

ANEXOS II.

Este anexo está constituido por los siguientes apartados:

- a) Orificio de sección circular y pared gruesa
- b) Orificio de sección variable como consecuencia de la interacción camisa perforada con pistón deslizante.
- c) Orificio anular como consecuencia de la concentricidad y excentricidad entre la camisa y la corredera.
- d) Combinación de orificios.
 - d.1 Orificios en serie
 - d.2 Orificios en paralelo
- e) Estimación de las prestaciones de una válvula de configuración en serie con o sin fugas.
- f) Estimación de las prestaciones de una válvula de configuración en paralelo con o sin fugas.
- g) Orificios de sección de paso variable
 - g.1. Orificios rectangulares
 - g.2. Orificios circulares
 - g.3. Orificios rómbicos
 - g.4. Orificios exponenciales

a) Orificio de sección circular y pared gruesa.

Según [M. Guillon]¹, para un orificio de sección circular constante, en régimen laminar (m = 1), se debe cumplir:

Figura II-1. Orificio fijo.

En donde

 $\mathsf{R}_{\mathsf{L}} = \frac{128 \cdot v \cdot \rho \cdot \mathsf{L}}{\pi \cdot \mathsf{D}^4}$ [II.2]

o, alternativamente, en régimen turbulento (m = 2),

$$\Delta \mathsf{P} = \mathsf{R}_{\mathsf{T}} \cdot \mathsf{Q}^2$$
 [II.3]

en donde R_T:

$$R_{T} = \frac{1}{C_{d} \cdot \sqrt{\frac{2}{\rho} \cdot \frac{\pi}{4} \cdot D^{2}}}$$
[II.4]

siendo, C_d, el coeficiente de descarga, que varía con el numero de Reynolds. Este coeficiente tiende a un valor asintótico igual a $C_d = 0.6$.

¹ Étude et détermination des systèmes hydrauliques.

b) <u>Orificio de sección variable como consecuencia de la interacción</u> <u>camisa perforada con pistón deslizante.</u>

Para un orificio de sección variable (figura I-2), $\Delta P = R \cdot Q^2$ [II.5], en donde

Figura I-2. Vistas de un orificio de sección variable.

$$R = \frac{1}{K'} \frac{1}{s_{paso}}$$
[II.6]

$$R = \frac{1}{C_{d} \cdot \sqrt{\frac{2}{\rho}} \cdot s_{paso}}$$
[II.7]

La sección de paso S_{Paso} variable es función del desplazamiento de la corredera, $x_{desplazamiento}$, tal como se muestra en el gráfico de la figura II-3.

Figura II-3. Sección de paso en función del desplazamiento de la corredera.

c) <u>Orificio anular como consecuencia de la concéntricidad y excéntridad</u> <u>entre la camisa y la corredera.</u>

Para estimar las perdidas por flujo anular en secciones concéntricas y excéntricas, similares a las que se producen entre la superficie interior de la carcasa de una válvula divisora y la superficie exterior de su corredera.

La teoría oleohidráulica plantea que las pérdidas por flujo, para el caso de secciones concéntricas (figura II-4), pueden definirse como:

Figura II-4. Caso de secciones concéntricas.

$$R_{fugas} = \frac{12 \cdot v \cdot \rho \cdot L}{\pi \cdot \delta^3 \left[\bar{D}\right]}$$
[II.8]

donde,

v, es la viscosidad cinemática del fluido.

ρ, es la densidad del fluido.

L, es la longitud de flujo considerado.

$$d = \frac{D_k - D_b}{2}$$
, es el juego entre diámetros. [II.9]

$$\bar{D} = \frac{D_k + D_b}{2}$$
[II.10]

 D_k, D_b y \overline{D} , son los diámetros de la parte externa (agujeros), de la parte interna y, el diámetro medio.

En el caso de secciones con piezas excéntricas (figura II-5), las perdidas se obtienen mediante la ecuación siguiente,

$$R_{fugas} = \frac{24 \cdot v \cdot \rho \cdot L}{\pi \cdot \delta^{3} [D_{b} + D_{k}] \cdot \left(1 + \frac{3}{2} \frac{e^{2}}{\delta^{2}}\right)}$$
[II.11]

donde,

e, es la excentricidad entre las piezas.

[II.12]

Figura II-5. Caso de piezas excéntricas.

si,

 $(e = \delta)$,

entonces, puede considerarse que,

$$R_{descentrado} = \frac{R_{centrado}}{\left(1 + \frac{3}{2} \cdot 1\right)} = 0.4 \cdot R_{centrado}$$
[II.13]

finalmente, podemos calcular el flujo anular por la ecuación,

$$Q = R_{fugas} \cdot \Delta P$$
 [II.14]

d) Combinación de orificios

d.1 <u>Orificios en serie.</u>

En oleohidráulica, para combinar orificios en serie y orificios en paralelo, es de mucha utilidad utilizar una analogía con las leyes de resistencia equivalente utilizadas en electricidad.

Para el caso de orificios en serie (figura II-6):

Figura II-6. Orificios en serie. (Analogías entre la oleohidráulica y la electricidad).

Utilizando los modelos de válvula divisora con orificios en serie y en paralelo, y aplicando los conceptos fundamentales de conservación de masa (ecuación de

continuidad), y, conservación de la energía (ecuación de Bernoulli generalizada), y teniendo en cuenta las siguientes hipótesis:

- Fluido incompresible.
- Régimen permanente.
- Comportamiento ideal: sin fugas.

Resulta que:

$$Q = Q_1 = Q_2 \qquad [II.15]$$

$$P_{D} = P_{A} + \Delta P_{AB} + \Delta P_{BD}$$
 [II.16]

y si el flujo es laminar,

$$\Delta P_{AB} = \Delta P_{Orificio(1)} = R_1 \cdot Q_1 \quad , y \qquad [II.17]$$

$$\Delta P_{BD} = \Delta P_{Orificio(2)} = R_2 \cdot Q_1$$
 [II.18]

Sustituyendo [3.17] y [3.18] en la ecuación de continuidad [3.15], se tiene que,

$$Q = \frac{\Delta P_1}{R_1} = \frac{\Delta P_2}{R_2}$$
[II.19]

De la ecuación [3.16] se puede deducir que las perdidas de presión total es:

$$\Delta P_{\text{Total}} (P_D - P_A) = \Delta P_1 + \Delta P_2,$$

y en consecuencia, $\Delta P_{\text{Total}} = R_1 Q_1 + R_2 Q_2 = \left(\sum_{i=1}^2 R_i\right) \cdot Q$ [II.20]

Figura II-7. Representación grafica de la característica equivalente de dos orificios conectados en serie.

Si el flujo es turbulento (m = 2),

$$\Delta P_{\text{Total}} = R_1 \cdot Q^2 + R_2 \cdot Q^2 + \dots + R_n \cdot Q^2 = \left[\sum_{i=1}^n R_i\right] \cdot Q^2 \qquad [II.21]$$

Figura II-8. Representación gráfica de la característica equivalente de dos orificios conectados en serie.

Figura II-9. Orificios en paralelo. (Analogías entre la oleohidráulica y la electricidad). En el caso de orificios en paralelo, las ecuaciones de continuidad y de la energía se transforman en:

$$Q_{T} = Q_{1} + Q_{2}$$
$$\Delta P_{T} = \Delta P_{1} = \Delta P_{2}$$
[II.22]

si el flujo es laminar,

 $\Delta \mathbf{P}_1 = \mathbf{R}_1 \cdot \mathbf{Q}_1$ $\Delta \mathbf{P}_2 = \mathbf{R}_2 \cdot \mathbf{Q}_2$

sustituyendo en la ecuación de continuidad, resulta,

$$Q_{T} = \frac{\Delta P_{1}}{R_{1}} + \frac{\Delta P_{2}}{R_{2}} = \left[\frac{1}{R_{1}} + \frac{1}{R_{2}}\right] \cdot \Delta P_{T}$$

si denominamos $\frac{\Delta P_T}{Q_T} = \frac{1}{R_T}$, entonces se cumple

 $\frac{1}{R_{T}} = \frac{1}{R_{1}} + \frac{1}{R_{2}} , \acute{o}$ $\frac{1}{R_{T}} = \sum_{i=1}^{n} \frac{1}{R_{i}}$ [II.23]

Figura II-10. Representación gráfica de la característica equivalente de conectar orificios en paralelo. Si el flujo es turbulento, se tiene que,

$$\left[\frac{\Delta P}{R_{\text{Total}}}\right]^{0.5} = \left[\frac{\Delta P}{R_1}\right]^{0.5} + \left[\frac{\Delta P}{R_2}\right]^{0.5} + \dots + \left[\frac{\Delta P}{R_n}\right]^{0.5},$$

de donde se puede deducir,

Figura II-11. Representación gráfica de la característica equivalente de conectar dos orificios en paralelo (régimen turbulento).

	Configuración en serie.	Configuración en serie.
		(con fugas)
	$R_{2_{(03)}} \xrightarrow{R_2} R_{1_{(01)}} \xrightarrow{R_2} R_{1_{(01)}}$	
P ₀	$P_0 = 2 \text{ bar}$	$P_0 = 2 \text{ bar}$
_	$P_1 = 0$ bar	P ₁ = 0 bar
P _{cargas}	P ₂ = 0 bar	$P_2 = 0$ bar
d _{desp} .	Reposo	Reposo
r	877 kg/m ³	877 kg/m ³
n	21 mm²/s	21 mm²/s
L _{R1}	2.5 mm	2.5 mm
L _{R2}	5.0 mm	5.0 mm
L _f	9.5 mm	9.5 mm
L _f ′	6.0 mm	6.0 mm
D _{R1}	1.0 mm	1.0 mm
D _{R2}	3.0 mm	3.0 mm
D _{Ext20}	$20^{+0.014}_{+0.009}\text{mm}$	$20^{+0.014}_{+0.009} \text{ mm}$
D _{int20}	$20^{-0.000}_{-0.009} \ \mathrm{mm}$	$20^{-0.000}_{-0.009} \ \mathrm{mm}$
d_{max}	19 μm	19 µm
d _{min}	9 µm	9 µm
S _{R1}	0.7854 mm ²	0.7854 mm ²
S _{R2}	0.070685 cm ²	0.070685 cm ²
R ₁	$R_{1} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 1.875 \cdot 10^{9} \left[\frac{Pa}{m^{3} / s}\right]$ $= 1.8759 \left[\frac{MPa}{1 / s}\right]$	$R_{1} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 1.875 \cdot 10^{9} \left[\frac{Pa}{m^{3} / s}\right]$ $= 1.8759 \left[\frac{MPa}{1 / s}\right]$

e) Estimación de las prestaciones de una válvula de configuración en serie con o sin fugas.

R ₂	$R_{2} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 4.631 \cdot 10^{9} \frac{Pa}{m^{3}/s}$ $= 4.631 \cdot 10^{-2} \left[\frac{MPa}{1/s}\right]$	$R_{2} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 4.631 \cdot 10^{9} \frac{Pa}{m^{3}/s}$ $= 4.631 \cdot 10^{-2} \left[\frac{MPa}{1/s}\right]$
R _f	0	$R_{f} = \frac{12 \cdot v \cdot \rho \cdot L}{\pi \cdot \delta^3 \cdot D \left(1 + \frac{3}{2} \frac{e^2}{\delta^2} \right)} = 1230.7 \left[\frac{MPa}{I/s} \right]$
R _f ′	0	$R_{f'} = \frac{12 \cdot v \cdot \rho \cdot L}{\pi \cdot \delta^3 \cdot D \left(1 + \frac{3}{2} \frac{e^2}{\delta^2} \right)} = 1948.68 \left[\frac{MPa}{I/s} \right]$
R _{Total}	$R_{\text{Total}} = R_1 + R_2 = 1.9222 \left[\frac{\text{MPa}}{\text{I/s}}\right]$ $Q = \frac{\Delta P}{R} = \frac{0.2 \cdot [\text{MPa}]}{1.9222 \cdot [\text{MPa/Is}]} = 0.10405 [\text{I/s}]$	$\frac{1}{R_{\text{Total}(1)}} = \frac{1}{R_2} + \frac{1}{R_f} = 0.0463082 \left[\frac{\text{MPa}}{1/\text{s}}\right]$ $R_{\text{Total}(2)} = R_{\text{Total}(1)} + R_1$ $= 0.0463 + 1.8759 = 1.92208257 \left[\frac{\text{MPa}}{1/\text{s}}\right]$ $\frac{1}{R_{\text{Total}}} = \frac{1}{R_{\text{Total}(2)}} + \frac{1}{R_{f'}} = 1.920314 \left[\frac{\text{MPa}}{1/\text{s}}\right]$
Q ₁	0.10405 l/s	0.1041496 <i>V</i> s
Q ₂	0.10405 l/s	0.1041496 l/s
Q _f	0	0.0000039 l/s
Q _f ′	0	0.0001026 <i>V</i> s
Q _{Total}	0.2081 l/s	0.2085123 <i>V</i> s

Tabla II-1. Configuración de válvula en serie con o sin fugas.

f) Estimación de las prestaciones de una válvula de configuración en paralelo con o sin fugas.

	Configuración en paralelo.	Configuración en paralelo.
		(con fugas)
		Reference in the second
	R_{3} R_{1} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{1} R_{2} R_{2} R_{1} R_{2} R_{2} R_{3} R_{2} R_{2} R_{3} R_{2} R_{2} R_{3} R_{2} R_{3} R_{2} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R_{2} R_{3} R	R_3 R_f R_f R_f R_f R_f R_f
X _{desp} .	Reposo	Reposo
D _{R3}	3.0 mm	3.0 mm
S _{R3}	7.0685 mm ²	7.0685 mm ²
L _{R3}	20 mm	20 mm
R ₁	$R_{1} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 1.875 \cdot 10^{9} \left[\frac{Pa}{m^{3} / s}\right]$ $= 1.8759 \left[\frac{MPa}{1 / s}\right]$	$R_{1} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 1.875 \cdot 10^{9} \left[\frac{Pa}{m^{3} / s}\right]$ $= 1.8759 \left[\frac{MPa}{1 / s}\right]$
R ₂	$R_{2} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 4.631 \cdot 10^{9} \left[\frac{Pa}{m^{3}/s}\right]$ $= 4.631 \cdot 10^{-2} \left[\frac{MPa}{1/s}\right]$	$R_{2} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 4.631 \cdot 10^{9} \left[\frac{Pa}{m^{3} / s}\right]$ $= 4.631 \cdot 10^{-2} \left[\frac{MPa}{1 / s}\right]$
R ₃	$R_{3} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 1.853 \cdot 10^{8} \left[\frac{Pa}{m^{3} / s}\right]$ $= 0.1853 \left[\frac{MPa}{1 / s}\right]$	$R_{3} = \frac{128 \cdot v \cdot \rho \cdot L}{\pi \cdot D^{4}} = 1.853 \cdot 10^{8} \left[\frac{Pa}{m^{3} / s}\right]$ $= 0.1853 \left[\frac{MPa}{1 / s}\right]$
R _f	0	$R_{f} = \frac{12 \cdot v \cdot \rho \cdot L}{\pi \cdot \delta^{3} \cdot D\left(1 + \frac{3}{2} \frac{e^{2}}{\delta^{2}}\right)} = 1230.7 \left[\frac{MPa}{1/s}\right]$
R _f	0	$R_{f'} = \frac{12 \cdot v \cdot \rho \cdot L}{\pi \cdot \delta^3 \cdot D\left(1 + \frac{3}{2} \frac{e^2}{\delta^2}\right)} = 1948.68 \left[\frac{MPa}{1/s}\right]$

		$\frac{1}{R_{Total(1)}} = \frac{1}{R_3} + \frac{1}{R_f} = 0.185272 \left[\frac{MPa}{I/s}\right]$
	$R_{E} = R_{1} + R_{3} = 2.0612 \left[\frac{MPa}{I/s}\right]$	$R_{\text{Total}(2)} = R_{\text{Total}(1)} + R_1 = 2.061172 \left[\frac{\text{MPa}}{1/\text{s}}\right]$
K _{Total}	$\frac{1}{R_{Total}} = \frac{1}{R_E} + \frac{1}{R_2} = 0.045292 \left[\frac{MPa}{1/s}\right]$	$\frac{1}{R_{Total(3)}} = \frac{1}{R_2} + \frac{1}{R_{f'}} = 0.0463088 \left[\frac{MPa}{I/s}\right]$
		$\frac{1}{R_{\text{Total}}} = \frac{1}{R_{\text{Total}(2)}} + \frac{1}{R_{\text{Total}(3)}} = 0.045291 \left[\frac{\text{MPa}}{\text{I/s}}\right]$
Para la configuración en paralelo y para el mismo caudal que fluye en la configuración en serie, resulta:		
Q _{Total} [I/s]	0.10405	0.10405
?P [bar]	0.047124	0.047125

Tabla II.2. Configuración de válvula en paralelo con y sin fugas.

Figura II-12. Curva Diferencial de presión vs Caudal.

g) Orificios de sección de paso variable.

Desarrollo analítico de la determinación del área de la sección abierta (variable) de diferentes tipos de orificios analizados en esta tesis, tanto en modo divisor como en modo integrador.

- g.1 Orificios rectangulares
- g.2 Orificios circulares
- g.3 Orificios rómbicos
- g.4 Orificios exponenciales

Divisora

Figura II-1 Área abierta de un orificio rectangular (modo divisora).

Área de la sección del orificio rectangular totalmente abierto:

 $S_o = bh$

Área de la sección abierta (variable) después de un desplazamiento (-d) de la corredera (lado izquierdo), (d, Sa).

$$S_a = bh - (-dh) = bh + dh = h(b+d)$$

Área de la sección abierta (variable) después de un desplazamiento (*d*) de la corredera (lado derecho), (*d*, *Sa*)

$$Sa = bh - dh = h(d - b)$$
[1]

Vamos a referir los tres tramos a los ejes de la izquierda (d, Sa). Para ello haremos el cambio de variable siguiente (para el 3^{er} tramo):

d = d + (a - b)

por tanto

sustituyendo en la ecuación [1]

$$S_a = h[b - (d - a + b)] = h(b - d + a - b) = h(a - d)$$

 $S_a = h(a - d)$

En definitiva y para los tres tramos representados en la gráfica de la figura II-1, resulta:

Figura II-2 Área sección abierta de un orificio rectangular (modo integradora).

1^{er} tramo:

Sa = h(d + b)[2]

Expresando esta ecuación [2] respecto a los ejes (d, Sa) mediante el cambio de variable

$$d=d+(a-b)$$

sustituyendo en la ecuación (2), resulta,

230

$$S_{a} = [b + d + (a - b)] = h(a + d)$$

$$S_{a} = h(a + d)$$

$$S_{a} = h(a + d)$$

2^{do} tramo:

 $S_a = bh$

3^{er} tramo:

Divisora.

 $S_a = h(b - d)$

En definitiva, los tres tramos de la curva representada en la figura II-2 son:

$S_a = h(a+d)$	$-a \le d \le -a + b$
$S_a = bh$	$-a+b \le d \le 0$
$S_a = h(b-d)$	$0 \le d \le b$

g.2 Orificio de sección circular.

Figura II-3 Área abierta de un orificio circular (modo divisora).

Área de la sección del orificio circular totalmente abierto.

$$S_o = \boldsymbol{p} \cdot \frac{c^2}{4}$$

$$S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} - 2 \int_{-c/2}^{x} \sqrt{R^{2} - x^{2}} dx \qquad S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} - \left[x \sqrt{\frac{c^{2}}{4} - x^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{2x}{c}\right) \right]_{-c/2}^{x}$$

$$S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} - \left[x \sqrt{\frac{c^{2}}{4} - x^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{2x}{c}\right) \right] - \left[-\frac{c}{2} \sqrt{\frac{c^{2}}{4} - \frac{c^{2}}{4}} + \frac{c^{2}}{4} \arcsin\left(\frac{2x}{c}\right) \right]$$

$$S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} - \left[\left(x \sqrt{\frac{c^{2}}{4} - x^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{2x}{c}\right) \right) - \frac{c^{2}}{4} \left(-\frac{\mathbf{p}}{2}\right) \right]$$

$$S_{a} = \frac{1}{8} \mathbf{p} \cdot c^{2} - x \cdot \sqrt{\frac{c^{2}}{4} - x^{2}} - \frac{c^{2}}{4} \arcsin\left(\frac{2x}{c}\right)$$

que con el cambio de variable

$$x = -\left(d + \frac{c}{2}\right)$$

$$S_a = \frac{1}{8}\mathbf{p} \cdot c^2 + \left(d + \frac{c}{2}\right) \cdot \sqrt{\frac{c^2}{4} - \left(d + \frac{c}{2}\right)^2} + \frac{c^2}{4} \arcsin\left(\frac{2d + c}{c}\right)$$

Integradora.

Figura II-4 Área de sección abierta de un orificio rectangular (modo integradora).

$$S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} - S$$

$$S_{o} = \mathbf{p} \cdot \frac{c^{2}}{4}$$

$$S = 2 \int_{x}^{c/2} y dx \qquad y = \sqrt{R^{2} - x^{2}} \qquad R = c/2$$

$$S = 2 \int_{x}^{c/2} \sqrt{R^{2} - x^{2}} dx = 2 \int_{x}^{c/2} \sqrt{R^{2} - x^{2}} dx$$

$$S = \left[x \sqrt{\frac{c^{2}}{4} - x^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{2x}{c}\right) \right]_{x}^{c/2}$$

$$S = \frac{c^{2}}{4} \cdot \frac{\mathbf{p}}{2} - x \cdot \sqrt{\frac{c^{2}}{4} - x^{2}} - \frac{c^{2}}{4} \arcsin\left(\frac{2x}{c}\right)$$

por tanto,

$$S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} - \frac{1}{8}\mathbf{p} \cdot c^{2} + x \cdot \sqrt{\frac{c^{2}}{4} - x^{2}} + \frac{c^{2}}{4} \operatorname{arcsen}\left(\frac{2x}{c}\right)$$
$$S_{a} = \frac{1}{8}\mathbf{p} \cdot c^{2} + x \cdot \sqrt{\frac{c^{2}}{4} - x^{2}} + \frac{c^{2}}{4} \operatorname{arcsen}\left(\frac{2x}{c}\right)$$

cambio de variable:

$$x = \frac{c}{2} - d$$

$$S_a = \frac{1}{8}\mathbf{p} \cdot c^2 + \left(\frac{c}{2} - d\right) \cdot \sqrt{\frac{c^2}{4} - \left(\frac{c}{2} - d\right)^2} + \frac{c^2}{4} \operatorname{arcsen}\left(\frac{c - 2d}{c}\right) \qquad 0 \le d \le c$$

cambio de ejes:

3^{er} tramo: (Divisora).

$$Sa = ? pc^{2} + (c/2 - d) \cdot ((c^{2}/4 - (c/2 - d)^{2})^{\frac{1}{2}} + c^{2}/4 \operatorname{arcsen}((c - 2d)/c)$$

cambio de variable

d = d + a - c

por tanto

$$d = d + c - a$$

sustituyendo

$$S_{a} = \frac{1}{8}\boldsymbol{p} \cdot c^{2} + \left(-d + a - c + \frac{c}{2}\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(-d + a - c + \frac{c}{2}\right)^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{c - 2d - 2c + 2a}{c}\right)$$
$$S_{a} = \frac{1}{8}\boldsymbol{p} \cdot c^{2} + \left(a - \frac{c}{2} - d\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(a - \frac{c}{2} - d\right)^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{2a - c - 2d}{c}\right)$$

1^{er} tramo: (Integradora).

 $Sa = ? pc^{2} + (d + c/2) \cdot ((c^{2}/4 - (d + c/2)^{2})^{\frac{1}{2}} + c^{2}/4 \operatorname{arcsen}((2d + c)/c)$

cambio de variable

$$d = d + (a - c)$$

sustituyendo

$$S_{a} = \frac{1}{8}\boldsymbol{p} \cdot c^{2} + \left(d + a - c + \frac{c}{2}\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(d + a - c + \frac{c}{2}\right)^{2}} + \frac{c^{2}}{4} \operatorname{arcsen}\left(\frac{2d + 2a - 2c + c}{c}\right)$$
$$S_{a} = \frac{1}{8}\boldsymbol{p} \cdot c^{2} + \left(a - \frac{c}{2} + d\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(a - \frac{c}{2} + d\right)^{2}} + \frac{c^{2}}{4} \operatorname{arcsen}\left(\frac{2a - c + 2d}{c}\right)$$

En resumen, las ecuaciones del área de la sección variable de un orificio circular en modo Divisora y en modo Integradora, son <u>Divisora.</u>

$$S_{a} = \frac{1}{8} \mathbf{p} \cdot c^{2} + \left(d + \frac{c}{2}\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(d + \frac{c}{2}\right)^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{2d + c}{c}\right) \qquad -c \le d \le 0$$

$$S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} \qquad 0 \le d \le a - c$$

$$S_{a} = \frac{1}{8} \mathbf{p} \cdot c^{2} + \left(a - \frac{c}{2} - d\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(a - \frac{c}{2} - d\right)^{2}} + \frac{c^{2}}{4} \arcsin\left(\frac{2a - c - 2d}{c}\right) \qquad a - c \le d \le a$$

Integradora.

$$S_{a} = \frac{1}{8} \mathbf{p} \cdot c^{2} + \left(a - \frac{c}{2} + d\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(a - \frac{c}{2} + d\right)^{2}} + \frac{c^{2}}{4} \operatorname{arcsen}\left(\frac{2a - c + 2d}{c}\right) \qquad -a \le d \le -a + c$$

$$S_{a} = \mathbf{p} \cdot \frac{c^{2}}{4} \qquad -a + c \le d \le 0$$

$$S_{a} = \frac{1}{8} \mathbf{p} \cdot c^{2} + \left(\frac{c}{2} - d\right) \cdot \sqrt{\frac{c^{2}}{4} - \left(\frac{c}{2} - d\right)^{2}} + \frac{c^{2}}{4} \operatorname{arcsen}\left(\frac{c - 2d}{c}\right) \qquad 0 \le d \le c$$

Figura II-5. Modo divisora (superior) e integradora (inferior).

g.3 Orificio de sección rómbica.

Divisora.

Figura II-6. Área de sección abierta de un orificio rómbico (Modo divisora). Área de

So = 2bh

1^{er} tramo (Divisora):

$$Sa = (b - x)y$$
$$\frac{x}{b} + \frac{y}{h} = 1 \qquad y = \left(1 - \frac{x}{b}\right)h$$
$$Sa = (b - x)h\left(1 - \frac{x}{b}\right)$$

Cambio variable

$$x+b = -d$$

$$x = -(b+d)$$

$$Sa = [b+b+d]\left[1+\frac{b+d}{b}\right]h$$

$$Sa = [2b+d]\left[1+1+\frac{d}{b}\right]h$$

$$Sa = [2b+d]\cdot\left[2+\frac{d}{b}\right]h - 2b \le d \le -b$$

2^{do} tramo (Divisora):

$$Sa = 2bh - (b + x)y$$
$$-\frac{x}{b} + \frac{y}{h} = 1 \qquad y = \left(1 + \frac{x}{b}\right)h$$
$$Sa = 2bh - (b + x)h\left(1 + \frac{x}{b}\right)$$

Cambio variable

$$x+d = -b$$

$$x = -b-d$$

$$Sa = 2bh - (b-b-d)h\left(1 + \frac{-b-d}{b}\right)$$

$$Sa = 2bh + \frac{-h}{b}d^{2} \qquad -b \le d \le 0$$

Figura II-7. Área de sección abierta de un orificio rómbico. (Modo Integradora).

1^{er} tramo (Integradora):

$$Sa = 2bh - (b - x)y$$
$$hx + by = bh \Rightarrow y = \left(1 - \frac{x}{b}\right)h$$
$$Sa = 2bh - (b - x) \cdot \left(1 - \frac{x}{b}\right)h$$

Cambio variable

$$x + d = b$$

$$x = (b - d)$$

$$Sa = bh - (b - b + d) \left(1 - \frac{b - d}{b}\right) h$$

$$Sa = 2bh - \left[\frac{d^2}{b}\right] h \qquad 0 \le d \le b$$

CARSON CIERCON CONTRACTOR OF C

2^{do} tramo (Integradora):

$$\frac{x}{-b} + \frac{y}{h} = 1$$

$$Sa = (b+x)y$$

$$Sa = (b+x)h\left(1 + \frac{x}{b}\right)$$

Cambio variable

$$d = b - x$$

$$x = (b - d)$$

$$Sa = (b - d + b)\left(1 + \frac{b - d}{b}\right)h$$

$$Sa = (2b - d)\left(1 + 1 - \frac{d}{b}\right)h$$

$$Sa = (2b - d)\left(2 - \frac{d}{b}\right)h$$

$$b \le d \le 2b$$

Cambio de ejes: Divisora,

Figura II-8. Cambio de coordenadas. (Modo divisora).

<u>1^{er} tramo.</u>

$$Sa = 2bh - h(d^{2}/b)$$
$$d = d + (a - 2b)$$
$$d = d - a + 2b$$

sustituyendo,

$$S_a = 2bh - \frac{h}{b}(d - a + 2b)^2 \qquad a - 2b \le d \le a - b$$

2^{do} tramo.

Sa = (2b - d)(2 - d/b)h

Sustituyendo para el mismo cambio de variable anterior d = d - a + 2b

$$Sa = \left(a - d\right)\left(2 - \frac{d - a + 2b}{b}\right)h \qquad a - b \le d \le a$$

Cambio de ejes: Integradora.

Figura II-9. Cambio de coordenadas. (Modo integradora).

Cambio de variable:

$$d = d - (a - 2b)$$
$$d = d + (a - 2b)$$

1^{er} tramo.

 $Sa = (2b + d)(2 + d^2/b)h$

Sustituyendo el cambio de variable, resulta

$$Sa = \left(d + a\right)\left(2 + \frac{d + a - 2b}{b}\right)h \qquad -a \le d \le -a + b$$

2^{do} tramo.

$$Sa = 2bh - (d^2/b)h$$

Sustituyendo el cambio de variable, resulta

$$Sa = \left(2bh - \frac{h}{b}\right)\left(d + a - 2b\right)^2 \qquad -2a + b \le d \le -a + 2b$$

Referidos a los ejes definitivos

Divisora.

$$Sa = [2b+d] \cdot \left[2 + \frac{d}{b} \right] h \qquad -2b \le d \le -b$$

$$Sa = 2bh + \frac{-h}{b} d^2 \qquad -b \le d \le 0$$

$$Sa = 2bh \qquad 0 \le d \le a - 2b$$

$$Sa = 2bh - \frac{h}{b} (d - a + 2b)^2 \qquad a - 2b \le d \le a - b$$

$$Sa = (a-d)h \left[2 - \frac{d-a+2b}{b} \right] \qquad a - b \le d \le a$$

b

Integradora.

$$S_{a} = (d + a)\left(2 + \frac{d + a - 2b}{b}\right)h \qquad -a \le d \le -a + b$$

$$S_{a} = 2bh - \frac{h}{b}(d + a - 2b)^{2} \qquad -a + b \le d \le -a + 2b$$

$$S_{a} = 2bh \qquad -a + 2b \le d \le 0$$

$$S_{a} = 2bh - \frac{d^{2}}{b}h \qquad 0 \le d \le b$$

$$S_{a} = (2b - d)\left(2 - \frac{d}{b}\right)h \qquad b \le d \le 2b$$

Orificio de sección exponencial.

Área del orificio rómbico totalmente abierto

$$S_{o} = 4 \int_{0}^{b} h e^{-bx} dx = -4 \frac{h}{b} \left[e^{-bx} \right]_{0}^{b}$$
$$S_{o} = 4 \frac{h}{b} \left[1 - e^{-b^{2}} \right]$$

Exponencial Divisora.

Figura II-10. Área de sección abierta de un orificio exponencial. (Modo divisora).

$$S_{a} = S_{o} - 2 \int_{-b}^{x} he^{bx} dx = S_{o} - 2 \frac{h}{b} \left[e^{bx} \right]_{-b}^{x}$$

$$S_{a} = S_{o} - 2 \frac{h}{b} \left[e^{bx} - e^{-b^{2}} \right]$$
Sustituyendo el valor $de: S_{o} = 4 \frac{h}{b} \left[1 - e^{-b^{2}} \right]$

$$S_{a} = 4 \frac{h}{b} \left[1 - e^{-b^{2}} \right] - \frac{2h}{b} \left[e^{bx} - e^{-b^{2}} \right]$$
Cambio variable: $-x - d = b \Rightarrow x = -(b + d)$

$$S_{a} = 4 \frac{h}{b} \left[1 - e^{-b^{2}} \right] - \frac{2h}{b} \left[e^{-b(b+d)} - e^{-b^{2}} \right]$$

simplificando,

$$S_{a} = 4\frac{h}{b} - \frac{2h}{b}e^{-b^{2}}\left[1 + e^{-bd}\right] \qquad -b \le d \le 0$$

$$S_a = 2\int_x^b he^{-bx} dx = -2\frac{h}{b} \left[e^{-bx} \right]_x^b$$
$$S_a = -2\frac{h}{b} \left[e^{-b^2} - e^{-bx} \right]$$

Cambio variable: $d = -b - x \Rightarrow x = -(b+d)$

$$S_a = -\frac{2h}{b} \left[e^{-b^2} - e^{b(b+d)} \right] - 2b \le d \le -b$$

Exponencial Integradora.

Figura II-12. Área de sección abierta de un orificio exponencial. (Modo integradora).

$$y = he^{-bx}$$

$$S_a = 2\frac{h}{b} + 2\int_0^x he^{-bx} dx$$

$$= 2\frac{h}{b} - 2\frac{h}{b} \left[e^{-bx} \right]_0^x$$

$$S_a = 2\frac{h}{b} - 2\frac{h}{b} \left[e^{-bx} - 1 \right]$$

Cambio de var*iable* : x = (b - d)

$$S_{a} = \frac{1}{2}S_{o} + 2\int_{0}^{x} he^{-bx} dx$$

$$S_{a} = \frac{2h}{b} \left[1 - e^{-b^{2}} \right] - \frac{2h}{b} \left[e^{-bx} \right]_{0}^{x}$$

$$S_{a} = \frac{2h}{b} \left[1 - e^{-b^{2}} \right] - \frac{2h}{b} \left[e^{-bx} - 1 \right]$$

$$S_{a} = \frac{2h}{b} - \frac{2h}{b} e^{-b^{2}} - \frac{2h}{b} e^{-bx} + \frac{2h}{b}$$

$$S_{a} = \frac{4h}{b} - \frac{2h}{b} \left[e^{-bx} + e^{-b^{2}} \right]$$

Cambio var*iable* : x = (b - d)

$$S_{a} = \frac{4h}{b} - \frac{2h}{b} \left[e^{-b(b-d)} + e^{-b^{2}} \right] \qquad 0 \le d \le b$$

2^{do} tramo.

Figura II-13. Área de sección abierta de un orificio exponencial. (Modo integradora).

$$S_{a} = 2 \int_{-b}^{x} he^{bx} dx = 2 \frac{h}{b} \left[e^{bx} \right]_{-b}^{x}$$
$$S_{a} = 2 \frac{h}{b} \left[e^{bx} - e^{-b^{2}} \right]$$
Cambio variable : $d = b - x \Longrightarrow x = (b - d)$

Cambio de ejes: Divisora.

Figura II-14. Cambio de coordenadas. (Modo divisora).

1^{er} tramo.

$$Sa = (4h/b)-(2h/b)[e^{-b(b-d)} + e^{-b^2}]$$

Cambio variable

$$d = d + (a - 2b)$$

$$d = d - (a - 2b)$$

$$S_{a} = \frac{4h}{b} - 2\frac{h}{b} \left[e^{-b[b + (a - 2b) - d]} + e^{-b^{2}} \right]$$

$$S_{a} = \frac{4h}{b} - 2\frac{h}{b} \left[e^{-b[-d + a - b]} + e^{-b^{2}} \right]$$

$$a - 2b \le d \le a - b$$

2^{do} tramo.

$$Sa = (2h/b)[e^{b(b-d)} - e^{-b^2}]$$

Cambio de variable

$$d = d \cdot (a - 2b)$$
$$S_a = 2\frac{h}{b} \left[e^{b[-d+a-b]} - e^{-b^2} \right] \qquad a-b \le d \le a$$

Cambio de ejes: Integradora.

Figura II-15. Cambio de coordenadas. (Modo integradora).

1^{er} tramo.

$$Sa = (4h/b)-(2h/b) e^{-b^2} [e^{-bd} + 1]$$

Cambio de variable

$$d = d - (a - 2b)$$

$$d = d + (a - 2b)$$

$$S_{a} = \frac{4h}{b} - \frac{2h}{b}e^{-b^{2}}\left[e^{-b(d + a - 2b)} + 1\right]$$

<u>2^{do} tramo.</u>

$$Sa = -2h/b [e^{-b^2} - e^{b(d+b)}]$$

Cambio de variable

$$d = d + (a - 2b)$$

 $S_a = -2\frac{h}{b} \left[e^{-b^2} - e^{b[d+a-b]} \right]$

Referidos a los ejes definitivos

<u>Divisora.</u>

$$S_{a} = -\frac{2h}{b} \left[e^{-b^{2}} - e^{b(b+d)} \right] - 2b \le d \le -b$$

$$S_{a} = \frac{4h}{b} - \frac{2h}{b} e^{-b^{2}} \left[e^{-bd} + 1 \right] - b \le d \le 0$$

$$S_{a} = \frac{4h}{b} \left(1 - e^{-b^{2}} \right) \qquad 0 \le d \le a - 2b$$

$$S_{a} = \frac{4h}{b} - 2\frac{h}{b} \left[e^{-b[-d+a-b]} + e^{-b^{2}} \right] \qquad a - 2b \le d \le a - b$$

$$S_{a} = 2\frac{h}{b} \left[e^{b[-d+a-b]} - e^{-b^{2}} \right] \qquad a - b \le d \le a$$

Integradora.

$$S_{a} = -\frac{2h}{b} \left[e^{-b^{2}} - e^{b(d+a-b)} \right] \qquad -a \le d \le -a+b$$

$$S_{a} = \frac{4h}{b} - \frac{2h}{b} e^{-b^{2}} \left[e^{-b(d+a-2b)} + 1 \right] \qquad -a+b \le d \le -a+2b$$

$$S_{a} = \frac{4h}{b} \left(1 - e^{-b^{2}} \right) \qquad -a+2b \le d \le 0$$

$$S_{a} = \frac{4h}{b} - 2\frac{h}{b} \left[e^{-b[b-d]} + e^{-b^{2}} \right] \qquad 0 \le d \le b$$

$$S_{a} = 2\frac{h}{b} \left[e^{b[b-d]} - e^{-b^{2}} \right] \qquad b \le d \le 2b$$

Figura II-16. Modo divisora (superior) e integradora (inferior).