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Abstract
Deep neural networks as an end-to-end approach lacks flexibility and ro-
bustness from an application point of view, as one cannot easily adjust the
network to fix an obvious problem, especially when new training data is not
available: e.g. when the model consistently predicts positive when seeing
the word “disappointed”. Meanwhile, it is less stressed that the attention
mechanism is likely to “over-focus” on particular parts of a sentence, while
ignoring positions which provide key information for judging the polarity.
In this thesis, we describe a simple yet effective approach to leverage lex-
icon information so that the model becomes more flexible and robust. We
also explore the effect of regularizing attention vectors to allow the net-
work to have a broader “focus” on the input sequence. Moreover, we try to
further improve the proposed lexicon enhanced neural sentiment analysis
system by applying sentiment domain adaptation.
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Resumen
Las redes neuronales profundas como enfoque integral carecen de flexibil-
idad y robustez desde el punto de vista de la aplicación, ya que no se puede
ajustar fácilmente la red para solucionar un problema evidente, especial-
mente cuando no se dispone de nuevos datos de entrenamiento: por ejem-
plo, cuando el modelo predice sistemáticamente positivo al ver la palabra
”decepcionado”. Por otro lado, se hace menos hincapié en que es prob-
able que el mecanismo de atención “se concentre demasiado” en partes
concretas de una oración, mientras ignora posiciones que proporcionan in-
formación clave para juzgar la polaridad. En esta tesis, describimos un
enfoque sencillo pero eficaz para aprovechar la información del léxico de
modo que el modelo sea más flexible y robusto. También exploramos el
efecto de regularizar los vectores de atención para permitir que la red tenga
un ”enfoque” más amplio en la secuencia de entrada. Además, tratamos de
mejorar aún más el sistema que proponemos de análisis profundo de sen-
timiento con el soporte de léxico aplicando sobre el mismo la adaptación
del análisis de sentimiento al dominio.
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摘摘摘要要要

深度神经网络作为一种端到端的方法，从应用的角度来看缺乏灵
活性和鲁棒性。例如，当模型看到词语“失望”却始终预测正值时，
在没有新的训练数据的情况下，很难轻易地通过调整模型来解决问
题。另外，常用的注意力机制可能会“过度关注”句子的某些特定部
分，从而忽略能提供判断极性关键信息的位置；此情况在业界鲜有
提及。在本文中，我们描述一种简单却行之有效的方法将词典信息
与深度神经网络相结合，从而改进模型的灵活性及鲁棒性。我们亦
探索通过正则化注意力向量来抑制注意力机制“过度关注”的问题。
此外，我们尝试通过应用情感域自适应来进一步改进所提出的词典
增强型神经情感分析系统。
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Chapter 1

INTRODUCTION

Natural Language Processing (NLP) is the field of study that aims to have
computers understand human languages, where machines are capable of
processing and analyzing natural language data. After decades of countless
efforts that could date back to the 1950s (A M Turing, 1950), many NLP
applications have made significant breakthroughs in recent years and have
quietly become essential parts of our daily lives. Virtual assistants such as
Siri leverage speech recognition and many other NLP techniques to create
an anthropomorphic interaction experience; machine translation helps peo-
ple to communicate in different languages with unprecedented translation
quality; language models comfortably complete your unfinished sentences
and even suggest better expressions.

These breakthroughs are fundamentally based on two factors: the in-
creasing size of digitized data and the growth of computing power. As hu-
man society enters the Third Industrial Revolution (also known as the Dig-
ital Revolution), data such as text, image, audio and video has been stored
in binary and thus paved the way for computers to process. Meanwhile, the
growth of computer performance has made it possible to process this huge
amount of data at scale and unleash the true power of modern algorithms
such as deep neural networks (DNN, also known as deep learning).
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Within the realm of NLP, one task named sentiment analysis has be-
come more and more important due to its value to both business and soci-
ety. It consists of automatically extracting opinions (polarities such as posi-
tive, neutral and negative) expressed in natural languages; for instance, one
should extract positive from the sentence: “I’m in love with this place!”.
However, as opinion expressed by words is highly context dependent (e.g.
“This camera has a long battery life.” vs “This camera takes long to fo-
cus.”); and opposite polarities can be expressed in the same sentence (e.g.
“The food is great but the service is awful.”); there is thus the need to
perform sentiment analysis at a more fine-grained level: aspect level.

Sentiment analysis at aspect level, also known as aspect-based senti-
ment analysis (ABSA), consists of extracting the opinion associated with
a predefined aspect in a sentence. For instance, consider the earlier ex-
ample: “The food is great but the service is awful.”, ABSA will extract
positive for the aspect food and negative for the aspect service. In the case
of a restaurant review domain, aspects are usually defined as food, price,
service, ambience and miscellaneous.

Similar to other NLP tasks, ABSA leverages deep learning to achieve
the state of the art performance. However, as an end-to-end approach,
DNN are considered to lack robustness and flexibility as one cannot easily
adjust the network to fix an obvious problem: when the network always
predicts positive when seeing the word “disappointed”, or when the net-
work is not able to recognize the word “dungeon” as an indication of neg-
ative polarity. It could be even trickier in a low-resource scenario where
more labeled training data is simply not available.

In this thesis, focusing on ABSA, we start from searching for an effi-
cient way to bridge DNN and existing language resources (sentiment lex-
icons) for a more robust and adaptive model architecture. Along the way,
we find that the commonly used attention mechanism is likely to over-fit
and force the network to “focus” too much on a particular part of a sen-
tence, while ignoring key positions for judging the polarity. Moreover, we
also explore the possibility of further improving the lexicon enhanced neu-
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ral system through domain specific sentiment induction. Before jumping
into the details, let us start by reviewing the sentiment analysis task.

1.1 Sentiment Analysis
Sentiment analysis (also known as sentiment classification or opinion min-
ing) has flourished as one of the most active fields in NLP since the be-
ginning of the 21st century due to its important value to both business and
society. It is the field of study that analyzes people’s opinions, sentiments,
evaluations, appraisals, attitudes, and emotions towards entities such as
products, services, organizations, individuals, issues, events, topics, and
their attributes (Liu, 2012).

Opinions have always been an important part in all human activities,
they are key influencers of our behaviors as our beliefs and perceptions of
reality are conditioned at a certain level upon how others see and evaluate
the world. As a result, opinions affect us deeply considering the fact that
people tend to seek opinions from others when it comes to decision mak-
ing. On the other hand, as the human society develops, for the first time in
history, information such as blogs, reviews, forums and social media give
us a huge amount of opinionated data in digital form ready to be explored.

Early researches of sentiment analysis date back to 1999, when re-
searchers began to realise the value of this field (Wiebe et al., 1999; Wiebe,
2000; Turney, 2002; Pang et al., 2002). However, the terms of sentiment
analysis and opinion mining did not come out until later in 2003 when Na-
sukawa and Yi (2003) and Dave et al. (2003) first adopted them in their
works. As of today, the sentiment analysis task itself is generally catego-
rized into three different levels based on the granularity: document level,
sentence level and aspect level.

At document level, early works by Pang et al. (2002) and Turney (2002)
tackle the problem by classifying whether a given document is expressing
a positive or negative opinion. For instance, a blog post or a full descrip-
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tion of a product review with multiple sentences is considered a document;
and the task is to extract an overall opinion of that document. One might
already think of a problem for the document level classification, which is
the fact that multiple opinions can be expressed in the same document; thus
the difficulty of extracting an overall opinion at document level increases
as the content length grows. Hence, it is necessary to push the granularity
to a lower level.

As shown in works by Wiebe et al. (1999) and Wilson et al. (2004),
sentence level sentiment classification aims to classify sentences as pos-
itive, negative or neutral (non subjective expressions that do not contain
any sentiment). However, opinion expressed by words is highly context
dependent (e.g. “A cheaper price should not equal a cheap product.”);
and opposite polarities can be expressed in the same sentence (e.g. “Al-
though the service is not that great, I still love this restaurant.”). It is
clear that both document level and sentence level sentiment classification
are not sufficient to cover the variety and complexity of the way human or
natural language expresses people’s opinions; thus it is needed to push the
granularity to an even lower level: aspect level.

1.2 Aspect-based Sentiment Analysis (ABSA)
Sentiment analysis on aspect level, also known as aspect-based sentiment
analysis (ABSA), was first proposed by Hu and Liu (2004a) as feature-
based opinion mining. Formally, it aims to extract and summarize opinion
expressed on entities and aspects of entities; for instance, in the sentence
“The Apple Care has never failed me.”, the system should extract positive
sentiment expressed on the aspect service of the entity Apple. Thus, the
task can be broken down into three sub-tasks: entity extraction, aspect
detection and aspect-based sentiment classification.

Normally, the first and second sub-tasks: entity extraction and aspect
detection can be treated as an information extraction task, which is very
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similar to another well studied NLP problem: named entity recognition
(NER). It consists of identifying and grouping textual elements into pre-
defined categories (e.g. person, organization, location and time); in other
words, extract structured information from unstructured data. In the case
of ABSA, the system should identify entities (e.g. McDonald’s, Apple,
etc.) and aspects (e.g. food, service, lens, battery, etc.) from unstructured
corpora. As for the third task: aspect-based sentiment classification, the
previously extracted aspect and the relevant text data will be given to a
classifier that decides whether positive, neutral or negative opinion is ex-
pressed towards that aspect.

Generally speaking, the three sub-tasks of ABSA are often tackled by
different models, which require completely different strategies; thus it is
common to separate these tasks and study them individually. In this the-
sis, our main focus will be on the third sub-task: aspect-based sentiment
classification. As an individual task, we will have predefined aspects and
opinion text as joint inputs to predict the polarity of the given aspect-text
pairs.

In recent years, DNN have been adopted extensively for tackling al-
most all NLP tasks as they yield significant improvement across a vari-
ety of tasks compared to previous state of the art methods. For instance
the encoder-decoder structure (Cho et al., 2014) and the pure attention
model (Vaswani et al., 2017) for neural machine translation; recurrent neu-
ral networks (RNN) and convolutional neural networks (CNN) for senti-
ment analysis (Tai et al., 2015; Kim, 2014). A number of approaches that
leverage both attention mechanisms and RNN or CNN architectures have
also been proposed for sentiment analysis on different levels (Wang et al.,
2016c; Shin et al., 2017).

However, as an end-to-end approach, deep learning based systems lack
flexibility as one cannot easily adjust the network to fix an obvious prob-
lem: e.g. in the ABSA case, when the network always predicts positive
when seeing the word disappointed, or when the network is not able to
recognize the word dungeon as an indication of negative polarity. It could
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be even trickier to fix this issue in a low-resource scenario where more
labeled training data is simply not available (Bao et al., 2019).

1.3 Attention Mechanism
The idea of allowing the model to “look” back at the input sequence and
“focus” on different parts accordingly has been one of the most influential
ideas in the NLP world in recent times. Through the years, it has inspired
many great innovations such as Transformer (Vaswani et al., 2017) and
BERT (Devlin et al., 2019).

Briefly speaking, the attention mechanism consists of learning a weight
vector in the model and apply it to obtain a weighted representation of
the input. The attention mechanism was first successfully applied in the
sequence-to-sequence model for machine translation in order to overcome
poor performance when translating long sentences (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015); later similar idea has been widely
adopted across different fields including computer vision (Guan et al., 2018;
Ramachandran et al., 2019).

As an active field of NLP, the idea of attention arrives to ABSA rather
quickly as Wang et al. (2016c) introduced AT-LSTM with the state of the
art performance on the SemEval14 dataset. Since in ABSA the model
is expected to extract opinion from the same input sentence according to
different given aspects, it makes perfect sense to allow the model to look
at the input sequence differently given different aspects and being able to
“highlight” relevant parts when predicting. However, it is less stressed that
the commonly used attention mechanism is likely to over-fit and force the
network to “focus” too much on a particular part of a sentence, while in
some cases ignoring positions which provide key information for judging
the polarity. In recent studies, Niculae and Blondel (2017); Zhang et al.
(2019a) proposed approaches to incentivize the sparsity in the attention
vector; however, it would only encourage the over-fitting effect in such
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scenarios, especially when attention is applied early in the model.

1.4 Sentiment Lexicon
An obvious way that could help the model to distinguish positive and neg-
ative words is leveraging existing language resources: sentiment lexicons.
A sentiment lexicon, sometimes known as opinion lexicon, is a thesaurus
with word-polarity pairs where each opinion word has an associated polar-
ity notation (e.g. numerical values within the range of [−1,+1]; or labels
such as positive or negative).

Over the years, there have been numerous approaches proposed by re-
searchers for compiling and inducing sentiment lexicons (Turney, 2002;
Turney and Littman, 2003; Hu and Liu, 2004a; Mohammad et al., 2009;
Hamilton et al., 2016; Mudinas et al., 2018). Thanks to their contributions,
with a great number of sentiment lexicons freely available now, a lot of
works have been done focusing on leveraging existing sentiment lexicons
to enhance the performance of neural sentiment classifiers; however, most
works are performed at document level and sentence level; and they usu-
ally require some sort of transformation on the lexicon inputs instead of
directly taking polarities as features (Teng et al., 2016; Zou et al., 2018;
Shin et al., 2017; Lei et al., 2018; Wu et al., 2018).

Nevertheless, one of the biggest limitations of a sentiment lexicon is
that the polarity of an opinion word is domain dependent and context de-
pendent. For example, under a general context, “fallout” and “excel” carry
negative and positive sentiments respectively; but in the electronics or the
laptop review domain, “fallout” or “excel” are both neutral proper nouns
referring to a video game and a software. Additionally, in some cases, the
same word may carry opposite sentiments in the same domain under differ-
ent contexts, and this is common in ABSA: for instance, “cheap” is positive
when describing the aspect price but it is definitely negative when describ-
ing the aspect quality. Thus it is necessary to not only enable models to
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leverage sentiment lexicons, but also adapt lexicons according to different
domains and aspects.

1.5 Research Questions

1.5.1 Lexicon Enhancement

As previously described in Section 1.2, sometimes when the size of the
training data is limited, the deep learning based ABSA system lacks ro-
bustness and flexibility; thus our research starts by asking the question:
how to improve a neural ABSA system by using sentiment lexicons?
The advantage of using sentiment lexicons here is: first, as freely avail-
able language resources, it requires no extra efforts for feature engineer-
ing; second, by having a secondary input, the model should learn to lever-
age the information provided by the lexicon; compared to pure end-to-end
approaches, a lexicon is easier to be maintained: for instance, the polar-
ities of opinion words can be added, removed or updated accordingly, so
that the model becomes overall more robust. On the other hand, compared
to existing approaches of merging lexicon with DNN models, is there a
simpler yet effective way of doing it?

1.5.2 Attention Over-fit

As mentioned in Section 1.3, we believe it is possible that the commonly
used attention mechanism could over-fit by being too sparse, and this ex-
treme sparsity in the attention vector could hurt the model by “over fo-
cusing” in particular parts of the sentence and thus “blinding” the model
on key positions for polarity judgement. Hence we ask the question: can
attention over-fit? And when it does, how do we overcome it?
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1.5.3 Sentiment Induction
Moreover, as discussed in Section 1.4, although sentiment lexicons can
directly provide polarity information of opinion words to the model, it is
true that the polarity of an opinion word is both domain and context de-
pendent. Thus we wonder: is it possible to further improve the model
through sentiment induction (domain adaptation and fine-grained aspect
adaptation)?

1.6 Research Overview

1.6.1 ATLX
In this thesis, to address the research questions in Section 1.5.1, we aim
to search for a simple yet effective approach to merge lexicon information
with an attention LSTM model (AT-LSTM by Wang et al. (2016c)) for
ABSA in order to leverage both the power of deep neural networks and
existing linguistic resources, so that the framework becomes more flexible
and robust without requiring additional labeled data.

We start by replicating the AT-LSTM model as our baseline system on
the SemEval 2014 Task 4, restaurant domain dataset. Later, we design and
experiment different approaches to effectively merge sentiment lexicons
with the baseline model. One of the approaches, which we name ATLX
yields notable improvement, while requiring less complexity in terms of
model architecture and feature engineering. It consists of applying the
attention vector α on the lexical features given directly by the sentiment
lexicon as numerical values, and the fusion of all weighted representations
is connected to the final output layer for prediction. We later validate the
same approach on the SemEval 2015 Task 12, laptop domain dataset. A
similar performance improvement is observed compared to the baseline.

In Chapter 5, the baseline AT-LSTM model is explained in Section 5.1,
followed by the details of the ATLX model in Section 5.2. The related
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experiments are discussed in Section 6.1 of Chapter 6.

1.6.2 Attention Regularization
Regarding the over-fitting problem of the attention vector mentioned in
Section 1.5.2, we do observe evidence that the attention vector could be
over-fitting by being too sparse. Meanwhile, we also observe in ATLX
that by applying the attention vector on the lexical features, it is able to
reduce the over-fitting effect of the attention mechanism. Namely, the stan-
dard deviation of the attention weights distribution for the test set in ATLX
(0.0219) is significantly lower than in the baseline (0.0354).

Following this idea, we explore the effect of regularizing attention vec-
tors by introducing an attention regularization term in the loss function
to allow the network to have a broader “focus” on different parts of the
sentence. We design and experiment two regularizers: a standard devia-
tion regularizer and a negative entropy regularizer. Experimental results
suggest that both regularizers are able to improve the baseline, where the
negative entropy regularizer yields the largest improvement.

Details of the regularization method are described in Section 5.3 of
Chapter 5. Experiment details are discussed in Section 6.2 of Chapter 6.

1.6.3 Domain & Aspect Adaptation
As mentioned in Section 1.4 and Section 1.5.3, domain and context depen-
dent problems can be a major obstacle for sentiment analysis. Thus we are
interested to see whether it is possible to further improve the ATLX system
with a more fine-grained lexicon.

To do that, we adopt one of the state of the art sentiment domain adap-
tation methods, the one by Mudinas et al. (2018), which consists of a word
vector based semi supervised approach; and apply it to convert the gen-
eral lexicon constructed for ATLX to a domain specific one of electronics
reviews. We then compare the performance gain of the general lexicon,
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the domain specific lexicon, and a gold lexicon for laptop reviews labeled
by ourselves by applying them in the ATLX system on the SemEval 2015
Task 12, laptop domain dataset.

As a result, we find that in general, domain-specific lexicons do im-
prove the model performance compared to a generic one; however, the
performance ceiling suggested by the gold lexicon is rather low. More-
over, as most domain adaptation works are done by recreating an existing
domain specific lexicon and neutral words are often ignored, we find that
the role of neutral words are rather important when applying the adapted
lexicon in the model.

In addition, we also intend to create a fine-grained aspect specific senti-
ment lexicon with a similar approach. However, no performance improve-
ment can be achieved. We believe the main reason for that is that not
enough seed examples can be constructed easily to reflect the aspect de-
pendent cases (e.g. “cheap price” vs “cheap quality”). On the other hand,
the number of cases which is related to the aspect dependent issue is rather
low, so that it may be difficult to reflect on the evaluation metrics.

Details of domain adaptation approach are described in Section 5.4 of
Chapter 5. Experiment results are discussed in Section 6.3 of Chapter 6.

1.6.4 Contribution
In this thesis, we propose a novel method named ATLX for aspect level
sentiment analysis that leverages an attention LSTM neural network and
sentiment lexicons to improve the robustness and flexibility of the model.
The proposed method is experimented on the SemEval 2014 Task 4, restau-
rant domain dataset. A paper that describes this method and its related
experiments has been published in Bao et al. (2019).

On the other hand, we expose the fact that the attention mechanism
could over-fit and hurt the model when applied early in the network; and
two regularizers are proposed to validate and overcome this effect. Details
of the approaches have also been described in the paper Bao et al. (2019).
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An additional batch of experiments on a different dataset (SemEval
2015 Task 15, laptop domain) that validate the ATLX model and the atten-
tion regularization methods are carried out as well. A paper that describes
the details of the experiments and extended analysis has been submitted to
the Language Resource and Evaluation Journal.

Moreover, we apply a vector-based domain adaptation method for sen-
timent induction and evaluate the performance gain of a domain specific
lexicon in the ATLX system. Compared to the commonly used evaluation
method for sentiment domain adaptation that recreates an existing domain-
specific lexicon, we find that a good evaluation score on the lexicon eval-
uation does not necessarily translate to a performance improvement when
applied in the ATLX model.
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Chapter 2

LITERATURE REVIEW

Sentiment Analysis as a valuable NLP field has been extensively studied
in the past decades. In this chapter, we will review the formal definition of
sentiment analysis and take a deeper look at sentiment analysis at different
levels with their advantages and disadvantages. We will also review the
common methods proposed by researchers along the years. Meanwhile,
we will also cover common methods for sentiment lexicon generation and
sentiment domain adaptation, as they are important aspects of this thesis.
On the other hand, existing methods that integrate sentiment lexicons with
deep neural networks will be mentioned. Finally, we will discuss the works
on attention regularization that try to shape the attention vector to be more
sparse.

As Machine Learning (ML) methods are extensively adopted in the
NLP field, having some knowledge on ML could be helpful for navigat-
ing in this chapter. The commonly used methods of both classical machine
learning and deep learning are briefly introduced in the Chapter 4, with a
focus of the methods that are directly related to our research. For readers
that are not familiar with ML, it is recommended to read Chapter 4 first.
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2.1 Sentiment Analysis (SA)
Opinions have always been an important part in all human activities and
key influencers of our behaviors as our beliefs and perceptions of reality
and the choices we make are conditioned at a certain level upon how others
see and evaluate the world. As a result, opinions affect us deeply consid-
ering the fact that people tend to seek opinions from others when it comes
to decision making. In an era of social media and connectivity, the size of
data has been growing exponentially as web users are becoming increas-
ingly enthusiastic about interacting, sharing, and working together through
online collaborative media (Cambria, 2016). In order to effectively process
these data and extract valuable insights from them, there thus has been the
need of an automated method to extract opinions at scale: sentiment anal-
ysis.

Sentiment analysis has many different names: e.g. opinion mining,
opinion extraction, sentiment classification, sentiment mining, subjectiv-
ity analysis, affect analysis, emotion analysis, review mining, etc. It is
the field of study that analyzes people’s opinions, sentiments, evaluations,
appraisals, attitudes, and emotions towards entities such as products, ser-
vices, organizations, individuals, issues, events, topics, and their attributes
(Liu, 2012). As the meaning of opinion itself is still very broad, sentiment
analysis and opinion mining mainly focuses on opinions that express or
imply positive, neutral or negative sentiments.

Early researches of sentiment analysis date back to the beginning of
the 21st century, when researchers began to realise the value of this field
(Wiebe et al., 1999; Wiebe, 2000; Turney, 2002; Pang et al., 2002; Mori-
naga et al., 2002; Das et al., 2004). However, the terms of sentiment anal-
ysis and opinion mining did not come out until later in 2003 when Na-
sukawa and Yi (2003) and Dave et al. (2003) first adopted them in their
works. Before the year 2000, unlike fields such as linguistics or other
NLP tasks, there have been few researches conducted in the field of sen-
timent analysis. The main reason for that is that the industries that value
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sentiment analysis also started to flourish in the 21st century, for instance,
e-commerce giants such as Amazon, eBay, Alibaba, etc. On the other hand,
as the center of online contents has been shifting from websites, blogs and
forms to micro-blogs and social media, sentiment analysis also contributes
dearly to researches such as finance (Pagolu et al., 2017), social science
(Zhou et al., 2013) and political science (Caetano et al., 2018).

2.1.1 Applications
According to Liu (2012), opinions are central to almost all human activ-
ities because they are key influencers of our behaviors, as whenever we
need to make a decision, we want to know others’ opinions. In the real
world, businesses and organizations always want to find consumer or pub-
lic opinions about their products and services. Individual consumers also
want to know the opinions of existing users of a product before purchasing
it, and others’ opinions about political candidates before making a voting
decision in a political election. In the past, when an individual needed
opinions, he/she asked friends and family. When an organization or a busi-
ness needed public or consumer opinions, it conducted surveys, opinion
polls, and focus groups. Acquiring public and consumer opinions has long
been a huge business itself for marketing, public relations, and political
campaign companies.

With the explosive growth of social media (e.g., reviews, forum discus-
sions, blogs, micro-blogs, twitter, comments and posts in social networks)
on the internet, individuals and organizations are increasingly using the
content in these media for decision making. Nowadays, if one wants to
buy a consumer product, it is no longer limited to asking one’s friends and
family for opinions because there are already many user reviews and dis-
cussions about the product existing on the internet. For an organization, it
may no longer be necessary to conduct surveys, opinion polls, and focus
groups in order to gather public opinions because there is an abundance
of such information publicly available. However, finding and monitor-
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ing opinion sites on the internet and distilling the information contained
in them remains a formidable task because of the proliferation of diverse
sites. Each site typically contains a huge volume of opinion text that is not
always easily deciphered in long blogs and forum postings. The average
human reader will have difficulty identifying relevant sites and extracting
and summarizing the opinions in them. On the other hand, many organiza-
tions also have internal data, e.g. customer feedback collected from emails
and call centers or results from surveys conducted by the organizations.
Thus automated sentiment analysis systems are needed.

Due to the high demand from businesses and organizations for an au-
tomated sentiment analysis system, in recent years, besides the commonly
seen review summarization function on e-commerce websites such as Ama-
zon or applications such as Google Maps; there have been a great number
of sentiment analysis tool vendors ranging from start-ups to tech giants.
For example, in business intelligence, there is usually the need of brand
monitoring or social listening, which consists of a sentiment analysis sys-
tem deployed on real-time data flow; marketers use tools such as Awario,
Brandwatch, HubSpot, Hootsuite, Lexalytics, etc. to monitor the public
opinion of their brand or product in real time. More recently, cloud com-
puting platforms such as Microsoft Azure, Google Cloud, Amazon Web Ser-
vice, etc. have been providing sentiment analysis as a SaaS (software as
a service) service within their AI and NLP functionalities, which allows
users to consume their trained models through web API in order to build
more customized solutions.

From an applied research’s perspective, along the years there have been
many application oriented research papers published; for instance, Liu
et al. (2007) proposed a sentiment-aware model for predicting sales per-
formance using blogs; McGlohon et al. (2010) uses reviews to rank prod-
ucts and merchants in order to measure their quality; Hong and Skiena
(2010) studied the relationship between the NFL betting line and public
opinions expressed in blogs and micro-blogs (twitter). On political sci-
ence, in O’Connor et al. (2010), public opinion measured from polls are
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connected with sentiment measured from text; in Tumasjan et al. (2010),
twitter sentiment is studied with the hypothesis of mirroring offline po-
litical sentiment; in Chen et al. (2010), political standpoints were studied
using an opinion scoring model; in Yano and Smith (2010), a method was
proposed to model the relationship between the text of a political blog post
and its comment volume. When it comes to social matters, in some works
(Asur and Huberman, 2010; Sadikov et al., 2009; Joshi et al., 2010), twit-
ter data, movie reviews and blogs were used to predict the success and
revenues of movies; Miller et al. (2011) investigated sentiment flow in so-
cial networks; Sakunkoo and Sakunkoo (2009) studied social influences
in online book reviews; Groh and Hauffa (2011), used sentiment analysis
to characterize social relations; Mohammad and Yang (2011) studied sen-
timents in emails to find gender differences on emotional axes; and later,
emotions in novels and fairy tales were studied as well (Mohammad, 2012).
Regarding finance, in Bollen et al. (2011) twitter moods were adopted to
predict the stock market; in Bar-Haim et al. (2011); Feldman et al. (2011),
expert investors in micro-blogs were identified and sentiment analysis of
stocks was performed; in Zhang and Skiena (2010), blog and news senti-
ment was used to study trading strategies.

More recently, Ceron et al. (2014) used sentiment analysis to study the
online popularity of Italian political leaders throughout 2011 and the vot-
ing intention of French users in both the 2012 presidential ballot and the
subsequent legislative election. Fan et al. (2017) proposed a novel method
that combines time series forecasting and sentiment analysis that uses his-
torical sales data and online reviews product sales forecasting. Ren et al.
(2019) studied the investor psychology reflected by online textual data as
an indicator of stock market. Ilyas et al. (2020) evaluated the public senti-
ment and opinion on Brexit during September and October 2019 using 16
million tweets by quantifying daily public sentiment towards Brexit and
using it to evaluate Brexit’s impact on the British currency exchange rate
and stock markets in Britain. Pokharel (2020) studied the sentiment on
Twitter during the COVID-19 outbreak. Muthukumar and Zhong (2021)
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proposed a novel deep learning model called ST-GAN (Stochastic Time-
series Generative Adversarial Network), that analyzes both financial news
texts and financial numerical data to predict stock trends.

2.1.2 Problem Definition

As briefly mentioned in Section 2.1, sentiment analysis is the field of study
that analyses people’s opinion; however, opinion has a very broad mean-
ing, it can mean people’s sentiments, evaluations, appraisals, attitudes and
emotions. In NLP as the problem definition, sentiment analysis is the study
of opinions that express or imply positive, neutral or negative sentiments
expressed in natural languages. In order to fully capture the complexity
and inner connections between sub-problems that exist within the problem
itself, it is necessary to abstract a structure from the complex unstructured
natural language text.

Opinion Definition

Taken from Liu (2012), we use the following example of a Canon cam-
era review to illustrate the key components of an opinion. Although it is
a review from almost 10 years ago, the fact that nowadays cameras still
uses battery, picture quality still matters, and people still buy cameras on-
line and leave reviews on websites; the example still feels appropriate for
defining what is an opinion:

Posted by John Smith on September 10th, 2011: “(1) I bought a Canon
G12 camera six months ago. (2) I simply love it. (3) The picture quality is
amazing. (4) The battery life is also long. (5) However, my wife thinks it is
too heavy for her.”

In this piece of review document, we can observe a few things:
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1. Sentiment (s): there are multiple opinions expressed, both positive,
neutral and negative. E.g. in sentence (2), there is a general positive
opinion on the Canon G12 camera as a whole; sentence (3) expresses
a positive opinion on the picture quality; sentence (4) expresses a
positive opinion on the battery life. On the other hand, sentence
(5) expresses a negative opinion on the weight of the camera; and
sentence (1) is considered neutral as it simply states a fact and no
opinion is expressed there.

2. Holder (h): the opinions in this review document come from two
different persons, which are also know as opinion sources or opinion
holders (Kim and Hovy, 2004; Wiebe et al., 2005). In sentences (2),
(3) and (4), the opinions come from the author of the review (John
Smith); while in the sentence (5), it comes from the author’s wife.

3. Time (t): there is a timestamp associated with the review document:
September 10th, 2011. The time factor is important as the expressed
opinion may change over time; and in practice, one often likes to
study how opinion shifts through time.

4. Entity (e): there is a target for every sentiment expressed, however,
the targets could be different even in the same review document. For
instance, in sentence (2) the target is Canon G12, while in sentence
(3) and (4), the targets are picture quality and battery life respec-
tively. It is important to understand that in fact the target in sentence
(3) should be picture quality of Canon G12, and the target in sen-
tence (4) should be battery life of Canon G12; otherwise, without
knowing the sentences are evaluating attributes of the Canon G12
camera, the opinions alone in sentence (3) and (4) are of little use.

Thus, let us use the term entity to denote the target object that has
been evaluated. In practice, the target can often be decomposed and
described in a structured manner with multiple levels, which greatly
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facilitate both mining of opinions and later use of the mined opinion
results. For example, picture quality of Canon G12 can be decom-
posed into an entity and an attribute of the entity and represented as
a pair: (Canon-G12, picture-quality).

5. Aspect (a): typically, under the context of a product or service re-
view, the entity and its attributes form a hierarchical relation and
opinions are usually expressed either on a specific attribute of the
entity or on the entity as a whole. For instance, in our example, sen-
tence (2) expresses a positive opinion on the entity Canon G12 as
a whole; sentences (3), (4) and (5) each express opinion on one at-
tribute of the entity, namely picture quality, battery life and weight
respectively. To capture this tree structured relation, let us use the
term aspect to denote each of the leafs of an entity node. For in-
stance, Canon G12 is the node entity with leaf aspects such as: pic-
ture quality, battery life and weight.

Thus, given the 5 observed points, we can now define an opinion as a
quintuple:

(ei, aij, sijkl, hk, tl)

where ei is the name of an entity, aij is an aspect of ei, sijkl is the sentiment
expressed by opinion holder hk at time tl on the aspect aij of entity ei.
The sentiment sijkl is positive, neutral or negative, or is expressed with
different strength/intensity levels, e.g. 1 to 5 stars as used by most review
websites. When an opinion is on the entity itself as a whole, the special
aspect GENERAL is used to denote it. Here, ei and aij together represent
the opinion target.

In this definition, all five components are essential, as missing any of
them will be problematic for sentiment analysis; meanwhile, as indicated
by the subscripts, all five components must have a strict and corresponding
relation with one another. For instance, if the time component is missing,
it will be impossible to analyze opinions on an entity with respect to time,
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which is often very important in practice as an opinion on something two
years ago might not be the same as the one of today. In addition, knowing
an opinion without knowing its opinion holder is hard to have any value;
for instance, consider the sentence “The mayor is loved by the people in
the city, but he has been criticized by the state government.”, it is clear that
knowing the opinion holders (“people in the city” and “state government”)
in this sentence is crucial for applications. Thus, the definition provides a
framework to transform unstructured text to structured data; and in prac-
tice, the quintuple above is often adopted as a database schema, based on
which the extracted opinions can be put into a database table, from which
a rich set of qualitative, quantitative, and trend analyses of opinions can be
performed.

However, this definition is not perfect as it covers most but not all pos-
sible faces of the semantic meaning of an opinion, which can be arbitrarily
complex in natural languages. For instance, it does not cover the situation
in “The viewfinder and the lens are too close.”, which expresses an opinion
on the distance of two parts; it also does not cover the context of the opin-
ion, e.g. “This car is too small for a tall person.”, which does not say the
car is too small for everyone. In some other cases, the quintuple framework
may not be able to catch nested relations between entities and aspects; for
instance, in a printer review that says “The ink of this printer is too expen-
sive.”, ink can be treated as an aspect of the printer entity, but it can also
be treated as a entity itself as the opinion expressed in the example is tar-
geting ink as an object that is related to a printer. Despite the limitations,
in practice, the quintuple definition does cover the essential information of
an opinion which is sufficient for most practical applications.

Sentiment Analysis Tasks

With this definition of opinion, we can now define the objective of senti-
ment analysis as: discover all opinion quintuples (ei, aij, sijkl, hk, tl) in
a given opinion document d (Liu, 2010, 2011).
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Naturally, the first step is to extract entities. In fact, the extraction is
very similar to another well studied NLP problem: named entity recog-
nition (NER) (Mooney and Bunescu, 2005; Hobbs, Jerry; Riloff, 2010;
Ma et al., 2016; Lample et al., 2016; Li et al., 2020a), which consists of
identifying and grouping textual elements into predefined categories such
as Person, Organization, Location, Time, etc.; in this case, entities such
as Canon G12 camera. As it is common in natural language text that the
same entity is often referred to with different expressions (e.g. Motorola
can be written as: Mot, Moto or Motorola), the extracted entity expres-
sions need to be categorized as referring to the same entity. In practice,
each entity should have a unique name in a particular application. The
process of grouping entity expressions into entities is also known as entity
categorization.

Next, when identifying aspects, the same problem occurs. For instance,
picture, image, and photo are different expressions referring to the same as-
pect. Thus the same approach for entity extraction and entity categorization
is applied to aspects. Similarly, each aspect should have a unique name in a
particular application; the process of grouping aspect expressions is called
aspect categorization.

Later, with the extracted and categorized entities and aspects, the fol-
lowing task is to classify the polarity expressed on the entity-aspect pairs
as positive, neutral or negative.

Formally, let ei be an entity, which can be expressed by any one of
a finite set of its entity expressions {eei1, eei2, ..., eeim}; aij be an aspect
of ei, where aij can be expressed with any one of its finite set of aspect
expressions {aeij1, aeij2, ..., aeijn}. Let d be an opinion document that
contains a set of entities {e1, e2, ..., er} and a subset of their aspects from a
set of opinion holders {h1, h2, ..., hp} at some particular time point tl.

Thus, given a set of opinion documents D = {d1, d2, ..., du}, sentiment
analysis can be broken down into into 6 tasks:

1. Entity Extraction and Categorization: Extract all entity expres-

22



sions in D and categorize synonymous entity expressions into en-
tity clusters, where each entity expression cluster corresponds to a
unique entity ei.

2. Aspect Extraction and Categorization: Extract all aspect expres-
sions of the entities and categorize them into aspect clusters; each
aspect expression cluster of entity ei represents a unique aspect aij .

3. Opinion holder extraction and categorization: Extract opinion
holders for opinions fromD and categorize them (similar to previous
tasks). Each opinion must have an opinion holder hk.

4. Time Extraction and Standardization: Extract timestamps when
opinions are given and standardize different time formats (similar to
previous tasks). Each opinion must have a corresponding timestamp
tl.

5. Aspect Sentiment Classification: Determine whether an opinion
expressed on an aspect aij is positive, neutral or negative, or assign
a numeric polarity value to the opinion. The polarity of the opinion
is denoted as sijkl.

6. Opinion Quintuple Generation: Generate all opinion quintuples
expressed in each document d ∈ D as (ei, aij, sijkl, hk, tl).

To better understand the tasks of sentiment analysis, consider the fol-
lowing example (Liu, 2012):

Posted by bigJohn on September 15th, 2011: “(1) I bought a Samsung
camera and my friends brought a Canon camera yesterday. (2) In the past
week, we both used the cameras a lot. (3) The photos from my Samy are not
that great, and the battery life is short too. (4) My friend was very happy
with his camera and loves its picture quality. (5) I want a camera that can
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take good photos. (6) I am going to return it tomorrow.”

According to the previous definitions, Task 1 should extract the entity
expressions: “Samsung”, “Samy” and “Canon”, and group “Samsung” and
“Samy” to represent the same entity. Task 2 should extract the aspect ex-
pressions: “picture”, “photo” and “battery life”, and group “picture” and
“photo” as the same aspect as they share the same meaning in the cam-
era domain. Task 3 should identify the opinion holder in sentence (3) as
the author of the post bigJohn, and the opinion holder in sentence (4) as
bigJohn’s friend. Task 4 should find the timestamp when the post was pub-
lished, namely “2011-09-15”. Task 5 should determine that: sentence (3)
expresses a negative opinion on the picture quality of the Samsung camera,
and also a negative opinion on its battery life; sentence (4) gives a positive
opinion on the Canon camera as a whole, and also on its picture quality.
In practice, the rest of the sentences should be identified as neutral as they
do not contain opinions on entities or aspects; however, for the purpose of
avoiding over-complication, neutral cases are not considered here. Finally,
Task 6 should generate the following opinion quintuples:

(Samsung, picture quality, negative, bigJohn, 2011-09-15)

(Samsung, battery life, negative, bigJohn, 2011-09-15)

(Canon, GENERAL, positive, bigJohn’s friend, 2011-09-15)

(Canon, picture quality, positive, bigJohn’s friend, 2011-09-15)

Sentiment analysis based on these exact tasks is also called aspect-
based sentiment analysis or aspect level sentiment analysis (Hu and Liu,
2004a; Liu et al., 2005). In fact there are generally three levels of sentiment
analysis with increasing granularities: document level, sentence level and
aspect level. In the following sections (Section 2.1.3, Section 2.1.4, Sec-
tion 2.1.5), details of the different levels of sentiment analysis and related
researches will be discussed.
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2.1.3 Document Level Sentiment Analysis
According to the definition by Liu (2012), the task of document level sen-
timent analysis is to classify whether generally an opinion document ex-
presses a positive, neutral or negative sentiment (Pang et al., 2002; Turney,
2002; Teng et al., 2016; Zou et al., 2018). For instance, an online review
about a certain product can be considered as a document, thus the system
needs to determine whether the review expresses an overall positive, neu-
tral or negative opinion about that product. The task is also commonly
known as document-level sentiment classification because it considers the
whole document as a basic information unit.

Formally, based on the framework defined in Section 2.1.2, given an
opinion document d evaluating an entity, the task of document level senti-
ment analysis is to determine the overall sentiment s of the opinion holder
about the entity; i.e. determine the sentiment s expressed on the aspect
GENERAL in the quintuple:

( , GENERAL, s, , )

where s can be a categorical label and the task is treated as a classification
problem (e.g. positive, slight-positive, negative, etc.); or a numerical value
in a given range that indicates the intensity and polarity of the sentiment
(e.g. 1 to 5); in the case of numerical value, the task is treated as a regres-
sion problem. The entity e, opinion holder h and timestamp t are assumed
to be known or irrelevant; the reason for that is the fact that document level
sentiment analysis is usually based on an assumption: it assumes that the
opinion document d (e.g. a product review) expresses opinions on a single
entity e from a single opinion holder h at a single time t.

This assumption holds true for most product/service reviews as a post
is usually targeting a specific product or service and is written by a single
author; thus extracting e, h and t is rather easy. However, it does not hold in
the case of a forum or a blog post, as in them the author usually expresses
opinions on multiple entities. Therefore, in practice, when an opinion doc-
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ument evaluates more than one entity, or multiple opinion holders express
different opinions in a single document, it does not make sense to apply
document-level sentiment analysis to assign one sentiment orientation to
the entire document.

Sentiment Classification with Supervised Learning

Sentiment classification is essentially a text classification problem. Similar
but different to other text classification problems such as topic classifica-
tion (e.g. news, politics, science, sports, etc.), where topic related words
are important features. Sentiment classification is usually a binary (pos-
itive, negative) or ternary (positive, neutral, negative) classification prob-
lem, where opinion words (e.g. good, bad, great, amazing, etc.) are key
features.

As a text classification problem, any existing supervised learning method
can be applied, for instance, Naı̈ve Bayes (Wiebe et al., 1999; Weich-
selbraun et al., 2013), Support Vector Machines (SVM) (Joachims, 1998;
Scholkopf and Smola, 2018), Maximum Entropy (Lu et al., 2011), K-nearest
Neighbor (KNN) (Wu et al., 2009) and Neural Networks (Tang et al., 2014).
On the other hand, besides the general supervised learning algorithms,
many works have been done exploring different linguistic features to push
the boundary of sentiment analysis. For instance, word terms and frequen-
cies (TF-IDF) (Martineau et al., 2008), part of speech (POS) (Wu et al.,
2018), sentiment lexicons (Zhang et al., 2011) and syntactic dependency
(Di Caro and Grella, 2013). In addition, instead of applying standard ma-
chine learning methods, Dave et al. (2003) proposed a score function based
on words in positive and negative reviews; Teng et al. (2016) proposed a
weighted-sum model which consists of representing the final prediction
as weighted sum of model prediction and polarities provided by lexicon.
Zou et al. (2018) described a framework to assign higher weights to opin-
ion words found in lexicon by transforming lexicon polarity to sentiment
degree.
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Prior to the take off of deep learning, there have already been a great
number of researches done in the literature which mostly combine machine
learning algorithms with hand-crafted linguistic features. For instance,
Pang and Lee (2004) proposed a graph based minimum cut algorithm for
sentiment classification. Mullen and Collier (2004) used syntactic relations
together with diverse information sources in a SVM classifier. Kennedy
and Inkpen (2006) studied the role of sentiment shifters (negations, inten-
sifiers, and diminishers) on movie reviews. Cui et al. (2006) compared
passive-aggressive algorithm based classifiers (a family of margin based
online learning algorithms for binary classification, e.g. an online version
of SVM) with language model based classifiers using n-grams features.
Ng et al. (2006) studied the role of linguistic knowledge sources in review
identification and classification. Abbasi et al. (2008) proposed an entropy
weighted genetic algorithm (EWGA) that incorporates information-gain
heuristics for feature selection in different languages. Martineau et al.
(2008) proposed a new weighted representation scheme (Delta-TFIDF)
to improve sentiment analysis. Li et al. (2009) proposed a non-negative
matrix factorization method. Dasgupta and Ng (2009) experimented with
a semi-supervised approach for sentiment classification combining active
learning and ensemble learning. Kim et al. (2009) proposed a new term
weighting scheme leveraging collection statistics, topic characteristics and
opinion properties. Qiu et al. (2009) proposed a self-supervised, lexicon-
based and corpus-based model for sentiment classification. Nakagawa
et al. (2010) proposed a dependency tree based method using conditional
random fields (CRF) (Lafferty et al., 2001) with hidden variables. Yesse-
nalina et al. (2010) proposed a joint two-level approach that distinguishes
useful sentences from unuseful ones to help sentiment classification. Liu
(2010) compared different linguistic features for both blog and review sen-
timent classification. Wang et al. (2011) proposed a graph based approach
to classify twitter hastag sentiment. Maas et al. (2011) presented a prob-
abilistic model that uses a mix of unsupervised and supervised techniques
to learn word vectors capturing sentiment content. Bespalov et al. (2011)
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proposed an efficient embedding method for projecting n-gram phrases to
low-dimensional latent semantic space through a deep neural network, and
applied it in sentiment classification. Glorot et al. (2011) proposed a sys-
tem based on stacked denoising autoencoder with sparse rectifier units,
which learns to extract a meaningful representation for each review in an
unsupervised fashion.

In the last decades, computation power and digital data has been in-
creasing exponentially, which enables deep neural networks such as Long
Short-term Memory (LSTM) (Hochreiter and Schmidhuber, 1997) and Con-
volutional Neural Network (CNN) (LeCun et al., 1998) to be back under
the spotlight as they yield significant improvements across a variety of
tasks compared to previous state of the art methods. For instance, CNN
based ImageNet (Krizhevsky et al., 2012) in computer vision and Recur-
rent Neural Network (RNN) based encoder-decoder structure for machine
translation (Cho et al., 2014) are both considered milestones that had a
great impact on both academia and industry in the recent years.

In addition, compared to traditional text representation methods such
as bag of words (BOW) or TF-IDF, where each word is represented as a
single dimension in a discontinuous high-dimensional space (i.e. each in-
dex of a vector represents a word where the length of the vector is equal to
the vocabulary size); inspired by training language models using deep neu-
ral networks, Mikolov et al. (2013a,b) proposed a new method for learning
distributed word representations (also known as word embeddings or word
vectors) which is able to represent a word with multidimensional features.
Intuitively, the meaning of a word can be different under different con-
texts, so that it is reasonable that distributed word representation is better
than traditional representation methods as it encodes richer contextual in-
formation and forms a continuous vector space for word representations.

With distributed word representations, sentiment classification can be
conducted using a variety of neural network models following the tradi-
tional supervised learning setting. In some cases, neural networks may
only be used to extract text features/text representations, and these features
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are fed into some other non-neural classifiers (e.g. SVM) to obtain a fi-
nal global optimum classifier. The properties of neural networks and SVM
complement each other in such a way that their advantages are combined
(Zhang et al., 2018a).

More specifically, early works focused on improving the word repre-
sentations. For example, Moraes et al. (2013) compared SVM with ar-
tificial neural networks (ANN) for document level sentiment analysis and
demonstrated that ANN achieved competitive results compared to SVM in
most cases. To overcome the drawbacks of BOW representation (losing
the ordering and semantics of words), Le and Mikolov (2014) introduced
paragraph vector, an unsupervised algorithm that learns fixed-length fea-
ture representations from variable-length pieces of texts, and experimented
with sentiment analysis. Johnson and Zhang (2015) designed a new vari-
ation of CNN and tested it with sentiment classification, namely, a BOW
specific convolution layer to directly learn embeddings of small text re-
gions on the high-dimensional text representation. Meanwhile, by con-
catenating the one-hot vector of multiple words, the sequential information
of the text is able to be captured as well. Tang et al. (2015b) incorporated
user and product level information through vector space models into a neu-
ral network approach for document level sentiment classification; thus the
network is capable of capturing important global clues such as individual
preferences of users or overall qualities of products to boost performance.

Later, more complicated neural networks such as CNN, LSTM and at-
tention became more popular. For instance, Tang et al. (2015a) introduced
a hybrid neural network framework to learn vector-based document repre-
sentation in a unified bottom-up fashion by combining sentence representa-
tions obtained from CNN or LSTM in a RNN network to adaptively encode
semantics of sentences and their relations as document representation. The
learned document representation is then tested on several sentiment clas-
sification corpus. Xu et al. (2016) proposed a Cached Long Short-term
Memory Neural Network (CLSTM) to capture the overall semantic infor-
mation in long texts; where a cache mechanism was introduced to divide
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memory into several groups with different forgetting rates and thus enables
the network to keep sentiment information better within a recurrent unit.
The intuition is to enable the memory groups with low forgetting rates to
capture global semantic features and the ones with high forgetting rates
to learn local semantic features. Yang et al. (2016) proposed a hierarchi-
cal attention network that mirrors the hierarchical structure of documents
to construct document representation by applying two levels of attention
mechanisms at the word and sentence level. Zhou et al. (2016) proposed
an attention-based bilingual representation learning model which learns
the distributed semantics of the documents in both the source and the tar-
get languages; later a hierarchical attention mechanism for the bilingual
LSTM network is used for document representation and classification. In
this setting, it effectively adapts the sentiment information from a resource-
rich language (English) to a resource-poor language (Chinese) and helps
improve the sentiment classification performance. Chen et al. (2016) pro-
posed a hierarchical neural network to incorporate global user and product
information into sentiment classification. The model is capable of lever-
aging user and product information via attention over different semantic
levels due to its ability of capturing crucial semantic components. Sim-
ilarly, Dou (2017) proposed a deep memory network for document-level
sentiment classification which could capture the user and product informa-
tion at the same time; where LSTM is first applied to learn the document
representation, and later, a deep memory network consisting of multiple
computational layers (hops) is used to predict the review rating for each
document.

Later on, some other models and techniques (e.g. autoencoder and
adversarial network) that come from other machine learning practices are
brought to sentiment analysis. For example, Zhai and Zhang (2016) pro-
posed a semi-supervised autoencoder that handles scalability problems when
large vocabulary size leads to high dimensionality, and deals with task-
irrelevant words at the same time. The model considers sentiment infor-
mation in its learning stage in order to obtain better document vectors for
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sentiment classification. Li et al. (2017b) proposed an adversarial memory
network for cross-domain sentiment classification in a transfer learning
setting, where the data from the source and the target domain are mod-
elled together. It jointly trains two networks for sentiment classification
and domain classification. Yin et al. (2017) tackled the task of document
level sentiment classification as a machine comprehension problem where
pseudo question-answer pairs are constructed by a small number of aspect-
related keywords and aspect ratings; a hierarchical interactive attention-
based model was adopted to represent both word level and sentence level
information. Rao et al. (2018) propose a new neural network model (SR-
LSTM) to capture the semantic relations between sentences in document-
level sentiment classification. The model is composed by two hidden lay-
ers: one layer learns sentence vectors to represent semantics of sentences
with LSTM, and in the other layer, the relations of sentences are encoded
in document representation.

More recently, Li et al. (2018) proposed Hierarchical User Aspect Rat-
ing Network (HUARN) that adopts a hierarchical architecture to encode
word, sentence, and document level information, so that user preference
and overall ratings are considered jointly and merged through attention
mechanism for document representation. The document representation
is then combined with user and overall rating information for prediction.
Rhanoui et al. (2019) extended the traditional document level sentiment
analysis setting from short documents to long texts (e.g. newspaper arti-
cles) and proposed a hybrid model combining CNN, Bi-LSTM (Bidirec-
tional LSTM) and document embeddings to deal with long texts. Pröllochs
et al. (2019) adopted a novel strategy for learning fully interpretable nega-
tion rules via weak supervision (i.e. reinforcement learning) to find a pol-
icy that reconstructs negation rules from sentiment predictions at document
level. Barnes (2019) reported a hierarchical multi-task network that uses
shared lower-layers in a deep Bi-LSTM model to predict negation, while
the higher layers are dedicated to predict sentiment at document-level. The
multi-task component shows promise as a way to incorporate information
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on negation into deep neural sentiment classifiers. Jain et al. (2020) pro-
posed a hybrid framework, Senti-NSetPSO, to analyse large-sized text data,
which consists of a binary and a ternary classifier based on hybridization of
particle swarm optimization (PSO). Liu et al. (2020b,a) proposed a novel
hierarchical neural network model based on Dynamic Word Embeddings
(HieNN-DWE) for document level sentiment classification. The model
consists of two encoders designed to capture both lower (sentence) and
higher (document) level features given ELMo embeddings (Embeddings
from Language Models); namely, a Bidirectional Gated Recurrent Unit
(BiGRU) with attention mechanism for sentence encoding, and a BiGRU
with CNN combination for global level representation. The multi level rep-
resentations are then concatenated to make the final prediction. Wen et al.
(2020) proposed a novel speculative sentiment classification model (SSC),
in which the idea that users with similar rating behaviours are more likely
to write documents of similar sentiments toward a product is explored. In
SSC, three different components that encode user-product interaction in-
formation, document representation and aggregated speculative informa-
tion are applied and integrated into a unified model.

Sentiment Classification with Unsupervised Learning

Since a labeled corpus for training a supervised sentiment analysis model is
not always available, it is definitely worth the effort to develop an unsuper-
vised approach; however, the amount of published works in the literature
is far less than it is with supervised learning. The reason for that could be:
first, more labeled corpus on a variety of domains had become available as
more resources were invested into the field. Second, sentiment expressed
by words is highly context and domain dependent so that it is impossible to
achieve great performance through fixed language resources such as sen-
timent lexicons, which is what most of the unsupervised approaches rely
on.

The approaches that rely on sediment lexicons are also known as lexicon-
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based methods, which consists of using a dictionary of opinion words and
phrases with their associated sentiment orientation or strength; and it in-
corporates intensification and negation to compute a sentiment score for
each document (Taboada et al., 2011). As an important resource for many
sentiment analysis tasks, details about sentiment lexicons will be discussed
in Section 2.2. Similar works at different levels such as Ding et al. (2008),
where Opinion Observer was proposed. It consists of a holistic lexicon-
based approach by exploiting external evidences and linguistic conventions
of natural language expressions. Based on sets of linguistic patterns and an
aggregation function, the system is capable of handling opinion words that
are context dependent; dealing with special words and phrases that have
an impact on the polarity; and effectively aggregating multiple conflicting
opinion words in a sentence. In Paltoglou and Thelwall (2012), focus-
ing on the more common informal textual communication on the internet,
such as online discussions, tweets and social network comments, they pur-
posed an intuitive unsupervised lexicon-based approach that estimates the
level of emotional intensity contained in text in order to make a predic-
tion. Later, Hu et al. (2013) studied the problem of unsupervised sentiment
analysis with emotional signals, where they investigated the possibility to
help sentiment analysis by providing a unified way to introduce emotion
signals to an unsupervised learning framework. Dayalani et al. (2014) pro-
posed a simple yet unsupervised method for twitter sentiment analysis. The
system is built by clustering tweets using emoticons and inferring a polar-
ity thesaurus at the same time. Jiménez-Zafra et al. (2016) described an
unsupervised approach for aspect-based sentiment analysis by adopting a
lexicon-based method combining different linguistic resources and ensem-
ble several distinct classifiers to improve the classification. The scores are
then aggregated to give a document level prediction. Cheng et al. (2017)
studied a novel problem of unsupervised sentiment analysis with signed
social networks, in which they incorporated explicit sentiment signals in
textual terms and implicit sentiment signals from signed social networks
into a coherent model SignedSenti for unsupervised sentiment analysis.

33



Fernández-Gavilanes et al. (2018) proposed a novel approach to predict
sentiments expressed by emojis in online textual messages (e.g. tweets) by
automatically constructing a novel emoji sentiment lexicon using an unsu-
pervised sentiment analysis system based on the definitions given by emoji
creators in Emojipedia; additionally lexicon variants were also created au-
tomatically by considering the sentiment distribution of the texts around
emojis. Vashishtha and Susan (2019) proposed a fusion system with fuzzy
rules involving multiple lexicons and datasets to compute the sentiment of
social media posts, where a set of NLP and word sense disambiguation
techniques are combined.

Besides most approaches that involve a sentiment lexicon in some dif-
ferent ways, there are a few other interesting unsupervised methods as well.
For instance, Turney (2002) proposed an algorithm based on some fixed
syntactic patterns such as part-of-speech (POS) tags, that are likely to be
used to express opinions. The algorithm consists of three steps: 1) two con-
secutive words are extracted if their POS tags conform to any of the prede-
fined patterns; 2) the sentiment orientation (SO) of the extracted phrases is
estimated using the pointwise mutual information (PMI) measure based on
its association with the positive reference word “excellent” and the nega-
tive reference word “poor”; 3) given a review, the algorithm computes the
average SO of all phrases in the review and classifies the review as positive
if the average SO is positive and negative otherwise. Zhang et al. (2013)
proposed a hierarchical generative model based on Naı̈ve Bayes and LDA
for unsupervised sentiment analysis at sentence level and document level
simultaneously; the model named NB-LDA assumes that each sentence
instead of words has a latent sentiment label, and then the sentiment la-
bel generates a series of features for the sentence independently in a Naı̈ve
Bayes manner. Zhang et al. (2018b) investigated the feasibility of quantum
probability theory for twitter sentiment analysis using the density matrix
defined on the quantum probabilistic space to perform unsupervised senti-
ment analysis. The idea is to artificially create two sentiment dictionaries,
generate density matrices of documents and dictionaries using an extended
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Quantum Language Model (QLM), then employ the quantum relative en-
tropy to judge the similarity between density matrices of documents and
dictionaries. Yadav and Chakraborty (2020) introduced methods that use
different kinds of multilingual and cross-lingual embeddings to efficiently
transfer knowledge from monolingual text to code-mixed text for senti-
ment analysis of code-mixed texts. Zeng et al. (2020) proposed a new
approach to unsupervised sentiment analysis: instead of using gold labels
provided by domain experts, target-opinion word pairs are used as a super-
vision signal (e.g. in “the room is big”, (room, big) is a target-opinion word
pair, which can be extracted by dependency parsing and simple rules). By
introducing a latent variable, i.e. the sentiment polarity to the objective
function, a sentiment classifier is trained by optimizing the evidence lower
bound during prediction of an opinion word given a target word. Inspired
by Radford et al. (2017), where a single unit of the byte-level recurrent
language model, trained in a completely unsupervised manner, is capable
of encoding sentiment in the representation. Saji and Whig (2020) ex-
plored the possibility of learning sentiment representation through simple
LSTM networks trained on a limited amount of training samples, in which
language models were trained separately on positive and negative review
datasets (e.g. IMDB movie reviews) and evidence for differentiating posi-
tive word vectors and negative word vectors were found.

Sentiment Classification as Regression

Since sentiment can also be expressed as degrees or scores (e.g. a value
between the range of [−1,+1] or 1-5 stars), instead of treating sentiment
analysis as a classification problem, it can be formulated as a regression
problem as well.

Pang and Lee (2005) addressed the problem by determining the eval-
uation with respect to a multi-point scale (1 to 5 stars), where SVM re-
gression, SVM multi-class classification and a meta labeling method were
compared; the results suggested that the regression method is similar to the
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classification method in terms of performance. Goldberg and Zhu (2006)
improved this approach by presenting a graph-based semi-supervised learn-
ing algorithm to address the sentiment analysis task as rating inference,
which used both labeled and unlabeled reviews. The unlabeled reviews
were also the test reviews whose ratings need to be predicted. The idea
is that, in the graph, each node is a document and the link between two
nodes is the similarity value between the two documents; a large similarity
weight implies that the two documents tend to have the same sentiment
rating. In the paper, experiments with several different similarity schemes
were tested. The algorithm also assumes that initially a separate learner has
already predicted the numerical ratings of the unlabeled documents. The
graph based method only improves them by revising the ratings through
solving an optimization problem to force ratings to be smooth throughout
the graph with regard to both the ratings and the link weights.

Instead of predicting the rating of each review, Snyder and Barzilay
(2007) studied the problem of predicting the rating for each aspect by for-
mulating the task as a multiple aspect ranking problem, where the goal
is to produce a set of numerical scores, one for each aspect. Thus two
models were proposed: aspect model (which works on individual aspects)
and agreement model (which models the rating agreement among aspects).
Both models were combined in learning, and lexical features such as uni-
gram and bi-grams from each review were used for training. Thus the algo-
rithm jointly learns ranking models for individual aspects by modeling the
dependencies between assigned ranks, and guides the prediction of individ-
ual rankers by analyzing meta-relations between opinions, such as agree-
ment and contrast. Liu and Seneff (2009) proposed a parse-and-paraphrase
paradigm to assess the degrees of sentiment for product reviews, which
consists of extracting adverb-adjective-noun phrases (e.g., “very nice car”)
based on clause structure obtained by parsing sentences into a hierarchical
representation. A robust general solution was also proposed for model-
ing the contribution of adverbials and negation to the score for degree of
sentiment, in which sentiment scores were assigned according to a heuris-
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tic method which computes the contribution of adjectives, adverbials and
negations to the sentiment degree based on the ratings of reviews where
these words occurred.

Later, Qu et al. (2010) addressed the limitations of uni-gram and n-
gram text representations in opinion mining: uni-grams cannot capture
important expressions such as “could have been better”; and n-grams of
words, on the other hand, capture such phrases, but typically occur too
sparsely in the training set and fail to yield robust predictors. Thus a new
bag-of-opinions representation was proposed to overcome the limitations
of these two models, which is different from the traditional bag-of-words
representation. In the opinion representation, each of the opinions is a
triplet: a sentiment word, a modifier, and a negator (e.g. in “not very
good”, “good” is the sentiment word, “very” is the modifier and “not”
is the negator). For sentiment classification of two classes (positive and
negative), the opinion modifier is not crucial but for rating prediction, it
is very important and so is the impact of negation. A constrained ridge
regression method was developed to learn the sentiment score or strength
of each opinion from domain-independent corpora of rated reviews. The
key idea of learning was to exploit an available opinion lexicon and the
review ratings to transfer the regression model to a newly given domain-
dependent application. The algorithm derives a set of statistics over the
opinion scores and then uses them as additional features together with the
standard uni-grams for rating prediction.

More recently, as social media users are increasingly using additional
images and videos to express their opinions and share their experiences,
You et al. (2016) extended the data source of sentiment analysis from tex-
tual to visual and proposed a cross-modality consistent regression (CCR)
model, which is able to utilize both the state-of-the-art visual and textual
sentiment analysis techniques. The model consists of a fine-tuned convolu-
tional neural network (CNN) for image sentiment analysis and a paragraph
vector model for textual sentiment analysis, and the multi-modality regres-
sion model is trained on top of them. Later, Zhang et al. (2018c) improved
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the CCR model by fusing semantic embeddings, sentiment embeddings
and lexicon embeddings into a CNN framework through three different at-
tention models including attention vector, LSTM attention and attentive
pooling. Jiang et al. (2018) Proposed an ensemble regression algorithm
that effectively integrates four different features extracted from text data,
namely linguistic features, sentiment lexicon features, domain-specific fea-
tures and word embedding features. The solution was tested in the SemEval
2017 Task 5 competition and ranked 1st and 5th in subtask 1 and sub-
task 2 respectively. Saad and Yang (2019) studied twitter sentiment analy-
sis based on ordinal regression using machine learning techniques, which
consists of first pre-processing tweets using a feature extraction method
that creates an efficient feature representation; then, the extracted features
are scored and balanced under several classes. Finally, multinomial logis-
tic regression (SoftMax), Support Vector Regression (SVR), Decision Trees
(DTs), and Random Forest (RF) algorithms are used for sentiment analysis
classification in the proposed framework.

Summary

Sentiment classification at the document level provides an overall opinion
on an entity, topic or event. It has been studied by a large number of re-
searchers. However, this level of classification has some shortcomings for
applications (Liu, 2012):

• In many applications, the user needs to know additional details, e.g.,
what aspects of entities are liked and disliked by consumers, which
is very important for gaining business insights. In typical opinion
documents, such details are provided, but document sentiment clas-
sification does not extract them for the user.

• Document sentiment classification is not easily applicable to non-
reviews such as forum discussions, blogs, microblogs, and news ar-
ticles, because many such postings can evaluate multiple entities and
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compare them. In reality, it is sometimes hard to determine whether
a post actually evaluates the entities that the user is interested in, and
whether the post expresses any opinion at all, let alone to determine
the sentiment about them. Without in-depth and more complicated
natural language processing, document-level sentiment classification
cannot perform such fine-grained tasks. In fact, online reviews do
not need sentiment classification because almost all reviews already
have user-assigned star ratings; in practice, it is the forum discus-
sions, blogs and microblogs that need sentiment classification to de-
termine people’s opinions about different entities and topics.

2.1.4 Sentence Level Sentiment Analysis
As document level sentiment analysis may not offer all of what is needed
for most applications, it is natural to move to a lower level: sentence level,
i.e., to classify sentiment expressed in each sentence. One could also re-
gard sentence level sentiment classification as a special case of the docu-
ment level task where each document consists of a single sentence. In this
way, there is no fundamental difference between document and sentence
level classifications because sentences can be seen as just short documents.
Thus, as defined in Section 2.1.3, sentence level sentiment analysis can be
described as: given a sentence x evaluating an entity, determine the overall
sentiment s of x. Same as document level, the task can be seen as to deter-
mine the sentiment s expressed on the aspect GENERAL in the quintuple:

( , GENERAL, s, , )

where s is often a class of positive, neutral or negative. The entity e, opin-
ion holder h and timestamp t are assumed to be known and singular (s
expresses opinions on a single entity e from a single opinion holder h at a
single time t). Besides, sentence level sentiment classification also makes
the assumption that a sentence usually contains a single opinion (although
not true in all cases) (Liu, 2012).
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So far, there have been two approaches for solving sentence sentiment
classification: applying directly ternary classification on the input sen-
tence; or treating it as a two step classification problem. In the second
case, the first step is to classify whether a sentence expresses an opinion or
not. Then, the second step is to classify opinion sentences into positive and
negative as a binary classification. The first step is usually called subjectiv-
ity classification, which determines whether a sentence expresses a piece of
subjective information or factual (objective) information (Hatzivassiloglou
and Wiebe, 2000; Riloff and Wiebe, 2003; Yu and Hatzivassiloglou, 2003;
Wilson et al., 2004; Wiebe et al., 2004; Riloff et al., 2006; Wilson et al.,
2006). In practice the two classes opinionated and not opinionated are
commonly used instead of subjective and objective; as under the context of
sentiment analysis an objective sentence could also express opinion. For
instance, consider the sentence “It stopped working yesterday.”; it is an ob-
jective sentence but it implies a negative sentiment about the product due
to an undesirable fact. Thus, it is more appropriate for the first step to clas-
sify each sentence as opinionated or not opinionated, regardless whether it
is subjective or objective. However, due to the common practice, the term
subjectivity classification is still usually used in the domain of sentiment
analysis.

In reality, however, it is more common to adopt the other approach
that directly performs ternary classification on a given sentence for sen-
tence level sentiment analysis. For example, Hatzivassiloglou and Wiebe
(2000); Yu and Hatzivassiloglou (2003) adopted a Bayesian classifier for
discriminating subjectivity at document level, and later at sentence level,
a modified log-likelihood ratio algorithm was proposed to determine the
sentiment orientation for each adjective, adverb, noun and verb. The sen-
tence level opinion is then aggregated from a lower level, using the average
log-likelihood scores. Hu and Liu (2004a) proposed a lexicon-based algo-
rithm for aspect level sentiment classification, which can determine the
sentiment orientation of a sentence as well. It was based on a sentiment
lexicon generated using a bootstrapping strategy with some given positive
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and negative sentiment seed words and their synonyms and antonyms rela-
tions extracted from WordNet. The sentiment orientation of a sentence was
determined by summing up the orientation scores of all sentiment words
in the sentence. A positive word was given the sentiment score of +1 and
a negative word was given the sentiment score of -1. Negation words and
contrary words (e.g., “but” and “however”) were also considered. Kim and
Hovy (2004) adopted a similar approach, which consists of scoring sen-
timent words and determining the sentiment orientation of a sentence by
multiplying the scores of the sentiment words in the sentence. Again, a
positive word was given the sentiment score of +1 and a negative word
was given the sentiment score of −1. Two other aggregation methods for
sentiment scores were also experimented but they yielded inferior results.
Gamon et al. (2005) presented a system named Pulse for mining topics
and sentiment orientation jointly from free text customer feedback. The
system consists of a semi-supervised learning algorithm, based on Expec-
tation Maximization (EM) using the Naı̈ve Bayes classifier (Nigam et al.,
2000), that learns from a small set of labeled sentences and a large set of
unlabeled sentences.

Different from the generative models mentioned previously, discrim-
inative models have been widely adopted later. For instance, McDonald
et al. (2007) proposed a hierarchical sequence learning model that takes
into account information at varying levels of granularity. The model is sim-
ilar to CRF (Lafferty et al., 2001), which jointly learns and infers sentiment
at both the sentence-level and the document-level. Each sentence and doc-
ument in the training set was labeled with a sentiment individually. Exper-
iment results showed that learning at both levels simultaneously improved
classification accuracy for both levels. Similarly, Täckström and McDon-
ald (2011) reported a partially semi-supervised model which consists of a
fusion of a fully supervised structured conditional model and its partially
supervised counterpart. Both models leverage abundant natural supervi-
sion in the form of review ratings, as well as a small amount of manually
crafted sentence labels, to perform sentence-level sentiment classification.
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Hassan et al. (2010) present a method to identify the attitude of participants
in an online discussion toward one another. As the focus was on the dis-
cussion recipient, the algorithm only used sentence segments with second
person pronouns. The first step was to find sentences with attitudes using
supervised learning, where the input features were generated by Markov
models. Followed by the second step that determines the orientation of the
attitudes, for which a lexicon-based method similar to that in Ding et al.
(2008) was used; except that the shortest path in the dependence tree was
utilized to determine the orientation when there were conflicting sentiment
words in a sentence, while Ding et al. (2008) used words distance. Davi-
dov et al. (2010) proposed a supervised sentiment classification framework
based on data from Twitter where each tweet is considered a single sen-
tence. By utilizing 50 Twitter tags and 15 smileys as sentiment labels, this
framework avoids the need for labor intensive manual annotation, allowing
identification and classification of diverse sentiment types of short texts.

Same as document level sentiment analysis, the focus on sentence level
has also been shifting to deep learning, as it does not require hand-crafted
features, yet is able to push the state of the art performance. Compared to
traditional methods, architectures such as CNN and RNN use distributed
word representations (word embeddings) as input which already encode
some semantic and syntactic information. Moreover, these models can
help learn intrinsic relationships between words in a sentence as well.

For instance, according to Zhang et al. (2018a), Socher et al. (2011)
first proposed a Semi-supervised Recursive Autoencoder Network for sen-
tence level prediction of sentiment label distributions; then followed by
Socher et al. (2012, 2013), a model named Recursive Neural Tensor Net-
work (RNTN) that captures tree structured syntactic relations was presented.
The model naturally gains advantage on understanding compositional mean-
ing of longer phrases. Later, the tree structured model was further im-
proved by Tai et al. (2015) combining with Long Short-term Memory (LSTM)
(Hochreiter and Schmidhuber, 1997), a basic building block that deals
with vanishing or exploding gradient when training deep neural networks.
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Meanwhile, based on the tree structured network, Qian et al. (2015) pro-
posed two more advanced models: Tag-guided Recursive Neural Network
(TG-RNN), which chooses a composition function according to the part-
of-speech tags of a phrase; and Tag-embedded Recursive Neural Network
(TE-RNN/RNTN), which learns tag embeddings and then combines tag and
word embeddings together. Kalchbrenner et al. (2014) proposed Dynamic
Convolutional Neural Network (DCNN) for the semantic modelling of sen-
tences. By using the dynamic K-Max pooling operator as a non-linear sub-
sampling function, the network handles input sentences of varying length
and induces a feature graph over the sentence that is capable of explic-
itly capturing short and long-range relations. Kim (2014) proposed to use
CNN directly for sentence-level sentiment classification and experimented
with several variants, namely CNN-rand (where word embeddings are ran-
domly initialized), CNN-static (where word embeddings are pre-trained
and fixed), CNN-non-static (where word embeddings are pre-trained and
fine-tuned) and CNN-multichannel (where multiple sets of word embed-
dings are used). Dos Santos and Gatti (2014) proposed a new deep neural
network model: Character to Sentence CNN (CharSCNN), which uses two
convolutional layers to extract relevant features from character to sentence-
level to perform sentiment analysis of short texts (tweets).

On the other hand, Wang et al. (2015) adopted a LSTM recurrent net-
work for twitter sentiment analysis by simulating the interactions of words
during the compositional process. With the help of gates and constant
error carousels in the memory block structure, the model could handle in-
teractions between words through a flexible compositional function. Mul-
tiplicative operations between word embeddings through gate structures
are used to provide more flexibility and to produce better compositional
results compared to the additive ones in simple recurrent neural networks.
Besides, the unidirectional LSTM can be extended to a bidirectional LSTM
(Graves and Schmidhuber, 2005) by allowing bidirectional connections in
the hidden layer. Wang et al. (2016a) proposed a regional CNN-LSTM
model, which consists of two parts: regional CNN and LSTM, to pre-
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dict the valence arousal (VA) ratings of text. Unlike a conventional CNN
which considers a whole text as input, the regional CNN uses an individual
sentence as a region, dividing an input text into several regions such that
useful information in each region can be extracted and weighted accord-
ing to their contribution to the VA prediction. The regional information
is then sequentially integrated by a LSTM. Wang et al. (2016b) described
a jointed CNN and RNN architecture that takes advantage of the coarse-
grained local features generated by CNN and the long-distance dependen-
cies learned via RNN for sentiment analysis of short texts. Guggilla et al.
(2016) conducted experiments using CNN and LSTM on two claim data
sets compiled from online user comments for claim classification (clas-
sifying sentences to be factual or feeling), where word embeddings and
linguistic embeddings were used. Huang et al. (2017) proposed a frame-
work to learn tag-specific composition functions and tag embeddings in
recursive neural networks, in order to utilize POS tags to control the gates
of tree-structured LSTM networks and enhance sentence/phrase represen-
tations. Akhtar et al. (2017) proposed a novel method for combining deep
learning and classical feature based models using a Multi-Layer Percep-
tron (MLP) network for financial sentiment analysis, in which several deep
learning models (e.g. CNN, LSTM, GRU) are trained on top of financial
word embeddings and lexicon features pre-trained on autoencoders. Fi-
nally, an ensemble is constructed combining all deep learning models and
a classical supervised SVM model.

Moreover, hybrid approaches have been widely adopted as well. For
instance, Guan et al. (2016) proposed a novel CNN framework for review
sentiment classification for sentences which employs previously available
ratings as weak supervision signals. The framework consists of two steps:
first, learn a high level representation (embedding space) which captures
the general sentiment distribution of sentences through rating information;
second, add a classification layer on top of the embedding layer and use
labeled sentences for supervised fine-tuning. Teng et al. (2016) proposed
a context-sensitive lexicon-based method based on a simple weighted-sum
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model, using a bidirectional LSTM network to learn the sentiments strength,
intensification and negation of lexicon sentiments in composing the senti-
ment value of sentences. Yu and Jiang (2016) studied the problem of learn-
ing generalized sentence embeddings for cross-domain sentence sentiment
classification and designed a neural network model containing two sepa-
rated CNNs that jointly learn two hidden feature representations from both
the labeled and unlabeled data. Zhao et al. (2017) propose a recurrent ran-
dom walk network learning framework for the problem by exploiting both
users’ posted tweets and their social relations in microblogs. Mishra et al.
(2017) proposed a framework based on CNN that learns cognitive features
from both gaze data (eye-movement) and text data from readers, and uses
them to classify the input text. The experiment results showed that cogni-
tive enriched features improve the model performance. Qian et al. (2017)
proposed a linguistically regularized LSTM for sentence-level sentiment
classification, in which the linguistic role of sentiment lexicons, negation
words, and intensity words were modeled, so as to capture the sentiment
effect in sentences more accurately.

More recently, Lutz et al. (2018) proposed a method that uses dis-
tributed word representations and multi-instance learning to transfer in-
formation from the document-level to the sentence-level in the financial
domain, so that investors and professionals can apply the utmost atten-
tion and detailed, domain-specific knowledge by assessing the information
on a fine-grained basis. Hayashi and Fujita (2019) presented a method to
calculate sentence vectors from word vectors, and a sentence level senti-
ment classification model is trained using sentence vectors and sentence
polarities. In addition, a weight mechanism was proposed to help bet-
ter compose sentence vectors by assigning higher value to word vectors.
Zhang et al. (2019b) proposed a three-way enhanced convolutional neural
network model named 3W-CNN, which consists of the ensemble of the
deep learning based method and the traditional feature-based method. The
model puts together a CNN model and a SVM with Naı̈ve Bayes selected
features (NB-SVM). Lin et al. (2020) proposed the use of a word-level sen-
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timent bidirectional LSTM together with the self-attention mechanism for
sentence-level sentiment classification, along with a finance report dataset
for sentence-level financial risk detection. Wang et al. (2020) studied the
problem of learning with noisy labels for sentence-level sentiment classifi-
cation, where a novel DNN model called NETAB (as shorthand for convo-
lutional neural networks with AB-networks) was proposed to handle noisy
labels during training. NETAB consists of two convolutional neural net-
works, one with a noise transition layer for dealing with the input noisy
labels and the other for predicting “clean” labels. The two networks were
trained using their respective loss functions in a mutual reinforcement man-
ner.

Summary

Compared to document level sentiment classification, the task at sentence
level has a higher granularity and moves closer to sentiments on the targets.
However, in real-life applications, several shortcomings can still be seen:

• In reality, it is usually not enough to provide users only the sentence
level sentiment information, additional details such as which entities
or aspects of entities are liked or disliked are more important for
gaining business insights.

• It is often seen that one sentence may carry different (or even oppo-
site) sentiments on different targets. For example, “Apple is doing
very well in this lousy economy.”, or “I like the food here but the
service is awful!”. In the last sentence, only aspect level sentiment
analysis can precisely extract valuable sentiment information from
the text; namely, positive sentiment on the target (aspect) food, and
negative sentiment on the target (aspect) service.
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2.1.5 Aspect-based Sentiment Analysis

As described in Section 2.1.3 and Section 2.1.4, document level and sen-
tence level sentiment analysis are often insufficient for applications be-
cause they do not extract the relation between the sentiment and the target
which the sentiment is expressed on. Moreover, even assuming that each
document and sentence evaluates a single entity, it is not guaranteed that
all aspects in the same document/sentence receive the same sentiment. For
instance, in the sentence “This car is beautiful but difficult to drive.”, mul-
tiple opinions are expressed towards different aspects of a car (positive on
the aspect APPEARANCE, and negative on the aspect FUNCTION). In the
sentence “The screen of this phone is amazing, but the battery sucks.”, a
positive opinion is expressed on the aspect SCREEN and a negative opinion
is expressed on the aspect BATTERY LIFE.

On the other hand, as opinion words are domain dependent, it could
create big problems for sentiment analysis. For example, in the electronics
or laptops review domain, fallout or excel are neutral proper nouns refer-
ring to a video game and a software; however, in a generic context fallout
and excel usually carry negative and positive sentiment respectively. Some-
times, the same opinion word may even carry different sentiment when
describing different targets/aspects. For instance, “cheap price” carries a
positive sentiment while “cheap plastic” is definitely negative. For more
examples, consider: “black screen” vs “black macbook”; “loud speaker”
vs “loud click”; “low price” vs “low grade”.

Thus, to extract a detailed information and overcome the domain- and
context-dependent problem of opinion words, it is absolutely necessary to
move to a more fine-grained level: aspect level, and perform aspect-based
sentiment analysis (ABSA). As described in Section 2.1.2, the objective of
ABSA is to discover every quintuple (ei, aij, sijkl, hk, tl) in a given doc-
ument d; and six tasks are performed to achieve this goal. For research
purposes, as different tasks usually require different strategies, ABSA has
been simplified to consider three of the six tasks. Namely, entity extrac-
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tion, aspect detection and aspect sentiment classification. Due to the fact
that most of the corpora used for ABSA are online reviews, it is common to
assume that the entities are already known when studying ABSA. Adding
the fact that entity detection and aspect extraction are essentially the same
task with different outputs, we summarize ABSA to the following two core
tasks:

1. Entity/Aspect extraction: This task extracts aspects (or entities)
that have been evaluated. For example, in the sentence, “The voice
quality of this phone is amazing”, the aspect is VOICE QUALITY of
the entity represented by “this phone”. In the case of “I love this
phone.”, the sentence evaluates the phone as a whole, i.e., the GEN-
ERAL aspect of the entity represented by “this phone”. As mentioned
previously, it is common to assume the entity is known when work-
ing with online reviews, and thus consider the aspects only.

2. Aspect sentiment classification: This task determines whether the
opinions on different aspects are positive, neutral, or negative. In the
first example above, the opinion on the VOICE QUALITY aspect is
positive. In the second example, the opinion on the aspect GENERAL
is also positive.

Entity/Aspect Extraction

In most cases, entity detection and aspect extraction are treated as an infor-
mation extraction task, using similar methods to named entity recognition
(NER). NER is a NLP task with the objective of identifying and grouping
textual elements into predefined categories (e.g. person, organization, lo-
cation and time); in other words, extracting structured information from
unstructured data. In the case of ABSA, the system should identify enti-
ties such as “SONY camera”, “iPhone”, “HP laptop”; and aspects such as
FOOD, SERVICE, LENS, BATTERY, etc. from unstructured corpora.

48



Commonly, approaches such as rule-based methods and sequence learn-
ing models are applied for the task. For instance, in Riloff and Jones
(1999); Cimiano and Völker (2005), a bootstrapping method for NER was
proposed by searching patterns such as “offices in X”, “facilities in X” or
“city/organization such as X” where “X” represents seed entities. Simi-
larly in ABSA, frequent nouns and nouns phrases are firstly searched to
be candidate entities or aspects, later by following the dependency pattern,
more targets can be found given the same sentiment words. For exam-
ple, given “picture” as a known aspect and “amazing” as a known senti-
ment word. In the sentence “The pictures are absolutely amazing.”, the
sentiment word and the aspect word form a dependency pattern. By fol-
lowing this dependency pattern, more aspects such as “software” can be
found in sentences like “The software is amazing.” (Hu and Liu, 2004b).
In Kobayashi et al. (2007), a more sophisticated approach was proposed
that first identifies opinion words using a dictionary and then looks for its
candidate aspects using syntactic patterns. On the other hand, Popescu and
Etzioni (2005) proposed an approach based on pointwise mutual informa-
tion (PMI), which consists of a measurement of the co-occurrence of two
terms in a large corpus, so that the higher the score, the more similar two
terms are. In this case, they first defined a set of phrases based on patterns
associated with a given term; for instance, aspects of the term “scanner”
often come with phrases like “X of scanner”, “scanner has X” or “scan-
ner comes with X” etc., where “X” stands for candidate aspects. The PMI
score is then measured by searching in a large corpus, and words occurring
together more frequently with the predefined terms tend to have higher
scores and thus are more likely to be the correct aspect.

Regarding sequence-based learning models, as in information extrac-
tion tasks, algorithms such as Hidden Markov Model (HMM) (Rabiner,
1989) and Conditional Random Fields (CRF) (Lafferty et al., 2001) are
commonly adopted. Just like in NER, finding entities and aspects in ABSA
can be treated as a sequence labeling problem, and thus be dealt with both
HMM (Jin et al., 2009; Jin and Ho, 2009) and CRF (Jakob and Gurevych,
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2010; Li et al., 2010). As HMM measures the joint probability of a se-
quence based on the Markov Assumption: it assumes that the probability
of the current state is only based on its immediate predecessor and is in-
dependent of all its ancestors. However, CRF models a conditional prob-
ability over a hidden sequence given its observation sequence. It releases
the strong independence assumption made by HMM as it takes the whole
input sequence features into account to predict on each state. Thus, in this
case, when comparing generative models (e.g. Naı̈ve Bayes, HMM, etc.)
to discriminative models (e.g. Logistic Regression, CRF, etc.), discrimina-
tive models generally perform better and are favored in most cases (Zhang
and Liu, 2015).

In some other cases, unsupervised topic modeling algorithms such as
Probabilistic Latent Semantic Analysis (pLSA) and Latent Dirichlet Allo-
cation (LDA) were also adopted for aspect detection by a number of re-
searchers (Lu et al., 2009; Moghaddam and Ester, 2011; Titov and Mc-
Donald, 2008; Titov and Mcdonald, 2008). More recently, deep neural net-
works such as CNN, LSTM, Bi-LSTM and Seq2Seq have also been widely
adopted (Poria et al., 2016; Jebbara and Cimiano, 2016; Giannakopoulos
et al., 2017; Schmitt et al., 2020; Gandhi and Attar, 2020; Ma et al., 2020).

Aspect Sentiment Classification

Regarding the second task of ABSA: sentiment classification, there are in
general two main approaches in the literature for determining the senti-
ment orientation expressed on each aspect in a sentence: the lexicon-based
approach and the supervised learning approach (Liu, 2012).

The lexicon-based approaches are typically unsupervised (Ding et al.,
2008; Hu and Liu, 2004a), which have been shown to perform quite well
in a large number of domains. Usually, the sentiment lexicons are dictio-
naries that contain sentiment words, phrases, and idioms as keys; and their
associated polarities as values. To perform sentiment classification, they
are commonly used jointly with methods such as composite expressions,
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heuristic rules and sentence parse trees to determine the sentiment orienta-
tion on each aspect in a sentence. Meanwhile, special conditions such as
negations, sentiment shifters, but-clauses and many other constructs which
may affect sentiments are considered as well.

For instance, in Ding et al. (2008), a four steps approach was taken.
1) All sentiment words and phrases in the sentence are marked and as-
signed with a score of +1 for positive or −1 for negative. 2) Sentiment
shifters (also called valence shifters in Polanyi and Zaenen (2005)), which
consist of words and phrases that can reverse sentiment orientations (e.g.
not, never, none, cannot, etc.), are used to shift the sentiment orientation
of certain polarities marked in step 1. 3) The system handles words or
phrases that indicate contrary, like but-clauses by changing the sentiment
orientation. 4) Finally, an opinion aggregation function is applied to the re-
sulting sentiment scores to determine the final orientation of the sentiment
on each aspect in the sentence. Formally, let the sentence be s, which con-
tains a set of aspects a1, a2, ..., am and a set of sentiment words or phrases
sw1, sw2, ..., swn with their sentiment scores obtained from steps 1-3. The
sentiment orientation for each aspect ai in s is determined by:

score(ai, s) =
∑
owj∈s

swj.so

dist(swj, ai)

where swj is a sentiment word/phrase in s, dist(swj, ai) is the distance be-
tween aspect ai and sentiment word swj in s. swj.so is the sentiment score
of swi. The multiplicative inverse is used to give lower weights to senti-
ment words that are far away from aspect ai. If the final score is positive,
then the opinion on aspect ai in s is positive; if the final score is negative,
then the sentiment on the aspect is negative; otherwise, it is neutral. In
fact, there are many opinion aggregation methods. For example, Hu and
Liu (2004a) simply summed the sentiment scores of all sentiment words in
a sentence; Kim and Hovy (2004) used multiplication of sentiment scores;
some other similar methods were also employed by other researchers (Wan,
2008; Zhu et al., 2009).
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Regarding the supervised learning approach, in general, methods men-
tioned previously in Section 2.1.3, 2.1.4 on document and sentence level
are applicable as well. Meanwhile, some methods designed specifically for
ABSA were proposed. For instance, Wei and Gulla (2010) proposed a hier-
archical classification model using a sentiment ontology tree that leverages
the knowledge of hierarchical relationships of products attributes to bet-
ter capture sentiment aspect relations. Similar to Boiy and Marie-Francine
(2008), Jiang et al. (2011) applied a dependency parser to generate a set
of aspect dependent features and context features for twitter sentiment
classification. Dong et al. (2014) proposed Adaptive Recursive Neural
Network (AdaRNN) for target-dependent twitter sentiment classification,
which adaptively propagates the sentiments of words to targets depending
on the context and syntactic relationships between them. The model uses
the representation of the root node as features, and feeds them into the soft-
max layer to predict the distribution over classes. In Vo and Zhang (2015),
instead of relying on parse trees, which are subject to noise for informal
text such as tweets, they proposed a method to automatically extract a rich
set of features from unsupervised learning methods to enhance the perfor-
mance of the classifier. In particular, a tweet is split into a left context and a
right context according to a given target, then distributed word representa-
tions and neural pooling functions are used to extract features. Zhang et al.
(2016) proposed a novel model based on Dong et al. (2014) and Vo and
Zhang (2015) to address the limitation of pooling functions, which do not
explicitly model tweet-level semantics. First, a bi-directional gated neural
network is used to connect the words in a tweet so that pooling functions
can be applied over the hidden layer instead of words for better represent-
ing the target and its contexts. Second, a three-way gated neural network
structure is used to model the interaction between the target mention and
its surrounding contexts.

On the other hand, the LSTM network and the attention mechanism
became widely popular for ABSA. For example, Tang et al. (2016a) pro-
posed Target Dependent LSTM (TD-LSTM) and Target Connection LSTM
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(TC-LSTM) to extend LSTM by taking the target into consideration. The
given target is regarded as a feature and concatenated with its context
features for aspect sentiment classification, thus the influences of differ-
ent context words on determining the sentiment polarity of a sentence
towards a target is considered. Ruder et al. (2016) modeled the inter-
dependencies of sentences in a review with a hierarchical bidirectional
LSTM for ABSA, where the model is capable of leveraging both intra- and
inter-sentence relations. The model consists of feeding first word embed-
dings to a sentence-level bidirectional LSTM. Hidden states of the forward
and backward LSTM are concatenated together with the target embedding
and fed to a bidirectional review-level LSTM. At every time step, the out-
put of the forward and backward LSTM is concatenated and fed into a
final layer, which outputs a probability distribution over sentiments. Wang
et al. (2016c) proposed an attention-based LSTM with aspect embeddings,
which was proven to be an effective way to enforce the neural model to
attend to the related part of a sentence given different aspects. The model
consists of learning an attention vector with the concatenation of LSTM
hidden states and aspect embeddings, and then use it to obtain a final rep-
resentation of the input sentence given an aspect. Tang et al. (2016b) intro-
duced a deep memory network for aspect level sentiment classification that
explicitly captures the importance of each context word when inferring the
sentiment polarity of an aspect. Such importance degree and text repre-
sentation are calculated with multiple computational layers, each of which
is a neural attention model over an external memory. Lei et al. (2016)
proposed to use a neural network approach to extract pieces of input text
as rationales (reasons) for sentiment analysis, where two modular compo-
nents are combined, namely a generator and an encoder. The generator
specifies a distribution over text fragments as candidate rationales, which
are passed through the encoder for prediction.

Later, Yang et al. (2017) proposed two attention-based bidirectional
LSTMs to improve the classification performance. Cheng et al. (2017) pro-
posed a HiErarchical ATtention (HEAT) network for ABSA, which con-
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tains a hierarchical attention module, consisting of aspect attention and
sentiment attention. The aspect attention extracts the aspect-related infor-
mation to guide the sentiment attention to better allocate aspect-specific
sentiment words of the text. Chen et al. (2017) propose a novel framework
based on neural networks for ABSA that adopts a multiple-attention mech-
anism to capture sentiment features separated by a long distance, so that it
is more robust against irrelevant information. The results of multiple atten-
tions are non-linearly combined with a GRU recurrent neural network and a
weighted-memory mechanism. Liu and Yue (2017) extended the attention
modelling by differentiating the attention obtained from the left context
and the right context of a given target/aspect. They further controlled their
attention contribution by adding multiple gates. Li et al. (2017a) merged
the target identification task and the sentiment classification task together
to perform ABSA by proposing an end-to-end deep memory network (At-
tNet), in which the two sub-tasks are interleaved by a deep memory net-
work. In this way, signals produced in target detection provide clues for
polarity classification, and reversely, the predicted polarity provides feed-
back to the identification of targets. Ma et al. (2017) proposed Interactive
Attention Networks (IAN) to interactively learn attention in the contexts
and targets, and generate the representations for targets and contexts sepa-
rately. With this design, the IAN model can well represent a target and its
collocating context, which is helpful for ABSA. Tay et al. (2017) proposed
a novel extension of end-to-end memory networks named Dyadic Memory
Networks (DyMemNN) that models dyadic interactions between aspect and
context, by using either neural tensor compositions or holographic compo-
sitions for memory selection operation.

More recently, Liu et al. (2018) proposed a content attention based
ABSA model, which consists of two attention enhancing mechanisms: a
sentence-level content attention mechanism and a context attention mech-
anism. He et al. (2018) proposed two novel approaches for improving the
effectiveness of the attention mechanism for ABSA, which consists of a
method for obtaining target representation that better captures the seman-
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tic meaning of the opinion target, and an attention model that incorporates
syntactic information into the attention mechanism. Zhu and Qian (2018)
proposed a deep memory network with auxiliary memory to learn aspect
features and term features simultaneously, where a main memory module
is used to capture the important context words for sentiment classification,
and an auxiliary memory module is used to implicitly convert aspects and
terms to each other, and feed both of them to the main memory module.
Ma et al. (2018) proposed a solution for ABSA that leverages common-
sense knowledge by combining a LSTM network with a hierarchical two
level attention mechanism (target-level and sentence-level); an extension
of LSTM named Sentic LSTM was proposed to carefully encode the com-
monsense knowledge into a recurrent order. Xing et al. (2019) proposed
a variant of LSTM: aspect-aware LSTM (AA-LSTM). Compared to most
attention LSTM methods that learn the attention vector after the LSTM
encoding, AA-LSTM incorporates aspect information into LSTM cells in
the context modeling stage before the attention mechanism. Therefore,
the model can dynamically produce aspect-aware contextual representa-
tions. Xu et al. (2019) extended ABSA to Review Reading Comprehension
(RRC) that aims to turn customer reviews into a large source of knowl-
edge that can be exploited to answer user questions, where BERT was
used for post-training. Sun et al. (2019) constructed auxiliary sentences
from aspect terms and converted ABSA to a sentence-pair classification
task, similar to question answering and natural language inference. Simi-
lar to Xu et al. (2019), the pre-trained language model BERT was used for
fine-tuning. Garcı́a-Dı́az et al. (2020) proposed an ontology-driven aspect-
based sentiment analysis for infodemiology where ontologies are used to
extract features on the infectious disease domain with concepts such as
risks, symptoms, transmission methods and drugs; and the relationship be-
tween these concepts is measured in order to determine the degree to which
one concept influences other concepts. Finally, all information is applied
in a deep learning model for ABSA. Huang et al. (2020) propose a weakly-
supervised approach for ABSA, which uses only a few keywords describ-
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ing each aspect/sentiment without using any labeled examples. The model
first learn sentiment-aspect joint topic embeddings in the word embedding
space by imposing regularizations to encourage topic distinctiveness, and
then use neural models to generalize the word-level discriminative infor-
mation by pre-training the classifiers with embedding-based predictions
and self-training them on unlabeled data. Karimi et al. (2020) applied ad-
versarial training to produce artificial examples that act as a regularization
method for the BERT model on the tasks of both aspect extraction and
aspect sentiment classification.

Summary

Aspect-level sentiment analysis is usually performed at the level of detail
required for practical applications. Although a great deal of work has been
done in the research community and many systems have also been built,
the problem is still far from being solved. Sentiment analysis in general
seems to be a long tail problem (Liu, 2012), while sentiment words can
handle most of the cases (more in some domains than in others), the rest are
highly diverse, scarce and infrequent, which make it hard for algorithms to
learn patterns because there are simply not enough training data for all the
cases. In fact, there seem to be an unlimited number of ways that people
can use to express positive or negative opinions. Every domain appears to
have something special. As advanced as the latest developments on deep
learning are, it is yet unable to achieve human level performance. Since
deep learning based methods rely heavily on large scale training data, it
still remains challenging to train a robust model that behaves well in many
domains.

Thus in this thesis, we would like to highlight that, as an end-to-end
approach, deep learning based systems lack flexibility and robustness be-
cause one cannot easily adjust the network to fix an obvious problem. For
example, in the state of the art system by Wang et al. (2016c) when this
research work started, the attention LSTM network always predicts posi-
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tive when seeing the word “disappointed”, and the network is not able to
recognize the word “dungeon” as an indication of negative polarity. One
way to fix the problem is gathering more training data, but it is not always
feasible. Thus, another way to solve this problem would be leveraging
existing linguistic resources such as sentiment lexicons; however, unlike
traditional learning approaches, deep learning models take word vectors as
input that are not combined in a straightforward way with other features.
Therefore one of the main objectives of this thesis is to find an effective
way of merging lexicon information into the attention-LSTM based ABSA
model.
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2.2 Sentiment Lexicon
In many sentiment classification tasks, a sentiment lexicon, sometimes
called sentiment dictionary is often used to help differentiate the polar-
ity of a given opinion word. It consists of a dictionary containing words
as keys and their corresponding polarities as values (e.g. {“good”: +1,
“bad”: −1}). One way to build a lexicon is relying on human annotation;
although it generally guarantees higher quality, it is rather time consuming
and relatively expensive in terms of resources. During the years, many au-
tomatic and semi-automatic approaches have been proposed to construct
or expand a sentiment lexicon, they are also referred as dictionary-based
and corpus-based approaches. Usually, such approaches start from a pre-
defined set of seed words. By using thesauri or corpora, combining with
rules that leverage word relations such as synonym, antonym and hyper-
nym (dictionary-based), and linguistic patterns such as “and” rule, “but”
rule and negation rule (corpus-based), the seed words are expanded to a
larger lexicon. For instance, given a seed word “nice” and its associated
polarity positive, it is possible to find more positive words like “beautiful”
and negative words like “ugly” by looking for its synonyms and antonyms
in a thesaurus. Meanwhile, given “beautiful” as a known positive opinion
word, by applying linguistic rules we can expand the lexicon through pat-
terns such as “This car is beautiful and spacious.” (“and” rule), or “This
car is beautiful but difficult to drive.” (“but” rule), to learn that “spacious”
and “difficult” are new positive and negative words respectively.

2.2.1 Sentiment Lexicon Generation
There have been a variety of researches conducted on constructing a sen-
timent lexicon using existing thesauri; for instance, Hu and Liu (2004b)
first proposed a bootstrapping method leveraging the dictionary-based ap-
proach and Mohammad et al. (2009) extended the method with additional
morphological patterns. Kamps et al. (2004) followed a more sophisti-
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cated path by computing the distance between terms and seed words in a
thesaurus to assign sentiment to a new term. Turney (2002); Turney and
Littman (2003) applied Pointwise Mutual Information (PMI) to assign po-
larity of a given word by comparing the co-occurrence of the word with a
set of positive/negative opinion words. Esuli and Sebastiani (2005); Kim
and Hovy (2006) expanded a set of positive/negative seed words through
synonyms and antonyms in a dictionary and later built a classifier with
supervised learning algorithms to distinguish sentiment orientation.

Although dictionary-based approaches are relatively simple and fast to
deploy (they require only a set of seed words), the collected words are
generally domain and context independent. In reality, opinion words are
highly domain- and context- dependent. For example, “huge” is positive
when talking about a hotel room, as in “huge room” , but negative when
it refers to price, as in “huge price”; “cheap” is positive when someone
says “The ink for the printer is cheap.”, but negative when saying “cheap
appearance”. In a dictionary-based approach, it is impossible to extract
domain-dependent polarities like these. Therefore, a corpus-based ap-
proach was firstly proposed by Hatzivassiloglou and McKeown (1997) to
bootstrap new sentiment words from a corpus with a set of linguistic rules;
so that domain-specific polarities can be extracted. The idea is also referred
as sentiment consistency, which basically means people tend to express the
same sentiment in a compound sentence connected by conjunctions such as
“and”, “or”, “either-or” and “neither-nor”; and opposite sentiment in sen-
tences connected by “but”, “however” and “although”. Kanayama and Na-
sukawa (2006) extended the consistency rule from intra-sentence to inter-
sentence, in order to find domain dependent opinion words and their polar-
ities. Wu and Wen (2010) adopted syntactic patterns, PMI and web search
hit together to address the context-dependent problem for a set of Chinese
adjectives. Lu et al. (2011) proposed a method to automatically construct
a sentiment lexicon as an optimization problem, combining general senti-
ment lexicon, overall sentiment score from online reviews, thesaurus, and
linguistic rules into an optimization framework in order to automatically
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build a domain and aspect dependent lexicon.
More recent approaches are mainly hybrid methods which combine

linguistic rules, machine learning, optimization techniques and other lan-
guage resources such as knowledge bases and ontologies. For instance,
Lu et al. (2011) proposed a unified optimization framework which com-
bines 4 heuristics as constraints to calculate the sentiment orientation of
a set of aspect-opinion pairs parsed from a review corpus; namely, gen-
eral sentiment score, overall sentiment score, synonyms adding the “and”
consistency rule and antonym adding the “but” consistency rule. We-
ichselbraun et al. (2013) took a different approach to tackle the context-
dependent problem by learning the sentiment orientation of an ambiguous
term through its context terms, and adding later concept information from
an additional knowledge base into the contextualized lexicon for boosting
the system’s performance. They first extract ambiguous terms by looking
into the sentiment distribution of opinion words in a labeled corpus with
statistical methods. Indicators such as standard deviation, average value
and a set of empirically determined thresholds are used to determine if a
term is ambiguous. The ambiguous term and its context terms (all other
terms appearing with the sentiment term in the sentence or paragraph not
contained in a stop-words list) are extracted together and stored in a contex-
tualized sentiment lexicon. The polarity of the ambiguous term was later
decided by a Naı̈ve Bayes classifier given its context terms. To enhance the
lexicon with a clearer distinction between contexts, the additional knowl-
edge base WordNet was also introduced into the contextualized lexicon by
calculating the similarity between context terms and entries. Agarwal et al.
(2015) combined common sense through language resources into the pro-
cess of context-aware ABSA with the help of a contextualized sentiment
lexicon. They first constructed a domain-specific ontology using Concept-
Net to ground aspects and entities and later give importance value (weight)
to each clause at the final sentiment aggregation step. Then, a contextu-
alized lexicon was built similar to Weichselbraun et al. (2013): a general
lexicon and a set of labeled review documents were firstly used to find
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ambiguous sentiment terms through statistical parameters; all the nouns,
adjectives, adverbs, and verbs that occurred in two sentences before and
after the occurrence of the ambiguous term in all the review documents are
considered as context terms. The sentiment orientation of the ambiguous
term was decided by the sum of all its co-occurring context term polari-
ties, which are calculated based on the prior probability of appearing in a
positive or negative review document.

From a different perspective, Mikolov et al. (2013b) discovered that
vectorized word representations in a continuous space can capture seman-
tic regularities. More specifically, after training a RNN based language
model, in addition to the model itself, word representations can also be
learned as parameters in the input/embedding layer (word embeddings).
A simpler architecture was later proposed by Mikolov et al. (2013a) for
more efficient learning of word embeddings using skip-gram and CBOW
techniques, which consist of predicting a word through a feedforward neu-
ral network given its context words or the other way around. As dis-
tributed word representations, compared to traditional single dimension
word representations (e.g. one-hot encoding, TF-IDF, etc.), word embed-
dings are significantly better in capturing semantic relations. For example,
the male/female analogous relation is automatically encoded, and with the
learned vector representations, a semantic relation was able to be mod-
eled through vector operations: vking − vman + vwoman results in a vector
very close to vqueen. Similarly, the singular/plural relation can be learned as
well, e.g. in the learned vector space, vapple−vapples ≈ vfamily−vfamilies ≈
vcar − vcars.

Following the idea of distributed word representations, Rothe and Schütze
(2016) proposed a novel method named DENSIFIER, which aims to trans-
form existing embedding space into an ultra-dense subspace by learning an
orthogonal transformation matrix. The transformed ultra-dense represen-
tation is able to induce extra information such as sentiment without losing
its original sense. The idea was to learn a transformation matrix by mini-
mizing the distance between words that carry the same sentiment orienta-
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tion and maximizing the distance between words with opposite sentiment
orientation. A few hundred labeled words were used for the learning pro-
cess, and the learned transformation matrix was then able to convert ordi-
nary word embeddings with previously unknown sentiment to ultra-dense
embeddings which carry sentiment information, and therefore a sentiment
lexicon was built in this way. Later, Rothe et al. (2016) proved that similar
to operations like “king” − “man” + “woman” ≈ “queen” in the original
word vector space, new operations sensitive to polarity such as−1× “hate”
≈ “love” can be performed as well.

2.2.2 Sentiment Domain Adaptation
In Liu (2012), it has been shown that sentiment analysis is highly sensitive
to the domain from which the training data is extracted. A classifier trained
using opinion documents from one domain often performs poorly on test
data from another domain. The reason is that words and even language
constructs used in different domains for expressing opinions can be quite
different. To make matters worse, the same word in one domain may mean
positive but in another domain may mean negative. For instance, the word
“sharp” carries a negative sentiment under a general context, but when
talking about the screen or the outlook of an electrical product, “sharp”
is usually associated with a positive opinion. Thus, domain adaptation or
transfer learning is needed.

Existing approaches either adapt the model, or adapt a sentiment lex-
icon from a source domain to a target domain. For instance, Aue and
Gamon (2005) proposed to transfer sentiment classifiers to new domains
in the absence of large amounts of labeled data in these domains by ex-
perimenting four different strategies. Yang et al. (2006) proposed a simple
strategy based on feature selection for transfer learning of sentence level
classification, in which they first used two fully labeled training sets from
two domains to select features that were highly ranked in both domains;
and these selected features were considered domain independent features.
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Tan et al. (2007) proposed a strategy that first trains a base classifier using
the labeled data from the source domain, and then uses the classifier to la-
bel some informative examples in the target domain. Based on the selected
examples in the target domain, a new classifier is learned, which is finally
applied to classify the test cases in the target domain. Blitzer et al. (2007)
proposed a Structural Correspondence Learning (SCL) algorithm for do-
main adaptation. Pan et al. (2010) proposed a method similar to SCL at the
high level. The algorithm works in the setting where there are only labeled
examples in the source domain and unlabeled examples in the target do-
main. It bridges the gap between the domains by using a Spectral Feature
Alignment (SFA) algorithm to align domain-specific words from different
domains into unified clusters, with the help of domain independent words
as the bridge. Xia and Zong (2011) found that across different domains,
features of some types of Part-of-speech (POS) tags are usually domain-
dependent, while some others are domain-free. Based on this observation,
they proposed a POS-based ensemble model to integrate features with dif-
ferent types of POS tags to improve the classification performance. Wu and
Huang (2016) proposed a new domain adaptation approach which can ex-
ploit sentiment knowledge from multiple source domains; where they first
extract both global and domain-specific sentiment knowledge from the data
of multiple source domains using multi-task learning, then transfer them to
the target domain with the help of words’ sentiment polarity relations ex-
tracted from the unlabeled target domain data. The similarities between
target domains and different source domains are also incorporated into the
adaptation process. Barnes et al. (2018) proposed a novel perspective that
casts the domain adaptation problem as an embedding projection task. The
model takes as input two mono-domain embedding spaces and learns to
project them to a bi-domain space, which is jointly optimized to project
across domains and to predict sentiment. Rietzler et al. (2020) performed
deep transfer-learning by a two-steps fine-tuning, which consists of a self-
supervised domain-specific BERT language model fine-tuning, followed
by a supervised task-specific fine-tuning.
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On the other hand, a lot of research has focused on adapting generic
lexicons to domain-specific ones. In principle, methods described previ-
ously in Section 2.2.1 for sentiment lexicon generation are also applica-
ble for domain adaptation. For instance, Hatzivassiloglou and McKeown
(1997); Kanayama and Nasukawa (2006) applied linguistic rules such as
sentiment consistency to bootstrap new word polarities in a corpus. Wu
and Wen (2010) combined syntactic patterns and PMI with web search
hit together to address the ambiguity of context dependent words. Lu
et al. (2011) incorporated multi-dimensional information into an optimiza-
tion framework to construct a domain dependent lexicon. Bollegala et al.
(2011) proposed a method to automatically create a sentiment sensitive
thesaurus using both labeled and unlabeled data from multiple source do-
mains to find the association between words that express similar sentiments
in different domains. The created thesaurus is then used to expand the orig-
inal feature vectors to train a binary sentiment classifier. More recently, as
deep learning thrives in most NLP fields, the focus of sentiment domain
adaptation also shifts more to vector based (Mikolov et al., 2013a) ap-
proaches. For example Hamilton et al. (2016) induced a domain-specific
lexicon through label propagation over the lexical graph. When talking
about sentiment, it is believed that pre-trained word embeddings are not
able to encode sentiment orientation as they are usually learned in an un-
supervised manner on a general domain corpus by predicting a word given
its context (or vise versa). For example, the word “good” and “bad” both
share similar contexts in a general domain corpus such as Wikipedia, there-
fore their distributed word representations are similar as well. This similar-
ity also determines that the sentiment orientations of the two words are not
reflected in the learned word vectors. However, this assumption is believed
to be true until Mudinas et al. (2018) discovered that the distributed word
representations in fact form distinct clusters for opposite sentiments; and
this behavior in general holds across different domains. In other words, in
the vector space shaped by a domain specific corpus, positive words are
closer to each other than they are to negative words; and the same behav-
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ior is expected in other domains. The key here is that instead of learning
word embeddings from a generic domain corpus, when training on differ-
ent domain-specific data, distinct clusters for opposite sentiment can ac-
tually be formed in each domain-specific vector space. One explanation
could be that in fact in a domain specific corpus (e.g. Amazon electronic
products reviews), opinion words with opposite sentiment are less likely
to appear together in the same sentence. For instance, it is unlikely that
one would say “This phone is beautiful and ugly.”. Thus, based on the
cluster observation, a probabilistic word classifier can be trained on a set
of seed words; and this classifier can be used to induce the generic sen-
timent lexicon by predicting the word polarity in a new domain given its
domain-specific word embeddings.

2.2.3 Lexicon Integration with DNN Models
As an end-to-end approach, deep learning based systems lack flexibility
as one cannot easily adjust the network to fix an obvious problem: e.g.
when the network always predicts positive when seeing the word “disap-
pointed”, or when the network is not able to recognize the word “dungeon”
as an indication of negative polarity. It could be even trickier to fix this is-
sue in a low-resource scenario where more labeled training data is simply
not available (Bao et al., 2019). An obvious way that could help the model
to distinguish positive and negative words is leveraging existing language
resources: sentiment lexicons. The advantage of using sentiment lexicons
here is: first, as freely available language resources, it requires no extra
efforts for data argumentation or feature engineering; second, by having a
secondary input, the model should learn to leverage the information pro-
vided by the lexicon; compared to pure end-to-end approaches, a lexicon
is easier to be maintained; for instance, the polarities of opinion words can
be added, removed or updated accordingly, thus the model will become
overall more robust.

Over the years, a lot of work has been done focusing on leveraging
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existing sentiment lexicons to enhance the performance of deep learning
based sentiment analysis systems; however, most works are performed at
document and sentence level. For instance, at document level, Teng et al.
(2016) proposed a weighted-sum model which consists of representing the
final prediction as a weighted sum of network prediction and polarities
provided by the lexicon. Zou et al. (2018) described a framework to assign
higher weights to opinion words found in lexicon by transforming lexicon
polarity to sentiment degree. At sentence level, Shin et al. (2017) used
two convolutional neural networks to separately process sentence and lex-
icon inputs, and the final representation is then combined with an attention
mechanism for prediction. Lei et al. (2018) described a multi-head atten-
tion network where the attention weights are jointly learned with lexicon
inputs for classification. Wu et al. (2018) proposed a new labeling strat-
egy similar to ABSA for sentence-level classification which breaks a sen-
tence into clauses by punctuation to produce more lower-level examples;
then the model processes a sentence in different levels taking into account
the lexicon and other linguistic information such as POS tags; finally, the
multi-level LSTM network merges all information and predicts at sentence
level. Barnes (2019) explored the use of multi-task learning (MTL) for in-
corporating external knowledge in neural models by using MLT to enable
a BiLSTM sentiment classifier to incorporate information from sentiment
lexicons. Li et al. (2020b) experimented a lexicon integrated two-channel
CNN–LSTM model, combining CNN and LSTM/BiLSTM branches in a
parallel manner; together with a novel padding method that makes the in-
put data sample of a consistent size and improving the proportion of sen-
timent information in each review. Yang et al. (2020) proposed a new
sentiment analysis model named SLCABG, which is based on the senti-
ment lexicon and combines CNN and attention-based Bidirectional Gated
Recurrent Unit (BiGRU). The SLCABG model combines the advantages
of sentiment lexicon and deep learning technology, where the sentiment
lexicon is first used to enhance the sentiment features in the reviews. Then
the CNN and the GRU network are used to extract the main sentiment
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features and context features in the reviews and the attention mechanism
is used for merging and final classification. Similarly, Ren et al. (2020)
proposed a lexicon-enhanced attention network (LEAN) based on bidirec-
tional LSTM. LEAN not only can catch the sentiment words in a sentence
but also concentrate on specific aspect information in a sentence. More-
over, leveraging lexicon information enhances the model’s flexibility and
robustness at the same time. Meanwhile, some other similar works that in-
corporate linguistic resources for sentiment analysis have been carried out
Rouvier and Favre (2016); Qian et al. (2017).

Summary

In this section (Section 2.2), we covered general approaches for building or
expanding a sentiment lexicon, and the trend has evolved from dictionary-
or corpus- based approaches to learning-based approaches, and then to
word vector based approaches. These approaches can also be applied for
sentiment domain adaptation, which is one of the topics that we are inter-
ested in further exploring.

As mentioned previously in Section 2.1.5, deep learning based end-to-
end systems lack flexibility and robustness; therefore it is reasonable to
apply sentiment lexicon with a DNN model to overcome this weakness.
Prior to Bao et al. (2019), existing approaches for lexicon integration in
deep learning based sentiment analysis systems have been mostly carried
out at document and sentence level. In addition, most of the approaches
need some sort of transformation of the lexicon inputs, e.g. a convolution
layer (Shin et al., 2017) or sentiment degrees (Zou et al., 2018). Thus we
first proposed ATLX (Bao et al., 2019) that performs sentiment analysis at
aspect level, and at the same time, the model is capable of taking directly
the numerical polarities provided by lexicons as inputs and make use of
that information with a less complex architecture.

With a lexicon enhanced ABSA neural system, we are interested to see
whether it is possible to further improve the ATLX model with a more fine-
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grained lexicon. As most works on sentiment domain adaptation measure
the performance by recreating an existing domain-specific lexicon Hamil-
ton et al. (2016); Mudinas et al. (2018), from an application point of view,
it is interesting to see how much performance boost can we get from the
domain-specific lexicon in a lexicon enhanced neural sentiment analysis
system. In addition, we are also interested in expanding the lexicon to be
aspect specific as the sentiment orientation of an opinion word is highly
dependent on the target that it is describing (e.g. “cheap price” vs “cheap
plastic”).
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2.3 Attention Regularization
Besides the lack of flexibility and robustness of a DNN model, it is less
stressed that the commonly used attention mechanism is likely to over-fit
and force the network to ”focus” too much on a particular part of a sen-
tence, while in some cases ignoring positions which provide key informa-
tion for judging the polarity. In recent studies, both Niculae and Blondel
(2017) and Zhang et al. (2019a) proposed approaches to make the attention
vector more sparse; however, this would only encourage the over-fitting ef-
fect in such scenarios.

In Niculae and Blondel (2017), instead of using softmax or sparesmax,
fusemax was proposed as a regularized attention framework to learn the at-
tention weights. In Zhang et al. (2019a), Lmax and Entropy were introduced
as regularization terms to be jointly optimized within the loss function.
Both approaches share the same idea of shaping the attention weights to be
sharper and more sparse so that the advantage of the attention mechanism
is maximized. However according to our experiments, it is possible that
when applied early in the network, the overly sparse attention vector could
hurt the model by not passing key information to deeper layers.

Thus in Bao et al. (2019), we proposed two regularizers to be jointly op-
timized within the loss function, namely a standard deviation regularizer
and a negative entropy regularizer. These two regularizers aim to over-
come the over-fitting effect of the attention weights by shaping it to be less
sparse, i.e. instead of only a few positions have large weights and the rest
being close to zero, it is preferred to have more positions with relatively
higher weights. Details of our approach and experiments will be discussed
in Chapter 5 and Chapter 6.
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Chapter 3

OBJECTIVES

As mentioned in Section 2.1.5, deep learning based systems lack flexibility
and robustness, especially when more training data are not available. Thus
in this thesis, the first objective is to build a neural model for ABSA that is
capable of leveraging lexicon information.

Secondly, as mentioned in 2.3, it is less stressed that the commonly
used attention mechanism is likely to over-fit and force the network to ”fo-
cus” too much on a particular part of a sentence, while in some cases ig-
noring positions which provide key information for judging the polarity.
Therefore, in this thesis, we aim to improve the attention LSTM network
by regularizing the attention weights.

Thirdly, as mentioned in Section 2.2.3, from an application point of
view, we are interested in seeing how much performance boost can actually
be gained from a domain-specific lexicon in a lexicon enhanced neural
sentiment analysis system. In addition, we would also like to explore the
possibility of expanding the lexicon to be aspect specific and evaluate its
performance.
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Formally, the objectives of this thesis can be orchestrated as 3 main
objectives followed by a few sub-objectives of each:

• Improve ABSA with lexicon enhancement in an attention LSTM
neural network setting.

– Replicate the AT-LSTM model (Wang et al., 2016c) as baseline.

– Form a sentiment lexicon in the generic domain.

– Experiment different approaches for merging the generic senti-
ment lexicon with the baseline.

• Improve the attention LSTM model for ABSA by overcoming the
attention over-fit effect.

– Experiment different approaches for attention regularization.

• Improve the lexicon enhanced neural ABSA system with sentiment
induction.

– Domain and aspect adaptation of generic sentiment lexicon.

– Construct a gold domain specific lexicon.

– Experiment and evaluate the performance gain of the induced
lexicons in the ABSA model.
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Chapter 4

THEORETICAL
FRAMEWORK

In this thesis, machine learning methods serve as fundamental building
blocks of our research. Specifically, we focus on improving the ABSA
task using language resources with Long Short-term Memory (LSTM) and
Attention, which are based on Neural Networks (NN) and Recurrent Neural
Networks (RNN) in particular. In addition, Support Vector Machine (SVM)
and distributed word representations (Word Embeddings) also play an im-
portant role for sentiment induction. In this chapter, we will first briefly
review some of the classical machine learning methods, and then cover the
more recent deep learning based methods that are adopted in our research.
In addition, we will also briefly introduce cross-validation, the commonly
used method to evaluate a machine learning model.
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4.1 Classical Machine Learning Methods
Machine learning, often seen as a part of Artificial Intelligence, is the study
of computer algorithms that improve automatically through experience and
by the use of data. A machine learning algorithm is an algorithm that is
able to learn from data, thus the data is also known as training data. In
Mitchell (1997), the definition of learning is given: “A computer program
is said to learn from experience E with respect to some class of tasks T
and performance measure P , if its performance at tasks in T , as measured
by P , improves with experience E.”

A task T for a machine learning algorithm is often the problems that
are hard to solve with fixed programs written and designed by human be-
ings. For instance, NLP problems such as sentiment analysis, machine
translation, etc. are hard to solve with fixed programs due to the variabil-
ity and diversity of languages. Other examples include regression, image
classification, transcription, and so on.

The performance measure P is usually a quantitative measure, specific
to the task T carried out by the system. For tasks such as classification, it
is common to take the accuracy as a measure, which is the proportion of
examples for which the model produces the correct output. On the other
hand, it is very important to see how machine learning algorithms perform
on data that they have not seen before. Therefore, a test data set that is
separate from the training data set is often used to measure the performance
of a system. More details about evaluation of a machine learning system
will be introduced in Section 4.8.

The experience E of a machine learning algorithm can be categorized
as unsupervised or supervised according to what kind of training experi-
ence is given. Unsupervised learning algorithms in a classical machine
learning context usually refers to clustering, which consists of dividing the
dataset into clusters of similar examples. In such a process, there are no
labels or targets. Supervised learning algorithms on the other hand expe-
rience the data with labels or targets, which are essential for the algorithm
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to learn. In this section, we only cover briefly some of the commonly used
classical machine learning algorithms as they may appear in the literature
review but are not directly related to our research. In Mitchell (1997) and
Hastie et al. (2009), all concepts are explained in great depth.

4.1.1 Unsupervised Learning

K-means Clustering

K-means (MacQueen, 1967) is perhaps the most popular clustering algo-
rithm due to its simplicity and scalability. As a centroid based algorithm, it
requires a prior definition of the number of clusters K in advance, i.e. how
many clusters does the user want. With the number of clusters defined, the
algorithm initializes randomly K centroids and assigns the data points to
their nearest centroid based on a distance measure. The distance is usually
Euclidean distance, but other distances can also be applied. After grouping
the data points into their nearest centroid, the algorithm computes a new
centroid within each cluster to be the mean vector. Then move the centroid
to the new mean position and repeat the distance based assigning process.
After a number of iterations, the algorithm converges by minimizing the in-
tra cluster average dissimilarity to the mean. More recently, Sculley (2010)
proposed a mini-batch gradient descent approach to improve both the time
and space complexity of the K-means algorithm.

Affinity Propagation

The biggest problem for most clustering algorithms including K-means is
that they require prior definition of the number of clusters. In practice, the
process of finding the optimal number of clusters often requires a lot of
efforts. Frey and Dueck (2008) proposed a new exemplar based cluster-
ing algorithm named affinity propagation. Instead of moving the centroids
to minimize the intra cluster distance with the means, affinity propagation
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tries to maximize the total similarity by finding exemplars that best repre-
sent surrounding data points. The method requires no prior definition of
the number of clusters. However, the complexity of affinity propagation in
both time and space is quadratic as the operations of finding exemplars are
based on a similarity matrix containing all input data in both dimensions.

Hierarchical Clustering

The hierarchical clustering method does not require manual input of the
number of clusters. However, a measure of dissimilarity between clusters
is needed to specify. The hierarchical clustering method produces hierar-
chical representations in which the clusters at each level of the hierarchy
are created by merging lower level clusters. The number of clusters de-
creases from lower level to higher level. In a sense that at the lowest level,
each cluster contains a single data point; and at the highest level, only one
cluster exists containing all data points.

Strategies for hierarchical clustering divide into two basic paradigms:
agglomerative (bottom-up) and divisive (top-down). Agglomerative strate-
gies start at the bottom and at each level recursively merge a selected pair
of clusters into a single cluster. This produces a grouping at the next higher
level with one less cluster. The pair chosen for merging consist of the two
groups with the smallest inter-group dissimilarity. Divisive methods start
at the top and at each level recursively split one of the existing clusters at
that level into two new clusters. The split is chosen to produce two new
groups with the largest between-group dissimilarity. With both paradigms
there are N − 1 levels in the hierarchy (Hastie et al., 2009).

Principal Components Analysis

Principal Components Analysis (PCA) is a sequence of projections of the
data, mutually uncorrelated and ordered in variance (Hastie et al., 2009).
It is often used to reduce feature dimensions while not losing too much
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information in the original higher dimension space. It is essentially get-
ting a sequence of best approximations of the original data by learning a
projection matrix that minimizes the reconstruction error. With the learned
projection parameters, one can project the data into a lower dimension.

Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a three-level hierarchical Bayesian
model for collections of discrete data such as text corpora. It is commonly
used for topic modelling where given a piece of document, the algorithm
should find its topic. In LDA, each item of a collection is modeled as
a finite mixture over an underlying set of topics. Each topic is, in turn,
modeled as an infinite mixture over an underlying set of topic probabilities.
In the context of text modeling, the topic probabilities provide an explicit
representation of a document (Blei et al., 2003).

4.1.2 Supervised Learning
Naı̈ve Bayes Classifier

Naı̈ve Bayes methods are a set of supervised learning algorithms based
on applying Bayesian theorem with the “naive” assumption of conditional
independence between every pair of features given the value of the class
variable. Let y be the class of a classification task, x = [x1, x2, ..., xn] be
the feature vector. According to the Bayesian theorem:

P (y|x1, ..., xn) =
P (y)P (x1, ..., xn|y)

P (x1, ..., xn)

With the naive assumption that each feature is independent from each other,
the relationship can be simplified to:

P (y|x1, ..., xn) =
P (y)

∏n
i=1 P (xi|y)

P (x1, ..., xn)
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Since the denominator is constant given the input, the estimation of a Naı̈ve
Bayes classifier is essentially:

ŷ = argmax
y

P (y)
n∏
i

P (xi|y)

Although the conditional independence assumption is rather over-simplified,
Naı̈ve Bayes classifier has worked well in many real-world applications
such as document classification and spam filtering; as they require a rel-
atively smaller amount of training data to estimate the needed parameters
(Zhang, 2004).

Hidden Markov Model

The Hidden Markov Model (HMM) is based on augmenting the Markov
chain. A Markov chain is a model that tells us something about the prob-
abilities of sequences of random variables, states, each of which can take
on values from some set. A Markov chain makes a very strong assump-
tion that if we want to predict the future in the sequence, all that matters is
the current state. The states before the current state have no impact on the
future except via the current state. Formally, consider a sequence of state
variables q1, q2, ..., qi, a Markov model embodies the Markov assumption
on the probabilities of this sequence: that when predicting the future, the
past does not matter, only the present.

P (qi = a|q1, ..., qi−1) = P (qi = a|qi−1)

A Markov chain is useful when we need to compute a probability for a
sequence of observable events. In many cases, however, the events we
are interested in are hidden: we don’t observe them directly. For example
we don’t normally observe part-of-speech tags in a text. Rather, we see
words, and must infer the tags from the word sequence. We call the tags
hidden because they are not observed. HMM allows us to talk about both
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observed events and hidden events that we think of as causal factors in our
probabilistic model. (Jurafsky and Martin, 2020)

Maximum Likelihood

Maximum likelihood is the general name of fitting methods that trains
models by finding the model parameters that maximize the probability of
some inputs mapped to the target outputs. Commonly used methods such
as minimizing a sum of squared errors for regression, or minimizing the
cross-entropy for classification are both examples of maximum likelihood
(Hastie et al., 2009).

K Nearest Neighbors

Neighbors-based classification is a type of instance-based learning or non-
generalizing learning: it does not attempt to construct a general internal
model, but simply stores instances of the training data. Classification is
computed from a simple majority vote of the nearest neighbors of each
point: a query point is assigned the data class which has the most represen-
tatives within the nearest neighbors of the point (Vanderplas, 2020). The
K values stands for the minimum number of votes for assigning a class.

Logistic Regression

Logistic Regression (LR) is a linear model for classification rather than
regression. It is also known in the literature as logit regression, maximum-
entropy classification (MaxEnt) or the log-linear classifier. In this model,
the probabilities describing the possible outcomes of a single trial are mod-
eled using a logistic function. Let x be the input feature vector and ŷ be the
output probability of a class. First, the hypothesis function h(x) (Equation
4.1) computes a linear transformation of the input features, where θ and b
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are weights and biases (parameters) of the model. Then a logistic function
(Equation 4.2) is applied to convert the input to a probability.

h(x) = θᵀx+ b (4.1)

ŷ = sigmoid(h(x)) (4.2)

By applying maximum likelihood estimation, a set of parameters θ and
b are learned through training.

Support Vector Machines (SVM)

The deep learning renaissance began when Hinton et al. (2006) outper-
formed the RBF kernel SVM on the MNIST dataset with a neural network.
Prior to that and until today, the support vector machine has been one of
the most influential models in machine learning (Boser et al., 1992; Farhat,
1992). Comparing SVM to Logistic regression (LR), the hypothesis func-
tion of LR is a linear combination of weights and input features (Equation
4.1). In SVM, instead of directly applying weights on the features, a kernel
function is first used to transform the input features from the original space
to a new space (Equation 4.3):

h(x) =
∑
i

θik(x,x(i)) + b (4.3)

where x(i) is a training example, θ is a vector of coefficients. k(x,x(i)) =
φ(x) · φ(x(i)) is the kernel function, where φ(x) is a feature function to
replace x. The kernel function is exactly equivalent to preprocessing the
data by applying φ(x) to all inputs, then learning a linear model in the new
transformed space.

The most commonly used kernel is the Gaussian kernel (Equation 4.4)

k(u,v) = N(u− v; 0, σ2I) (4.4)

80



where N(x,µ,σ) is the density function of the standard normal distribu-
tion. This kernel is also known as the radial basis function(RBF) kernel,
because its value decreases along lines in v space radiating outward from
u (Goodfellow et al., 2016).

Intuitively, the Gaussian kernel can be thought of as a kind of template
matching, where a training example x associated with training label y be-
comes a template for class y. When a test point x′ is near x according
to euclidean distance, the Gaussian kernel has a large response, indicating
that x′ is very similar to the x template. The model then puts a large weight
on the associated training label y. Overall, the prediction will combine
many such training labels weighted by the similarity of the corresponding
training examples (Goodfellow et al., 2016).
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4.2 Deep Learning and Neural Networks
Deep learning is the application of Artificial Neural Networks (ANN), Neu-
ral Networks (NN) for short, on learning tasks using networks of multiple
layers. Inspired by the structure of the biological brain, neural networks
consist of a large number of information processing units (neurons) orga-
nized in layers, which work in unison. It can learn to perform tasks such
as classification, regression, etc. by adjusting the connection weights be-
tween neurons, resembling the learning process of a biological brain. The
neural networks were once believed to be practical only with one or two
layers and a small set of data due to the limitation of computing powers
back in those days. However, in recent years, the practice of deep learning
(i.e. neural networks with many layers trained on large datasets) has be-
come possible thanks to the exponential growth of computing power and
digitization.

The simplest form of neural network is called a feedforward neural
network, or multi layer perceptron (MLP), which is the most basic and
essential deep learning model. The goal of a feedforward network is to
approximate some function f . For example, for a classifier, y = f(x)
maps an input x to a category y. A feedforward network defines a mapping
function y = f(x; θ) and learns the value of the parameter set θ that yields
the best function approximation. (Goodfellow et al., 2016; Zhang et al.,
2018a)

In Figure 4.1 a simple example of a feedforward neural network is
given, in which we can see three layers in total denoted by L(0), L(1) and
L(2) with colors yellow, blue and red respectively. The layer L(0) is also
known as the input layer, the layer L(1) is called the hidden layer, and the
layer L(2) is called the output layer. Typically, there are only one input
layer and one output layer in a neural network; while there can be more
than just one hidden layer, especially in a deep learning setting.

In the input layer L(0), the n dimensional vector x = [x1, x2, ..., xn]
represents the input features. In the output layer L(2), the vector a(2) con-
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Figure 4.1: Diagram of a feedforward neural network.

sists of the output vector; in this simple example, a(2) = [a21] in fact is a
scalar as there is only one output unit in the output layer. In the hidden
layer L(1), the h dimensional vector a(1) = [a11, a

1
2, ..., a

1
h] represents the

hidden units of this layer. A circle in L(0) represents an element in the input
vector, while a circle in L(1) and L(2) represents a neuron, the basic com-
putation element of a neural network; which is also known as an activation
function. A line between two neurons represents a connection for the infor-
mation flow. Each connection is associated with a set of weights and biases
(denoted as W (1), b(1) in L(1); and W (2), b(2) in L(2)), a set of values con-

83



trolling the signal between two neurons. The learning of a neural network
is achieved by adjusting the weights between neurons with the information
flowing through them. Neurons read output from neurons in the previous
layer, process the information, and then generate output to neurons in the
next layer. As in Figure 4.1, the neutral network alters weights based on
training examples (xi, yi). After the training process, it will obtain a com-
plex form of a hypotheses function hW,b(x) that maps the data from input
features to output predictions.

Formally, let x ∈ Rn be the input column vector of the network, the
forward computation described above can be expressed as:

z(1) = W (1) · x+ b(1)

a(1) = g(z(1))

z(2) = W (2) · a(1) + b(2)

a(2) = g(z(2))

where W (1) ∈ Rh×n, b(1) ∈ Rh, W (2) ∈ Rh, b(2) ∈ R are weights and
biases of the hidden layer and the output layer; z(1) ∈ Rh, z(2) ∈ R are
intermediate outputs ofL(1) andL(2); a(1) ∈ Rh, a(2) ∈ R are outputs of the
activation function g(z). An activation function is normally a non-linear
differentiable function, common choices are sigmoid function (Equation
4.5), hyperbolic tangent function (Equation 4.6), or rectified linear function
(Equation 4.7).

g(z) = sigmoid(z) =
1

1 + exp−z
(4.5)

g(z) = tanh(z) =
ez − e−z

ez + e−z
(4.6)

g(z) = ReLU(z) = max(0, z) (4.7)
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Figure 4.2: Visualization of activation functions.

As shown in Figure 4.2, the sigmoid function takes a real number and
squashes it to a value in the range between 0 and 1. The function has been
in frequent use historically due to its nice interpretation as the firing rate
of a neuron: 0 for not firing or 1 for firing. But the non-linearity of the
sigmoid has recently fallen out of favour because its activations can eas-
ily saturate at either tail of 0 or 1, where gradients are almost zero and
the information flow would be cut. What is more is that its output is not
zero-centered, which could introduce undesirable winding dynamics in the
gradient updates of the weights during training. Thus, the tanh function
is often preferred in practice as its output range is zero-centered ([−1, 1]
instead of [0, 1]). The ReLU function has also become popular lately. Its
activation is simply a threshold at zero when the input is less than 0. Com-
pared with the sigmoid function and the tanh function, ReLU is easy to
compute, fast to converge in training and yields equal or better performance
in neural networks (Glorot et al., 2011; Zhang et al., 2018a).

In the output layer L(3), instead of using sigmoid to output a proba-
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bility for binary classification, it is common practice to use the softmax
function (Equation 4.8) as activation for multi-class classification. It is a
generalization of the logistic function that squashes a vector z ∈ RK of ar-
bitrary real values to a vector σ(z) ∈ RK of real values in the range (0, 1)
that sum up to 1.

σ(z)i =
ezi∑K
j=1 e

zj
∀i ∈ {1, ..., K} (4.8)

To train a neural network, Stochastic Gradient Descent (SGD) via Back
Propagation (Rumelhart et al., 1986) is usually employed to minimize the
cross-entropy loss (Equation 4.9), which is a loss function for softmax out-
puts given y ∈ Ri as the true probability distribution of the labeled classes,
and ŷ ∈ Ri as the predicted probability distribution of the classes (i is the
number of classes). Gradients of the loss function with respect to weights
from the last hidden layer to the output layer are first calculated, and then
gradients of the expressions with respect to weights between upper network
layers are calculated recursively by applying the chain rule in a backward
manner. With those gradients, the weights between layers are adjusted ac-
cordingly. It is an iterative refinement process until certain stopping criteria
are met. In practice, it is common to minimize the cost function (Equation
4.10) instead of the loss function (Equation 4.9). Compared to the loss
function, a regularization term is added in the cost function: λΩ(θ), where
λ is a hyperparameter, θ contains all the parameters of the model (weights
and biases), and Ω is the regularization function. The computing process
that first forward computes the cost from the input, and then computes the
gradient of all network parameters at each layer using back propagation are
shown in Algorithm 1 and Algorithm 2 (Goodfellow et al., 2016).

L(y, ŷ) = −
∑
i

yilog(ŷi) (4.9)

J(y, ŷ,θ) = L(y, ŷ) + λΩ(θ) (4.10)
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Algorithm 1: Forward propagation of a feed forward neural net-
work.
l← network depth/layers
W (i), i ∈ {1, ..., l} ← weight matrices of the network
b(i), i ∈ {1, ..., l} ← bias parameters of the model
x← input features
y ← label
z(0) = x
for k ← 1 to l do
z(k) = W (k)z(k−1) + b(k)

a(k) = g(z(k))
end
ŷ = a(l)

J = L(y, ŷ) + λΩ(θ)
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Algorithm 2: Back propagation of a feed forward neural net-
work.

Compute the gradient on the output layer:
g ← ∇ŷJ = ∇ŷL(y, ŷ)
for k ← l to l − 1, ..., 1 do

Convert the gradient on the layer’s output into a gradient on
the pre-nonlinearity activation (element-wise multiplication if
g(z) is element-wise):
g ← ∇z(k)J = g · g′(z(k))
Compute gradients on weights and biases (including the
regularization term where needed):
∇b(k)J = g + λ∇b(k)Ω(θ)
∇W (k)J = ga(k−1)ᵀ + λ∇W (k)Ω(θ)
Propagate the gradients w.r.t. the next lower-level hidden
layer’s activations:
g ← ∇a(k−1)J = W (k)ᵀg

end
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4.3 Recurrent Neural Network (RNN)
Recurrent Neural Network (RNN) (Elman, 1990) is a class of neural net-
works that recursively processes the inputs and forms a circled information
flow. Compared to feedforward neural networks, RNN is designed to pro-
cess a sequence of inputs, where the order of the inputs actually matters.
For instance, when processing a sentence, a feedforward neural network
does not take into account the order of the words, which in fact is key in
language processing. Thus in NLP, RNN has a natural advantage to en-
code sequence information in the model. It uses its internal “memory” to
process a sequence of inputs, meaning that RNN performs the same task
for every element of a sequence with each output being dependent on all
previous computations. Intuitively, the process is similar to using “mem-
ory” to “remember” information that has been processed previously when
processing the information at the current time step.

Figure 4.3: Diagram of RNN folded.
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Figure 4.4: Diagram of RNN unfolded.

As shown in Figures 4.3 and 4.4, the circled RNN network (Figure 4.3)
unfolds to a sequential network with different time steps (Figure 4.4). In
a NLP setting, each time step corresponds to a word (a word vector to
be precise) in a sentence, and the length of the sequence is equal to the
length of the sentence. The unfolded network can be seen as a feedforward
network with a number of layers equal to the length of the sequence, where
each layer shares the exact same parameters (weights and biases).

Formally, let xt be the input vector at time step t; ht be the hidden state
at time step t, which is computed based on the hidden state at time step
t− 1 and the input at time step t (Equation 4.11):

ht = g(Whhht−1 +Whxxt) (4.11)

where g(z) is the activation function (e.g. tanh or ReLU ). Whx is the
weight matrix to be applied on the input xt. Whh is the weight matrix
to be applied on the previous hidden state ht−1. yt is usually the output
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probability distribution over the vocabulary set at time step t (Equation
4.12).

yt = softmax(Wyhht) (4.12)

The hidden state ht is regarded as the memory of the network. It cap-
tures information about what happened in all previous time steps. yt is cal-
culated solely based on the memory ht at time step t and the corresponding
weight matrix Wyh. Unlike a feedforward neural network, which uses dif-
ferent parameters at each layer, RNN shares the same parameters (Whx,
Whh, Wyh) across all time steps. This means that it performs the same
task at each step, just with different inputs. This greatly reduces the total
number of parameters needed to learn. Theoretically, RNN can make use
of the information in arbitrarily long sequences, but in practice, the stan-
dard RNN is limited to looking back only a few steps due to the vanishing
gradient or exploding gradient problem (Bengio et al., 1994; Zhang et al.,
2018a). As governed by the chain rule, the derivative of each layer (from
final output layer to initial input layer) is a multiplication of the deriva-
tives from previous layers; thus when the derivative is a small number or
a big number, the gradient decreases (vanishing) or increases (exploding)
exponentially, making it impossible to train the model.
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4.4 Long Short-term Memory (LSTM)

Figure 4.5: RNN with single layer.

Figure 4.6: RNN with LSTM cell.

In order to overcome the vanishing/exploding gradient problem and
have the RNN network to learn longer term dependencies, a special type
of computing unit named Long Short-term Memory (LSTM) was proposed
by Hochreiter and Schmidhuber (1997). Compared to a regular computing
unit (also called computing cell), which is usually identical to a simple
hidden layer of a feed forward neural network (Figure 4.5), the LSTM cell
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consists of a more complicated structure that contains four different layers
interacting in a carefully designed fashion (Figure 4.6).

As shown in Figure 4.7, two flows pass through the LSTM cell, namely
a hidden state h and a cell state C. At each time step t, a “forget gate” is
first applied to control what information is allowed to pass through, i.e.
what information to dump from the cell state. The decision is made by a
sigmoid function/layer σ named forget gate, which takes the concatenation
of the input at current time step xt and the hidden state from previous time
step ht−1 as joint inputs, and outputs a number between [0, 1] that controls
the amount of information to “forget”. For example, 1 means keep all and
0 means dump all. Formally, the output of the forget gate ft is computed
as (Equation 4.13):

ft = σ(Wf · [ht−1, xt] + bf ) (4.13)

Secondly, an “input gate” is adopted to control how much new infor-
mation is allowed to add to the cell state. It consists of two steps: a) a
sigmoid function/layer σ named input gate (Equation 4.14) that controls
which values LSTM will update; b) a tanh function/layer creates a vector
of new candidate values C̃ (Equation 4.15) which will be used for updating
the cell state.

it = σ(Wi · [ht−1, xt] + bi) (4.14)

C̃t = ttanh(WC · [ht−1, xt] + bC) (4.15)

Thirdly, with the input gate it and the new cell candidate C̃t, together
with the forget gate ft, the old cell state from previous time step Ct−1 is
updated to be the current cell state Ct (Equation 4.16).

Ct = ft ∗ Ct−1 + it ∗ C̃t (4.16)
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Finally, an “output gate” is applied to decide how much of the cell state
can be used as output to next time step, where a sigmoid function/layer
is used on xt and ht−1 to first learn the output gate ot (Equation 4.17).
Then the output gate is applied on the current cell state Ct after a nonlinear
transformation (Equation 4.18).

ot = σ(Wo[ht−1, xt] + bo) (4.17)

ht = ot ∗ tanh(Ct) (4.18)

Figure 4.7: Diagram of a LSTM cell.

More recently, a lot of variations of LSTM have been proposed. For
instance, Gers and Schmidhuber (2000) proposed a variant of the LSTM
cell by adding “peephole connections”. In Chung et al. (2014); Cho et al.
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(2014), another variation named Gated Recurrent Unit (GRU) was pro-
posed. It combines the “forget” and “input” gates into a single update
gate, and it also merges the cell state and hidden state along with some
other changes. The resulting structure is simpler than the standard LSTM,
and has been growing in popularity. Koutnı́k et al. (2014) took a com-
pletely different approach to tackle long-term dependencies with Clock-
work RNNs. Yao et al. (2015) on the other hand proposed Depth Gated
RNNs.
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4.5 Attention Mechanism
The idea of allowing the model to “look” back at the input sequence and
“focus” on different parts accordingly has been one of the most influential
ideas in the NLP world in recent times. Through the years, it has inspired
many great innovations such as Transformer (Vaswani et al., 2017) and
BERT (Devlin et al., 2019). The attention mechanism consists of learning
a weight vector in the model and applying it to obtain a weighted represen-
tation of the input. It was first proposed in the sequence-to-sequence model
for neural machine translation in order to overcome poor performance on
translating long sentences (Cho et al., 2014; Sutskever et al., 2014; Bah-
danau et al., 2015).

In fact, the attention mechanism is inspired by the visual attention
mechanism found in humans. That is, the human visual attention is able
to focus on a certain region of an image with “high resolution” while per-
ceiving the surrounding image in “low resolution” and then adjusting the
focal point over time. In NLP, the attention mechanism allows the model
to learn what to attend to based on the input text and what it has produced
so far, rather than encoding the full source text into a fixed-length vector
like standard RNN and LSTM (Zhang et al., 2018a).

As shown in Figure 4.8, in order to obtain a weighted representation r
of the input sequence with a length of T , given H ∈ {h1, h2, h3, ..., hT} as
the hidden states of each time step produced by the LSTM cell, a weight
vector α ∈ {α1, α2, α3, ..., αT} is first learned from H (Equation 4.19 and
4.20):

M = tanh(WhH) (4.19)

α = softmax(wᵀM) (4.20)

where Wh and w are parameters of the network to be learned during train-
ing. Each value of α represents the level of attention to be paid at each
position when obtaining the final representation, where a higher value in-
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Figure 4.8: Attention mechanism in a LSTM network.

dicates more attention and vice versa. Since the outputs of the softmax
function are weights between [0, 1] that sum up to 1, the weighted repre-
sentation r is essentially a weighted sum of H (Equation 4.21) with α as
weights.

r = Hαᵀ (4.21)
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4.6 Word Embeddings
Distributed word representation, also known as word embeddings have
been a fundamental building block of almost all deep learning based NLP
applications. It is a technique for language modelling and feature learn-
ing that transforms words into vectors in a continuous space. Before word
embeddings, a word is usually represented by a sparse one-hot vector or a
frequency count in representations such as TF-IDF. These representations
can only encode binary information of whether a word has occurred and
are often high dimensional (the dimension of a one-hot vector is usually
equal to the vocabulary size of a corpus); while the context information of
a word and its semantic relation with others are ignored, which are keys
for language understanding. The distributed word representation improves
on such matter by learning a lower dimensional dense vector from the
higher dimensional sparse vector through embedding techniques, where
each dimension of the embedded vector represents a latent feature of a
word. Therefore the embedded vectors can encode linguistic regularities,
patterns and even context information.

Figure 4.9: Simplified embedding look up example.

Traditionally, word embeddings are learned as by-products of neural
networks. For instance, when training a neural language model, the in-
put one-hot word vectors are first transformed through an embedding layer
which consists of a weight matrix with randomly initialized parameters
(Figure 4.9). The output of the embedding layer is then fed to further lay-
ers for the language modelling task. Since the parameters in the embedding
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layer form part of the model parameter set and get updated during training,
when the training process is completed, the weight matrix of the embed-
ding layer is encoded with task specific information. In the context of lan-
guage modelling, the embedded vectors will contain some information of
the context, and this kind of embedding vectors are also called task-specific
embeddings.

Another commonly used technique to learn word embeddings is word2vec
(Mikolov et al., 2013a,b), which consists of a computationally efficient
neural network with a single linear hidden layer. As shown in Figure
4.10, two different methods can be used to learn word embeddings, namely
the Continuous Bag-of-Words (CBOW) model and the Skip-Gram model.
The CBOW model predicts a target word (vt) given its context words
(vt−2, vt−1, vt+1, vt+2), while the skip-gram model does the inverse by pre-
dicting the context words given a target word.

CBOW Skip-Gram

Figure 4.10: CBOW and Skip-Gram models of word2vec.
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Statistically, the CBOW model smoothens over a great deal of distri-
butional information by treating the entire context as one observation. It is
effective for smaller datasets. However, the skip-gram model treats each
context-target pair as a new observation and is usually better for larger
datasets. Another frequently used learning approach is Global Vectors
(GloVe) by Pennington et al. (2014), which is trained on the non-zero en-
tries of a global word-word co-occurrence matrix (Zhang et al., 2018a).

As shown in Figure 4.11, one key property of word embeddings is
that it allows vector space operations to coincide with linguistic relations.
For instance, male-female analogies can be made by measuring the sim-
ilarity between the vector vking − vqueen and the vector vman − vwoman,
where the two vector operations yield similar outputs. That is to say that
a linguistic relation is able to be expressed in a mathematical way that
vking − vqueen = vman − vwoman. Similar relations such as singular-plural,
verb tense, country-capital, etc. can all be expressed in the same manner.
And due to the fact that word embeddings are learned predicting a tar-
get word given its context words (or vice versa), in the embedding vector
space, words with similar contexts form clusters among others, and it is
independent of domain and language.

Figure 4.11: Example of word analogies in the vector space.

Sometimes, applying pre-trained word embeddings in different down-
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stream tasks such as sentiment analysis is also referred as Transfer Learn-
ing, which means applying something learned from a different or a general
task, on some other specific tasks. For instance, in computer vision, it is
common to train a network on image classification where the first layers
can already learn how to detect edges or smaller blocks of pixels. And
then, for a different task such as image caption, instead of training a net-
work from scratch, it is common to connect the input data to the first layers
of the pre-trained model and use the outputs as processed features for new
task specific layers.
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4.7 Other Deep Learning Methods
Deep learning definitely has been thriving in recent years, despite the meth-
ods described in previous sections which are directly related to our re-
search, there are a great number of methods that are important in the field.
Here in this section, we briefly mention some of the relevant ones that may
appear in the literature review.

Convolutional Networks

Convolutional networks LeCun et al. (1998), also known as Convolutional
Neural Networks (CNN) are a specialized kind of neural network for pro-
cessing data that has a known grid-like topology. Examples include time-
series data, which can be thought of as a 1-D grid taking samples at regular
time intervals; and image data, which can be thought of as a 2-D grid
of pixels. Convolutional networks have been tremendously successful in
practical applications. The name “convolutional” indicates that the net-
work employs a mathematical operation called convolution, which is a
specialized kind of linear operation. Convolutional networks are simply
neural networks that use convolution in place of general matrix multiplica-
tion in at least one of their layers (Goodfellow et al., 2016).

Transformer

Based on the idea of attention weights, Vaswani et al. (2017) proposed
a pure attention model with multiple heads for machine translation. Com-
pared to a regular attention mechanism, the Transformer model stacks mul-
tiple attention layers (also called heads) together in both the encoder and
decoder, so that each layer can learn to “focus” on different parts of the
input sentence. Another novel aspect of the Transformer is that it uses
a positional encoding to represent the sequence information instead of a
recurrent structure like LSTM.
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Pre-trained Language Models

More recently, based on the Transformer design, the large pre-trained lan-
guage models such as BERT (Devlin et al., 2019) and GPT-3 (Brown et al.,
2020) have become popular due to their impressive performance on many
language related tasks. A language model can be understood as a model
that predicts the following words given the previous words in a sentence.
As both the input and the label for training a language model can be found
easily in the corpus by splitting a sentence, a language model can be trained
on an extremely large corpus. Moreover, models such as BERT and GPT-
3 both are extremely large models with billions of parameters. With big
models trained on big data, the pre-trained language models are essentially
generalized language encoders that are capable of encoding linguistic and
semantic relations in a high dimensional space. Thus, for any downstream
NLP task, one could use the pre-trained language model to encode the in-
put features and then connect the hidden layer outputs to a task specific
layer for fine tuning. This approach is also known as Transfer Learning.

Deep Reinforcement Learning

Deep Reinforcement Learning (Deep RL) is a particular type of RL, with
deep neural networks for state representation and/or function approxima-
tion for value function, policy, transition model, or reward function (Wang
et al., 2018). Compared to other machine learning (ML) paradigms that
train a model, RL trains an ”agent” that interacts with the environment
over time. Instead of giving instant feedback from the loss function in
a ML setting, RL agents make a series of decisions that finally lead to a
terminal state, and then return the discounted, accumulated reward given
by the reward function. The most famous example of RL perhaps is the
AlphaGo developed by Deep Mind that plays the game of Go.
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General Adversarial Network

General Adversarial Network (GAN) (Goodfellow et al., 2014) consists of
two neural networks that contest with each other in a game (in the form
of a zero-sum game, where one agent’s gain is another agent’s loss). The
two networks are: a generative model G that captures the data distribution,
and a discriminative model D that estimates the probability that a sample
came from the training data rather than G. The training procedure for G
is to maximize the probability of D making a mistake. In practice, the
generative model after training is usually more interesting for application
as it learns to generate data that is very similar to the original training dis-
tribution. Examples include generating arts and up-scaling low resolution
pictures to high resolution pictures.
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4.8 Evaluation of a ML System

4.8.1 Training and Test Errors

The central challenge in machine learning is that a trained model must
perform well not only on data that have been seen, but also on data that
are previously unseen. In other words, the key that defines the success of a
model is its ability to generalize.

Typically, when training a machine learning model, we have access to
a dataset, named training set. We can compute some error measure on the
training set, called the training error, and we train the model by reducing
this training error. So far, it is simply an optimization problem. What sepa-
rates machine learning from optimization is that we want the generalization
error, also called the test error, to be low as well. The generalization error
is defined as the expected value of the error on a new input. Here the expec-
tation is taken across different possible inputs, drawn from the distribution
of inputs we expect the system to encounter in practice.

However in reality, we usually only have access to the training set.
In order to effectively measure the test error, some assumptions based on
the statistical learning theory are made. That is, the training and test data
are generated by a probability distribution over datasets called the data-
generating process. We typically make a set of assumptions known collec-
tively as the i.i.d. assumptions. These assumptions are that the examples
in each dataset are independent from each other, and that the training set
and test set are identically distributed, drawn from the same probability
distribution as each other. This assumption enables us to describe the data-
generating process with a probability distribution over a single example.
The same distribution is then used to generate every train example and
every test example. We call that shared underlying distribution the data-
generating distribution (Goodfellow et al., 2016).

Based on these assumptions, we can split the complete dataset into a
training set and test set to evaluate the error on both (the test set here is also
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referred to as holdout test set). Typically when training a machine learning
algorithm, the factors that determine a good model are:

1. A small training error.

2. A small gap between training and test error.

These two factors also correspond to two central challenges in ma-
chine learning: under-fitting and over-fitting. Under-fitting occurs when
the model is not able to fit well on the training set, i.e. having a training
error that is sufficiently low. On the contrary, over-fitting occurs when the
gap between training error and test error is too big, i.e. only the training
error is low. In both cases, the model fails to generalize.

4.8.2 Validation Sets
Usually, a machine learning model involves some hyperparameters (e.g.
learning rate for gradient descent, λ in the regularization term, number
of layers in a neural network, etc.), which are keys to the performance.
As mentioned in the previous section (Section 4.8.1), only having a low
training error is no guarantee of having an overall good model; but if we
select the hyperparameters using the test error, it will be against our idea
of evaluating the model on data that has never seen.

Hence, a validation set comes in place, which is a subset of the training
set. Specifically, we split the training data into two disjoint subsets. One of
these subsets is used to learn the parameters. The other subset is the vali-
dation set, used to estimate the generalization error during or after training,
allowing for the hyperparameters to be updated accordingly.

However, dividing the dataset into a fixed training set and a fixed vali-
dation set can be problematic if it results in the validation set being small.
A small validation set implies statistical uncertainty around the estimated
average error. To overcome this, alternative procedures enable one to use
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all the examples in the estimation of the mean validation error, at the price
of increased computational cost. These procedures are based on the idea
of repeating the training and validation computation on different randomly
sampled subsets or splits of the original training set. The commonly used
method is called the k-fold cross-validation procedure, in which a partition
of the dataset is formed by splitting it into k non overlapping subsets. The
validation error may then be estimated by taking the average validation
error across k trials. On trial i, the i-th subset of the data is used as the
validation set, and the rest of the data is used as the training set.
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Chapter 5

METHODOLOGY

Previously in Section 1.2, 1.5.1 and 2.1.5, we discussed that as an end-to-
end approach, deep learning based systems lack flexibility and robustness
because one cannot easily adjust the network to fix an obvious problem:
e.g. when the model always predicts positive when seeing the word “dis-
appointed”, or the network is not able to recognize the word “dungeon”
as an indication of negative polarity. It will be even harder to fix it when
more labeled training data are simply not available. Thus in Chapter 3,
our first objective in this thesis is to improve deep learning based ABSA
systems with lexicon enchantment. In this chapter, we describe the details
of our approach (named ATLX) for merging a sentiment lexicon with the
neural ABSA baseline (Section 5.2). The experiment details of ATLX will
be covered in Section 6.1 of Chapter 6.

Later, as described in Section 2.3, during the development of ATLX
we noticed that the commonly used attention mechanism is likely to over-
fit and force the network to ”focus” too much on a particular part of a
sentence, while in some cases ignoring positions which provide key in-
formation for judging the polarity. Recent studies (Niculae and Blondel,
2017; Zhang et al., 2019a) proposed approaches to make the attention vec-
tor more sparse; however, this would only encourage the over-fitting effect
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in such scenarios. Thus, in this chapter, we also describe the details of
our approach to regularize the attention weights in order to overcome the
over-fitting effect (Section 5.3), which corresponds to our second objective
described in Chapter 3. Experiments and discussions on attention regular-
ization will be covered in Section 6.2 of Chapter 6.

Finally, as mentioned in Section 2.2.3, with the ATLX model which
is enhanced by a simple generic domain lexicon, it is interesting to see
whether it is possible to further improve the ATLX model with a more
fine-grained lexicon (domain-specific and aspect-specific). In addition,
most works on sentiment domain adaptation measure the performance by
recreating an existing domain-specific lexicon Hamilton et al. (2016); Mu-
dinas et al. (2018). From an application point of view, it is also interesting
to see how much performance boost can be obtained from the domain-
specific/aspect-specific lexicon in a lexicon enhanced neural sentiment anal-
ysis system. Thus, regarding the third objective described in Chapter 3, in
this chapter, we will describe our detailed approach of domain/aspect adap-
tation and how we constructed a gold lexicon for comparison and evalua-
tion (Section 5.4). Related experiments will be described in Section 6.3 of
Chapter 6.

The ATLX experiments and attention regularization experiments are
conducted on SemEval 14, Task 4, restaurant domain dataset. The do-
main/aspect adaptation experiments are conducted on SemEval 15, Task
12, laptop dataset. Details of the datasets will be described in Chapter 6.
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5.1 Baseline AT-LSTM
In this thesis, we replicate the AT-LSTM model proposed by Wang et al.
(2016c) as our baseline system as it was the state of the art system for
ABSA when this research started. Compared to a traditional LSTM net-
work Hochreiter and Schmidhuber (1997), AT-LSTM is able to learn the
attention vector and at the same time to take into account the aspect embed-
dings; thus the network is able to assign higher weights to more relevant
parts of a given sentence with respect to a specific aspect. For instance, in
the case of “Staffs are not that friendly, but the taste covers all.”, given the
aspect service, the network should pay more attention to the first clause.

...LSTM LSTM LSTM LSTM

...

...

Word
Ebmeddings

Aspect
Ebmeddings ...

Attention

Figure 5.1: AT-LSTM model architecture.

As shown in Figure 5.1, the AT-LSTM model consists of an attention
mechanism on top of a LSTM network, where the attention weights are
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learned through a concatenation of the hidden states and the aspect em-
bedding vector. The learned attention vector is then applied to the hidden
states to produce a weighted representation of the whole sentence.

Formally, given a sentence S, let {w1, w2, ..., wN} be the word vectors
of each word in S where N is the length of the sentence. va ∈ Rda rep-
resents the aspect embeddings where da is its dimension. Let H ∈ Rd×N

be the matrix of the hidden states {h1, h2, ..., hN ∈ Rd} produced by the
LSTM network where d is the number of neurons of the LSTM cell. Thus
the attention vector α is computed as (Equation 5.1 and 5.2):

M = tanh(

[
WhH

Wvva ⊗ eN

]
) (5.1)

α = softmax(wᵀM) (5.2)

and the weighted sentence representation r is computed as (Equation 5.3):

r = Hαᵀ (5.3)

where, M ∈ R(d+da)×N , α ∈ RN , r ∈ Rd, Wh ∈ Rd×d, Wv ∈ Rda×da ,
w ∈ Rd+da . α is a vector consisting of attention weights and r is the
weighted representation of the input sentence with respect to the input as-
pect. va⊗ eN = [va, va, ..., va], is the operator that repeatedly concatenates
va for N times. Then, the final representation h∗ is obtained by (Equation
5.4):

h∗ = tanh(Wpr +WxhN) (5.4)

and fed to the output softmax layer for prediction (Equation 5.5):

ŷ = softmax(Wsh
∗ + bs) (5.5)

where, h∗ ∈ Rd,Wp andWx are projection parameters to be learned during
training. Ws and bs are weights and biases in the output layer. The predic-
tion ŷ is then plugged into the cross-entropy loss function for optimization,
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and L2 regularization is applied (Equation 5.6):

loss = −
∑
i

yilog(ŷi) + λ‖Θ‖22 (5.6)

where i is the number of classes (ternary classification in our experiments).
λ is the hyperparameter for L2 regularization. And Θ is the parameter set
of the network to be regularized.
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5.2 ATLX

5.2.1 Lexicon Build
To effectively merge a sentiment lexicon into the baseline model, we first
build our lexicon by merging 4 existing lexicons to one. Namely, MPQA1,
Opinion Lexicon2, Opener3 and Vader4. SentiWordNet was in the initial
design but has been removed from the experiments as it introduced unnec-
essary noise: e.g. “highly” is annotated as negative. There is no specific
reason for us to select any particular lexicon; as all four lexicons are open
source, easily accessible, and domain independent, we select them out of
convenience.

After gathering the resources, we have to standardize the polarities in
these lexicons as they are not annotated with the same standard. Specifi-
cally, for lexicons with categorical labels such as negative, weakneg, neu-
tral, both, positive, we convert them into numerical values as {-1.0, -0.5,
0.0, 0.0, 1.0} respectively. On the other hand, regarding lexicons with real
number annotations, for each lexicon, we adopt the annotated value nor-
malized by the maximum absolute polarity value in that lexicon. Namely,
let p ∈ {p1, p2, ..., pn} be the set of unique numerical polarities of a given
lexicon, the normalized polarity pi is computed as (Equation 5.7):

pi =
pi

max(|p|)
∀i ∈ {1, 2, ..., n} (5.7)

Finally, the union U of all lexicons is taken where each word wl ∈ U
has an associated vector vl ∈ Rn that represents the polarities given by
each lexicon (n here is the number of lexicons). Average values across all
available lexicons are taken for missing values. For example, the lexical

1https://bit.ly/2Ia4u74
2https://bit.ly/36JNmPN
3https://bit.ly/3iIrnv1
4https://bit.ly/3jJ95uH
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Word MPQA Opener OL Vader
adorable 1.0 1.0 1.0 0.55
accomplished 0.74 0.74 1.0 0.48
bravo 1.0 1.0 1.0 1.0
broke -1.0 -1.0 -1.0 -0.45
complete 0.0 0.0 0.0 0.0
costly -1.0 -1.0 -1.0 -1.0

Table 5.1: Example of the merged lexicon U .

features of the word “adorable” are represented in the vector [1.0, 1.0, 1.0,
0.55], whose values are taken from MPQA (1.0), Opener (1.0), Opinion
Lexicon (1.0) and Vader (0.55) respectively. For words outside of U , a
zero vector of dimension n is supplied. As an example, Table 5.1 shows a
small portion of the merged lexicon.

5.2.2 Lexicon Integration
As shown in Figure 5.2, on top of the baseline model, a new set of inputs
consisting of lexical features are introduced, where each vector is the lexi-
cal features of a word given by the lexicon union set U . To merge them into
the baseline system, we first perform a linear transformation on the input
lexical features Vl in order to preserve the original sentiment distribution
and have compatible dimensions for further computations. Later, the at-
tention vector α learned as in the baseline is applied to the transformed
lexical features L to produce a weighted representation of the lexical fea-
tures l. Finally, all weighted representations l and r are added together with
the last hidden state hN after being projected by some network parameters
to make the final prediction.

Formally, let S ∈ {w1, w2, ..., wN} be the input sentence, Vl ∈ {vl1,
vl2, ..., vlN} be the lexical features of each word in S, va ∈ Rda be the
aspect embeddings. Let H ∈ Rd×N be the matrix of the hidden states
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Figure 5.2: ATLX model architecture

{h1, h2, ..., hN ∈ Rd} produced by the LSTM network. Same as the base-
line (Equation 5.1, 5.2 and 5.3), the attention vector α and the weighted
sentence representation r is computed as:

M = tanh(

[
WhH

Wvva ⊗ eN

]
)

α = softmax(wᵀM) (5.8)

r = Hαᵀ
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where M ∈ R(d+da)×N , α ∈ RN , r ∈ Rd,Wh ∈ Rd×d,Wv ∈ Rda×da , w ∈
Rd+da . va ⊗ eN = [va, va, ..., va] represents the operation that repeatedly
concatenates va for N times.

Regarding the lexical inputs, let Vl ∈ Rn×N be the lexical feature ma-
trix of the sentence, Vl then is transformed linearly (Equation 5.9) by:

L = Wl · Vl (5.9)

where L ∈ Rd×N ,Wl ∈ Rd×n. Later, the attention vector α learned from
the concatenation of H and va ⊗ eN is applied on L to obtain a weighted
representation of the lexical features (Equation 5.10):

l = L · αᵀ (5.10)

where l ∈ Rd, α ∈ RN . Finally the mixed final representation of all inputs
h∗ is updated and passed to the output layer by:

h∗ = tanh(Wpr +WxhN +Wol) (5.11)

ŷ = softmax(Wsh
∗ + bs) (5.12)

where Wo ∈ Rd×d is a projection parameter as Wp and Wx; Ws and bs
are weights and biases in the output layer. The same loss function as the
baseline is used to train the model:

loss = −
∑
i

yilog(ŷi) + λ‖Θ‖22 (5.13)

where i is the number of classes (ternary classification in our experiments).
λ is the hyperparameter for L2 regularization. And Θ is the parameter set
of the network to be regularized; compared to the baseline, new parameters
Wl and Wo are added to Θ.
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5.3 Attention Regularization
Since the attention vector is learned purely based on the training examples,
it is possible that it is over-fitted in some cases, causing the network to
ignore other relevant positions. A graphical representation of this effect is
shown in Figure 6.14: the attention weights in ATLX are less sparse across
the sentence, while the ones in the baseline are focusing only on the last
parts of the sentence (details will be discussed in Section 6.2 of Chapter
6). In addition, we observe that the distribution of all the attention weights
in ATLX has a lower variance5 than in AT-LSTM (baseline). Note that
the attention weights sum up to one, so when weights are closer to mean
(not zero), the standard deviation is smaller; on the other hand, when most
weights are close to zero and the rest few weights are close to one, the
standard deviation is larger.

Thus we propose a simple attention regularizer to further validate our
hypothesis, which consists of adding into the loss function a parameterized
standard deviation or negative entropy term for regularizing the attention
weights. The idea is to avoid the attention vector being overly sparse by
having heavier weights in few positions; instead, it is preferred to have
higher weight values for more positions, i.e. to have an attention vector
with more spread out weights. Formally, the attention regularized loss
function is defined as:

loss = −
∑
i

yilog(ŷi) + λ‖Θ‖22 + ε Ω(α) (5.14)

Compared to the loss function in AT-LSTM and ATLX (Equation 5.6 and
5.13), a second regularization term ε Ω(α) is added, where ε is the hyper-
parameter for the attention regularizer (always positive); Ω stands for the
regularization function defined in Equation 5.15 or Equation 5.16; and α

5Standard deviation of the attention weights distribution in the test set: AT-LSTM:
0.0354 > ATLX: 0.0219
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is the attention vector, i.e. the distribution of attention weights. Note that
during implementation, the attention weights for batch padding positions
must be excluded from α when computing the regularization term.

Regarding Ω itself, we experiment two different regularizers in our ex-
periments: one uses the standard deviation of α defined in equation 5.15;
and another one uses the negative entropy of α defined in equation 5.16.

Standard Deviation Regularizer

Ω(α) = σ(α) =

√√√√ 1

N

N∑
i

(αi − µ)2 (5.15)

Negative Entropy Regularizer

ent(α) = −
N∑
i

αilog(αi)

Ω(α) = −ent(α) (5.16)
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5.4 Sentiment Induction

5.4.1 Sentiment Domain Adaptation

As most works on sentiment domain adaptation measure the performance
by recreating an existing domain-specific lexicon (Hamilton et al., 2016;
Mudinas et al., 2018), from an application point of view, we ask the ques-
tion: how much improvement can we get from the domain-specific lexicon
in a lexicon enhanced neural sentiment analysis system? And what is its
limit? This is particularly interesting since we already have a model that
works with a generic sentiment lexicon: ATLX.

In our experiments, we take the approach by Mudinas et al. (2018) to
perform sentiment domain adaptation, who discovered that the distributed
word representations in fact form distinct clusters for opposite sentiments;
and this behavior in general holds across different domains. In other words,
in the vector space shaped by a domain specific corpus, positive words are
closer to each other than they are to negative words; and the same behav-
ior is expected in other domains. Thus a probabilistic word classifier can
be trained on a set of seed words (a number of predefined words which
have consistent sentiment behavior in different domains, e.g. “good” and
“bad)”; and this classifier can be used to induce the generic sentiment lex-
icon by predicting the word polarity in a new domain given its domain-
specific word embeddings.

Specifically, we use the domain-specific word embeddings6 learned
from Amazon electronics review corpus; and a set of seed words (listed in
Table 5.2) to form a set of training examples. Each example is composed
by (x, y) pairs where x ∈ R500 is the 500 dimensional domain-specific
word vector, and y is the seed word polarity as label. Next, we train a
SVM classifier (Pedregosa et al., 2011) with rbf kernel and C = 10 as a
regularization parameter. Finally, we use the trained classifier to predict

6Available at https://bit.ly/2U9X5aP
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the polarity of generic lexicon words (U described in 5.2.1). When pre-
dicting, a confidence threshold t = 0.7 is applied to reduce noise; i.e. the
polarity of the generic lexicon is updated only when p ≥ t where p is the
maximum predicted probability of the classifier.

We use this approach to convert U from a generic domain lexicon into
a domain-specific one (Amazon electronic reviews). Then we apply it in
ATLX, and compare with applying a gold domain specific lexicon con-
structed by ourselves (Section 5.4.2). We evaluate the performance gain of
each lexicon when applied in the ATLX model to understand the limit of
domain adaptation.

In addition, compared to the binary classification originally applied in
Mudinas et al. (2018) using only positive and negative seed words, we
find that the binary classification would misclassify obvious neutral words,
even when a 0.7 confidence threshold is applied. E.g. “really”, “very” and
“thought” are predicted to be negative, positive and negative respectively.
Thus, to further reduce noise, we introduce an additional set of 35 neutral
seed words (Table 5.2) to perform ternary classification instead of binary.

5.4.2 Gold Lexicon
To better interpret the experimental results and understand the limit of do-
main adaptation, we find the intersection I (839 elements) between the set
of generic lexicon entries G (13,297 elements) and the set of the corpus
vocabulary V (2,965 elements), where I = G ∩ V . Then we label I to be
the gold lexicon of the electronics review domain, where polarities: posi-
tive, neutral and negative are annotated as numerical values: 1, 0 and −1
respectively. Three principles are defined as annotation guidelines:

1. Domain first: prioritize the most common meaning of the word in
the current domain. E.g. in the electronics or laptops review domain,
“fallout” or “excel” are neutral proper nouns referring to a video
game and a software; however, under generic context “fallout” and
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Positive: 31 words Negative: 34 words Neutral: 35 words
amazing awesome awful bad bland absolutely actual
beneficial best correct bore worst damages actually air anyway
delightful excellent disappointed disgusting baby basically else
fortunate gains genius down evil failure hate entirely exact exactly
gifted good happy hated hates horrible expression eyebrows
improved improving inferior lifeless idea imagination
incredible interesting litigation loss losses information judgement
love loved lovely nasty negative negligent know likely much
loves nice perfect poor sad shallow opinion particular
pleasant positive simplistic terrible particularly perhaps
profit success unfortunate unhappy point seem should so
successful superior unpleasant volatile think thinking to
unforgettable fantastic disappointing wrong difference nature

intention such

Table 5.2: Seed words and word counts used for domain adaptation.

“excel” are marked as negative and positive. Similarly, nouns such
as “brightness”, “durability” and “security” have positive sentiment
under generic context, but here they in fact refer to neutral product
aspects.

2. Neutral adverbs: adverbs in general should be neutral especially
when they can be used to modify both positive and negative words.
For example “definitely”, “fairly” and “truly” can all express oppo-
site sentiment depends on the word that follows (“definitely great”
vs “definitely garbage”).

3. Neutral ambiguity: ambiguous context dependent words should be
neutral in the lexicon, in order to avoid feeding confusing informa-
tion to the model. For instance, “cheap price” carries positive sen-
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timent while “cheap plastic” is definitely negative. Other examples
are: “black screen” vs “black macbook”; “loud speaker” vs “loud
click”; “low price” vs “low grade”.

5.4.3 Sentiment Aspect Adaptation

To deal with the aspect-dependent problem (e.g. “cheap price” vs “cheap
plastic”), we adopt a similar approach to the domain adaptation method
described in Section 5.4.1. More specifically, we build a set of training
data using the same seed words shown in Table 5.2: the domain specific
word embeddings of each word is merged with the aspect embeddings of
a aspect word to be input features; and the seed words labels are served as
classes. Then the same SVM classifier as for domain adaptation (Section
5.4.1) is trained and used to update the generic lexicon U given its word
embeddings and aspect embeddings as joint inputs.

Formally, let A be the set of 9 aspect words in which each word is A =
{“connectivity”, “design”, “general”, “miscellaneous”, “performance”,
“portability”, “price”, “quality”, “usability”}. Let vja be the word vector
of an aspect word j ∈ A, where all word vectors are learned from the
Amazon electronics review corpus, same as the domain adaptation method.
Let S be the set of seed words in Table 5.2, and vis be the domain specific
word embeddings of a seed word i ∈ S. yi be the label of the word i from
S, namely positive, neutral or negative. Thus for each training example
(xij, yi), we have

xij = vis ⊕ vja ∀j ∈ A

where ⊕ is an operation of concatenation, summation or mean of two vec-
tors vis and vja. This is equivalent to a Cartesian product between S and A,
and for each element in the output, we concatenate (or sum, or average)
their corresponding domain-specific word vectors as input features.

Then, these training examples are used to train a SVM classifier same
as the domain adaptation method. And finally, the trained classifier is used
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to predict the polarity of a tuple consisting of the domain-specific word
vector of a given word in U , and the aspect vector of any aspect from A.
When the predicted probability is larger than the threshold t, the polarity
of that word-aspect pair is modified. The final aspect-specific lexicon is
essentially a dictionary with keys as the Cartesian product of U and A.
And when used in the ABSA system, the polarity of a word is given by the
expanded lexicon based on the input word and its associated aspect. Same
as the domain adaptation method described in Section 5.4.1, we train a
SVM classifier (Pedregosa et al., 2011) with rbf kernel and C = 10 as a
regularization parameter; and the threshold t = 0.7 is used.
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Chapter 6

EXPERIMENTS

In Chapter 3, we introduce the main objectives of this thesis. In Section
5.2, 5.3 and 5.4 of Chapter 5, we describe our approaches to complete these
objectives. And in this chapter, we will describe three main experiments
in details that correspond to the objectives and methods. The three main
experiments consist of: merging lexicon into the AT-LSTM baseline model
(ATLX), regularizing the attention vector, and sentiment induction applied
in the lexicon enhanced ATLX model.

In addition, based on the outcomes of the experiments, we will dis-
cuss the possible reasons behind the results and the implications that come
along. Moreover, some support experiments will also be covered to better
illustrate the ideas.
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6.1 AT-LSTM with Lexicon Enhancement (ATLX)

6.1.1 Datasets
Same as Wang et al. (2016c), we experiment on SemEval 2014 Task 4,
restaurant domain dataset. The data consists of reviews of restaurants with
predefined aspects: {food, price, service, ambience, miscellaneous} and
associated polarities: {positive, neutral, negative}. The objective is to
predict the polarity given a sentence and an aspect. For instance, given
a review sentence “The restaurant was too expensive.”, the model should
identify the negative polarity associated with the aspect price. In total,
there are 3,518 training examples and 973 test examples in the corpus. Ta-
ble 6.1 shows the distribution of aspects per label for both training and test
data.

Polarity Positive Neutral Negative
Aspect\Split Train Test Train Test Train Test
food 867 302 209 69 90 31
price 179 51 115 28 10 1
service 324 101 218 63 20 3
ambience 263 76 98 21 23 8
miscellaneous 546 127 119 41 357 51
TOTAL 2179 657 839 222 500 94

Table 6.1: Distribution of aspects by label and train/test split in the SemEval 2014
Task4, restaurant domain dataset.

In addition, we also reproduce our experiments on the SemEval 2015
Task 12, laptop domain dataset. The dataset consists of reviews of lap-
tops with annotated entity-attribute pairs such as: {LAPTOP#GENERAL,
KEYBOARD#QUALITY, LAPTOP#PRICE, ...} and associated polarities:
{positive, neutral, negative}. In order to have comparable results with the
SemEval 2014 dataset, we simplify the attribute annotations to: {general,
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Polarity Positive Neutral Negative
Aspect\Split Train Test Train Test Train Test
connectivity 17 6 0 3 15 15
design 150 71 33 16 67 39
general 401 197 10 15 168 79
miscellaneous 71 43 12 5 35 21
performance 164 88 9 6 114 77
portability 36 5 0 1 8 2
price 41 38 22 17 25 5
quality 115 61 10 5 289 65
usability 108 32 10 11 44 26
TOTAL 1103 541 106 79 765 329

Table 6.2: Distribution of aspects by label and train/test split in the SemEval 2015
Task12, laptop domain dataset.

performance, design, usability, portability, price, quality, miscellaneous,
connectivity} and use them as aspects. Together, there are 1,973 training
examples and 949 test examples in the corpus. Table 6.3 shows a small
portion of examples from both datasets.

In addition, we use pre-trained word embeddings to initialize the pa-
rameters in the embedding layer of our model. Namely, the 300 dimen-
sional Glove1 vectors trained on 840B tokens are used for the ATLX model.

6.1.2 Lexicons

As shown in Table 6.4, we merge four existing and online available lexi-
cons into one. The merged lexicon U as described in Section 5.2.1 is used
for our experiments. After the union, the following post-process is carried
out: {bar, try, too} are removed from U since they are unreasonably an-

1https://stanford.io/2FeYJnn

127



SemEval 14 Task 4, Restaurant Domain
Label Aspect Sentence
negative quality “the battery has never worked well .”
negative performance “the battery has never worked well .”
negative quality “the battery gets so hot it is scary .”
positive general “this computer is absolutely amazing ! ! !”
neutral general “overall , it ’s ok .”

SemEval 15 Task 12, Laptop Domain
Label Aspect Sentence
positive service “good , fast service .”
positive miscellaneous “you can not go wrong at the red eye grill .”
negative miscellaneous “this restaurant used to be pretty decent .”
neutral miscellaneous “was there friday night .”
positive food “great wine , great food .”

Table 6.3: Examples from the SemEval 14, Task 4 and the SemEval 15, Task 12
datasets.
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Positive Neutral Negative In corpus
MPQA 2298 440 4148 908
OL 2004 3 4780 732
Opener 2298 440 4147 908
Vader 3333 0 4170 656
Merged U 5129 404 7764 1234

Table 6.4: Lexicon statistics of positive, neutral, negative words and number of
words covered in corpus.

notated as negative by MPQA and Opener; {n′t, not} are added to U with
−1 polarity for negation as we have observed cases in early experiments
where the model struggles to identify negation after lexicon integration.

6.1.3 ATLX Variants
In order to effectively merge lexicon information to the baseline system,
apart from the ATLX model described in Section 5.2.2, we have designed
a set of variants as well. Namely, a variety of ways slightly different from
ATLX to merge lexicon information into the system.

Variant 1

Recall that in ATLX (Equation 5.10, Section 5.2.2), the lexical representa-
tion l is obtained by applying the attention weights α on the transformed
lexical features L:

l = L · αᵀ

Here, instead of applying the attention vector α, a linear transformation
is adopted to obtain l (Equation 6.1):

l = L · wv1 (6.1)

where L ∈ Rd×N , wv ∈ RN , and l ∈ Rd.
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Variant 2

Recall that in ATLX (Equation 5.8, Section 5.2.2), the attention vector α is
computed with the concatenation of transformed hidden states H and the
repeated aspect vectors va as input:

M = tanh(

[
WhH

Wvva ⊗ eN

]
)

α = softmax(wᵀM)

Here, we add a third input to compute α, which is the lexical features
L projected by some network parameter Wv2:

M = tanh(

 WhH
Wvva ⊗ eN
Wv2L

) (6.2)

α = softmax(wᵀM)

where L ∈ Rd×N , Wv2 ∈ Rd×d, and M ∈ R(d+da+d)×N .

Variant 3

Recall that in ATLX (Equation 5.11, Section 5.2.2), the final representation
h∗ is composed by the summation of three lower level representations: r,
hN and l:

h∗ = tanh(Wpr +WxhN +Wol)

Here instead of summation, a concatenation of three elements are made
to form the final representation:

h∗ = tanh(

 Wpr
WxhN
Wol

) (6.3)

where r ∈ Rd, l ∈ Rd, hN ∈ Rd, and h∗ ∈ R3d.

130



Variant 4

Similar to Variant 3, compared to ATLX where the final representation is
obtained through the summation of three lower level representations, here
we use a different approach to compute h∗. Inspired by the attention mech-
anism, we would like to have a second attention mechanism here to weight
the lower level representations when aggregating the final representation.
This way, the model would be able to weight different information sources
accordingly as lexical features are not always available (words outside of
the lexicon are treated as neutral as described in Section 5.2.1).

Formally, let H∗ be the concatenation of Wpr+WxhN and Wol (Equa-
tion 6.4), a new attention vector β (Equation 6.5) is learned and applied
back to H∗ to obtain the final representation (Equation 6.6):

H∗ = tanh(
[
Wpr +WxhN ,Wol

]
) (6.4)

β = softmax(wᵀ
bH) (6.5)

h∗ = Hβᵀ (6.6)

where H∗ ∈ Rd×2, wb ∈ Rd, β ∈ R2, h∗ ∈ Rd.

6.1.4 Evaluation

In our experiments, we use cross validation (CV) to evaluate the perfor-
mance of each model. Specifically, the training set is randomly shuffled
and split into 6 folds with a fixed random seed. According to the code2

released by Wang et al. (2016c), a development set containing 528 exam-
ples is used in the implementation of AT-LSTM, which is roughly 1

6
of the

training corpus. In order to remain faithful to the original implementation,
we thus evaluate our model with a cross validation of 6 folds.
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CV σCV Test σTest

Baseline 75.27 1.420 81.48 1.157
ATLX 75.64 1.275 82.62 0.498
Variant1 75.59 1.349 80.97 0.683
Variant2 75.56 1.465 82.12 1.380
Variant3 74.36 1.291 80.49 1.680
Variant4 73.39 2.544 79.48 1.976

Table 6.5: Mean accuracy and standard deviation (σ) of cross validation results on
six folds of development sets and one holdout test set of the SemEval14, restaurant
dataset. Note that in our replicated baseline system, the cross validation perfor-
mance on the test set ranges from 80.06 to 83.45; in Wang et al. (2016c), 83.1 was
reported.

SemEval14 Restaurant SemEval15 Laptop
CV σCV Test σTest CV σCV Test σTest

Baseline 75.27 1.420 81.48 1.157 82.48 2.154 74.06 0.624
ATLX 75.64 1.275 82.62 0.498 83.39 2.640 75.92 1.497

Table 6.6: Mean accuracy and standard deviation (σ) of cross validation results
on six folds of development sets and one holdout test set. Evaluated on the Se-
mEval14, restaurant dataset and the SemEval15, laptop dataset.
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Table 6.5 shows the evaluation results of the baseline system, ATLX
and four variants of ATLX on the SemEval14 restaurant dataset. Com-
pared to the baseline system on both datasets, ATLX improves substan-
tially on both CV and test sets. Meanwhile, the four variants of ATLX
cannot achieve a superior performance compared to ATLX, and some even
decrease compared to the baseline. For instance, both variant 1 and vari-
ant 2 improve slightly on the CV sets compared to the baseline; however,
only variant 2 improves on the test set as well while variant 1 suffers a
drop back. On the other hand, both variant 3 and variant 4 show a inferior
performance compared to the baseline on both CV sets and test set, where
variant 4 suffers the largest decrease.

To further validate the effectiveness of ATLX, we conduct similar ex-
periments on the SemEval15 laptop dataset. More specifically, we apply
both the baseline and the ATLX model on the SemEval15 dataset and see
if a similar improvement can be observed. Table 6.6 shows the evaluation
results of the two models on both datasets. From the table, we can see
that similar to the SemEval14 dataset, compared to the baseline, ATLX
improves on both the CV sets and the test set of the SemEval15 dataset as
well; showing that our proposed method is effective.

It is worth mentioning that the results on the SemEval15 dataset have
higher variance than the SemEval14 dataset (σCV of the baseline and ATLX
on the SemEval15 dataset are both above 2.0, compared to the ones in Se-
mEval14 which are both below 1.5); and the variance improvements of the
proposed methods are only observed in the SemEval14 dataset. Given the
fact that both datasets are not large in terms of scale under modern deep
learning standards, and the SemEval15 dataset is even smaller than the Se-
mEval14 dataset, it is hard to draw a strong conclusion here.

2https://bit.ly/2I9H4yx
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6.1.5 Discussion
Qualitative Analysis - ATLX Improvements

In previous sections, we described a simple yet effective approach for an
attention LSTM network to leverage natural polarities in numeric form pro-
vided by lexical resources for aspect-level sentiment analysis. As a result,
the overall performance of the ATLX model is enhanced compared to the
baseline; and more importantly, by leveraging lexical features independent
from the training data, the model becomes more robust and flexible.

For instance in Figure 6.1, although the baseline is able to pay relatively
high attention to the word “disappointed” and “dungeon”, it is not able
to recognize these words as clear indicators of negative polarity; while
ATLX is able to correctly predict negative for both examples. It is also
interesting to see that in the second example, the attention shifts to the
word “dungeon” in ATLX compared to the baseline, suggesting that the
model is able to take advantage of the extra information provided by the
lexicon.

More similar examples can be observed as well. For instance in Fig-
ure 6.2, the baseline is consistent about the opinion word “disappointed”,
similar to previous examples, and it recognises the word as a positive in-
dication; thus predicts the negation clause “not be disappointed” as neg-
ative. Although the attention weights are still similarly distributed (more
focused on the ending part of the sentence) after the lexicon is introduced,
the ATLX model is able to understand “disappointed” as a negative opin-
ion word just like the example in Figure 6.1.
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Figure 6.1: Baseline (“Base”) and ATLX comparison (1/12); baseline predicts
positive (“Pos”) for both examples, while the gold labels are negative (“Neg”)
for all. In some of the following plots, the neutral is annotated as (“Neu”). In
the rows annotated as “Base” and “ATLX”, the numbers represent the attention
weights of each model when predicting. Note that they do not sum up to 1 in the
Figure because predictions are done in a batch with padding positions in the end
which are not shown in the Figure. The rows annotated as “Lexicon” indicate the
average polarity per word given by U as described in Section 5.2.1
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Figure 6.2: Baseline and ATLX comparison (2/12).
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Figure 6.4: Baseline and ATLX comparison (4/12).

In Figure 6.3, compared to the ATLX model, the attention weights in
the baseline model obviously fail to take into account some of the key
elements for polarity judgement. For example in the baseline, given the
aspect “food”, the attention weights for the word “strangest” and the clause
“too hard to make” are clearly lower than they are in the ATLX model.
However in the ATLX model, after introducing the lexicon, both the word
“strangest” and the word “hard” receive a significantly higher attention;
which helps the model to correctly predict the negative class.

In Figure 6.4, we can see another case in which after introducing the
lexicon, the model is able to attend more to a keyword and makes the cor-
rect prediction. Specifically, given the aspect service, the baseline is not
able to predict the correct negative label although the clause “the service is
terrible” has been given relatively higher weights. On the other hand, the
weight of the opinion word “terrible” is doubled in ATLX with the polarity
of the word “terrible” fed to the model.

In Figure 6.5 we can see a rather simple case, in which the baseline
predicts incorrectly the neutral label. However, in ATLX, although the
distribution of the attention weights is similar to the baseline, the model
now can correctly predict positive given the aspect food.

In these cases, compared to the baseline, ATLX is not only able to
leverage the newly introduced lexical features, but also to better distribute
the attention weights accordingly. However, in some cases, without having
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Figure 6.5: Baseline and ATLX comparison (5/12). Baseline predicts neutral
(“Neu”)

any valuable lexical features, the attention weights of the ATLX model are
still able to be more reasonable.

For instance in Figure 6.6, all lexical features are 0 which means no
external polarity information is available. However, there is a clear differ-
ence between the attention weight distribution of the baseline and ATLX.
In the baseline, the model “focuses” more on the beginning part of the sen-
tence; while in ATLX, the word “varied” is highlighted, which is the key
for polarity judgment in this case.
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Figure 6.6: Baseline and ATLX comparison (6/12).
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Similarly, in Figure 6.7, given the aspect service, the baseline model
almost only “focuses” on the first clause, and completely ignores the key
word “immediately” at the end of the sentence. In this case, the word
“immediately” directly ties to the service as it refers to the waiter/waitress
picking up the plate too soon. Compared to the baseline, the attention
weight of the word “immediately” increases significantly even though all
lexical features are 0, making the attention distribution more reasonable
than it is in the baseline.

Qualitative Analysis - ATLX Trade-offs

Although the general performance of ATLX is better than the baseline,
there are also cases where the lexicon enhanced model performs worse
than the baseline. By adding lexical features in the system, it is inevitable
to introduce noise, and such noise may confuse the model.

For example in Figure 6.8, both the baseline and ATLX are able to
pay relatively high attention to the second clause: “definitely the place
to be”; however, ATLX is not able to identify the positive polarity given
the miscellaneous aspect. It is worth mentioning that the polarities of all
three non-neutral words given by the lexicon seem more reasonable to be
neutral. Such noise from the lexicon can produce a negative effect on the
ATLX model.

Similarly, in Figure 6.9, given the aspect miscellaneous, the ATLX
model fails to identify the neutral polarity. Compared to the baseline,
ATLX “focuses” more on the word “promptly”, which carries a positive
sentiment according to the lexicon. Under this context, it is reasonable that
“seated promptly” refers to good fast service because there was no need
to wait. However, it is indeed neutral regarding the aspect miscellaneous.
Nevertheless, the words “close” and “dance” are marked as negative and
positive by the lexicon, which are disputable.

A slightly more complex example can be found in Figure 6.10, where
a comparative opinion is expressed on top of a positive opinion. In fact
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Figure 6.8: Baseline and ATLX comparison (8/12).

Figure 6.9: Baseline and ATLX comparison (9/12).
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Figure 6.10: Baseline and ATLX comparison (10/12).

Figure 6.11: Baseline and ATLX comparison (11/12).

comparative opinions are studied as a sub-field of sentiment analysis due
to their complex structure (Liu, 2012). In this case, the baseline model
predicts correctly and the ATLX model seems mazed by the number of
positive and negative opinion words marked by the lexicon.

In some other cases, the ATLX model shows inconsistency in terms
of treating negation expressions. For example in Figure 6.11, the ATLX
model correctly “focuses” on the word “impressed” with positive polarity
given by the lexicon; however, the negation coming before it is completely
ignored. It has been shown that ATLX is usually capable of handling nega-
tions (e.g. Figure 6.2, 6.4). However, this case suggests that the handling
of negation in ATLX is not consistent.
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Figure 6.12: Baseline and ATLX comparison (12/12).

Last but not least, in Figure 6.12, we can see that the ATLX has a higher
“focus” on the exclamation mark in the end, and despite the two negative
opinion words marked by the lexicon, the ATLX model still predicts posi-
tive given the aspect food.

Lexicon Integration

Regarding the proposed approach for merging lexical features into the sys-
tem (ATLX in Section 5.2), it is worth mentioning that the computation of
the attention vector α does not take lexical features Vl into account. Al-
though it is natural to think that adding Vl as input for computing α would
be a good option, the results of ATLX* in Table 6.7 suggest otherwise.

In order to understand better where the improvement of ATLX comes
from, whether it comes from the availability of lexical features or it is
also related to how we introduce lexical features to the system, we con-
duct a support experiment that aims at verifying the impact of the lexicon
(baseLX); it consists of naively concatenating input word vectors with their
associated lexical vectors and feed the extended embeddings to the base-
line. As shown in Table 6.7, by comparing baseline with baseLX, we see
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CV σCV Test σTest

Baseline 75.27 1.420 81.48 1.157
ATLX 75.64 1.275 82.62 0.498
ATLX* 74.99 1.638 82.03 1.409
BaseLX 71.98 1.588 79.24 2.322

Table 6.7: ATLX support experiments on SemEval14, restaurant domain dataset.

that the simple merge of lexical features with the network without carefully
designed mechanisms, the model is not able to leverage new information;
and as a consequence, the overall performance is decreased.

Regarding the ATLX variants described in Section 6.1.3, apparently
none of them achieves a superior performance compared to not only ATLX
but also the baseline. As deep neural networks are still considered some
kind of black-box model, it is hard to reason why one solution performs
better than another. Here by comparing the difference with the ATLX
model, we try to point out some potential insights learned from these ex-
periments.

Compared to ATLX, variant 1 uses a linear transformation to process
the lexical features L instead of applying the attention vector on L (Equa-
tion 6.1). First, a linear transformation seems to be incapable of efficiently
passing lower level information to higher level layers, especially as hid-
den layers of neural networks. Second, by applying the attention vector α
on L instead of putting L as input to learn α, when training the network
and updating the parameters, the lexical features still have impact on how
α will change and thus the attention framework is capable of taking into
account lexical features as well. Consequently, we observe the impact on
attention vectors in ATLX compared to the baseline, which allows it to
attend more on key opinion words with sentiment information from the
lexical features. In addition, the fact that the attention vector is learned
to attend to both the input sentence and the lexical features, ensures that
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when putting them together at later steps, there will be no conflict between
these two components and it allows us to obtain a final representation more
smoothly.

In variant 2, we add the linearly transformed lexical features L into
the input for computing the attention vector α (Equation 6.2). The results
in Table 6.5 show that variant 2 does improve on both the CV sets and
the test set compared to the baseline; however, the improvement is not as
large as ATLX. One possible reason is that by adding L into the equation,
we have also introduced more model parameters that need to be learned;
while the dataset is limited in size and cannot help to train a better model.
Meanwhile, the model becomes redundant when trying to obtain the final
representation of all inputs as: h∗ = tanh(Wpr + WxhN + Wol), where
both l and r are products of the attention vector α.

Both variant 3 and variant 4 suffer a performance decrease compared to
the baseline. Similarly, instead of summing the lower level representations,
they try to concatenate the lower level representations (Equation 6.3), or
using a weighted sum to combine them (Equation 6.6). Concatenation as
a commonly used approach to combine the outputs of two hidden layers
has been widely used in deep neural networks. However in Table 6.5, the
results suggest that summation yields better results. Similar results can
be observed for variant 4, where using weighted sum for combining the
sentence representation and lexicon representation does not yield a better
performance.

Lexicon Size

To further explore the impact of adding lexical features into the system, we
conduct another support experiment focusing on the changes caused by the
size of the lexicon.

As described in Section 5.2.1, neutral polarity is supplied for words
outside the lexicon. Let u ∈ U be the subset of lexicon entries where
u = U ∩ V and V is the vocabulary of the corpus. As shown in Table 6.4,
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Figure 6.13: ATLX cross validation results on test set with increasing lexicon
size on SemEval14, restaurant domain dataset.

the size of u in our experiment is 1, 234. In order to experiment the impact
caused by the size of the lexicon, we randomly shuffle u and perform the
same cross validation evaluation on ATLX with an increasing size of u by
a step of 200. Figure 6.13 shows the cross validation performance on the
test set.

In general, we can see that larger size of u tends to yield better overall
performance but with an exception of size 1, 000; where the performance
becomes more variant.

Lexicon Dimensions

As shown in Table 6.8, the dimension of the lexical feature affects the
performance of the model to some extent. The best performance comes
from n = 3, i.e. when using only 3 columns of the merged lexicon U ,
which is the result reported as ATLX in Table 6.5 and others that follow.
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CV σCV Test σTest

Baseline 75.27 1.420 81.48 1.157
ATLXn=1 75.47 2.422 81.91 0.407
ATLXn=2 75.19 1.531 82.10 1.253
ATLXn=3 75.64 1.275 82.62 0.498
ATLXn=4 75.50 2.034 82.60 0.800

Table 6.8: ATLX lexicon dimension experiments on SemEval14, restaurant do-
main dataset.

Although the difference between ATLXn=3 and ATLXn=4 is negligible and
the performance seems linear with respect to n, it would be safer to select
n through tuning.
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6.2 Attention Regularization

6.2.1 Evaluation

As described in Section 5.3, in Figure 6.14, we can observe that in the
baseline system, before adding lexical features, the attention weights are
more sparse (i.e. large weights in few positions, small weights close to
zero in many positions), and mostly focusing only on the last parts of the
sentence. However in the ATLX system, the attention weights are less
sparse across the sentence. This sparseness could hurt the model by not
passing key information to deeper layers. In this case, the baseline is not
able to pay attention to “bad manners”, while the ATLX model can.

Since the attention vector is purely learned on the training data, we
believe it could be over-fitting. Thus we design two regularizers (Section
5.3) and try to overcome the over-fitting effect. Namely, a parameterized
standard deviation regularizer, and a negative entropy regularizer. The idea
is to avoid the attention vector being overly sparse by having heavy weights
in few positions; instead, it is preferred to have higher weights for more
positions, i.e. to have an attention vector with more spread out weights.

Table 6.9 shows the evaluation results of applying these two regulariz-
ers in both the baseline and the ATLX model. Compared to the baseline
system on both datasets, by adding attention regularization to the baseline
system without introducing lexical features, both the standard deviation
regularizer (basestd) and the negative entropy regularizer (baseent-) are able
to contribute positively, where baseent- yields the largest improvement. But
this is only observed on the test sets of both datasets, the performance on
the CV sets of SemEval15 is generally worse than the baseline. How-
ever, by combining attention regularization and lexical features together,
the model is able to achieve the highest test accuracy in all experiments
conducted on both datasets.
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SemEval14 Restaurant
CV σCV Test σTest

Baseline 75.27 1.420 81.48 1.157
Basestd 74.67 1.688 81.57 0.915
Baseent- 75.93 1.467 82.24 0.863
ATLX 75.64 1.275 82.62 0.498
ATLXstd 75.64 1.275 82.68 0.559
ATLXent- 75.53 1.265 82.86 1.115

SemEval15 Laptop
CV σCV Test σTest

Baseline 82.48 2.154 74.06 0.624
Basestd 81.45 1.572 74.53 1.845
Baseent- 81.91 1.194 75.80 0.763
ATLX 83.39 2.640 75.92 1.497
ATLXstd 82.36 2.082 74.75 2.560
ATLXent- 82.87 1.696 75.94 1.582

Table 6.9: Comparison between main experiments and attention regularizers.
Mean accuracy and standard deviation of cross validation results on six folds
of development sets and one holdout test set. Evaluated on SemEval14 and Se-
mEval15 dataset.
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6.2.2 Discussion

Attention Regularizers

As shown in Figure 6.14, when comparing ATLX with the baseline, we find
that although the lexicon only provides non-neutral polarity information
for three words, the attention weights of ATLX are less sparse and more
spread out than it is in the baseline. On the other hand, this effect is general
as the standard deviation of the attention weights distribution in the test set
in ATLX (0.0219) is notably lower compared to the baseline (0.0354).

Thus it makes us think that the attention weights might be over-fitting
in some cases as they are purely learned on training examples. This could
cause that by giving too much weight to particular words in a sentence, the
network ignores other positions which could provide key information for
higher level classification. For instance, the example in Figure 6.14 shows
that the baseline, which predicts positive, is “focusing” on the last parts of
the sentence, mostly the word “easy”; while ignoring the “bad manners”
coming before, which is key for judging the polarity of the sentence given
the aspect service. In contrast, the same baseline model trained with atten-
tion regularized by standard deviation is able to correctly predict negative
just by “focusing” a little bit more on the “bad manners” part.

However, the hard regularization by standard deviation might not be
ideal as the optimal minimum value of the regularizer will imply that all
words in the sentence have homogeneous weights, which is the opposite of
what the attention mechanism is able to gain.

Regarding the negative entropy regularizer, taking into account that the
attention weights are outputs of softmax which is normalized to sum up
to 1 3, although the minimum value of this term would also imply homo-
geneous weight of 1

N
, it is interesting to see that with an almost evenly

3As explained in the caption of Figure 6.1, in all Figures the attention weights do not
sum up to 1 because they are predicted in a batch with padding positions in the end, which
are not included in the Figures.
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SemEval14 Restaurant
CV σCV Test σTest

Baseline 75.27 1.420 81.48 1.157
Baseent- 75.93 1.467 82.24 0.863
Baseent+ 75.36 1.405 81.81 0.854
ATLX 75.64 1.275 82.62 0.498
ATLXent- 75.53 1.265 82.86 1.115
ATLXent+ 75.42 1.298 82.32 0.501

SemEval15 Laptop
CV σCV Test σTest

Baseline 82.48 2.154 74.06 0.624
Baseent- 81.91 1.194 75.80 0.763
Baseent+ 81.71 1.133 74.99 1.859
ATLX 83.39 2.640 75.92 1.497
ATLXent- 82.87 1.696 75.94 1.582
ATLXent+ 82.06 2.080 75.48 1.309

Table 6.10: Comparison between positive entropy regularizer and negative en-
tropy regularizer. Mean accuracy and standard deviation of cross validation re-
sults on six folds of development sets and one holdout test set. Evaluated on
SemEval14 and SemEval15 dataset.

distributed α, the model remains sensitive to few positions with relatively
higher weights. For example in Figure 6.14, the same sentence with neg-
ative entropy regularization demonstrates that although most positions are
closely weighted, the model is still able to differentiate key positions even
with a weight difference of 0.01 and correctly predict negative given the
service aspect.
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Positive Entropy Regularizer

According to Zhang et al. (2019a), the attention mechanism is designed to
allow the network to “focus” on different segments given different scenar-
ios; however it lacks control to enforce that the attention weights are sparse
and sharp so that the effect of the attention mechanism is maximized. Al-
though we agree that a sharper and more sparse attention distribution could
improve the performance of the model, we also argue that at least in the
sentiment analysis domain, where the attention is usually applied early in
the model, the attention weights could be over-fitting by being sparse, thus
causing the model to ignore other relevant positions and underperform.

Here we use the positive entropy regularizer defined in Equation 6.7 as
the attention regularization term in the loss function defined in Equation
5.14. The objective is to minimize the loss while preventing Ω(α) from
being large, so that the attention weights are regularized to be sparse. Note
that during implementation, when using positive entropy regularizer, the
padding positions for α are included in the computation of the regulariza-
tion term. If excluded, the padding positions would have higher attention
weights than the sentence words.

R(α) = ent(α) = −
N∑
i

αilog(αi) (6.7)

As shown in Table 6.10, the superscript ent+ denotes experiments apply-
ing the positive entropy regularizer. We can see that baseent+ and ATLXent+

improve on both CV and test sets on the SemEval14 dataset, however the
margin is very small. On the SemEval15 dataset, they can only improve on
the test set. More importantly, all results with the positive entropy regular-
izer are inferior compared with the ones with the negative entropy regular-
izer. This aligns with our hypothesis that the overly sparse attention vector
can cause over-fitting and hurt the model performance.

Qualitatively, the example in Figure 6.14 shows that baseent+ does pro-
duce a sparse and sharp attention weight; and by shifting the “focus” to the
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word “waiters”, it also corrects the mistake made by the baseline. How-
ever, as shown in Figure 6.15, both baseline and baseent- are able to cor-
rectly predict positive given the aspect food, while the baseent+ model pre-
dicts negative, ignoring the word “delish”.
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6.3 Sentiment Induction Applied
So far, the experiments on ATLX have been using sentiment lexicons in a
generic domain; to further improve the system, the idea of domain adap-
tation comes naturally. Currently, most works on sentiment domain adap-
tation measure the performance by recreating an existing domain-specific
lexicon (Hamilton et al., 2016; Mudinas et al., 2018). It is less frequent
to see how much improvement can actually be gained in an applied case.
Thus from an application point of view, we ask the question: how much
improvement can we get from the domain-specific lexicon in a lexicon en-
hanced neural sentiment analysis system? And what is its limit?

To answer these questions, we first apply the method described in Sec-
tion 5.4.1 to adapt our generic sentiment lexicon described in Section 5.2.1
to a domain specific lexicon (electronics review). Then we experiment
with the adapted lexicons by applying them in the ATLX model and test
the model performance on the SemEval 2015 laptop domain dataset. To
better understand the quality of the adapted lexicon and the performance
gain it is able to obtain, we also compare the adapted lexicon with the gold
lexicon that we constructed (Section 5.4.2). Details of the experimental
results will be described in Section 6.3.2.

On the other hand, as described in Section 5.4.3, we would like to
expand the domain adaptation method and apply it to aspect adaptation.
In other words, expand the existing generic lexicon to be aspect specific.
Since there is no gold lexicon to evaluate and compare, we test the qual-
ity of the aspect adapted lexicon by applying it in the ATLX model and
measuring the performance differences. Details of the experiment will be
described in Section 6.3.2.

6.3.1 Dataset
We experiment the domain adaptation performance on the SemEval 2015
Task 12, laptop dataset, same as the ATLX experiments described in Sec-
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tion 6.1.1. The dataset consists of reviews of laptops with annotated entity-
attribute pairs such as: {LAPTOP # GENERAL, KEYBOARD # QUALITY,
LAPTOP # PRICE, ...} and associated polarities: {positive, neutral, neg-
ative}. To be compatible with the ATLX system, we simplify the entity-
attribute annotations by keeping only the attributes as aspects: {general,
performance, design, usability, portability, price, quality, miscellaneous,
connectivity}. Together, there are 1,973 training examples and 949 test
examples in the corpus.

6.3.2 Evaluation
Same as the ATLX experiments, a cross validation of 6 folds is performed
and the average accuracy on both development sets and test set is recorded
together with the variance. We also compare the adapted lexicons with the
gold lexicon by measuring their accuracy and f-score in both binary and
ternary scenarios, where neutral is excluded from binary but included in
ternary. Table 6.11 shows the evaluation results.

Table 6.12 shows the performance of the aspect adapted lexicons when
applied in the ATLX model, together with the model performance of the
domain adapted lexicons and other variations. The subscripts add, avg, concat

correspond to the ⊕ operation described in Section 5.4.3; where each of
them stands for summation, mean and concatenation of the domain specific
word vector vis and the domain specific aspect vector vja respectively.

6.3.3 Discussion
Sentiment Domain Adaptation

As shown in Table 6.11, we observe that in the laptops review domain,
the generic lexicon improves performance compared to no lexicon applied.
Moreover, the accuracy keeps increasing on the test set as the lexicon gets
more similar to the gold one, i.e. performance on No Lexicon, Generic,
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(a) DAL ATLX Performance
CV σCV Test σTest

No lexicon 82.48 2.15 74.06 0.62
Generic 83.39 2.64 75.92 1.50
DALbin 82.63 1.38 76.24 1.12
DALter 82.02 1.29 77.08 0.61
Gold 82.47 1.71 77.21 1.20

(b) DAL Lexicon Evaluation
Binary Ternary

ACC. F1 ACC. F1
No lexicon - - - -
Generic 96.58 0.97 77.00 0.74
DALbin 89.93 0.90 64.60 0.58
DALter 80.22 0.88 75.45 0.75
Gold 100.0 1.00 100.0 1.00

Table 6.11: (a) ATLX model performance (average cross validation accuracy and
variance) with Domain Adapted Lexicons (DAL) on SemEval15 Task 12, laptop
dataset. (b) Accuracy and f-score of DALs measured against the gold lexicon,
where binary excludes neutral and ternary not. The subscripts bin and ter refer to
binary classification and ternary classification respectively.
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AAL ATLX performance
CV σCV Test σTest

No lexicon 82.48 2.15 74.06 0.62
Generic 83.39 2.64 75.92 1.50
DALbin 82.63 1.38 76.24 1.12
DALter 82.02 1.29 77.08 0.61
AALadd 82.47 1.56 74.61 1.27
AALavg 82.78 0.83 74.57 1.67
AALconcat 82.32 0.87 75.24 1.19
Gold 82.47 1.71 77.21 1.20

Table 6.12: ATLX model performance (average cross validation accuracy and
variance) with Aspect Adapted Lexicons (AAL) on SemEval15 Task 12, laptop
dataset.

DALbin, and DALter gets increasingly similar to Gold. However, the per-
formance on the CV sets does not have a clear pattern, in particular, the
generic lexicon outperforms all domain specific lexicons including the gold
one; nevertheless, it’s worth noticing that the generic lexicon does cause a
larger variance on the CV sets; and the size of the dataset is rather small to
obtain an overall robust performance.

Regarding the domain adaptation method, when applied in ATLX, the
domain adapted lexicon (DAL) achieves comparable results compared to
the gold lexicon, especially after neutral seeds are used for ternary classi-
fication. However, the gold lexicon only improves the performance on the
test set by 1.29% but also decreases on the dev set by 0.92%; indicating
the performance ceiling of the best possible domain adaptation method on
this dataset.

Looking at the lexicon evaluation, a good score compared to the gold
lexicon does not necessarily translate to good performance when applied
in the model. In addition, as shown in Figure 6.16, both the Gold and the
DALter lexicon have noticeably more neutral words than others; suggesting
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Figure 6.16: Polarity distribution of different lexicons.

that bias exists in generic lexicon and it is important to include neutral for
sentiment domain adaptation.

In addition, as no automatic domain adaptation method can avoid in-
troducing noise, we wonder how lexicon noise affects the model perfor-
mance. Figure 6.17 shows the cross validation results of the ATLX model
with respect to the increasing size of noisy lexicon entries, where the noise
is added by flipping the polarity in the gold lexicon to be a random choice
between any opposite polarities but the annotated one (e.g. the polarity
of good will be changed to be a random choice between neutral or nega-
tive). We find that the model is sensitive to lexicon noise as a significant
performance decrease is observed since 20% noise level. Interestingly, the
model seems capable of ignoring noisy lexical information because when
the noise level keeps increasing, the performance remains close to when
no lexicon is applied.
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Figure 6.17: Model performance in accuracy by increasing size of noise in lexi-
con.
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Sentiment Aspect Adaptation

As shown in Table 6.12, we create three aspect adapted lexicons with dif-
ferent ways of combining the word vector and the aspect vector. First we
can see that all three methods do not make a huge difference in terms of
model performance. Secondly, when compared to the baseline (no lexi-
con applied), there is only a marginal improvement with an exception of
AALconcat that suffers a decrease on the CV sets. Thirdly, when compared
to the ATLX model with generic lexicon, none of the three aspect adapted
lexicons are able to achieve superior performance. Thus we can conclude
that the aspect adaptation method does not provide the model extra useful
information to make a better prediction.

The reason for that is most likely due to the limitation in terms of size
and variability of the training data ensembled from the seed words. More
importantly, the aspect specific polarity difference cannot be properly re-
flected in the ensembled training data. In other words, the idea is to have
the classifier to be able to disambiguate aspect-dependent opinion words
such as “cheap price” vs “cheap design” and “low price” vs “low quality”.
However the size of the seed words limits the chance of these important
examples to appear in the training data. On the other hand, due to the se-
lected seed words themselves, they are more likely to be homogeneously
positive or negative on all aspects, making for the classifier even harder to
learn the difference between aspect-dependent opinion words.

On the other hand, this kind of ambiguity is not usually associated with
the aspect directly, it is mostly based on the context. For example, con-
sider the case “black screen” vs “black macbook”; where “black screen”
is indirectly associated with the aspect quality, and “black macbook” is
indirectly associated with the aspect design. Thus it is hard to connect
ambiguous opinion words with the aspects directly. For similar examples
consider: “battery lasts long” vs “takes a long time to load”; “the laptop
will burn my lags” vs “burn 3 dvds”.
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Chapter 7

CONCLUSION

In this chapter, we review the motivations that drive the research in this
thesis and summarize the findings of our work. Specifically, by addressing
the research questions and objectives of this thesis, we can conclude that, in
this work, we propose ATLX, a simple yet effective approach to merge the
lexical features given by sentiment lexicon with an attention based LSTM
neural network for ABSA. We experiment our approach on two different
datasets from different domains and the results prove the effectiveness of
our approach.

In addition, we find that the commonly used attention mechanism is
likely to over-fit, especially when applied early in the network for a task
such as ABSA. This over-fitting effect hurts the performance by binding
the model from key elements for polarity judgement. The effect is shown
by comparing the difference between ATLX and the baseline model. More-
over, the effect is also shown when we experiment with two attention reg-
ularizers that try to overcome this over-fitting effect. The experimental
results show that regularizing the attention vector from being sparse can
lead to performance improvement. However, both proposed regularizers
are not ideal as the optimum of both regularizers suggests uniformly dis-
tributed weights, which is the opposite of what the attention mechanism is
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able to gain.
Lastly, we try to improve the ATLX system by adapting the generic

lexicon to a domain-specific one, or even an aspect-specific one. To do
that we test the performance gain of sentiment domain adaptation in our
system, as most existing researches measure sentiment domain adaptation
by recreating an existing domain-specific lexicon. The experimental results
suggest that when applied, the improvement from domain adaptation is
limited and a good evaluation on lexicon recreation does not necessarily
translate to model performance gain.

7.1 ATLX
In this thesis, we start by addressing that the deep learning based ABSA
system lacks robustness and flexibility. For instance in Section 6.1.5 of
Chapter 6, we see that the baseline AT-LSTM model is not able to rec-
ognize words with a clear polarity indication such as “dungeon”, “disap-
pointed” and “terrible”, thus making the model incapable of predicting
correctly sentiment labels. To fix these issues, one can sometimes gather
more training data and retrain the model; however, this option is not always
possible. In addition, from an application point of view, it makes a lot of
sense to have an easy way to tell the model the polarities of these words so
that the model can leverage this information and make a better prediction.
Therefore the idea of leveraging existing sentiment lexicons to improve the
baseline model comes naturally. Sentiment lexicons as freely available lan-
guage resources are easy to access; besides, they are also easier to maintain
compared to gathering data and retraining the model in a practical scenario.
Thus we ask the question, how to improve a neural ABSA system by us-
ing sentiment lexicons? And compared to existing approaches, is there a
simpler yet effective way of doing it?

To answer these questions, we design a set of approaches and test their
performance with both the SemEval 2014, restaurant dataset and the Se-
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mEval 2015, laptop dataset. Among these designed approaches, namely
the ATLX model (Section 5.2 of Chapter 5) and its variants (Section 6.1.3
of Chapter 6), ATLX yields largest improvements on both datasets of dif-
ferent domains. ATLX consists of applying the attention vector, learned
from the concatenation of LSTM outputs and aspect embeddings, directly
on the lexical features given by the sentiment lexicon, which is composed
by four existing generic domain lexicons; and then summing all lower level
representations that are projected by model parameters to form the final
representation for sentiment prediction.

In Table 6.6 the mean accuracy and standard deviation of the cross-
validation results on 6 folds of development sets and one holdout test set
are recorded. Compared to the baseline, ATLX improves on both the de-
velopment sets and the test set of two datasets from different domains. The
experimental results show the effectiveness of our proposed approach, and
part of the outcomes has been published in Bao et al. (2019).

7.2 Attention Regularization
As we look deeper into the difference between ATLX and the baseline, we
notice that ATLX is not only able to leverage the newly introduced lexical
features, but also able to better distribute the attention weights accordingly.
In some cases, even without having any valuable lexical features, the atten-
tion weights of the ATLX model are still more reasonably shaped. Details
of these observations are discussed in Section 6.1.5 of Chapter 6.

Inspired by these observations, we notice that the attention vector could
be over-fitting by “focusing” too much on particular parts of the sentence,
and overlooking other positions which are key for judging the polarity. In
order to verify this hypothesis, we conduct experiments with two attention
regularizers, namely the standard deviation regularizer and the negative
entropy regularizer described in Section 5.3 of Chapter 5.

From experiments conducted on both datasets (Table 6.9), both regular-
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izers improve on the test sets where the negative entropy regularizer yields
the largest improvement. Analysis shown in Figure 6.14 also suggests that
by shifting the attention weight a bit more on the overlooked part of the
sentence, the model is able to correctly predict the sentiment. Compared to
other attention regularization methods that try to make the attention vector
more sparse (Niculae and Blondel, 2017; Zhang et al., 2019a), we demon-
strate that when applied early in the model, for instance in the ABSA task,
the sparseness of the attention vector could hurt the model; and by regular-
izing the attention vector, we are able to overcome some of this negative
effect. The research on attention regularization has been published in Bao
et al. (2019).

7.3 Sentiment Induction
With the ATLX model that is able to leverage sentiment information pro-
vided by the lexicon, we try to further improve the system by applying sen-
timent domain adaptation and sentiment aspect adaptation. To do that we
adopt a state of the art sentiment domain adaptation method and compare
the performance gain of different lexicons in the ATLX system. We test
the performance ceiling of the domain adaptation method by annotating a
gold domain-specific lexicon and compare it with automatically adapted
ones. In addition, we also apply a similar method to create an aspect spe-
cific lexicon and test its performance. However, as described in Section
6.3.3, due to the fact that it is hard to reflect aspect dependent cases in the
training data ensembled from a limited number of seed words, the aspect
adaptation does not yield any improvement on the model performance.

Regarding the domain adaptation experiments, as shown in Table 6.11,
we find that in general, domain-specific lexicons do improve the model
performance compared to a generic one; however, the performance ceiling
suggested by the gold lexicon is rather low; and ternary classification is
more reasonable than binary as model performance is sensitive to noise.
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Moreover, compared to common methods that evaluate the domain adap-
tation method by recreating an existing lexicon, in our experiments we see
that a good score on the lexicon evaluation does not necessarily translate to
a final performance gain; thus evaluation in an applied scenario is indeed
necessary and valuable.

7.4 Future Works
In this thesis, perhaps the outcomes of the attention regularization experi-
ments are the least expected. As described in Section 6.2.2, in Figure 6.14,
the negative entropy regularizer applied in the baseline system leads to an
almost evenly distributed attention vector. However, this kind of distribu-
tion does not hurt the model at all, in fact improvements compared to the
baseline are generally observed for the negative entropy regularizer (Table
6.9).

As a fundamental building block of many state of the art models (e.g.
Transformer, BERT), the attention framework is designed mimicking the
attention of a human being when processing information. In other words,
it supposes to discard irrelevant information and “focus” on particular key
points. And one would expect having almost evenly distributed attention
weights could hurt the model. However, the results in our experiments
suggest otherwise. Similarly, the interpretability of attention is questioned
in Serrano and Smith (2019) as well. In our case, one possible explana-
tion is that, in our model, the attention is applied early in the network,
thus filtering more information (i.e. the attention weight distribution being
overly sparse) could hurt the performance by passing too little information
to deeper layers of the network.

Due to limited time, in this doctoral research project, we were not able
to follow this hypothesis. Thus future works could focus on the relation
between the sparsity of the attention distribution and the position that the
attention mechanism is applied in the network. In addition, it is also in-
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teresting to see whether more recent multi-head attention models such as
Transformer (Vaswani et al., 2017), or other network architectures such as
Bi-LSTM could suffer from similar attention over-fitting issues.
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Appendix A

EXPERIMENT SETTINGS

A.1 Parameter Settings

ε Ω(α) Value
ε basestd 1e-3
ε baseent- 0.5
ε baseent+ 0.025
ε ATLXstd 1e-4
ε ATLXent- 0.006
ε ATLXent+ 0.001

Table A.1: Attention regularization parameter settings.

In the ATLX experiments, apart from the newly introduced parame-
ter, namely the ε parameter for attention regularization, we follow what is
described in the paper by Wang et al. (2016c) and their released code.

More specifically, we set batch size as 25; aspect embedding dimension
da equals to 300, same as Glove vector dimension; number of LSTM cell
d as 300; number of LSTM layers as 1; dropout with 0.5 keep probability
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is applied to h∗; AdaGrad optimizer is used with initial accumulate value
equals to 1e−10; learning rate is set to 0.01; L2 regularization parameter λ
is set to 0.001; network parameters are initialized from a random uniform
distribution with min and max values as −0.01 and 0.01; all network pa-
rameters except word embeddings are included in the L2 regularizer. The
hyperparameter ε for attention regularization is shown in Table A.1.

A.2 Resources
Language Resources

• MPQA: https://bit.ly/2Ia4u74

• Opinion Lexicon: https://bit.ly/36JNmPN

• Opener: https://bit.ly/3iIrnv1

• Vader: https://bit.ly/3jJ95uH

• Glove: https://stanford.io/2FeYJnn

Implementation Code

• AT-LSTM code by Wang et al. (2016c): https://bit.ly/2I9H4yx

• ATLX and attention regularization code: https://github.com/LingxB/atlx

• Domain and aspect adaptation code: https://github.com/LingxB/dalx

Other resources

• ATLX and related experiments are implemented with TensorFlow

• SVM related experiments are implemented with Scikit-Learn
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