | Pr = MUr, P = mTQ,U@a Px = Oa r= g:
v, =0, A\ =mg(1 —cosf) — mlvi, vy = m(3gvgsinf + 20yv3)},

and the unique solution

0 : oy O g . 0
XH|Wf = vg% +m (ngg sin 6 + 2571}9) U <Z sm@—k’yvg) 0_1)9+

mg (31)9 cosf — 37 sin%9 - 5yvg sin 6 — 2€gv§) —
/ 0vy,
0

1
—ml(gsinf + ’yﬁvg)i + (—mﬁzvg —mgl(1 — cosf) — 73) s
s

8]39 2

Notice that we only have three independent variables: s, 8 and vg. Therefore, for an
integral curve of X4, the second equation in 1} gives the equation of motion

6= —gsine—’yé,
14
which is the equation of motion of the simple pendulum with friction.

Following Section we can recover the Lagrangian and Hamiltonian formalisms
by projecting onto each factor of the Pontryagin bundle W = TR? xps T*R3 x R. In
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the Lagrangian formalism we have the final constraint submanifold
Sf :{(7’79;)\7%,”9,%,5) S TR?) x R | T = E, Vy = 0, A= mg(l — COSQ) — mﬁvg,

vy = m(3gvg sin @ + 20yv3)},

and the contact Lagrangian vector field is the SOPDE

0 0 g . 0
XL|Sf = 09% —|—v>\5 — (zsm0—i—vvg> (9_1)9

0
+ mg (31}9 cosf — 3g sin’ 9 — 5yvg sin  — 2€gv§> —_—
¢ vy

+ (%mﬁ%g — mgl(1 — cosf) — 78) % € X(TR? x R).

In the Hamiltonian counterpart, we have
2
Pf = {(Ta07)‘7p7“7p97p)\a8) € T*R3XR ’ r= Ea bx = 07 br = 07 A= mg(l_cose)_m_zz),}v

and the contact Hamiltonian vector field

XH’Pf_W%+<E_2pesme+Wp9 a—(mégsm@—i—ypg)a—pe

2
Py _ _ 2 *Tp3
+ (2m€2 mgl(1 — cos0) fys) s € X(T'R° x R).

4.7 Cawley’s Lagrangian with dissipation

This last example is an academic model based on the Lagrangian introduced by R.
Cawley to study some features of singular Lagrangians in Dirac’s theory of constraint
systems [28].

Consider the manifold TR? x R with coordinates (¢, v?,s) and the Lagrangian
function

L=ov%+ %qQ(q?’)Q — s € €°(TR? x R).

In the Pontryagin bundle W = TR3 x s T*R3 x R with local coordinates (g%, v*, p;, s),
we denote L = piL € €>°(W). The Lagrangians £ and L have the same local
expression. Then,

X 1
H =pv' —otod — §q2(q3)2 +ys € ECW).

Consider now a vector field X3 € X(WW) with local expression

5 o .0
s+ G+ 5

o ,
M ol
it Op;

XHZfiaq
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Then, equations lb give the conditions

(=t
=L,
pL=10",
p2 =0,
p3 =",
G1=—p1,
G2=%q3—7p27

(Gs = ¢°¢° —ps.

Hence, the first constraint submanifold Wy < W is defined as
Wl = {<qi’vi7pi’s> eWw | b1 = U37 b2 = 07 p3 = Ul}?

and the vector field X4 has local expression

9 .
Xatlw, = vza_qi - anvi

) o 1,08 .. )
—ypr— 4 —¢*— + - — 4L
WGt g (¢°q° — vp3) s

9
Os

Imposing the tangency of Xy, to the first constraint submanifold W; we get

F'=¢*¢® — ps,
F? = —py,
=0,

determining the coefficients F! and F? and adding a new constraint defining the
submanifold W,. Imposing tangency of the vector field X3, to W, we obtain

v®> =0 (on Ws),

which, taking into account that p; = v»3, implies that p; = 0 on W,. Now, the
tangency condition holds and gives the final constraint submanifold

Wf :{(qi’vi7pi’s) €W|p1 :U3:0a p2:07 p3:1717 q3:0}7
and the family of solutions
_ .19 o A g 9
Xulw, =v q +v v + F 3 8

We can now recover the Lagrangian and Hamiltonian formalisms by projecting onto
each factor of the Pontryagin bundle WW = TR? xgs T*R3 x R. In the Lagrangian
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formalism we have the final constraint submanifold
Sf = {(qi7vi78) S TRg x R | q3 — 07 '1}3 :0}7

and the contact Lagrangian vector field is the SOPDE

0 0 0 0 0
_ .19 2 0 19 2 9 .9 3
XL|Sf—v 8q1+v e yv 8v1+F 597 vsasef(TR x R).
On the other hand, in the Hamiltonian formalism we have the final constraint sub-
manifold

Py ={(¢".pis) € T'R* xR | p1 =0, p2 =0, ¢* =0},
and the unique contact Hamiltonian vector field is

Xutlp = pso 40?22 a0 D
HPf_p38q1 8(]2 fyplapl PY 85‘

Notice that ker FL = < 9 >

2
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Part 11

Field theory

o3






Chapter 5

Review on k-symplectic and £-
cosymplectic formalisms

This chapter is devoted to review both the Hamiltonian and Lagrangian formalisms
of autonomous and nonautonomous field theories. In Section we define the
notion of k-vector field and integral section, which will be of great interest when
developing the Hamiltonian and Lagrangian formulation of field theories. We also
stablish the conditions for a k-vector field to be integrable. Sectionis devoted to
present to framework of k-symplectic geometry. The notion of k-symplectic manifold
is introduced and some of its most relevant properties are stated. In particular, we
give a proof of the Darboux theorem for k-symplectic manifolds different from the one
given in [6]. In Sectionwe develop the k-symplectic Hamiltonian formalism, which
is the natural formalism to deal with autonomous Hamiltonian field theories, and
obtain the k-symplectic Hamilton—-De Donder—Weyl equations. Sectionbegins by
presenting the canonical geometric structures of the tangent bundle of k-velocities
®*TQ: the vertical lifts, the canonical k-tangent structure and the Liouville vector
field. The notions of second-order partial differential equation and holonomic map
are introduced and we establish the relation between them. With these geometric
tools, we can define the Lagrangian energy, the Cartan forms and the Legendre map
associated with a Lagrangian function. Then, we develop the Lagrangian formalism
for autonomous field theories and obtain the k-symplectic Euler—-Lagrange equations.
In Section we offer a review on k-cosymplectic geometry, which is the natural
framework when dealing with nonautonomous field theories. We define the notions
of k-cosymplectic manifold, Reeb vector fields and state the Darboux theorem for k-
cosymplectic manifolds. We include a detailed study of the canonical k-cosymplectic
manifold R* x @*T*(Q and show that its natural coordinates are, in fact, Darboux
coordinates. Finally, in Sections and we give a complete description of the
Hamiltonian and Lagrangian formalisms for nonautonomous field theories. Some
references on these topics are [6} [50][52] [56/ (96 [124] [138].

95
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5.1 k-vector fields and integral sections

The notion of k-vector field is of great use in the geometric study of partial differential
equations. See, for instance, [56].

Let M be a smooth n-dimensional manifold. Consider the direct sum of k copies
of its tangent bundle: @*TM. We have the natural projections

™ " TM - TM , 1 ®"TM — M.
Definition 5.1.1. A k-vector field on a manifold M is a section
X: M — a*TM

of the natural projection Ti, defined above. We will denote by X*(M) the set of all
k-vector fields on M.

oFTM
X @
M—— X TM

Taking into account the diagram above, a k-vector field X € X¥(M) can be given
by k vector fields Xi,..., X, € X(M), obtained as X, = 7, o X. With this in
mind, we can denote X = (Xy,..., Xx). A k-vector field X = (Xq,..., Xx) induces
a decomposable contravariant skew-symmetric tensor field, X7 A --- A X, which is a
section of the bundle /\k TM — M. This also induces a tangent distribution on M.

Definition 5.1.2. Given a map ¢: U C RF — M, we define its first prolongation
to ®*TM as the map
¢:UCRF - aFTM,

0
Yoo (2

where t = (t*,...,t*) are the canonical coordinates of R¥.

defined by

o0 = (00570 (55

)) — (6(0): 64 (1)),

In the same way as we have integral curves of vector fields, we can define de
notion of integral section of a k-vector field:

Definition 5.1.3. Let X = (X1,..., X)) € X*(M) be a k-vector field. An integral
section of X is a map ¢: U C RF — M such that

()bl:XO(b?



5. Review on k-symplectic and k-cosymplectic formalisms o7

0
that is, T¢ o 5o = X, 0 ¢ for every a.
We say that a k-vector field X € X¥(M) is integrable if every point of M is in

the image of an integral section of X.

Consider a k-vector field X = (X,) with local expression

X, =X! 0

> Ot

Then, ¢: U C RF — M is an integral section of X if, and only if, it is a solution of
the system of partial differential equations

-
8150‘ - Xa(¢) .

Let X = (X1,...,Xk) be a k-vector field on M. Then, X is integrable if, and
only if, [X,, Xg] = 0 for every «, 5. These are precisely the necessary and sufficient

conditions for the integrability of the above systems of partial differential equations
[113].

5.2 k-symplectic geometry

In this section we will review the concepts of k-symplectic geometry which we will
be using in the following sections to develop both the Hamiltonian and Lagrangian
formalisms of autonomous field theories. See [6] [96) [124] [138]. We will begin by
defining the notion of k-symplectic manifold and we will also prove the Darboux
theorem for k-symplectic manifolds, which states that every k-symplectic manifold
is locally diffeomorphic to @*T*Q.

Definition 5.2.1. Let M be a manifold of dimension m = n+kn. A k-symplectic
structure on M is family (w',...,w" V), where w® € Q?>(M) are closed and V is
an integrable nk-dimensional tangent distribution on M such that

(1) w¥| «y =0 for every a =1,...,k,
(2) Ny kerw® = {0},
We say that (M,w®,V) is a k-symplectic manifold.

Theorem 5.2.2 (Darboux theorem for k-symplectic manifolds). Let (M,w®, V) be
a k-symplectic manifold. Then, for every point of p € M, there exists a local chart
(U; ¢*,p%), p € U, such that

- 0
wy =dg¢" Adpf, V= <8P7> .

These coordinates are called Darboux or canonical coordinates of the k-symplectic
manifold.
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Proof. Let p be a point of M. We can find a local chart (Up;a!,..., 2™ y1,. .., Ynk)
0
around p such that V' = < 5
Yi
they are locally exact. Hence, we can say that wo‘]Up = d9a]Up. Using this, we have
that, in U,,

>. By Poincaré’s Lemma, as the 2-forms w® are closed,

W = d (frde’ + g dy,)
8fZ

8f0( . agon” . or
— J _ 7 7 i .
d ‘A dx a0, ——dz' ANdy, + Dy dz' A dy, _3ys

8 « a ar a )
zl(f o] )d Adad + (ag.—a‘f%)dx’/\dyr
2 oxt
G 1
2

dy, A dys

Ot Oxi oY,
( O(S 89057'

) dy,- A dys .

It is clear that Py e
g Jdg

oyr  Oys
because w®|,,;, = 0. We want to prove that w® = dz'dp$ for some functions
pi (@, yr).-

Yy
& . ) & )
= %dxz Adx? + aﬂdmZ A dy,
8 Yy

opg  Op§
oxi Ozt

. . 2% . 123
da A dp? = dat A (8p2' dzd 4+ P dyr)
oxJ

o .
)d ndat + Pt dy,
oy,

Hence, (z*, p$) are Darboux coordinates if, and only if, the following conditions hold:

off  ofy _ opy  Opf
oxt  Oxi  Oxi Oz’
00 _or _ owp o

or' Ay, Oy,

We will prove that we can define p§* as

agar
_fa / Z axz ot 7xn7ty17"' 7tynk)y'r‘dt,

tulfilling conditions (5.1). First of all, we have that

opi _ _Of ' P9
Oxd — Oxd +/0 Z: Dzt OxI (. ty)yrdt,
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and hence,

off ofy
dxidxi 8xj3xi> (@, ty)yrdt = Ozt Oxd

Ooxi Ozt oz  Oxt

opy Opy _ ofr O / (6290” o9
0 T

On the other hand,

8])?‘ _ afzoz /1 8gar /1 829047‘
9y = oy T ) aer @it | rzs@xi(?ys (x, ty)ty,dt

) I A dg"
- 8yT+8CL‘i/0 <9 (x7ty)+rzsa—ys($aty)tyr> dt

ofr o [tad, ..
=~ - &ni/O E(g (z,ty)t)dt
afla a aor t:1
==y g9 @],
afzoz 89041”
oy, + oxt

An alternative proof of this Theorem can be found in [6].

Example 5.2.3 (Canonical model for k-symplectic manifolds). Let @ be a smooth
n-manifold with local coordinates (¢‘) and consider the direct sum

k
OPT*Q = T*Q &g ®) oo T*Q,

with natural projections
T P T*Q — T*Q Tré: eFTQ - Q.

In the same way as in the case of the contangent bundle, a local chart (U;q") in Q
induces a natural chart ((7$,)~"(U); ¢",pf) in @FT*Q.

Consider the canonical forms in the contangent bundle § € Q'(T*Q) and w =
—df € Q?(T*Q). Hence, the direct sum @&FT*(Q has the canonical forms

0% = ()"0, w*=@")'w=—(7%)"d0 = —do“,
which in natural coordinates read
0% = pdq" , w® =dg' Adp?.

Taking all this into account, the triple (®¥T*Q,w®,V), whith V = ker Tﬂb, is a

k-symplectic manifold. Notice that the natural coordinates (¢%,p%) in ®*T*Q are
Darboux coordinates.



60 Xavier Rivas — Geometrical aspects of contact systems and field theories

5.3 k-symplectic Hamiltonian systems

Definition 5.3.1. A k-symplectic Hamiltonian system is a family (M,w*,V, H),
where (M,w®, V) is a k-symplectic manifold and H € € (M) is a function called
the Hamiltonian function.

Given a k-symplectic Hamiltonian system (M,w®,V, H), we can define the vector
bundle morphism b: ©&F TM — T*M as

b(v1, ..., 0k) = i(ve)w™ . (5.2)
This morphism induces a morphism of ¢°° (M )-modules b: X*(M) — QY(M).

Remark 5.3.2. The morphism b is surjective.

Definition 5.3.3. A k-vector field X = (X1,...,X) € X*(M) is a k-symplectic
Hamiltonian k-vector field of a k-symplectic Hamiltonian system (M,w®,V, H)
if it is a solution to

h(X) = i(Xo)w® = dH , (5.3)

called the k-symplectic Hamiltonian equation. The set of k-symplectic Hamilto-
nian k-vector fields is denoted by X% (M).

Notice that the surjectivity of the morphism b ensures the existence of solutions
to equation . However, in general, we do not have uniqueness of solutions. In
fact, if X is a solution to (5.3), any element of the set X + kerb is also a solution.

Consider a k-symplectic Hamiltonian system (M,w®,V, H) with Darboux coor-
dinates (¢%,p%) and a k-vector field X = (X7, ..., X}) locally given by

.0 5 0
Xo=(Xo)' ==+ (Xa); — .
(Xa)' g + (o)l
Then, equation 1D reads
OH b
p=1 (5.4)
oH ,
= (X,)".
op§! (%a)

Theorem 5.3.4. Let (M,w®,V, H) be a k-symplectic Hamiltonian system and X =
(X1,...,Xk) € X5,(M) an integrable vector field solution to (5.3). If ¢: RF — M is
an integral section of X, with local expression ¢(t) = (¢ (t), ¢3(t)), t € R¥, then ¢ is
a solution to

i(¢p)w* =dH o ¢, (5.5)

called Hamilton—De Donder—Weyl equation.
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In local coordinates, equation lb is equivalent to the system of partial differ-
ential equations

oH| z’“: o4
dq’ #(¢) - B=1 o’ t7
oH| o0

ops* #(t) - ote t‘

5.4 Lagrangian formalism for autonomous field the-
ories

Let @ be a smooth n-dimensional manifold with coordinates (g°). Consider the
tangent bundle of k-velocities @*T(Q with natural coordinates (q*, v%).

Definition 5.4.1. The vertical a-th lift (uy)® of a vector u, € T,Q is defined as

d
(ug)*(Vigy - .-, Vkq) = P (V1gs - -+, Va—1qs Vag + SUg, Vat1gs - - - s Vkq)

9

s=0

where v = (vig, ..., V) € ®FTQ.

0

. : .0 ,
In local coordinates, if v, = a’——| , then (uy)* = aza -
,Ua

oq*

v

Definition 5.4.2. The canonical k-tangent structure on ©*TQ is the set (J*, ..., J*)
of (1,1)-tensors in ®*TQ given by

J*(v)(Zy) = (To1q(Z0))",
where Z, € T,(B*TQ) and v = (vig,...,vk) € ®FTQ.

In local coordinates, we have

“= _—_ @dq’.
J 8U®q

7
(e

Definition 5.4.3. Consider the vector fields A, € X(®*TQ) infinitesimal generators
of the flows

R x ®*TQ — OFTQ
(8, (Vigs -3 Vkq)) = (Vigs- s Va—14,€" Vag, Vatigs--+»Vkq) -

The Liouville vector field is A =) A,.
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In local coordinates,

i 0 i 0
Aa:;?}a%7 A:’Uaavg.

Definition 5.4.4. A k-vector field X = (X;...,X}) € X¥(@*TQ) is a second
order partial differential equation (SOPDE for short) if J*(X,) = A.

A sopPDE X = (X7 ..., X}) is locally given by

9
oq’

(Xa)i 2

Xo =va Fovt

Definition 5.4.5. Consider a map ¢: R¥ — Q and let ¢’ be its first prolongation to
®*TQ. The map ¢ is said to be holonomic.

In local coordinates,

50 = (50, 520)

Proposition 5.4.6. Let X = (X1,...,Xk) be an integrable SOPDE with local expres-

sion

9
oq’

2

Xa =14 Povs

If : R¥ — @*TQ is an integral section of X, then 1 = ¢, where ¢ is the first
prolongation of the map ¢ = 7-32 op: RF — Q, Té: ®F TQ — Q is the canonical pro-
jection, and ¢ is a solution of the system of second order partial differential equations

2,/,%
U (0) = (X (6(0). (5.6

Conversely, if ¢: RF — Q is a map satisfying conditions (5.6), then ¢’ is an integral
section of X = (X1,..., Xg).

Remark 5.4.7. If X = (X,,) is an integrable SOPDE, the proposition above implies
that (Xa)5 = (Xp)h-

Definition 5.4.8. A Lagrangian function is a function L: ®&* TQ — R. The
Lagrangian energy associated to L is B, = A(L) — L € € (®*TQ).

The Cartan forms associated to L are

03 = "J*odL € QUB*TQ) , w§ =—dby € Q*(B*TQ).
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Taking coordinates (¢*,v?,) in @*TQ, we have

. 0L
By =vi 2=
L Uaa% ’
oL .
0F = —dq"
L 8”0}1 q ,
9%L , , 2L : .
wd = —————d¢’ Ndq' — — dv’, Adq".
L AqI OV, 1 4 Qv O, pihed

Now, taking into account Definition|1.3.5| we can define

Definition 5.4.9. The Legendre map of L is its fibre derivative FL: ®F TQ —
eFT*Q.

In local coordinates,

Fud o) = (d g )

Definition 5.4.10. A Lagrangian function L € € (9*TQ) is said to be regular if
the following equivalent conditions hold:

0?L

i 99))
v, Ovy

(1) The matriz (

> 18 everywhere nonsingular.

(2) The second fibre derivative F2L: ®F TQ — ©FT*Q @ @FT*Q is everywhere
nonsingular.

(3) The Legendre map FL is a local diffeomorphism.
(4) The family (*TQ,ws,V = ker T7},) is a k-symplectic manifold.

Otherunse, the Lagrangian L is singular. The Lagrangian L is hyperregular if the
Legendre map FL is a global diffeomorphism.

Definition 5.4.11. A singular Lagrangian L is almost-regular if

(1) P =FL(®*TQ) C ®*T*Q is a closed submanifold.

(2) The Legendre map FL is a submersion onto its image.

(3) The fibres FL™1(p) are connected submanifolds of ®*TQ, for every p € P.

Then, (B*TQ,w$, Er) is a k-symplectic or k-presymplectic Hamiltonian system,
depending on the regularity of the Lagrangian function L.

Definition 5.4.12. Consider the Lagrangian function L € €= (®*TQ) and its as-
sociated Hamiltonian system (&*TQ,w$, Er). A k-vector field X = (X1,..., X) €
X*(@FTQ) is a k-symplectic Lagrangian k-vector field if it is a solution to the
k-symplectic Lagrangian equation

i(Xo)w§ = dEy . (5.7)
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We will denote by X% (®FTQ) the set of k-symplectic Lagrangian k-vector fields.
Consider a k-vector field X = (X, ) € X*(@*TQ) with local expression

0 -0
— Xa)!
8qz +( 04)

X = (X)) 55T
3

Then, equation (5.7) reads

2 2 2 _ 2
(?L._ a.L.)(X)j— QL.XQ)JB:% oL oL
dqtovl,  0q7 0V}, v, vl dqtovl, 0q
2 2
0“L X )i 0“L

¢ vl .

811% ovi 8@% ovi,

If the Lagrangian L is regular, these equations become

?L %L ;0L

n - J - Xa = s
dq? vy, v 81}381}%( Js dq"’

(Xo)" =t .

Hence, we can state the following theorem:

Theorem 5.4.13. Consider a Lagrangian L € €°°(®*TQ) and let X = (X1,...,X}) €
X% (@*TQ). Then,

(1) If the Lagrangian L is regular, X is a SOPDE. Moreover, if 1: R¥ — @*TQ
s an integral section of X, the map ¢ = 7'612 o1: RF = Q is a solution to the
FEuler—Lagrange field equations

oL
vw) O

o
¢ \ OV

(2) If X = (Xy,...,Xy) is integrable and ¢': R¥ — @*TQ is an integral section of
X, then ¢: R¥ — Q is a solution to the Euler-Lagrange field equations (5.8).

0

0 (5.8)

@' (t)

5.5 k-cosymplectic geometry

k-cosymplectic geometry is the natural geometric framework to deal with nonau-
tonomous Hamiltonian and Lagrangian field theories. In this section we will define
the concept of k-cosymplectic manifold and Reeb vector fields. We will also state the
Darboux theorem for k-cosymplectic manifolds, which says that every k-cosymplectic
manifold is locally diffeomorphic to R¥ x @*T*Q. See [50[56].

Definition 5.5.1. Consider a smooth manifold M of dimension m = k(n+1)+n. A
k-cosymplectic structure on M is a family (n®,w®, V), where « = 1,...,k, n® €
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QY (M) are closed 1-forms, w™ € Q?*(M) are closed 2-forms and V is an integrable
nk-dimensional distribution on M satisfying

(1) nt A AnE£0, 0%y =0, Wy =0,

(2) (Mg kern®) N (N, kerw®) = {0},

(3) dim (), kerw®) = k.

Under these hypotheses, (M,n“,w®, V) is a k-cosymplectic manifold.

Remark 5.5.2. In particular, if k = 1, then dim M = 2n + 1 and (M, n',w') is a
cosymplectic manifold.

Proposition 5.5.3. Let (M,n“,w®, V) be a k-cosymplectic manifold. There exist a
unique family of k vector fields R, € X(M) such that

These vector fields are called Reeb vector fields.

The following theorem is the k-cosymplectic counterpart of Theorem A
proof of this theorem can be found in [50].

Theorem 5.5.4 (Darboux Theorem for k-cosymplectic manifolds). Consider a k-
cosymplectic manifold (M,n“,w®, V) of dimension m = k(n+ 1) +n. Then, around
every point of M, there exists local coordinates (t*,q*,p%), with1 < o <k, 1 <i < n,
such that

n® =dt*, w*=dg¢' Adp}, V:<i>.
opg

These coordinates are called Darboux or canonical coordinates of the k-cosymplectic
manifold M.

Taking Darboux coordinates, the Reeb vector fields are

0

Ra:%-

Let (M,n*, w®, V) be a k-cosymplectic manifold. We can define the vector bundle
morphisms

b: & TM — &FT*M
given by B(v) = (i(vl)wl + (i(v1)nh)nt, ... i(vg)wk + (i(vk)nk)nk), and
b: &F TM — T*M (5.9)

defined by b(v) = > (i(va)n®™ + (i(va)n®)n®), where v = (v1,...,v5) € B¥TM.

Remark 5.5.5. Notice that b = tr(b), and hence in the case k = 1, we have that
b = b, which is the b morphism defined for cosymplectic manifolds.



66 Xavier Rivas — Geometrical aspects of contact systems and field theories

Trivial k-cosymplectic manifolds

Let (N,w@!,...,@",V) be a k-symplectic manifold of dimension n(k + 1). Consider
now the product manifold M = R* x N and the canonical projections

mre: RE X N — RF | an:REXN 5 N .
We can define the differential forms
n® = mhe (dt*) € QH(M) , w® = 71hw* € Q}(M),

where (%) are the canonical coordinates in R¥. On the other hand, the distribution
V in N defines a distribution V in M = R* x N in a natural way. Notice that all
conditions in Definition are fulfilled and hence (M, n*, w®, V) is a k-cosymplectic

manifold.

Taking into account the previous example, the simplest model of k-cosymplectic
manifold is the so called stable contangent bundle of k!-covelocities of an n-
dimensional smooth manifold @, denoted by RF x @*T*Q, where ®*T*Q is the

k
Whitney sum of k copies of the cotangent bundle of Q, i.e. ®*T*Q = T*Q %) -(-)-@Q
T*Q. Thus, the elements of R¥ x ®*T*Q are of the form (¢, Vig,---»Vkq) Where

teRF ge @ and Vagq € T5Q.

The following diagram summarizes the projections we will use from now on:

RF x Q Q

If (¢*), 1 <i < n,is alocal coordinate system defined on an open subset U C @), the
induced local coordinates (t%, ¢, p?), 1 < a < k, on R* x &*T*U = ((rg)1)"1(U)
given by

t*(t, vig, ... Ukg) = t7(t) = 7,

)

Hence, R* x @*T*Q is endowed with a k-cosymplectic structure and thus it is a

qi(t,ylm .- '7qu) = qi(Q) >

0
Pt Vigs s Vkg) = Vag (87]1
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k-cosymplectic manifold of dimension k + n(k 4 1). This manifold has the structure
of a vector bundle over ) with the projection (7¢);.
On R* x @*T*Q we can define the family of canonical forms

n® = (x)dt, 0% =(m3)"0, w*=(m)w,

with 1 < a < k, being 7¢: R¥ x @FT*Q — R and 75: RF x @FT*Q — T*Q the
projections given by

T Vg -y Vkg) =19, T (6 V1gs -3 Vig) = Vag s

and 6 and w are the canonical Liouville and symplectic forms on T*(Q) respectively.
Notice that, since w = —d#f, we have that w® = —d#<.

Considering the local coordinate system (t®, ¢%, p%) on R¥ x @*T*Q, the canonical
forms n®, 0% and w® have local expressions

ne = dt® 0% = p*dq’ wa:dqi/\dp?.

1

In addition, consider the distribution V' = ker T(7g)1,0. In local coordinates, the
forms n® and w® are closed and satisfy the relations

(1) dt' A~ AdEF #£0, Aty =0, wy .y =0,

(2) (N, kerdt®) 01 (N, kere?) = {0},
(3) dim (), kerw®) = k.

Remark 5.5.6. Notice that the canonical forms on ®*T*Q and R* x @*T*Q are
(o) *-related.

5.6 k-cosymplectic Hamiltonian systems

Definition 5.6.1. Consider a k-cosymplectic manifold (M,n%,w®, V) and let v €
QYM) be a closed 1-form on M, which will be called the Hamiltonian 1-form.
The family (M,n“,w®,V,v) is a k-cosymplectic Hamiltonian system.

A k-vector field X = (X1,...,Xx) € X¥(M) is a k-cosymplectic Hamiltonian
k-vector field if it is a solution to the system of equations

{i(Xa)wa =7 —v(Ra)n®, (5.10)

i(Xa)nﬁ = 55 )

We will denote by %’E(M) the set of k-cosymplectic Hamiltonian k-vector fields on
M.

Remark 5.6.2. Notice that in the case k = 1 we recover the equation of motion for
a cosymplectic Hamiltonian system [29] [48].
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As the Hamiltonian 1-form ~ is closed, by Poincaré’s Lemma, there exists a local
function H such that v = dH. Using the b morphism defined in (5.9), we can rewrite

equations (5.10) as

h(X) =7+ (1 =(Ra))n™,

Z'(on)nﬁ = 5§
for a k-vector field X = (X1,...,Xy) € X*(M). Consider now an arbitrary k-vector
field X = (X7,..., X%) with local expression

Xa = (Xa)? o + (Xa) o + (X % -
Imposing equations , we obtain the relations
(Xa)? =42,
0H
op; (%) (5.11)
oOH k .
\ aq’ = —O;(Xa)i :

Notice that these conditions do not depend on the Reeb vector fields. However, we
need Reeb vector fields to write the equations.

Consider the map R¥ — RF x @*T*Q given by ¥(t) = (¥(t), 9 (t), Y3 (t)). If 1
is an integral section of the k-vector field X, from , we have that ¢ has to be
a solution to the so called k-cosymplectic Hamiltonian field equations

k

oH e
oq _azzl ot
on _ 0w

opy ot

5.7 Lagrangian formalism for nonautonomous field
theories

Consider the phase space R¥ x ©*TQ endowed with canonical coordinates (%, g%, v?).
The canonical structures J* and the Liouville vector field A introduced in Definitions
|5.4.2| and|5.4.3| can be trivially extended from @*TQ to RF x @*TQ. Their local
expressions remain the same:

0 A=y 0

_ P o T .
ov?, ov?,

Ja

Using these structures, we can define
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Definition 5.7.1. A k-vector field X = (X1,..., Xx) € X*(R* x@*TQ) is a second
order partial differential equation (SOPDE) if the following conditions hold:

(1) Jo(Xa) = A,

(2) i(Xq)dt? =65,

If X =(Xy,...,Xx) is a SOPDE, then it has local expression
0 -0 .0
Xo=— e+ (Xo) i =—.
° = gra T lagg T KXeligy

Definition 5.7.2. Consider the map ¢: R¥ — Q. Its first prolongation is the
map ' RF = RF x @FTQ given by
0]
,...,w(_ )) .
) (],

The map ¢’ is said to be holonomic and its local expression is

§th) = (i) 520

Proposition 5.7.3. Let X = (X1,...,Xs) € X¥(M) be an integrable SOPDE and
consider the map ¢: R¥ — RF x @*TQ given by ¥(t) = (¥*(t), v (t), ¥ (t)). Then,
1 is an integral section of X if, and only if, the following conditions hold:

PE(t) =1,
iy OU

wa(t) - 8250‘ (t)v
821/)1'

W(t) = (Xa)5(1(1)).

In this case, 1 is a holonomic section of X.

Notice that if X = (X1,...,Xx) is integrable, from the previous proposition, we
deduce that (Xa)5 = (Xp)-

Definition 5.7.4. A Lagrangian function on R* x @F¥TQ is a function L €
€ (R* x®FTQ). Its associated Lagrangian energy is the function By, = A(L)— L.
The Cartan forms associated to the Lagrangian L are

0% = 'JYodL € QY(RF x @*TQ),
w = —dh? € Q*(R* x @*TQ).
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Taking coordinates (%, ¢%,v?) in R¥, ®*TQ, we have

- OL
Ep =0t — —
L Uaav& ]
oL .
0% = —dqg*
L 81}}1 q ,
0%L , 0L : . 92 . .
- G _dtP Adg' — ———d¢’ Ad¢' — ———dv’), Adq’.

Definition 5.7.5. A Lagrangian function L € €< (RF x @*TQ) is regular if the

matrix
( 0°L >
v, 0vy,

is invertible. Otherwise, the Lagrangian is singular.

Proposition 5.7.6. Consider a Lagrangian L € € (R* x ®*TQ). Then, L is
regular if, and only if (dt*, w$,V = ker T(mgx)1,0) is a k-cosymplectic structure on
RF x @*TQ.

Definition 5.7.7. A k-vector field X = (X1, ..., Xy) € X*(RF x@*FTQ) is called a k-
cosymplectic Lagrangian k-vector field if it is a solution to the k-cosymplectic
Lagrangian equations
oL
z'(Xa)w% =dEp + —dt*,

ot (5.12)
i(Xq)dt? =67 .

We will denote by %’Z(Rk x @FTQ) the set of k-cosymplectic Lagrangian k-vector
fields.

Remark 5.7.8. Notice that if the Lagrangian L is regular, (R* x ©*TQ, dt*, w®, V)
is a k-cosymplectic manifold. Denote by RZ its corresponding Reeb vector fields.
Hence, we can rewrite equations ) as

i(Xq)dt? = 68 . (5:13)

{z’(Xa)w% =dEL + RE(L)dt*,
If X = (X1,..., X%) € X*(R* x ®¥TQ) is an integrable SOPDE solution to ,
its integral sections are solutions to the Euler—Lagrange equations for the La-
grangian L:
%L O?L O O*L 9% OL
Ot°dvl,  Dqidvl, Ot ulouvi, D10 gt

Remark 5.7.9. In the Hamiltonian framework, we saw that the Reeb vector fields
appear in the equations but not in the solutions. In the Lagrangian framework we
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can go one step further and write equations (5.13) without using the Reeb vector
fields [18]. Consider the Poincaré-Cartan 1-forms:

¢ =09+ (05L — AZ(L))dt?
.0 ) .
where Ag = %8_ Defining Q% = —d©“, equations (5.13) become
Vg

i(Xa)Qp = (k—1)dL,
i(Xy)dt? =67,

which are equivalent to (5.12).

Definition 5.7.10. The Legendre map of a Lagrangian function L € € (R* x
®FTQ) is its fibre derivative FL: R¥ x ®FTQ — R* x oFT*Q.

Taking coordinates (%, ¢%,v?) in R¥ x @*TQ,
o 9L

FL ¢ o) = (1,41, == ) .

( aq7vo¢) < ’q’a,uz>

«

Notice that using the Legendre map FL, we can redefine the Cartan forms as 6% =
FL*0% and w = FL*w®.

Proposition 5.7.11. The Lagrangian L is reqular if, and only if, the Legendre map
FL is a local diffeomorphism.

Definition 5.7.12. If the Legendre map FL is a global diffeomorphism, the La-
gragian function L is said to be hyperregular. A singular Lagrangian is almost-
regular if the following conditions are satisfied:

(1) P = FL(R* x ®*TQ) C R* x @*T*Q is a closed submanifold.
(2) The Legendre map FL is a submersion onto its image.

(3) The fibres FL™Y(FL(v)) C R* x &*TQ are connected submanifolds for every
v € RF x @FTQ.
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Chapter 6

Constraint algorithms for sin-
gular field theories

This chapter is devoted to the study of constraint algorithms to deal with field the-
ories described by singular Lagrangian functions. In Section[6.1] we review the con-
straint algorithm for singular autonomous field theories introduced in [85]. We begin
by defining the notion of k-presymplectic manifold, which is a weakened version
of the definition of k-symplectic manifold. We also prove a Darboux theorem for k-
presymplectic manifolds. Then the constraint algorithm for singular autonomous field
theories is summarized. In Section[6.2]we introduce the concept of k-precosymplectic
manifold as a weakened version of the notion of k-cosymplectic manifold in order
to deal with nonautonomous field theories described by singular Lagrangian func-
tions. We also prove the existence of a family of global Reeb vector fields for k-
precosymplectic manifolds, although this family will not be unique. In Section
we generalize the constraint algorithm described in [85] in order to deal with nonau-
tonomous field theories. Finally, in Section [6.4] we analyze several examples of field
theories described by singular Lagrangians and apply the constraint algorithm to
both their Lagrangian and Hamiltonian formulations. See [92].

6.1 The constraint algorithm for autonomous sin-
gular field theories

In this section we will review the constraint algorithm for k-presymplectic Hamilto-
nian systems developed in [85]. When dealing with field theories defined by singular
Lagrangians, we have to weaken some condition in Definition because the Car-
tan forms defined in do not constitute a k-symplectic structure in @*TQ. This
motivates the following definition:

Definition 6.1.1. A family (w',...,w*), of closed 2-forms in a manifold M is a
k-presymplectic structure on M. Then (M,w",...,w*) is a k-presymplectic
manifold.

73
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Remark 6.1.2. Notice that in the particular case £ = 1 we recover the definition
of presymplectic manifold. See [55] [79] (80} [114] for more details in presymplectic
mechanics.

The following theorem states that, in certain cases, we have Darboux-type coor-
dinates in a k-presymplectic manifold.

Theorem 6.1.3 (Darboux Theorem for k-presymplectic manifold). Consider a k-
presymplectic manifold (M, w®) withrank w® = 2r, and dim M = m = nk—=)_ ro—d
equipped with a nk-dimensional integrable distribution V' such that

Wy sy = 0.

Then, around every point p € M, there exist a local chart (U, qi,pf‘a, 27 such that

« 7 « a 8 i « 8
w*|,; =dg" Adpg Vg = <_(9p9‘ ,—82j> , (ﬂlkerw > = <_8zj> .
Ta a= U

Proof. First, notice that, denoting by K the distribution generated by ﬂ(’;:l ker w®,
we have that K C V. Let d = rank K. Let us show that this distribution K is
involutive. Consider X,Y € K. Then,

Z([X, Y])wa = <$X oly — 1y ng)wa = iy Lxw* = —iy(ixdwa + dixwa) =0.

As the distribution K is involutive, its integral submanifolds give a foliation in M.
Then, for every p € M, we can take a local chart of coordinates adapted to this
foliation

(Uut,27), 1<1< n+ZTa =nk+1)—m—d,

(e

that is, (27) are local coordinates in the leaves, and such that

()| (2.

Now, consider the quotient M=M /K, which we assume to be a smooth manifold
(if this hypothesis does not hold, we can do a local reasoning on the local chart U,
taking the distribution given by as K) and the natural projection 7: M — M.
As K C V and V is involutive, the closed 2-forms w® are 7-projectable to closed

forms @* € Q%(M), and the distribution V restricts to a r-dimensional integrable

distribution V in M , where r = )" _ rq, in such a way that,

k
5y =0, [)ker@™ ={0}.
a=1
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At this point, we can adapt the proof of Theorem to this situation, with the
only difference that, now, the forms w® do not have the same rank (equal to 2n).
The final consequence is that, for 7(p) = p we have a local chart of coordinates

(U,Zfa,ﬁf‘a), in €1, CH{l,....,n}, |l4=ra, 1<a<n,

where U = 7(U), such that

~q ~ ~o 0
Wz =dg" Ndpy. V’ﬁ:<8pﬁ>'

Therefore, in U we can take coordinates (uf) = (¢, ps), with ¢ = ¢" o7 and
p = p§ or, and the chart (U, q’, s, 27) verifies the conditions given in the statement

of the theorem. O

Definition 6.1.4. A k-presymplectic Hamiltonian system is a family (M,w®, H)
where (M,w®) is a k-presymplectic manifold and H € €°°(M) is the Hamiltonian
function.

Definition 6.1.5. Consider a k-presymplectic manifold (M,w®, H). Let X = (X,) €
X*(M) be a k-vector field in M. X is said to be a k-presymplectic Hamiltonian
k-vector field if it is a solution to the geometric field equation

(X)) w* =dH . (6.2)

Notice that in the k-presymplectic setting the existence of solutions to equation
|| is not assured everywhere in M. In what follows, we will see how to obtain
a submanifold of M where we can ensure the existence of solutions tangent to this
submanifold.

Given a k-presymplectic Hamiltonian system, we want to find a submanifold C'
of M and integrable k-vector fields X = (X1,..., X)) € X¥(M) such that

iI(Xo)w*=dH , (onC)

and such that the k-vector field X is tangent to the submanifold C (i.e., the vector
fields X, are tangent to the submanifold C').

Given a submanifold C' C M, with natural embedding jo: C <— M, consider the
natural extension of jo to the k-tangent bundles,

Trjo: ®F TC — e*TM
and denote by ©*TC = T*jo(9*TC).

Definition 6.1.6. The k-presymplectic orthogonal complement of ®*TC in
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@FTM is the anihilator of the image of @*TC by the flat morphism defined in :
(TC)* = [b(@*TC)]" = {uy € TM | Y(v1p, ..., 0kp) € B*TC, (i(vap)wl, up)} .
Remark 6.1.7. In the particular case C' = M, we have that
(TM)* ={u, € TM | up € Ny kerwS} .
The following theorem is the main result that we need to define the constraint

algorithm:

Theorem 6.1.8. Consider a submanifold C C M. The following two conditions are
equivalent:

e there exists a k-vector field X = (X1,...,Xx) € X¥(M), tangent to C, such
that equation 1i holds.

e i(Y,)d,H =0 for every p € C and Y, € (T,C)*.

This last theorem allows us to define an algorithmic procedure which gives a

sequence of subsets
-CcCjCc---CcCycCyCM.

We will assume that every subset C; in the above sequence is a regular submanifold
of M. We begin by defining the submanifold C; as the submanifold of M where

equation (6.2) is consistent:
Cy ={p€ M | 3X,, such that i(Xa,)w, =d,H}.

Hence, there exist k-vector field X on the submanifold C; which are solutions to
equation (6.2) on C;. Nevertheless, in general, these k-vector fields may not be
tangent to C7. Hence, we need to consider the submanifold

Cy = {p e Cy | 3X, € ®*TC such that i(Xap)ws = d,H},
and so on. Following this method, we obtain a sequence of constraint submanifolds
= Cj == Oy = Oy = M.

Now, considering Theorem [6.1.8} each constraint submanifold Cj, called the j-th
constraint submanifold, can be defined as

C; ={pe€Cj_1|i(Y,)d,H =0 for every Y, € (T,Cj_1)"}.

Denoting by X(C;)* the set of vector fields Y € X(M) such that Y, € (T,C;)*, one
can obtain constraint function £, defining each C; from a local basis {Z1, ..., Z,} of
vector fields of X(Cj_1)* by setting &, = i(Z,)dH. This procedure, known as the
k-presymplectic constraint algorithm, can be summarized as follows:
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(1) obtain a local basis {Z1,...,Z,} of vector fields of N, ker w®,

(2) apply Theorem mto obtain a set of independent constraint functions §, =
i(Z,)dH defining the first constraint submanifold Cy — M,

(3) compute the solutions X = (X,) to equation (6.2)) on the submanifold Cj,

(4) impose the tangency condition of the vector fields X7, ..., X} to the submanifold
Cl, i.e. Xoc(gu) = 0,

(5) iterate the previous step until no new constraints appear.
When the previous algorithm finishes, we have two possibilities:

e The algorithm finishes with a submanifold C;, with j > 0, such that Cj;; =
C; = Cy, called the final constraint submanifold, with dim C; > 0. Then,
there exists a family of k-vector fields X = (X,) in M, tangent to Cy, such
that equation holds on Cy. This is the interesting case.

e The algorithm finishes with an empty set or a set of isolated points. This means
that equation lb has no solution on a submanifold of M.

Remark 6.1.9. Notice that the k-presymplectic constraint algorithm described
above does not include the SOPDE condition. If we want our solutions to be SOPDES,
we need to impose it as an extra requirement.

6.2 k-precosymplectic geometry

In the same way as k-presymplectic manifolds are a generalization of k-symplectic
manifolds that allows us to work with field theories described by singular Lagrangians,
we are now going to define the concept of k-precosymplectic manifold [92]:

Definition 6.2.1. Consider a smooth manifold M of dimension m = k(n+1)4+n—~¢
(with 1 < ¢ < nk). A k-precosymplectic structure in M is a family (n®,w®,V),
1 < a <k, where n® € QY(M) are closed 1-forms, w® € Q2(M) are closed 2-forms
such that rank w® = 2r,, with 1 < r, < n, and V is an integrable nk-dimensional
distribution in M such that

(1) p* Ao ARE£0, 0%, =0, WYy =0,
(2) dim (N, kerwy) >k for every p € M.

A manifold M equipped with a k-precosymplectic structure is called a k-precosymplectic
manifold.

In particular, in the case k = 1, we have that dim M = 2n+1—/¢ and (M,n*, w?!)
is a precosymplectic manifold as is defined in [29, [101], and the so-called gauge
distribution is ker n' Nker w'.
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Example 6.2.2. Consider a k-presymplectic manifold (P, @w®, V). Then, the product
manifold R¥ x P equipped with the 1-forms 7% = 7*dt®, where (t*) are the canonical
coordinates in R* and 7 is the natural projection R¥ x P - R¥, and the 2-forms
® = 1*®, where 7 is the natural projection R x P =5 P. When describing the
constraint algorithm, we will ask our manifolds to be of this type in order to have

the problem well defined.

w

In Definition [6.2.1] we have imposed the existence of a distribution V because it
is this condition what ensures the existence of Darboux coordinates in the regular
case. It is still an open problem to fully characterize the conditions for the existence
of Darboux-type coordinates in the singular case. From now on, we will assume the
existence of Darboux coordinates around every point. For instance, the manifolds of
the form M = R* x P, with P a k-presymplectic manifold, satisfies our requirements
(see previous example). In more detail, consider k-precosymplectic manifold M such
that rank w® = 2r,, with 1 <r, <n and define d = kn — 2221 ro —£. We assume
the existence around every point p € M of a local chart (Up;to‘,qi,p?‘a,zj ), with

1<a<k 1<i<n,in€l,C{l,...,n}, |Io| =74 and 1 < j < d, such that

na‘Up = dta )
Wy = dg* A dpf' |

0 0
V\Up = <_8p?a ) %> )

(=)o (D)

In order to work with Hamilton’s equation, we need the Reeb vector fields R,
defined in Proposition In that proposition we already mentioned its existence
and uniqueness. In the following proposition we will prove their existence in the

()

Up

k-precosymplectic case. However, we will see afterwards that they are not unique.

Proposition 6.2.3. Let (M,n% w*, V) be a k-precosymplectic manifold with Dar-
boux charts. Then, there exists a family of vector fields Y1,...,Y, € X(M) such
that

Proof. Consider a partition of unity {(Ux,%x)}rea such that we have a Darboux
chart (Ux;t$,¢5, P s, 23) for every A € A. Consider now the vector fields

0
Y = _— .
T € X(Uy)
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These vector fields clearly satisfy

i(Y)n? = o8

{i(Yoj\)wB =0,

on Uy. Using the partition of unity introduced above, we can define global vector
fields

“ 0 if p e Uy.

Now we can construct global vector fields Y, = >\ }N/Cf‘ satisfying

i(Yo)w” =0,
i(Yo)n" =45,

(e

for every a, 6 =1,... k. U

These Reeb vector fields are not necessarily unique. In fact, the Reeb vector fields
can be written in Darboux coordinates as

0

0
Ra —_ J e
ote *0zI

for arbitrary functions D7

Remark 6.2.4. Nevertheless, sometimes one can impose some extra conditions that
determine the Reeb vector fields uniquely. Consider for instance the k-precosymplectic
manifold M = R* x P, where P is a k-presymplectic manifold. In this situation, the
canonical vector fields 9/0t® of R¥ can be canonically lifted to the product manifold
R* x P. These vector fields are also denoted by 0/9t* and are a family of Reeb
vector fields of the k-precosymplectic manifold RF x M.

6.3 Constraint algorithm for £-precosymplectic field
theories

This section is devoted to generalize the constraint algorithm for k-presymplectic
field theories developed in [85] to the case of singular k-cosymplectic field theories
[92]. Throughout this section we are considering k-precosymplectic manifolds of the
form M = RF x P, where P is a k-presymplectic manifold. As we pointed out
in the previous section, these manifolds have Darboux-type coordinates and have
a uniquely defined collection of Reeb vector fields Ry, ..., Rx. This particular case
is in fact the most common case that arises when studying classical field theories
and applied mathematics. We will begin by defining the notion of k-precosymplectic
Hamiltonian system:
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Definition 6.3.1. Let (M,n*,w®, V) be a k-precosymplectic manifold of the form
M = RF x P, with P a k-presymplectic manifold, and v € Q*(M) a closed 1-form.
Then the family (M,n®,w®,V,~) is called a k-precosymplectic Hamiltonian sys-
tem and v is called the Hamiltonian 1-form. Since v is closed, by Poincaré’s
Lemma, v = dH locally for some H € €>°(U), U C M, called a local Hamilto-
nian function.

Definition 6.3.2. Let X = (X1,...,Xx) € X¥(M) be a k-vector field in M. X is
said to be a k-precosymplectic Hamiltonian k-vector field if it is a solution to

the system
1(Xo)w® =~ —y(Ra)n™,
(Xa) 7= (Ra)n (6.3)
i(Xa)nﬁ = 55 :
The solutions to the field equations defined by the k-precosymplectic Hamiltonian
system (M, n® w®, V,~) are the integral sections of these k-precosymplectic Hamil-
tonian k-vector fields.

Remark 6.3.3. In the particular case £ = 1 we recover the case of singular nonau-
tonomous mechanics studied in [29]. In this case, the Poincaré—Cartan 2-form Q =

w+yAn is used in order to write Hamilton’s equation without using the Reeb vector
field.

We want to develop an algorithm that allows us to find a submanifold N — M
where the system of equations has solutions tangent to N. In order to find this
submanifold N (if it exists) we need to develop an algorithm that introduces some
constraint in every step and so providing a sequence of submanifolds

e s My oo My — My — M

which, in some favorable cases, will end with a final constraint submanifold M/
with dim My > 1. The cases where M is empty or a union of isolated points have
no interest to us.

Theorem 6.3.4. Consider a k-precosymplectic Hamiltonian system (M,n*, w®,V,~),
a submanifold C — M and a k-vector field X = (X1,...,X}) € X¥(C). Under these
hypotheses, the following are equivalent:

(1) There exists a k-vector field X = (X,,) € X*(C) such that the system of equations

{z‘(Xa)w‘”‘ =7 = (Ra)n, (6.4)

i<Xa)nB = 5g
holds on C'.
(2) For every p € C, there exists Z, = (Zy), € ®*T,C such that, if ¥, = vp —
’yp(Rap)ng‘, then

i(Zap)ﬂ5 = 55 ) Zﬂ{i‘ +p = b(zp) .
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Proof. Consider the k-vector field Z = X. It is clear that i(Za,)n>

= 68 for every
p € C and that

2(Zp) = i(Zap)wy + (((Zap)iy )ny = Tp + Z p -
Conversely, suppose that for every p € C, there exists Z,, € EB’“T,,C’ satisfying

i(Zap)m’f = 5§ ) 2773 + ?p = b(zp) .

Consider p € C. Taking a Darboux chart (U;t, ¢*, i 27) around p, we have

— dre,
:qui/\dpf‘,
i€l
oH . OH . OH OH
— Zqt dg’ dp? + =—da .
YT e T ag T Gpy Wi T 9

With this in mind, the local expression of ¥ = v — v(R,)n® is

oH . 0H OH
5= 844 dpe + 24,
7= 9 T e e T 9

In what follows, in order to keep the notation as simple as possible, we will ommit
the point p. Consider the k-vector field Z = (Z,) with local expression
0 0

9 9
Z.—A8 9 L pi pi 2
apep T Pogg oo oy 027

Computing its image by the morphism b,
= Z (i(Za)w™ + (i(Za)n™)n®)
= Z > " i(Za)(dg Adpf) + Z o )dt®)dee

a i€l

= > (((Za)dg")dpf =Y > (i(Za)dpf)dg' + Z o) dt)dte
o €1, a i€l

=YD Bidpy =) Y " Cqidgt + Y Agdt”
a i€l o iel, o

Comparing this last expression with

o oy Oy 0l oH
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we obtain the relations

(A =1,

oH

- — 0,

029

OH

= > Gl
8(] « such
that €1,

oH .
(Opy

Moreover, we know by hypothesis that A% = §5. The second condition dH /027 = 0
is a compatibility condition of the Hamilton equations in the k-precosymplectic case.
We can state this condition as: the Hamiltonian function H cannot depend on the
so-called gauge variables z7. Finally, the third and fourth equations, along with
A8 = 68 are equivalent to (6.4) when written in coordinates (see (5.11)). O

We can use the previous theorem to give a description of the constraint algorithm.
First, we must restrict ourselves to the points satisfying the condition

0
’Y(@) =0,

because we have already seen that it is a compatibility condition of the system. We
define the j-th constraint submanifold M; C M;_; as

M, = {p € M;_y | 3Z = (Z,) € X*(M;_;) such that

2(Z) =7+ Y0 and i(Za)n® = 63},

where My = M.

Definition 6.3.5. Consider a submanifold C — M of a k-precosymplectic manifold
M. We define the k-precosymplectic orthogonal complement of C' as

TCt = ((@*TC N De))”

where D¢ is the set of all k-vectors Z,, = (Zy), on C such that i(Zap)ng =6P.

Taking into account the previous definition and Theorem [6.3.4) we can redefine
the constraint submanifolds as

My ={pe M1 |7+ Y ng e (TM;1)7)°}-

This last characterization allows us to effectively compute the constraints at every
step of the constraint algorithm. However, there exists an alternative and equivalent
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way to compute the constraint submanifolds of the algorithm, which is much more
operational:

(1) Obtain a local basis {Z1, ..., Zy} of (TM)> .

(2) Use Theorem to obtain a set of independent constraint functions
fu=1(2,) (?4‘ Zn”‘) )
defining a submanifold M; — M.
(3) Compute solutions X = (X,) to equations (6.3).
(4) Impose tangency of Xi,..., Xj to M;.

(5) Iterate item (4) until no new constraints appear.

If this iterative procedure ends with a submanifold My < M with dim My > 1, we
can ensure the existence of solutions to (6.3) in M.

Remark 6.3.6. In particular, the constraint algorithm described above works for
a singular Lagrangian field theory (R* x @*TQ,dt®, w®, L) and for its associated
Hamiltonian formalism on P. However, in the Lagrangian formalism, the problem of
finding SOPDES solving the field equations is not considered in the algorithm above.
In general, imposing the SOPDE condition leads to new constraints and, in favorable
cases, we get a new final constraint submanifold Sy < My where we have SOPDE
k-vector fields solutions tangent to Sy. In the examples analyzed in the next section
we give some insights on how to proceed in these cases. Nevertheless, it is still an
open problem to find a rigorous characterization of all these constraints arising from
the SOPDE condition. See [48| for a deeper study on this topics in the case of singular
Lagrangian mechanics.

It is important to point out that we can treat singular k-symplectic field theories
as a particular case of k-precosymplectic field theories. In this case, we do not
have the 1-forms n® and the k-presymplectic algorithm described in Section is
recovered. See [85] for details.

6.4 Examples

In this last section of the chapter, we are going to analyze several examples of field
theories described by singular Lagrangian functions and how to apply the constraint
algorithm developed above to each of them. We will apply the constraint algorithm
to both the Lagrangian and Hamiltonian formulations of every example.

The first example analyzes the systems defined by Lagrangians which are
affine in the velocities. Such Lagrangians are of great interest in many areas of
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theoretical physics, such as gravitation or quantum field theory. The second exam-
ple studies in detail a particular example of affine Lagrangian in order to see
how does the constraint algorithm works. The last example deals with a singular
quadratic Lagrangian.

Affine Lagrangians

Affine Lagrangians are very important in physics. For instance, the so-called Einstein—
Palatini (or metric-affine) approach to gravitation and Dirac fermion fields |75
among others, are examples of theories described by affine Lagrangians.

Consider a field theory with configuration manifold @ with coordinates (¢*). The
bundle
71 RF x @FTQ — R¥

is its nonautonomous phase space of k!-velocities and has coordinates (t%,¢*,v?).
Consider an affine Lagrangian L: RF x @*TQ — R of the form

L(t*,q",v}) = f1'(¢")), + g(t*, ¢") . (6.5)
Such a Lagrangian is the sum of the pullbacks to R¥ x &*TQ of two functions:

e a linear function @*T(Q — R on the fibers of the bundle ®*TQ — Q,

e an arbitrary function R* x Q — R.

Lagrangian formalism

Consider a Lagrangian function L € €*°(R* x @*TQ of the form (6.5). Associated
to this affine Lagrangian we have

Ep =A(L)— L = —g(t*,¢*) € € (RF x *TQ) ,

ofe
w§ = —%dqy Adgt € D2(R* x *TQ),
q
defining a k-precosymplectic structure (dt®,w¢,V), with V' = <8/8vﬂ>, in R* x
®FTQ. We can take R, = 9/0t* as Reeb vector fields. Consider now a k-vector field
X = (X1,...,Xz) € XF(R* x ®FTQ) with local expression
0 ;0

9
X,= 2 4yt % g O
gre T lager T T gy

The k-cosymplectic Lagrangian equation

oL
(Xo)wi =dE —dt#
Z( )WL L + at“



6. Constraint algorithms for singular field theories 85

for this k-vector field X gives

dg ¢ 3fea 8fj°‘
— 4+ F | == - —1]=0. .
9q) + £, (aqﬂ a4 0 (6.6)

This is a system of (linear) equations for the functions F which allows us to partially
determine these functions. Eventually, new constraints may appear depending on
the ranks of the matrices involved. In this case, the constraint algorithm goes on by
demanding the tangency of the vector fields X, to the new manifold described by

the constraints. Notice that, in any case, the functions G*

!, remain undetermined.

k

v

If we impose the SOPDE condition to the solutions, that is, F,f =
read
g (00 O5Y
o *\9¢o  0Oq* ’

which are new constraints. Imposing the tangency condition for the vector fields

equations

X, =~
ot

we obtain the relations

dg 0 afg_8fj°‘ _
dg’ G”a(aqj o)~

which allows us to partially determine the coefficients Gfa. In addition, new con-
ofy  Off

L@—i . If this is

0¢?  Oq*

the case, the algorithm continues by imposing again the tangency condition.

straints may appear depending on the rank of the matrix <

Hamiltonian formalism

In the Hamiltonian formalism, the phase space of k'-momenta is the bundle 71 : R¥ x
®*T*Q — R*. The Legendre map associated to the Lagrangian L given in (6.5) is
oL

toFL=t", ¢ oFL=q , ploFL=—-—=fI').
8UL

Notice that the submanifold P = FL(R* x @&*TQ) is given by the constraints p!' =
f1(¢%). Thus, it is the image of a section £: R¥ x Q — R* x &*T*Q of the projection
(mQ)1.0: RF x ®*T*Q — R* x Q, and can be identified in a natural way with R* x Q.
Hence, as £ o is a surjective submersion and its fibers are connected, then so is the
restriction of the Legendre map FL onto its image P, FLg: R* x ®*TQ — P, since
FLo=E&EoTy.

Summing up, affine Lagrangians are almost-regular Lagrangians and then P is
an embedded submanifold of R* x @¥T*Q, which is diffeomorphic to R* x Q.
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Hence, we can introduce

H=—g(t* q") € €>(P),

a 8fk:a j k 2
w ——qu]/\dq € Q(P),

such that

FLiE, = H,
FLyws = w®™.

As above, we have

_ 9
oot
For a k-vector field X = (X1,..., X}) € X¥(P) with local expression

na =dt*, R,

9,0
Xa = ote Fa oqt’

the Hamilton equation
i(Xo)w® =dH — R, (H)dt”

yields the conditions

dg ¢ afzza 8fja
e F - - T = i = . .
g7 + F, (8(1] a4’ 0 (6.7)

As in the Lagrangian formalism, this system of linear equations allows us to partially
determine the functions F. In addition, new constraints may appear depending on
the rank of the matrices involved. If new constraints appear, the constraint algorithm
continues by demanding the tangency condition to the new constraints.

A simple affine Lagrangian model

In this example we are going to consider a particular case of affine Lagrangian in
order to clearly see how does the constraint algorithm work in a concrete example.
Lagrangian formalism

Consider the configuration manifold R? x Q = R? x R? with coordinates (¢!, t%; ¢!, ¢?).

The Lagrangian formalism takes place in the bundle R? x ©2TQ, equipped with

natural coordinates (t!,t2; ¢, ¢%, vi, v, v?, v3). Consider the Lagrangian function

L = ¢*vi — ¢*v3 + ¢ t' € €°(R* x @°TQ). (6.8)
Hence, the functions in (6.5) are

fi=¢, =0, fr=0, fi=-q¢, g=q¢t".
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We have the forms

nt = dtt,
= dt?,
wy, =dg' Adg?,
w% = dqg* Adg?.

The Reeb vector fields are

The Lagrangian energy is Fp = —ql¢?t! € €°(R? x ©2TQ). Consider the 2-vector
field X = (X1, X2) € X?(R? x ©2TQ) with local expression

0 0 0 0 0 0 0
X1 = 8t1+F181+F162+G1131+G12a1+G1132+G12a2’

0 0 0 0 0 0 5 0
X2 (9t2 +F28 1 +F28 ) +G218 1 +G228 1 +G 18’1}% +G228—v%.

The Lagrangian equation i(X, )w® = dEL, — RL(EL)dt* for the 2-vector field X reads
Fld¢® — Ffdq' + Fyd¢® — F3dg' = —¢*t'dq' — ¢'t'dq?,
and conditions give
F].2+F22:q2t17 F11+F21:_q1t1a
which can be written as
Fy
0 1 0 1\|F? q r!
-1 0 -1 0)|F} glzt) -
F

If we impose the SOPDE condition, i.e. Fﬁ = vf;, the 2-vector field X becomes

0 0 0 0
X1 at1+v181+ 182+Gluag7
0 0 0 0

Xa= g5 tuig g tiga + Cougor ‘

and we obtain two new constraints

G=vi+vi—¢*t' =0
G=vi+vi+¢t=0
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These two constraints (1, (> define the submanifold S; < R? x &?T(Q. Imposing the
tangency condition to this new manifold, we get

X1(G)=q¢" +t'v1 + G}, + G, =0,

which, written in matrix forms, becomes

Gh

Gt
0101000 0\]|GL ¢+ tho?
1 010000 0G| |[—q¢" —t
0000O0T1O0T1||Gy] tlw3 ’
000O0T1O0T10/ |G —ttol

&

G2,

which allows us to partially determine the functions G¥,,. Notice that no new con-
straints appear, and hence the final constraint submanifold is 5.

Hamiltonian formalism

The Hamiltonian formalism takes place in the bundle (R? x @&2T*Q, endowed with
natural coordinates (t!,t%; ¢, ¢, pl,p?, p3,p3). The Legendre map FL given by the
Lagrangian defined in is the map

FL:R? x ?TQ — R? x &?T*Q,
given by
(t',¢%¢", ¢, p1, p1, P, p3) = FL(t', % ¢", 4%, v1, v3, 07, 03) = (¢, 4% 4", 4%, ¢°,0,0, —¢") .
Hence, its image P = FL(R? x ®2TQ) is given by the primary constraints
pi=¢, pi=0, p;=0, ps=—q".

With this in mind, it is clear that we can describe the manifold P with coordinates
(1,12, ¢, ¢%). In P, we have the forms

nt=dtt, n*=dt*, wl=d¢'Ad¢®, w?=d¢' Adg?.

The Reeb vector fields are Ry = 9/0t!, Ry = 0/0t>. The Hamiltonian function is
H = —q¢'¢?*t*. Consider a generic 2-vector field in P X = (X1, X») € X2?(P) with
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local expression

0 L0 , 0
=g TP e

0 L0 , 0
Y=gt B t B

The Hamiltonian equation i( X, )w® = dH — R, (H)dt® for the 2-vector field X gives
Bid¢* — Bidq' + Bydq¢® — B3dq' = —t'¢*dq' — t'¢*dq?.
Now, conditions read
B} + BZ=t'¢>, B}+Bj=-t'q".

These two relations allow us to partially determine the functions BY. In this case,
no new constraints appear.

A singular quadratic Lagrangian

Lagrangian formalism

Consider the configuration manifold Q = R x R™ equipped with coordinates (g, e),
and two independent variables (¢,s) € R%. The corresponding phase space is the
bundle R? x @2TQ with natural coordinates (t,s;q,e,q;,qs,es, es). Consider the
Lagrangian function L: R? x &2TQ — R given by
Lo 1, L5

L= i+ 507 — 5745, (6.9)
where 7 € R is a constant parameter and o = o(t, s) € €°°(R?) is a given function.
This Lagrangian is quite similar to one introduced in [85], but considering one of its
parameters as a function of (¢, s) in order to illustrate the nonautonomous setting.

We begin by computing the canonical structure and the Liouville vector field of
the bundle R? x &2TQ:

Jt 6—%®dq+8%t®de,
J? a(?]s ®dqg + (9(25 ® de,
At—qt%—l-et%,

0 0
A qsﬁ—qs‘i‘esa—esy
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The Cartan 1 and 2-forms are

1
(92 = tJt odL = éqtdq,
03 = 'J*odL = —7q,dq,
t

1
wh = —dot = Z—;de/\dq— Edqt/\dq,

wi = —df; = tdgs Adq.

The Lagrangian energy Ey, is

1, 1., 1

2€qt — 50’ e — 57‘(]8 .

Consider now a 2-vector field X = (X;, X,) € X?(R? x ©2TQ) and consider the
k-cosymplectic Lagrangian equations (5.12) for it. Applying the second group of
equations, namely i(X,)dt? = 62, the 2-vector field X becomes

B B B B B B B
X, = — B B qt _~ qs

1= g P Big t Bige t Gl g Gl g s T O e O 5
PR Y S S SO SO

Os ° dq “de ' ° Oq S Oqs 5 ey S ey

Applying now the first k-cosymplectic Lagrangian equation (5.12), i(X,)w$ = dEL+
gtﬁ dt®, and equating the coefficients, we obtain the relations

( 2
e 1

5= (1o -rcr).
q: \ €

Bg:qta

B,ZZQS7

2

qt 2

— =0".

e2

These equations determine the coefficients Bf, Bf and BY of the 2-vector field X in
terms of the variables and the other coefficients. The last equation is a constraint,

1 (q 2
<1:2(€_2_0->7

which defines the submanifold S; < R? x @2T(Q. At this point, X has nine undeter-
mined coefficients. Imposing the tangency of the 2-vector field X = (X;, X;) to the
submanifold Sy, that is, imposing

Xt(C1)|s1 =0, Xs(Cl)‘Sl =0,

we obtain two more relations between the undetermined coefficients (on S;) and no
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more constraints.

In order to complete our analysis, we are going to impose the SOPDE condition.
Then, the generic expression of X is

0 0 0 0 0. 0 0 0
Xt—a‘}'qta_q_k (9 +Ctat+ct a _+Ct 865

0 0 0 0 0 0 0
X. = — _ _ qt _— qs . eg

Now, the first equation in (5.12) gives the relation
gt qt qs
€t g~ —C +7C%E =0,

and the same constraint (; obtained before. Imposing now the tangency to the sub-
manifold S; determines the functions C}* and C# (on S;) and no new constraints
appear. In conclusion, the 2-vector field X = (X;, X) has five undetermined coeffi-
cients.

Hamiltonian formalism

The Hamiltonian counterpart takes place in the bundle R? x &2T*Q, equipped with
natural coordinates (¢, s; q, e, p', p*, wt, 7*). The Legendre map associated to the La-
grangian function is the map

FL:R? x @?TQ — R? x @°T*Q

given by
1
fL(tas;Qa€7qtaQSaet7es) = <tas;Qa€7eq7_TQSaoaO> .

The primary Hamiltonian constraint submanifold
P = FL(R? x ’TQ) — R? x &’T*Q

is defined by the constraints

Taking coordinates (¢, s; q, e, p', p®) as coordinates on P, its 2-precosymplectic struc-

ture is
n' =dt,
n® =ds,
wt = dg A dpt,
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We have that

ker n* N ker n® Nker w’ Nker w® = <§> .
e

The Reeb vector fields are 5 5
R, = — R, = —.
P oot ds

The Hamiltonian function on the submanifold P is given by

Consider a generic 2-vector field on P, X = (X;, X,) € X%(P), with local expression

0 0 0 0 0 9
Xe=At =+ A} —+B}—+B}— +0} ==+ C} —
t tat+ tas+ t8q+ tae+ct8pt+ct8p5’
e, 0 0 9 0 0

X,=Al -+ A2 Bl —+B2 - +Cl —+C2—.
88t+ S0s+ 58q+ Sae+ s@pt+ 5 Ops

Hamilton equations l) are

( t

i(Xp)w' +i(Xs)w® = dH — dH(Ry)nt — dH (Rs)n®,
(X' =1,
i(Xe)n® =0,
i(Xs)n' =0,
Li(Xs)n® =1,
which give the relations
(B =ep',
-1
le = TPS,
Cf +C2 =,
Al=1, A?=0,
Al=0, A?2=1,

which partially determine the coefficients of X and imposes as a consistency condition
the secondary Hamiltonian constraint

e, 1 1
51:Z<$) dH:§<pt>2—§O'2:0 (OH P),

defining a new constraint submanifold P; — P. Imposing the tangency of the 2-
vector field X to this new submanifold Py, X;(&1)]p, = 0, Xs(&1)|p, = 0, determines

the functions L 8 1 8
1 _ g 1 _ g
Ct‘Pl —EO'E s CS‘PI —50%7
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and no new constraints appear.

Remark 6.4.1. Notice that FL*(&;) = ¢; and FL(S;) = P;. Hence, as the SOPDE
condition does not yield new constraints in the Lagrangian formalism, there are no
non-F L-projectable Lagrangian constraints.



94 Xavier Rivas — Geometrical aspects of contact systems and field theories




Chapter 7

k-contact Hamiltonian systems

In this chapter we introduce a geometric formalism for autonomous dissipative field
theories. In order to do this we need to define a new geometric framework: k-contact
geometry. The main reference on this topic is |67].

In Section we present the notion of k-contact manifold and we prove the
existence and uniqueness of a family of Reeb vector fields in every k-contact man-
ifold. We also prove the existence of two types of special coordinate systems in
k-contact manifolds: adapted coordinates and Darboux coordinates. We also define
the concept of k-precontact manifold, which is a weakened version of the concept of
k-contact manifold. This will be useful when extending the Skinner-Rusk formal-
ism for k-contact systems in Chapter@ Section uses the geometric framework
introduced in the previous section to develop a geometric formalism, the so-called k-
contact Hamiltonian formalism, for autonomous dissipative field theories. In Section
we generalize the different notions of symmetry presented in Chapter [2]to field
theories. We also prove that every Hamiltonian k-contact Hamiltonian symmetry is
a dynamical symmetry. Finally, Sectionis devoted to study the dissipation laws
of k-contact Hamiltonian systems. In particular, we prove the dissipation theorem,
which states that every infinitesimal dynamical symmetry yields a dissipation law.

7.1 k-contact geometry

Definition 7.1.1. Let M be an m-dimensional smooth manifold.

e A generalized distribution on M is a subset D C TM such that, D, C T, M
is a vector subspace for every r € M.

e A distribution D is said smooth if it can be locally spanned by a family of
vector fields.

e A distribution D is regular if it is smooth and of locally constant rank.

o A codistribution on M is a subset C C T*M such that, Cy, C TiM is a
vector subspace for every x € M.

95
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Given a distribution D, the anihilator D° of D is a codistribution. If D is not
regular, D° may not be smooth. Using the usual identification E** = E of finite-
dimensional linear algebra, it is clear that (D°)° = D.

Consider a differential 1-form n € Q!(M). Then, n generates a smooth codistri-
bution, denoted by (n) C T*M. This codistribution has rank 1 at every point where
71 does not vanish. Its anihilator is a distribution ()° C TM that can be described as
the kernel of the linear morphism 77: TM — M x R defined by 5. This codistribution
has corank 1 at every point where 1 dos not vanish.

In the same way, every 2-form w € Q2(M) induces a linear morphism @: TM —
T*M defined by @w(v) = i(v)w. The kernel of this morphism @& is a distribution
kerw C TM. Notice that the rank of & is even.

Given a family of k differential 1-forms n',...,n* € Q' (M), we will denote

e CC=(nt, ... %) CcT*M,

o D€ = (CC)O :ker77Alﬂ-~-ﬂker5ECTM,
o DR —kerdnl N ---Nkerdyk ¢ TM,

o C® = (D})" c T*M.

With the notations we just introduced, we are ready to introduce the concept of
k-contact manifold:

Definition 7.1.2. A k-contact structure on a manifold M is a family of k differ-
ential 1-forms n',...,n* € QY (M) such that, with the preceding notations,

(1) D€ C TM is a regular distribution of corank k,
(2) DR C TM s a regular distribution of rank k,
(3) D¢ N DR = {0}.

We call C° the contact codistribution, D€ the contact distribution, D® the
Reeb distribution and C® the Reeb codistribution.

A manifold M endowed with a k-contact structure n',...,n* € QY(M) is a k-
contact manifold.

Remark 7.1.3. Notice that condition (1) in Definition is equivalent to each
one of the following two conditions:

(1) C© C T*M is a regular codistribution of rank k,
(1”) nt A -~ AnF # 0 everywhere.

Condition (3) can be rewritten as

3) N (kerﬁ& N keréy\a) — {0},
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If conditions (1) and (2) in Definition hold, then condition (3) is equivalent to
each of the following two conditions:

(3") TM = D€ @ DR,

(3") T*M = C® @ CR.

Furthermore, using the definition of D, one can prove that, in Definition
conditions (2) and (3) imply (1).

Remark 7.1.4. In the particular case kK = 1, a 1-contact structure is given by a 1-
form 7. In this case, the conditions in Deﬁmtlon_mean the following: (1) n # 0
everywhere, (3) ker i) N ker dn = {0}, which implies that ker dn has rank 0 or 1, and
(2) means that ker dn has rank 1. Hence, if conditions (1) and (3) hold, the second
condition is equivalenht to saying that dim M is odd. Thus, we have recovered the
notion of contact manifold introduced in Definition|1.1.1

Lemma 7.1.5. The Reeb distribution DY is involutive, and therefore it is also inte-
grable.

Proof. Consider the relation
i([X, X']) = Lxi(X)—i(X")Lx = di(X)i(X)+i(X)di(X)—i(X")di(X)—i(X)i(X)d .

Notice that if X and X’ are sections of D® and we apply this relation to the closed
2-form dn®, the result is zero. O

Theorem 7.1.6 (Reeb vector fields). Let (M,n%) be a k-contact manifold. Then,
there exists a unique family of k vector fields R, € X(M), called the Reeb vector

fields of M, such that
{i(Ra)ﬂﬁ =04

i(Re)dn® = 0.
The Reeb vector fields Ry, ..., Rr commute:

(7.1)

[Ra,Rg] =0.

In addition, the Reeb distribution introduced in Definition is spanned by the
Reeb vector fields,
DR = (Ry,...,Ri),

motivating its name.
Proof. Take T*M = C°® @ C®. The family of 1-forms n® is a global frame of the
contact codistribution C¢. We can find a local frame n* of the Reeb codistribution

CR so that (n®;n#) is a local frame for T*M. The corresponding dual frame for
TM constituted by vector fields (Rg; R, ), where the Rz are uniquely defined by the
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relations
<na7 RB> = 523! )
(", Rp) =0.

Notice that the second set of relations does not depend on the choice of the n*, in fact
it means that the vector fields R are sections of (CR)O = DR, the Reeb distribution.
This is equivalent to the condition i(Rg)dn® = 0 for every a. As the 1-forms n® are
globally defined, so are the vector fields R.

To prove that the Reeb vector fields commute, notice that

i([Ras Rpl)n” =0, i([Ra, Rpl)dn” =0,

which is a consequence of their definition and of the above formula for i([X, X'])
when applied to them. O

Proposition 7.1.7. Let (M,n%) be a k-contact manifold. There exist local coordi-
nates (z!,5%), called adapted coordinates, such that

0 a a a
Ra:@? n =ds —fI(IE)dl’I,

where the functions f& only depend on the z'.

Proof. As the Reeb vector fields commute, there exists a set of local coordinates
(2!, 5%) where they can be simultaneously straightened out (see [113} p.234] for de-
tails):
0

prl

We are going to write the contact forms using these coordinates. The condition
i(Ra)n? = 62 implies that n® = ds® — f&da!, where the functions f§ may depend on
all the coordinates (!, s®). Then, we have that dn® = da! Adf®. But the condition
i(Ra)dn® = 0 must be fulfilled. The only way to ensure this is that 9f®/9s” = 0
and this concludes the proof. O

Rao =

Example 7.1.8 (Canonical k-contact structure). Let £ > 1 and @) a smooth mani-
fold. The manifold M = ®*T*Q x R* has a canonical contact structure given by the
1-forms n',...,n* € Q1 (M) defined as

na — ds® — g~ 7
where (s!,...,s*) are the canonical coordinates of R* and #* is the pull-back of
the Liouville 1-form 6 of the cotangent bundle T*(Q with respect to the projection
M — T*Q to the a-th summand.

Take coordinates (¢*) on . Then, M has natural coordinates (g%, p%, s¢). Using
these coordinates, the contact forms n® are

«

ne = ds® —pf‘dqi .
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Hence, dn® = dq¢’ A dp&, the Reeb distribution DY is

0 0
R _ _ _
D= ()

and the Reeb vector fields are 5

Ra = =
0s«

Example 7.1.9 (Contactification of a k-symplectic manifold). Consider a k-symplectic
manifold (P,w®) such that w® = —df* and the product manifold M = P x R*. Let
(s%) be the cartesian coordinates of R¥ and denote also by 6% the pull-back of < to
the product manifold M. Consider the 1-forms n® = ds® — 6§~ € Q' (M).

Then, (M,n®) is a k-contact manifold because C¢ = (n',...,n*) has rank k,
dn® = —d#*, and DR* =, ker dgo = (0/0s',...,0/0s") has rank k since (P,w®) is
k-symplectic, and the last condition is immediate.

Notice that the so-called canonical k-contact structure described in the previous
example is just the contactification of the k-symplectic manifold P = @*T*Q.

Consider now the particular case k = 1. Let P be a manifold with a 1-form and
consider the product manifold M = P x R with the 1-form n =ds — 6 € Q'(M). In
this case, C° = (n) has rank 1, dn = —d#f, and D} = ker df has rank 1 if, and only
if, df is a symplectic form on P. Under these hypotheses, M is a 1-contact manifold.

Example 7.1.10. Consider the manifold M = R® with coordinates (x,y,p,q, s,t).
Then, the 1-forms

1
nt =ds — i(ydx —zdy), n*=dt—pdr—qdy

define a 2-contact structure on M. We are going to check that the conditions in
Definition are fulfilled. In first place, it is clear that the forms n' and n? are
linearly independent. Then,

dnt =dzAdy, dn?=dzAdp+dyAdg,

0 0
DR =~ —
<8s’8t>’

which has rank 2. It is clear that none of these vector fields belong to the kernel of
the 1-forms n', n?, which is the third condition in Definition The Reeb vector
fields are

and hence

0 0

Rl:%7 RQ:E

Now we are going to state and proof the Darboux Theorem for k-contact man-
ifolds. This theorem ensures the existence of canonical coordinates for a particular
kind of k-contact manifolds.
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Theorem 7.1.11 (k-contact Darboux Theorem). Consider a k-contact manifold
(M,n®) of dimension dim M = n + kn + k such that there exists an integrable sub-
distribution V of D€ with rankV = nk. Then, under these hypotheses, around every
point of M there exists a local chart (U, q',p%,s*), 1 <a <k, 1<i<n, such that

n%ly = ds* — pidg’ .

Using these coordinates,

B 0
R| _ _ 9 _ /2
Py = (o= ) Vo= {ap5)

These coordinates are called canonical or Darboux coordinates of the k-contact
manifold (M,n%).

Proof. The proof of this theorem will be divided into several steps.

(i) By Proposition|7.1.7} there exists a local chart (y’,s®) of adapted coordinates

such that
0

Ra = s

n® =ds® — ff(y)dy’.

Hence, we can locally construct the quotient manifold M=M /DY, with the
projection 7: M — M and local coordinates (y7).

(ii) The distribution D€, which has rank D¢ = nk + k, is 7-projectable because, for
every Ro € X(DR), Z € X(D°) and dn®, we have that

i([Ra, Z))dn’ = Lr,,i(Z)dn" —i(2) LR, dn’ = —i(Z)di(Ra)n® = —i(Z)ds

and thus [R,, Z] € X(DY®). Notice that this is also a consequence of condition
(3) in Definition m

(iii) The forms dn® are 7-projectable because, by Theorem , we have that
i(Rq)dn® = 0 for every R, € X(D®), and thus

ZLr.dn® =di(Ra)n® =dé? =0.

«

It is clear that the T-projected 2-forms @” € Q2(M) such that dn® = 7*&” are
closed. Their local expression is

& =dff @) ndy".
Moreover, as V is involutive, we have that for every Z,Y € I'(V),

i(2)i(Y)dn? = i(Z2)(Ln® — di(Y)n?)
= Z'(Z)fy’nﬁ
= Zi(Z)n° —i([Y,Z])n" = 0.
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(iv)

Denote by V the distribution in M induced by V. This distribution has rank V=
nk. Then, for every Z,Y € I'(V), if Z,Y € T'(V) are such that 7.7 = Z and
7.Y =Y, we have that

0=1i(2)i(Y)dn® =i(2)i(Y)(7&") = 7*i(2)i(Y)a" , (7.2)
and, as 7T is a submersion, the map 7* is injective and, from (7.2) we have that
i(2)i(Y)@” =0.

Notice that this fact does not depend on the choice of the representative vector
fields Y, Z used, because any two of them differ in an element of ker 7, = T'(DR).
Hence, we have seen that &B}ng =0.

As a consequence of (ii), we have that
ker@! M- Nker@o® = {0},

and hence (M ,0, V) is a k-symplectic manifold.

By the Darboux Theorem for k-symplectic manifolds (Theorem [5.2.2)), there
exists local charts (U;¢',p%) in M such that

~a ~ ~a 1) 9
w |Uqu /\de 5 V‘ﬁ:<8pj>

With all this in mind, in U = 7 1(U) C M, we can take the coordinates
(y!, %) = (¢*,p%, s%), with ¢° = ¢’ o7 and p¢ = p% o T satisfying the conditions
of the theorem.

This theorem allows us to consider the manifold introduced in Example as

the canonical model for this kind of k-contact manifold. Moreover, every k-contact

manifold which is the contactification of a k-symplectic manifold (see Example|7.1.9))

has Darboux coordinates.

Remark 7.1.12. When some of the conditions stated in Definition do not
hold, we say that n',...,n* € QY(M) is a k-precontact structure and that
(M,n',...,n*) is a k-precontact manifold. For this kind of manifolds, Reeb vec-

tor fields are not uniquely determined. The particular case £ = 1 has been analyzed

in [40], where the properties of the so-called precontact structures and precontact

manifolds are studied in detail.
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7.2 Hamiltonian formalism for k-contact systems

Now that we have introduced the geometric framework of k-contact geometry, we are
ready to deal with the Hamiltonian formulation of field theories with dissipation.

Definition 7.2.1. A k-contact Hamiltonian system is a family (M,n“ H),
where (M,n%) is a k-contact manifold and H € €°°(M) is called a Hamiltonian
function. Consider a map : D C R¥ — M. The k-contact Hamilton—De
Donder—Weyl equations for the map ¥ are

{i(wg)dna = (dH — (LR, H)n") o, (7.3)

i(Yo)n® = —Hod.

Now we are going to look at the expression in coordinates of the Hamilton—De
Donder-Weyl equations (7.3). Consider first the adapted coordinates (z!,s%). In
these coordinates,

0

~ 95

1 ofe  of%
n* = ds®—f&(z)da’, dn® = Ew?Jda:I/\dx‘] , with wf; = ofr _of;

Ra ozt  Oxl’

The map ¢: D C R¥ — M has coordinate expression 1 (t) = (2 (t),s%(t)). Then,

ox! 0sP
/: I ’B— —_—
Ve (x’s ’ata’ata>'

The Hamilton-De Donde-Weyl equations read

oo (oM o\
ot I = \ 9zl T gsa ’
s>, 0x!

e g = TH oY

On the other hand, in Darboux coordinates, the map ¥ has local expression

Y(t) = (¢'(t), pe(t), s*(t)). Hence, equations (7.3) read

(0q' oH
ot~ opr 0V
ops* OH OH
o : o 7.4
(G ) 0. (7.4
0s“ o OH
e = (g 1) o0

Remark 7.2.2. If (M,n%) is a k-precontact manifold, then (M,n®, H) is said to be
a k-precontact Hamiltonian system.

Definition 7.2.3. Consider a k-contact Hamiltonian system (M,n“,H). The k-
contact Hamilton—De Donder—Weyl equations for a k-vector field X = (X,,) €
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XF(M) are

iI(Xo)dn® =dH — (LR, H)n",

(Xa)dn (LR, H)n (75)
i(Xa)n®=—H.

A k-vector field solution to these equations is a k-contact Hamiltonian k-vector

field.

Proposition 7.2.4. The k-contact Hamilton-De Donder—Weyl equations (7.5) ad-
mit solutions. They are not unique if k > 1.

Proof. A k-vector field X € X*(M) can be decomposed as X = X + X® using the
direct sum decomposition TM = D€ @ DR. If X is a solution to lb then XC is a
solution to the first equation and X® is a solution to the second one.

At this point we need to introduce two vector bundle maps:

pi TM = &M . plv) = (dn'(v),....dF(v))
7 @ TM — T*M , T(V1y. .., V) :cTn\a(va).

Now we have to remark some facts:

e ker p = DR is the Reeb distribution.

e Using the canonical identification (EGF)* = F *@tF * the transposed morphism
of 7 is 7 = —p. The proof of this fact uses that dn® = —dn.

e The first Hamilton—De Donder—Weyl equation for a k-vector field X can be
written as

ToX=dH — (ZLr H)n".

A sufficient condition for this linear equation to have solutions X is that the right-
hand side must be in the image of the morphism 7, that is, to be anihilated by
any section of ker 'r = DR. Using that i(Rg)(dH — (Lr, H)n®) = 0 for any 3, we
can conclude that the first Hamilton-De Donder-Weyl equation has solutions. In
particular, it has solutions X© belonging to the contact distribution.

On the other hand, the second Hamilton—De Donder—Weyl equation for a k-vector
field X has solutions belonging to the Reeb distribution, for instance X® = —HR;.
Non-uniqueness for k£ > 1 is obvious. O

Consider a k-vector field X = (Xy,..., X)) € X¥(M) with local expression in
adapted coordinates
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Hence, equation (7.5) yields the conditions

OH OH
J o _ «
(Xa) Wiy = i + @fr )

(Xa)® = ff(Xa)' = —H.

On the other hand, consider a k-vector field X = (X1,...,X}) € X*(M) with local
expression in Darboux coordinates

9 5 0 9
X, = (X)) =— + (X)) — + (X)) —.
(X0 g+ (s () 5
Now, equation (7.5) gives the conditions
OH
Xa ' = ’
(%) op;
OH OH
X))o = — (2L L e ) 7.6
()t == (Gor + 7 (7.
OH
X)) = p* i

Proposition 7.2.5. Consider an integrable k-vector field X € X*(M). Then, every
integral section 1: D C RF — M of X satisfies the k-contact Hamilton—De Donder—

Weyl equation (7.3) if, and only if, X is a solution to (7.5).

Proof. This proposition is a direct consequence of equations (7.3) and (7.5), and of
the fact that if X is integrable, then every point of M is in the image of an integral

section of X. O

Remark 7.2.6. It is important to point out that, as in the k-symplectic case, equa-

tions (7.3) and (7.5) are not fully equivalent because a solution to (7.3) may not be
an integral section of an integrable k-vector field solution to (7.5). This fact will be

of interest when studying symmetries and dissipated quantities.

Proposition 7.2.7. The k-contact Hamilton—-De Donder—Weyl equations || are
equivalent to

{iﬂxa n* =—(ZLr,H)n", .7

i(Xo)n®=—-H.
To end this section, we are going to offer a sufficient for a k-vector field to be
a solution to the Hamilton-De Donder-Weyl equations (7.5) without making use of

the Reeb vector fields R,. This may be useful when dealing with singular systems,
where the Reeb vector fields are not uniquely defined.

Theorem 7.2.8. Consider a k-contact Hamiltonian system (M,n“, H) and the 2-

forms
Q% =—-Hdn* +dH An~.
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Let O be the open set O = {p € M | H(p) # 0} C M. Then, if a k-vector field
X = (X,) € X¥(M) satisfies equations

(7.8)

on O, it is also a solution of the Hamilton—De Donder—Weyl equations || on the
open set O.

Proof. Let X be a k-vector field satisfying equations . Then,
0=1i(Xq)Q = —Hi(Xy)dn" + (i(Xo)dH)n* + HdH ,
and thus,
Hi(X,)dn® = (i(Xa)dH)n* + HdH . (7.9)
Now, if we contract this last equation with every Reeb vector field R3, we get
0= Hi(Rp)i(Xa)dn®

= (i(Xa)dH)i(R)n® + Hi(Rp)AH
= (i(Xa)dH)é5 + Hi(Rp)dH ,
and hence,
i(Xg)dH = —Hi(Rg)dH
for every 3. Using this fact in equation (7.9), we obtain

Hi(Xo)dn™ = H(AH — (i(Ra)dH)n™) = H(AH — (Ra(H))n")
and hence i(X,)dn® = dH — (R (H))n“ wherever H # 0. O

Taking into account Definition and Proposition|7.2.5] we have the following
result.

Proposition 7.2.9. On the open subset O = {p € M | H(p) # 0} C M, if a map
: D C R¥ = M is an integral section of a k-vector field solution to equations 1i

then it is a solution to
{i(w;)m =0,

o (7.10)
Z(wa)na =-—-Ho ,Qb .

7.3 Symmetries of k-contact Hamiltonian systems

There are many different notions of symmetry of a given problem, depending on the
structure preserved. In some cases, one puts the emphasis on the transformations
preserving the underlying geometric structures of the problem, or on the transfor-
mations that preserve its solutions [89]. In particular, this has been done in the
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case of k-symplectic Hamiltonian systems [137]. We will apply these ideas to the
case of k-contact Hamiltonian systems. We will begin by defining those symmetries
preserving the solutions of the systems.

Definition 7.3.1. Consider a k-contact Hamiltonian system (M,n®, H).

e A dynamical symmetry is a diffeomorphism ®: M — M such that if 1 is a
solution to the k-contact Hamilton—De Donder—Weyl equations 1i then so
is P o).

e An infinitesimal dynamical symmetry is a vector field Y € X(M) such
that its local flow is made of local dynamical symmetries.

Before giving a characterization of symmetries in terms of k-vector fields, we need
to recall a fact about k-vector fields and integral sections.

Lemma 7.3.2. Consider a k-vector field X = (X,) € X*(M) and a diffeomorphism
®: M — M. If a map v is an integral section of X, then ® o) is an integral section
of the k-vector field ®,.X = (9. X,). In particular, if X is integrable, so is ¢, X.

With this in mind, we have the following result.

Proposition 7.3.3. If ® € Diff (M) is a dynamical symmetry, then, if X is an inte-
grable k-vector field solution to the k-contact Hamilton—De Donder—Weyl equations
for fields , ®,.X is another solution.

Conversely, if ® transforms every k-vector field X solution to into another
solution, then for every integral section v of X, we have that ® o is a solution to
the k-contact Hamilton—-De Donder—Weyl equations for sections .

Proof. (=) Let € M and let 1) be an integral section of the k-vector field X passing
through the point ®~1(x), i.e., ¥(ty) = ®~(x). The map 1 is a solution to equations
(7.3) and, as ® is a dynamical symmetry, so is ® o 1. By the preceding lemma, it is
an integral section of ®,X through the point ®(1)(t9)) = ®(®~!(z)) = = and thus we
have that ®,X has to be a solution to at the points (®o1))(t) and, in particular,
at the point (® o ¥)(tg) = =.

(<) Let X € X*(M) be a solution to (7.5) and let ¢»: D C R¥ — M be an integral
section of the k-vector field X. By hypothesis, ®,X is also a solution to (7.5). Then,
by the previous lemma, we have that ® o1 is a solution to equations . O

Another kind of symmetry are those preserving the geometric structures of the
problem.

Definition 7.3.4. Consider a k-contact Hamiltonian system (M,n“, H).

e A Hamiltonian k-contact symmetry is a diffeomorphism ® € Diff (M) such
that
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o An infinitesimal Hamiltonian k-contact symmetry is a vector field Y €
X (M) whose local flow is a local Hamiltonian k-contact symmetry:

L =0, LHH=0.
Proposition 7.3.5. Fvery (infinitesimal) Hamiltonian k-contact symmetry preserves
the Reeb vector fields:
O, Ry =Ra (or[Y,Ra]=0).
Proof. We have that

i(P; 1R (P*dn®) = *i(Ry)dn® =0,
i(P71RL) (P ) = ®*i(Ro)n™ =1,

and, since ®*n® = n“ and the Reeb vector fields are unique, we conclude that
P Ro =R
The proof of the infinitesimal case is straightforward from the definition. O

The following proposition stablishes the relation between Hamiltonian k-contact
symmetries and dynamical symmetries.

Proposition 7.3.6. (Infinitesimal) Hamiltonian k-contact symmetries are (infinites-
imal) dynamical symmetries.

Proof. Consider a solution v of the k-contact Hamilton-De Donder—Weyl equations
(7.3) and a Hamiltonian k-contact symmetry ®. Then,

(@ o w) )" = (@ () (@) 7
= (@) i)
= (@) (~H o)

(@0 ), )dn® = i(®. () (@7") dn®)

1) (6 )di”

= (@) ((AH — (Lr, H)1") o ¥)

= (A@ ™) H ~ (Lo1)-r (@) H) (@) %) o (@0 0)
= (dH — (ZRQH)na) o(®ov).

—~

The proof of the infinitesimal case is straightforward from the definition. O
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7.4 Dissipation laws

When working with conservative mechanical systems, it is often of great interest
to find quantities which are preserved along a solution. These quantities are called
conserved quantities. Some examples of usual conserved quantities in mechanics are
the energy or the different momenta. In the case of systems with dissipation, these
quantities are not preserved, but dissipated. This behaviour was described in the
case of contact systems in the so-called energy dissipation theorem which says
that, if Xy is a contact Hamiltonian vector field of a contact Hamiltonian vector
field (M,n, H), then
ZxyH=—(%rH)H .

This last equations tells us that, in a contact system, the dissipations are exponentials
with rate —Zr H.

In the case of dissipative field theories, a similar structure can be observed in
the first equation of , which can be understood as the dissipation of the contact
1-forms n“. Now, taking into account the definition of conservation law for field
theories stated in [126] and Remark|(7.2.6| we can define:

Definition 7.4.1. Consider a k-contact Hamiltonian system (M,n®, H) and a map
F: M — RF given by F = (F',...,F¥). Then, F is said to satisfy

e the dissipation law for sections if, for every solution i to the k-contact
Hamilton—De Donder—Weyl equations (7.3)), the divergence of (F o) = (F“o
Y): R¥ — R, defined as

div(F o) = _a(z; atj LI}
satisfies that
div(F o) = —((LrH)F*) 0. (7.11)

e the dissipation law for k-vector fields if, for every X = (X,) € X*(M)
solution to the k-contact Hamilton—De Donder—Weyl equations , we have
that

Lx F*=—(ZLr H)F*. (7.12)

The relationship between these two different notions of dissipation law is given
by the following proposition.

Proposition 7.4.2. Let F = (F*): M — R* be a map satisfying the dissipation
law for sections . Then, for every integrable k-vector field X = (X,) solution
to the k-contact Hamilton—De Donder—Weyl equations for fields , we have that
holds for X.

Conversely, if F' satisfies the dissipation law for fields for a k-vector field
X = (Xo) € XK(M), then the dissipation law for sections holds for every
integral section 1 of X.
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Proof. Let X = (X,) € X¥(M) be an integrable k-vector field solution to (7.5), let
1: R¥ — M be an integral section of X and consider a map F = (F®): M — RF

satisfying the dissipation law for section (7.11). Then, by Proposition|7.2.5| ¢ is a
solution to the k-contact Hamilton-De Donder—Weyl equations (7.3). Hence,

d

(Lx, F) oy = qe

(F*oy) = div(Fov) = —((Lr,H)F) 0,

and as X is integrable, there exists an integral section through every point.
Conversely, if (7.12) holds, then the statement is a direct consequence of the
above expression. O

Lemma 7.4.3. Let Y € X(M) be an infinitesimal dynamical symmetry. Then, for
every k-vector field X = (X,,) solution to the k-contact Hamilton—-De Donder—Weyl

equations (7.5), we have
i([Y, Xa])n® =0, ([Y,Xua])dn® =0.

Proof. Let F. be the local 1-parameter group of diffeomorphisms generated by Y.
As Y is an infinitesimal dynamical symmetry, we have that

i(F;an)na =i(Xa)n”,

because both are solutions to the Hamilton-De Donder—Weyl equations (7.5). Then,
as the contraction is continuous, we have

i(F2 Xo)n™ — i(Xa)n®

. a - . F;Xa - on a _ 1: o
i([Y, Xa])n™ =1 (gl_IRJ f) = ;1_11% - =0.
The proof of the second equality is completely analogous. U

The last theorem of this section relates dissipation laws for k-vector fields with
infinitesimal dynamical symmetries.

Theorem 7.4.4 (Dissipation theorem for k-contact Hamiltonian systems). Let Y be
an infinitesimal dynamical symmetry. Then, F* = —i(Y')n® satisfies the dissipation
law for k-vector fields.

Proof. Let X = (X,) € X*(M) be a solution to the k-contact Hamilton—De Donder—
Weyl equations . By Lemma we have that i([Y, X,])n® = 0. Hence,

Lx, ({(Y)n") = i([Xa, Y))0* +i(Y)Lx 0" = —(Lr, H)i(Y )" .
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Chapter 8

k-contact Lagrangian systems

In this chapter we are going to develop a geometric formalism to deal with dissipative
Lagrangian field theories. We will use the geometric framework of k-contact geom-
etry introduced in Section In Section we begin by extending the canonical
structures of the bundle &*TQ to $*TQ x R*. These structures permit us to intro-
duce the notions of second-order partial differential equation and holonomic section.
Given a Lagrangian function, we define its associated Lagrangian energy, Cartan
forms and contact forms. With all these geometric tools we can finally introduce
k-contact Lagrangian systems. Finally, we define the Legendre map associated to
a Lagrangian function, which allow us to classify Lagrangians as regular (or hyper-
regular) and singular. In Sectionwe use the notions introduced in the previous
section and in Chapter [7] to write the k-contact Lagrangian equations for k-vector
fields and the k-contact Euler-Lagrange equations. Section deals with the k-
contact formalism for singular Lagrangian functions. This will be of special interest
when developing the Skinner-Rusk formalism for k-contact systems in Chapter[9] In
Sections and We adapt the different notions of symmetry and dissipation laws
for k-contact Hamiltonian systems introduced in Sections and to k-contact
Lagrangian systems. Finally, Section is devoted to study the symmetries of the
Lagrangian function of k-contact Lagrangian systems. The main reference on this
topic is [69].

8.1 Lagrangian formalism for k-contact systems

Throughout this chapter, our phase space we will be the bundle @*TQ x R* with
natural projections

i P TQ xR = aFTQ, 74 " TQxRF - TQ, s*: o TQ xR - R,

and equipped with coordinates (¢%,v?,s%). As ®*TQ x R* — @FTQ is a trivial
bundle, the canonical structures in ®*TQ defined in the beginning of Section
(the canonical k-tangent structure and the Liouville vector field) can be extended to
®FTQ x R¥ in a natural way, and are denoted with the same notation (J) and A.

111
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Their coordinate expressions remain the same:

8. ®d¢t, A=1 9

/ ~ o Covl,

(2
[e%

Using these canonical structures, one can also extend the notion of SOPDE to @*TQ x
RF:

Definition 8.1.1. A k-vector field T' = (T,) € X*(®*TQ x R¥) is a second-order
partial differential equation (SOPDE for short) if

JIy) = A.

In local coordinates, a SOPDE reads

0 ;0

: 0
Fa: Z—. Faz
vaaql-i_( )6

r,)?—.
(o) 0sP

dug
Definition 8.1.2. Consider a section 1): RF — QxR os the projection Q xR* — R*
with 1 = (¢, s%), where ¢: R¥ — Q. The first prolongation of {» to ©*TQ x R¥ is
the map ¥ : R¥ — @FTQxRF given by’ = (¢',5%), where ¢' is the first prolongation
of ¢ to ®*TQ defined m. The map ' is said to be holonomic.

Proposition 8.1.3. A k-vector field T' € X*(@FTQ x R¥) is a SOPDE if, and only
if, its integral sections are holonomic.

With these geometric tools in mind, we can now state the Lagrangian formalism
for field theories with dissipation.

Definition 8.1.4. A Lagrangian function is a function £L € €< (©*TQ x R¥).
We can define:

e The Lagrangian energy associated to L is the function

Er=A(L) - L€ E(@FTQ x RY).

e The Cartan forms associated to L are

0% = J¥odL € QY& TQ x RF) ,  w = —dh% € Q*(&*TQ x RF).

e The contact forms associated to L are

n% =ds® — 62 € QY (@"TQ x R¥).

o The couple (BF¥TQ x R*, L) is a k-contact Lagrangian system.



8. k-contact Lagrangian systems 113

Notice that dn@ = w®. Taking natural coordinates (¢, v%, s%) in ®*TQ x R¥, the
local expressions of the elements introduced in the previous definition are

Eﬁzvégé— ;

0% = gf};dqi,

wd = — aqajaﬁv ; dg? Adq' — Ua;;ﬂ; dvl, Adg' — 8;251 : ds” Adg',
ne = ds* — gédqi.

Now, taking into account Definitions|1.3.5/and|1.3.6| we can define the Legendre map
for k-contact Lagrangian systems.

Definition 8.1.5. Consider a Lagrangian function L € €<(®*TQ x R¥). The
Legendre map associated to L is the fibre derivative of L, considered as a function
on the vector bundle ®*TQ x RF — Q x R*; that is, the map

FL: & TQ x RF = *T*Q x R*,

given by

FLMW1g, Uk 8Y) = (FLE, 8*) (V1gs -+, Vkg); %)
where (vig,...,v5,) € ®*TQ and L(-,s*) denotes the Lagrangian function with s*
freezed.

The local expression of the Legendre map defined above is

FE kst = (d st

q 7 78
v,

The Legendre map allows us to give an alternative definition of the Cartan forms.
We have that
07 = FL O, wr =FLW™,

where 0%, w® are the extensions to @*T*Q x R* of the canonical forms of &*T*Q
defined in Example[5.2.3

Proposition 8.1.6. Let £ € € (®FTQ x R¥) be a Lagrangian function. Then, the
following are equivalent:

(1) The Legendre map FL is a local diffeomorphism.
(2) The fibre Hessian of L

F2L: P TQ xR* — (&*T*Q x R*) ® (&*T*Q x RY),

is everywhere nondegenerate (the tensor product is of vector bundles over Q xR¥).
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(3) The couple (*TQ x Rk, %) is a k-contact manifold.

Proof. Taking natural coordinates (q*,v?,s%) in @*TQ x R*, it is clear that

o -Ye
F‘C(qz7vzousa) = (qza W,Sa) ) (81)
;g ; %L
2 o0 L0\ % aB .« af _
FL(¢", vy, s%) = (q Wi s ) , where W;." = (8@38@%) . (8.2)

Then, the conditions in the proposition mean that the matrix W = (WZO]‘B ) is every-
where nonsingular. U

Definition 8.1.7. Let £ € € (®*TQ x R¥) be a Lagrangian function. The La-
grangian L is said to be regular if the equivalent statements in Proposition [8.1.6]
hold. Otherwise, L is a singular Lagrangian. In particular, if FL is a global diffeo-
morphism, L is said to be a hyperregular Lagrangian.

Consider a regular k-contact Lagrangian system (®FTQ x R*, £). By Theorem
7.1.6, we have that the Reeb vector fields (Rz)o € X(®*TQ xR¥) for this Lagrangian
system are the unique solution to

The local expression of the Reeb vector fields (R.)q is

0 LD
(Rﬁ)a - 8? - W’yﬁ 85081)%', 6’[}25 ’

where W7; is inverse of the Hessian matrix, namely

%L

J = 6467
ov 3 5’1}7

8.2 k-contact Euler—Lagrange equations

As a consequence of the results and definitions of the previous section, we have
that every regular (resp. singular) k-contact Lagrangian system (©*TQ x R¥, L)
has associated the k-contact (resp. k-precontact) Hamiltonian system (©FTQ x
R* 0%, Ez). With this fact in mind, we can define

Definition 8.2.1. Consider a k-contact Lagrangian system (©*TQ xR¥, £). The k-
contact Fuler—Lagrange equations for a holonomic map ¢: R* — @*TQ xR*
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are

o (8.3)
i(Yo)ng = —Erov.

The k-contact Lagrangian equations for a k-vector field X = (X,) € X*(@FTQx
R*) are

{Z'W&)d???: = (dE; — (Lroy  Eo)ng) o,

{i(Xa)dn% = dB; — (Lirey. Eo)ng 54)

i(on)n% = _E£ .

A k-vector field X solution to the k-contact Lagrangian equations lb s called a
k-contact Lagrangian k-vector field.

The following proposition ensures the existence of solutions to equations

Proposition 8.2.2. Consider a regular k-contact Lagrangian system (B*TQxRF, L).
Then, the k-contact Lagrangian equations (8.4) admit solutions. They are not unique
if k> 1.

Proof. The proof of this result is the same as that of Proposition O

Taking natural coordinates (q*,v’,, s*) in @*TQ x R*, equations 1} read

o (9L N _ (oL ococy
ot> \ v, -\ 9q¢t 95> Ot ’

O(s*oy) _
T_£o¢

(8.5)

On the other hand, for a k-vector field X = (X,) € X*(@*TQ x R*) with local
expression

0

9 9 5 0
oq’

4 Xo ;
(%fg + (Xa) 0sP

Xo = (Xa)' 7= + (Xa)§

the k-contact Lagrangian equations (8.4) read

0*L

0= ((Xa) —vi) PRy (8.6)
9L

0= ((Xa) —vl) G0l (8.7)

- 85]-25;3 (Xa)! = 81225); Xa) + %%, (8.8)

0=L+ gﬁ (Xa)' =) — (Xa)*. (8.9)

o

If the Lagrangian L is regular, equations (8.7) lead to (X,)* = v?, which are the
SOPDE conditions for the k-vector field X. In this case, holds identically and
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and give

oL 0L 0’L 0*L ; oL oL
N 9Bt g 4 ; = 1
8ql + 8868’03( a) T aqjavél Va 31}%(91)&( O‘)ﬁ 0s% 81]}1 ) (8 0)
(Xo)*=L. (8.11)

Notice that, if the SOPDE X is integrable, equations (8.10) and (8.11) are the Euler—
Lagrange equations (8.5) for its integral maps. Hence, we have proved the following
proposition.

Proposition 8.2.3. If L € €=(®*TQ x R¥) is a regular Lagrangian, the corre-
sponding Lagrangian k-vector fields X (solutions to the k-contact Lagrangian equa-
tions ) are SOPDEs and if, in addition, X s integrable, its integral maps are
solutions to the k-contact Euler—Lagrange field equations 1}

This SOPDE X is called the Euler—Lagrange k-vector field associated to the
Lagrangian L.

Remark 8.2.4. Notice that, in the Lagrangian formalism of dissipative field theo-
ries, the second equation in (8.5 relates the variation of the coordinates s* to the
Lagrangian function L.

Remark 8.2.5. If the Lagrangian L is regular or hyperregular, the Legendre map F L
is a (local) diffeomorphism between (&*TQ x R¥ n%) and (&*T*Q x R¥,n®), where
FL*n™ = n¢. Moreover, there exists, at least locally, a function H € (D T*Q x
R*) such that H = E; o FL~!. Then, we have the k-contact Hamiltonian system
(@FT*Q x R¥, n®, H), for which FL.(R;)a = Ra. Hence, if T' is an Euler-Lagrange
k-vector field associated to the Lagrangian £ in ®*TQ x R*, we have that FL£,I' =
X is a k-contact Hamiltonian k-vector field associated to H in @&*T*Q x RF, and
conversely.

Remark 8.2.6. If the Lagrangian £ is not regular, equations and do not
have solutions everywhere in ®*TQ x R but, in the most favourable cases, they
do have solutions in a submanifold S < ®*TQ x R, which can be obtained by
applying an appropiate constraint algorithm. However, solutions to (8.4) need not to
be sOPDEs. In these cases, the SOPDE condition has to be imposed as an additional
condition. In the next section we will study this case in more detail.

Remark 8.2.7. In the particular case £k = 1, we obtain the contact Lagrangian
formalism for mechanical systems with dissipation [40} [68].

8.3 The singular case: k-precontact Lagrangian and
Hamiltonian systems

In the case of singular Lagrangians, most of the results and properties stated in the
above sections do not hold.
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In this case, for the Lagrangian formalism, the couple (&*TQ x R¥, n2) is not a
k-contact manifold, but a k-precontact one (see Remark|7.1.12| and hence the Reeb
vector fields are not uniquely defined. Nevertheless, the k-contact Euler-Lagrange
and Lagrangian equations and for the system (©FTQ x Rk,ng,Eﬁ) are
independent on the family of Reeb vector fields R, used (as it is proved in [40]
for the case k = 1). In any case, in the singular case, solutions to the k-contact
Lagrangian are not necessarily SOPDEs and this condition must be added to the k-
contact Lagrangian equation . Moreover, the field equations are not necessarily
consistent everywhere on @*T(Q x RF and we have to implement a suitable constraint
algorithm in order to find a submanifold S; < ©*TQ x R* (if it exists) where there
are SOPDE k-vector fields in @*TQ x R*, tangent to the submanifold S '+, which are
solutions to equations on Sy.

In order to state the Hamiltonian formalism for the singular case, we need to
assume some minimal regularity conditions. So, following [79], we define:

Definition 8.3.1. A singular Lagrangian L is said to be almost-regular if the
following conditions hold:

(1) The submanifold P = FL(G*TQ x R*) C @*T*Q x R* is closed.
(2) The Legendre map FL is a submersion onto its image P.

(3) For every p € P, the fibre FL 1 (p) C @*TQ x R* is a connected submanifold.

Then, if jp: P < &*T*Q x R¥ is the natural embedding and n% = j5n*QL(P),
we have that (P,n%) is a k-precontact manifold (see Remark|7.1.12| Moreover, the
Lagrangian energy E, is FL-projectable and there is a unique Hp € € *°(P) such
that E; = FLiHp, where FLy: ©F TQ x R¥ — P is defined by FL = jp o FLy.
Hence, on the submanifold P there is a Hamiltonian formalism associated to the

Lagrangian system, and the k-contact Hamilton-De Donde-Weyl equations for a
k-vector field Y = (Y,) € X*(P) are

(8.12)

As in the Lagrangian formalism, equations are not necessarily compatible
everywhere in P and the constraint algorithm should also be implemented to find
a submanifold Py < P (if possible) where there are k-vector fields tangent to Py
which are solutions to equations on Pr.

As a final remark, we will recall the guidelines of the constraint algorithm (see
Chapter@ for more details). Let (M,n*, H) be a k-precontact Hamiltonian system
and consider the k-contact Hamiltonian field equations .

e The first step consists in finding the compatibility conditions: Let M; be
the subset of M where a solution to (7.5) exists, namely,

My ={peM|3IY,...,Y3) € ®*T,M solution to (7.5)}.
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If My — M is a submanifold, there exists a section of the natural projection
7']}/[: @ TM — M defined on M; solution to l) but which may not be a
k-vector field on Mj.

e Then we apply the tangency condition: define a new subset My C M; as
My ={pe M |3(V1,...,Y}) € &"T,M; solution to (7.5)}.

Assuming that My — M; is a submanifold, then there exists a section of the
projection 71{41 . ®*TM, — M, defined on M, solution to equations 1) which
may not be a k-vector field on M.

Taking a basis of independent constraint functions {¢?} locally defining Mj,
the constraints defining M, are given by

(L. |y, =0

e Iterating this procedure, we can obtain a sequence of constraint submani-
folds
v My oo My s My — M.

If this procedure stabilizes, that is, there exists a natural number f € N such
that My = My and dim My > 0, we say that My is the final constraint
submanifold, where we can find solutions to equations . Notice that
the k-vector field solution may not be unique and, in general, they are not
integrable.

8.4 Symmetries of k-contact Lagrangian systems

In this section we are going to define and study different notions of symmetry of a
k-contact Lagrangian system. There are many kinds of symmetries, depending on
the structure that they preserve. The most important types of symmetries are those
transformations that preserve the solutions of the system and those preserving its
geometric structure (see [18][89][137]). We are going to follow the same guidelines
as in Section Hence, the following definitions and properties are adapted from
the ones stated for k-contact Hamiltonian systems to the case of a regular k-contact
Lagrangian system (©*TQ x R*, £). The ommited proofs are completely analogous
to the ones in Section

We will begin by introducing the notion of dynamical symmetries for k-contact
Lagrangian systems, namely, the transformations preserving the solutions of the sys-
tem.

Definition 8.4.1. Consider a regular k-contact Lagrangian system (©*TQ x R¥, L).

e A Lagrangian dynamical symmetry is a diffeomorphism ®: & TQ xRF —
®FTQ x R* such that, for every solution 1 to the k-contact Euler—Lagrange
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equations 1} P o1 is also a solution.

e An infinitesimal Lagrangian dynamical symmetry is a vector field Y €
X(P*TQ x R¥) such that its local flow is made of local Lagrangian dynamical
symmetries.

Lemma 8.4.2. Consider a diffeomorphism ® € Diff(©*TQ x R¥) and k-vector field
X = (X1,...,Xp) € X¥(@*TQ x R¥). If a map v is an integral section of X, then
® o 1) is an integral map of ®.X = (P X,). In particular, if X is integrable, so is
d,.X.

Proposition 8.4.3. Let ® ¢ Diff(®*TQ xRF) be a Lagrangian dynamical symmetry.
Then, for every integrable k-vector field X € XF(@FTQxRF) solution to the k-contact

Lagrangian equations lb ®,.X is also a solution to lb
Conversely, if ® € Diff(©*TQ x R¥) transforms every solution X to the k-contact

Lagrangian equations (8.4) into another solution, for every integral map v of X, we
have that ® o v is a solution to the k-contact Fuler—Lagrange equations 1}

The second kind of symmetries we will be dealing with are k-contact symme-
tries for Lagrangian systems, that is, the transformations preserving the k-contact
underlying structure.

Definition 8.4.4. Let (®FTQ x R*, L) be a reqular k-contact Lagrangian system.

e A Lagrangian k-contact symmetry is a diffeomorphism ® € Diff(©*TQ x
R*) such that
Q*n% = 77% s (I)*EL = EL.

o An infinitesimal Lagrangian k-contact symmetry is a vector field Y €
X(®FTQ x R*) whose local flow is a Lagrangian k-contact symmetry; namely,

gyn%:07 XY-ELIO-

Proposition 8.4.5. Every (infinitesimal) Lagrangian k-contact symmetry preserves
the Reeb vector fields, that is,

.(Re)a = (Re)a (or [V, (Re)a = 0).

As a consequence of this last result, we have the relation between these two types
of symmetries.

Proposition 8.4.6. (Infinitesimal) Lagrangian k-contact symmetries are (infinites-
imal) Lagrangian dynamical symmetries.

8.5 Dissipation laws

Definition 8.5.1. Consider a map ®*TQ x R¥ — R¥, F = (F',...,F¥). Then, F
18 said to satisfy
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e the dissipation law for sections if, for every map 1 solution to the k-contact
FEuler—Lagrange equations , the divergence of F o = (F®o): RF — RF,

defined as
O(F* o
div(F o) = —< 5 ¥) ,
satisfies that
div(F o) = — ((Lrp)Ee) F*) 01 (8.13)

e the dissipation law for k-vector fields if, for every k-vector field X = (X,)
solution to the k-contact Lagrangian equations |i we have that

L F* = —(Lir,y. Ec)F* . (8.14)

These two concepts are partially related by the following proposition.

Proposition 8.5.2. If F = (F') fulfills the dissipation law for sections|8.13| for
every integrable k-vector field X solution to the k-contact Lagrangian equations (8.4),

we have that equation 1} holds for X.
Conversely, if (8.14) holds for a k-vector fields X, then (8.13) holds for every
integral map ¢ of X.

Proposition 8.5.3. Let Y € X(®*TQ xR¥) be an infinitesimal Lagrangian dynami-
cal symmetry. Then, for every solution X = (X,) € X¥(@*TQ xR¥) to the k-contact
Lagrangian equations lb we have

i([Y, Xalnz =0, i([Y, Xo])dng = 0.
To end this section, we are going to state the Dissipation Theorem for k-contact
Lagrangian systems, which is the analogous of Theorem to Lagrangian systems.

Theorem 8.5.4 (Dissipation theorem for k-contact Lagrangian systems). Let Y €
X(®FTQ x R¥) be an infinitesimal Lagrangian dynamical symmetry. Then, F® =
—i(Y)n¢ satisfies the dissipation law for k-vector fields (8.14).

8.6 Symmetries of the Lagrangian function
Definition 8.6.1. Given a diffeomorphism ¢: Q — Q, the diffeomorphism
d = (TFp,Idgr): " TQ x R* — oFTQ x R¥,

where TFp: T Q — ®FTQ denotes the canonical lift of ¢ to ®*TQ, is called the
canonical lift of o to ®*TQ x RF. Any transformation ® of this type is called a
natural transformation &FTQ x RF.

Definition 8.6.2. Given a vector field Z € X(Q), we define its complete lift to
@FTQ x R* as the vector field Z¢ € X(®FTQ x R¥) whose local flow is the canonical
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lift of the local flow of Z to ®*TQ x RF. Any infinitesimal transformation of this
kind is said to be a natural infinitesimal transformation of ®*TQ x R*.

Let (®*TQ x R¥, L) be a regular k-contact Lagrangian system. It is well known
that the canonical k-tangent structure (J¢) and the Liouville vector field A in &*TQ
are invariant under the action of canonical lifts of diffomorphisms and vector fields
from @Q to ®*TQ. Then, it is easy to prove that the canonical structures (J) and
A and the Reeb vector fields (R.), in @*TQ x R* are also preserved by canonical
lifts of diffeomorphisms and vector fields from Q to &*TQ x R*.

Hence, we have the following relation between Lagrangian-preserving natural
transformations and Lagrangian k-contact symmetries.

Proposition 8.6.3. If ® € Diff(§*TQ x R¥) (resp. Y € X(*TQ x R¥)) is a
canonical lift to ®*TQ x R¥ of a diffeomorphism ¢ € Diff(Q) (resp. of a vector
field Z € X(Q)) that leaves the Lagrangian L invariant, then it is an (infinitesimal)
Lagrangian k-contact symmetry, that is,

O*nz =0y, ®*E;=E (resp. LBt =0, yEr = 0).

Hence, by Proposition|8.4.6} it is also an (infinitesimal) Lagrangian dynamical sym-
metry.

As a direct consequence of the above result, we have the following momentum
dissipation theorem.
oL

Proposition 8.6.4. If — =0, then —— s an infinitesimal contact symmetry and

dqt q

0
its associated dissipation law is giwen by the “momenta” ——. That is, for every
Ua

k-vector field X = (X,) solution to the k-contact Lagrangian equations 1} we
have

oL oL oL oL
Xea (8%) (Lre)a Br) vt 0s™ Ovl,
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Chapter 9

Skinner—Rusk formalism for k-
contact field theories

In this chapter we develop the Skinner-Rusk formalism [105| [143] for k-contact
systems. This formalism is particularly interesting when dealing with singular La-
grangians. One of the reasons for this is that it includes the second-order condition
even if the Lagrangian function is singular, in contrast with the Lagrangian formalism,
where the holonomy condition must be imposed as an additional requirement. Over
the years, this formalism developed by R. Skinner and R. Rusk has been generalized
to many different types of systems (nonautonomous, vakonomic and holonomic, con-
trol, first-order field theories and higher order mechanical systems and field theories)
[91[101 [19][201 [32][33] [44] [601 [71] [84} [87, [129][130] [131] [133} [134][152].

In Chapter |3| we already developed this unified formalism in the case of contact
systems (see [36] for more details). In order to generalize the Skinner-Rusk for
contact systems to k-contact systems, we will follow the work done in [133] and
[134], where the authors generalized the Skinner-Rusk formalism to k-symplectic
and k-cosymplectic field theories.

In Section we present the extended Pontryagin bundle and its canonical ge-
ometric structures: the coupling function, the canonical 1-forms, the canonical 2-
forms and the contact 1-forms. We also define the notion of SOPDE in the extended
Pontryagin bundle and state the existence of Reeb vector fields. Finally, we define
the Hamiltonian function associated to a Lagrangian function. With this geometric
framework, in Section[9.2] we are able to state the Lagrangian—Hamiltonian problem
and apply the constraint algorithm described in Section [8.3]to solve it. To end this
chapter, in Sectionwe show that we can recover both the Lagrangian and Hamil-
tonian formalisms from the Skinner—Rusk formalism developed in this chapter. This
chapter is based in [93].

123
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9.1 The extended Pontryagin bundle: k-precontact
canonical structure

Consider a k-contact field theory with configuration manifold Q x R* with dim Q = n
and coordinates (¢, s*). Consider the bundles ©*TQ x R* and ®*T*Q x R* endowed
with canonical coordinates (¢°, v?,, s*) and (¢°, p%, s*) respectively. In these bundles,
we have the following natural projections

m: ®FTQ x R - &*FTQ T0: & TQ x R¥ — Q x R¥,

T @F T*Q x RF — o*FT*Q , mo: OF T*Q x RF - Q x RF .
Denoting by ds® the volume forms of the different copies of R and its pull-backs to all
the manifolds by the corresponding projections, we can consider the canonical forms
6 € QY(T*Q) and w € Q?(T*Q) with local expressions # = p;dq¢* and w = dg* A dp;
in T*Q. We will denote by #* and w® their pull-backs to ®*T*@Q and &*T*Q x R,
which have coordinate expressions

0% =pidg’ ., w*=dq' Adp.

Definition 9.1.1. The extended Pontryagin bundle or extended unified bun-
dle of a manifold Q is the bundle W = ®*TQ XQ ®FT*Q x R¥, and it is equipped
with the natural projections
p1: W — @*TQ x R* | p2: W — @FT*Q x R¥ |
po: W— Q x RF | s W =R
The following diagram summarizes the projections described above:

W = aFTQ xg &FT*Q x R*

0
SFTQ x RF FL » FT*Q x RF
x} 3 {/ %
™1 Q x R¥ ™
EBkTQ 73 @kT*Q w
R T
T*Q

The extended Pontryagin bundle of a manifold @ endowed with coordinates (g°)
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has natural coordinates (¢*, v}, p§, s%).

Definition 9.1.2. A map ¥: R* — W is said to be holonomic if p; o : RF —
SFTQ x R* is holonomic (see Definition[8.1.8). A k-vector field Z € XF(W) is a
second-order partial differential equation in VY (SOPDE for short) if its integral
sections are holonomic in W.

A holonomic map 1: R¥ — W has local expression

00 = (V0. G .02 0.0°0)

while a SOPDE k-vector field Z = (Zy, ..., Z;) € X*(W) has local expression

.0 .0 0 0
Zo =0t L (22 (2. -L (2.2
“ vaa(]Z (Za)j (Za); 3pf (Za) OsP

dug
The extended Pontryagin bundle has the following canonical structures:

Definition 9.1.3. Let W = @*TQ XQ BFT*Q x R* be the extended Pontryagin
bundle of a manifold Q.

e The coupling function in W is the map C: W — R defined as

C(vigs - - - ,vkq,ﬁé, . ,19(11,30‘) = g (Vag) -

e The canonical 1-forms are the forms ©% = p4 0% € QY (W).

e The canonical 2-forms are Q% = pi w* = —dO~ € Q2(W).

e The contact 1-forms are the forms n® = ds® — 0% € QY (W). Notice that
dn® = Q.

Taking canonical coordinates (¢*, v%, p, s*) in W, these natural structures have
local expressions

0% =pidg', Q*=d¢' AdpY, n*=ds*—pidq".

The family (W, n®) is a k-precontact manifold.
Proposition 9.1.4. There exists a family of Reeb vector fields Rq,..., Ry € X(W)

satisfying the conditions
i(Re)dn? =0,
i(Ra)n” =63 .

Remark 9.1.5. Notice that, as the manifold W is k-precontact, the family (R,)
of Reeb vector fields is not unique. In fact, when written in natural coordinates,
coordinates, R, are

) .0
Ra = 6?4‘(7304)58—%,
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where (Ra)} € €°°(W) are arbitrary functions in W.

Definition 9.1.6. Consider a Lagrangian function L: ®F TQ x R*¥ — R and let
L=piL: W — R. We define the Hamiltonian function associated to L by

H=C—L=p, — L(¢7,v),5%) € €°W). (9.1)

Remark 9.1.7. As the manifold W along with the contact 1-forms n® is a k-
precontact manifold, we have that W, n%, H) is a k-precontact Hamiltonian system.

9.2 k-contact dynamical equations

Definition 9.2.1. Consider the k-precontact Hamiltonian system (W,n,H). Its

associated Lagrangian—Hamiltonian problem consists in finding the integral sec-

tions ¢: R¥ — W of a k-vector field Z = (Zy,. .., Zy) € X*(W) such that

(Zo)dn® = dH — (LR H)n™,

i(Zo)a (Lr.H)n 03
W(Za)n™ =—H,

or, what is equivalent,

Lz =—(Lr, H)n™,
W(Za)n™ =—H.

Given that (W, n®, H) is a k-precontact Hamiltonian system, equations 1' are
not consistent everywhere in V. In this case, we need to use the constraint algorithm
described in Section[8.3]in order to find (when possible) a final constraint submanifold

of W where the existence of consistent solutions to equations (9.2) is ensured.

Taking canonical coordinates (qi,vg,pf‘,sa) in W, the local expression of a k-
vector field Z = (Z1,...,Zx) in W is

0 0

; d d
a_qi + (Za)ﬁ A B

Zo = (Zs)' +(Za)! —5 +(Za) 55 -

v op;

Hence, we have

and,

. oL 9L .. oL
dH = v" dp? ¢ — | dvt — =—dg* — —ds”
H Vodp; + <pz av&> Vo 8(]1 q Os™ 5
oL )
(Ra(H))n™ = —5—(ds* — pi*dq").

Sa
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Taking all this into account, the second equation (9.2) gives
(Za)® = ((Za)' = va) ' + Lop, (9.3)

while the first equation (9.2)) gives

(Zy)" =0, (coefficients in dpf') , (9.4)
o« 0L OL : . i

Py = 0.~ Dol o p1 (coefficients in dv},), (9.5)
oL oL : N

(Zo)3 = 90 o p1+p§ (@ o pl) (coefficients in dq*) . (9.6)

From these equations we have that

e Conditions (9.5) and (9.4) imply that (Z,)* = Lo p; .

e Equations are the SOPDE conditions for the k-vector field Z. Hence,
as usual, we obtain straightforwardly the SOPDE condition from the Skinner—
Rusk formalism [143]. This is an important difference with the Lagrangian
formalism, where we need to impose the second order condition in the case of
singular Lagrangians.

e The algebraic equations (9.5) are consistency conditions which define a first
constraint submanifold YW, — W. In fact, W, is essentially the graph of FL:
Wi = {(vg, FL(vg)) EW | vg € B*TQ x R*} .
Notice that this means that the Skinner—Rusk formalism includes the definition
of the Legendre map as a consequence of the constraint algorithm.

With all this in mind, if a k-vector field Z = (Z1, ..., Zx) is a solution to equations
(9.2) then, Z, has coordinate expression

.0 .0 0
Zo =0 —— + (20— + (Za)’ —— + (Za)’ =
Vo aqz + ( )5 (31)’5 + ( )1, 8])5 + ( ) 88’8 (On Wl)7
where we have the restrictions
(Zoé)a = ‘C7
B oL o OL

(Za); o + i Hear

Remark 9.2.2. It is important to point out that the k-vector field Z does not depend
on the arbitrary functions (Ra)%, that is, on the family of Reeb vector fields R, of
W chosen.

Now the constraint algorithm continues by imposing the tangency of Z to the
first constraint submanifold W;. We denote by Ef the constraint functions defining
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W1>
P Ys

-
8115

Imposing the conditions X, ({f ) =0 we get

oL

— By _ B

0= Xa(e)) = X0 - )
2 2 2

- - —— — .
I 8qlavé ¢ 81}%81}% o 85781)%

(Zo)  (onWy). (9.7)

Remark 9.2.3. As we are imposing the tangency of the solution to the submanifold
Wi, sometimes it may be interesting also to demand the tangency of the Reeb vector
fields to the first constraint submanifold W;. The Reeb vector fields R, are tangent
to Wi if, and only if,

0L Ry 0%L B

4 (Ra)y—— =
s>, ? v 0vy

9

which are conditions for the functions (Ra)%. (It is important to remark that this
system of equations might be incompatible).

Notice that, in general, equations (9.2) do not have a unique solution. In fact,
the solutions to (9.2) have the form

(Z1,...,Z) + (ker Q* Nkern?) ,
where Z = (Zy,. .., Z}) is a particular solution, Qf is the morphism given by

O ofF TW — T*W
(Z1,..., Zy) — Q¥ (Z4,..., Zy) = i(Zy)dn®.

and 7? is defined as
(21, Zh) = 0 (Za) .-

At this point we have to distinguish two cases:

e If £ is a regular Lagrangian, equations (9.7) allow us to compute the functions
(Za)fy. Notice that, although we can ensure the existence of solutions, we do
not have uniqueness of solutions to equations (9.2).

e [f the Lagrangian £ is singular, equations establish some relations among
the functions ij. In addition, some new constraints may appear defining a
new constraint submanifold W, <— W; <— W. We must now implement the
constraint algorithm described in Section in order to obtain a constraint
submanifold (if it exists) where we can assure the existence of solutions tangent
to this submanifold.
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9.3 Recovering the Lagrangian and the Hamilto-
nian formalisms

Consider the restriction of the projections p;: W — @*TQ xRF, py: W — @FT*Q x
R* restricted to Wy C W,

Pl Wy = &FTQ xRY | pd: Wy — @FT*Q x R

Since W is the graph of the Legendre transformation FL, it is clear that the pro-
jection pY is really a diffeomorphism.

Consider an integrable k-vector field Z = (Z1, ..., Zi) solution to equations .
Every integral section ¢: R¥ — W, given by (t) = (¢i(t), ¥ (t),¥&(t), v (t)), is of
the form

V= (YL, ¥n),

with ¢, = p1 otp: R¥ — @FTQ x R*, and if v takes values in W, we also have that
Yy =FLoYr:

Y (t) = (p2 o ¥)(t)
= (V' (), Y5 (), ¥ (1))

= (#0010
= (FLotr)(1),

where we have used . Notice that in this way, we can always project from
the Skinner—-Rusk formalism onto the Lagrangian or the Hamiltonian formalisms by
restricting to the first or second factor of the extended Pontryagin bundle W. In par-
ticular, relations define the image of the Legendre transformation FL(®FTQ x
R*) € @*T*@Q xRF. These relations are called primary Hamiltonian constraints.

The following theorem establishes how we can recover the Euler—Lagrange equa-
tions lb from the Skinner—Rusk formalism.

Theorem 9.3.1. Consider an integrable k-vector field Z = (Zy,...,Zk) in W, so-
lution to equations . Let ¥: R — W, C W be an integral section of Z given
by ¥ = (Yr,v¥m), with vy = FLopr. Then, ¥y is the first prolongation of the
projected section ¢ = 19 0 pJ o ): RF — @Q x R*, and ¢ is a solution to the k-contact
FEuler—Lagrange equations .

Proof. Consider an integral section 1 (t) = (¢(t),¥% (t), ¥&(t), v*(t)) of the k-vector
field Z. Then, we have that

ol a

oP 0
o) off

+ 2 2
957 |y 1)

(9.8)

LN oy .\ 0

Zu00) = G ) 5+ ® 5z

¥(t) ¥(t)
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Now, from , , and we get

() = (Lo p) (1) = LW (1) 9.9
U0 =) = (5 0m ) (W0) = peu(), (0.10)
UL (1) = (1) = (Z)(W(H)) = 9 (1), (0.11)

v} 8

D) = (Z W) (9.12)

Using the conditions above and equation (9.6)), we obtain

W01 = (32 o0 ) 0le) +5(60) (o o1 ) (010D,

and hence,

i g L) = S (0) + 5 () 5 (1),

- Ot
_ i Y o
¢L_ (w7ata7w ) .
It is clear that 1/, is the first prolongation of the map ¢ = 1790 p; o: RF — Q x R¥
given by ¢ = (¢, ¢%), which is a solution to the k-contact Euler-Lagrange field

equations (8.5), which is the expression in coordinates of equation (8.3). U

The following theorem shows how to recover the k-contact Hamilton field equa-
tions (7.4) from the Skinner—Rusk formalism.

Theorem 9.3.2. Let Z = (Zy,...,Zk) be an integrable k-vector field in VW solution
to equations and : R¥ — W, C W be an integral section of Z given by
Y = (Y, Yy), with Yy = FLo . If the Lagrangian L is reqular, 1y is a solution
to the k-contact Hamilton field equations , where the Hamiltonian function H
18 given by Er, = H o FL.

Proof. We have that L is a regular Lagrangian and hence, FL is a local diffeo-
morphism. Then, for every point p € ©*TQ x RF, there exists an open subset
U C &*TQ x R* containing the point p such that the restriction FL|,,: U — FL(U)
is a diffeomorphism. Using this, we can define a function H = Erly o (FLIp) .
From now on, we will consider that the maps F and FL are restricted to the open
set U. Now, using that F, = Ho FL, it is clear that

FL=——. (9.13)
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We consider now the subset V = ;! (U) C R¥ and restrict 1 to V, so we have

¢|V: VcRF — U ®rr FLU)
t = (Wr(t),vu(t) = (Wr(t),(FLoYL)(t))

Taking into account , , and ,

OH K

: m) (10) = vi ) = 2ot

N
=R

~Gaitun) == (G oo ) (060

— it (001 ) (000 - (Za)(w(0)

oL o 5’Ec ops

ZP?@(QPL@)) ~ B (t) = PPy —(Wr(t) - 5o (t)
_ O(HoFL) D Of D
= —p; T( L(t) - 50 (t) = —pf s = (V) - Dre (),
and then ‘ _
Sl = 5 (w(0),

e . (oH = 0H
Gpa (D) =~ (W +i 55 ) (Yu(t))-

Finally, considering equation , we deduce that

1) = Lown(t) = 2ty Hown = (pgf _ff) (Wu ().

(2

In conclusion, we have that ¥y is a solution of the k-contact Hamilton field equations

(7.4) on V. O

We have seen that we can recover the Euler-Lagrange field equations and Hamil-
ton field equations from the Skinner—Rusk formalism. Conversely, we have the fol-
lowing result:

Theorem 9.3.3. Let L € € (®FTQ x R¥) be a regular Lagrangian function and
consider a k-vector field X = (X1,...,Xg) in ®FTQ x R*, solution to the k-contact
Lagrangian equations . Then, the k-vector field Z = (Z) in W defined as Z,, =
(Idgrrgoxrr X FL)«(Xa) is a solution to equations . Moreover, if g : RF —
®FTQ x R¥ is an integral section of X, ¢ = (g, FLovr): RF — W is an integral
section of 7.
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Proof. Consider a regular Lagrangian function L € € (@FTQ x R¥) and let X =
(X1,...,Xx) be a k-vector field in @*TQ x R¥ solution to equations (8.4). Hence,
X, is written in coordinates as

.0 .0 0
i ) . B
Xog =0 — + (Xa)ﬁ 81)% + (Xa) R

«a 8ql

where the functions (X,)? and (Xa)% satisfy the conditions

(X)) =1L, (9.14)
oL 0*L 0’L 0%L ; oL OL

90 9T (x,)P J X )

aq’ + 8556%( ) (Xa)

— _ = —— 9.15
3q38vgva 3%3% BT Hsa ovl, ( )

Now, using the coordinate expression (8.1) of the Legendre map FL and taking into
account that Z, = (Idgrrgxrr X FL)«(Xq), we have

i 0 i 0
aﬁ_ﬁ]i—i_(Xa)ﬁavé

- 0L 92 92L o P
J J B 0
+ <va8qjamy +(X”‘)ﬁavg;avg + (Xa) 385(%}.) o7 +(Xa)? 55 (9.16)

Loy =

From (9.14), (9.15) and (9.16), it is clear that Z = (Z,) fulfills cond1t1ons , .,

and 1.» and hence, the k-vector field Z is a solution of tangent to Wi.
It is also clear from the definition of integral section that 1/1 (Y, FLor) is

an integral section of Z. |

Remark 9.3.4. In the case of singular Lagrangians, the results in Theorems|9.3.1
19.3.2] and |9.3.3|hold on the corresponding final constraint submanifolds of the La-

grangian, Hamiltonian and Skinner-Rusk formalisms.

@kTQ % Rk FL N @kT*Q % Rk
\ ]\]1

> Py




Chapter 10

Examples in field theory

In this last chapter we study several examples of k-contact field theories. In each
of them we analyze different aspects of the theory depending on their interest and
relevance in each example.

The first example to be studied is the damped vibrating string. For
this example we give a complete description of the Lagrangian, Hamiltonian and
Skinner-Rusk formalisms, as well as a brief analysis of some of its symmetries.

The second example consists of two coupled vibrating strings with
damping. We develop its Hamiltonian formulation and find an infinitesimal k-
contact symmetry of the system and its associated dissipation law.

In Examplewe deal with the well-known Burgers’ equation [11][139|. This
equation is closely related to the heat equation. We show that, although the heat
equation is not variational, we can find a variational formulation of it by adding an
additional dependent variable. Then, we see that Burgers’ equation can be seen as a
contactification of the heat equation.

The problem of finding a Lagrangian function that yields a certain partial differ-
ential equation is known as the inverse problem. Example[10.4] provides a method
of obtaining k-contact Lagrangians whose Euler—Lagrange equations coincide with
a certain type of partial differential equations. We also apply this method to find
a Lagrangian for a vibrating membrane with damping. The Lagrangian obtained is
very similar to the one used in the first example for the damped vibrating string. In
addition, a k-contact Lagrangian symmetry for the damped vibrating membrane is
found and, from it, we deduce its associated dissipation law.

We have already seen that when dealing with k-contact Lagrangian functions,
we usually get terms linear in the velocities in the Euler-Lagrange equations that
produce a dissipation of the energy. However, it is possible to obtain similar terms
when dealing with k-symplectic Lagrangians. In this case, the terms have a specific
form, arising from the coefficients of a closed 2-form, and do not dissipate the energy.
In this fifth example we study an academic example consisting on a noncon-
ducting vibrating string with charge, where we have both terms. This brings
up the differences between the additional terms. We also study a symmetry of this
system.

The sixth example consists in contactifying the well-known Klein—(Gordon

133
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equation [103]. We see that, with the appropiate dissipation term in the Klein—
Gordon Lagrangian, we can obtain the telegrapher’s equation [98][139]. We also
develop the Skinner—Rusk formalism for this system.

The seventh and last example of k-contact field theories consists in contact-
ifying the well-known Maxwell’s equations of electromagnetism [104}[127]. We do
this by adding an additional term to the Maxwell’s Lagrangian. We give a complete
study of the Skinner—Rusk formalism of this system and obtain a set of equations
quite similar to Maxwell’s equations but with additional terms. It is well known
that one can derive the equations of electromagnetic waves from Maxwell’s equa-
tions. In our case, we see that with the appropiate dissipative term in the Maxwell’s
Lagrangian, we can derive an equation that represents damped electromagnetic
waves.

10.1 The damped vibrating string

It is well known that a vibrating string can be described using the Lagrangian for-
malism. Consider the coordinates (t,x) for the time and the space. Denote by u the
separation of a point in the string from its equilibrium point, and hence u; and u,
will denote the derivative of u with respect to the two independent variables. The
Lagrangian function for this system is

1 1,

L(u, ug, ug) = —pu? — =Tu

10.1
2 2 xT ) ( )

where p is the linear mass density of the string and 7 is the tension of the string. We
will assume that these quantities are constant. the Euler-Lagrange equation for this
Lagrangian density is

Uiy = gy

2:

-
where ¢ —, which is the 1-dimensional wave equation.
p

Lagrangian formalism

In order to model a vibrating string with linear damping, we can modify the La-
grangian function so that it becomes a k-contact Lagrangian 67|. The new
Lagrangian function £ will be defined in the phase bundle ®2TQ x R?, where Q = R,
equipped with coordinates (u;uy, u,; st, s%):

L(u, ug, Uy, 85, 8%) = L — st = —pu? — —7u? —s’. (10.2)

The canonical structures of the bundle @?>TR x R? have coordinates expressions

0 0 0
t: _— d I: d = — T~
J B, Kdu, J w Qdu, A=u B, +u D
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The Lagrangian energy associated to the Lagrangian (10.2)) is

1 1
Er=AL)—-L= §p“t2 - §Tui + s,

the differentials of £ and E, are

dL = puyduy — Tugdu, — ydst,
dE; = pugduy — Tudu, + Vdst ,

the Cartan 1-forms are

0. = t(Jlt) odL = pudu,
0% = "(J*) o dL = —Tugdu,

and the contact 1-forms are

772 =ds’ — purdu

Ny = ds* + Tuydu.
The differentials of the contact 1-forms are

dnt = pdu A duy,
dny = —7du A du, .

With all these, we can compute the Reeb vector fields:

0 0

(Re)e = Dt (Re)w = R

Consider now a 2-vector field X = (X7, X3) € X(®*TR x R?) with local expression

0 0 0 0 0
Xy = it Py P gt L o
1=h ou + e Ouy t e Ouy, o Ost 9 0s®’
., 0 0 0 , 0 . 0
X2_f2%+F2t8_m+F2m8_% —1-92@4-926836.

We have that

i(X1)dn} = pfidus — pFredu,

i(X2)dnz = —7 foduy + 7F,du,
(Lire) Eont = vds' —ypuydu,
(ZLre). Ec)nz =0.
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Hence, the first equation in (8.4) reads
pfrduy — pFredu — 7 fodu, + 7F5.du = pugduy — Tuzduy, + ypurdu,

which yields the conditions

—p Fi + 7F5, = ypuy (coefficients in du), (10.3)
fi=1w (coefficients in duy), (10.4)

fo=uy (coefficients in duy) . (10.5)

(10.6)

Notice that the equations 1i and 1) above are the SOPDE conditions for the
2-vector field X. On the other hand, the second equation in l} gives the condition

L1 1
i+ g5 = soul - srud sl = L.

With all this, the 2-vector field X has local expression

0 T 0 0 o, L 0
X1 = Uty + (;FQz _'VUt) oy +F1m—aum + (£ —93) Dst + 9 Ds®
0 0 0 , 0 . 0
XQ—U;B%—FF%a—W-FFQxa—% +92%+92ﬁa

and the functions Fy,, For, Fay, g7, g4, g% remain undetermined. Notice that equation

leads to

Upt — gy +yur =0, (10.7)

which is the equation for a vibrating string with damping.

Symmetries

We can see that the vector field Y = 0/0u is an infinitesimal Lagrangian k-contact
symmetry because 9L/0u = 0 (see Proposition|8.6.4). Then, by Theorem the
map F = (Ft, F®): M — R? given by

N YA A
Ft:—2<%)n2=put, F I—Z(%)%:—T%

satisfies the dissipation law for k-vector fields (8.14).

Hamiltonian formalism

The Legendre map associated to the Lagrangian (10.2) FL: &2 TR x R? — ©?T*R x
R? is given by
fﬁ(“’ ut? ux? St7 Sx) = (u7pt7px7 St7 Sx) 9
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where p! = puy and p* = —7u,. Hence, the contact forms n’,n* of ®>T*R x R? are
n' = ds' — ptdu,
n* =ds* — p*du,

and the Hamiltonian function is

1
=3,

1

(p")? — ;(p””)2 + st

We have that
dnt =dundp’, dn® =duAdp®,
and . .
dH = p—dpt — p—dpm + ~vdst.
p T
The Reeb vector fields are
0 0

Ri=— Ry=——.
T st 0s®

Consider now a 2-vector field Y = (Y1,Ys) € X2(®?*TR* x R?) with local expression

9,0 L0 ,0 0
Y1—f1%+G1a_pt+G1apm+9183t+91&sx,

e A S
opt 2 op® J2gst T 9250 -

0
Yo = fo—o t
2= f2 90 + Gy
We have that

i(Y1)dn' +i(Ya)dn® = frdp' — Gidu + fodp® — G5du,

t x
dH — (Zr, H)i' — (Lr, H)n" = %dpt — S dp” 4 p'du.

Hence, the first equation in 1D gives the conditions

Gt 4+ G5 = —pt (coefficients in du), (10.8)
t

f1= % (coefficients in dp'), (10.9)

fo = _p? (coefficients in dp®) . (10.10)

On the other hand, as i(Y7)n' +i(Y2)n® = gt —pt f1 + g% — p* f2, the second equation
in (7.5) gives

9 +95 = —p(p’f)2 —— ") s,



138 Xavier Rivas — Geometrical aspects of contact systems and field theories

Hence, the 2-vector field Y reads

t

p T t 8 xa
A A 9
L o (G5 +7p)8pt +G18px
i t2_i T\2 t_ x i xi
+(2p(p) 27(p) v —gr | g tigg
Y2:—p Q—th 0 0 0 . 0

t
Tou T gy T g T g T

and the functions GY, G, G%, g7, ¢4, g5 remain undetermined. Given a map ¥(t) =
(u(t),p*(t), p"(t), s*(t), s"(t)), the Hamilton-De Donder-Weyl equations (7.3) for it
read

(Ou 1,
a:_pa
p
8u_ 1,
ox Tp’
opt  Op”® .
ot o P
dst  9s™ 1, ,, 1, .., .
iR —2—p(p) — 5 (P)7 st

Using the first and second equations above into the third equation, we obtain
PUst — TUgze + Ypur =0,

which is the equation of the damped vibrating string 1)

Symmetries

It is easy to see that, as in the Lagrangian formalism, the vector field 9/0u is a
k-contact symmetry. It induces the map

0 0
F=(—3= t s 7 T ) t T )
< Z(m)”’ Z(au)" ) (" p")
This map F satisfies the dissipation law for k-vector fields (7.12):
Lyip' + Lryp” = —(Lr,H)p' — (LR, H)p" = —29p".

Along a solution (Y7,Y3), this law is p! + p% = —2vp'.

Skinner—Rusk formalism

Consider the extended Pontryagin bundle

W = &?TR xg &>T*R x R?
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equipped with natural coordinates (u,us,us, pt,p®, s',s%). In this bundle, the cou-
pling function is
C = p uy +pluy,

and we have the canonical forms

' =p'du , Q'=-d0*=dundp’,
O =p*du , O =-dO!'=dundp®,

and the canonical contact 1-forms
t __ t t x __ x T
n' =ds" —p'du, n*=ds"—pidu.

We can take the vector fields
0 0

Ri=gg Re=ga

as Reeb vector fields. Given the Lagrangian function £: ©2 TR x R? — R defined
in (10.2)), we can build the Hamiltonian function H = C — £, which has coordinate

expression

1 1
H = plus + pu, — §puf + 571@ + st

To solve the Lagrangian—Hamiltonian problem for the 2-precontact Hamiltonian sys-
tem (W, n%, H) means to find a 2-vector field Z = (7, Z5) in W satisfying equations
(9.2). For our Hamiltonian function H, we have

dH — Ra(H)n® = wpdp’ + u,dp® + (p* — pu)duy + (p° + Tuy)dug, +ypdu.

Let Z = (Z,) be a 2-vector field with local expression

0 0 0 0 0 0
_ F. t - x t_ - x .
Ouy t Fas Ouy +Ga opt +Ga op~® * Ja Ost * Ja Os*

0
Za:fa%+Fat

Now,
i(Zo)dn®™ = frdp' + fodp® — (GY + G2)du,

and hence, the first equation in (9.2) gives the conditions

G+ G5 = —p' coefficients in du),

(
P = puy (coefficients in duy) ,
p¥ = —Tuy, (coefficients in du,),
f1=u (coefficients in dp?),
(

Jo = uy coefficients in dp®) .
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Notice that combining the first three conditions we recover the damped wave equation
(10.7). Furthermore, the last two equations are the holonomy conditions. The second
equation in (9.2)) gives the condition

1 1
i+ g5 = soul — Srud sl = L.

In addition, we have obtained the constraints
glzpt—putzo ) 52:pz+7-ux:07

which define the submanifold W; < W. Imposing the tangency of the 2-vector field
Z to the submanifold W; we get the conditions

0=21(&) =G —pFy , 0=25(&) =Gl — pFa,
0:Z1(€2):GT+TF136 y OZZQ(fg):GgQE—{-TFQI,
which determine partially some of the arbitrary functions and no new constraints

appear, so the constraint algorithm finishes with the submanifold Wy = W, giving
the solutions Z = (Z1, Z3) with

ou p ouy T Ouy
_(fypt—’—GQ)at—i_Glax—l_(ﬁ 92)@4—91%7
o G 0 z 9 0 0 0
o — I 2 Y M2 t_ - x t_ 7 x
2 uI@u—i_ p Ouy T 8um+G28pt+G18 x+9285t+928$’

where G¥,G%, G%, g%, g%, g% are arbitrary functions.

It is important to point out that we can project on each factor of the product
manifold W = @2TR xr ©2T*R x R? with the projections p; and py to recover the
Lagrangian and Hamiltonian formalisms. In the Lagrangian formalism we have the
holonomic 2-vector field X = (X7, X5) given by

0 T 0 0 0 0
X1 :ut% + (;Fh —’)/Ut> — +Fipg— + (ﬁ—gg)@ +9f@»

ouy Ouy
0 0 0 0 0
Xy = thy— + Fyye 4 Fpp—e 4 gt 2 4 g2
2 ux3u+ 2t8ut+ 2x8ux+gzast+92 0st’

where Fi,, For, Fou, g7, g5, g% are arbitrary functions. On the other side, in the Hamil-
tonian formalism we have the Hamiltonian 2-vector field Y = (Y7, Y3) given by

t t\2 T2
y, =22 _ = _ — st — _ =
! p ou (pr +G2) opt + G Op~® + 2p 27 T892 ) Bt iz 0s®’
Y22_19_£+Gt 0 0 0 0

o G:c_ t_~ x_a
T Ou 2 opt + Lope +928st 92 0s®
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where G7,G%, G, g7, g5, g5 are arbitrary functions.

10.2 Two coupled vibrating strings with damping

Consider a system of two coupled strings with damping. The configuration manifold
of the system is @Q = R? equipped with coordinates (¢!, ¢?), where each coordinate
represent the displacement of each string. The Hamiltonian phase bundle of this sys-
tem is M = ®&2T*R?xR? endowed with natural coordinates (¢!, ¢%, p%, pb, p¥, p3, ', s%).
The 1-forms

i’ =ds' —pidg’ —pydg®,
= ds” —pidg" — p3dg”

define a 2-contact structure on M. The Reeb vector fields are Ry = 0/9s', R, =
0/0s®. Consider now the Hamiltonian function

H=_((p))*+ @) + (01)* + (95)%) + C(2) + 75",

DN | —

where C' is a function that represents a coupling of the two strings, and we assume
that depends only on z = 1/(q')? + (¢?)?. Consider a 2-vector field X = (X1, Xs) €
X2%(M) with local expression

a (9 (3 d (3 (3 (9
1 2 T r

0 0 0 3 0 0 0 . 0
Xzzlea—ql‘i‘fga_qQ‘i‘Gzla 7 +G228 +G218 x+G228_p323+9§@+92

We have that

1 2
dH = pidp| + phdph + p{dp} + pidps + C'(z);dq1 + C'(z);dq2 + yds,
(Lr,H)n' + (LR, H)n" = yds' —ypidg" — yphdg®.

Hence, the first equation in (7.5) yield the conditions

"
-G, — G5, =C'(z ) +ph (coefficients in dq'),

2
~Gly — G =C'(2 ) + vph coefficients in dg?

9

( )
fl =0pi (coefficients in dp}),
ft=nh (coefficients in dpb),
fo =i (coefficients in dp}),

( )

f3=ns coefficients in dpj
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On the other hand, the second equation in (7.5) gives

g +95 == ((0D)*+ ) + (1) + (95)%) — C(2) —7s".

N —

Hence, the 2-vector field X solution to (7.5) has local expression

9 9 g 9
X = pﬁﬁertzﬁ*‘(— —C'(z )?—7291)8_171
7 P 0 P
+ (_ - C'(z )? —7]92) o0t Wl +G118 +G128_p§
(L e 0 ) — C) st — g3 ) g
2 1 2 1 2 2 8St 1asx7

L 0 0 0 0 0 0 0 0
X22p1£+p282+G216t+G228 +G213x+G228 "‘92@"" D5t ’

where GY,, GY5, G, Gb,, G5, G55, g%, g5, g5 are arbitrary functions. The Hamilton-
De Donder-Weyl equations (7.4) for a map ¢(t,z) = (¢" (¢, z), p¢(t, ), s*(t, x)) are

raql :

o0

gt .

o~

0q> "

ot =Da,

0q> .

O =DP2,

opi | opf N

E_‘_ O -C (Z)__plfY?

Opy op3 / q2 t

at =+ aa: -C (Z> — P27,

ost  9s® 1 . .
w3 + 9z 2 ((pi)Q + (p§)2 + (p1)2 + (p2)2) —C(z) —s".

Combining the first six equations above, we obtain the system

82(]1 82611 ql
5zt oz T+ () =0,
0%¢* P D
52 + 92 +'yp2+C(z)?—0,

which corresponds to two coupled strings with damping with coupling function C.
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Symmetries
It is easy to see that the vector field

vy o0 0 0 .0 .0
o T agt T T Propt T Pgps T 2 ope

is an infinitesimal k-contact symmetry of the system. It induces the map F =
(F*, F") given by

F'=—i(Y)n' =q¢'py —¢*py , F*=—i(Y)n® = q'p5 — ¢°p7 ,

which satisfies the dissipation law for k-vector fields 1} along a the solution
(Xl,XQ):

Lx, F' + Lx, F* = Lx, (¢'ph — ) + Lx, (a'v5 — ¢°pY)

(2 ) (2, 20)

ot oz ot oz
= —(q¢'ph — ¢*pt) .

10.3 Burgers’ equation

The Burgers’ equation [11,[139] is a remarkable nonlinear partial differential equation.
It appears in many areas of applied mathematics. It reads

Up + Uty = kg, , (10.11)

where ¢,z are the independent variables, u = u(t, x) is the dependent variable and
k > 0 a diffusion coefficient. Burgers’ equation is closely related to the heat equation

up = kugy . (10.12)

In fact, we will show that Burgers’ equation (10.11) can be formulated as a contact-
ification of the heat equation (10.12|). This will be done in several steps.

Lagrangian formulation of the heat equation

In order to contactify the heat equation, we will need a Hamiltonian formulation of
it. This Hamiltonian formulation can be obtained via the Legendre map if we have
a Lagrangian formulation. Although the heat equation is not variational, it can be
made variational by considering an additional dependent variable v, and taking as
Lagrangian the function [102]

1
L= —kuyv, — i(vut — uvy), (10.13)
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whose Euler-Lagrange equations are
[L]y = kvge +v¢ =0, [L]y = kugy —ur =0. (10.14)

The first equation is linear homogeneous and therefore it always has solutions, for
instance v = 0. Hence, there is a bijection between the solutions to the heat equation

(10.12) and the solutions to the Euler—Lagrange equations (10.14) with v = 0.

Hamiltonian formulation of the heat equation

Now we are going to apply the Hamilton-De Donder—Weyl formalism to the La-
grangian L defined in . The Legendre map associated to the Lagrangian L is
a map

FL: & TR? —» P = &°T*R?,
The phase bundle is P = RS, equipped with coordinates (u,v,pt,p%,qt, ¢*), where
pt, p® are the momenta of the variable v and ¢, ¢* are the momenta of the variable v

with respect to the independent variables. The Legendre map relates these momenta
with the configuration fields and their velocities:

1
FL*p' = —5Y FL*p* = —kv, ,
1
FL*¢" = JU FL*¢® = —kuy .

Hence the image of the Legendre map Py = FL(®*TR?) C P is given by the two
constraints

t+1fu—0 t 1u—O

We will use coordinates (u, v, p®, ¢*) on Py. Hence, the Hamiltonian function on P,
is
Hy = —lpxqz
? .

The manifold P is equipped with an exact 2-symplectic structure defined by the
1-forms
pldu+ ¢'dv, pdu+ ¢°dv.

The pull-backs to of these forms to Py no longer define a 2-symplectic structure, but
nevertheless we have two 1-forms

1
o' = 5(—vdu +udv), 6% =p"du+ ¢*dv
such that

W= —df"' = —dundv, w®=-d* =duAdp®+dvAdg”.
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Consider a map 1: R? — P, with local expression 1 = (u, v, p*, ¢*). The Hamilton—
De Donder—Weyl equation (1}, )w® + (1)), )w* = dHp o 1 for the map 1 reads

1 1
atv_aa:px =0 ) _atu_aqu =0 5 a’ru: __qx y ax'l): _pr~

Combining these equations, we get the heat equation for u and its complementary
equation for the additional variable v:

O = k@iu , O = —k@iv.

As in the Lagrangian formulation, the equation for v is linear homogeneous, and
hence there is a correspondence the solutions of this system with v = 0 and the
solutions to the heat equation.

Contact Hamiltonian formulation of the Burgers’ equation

Consider now the manifold Py defined above and its two differential 1-forms ¢, 6. In
order to construct a 2-contact manifold, we define the product manifold M = Py xR?,
with coordinates (u,v, p*, ¢%; s, s*). In M, we can construct the contact forms

n' =ds' — 6", n* =ds* —6".

Their differentials are dn! = w and dn* = w?.
With the notations introduced in Section since n%, n® are linearly independent
at every point, we have:

e C¢ = (n*,n") is a regular codistribution of rank 2,
e DR = (R;,R,), is a regular distribution of rank 2, where

0 0

Re=pa Ro=ga

e DN DR = {0}, since no nonzero linear combination of the Reeb vector fields
is anihilated by the contact forms nt, n*.

Hence, (M, n',n") is a 2-contact manifold. Notice that it coincides with the 2-contact
manifold in Example |7.1.10] Consider in this manifold the 2-contact Hamiltonian
function

1
H = Hy + yus® = —prq’“" + yus® .
Now we have a 2-contact Hamiltonian system (M,n',n*, H). The Hamilton—De

Donder—Weyl equations 1) for this system are

(10.15)

{i(wé)dnt +i(yy)dn® = dH — (Lr, H)n' = (Lr,H)1"
iWn' +i(yy)n™ = —H.
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Computing the first one, we obtain the set of equations

ratv — Opp® = y(s¥ +up”®),
—0u — 04" = yuq”,

1
ax = -7 x’

1
O = ——p”
(P20 TP

Using the latter two equations in the former ones, we get

Oyu — YkuOzu = k@iu,
O + Ykud,v = —kOrv + vs” .

Setting now the value of the constant ~ as

1
fy_ ka

the first equation is Burgers’ equation for the variable u:
Oy + ud,u = k@iu.

The second Hamilton—-De Donder—Weyl equation (10.15) yields

1 1
Ops' — 5(—1)8,51& + u0v) + 058" — pTOru — ¢ 0v = Epqu —yus”

Notice that this equation admits solutions (u,v,p®,q¢%,s?,s*) with u a solution to

Burger’s equation (10.11), v = 0, p® = 0, ¢* = —kO,u, s =0, s* = 0.
Hence, we can conclude that the Burgers’ equation (10.11) can be described by
the 2-contact Hamiltonian system (M, n',n®, H).

10.4 Inverse problem for elliptic and hyperbolic equa-
tions

This example provides a way of obtaining k-contact Lagrangians for certain partial
differential equations.
A generic second-order linear partial differential equation in R? has the form

Augy +2BUyy + Cuyy + Duy + Euy + Fu+ G =0, (10.16)

where A, B,C, D, F,G € €°°(R?) are functions such that A > 0.
o If B2 — AC > 0, equation (10.16) is said to be hyperbolic.
o If B2 — AC < 0, equation (10.16) is said to be elliptic.
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o If B2 — AC = 0, equation (10.16) is said to be parabolic.

In R”, consider the equation
A%Pups 4+ D%up + G(u) =0, (10.17)

where 1 < o, 8 < n. Consider the particular case where the matrix A%? is constant
and invertible, (i.e., equation (10.17) is not parabolic), D® is constant and G is an
arbitrary function in the variable wu.

In order to find a k-contact Lagrangian formulation of this kind of partial dif-
ferential equations, consider the manifold M = ®"TR x R™, equipped with natural
coordinates (u,uq,s%) and a generic Lagrangian function L € (" TR x R™) of
the form )

L= §aa5(u)uaug + b(u)ugs® + d(u, s) . (10.18)

The k-contact structure associated to this Lagrangian function is

oL
n® =ds® — a—du = ds® — (a®Pug + bs™ + c*)du.
Ug,

The k-contact Euler—Lagrange equations associated to the Lagrangian L is

1 [ 0a*P ad ad ad
@*uas + 3 ( o b““ﬁ) Ualty = 0 ta + (‘a?bs(" bd = a—) -
(10.19)
Comparing equations (10.17) and (10.19), we obtain the conditions
aaﬁ — Aa,B’
b=0, (10.20)

d= —(ail)aﬁDﬁsa -3,

9g
50 = &

where a = (a®?) and

The damped vibrating membrane

We are going to apply this method of finding Lagrangian functions to the partial
differential equation
Uy — € (U + Uyy) +yur =0, (10.21)

which models a vibrating membrane with damping. In this case,

1 Y
A =10 -2 o |, D*=|0|, G=0.
0 0 —¢ 0



148 Xavier Rivas — Geometrical aspects of contact systems and field theories

Hence, according to relations (10.20), we have

1 0 0
a® =10 -2 0 , b=0, d=—vs".
0 0 —c

Then a Lagrangian that gives equation (10.21) is

1, &, 2 t
L= §ut - E(um—’_uy) — 75
for which
n' =ds' —udu, 0" =ds® + cugdu, 7Y =ds¥+ cFu,du.
Symmetries

Notice that the vector field 3

y = 2
ou

is a 2-contact Lagrangian symmetry. It induces a map F = (F*, F® FY), given by
Fl=—i(Y)'=u, F"=—i(Y)n"=—-cu,, FY=—i(Y)n¥=—cu,,

which satisfies the dissipation law for k-vector fields (8.14).

10.5 A vibrating string: Lorentz-like forces versus
dissipation forces

In the Euler-Lagrange equations arising from k-symplectic systems we may
found terms linear in the velocities. Nevertheless, these terms have a specific form,
arising from the coefficients of a closed 2-form in the configuration manifold. The
most characteristic example of this is the force of a magnetic field acting on a moving
charged particle. Such forces do not dissipate energy. On the other hand, other kinds
of linear forces in the velocities, such as damping forces, do dissipate energy.

In this example we are going to illustrate the difference betweeen the equations
arising from magnetic-like terms in the Lagrangian and the equations given by a
k-contact formulation of a linear damping. We will analyze the following academic
example.

Consider an infinite vertical string aligned with the z-axis. Each point of the
string can vibrate horizontally. Hence, the independent variables are (t,z) € R2
the time and the vertical coordinates, and the phase bundle in the manifold ©2TR?,
endowed with coordinates (x,y,x¢, ., y:,y.). We will suppose that the string is
nonconducting but it is charged with linear density charge A\. Now, inspired by the
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Lagrangian formulation of the Lorentz force, we define the Lagrangian
1 1
L= §P(5Ef +yp) - 57(932 +42) = Mo — Az — Asyy)

where A;(x,y), A2(x,y) and ¢(z,y) are fixed functions. The Euler-Lagrange equa-
tions (5.8) for the Lagrangian L are

0A 0A 0
PTy — TToy = —A -2 yt+>\—¢:
ox oy ox (10.22)
= (22 OA 000 |
PYtt TYzz = O 8y t ay .

Notice that the left-hand side of the equations is the string equation with two vibra-
tion modes in the plane XY, while in the right-hand side there is an electromagnetic-
like term.

Consider now the 2-contact phase bundle ®?>TR? x R?, endowed with canonical
coordinates (z,y, T4, T, Yt, Y, s°, s*) and modify the Lagrangian L by adding a simple
dissipation term,

1 1
L=L+ys' = gplai+yp) = 57l +y2) = Mo — Arwy — Aoyy) + 78"

This Lagrangian £ induces the 2-contact structure

n' =ds' — (pz; + AA1)dz — (py: + AA2)dy,
n* =ds* + rx.dx + Ty.dy .

Hence, the 2-contact Euler-Lagrange equations (8.5) give

0As 0A 0
PTtt — TTzz = —A (—2 - —1> Y + )\_qb +vpze + YAAL,

ox dy ox
(10.23)
0A;  0A; 0¢
ot —7yes = A 2 = ) 0y 1 A2 gy Ay
ox dy dy

When we compare equations and , we see that the contact dissipation
produces two additional terms: a dissipation force proportional to the velocity and
an extra term proportional to (A1, As). This last term appears because the 2-contact
Euler-Lagrange equations are not linear with respect to the Lagrangian.

Symmetries

The 2-contact Lagrangian system considered has the infinitesimal Lagrangian 2-
contact symmetry

oz 0z T oy Oy

y_ 0420 94D
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This symmetry induces the map F = (F*', F'*), given by

0A 0A 0A; 0A
F' = —i(Y)n' _P$ta—2+)\ Oz —2 A1+ pye—— oy +)\8_y1A2’
0A, 0A1

FZ = —Z(Y)ﬁz = _T:CZE — Tyza—y

which satisfies the dissipation law for 2-vector fields |l

10.6 Klein—Gordon equation with dissipation and
the telegrapher’s equation

The current and voltage on a uniform electrical transmission line is described by the
so-called telegrapher’s equation [98] p. 306][139] p. 653]:

oV oI

5o =Ly —RI.
oI oV

Oz _CE —GV.

This system can be uncoupled, obtaining the system

02V 92V

3 = LO% + (LG + RC)— +RGV,
021 021 oI

503 = L0 + (LG + RO) =+ RGI.

Notice that the two equations in the system above are identical, and also known as
telegrapher’s equations. Both of them can be written as

ou
Ou + Yo +m?u =0, (10.24)

where [ is the d’Alembertian operator in 141 dimensions, and y and m? are adequate
constants. Written this way, we can see the telegrapher’s equation as a modified
Klein—Gordon equation. We will show that the telegrapher’s equation can
be obtained by adding a standard dissipative term to the Klein—-Gordon Lagrangian
and treating it as a 4-contact Lagrangian.

The Klein—(Gordon equation

The Klein—Gordon equation [103] is one of the most relevant equations in field theory,
either classical or quantum. It can be written as

(O+m*)¢=0, (10.25)
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where ¢ is a scalar field in the Minkowski space and m? is a constant. The Klein-
Gordon equation (10.25) can be derived from the Lagrangian function

L= %(%)2 - %m2¢2 : (10.26)

Although this Lagrangian can be generalized to include a potential, L = %(ﬁqb)z —
V (), we will stick ourselves to the simple case (10.26).

The Lagrangian is autonomous and the space-time is the Minkowski space
R*. Then, it can be described as a 4-symplectic field theory. We will take space-
time coordinates (20, 2!, 2%, 23), consider ¢ the field variable and v; = 9q/0x its
corresponding velocities. Hence, the Lagrangian L: ©* TR — R given in is

1 1
L(q,'l)o,'l)l,’UQ,Ug) = 5 (US - U% - ’U% - 'Ug) - §m2q2 (1027)

and the Klein—Gordon equation is

0%¢ 0%¢ 0%¢ 0%¢ 2,
3(1,0)2 o 8(1‘1)2 o 8(:132)2 o 3(1,4)2 +m7¢ =0.

From the Klein—Gordon to the telegrapher’s equation

In order to contactify the Klein-Gordon equation, we consider the Lagrangian £: @&*
TR x R* — R given by

1
(48— vf — 0} — ) — Emq? 4 s, (1028)

N —

ﬁ(Qavaa Sa) - L(Qava) + ’YMSM =

which is defined in the 4-contact manifold ®*TR x R*, L is the Klein-Gordon La-
grangian (10.27) and v = (v,,) € R?* is constant.

We are going to describe the Skinner—Rusk formalism for this 4-contact La-
grangian. Consider the extended Pontryagin bundle W = @*TR xp @*T*R x R*
endowed with natural coordinates (q,vo,v1,vs,vs,p%, pt,p?, p?, 8% st,52,s%). The

coupling function of W is
C = pvo + p'vy + pPva + pPus.

The bundle W has the canonical forms

0% =pdg, n°=ds"—-p’dg, Q°=-dO°=dgAdp’=dy°,
e =p'dg, n' =ds' —p'dg, Q' = —de' =dgAdp' =dnt,
0% =p?dq, n? =ds* — pidq , 0? = —de? =dg Adp? = dn?,
©° =p’dq , n® =ds® — pidq, 0P =—-de3 =dgAdp® =dn?.

The vector fields R, = 0/0s* are Reeb vector fields in WW. The 4-contact Lagrangian
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function (10.28) allows us to construct the Hamiltonian function

1 1
H:C—L’:p"va—§(v%—vf—v%—vg)+§m2q2—’7u3”a

with
dH = m?qdg+ (po —vp)dvg+ (pl +o1)dvy + (p2 +vg)dvg+ (p3 +v3)dvg+vadp® —7,dsH .

To solve the Lagrangian—Hamiltonian problem for the 4-precontact Hamiltonian
system (W,n%,H) consists in finding a 4-vector field Z = (Zy, Z1, Z2, Z3) € X*(W)
solution to equations (9.2). Consider a 4-vector field Z = (Zy, Z1, Zs, Z3) in W with
local expression

0 0 0
G2 F— .
P ovg * “opP T 9agsp

0
Za:fa6_q+Fa

We have that
i(Za)dn® = fodp® — Godg. (10.29)

and that

dH — Ra(H)n™ = (p° — vg)dvg + (p* + v1)dvy
+ (p® + vp)dvg + (p°® + v3)dvs + vadp® + (m?q — Yup*)dg, (10.30)

Equating (10.29) and (10.30), we obtain the conditions

G = —m*q +,.p" (coefficients in dq) (10.31)
" =g (coefficients in dvy), (10.32)
pt = —v (coefficients in dvy), (10.33)
P2 = —uy (coefficients in dvs) , (10.34)
PP = —uv3 (coefficients in dvs), (10.35)
fa = va (coefficients in dp®), (10.36)

and the second condition in (9.2) yields
9o =L.

Notice that condition (10.36) is the SOPDE condition for the 4-vector field Z,
which is recovered from the Skinner-Rusk formalism as usual. In addition, we have
obtained the constraints

gopo_Uozo P 51:p1—|—f01:07
Co=p*+v2=0 , &=p°"+v3=0,

defining the submanifold W; — W. Imposing the tangency condition of Z to this
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submanifold W, we get the relations

OZZa(g ) GO Foo OZZa(fl):G<134+Fa1:
0="Z4(&) =G+ Fas , 0=12Z,(&) =G+ Fas.
These conditions partially determine some of the arbitrary functions and no new

constraints appear. Hence, the constraint algorithm finishes with the submanifold
Wy = W and gives the solutions Z = (Zy, Z1, Z2, Z3), where

_ 9 2 n 1 2 3 0 ]_a 26 33
Zo—voaq+( m?q + yup" — Gl — G3 G)(90 G08 o G08v2+G08v3
0 0 0 0
+ (=mPq g = Gl = GE = GY) 55+ Go o+ Gl 5 + Gl
0 0 0 0
1 2 3 1 2 3
+(‘C_gl_92_93)@4_90@4’90@4‘90@,
9 0a 18 2a 38 06 18
Zl—/Ula +G180 Gla’vl G16U2 G18U3+G18p0+G18p1
0 0 0 0 0 3 0
2 3
+G182+G1a3+ 180+9101+9162+ 1837
0 0 0 9] 0 0 0
Zo =
2 ?)26 +Ga Ga Ga G283+G280+G281
0 0 0 0 0 0
+G282+G283+9280+9231+g282+92837
9 0a 18 2a 38 06 18
ZS—/U?)a +G380 Ggavl G361}2 G38U3+G38p0+G38p1
e 3 0 | 00 9 0 39

38_p2+G3a 3+ 38 0+g3a 1 +g36 2+g 8837
where G2, g8, for (o, B) € ({0,1,2,3} x {0,1,2,3})\{(0,0)}, are arbitrary functions.
Now we can project onto each factor of the manifold VW using the projections

p1, p2 to recover the Lagrangian and Hamiltonian formalisms. In the Lagrangian
formalism we obtain the holonomic 4-vector field X = (X, X1, X2, X3) given by

0 0
Xo = Vg, T (=m2q +y0v0 — Mv1 — Y2vg — Yavs + F{ + F5 + F§) 2 vg
B B ) R R R, B
+F010_1+F028 +F038—+(£ gl g5 —93)@4—90@4‘90@4‘90@,
0 0 0 0 0 0 0 0 o,
Xl—vla——f—Fma +F11a +F128 +F138 +9180+9181+9182+91@a
0 0 0 0 0 0 0 0 3 0
Xo = Uga—-i-ona -i-F21a +F22(9 +F238 +9230+9281+9282+ 2833’
0 0 0 0 0 0 0 0 0
X3—U36 +F?,0a +F3181) -FFsz6 +Fss8 +g380+g361+g382+9383’
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where FZ g8 for (a,8) € ({0,1,2,3} x {0,1,2,3}) \ {(0,0)}, are arbitrary func-
tions. In the Hamiltonian counterpart, we get the Hamiltonian 4-vector field Y =
(Yo, Y1, Y5, Y3) given by

Yo = voa% + (—mPq+ypt - Gl - G3 - GY) 880 + Gy 681 +Gj 882 +Gj 683
+(ﬁ—g§—g§—gi)%+gé%+g§ﬁ+93%,
leul(%JrG‘faaoJrG}aal+G%082+G§’883+ 1680+91681+91882+93%,
Yy = v ; G2880+G2881+G2882+G2883 g‘)%+g§%+g§%+g§%,
) d d d 9 d 9 d 40

Y3_U3a +G380+0381+G3a2+G383+ 380+g381+9382+ 38537

where the functions G2, g8 with («, 8) € ({0,1,2,3} x {0,1,2,3})\ {(0,0)} are arbi-
trary.
Notice that conditions (]10.31[), (]1().32[), (]10.33[), (]10.34[), Q10.35[) and (]10.36[) lead

to

0 0 0 0
(D+m2 T 0550 T Mgt T 22 +V3ax3> 7=

which represents a “damped” Klein-Gordon equation. Clearly, taking v, = 0, we
recover the Klein-Gordon equation (10.25). An important particular case arises when
taking v, = (—v,0,0,0). In this case, the telegrapher’s equation

0
[lqb—l—’ya—j;—i—ngbzo

happens to be a particular case of the “damped” Klein—Gordon equation.

10.7 Maxwell’s equations with dissipation

The behaviour of the electromagnetic field in vacuum is described by Maxwell’s
equations [104] p. 2]:

v.-E="2, (10.37)
€0
V-B=0, (10.38)
OB
p=_% 10.
V x = (10.39)
OF
V x B = ILL()J + Ho€0 —=7 (1040)

ot

where F is the electric field, B is the magnetic field, p is the charge density, J is
the current density, € is the permitivity of free space, ug is the permeability of free
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1
Veéoro”

space and the speed of light ¢ =

It is well known that we can rewrite Maxwell’s equations in the Minkowski Space
M equipped with the Minkowski metric g,,,,

1 0 0 0
o =1 0 0
=10 0o -1 o |

00 0 -1

by defining the electromagnetic tensor F),, given by

b _OA,0A,

= g o = Oy = Oy A = Au i~ Ay,

C )
tensor F),, can be written in matrix form as

where A* = Ay, A, Ag) is the electromagnetic 4-potential. The electromagnetic

0 E./c E,/c E./c
oo _|Ee 0 -B. B,
w= | -E,Je B. 0 -B,

~E.Je —B, B, 0

We can also define de current 4-vector as J" = (cp, J). With these objects, the first
pair of Maxwell’s equations (10.37) and (10.40) are written as

0" = po T+, (10.41)

while the second pair of Maxwell’s equations (10.38)) and (10.39) become

O Fyuy + 04 Fye + 0y Foy =0, (10.42)

also known as Bianchi identity. Equations (10.42) are a direct consequence of the
definition of F},,, while the first pair of Maxwell’s equations (10.41) can be obtained
as the Euler-Lagrange equations for the Lagrangian

1

L=
4po

Fu, F*" — A,J" .

From now on, we are going to consider Maxwell’s equations without charges and
currents (J#* = 0),

o F" =0,
Ok +0uFya + 0, Fy, =0.



156 Xavier Rivas — Geometrical aspects of contact systems and field theories

Skinner—Rusk formalism

Now we are going to develop the Skinner—Rusk formalism for the Lagrangian with
dissipation [112][70]
1
L= ——F, F" — s, 10.43
4,[1/0 I ( )
defined on the manifold &*TR*xR* equipped with coordinates (A4,, A, , ;s*), where
w, vy =0,1,2,3 and v, = (70,7) is a constant 4-vector.

We begin by considering the extended Pontryagin bundle
W = @&*TR?* xps @*T*R* x R*,

equipped with natural coordinates (A,, A, ., P*",s*). We have the coupling func-
tion
C=P""A, .,

the canonical forms
0% = p*d4, , Q% =-de% =dA4,AdP"“,
and the contact forms
n® =ds* — P*“dA,.
Using the Lagrangian , we define the Hamiltonian function

1
H=C—-L=P""A, , +—F, F" 4 v,5".
4o

It is easy to check that the vector fields R, = ai are Reeb vector fields of W. To
Sa

solve the Lagrangian—Hamiltonian problem for the 4-precontact system (W,n*, H)
means to find a 4-vector field Z = (Zy, 21, Z», Z3) € X*(W) satisfying equations
(19.2). We have that

1
—FW) dA, o, + Ay ,dPPY — 4 PP dA,, .

dH — Ra(H)n“ = (P“’” —
Ho

Then, consider a 4-vector field Z = (Zy, Z1, Z2, Z3) in VW with local expression

0 0

) )
_— 7 _ B_=_
"OA, + (Za)us DA, 5

opis T (Za) 55

Zo = (Za) + (Za)uﬁ

For this vector field, we have

i(Zo)dn® = (Z4),dP** — (Zo)" *dA,,
i(Za)n™ = (Za)® — P *(Za)p
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and thus the first equation in (9.2) gives the conditions

(Zo)P = =y P (coefficients in dA,,) , (10.44)
1

prY = —Fr (coefficients in dA,, ), (10.45)
Ho

Ay o= (Za), (coefficients in dP,, ). (10.46)

Furthermore, the second equation in (9.2) gives
(Za)a = phe ((Za)u - Au,a) + E?
and hence, using (10.46),
(Za)* = L.
We have obtained the constraint functions

EHv = prav _ iFuv7
Ho

defining a submanifold W; — W. Now we have to impose the tangecy of the 4-vector
field Z to this submanifold W;:

1
0= Zo(€") = Zo [ PV — —F™ ) = (Zo)™ — — o)
(€)= 2o (P = o) = (2" = T o)
v 1 T VUV vT
= (Za)" —%(9” 97 = 9" ") (Za)rs

which partially determine some of the coefficients of the 4-vector field Z. Notice
that no new constraints appear and hence the constraint algorithm ends with the
submanifold Wy = W; and gives the solutions Z = (Zy, Z1, Z2, Z3), where

0 0 O iy 0

Zo = Auag+ (Gaw g+ (Z)" gpps +Za) 555
H By v

satisfying the conditions

(Za>a =L,
(Za)ﬂa = —%zP“’aa

1% 1 T UV vT
(Za) = o (9"7g"" — g"P6"™) (Za)=s -

4-contact Maxwell equations and damped electromagnetic waves

Notice that, combining equations (10.44) and (10.45)), we obtain

Ou FOH = —ry FOH
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which is the dissipative version of the first pair of Maxwell’s equations. Together
with the Bianchi identity (10.42), we can write the 4-contact Maxwell’s equations
without charges and currents:

V-E=-~-E (10.47)
V-B=0 (10.48)
0B
EF=—— 10.4
V x o (10.49)
E
VxB:,uoeoaa—t—’yxB—FEE. (10.50)
C

Applying the curl operator to the third and fourth equations (10.49), (10.50), we
get

32E Yo ok
~VE+ = =~ V x E),
M0€08t2 +08t v x (V x E)
Mo €0 912 -V B—{-?E——VX(’)’XB).
Taking v, = (70,0), we obtain
o OV ET0G =0,
W_C \V4 B“‘C’YO% —0,

which are the 3-dimensional analogues of the damped wave equation (10.7) studied

in Example



Conclusions

In this final chapter we summarize the results obtained in the development of this
thesis. We also give a list of the publications derived from this work. Finally, we
point out several interesting lines of future research.

Summary of contributions

The starting point of this work has been the contact formulation of Hamiltonian and
Lagrangian mechanical systems [13][15/[39]. This thesis has been devoted to enlarge
the knowledge on these systems and generalize this theory to the case of first-order
field theories.

The new results presented in this thesis are the following ones:

e We show an almost equivalent alternative form of writing the contact Hamil-
tonian equations without using the Reeb vector field (Proposition.
We give the corresponding version of the contact Lagrangian equations without
Reeb vector field (Section . This way of writing the dynamical equations
of the system might be useful when dealing with singular systems, because in
such cases we do not have a uniquely determined Reeb vector field.

e We have defined several notions of symmetry of a contact Hamiltonian system
and stated some relations between them (Section . We have introduced
the concept of dissipated quantity of a contact Hamiltonian system and proved
that every infinitesimal dynamical symmetry has associated a dissipated quan-
tity (Theorem . In particular, we state the energy dissipation theorem
for contact Hamiltonian systems (Theorem . We also define the concept
of conserved quantity and we have proved that the quotient of two dissipated
quantities is a conserved quantity and that the product of a conserved and a
dissipated quantity is a new dissipated quantity (Proposition . We have
studied the symmetries of canonical contact Hamiltonian systems . In
particular, we have proved the momentum dissipation theorem We have
studied the symmetries of contact Lagrangian systems (Section . In par-
ticular, we have proved that if the Lagrangian function does not depend on
the position ¢, then the vector field 9/0q" is an infinitesimal contact symme-
try and its associated dissipated quantity is the momentum dL/dv* (Theorem
. We have also compared the symmetries of a Hamiltonian system on a
symplectic manifold and its corresponding contactified system (Section.
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e Chapter|3|generalizes the Skinner-Rusk formalism [143| to contact systems. We

define the extended Pontryagin bundle and describe its canonical precontact
structure (Section and developed the Skinner-Rusk formalism for contact
systems is developed in detail (Section . In particular, we show that the
holonomy condition is recovered from the formalism even in the singular case.
We also see that the Legendre map arises as a set of constraints. We have
proved that we can recover both the Lagrangian and Hamiltonian formalisms
from the Skinner-Rusk formalism as usual (Section.

In order to deal with singular dissipative field theories, we first studied the
case of singular nonautonomous field theories in the k-cosymplectic setting
(Section [6.2). In particular, we have defined the notion of k-precosymplectic
manifold (Deﬁnition and proved the existence of global Reeb vector fields
in every k-precosymplectic manifold (Proposition. We have described in
full detail the constraint algorithm for singular nonautonomous field theories.
In particular, we characterize the constraints arising and give an operational
way to compute the constraint submanifolds (Section .

We have introduced the notion of k-contact manifold (Deﬁnition. This
concept is a generalization of the notion of contact manifold and k-symplectic
structure. We have shown that the Reeb distribution of a k-contact manifold
is involutive, and therefore integrable (Lemma, and proved the existence
and uniqueness of a family of Reeb vector fields spanning the Reeb distribu-
tion (Theorem . We end this section stating the Darboux theorem for
k-contact manifolds (Theorem . We have presented the Hamiltonian for-
malism for k-contact systems, stated the k-contact Hamilton—De Donder—Weyl
equations and prove that they have solutions, although they are not unique if
kE > 1 (Section . We also offer an alternative way of writing Hamilton—De
Donder—Weyl equations without making use of the Reeb vector fields (Theorem
7.2.8). We have introduced several notions of symmetries of k-contact Hamil-
tonian systems and proved some of their properties (Section . We have
generalized the concept of dissipated quantity to the notion of dissipation law
and present two types dissipation laws (Section. We have stablished the re-
lation between the two types of dissipation laws (Proposition and proved
that every infinitesimal dynamical symmetry has associated a map F': M — R¥
satisfying the dissipation law for k-vector fields (Theorem .

In order to develop a k-contact formalism for Lagrangian field theories, we
have described the canonical structures of the bundle ®*TQ x R* (Section

8.1). We have also shown that, given a regular Lagrangian function £ €

¢ (®FTQ x R¥), we can define a k-contact structure (n%) in the manifold
@FTQ x R¥ (Proposition . Thus, (&*TQ x R* n%, E.) is a k-contact
Hamiltonian system. We have pointed out the differences between regular and
singular Lagrangians and described the difficulties that arise when dealing with
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singular systems. We also summarize the constraint algorithm that allows to
find (if it exists) a submanifold where the k-contact Lagrangian equations are
consistent and have solutions tangent to this submanifold (Section [8.3). We
have introduced several notions of symmetries of k-contact Lagrangian systems
and stated some of their properties (Section. We have extended the notion
of dissipated quantity of a mechanical system and thus defining two notions
of dissipation law and stablished the relation between them (Section [8.5). We
have also studied the symmetries of the Lagrangian function of a k-contact
system and, in particular, we have stated the momentum dissipation theorem

[8.6.41

e We have generalized the Skinner—Rusk formalism presented in Chapter (3| to
the case of field theories. We have defined the extended Pontryagin bundle and
describe its canonical k-precontact structure (Section . We have presented
the Skinner—Rusk formalism for k-contact systems and applied the constraint
algorithm to it. In particular, we showed that the holonomy condition is recov-
ered from the formalism even if the Lagrangian function is singular and that
the Legendre map arises as a set of constraint functions (Section. Finally,
we see that we can recover both the Lagrangian and Hamiltonian formalisms
from the Skinner-Rusk formalism as usual (Section.

Along the present thesis, several examples have been worked out, including both
regular and singular systems in mechanics and field theory. In Chapter We ana-
lyze the following mechanical systems: the damped harmonic oscillator, the motion
of a particle in a constant gravitational field with friction, the parachute equation,
Lagrangians with holonomic dissipation term, a central force with dissipation, the
damped simple pendulum using the Lagrange multipliers method and Cawley’s La-
grangian with dissipation. In Section We apply the k-precosymplectic constraint
algorithm to systems described by Lagrangian functions which are affine in the ve-
locities and to a singular quadratic Lagrangian. Chapter is devoted to analyze
several dissipative field theories: the damped vibrating string, two coupled vibrating
strings with damping, Burgers’ equation as a contactification of the heat equation,
the inverse problem for a type of elliptic and hyperbolic partial differential equations,
a comparison between Lorentz-like forces and dissipative forces on a vibrating string,
Klein—Gordon and the telegrapher’s equation, Maxwell’s equations with dissipation
and damped electromagnetic waves.

Further research
There are some lines of future research and open problems derived from this thesis:

e To develop a geometric formalism to deal with nonautonomous dissipative me-
chanical systems. We will need to define some notion of cocontact manifold, in
the same way as cosymplectic geometry is the natural framework for nonau-
tonomous mechanical systems.
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e The k-contact formalism described in this thesis is useful when dealing with
dissipative field theories described by autonomous Lagrangians. It is necessary
to develop a k-cocontact formalism (in the same way as the k-cosymplectic
formalism generalizes the k-symplectic formalism) to work with nonautonomous
dissipative field theories.

e It would be interesting to generalize the multisymplectic formalism in order
to model dissipative field theories, thus developing a multicontact formalism.
This formalism will have to be extended in order to deal with singular dissi-
pative field theories. In the case of nondissipative field theories, the multisym-
plectic formalism is of great interest as it has both the k-symplectic and the
k-cosymplectic formalism as particular cases.

e The Herglotz variational principle |99} |42] for dissipative mechanical systems
could be generalized to a new variational principle yielding the k-contact Euler—
Lagrange equations.

e It would be interesting to find new examples of mechanical systems and field
theories described by contact or k-contact Lagrangians. In particular, one
could study the meaning of adding a dissipative term to the Lagrangian of the
relativistic free-particle or to gravitational Lagrangians, such as the Einstein—
Palatini or the Hilbert-Einstein Lagrangians (see [66| and references therein).

e It would be worthwhile to use the contact formalism to deal with dynamical
systems not necessarily mechanical, such as population dynamics. In particular,
it might be of interest the study of reversible systems from the contact point
of view.

List of publications

The publications derived from this work are |36//67}68,/69}|85//93]. In addition, there
have been 10 contributions to national and international congresses and workshops,
4 of them being talks and 6 of them being posters.

The list of publications, in chronological order, is the following:

e 92| X. Gracia, X. Rivas and N. Roméan-Roy. “Constraint algorithm for singular
field theories in the k-cosymplectic framework”. J. Geom. Mech., 12:1-23,
2020. https://doi.org/10.3934/jgm.2020002.

— Sections and

e [68] J. Gaset, X. Gracia, M. C. Munoz-Lecanda, X. Rivas and N. Romén-
Roy. “New contributions to the Hamiltonian and Lagrangian contact for-
malisms for dissipative mechanical systems and their symmetries”. Int. J.
Geom. Methods Mod. Phys., 16(6):2050090, 2020. https://doi.org/10.
1142/80219887820500905,

— Section and Chapters |2|and
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e 67 J. Gaset, X. Gracia, M. C. Munoz-Lecanda, X. Rivas and N. Romén-
Roy. “A contact geometry framework for field theories with dissipation”. Ann.
Phys., 414:168092, 2020. https://doi.org/10.1016/j.aop.2020.168092.

— Chapters|7|and

e [69] J. Gaset, X. Gracia, M. C. Munoz-Lecanda, X. Rivas and N. Romén-Roy.
“A k-contact Lagrangian formalism for nonconservative field theories”. Rep.
Math. Phys., 87(3):347-368, 2021. https://doi.org/10.1016/S0034-4877(21)
00041-0.

— Chapters 8| and

e 36/ M. de Ledn, J. Gaset, M. Lainz-Valcazar, X. Rivas and N. Romén-Roy.
“Unified Lagrangian-Hamiltonian formalism for contact systems”. Fortschritte
der Phys., 68(8):2000045, 2020. |https://doi.org/10.1002/prop.202000045)

— Chapters|[3|and

e 93] X. Gracia, X. Rivas and N. Romén-Roy. “Skinner—Rusk formalism for
k-contact systems”, preprint, 2021. https://arxiv.org/abs/2109.07257

— Chapters[9]and
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