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“Somewhere, something incredible is waiting to be known.” 

Carl Sagan 
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Summary 

Protein aggregation has moved from being an almost neglected biophysical curiosity to a central research 

field mostly due to aggregating proteins causing debilitating conditions in humans. The aggregation 

propensity of polypeptidic sequences is primarily dictated by their amino acid sequence, which delimits 

the possible interactions between amino acids. Different factors can modulate aggregation propensity. 

Achieving an energetic stable folded native state usually conceals aggregation prone-regions preventing 

aberrant self-oligomerization. Not all proteins fold into a defined three-dimensional structure; intrinsically 

disordered proteins are a group of polypeptides without a defined spatial architecture and therefore are 

significantly exposed to solvent; which increases the risk of forming aberrant contacts. A special case of 

disordered proteins or proteins with disordered regions are prions and prion-like proteins. These are 

characterized by low complexity regions with a cryptic aggregation propensity and able to self-template 

an aberrant conformation that self-assembles into aggregates. 

Bioinformatics has assisted the study of these different kinds of proteins and protein structural levels by 

providing a toolbox of algorithms to model their behaviour in physiology and disease. These 

computational models were designed using methodology approximations that exploited the available 

knowledge at that time. Our understanding of the phenomena that govern processes such as protein 

aggregation is growing rapidly; therefore, the underlying principles behind these programs should be 

continuously revisited. 

The present thesis provides a bioinformatics analysis of the phenomena behind protein compaction from 

multiple angles. By analysing protein aggregation in the native state, we propose improvements to both 

functionality and usability of a state-of-the-art globular prediction method. At the same time, the effect 

of pH (as a first approach integrating protein environment on calculations) on intrinsically disordered 

proteins aggregation and conditional folding was analysed. The obtained results will be used to build 

publicly accessible web servers as cost-effective tools for multiple research lines. The phenomenon behind 

prion and prion-like conversion will be studied to gain insight into the determinants that regulate this 

conversion and the functional role of proteins that undergo this transition; an aspect often overshadowed 

by their association with neurological diseases. 

Overall, the work presented in this thesis attempts to understand fundamental inter- and intra-molecular 

determinants governing protein compaction in near-native and in changing environmental conditions, as 

a proxy to understand the role of this process in physiology and disease. 
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Resum 

L’agregació de proteïnes ha passat de ser gairebé una curiositat biofísica sense major interès a un dels 

camps més actius de la recerca, especialment des que es va esbrinar que podia ser la causa de diverses 

malalties en humans. L’agregació en proteïnes ve determinada en un primer terme per la seva seqüència 

aminoacídica, que és qui delimita les possibles interaccions entre els seus aminoàcids. Diferents factors 

modulen aquesta propensió intrínseca a agregar. Sovint les proteïnes assoleixen un plegament natiu que 

és energèticament més estable i que usualment amaga regions propenses a agregar, i d’aquesta forma es 

prevé una oligomerització no funcional. No totes les proteïnes requereixen un plegament amb una 

estructura tridimensional definida; les proteïnes intrínsecament desordenades són un grup de polipèptids 

que manquen una arquitectura espacial definida, amb lo qual tenen una significativament major exposició 

al solvent; fet que incrementa el seu risc de formar contactes aberrants. Un cas especial de proteïnes 

desordenades o amb regions desestructurades són els prions i les proteïnes del tipus prió. Aquestes 

proteïnes es caracteritzen per tenir regions amb una baixa complexitat amb regions amb propensió 

críptica a agregar, que són capaces d’automodelar una conformació aberrant que s’acobla en forma 

d’agregats. 

La bioinformàtica ha assistit en l’estudi d’aquests diferents grups de proteïnes i dels diferents nivells 

estructurals que adopten, dotant-nos d’un seguit d’eines en forma d’algoritmes per modelar els seus 

comportaments en processos fisiopatològics. Aquests models computacionals van ser dissenyats fent 

servir el coneixement del qual es disposava en el seu moment. Però el ràpid increment en l’enteniment 

dels fenòmens que dirigeixen els processos com l’agregació proteica fan imperatiu una contínua revisió i 

millora en el desenvolupament d’aquests programes. 

La present tesi presenta una anàlisi bioinformàtica dels fenòmens darrere la compactació de proteïnes 

des de múltiples angles. Analitzant l’agregació de proteïnes des de l’estat natiu, proposem millores a la 

funcionalitat i la usabilitat d’un dels programes de predicció de referència. Tanmateix, s’analitzarà l’efecte 

del pH (com un primer intent d’integrar la situació on es troba la proteïna als càlculs) en els processos 

d’agregació i de plegament condicional en proteïnes intrínsecament desordenades. Els resultats obtinguts 

seran utilitzats per construir servidors web de caràcter obert, pensats com a solucions efectives a la 

vegada que econòmiques per a múltiples línies de recerca. El fenomen darrere la conversió priònica o de 

tipus prió serà analitzada per entendre els determinants que ho regulen i el rol funcional de les proteïnes 

que es sotmeten a aquesta transició; un aspecte sovint eclipsat per la seva associació amb malalties 

neurològiques.  

En general, el treball presentat en aquesta tesi intenta comprendre els determinants inter i 

intramoleculars que regeixen la compactació de les proteïnes, tant en condicions natives com canviants, 

i d’aquesta manera d’entendre el paper d’aquest procés tant en condicions fisiològiques com quan esdevé 

malaltia. 
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1.Introduction 
  

1.1. PROTEIN FOLDING  

Proteins are biological polymers mostly composed of a linear combination of 20 different amino 

acids. They share a basic skeleton but have different physicochemical properties conferred by their 

characteristic side chains (Figure 1.1). Proteins can have a wide variety of lengths, ranging from 30-40 

amino acids to over 20.000. Usually, shorter versions are referred to as oligopeptides or polypeptides. 

Statistically, the potential different protein sequences for a given length can be calculated as 20length; 

which for a standard 300 amino acid sequence provides ~10400 possible unique protein sequences. There’s 

a tight relationship between the amino acid sequence and the function the protein will develop, the space 

it will be located or the cellular moment it will be needed, and evolution has selected from this almost 

infinite pool of possible proteins the fittest for each case. All in all, proteins develop the majority of 

functions within the cells.  

 

Figure 1.1 – Standard proteinogenic amino acids grouped by physicochemical properties conferred by 

their side chains. The 20 proteinogenic amino acids that are encoded by the standard genetic code have their groups 

joint by the α-carbon and are L-stereoisomers (except Glycine which does not possess a chiral centre). Under each 

the amino acid name and their one- and three-letter code, represented by a circle and in italics respectively, is 

depicted. 
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The biosynthesis of proteins is carried out in the ribosomes, which sequentially interpret the 

codons in the mRNA, incorporate the respective amino acids and facilitate peptide bond formation 

between nascent polypeptide chain and newly incorporated residue.  

 

Figure 1.2 – Protein structure is organized in hierarchical levels. The primary structure corresponds to the 

linear sequence of amino acids. Secondary structure is the first hierarchical three-dimensional arrangement. β-sheet 

and α-helix elements of secondary structure are depicted in red and blue respectively. Tertiary structure is composed 

of a folded protein monomer, with secondary structure elements and loops (coloured in green). Some proteins 

require a quaternary structure to be functional. In the case depicted above, three protein monomers cluster together 

forming a functional trimer as seen for monomeric and functional SARS-COV-2 Spike protein (PDB: 6VYB). 



22 
 

Most proteins must acquire a specific three dimensional structure, known as the native state 

(Anfinsen, 1973; Dobson, 2003) to be functional. The process by which polypeptides attain the native 

state from initially unstructured or partially structured conformations is referred to as protein folding. The 

study of the process was initiated by Christian B. Anfinsen in the 1960s’ and 1970s’. By unfolding and 

refolding Ribonuclease A, he realised that the primary sequence of a polypeptide in its physiological 

condition (pH, temperature, and presence of partners or prosthetic groups) dictates its final spatial 

distribution and postulated the thermodynamic hypothesis; which stated that the native state of the 

protein constituted the Gibbs free energy minimum (Anfinsen, 1973). Nowadays, it is widely accepted 

that the protein native state can represent a local minimum, with intermolecular interactions forming 

supramolecular structures, such as those in protein aggregates (which will be further discussed in Section 

1.2), can lead to lower energetic configurations. Nonetheless, Cyrus Levinthal noted that for a protein to 

stochastically explore all possible conformations would require higher times than the age of the universe 

itself; which contradicted the already known sub-second folding processes of proteins (Levinthal, 1969). 

This pointed to a cooperative folding scheme in which amino acids don’t achieve its conformation 

independently. After decades of intense study, the actual consensus is that protein folding can be 

depicted as a folding energy landscape; in which achieving correctly folded stretches with have less 

potential energy, limit sterically and by establishing local interactions, non-folded stretches’ possibilities 

in search for possible combinations (Figure 1.3). 

Proteins can consist of a unique or multiple compact structures, called domains. Protein domains 

are tertiary structure elements that are stable, fold, evolve and usually function autonomously (Janin and 

Wodak, 1983). Domains act as evolutionary independent, modular structures that contribute to the 

overall protein functions. Those characteristics make protein domains a building block for protein 

evolution, with an almost infinite number of ways to combine domains to accommodate function (Russell, 

1994). Accordingly, multidomain proteins are thought to arise from single-domain proteins via domain 

insertion in different genes; which could be accomplished by means of exon shuffling or as a side effect 

of transposable elements (Russell, 1994). In this way, the SH3 domain is a small, ~60 amino acids, globular 

domain which is involved in protein binding, and is found in around 300 unrelated human proteins 

(Saksela and Permi, 2012). Similarly, multi-domain fusions are widely used in synthetic protein 

engineering, as it allows the rational combination of domains leading to a chimeric protein with 

predictable function and structure.  Green fluorescent protein (GFP) is a single-domain globular protein 

that emits green fluorescence when exposed to blue light. It plays a main role in the bioluminescence of 

the jellyfish. Shimomura, Chalfie and Tsien were awarded the 2008 Nobel prize in Chemistry for the 

discovery (in the jellyfish Aequorea Victoria) and development of methodologies to work with GFP. Lately, 

the GFP domain has been widely used in fusion proteins as a reporter, as it folds into a fluorescent-

emitting β-barrel, allowing researchers a simple localization of the chimeric protein  even in crowded 

environments such as cytoplasm or nucleus (Ormo, et al., 1996). 

Proteins reside in a very crowded, densely packed medium, in which they interact with partners, 

the aqueous medium, salts, nucleotides; which ultimately imply fluctuations of their native structure. This 
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structural dynamism may transiently expose hydrophobic regions, which are originally concealed in the 

native state, exposing them to non-native intermolecular contacts. This transient exposure might kick-

start the misfolding and ultimately the aggregation of unfolded, folding intermediates or even well-folded 

proteins, being this mechanism concentration dependent (Chartier-Harlin, et al., 2004; Khurana and 

Lindquist, 2010; Singleton, et al., 2003). 

 

1.2. PROTEIN MISFOLDING AND AGGREGATION 

Despite the energetic investment the cell dedicates to ensure a correct protein folding, proteins 

do not always succeed to fold into their native states. Incorrectly folded or misfolded proteins not only 

imply a deficient function but may accumulate in a process known as protein aggregation. There is a 

significant interest in understanding protein misfolding and aggregation mainly driven because this 

mechanism is responsible for a large number of human disorders, which range from neurodegenerative 

diseases such as Alzheimer’s (AD) and Parkinson’s disease, Amyotrophic lateral sclerosis (ALS) to certain 

types of cancer or type II diabetes (Chiti and Dobson, 2006; Chiti and Dobson, 2017; Graña-Montes, et al., 

2017). 

Proteins aggregate through a variety of conformers, from nascent, unfolded, partially folded or even 

completely folded structures (Figure 1.3). Initial aggregates are usually clusters of monomers which retain 

certain structural features of their pervious state (Chiti and Dobson, 2017). Bigger oligomeric aggregates 

can grow into amorphous or native like-assemblies or maturate into more compact stable species. This 

usually requires internal reorganization into β-rich oligomers and eventually the formation of insoluble 

fibrils characterized by cross-β diffraction patterns known as amyloids (which will be further explored 

Section 1.2.1) (Chiti and Dobson, 2017) . 
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Figure 1.3 – Schematic energy landscape for protein folding and misfolding. The surface shows how attaining 
favourable intramolecular contacts funnel the energetic minimization towards the native state, decreasing its 
conformational freedom. On- or off-pathway folding intermediates occupy energetic wells (folding intermediates and 
partially folded states). Intermolecular interactions allow the formation of aberrant aggregates (amorphous 
aggregates, β-sheet-rich oligomers, and amyloid fibrils) which represent lower energetic conformations for the 
system. Figure reproduced with permission from (Jahn and Radford, 2005). 

Protein folding and aggregation are regarded as competing processes as they are both driven by similar 

physicochemical principles such as the hydrophobic affect and hydrogen bonding (Cheon, et al., 2007; 

Jahn and Radford, 2008; Kauzmann, 1959; Monsellier and Chiti, 2007); although the stabilization of native 

states comes from specific intramolecular interactions, whereas protein aggregates are mainly stabilized 

by backbone-to-backbone intermolecular contacts (Auer, et al., 2008). The establishment of an 

energetically stable native structure minimizes the contacts needed for aggregation, kinetically impairing 

this reaction (Auer, et al., 2008; Monsellier and Chiti, 2007). However, cells need to synthesize and 

degrade proteins regularly as a response to external and internal stimuli; therefore, the interplay between 

protein stability in the native state and an assumable energetic expense to degrade them makes proteins 

marginally stable (Bartlett and Radford, 2009; Dobson, et al., 1998). In this scenario, changing 

environmental conditions or certain mutations which destabilize the native state can leave hydrophobic 

regions exposed to solvent igniting misfolding and aggregation (Bartlett and Radford, 2009; Dobson, et 

al., 1998). Moreover, protein interaction surfaces frequently require hydrophobic patches (Castillo and 

Ventura, 2009), but quaternary complexes keep those regions inaccessible to form aberrant contacts, 

which is key to prevent their aggregation (Santos, et al., 2020b; Yee, et al., 2019). However, disease-

causing mutations often destabilize the formation of these complexes, leaving high-aggregation prone 

monomers a free-way to access aggregation pathways (Santos, et al., 2020b; Yee, et al., 2019).  

Aggregation propensity is primarily dictated by its primary sequence (Graña-Montes, et al., 2017; Lopez 

de la Paz and Serrano, 2004). The amino acidic composition and sequential position dictates the possible 

interactions between residues, which determine the overall aggregation propensity, rate or even the 

possibility of amyloid formation (Monsellier and Chiti, 2007). Previous studies have shown that not all 

protein sequence is equally important for aggregation, but instead that short sequence fragments can 

promote the full protein to aggregate. These stretches, known as aggregation-prone regions (APRs) or hot 

spots of aggregation, are enriched in hydrophobic amino acids; aromatic (F, W, Y) and aliphatic (V, L, I) 

(Rousseau, et al., 2006; Ventura, et al., 2004). Therefore, APRs arise from combinations of residues with 

complementary physicochemical determinants that promote aggregation, namely hydrophobicity, 

tendency to preferentially adopt a given secondary structure and a low net charge per residue (NCPR) in 

this specific region.  

Hydrophobicity has been identified as a major player in protein compaction; the burial from solvent of 

the hydrophobic-core, or hydrophobic collapse, being a key driver of globular protein folding (Lindorff-

Larsen, et al., 2005) and inter and intramolecular hydrophobic contacts being essential for many 

quaternary structures or protein-protein interfaces (Castillo and Ventura, 2009). Hydrophobicity is also 

considered a major driving force of non-native oligomerization. Previous studies showed that mutations 

of polar to non-polar residues increase the aggregation rate; while mutating a non-polar for a polar amino 
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acid usually decreases or even abrogates it (Jahn and Radford, 2008). Amino acids specific stereochemistry 

shape their tendency to adopt different secondary structures and this affects their propensity to facilitate 

aggregation. Aberrant deposits frequently show β-sheet rich structures, in agreement with the 

observation that an enrichment in residues with a higher propensities to form β-sheets increased 

aggregation rates (Chiti, et al., 2002) and the pre-existence of β-strands in the native state intensified 

protein aggregation, requiring less rearrangement to form amyloid-like aggregates (Pallares, et al., 2004). 

On the other hand, amino acids with low tendency to form β-sheets (also known as “β-breakers”) such as 

P and G, tend to disfavour aggregation (Monsellier and Chiti, 2007; Parrini, et al., 2005; Wood, et al., 

1995). Charged residues have an important influence on protein deposition, both by the repulsion effect 

exerted by equal charges and by an entropic penalty for oligomerization, which negatively impacts most 

short-ranged intermolecular interactions required for protein aggregation (Reumers, et al., 2009). Chiti 

and co-workers showed that mutations which did not affect secondary structure, but involved the 

substitution of uncharged for charged residues decreased aggregation rates, while charged to uncharged 

changes increased it (Chiti, et al., 2002). Both β-breakers and charged residues are often found 

surrounding highly hydrophobic regions (Reumers, et al., 2009; Rousseau, et al., 2006) and are thought to 

be an evolutionary mechanism to discourage non-native contacts between aggregation-prone sequence 

stretches (Rousseau, et al., 2006), thus acting like aggregation gatekeepers (Rousseau, et al., 2006). 

These discussed factors are intrinsic to the protein sequence and can be modulated by environmental 

conditions which impact kinetically, thermodynamically and structurally the deposition process. Protein 

concentration, local pH, temperature and the ionic strength are the extrinsic determinants with a greatest 

effect on aggregation (DuBay, et al., 2004). Protein concentration impact the thermodynamic and kinetic 

aspects of the aggregation reaction; as being a high-order reaction it is highly dependent on the 

polypeptide molarity (Tartaglia and Vendruscolo, 2009). Cells keep a tight control of protein expression; 

with protein levels found to be anti-correlated with their aggregation propensity (Tartaglia and 

Vendruscolo, 2009). This led Vendruscolo, Tartaglia, Dobson and Pechmann to postulate their life on the 

edge hypothesis: proteins have co-evolved their function and aggregation propensity, but they are 

present at their solubility limit (Tartaglia, et al., 2007). Temperature, on the other hand, influences the 

proteins conformational energy landscape varying the Gibbs free energy of each species as well as the 

activation energy to access them (Graña-Montes, et al., 2017; Lehninger, et al., 2005). As a general trend, 

working at higher protein concentrations and at higher temperatures accelerates the rate of protein 

aggregation. pH influences the protonation state of the charged residues (acidic D, E and basic R, K and 

H), thus modifying the local charge as well as the net charge of the complete protein. This affects the 

attraction and repulsion effects, thus the formation of electrostatic interactions (Lehninger, et al., 2005) 

and these residues’ hydrophobicity (Zamora, et al., 2019). In the present thesis we will explore the 

influence of pH on conditional folding and on protein aggregation. Finally, low salt concentrations stabilize 

proteins increasing their solubility, while high salt concentrations shields charges non-specifically, 

reducing the protein effective net charge and thus the repulsion effects between polypeptides. 
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Cells have evolved intricate strategies to control and minimize deleterious non-functional intermolecular 

contacts which could lead to aggregation and amyloid formation, conforming what is called the 

proteostasis network. The most remarkable is the protein quality control machinery (PQC) which 

comprises chaperones and chaperonines, proteases, ubiquitin ligases, proteasome and autophagy (Chiti 

and Dobson, 2017). Different molecular chaperones assist protein folding as early as when the protein is 

being translated, others can prompt unfolding and refolding of non-native conformations and subsequent 

refolding (Kim, et al., 2013; Patzelt, et al., 2001). Notably, chaperones can recognize the exposure of 

gatekeeper residues flanking hydrophobic regions (Kim, et al., 2013; Patzelt, et al., 2001). Misfolded 

proteins that elude this network can be recognized and degraded by the ubiquitin-proteasome system 

(Kaufman, et al., 2002; Kim, et al., 2013). 

 

1.2.1. AMYLOIDS 

Amyloids are supramolecular insoluble assemblies in which connected β-strands form β-sheets 

which stack consecutive protein molecules perpendicular to the fibre axis. Amyloid fibres share several 

common features such as binding to specific dyes such as Thioflavin-T (Th-T) and Congo Red (CR), 

detergent and proteolytic resistance, an enrichment in β-sheet secondary structure which shows specific 

signals in circular dichroism (CD) and the presence of cross-β signals on X-ray diffraction patterns. 

Polypeptides that assemble into this morphologically and structurally similar architecture are neither 

related in sequence, nor in native conformation, still, amyloid fibrils have been identified for a large 

number of diverse proteins from all kingdoms of life (Chiti and Dobson, 2017; Otzen and Riek, 2019). 

Eventually, under certain conditions (pH, temperature, salt concentrations, presence or absence of 

binding partners), it is possible to force virtually any protein to form amyloid assemblies (Chiti and Dobson, 

2017; Knowles, et al., 2014). Altogether the access to amyloid structures seems to be a generic property 

of protein chains, rather than being specifically encoded in the sequence of amino acids (Chiti and Dobson, 

2006).  

Amyloids have received substantial interest mostly because amyloid depositions have been found for at 

least 37 peptides or proteins linked with human pathologies (Chiti and Dobson, 2017). As stated above 

they do not share  sequential, structural or functional similarities and their aggregation occurs in a variety 

of different tissues (Chiti and Dobson, 2006; Chiti and Dobson, 2017; Uversky and Fink, 2004). Proteins 

forming amyloids in the central nervous system give rise to neurodegenerative conditions; they include 

ß-amyloid peptides (Aβ-40 and Aβ-42) in AD, tau in AD, pick disease and frontotemporal dementia, α-

synuclein (α-syn) in PD and multiple system atrophy (MSA) or Huntingtin in Huntington disease (Chiti and 

Dobson, 2006; Chiti and Dobson, 2017; Uversky and Fink, 2004). Non-neuropathic proteins can form 

amyloid aggregates in a specific tissue such as IAPP in type II diabetes, in which deposits form in the 

pancreas, or being systemic such as fragments of immunoglobulin light chains in light-chain amyloidosis, 

to complicate more the scenario, for some proteins, depending on the mutation, they aggregate in a 

specific tissue or are systemic (Chiti and Dobson, 2006; Chiti and Dobson, 2017). This latter is the case of 
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Transthyretin (TTR); a tetrameric protein that functions as a  thyroxine transporter and aggregates 

systemically causing senile systemic amyloidosis disease (Chiti and Dobson, 2006; Chiti and Dobson, 2017; 

Pinheiro, et al., 2020; Sant'Anna, et al., 2016). However, different mutations destabilize the quaternary 

complex provoking TTR to form amyloid fibrils in the brain, which causes leptomeningeal amyloidosis or 

in the myocardium causing familial amyloid cardiomyopathy (Chiti and Dobson, 2006; Chiti and Dobson, 

2017; Pinheiro, et al., 2020; Sant'Anna, et al., 2016). AD and PD are the most prevalent neurodegenerative 

conditions and affect an estimate of 50 million and 7 million people, respectively, especially those aged 

65 and above (Brookmeyer, et al., 2007; Prince, 2015). As elder global population increases, the number 

of affected individuals is expected to duplicate by 2050, generating a huge social and economic burden 

(Brookmeyer, et al., 2007; Collaborators, 2018; Prince, 2015). Until recently the only available treatment 

for amyloidosis were palliative cares, which roughly slowed the progression of the diseases. However, 

work in TTR identified small molecules that significantly reduced the disease progression by stabilizing the 

protein quaternary structure (Bulawa, et al., 2012; Sant'Anna, et al., 2016). As of the time of elaborating 

this thesis, one of those drugs, Tafamidis is being used in the clinic in Europe and Japan, while Tolcapone, 

an already FDA-approved molecule is ongoing phase IIa clinical trials for different TTR-amyloidosis 

(Gamez, et al., 2019; Reig, et al., 2015). Similar endeavours are taking place for other amyloidosis with 

several drugs ongoing different stages of clinical trials (Nuvolone and Merlini, 2017; Pujols, et al., 2018; 

Pujols, et al., 2020). 

1.2.1.1. FUNCTIONAL AMYLOIDS 

 
Amyloid deposits have been traditionally regarded as undesirable pathogenic agents. However, 

amyloid fibres unique physicochemical and mechanical properties make them ideal to fulfil several 

specific biological functions that cannot be exerted by individual protein subunits. Indeed, organisms 

belonging to all kingdoms of life have evolved amyloid conformations for specific physiological tasks 

(Camara-Almiron, et al., 2018; Loquet, et al., 2018; McGlinchey and Lee, 2018; Otzen and Riek, 2019; 

Pallares, et al., 2015; Santos and Ventura, 2020), and witty strategies to avoid cytotoxic effects, when in 

their hosts, such as membrane-bounded compartmentation or modulation of assembly by pH, post-

translational modifications, protease processing or shifting the direction of the reaction by modifying 

reactant concentrations (Jackson and Hewitt, 2017; Otzen, 2010; Otzen and Riek, 2019). A well-

characterized functional amyloid application is biofilm formation in different bacteria. Biofilms are a self-

produced extracellular matrices composed of polysaccharides, proteins, lipids and nucleic acids which 

protect bacteria from antimicrobials, chemical stresses, shear forces or the immune system, allowing 

communities formed of diverse groups of bacteria and fungi to thrive (Flemming and Wingender, 2010). 

Bacteria from the genus Escherichia (Curli fibres from CsgA and CsgB proteins), Salmonella (Curli fibres 

from CsgA and CsgB proteins) and Pseudomonas (Fap proteins) secrete into the biofilm proteins that 

assemble into amyloid aggregates, conferring high mechanical firmness (Chapman, et al., 2002; Zeng, et 

al., 2015). Staphylococcus secrete Biofilm associated proteins (Bap) that assemble into an amyloid in the 
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biofilm in response to environmental conditions (pH and Ca2+ levels), acting as an amyloid-switch-like 

mechanism (Taglialegna, et al., 2016). 

Amyloid architecture is also functionally exploited in eukaryotes (Chiti and Dobson, 2017). 

Studies in Antheraea Polyphemus, silk moths, have shown that the main proteic component of eggshells 

forms amyloid fibrils (Iconomidou, et al., 2000). These amyloids would confer the oocyte and embryo 

mechanical and environmental protection, while allowing the biologically required gas exchange. During 

seed maturation in Pisum sativum, garden pea, Viciclin accumulates as amyloid fibrils conferring a source 

of amino acids for seed germination, growth, and possibly being a pathogen defence mechanism 

(Antonets, et al., 2020; Santos and Ventura, 2020). Further research will show if these vegetal functional 

amyloids are also present in other taxonomic groups. In humans and other mammals, pigment cell-specific 

protein Pmel17 amyloid formation is responsible for the deposition of melanin, thus playing a crucial role 

in the maturation of melanosomes (Watt, et al., 2013). Pmel17 deposition is tightly regulated, being 

transported through several endosomal compartments as a proprotein before being proteolytically 

processed to its aggregational form, and requiring the acidic (pH∼5) environment of melanosomes to 

aggregate (Otzen and Riek, 2019; Watt, et al., 2013). It is expected that further research will find more 

cases of functional amyloid in living organisms, as it occurred with pathogenic amyloids, which were 

initially thought to be anecdotic.  

 The amyloid structure has been recently exploited to generate building blocks for functionalized 

self-assembled nanostructures such as nanotubes, nanocomposites, scaffolds for cell growth and bio-

catalysis, adhesives, hydrogels, biosensors or for energy conversion (Diaz-Caballero, et al., 2018; Knowles 

and Mezzenga, 2016; Li, et al., 2012; Wang and Ventura, 2020). This approach is extremely promising; 

however, certain technical limitations must be still overcome, specially the loss of the globular structure 

suffered during the rapid transition to β-sheet rich pre-amyloid conformations, which hamper or 

inactivate the protein function (Wang and Ventura, 2020). 

1.2.2. BIOINFORMATIC APPROACHES TO PREDICT PROTEIN AGGREGATION 

Growing knowledge on the physicochemical, sequential, and structural determinants of protein 

aggregation have propelled the development of mathematical models to predict the propensity to 

aggregate. The analysis of protein aggregation requires to consider the conditions in which this reaction 

occurs: the conformation, interacting partners and protein environment. Different conformational levels 

impose different constraints to aggregation, therefore dedicated computational algorithms are needed 

for each particular case (Santos, et al., 2020a; Santos, et al., 2020b). The first generation of aggregation 

predictors were designed to search for linear APRs, therefore they only required the primary sequence as 

an input. These algorithms can be divided in different categories according to the nature of the 

determinants of protein aggregation they evaluate  (Grana-Montes, et al., 2012; Santos, et al., 2020a). 

Phenomenological predictors are characterized by applying experimentally derived scoring systems. This 

category includes algorithms such as Zyggregator, TANGO or AGGRESCAN (Conchillo-Sole, et al., 2007; de 

Groot, et al., 2012; Fernandez-Escamilla, et al., 2004; Tartaglia and Vendruscolo, 2008). Zyggregator 

applies an equation that accounts for hydrophobicity, secondary structure propensity and net charge, 
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built upon the changes in aggregation rate promoted by point mutations, while also pondering the 

solubilizing effect of gatekeeper residues. TANGO, on the other hand, evaluates the population of 

secondary structure from empirically and statistically derived amino acidic preferences. It is commonly 

accepted that regions with a tendency for β-sheet >5% over >5 consecutive amino acids reflect an APR. 

Noteworthy, TANGO allows tuning of extrinsic parameters such as ionic strength, temperature and pH; 

which modify bonding energies and thus secondary structure propensity (Lacroix, et al., 1998). Finally, 

AGGRESCAN evaluates the input sequence on an aggregation propensity scale obtained in vivo. Briefly, 

Ventura and co-workers mutated the central domain of Aβ-42 fused to GFP to all other 19 possible 

residues, and measured the emitted fluorescence (a reporter of the protein fusion solubility) (de Groot, 

et al., 2006). A second kind of algorithms to predict aggregation from the primary sequence corresponds 

to those that, in a way or another, are structure-based. They evaluate the conformational compatibility 

of the sequence with an amyloid fold. PASTA, FoldAmyloid, and Waltz are representatives of this class 

(Garbuzynskiy, et al., 2010; Maurer-Stroh, et al., 2010; Walsh, et al., 2014). The first two use scoring 

systems derived from protein structures; PASTA applies an energetic function which evaluates the 

possible parallel and anti-parallel β-pairing by considering the interaction potential and hydrogen-bonding 

for non-consecutive residues, while FoldAmyloid evaluates the hydrogen-bonding propensity and the 

packing density, under the premise that it is higher in hydrophobic stretches. Waltz uses a position-

dependent matrix, which was trained upon evaluating the ability to form amyloids of over 200 

hexapeptides’ by electron microscopy, circular dichroism, Fourier-transform infrared spectroscopy and X-

ray diffraction. A third group of programs combines the output of several predictors weighting their 

predictions and generating a consensus. In this way they try to minimize the possible bias any algorithm 

may have, thus increasing robustness (Graña-Montes, et al., 2017; Santos, et al., 2020a). AMYLPRED 2 or 

MetAmyl algorithms apply this rationale (Emily, et al., 2013; Tsolis, et al., 2013). The first generates 

consensus over 11 different algorithms but allows the user to customise the final output by deselecting 

some predictors, which is advised for redundant methods. MetAmyl applies instead four methodologies 

which showed lower redundancy and scores according to a linear combination of them. Lately, new 

aggregation predictors that exploit machine-learning strategies have arisen. APPNN and NETCSSP which 

use neural networks or FISH Amyloid, which applies a non-classical machine learning strategy, have 

applied these different methodologies to rank physicochemical and biochemical signatures in amyloids 

(such as β-propensity, hydrophobicity or by identifying specific patterns) to predict aggregation 

propensities (Familia, et al., 2015; Gasior and Kotulska, 2014; Kim, et al., 2009). 
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Figure 1.4 – Aggregation propensity strategies for different levels of protein structure. Linear predictors 

such as TANGO, AGGRESCAN or SALSA identify APRs, for which are most suitable for IDPs and non-folded 

polypeptides. Folded proteins expose STAPs for which 3D based predictors such as A3D, Camsol or SAP are 

recommended. For quaternary structures in which aggregation prone free monomers expose STAPs, the complex 

stability is the main source of aggregation. Therefore, force fields such as FoldX are vital to model protein deposition.  

Depicted PDB structures (in A3D colour-code) correspond to monomeric and tetrameric TTR (PDB: 1F41). 

All in all, the aforementioned predictions methods have shown to be useful to disentangle the sequential 

determinants behind several disease-related proteins (Belli, et al., 2011). These approaches are especially 

suitable specially for IDPs or nascent proteins which have not acquired yet the native fold. Nonetheless 

their applicability to already folded structures is limited. In globular folds the three-dimensional 

disposition of the amino acids modifies their intrinsic aggregation propensities; with the establishment of 

contacts between non-contiguous amino acids and the hiding of certain residues inside a compact 

hydrophobic core. As a general trend, linear predictors overestimate the real aggregation propensity of 

folded domains. To overcome this limitation, Trout and co-workers applied molecular dynamics (MD) 

simulations and calculated the resulting solvent accessible areas to weight the hydrophobicity of each 

individual residue in a near-native environment. They named the resulting parameter as Spatial 

Aggregation Propensity (SAP)  (Chennamsetty, et al., 2009) This first structure-based methodology was 

intended to be a cost-effective approach to generate more soluble protein-based biotherapeutics, 

especially antibodies. Structure-based algorithms use the three-dimensional protein coordinates as an 

input, instead of the sequence. These algorithms evaluate solvent-exposed hydrophobic patches, known 

as STructural APRs (STAP); which often overlap with interfaces or functional surfaces (Santos, et al., 2020b; 

van der Kant, et al., 2017). Examples of them are: SAP, SolubiS, CamSol and Aggrescan3D (A3D) (Sormanni, 

et al., 2015; Van Durme, et al., 2016; Zambrano, et al., 2015). SolubiS identifies linear APRs using TANGO 

and correct their propensity according to the local stability of the folded structure using the FoldX force 

field (Schymkowitz, et al., 2005; Van Durme, et al., 2016). This makes it able to analyse the structural 
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context of APRs, but because the primary prediction uses a linear predictor, this comes at the cost of being 

blind to STAPs. Camsol is the structural evolution of the linear predictor Zyggregator. It uses a linear 

combination of physicochemical properties derived from the primary sequence: hydrophobicity, charge, 

α-helix and β-sheet propensities and scans the sequence with a 7 amino acid window. Next it applies 

structural corrections to those calculations (Sormanni, et al., 2015). Remarkably, Camsol applies a semi-

automated redesign strategy that identifies poorly soluble stretches and performs amino acids 

substitutions or insertions to improve solubility. Users can select the number of stretches to be 

engineered and select the functional residues to remain unchanged. As a proof of principle, they 

redesigned the gammabody Aβ(33-42), an anti-Aβ antibody-based molecule, showing an increase in the 

solubility of the engineered variants, while maintaining Aβ42 binding capacity.  

A3D is our group implementation of a structure-based aggregation predictor. It applies the in vivo 

aggregation propensity scale of AGGRESCAN corrected by its solvent-exposure by applying a spherical 

solvent exposure boundary (similar to SAP). A3D incorporates FoldX force field to minimize energetic 

clashes in the input structure and a dynamic mode in which the CABS-flex protocol, an efficient alternative 

to classical all-atom MD, is used to model protein flexibility in its native state, thus uncovering transiently 

populated conformations (Jamroz, et al., 2013; Kuriata, et al., 2018).  To test the algorithm, they focused 

on β2-microglobulin, a protein that forms amyloids in patients on long-term haemodialysis, ultimately 

causing haemodialysis-associated amyloidosis (Floege and Ketteler, 2001). Several mutations that 

accelerate amyloid formation have been described. A3D dynamic mode was able to rank the mutations’ 

effect on experimentally observed amyloid propensity. I7A, one of the worst prognosis mutants, truncates 

an aliphatic group, thus being considered as more soluble by linear predictors. Instead, A3Ds’ dynamic 

mode is able to model the transient exposure of hydrophobic residues hidden in the wild type β2-

microglobulin, thus explaining the experimentally observed increase in amyloidogenicity. A3D was also 

used to redesign a fast-folding, aggregation-resistant GFP variant, as well as redesigns of human 

antibodies (Gil-Garcia, et al., 2018). 

Evolutionary pressure on oligomeric proteins has acted at several levels. Interacting regions often overlap 

with hydrophobic stretches (Castillo and Ventura, 2009). This implies that monomeric subunits have 

solvent exposed STAPs that even though masked once the complex is formed, still remain exposed until 

quaternary structure formation is complete. For several pathological-related proteins, bad prognosis 

mutations have been identified to negatively impact the complex stability, thus favouring the dissociation 

of aggregation-prone monomeric units. This is the case of TTR and SOD-1, in which quaternary dissociation 

becomes a rate limiting step in pathological aggregation (Nordlund and Oliveberg, 2008; Quintas, et al., 

2001; Sant'Anna, et al., 2016; Santos, et al., 2020b). For these proteins, evaluating the impact of mutations 

or redesigns on STAPs accompanied by a structural stability evaluation, such as those performed using 

the FoldX force field have been found profoundly useful (Gil-Garcia, et al., 2018; Schymkowitz, et al., 

2005). FoldX calculates the free energy of unfolding (ΔG) by summing up the stabilisation/destabilisation 

effect of Van der Waals, Hydrogen bonds, water bridges, molecule solvation and electrostatic 
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contributions, each multiplied by a weight obtained by fitting empirically data for 339 datapoints for 9 

different proteins  (Guerois, et al., 2002). All in all, the aforementioned strategies constitute cost-effective 

tools in understanding mutational impact on aberrant disease-linked aggregation, as well as to optimize 

protein solubility for biotechnological and pharmaceutical applications. 

 

1.3. INTRINSICALLY DISORDERED PROTEINS 

Despite the broadly accepted paradigm stating that a protein needs to acquire a unique and relatively 

rigid 3D structure to develop a function resulted useful in anticipating function for structural proteins, 

different kinds of receptors or enzymes, increasing knowledge on the nature of protein coding sequences 

made scientists reappraise it (Romero, et al., 1998; Wright and Dyson, 1999). As more sequences were 

being added to Swissprot database, it became clearer that a significant number of them contained long 

regions predicted to be disordered (Romero, et al., 1998) referred to as intrinsically disordered regions 

(IDRs) and that this feature would have been counter-selected by evolution in case they would be devoid 

of any function (Wright and Dyson, 1999). Full-length proteins which lack a defined three-dimensional 

structure are referred to as intrinsically disordered proteins (IDPs). IDPs encompass a spectrum of 

unstructured conformations states from fully unstructured to partially structured and include random 

coils or (pre-)molten globules, and their flexibility is tightly connected to the variety of functions they 

develop (Tompa, 2002). IDPs can be classified according to their functions: entropic chains, behaving as 

linkers or spacers, or regarding the nature of their binding: which can be transient such as to display sites 

for post-translational modifications or chaperones that identify misfolded proteins or RNA, or more 

prolonged-binding as effectors modulating partner activity, as assemblers or as scavengers that store or 

hide ligands (van der Lee, et al., 2014). IDPs are sequentially characterized by having fewer APRs, a higher 

net charge, an enrichment in P and depletion of hydrophobic residues (Monsellier and Chiti, 2007; Tompa, 

2002; Walsh, et al., 2012; Xue, et al., 2010). These strategies help to maintain their solubility despite their 

constant solvent exposure, acting as an evolutionary strategy to minimize aggregation (Monsellier and 

Chiti, 2007). Several prediction methods have been developed to identify IDRs/IDPs based on their 

compositional bias, their physicochemical signature, or their absence in three-dimensional protein 

structures, thus providing a valuable toolbox to study protein disorder (Linding, et al., 2003; Meszaros, et 

al., 2018; Prilusky, et al., 2005; Uversky, et al., 2000; Walsh, et al., 2012). Moreover, the creation of a 

manually curated database of experimentally characterized proteins with IDRs and fully unstructured IDPs 

have helped to study and characterize this large and widespread group of proteins  (Hatos, et al., 2020).  

 

1.4. PRIONS AND RELATED PHENOMENA 

Prusiner called prion the infective proteinaceous particles capable of inducing different 

mammalian neurodegenerative diseases; known as transmissible spongiform encephalopathies (TSEs) 

(Prusiner, 1982). The causative agent was determined to be an endogenous cellular protein, prion protein 

(PrP) able to post-translationally convert from the soluble, native state into an infectious, self-templating 
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and self-propagating toxic conformation without an evident need for nucleic acids to be transmitted, even 

between individuals (Kraus, et al., 2013; Prusiner, 1982). These TSEs comprise scrapie in sheep and goats, 

chronic wasting disease in cervids or bovine spongiform encephalopathy in cattle and bovine spongiform 

encephalopathy or mad cow disease. This latter is to date the only prion disease proven to be zoonotically 

transmitted to humans (Davenport, et al., 2015). In Homo sapiens, TSEs include Creutzfeldt-Jacob disease, 

kuru, Gerstmann–Straüssler–Scheinker syndrome and fatal familial insomnia (Chiti and Dobson, 2017; 

Sikorska and Liberski, 2012). 

Wickner reasoned that Ure2 and Sup35 proteins from Saccharomyces cerevisiae, baker’s yeast, which 

behaved as non-Mendelian genetic elements were also self-propagating and transmissible protein 

isoforms, similar to PrP, thus expanding the classification of prions beyond mammals and disease 

(Wickner, 1994). Since then, the identification of bona fide yeast prions has significantly increased, 

specially thanks to a large-scale analysis by Lindquist and co-workers in which 28 proteins showed self-

templating and self-propagating abilities (Alberti, et al., 2009). Yeast prions share some traits which are 

similar to those found in PrP: i) they self-template and self-propagate the prion conformation, converting 

the soluble protein into prionic species (Wickner and Kelly, 2016), ii) are inherited in a non-Mendelian 

way, inducing all the progeny to bear the prion-state (Brown and Lindquist, 2009; Cox, 1965; Uptain and 

Lindquist, 2002; Wickner, 1994), iii) can spontaneously epimutate between the prion and soluble state 

with a conversion ratio of ~10-6 per generation (Brown and Lindquist, 2009; Lancaster, et al., 2010; Tank, 

et al., 2007), iv) different conformational prion strains render different biological phenotypes (Aguzzi, et 

al., 2007; Tank, et al., 2007; Wickner and Kelly, 2016), v) the prion state forms insoluble amyloids (Serio 

and Lindquist, 2001; Tank, et al., 2007) (with the exceptions of [β], [GAR+] and [SMAUG+] yeast prions 

(Brown and Lindquist, 2009; Chakravarty, et al., 2020; Itakura, et al., 2020; Roberts and Wickner, 2003)), 

vi) the dependence of chaperones to maintain and propagate the prion state; which are assumed to act 

by severing prion fibres (Hosoda, et al., 2003; Newby and Lindquist, 2013; Serio and Lindquist, 2001), thus 

increasing the number of accessible fibril ends and facilitating the transmission of smaller aggregates 

(Cascarina and Ross, 2014; Halfmann, et al., 2011) and vii) their difficulty to overcome the species barrier 

(Chen, et al., 2007; Shida, et al., 2020). 

Conventionally, yeast prions are written in capital letters to represent its phenotypical dominancy and 

between brackets to indicate its cytoplasmic inheritance. Accordingly, [PSI+], [NU+], [URE3], [PIN+], 

[SWI+], [ISP+], [MOT+], [OCT+], [MOD+], [PUB1], [RNQ+], [NUP100+], [SMAUG+] and [ESI+] indicate the 

prion state for Sup35, New1, Ure2, Rnq1, Swi1, Sfp1, Mot3, Cyc8, Mod5, Pub1, Rnq1, Nup100, Vts1 and 

Snt1 proteins (Chakravarty, et al., 2020; Halfmann, et al., 2012; Halfmann, et al., 2012; Harvey, et al., 2020; 

Itakura, et al., 2020; Liebman and Chernoff, 2012; Serio and Lindquist, 2001; Wickner, et al., 2015). 

It is commonly accepted that yeast prions are beneficial, a bet-hedging mechanism that that would let 

isogenic colonies thrive under selective environmental conditions (Halfmann, et al., 2012; Harvey, et al., 

2020; Newby and Lindquist, 2013; Serio and Lindquist, 2001). For instance Sup35, a ribosomal translation 

termination factor (Serio and Lindquist, 2001; Ter-Avanesyan, et al., 1993; True and Lindquist, 2000). In 

its prion aggregate form, [PSI+] its functionality is compromised, allowing read through stop-codons (Cox, 
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1965; Serio and Lindquist, 2001; True and Lindquist, 2000). This reveals a previously hidden genetic load, 

such as the genes needed to overcome adenine auxotrophy, which becomes beneficial in adenine 

deficient environments, thus giving a selective advantage to cells bearing the prion variant (Brown and 

Lindquist, 2009). Yeast cells in glucose-containing media repress alternative carbon sources, even when 

glucose is present in small amounts (Brown and Lindquist, 2009). [GAR+] prion arises spontaneously in 

presence of glucosamine, a nonmetabolizable mimetic of glucose, allowing the use of multiple carbon 

sources, ultimately making the colony to grow in those conditions (Brown and Lindquist, 2009). However, 

there is not an absolute consensus on the role of yeast prions and several authors argue that the low 

prevalence of them in wild yeast populations and the prion-infected individuals’ slower growth should be 

regarded as unequivocal signs of their detrimental nature (McGlinchey, et al., 2011; Nakayashiki, et al., 

2005). 

Sequentially, yeast prions present a low complexity (LC, (i.e., regions that are enriched in a small subset 

of amino-acid residue types) IDR enriched in Q and N and depleted in hydrophobic and charged residues 

known as prion domain (PrD) (Ross, et al., 2005; Uptain and Lindquist, 2002). PrDs are necessary and 

sufficient to carry out prion self-templating and self-propagating activities (Alberti, et al., 2009; Halfmann, 

et al., 2012; Masison, et al., 1997). Moreover, PrD are of modular nature (Ter-Avanesyan, et al., 1993), 

they are present in proteins displaying also globular domains (Liu, et al., 2002; Masison, et al., 1997; Ross, 

et al., 2005), and can be fused to unrelated globular proteins while retaining their prion function (Alberti, 

et al., 2009; Li and Lindquist, 2000; Ross, et al., 2005; Toombs, et al., 2012). This modular architecture is 

exploited to test the prion-forming capacity of different natural or synthetic domains; by replacing with 

them the N-terminal PrD in Sup35 and (by overexpression of this chimeric Sup35 fusion), testing its ability 

to convert to the prion state (Toombs, et al., 2012). Furthermore, this modularity has allowed the 

development of artificial functionalized nanomaterials in which a PrD is fused to one or more globular 

domains, that generate amyloid fibrils composed of the PrD with folded functional domains hanging from 

them (Knowles and Mezzenga, 2016; Wang and Ventura, 2020). Functionalized PrDs display slower and 

tuneable aggregation kinetics (compared to functionalized ‘classical’ amyloids) which generally allow 

higher preservation of the globular structure, and thus of their enzymatic activities (Wang and Ventura, 

2020). 

The mechanism by which yeast prions switch conformation towards the amyloid state was at first 

proposed to be driven by a large number of weak interactions along the PrD, in what is referred to as the 

compositional model of prion formation (Ross, et al., 2005; Toombs, et al., 2012). Previous studies from 

our group have suggested that specific soft-amyloidogenic stretches (with milder aggregation potential 

than classical amyloids, and distributed among more amino acids) inside the IDRs of a PrD could play a 

crucial role in structural conversion, proposing the soft-amyloid stretch model of prion formation (Sabate, 

et al., 2015). These short amyloid cores, which are present in yeast prions, can form amyloid fibres and 

promote full protein prion conversion by their own (Sant'Anna, et al., 2016). Recent studies have shown 

these soft-amyloids are indispensable for prion propagation in mammalian cells (Duernberger, et al., 
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2018). The interplay between compositional bias and the presence of short-amyloid stretches will be 

further explored in the present thesis. 

 

Figure 1.5 – Compositional and soft-amyloid models of prion conversion. Yeast protein Sup35 is above depicted 
structurally (PDB: 4CRN) and sequentially following the same colour pattern: blue for its PrD, red for the soft-amyloid 
core and pink, orange and green for the globular Pfam domains. 

 

There exist proteins that display prion-like behaviour, with structural conversion being regulated by 

physiological signals and where the prion-like conformation displays a novel function, but do not fulfil all 

the prion conduct, specially the inter-individual transmission (Batlle, et al., 2017c). These are not 

necessarily sequentially related to yeast prions. For instance, long-term memory consolidation has been 

found to be dependent on the formation of an amyloid aggregate in CPEB (cytoplasmic polyadenylation 

element binding protein) family proteins for Aplysia californica, sea slug or sea hares, Drosophyla 

melanogaster, fruit fly (CPEB Orb2 protein); and mouse (Fioriti, et al., 2015; Majumdar, et al., 2012; Si, et 

al., 2003). CPEB can exist as a monomer and a self-sustaining amyloid; the interconversion of which is 

tightly regulated by the cell (in contrast to pathogenic amyloids) (Si, 2015). Once CPEB is in its stable prion-

aggregate form, it could regulate synaptic mRNAs altering the protein composition of the synapse, and 

thus the neuronal output (Si, 2015). However, the most widespread connotation of the prion-like term 

refers to proteins with sequential or other signatures similar to those in yeast prions. Their LC domains, 

analogous to yeast PrD, are referred to as prion-like domains (PrLD) (Si, 2015). Similar to yeast prions, 

prion-like proteins are largely involved in transcription and translation (by modifying affinity of complexes 

that bind DNA or DNA compaction, RNA processing…) thus regulating the flow of genetic information in 

the cell (King, et al., 2012; Malinovska, et al., 2013). 

Alongside, the term prionoid has been suggested for proteins involved in misfolded diseases that can self-

propagate a misfolded conformation to healthy cells but not (at least spontaneously) between individuals 

(Batlle, et al., 2017c). Examples of prionoids can be proteins involved in neurodegenerative diseases as 

Aβ and tau in AD; α-syn in PD and multiple system atrophy; SOD-1 in ALS and frontotemporal dementia; 

but also p53 in several cancer types (Batlle, et al., 2017c; Costa, et al., 2016). These, contrary to prion-like 

proteins, do not share evolutionary, structural, or sequential relationship between them or with yeast 

prions (Batlle, et al., 2017c). 
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Unravelling the mechanisms of prion-like proteins in disease and physiology in different organisms require 

the identification and characterization of novel prions across species. However, prion intrinsic sequential 

bias makes the aggregation and amyloid prediction methods described in Section 1.2.2 ineffective at 

identifying prions and prion-like proteins (Fernandez, et al., 2017; Linding, et al., 2004; Toombs, et al., 

2012). Therefore, there is a need to develop approaches that specifically identify prions and prion-like 

proteins in a fast and accurate way; a topic that will be addressed in the present thesis. 

 

1.4.1. BIOINFORMATIC APPROACHES FOR PRION-LIKE DETECTION 

Computational efforts in detecting prion sequences were pioneered by Michelitsch and 

Weissman under the consideration that if both known prions Sup35 and Ure2 and several 

neurodegenerative human diseases linked proteins were Q/N rich, screening against this compositional 

bias could reveal similar proteins in different organisms, therefore increasing the understanding of the 

aforementioned phenomena (Michelitsch and Weissman, 2000). They defined a sliding window of 80 

residues (based on the size of Sup35 PrD) and searched for a minimum content of 30 Q+N per window 

(based on Komagataella pastoris’, budding yeast, homologue of Sup35) and named the method Defined 

Interval Amino acid Numerating Algorithm (DIANA). DIANA would then return the highest Q+N scoring 

window per sequence. Public complete proteomes from bacteria, archaea and three model eukaryotes 

(C. elegans, D. melagogaster and yeast) along with the available sequences from human, mice and 

Arabidopsis thaliana were scanned. Of interest, they found their Q/N-rich regions were essentially absent 

from thermophilic bacteria and archaea and far more frequent in eukaryotic proteomes, which was 

attributed to a possible role in protein-protein interaction (PPI) mediated by these stretches. Most 

notably, this approach allowed the identification of two new yeast prions: New1 and Rnq1. 

Toombs and co-workers used a scrambled version of Sup35 that forms prions without 

overexpression and determined the most important stretches for prion conversion. Next, they performed 

random mutagenesis in the main 8-amino acid segment and sequenced those variants which could form 

the [PSI+] phenotype. From this dataset, they generated a scoring system of over and under-represented 

amino acids in prion domains (Toombs, et al., 2010). They found a bias towards hydrophobic residues, 

against charged and Ps, but most surprisingly their dataset showed no bias towards Qs and Ns despite 

Q/N are highly overrepresented in yeast PrD. They defined the prion propensity as the log-odds ratio of 

the frequency of occurrence of each amino acid among the prion-forming clones, relative to the starting 

library. Finally, they realised they could achieve higher predictive performance by averaging scores using 

41 residues scoring windows on top of FoldIndex, a protein disorder predictor (Prilusky, et al., 2005),  but 

not by incorporating classical amyloid prediction methods. This method was implemented in a 

computational algorithm named Prion Aggregation Prediction Algorithm (PAPA) (Toombs, et al., 2012). 

PAPA was further used to design synthetic prions performing a computational controlled shuffling 

generating variants in which the Sup35 Q+N content remained unaltered. Two of the computer-designed 

sequences which scored positive and three negatives were tested for [PSI+] phenotype when substituting 

the cellular Sup35 PrD, attaining a perfect correlation between predictions and phenotype. PAPA was 
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further used to identify the GAFA factor, a transcription factor from Drosophila that was able to induce 

[PIN+] phenotype when replacing the Sup35 PrD (Tariq, et al., 2013). It has been successfully applied to 

identify and delimit PrLD as a first step for the further identification of their soft-amyloid cores; which will 

be further described in upcoming paragraphs. Recently, Cascarina and Ross developed a modified version 

of PAPA, essentially lowering its threshold, to explore protein sequence variation at genetic, post-

transcriptional, and post-translational levels, with the intention to identify possible prion-like conversions 

arising from mutations, thus increasing the number of potential human prion-like candidates (Cascarina 

and Ross, 2020). 

Lindquist’ lab ventured in a massive effort to identify prions and prion-like determinants in yeast 

(Alberti, et al., 2009). They generated a hidden Markov Model (HMM), trained on the PrD of known prions 

Sup35, Rnq1, Ure2 and New1 and used it to rank the whole yeast genome. The top scoring 100 candidates 

were then tested for their aggregation potential, stability of these aggregates, amyloid formation and 

prion-potential (by showing [PIN+] phenotype when substituting the Sup35 PrD). Sequentially, the 

positive candidates showed an underrepresentation of charged residues, Ps and Qs; but enriched in Ns; 

which was unexpected as both Qs and Ns had been regarded as exerting a similar role in prion formation 

(Michelitsch and Weissman, 2000). By applying a witty strategy, they could confirm transcription factor 

Mot3 as a bona fide yeast prion. This dataset generated by means of a computational and experimental 

collaboration allowed the development or testing of third-party bioinformatics approaches (Batlle, et al., 

2017c; Espinosa Angarica, et al., 2013; Sabate, et al., 2015; Toombs, et al., 2012). Finally, Lindquist and 

co-workers updated the amino acid frequencies for the prion state of the HMM from 4 yeast prions to 28 

of the candidates which showed higher experimental prion propensity and added the possibility to adjust 

background frequencies for different species. They deployed the algorithm to a web server and 

standalone application and named it the prion-like amino acid composition (PLAAC) prediction algorithm 

(Couthouis, et al., 2011; Lancaster, et al., 2014). PLAAC incorporates PAPA and Foldindex calculations and 

retrieves them in the program’s output. Since published, PLAAC has been widely accepted by the 

community and used for bioinformatic screenings leading to  the discoveries such as the one of A. thaliana  

transcriptional factor Luminidependens that regulates flowering time, the first plant protein able to switch 

to [PIN+] phenotype when its PrLD replaced that of Sup35 PrD (Chakrabortee, et al., 2016), or most 

recently in a multi-species screening rendering the first proteins in Archaea able to functionally replace 

Sup35 PrD with their PrLD (Zajkowski, et al., 2021).  As with PAPA, PLAAC has been successfully applied to 

identify and delimit PrLD for the subsequent identification of their soft-amyloid cores; this strategy will 

be further explored in upcoming paragraphs. 

A collaboration between Sancho and Ventura’s labs explored the compositional determinants of yeast 

PrD. By selecting the 29 PrD which showed amyloid formation and switching behaviour in Lindquists’ 

approach, they calculated their amino acid frequencies and adjusted a threshold with 18 Q/N-rich 

sequences without prion capacity. As expected, a positive bias towards Q and especially N residues was 

found, but also towards S and Y; while charged residues, C and W were underrepresented. This algorithm, 

which was named PrionScan, was made public through a web server and Perl code (Espinosa Angarica, et 
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al., 2014; Espinosa Angarica, et al., 2013). PrionScan was used to scan the annotated proteins in UniprotKB 

database rendering notable differences in different taxa. Virus and archaea held less than 10 prions per 

proteome, while in bacteria, fungi, plants and animals that number ranged from tens to hundreds. 

Remarkably, the proteomes of Dictyostelium discoideum, slime mold and Plasmodium falciparum, the 

most prevalent parasite causing human malaria,  showed prion predictions for 20% and 10% of their 

proteins respectively, which could be due to its high number of proteins carrying LC, N/Q-rich regions. 

PrionScan has a built-in database with precomputed predictions for all sequences in UniprotKB database. 

It regularly scans UniprotKB database releases, currently holding > 28.000 predictions. 

Ventura and co-workers approached the prion conversion from a different angle. They realised the PAPA-

derived scoring system was highly dependent on a short, 8-residue stretch, in which hydrophobic residues 

were enriched while charged amino acids and P were penalised. These observations are in accordance 

with that of classical amyloids and, by evaluating the PAPA predicted prion-promoting sequences with the 

amyloid predictor Waltz, they found a trend to be slightly amyloidogenic. These hints made them propose 

the soft-amyloid stretch hypothesis, reasoning that a larger stretch with lower and more spread amyloid 

propensity than in classical amyloids, when embedded in a Q/N-rich IDR could play a role in prion 

conversion. They fixed a window length of 21 residues which corresponded to the minimum transmissible 

β-fold as seen in HET-s prion from the fungus Podospora anserina, accommodated the Waltz position-

specific amyloid matrix to this length and named the approach pWALTZ (Sabate, et al., 2015). Thus, they 

proposed that it was not only the composition of a PrD which would determine its prion potential but also 

its capacity to physically accommodate a cryptic amyloid sequence. pWALTZ was tested on top of 

Lindquist’ dataset showing higher discrimination potency than PAPA. Moreover, it was able to identify 

soft-amyloid cores in the PAPA-shuffled prion-forming sequences and in disease-related mutations of 

human prion-like proteins. pWALTZ is not designed for detecting IDR or prion or prion-like domains. To 

avoid false positive soft-amyloid cores predictions it is advised to input the sequences known to 

correspond to IDRs and suspected to behave as PrLD. Since its development, pWALTZ has been extensively 

used, having a great success in complementing PrLD predicting software such as PAPA or PLAAC, in the 

localization of soft-amyloid cores in yeast prions, the identification of human prion-like protein amyloid 

cores and in the discovery of Rho transcription terminator factor from Clostridium botulinum, the first 

prion identified in bacteria (Batlle, et al., 2017a; Pallares, et al., 2015; Pallares and Ventura, 2017; 

Sant'Anna, et al., 2016; Yuan and Hochschild, 2017).  

All in all, the development of fast and more accurate in silico tools coupled to the exponential growth in 

protein sequences is expected to allow better understanding of the physiological purpose of these 

proteins. Regardless of the different assumptions behind these predictions, judging by their successes, it 

is likely that to a certain extent both composition and specific sequences would play an active role in prion 

self-assembly. Hence a complementary approach would probably ensure a higher success rate as 

candidates would have to satisfy both compositional and amyloidogenic requirements, similar to those 

found on bona fide yeast prions. It is worth to mention that all the aforementioned prion-like prediction 

methods are based on the compositional and sequential features of a relatively limited number of yeast 
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prions. This entails a possible bias towards similar proteins, possibly leaving aside prions that deviate from 

these premises. For instance [β], [GAR+] and [SMAUG+] yeast prions do not form amyloid aggregates 

(Brown and Lindquist, 2009; Chakravarty, et al., 2020; Itakura, et al., 2020; Roberts and Wickner, 2003) 

and mammalian PrP or fungal HET-s are not Q/N-enriched (Balguerie, et al., 2003; Batlle, et al., 2017c; 

Shorter and Lindquist, 2005). Only by identifying new prions in non-related organisms will we be able to 

ascribe sequential and compositional requirements for prion-like mechanisms across species; and these 

innovations will likely require important program adjustments. 
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2. Objectives 

 

The works we describe here have the common objective of increasing our understanding of the 

determinants behind the process of protein aggregation. To pursue this aim, experimental data will be 

analysed, rationalised and the underlying processes computationally modelled. When pertinent, the 

gained knowledge will be implemented into user-friendly algorithms, freely accessible to the scientific 

community. The specific objectives of the present thesis can be summarised in the following points: 

• Study the determinants behind globular protein aggregation in near-native 

environments, evaluating improvements to current algorithms, including the benefits of 

considering fluctuations and stability when dealing with protein quaternary structure 

predictions.  

• Identify the effect of protein environment, namely the solution pH, in modulating 

protein structural transitions and aggregation.  

• Study the determinants underlying yeast prion conversion. Apply this knowledge to 

improve the prediction of proteins able to experiment prion-like structural conversions. 

• Identify prion-like proteins across different species. Explore if this kind of structural 

conversion might be an evolutionary conserved mechanism using state-of-the-art 

functional characterization resources. 
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3. Chapter I – Globular Protein Aggregation  

3.1 Aggrescan3D (A3D) 2.0: prediction and engineering of 
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3.1.1 ABSTRACT 

Protein aggregation is a hallmark of a growing number of human disorders and constitutes a major 

bottleneck in the manufacturing of therapeutic proteins. Therefore, there is a strong need of 

computational methods that can anticipate the aggregative properties of protein variants linked to 

disease and assist the engineering of soluble protein-based drugs. A few years ago, our groups developed 

a method for structure-based prediction of aggregation properties that considers the dynamic 

fluctuations of proteins. The method has been made available as the Aggrescan3D (A3D) web server and 

applied in numerous studies of protein structure-aggregation relationship. Here, we present a major 

update of the A3D web server to the version 2.0. The new features include: extension of dynamic 

calculations to significantly larger and multimeric proteins, simultaneous prediction of changes in protein 

solubility and stability upon mutation, rapid screening for functional protein variants with improved 

solubility, a REST-ful service to incorporate A3D calculations in automatic pipelines, and a newly designed, 

enhanced web server interface.  

Availability and Implementation: : A3D 2.0 does not require previous registration and is freely available 

at: http://biocomp.chem.uw.edu.pl/A3D2/. 

http://biocomp.chem.uw.edu.pl/A3D2/
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Figure 3.1 – Graphical abstract: Aggrescan3D (A3D) 2.0 entails a major update to A3D web server. It includes: 

extended dynamic calculations, prediction of changes in stability upon mutation or automatic screening for improved 

solubility protein variants. 

3.1.2 INTRODUCTION 

Protein aggregation lies behind more than 40 human diseases, ranging from neurodegenerative disorders 

to some types of cancers or diabetes type II (Chiti and Dobson, 2017; de Oliveira, et al., 2020; Invernizzi, 

et al., 2012). In addition, aggregation is a major limitation in the production, storage and administration 

of life-saving protein pharmaceuticals, like antibodies and replacement enzymes, since it both reduces 

the percentage of therapeutically active molecules and increases immunogenic responses (Hamrang, et 

al., 2013).  

The growing concern about protein aggregation has fuelled the development of over twenty predictive 

algorithms (Meric, et al., 2017; Pallares and Ventura, 2017; Santos, et al., 2020a). A majority of methods 

identify and score protein aggregation prone regions (APRs) relying only on protein sequence. Those 

programs find difficulties predicting APRs of folded globular proteins, failing to detect APRs when residues 

are not contiguous in sequence or mistaking APRs for the buried hydrophobic core. These problems 

motivated the development of a second generation of algorithms that use structure-based approaches 

for their predictions (Graña-Montes, et al., 2017; Santos, et al., 2020a). In 2015, our group in collaboration 

with  S. Kmieciks’ lab, developed the Aggrescan3D (A3D) web server for prediction of aggregation 

properties of protein structures (Zambrano, et al., 2015). The A3D method was shown to outperform 

sequence- and composition-based algorithms when dealing with proteins in their native-like states 

(Pujols, et al., 2018; Zambrano, et al., 2015).  
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A3D works by integrating the 3D information of protein structures and evaluating the contribution of 

solvent-exposed APRs. The method projects experimental aggregation propensities onto a protein 

structure. Aggregation propensity is calculated for spherical regions centred on every residue α-carbon 

using the intrinsic amino acid aggregation scale from the AGGRESCAN method (Conchillo-Sole, et al., 2007; 

de Groot, et al., 2012), the first sequence-based algorithm to exploit empirical in vivo data. This provides 

a structurally corrected aggregation value (A3D score) for each particular amino acid, depending on its 

specific conformational context, discarding the negligible contribution of hydrophobic residues buried in 

the core of folded proteins and focusing on protein surfaces. The dynamic structural fluctuations of 

proteins in solution influences the degree of exposure of APRs and for this reason, A3D incorporates the 

CABS-flex approach, an efficient alternative to classical all-atom molecular dynamics (Jamroz, et al., 2013; 

Kuriata, et al., 2018) for fast simulations of protein flexibility in its dynamic mode. Moreover, A3D allows 

the introduction of user-defined mutations to rationally design more soluble protein variants or to test 

the impact of disease-linked mutations on the aggregation propensity. 

Among other applications, A3D has been exploited to understand the binding of chaperones to their 

targets (Pulido, et al., 2016), to study the binding of antimicrobial proteins to membranes (Pulido, et al., 

2016), to rationalize the yield of engineered nanobodies (Soler, et al., 2016), to study the aggregation 

properties of pathogenic (Bhandare and Ramaswamy, 2018; Zerovnik, 2017) and non-pathogenic (Katina, 

et al., 2017) globular proteins or to assist the design of biotechnologically relevant proteins (Gil-Garcia, et 

al., 2018; Xia, et al., 2016).  

In this work, we present a major update of the original A3D, which significantly extends its 

capabilities. A3D 2.0 incorporates three major feature upgrades.  

• protein flexibility simulations using new CABS-flex standalone package (Kurcinski, et al., 2018), 

which extends the dynamic mode analysis range to proteins up to 4,000 residues long and consisting of 

up to 10 chains. 

• protein stability calculations using the FoldX force field (Schymkowitz, et al., 2005), allowing to 

account for the impact of amino acid substitutions on the overall structure stability.  

• an “automated mutations” tool that identifies high scoring residues in structural APRs and 

suggests protein variants with optimized solubility. 

These features were implemented to address the major A3D drawbacks according to users’ feedback. (i) 

protein size limitations in the dynamic mode, which were restricted only to single-chain proteins shorter 

than 400 amino acids; (ii) user-introduced mutations could negatively impact protein stability, resulting 

in unfolding and increased aggregation; (iii) the design of improved solubility variants required significant 

knowledge about the structural and aggregational determinants of proteins and, thus, was not accessible 

to many potential users.  
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Additionally, A3D 2.0 incorporates an updated REST-full service that allows the user to incorporate its 

calculations in automatic pipelines and a newly designed interface that facilitates extended in situ 

interactive result analysis and data interpretation. 

3.1.3 METHODS 

A3D prediction protocol 

The original A3D server was described in detail previously (Pujols, et al., 2018; Zambrano, et al., 2015). 

A3D server can be run in Static Mode (default) or Dynamic Mode. The static mode was validated by 

predicting the solubility of a large set of protein mutational variants, whereas the dynamic mode allowed 

to display disease relevant APRs not identified by alternative approaches (Pujols, et al., 2018; Zambrano, 

et al., 2015). The present update retains the main principles of the original web server and here we only 

detail major methodological modifications. The overview of the method pipeline is presented in Figure 

3.2. 

 

Figure 3.2 – The pipeline of A3D 2.0 server. 

Calculation of the impact of introduced mutations on protein thermodynamic stability 

Users can introduce individual or multiple mutations before or after running A3D 2.0. The selected 

mutations are modelled on top of the protein structure using FoldX (Schymkowitz, et al., 2005) and the 

predicted change in stability, relative to the reference molecule, is calculated. Positive and negative values 

indicate decreased and increased stabilities upon mutation, respectively. 
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Automated mutation workflow 

The input structure is optimized using FoldX (Schymkowitz, et al., 2005) and the most aggregation-prone 

residues identified according to their A3D score. These residues are individually mutated to solubilizing 

charged amino acids (arginine, aspartic acid, glutamic acid and lysine), excluding those positions specified 

by the user. The changes in aggregation propensity and stability are calculated for each potential point 

mutant and short-listed according to these values, up to a maximum of 12 suggested changes. Only the 

two most solubilizing mutations for each particular position are shown, in order to maximize the number 

of positions that can be potentially engineered (up to 6).  

3.1.4 NEW FEATURES AND UPDATES 

Analysis of the impact of protein flexibility in the aggregation properties of large and 

multimeric proteins. 

In its dynamic mode, A3D was able to capture the influence of structural flexibility on protein 

aggregation by incorporating the CABS-flex protocol, an efficient alternative to classical all-atom 

molecular dynamics (Jamroz, et al., 2013; Jamroz, et al., 2014; Jamroz, et al., 2013; Kurcinski, et al., 2018; 

Kuriata, et al., 2018). A set of protein models (in an all-atom resolution) reflecting the most dominant 

structural fluctuations in the near-native ensemble are generated with CABS-flex for each input structure. 

Then, the highest A3D scoring model is selected as a proxy of the most aggregation-prone conformer in 

solution. Although this feature uncovered structural APRs not accessible to other structure-based 

predictors (Zambrano, et al., 2015), its use was restricted to relatively small, single chain proteins, which 

impeded the analysis of many biomedical and biotechnologically important proteins. With A3D 2.0 we 

extended the dynamic mode to larger and multimeric proteins by dedicating significantly larger 

computational resources to web server jobs and rewriting the CABS-flex code (Kurcinski, et al., 2018).  
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We used A3D 2.0 to analyse the influence of protein dynamics on the aggregation properties of multimeric 

proteins, using a data set of 163 proteins (69 homodimers, 54 heterodimers and 60 antibodies). In the 

dynamic mode, A3D 2.0 rendered 12 models for each input structure and calculated their individual A3D 

scores. These values were then compared with the ones obtained for the same proteins ran in static mode. 

We found the input static structures to be the least aggregation-prone in a large majority of cases, both 

for the complete set and when the three protein categories were analysed separately (Figure 3.3A). We 

averaged the A3D scores of the 12 models for each individual protein as a proxy for the aggregation 

propensity of its native-like ensemble. The resulting average value was higher than that of the static 

structure in 80 % of the cases. These observations have important implications, since most alternative 

structure-based aggregation predictors work directly on PDB structures and, therefore, they might 

underscore the aggregation of multimeric proteins by ignoring the contribution of transiently exposed 

APRs. The effect is illustrated in Figure 3.3B for bevacizumab, a humanized monoclonal antibody 

prescribed for the treatment of different types of cancers (Gridelli, et al., 2018). The Fab domain of 

bevacizumab is very aggregation-prone, and, accordingly, the antibody must be formulated at low 

concentrations (Courtois, et al., 2016; Oliva, et al., 2014). The comparative static and dynamic analysis of 

bevacizumab Fab fragment (2 chains, 4 domains) suggests that structural fluctuations result in an 

increased aggregation-prone area, with newly exposed APRs ready to establish intermolecular 

interactions. The same effect was observed for other therapeutic antibodies, replacement enzymes such 

as α-galactosidase or important pharmaceutical targets such as insulin and androgen receptors. 



47 
 

 

Figure 3.3 – Aggregation propensity for different multimeric proteins, calculated in static or dynamic modes. A) The 

aggregation propensity of the static input structure relative to that of the 12 dynamic models is represented for 

homodimers, heterodimers, antibodies, or the complete set. In the colour scale, dark blue indicates the static 

structure being the most soluble (ranking 1) and dark red the static structure being the most aggregation-prone 

(ranking 13). B) Monoclonal antibody bevacizumab Fab fragment (PDB: 1BJ1) ran on static (left) or dynamic (right) 

modes.    
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Simultaneous analysis of the impact of user-selected mutations in protein solubility and 

stability 

The A3D server allowed users to mutate one or more selected residues in the structure, pre- or 

post-analysis, in order to evaluate the impact in protein aggregation. However, these mutations might 

also affect the protein thermodynamic stability, an effect that was not contemplated at that time. Indeed, 

previous work from our group has shown that there is a strict correlation between the destabilizing impact 

of a given mutation and the increase it promotes in protein aggregation (Castillo, et al., 2010; Espargaro, 

et al., 2008). Thus, the solubilizing gain of a residue substitution can be completely cancelled if it 

negatively impacts the protein stability.  

Mutations at the protein surface are generally better tolerated that residue changes in the protein interior 

(Franzosa and Xia, 2009). However, when we used A3D to identify the top solubilizing point mutations for 

a set of 75 globular proteins, it turned out that 10 % of these superficial changes (32/324) destabilized the 

protein over 1 kcal/mol according to FoldX. This motivated us to introduce a simultaneous prediction of 

protein solubility and stability changes upon mutation in A3D 2.0; to identify mutations that decrease 

globular proteins aggregation propensities without compromising their stability and function. This 

approach was exploited to design of a fast-folding, aggregation-resistant GFP variant (Gil-Garcia, et al., 

2018) (Figure 3.4). The analysis of the original GFP structure with A3D 2.0, indicated the existence of three 

exposed hydrophobic residues at the protein surface, whose mutation to either K or D would be equally 

solubilizing. However, the energetic analysis indicated that mutations to K would be neutral, whereas 

mutations to D would destabilize the protein. Two GFP variants in which the three hydrophobic residues 

were changed either to K or D were recombinantly expressed. As predicted, the triple K GFP mutant 

(GFP/KKK) was highly soluble, preserved the native structure and was fully functional, whereas the triple 

D variant (GFP/DDD) was inactive and could not be purified. Importantly, the behaviour of GFP/KKK and 

GFP/DDD designs, could not be anticipated by any other alternative sequence- or structure-based 

algorithm. A3D 2.0 advises now against the experimental characterization of destabilized re-designs (ΔΔG 

> 1 kcal/mol), irrespective of their A3D scores. ΔΔG values are provided in the “Project details” tab. 
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Figure 3.4 – A3D 2.0 as a tool for the in silico redesign of more stable and soluble proteins. The original GFP (left) 

(PDB: 2B3Q:A) and engineered GFP/KKK mutant (right) (PDB: 6FWW) coloured according to their A3D score. 

Mutations which lowered aggregation propensity, while maintaining protein stability are encircled. The mutated 

variant was experimentally shown to be 2-fold more resistant against aggregation (Gil-Garcia, et al., 2018). 

Automated design of solubility improved protein variants  

The search for soluble functional variants of therapeutic proteins is a challenging task, usually addressed 

using combinatorial experimental approaches, such us phage display (Sidhu, 2000). A goal for any 

aggregation prediction algorithm is to provide a routine that can substitute these experiments, saving 

time and costs. Ideally, this routine should be simple enough to be accessible to non-expert users. With 

these two objectives in mind, we implemented the “automated mutations” tool in A3D 2.0, accessible at 

the server front page through the “Enhance protein solubility” option.  

The “automated mutations” tool identifies the most aggregation-prone patches at the protein surface and 

virtually mutates their residues by charged amino acids, under the assumption that they will act as 

“gatekeepers”, counteracting protein self-association. Then it provides a ranked list of point mutations, 

where both the solubilizing and energetic effects are taken into account, in such a way that the user can 

discard potentially solubilizing, but destabilizing mutations.  

The optimization of the solubility of antibodies is especially challenging, because, in these molecules, the 

tight binding to their targets depends on the presence of exposed APRs at their complementarity-

determining regions (CDRs). This is the reason why computer-(Sormanni, et al., 2015) or experiment- 

(Perchiacca, et al., 2014) based designs usually target residues within or close to the CDRs; however, these 

changes might significantly compromise the antibody affinity. A3D 2.0 addresses this problem by allowing 

users to exclude from the virtual screening functionally relevant residues, i.e. CDRs in antibodies or active 

sites in enzymes. 
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The “automated mutation” tool has been used for the redesign of an aggregation-prone Variable Heavy 

(VH) segment of the human antibody germline (Teplyakov, et al., 2016). Soluble variants of this antibody 

were previously evolved by phage display, but all the introduced mutations clustered at one of the CDRs 

(Dudgeon, et al., 2012). A3D 2.0 was ran pre-excluding residues at the CDRs. Mutations at three different 

residues outside these domains were automatically suggested (Figure 3.5A). A designed VH variant 

containing the 3 top ranked mutations was recombinantly expressed and characterized (Figure 3.5B), 

turning to be significantly more resistant against aggregation than the original germline antibody (Gil-

Garcia, et al., 2018).  

 

Figure 3.5 – Automated mutations for variable heavy (VH) segment of a human germline antibody. A) A3D 2.0 

automated mutations output when the residues at the three antibody CDRs were excluded from the screening. B) 

The blue highlighted mutations in panel A were combined to render triple mutant engineered antibody. Structures of 

wild type (PDB: 5I19) and the mutant, as predicted by A3D 2.0. Solubilizing mutations are encircled. The engineered 

antibody variant was experimentally shown to be 3-fold more resistant against aggregation  (Gil-Garcia, et al., 2018). 

 

3.1.5 DESCRIPTION OF THE WEB SERVER 

Input interface and requirements 

The only required input is a protein structure in PDB format (Figure 3.6). Users can submit as a PDB code 

or upload a local structure in the ‘Input structure’ panel. Optionally, users can select desired chain(s) 

identifier(s) (only provided chains will be used in the analysis). In the ‘Options’ panel, several additional 

options can be chosen: 
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• Project name - the name under which the project will be displayed (and which can be used to 

find it via the project name search on the top of the page) 

• Email address - the server will notify the user when the job has started and ended on the provided 

an email address 

• Stability calculations - if selected (‘Yes’ by default), the submitted structure will be energetically 

minimized before the A3D analysis using FoldX and stability calculated in case mutations are defined. 

• Dynamic mode - in this mode, the input structure’s flexibility will be simulated using the CABS-

flex software. A set of predicted models reflecting the flexibility of the input structure will be analysed 

and scored for aggregation propensity. Note: this option in incompatible with the “Enhance protein 

solubility” option. 

• Mutate residues - Selecting this option will prompt a new window, which allows introducing the 

desired mutation(s), which will be carried out using FoldX. Note: this option cannot be used with the 

‘Enhance protein solubility’ option. 

• Distance of aggregation analysis - in the A3D method, the intrinsic aggregation propensity of each 

particular amino acid in the structure is modulated by its specific structural context. Aggregation 

propensity is calculated for spherical regions centred on every residue α-carbon. This option allows 

changing the size of said region, allowing for more and less granular approaches. 

• Enhance protein solubility – Please see Methods for details on the automated mutations 

workflow behind this option. Selecting it will prompt a new window to open upon submitting, where the 

user can prevent chosen residues from being mutated. Note: this option is incompatible with ‘Mutate 

residues’ or ‘Dynamic mode’ options. 

• Do not show my job in the results page - if the box is ticked the job will not be visible to other 

A3D 2.0 users. 
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Figure 3.6 – A3D 2.0 redesigned main page. On the upper right box the user is prompted to input the PDB 

formatted protein structure. Immediately under it, A3D 2.0 allows different options for a which will influence the final 

prediction. A3D 2.0 allows users to retrieve their previous jobs by searching on the uppermost search text box the 

specified project name or jobid. Alternatively, these can be retrieved by a manual search under the “Queue” link on 

the top-left side.  

Output interface 

For each submitted job, the output interface is organized under the following tabs: ‘Project details’, 

‘Aggrescan3D plot’, ‘Aggrescan3D score’, ‘Structure’, ‘Automated mutations’ (available if the job was 

submitted with the option ‘Enhance protein solubility’), ‘Dynamic mode details’ (available if the job was 

submitted in the ‘Dynamic mode’) and ‘Gallery’. The content of these tabs is presented and described in 

the online documentation. Here, we present only short descriptions: 

• ‘Project details’ tab – contains information about the specified options used to run the job and 

links to download the job data. It also provides stability calculations, when it applies.  

• ‘Aggrescan3D plot’ tab – presents A3D analysis results in the form of an interactive online plot 

for a selected protein chain. 

• ‘Aggrescan3D score’ tab – presents A3D analysis results in the form of an interactive table 

together with "mutate" buttons in the right side of the table, which will resubmit the job with the chosen 

mutations. 

• ‘Structure’ tab – allows viewing an analysed structure in an interactive way. The residues are 

coloured in shades from dark blue (high soluble residues), through white (no predicted influence on 
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aggregation properties), to dark red (aggregation prone residues). A set of visualization options such as 

tagging specific residues, rotating the molecule or showing it as video are available. 

• ‘Dynamic mode details’ tab – presents A3D analysis results for a set of models reflecting flexibility 

of the input structure. The results are organized in the table and interactive plots presenting scores for 

particular models. 

• ‘Automated mutations’ tab – presents A3D analysis results for a set of mutant models generated 

using option ‘Enhance protein solubility’. The results are organized in the table and in interactive plots 

which represent the scores for each particular protein variant.  

• ‘Gallery’ tab - contains all screenshots taken by users (using ‘Take snapshot’ buttons) in previous 

tabs. 

Online documentation 

The server provides useful documentation which can be found under the “Tutorial” tab (available from 

the main menu). Additionally, the web interface provides short help notes that are available close to the 

presented content. The online documentation is updated on a regular basis according to users’ needs or 

the server improvement. 

Command-line availability 

The A3D 2.0 server can be also operated from the command line using RESTful web services. The 

instructions for using the RESTful service are available from the online tutorial (accessible from the main 

menu). 

Server architecture 

The Aggrescan3D 2.0 server is a HTML based service dynamically generated using the Flask framework 

and the jinja2 templating engine. The user data is stored using a MySQL database upon submission and 

unique id and a status are assigned for each job. The server notifies the user of its progress by a job status, 

which is ‘pending’ when the server is waiting for a computational cluster response, ‘in queue’ when there 

are no resources available yet, ‘running’ and then finally either ‘done’ or ‘error’. The simulation is carried 

out using the Aggrescan3D standalone software (Kuriata, et al., 2019) (that is available at: 

http://bitbucket.org/lcbio/aggrescan3d) and other previously described programs (with the RSA 

calculations done by FreeSASA software (Meszaros, et al., 2019)). The structures are presented in an 

interactive way using the 3Dmol library (HTML5/Javascript). The A3D score is plotted using the D3.js 

library (HTML5/Javascript) and the model and mutant comparison plots are generated using the Bokeh 

library (Python/Javascript). The PDB structures are obtained using RESTful services. The A3D 2.0 website 

handles user’s requests using an Apache2 server. The A3D 2.0 server is free, open to all users and there is 

no login requirement. 

http://bitbucket.org/lcbio/aggrescan3d
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4 Chapter II – Effect of pH in protein compaction 
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4.1.1 ABSTRACT  

Protein aggregation is associated with an increasing number of human disorders and premature aging. 

Moreover, it is a central concern in the manufacturing of recombinant proteins for biotechnological and 

therapeutic applications. Nevertheless, the unique architecture of protein aggregates is also exploited 

for functional purposes, from bacteria to humans. The relevance of this process in physiopathology has 

attracted interest in understanding and controlling aggregation, with the concomitant development of 

a toolbox of algorithms aimed to predict aggregation propensities. However, most of these programs 

are blind to the protein environment and, in particular, to the influence of the pH. Here, we developed 

an empirical equation to model the pH-dependent aggregation of intrinsically disordered proteins (IDPs) 

based on the assumption that both the global protein charge and lipophilicity depend on the solution 

pH. Upon its parametrization with a model IDP, this simple phenomenological approach showed 

unprecedented accuracy in predicting the dependence of the aggregation of both pathogenic and 

functional amyloidogenic IDPs on the pH. The algorithm might find utility for diverse applications, from 

large-scale analysis of IDPs aggregation properties to the design of novel reversible nanofibrillar 

materials. 

4.1.2 INTRODUCTION 

Protein aggregation is an inherent feature of polypeptides that lies behind the onset of a wide range 

of human pathologies, including Alzheimer’s and Parkinson’s diseases,  type II diabetes or certain cancers 

(Chiti and Dobson, 2006; Chiti and Dobson, 2017; de Oliveira, et al., 2020; Invernizzi, et al., 2012). 

Moreover, aggregation often occurs during protein recombinant production and downstream processing, 
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becoming a major bottleneck for the marketing of protein-based drugs (Cromwell, et al., 2006; Lin, et al., 

2000). Indeed, polypeptides are susceptible of suffering aggregation at every step during protein 

production, from recombinant expression and purification to formulation and storage (Cromwell, et al., 

2006). This implies a constant monitorization and optimization of production conditions and processes, 

which is costly and time-consuming. However, protein aggregation is not always deleterious, and 

organisms exploit the particular properties of amyloid protein assemblies for beneficial purposes 

(Camara-Almiron, et al., 2018; Loquet, et al., 2018; McGlinchey and Lee, 2018). This evidence has inspired 

the use of aggregation-prone proteins and peptides to build up functionalized nanofibrils with 

applications in tissue engineering, drug delivery or as nanowires and nanosensors (Diaz-Caballero, et al., 

2018; Diaz-Caballero, et al., 2018; Knowles and Mezzenga, 2016; Wei, et al., 2017). 

The development of in silico tools able to predict protein aggregation propensities has provided 

scientists with a versatile toolbox to assist and guide basic research and protein engineering processes 

(Pallares and Ventura, 2017; Santos, et al., 2020a). These algorithms exploit the evidence that protein 

aggregation is driven by short and specific stretches, known as aggregation-prone regions (APRs), 

displaying particular physicochemical features: low net charge, high hydrophobicity and, frequently, a 

preference for β-sheet secondary structure (Graña-Montes, et al., 2017). AGGRESCAN, Amylpred, Amyloid 

Mutants, FoldAmyloid, MetAmyl, PASTA, Tango, Waltz or Zyggregator (Conchillo-Sole, et al., 2007; 

Fernandez-Escamilla, et al., 2004; Garbuzynskiy, et al., 2010; Maurer-Stroh, et al., 2010; O'Donnell, et al., 

2011; Rousseau, et al., 2006; Sanchez de Groot, et al., 2005; Tartaglia, et al., 2008; Tsolis, et al., 2013; 

Walsh, et al., 2014) are some examples of this kind of software. However, most of these prediction 

methods are blind to the protein environment, despite it is well know that factors like temperature, ionic 

force or pH dramatically impact protein aggregation. Regarding pH, many protein products are purified, 

stored or formulated at pHs different from 7.0, the default pH in these algorithms. In particular, over 65% 

of antibodies, Fc fusion products and Fab conjugates are formulated at pH < 6.5 (Roberts, 2014; Wang, et 

al., 2007). Therefore, it is surprising that, despite the vast experimental data supporting the modulation 

of intrinsic protein aggregative properties by the solution pH, such effect has been essentially disregarded 

in computational approaches (Jha, et al., 2010).  

Among the different intrinsic protein properties that can contribute to protein aggregation, 

hydrophobicity plays a major role. Indeed, APRs usually comprise highly hydrophobic sequence stretches 

(Riek and Eisenberg, 2016; Ventura, et al., 2004) and mutations of polar residues to nonpolar ones 

exacerbate aggregation, whereas changes in the opposite direction promote solubility (Jahn and Radford, 

2008). It is therefore not surprising that hydrophobicity is given a major weight, directly or indirectly, in 

the different equations implemented in sequence-based aggregation predictors (Castillo, et al., 2011; 

Graña-Montes, et al., 2017). Notably, all the aforementioned algorithms assume that the lipophilicity of 

the sequence to be independent of the pH. However, it is well-known that the partition coefficients of the 

neutral and charged species of ionizable amino acids, therefore their hydrophobicity, depend on the pH 

of the solution (MacCallum and Tieleman, 2011; Simm, et al., 2016). Moreover, the electrostatic 
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properties of proteins -i.e. their net charge in a given solution- are also connected to the solution pH, 

being important determinants of protein solubility (Shaw, et al., 2001; Tedeschi, et al., 2017). 

To the best of our knowledge, we present here the first approach to predict how the relative 

aggregation propensity of a given protein changes with the solution pH. Towards this objective, we 

exploited a recently developed, pH-dependent, lipophilicity scale of amino acids (Zamora, et al., 2019) 

and implemented a simple phenomenological equation that considers the effect of the pH on both the 

net charge and the lipophilicity of a protein sequence. We assayed the approach on top of intrinsically 

disordered proteins (IDPs), which lack defined secondary structure elements, to exclude any interference 

on calculation coming from structural constrains. With our approach we accurately predict the impact of 

the pH on the aggregation properties of well-known human disease-linked proteins like α-synuclein (α-

syn), Aβ-40, the islet amyloid polypeptide (IAPP) and the tau K19 variant, as well as in biologically relevant 

functional amyloids such as the melanosomal protein Pmel17, the B domain of the Bap protein and the 

corticotropin-releasing hormone, which indicates that it might find general application in the prediction 

of the pH-dependent aggregation properties of IDPs.  

 

4.1.3 MATERIALS AND METHODS 

Generation of lipophilicity profiles.  

The pH-dependent lipophilicity scale developed by Zamora and co-workers (Zamora, et al., 2019) 

using continuum solvation calculations was employed to infer the lipophilicity of each individual amino 

acid at the analysed pH. Our algorithm employs a sliding window system – as previously described for 

AGGRESCAN linear predictor (Conchillo-Sole, et al., 2007)- to generate the lipophilicity profile of any given 

protein. Briefly, the program calculates the average lipophilicity of a sliding window and assigns this value 

to the amino acid in the center of the window. The size of the window is defined in relation with the 

protein length: 5 residues for proteins shorter than 75 amino acids, 7 for longer than 75 but shorter than 

175, 9 for longer than 175 but shorter than 300 and 11 for longer than 300. The resulting values can be 

employed to build/draw a lipophilicity profile along the protein sequence or to calculate a mean value of 

global protein lipophilicity. 

Solubility modelling. 

The experimental data was obtained from Tedeschi et al. (Tedeschi, et al., 2017). The pH-dependent 

experimental solubility of a model IDP was used as training set to parameterize a function that describes 

protein solubility as a function of pH. We selected two variables to model protein solubility: pH-dependent 

lipophilicity and net charge. pH-dependent lipophilicity was calculated as the average of the lipophilicity 

profile. Protein net charge was determined using the protein calculator v3.4 server (Putnam) run at the 

selected pH. These theoretical values were parameterized against the solubility experimental data using 

Equation 4.1: 
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Solubility = α * Lipophilicity + β * |Net Charge|2 + γ * |Net Charge| + δ, (4.1) 

For the parameterization we employed the non-linear least squares approach of Scipy Python 

module, being able to define the α, β, γ and δ parameters in equation (4.1). 

Data analysis and fitting. 

Kinetic constants for pH-dependent α-syn aggregation were obtained from Finke and Morris and 

Uverski and co-workers (Morris, et al., 2009; Uversky, et al., 2001). Fibrillation rates of IAPP aggregation 

were previously reported by Alexandrescu and colleagues (Jha, et al., 2014). Tau K19 amyloid formation 

data was extracted from Jeganathan and co-workers (Jeganathan, et al., 2008). Data on Aβ40 solubility at 

different pHs was obtained from Fändrich and co-workers (Hortschansky, et al., 2005). Data on the effect 

of pH on functional amyloids was extracted from references (Maji, et al., 2009; Pfefferkorn, et al., 2010; 

Taglialegna, et al., 2016). Linear regression analysis was performed using Graphpad Prism 6. Tendency 

line and 95% confidence interval were plotted, and regression r-square was added to the graph. For linear 

regressions, the two-tailed p-value was calculated (Soper, 2018). 

 

4.1.4 RESULTS 

Rational analysis of the molecular determinants behind pH associated aggregation. 

In order to develop a new theoretical model that can forecast the effect of pH on protein 

aggregation, we exploited a previous work on the N-terminus moiety of the measles virus phosphoprotein 

(PNT), an IDP model whose aggregation propensity was deeply analysed in relation with pH and its net 

charge (Tedeschi, et al., 2017). In collaboration with Brocca’s lab, we engineered three PNT variants 

displaying different net charges and isoelectric points (pI) by reversing the sign of charged residues already 

present in the wild-type sequence, without mutating any other PNT residue (Figure 4.1A-D and 

Supplementary Material S4.1). In detail, the acidic PNT has a pI of 3.37 and includes 62 negatively charged 

residues while basic PNT has a pI of 9.61 and includes 37 positively charged and 23 negatively charged 

residues. Attempts to produce more basic PNTs, with further unbalanced composition, were unsuccessful. 

The solubility of each of these protein variants was assessed experimentally in a wide range of pH, thus 

generating an ideal dataset to parametrize a function intended to predict the pH-dependent aggregation 

propensity of protein sequences (Tedeschi, et al., 2017). 

Due to the lack of a well-defined 3D structure, one can hypothesize that the physicochemical 

determinants of pH-dependent aggregation of IDPs are directly encoded in their amino acid sequence. 

We propose lipophilicity (hydrophobicity) and net charge as the main properties accounting for the 

differential aggregation propensity of any given protein at different pHs. One can argue that this is a rather 

simplistic approach, but existing methodologies only consider the net charge contribution, while they 

overlook the role of lipophilicity.  

Although unmodified at their apolar residues, our PNT variants, exhibit different lipophilicity at 

neutral pH, since they differ in the identity of the charged amino acids (Figure 4.1E). In addition, because 
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the hydrophobicity of ionizable amino acids is dependent on the pH, the global protein lipophilicity 

(average lipophilicity score) in acidic or basic conditions might differ significantly from that calculated at 

pH 7.0 and this parameter should be taken into account together with the net charge of the polypeptide 

when forecasting protein solubility.  

 

Figure 4.1 – Properties of PNT variants. A-C) Scheme of charge distribution in wild type-PNT, acidic-PNT and basic-

PNT. Positive and negative residues are represented in red and blue, respectively. D) Isoelectric points of PNT variants. 
E) Average lipophilicity of PNT variants at pH 7. 

 Analysis and validation of the lipophilicity scale as a proxy for aggregation prediction. 

To explore the relationship between amino acid lipophilicity, pH and protein aggregation, we 

exploited a pH-dependent amino acid lipophilicity scale recently derived by Zamora and co-workers 

(Zamora, et al., 2019). We compared the lipophilicity score of each amino acid at physiological pH (pH 7.4) 

with their in vivo-derived experimental aggregation coefficient (de Groot, et al., 2006; Sanchez de Groot, 

et al., 2005). We observed a highly significant correlation between aggregation and lipophilicity (p-value 

< 0.00001) (Figure 4.2A) as expected, since hydrophobic side chains are known to play determinant role 

in aberrant protein self-assembly (Fink, 1998).  

Next, we compared the lipophilicity profile of three well-characterized disease-related proteins (i.e. 

Aß40, α-syn and IAPP) at physiological pH with their aggregation profile generated with AGGRESCAN. 

AGGRESCAN is an in-house developed algorithm, which implements the aforementioned in vivo derived 

aggregation propensity amino acid scale and stands as one of the most reliable algorithms to predict 

protein aggregation in close to in vivo conditions (Belli, et al., 2011). The lipophilicity and aggregation 

profiles of all the three proteins are in close agreement (Figure 4.2B-D), indicating that, at constant pH, 

the lipophilicity can be used as a proxy of aggregation propensity. Although other physicochemical 

determinants are certainly involved in protein aggregation, we assume here that they have less impact 

than lipophilicity or charge on pH modulated protein aggregation.  
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Figure 4.2 – Lipophilicity-based prediction aggregation propensity at pH 7.4 against state-of-the-art aggregation 

predictor. A) Linear correlation between amino acids in vivo aggregation propensity, as implemented in AGGRESCAN 
(de Groot, et al., 2006; Sanchez de Groot, et al., 2005), and their lipophilicity at pH 7.4. B-D) Overlap between 
AGGRESCAN-derived (dashed line) aggregation profiles and lipophilicity profiles (solid line) from Aß40, α-syn and 
IAPP, respectively. 

Modelling pH-dependent solubility using lipophilicity and net charge. 

We next sought to build a model to determine the role of lipophilicity and net charge on pH-

dependent protein aggregation. For each data point of our previous study with the PNTs, we calculated 

the protein net charge and the overall protein lipophilicity using a sliding window system analogous to 

that in AGGRESCAN (Conchillo-Sole, et al., 2007). Therefore, each data point is defined by its lipophilicity, 

net charge and experimental solubility, allowing their representation as a 3-axis scatter plot. The visual 

inspection of their spatial distribution of lipophilicity and net charge in relation with experimental 

solubility reveals a dispersion that resembles a quadratic 3D-surface. Thus, to model this relationship we 

defined an empirical formula (Equation 4.1) that describes a bivariate polynomial model with a quadratic 

component, suitable to address a 3D-surface regression in our dataset. Next, to parameterize this 

equation, we applied a non-linear least squares approach. As a result of the fitting, we calculated 

parameters α, β, γ and δ (Table 4.1). The resulting model, built using Equation 4.1, delineates a 3D-

surface, where the solubility is defined as a function of net charge and lipophilicity (Figure 4.3A). 

Remarkably, the values derived from the equation shows a significant correlation with the observed 

solubility data (Figure 4.3B) (p-value < 0.00001). In contrast, a mere charge-dependent model, as the one 

implemented in competing approaches, fail to predict the experimental behavior of the dataset (p-value 

< 0.1) (Supplementary Material S4.2). Overall, these results reinforce the hypothesis that pH-induced 
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lipophilicity fluctuations should be taken into consideration for an accurate prediction of protein 

aggregation. 

 

Figure 4.3 – Modeling IDP pH-dependent solubility based on lipophilicity and net charge. A) Experimental pH-

dependent solubility modeled as a 3D surface plot. Experimental data from our previous work is represented as blue 
dots, and the 3D surface resultant from modeling is colored as a heat map, according to the corresponding predicted 
solubility as represented in the color bar. B) Correlation between the experimental and predicted solubility. Solid line 
corresponds to the fit of the data to a linear regression with a p-value < 0.00001. 

 

Table 4.1 – Fitting parameters resulting from the non-linear least squares parametrization. 

Parameter α β γ δ 

Values -97.82 -0.00747 0.8770 38.24 

pH-dependent aggregation prediction in disease-linked proteins. 

As a proof of principle of the predictive performance of the approach, we tested our charge and 

lipophilicity-dependent model in a set of well-characterized IDPs linked with conformational diseases. As 

discussed, IDPs represent an ideal test set for our model since they allow to consider almost exclusively 

the contribution of primary structure on aggregation, excluding folding and protein stability contributions. 

The obtained pH-dependent aggregation profile for each protein was compared with available 

experimental data in the literature by assessing the linear regression between experimental and predicted 

solubility values. 

α-Synuclein (α-syn) 

Parkinson’s disease (PD) is the second most prevalent neurodegenerative disorder. Brains from PD 

patients exhibit the recurrent presence of intracellular proteinaceous aggregates, mainly composed by α-

syn. These deposits, known as Lewy Bodies, represent the main neuropathological hallmark of the disease 

and are responsible for eliciting cellular toxicity and causing neuronal death (Emamzadeh, 2016; Goedert, 

et al., 2013; Spillantini, et al., 1997). From a molecular perspective, α-syn is a 140-residues IDP, highly 

expressed in the synapses of dopaminergic neurons that has been shown to assemble in vitro into amyloid 

fibrils under different conditions (Lashuel, et al., 2013; Lassen, et al., 2016; Villar-Pique, et al., 2016). 

Owing to the connection between α-syn and PD, there is a great interest to define the determinants of α-

syn aggregation. In that context, Uversky and co-workers described the effect of pH on α-syn solubility 
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(Uversky, et al., 2001); later on, Finke and Morris fitted the data into formal aggregation kinetic equations 

(Morris, et al., 2009). To assess whether the effect of pH on α-syn aggregation could be anticipated by our 

equation, we compared the predicted α-syn solubility with the experimental aggregation kinetic data 

parameters in a wide range of pHs. We found an excellent correlation between our predicted solubility 

and both the elongation constants and latency times of the reaction (Figure 4.4). In α-syn the majority of 

the charged residues are segregated in the C-terminal of the protein, while the hydrophobicity is clustered 

in its central NAC domain. It is remarkably that such dual distribution does not seem to compromise the 

performance of the approach.     

 

Figure 4.4 – Prediction of experimental α-syn aggregation kinetic constants. Correlation between A) the elongation 

constant Kapp and B) latency time and the predicted protein solubility at different pH (1.92, 2.79, 4.08, 5.82, 7.23, 
8.52). Experimental data was extracted from Morris and Finke’s work (Morris, et al., 2009). Each point represents an 
experimental data point labelled with its corresponding pH. A linear regression (solid line) and its 95% confidence 
interval (dashed line) were applied to fit the data with a p-value < 0.05 for Kapp and < 0.01 for latency time. 

Islet amyloid polypeptide (IAPP) 

Aggregates of IAPP are present in the extracellular space of the islet of Langerhans in patients 

suffering from type II diabetes (Westermark, et al., 2008). IAPP is an intrinsically disordered peptide 

hormone co-stored with insulin and involved in glycemic control (Denroche and Verchere, 2018). Under 

pathological conditions, IAPP forms extracellular amyloid deposits causing the degeneration of pancreatic 

ß-cells (Mukherjee, et al., 2017). This behavior is thought to be dependent on the environmental pH 

(Akter, et al., 2016; Khemtemourian, et al., 2011), being slightly acidic pH of the secretory granules 

(pH≈5.5) able to protect IAPP from aggregation, while the extracellular environment pH (pH≈7.4) pro-

aggregational. The pH-dependent fibrillation of IAPP was studied by Alexandrescu and co-workers, 

uncovering a strong pH dependency for this peptide (Jha, et al., 2014). This work provided us with a 

complete set of kinetic data over a wide pH range to further test our model. IAPP fibrillation rates are 

tightly connected to the solution pH, a trend that can be predicted with high confidence by applying our 

equation (Figure 4.5). 

0.0 0.5 1.0
30

40

50

60

70

80

Kapp (h-1)

P
re

d
ic

te
d

 s
o

lu
b

ili
ty

1.92

2.79
4.08

5.82
7.23

8.52

R2 = 0.82

0 10 20 30
30

40

50

60

70

80

Latency time (h)

P
re

d
ic

te
d

 s
o

lu
b

il
it
y

1.92

2.79 4.08

5.82

7.23

8.52

R2 = 0.87

(A) (B)B A 



64 
 

 

Figure 4.5 – Linear correlation between IAPP fibrillation rate and predicted solubility at different pH (3, 3.5, 4.5, 5, 

5.5, 5.7, 6, 7, 7.5, 8.5, 9). Data on IAPP fibrillation were extracted from Alexandrescu and co-workers (Jha, et al., 2014). 
Data was fitted to linear regression (solid line) with a p-value <0.00001 and its 95% confidence interval was 
represented (dashed line). 

Alzheimer’s disease related proteins: amyloid-beta peptides and tau protein 

Alzheimer’s disease (AD) is the most prevalent neurodegenerative disorder and is characterized by 

a progressive cognitive impairment. The molecular pathology of AD is characterized by the combined 

presence of two distinct types of aberrant protein deposits in brain tissue: extracellular amyloid deposits 

-amyloid plaques- and intraneuronal neurofibrillary tangles (Lane, et al., 2018). The ß-amyloid peptides 

Aβ-40 and Aβ-42 are intrinsically disordered proteolytic fragments of amyloid-beta precursor protein 

(Meng, et al., 2018) and their aggregates constitute the principal components of the amyloid plaques. Tau 

is an IDP (Eliezer, et al., 2005; Schweers, et al., 1994) whose main function is promoting microtubule 

assembly and stability. In AD, tau aggregation results in the assembly of abnormal neurofibrillary tangles. 

The aggregation reactions of these proteins have been extensively characterized due to their pivotal role 

in AD. Fändrich and co-workers addressed the effect of pH over Aß-40 solubility, reporting a significant 

decrease in solubility below neutral pH (Hortschansky, et al., 2005). Our model is able to recapitulate this 

pH-dependence of Aß-40 solubility with high accuracy (Figure 4.6A). Jeganathan and colleagues studied 

how pH affected tau K19 aggregation (Jeganathan, et al., 2008). Tau K19 is a truncated construct 

containing three microtubule binding repeats (R1, R3, and R4); whose aggregates show structural features 

that are reminiscent of those of the full-length tau protein (Dinkel, et al., 2011; Siddiqua and Margittai, 

2010). Again, our algorithm successfully models the experimental behaviour of tau K19 aggregation at 

different pHs (Figure 4.6B). 
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Figure 4.6 – Analysis of the effect of pH variations on Aß-40 and tau K19 variant solubility. A) Correlation between 

Aβ-40 predicted and experimental solubility at different pH (6, 6.5, 7, 7.5, 8, 8.5). Experimental data was extracted 
from Fändrich and co-workers (Hortschansky, et al., 2005). B) Analysis of the experimental amyloid formation 
reported by Thioflavin S fluorescence emission, extracted from Jeganathan and co-workers at a range of pH from 3 
to 10 (Jeganathan, et al., 2008). Data was fitted to linear regression (solid line) and its 95% confidence interval was 
represented (dashed line), with a p-value < 0.0001 in both cases. 

Predicting the impact of pH on the aggregation of functional amyloids: context-dependent 

aggregation alows enclosure of functional self-assembly. 

Amyloid fibrils have been traditionally considered pathogenic agents responsible for a set of 

devastating human disorders, such as the examples mentioned on the previous chapters. However, the 

last decade has seen a large body of evidence supporting that the amyloid architecture can be exploited 

to develop biological functions (Pham, et al., 2014). Functional amyloids work under physiologically 

conditions without any associated cytotoxicity (Jackson and Hewitt, 2017; Otzen, 2010), mainly because, 

in contrast to their toxic counterparts, coordinated cellular strategies have evolved to control their 

assembly. One of these strategies consists in confining aggregation inside a specific cellular compartment 

in a pH-dependent manner. This natural strategy provides an exceptional benchmark to validate our 

predictive model. 

Pigment cell-specific melanosome protein. 

The pigment cell-specific melanosome protein (Pmel17) is involved in the biogenesis and maturation 

of melanosomes, organelles specialized in melanin synthesis, present in melanocytes and epithelial cells 

in mammals. The specific role of Pmel17 is the formation of amyloid fibrils in the lumen of the 

melanosomes that optimize the sequestration and condensation of melanin (Jha, et al., 2014; Pham, et 

al., 2014). Pmel17 fibrillation occurs in the acidic environment of the early stage melanosome (pH≈4-5). 

Lee and co-workers first reported the amyloidogenesis of the repeat domain (RPT) of Pmel17, describing 

a strong dependence on solution pH: a fast aggregation at pH 4, slower at pH 5 and 5.5 and no aggregation 

-and even fibril disaggregation- at pH 7 (Pfefferkorn, et al., 2010). Our algorithm successfully discriminates 

those three regimes of aggregation (Figure 4.7A). 
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Maji and co-workers discovered in 2009 a novel activity of functional amyloids as storage of peptide 

hormones in secretory granules (Maji, et al., 2009). They described that peptide hormones fibrillate due 

to the low pH (≈5.5) of those granules and that, upon release to the extracellular environment (pH≈7.4), 

the fibrils gradually disassemble into the monomeric bioactive specie. In that work, they explore this effect 

in vitro on the corticotropin-releasing hormone (CRF) by inducing the formation of fibrils at acidic pH 5.5 

and analyzing their disaggregation at higher pHs (pH 6 and 7.4). The experimental disaggregation was 

accelerated at pH 7.4. This behavior, with a gradual gain of solubility at increasing pHs and fast dissociation 

at pH 7.4, is fairly recapitulated by our model (Figure 4.7B).  

B domain of the Bap protein. 

Staphilococcus aureus Bap is an extracellular protein able to self-assemble at acidic pH (≈4.5), 

forming amyloid fibrils that scaffold the formation of a biofilm matrix (Taglialegna, et al., 2016). In the 

case of Bap, aggregation is confined in the extracellular environment where it functions as a pH sensor 

and -upon acidic conditions- orchestrates a multicellular response that elicits biofilm formation. Lasa, 

Valle and co-workers reported the aggregation of this protein, they identified an amyloidogenic domain 

(BapB) and characterized its pH-dependent aggregation (Taglialegna, et al., 2016). BapB forms amyloid 

fibrils at pH 4.5 that dissociate when the pH rises to attain the neutrality. Once more, our approach is able 

to predict such behavior (Figure 4.7C). 

 
Figure 4.7 – Evaluation of the pH-dependent mechanism of fibrillation of functional amyloids. A) Pmel17, B) CRF, C) 
BapB predicted solubility against their physiological fibrillation and disaggregation tendencies. The different regions 
of aggregation are delimited by dotted lines. 

4.1.3 DISCUSSION 

In the last decades, the advances in the field of protein aggregation resulted in the development of 

over 40 different predictive methods to computationally assess protein deposition. Thus, we have at our 

disposal a wide variety of algorithms based on conceptually different molecular determinants to 

systematically predict protein aggregation. However, these approaches barely exploit the influence of the 

protein environment. This is important because solvent conditions impact solubility by modulating the 

hydrophobic effect, electrostatic interactions or the degree of protonation of the different ionizable 

groups. Here, we presented a novel phenomenological model whose aim is the evaluation of protein 

solubility as a function of solvent pH. Exploiting previous experimental data on the solubility of a charge-

engineered model IDP, we were able to weight the contribution of lipophilicity and net charge to protein 

solubility and, subsequently, elaborate a phenomenological predictor with high accuracy in predicting pH-
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dependent aggregation of IDPs. Our results indicate that in addition to the net charge, pH also modulates 

protein lipophilicity and that such control has a great impact on protein solubility. 

Our algorithm demonstrates high accuracy in predicting pH modulation of aggregation propensity in 

a set of disease-associated IDPs, such as α-syn, IAPP, tau K19 fragment and Aβ-40. Moreover, we 

employed our approach to evaluate the aggregation propensity of three proteins reported to form 

functional amyloids in vivo upon pH shifts. Interestingly enough, in these proteins, evolution has exerted 

a positive selective pressure to attain a reversible fibrillation mechanism where pH controls the assembly 

and disassembly of the fibrils. Notably, we were able to predict such behavior by analyzing only protein 

primary structures, highlighting that this conformational transition is intrinsically imprinted in the 

polypeptide chain.  

The main application of our prediction method would be the profiling of protein solubility along a 

continuous pH interval, since it demonstrates a remarkable accuracy in describing this behavior. The 

model is simple, and computation is fast, which should allow the analysis of large sequence datasets, 

including the complete complement of IDPs in a given proteome. It would be interesting to assess whether 

the IDPs residing in cellular compartments are optimized to display the maximum solubility at the specific 

compartment pH. The algorithm can also contribute to understand the role of changes in intracellular pH 

in protein phase separation reactions, since this phenomenon results from the coalescence of intrinsically 

disordered regions (Franzmann, et al., 2018). We also propose that our method may have an impact in 

the design of nanomaterials with pH-modulable assembling properties, which can transition between 

soluble and amyloid-like states simply by shifting the solution pH.  

The method can also be used to assist the purification, formulation and storage of proteins of 

biotechnological and therapeutic interest, by predicting the range of pH in which they are more soluble, 

as long as they are intrinsically disordered, as in the case of peptidic hormones. For its use in the design 

of optimal solutions for globular proteins, like therapeutic antibodies, the concept should be first 

implemented in a structural predictor, were the intrinsic charge and lipophilic properties of amino acids 

would be modulated according to their conformational context. This step will be analogous to the 

evolution of AGGRESCAN (Conchillo-Sole, et al., 2007) into our structural A3D aggregation predictor 

(Kuriata, et al., 2019; Kuriata, et al., 2019; Zambrano, et al., 2015) and thus, perfectly attainable. 
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4.2.1 ABSTRACT 

Summary: Polypeptides are exposed to changing environmental conditions that modulate their intrinsic 

aggregation propensities. Intrinsically disordered proteins (IDPs) constitutively expose their aggregation 

determinants to the solvent, thus being especially sensitive to its fluctuations. However, solvent 

conditions are often disregarded in computational aggregation predictors. We recently developed a 

phenomenological model to predict IDPs’ solubility as a function of the solution pH, which is based on the 

assumption that both protein lipophilicity and charge depend on this parameter. The model anticipated 

solubility changes in different IDPs accurately. Here, we present SolupHred, a web-based interface that 

implements the aforementioned theoretical framework into a predictive tool able to compute IDPs 

aggregation propensities as a function of pH. SolupHred is the first dedicated software for the prediction 

of pH-dependent protein aggregation.  

Availability and Implementation: The SolupHred web server is freely available for academic users at: 

https://ppmclab.pythonanywhere.com/SolupHred. It is platform-independent and does not require 

previous registration. 

4.2.2 INTRODUCTION 

Protein aggregation is a significant bottleneck in the production and storage of protein-based 

therapeutics, and it is associated with a wide range of human disorders. Accordingly, anticipating proteins' 

aggregation properties has attracted significant interest in biotechnology and biomedicine (Santos, et al., 

2020a). 

In intrinsically disordered proteins (IDPs), aggregation is not constrained by structural elements, and 

therefore it can be inferred directly from the primary sequence (Santos, et al., 2020b). More than 20 

different algorithms have been built on this principle, achieving a remarkable overlap with experimental 

results. The lack of residues’ protection by elements of secondary and tertiary structures, makes IDPs 

more sensitive to solvent conditions and environmental fluctuations than folded proteins (Uversky, 2009), 

https://ppmclab.pythonanywhere.com/SolupHred
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an effect which has been traditionally disregarded or barely parametrized in state-of-the-art aggregation 

predictors. Indeed, numerous data evidence that IDPs aggregation is strongly modulated by factors 

extrinsic to the sequence, such as ion concentration, ligands, or pH (Uversky, 2009).  

However, the pH-dependent aggregation of IDPs is not always associated with a deleterious loss-of-

function, and evolution exploits reversible fibrillation mechanisms, where pH modulates the mesoscopic 

assembly of functional amyloids to regulate their activities (Maji, et al., 2009). Thus, modelling the effect 

of pH on IDPs aggregation would offer an avenue to analyse context-dependent aggregation in 

physiological backgrounds and tightly regulate IDPs solubility in diverse biotechnological applications. 

In a recent work addressed in Section 4.1, we elaborated a phenomenological model to predict IDPs 

aggregation as a function of pH, based on the assumption that protein lipophilicity and charge are both 

dependent on the solution pH (Santos, et al., 2020c). The model showed remarkable reliability in 

predicting the pH-dependent aggregation of disease-associated IDPs and in anticipating the pH-

modulated assembly of functional amyloids. Here, this conceptual framework is implemented in 

SolupHred web server, the first computational tool dedicated to evaluating the effect of solution pH on 

IDPs aggregation. The SolupHred web server is free for academic users, allowing fast and reliable analysis 

of either individual IDPs or large sets of disordered sequences in the desired pH ranges. 

4.2.3 METHODS 

The SolupHred web server profiles the pH-dependent aggregation of the analysed disordered sequence(s) 

in a user-defined pH range. To do so, SolupHred computes the sequence lipophilicity and net charge at 

each pH and applies an empirical equation (Equation 4.1) to model the aggregation in each particular 

condition (Santos, et al., 2020c) (Figure 4.8): 

Input interface: One or more disordered sequence(s) in FASTA format can be pasted or uploaded. Users 

can define the range of pHs -with the desired step size- in which solubility will be computed. Alternatively, 

solubility at a specific pH can be calculated (Figure 4.9A). 

Computation of lipophilicity profile: The algorithm uses a size-dependent sliding widow to generate a 

lipophilicity profile for each sequence using a recently developed pH-dependent lipophilicity scale of 

amino acids (Zamora, et al., 2019). Mean lipophilicity is computed as the average of all individual residue 

scores in the profile. 

Net charge calculation: Residue partial charge is calculated using the Henderson-Hasselbalch equation. 

Global net charge corresponds to the absolute value of the sum of all individual residues’ partial charges.   

Solubility calculation: Mean lipophilicity and global net charge are combined in the equation described by 

Santos and co-workers (Equation 4.1) to predict solubility in the selected pH range. 

Output presentation: The results page (Figure 4.9B) displays two clickable links containing a JSON file with 

all stored information and a downloadable ZIP file with all generated results (CSV and JSON files and 
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figures). An interactive table appears below with the main results, showing pHs where solubility is 

maximum and minimum along with the solubility scores. Besides, the pH intervals in which proteins have 

10% of their maximum or minimum (10% max/min) solubility are displayed. Clicking identifiers will open 

the correspondent graph showing solubility variations in the specified pH range with the 10% max/min 

solubility in blue and red, respectively. 

 

Figure 4.8 – SolupHred pipeline. 

4.2.3 IMPLEMENTATION 

SolupHred script is written in Python and uses Python3.7 as the interpreter. The web interface was built 

using HTML/CSS/JavaScript. Inputs and outputs are processed by Django CGI scripts written in Python.  

4.2.4 PERFORMANCE 

SolupHred implements a phenomenological equation to calculate pH-dependent solubility of IDPs, whose 

performance has been previously validated on a set of disease-associated IDPs (Section 4.1) and 

functional amyloids (Santos, et al., 2020c), with an excellent correlation between experiments and 

predictions (Supplementary Material S4.3). In the experimentally validated dataset analysed, SolupHred 
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predicts with high accuracy (0.91) whether the deviation from pH neutrality results in increased or 

decreased aggregation for each protein (Supplementary Material S4.4).  

Figure 4.9 – SolupHred web server interface. A) Web input page. The user can paste their FASTA-

formatted sequences in the box or upload them as a file. By default SoluHred checks solubility in pH 

interval, but it allows users to test values at a specific pH. B) Output page for one protein in a range of 

pHs. Two clickable links appear on the upper left part of the screen with results retrievable in JSON format 

or a compressed ZIP file containing SolupHred calculations and generated figures. On the left part, a table 

depicts the pHs of maximum and minimum solubility along with the pH intervals in which proteins have 

10% of their maximum or minimum (10% max/min) solubility. On the lower right side, a table with the 

solubility variations for the specified pH range is presented while at the bottom left a plot shows the 

aforementioned data, with the 10% max/min solubility coloured in blue and red, respectively. 
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Alternatively, for multiple proteins, this graph can be reachable by clicking the link in each protein 

identifier. 

SolupHred is suitable for the analysis of large collections of proteins in a fast and comprehensive way, 

performing over 500 pH-datapoint calculations per second when benchmarked using the DisProt database 

(Hatos et al., 2020). The web server is limited to the 20 standard proteinogenic amino acids and assumes 

input proteins remain disordered in the user specified pH range (Santos, et al., 2020d) (this aspect will be 

discussed in Section 4.3). 

4.2.4 CONCLUSIONS 

SolupHred is a web application tool to predict IDPs’ solubility as a function of the pH, which makes publicly 

accessible the predictive model we developed recently (Santos, et al., 2020c), (Section 4.1). It allows fast 

and accurate evaluations of the aggregation propensities of disordered sequences in a given range of pHs. 

SolupHred permits the large-scale analysis of disordered protein databases. The SolupHred output was 

designed to be easily incorporated into external computational pipelines dealing with IDPs properties.  

We expect SolupHred to be adopted by the community as a fast, cost-effective way to decide the 

adequate conditions for performing aggregation experiments and the purification and storage of IDPs. 

We envision that, as SolupHred, next-generation programs will progressively incorporate extrinsic 

environmental factors in their predictions. 
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4.3.1 ABSTRACT  

The natively unfolded nature of intrinsically disordered proteins (IDPs) relies on several physicochemical 

principles, of which the balance between a low sequence hydrophobicity and a high net charge appears 

to be critical. Under this premise, it is well-known that disordered proteins populate a defined region of 

the charge-hydropathy (C-H) space and that a linear boundary condition is sufficient to distinguish 

between folded and disordered proteins, an approach widely applied for the prediction of protein 

disorder. Nevertheless, it is evident that the C-H relation of a protein is not unalterable but can be 

modulated by factors extrinsic to its sequence. Here, we applied a C-H based analysis to develop a 

computational approach that evaluates sequence disorder as a function of pH, assuming that both protein 

net charge and hydrophobicity are dependent on pH solution. On that basis, we developed DispHred, the 

first pH-dependent predictor of protein disorder. Despite its simplicity, DispHred displays very high 

accuracy in identifying pH-induced order/disorder protein transitions. DispHred might be useful for 

diverse applications, from the analysis of conditionally disordered segments to the rational engineering 

of disordered proteins for diverse biotechnological applications. Importantly, since many disorder 

predictors use hydrophobicity as an input, the here developed framework can be implemented in other 

state-of-the-art algorithms. 

Availability and Implementation: The DispHred web server is freely available for academic users at: 

https://ppmclab.pythonanywhere.com/DispHred. It is platform-independent and does not require 

previous registration. 

https://ppmclab.pythonanywhere.com/DispHred
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Figure 4.10 – Graphical Abstract: DispHred web server predicts pH dependant conditional disorder on IDPs. It is 

based on applying pH-dependence to the C-H phase diagram and utilizing a machine learning strategy to delimit the 

boundary condition. 

4.3.2 INTRODUCTION 

Intrinsically disordered proteins (IDPs) are a class of polypeptides that do not require a defined 

folded structure to execute their biological activities (Chen and Kriwacki, 2018; Dunker and Obradovic, 

2001; Kulkarni and Kulkarni, 2019). The plasticity of these biomolecules allows them to interact with 

structurally diverse partners, and they are often involved in the wiring of protein networks, acting both 

as central hubs and as molecular switches (Wright and Dyson, 2015). The unfolded nature of IDPs is 

intrinsically encoded in their primary sequence, which is generally enriched in ionizable and polar 

residues and depleted of hydrophobic amino acids (Dyson, 2016). Thus, IDPs’ extended conformation 

rely both on electrostatic repulsions between uncompensated charges and on a low hydrophobicity load, 

which prevents extensive protein compaction (Uversky, et al., 2000). 

Based on the balance between attractive and repulsive forces in IDPs, Uversky and co-workers 

proposed that they populated a distinct region in the mean net charge-hydropathy (C-H) phase space 

diagram, and showed that by dividing this space with an empirically-obtained boundary line it was 

possible to discriminate between folded and disordered proteins (Uversky, et al., 2000). Under that 

premise, the disordered nature of a polypeptide sequence can be predicted by evaluating its C-H 

relationship in the aforementioned attraction-repulsion scheme. The C-H plot analysis has been applied 

for disorder prediction, it lies behind the popular FoldIndex algorithm (Prilusky, et al., 2005), and it is 

also computed by other multiparametric software (He, et al., 2009). 

More than 50 prediction methods, based on different molecular principles, have been developed to 

assess protein disorder, thus providing a robust toolbox for identifying natively unfolded proteins or 

their regions (Dosztanyi, 2018; He, et al., 2009; Lieutaud, et al., 2016). Besides, new tools able to reverse-

engineer the above-mentioned principles into a sequence allow now for the artificial design of 

disordered protein segments (Harmon, et al., 2016; Schramm, et al., 2017). Nevertheless, most of these 

methods are blind to the protein context, even if IDPs are extremely sensitive to environmental 

fluctuations (Jakob, et al., 2014; Uversky, 2009). Ligands, binding partners, or solvent conditions such as 
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ions concentration or pH, have been reported to induce conditional folding in IDPs (Fonin, et al., 2019; 

Smith and Jelokhani-Niaraki, 2012; Uversky, et al., 2000). Therefore, it is surprising to find out that those 

effects have been mostly disregarded in state-of-the-art computational approaches. Indeed, it becomes 

evident that the C-H relationship of a given protein is not constant since both protein net charge and 

hydrophobicity can be modulated by factors that are extrinsic to the protein sequence. 

In a recent work addressed in Section 4.1, we showed that the solution’s pH effect on IDPs solubility 

is not restricted to its effect on the charge of ionizable residues since the pH also modulates the sequence 

hydrophobicity, a traditionally neglected effect. Driven by this simple idea, we revisit here the C-H 

concept, on the evidence that both protein net charge and hydrophobicity are dependent on pH. By 

delineating a boundary condition similar to the one described by Uversky (Uversky, et al., 2000), we 

demonstrate that IDPs’ pH-induced folding can be predicted just by evaluating the pH dependence of 

the C-H space diagram. This allowed us to develop DispHred, a first computational approach to predict 

protein disorder as a function of the pH. DispHred is freely available for academic users at 

https://ppmclab.pythonanywhere.com/DispHred. We envision the data presented here may prompt the 

development of a new generation of disorder predictors that include solvent conditions on their 

pipelines. 

 

4.3.3 MATERIALS AND METHODS 

Data collection. 

 The dataset of 111 experimentally verified fully disordered proteins was obtained from the Disprot 

database (DisProt 2020_06) (Hatos, et al., 2020) by selecting proteins with a 100% disorder coverage. The 

set of 150 fully folded sequences was randomly extracted from the Protein Data Bank (PBD) under the 

query single-chain structures larger than 100 residues and determined by X-ray crystallography.   

 Data regarding the effect of pH on protein disorder was extracted from the bibliography. Data 

regarding the pH-dependent folding of prothymosin was obtained from the characterization of Uversky 

and co-workers (Uversky, et al., 1999). Order-disorder pH-transition of the PEST region (201-268) from 

human c-Myc oncoprotein was analysed in Ansari and Swaminathan study (Ansari and Swaminathan, 

2020). LL-37 pH-dependent helix formation was reported by Johansson and co-workers (Johansson, et al., 

1998). Victor Muñoz and Luis Serrano reported the effect of solution pH on a model peptide Ac-

AKAAKAKAAKAKAAKA-NH2 (Munoz and Serrano, 1995). Data on the pH-modulated collapse of human 

histones were extracted from Munishkina and co-workers (Munishkina, et al., 2004). The analysis of the 

disordered A-domain of the Toc132 receptor disorder was performed by Lynn GL Richardson, Masoud 

Jelokhani-Niaraki, and Matthew D Smith (Richardson, et al., 2009). The conformational fluctuations of the 

36-loop region of the influenza hemagglutinin were analysed by Chavela M. Carr and Peter S. Kim (Carr 

and Kim, 1993). 

 

 

https://ppmclab.pythonanywhere.com/DispHred
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DispHred: Evaluation of hydrophobicity and charge as a function of pH.  

 To analyse the lipophilicity of protein sequences, we employed the pH-dependent lipophilicity scale 

developed by Zamora and co-workers (Zamora, et al., 2019). They used continuum solvation calculations, 

which allow us to calculate the hydrophobicity of a given residue at the desired pH. Then, DispHred uses 

a sliding window with a user-defined length to calculate the average hydrophobicity in the window and 

assigns it to the residue in the center. In the analysis performed in this article, we used a fixed window of 

7 residues. The results are averaged to calculate the mean hydrophobicity of the sequence at the analysed 

pH. 

 Protein NCPR is calculated by applying the Henderson-Hasselbalch equation to derive the partial 

charge of each ionizable residue at the analysed pH. Then, global NCPR is calculated as the sum of all 

partial charges divided by the protein length. To calculate the DispH score of a given window, the NCPR is 

calculated using the residues included in this particular window and its length.  

 

Hydropathy scales performance analysis at neutral pH. 

We delineated a C-H plot for each of the analysed hydropathy scales. Each scale was normalized from 0 

to 1 according to the increased hydrophobicity of the protein residues; for the pH-dependent scale, we 

employed the values calculated at pH 7.0 (Zamora, et al., 2019). The performance of the different scales 

was evaluated using a ROC analysis, in which the true-positive rate is plotted against the false-positive 

rate. The ROC analysis was performed against a dataset of 111 fully disordered proteins and 150 single-

chain folded proteins. The AUC was taken as an reporter of sensitivity and sensibility. 

Support vector machine analysis 

SVM was applied to define the optimal boundary line delimitating two classes of samples as folded 

or disordered. NCPR and pH-dependent hydrophobicity were calculated as previously stated for the 59 

data points. Experimental data was labeled as ordered or disordered as described in the literature and 

employed for the machine learning process. To perform the analysis, we used the freely available machine 

learning library scikit-learn for Python (Pedregosa, et al., 2011). SVM kernel was set to “linear” to map the 

data on a two-dimensional space. 

 

DispHred: Prediction of sequence disorder. 

DispHred uses a C-H plot analysis to discriminate between folded and disordered sequences at the 

analysed pH by applying a defined boundary condition. For each pH, the mean hydrophobicity (<HpH>) and 

the absolute value of the NCPR are calculated. Then, the DispH score is obtained by applying the SVM 

derived Equation 4.2. Positive and negative values are classified as folded or disordered, respectively. 

DispHred calculates the DispH score at all the pHs in the desired range to profile sequence disorder as a 

function of pH. DispHred also analyses the DispH score of the sliding windows to identify specific stretches 

whose disorder is affected by pH. 
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Performance analysis. 

The sensitivity, specificity, precision, accuracy and false discovery rate when predicting order-

disorder transitions was evaluated as follows: Sensitivity = TP/(TP + FN); Specificity = TN/(TN + FP); 

Precision = TP/(TP + FP); Accuracy = (TP + TN)/(TP + TN + FP + FN); and False Discovery Rate = FP/ (FP + 

TP). F1 Score and Matthews Correlation Coefficient were calculated as previously described in (Chicco and 

Jurman, 2020). TP, TN, FP and FN correspond to true positives, true negatives, false positives and false 

negatives, respectively. 

DispHred web server 

DispHred web server interface was built in HTML/CSS/JavaScript. It uses the Django 3.0 framework 

working with Python 3.7. The figures are generated using matplotlib library (Hunter, 2007). The server is 

platform-independent, free and open for academic users. It does not require previous login.   

 

4.3.4 RESULTS 

Validation of a pH-dependent hydropathy scale for C-H plot-based predictions.  

The original C-H analysis was developed using the Kyte-Doolittle hydropathy scale to calculate the 

mean hydrophobicity of protein sequences (Kyte and Doolittle, 1982; Prilusky, et al., 2005; Uversky, et 

al., 2000). Here, we implement a novel amino acid pH-dependent hydropathy scale developed by Zamora 

and co-workers (Zamora, et al., 2019), based on implicit solvation calculations, that allow us to evaluate 

the effect of the solution pH on sequence hydrophobicity. As a first step in developing our approach, we 

assessed the performance of this pH-dependent scale for C-H plot-based order-disorder predictions at 

neutral pH. Uversky and Dunker performed an extensive analysis of 19 diverse hydropathy scales to 

compare their performance in C-H plot-based predictions (Huang, et al., 2014). They reported that the 

Guy hydropathy scale (Guy, 1985) had the highest discriminative power, while Kyte-Doolittle 

performance was in the average of the 19 scales. Additionally, they developed a new scale that provided 

the best order-disorder discrimination (IDP-Hydropathy) (Huang, et al., 2014).  

We compared the pH-dependent hydropathy (pH-dependent) scale with the Kyte-Doolittle, Guy, and 

IDP-Hydropathy scales. First, we normalized the four scales between 0 and 1, assigning a value of 1 to 

the highest hydrophobicity. Then we calculated the values for the pH-dependent scale at pH 7.0. We 

found the highest correlation with the Guy scale (R2 = 0.72), followed by the Kyte-Doolittle (R2 = 0.60) 

and the IDP-hydropathy (R2 = 0.51) scales (Figure 4.11A-C). The correlation between Guy and Kyte-

Doolittle scales is R2 = 0.78. In contrast, as it happens for the pH-dependent scale, the correlation 

between the IDP-hydropathy and the Guy or the Kyte-Doolittle scales is low, with R2 = 0.52 and R2 = 0.33, 

respectively. These low correlations stem mostly from the fact that, counter-intuitively, the IDP-

hydropathy scale considers P as the most hydrophilic residue, with a value of 0 in our normalized scale. 

Removing P from the correlation between the pH-dependent and IDP-hydropathy scales increases R2 to 
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0.70 and arbitrarily assigning this residue a value of 0 in the pH-dependent scale (pH-P-corrected scale) 

results in an R2 = 0.74 (Supplementary Material S4.5A). 

We next ensembled a dataset of 111 experimentally validated fully disordered proteins and 150 

folded single-chain proteins with X-ray resolved structures to test the discriminatory power of the four 

scales in a C-H plot analysis. The ability to classify ordered and disordered sequences of each scale was 

assessed by applying a Receiver Operating Characteristic (ROC) method. The associated area under the 

curve (AUC) was used as a sensitivity-specificity reporter. The pH-dependent and the Kyte-Doolittle 

scales showed an identical discriminatory potential (AUC = 0.91), while the Guy and IDP-hydropathy 

scales demonstrated slightly higher performances (AUC = 0.94 and 0.98, respectively) (Figure 4.11D). 

The pH-P-corrected scale exhibited an AUC = 0.95 (Supplementary Material S4.5B), which suggests that 

the minimal value assigned to P in the IDP-hydropathy scale contributes to its higher discrimination.   

 

Figure 4.11 – Comparison of four different hydropathy scales. Correlation between pH-dependent scale and A) Guy, 

B) Kyte-Doolittle, and C) IDP-hydropathy scales. Amino acids are represented in their one-letter code. Hydropathy 

values are normalized between 0 and 1, corresponding to the minimum and maximum values for each scale. The R2 

value of the linear regression is shown in each graph. D) ROC curves showing the performance of the four scales in 

discriminating a dataset of fully disordered (n=111) and single-chain folded (n=150) proteins. Blue dotted represents 

no skill (AUC=0.50), green Kyte-Doolittle (AUC=0.91), yellow Guy (AUC=0.94), grey IDP-hydropathy (AUC=0.98) and 

brown pH-dependent (AUC=0.91) scales. 
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Overall, the analysis suggested that the pH-dependent scale compared well with the other analysed 

scales at pH 7.0, with a discriminatory power identical to the widely employed Kyte-Doolittle scale. Thus, 

this scale will allow us to extend the C-H predictive potential to the full pH scale without compromising 

the performance at neutral pH significantly. Despite its higher discrimination, we preferred not using the 

pH-P-corrected scale and keep the hydropathy value obtained from implicit solvation calculations for P 

residues (Zamora, et al., 2019). 

 

C-H space phase diagram and order-disorder boundary condition can anticipate pH-induced order-

disorder transition of IDPs. 

Next, we explored whether the C-H model would be a reliable tool to predict the pH-dependent 

order-disorder transition in IDPs. To that end, we performed a bibliographic search of structural data on 

IDPs that suffer a conditional folding at specific pHs. We collected 59 bibliographic pH datapoints for 7 

disordered proteins and peptides (Figure 4.12 and Supplementary Material S4.6). For each point, we 

calculated the protein net charge per residue (NCPR) and protein mean hydrophobicity at the given pH 

<HpH>. NCPR is calculated using the Henderson-Hasselbach equation, and <HpH> is computed according 

to the pH-dependent scale developed by Zamora and co-workers (Zamora, et al., 2019). We plotted each 

datapoint in a 3-axis scatter plot according to its pH, <HpH>, and NCPR, employing a colour-code to 

indicating whether the protein was folded or disordered in this condition (Figure 4.12).  

To develop a consistent C-H based order-disorder classification for the experimental data, we sought 

to seek the order-disorder boundary condition that allowed the maximal separation between the two 

states. Since the datasets for the different proteins diverged in size, nature, and source, we assumed 

that a classic iterative analysis might lead to overfitting and/or result in a biased boundary condition in 

case some data points were misclassified.   

To minimize such limitations, we applied a support vector machine (SVM) learning strategy, a 

supervised feedforward network specifically designed to build a binary classifier and retrieve the 

boundary condition that maximizes the separation between observations (Vapnik, 1998; Vapnik, 2013). 

SVM-based analysis reduces overfitting and tolerates a certain degree of misclassified data points 

without forcing a bias, being robust classification strategies, and increasing their predictive potential 

when applied to new observations, especially near the boundary condition. Additionally, since SVM 

analysis takes into account a slight uncertainty and misclassification, it also provides a margin near the 

boundary line (Supplementary Material S4.7) that can be used as a confidence interval in a subsequent 

classification of new data points in predictive applications. 

By using the above-described SVM-based analysis, we identified a linear boundary condition defined 

by Equation 4.2, 

𝐷𝑖𝑠𝑝𝐻 = 2.775 < 𝐻𝑝𝐻 > −|𝑁𝐶𝑃𝑅| − 1.118 (4.2) 
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that successfully discriminates between folded and disordered proteins with a Matthews Correlation 

Coefficient of 0.97 (Supplementary Material S4.7A, Table 4.2). Note that our boundary condition for 

order-disorder classifications is reasonably similar to that previously defined by Uversky and colleagues 

at neutral pH (Equation 4.3) (Uversky, et al., 2000): 

𝐼 = 2.785 < 𝐻 > −|< 𝑅 >| − 1.151 (4.3) 

< H > and < R > corresponding the mean hydrophobicity and mean charge at neutral pH, respectively. 

In contrast, applying the same SVM analysis but considering that hydrophobicity is independent of pH, we 

did not observe a consistent classification of the datapoints -Matthews Correlation Coefficient of 0.6- 

neither the boundary line satisfies the C-H relationship (Supplementary Material S4.7B, Supplementary 

Material S4.8). 

As shown in Figure 4.12A, the boundary plane defined by Equation 4.2, satisfactorily delimitated folding-

unfolding transitions for the analysed IDPs, with only one datapoint wrongly predicted but still reasonably 

close to the boundary. This translates into 98 % accuracy in predicting the proteins’ conformational states 

at any given pH (Table 4.2). On the contrary, by considering that hydrophobicity is independent of pH (and 

computing its value at pH 7.0 and under the same boundary condition Equation 4.2), we observed that 

the NCPR change alone could not discriminate between folded and disordered sequences (Figure 4.12B 

and Table 4.2). This observation evidences the importance of modeling the pH-dependent hydrophobicity 

when predicting protein disorder.  
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Figure 4.12 – C-H based analysis of pH modulated order-disorder transitions. 3-dimensional C-H plots 

containing 59 datapoints of 7 proteins at different pHs, computing pH influence over A) sequence NCPR 

and hydrophobicity, or B) assuming constant hydrophobicity values (as calculated at pH 7.0). Blue and 

orange points correspond to conditions in which protein/peptides are disordered and folded, respectively. 

The green surfaces delimit the boundary conditions between folded and disordered proteins as defined 

in Equation 4.2. C-D) Two-dimensional C-H plots of C) prothymosin and D) PEST-c-myc using the same 

color pattern than in panels A and B for folded-unfolded datapoints. A solid line represents the boundary 

condition. Open circles represent the same data points assuming constant hydrophobicity values (as 

calculated at pH 7.0). 

Prothymosin is a classic example of an IDP at neutral pH which experiences a conditional folding at 

lower pHs, characterized by the gain of -helical structure (Uversky, et al., 1999). The transition occurs 

between pH 3.5 and pH 5.0, with prothymosin being fully folded below pH 3.5 and fully unfolded above 

pH 5.0. In a two-dimensional projection of the data points for this protein, we can observe that all folded 

points fall below the boundary line, being thus accurately predicted (Figure 4.12C). We also observed 

that our pH-dependent C-H representation also succeeds in delineating the transition range (pH 3.5-5). 

Similarly, the disordered PEST region (201-268) from human c-Myc oncoprotein collapses into a folded 

conformation at pHs below 4.8 (Ansari and Swaminathan, 2020), a transition that is successfully 

identified by our pH-dependent C-H ratio (Figure 4.12D). Note that the same analysis considering a 

constant hydrophobicity is blind to these structural conversions (open circles in Figure 4.12C and D). The 

same trend can be observed in the two-dimensional C-H plots of the other 5 protein sets in Figures 4.12A 

and 4.12B (Supplementary Material S4.6). 
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Table 4.2 – Performance of pH-dependent and pH-independent hydrophobicity approaches in predicting pH-

conditioned order-disorder transitions in a C-H analysis by applying Equation 4.2. Unfolded sequences correctly 
predicted to be unfolded were classified as true positives. The highest values for each measure are indicated in bold. 

 
pH-dependent 
hydrophobicity 

pH-independent 
hydrophobicity 

Sensitivity 1.00 1.00 
Specificity 0.96 0.21 
Precision 0.97 0.65 

False Discovery rate 0.03 0.35 
Accuracy 0.98 0.68 
F1 Score 0.99 0.79 

Matthews Correlation Coefficient 0.97 0.37 

 

The presented data demonstrates that the effect of pH on IDPs conditional folding can be 

successfully predicted by applying a pH-dependent C-H analysis. With these results in hand, we aimed 

to develop a computational tool for predicting protein disorder that considers implicitly the solution pH, 

which we named DispHred. 

Rationale and implementation of DispHed, a pH-dependent predictor of sequence disorder. 

 DispHred uses the C-H space diagram analysis proposed by Uversky and co-workers and later 

implemented in FoldIndex (Prilusky, et al., 2005; Uversky, et al., 2000). Nevertheless, instead of 

considering constant net charges and hydrophobicity for each analysed sequence, DispHred assumes 

that the solution pH modulates both parameters. Thus, DispHred computes the protein NCPR and the 

mean hydrophobicity of a sequence as a function of pH. Then, DispHred applies the boundary condition 

defined by Equation 4.2 to separate folded and disordered proteins. DispH positive values correspond to 

sequences classified as folded and negative values to those classified as disordered at the analysed pH 

or pH range. The SVM approach provides a margin of ± 0.02 around the boundary line used as a 

confidence interval in the classification. 

DispHred calculates the DispH score for all the analysed pHs, profiling the pH-dependence disorder of 

a protein sequence, and thus including the pH dimension in the classical C-H phase diagram. DispHred 

runs a user-defined sliding window that enables the analysis of the folded/disordered regions in a 

protein sequence at every requested pH. Sequence stretches fall in three classes: i) regions that are 

predicted to be always folded in the analysed pH interval, ii) regions that are predicted to be always 

disordered in this pH interval, and iii) regions whose folded/disordered conformation is modulated by 

the pH. 
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Figure 4.13 – DispHred web server interface. A) Web input page. The user can paste their FASTA-

formatted sequence or insert a valid UniprotKB Accession number. DispHred works by default by checking 

disorder in a range of pHs but allows users to test values at a specific pH. By default, a 51-residue sliding 

window is populated, but users can personalize its length. B) Web results page for a selected range of 

pHs. Two clickable links appear on the upper left part of the screen with a JSON file or a ZIP file containing 

DispHred calculations and generated figures. On the central left part, a table shows the DispHred, 

hydrophobicity, and NCPR average scores for each pH. Clicking each pH will open a figure representing 

the DispH score variation along the sequence for the selected pH. On the right, a figure representing the 

DispH average score for each pH is shown. Scores above the red dashed line indicate predicted order. On 
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the bottom of the screen folded, disordered, and conditionally disordered regions for the pH interval are 

indicated in the sequence in green, red and blue respectively. 

DispHred is free for academic users and does not require login. DispHred is available at 

https://ppmclab.pythonanywhere.com/DispHred. In the input page the user can (i) introduce a 

sequence in FASTA format or insert a valid UniprotKB Accession number, (ii) select the pH range and step 

size for the analysis or type a single specific pH and (iii) select the sliding window size (Figure 4.13A). 

After running the program, the user will be redirected to a results page containing the report of the 

analysis (Figure 4.13B): DispH scores, mean hydrophobicity, and NCPR for each of the analysed pHs, a 

graph showing DispH score as a function of pH, and clickable links that redirect to the sequence profile 

prediction at each desired pH. The protein regions exhibiting pH-dependent and pH-independent 

folded/disordered conformations are colored on top of the input sequence. 

Users can retrieve all data in a JavaScript Object Notation (JSON) file or download all the generated 

data in a compressed ZIP file. A clickable example is provided in the input page to illustrate DispHred 

outputs. 

 

4.3.5 DISCUSSION 

Structural disorder is a fundamental trait of protein biology that complements the activities of 

structured proteins and domains by contributing flexibility and plasticity (Babu, et al., 2011; Oldfield and 

Dunker, 2014; Tompa, 2012). In contrast to folded proteins, IDPs exist as ensembles sampling a wide range 

of dynamic conformations in which the bulk of the primary sequence is highly exposed to the solvent. 

Accordingly, IDPs’ properties display little dependence on structural elements and can be inferred from 

the primary sequence, which has allowed the design of computational tools for predicting, designing, and 

analyzing protein disorder (He, et al., 2009; Lieutaud, et al., 2016; Schramm, et al., 2017). At the same 

time, IDPs are extremely sensitive to environmental conditions; an effect often disregarded in predictive 

approaches. Among the different parameters that may affect IDPs properties, the solution pH has a 

significant impact, mainly due to the high prevalence of ionizable residues in these polypeptides (Payliss, 

et al., 2019; Santos, et al., 2020c; Smith and Jelokhani-Niaraki, 2012; Uversky, 2009). In this work, we 

demonstrated that the effect of pH on the disordered nature of a protein sequence can be easily predicted 

by evaluating the changes in protein charge and hydrophobicity as a function of this parameter. Even if 

the effect of pH over net charge is well-recognized, hydrophobicity is usually considered to be constant, 

disregarding its pH-dependence. However, we found that the evaluation of the pH-dependent 

hydrophobicity is fundamental for the accuracy of the order/disorder prediction in any given condition. 

The analysis of the local or global hydrophobicity of protein sequences is a pivotal stage in many in 

silico pipelines aimed to predict protein disorder and its associated properties. A significant number of 

disorder predictors, such as FoldIndex or PONDR, rely on the direct or indirect analysis of hydrophobicity, 

a property that is also used to predict folding upon binding, RNA- DNA- interactions or post-translational 

modification sites in IDPs (Garner, et al., 1999; He, et al., 2009; Iakoucheva, et al., 2004; Lieutaud, et al., 

https://ppmclab.pythonanywhere.com/DispHred
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2016; Meng, et al., 2017; Prilusky, et al., 2005; Ward, et al., 2004; Xue, et al., 2010). Thus, the identification 

of hydropathy scales suitable for such analyses attracted significant attention (Huang, et al., 2014). Our 

results indicate that by applying a recently developed pH-dependent hydropathy scale, the contribution 

of this predictive physicochemical property to disorder prediction can be extended to the full pH scale. 

Thus, the implementation of pH-dependent hydropathy scales, like the one used here, may increase 

applicability in currently available algorithms.  

pH, ion concentrations, redox state, or post-translational modifications are known regulators of 

protein function by controlling the switch between the disordered and folded or partially folded states of 

polypeptides. Thus, although the conditional disorder’s prediction is a challenging task, it is fundamental 

to elucidate the functionality of IDPs (Bardwell and Jakob, 2012; Jakob, et al., 2014). To advance in this 

direction, we developed DispHred, an online web server that exploits the C-H space analysis to predict 

protein disorder as a function of pH. Its main application is the profiling of protein disorder across a 

continuous pH interval, for which it demonstrates a high accuracy in classifying the pH-modulated order-

disorder transitions for sequentially unrelated model proteins and peptides. Additionally, DispHred allows 

the assessment of the specific protein regions contributing the most to conditional disorder.  

In essence, DispHred is the first disorder predictor dedicated to evaluating the effect of the solution 

pH and constitutes a proof-of-concept for the implementation of this kind of approach in future predictive 

endeavors. Intrinsically disorder tags are increasingly used to solubilize proteins and to engineer the 

pharmacological properties of protein and peptide pharmaceuticals (Minde, et al., 2013). We envision 

that DispHred can be of significant help in these and other biotechnological tasks.   
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5.1.1 ABSTRACT  

Prions are a particular type of amyloids with the ability to self-perpetuate and propagate in vivo. Prion-

like conversion underlies important biological processes but is also connected to human disease. Yeast 

prions are the best understood transmissible amyloids. In these proteins, prion formation from an initially 

soluble state involves a structural conversion, driven, in many cases, by specific domains enriched in 

glutamine/asparagine (Q/N) residues. Importantly, domains sharing this compositional bias are also 

present in the proteomes of higher organisms, thus suggesting that prion-like conversion might be an 

evolutionary conserved mechanism. Previous work has shown that the identification and evaluation of 

the potency of amyloid nucleating sequences in putative prion domains allows discrimination of genuine 

prions. PrionW is a web application that exploits this principle to scan sequences in order to identify 

proteins containing Q/N enriched prion-like domains (PrLDs) in large datasets. When used to scan the 

complete yeast proteome, PrionW identifies previously experimentally validated prions with high 

accuracy. Users can analyse up to 10.000 sequences at a time. PrLD-containing proteins are identified and 

their putative PrLDs and soft-amyloid nucleating cores visualized and scored. The output files can be 

downloaded for further analysis.  

Availability and Implementation: PrionW does not require previous registration and is freely available at: 

http://bioinf.uab.cat/prionw/. 

5.1.2 INTRODUCTION 

Prions are a class of proteins that can exist in at least two conformations, of which one is an 

amyloid state that is self-propagating and hence infectious as it can induce the conversion of identical 

protein sequences from the non-prion conformation to the amyloid state (Ashe and Aguzzi, 2012). 

http://bioinf.uab.cat/prionw/
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Although prions were discovered through the example of the mammalian pathogen PrP (Nystrom, et al., 

2012), a host of functional prions have since been discovered, predominantly in fungi (Fowler, et al., 2006; 

Fowler, et al., 2007). Importantly, the distinction between prion proteins and other proteins capable of 

forming amyloids is blurring, notably in human diseases such as Alzheimer’s or type-II diabetes, as it has 

been observed that amyloids of the proteins involved in these diseases are capable of cross-seeding 

amyloid formation of the soluble form of these proteins, both in vitro and in vivo lab conditions (Eisenberg 

and Jucker, 2012; Westermark and Westermark, 2010). Given that there is no epidemiological evidence 

that these amyloidogenic proteins are spreading in natural systems, the group has been called prion-like 

or ‘prionoid’ (Ashe and Aguzzi, 2012). This raises the question of what sequence determinants 

characterize a functional prion beyond mere amyloid propensity. A subset of prions, not including PrP, 

are multi domain proteins containing both globular domains and, usually, one Prion Domain (PrD) 

enriched in glutamine and asparagine (Q/N) residues that undergoes the structural rearrangement during 

prion conversion (Greenwald and Riek, 2010). Most known yeast prions, but not all, share this 

architecture. The sequence features of these PrDs overlap with those of intrinsically disordered regions 

(Malinovska, et al., 2013). It has been proposed that in contrast to the short stretches that are known to 

be sufficient to nucleate amyloid formation, Q/N based yeast prions have more diffuse nuclei, 

characterized by a large number of weak interactions between the side-chains of the PrD (Toombs, et al., 

2010; Toombs, et al., 2012). However, we have demonstrated that the superimposition of an intrinsically 

disordered sequence region containing amyloid nucleating sequences in fact yields a more accurate 

classification of experimental prions from related Q/N-enriched sequences (Toombs, et al., 2010). In the 

current paper, we provide public access to our method by way of a web server. 

5.1.3 METHOD 

PrionW allows scanning individual protein sequences for the presence of Q/N rich PrLDs, as well as the 

scanning of large protein datasets (up to 10000 sequences) for proteomic analysis. The method behind 

PrionW assumes that in order to be a PrLD a protein sequence should fulfil the following requirements: 

a) contain a specific stretch with amyloid propensity, longer than classical amyloids, which we call soft-

amyloids, able to selectively nucleate self-assembly into ordered, but brittle, amyloid structures, b) have 

a disordered structural context that readily permits self-assembly without requiring conformational 

unfolding and c) have an amino acid composition that allows the domain to be soluble at the physiological 

concentrations required for protein function yet display a basal amyloid propensity, to which N and Q 

residues would contribute significantly, promoting domain assembly in the presence of preformed 

amyloid seeds or when the concentration is increased.  

PrionW analyses whether a given protein or protein fragment satisfies the above requirements in three 

sequential steps: 

i) Identification of Disordered Regions (DRs) in protein sequences: PrionW analyses protein sequences to 

identify the presence of intrinsically disordered regions by implementing FoldIndex (Prilusky, et al., 2005) 
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with the default 51-amino acid window size. Only disordered segments of at least 60 contiguous residues 

are further evaluated, since this window size seems to suffice to attain a prion-like behaviour (Alberti, et 

al., 2009). When a protein contains two or more DRs, these regions are subsequently evaluated 

individually. 

ii) Evaluation of Q/N enrichment: The proportion of Q+N residues in the detected DRs is calculated. The 

program moves through each individual sequence by single amino acid steps looking for the longer stretch 

of adjacent residues having a Q/N proportion equal or bigger than a given threshold. Again, these regions 

should be at least 60 residues long. The default is set at ≥ 25% of Q/N residues, because the PrDs of most 

characterized yeast prions fulfil this requirement (Alberti, et al., 2009; Espinosa Angarica, et al., 2013). 

However, since Q/N enrichment for prion-like formation might change from organism to organism the 

user can select the minimum Q/N content. If the threshold is set to 0% the program will only search for 

disordered regions.  

iii) Soft-amyloid core identification and scoring: The individual sequences fulfilling the requirements in 

steps 1 and 2 are further evaluated for the presence of a 21-residue long soft-amyloid core able to 

specifically nucleate its self-assembly according to the pWALTZ scoring function (Sabate, et al., 2015), an 

update of the scoring function in the well-established amyloid predictor WALTZ (Maurer-Stroh, et al., 

2010). The default pWALTZ cut-off was set to 73.55, since this value provides the best accuracy for the 

discrimination of experimentally validated yeast PrDs from sequences displaying similar Q/N content but 

devoid of prionogenic potential (see Performance section and Figure 5.1). A lower cutoff can be useful to 

identify sequences in genomes with a basal prion propensity (Kim, et al., 2013). Accordingly, the user can 

select the pWALTZ cut-off in the 50-74 value range. pWALTZ values lower than 50.0 are not allowed as 

they do not permit discrimination of prion and non-prion sequences in the yeast dataset used for 

parameterization, since the accuracy of PrionW in this condition is below 0.5 (Figure 5.1). For a given 

protein sequence, the disordered Q/N rich region containing the highest-scoring soft-amyloid core is 

selected as the prion-like domain (PrLD) in this protein, as long as it passes the selected threshold. 

5.1.4 PERFORMANCE 

Yeast prions constitute ideal model systems to characterize prion-like behaviour. On the basis of 

compositional similarity to known prions, Lindquist’s group used a hidden Markov model (HMM) to 

identify 100 prion candidates in the yeast genome (Alberti, et al., 2009). They scored 92 of them from 0 

to 10 according to their performance in four different experimental assays for both amyloid and prion 

forming ability, higher scores indicating more prionogenic sequences. It turned out that in this, in 

principle, prion enriched set, only 13 % of the proteins scored ≥ 9 whereas 42 % scored ≤ 2, demonstrating 

the extreme difficulty to discriminate real prions from non-prions when they all share a similar Q/N 

enriched compositional context. The predicted PrLDs of these proteins were used to build up a dataset in 

which we considered as non-prions (negatives) those sequences scoring ≤ 2 and being positive in one 

assay at maximum (39 sequences), because it means that they do not exhibit amyloid and prion forming 
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ability, and prions (positives) those domains being positive in all four assays and scoring ≥ 9, with a total 

of 12 sequences, including the known prions New1, Rnq1, Swi1, Sup35 and Ure2 proteins (Supplementary 

Material S5.1).  We speculated that the presence and the strength of short amyloid cores embedded in 

these PrLDs might account for their different prionogenic potential. This concept was implemented in the 

pWALTZ scoring function, allowing discrimination between positive and negative proteins in the above-

mentioned 51-protein dataset with better accuracy than approaches based only on composition (Sabate, 

et al., 2015). However, despite its accuracy, a serious limitation of pWALTZ to analyse large protein 

datasets is that it needs to work on top of dissected putative PrLDs sequences, because the folded 

domains adjacent to these regions and, more generally, globular proteins usually contain one or more 

amyloid regions (Rousseau, et al., 2006), whose high aggregation potency blur any prediction. PrionW 

approaches this issue by considering the structural disorder and Q/N compositional bias characteristic of 

most yeast PrDs.  

In our previous work, a 73.55 pWALTZ cut-off provided the best accuracy to discriminate prions from non-

prions; however this value resulted from the analysis of the PrDs identified by the Lindquist’s group HMM, 

which may or may not coincide with those sequences identified by PrionW on the basis of structural 

disorder and Q/N content for their further pWALTZ classification (see Methods). Thus, to parameterize 

PrionW, we analysed the 6719 proteins encoded in the S. cerevisiae S288c reference proteome for the 

presence of PrLDs using a fixed Q/N content ≥ 25 % and gradually increasing the pWALTZ cut-off from 35 

to 90 % in 0.1 % steps. The accuracy of the method was calculated at each stringency level by evaluating 

the presence of positive and negative instances from the original 51-protein dataset in the returned 

proteome predictions (Figure 5.1). The best predictions were obtained with cut-offs ranging from 73.50 

to 73.60, suggesting that the disordered Q/N rich domains identified by PrionW overlap significantly with 

the candidates identified using the HMM. 73.55 was selected therefore as the default pWALTZ value in 

PrionW. Using these default parameters PrionW returned a total of 61 predictions. They included 92% of 

the previously considered positives (11 sequences), only Puf4 being missing. In contrast, only 5% of the 

negative ones (2 sequences) were recovered. This corresponds to a sensitivity of 0.917, a specificity of 

0.949, a precision of 0.846 an accuracy of 0.941 and a false discovery rate of only 0.154.  These values 

(Table 5.1) indicate that our methodology produce fairly clean recovery sets with a rather low proportion 

of false positives. If we consider as positive sequences only the set of actual Q/N-rich prions: Cyc8, Mot3, 

New1, Rnq1, Sfp1, Swi1, Sup35 and Ure2, PrionW is able to recover the large majority of them from the 

yeast proteome with the default settings, missing only Cyc8. 
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Figure 5.1 – Accuracy cut-off plot for PrionW. The Accuracy obtained for the correct classification of TP and TN is 

graphed against increasing pWALTZ cut-offs. We highlighted the highest accuracy of the assay, used to set the 

predictive cut-off of 73.55. TP and TN correspond to true positives and true negatives. 

Two pioneering works addressed previously the discovery of potential novel prion-forming proteins 

exploiting their Q/N bias. Michelitsch and Weissman developed DIANA (Defined Interval Amino acid 

Numerating Algorithm), an algorithm aimed to identify proteins containing regions of consecutive amino 

acids with exceptionally high Q/N content (Michelitsch and Weissman, 2000). Harrison and Gerstein 

derived a method for identifying biased regions that relies on defining the lowest-probability 

subsequences (LPSs) for a given amino-acid composition and applied this formalism to analyse the 

prevalence of Q- and N-rich regions in different proteomes (Harrison and Gerstein, 2003). A comparison 

of the performance of PrionW, with that of the DIANA and LPSs approaches (Table 5.1), illustrates the 

usefulness of evaluating the presence and potency of soft-amyloidogenic regions in the context of Q/N 

rich sequences to discriminate prionogenic sequences in complete proteomes.   

The ability to perform predictions in complete proteomes allows using Gene Ontology (GO) annotations 

to classify proteins containing PrLDs according cellular locations, functional classes and processes, 

uncovering the role played by these polypeptides in the cell. According to the GO classification in the 
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Sacharomyces Genome Database (SGD) (Cherry, et al., 2012) the detected proteins are associated to 

cytoplasmatic ribonucleoprotein granules (P = 4.1 x 10-05) and nucleus (P = 6.1 x 10-05), their preferential 

function is mRNA binding (P = 3.0 x 10-05) and more generally nucleic acid binding (P = 6.3 x 10-03) and they 

work in the regulation of biological processes (P = 5.9 x 10-07) and more specifically in the regulation of 

gene expression (P = 7.7 x 10-06). This analysis highlights the important role played by PrLDs-containing 

proteins in the yeast physiology, a role that might be also exerted in higher organisms.  

According to FoldIndex and other disorder predictors like RONN (Yang, et al., 2005) or FoldUnfold 

(Galzitskaya, et al., 2006), in most of the 62 hits, the detected PrLDs are accompanied by at least a folded 

domain, which are likely the responsible of the protein activity and probably widely offset from the fibril 

backbone in the amyloid state (Baxa, et al., 2011). As expected, in contrast to pWALTZ, PrionW can identify 

genuine prions even when their PrDs represent a small fraction in the complete sequence of an essentially 

folded protein (Figure 5.2).  

The requirement to adjust the Q+N content and pWALTZ parameters when using PrionW to screen for 

prion-like proteins in proteomes different from yeast is best illustrated by the fact that the algorithm is 

not able to identify a set of human proteins which have been proposed to display prion-like behaviour 

(Malinovska, et al., 2013), including hnRNPA1, hnRNPA2, hnRNPA3, HNRDL, FUS, EWS, TAF15 and TPD43 

with the default settings. However, setting the Q/N content at ≥15 % and pWALTZ cut-off at 64.00 allows 

retrieving them, except TDP43, and identifying their putative soft-amyloid cores. The overall lower 

amyloidogenic potential of the nucleating cores of those human prion-like proteins likely respond to the 

fact they are not actual prions, but rather proteins able to self-assemble reversibly for functional 

purposes, and even if they have been shown to form intracellular aggregates upon mutation (Kim, et al., 

2013), it is not evident that they can be propagated as bona fide prions. 

  5.1.5 SERVER DESCRIPTION 

The PrionW web server does not require any user registration or identification. The interface can process 

up to 10000 sequences at a time.  

Input Interface 

PrionW is presented as an application running in a single web page (Figure 5.2A). One or more sequences 

in FASTA format must be pasted in the text box or uploaded as a file. Two algorithm parameters can be 

tuned by the user: “Q+N richness” defines the minimum proportion of Q and N residues a region should 

have to be considered disordered; “pWaltz cut off” defines the minimum pWaltz score for a soft-amyloid 

core to be considered positive. Default values are otherwise assigned to these parameters (see methods 

for more details). The web page displays four links in its upper margin: i) reference publications of 

methods and web application, ii) a contact mail, iii) a help with a short description of the algorithm, input 

instructions, output explanation and information on examples and iv) examples that will populate the 

input text area with full-length sequences of the well-characterized yeast prions NEW1, RNQ1, SWI1, 
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SUP35 and URE2 and a set of prion positive and negative control synthetic sequences proposed by Toombs 

and co-workers (Toombs, et al., 2010). 

Table 5.1 – Performance of DIANA, LPSs and PrionW approaches in the prediction of experimental yeast prion-like 

proteins (protein dataset in Supplementary Material S5.1). The best value for each parameter is indicated in bold. 

 DIANA LPSs PrionW 

Sensitivity 0.917 1 0.917 

Specificity 0.385 0.128 0.949 

Precision 0.314 0.261 0.846 

FDR1 0.686 0.739 0.154 

Accuracy 0.510 0.333 0.941 

MCC2 0.275 0.183 0.842 

 

1False Discovery Rate 
2Matthews correlation coefficient 
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Figure 5.2 – PrionW predictions of prion-like domains and soft-amyloid cores in the sequences of the yeast prions 

NEW1, URE2 and RNQ1. Folded domains, disordered regions, PrLDs and soft-amyloid cores are shown in white, green, 

blue and red, respectively. 

Output 

When clicking the submit button the input frame changes. After checking for the correct FASTA format, a 

header showing the number of interpreted sequences, input parameters and job identifier appears. After 

the calculation has finished, a link to a CSV file containing the output data is provided. Below the header, 

positive hits are printed in the same order as they were submitted. For each hit, the name, the predicted 

21-residue soft-amyloid core, the pWaltz score and the predicted Q/N rich PrLD with the soft-amyloid 

core highlighted in red are presented (Figure 5.2B). If no positive sequences are detected in the input 
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dataset the algorithm returns the following message: “None of your sequences contains a predicted Prion-

like Domain”. The CSV file contains all the mentioned information, which will be kept in our server for 7 

days. If the algorithm detects a format error in the input sequences, an input parameter out of range, a 

number of sequences exceeding the maximum allowed or an engine problem, the program execution 

stops and a brief explanation of the problem is given.  

 

Figure 5.3 – Screen shots of the PrionW web server. A) Input page populated with example sequences and algorithm 

parameters in default values. B) Return results for these sequences. Each rectangle represents an input sequence. In 

the upper left side the FASTA identifier, in the middle in red the highest scoring identified soft-amyloid core and in 

the rightmost part its pWALTZ score. Below, the identified PrLD showing the sequential context of the soft-amyloid 

core. 

Implementation and server run-time 

The PrionW web server runs on an engine implementing the algorithm described in methods. It has been 

written in Python and uses Python2.7 as the interpreter. The web interface has been build using 

HTML/CSS and inputs and outputs are processed by a CGI written in Perl. It all runs in a CentOS 5 server 

with Apache 2.2.3 using Intel Xeon “Clovertown” processors. The execution time for processing the 

complete S. cerevisiae S288c reference proteome in our server was lower than 5 min. 

5.1.6 CONCLUSION 

A 

B 
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We have described PrionW, a web server for the prediction of Q/N rich prion-like domains and their 

soft-amyloid cores in large sequence datasets. The algorithm should find application in the discovery of 

new candidates in different organisms for further experimental characterization, in the identification of 

mutations endorsing wild type proteins with prion-like properties, in the design of synthetic prion or 

prion-like domains for different purposes or in the design and synthesis of short peptides corresponding 

to PrLDs soft-amyloid cores able to seed the aggregation of the complete protein and, more generally, in 

understanding prion function and regulation in different species. 

5.1.7 REFERENCES 

Alberti, S., et al. (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic 

proteins, Cell, 137, 146-158. 

Ashe, K.H. and Aguzzi, A. (2012) Prions, prionoids and pathogenic proteins in Alzheimer disease, Prion, 7. 

Baxa, U., et al. (2011) In Sup35p filaments (the [PSI+] prion), the globular C-terminal domains are widely offset 

from the amyloid fibril backbone, Mol. Microbiol., 79, 523-532. 

Eisenberg, D. and Jucker, M. (2012) The amyloid state of proteins in human diseases, Cell, 148, 1188-1203. 

Espinosa Angarica, V., Ventura, S. and Sancho, J. (2013) Discovering putative prion sequences in complete 

proteomes using probabilistic representations of Q/N-rich domains, BMC Genomics, 14, 316. 

Fowler, D.M., et al. (2006) Functional amyloid formation within mammalian tissue, PLoS biology, 4, e6. 

Fowler, D.M., et al. (2007) Functional amyloid--from bacteria to humans, Trends Biochem Sci, 32, 217-224. 

Galzitskaya, O.V., Garbuzynskiy, S.O. and Lobanov, M.Y. (2006) FoldUnfold: web server for the prediction of 

disordered regions in protein chain, Bioinformatics, 22, 2948-2949. 

Greenwald, J. and Riek, R. (2010) Biology of amyloid: structure, function, and regulation, Structure, 18, 1244-1260. 

Harrison, P.M. and Gerstein, M. (2003) A method to assess compositional bias in biological sequences and its 

application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes, Genome Biol, 4, R40. 

Kim, H.J., et al. (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem 

proteinopathy and ALS, Nature, 495, 467-473. 

Malinovska, L., Kroschwald, S. and Alberti, S. (2013) Protein disorder, prion propensities, and self-organizing 

macromolecular collectives, Biochim Biophys Acta, 1834, 918-931. 

Maurer-Stroh, S., et al. (2010) Exploring the sequence determinants of amyloid structure using position-specific 

scoring matrices, Nat. Meth., 7, 237-242. 

Michelitsch, M.D. and Weissman, J.S. (2000) A census of glutamine/asparagine-rich regions: implications for their 

conserved function and the prediction of novel prions, Proc Natl Acad Sci U S A, 97, 11910-11915. 

Nystrom, S., et al. (2012) Multiple substitutions of methionine 129 in human prion protein reveal its importance in 

the amyloid fibrillation pathway, J Biol Chem, 287, 25975-25984. 

Prilusky, J., et al. (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically 

unfolded, Bioinformatics, 21, 3435-3438. 

Rousseau, F., Serrano, L. and Schymkowitz, J.W. (2006) How evolutionary pressure against protein aggregation 

shaped chaperone specificity, Journal of molecular biology, 355, 1037-1047. 

Sabate, R., et al. (2015) What makes a protein sequence a prion?, PLoS Comput Biol, 11, e1004013. 

Toombs, J.A., McCarty, B.R. and Ross, E.D. (2010) Compositional determinants of prion formation in yeast, Mol 

Cell Biol, 30, 319-332. 

Toombs, J.A., et al. (2012) De novo design of synthetic prion domains, Proc Natl Acad Sci U S A, 109, 6519-6524. 

Westermark, G.T. and Westermark, P. (2010) Prion-like aggregates: infectious agents in human disease, Trends in 

molecular medicine, 16, 501-507. 

Yang, Z.R., et al. (2005) RONN: the bio-basis function neural network technique applied to the detection of natively 

disordered regions in proteins, Bioinformatics, 21, 3369-3376.4 

 

 

 

 



99 
 

5.2 AMYCO: Evaluation of mutational impact on prion-like 

proteins aggregation propensity 

 
Valentín Iglesias1†, Oscar Conchillo-Sole1†, Cistina Batlle1 and Salvador Ventura1* 

1 Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat 

Autònoma de Barcelona, Bellaterra, 08193, Spain 

†These authors contributed equally to this work. *To whom correspondence should be addressed. 

Author Contribution: Software, validation, writing—original draft preparation. 

 

5.2.1 ABSTRACT 

Background: Around 1% of human proteins are predicted to contain a disordered and low complexity 

prion-like domain (PrLD). Mutations in PrLDs might promote a transition to an amyloid-like, aggregation-

prone, state linked to disease.  

Results: We have recently shown that an algorithm that considers both the effects of mutations on PrLDs 

composition and in localized amyloid propensity can approach their impact on intracellular protein 

aggregation. Here, we implement this concept into the AMYCO web server, an algorithm that forecasts 

the influence of amino acid changes in prion-like proteins aggregation propensity better than state-of-

the-art predictors. 

Conclusions: The AMYCO web server allows for a fast and automated evaluation of the effect of mutations 

on the aggregation properties of prion-like proteins. This might uncover novel disease-linked amino acid 

changes occurring in the sequences of the increasing number of prion-like proteins being identified in the 

human proteome. Additionally, it can find application in the in silico design of synthetic prion-like proteins 

with tuned aggregation propensities for different purposes.  

Availability and Implementation: AMYCO does not require previous registration and is freely available to 

all users at: http://bioinf.uab.cat/amyco/. 

5.2.2 BACKGROUND 

Prions are proteins able to adopt multiple structural conformations from which at least one has self-

propagating properties (Aguzzi and Calella, 2009). Yeast prions are the best understood subset of 

functional prions. A common feature of most yeast prions is the presence of an intrinsically disordered 

and low complexity prion domain (PrD), which is necessary and sufficient for prion conversion and 

propagation. Proteins bearing prion-like domains (PrLD) sharing these properties seem to exist in all 

kingdoms of life (Chakrabortee, et al., 2016; Iglesias, et al., 2015; Malinovska, et al., 2015; Pallares, et al., 

2015; Yuan and Hochschild, 2017). In particular, around 1% of the human proteome has been predicted 

to correspond to prion-like proteins (King, et al., 2012). This human protein subset is enriched in nucleic 

http://bioinf.uab.cat/amyco/


100 
 

acid-binding proteins and involved in the formation of membraneless compartments through highly 

dynamic liquid-liquid demixing (King, et al., 2012; Patel, et al., 2015). A number of mutations in human 

PrLDs have shown to convert these liquid compartments into solid aggregates, abolishing their dynamic 

nature and leading to the onset of neurodegenerative disorders (Patel, et al., 2015; Polymenidou and 

Cleveland, 2012). The development of tools able to anticipate the impact of such pathogenic amino acid 

changes is attracting increasing interest.  

The self-assembling properties of prion-like proteins are thought to ultimately rely on the biased amino 

acid composition of their PrLDs (Toombs, et al., 2012), whereas disease-linked mutations seem to act by 

enhancing or extending aggregation-prone regions, facilitating the transition to amyloid-like states (Ryan, 

et al., 2018; Sabate, et al., 2015). We have recently shown that the impact of point and multiple mutations 

or deletions on the aggregation of the model ALS-associated prion-like hnRNPA2 protein is best predicted 

by a function that takes into account both compositional features and amyloidogenic propensities (Batlle, 

et al., 2017b). Here we introduce the AMYCO (combined AMYloid and Composition based prediction of 

prion-like aggregation propensity) web server, which implements this approach to perform automated 

and fast predictions on top of prion-like protein sequences. 

 

5.2.3 IMPLEMENTATION 

 AMYCO is written in Python and uses Python2.7 as the interpreter (Anaconda distribution). The web 

interface has been build using HTML/CSS and inputs and outputs are processed by a CGI written in Perl. 

It all runs in a CentOS 5 server with Apache 2.2.3 using Intel Xeon ‘Clovertown’ processors.  
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Figure 5.4 – Correlation between AMYCO and pRANK predictions and the aggregation propensity of human 

hnRNPA2 prion-like protein. Graphic representation of the correlation between the variants A) AMYCO and B) pRANK 
scores and their ability to form Ade+ colonies when expressed in yeast, a direct reporter for their aggregation 
propensity (Batlle, et al., 2017b). 

 
AMYCO pipeline 

AMYCO evaluates the impact of mutations on the aggregation propensity of PrLDs in prion-like proteins. 

They can be single or multiple residues substitutions, as well as deletions and insertions. It exploits the 

highly significant correlation between the scores obtained from a parameterized linear function, that 

balances the contribution of both PrLDs composition and amyloid propensity (Batlle, et al., 2017b), and 

the intracellular aggregation of hnRNPA2 variants; the unique prion-like protein for which a large set of 

mutations, both natural and artificial have been experimentally validated (Figure 5.4). The AMYCO web 

server is free and open to all users, and no previous login or registration is required. 

The home page of AMYCO displays three clickable links in its upper margin: (i) a help page containing a 

brief description of the method, the output explanation and information on examples, (ii) references for 

A 

B 
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the methodology and the web application and (iii) a contact e-mail. Immediately below a link that switches 

between default mode in which multiple sequences can be compared, or single mutation mode in which 

all possible mutations for a given protein residue are evaluated, ) and examples that fill the input text 

areas with the full-length sequences of wild type (wt) human hnRNPA2 protein and its aggregation-prone 

D290V mutant for compare mode, or all its possible mutants for position 290 for single mutation mode 

(Kim, et al., 2013). 

The input interface allows two working modes (Figure 5.5). In compare sequences mode (default mode) 

(Figure 5.5A); the user should introduce a reference sequence and the mutated variants (one or several) 

in the left and right text boxes, respectively; all in FASTA format. In the single mutation mode (Figure 

5.5B), the user should introduce a single sequence as well as the position to be scanned. Protein 

sequences should be at least 60-residues long and only the 20 standard proteinogenic amino acids are 

allowed.  

 

Figure 5.5 – AMYCO web server main page. The server presents two different working modes. On A) compare 

sequences mode, a single FASTA sequence must be pasted on the “Reference Sequence” box and one or more variants 

on the right “Mutated Variant(s)” box, while on B) single mutation mode, users must introduce one sequence and 

specify a position for all possible point mutations to be evaluated. 

After submission, the output page will display a job identification number along with the names of the 

input sequences and the mutation position if applicable. The algorithm will return the AMYCO score for 

each sequence, together with a description of the mutations impact of the overall aggregation propensity. 

In addition, a graphical representation of the mutation/s effect will be displayed (Figure 5.6). We set two 

thresholds of low (< 0.45) and high (> 0.78) AMYCO scores. hnRNPA2 mutants scoring < 0.45 were shown 

to decrease or increase < 5 times the propensity of the non-aggregating wild type protein, whereas, 

mutants scoring > 0.78 increased its aggregation by > 50 times (Paul, et al., 2017). Mutations rendering 

an AMYCO score < 0.45 are considered of low aggregation propensity and labeled in blue. Mutations that 

increase the aggregation propensity of the protein, but whose AMYCO score is below 0.78 are labeled in 

red, whereas mutations above this threshold are considered to be of high aggregation propensity are 

labeled in red and bold. Sequences might display AMYCO scores > 1.0, indicating that they are predicted 
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to be more aggregation-prone than the highest scoring hnRNPA2 variant used in the parametrization of 

the prediction function. The output files can be downloaded for further analyses, as a ZIP file containing 

the resulting text explanation, a machine readable JSON file, the visualizations as PNG files and in the 

single mutation mode, a FASTA file with all mutants. 

 

Figure 5.6 – Graphical representation of the AMYCO score. AMYCO output representation of a low aggregation-

prone (D290V Y283K), the wild type, the natural pathogenic mutant D290V and a high aggregation -prone (D290V 

D276V) hnRNPA2 prion-like protein variants. 

5.2.4 RESULTS 

Performance  

The AMYCO algorithm, which combines the predictions of the composition based prion domain 

predictor PAPA (Toombs, et al., 2012) with our previously developed pWALTZ program (Sabate, et al., 

2015), which identifies sequences with amyloidogenic potential inside these domains, performs better 

than PAPA alone (Table 5.2). pRANK is a novel multiple-instance machine learning method aimed to 

predict prion propensity based on amino acid composition alone (Afsar Minhas, et al., 2017). We 

compared the performance of AMYCO and pRANK web servers in predicting the impact of mutations on 

human hnRNPA2 aggregation propensity (Figure 5.4). AMYCO clearly outperforms pRANK (Table 5.2), an 

observation which is consistent with the important influence that sequential features exert on protein 

aggregation (Sabate, et al., 2010). 
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Table 5.2 – Performance of pRANK and AMYCO approaches in the prediction of mutation impact upon 
the aggregation of the human prion-like protein hnRNPA2. 

 
pRANK AMYCO  

Sensitivity 0 1 

Specificity 1 1 

Precision - 1 

Accuracy 0.45 1 

MCC - 1 

Mean % error -7.08 -1.25 

Standard Deviation (%) 37.71 12.19 

SEM (%) 8.04 2.44 

Coefficient of Determination 0.150 0.882 

P-value (two tailed test) 0.468 < 1.00 x 10-8 

Rho (ρ)    0.334  0.929 

The best performance according to each particular parameter is shown in bold. The sensitivity, specificity, 
precision, accuracy and Matthews correlation coefficient (MCC) were calculated from point mutations in hnRNPA2 
considering positive those mutations which increased the mutant/wild type prion Ade+ colony ratio (a reporter of their 
aggregation) by at least one order of magnitude (Paul, et al., 2017). Proline mutants score under pWALTZ threshold, so 
they are not taken into account. The final dataset was composed of 13 True positives (TN) and 8 true negatives (TN). 

 

AMYCO was further assayed on known mutations promoting the apparition of a de novo prion-like 

behavior (Table 5.3). It was able to predict a large increase in aggregation propensity for mutations that 

convert the non-prionic PrLDs of PUF4, YLR177W, KC11 and PDC2 yeast proteins into prionic when 

expressed in yeast (Paul, et al., 2015) (Table 5.3). Importantly, according to AMYCO, five out of the eight 

variants were predicted to have acquired a very high aggregation propensity. These variants are exactly 

the ones experimentally shown to induce a prionic phenotype with basal protein levels, without a need 

for overexpression (Paul, et al., 2015) (Table 5.3).  

Table 5.3 – AMYCO correctly predicts prion converting mutations on yeast proteins. 
 

Protein variant AMYCO score 

PUF4 wt 0 
PUF4mut 0.69 
*PUF46PP,1N  0.93 
PUF44PP 0.60 

YLR177W wt 0 
*YLR177Wmut 0.85 
*YLR177W4PP,1N 1.23 
*YLR177W4PP 1.03 

KC11 wt 0 
*KC11mut 0.97 

PDC2 wt 0 
PDC2mut 0.78 

 
AMYCO correctly predicts mutations that induce prionic phenotypes (Paul, et al., 2015). Mutations predicted to 

increase and highly increase aggregation propensity are shown in italics and bold, respectively. Variants that do not 

need overexpression to generate a prionic phenotype in yeast are indicated with an asterisk. 
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Finally, AMYCO is able to predict an increase in aggregation propensity for a series of disease-linked 

mutations occurring in different human prion-like proteins. In particular, mutations in hnRNPA1 

associated to ALS (Kim, et al., 2013), mutations in hnRNP D0/AUF1 identified in familiar cases of Crohn 

Disease (Prakash, et al., 2017) and mutations in hnRNP DL causing limb-girdle muscular dystrophy 1G 

(Vieira, et al., 2014) (Table 5.4). 

Table 5.4 – AMYCO predicts disease-causing mutations on human prion-like proteins 
 

Protein variant AMYCO score 

hnRNPA1 wt 0.34 
hnRNPA1 D314V 0.59 
hnRNPA1 D314N 0.53 

hnRNP DL wt 1.18 
hnRNP DL D378H 1.26 
hnRNP DL D378N 1.30 

hnRNP D0 wt  1.13 
hnRNP D0 D319V 1.33 
hnRNP D0 isoform-2 D300V 1.33 

  
AMYCO identifies multisystem proteinopathy and ALS causing mutations on hnRNP A1 (Kim, et al., 2013), Crohn 
Disease causing mutations on both isoforms of hnRNP D0/AUF1 (Prakash, et al., 2017) and limb-girdle muscular 
dystrophy 1G (LGMD1G) on hnRNP DL (Vieira, et al., 2014) 

5.2.4 CONCLUSION 

AMYCO has been developed as a web application to assess the impact of mutations on the 

aggregation propensity of prion-like proteins, allowing a fast and accurate evaluation of the effect of 

disease-associated mutations in these polypeptides; as well as engineering novel variants with designed 

aggregation propensities for different applications. 

5.2.5 AVAILABILITY AND REQUIREMENTS 

Project name: AMYCO 
Project home page: http://bioinf.uab.cat/amyco/ 
Operating system(s): Platform independent 
Programming language: A computing core coded in Python and a front end written in a combination of 
HTML and Perl CGI. 
Other requirements: A web browser with a working internet connection. 
License: None 
Any restrictions to use by non-academics: None 
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Chapter IV – Characterization of prion-like proteins 

6.1 Computational analysis of candidate prion-like proteins in 

Bacteria and their role 
Valentín Iglesias1, Natalia Sanchez de Groot1* and Salvador Ventura 1,* 
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6.1.1 ABSTRACT 

Prion proteins were initially associated with mammalian transmissible spongiform encephalopathies such 

as Creutzfeldt Jakob or kuru. However, deeper research revealed them as versatile tools, exploited by the 

cells to execute diverse functions, acting as epigenetic elements or building membrane free 

compartments in eukaryotes. One of the most intriguing properties of prion proteins is their ability to 

propagate a conformational assembly, even across species. In this context, it has been observed that 

bacterial amyloids can trigger the formation of protein aggregates by interacting with host proteins. As 

our life is closely linked to bacteria, either through a parasitic or symbiotic relationship, prion-like proteins 

produced by bacterial cells might play a role in this association. Bioinformatics is helping us to understand 

the factors that determine conformational conversion and infectivity in prion-like proteins. We have used 

PrionScan to detect prion domains in 839 different bacteria proteomes, detecting 2200 putative prions in 

these organisms. We studied this set of proteins in order to try to understand their functional role and 

structural properties. Our results suggest that these bacterial polypeptides are associated to peripheral 

rearrangement, macromolecular assembly, cell adaptability and invasion. Overall, these data could reveal 

new threats and therapeutic targets associated to infectious diseases. 

6.1.2 INTRODUCTION 

An diverse number of human diseases are associated with amyloid forming proteins (Chiti and 

Dobson, 2006). Despite these polypeptides are diverse in function, sequence and origin, all share the 

propensity to form β-sheet aggregates (Karran, et al., 2011). Amyloid fibril forming proteins appear to be 

highly conserved and have been detected in all kingdoms of life, suggesting that, despite they are usually 

thought to be involved in pathogenic processes, they might indeed provide selective advantages (Espinosa 

Angarica, et al., 2013; Malinovska, et al., 2013; Sanchez de Groot, et al., 2015; Sanchez de Groot, et al., 

2012). In fact, cells exploit the formation of amyloid fibrils for diverse purposes (Coustou, et al., 1997; 

Chapman, et al., 2002; Fowler, et al., 2006; Graether, et al., 2003; Iconomidou, et al., 2000; Maji, et al., 

2009; Podrabsky, et al., 2001), from structure scaffolding, such as the melanin at the skin, to heritable 

information transmission, such as the yeast prions (Chien and Weissman, 2001; Liebman and Chernoff, 

2012; Shorter and Lindquist, 2005; Staniforth and Tuite, 2012). Because amyloid fibers and their unstable 
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intermediates can be highly cytotoxic (e.g. by disrupting the membrane integrity), the assembly of 

functional amyloids is a process tightly regulated by the organisms, which involves the assistance of 

chaperones and a spatiotemporal control (Blanco, et al., 2012; Evans, et al., 2015; Gsponer and Babu, 

2012; Taylor and Matthews, 2015). 

Prions are a singular subset of proteins able to change from one conformational state to another, often 

an amyloid aggregate, and transmit it to other homologous polypeptide sequences. Importantly, recent 

results suggest that amyloid proteins involved in Alzheimer’s and Parkinson’s diseases could be infectious 

and act as prion-like proteins in the brain (Chiti and Dobson, 2006; Stohr, et al., 2012). Most prions (with 

the exception of the mammalian prion protein PrP), constitute a subset of aggregation-prone proteins 

with special sequential composition. Whereas classical amyloid proteins contain specific regions rich in 

hydrophobic residues that lead the protein self-assembly, yeast prions exhibit domains that are commonly 

enriched in asparagine and glutamine (Q/N) (Dorsman, et al., 2002; Fandrich and Dobson, 2002; 

Halfmann, et al., 2011) but also in glycine, serine and tyrosine residues (Kato, et al., 2012) which are 

generally known as prion domains (PrD). This pattern has been found in human prion-like proteins 

associated to neurodegenerative diseases, such as FUS (linked to dementia) or TDP43 (related  to 

amyotrophic lateral sclerosis) (Kato, et al., 2012). This special bias results in low complexity sequences 

displaying disordered structures, a crucial property that ensures conformational flexibility, permits self-

assembly without a requirement for conformational unfolding and allows conversion between species 

(Fuxreiter, 2012; Fuxreiter and Tompa, 2012; Malinovska, et al., 2013; Tompa and Fuxreiter, 2008). In fact, 

one of the main evolutionary strategies to control protein aggregation is to ensure a stable globular 

structure preventing, in this way, the exposition of aggregation prone stretches (Lim and Sauer, 1991; 

Monsellier, et al., 2007; Sanchez, et al., 2006). However, a polypeptide sequence requires more than just 

low complexity to behave as a prion (Espinosa Angarica, et al., 2013; Malinovska, et al., 2013). Hence, it 

has been found that the propagation of amyloid aggregation depends on characteristics such as the 

degree of over/under representation of specific residues and the length of the considered low complexity 

region (Ross, et al., 2004; Ross, et al., 2005; Toombs, et al., 2010). 

The knowledge acquired in the last decade has allowed the design of approaches to predict prion-like 

proteins. The first predictive algorithms were based on the properties of the primary sequence 

responsible for the formation of the classical amyloid aggregates (e.g. high hydrophobicity and intrinsic 

β-sheet propensity). However, they failed to detect Q/N-rich stretches since these are polar residues that 

do not fulfil the typical requirements associated with classical β-sheet-amyloid aggregation (Pawar, et al., 

2005). Then, the algorithms focused on localising Q/N rich segments in the primary sequence (Harrison 

and Gerstein, 2003; Michelitsch and Weissman, 2000), disregarding the contribution of the rest of 

residues (Ross, et al., 2005), but being unable to score the proteins in terms of their relative 

prionogenicity. A big improvement was achieved by combining computational approaches with the 

experimental validation of new proteins displaying in vitro prion properties. This strategy enlarged the set 

of prion sequences and permitted the refinement of the available theoretical models. Alberti and co-
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workers employed a hidden Markov model (HMM), based on the 4 bona fide yeast prions identified to 

that moment, obtaining 200 yeast protein candidates carrying prion-like domains (PrLDs) (Alberti, et al., 

2009). The in vivo and in vitro analysis of the top 100 candidates rendered 29 proteins that proved 

heritable switch and significant in vivo amyloid formation. We have recently exploited this experimentally 

curated dataset to develop a probabilistic model of PrLDs able to discover prionogenic proteins in 

complete proteomes (Espinosa Angarica, et al., 2013). We have implemented this model in a web-based 

algorithm called PrionScan able to handle with large sequence databases and predict prion-like sequence 

stretches in the proteomes annotated in UniprotKB (Espinosa Angarica, et al., 2014). In a previous work, 

we employed this predictor to analyse all the proteomes reported until that moment (1536 organisms) 

(Espinosa Angarica, et al., 2014). We discovered 20540 new prion candidates present in 10 different 

taxonomic divisions, supporting prions’ universality. We also observed that in most cases the ratio of 

proteins with prion-like domains is less than 1% of the whole proteome. Thus, in Archaea and Viruses the 

number is less than 10 per proteome, while in Bacteria, Fungi, Plantae and Animalia the range is from few 

tens to few hundreds, depending on the organisms. Interestingly, we observed that, in different 

organisms, the predicted prion-like proteins are associated with different cellular components and 

biological processes, thus supporting prion properties being employed for diverse biological purposes.  

Bacteria are ubiquitous in the world, adapted to multiple environments and able to growth in the most 

extreme conditions. Moreover, bacterial infection remains a leading cause of death in both Western and 

developing world (WorldHealthOrganisation, WHO). Understanding which bacteria proteins display 

prionic properties could help to deepen our understanding of bacterial biology and pathogenesis. Indeed, 

despite no genuine prion has been characterized so far in prokaryotes, it is clear that at least E. coli can 

generate infectious conformations of heterologous fungal prions (Espargaro, et al., 2012; Garrity, et al., 

2010; Sabate, et al., 2009; Yuan, et al., 2014). In an analogous manner, the formation of amyloids was 

initially thought to be restricted to eukaryotic cells, but after the first report demonstrating that the curli 

fibers that emerge from the surfaces of E. coli cells had the same physical properties as human amyloids 

(Chapman, et al., 2002), the number of discovered bacterial proteins displaying this ability is steadily 

increasing (Blanco, et al., 2012; Otzen and Nielsen, 2008; Schwartz and Boles, 2013). Moreover, it has 

been observed that bacterial amyloids can initiate the formation of amyloid aggregates upon interaction 

with diverse host proteins (Friedland, 2015; Hill and Lukiw, 2015; Hufnagel, et al., 2013; Otzen and Nielsen, 

2008). With the aim to understand better the potential relevance of bacterial PrLDs, here we focus on 

study the 2200 putative prion proteins predicted by PrionScan within the taxon domain bacteria, as 

derived from the study of 839 bacterial proteomes. Specifically, we analyse the functions and structures 

associated to these proteins and discuss the possible advantages that they could provide, ensuring their 

evolutionary conservation. 

6.1.3 MATERIAL AND METHODS 
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Sequence Dataset  

Our database was comprised of Uniprot Knowledgebase (UniProt, 2015) entries included both in 

Swissprot and TrEMBL (update 2012_03) under the taxon domain bacteria in order to track the prion like 

domains present in bacterial proteomes. 

Discovering Prion-Like Domains  

PrionScan, an algorithm developed by our group and described previously (Espinosa Angarica, et al., 

2014), was used in order to predict prion-like domains. Employing a cutoff of 50 bits, we identified 2200 

PrLD. Further analysis was made a posteriori in order to identify common traits including the Gene 

Ontology GO terms for the molecular functions, biological processes and cellular components and 

relevant domains according to Pfam database. Pfam domains and GO terms were manually annotated 

and counted in the 2200 positive PrLD containing bacterial proteins according to the UniprotKB 

annotations (UniProt, 2015). Due to the large amount of individual Pfam domains, only those ones 

represented over 5 times were considered in the analysis. Then, domains were manually clustered by 

similarity in their cellular function or process. Pathogenic bacteria (n = 18) were manually annotated by 

stringent bibliographical search for evidences of human pathogenic association at the NCBI. Then we 

calculated the GO terms and Pfam domains enrichment.  

Statistics analysis 

The enrichment analysis was performed with GOStat (Beissbarth and Speed, 2004) against the 

goa_uniprot database (UniProt, 2015). Out of 2200 initial proteins, 244 (11.09%) were annotated. A p-

value of 0.1 was set as a cut-off and a false discovery rate (Benjamini) test was performed to obtain it. The 

initial clustering was performed by classifying the obtained Gene Ontologies according to their category: 

biological process, cellular component or molecular functions. We calculated the enrichment factors (EF) 

for every GO term to show how much higher is the proportion of hits in relation to the background sample 

(the total number of proteins). Accordingly, the EF is the number of hits among PrLDs (nl) divided by the 

number of annotated proteins in our list (pl) and subsequently divided by the ratio between the hits of 

that GO term in goa_annotation (nb) and the total number of proteins (pb) in this specific GO term: 

𝐸𝐹 =

𝑛𝑙

𝑝𝑙

𝑛𝑏

𝑝𝑏

=
𝑛𝑙𝑝𝑏

𝑛𝑏𝑝𝑙
 

 
Only those GO terms with a log2 fold enrichment > 0.5 were considered to be significant for their 

subsequent analysis. 

6.1.4 RESULTS 

Identifying PrLDs in Bacteria proteomes 

We have analysed 839 bacterial proteomes containing a total of 860337 proteins with PrionScan 

(Espinosa Angarica, et al., 2013), from which we detected 2200 putative prion proteins,  accounting for a 

0.3% of the complete protein dataset. Interestingly, in the 18 selected pathogenic bacteria, proteins 
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containing PrLDs are significantly more abundant (2.4%) and indeed they constitute 40% of all the 

detected PrLDs (891 PrLDs). Moreover, some specific pathogenic organisms appear to be specially 

enriched in PrLDs: Staphylococcus aureus (18%), Enterococcus faecalis (10%), Enterococcus faecium (5%) 

or Staphylococcus epidermidis (3%). These data show the diverse distribution of predicted PrLDs in 

bacterial species, suggesting certain associated functionality. 

 

Figure 6.1 – Enrichment and clustering of PrLDs-containing proteins in bacteria accordingly to their biological 
process GO terms. The enrichment analysis was performed with GOStat against the goa_uniprot database. A) 
Proteins with GO terms associated with cell morphogenesis. B) Proteins with GO terms associated to other biological 
processes. 
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Figure 6.2 – Enrichment and clustering of PrLDs-containing proteins in bacteria accordingly to their GO terms. A) 

Molecular function GO terms and B) Cellular component GO terms ontologies represented. 

As an attempt to understand the biological purpose of these PrLDs we analysed the Gene 

Ontology enrichment of the corresponding proteins. To facilitate the data interpretation, we grouped the 

enriched GO terms by similar cellular function or process. We found the largest cluster of GO terms 

corresponds to Biological Processes involved in cell morphogenesis, such as cell projection or cell wall 

dynamics. This group contains 40 different terms, some of them with fold enrichments above 200 (pilus 

assembly) (Figure 6.1A). We also found several enriched Biological Processes involved in secretion, 

nutrient import, invasion and virulence; all of them involved in interaction with the surrounding 

environment. Interestingly, in invasion and virulence we find processes associated to encapsulation, 

sporulation and interaction with other organisms. Between the Biological Processes, the metabolic ones 

are particularly involved in the assembly of macromolecules such as polysaccharides and peptidoglycan 

(Figure 6.1B). The other three Biological Processes clusters are nucleotide metabolism, stimulus to 

response and localisation, which are associated to cellular adaptation and the formation of contacts 

between molecules. When we analyse the Molecular Functions (Figure 6.2A), the enriched GO terms 

correspond to nucleic acid binding, metabolic processes, drug binding and transport. These groups 

correspond to activities associated with the formation of functional interactions. Additionally, the clusters 

of metabolic process and drug binding perform functions related to cell wall such as peptidoglycan 

synthesis or chitin production. Moreover, nucleic acid binding functions could be associated to 

mechanisms of cellular adaptation. The proteins in this cluster are strongly associated to two essential 

functions: translation initiation and DNA templated transcription. Surprisingly, the enriched GO terms of 

the Cell Component do not include any inside part of the cell, just terms associated to the external part: 
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outer membrane, peptidoglycan based cell wall, plasma membrane, cell wall and proton transport in 

flagella (Figure 6.2B) (Namba, 2001). It is clear that many of the detected proteins, and specifically those 

involved in nucleotide binding, are located at the cytosol; however due to the large majority of bacterial 

proteins are categorized as cytosolic, this may result in a poor enrichment factor for this compartment. 

Overall, the most remarkable characteristics of the bacteria proteins containing PrLDs are their role in 

contact formation (e.g. macromolecular assembly), their relationship with the cell periphery and their 

involvement in nucleic acid mediated processes. 

Structural domains linked to Bacteria PrLDs proteins 

To learn more about the bacterial proteins that possess putative PrLDs we examined their 

constituent functional domains (Finn, et al., 2014) (Figure 6.3). After clustering the Pfam domains we 

obtained eight functional groups: nucleotide binding, cell wall dynamics, invasion and virulence, protein-

protein interaction, iron transport, heat-shock and domains of unknown function. 

 
Figure 6.3 – Number of different Pfam domains found in PrLDs-containing proteins. The domains are indicated by 
their Pfam ID. This plot only shows the domains with > 5 repetitions in the dataset. 
 

The most abundant group of Pfam domains is the one involved in nucleotide binding (1183 domains). 

Among them, several domains are associated to translation such as GTP-binding elongation factors 

(GTP_EFTU), Rho termination factors (Rho_RNA_bind and Rho_N) and translation initiation factors (IF2 

and IF2-N). Canonical nucleotide binding domains are also be found such as the single stranded binding 

protein (SSB), the single zinc ribbon domain (zinc_ribbon_2), the major structural motif helix-turn-helix 

(HTHth-25) and the S1 RNA binding domain. Finally, in this group we can also find an ATP synthase domain, 



114 
 

associated with Rho termination factors (ATP-synt_ab), and the Ribonuclease B OB domain (Finn, et al., 

2014). 

The second most abundant group of Pfam domains is, as seen in the GO functional enrichment, associated 

to cell wall dynamics (978 domains). This group clusters domains involved in cell wall metabolism 

(including biosynthesis and degradation) and proteins that bind the wall to build functional structures. For 

instance, the lysine motif (Lysm) is involved in bacterial cell wall degradation and may also have 

peptidoglycan binding function (Bateman and Bycroft, 2000). The Glucosaminidase, Glycosyl transferase 

family 2 (Glycos_transf_2) and Transpeptidase are three domains associated with the biosynthesis of 

polysaccharides and peptidoglycan. We also found 67 proteins with a transglycosylase domain (Transgly) 

that catalyse the polymerisation of murein glycan chains as well as 12 proteins with a SLH domain that is 

associated with the assembly of (glyco)proteins that coat the bacteria surface. The PASTA domain is 

involved in cell wall biosynthesis and can bind the β-lactam rings enclosed in antibiotics. The most 

abundant domain from this group is the CHAP domain (245 proteins) with an amidase activity implicated 

in cell wall metabolism. Other domains also linked to cell wall are: the collagen domain (connective 

structures), the NlpC/P60 family (Anantharaman and Aravind, 2003) (peptidases associated to 

lipoproteins), the G5 domain (adhesion), the fibronectin type III (fn3, adhesion), the cell wall binding motif 

1 (CW_binding_1, a repeat similar to some clostridia toxins) and the carbohydrate-binding module 

(CBM_5_12, enriched in chitinases and associated to cellulose scaffolding). Additionally, the unknown 

domain DUF1388 has also been associated with surface lipoproteins. 

The third group contains 130 proteins with domains associated to secretion and invasion. Here we have 

several domains associated to sporulation (SPOR) and spore germination (GerA). The secretin domains 

are involved in protein export via pore formation in a signal sequence-dependent manner (Tosi, et al., 

2014; Van der Meeren, et al., 2013). The PDZ domains maintain together and organize signalling 

complexes located throughout the cellular membranes. Finally, the macrophage killing protein domain 

(ICmL) and the Endotoxin_N are domains involved in the formation of pores at the host cell membrane 

(Finn, et al., 2014). 

Between the PrLDs containing proteins we have also found three different tetratricopeptide repeat 

domains (46 repetitions), which scaffold protein-protein interactions and mediate the assembly of multi-

protein complexes. In addition, we also obtained 54 domains linked to iron binding and transport 

(Metallophos, NEAT and FecR) and 58 proteins involved in heat shock response (Anti-sigma factor N-

terminus), both types of domains aimed to interact with or to transduce signals coming from the cell 

external microenvironment.  

Overall, the functional families of the PrLDs containing proteins (Figure 6.3) resemble their GO 

enrichment classifications (Figure 6.1 and 6.2), supporting the idea that these proteins are predominantly  

associated to the external part of the cell (e.g. cell wall) and in interactions with other molecules (e.g. 

nucleotide binding). 
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Structure composition of bacteria PrLDs containing proteins 

As expected, the detected PrLDs are located inside low complexity regions (e.g. disordered, coiled 

coil, etc) (Figure 6.4 and 6.5). These regions are abundant in prion-like proteins and connect different 

structural domains (Figure 6.4) and elements with secondary structure (Figure 6.5). 

 

Figure 6.4 – PrLDs-containing proteins also contain multiple domains. A) Diagrams showing a consensus distribution 
and size of the most common domain combinations as collected in Pfam. The light grey spaces represent low 
complexity regions (coiled coil, disordered, etc). The domains are indicated by their Pfam ID. B) PrLDs sequence 
conservation measured in bits. The symbol height reflects the relative frequency of the corresponding amino acid at 
that position. Colour code: N in black; G in red; G, S and Y in green; the other residues in purple. 
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Figure 6.5 – Structure of the domains located in the PrLDs-containing proteins. Representative structures of the 
domains and domain combinations enclosed in the PrLD-containing proteins. The domains are indicated by their Pfam 
ID. A) Example of quaternary complex where a multi-domain structure, composed by IF-2, IF2_N and GTP_EFTU 
domains, interact with a tRNA. The image shows partial information from the PDB structure 1MJ1. Fitting the ternary 
complex of EF-TU/tRNA/GTP and ribosomal proteins into a 13 Å cryo-EM map of the coli 70S ribosome. B) Example 
of IF-2 domain structure and the different states of the disordered region located in front of it. PDB structure 1Z9B. 
Solution NMR structure of the C1-subdomain of Bacillus stearothermophilus translation initiation factor IF2 (fragment 
515 - 635). C) Example of multi-domain structure composed by a NlpC-P60 and a Lysm domains. PDB structure 4XCM. 
Crystal structure of the putative NlpC/P60 D,L endopeptidase from Thermus thermophilus. D) Example of SH3_3 
domain structure and the different states of the disordered region located after it. PDB structure 2KRS. Solution NMR 
structure of SH3 domain from CPF_0587 (fragment 415-479) from Clostridium perfringens. E) Example of multi-
domain structure composed by a transglycosylase and a transpeptidase domain. PDB structure 3ZG7 Crystal Structure 
of Penicillin-Binding Protein 4 from Listeria monocytogenes in the apo form. F) Structure showing a homodimer 
constituted by Secretin_N domains. PDB structure 4E9J. Crystal structure of the N-terminal domain of the secretin 
XcpQ from Pseudomonas aeruginosa. Notice that at the multi-domain structures (B and D) the low complexity regions 
are abundant. 

 

From 2200 PrLDs containing proteins, 1514 have at least one defined Pfam domain (69%). Additionally, 

612 of these sequences (40%) have more than one structural domain (Ekman, et al., 2005). When we 

focus on the prion-like proteins from pathogenic bacteria (Figure 6.6), we observe that they have a lower 

number of designated Pfam domains (only 301 proteins) suggesting they could be less structured proteins 

or, more likely, carry still unknown domains and functions. Despite this, the proteins from pathogenic 

bacteria with reported Pfam domains tend to contain more than one structural domain family. The 

percentage of proteins with multiple domains appears to be higher in these proteomes (60%) than in the 

complete protein dataset (Ekman, et al., 2005). 
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Figure 6.6 – Clustering of GO terms and Pfam domains associated to PrLDs-containing proteins in pathogen 
bacteria. A) Cellular component GO terms. B) Biological Process GO terms. C) Molecular Function GO terms. D) Pfam 
domains associated. 

 

When the proteins have multiple structural domains, the PrLDs regions can be located either close to an 

end or between structures (Figure 6.4A). Interestingly, the amino acid composition of the PrLDs regions 

is similar between proteins sharing similar domain arrangement but different between proteins with 

distinct domains composition (Figure 6.4B). In agreement with the data reported for yeast prion PrDs, we 

observe that the bacterial PrLDs are abundant in N (30%), Q (21%), S (11%) and G (11%). 

The domain combinations tend to be functionally associated. For example, we found 233 protein 

sequences containing two GTP-binding elongation factor domains and two translation initiation factor 

domains that are related with nucleotide binding and translation (Figure 6.4). During protein synthesis 

the initiation factors (IF2) form a ternary complex with GTP and the initiator Met-tRNA (Wienk, et al., 

2005). This complex binds the ribosome to interact with the AUG-codon of the starting methionine, once 

the codon is found IF2 has to hydrolyse its GTP to be released (Figure 6.5A and 6.5B). 

P60 domain is a cell-wall-associated peptidase domain essential for adherence and invasion in some 

Listeria species. In agreement with previous studies (Anantharaman and Aravind, 2003; Ponting, et al., 

1999), we observed the P60 domain associated with SH3 and LysM domains (Figure 6.4, Figure 6.5C and 

6.5D). It has been hypothesized that this combination facilitates the interaction with peptides, 

carbohydrates and lipids from the bacterial cell wall and thus their functionality (Anantharaman and 

Aravind, 2003; Ponting, et al., 1999). 
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Rho factor proteins tend to be accompanied with an RNA-binding domain and an ATP-hydrolysis domain 

(Figure 6.4). The Rho termination factor disengages newly transcribed RNA from its DNA template. Rho 

catalyses the 3' endpoint formation and the release of mRNA molecules from DNA templates (Skordalakes 

and Berger, 2003). The hydrolysis of ATP provides the energy required to get the RNA-DNA region and 

break the hybrid structure. 

Another example of functional domain combination that contains PrLDs are the penicillin-binding 

proteins. They are bifunctional proteins involved in the final stages of the peptidoglycan synthesis (Figure 

6.4 and Figure 6.5E). At the N-terminus there is a transglycosylase domain involved in the formation of 

linear glycan strands. And at the C-terminus there is a transpeptidase domain involved in the cross-linking 

of peptide subunits and drug binding, which is also responsible of the penicillin-sensitivity (Contreras-

Martel, et al., 2011; Macheboeuf, et al., 2005; Sauvage, et al., 2008). 

NLPC/P60 and Glucosaminidase are two cell wall endopeptidase domains, which emerged together and 

that we have found accompanied with a PrLDs (Figure 6.4). These two domains are commonly employed 

to cleave the septa connecting the daughter cells during cell separation (Anantharaman and Aravind, 

2003; Ruggiero, et al., 2010). 

The secretins are another example of domain combination found in our set of PrLDs bacteria containing 

proteins (Figure 6.4 and 6.5F). Particularly it is the most abundant combination of two domains (67 times) 

found in the PrLDs containing proteins. The secretin domains detected take part in protein secretion 

systems type II and III. They build multimeric pores to transport macromolecules either to the periplasm 

or to inject them into eukaryotic cells (Tosi, et al., 2014). In general, secretin proteins consist of two 

domains: an N-terminal periplasmic domain responsible of the pore formation and a C-terminal domain 

responsible of the attachment to the outer membrane (Tosi, et al., 2014; Van der Meeren, et al., 2013). 

Interestingly, the PrLDs detected are located between these two secretin domains (Figure 6.4). 

 
6.1.5 DISCUSSION 

Bacterial PrLDs are associated to cellular adaptability  

We observed that a significant fraction of the bacteria PrLDs containing proteins are located at 

the cell periphery and are involved in cell wall metabolism, especially peptidoglycan biogenesis. 

Peptidoglycan is the major component of bacterial cell walls; it is essential for growth, cell division and 

maintenance of the cellular shape, enabling the bacteria to resist intracellular pressures of several 

atmospheres. In some particular cases, the proteins present in the peptidoglycan can be anchored to the 

biofilm amyloid network and, more interesting, assist its assembly. This is the case of the TapA protein 

from Bacillus subtilis, which is present in the peptidoglycan, where it functions as an anchor point for TasA 

fibres (Friedland, 2015; Romero, et al., 2011; Sauvage, et al., 2008). The formation of biofilms is a powerful 

strategy that protects a bacterial community from chemicals and antibiotics and facilitates the attachment 

to different surfaces even host cells. Interestingly, Staphylococcus aureus, a biofilm forming pathogen, is 

the bacteria specie with the highest content in PrLDs. In this organism we found PrLDs-containing proteins 
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linked to cell wall, proteins involved in secretion and proteins associated to virulence. These data point to 

a possible relationship between the identified proteins and the biofilm formation. In fact, preliminary data 

shows the S. aureus PrLDs-containing protein staphylococcal secretory antigen ssaA2 (UniprotKB 

accession number Q2G2J2) is able to form amyloid fibrils in vitro. Thus, a more exhaustive analysis of 

these proteins might confirm their association to biofilm formation and their possible role as a druggable 

targets. 

The other processes enriched in the PrLDs containing proteins can also provide versatility and adaptability 

to different environments. For instance, the proteins involved in stimulus response and invasion and in 

virulence have a clear role in supporting the bacteria development under variable conditions. From inside 

the cell the nucleotide binding proteins can be involved in functions that support cell adjustment such as 

transcription and translation (i.e. change the expression levels) or DNA repair that can enhance cell 

survival in stress conditions. Interestingly, most of the novel prion-like proteins discovered recently in 

humans play a role in RNA/DNA binding (King, et al., 2012). In bacteria, we also found proteins involved 

in cellular localization that can rearrange different compounds adapting the cell to new requirements. 

Overall, as previously proposed for yeast prions, bacterial prions might serve as bet-hedging devices for 

diversifying microbial phenotypes. 

Bacterial PrLDs are associated to functional and interacting proteins    

The 69% of PrLDs containing proteins have defined Pfam domains and 40% of them carry multiple 

domains. Since domains come together to increase proteins functionality (Alberti, et al., 2009; 

Anantharaman and Aravind, 2003), our data suggest that the proteins with PrLDs tend to be functional. 

Moreover, in pathogenic bacteria PrLDs are associated to higher percentage of proteins with multiple 

domains, more than the average of the proteomes from this taxon (Ekman, et al., 2005). This data suggests 

that, in pathogenic bacteria, PrLDs containing proteins might have a versatile character.  

The detected PrLDs are located in proteins rich in low complexity regions. These regions are important to 

provide the structural flexibility required to form interactions between proteins. This flexibility also allows 

the formation of reversible interactions, which are essential to build dynamic macromolecular assemblies. 

In fact, the GO terms associated to the PrLDs detected by PrionScan comprise functions and processes 

linked to interaction and assembly. Many of these GO terms involve binding proteins, nucleotides or other 

cellular compounds. Human RNA/DNA binding proteins use their PrLDs to attain functional 

macromolecular assemblies that regulate transcription and translation. In many cases these functions are 

exerted in the so called ribonucleoprotein granules (Malinovska, et al., 2013). Many of the proteins 

containing DNA/RNA binding domains identified in the present also work by forming large complexes and 

indeed are implied in ribonucleoprotein complex biogenesis and assembly suggesting that this property 

can be conserved across species. In addition, the association to cell wall dynamics suggests that certain 

proteins can be implied in the assembly and disassembly of peptidoglycans and polysaccharides. Overall, 

our data supports that, as previously suggested for eukaryotic PrLDs, bacteria PrLDs could play an 

important role in the arrangement of macromolecular structures (Malinovska, et al., 2013). 
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Prions in other proteomes 

Saccharomyces cerevisiae is the organism from which more information about its prion proteins has been 

so far collected (Alberti, et al., 2009; Malinovska, et al., 2013). These works showed for the first time that 

proteins could be employed for relevant functions such as epigenetic elements essential to adapt the 

cellular metabolism and increase the cell survival in front of environmental changes (Alberti, et al., 2009; 

Newby and Lindquist, 2013). In S. cerevisiae the prion proteins are associated to functions that involve 

the formation of contacts such as RNA-binding, membrane-interacting, DNA binding and protein 

interaction domains (Malinovska, et al., 2013). These proteins are located at the cytoskeleton, nucleus, 

ribonucleoprotein complexes and chromatin. Comparing S. cerevisiae with other eukaryotic proteomes 

shows PrLDs-containing proteins with similar function and location. For example, in human and fruit fly 

these proteins are also involved in transcription, chromatin remodelling, ribonucleoprotein complex 

formation, and cytoskeleton (Malinovska, et al., 2013). As a general trend, PrLDs in Animalia tend to be 

involved in the regulation of central biological processes and organism development, which in vertebrates 

includes the development of the neural crest. Hence, many human PrLDs are found in RNA-binding 

proteins, whose deregulation has previously been associated with several neurodegenerative diseases 

(King, et al., 2012). 

Eukaryote PrLDs-containing proteins show less functional diversity than bacteria. In fact, here we have 

collected all the enriched eukaryote functions (i.e. transcription, RNA binding and DNA binding) in just 

one cluster (nucleotide binding). Despite this difference, it appears that, independently of the considered 

taxon, PrLDs-containing proteins mostly appear to be involved in a similar regulatory purpose: adapting 

the cell to a variable environment. This is basically achieved through the control of the gene expression in 

eukaryotes, but in prokaryotes this is also reached by interacting with the environment. This difference 

could be due to the different surrounding conditions as microorganisms face the constant challenge of 

fluctuating conditions in their natural environments. These strategies may have facilitated the invasion of 

new environments (e.g. water, air) and the coexistence or exploitation of diverse life forms (e.g host cells). 

Bacteria PrLDs and human diseases 

Our life is closely linked to bacteria, either through a parasitic or symbiotic relationship. On one hand, 

human microbiota is required to assist many processes and ensure a healthy body. On the other hand, 

many common pathogenic bacteria are acquiring antibiotic resistance in all regions of the world (e.g. 

urinary tract infections, pneumonia, bloodstream infections) (WorldHealthOrganisation, WHO). These 

bacteria cause many hospital-acquired infections, such as the methicillin-resistant Staphylococcus aureus, 

with an associated high mortality rate (Contreras-Martel, et al., 2011; WorldHealthOrganisation, WHO).  

To the already intricate scenario where bacteria and host interact, the risk of their amyloid proteins 

concurring and altering their conformational states adds an extra level of complexity (Otzen and Nielsen, 

2008). Additionally, the long periods that bacteria stay in the body, due to chronic infection or microbiota 

coexistence, enhances the chances of this event. In fact, recent studies have demonstrated that bacterial 
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amyloids can initiate the formation of amyloid aggregates upon interaction with host proteins (Hill and 

Lukiw, 2015; Hufnagel, et al., 2013; Otzen and Nielsen, 2008; Zhou, et al., 2012). Moreover, it has been 

reported that the injection of bacteria amyloids in mice causes the development of amyloidosis 

(Lundmark, et al., 2005). Overall, these data reminds the conformational template process associated to 

prion transmission and suggest that bacterial infection could be linked to neurodegenerative diseases 

(Friedland, 2015) .  

6.1.6 GENERAL CONCLUSIONS 

Despite PrLDs-containing proteins seem to be ubiquitous (Espinosa Angarica, et al., 2013; Malinovska, et 

al., 2013) they play distinct functional roles across different organisms. In this background, the 

mechanisms underlying host-bacteria relationship are just starting to be elucidated and, as a result, also 

the interplay between their amyloid proteins (Schwartz and Boles, 2013; Seviour, et al., 2015; Zhou, et al., 

2012). The studies on bacterial amyloids are showing us that these organisms rely on amyloid aggregates 

to execute a wide range of physiological functions (Blanco, et al., 2012; DePas and Chapman, 2012; Evans, 

et al., 2015; Gsponer and Babu, 2012; Schwartz and Boles, 2013; Seviour, et al., 2015; Taylor and 

Matthews, 2015; Zhou, et al., 2012). Although because the formation of amyloids comes at expenses of 

the presence of transient toxic species, cells tightly control the assembly of these macromolecular 

structures and how they can interact with proteins from other species (Evans, et al., 2015; Schwartz and 

Boles, 2013; Taylor and Matthews, 2015; Zhou, et al., 2012). Most of the bacterial amyloids described so 

far play a structural role and work extracellularly. Indeed, some of the PrLDs containing proteins with 

potential amyloidogenic properties were be linked to biofilms, structures that favour chronic human 

infections and, consequently, could increase the chances of a potential bacterial prion to alter the 

conformation of host proteins. However, despite their in vitro amyloid potential and in vivo prionic 

behaviour should be validated, the data in the present work suggest that, as it happens in yeast and 

humans, also in bacteria amyloid-like assemblies might play a regulatory role, since some of the detected 

candidates are linked to fundamental cellular functions such as transcription, translation or DNA repair. 

Intriguingly, linking the fact that we found at the same time association with extracellular environment 

and nucleic acid binding function, it has been reported recently that extracellular DNA is bound tightly by 

bacterial amyloid fibrils during biofilm formation and that amyloid/DNA composites are immune 

stimulators when injected into mice, leading to autoimmunity (Gallo, et al., 2015; Spaulding, et al., 2015). 

Overall, it becomes clear that a more exhaustive analysis of the putative bacterial prion proteins identified 

here is required in order to attain a better understand of their functional role and their relationship with 

human diseases. We envision the presented data could help to identify new drug targets and develop new 

potential therapeutic approaches. 
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6.2.1 ABSTRACT 

Prions are a singular subset of proteins able to switch between a soluble conformation and a self-

perpetuating amyloid state. Traditionally associated with neurodegenerative diseases, increasing 

evidence indicates that organisms exploit prion-like mechanisms for beneficial purposes. The ability to 

transit between conformations is encoded in the so-called prion domains, long disordered regions usually 

enriched in glutamine/asparagine residues. Interestingly, Plasmodium falciparum, the parasite that 

causes the most virulent form of malaria, is exceptionally rich in proteins bearing long Q/N-rich sequence 

stretches, accounting for roughly 30% of the proteome. This biased composition suggests that these 

protein regions might correspond to prion-like domains (PrLDs) and potentially form amyloid assemblies. 

To investigate this possibility, we performed a stringent computational survey for Q/N-rich PrLDs on P. 

falciparum. Our data indicates that ~10% of P. falciparum protein sequences have prionic signatures, and 

that this subproteome is enriched in regulatory proteins, such as transcription factors and RNA-binding 

proteins. Furthermore, we experimentally characterize that despite their disordered nature, several of 

the identified PrLDs contain inner short sequences able to spontaneously self-assemble into amyloid-like 

structures. Although the ability of these sequences to nucleate the conformational conversion of the 

respective full-length proteins should still be demonstrated, our analysis suggests that, as previously 

described for other organisms, prion-like proteins might play functional roles in P. falciparum physiology. 
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6.2.2 INTRODUCTION 

 Malaria caused approximately 445000 deaths in 2016 and in the latest World Malaria Report 

(November 2017) the number of cases was estimated to be as many as 216 million. Although the global 

response to malaria is considered one of the world’s great public health achievements, the spread of 

resistance against anti-malarial drugs and insecticides, has stalled the incidence and mortality decline 

since 2014.  

Plasmodium falciparum (P. falciparum) is the species responsible for 85% of the malaria cases, 

causing the most severe form of the disease. The complete sequencing of P. falciparum genome has 

revealed some specific features that may shed light onto the biology and biochemistry of this deadly 

parasite (Gardner, et al., 2002). A striking biased composition of its DNA was observed, with an overall AT 

content of 80.6%, a comparable AT enrichment only being observed in the social amoeba Dictyostelium 

discoideum (Eichinger, et al., 2005). In P. falciparum, AT-rich codons present a significant preference 

towards encoding asparagines (N) over lysines (K), which explains why ~30% of its proteome is rich in long 

low complexity regions exceptionally enriched in N (Aravind, et al., 2003; Singh, et al., 2004).  

Glutamine (Q)- and asparagine (N)-rich sequences have been shown to increase the propensity 

of a protein to form amyloids, and indeed the expansion of CAG trinucleotide repeats, encoding for Q, in 

different human proteins, results in developmental and neuromuscular disorders such as Huntington’s 

disease, Kennedy disease, and several ataxias caused by the accumulation of intracellular protein 

aggregates in specific neuron types (Orr and Zoghbi, 2007; Williams and Paulson, 2008). Proteins with long 

N repeats have been shown to have an aggregation propensity even higher than poly-Q stretches 

(Tartaglia, et al., 2005). Intriguingly, in spite of their inherent risk to promote aggregation, sequences with 

such amino acid compositions are common in yeast prions, and, thus are often referred to as prion 

domains (PrDs).  

Among amyloids, prions are proteins with the unusual ability to adopt different structures and 

functional states, at least one of which is transmissible between individuals. In yeast, PrDs have been 

proved to be both sufficient and necessary for prion conformational conversion (Masison and Wickner, 

1995). The detailed characterization of the prion phenomenon in yeast has provided important insights 

on the structural and sequential determinants of PrDs (Alberti, et al., 2009). This knowledge has fuelled 

the development of computational algorithms able to identify prion-like domains (PrLDs) in a genome-

wide level in different organisms (Espinosa Angarica, et al., 2014; Espinosa Angarica, et al., 2013; Harrison 

and Gerstein, 2003; Lancaster, et al., 2014; Michelitsch and Weissman, 2000; Zambrano, et al., 2015), 

highlighting the existence of proteins bearing such intriguing sequences in all kingdoms of life (Espinosa 

Angarica, et al., 2014; Espinosa Angarica, et al., 2013). 

It is now clear that evolution purges out proteins containing aggregation-prone regions, unless 

these sequences are beneficial, serving functional purposes (Chen and Dokholyan, 2008; Monsellier and 

Chiti, 2007). Given the intrinsic amyloid potential of PrLDs, their biological persistence suggests an 
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evolutionary determination to maintain these regions. The word prion is usually associated with 

neurodegenerative diseases. However, the recent identification of protein prion-like states executing 

physiological functions is rapidly changing this notation (Si, 2015). In higher eukaryotes, the earliest 

examples of functional prion-like polypeptides were described in Aplysia and Drosophila, where members 

of the CPEB protein family undergo prion conversion that facilitates memory formation (Heinrich and 

Lindquist, 2011; Majumdar, et al., 2012). Cai and co-workers have revealed that the human proteins MAVS 

and ASC propagate respective downstream signals through prion conversion, and that this signal 

amplification strategy is crucial for the initiation of the innate immune response (Cai, et al., 2014). More 

recently, non-pathogenic prion-like proteins have been described in plants and bacteria: 

Luminidipendens, an Arabidopsis protein, involved in flowering and plant memory regulation 

(Chakrabortee, et al., 2016) and the transcription terminator Rho factor of the Clostridium botulinum 

pathogen (Pallares, et al., 2015; Yuan and Hochschild, 2017), respectively. These findings suggest that the 

conformational conversion and subsequent self-assembly that characterize prion-like proteins might be 

indeed an evolutionary conserved phenomenon (Maji, et al., 2009; Pallares and Ventura, 2017; Tariq, et 

al., 2013).  

The enrichment of P. falciparum in N-rich low complexity sequences, soon suggested that this 

organism might contain a significant number of prion-like proteins, whose identification might contribute 

to understand its particular biology (Singh, et al., 2004). Bioinformatic analysis found a correlation 

between the over-representation of homorepeats-containing proteins and the abundance of proteins 

with putative PrLDs, which were proposed to account for as much as 25% of the parasite proteome (Singh, 

et al., 2004). The biological significance of these protein domains is not clear (Muralidharan and Goldberg, 

2013), but P. falciparum has evolved a very efficient proteostatic system to cope with such an aggregation-

prone proteome (Muralidharan and Goldberg, 2013; Muralidharan, et al., 2012; Przyborski, et al., 2015).  

In order to address the potential biological role for prion-like proteins in P. falciparum, we 

analysed its proteome using a highly stringent computational approach, searching for the presence of 

Q/N-rich long regions displaying compositional similitude to bona fide prions (Toombs, et al., 2010; 

Toombs, et al., 2012) and bearing specific amyloidogenic regions able to promote their self-assembly 

(Fernandez, et al., 2017; Pallares, et al., 2015; Sabate, et al., 2015). This is the same approach that recently 

allowed us to propose the transcription terminator Rho factor as a first prion-like protein in bacteria 

(Pallares, et al., 2015; Pallares and Ventura, 2017). Applying this strategy, we have identified 503 PrLDs-

containing proteins in P. falciparum, accounting for ~10% of its proteome. An analysis of the gene 

ontology terms enriched in this subproteome indicates that the proteins it contains might participate in 

important biological processes, such as regulation of gene expression or vesicle-mediated transport. 

Several of the functions assigned to the putative P. plasmodium prion-like proteins are common to those 

reported in other eukaryotes, including humans, while other appear to be specific for this protozoan 

parasite. 
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Among all the identified prion-like candidates, we have selected three unrelated proteins and 

experimentally validated that their PrLDs contain specific short N-rich sequences able to form amyloid 

fibrils; having thus the potential to trigger the conformational conversion of the entire protein.  

Collectively, our study suggest that prion-like proteins may play a functional role in the complex 

parasite’s biology.  

6.2.3 MATERIAL AND METHODS 

Dataset construction 

The P. falciparum (isolate 3D7) reference proteome (Proteome ID UP000001450, released 

2015_04, published on April 1, 2015) consisting of 5353 proteins was downloaded from 

UniprotKB (UniProt, 2015). This was first screened for the presence of Q/N-rich domains using an in-house 

developed Python script. Briefly, it scans for consecutive 80-residue windows and retrieves those with at 

least 30 Q/Ns. Once applied to P. falciparum’s proteome, it rendered 1300 proteins with at least one Q/N-

rich domain. These were further scanned with PAPA (using default parameters) for intrinsically disordered 

regions and compositional bias resembling yeast prions, rendering 581 proteins. A final scan in search for 

soft-amyloid cores within these PrLD was performed using pWALTZ (using default parameters), resulting 

in a prion-like dataset of 503 proteins.  

 
Functional and structural enrichment analysis 

Gene Ontology (GO) (Gene Ontology, 2015) terms (at the GO FAT category) and Pfam domain 

(Finn, et al., 2016) enrichment were analysed and clustered with the Functional Annotation Tool of DAVID 

6.7 (Database for Annotation, Visualization and Integrated Discovery) (Huang da, et al., 2009). The GO 

term clustering was performed with a high classification stringency and a p-value ≤0.05. The Pfam list was 

obtained with a p-value ≤0.05 and final clustering was manually curated. From the 503 proteins in the 

prion-like proteins dataset, 487 were identified and processed by DAVID. The translation rates of the 10% 

highest scoring prion-like proteins at the different stages of P. falciparum life cycle were retrieved from 

(Le Roch, et al., 2003). For every protein entry, the developmental stage with the highest translation rate 

was considered. 

Peptide prediction, synthesis and preparation 

The sequences of Sec24 (UniprotKB accession number C0H489), the translation initiation factor-

like protein IF2c (UniprotKB accession number Q8IBA3) and the protein kinase PK4 (UniprotKB accession 

number C6KTB8) were further analysed with prion predictor PLAAC (Lancaster, et al., 2014). The resulting 

sequences, their position in the full-length protein and their scores are shown in Figure 6.8. The 21-residue 

peptides corresponding to the soft-amyloid cores predicted by pWALTZ were purchased from CASLO ApS 

(Scion Denmark Technical University). Peptide stock solutions were prepared solubilizing the lyophilized 

peptides at a final concentration of 5 mM in 100% dimethyl sulfoxide and stored at −80 °C. Before each 

analysis, the samples were diluted to 150 M in PBS buffer. For aggregation assays the diluted samples 

were incubated for 48 h at 25 °C. 
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Binding to amyloid dyes 

The fluorescence spectra of the binding of 25 µM Thioflavin-T (ThT) to peptide fibrils were 

recorded using a Cary Eclipse spectrofluorometer (Varian, Palo Alto, CA, USA) with an excitation 

wavelength of 440 nm and emission range from 460 to 600 nm at 25 °C in PBS buffer. Peptides were 

equilibrated at room temperature for 2 min before the measurement and solutions without peptide were 

employed as negative controls. Excitation and emission slit widths of 10 nm were used. For the Thioflavin-

S (ThS) staining assays, aggregated peptides were incubated for 1 h in the presence of 125 M ThS in PBS. 

Then, the samples were centrifuged (14000 x g for 5 min) and the precipitated fraction washed twice with 

PBS and finally placed on a microscope slide and sealed. Images of the aggregated peptides bound to ThS 

were obtained at 40-fold magnification under UV light or phase contrast in a Leica fluorescence 

microscope (Leica DMRB, Heidelberg, Germany). 

Secondary structure determination 

Attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy analysis of 

peptide fibrils were performed using a Bruker Tensor FT-IR Spectrometer (Bruker Optics, Berlin, Germany) 

with a Golden Gate MKII ATR accessory. Each spectrum consisted of 16 independent scans, measured at 

spectral resolution of 1 cm-1 within the 1800-1500 cm-1 range. All spectral data were acquired and 

normalized using the OPUS MIR Tensor 27 software. Infrared spectra between 1725 and 1575 cm-1 were 

fitted through overlapping Gaussian curves, and the amplitude and area for each Gaussian function were 

calculated employing the nonlinear peak-fitting program (PeakFit package, Systat Software, San Jose, CA). 

Aggregated peptides were prepared at 150 M in PBS buffer and incubated at 25 °C for 48 h. PBS buffer 

without peptide was used as a control and subtracted from the absorbance signal before deconvolution. 

Transmission electron microscopy 

Samples of aggregated peptides obtained as described previously were placed onto carbon-

coated copper grids and incubated for 5 min. The grids were washed with distilled water and negatively 

stained with 2% (w/v) uranyl acetate for 2 min. Micrographs were obtained in a JEM-1400 (JEOL, Japan) 

transmission electron microscope (TEM) operated at 80 kV accelerating voltage. 

In vivo amyloid-like detection 

Cultures of P. falciparum strain 3D7 were grown in vitro in group B human red blood cells (RBCs), 

purchased from the Banc de Sang i Teixits (http://www.bancsang.net), using previously described 

conditions (Cranmer, et al., 1997). Briefly, parasites (thawed from glycerol stocks) were cultured at 37 °C 

in T-Flasks containing RBCs in Roswell Park Memorial Institute (RPMI) complete medium under a gas 

mixture of 92% N2, 5% CO2, and 3% O2. Synchronized cultures were obtained by 5% sorbitol lysis (Lambros 

and Vanderberg, 1979) and the medium was changed every 2 days maintaining 3% hematocrit and a 

parasitemia below 5%. Staining with PROTEOSTAT® protein aggregation assay (Enzo Life Sciences, Inc.) 

was performed according to the manufacturer’s instructions. Briefly, 200 µl of P. falciparum culture were 

harvested and washed twice with 1 ml of 7.5 mg BSA/ml PBS (PBS/BSA); the resulting cell pellet was taken 

http://www.bancsang.net/
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up in 200 µl of PBS/BSA containing 2 µg/ml Hoechst 33342 and PROTEOSTAT® (1:3000 stock dilution), and 

incubated for 30 min at room temperature in the dark before being washed again twice with 1 ml of 

PBS/BSA. 10 µl of the washed cell suspension were transferred into a Lab-Tek chambered coverglass 

(Nunc, Thermo Fisher Scientific) containing 180 µl of PBS/BSA and finally analysed with a Leica TCS SP5 

laser scanning confocal microscope, using a 63× immersion oil objective with 1.4 numeric aperture. 

Hoechst 33342 and PROTEOSTAT® were detected, respectively, by excitation through 405 nm and 488 nm 

lasers. Emission was collected between 415 nm and 500 nm for Hoechst 33342, and between 590 and 670 

for PROTEOSTAT®. 

6.2.4 RESULTS  

The P. falciparum proteome is enriched in proteins with PrLDs 

 The P. falciparum proteome contains an unusually high amount of low complexity regions; long 

domains enriched in certain amino acids and without a defined secondary structure. Low complexity 

regions are present in 30% to 90% of P. falciparum proteins, depending on the detection stringency 

(DePristo, et al., 2006; Singh, et al., 2004), and they are specially enriched in N residues. It has been 

proposed that these disordered protein regions might share certain properties with the classical yeast 

Q/N-rich PrDs (Faux, et al., 2005; Fuxreiter, 2012; Fuxreiter and Tompa, 2012; Malinovska, et al., 2013; 

Pallares, et al., 2015; Tompa and Fuxreiter, 2008), and potentially support the formation of prion-like 

macromolecular assemblies (Espinosa Angarica, et al., 2013; Singh, et al., 2004). 

In order to evaluate the presence of Q/N-rich prion-like proteins in P. falciparum, we examined 

its proteome combining the detection of local Q/N-enrichment together with PAPA and pWALTZ 

predictions (Pallares, et al., 2015; Toombs, et al., 2012; Zambrano, et al., 2015) (see Section 6.2.3 Material 

and methods). Thus, any predicted PrLD in our subproteome would fulfil the following requirements: 

being Q/N-rich, disordered (PAPA includes the disorder predictor FoldIndex (Prilusky, et al., 2005)), 

compositionally similar to yeast PrDs and contain a short sequence stretch able to facilitate its conversion 

into an amyloid-like state; we have generically named these stretches “soft-amyloid cores”, because their 

amyloid propensity is significantly lower than the classical amyloid regions of pathogenic proteins, but still 

enough to promote protein self-assembly (Batlle, et al., 2017c).    

The analysis shows that 1300 proteins (24.3% of the proteome) bear at least one Q/N-rich 

domain, in excellent agreement with previous studies (Singh, et al., 2004). 581 of these Q/N-rich domains 

(44.7%) also display an amino acid composition similar to that of yeast PrDs and are disordered, as 

predicted by PAPA, and among them, 503 domains (86.6%) contain a soft-amyloid core as predicted by 

pWALTZ. Overall, we conclude that 9.4% of the P. falciparum proteome may have the physicochemical 

properties and the aggregation potential to behave as a prion. This value is lower than previously 

estimated applying other computational approaches based only in Q/N richness  (Singh, et al., 2004) or 

than the one estimated using only compositional similitude to yeast PrDs with PAPA, which predicts 22.5% 

of the parasite proteins as prion-like. The Q/N rich only dataset contains many long poly-N stretches, 

without any inner hydrophobic residue, a requisite to act as a prion (Toombs, et al., 2010), whereas the 
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PAPA only dataset includes polypeptides unlike to behave as prions in vivo, like membrane integral 

proteins, only because they display sequence stretches enriched in certain hydrophobic residues. In any 

case, even with the stringent approach used here, roughly 10% of the P. falciparum proteome seems to 

correspond to proteins displaying PrLDs and may thus have a high intrinsic aggregation propensity. This 

generates several important questions: Why are P. falciparum proteins so rich in PrLDs? Which are these 

putative prions? What are their roles in P. falciparum? 

 Previous works addressed these questions by analysing the distribution of Q/N- or N-rich regions 

in the P. falciparum proteome (Singh, et al., 2004). They detected such stretches in all protein families and 

all developmental stages of P. falciparum, without an evident association with any specific biological 

process. However, an increasing number of studies connect PrLD to specific functions and processes in 

other species (Espinosa Angarica, et al., 2014; Iglesias, et al., 2015). We hypothesized that focusing the 

analysis in our curated subproteome may help to unravel the functional purpose, if any, of PrLDs in the 

protozoan. 

Computational analysis of the role of prion-like proteins in P. falciparum 

 The DAVID Functional Annotation Clustering Tool was employed to identify enriched gene 

ontology (GO) categories (Gene Ontology, 2015; Huang da, et al., 2009) in the previously identified P. 

falciparum PrLD-containing proteins (p-value  0.05). It is worth to mention that this analysis is 

constrained by the fact that 60% of P. falciparum genes have unknown functions (Gardner, et al., 2002), 

most of them have no clear homolog in other eukaryotes, and that the mechanisms underlying the main 

processes related to malaria pathogenesis in P. falciparum are still poorly understood. However, 487 out 

of the 503 proteins in our dataset were identified and processed by DAVID, with result in a coverage of 

94.8% of our subproteome. 
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Figure 6.7 – Computational analysis of the role of P. falciparum PrLD-containing proteins. A) GO biological process, 
molecular function and cellular component terms enriched in P. falciparum PrLD-containing proteins. B) Pfam 
structural domains enriched in PrLD-containing proteins. The enrichment analysis was performed with Functional 
Annotation Tool of DAVID 6.7 using high stringency, p-value ≤ 0.05 for GO and Pfam terms. 

 The proteins were clustered according to the following ontologies: biological process, molecular 

function and cellular component (Figure 6.7A). The most significant biological process gene clusters 

include ‘regulation of gene expression’, ‘negative regulation of gene expression’ and ‘regulation of 

transcription’. The abundance of DNA and RNA binding proteins with PrLDs (Figure 6.7B) is consistent 

with the observation that many of the prion-like proteins discovered initially in yeast (Alberti, et al., 2009) 

and more recently in humans (King, et al., 2012), plants (Chakrabortee, et al., 2016) and bacteria 

proteomes (Iglesias, et al., 2015) are proteins associated with gene expression and translation regulation 

such as transcription factors and RNA-binding proteins.  

Other biological process terms could also be arranged into enriched clusters: ‘protein 

localization’, ‘regulation of vesicle-mediated transport’ and ‘metabolic process’. Importantly, the vesicle-

mediated transport system and the trafficking of parasite proteins to diverse locations in the host cell are 

essential to promote new parasite phenotypes, playing a crucial role in host-pathogen interactions, as 

well as in disease pathogenesis and susceptibility (Hiller, et al., 2004; Marti, et al., 2005; Miller, et al., 

2002). Indeed, extracellular vesicles have been shown to act as delivery agents for prion-like proteins (Liu, 

et al., 2017).  

A 

B 
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 The analysis of molecular function domains in the set of P. falciparum prion-like proteins revealed 

that the only significantly enriched cluster was ion binding. A deeper analysis of the GO annotations 

indicates that ~33% of these proteins function in DNA/RNA interaction and ~40% of them also contain 

structural domains related to nucleotide binding, such as Zinc fingers. In fact, the functions associated to 

nucleotide binding, especially RNA binding, appear to be associated to proteins containing PrLDs, 

regardless of the organism (Espinosa Angarica, et al., 2014; Iglesias, et al., 2015; Pallares, et al., 2015). 

 At this point, to dig a bit more on the functional role of our protein subset, we reanalysed the MF 

category setting a p-value cut off of 0.1. Several new GO terms came to light that could be grouped into 

two interesting MF subclusters: (i) chromatin remodelling, which is consistent with recent studies 

demonstrating that the physical properties of prion-like domains can retarget critical chromatin 

regulatory complexes (Boulay, et al., 2017) and facilitate heterochromatin assembly (Kataoka and 

Mochizuki, 2017) and (ii) GTPase regulatory activity, which is also detected in the PrLD-containing proteins 

of several other organisms (bacteria, plants, fungi and invertebrates) (Espinosa Angarica, et al., 2013); 

indeed, the canonical and best characterized yeast prion, Sup35, is a GTPase (Glover, et al., 1997).  

  Analysis of the cellular component ontology category shows a specific enrichment at the spindle 

pole. In yeast, prion proteins have been shown to interact specifically with spindle pole proteins (Treusch 

and Lindquist, 2012) and spindle-associated proteins have been shown to be involved in self-assembly 

mediated phase separation in Xenopus (Jiang, et al., 2015). 

  All the proteins in our Q/N-rich dataset have in common the presence a disordered region of 80 

amino acids in which at least the 37.5% of the residues (30/80) correspond to Q or N. This compositional 

similitude might imply a certain overlap of functions between proteins bearing PrLDs and those devoid of 

them. A gene ontology analysis of Q/N-rich proteins without PrLDs (Supplementary Material S6.1), shows 

that the molecular function and cellular location terms are different, but related, to those found in the 

Q/N-rich protein subset bearing PrLDs; nucleotide binding and cytoskeleton being the most enriched 

terms for these two categories, respectively. In contrast, Q/N-rich proteins without PrLDs are poorly 

represented in specific biological processes, being the most enriched one DNA repair (Supplementary 

Material S6.1). This suggests that the compositional/sequential features of PrLDs might be important to 

specify the biological context in which the proteins act, whereas their generic molecular function depends 

mostly on the local enrichment in Q/N residues. 

  Prion-like proteins display a modular architecture in which one or several long and disordered 

PrLDs are adjacent to conventional globular domains and, accordingly, they tend to be large. We 

compared the average size of our protein subset with the one of the complete plasmodium proteome, 

confirming that proteins bearing PrLDs are effectively significantly longer (Supplementary Material S6.2). 

To discard that the GO terms identified for PrLD-containing proteins would respond only to their 

differential size, we selected the subset of the largest 503 proteins in the proteome and performed a gene 

ontology analysis. The resulting enriched terms did not coincide with those in our subset in any of the 
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categories. The most enriched biological processes in large proteins were pathogenesis and single 

organismal cell-cell adhesion; the most enriched compartments were infected host cell surface knob and 

host cell plasma membrane and the most enriched molecular functions were receptor activity and cell 

adhesion molecular binding.  

  In order to address if the expression of PrLD-containing proteins occurs preferentially at a given 

parasite stage, we analysed the expression levels of the 10% top ranking proteins in our dataset at each 

of the different life cycle stages, as reported by Winzeler and co-workers (Le Roch, et al., 2003). It turns 

out that, on the average, the highest translation rates for these proteins correspond to those at the 

merozoite and early ring stages (Supplementary Material S6.3). 

Protein domains in P. falciparum prion-like proteins 

 To further evaluate the role of our collection of PrLD-containing proteins we examined in detail 

their constituent functional domains (Finn, et al., 2016) (Figure 6.7B). As expected, after clustering, the 

Pfam domains that were most often found in combination with PrLDs were involved in DNA/RNA binding, 

among which, the ApiAP2 stands out. The ApiAP2 family is homologous to the plant Apetala2/ethylene 

response factor (AP2/ ERF) DNA-binding proteins, which comprise the second largest class of transcription 

factors in Arapidopsis thaliana. Balaji and co-workers described that ApiAP2 proteins are likely to function 

as a family of apicomplexan parasite-specific transcription factors (Balaji, et al., 2005) and that their amino 

acid sequences are highly conserved among orthologues. Strikingly, our data reveals that at least the 50% 

of the members composing this family in P. falciparum contain a PrLD. Several studies support their major 

role in mediating the regulation of stage-specific gene expression profiles in the parasite’s development 

(Modrzynska, et al., 2017; Painter, et al., 2011; Yuda, et al., 2010) and suggest their crucial contribution 

to P. falciparum complexity and growth since very few ApiAP2 genes have been successfully knocked out 

(Behnke, et al., 2010; Yuda, et al., 2010). 

 The RNA recognition motif (RRM) is the most enriched RNA-binding domain (RBD) in our dataset. 

RRMs are by far the most versatile and abundant RBDs, their fold being conserved from bacteria to higher 

eukaryotes (Reddy, et al., 2015). This result is consistent with the observation that many of the human 

proteins with PrLDs contain an RRM motif and are involved in liquid–liquid phase transitions facilitating 

the formation of dynamic membraneless intracellular compartments, such as ribonucleoprotein (RNP) 

granules. They allow material exchange and fast assemblage and adaptation to different environments 

and cell states (Malinovska, et al., 2013), the PrLDs in RNA binding proteins provide the special 

physicochemical properties that allow contacts between RNAs and proteins that sustain the liquid-like 

assemblies (Han, et al., 2012; Kato, et al., 2012). Indeed, the second most abundant RBD linked to our 

protein subproteome is the KH domain, a protein domain that was first identified in the human 

heterogeneous nuclear proteins (hnRNP) (Siomi, et al., 1993) and, together with RRM, constitutes the 

most abundant domain in RNA granules forming proteins (Kato, et al., 2012).  In P. falciparum RNPs are 

involved in translation repression and posttranscriptional regulation of gene expression, critical for some 

stages of the parasite (Kramer, 2014).  



135 
 

The last enriched Pfam family includes the protein kinase domain. It is well-known that 

phosphorylation/dephosphorylation is the major control mechanism for many cellular functions. 

Consistently, recent studies carried out in P. falciparum reveal stage-specific profiles of protein 

phosphorylation, suggesting that reversible protein phosphorylation plays a key role in the regulation of 

the Plasmodium life cycle (Pease, et al., 2013; Wu, et al., 2009).  So far, no PrLD-containing protein kinase 

has been characterized experimentally, but it is obvious that the ability to control the activity of these 

enzymes by modulating their assembly would have important physiological consequences. 

Predicted PrLD soft-amyloid cores in P. falciparum proteins 

 Based on the above computational results, we selected three PrLD-containing proteins for their 

experimental characterization: the putative transport protein Sec24 (UniprotKB Accession number 

C0H489), the translation initiation factor-like protein IF2c (UniprotKB accession number Q8IBA3) and the 

protein kinase PK4 (UniprotKB accession number C6KTB8). These proteins are associated with functions 

(nucleotide binding, Q8IBA3), cellular components (vesicle mediated-transport, C0H489) and structural 

domains (kinase, C6KTB8) that are enriched in our dataset. The selected candidates have no functional or 

sequential relationship and have not been previously suggested to act as prions. 

 

Figure 6.8 – Soft-amyloid cores prediction in the three candidate proteins. A) Sec24b diagram showing the location 
of the PrLD predicted by PLAAC (in blue, residues 608-686) or PAPA (between brackets, residues 607-687). B) IF2c 
location of the PrLD predicted by PLAAC (in blue, residues 1066-1134) or PAPA (between brackets, residues 1057-
1137). PK4 location of the PrLD predicted by PLAAC (in blue, residues 1230-1290) or PAPA (between brackets, residues 
1220-1300). Pfam domains and the soft-amyloid cores are shown in purple and red respectively, the exact position 
and the sequence of the predicted soft-amyloid cores are presented in the red box. 
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 As a first candidate we chose Sec24b, a member of the Sec24 family. Within this family, Sec24b 

is by far the most enriched in Q/N, which constitute 21.5% of the amino acids in the complete sequence 

and 51.9% of the PrLD. Sec24b is closely related to the mammalian Sec24C/D family and the yeast Sec24 

homologue Lst1 (Lee, et al., 2008). These proteins play a key role in shaping the vesicle, as well as in cargo 

selection and concentration (Roberg, et al., 1999). They have a scaffolding function required to generate 

vesicles that can accommodate difficult cargo proteins, including large oligomeric assemblies.  

As a second candidate we selected IF2, one of the essential components for the initiation of 

protein synthesis. IF2 is a translation initiator factor acting as a GTPase that recruits the charged fMet-

initiator tRNA onto the 30S ribosomal initiation complex (Antoun, et al., 2003). From the three IF2 

homologues described in P. falciparum (Haider, et al., 2015), IF2c is the only one that holds a PrLD. It is 

worth to note that the IF2c C-terminal domain, where the PrLD maps, has the largest identity with 

bacterial IF2, a family of translation initiation factors rich in putative PrLDs (Iglesias, et al., 2015). 20.8% 

of IF2c residues are Q/N and this proportion raises to 49.4% in the PrLD.  

The third selected protein was the kinase PK4, a protein that is essential for completion of the 

blood stage of the disease (Zhang, et al., 2012). Thus PK4 has been suggested as a novel target for the 

next generation of antimalarial compounds (Kahrstrom, 2012). PK4 phosphorylates eIF2α an arrests global 

protein synthesis in schizonts (mature form of the blood cycle) and gametocytes (sexual form that infects 

the mosquitoes).  17.7% of PK4 amino acids are Q or N, with 55.5% of its PrLD corresponding to these 

polar residues.  

Table 6.1 – Predicted Plasmodium falciparum PrLD soft-amyloid cores. For each PrLD-containing 
protein it is shown the UniprotKB accession number (UniprotKB Ac.), the 21 residue-long soft-amyloid 
core with its respective position in the sequence, pWALTZ score, PAPA score and PLAAC score (COREscore) 
with a cutoff of 73.55, 0.05 and >0 respectively. PAPA and PLAAC search for compositional similarity to 
yeast prion domains, defining the predicted PrLD, while pWALTZ scans for soft-amyloid cores within them. 

 
Protein UniprotKB Ac. Soft-amyloid core N (%) pWALTZ PAPA PLAAC 

Sec24b C0H489 624-NYNNNYNNNYNNYNYNNNNYN-644 71 84.62 0.20 45.28  

IF2c Q8IBA3 1078-NNNNIYNNNIYNNNNIYNIYN-1098 62 87.71 0.07 36.18  

PK4 C6KTB8 1263-NMNNINNMNNINNMNNINNIN-1283 67 77.34 0.25 47.97  

 
 To further confirm the presence of PrLDs in these proteins, and to define more precisely their 

boundaries we used PLAAC (Lancaster, et al., 2014), yet another composition-based predictor, in which, 

in contrast to PAPA, the length of the predicted PrLD also depends on the protein composition. PLAAC 

detected PrLDs overlapping with the regions previously identified by PAPA, in the three polypeptides 

(Figure 6.8).  

We analysed these three putative prion-like proteins using the same computational approach we 

employed previously to detect and validate the soft-amyloid cores present in bona fide yeast prions 

(Sant'Anna, et al., 2016), in the pathogenic bacteria C. botulinum (Pallares, et al., 2015) and in human 
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prion-like proteins (Batlle, et al., 2017a). The predicted soft-amyloid cores for these P. falciparum proteins 

are shown in Table 6.1. Not surprisingly, these stretches are highly enriched in N residues, all containing 

> 60% of this polar residue. Interestingly enough, well-validated aggregation predictors like AGGRESCAN, 

Tango and Zyggregator (Conchillo-Sole, et al., 2007; Fernandez-Escamilla, et al., 2004; Tartaglia and 

Vendruscolo, 2008), all failed to classify these stretches as aggregation-prone (Supplementary Material 

S6.4), likely because of their much lower hydrophobicity, when compared with the classical amyloid 

stretches present in pathogenic amyloidogenic proteins. One of the restrains in our prediction scheme is 

that the identified PrLD should be essentially disordered, as predicted with FoldIndex (Prilusky, et al., 

2005). In this structural context the identified sof- amyloid cores will be mostly exposed to solvent and 

able to establish intermolecular contacts, if they have this ability. Orthogonal analysis with alternative 

disorder prediction algorithms confirms that this is likely the case for the three proteins herein 

(Supplementary Material S6.5).  

We synthesized 21-residue-long peptides corresponding to the detected soft-amyloid cores and 

characterized their amyloid properties experimentally. 

Predicted PrLDs soft-amyloid cores assemble into β-sheet rich structures 

 As a first evaluation of the assembling properties of the selected peptides, we measured their 

ability to adopt a β-sheet-enriched structure, a hallmark of amyloid fibril formation (Nelson, et al., 2005). 

To this aim the peptides were prepared at 150 μM in phosphate buffered saline (PBS) and incubated 

during 48 h at 25 °C. We used Fourier-transform infrared (FTIR) spectroscopy and recorded the amide I 

region of the spectrum (1700–1600 cm−1) (Figure 6.9). This spectral region corresponds to the absorption 

of the carbonyl peptide bond group of the protein main chain and is sensitive to the protein conformation. 

Deconvolution of the spectra allowed us to assign the secondary structure elements and their relative 

contribution to the main absorbance. In the three cases, the main peaks mapped in the 1620–1630 cm−1 

region of the spectra, accounting for 50% or more of the absorbance signals, indicating that the peptides 

have acquired significant intermolecular β-sheet structure. Interestingly, no anti-parallel β–sheet band 

was detected (~1690 cm−1) in any of the samples; thus, suggesting that the detected β–strands in the self-

assembled peptides would adopt preferentially a parallel disposition. The other detected signals were 

associated with the presence of disordered structure and turns (Figure 6.9). 

 

Figure 6.9 – Predicted PrLD soft-amyloid cores secondary structure. Secondary structure determined by ATR FT-IR 
in the amide I region. The red line corresponds to the absorbance spectrum; the blue area indicates the contribution 
of the inter-molecular β-sheet signal to the total area upon Gaussian deconvolution. A) Sec24b, B) IF2c and C) PK4.  
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Predicted PrLD soft-amyloid cores form amyloid-like fibrillar structures 

 To assess if the identified β-sheet-rich assemblies correspond to amyloid-like structures, we used 

the amyloid-specific dyes Thioflavin-T (ThT) and Thioflavin-S (ThS).  After incubation at a concentration of 

150 μM in PBS during 48 h at 25 °C, all the peptides were able to promote a large increase in the intensity 

of ThT fluorescence emission (Figure 6.10). In addition, areas rich in fibrous material were stained by ThS 

to yield a bright green-yellow fluorescence against a dark background (Figure 6.10).  

 

Figure 6.10 – Binding of the predicted PrLD soft-amyloid cores to amyloid specific dyes. Fluorescence emission 
spectrum of ThT when excited at 440 nm; note the characteristic fluorescence enhancement at ~480 nm when the 
dye is bound to amyloid-like aggregates. On the right side of the panel, ThS binding of aggregated peptides at 150 μM 
in PBS after 48 h of incubation at 25 °C. The typical green fluorescence can be observed under the fluorescence 
microscope, images were obtained at 40X magnification. A) Sec24b, B) IF2c and C) PK4.  

 Transmission electron microscopy (TEM) examination of the morphological features of the 

incubated peptide solutions (Figure 6.11) revealed that they effectively assemble into supramolecular 

structures. Sec24b formed long and straight fibrils, whereas IF2c and PK4 formed short and curly fibrillar 

structures.  

 Overall, biophysical analysis of the three predicted peptides demonstrates the ability of the 

candidate P. falciparum soft-amyloid cores to nucleate the formation of β-sheet-rich amyloid-like 

structures. 
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Figure 6.11 – Fibrillar structures formed by the predicted PrLD soft-amyloid cores. Representative TEM images for 

A) Sec24b, B) IF2c and C) PK4 aggregated peptides at 150 μM in PBS after 48 h of incubation at 25 °C. 

Detection of intracellular protein aggregates in P. falciparum 

 The above experimental data suggest that ~10% of the P. falciparum proteome might possess 

the ability to establish amyloid-like contacts, at least transiently, in vivo, and thus; that at any time, a 

significant number of proteins might potentially aggregate in the parasite. We employed a permeable 

amyloid-specific dye (PROTEOSTAT®) to track the in vivo presence of intracellular amyloid-like aggregates 

in P. falciparum.  

 P. falciparum was grown in red blood cells (RBCs) and then the culture was incubated with the 

amyloid dye. We observed colocalization between PROTEOSTAT® fluorescence and the cytosol of P. 

falciparum-infected RBCs, whose nuclei stained with Hoechst 33342. The images evidenced the lack of 

structures able to bind the dye in non-infected erythrocytes, and that, accordingly, only upon infection by 

Plasmodium, red fluorescent amyloid foci are evident inside parasitized RBCs (Figure 6.12), demonstrating 

the high amyloid load that this parasite supports at this stage. 

 

Figure 6.12 – Fluorescence microscopy analysis of the presence of protein aggregates in P. falciparum-infected RBCs 

(pRBCs). The selected field shows a single pRBC in early trophozoite stage, indicated by its characteristic nuclear 

Hoechst blue fluorescence among enucleated non-parasitized erythrocytes. The amyloid-specific dye PROTEOSTAT® 

reveals protein aggregates in the cytosol of the two parasite cells present in the pRBC. The arrowheads indicate 

nascent hemozoin crystals in the food vacuole of Plasmodium.  

6.2.5 DISCUSSION  

Many lines of evidence suggest that prion-like proteins can be both harmful and beneficial for 

the cell. The propensity of a protein to behave as a prion is encoded in its amino acid sequence (Sabate, 

et al., 2015). In particular, long and disordered N/Q-rich sequences seem to facilitate conformational 

conversion into functional amyloid-like states (Alberti, et al., 2009). The occurrence of N/Q-rich sequence 
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stretches varies substantially between organisms, with P. falciparum having one of the most enriched 

proteomes in this kind of regions, and specifically in N-rich sequences (Aravind, et al., 2003). Accordingly, 

it has been assumed that prion-like proteins would be common in this organism (Michelitsch and 

Weissman, 2000). Long Q- and N- homorepeats are inherently aggregation-prone (Halfmann, et al., 2011). 

However, these sequence stretches alone are not sufficient to sustain a prion-like behaviour (Toombs, et 

al., 2010). Here, using a stringent computational approach that considers that PrLDs should not be only 

Q/N-rich, but also display compositional similitude to bona fide yeast prion domains and encode for at 

least one specific short sequence stretch with moderate, but significant, amyloid propensity (Sabate, et 

al., 2015), we concluded that 503 polypeptides in P. plasmodium fulfil the requirements to potentially 

behave as prion-like proteins. This accounts for ~10% of the proteome, which despite being a lower 

fraction than previously proposed (~25%) (Singh, et al., 2004), still might constitute a high prionic load for 

the parasite.  

A priori, the presence of PrLDs might be dangerous for Plasmodium, since prion-like proteins 

have an intrinsic propensity to aggregate and, in humans, disease-linked mutations occur preferentially in 

the PrLDs of these polypeptides (Kim, et al., 2013). On the other hand, these PrLDs might act as 

conformational switches that control protein assembly and thus protein function to allow adaptation to 

the changing environment that P. falciparum faces during its life cycle. Importantly, the PrLD-containing 

subproteome we identify here is associated with defined domains and functionalities in the parasite, 

which suggests that Q/N-rich PrLDs do not occur randomly in the P. falciparum proteome. This assumption 

is supported by the fact that PrLDs are associated with similar GO-clusters in organisms as divergent as 

Plasmodium, yeast, Dictyostelium, Drosophila and humans (Malinovska, et al., 2013; Malinovska, et al., 

2015). For instance, the role of PrLDs-containing proteins in DNA and RNA binding is well conserved, with 

the RRM domain being among the most enriched PrLD-associated domains in these organisms. Indeed, 

25% of the P. falciparum proteins bearing an RRM domain also contain a predicted PrLD. We found that 

this domain association is also conserved in Plasmodium vinckei and Plasmodium yoelii, with13 % and 15% 

of RRM-containing proteins having a Q/N-rich PrLD.  

P. falciparum PrLDs exhibit specific associations with domains and functions not detected in 

other organisms, such as the ApiAP2 proteins, with 50% of their members displaying a PrLD. These 

proteins have been postulated as the main transcriptional regulators in Plasmodium parasites and the 

other Apicomplexa (Balaji, et al., 2005). Importantly, according to our analysis, the presence of PrLDs 

within AP2 transcription factors also seems to be evolutionary, with 39%, 29% and 24% of the AP2 proteins 

in Plasmodium vinckei, Plasmodium yoelii and Plasmodium berghei displaying Q/N-rich PrLDs, 

respectively. The association between PrLDs and the regulation of vesicle-mediated transport is also a 

specific feature of Plasmodium. This process allows the trafficking of some parasite proteins to the 

erythrocyte membrane (Hiller, et al., 2004; Marti, et al., 2005; Miller, et al., 2002).  

Plasmodium is an obligate parasite that has evolved to survive in different hosts and cell types. 

It has a complex life cycle with cellular stages that differ in shape, size, metabolic activity and resource 
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requirements. Hence, to sustain this complexity, Plasmodium requires and efficient regulation, to which 

the conformational conversion of regulatory proteins bearing PrLDs might contribute. Changes in local 

protein concentration, binding to nucleic acids and posttranslational modifications have been shown to 

modulate the assembly of PrLDs, the functional outcome depending on the particular assembled protein 

(Alberti, 2017). 

 We and others have suggested that certain short amyloidogenic sequence stretches embedded 

in PrLDs contribute significantly to prion formation, maintenance, and transmission, at least in yeast 

(Batlle, et al., 2017c; Crow, et al., 2011; Sabate, et al., 2015; Sant'Anna, et al., 2016). The computational 

search for such regions in the putative PrLDs of a large number of bacterial proteomes (Iglesias, et al., 

2015), previously thought to lack prions, and a subsequent experimental validation, allowed us to propose 

that the Rho transcription terminator might constitute a first bacterial prion (Pallares, et al., 2015; Pallares 

and Ventura, 2017). Soon after, Yuan and Hoschild confirmed the ability of this protein to adopt an 

infectious state, leading to global changes in the transcriptome (Yuan and Hochschild, 2017). Here we 

used the same approach to study the amyloidogenic potential of three P. falciparum PrLD-containing 

proteins: the translation initiation factor 2c, the kinase PK4, both involved in gene expression regulation 

(Haider, et al., 2015; Zhang, et al., 2012) and Sec24b, involved in vesicle trafficking (Lee, et al., 2008). Our 

data provides compelling evidence that, in vitro, all three candidate proteins contain short nucleating 

regions embedded in the PrLDs able to spontaneously self-assemble into amyloid-like structures. The 

presence of such stretches does not necessarily imply that the correspondent large full-length proteins 

would behave in a prion-like manner, and this behavior should be experimentally validated. However, 

several indirect evidences suggest that this could be the case: i) we have shown that when a predicted 

short amyloid sequence is administered to cells in its amyloid state it is able to seed the conformational 

conversion of the complete endogenous protein and its subsequent aggregation into a prionic form 

(Sant'Anna, et al., 2016), ii) the soft-amyloid stretch we identified in the PrLD of the bacterial Rho 

terminator factor has been shown to be absolutely essential for its self-assembly and prion activity (Yuan 

and Hochschild, 2017), iii) Vorberg and co-workers have shown that the soft-amyloid sequence we 

pinpointed in the PrLD of a model prion protein is the only region required for the induction, propagation 

and inheritance of the prion state in the mammalian cytosol (Duernberger, et al., 2018). 

Overall, we identified a subset of putative Q/N-rich prion-like proteins in P. falciparum associated 

with specific biological processes and validated experimentally that their highly polar and disordered 

PrLDs contain cryptic sequences able to self-assemble into amyloids. The structural characterization and 

in vivo validation of the properties of the identified proteins is challenging, but it is worth the effort, since 

it might uncover a first bona fide prion in Plasmodium. 
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6.3.1 ABSTRACT 

Prion-like behavior has been in the spotlight since it was first associated with the onset of mammalian 

neurodegenerative diseases. However, a growing body of evidence suggests that this mechanism could 

be behind the regulation of processes such as transcription and translation in multiple species. Here, we 

perform a stringent computational survey to identify prion-like proteins in the human proteome. We 

detected 242 candidate polypeptides and computationally assessed their function, protein-protein 

interaction networks, tissular expression and their link to disease. Human prion-like proteins constitute a 

subset of modular polypeptides broadly expressed across different cell types and tissues, significantly 

associated with disease, embedded in highly connected interaction networks and involved in the flow of 

genetic information in the cell. Our analysis suggests that these proteins might play a relevant role not 

only in neurological disorders, but also in different types of cancer and viral infections. 

6.3.2 INTRODUCTION 

Prions were first reported in the context of mammalian neurodegenerative disorders (Harrison, et al., 

2010; Prusiner, 1982; Sikorska and Liberski, 2012; van Rheede, et al., 2003), but it is now clear that 

different organisms exploit prion conformational conversion for functional purposes (Halfmann and 

Lindquist, 2010). The most studied organism is Saccharomyces cerevisiae, with up to 11  functional prions 

identified so far (Batlle, et al., 2017c; Cascarina and Ross, 2014). Initially, yeast prions were proposed to 
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be pathological agents (McGlinchey, et al., 2011; Nakayashiki, et al., 2005), but nowadays they are widely 

recognized to provide beneficial advantages in changing environments, predominantly by regulating 

transcription, translation or RNA processing (Halfmann, et al., 2012; Newby and Lindquist, 2013). Yeast 

prions switch from an initially soluble state through a structural conversion towards an aggregated 

amyloid conformation. This conversion is encoded in prion domains (PrDs); long intrinsically disordered 

regions of low complexity.  

A significant number of proteins sharing most, but not all, prion characteristics have been identified in 

different organisms, and generically named prion-like proteins (Chakrabortee, et al., 2016; Pallares, et al., 

2015; Si, 2015). In higher eukaryotes, prion-like structural conversion plays a central role in diverse 

functions such as viral response (Franklin, et al., 2014; Hou, et al., 2011; Xu, et al., 2014) or long-term 

memory acquisition and maintenance (Majumdar, et al., 2012; Si, et al., 2010; Si and Kandel, 2016). Even 

though multiple beneficial functions have been assigned to prion-like mechanisms across all kingdoms of 

life, aggregated proteins in human neurodegenerative diseases such as Alzheimer’s and Parkinson’s 

diseases and amyotrophic lateral sclerosis also share certain prion-like properties (Aguzzi and Rajendran, 

2009; Gitler and Shorter, 2011; Kim, et al., 2013; Luk, et al., 2012; Nomura, et al., 2014; Stohr, et al., 2012).  

The accumulated knowledge on the determinants of yeast prions conformational conversion has provided 

strong stimuli for the development of bioinformatics tools to uncover new prion-like domains (PrLDs) in 

other organisms (Afsar Minhas, et al., 2017; Batlle, et al., 2017c; Espinosa Angarica, et al., 2014; Harrison 

and Gerstein, 2003; Lancaster, et al., 2014; Michelitsch and Weissman, 2000; Toombs, et al., 2012). 

Previous screenings for PrLDs in the human proteome have targeted the characteristic compositional bias 

of these protein regions (An and Harrison, 2016). We have recently proposed that, in addition to a 

distinctive amino acidic composition, PrLDs contain soft-amyloidogenic sequence stretches that would 

contribute to trigger the initial protein self-assembly reaction (Sabate, et al., 2015; Sabate, et al., 2015). 

These cryptic amyloids were not only shown to be present and promote conformational conversion in 

bona fide yeast prions (Sant'Anna, et al., 2016), but they also exist in human prion-like proteins (Batlle, et 

al., 2017a) and appear to play key role in the induction, propagation and inheritance of the prion state in 

the mammalian cytosol (Duernberger, et al., 2018). The amyloid stretches embedded within PrLDs can be 

identified computationally (Sabate, et al., 2015; Zambrano, et al., 2015). 

Here we applied to the human proteome the same prediction scheme that allowed us to uncover the first 

bona fide prion-like protein in a bacterial proteome (Pallares, et al., 2015; Yuan and Hochschild, 2017) . 

Human proteins were first analysed for the presence of regions with compositional similitude to yeast 

prion domains using the PLAAC algorithm (Alberti, et al., 2009; Lancaster, et al., 2014) and afterwards 

these protein domains were individually screened for the presence of soft-amyloidogenic sequences using 

the pWALTZ program (Sabate, et al., 2015). Indeed, we have recently shown that such a combination of 

compositional and sequential PrLDs prediction, provides the best accuracy when forecasting the 

aggregation propensities of individual human prion-like proteins (Batlle, et al., 2017b). 
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In the present work, we computationally characterized the function, location, expression, protein-protein 

interaction networks and the connection to disease of the human prion-like subproteome. The picture 

that emerges from this analysis is that prion-like proteins are widespread expressed proteins that function 

in biological processes tightly associated to disease. 

6.3.3 MATERIAL AND METHODS 

Data acquisition 

The human reference proteome dataset was obtained from UniprotKB (UniProt, 2015) (Proteome ID 

UP000005640; release 2016_09) and scanned for PrLDs with PLAAC using as background probability the 

frequency of human proteome. From the initial 70940 proteins in the proteome, 431 PrLD containing 

candidates were identified. Their predicted PrLDs were further evaluated with pWALTZ applying a cutoff 

of 60.00, as in (Batlle, et al., 2017a), which resulted in 242 final positive predictions. 

Prion-like domain localization within the protein sequence 

Each prion-like protein sequence was divided into 3 segments, the N- and C- terminal, accounted for 25% 

of the residues each, whereas the resting 50% of the sequence was considered as internal. Each predicted 

PrLD was located in the sequence and the number of residues mapping in each of the segments counted.  

Functional Annotation 

The GO annotation of all proteins in the prion-like dataset were collected, excluding the terms Inferred 

from Electronic Annotation (IEA) and filtering through the Generic GO slim developed by GO Consortium 

(Gene Ontology, 2015). All UniProtKB human proteins were used as background set to infer enrichment. 

A Fisher’s exact test of GO term distributions was performed in the three ontologies separately, to 

calculate the enrichment/depletion of dataset proteins with respect to the whole UniProtKB. The 

Bonferroni correction was applied in performing all the tests. The results are shown in Figure 6.15 applying 

the formula: 

E = log
GO freq.  in PPR

Tot GO  in PPR
− log

GO freq.  in PBack

Tot GO  in PBack
 

 

Where GO is the GO term, PPR and PBack are the datasets of prion-like proteins and the whole proteome, 

respectively. The abbreviations freq. and Tot stay for frequency and total.  

Pfam domains 

Pfam (Finn, et al., 2016) domains annotation in the dataset proteins were collected and compared to the 

human proteome (from UniProtKB). Fisher’s exact test was used to assess significance. 

Tissue and cellular localization 
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Tissue and cellular localization data of human proteins were retrieved from Human Protein Atlas (Uhlen, 

et al., 2015). The prion-like proteins identifiers were converted to Ensembl Gene Ids. Human Protein Atlas 

reports a textual ranking of protein expression of each coding gene. This ranking (“none”, “low”, 

“medium”, “high”) was converted to numerical expressions, from 0 to 3, and each gene value for each 

particular tissue was collected. The expression of the complete gene set for the tissue was then averaged. 

Association to diseases 

OMIM disease annotation were extracted from the field “diseases” of the UniProtKB description 

(Amberger, et al., 2015). All information regarding the associated diseases was collected from the OMIM 

FTP site. DisGeNET data was retrieved from DisGeNET download section (Pinero, et al., 2015). For both 

databases, the number of proteins associated to at least one disease ID was divided by the total number 

of proteins, obtaining the fraction of disease-associated proteins. The results were compared to 100 

random sampling of sets with same number of proteins than the one in the database. 

Human network analysis 

The human prion-like protein dataset was curated for duplicities and scanned for protein-protein 

interactions (PPI) with Interactome3D (2017_06 version) (Mosca, et al., 2013). Out of the 121 unique 

identities, 100 had annotated physical binary interactions. The degree and the number of interactions 

between prion-like proteins were analysed and compared to a random distribution by sampling the 

complete human binary interactome in Interactome3D. Moreover, the size of the largest connected 

component (LCC) and the mean shortest distance (MSD) were measured (Menche, et al., 2015). The 

subnetwork of prion-like proteins and their interactors were functionally characterized with DAVID 

database (Huang da, et al., 2009) for Gene Ontology and KEGG pathways enrichment (n=1542). The 

significance of the differences was assessed by Wilcox p-value or empirical p-value.  

6.3.4 RESULTS 

Human prion-like proteins prevalence and modularity 

A combination of prion-like compositional bias (PLAAC) and sequential soft-amyloid propensity (pWALTZ) 

analysis was applied to the complete human proteome. This resulted in the identification of a total of 242 

polypeptides (unique UniProtKB entries) bearing PrLDs. Our list of candidates included all human prion-

like proteins shown to behave as such both in vitro and in vivo: FUS (Ju, et al., 2011), TDP-43 (Wang, et al., 

2012), EWS (Couthouis, et al., 2012), hnRNP A1 and hnRNP A2 (Kim, et al., 2013), TIA1 (Li, et al., 2014) and 

TAF15 (Couthouis, et al., 2011) proteins, reinforcing the suitability of our dataset for the further evaluation 

of the global properties of human prion-like sequences.  
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Figure 6.13 – Human prion-like proteins modularity. Well-characterized prion-like human proteins have their PrLD 

(as identified by PLAAC in blue) and soft-amyloid core (as identified by pWALTZ in red) at the protein edges, separated 

from their respective globular domains (retrieved from Pfam database in violet).  

According to our predictions, prion-like proteins account for a 0.34% of the human proteome. This is in 

line with two previous independent surveys for human prion-like proteins that exploited compositional 

bias alone for their detection; both studies predicting that the prevalence of these proteins is < 1% (An 

and Harrison, 2016). Despite the percentage of proteins with PrLDs in the proteomes of different 

organisms seems to differ significantly (Chakrabortee, et al., 2016; Espinosa Angarica, et al., 2013; 

Malinovska, et al., 2015; Michelitsch and Weissman, 2000; Pallares, et al., 2018), their presence in all 

evolutionary lineages analysed so far suggests that these regions might play conserved functional roles 

(Batlle, et al., 2017a; Malinovska, et al., 2015; Michelitsch and Weissman, 2000).  
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Figure 6.14 – PrLD distribution along the protein sequence. The relative position of PrLDs in the sequences of the 

complete protein dataset is plotted. Protein sequences were divided into 20 bins corresponding to 5 % of their length 

and the PrLDs start position represented in blue and the end in red.  

Yeast prion proteins tend to be modular (Alberti, et al., 2009; Li and Lindquist, 2000). Prion domains being 

generally located near the N- or C- terminal ends of the sequence (Baxa, et al., 2007; Zambrano, et al., 

2015). In our dataset, 195 proteins; an 80.6% of the putative human prion-like proteins, presented their 

PrLDs located in any of the protein’s ends (Figures 6.13, 6.14). PrLDs were 1.67 times more frequent at 

the protein C-terminus. This was the case for 122 proteins, while in 73 of them the PrLDs were located at 

the N-terminus. This statistically significant imbalance between the presence of PrLDs at C- and N- in 

human proteins (p-value < 0.005, Z-test), contrasts with that found in bona fide yeast prion domains. In 

SUP35, URE2, NEW1, MOT3 and SWI1 proteins the prion domain is placed at the N-terminus, whereas 

only in RNQ1 it is located near the carboxyl end (Baxa, et al., 2007; Zambrano, et al., 2015). The modular 

architecture of prion-like proteins would allow the self-assembly of the PrLDs without disturbing the 

structure and productive associations of the adjacent globular moieties. This is likely facilitated by the 

predicted disordered nature of these protein segments. 

Human prion-like proteins play a major role in nucleic acid binding 

As a first step to gain insights into the biological role of the candidate human prion-like proteins we used 

a Gene Ontology (GO) enrichment analysis. GO terms were collected for biological process, molecular 

function, and cellular component categories and their enrichment with respect to the human proteome 

calculated (Figure 6.15). When we analysed the ‘biological process’ category for the set of candidate 

proteins, we found a statistically significantly enriched cluster of GO terms related to RNA and DNA 

associated processes, including positive regulation of transcription from RNA polymerase II promoter (p-

value < 1.20 x 10-16, 30 proteins), positive regulation of transcription DNA-templated (p-value < 6.92 x 10-

14, 22 proteins), mRNA splicing (p-value < 2.27 x 10-9, 13 proteins), transcription DNA-templated (p-value 

< 5.26 x 10-8, 36 proteins), RNA processing (p-value < 7.5 x 10-8, 10 proteins) and negative regulation of 

transcription from RNA polymerase II promoter (p-value < 6.28 x 10-4, 11 proteins) (Figure 6.15A). This 

result is consistent with the observation that the prion-like subproteomes identified in organisms 
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belonging to different taxonomic divisions are usually enriched in proteins associated to the regulation of 

the flux of genetic information in the cell (Iglesias, et al., 2015; Pallares, et al., 2018). 

With respect to the ‘molecular function’, the most enriched GO terms are all involved in essential activities 

related with nucleic acid binding and transcription processes, such as transcription coactivator activity (p-

value < 5.63 x 10-17, 20 proteins), nucleotide binding (p-value < 4.96 x 10-17, 37 proteins), poly(A)RNA-

binding (p-value < 3.94 x 10-15, 30 proteins), RNA-binding (p-value < 2.99 x 10-14, 31 proteins), chromatin 

binding (p-value < 3.34 x 10-14, 14 proteins), transcription factor activity-sequence-specific DNA binding 

(p-value < 9.79 x 10-6, 29 proteins) and ATP binding (p-value < 1.14 x 10-4, 13 proteins) (Figure 6.15B). The 

conformational plasticity of PrLDs has been shown to be behind certain transcription factors ability to 

bind to many different targets and to play a role in the formation of chromatin regulatory complexes 

(Boulay, et al., 2017; Cho, et al., 2018; Kataoka and Mochizuki, 2017). Moreover, it is becoming 

increasingly clear that PrLDs are crucial for the formation of membraneless organelles, since they enable 

RNA-binding proteins (RBPs) to undergo liquid–liquid transition, confining their RNA cargos (Villarroya-

Beltri, et al., 2013; Wang, et al., 2018). 

When we analysed the cellular components populated by our protein subset, the most enriched GO terms 

were the nucleoplasm, nucleus and the intracellular ribonucleoprotein complex (Figure 6.15C and 6.15D). 

As expected, all these compartments correspond to locations were the binding between nucleic acids and 

proteins occur frequently. Of particular interest is the so-called ribonucleoprotein complex which includes 

cellular structures like the stress granules, or P-bodies, which are sites for mRNA decay as well as for 

mRNA storage and therefore act as important cell regulatory centers in determining levels of gene 

expression (Anderson, et al., 2015). The RBPs associated to those membrane-less organelles are key 

determinants in the control of the organelle function and have been implicated not only in adaptation to 

stress but also in tumor biology and the pathogenesis of neurodegenerative, immunological and infectious 

diseases (Anderson, et al., 2015; Harrison and Shorter, 2017; Loomis, et al., 1990; Villarroya-Beltri, et al., 

2013). 
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Figure 6.15 – Human prion-like proteins GO enrichment analysis. The prion-like proteins GO enrichment was 

performed and separated into its three ontologies. A) Biological Process B) Molecular function C) and D) Cellular 

component. Clusters were grouped by color and represented with the same color-code in a mammalian cell in D. E) 

Pfam structural domains enriched in prion-like proteins were computed against the human proteome background. 

We extended our analysis to look for the role of the constituent functional domains in the collection of 

PrLDs containing proteins. In agreement with the above presented results, Pfam domain clustering 

rendered DNA/RNA binding as the most enriched functional group (Figure 6.15E). Among them, the 

canonical RNA recognition motif (RRM) is by far the most statistically enriched, with 14% of the detected 

proteins harboring an RRM. This observation is line with previous studies (King, et al., 2012) and consistent 

with the fact that the RRM is the most abundant domain in RBPs, conserved from bacteria to higher 

eukaryotes (Reddy, et al., 2015). This set of RRM-bearing prion-like proteins includes FUS, TDP-43, TIA1 

or hnRNP A1, all involved in the formation of dynamic membraneless intracellular compartments and 

associated to disease (Cascarina and Ross, 2014; March, et al., 2016; Wang, et al., 2018). 

The second most enriched domain in our data set is the FoxP coiled-coil (p-value < 2.95 x 10-19, 10 

proteins). It corresponds to a coiled–coil domain involved in the modulation of the dimeric associations 

of the forkhead box family of transcription factors FoxP. There are multiple lines of evidence suggesting 

the biological relevance of domain swapping in FoxP functionality being important not only for their 

function regulation but also linked to disease onset (Hafner-Bratkovic, et al., 2011; Medina, et al., 2016). 

The other two enriched Pfam families include Zinc-fingers in Ran binding proteins (Zn_RanBP) (p-value < 

1.14 x 10-14, 9 proteins) and the Helicase conserved C-terminal domain (p-value < 2.47 x 10-5, 7 proteins).  

Zinc Finger domains are a very versatile group of small protein domains which are evolutionary conserved. 

Interestingly, RBPs with PrLDs such as FUS or EWS accommodate in their structure a Zn_RanBP domain in 

close proximity to an RRM domain. The Helicase conserved C-terminal domain is found at the C-terminus 

of DEAD-box helicases. Helicases function in the separation of double-stranded RNA, DNA, and RNA/DNA 

structures in an energy-dependent manner and therefore it is clear their role in RNA metabolism. 
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Interestingly, the first prion-like protein identified in bacteria corresponds to the transcription terminator 

Rho, a helicase that can undergo a prion-state that results in genome-wide changes at the transcriptome 

level, contributing to rapid bacterial adaptation to fluctuating environments (Pallares, et al., 2015; Yuan 

and Hochschild, 2017). The multitasking transcriptional regulators DDX5 and DDX17 included in our 

dataset contain an helicase domain in their structure reported to be associated with cancer development 

and cell proliferation (Fuller-Pace, 2013; Mazurek, et al., 2012). 

Prion-like proteins are widespread among tissues 

The histological localization of human prion-like proteins was assayed by retrieving data from the Human 

Protein Atlas. To compare the expression levels, proteins were mapped to Ensemble gene annotations 

(121 genes). The expression data was collected for each cell type and averaged by tissue and organ. The 

result illustrates that prion-like proteins are widely distributed in human tissues (Figure 6.16). 

Importantly, the data indicates that, globally, the expression of these proteins in the brain is not higher 

than in most organs or tissues, being more represented in endocrine tissues, in the gastrointestinal tract, 

the kidney or the lung.  

In order to identify interesting cases, we clustered the dataset by representing each gene as a vector of 

the variance of its expression with respect to the proteome-level tissue average (Vg = [ ( E - Ē )1 … ( E - Ē 

)n ]  where: Vg : the vector of gene expressions; E: gene expression in tissue n and Ē: average expression of 

all human proteome in tissue n). The clustering was performed through k-means algorithm 

implementation of scikit-learn Python module, which uses Euclidean distances by default. We tested 

cluster numbers from 3 to 10 and chose 6 as the most discriminative one. Thus, the highest expression 

level cluster represents a group of prion-like proteins that are generally over-expressed and 

remarkably includes most of the human prion-like proteins for which it has been already demonstrated 

their direct involvement in disease: FUS, TDP-43, hnRNP A1 hnRNP A2/B1, hnRNP A3, hnRNP U, hnRNP 

H1 and EWS. Many of these proteins have already been described to be spread throughout most tissues 

and identified at different developmental stages (Bastian, et al., 2008; Uhlen, et al., 2015).  
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Figure 6.16 – Prion-like proteins expression in human tissues. The average expression of prion-like proteins dataset 

is plotted for different tissues. The tissue bars are colored based on the corresponding organ/tissue. Values range 

from 0 to 3 corresponding to Human Protein Atlas annotation “not detected”, “low”, “medium” and “high”.  

Prion-like proteins are disease related 

Given the widespread tissue distribution of the prion-like proteins and the link to disease of proteins in 

the most expressed cluster, we explored whether, globally, genes encoding for these polypeptides were 

connected to pathological processes. Their association to diseases was retrieved separately from the 

Online Mendelian Inheritance in Man (OMIM) (Amberger, et al., 2015) and the database of gene-disease 

association (DisGeNET) (Pinero, et al., 2017). The percentage of genes with disease annotations was 

calculated and compared with that in the complete human UniProtKB dataset, which was used as 

background. According to the OMIM database, 13.22% of the prion-like proteins encoding genes are 

disease-related against a 2.39% for the UniProtKB dataset, whereas values of 33.47% and 9.49% were 

obtained in the case of DisGeNET (p-value <1.0 x 10-5 for both databases, Z-test). Thus, the association 

with disease of prion-like proteins was three-fold and five-fold higher than the one in the complete human 

proteome, according to DisGeNET and OMIM, respectively. To assess the significance of this enrichment, 

100 random samples with the same size that the prion-like proteins dataset were selected from the 

background, the percentage of proteins associated to a disease in each sample was counted and the 

distribution of the percentages calculated (Figure 6.17). For both OMIM and DisGeNET, the prion-like 

dataset proportion is clearly above the 95 percentile of the distribution, which implies a significant over-

representation of disease-associated proteins among human prion-like proteins. At this point, it is 

important to underline that the prion-like protein identification pipeline is sequence-based and totally 

blind with respect to the protein annotation. 
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Prion-like proteins have been associated to the onset of neurological disorders (Harrison, and Shorter, 

2017). The 9% of genes encoding for prion-like proteins, 11 out of 121, are linked to neurological diseases, 

according to OMIM. This constitutes a significant enrichment, relative to the complete proteome (p-value 

<1.5 x 10-8). However, it is important to note that, despite proteins connected with neurological disorders 

are over enriched by 1.4-fold within the disease associated prion-like protein subgroup, this enrichment 

is not statistically significant (p-value > 0.11). It is clear from the results presented above, that many of 

the detected proteins are ubiquitous regulators involved in a wide range of signaling pathways; which 

suggests that perturbations affecting their function may have a great impact in multiple disorders and not 

exclusively in neurological diseases, as it is usually assumed. 

 

Figure 6.17 – Human prion-like proteins disease association. Number of disease-associations for prion-like proteins 

(dotted blue line) compared to 100 random sampling of the human UniProtKB from A) OMIM and B) DisGeNET 

databases. The median of the background sample is plotted as a dotted black line, while the red line refers to the 95 

percentile of the distribution (p-value <0.05). 

Prion-like proteins’ role in highly interconnected subnetworks 

Proteins rarely perform their functions independently; but mostly rely on complexes to carry them out. 

The connectivity of human prion-like proteins and the properties of their interactors were analysed. As 

above, prion-like proteins were first mapped to genes to obtain unique entities. Out of the 121 resulting 

genes, 100 had annotated physical binary interactions (physical interactions between two individual 

proteins). Overall, prion-like dataset and the proteins they interact with establish a subnetwork of 1544 

proteins with 2079 protein-protein interactions (PPI) between them. Both the prion-like dataset and the 

complete subnetwork have higher average interaction degrees than the human interactome (Figure 

6.18A). To uncover whether prion-like proteins interact more than expected by chance, the average 

degree of interactions of the prion-like protein set was compared with 1000 random sets of proteins of 

the same size (Figure 6.18B). This analysis confirms that prion-like proteins exhibit a significant higher 

number of interactions than the average human interactome. Next, we assessed whether prion-like 

proteins interact more between them than expected by chance, by comparing the number of intra-set 

interactions with that in 1000 random sets, as before. The results showed that prion-like proteins establish 

more interactions -one order of magnitude higher- between them than expected randomly (Figure 6.18C). 

To further describe the human prion-like subnetwork, it was tested to what extent prion-like proteins 
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cluster into specialized interactome neighborhoods. The size of the largest connected component (LCC) 

and the mean shortest distance (MSD) was measured and compared to 1000 random sets (Table 6.2).  

The results clearly show that prion-like proteins share a higher interactomic vicinity than expected 

randomly, providing support to the concept that they exist well-defined interaction networks for human 

prion-like proteins.  

 

Figure 6.18 – Human prion-like interactome. A) Degree distribution for the complete interactome in red and the 

prion-like proteins network (first neighbors) in blue. B) Prion-like proteins average interaction degree (dotted blue 

line) compared to a random sampling of 1000 sets. C) Number of PPIs between prion-like proteins (dotted blue line) 

compared to a random sampling of 1000 sets.  

 

Table 6.2 – Prion-like proteins are located nearer in the network than expected by chance. 
 

Prion-like protein set Random expectation Z-score P-value 

LCC size 32 3.16 16.8 <1 x 10-5 

MSD 1.64 2.2 -6.78 <1 x 10-5 

 

To functionally characterize this subnetwork of prion-like proteins and their interactors, the 1544 proteins 

were analysed for Gene Ontology and KEGG pathways enrichment. GO enrichment analysis are consistent 

with the results obtained for the prion-like proteins dataset alone, as it highlights regulation of gene 

expression through DNA and RNA binding as the main biological role played by this protein subset. 

When we examined the statistically enriched pathways obtained from KEGG analysis, we observed that 

they can be grouped into two main clusters. Remarkably, the largest cluster collects pathways involved in 

different types of cancer, such as transcriptional misregulation in cancer (p-value < 9.86 x 10-15, 53 

proteins), pancreatic cancer (p-value < 2.01 x 10-12, 29 proteins), prostate cancer (p-value < 1.31 x 10-11, 

33 proteins) or colorectal cancer (p-value < 1.88 x 10-7, 22 proteins) among others. 12 prion-like proteins 

(10% of the total unique entries) and 122 (8.4%) of their interactors were found in these cancer related 

pathways. These interactors include cornerstones in mitogenesis, growth factor signaling, apoptotic 

attenuation, cell cycle progression, angiogenesis, cell invasion, immune regulation, and 

microenvironment alterations. 
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The second group encompasses pathways associated with viral infection, such as viral carcinogenesis (p-

value < 1.42 x 10-15, 61 proteins), Epstein-Barr virus infection (p-value < 3.91 x 10-14, 56 proteins), herpes 

simplex infection (p-value < 6.6 x 10-12, 51 proteins) or Hepatitis C (p-value < 1.07 x 10-6, 38 proteins). This 

is consistent with the involvement of RNA-binding proteins, helicases and splicing-related proteins in the 

control of viral assembly and trafficking of the viral genomic RNA from the nucleus. Prion-like candidates 

such as DDX17 (Moy, et al., 2014), DDX5 (Cheng, et al., 2018) and hnRNP A2B2 (Levesque, et al., 2006) 

have been already described to play key roles in these processes. 

6.3.5 DISCUSSION 

In the present work we used a stringent computational approach that considers that PrLDs should not be 

only disordered and compositionally biased, but also encode for short sequences with moderate, but 

significant, amyloid propensity (Sabate, et al., 2015). We concluded that 242 polypeptides in the human 

proteome fulfil the requirements to potentially behave as prion-like proteins. This accounts for less than 

1% of the human proteins, which implies that, compared with organisms like Plasmodium or Dictyostelium 

where 10 to 25% of their proteins are predicted be prionogenic (Singh, et al., 2004), the prionic load of 

the human proteome is low. The dataset included several widely studied proteins with prion-like behavior, 

such as FUS, TIA1, TDP-43, EWS, and several hnRNPs, but also previously undescribed proteins with very 

important cellular functions: members of the mediator complex, nucleoporins, chromatin remodeling 

proteins and transcription factors. 

As their counterparts in yeast (Alberti, et al., 2009; Santoso, et al., 2000), human prion-like proteins, locate 

their PrLDs mostly at their ends; with a slight preference for the amino terminus. This might imply that 

the position of the PrLD within the protein sequence might be relevant for its function. Indeed, previous 

analyses on proteins containing low complexity regions, already suggested that these terminal positions 

would allow them to act as act as promiscuous interfaces for protein binding, without steric interferences 

by the adjacent globular domains (Coletta, et al., 2010). In a similar manner, prion-like modularity and the 

preference for terminal regions are likely maintained in order to delimit a flexible region which can switch 

its conformation and assemble, modulating in this way the activity of folded domains without impacting 

their native 3D structure. 

According to the GO terms analysis, a highly significant fraction of prion-like proteins are involved in 

functions related to nucleic acid binding and transcription and translation activities. This include proteins 

of the Mediator complex, implicated in the regulated transcription of nearly all RNA polymerase II-

dependent genes (Cho, et al., 2018; Zhu, et al., 2015), proteins recruited in chromatin-remodeling 

complexes (Boulay, et al., 2017; Kataoka and Mochizuki, 2017), and a significant number of transcription 

factors. The dataset also includes the large majority of RNA-binding proteins already described to behave 

as prion-like in humans, such as FUS which is implicated in transcription, DNA repair, and RNA biogenesis 

(Patel, et al., 2015), TIA1 which functions in mRNA turnover and regulation of translation (Li, et al., 2014), 

TDP-43 which is involved in transcriptional regulation and RNA processing (Buratti and Baralle, 2008; King, 
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et al., 2012), EWS which is implicated in RNA binding and processing or diverse hnRNPs involved in the 

packaging of pre-mRNA into RNP particles (He and Smith, 2009). Not surprisingly, we found that a high 

proportion of these proteins map into the nucleus and intracellular ribonucleoprotein complex. This last 

observation is consistent the extensive literature identifying prion-like sequences as drivers of liquid-liquid 

phase separation in membrane-less cellular compartments (Banani, et al., 2017; Patel, et al., 2015). 

Our data reveal that human prion-like proteins are multifunctional proteins involved in important 

regulatory processes. Indeed, 50% of the proteins in our dataset carry at least two different Pfam domains. 

As expected from the molecular functions in which these proteins are involved, the most statistically 

enriched domains correspond to RNA and DNA binding domains such as the canonical RNA recognition 

motif, the Zn finger domain, the forkhead domain or the helicase domain. All them present in well 

characterized transcription factors and RNPs. These are evolutionary conserved domains in which, 

because of their functional relevance, genetic mutations are often linked to disease (Cascarina and Ross, 

2014; King, et al., 2012).  

We assessed the expression of genes coding for prion-like proteins for each human tissue, to try to 

rationalize why, so far, these proteins have been mostly related to neurological diseases. Human prion-

like protein expression was not restricted to nervous tissue but ubiquitously spread among tissues; also, 

they are not especially abundant in the brain, relative to other organs of the human body. This suggests 

that they play a physiological role in different cellular types, although it raises the question of why most 

prion-like proteins related diseases are tissue-specific. This situation is not unique for prion-like proteins 

but common to other proteins involved in neurodegenerative disorders, i. e. α-synuclein the protein 

responsible for Parkinson’s disease, is abundantly expressed in both the cerebral cortex and the bone 

marrow, but only aggregates in the brain (Barbour, et al., 2008; Spillantini, et al., 1997). The protein quality 

control machinery has an active role in managing protein misfolding and aggregation. Cellular aging 

impacts cell homeostasis and leads to proteostatic-compromised cells in which misfolding and 

aggregation events cannot be compensated (Aguzzi and Altmeyer, 2016). It has been proposed that the 

low efficacy of replacing dying neurons, relative to other cells types, could be one of the underlying 

reasons why the malfunction of prion-like proteins is more often associated to neurological conditions. 

One important finding here is that many of the human prion-like proteins that have been convincingly 

associated to disease are among the most expressed polypeptides in the dataset. This fits very well with 

the so called “life at the edge” hypothesis, which states that, because protein aggregation is extremely 

dependent on concentration, abundant proteins are, on the average, at highest risk of misfolding and 

aggregation (Tartaglia, et al., 2007).  

Independently of their tissue distribution, what becomes clear from the analysis of the OMIM and 

DisGeNet databases is that human prion-like proteins are strongly connected to disease. Two 

complementary properties might explain, at least in part, this strong association. First, the propensity of 

PrLDs to establish intermolecular interactions together with the presence of regions with significant 

amyloid propensity, exposed to solvent within large disordered regions, impose an inherent risk to 
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aggregate to these polypeptides. In fact, genetic mutations that increase the aggregation propensity of 

PrLDs have been shown to be directly associated with disease (Harrison and Shorter, 2017). Second, 

according to the “centrality-lethality rule” (Jeong, et al., 2001) the highest the number of interactions for 

a protein is, the largest is the impact of its disruption on cell function. Thus, the high connectivity of prion-

like proteins networks might well account for their strong link to human diseases. Importantly, KEGG 

pathway enrichment analysis of the prion-like proteins interactome allowed us to uncover a highly 

significant association with two previously undescribed set of devastating pathological processes: cancer 

and viral infections. 

Overall, despite the present study constitutes only a first theoretical approach to the function of human 

prion-like proteins, our results indicate that this subproteome exert important regulatory functions in 

different biological pathways, thanks to both their protein-protein and protein-nucleic acids binding 

capabilities, two properties that seem to be favored by their modular architecture. The analysis suggests 

that in the forthcoming years we can expect the discovery of a connection between prion-like proteins 

malfunction and other pathologies apart from neurological disorders. 
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7. Concluding Remarks 
 

Chapter I – Globular protein aggregation 

• Structural aggregation predictors are widely used to study the aggregation landscape of globular 

proteins or protein complexes. Since its publication, A3D has assisted a variety of research topics 

such as the study of disease and non-disease related proteins’ aggregation propensities or to 

help in the design of biotechnological products.   

• STAP has shown to be a very useful parameter for identifying aggregation prone surfaces in 

folded proteins or protein complexes. Additionally, stability has shown to play a major role in 

protein structural integrity. Taking these evidences into account we have updated A3D 2.0 with 

FoldX force field calculations to compute the effect of mutations on protein stability and how 

they might impact STAP. 

• A3D 2.0 includes a dynamic mode which is able to model flexibility for big proteins or multimeric 

complexes. These transient conformations can conceal STAPs with high influence on the overall 

aggregation propensity. This was the case for most of the assayed complexes: 69 homodimers, 

54 heterodimers and 60 antibodies. Therefore, this update provides a more precise view of 

protein aggregation landscape in real-life scenarios. 

• Protein aggregation is an economic limitation for the development of protein-based products. 

We implemented a novel tool aimed to easily redesign protein solubility. Automated mutations 

widget identifies the most aggregation-prone regions and virtually mutates them to charged 

residues that will presumably act as gatekeepers and assesses the mutations’ impact on solubility 

and stability. STAPs can be required for protein function; therefore we allow users to protect 

selected functional residues. The tool should allow users to obtain soluble, yet functional, 

variants of their proteins, as shown for the redesign of GFP/KKK. 

• High throughput bioinformatic analyses increasingly rely on automated pipelines to process 

large amounts of data. To improve A3D’s applicability, we have enabled A3D 2.0’s fully access 

to functionalities via the command line through RESTful web services. 

• A3D 2.0 improves in situ output data visualization with additions such as the possibility to tag 

certain amino acids, to take and store pictures of the protein, to compare A3D scores in 

interactive graphs or to visualise larger protein complexes. The aforementioned updates make 

A3D 2.0, a powerful application, intended to help in the analysis of pathogenic mutations in 

conformational disorders and in redesign of soluble proteins for biotechnological and biomedical 

applications in a cost and time-efficient manner. 
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Chapter II – Effect of pH in protein compaction 

 

• The effect of protein environment on its aggregation dynamics has been hitherto neglected or at 

least only partially addressed. Previous research has shown pH affects amino acids at two main 

levels: changing their hydrophobicity and net charge. These properties modulate in turn 

important protein aspects such as folding and aggregation. 

• IDPs are proteins that do not require a folded 3D structure to develop cellular functions. Their 

compositional bias allows preservation of their structural plasticity. IDPs lack structural 

constraints that could blur the effect of hydrophobicity and net charge changes on aggregation 

propensity. Therefore, IDPs constituted a good protein set to disentangle particular 

physicochemical contributions to aggregation. PNTs were a perfect starting point, as previous 

research from our collaborators had modelled how changes in net charge and pH could affect 

protein solubility. 

• Plotting net charge and lipophilicity against experimental solubility revealed the dispersion 

resembled a plane; a flat 2D surface on the 3D plot.  

• A combination of hydrophobicity and net charge can predict aggregation in disease-related IDPs. 

By modelling how these two physicochemical aspects change with pH, our approach showed 

robust enough to correctly forecast protein aggregation on a wide range of experiments and 

different aggregation reporters. Finally, this phenomenological approach was consistent enough 

to anticipate changes in protein aggregation on human and yeast functional amyloids. 

• We developed SolupHred web server to incorporate the aforementioned calculations in a fast 

and easy to use way. 

• SolupHred performs predictions in individual proteins and large datasets. Moreover, it allows 

users to select whether to predict aggregation propensity over a range of pHs or just at a specific 

pH.  

• SolupHred web server was designed to be easy to use and its results as intuitive as possible. The 

output includes machine-interpretable JSON file to allow implementation of SolupHred 

calculations into bioinformatics pipelines. 

• IDPs can undergo conditional folding. SolupHred is limited to proteins which remain disordered 

along the calculated pH range. 

• IDPs are enriched in polar and ionizable amino acids compared to folded proteins. These 

compositional determinants allowed to accurately discriminate disordered and ordered proteins 

in a charge-hydropathy phase space diagram. As of today, several state-of-the-art prediction 

methods apply this principle to calculate protein disorder. 

• Taking into account that protein disorder prediction could be anticipated by hydrophobicity and 

net charge, we revisited the C-H concept applying pH as an additional variable, to infer if we could 

model pH-driven order-disorder transitions. 

• Available data of IDPs which underwent pH-conditional folding was used to model the influence 

of hydrophobicity and net charge in protein order. To obtain the maximal separation between 

the two populations, we applied a machine learning strategy specially designed to obtain the 

best binary separator (SVM). This strategy allowed us to identify a linear boundary condition 

similar to the one described for pH independent order-disorder transitions which is able to 

anticipate the effect of pH on IDPs conditional folding for diverse experiments from different 

authors. 

• We developed DispHred, a first computational approach to predict protein disorder as a function 

of the pH. DispHred uses the pH dependent C-H plot analysis to discriminate between folded and 

disordered states in a user specified pH range or at a selected pH.  

• DispHred also tackles SolupHred’s most important limitation, as it can predict the range of pHs 

where the IDP will be disordered. As SolupHred, DispHred was designed to be user-friendly and 

of ease interpretation, allowing the incorporation of its calculations into computational pipelines.  

• Protein environment is important for processes such as conditional disorder and protein 

aggregation. pH affects both hydrophobicity and net charge. Modelling how pH affects these two 
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physicochemical properties we were able to anticipate IDPs compaction and self-assembly. We 

next implemented the derived algorithms into publicly accessible web servers. These tools might 

help in further understanding the dynamic nature of IDPs, the mechanisms by which they convert 

into pathogenic forms, the design of synthetic IDPs which could transition at a certain pH, but 

also increase our understanding of conditional folding across species or the adaptations of 

organisms living under extreme pH conditions. We expect similar approximations to be 

incorporated into state-of-the art prediction methods in the following years, portraying them 

into more real-life scenarios. 
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Chapter III – Prediction of prion-like behaviour 

 

• Research on yeast prions has allowed the identification and characterization of several proteins 

undergoing conformational conversion. Yeast prions have an intrinsic compositional bias: Q/N-

rich PrD in disordered regions. Inside these domains, yeast prions have shown to present soft-

amyloidogenic cores. 

• Bioinformatic tools rely on these biases to identify prion-like proteins. 

• We have developed PrionW, the first server to consider both the Q/N-rich composition bias in 

disordered regions and amyloidogenic propensity inside them. This approach outperformed 

previously available algorithms. 

• PrionW server allows fast and accurate predictions and was intended to be useful for individual 

proteins and for large, proteomic-wide datasets.  

• Different organisms have shown distinct compositional bias on their proteomes. This conundrum 

is addressed by PrionW. Users are allowed to tune the Q/N- richness of their query PrLD. 

• A number of mutations mapped to PrLDs of human prion-like proteins have been shown to 

enhance their aggregation, which often results in the onset of degenerative disorders.  

• Previous work assessed the impact of a large set of mutations (point and multiple mutations or 

deletions; natural and artificial) on the aggregation of the model ALS-associated prion-like 

hnRNPA2 protein. We showed their effect is best predicted by a function that takes into account 

both compositional features and amyloidogenic propensities. 

• We have developed AMYCO (combined AMYloid and Composition based prediction of prion-like 

aggregation propensity) web server to implement the aforementioned function and perform 

automated and fast calculations on the aggregational impact of mutations on prion-like proteins.  

• AMYCO is an intuitive web server able to assess specific user-defined mutations or predict the 

impact of all possible mutants at a specific position. The input screen, the output figures and 

tables were designed to be easily readable and interpretable. Moreover, AMYCO was configured 

to have its calculations portable to large scale bioinformatic pipelines, for which a machine-

readable JSON file with all calculations can be retrieved. 

• The linear function behind AMYCO was parametrized on a dataset of mutants for prion-like 

protein hnRNPA2. Further testing showed this algorithm was able to predict increase in 

aggregation propensity identified in disease-causing mutants of human prion-like proteins. 

• The methodology showed robust enough to predict increase in aggregation propensity for 

mutations of yeast prion-like proteins that convert them into prions when expressed in yeast. 

• All in all, the prediction accuracy achieved denotes that both a biased composition and a certain 

amyloidogenic propensity play a role in prion and prion-like conversion.  

• Eventually, the progressive identification of novel proteins which undergo prion-like conversion 

will help decipher the underlying mechanism behind this transition. 
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Chapter IV – Characterization of prion-like proteins 

 

• Prion-like proteins with aggregation potential are widespread in different kingdoms; which hints 

at a potentially conserved functionality. Each species faces different selective pressures which 

made them evolve particular compositional bias in their proteomes, for which different detection 

strategies are needed. 

• Functional characterization of prion-like proteins in bacteria show these proteins mediate the 

cells’ interaction with the environment, remodelling and nucleic acid-related processes. Overall, 

this suggests prion-like proteins could be a way to rapidly adapt to changing conditions. 

• Bacterial prion-like proteins show similar modularity as yeast prions. A significative number of 

these proteins have one or multiple globular domains, with their PrLD be located at their N- or 

C-terminus.  

• Pathogenic bacteria have significant more prion-like proteins than their non-pathogenic 

counterparts. These proteins could be linked to their pathogenicity and infectivity, as it is 

suggested from the analysis of S. aureus and other amyloid biofilm forming bacteria. 

• These results preceded the recognition of Rho, a major transcription terminator factor in 

botulism-causing agent C. botulinum, as the first identified bacterial prion. 

• Plasmodium falciparum, the species responsible for most cases of malaria in humans, has one of 

the most compositionally biased proteomes, with up to 30% of it being LC, especially rich in N. 

To counteract such an aggregation-prone proteome, the parasite has evolved efficient 

proteostatic systems. A more stringent methodology was used to analyse the presence of 

proteins which could display prion-like behaviour in the protozoan. 

• The identified prion-like dataset was linked to functions previously seen in other species’ prion-

like subset, such as regulators of gene expression or nucleic acid binding proteins, but also in 

Plasmodium f. specific functions such as vesicle trafficking. 

• We chose 3 soft-amyloid cores inside N-rich PrLDs representatives of these enriched functions. 

Our data provide compelling evidence that, all three candidate proteins contain short nucleating 

regions embedded in the PrLDs that in vitro are able to spontaneously self-assemble into 

amyloid-like structures. Finally, we tracked in vivo red blood cell-infecting trophozoite stage P. 

falciparum showing intracellular amyloid-like aggregates. 

• In humans, a related approach allowed us to identify previous reported proteins that had 

experimentally shown to undergo prion-like transitions. 

• Architecturally, human prion-like proteins have shown a similar modularity than for previous 

species; having their PrLD predominantly in the protein ends and accompanied by globular 

domains.  

• As previously reported, prion-like proteins are linked to regulating gene transcription through 

binding nucleic acids. This function mirrors those found for other species’ prion-like subsets; 

suggesting a possible conserved mechanism. 

• Quite surprisingly, human prion like proteins were not restricted to any specific tissue but were 

found ubiquitously expressed among most cell types. Moreover, prion-like proteins were found 

strongly connected with disease. Taken both results together, we can anticipate prion-like 

proteins linked to non-neurological conditions will be soon identified. 

• Human prion-like proteins establish highly interconnected networks in which they preferably 

interact between them. Importantly, functional analysis of this interactome reveals association 

with two previously undescribed set of diseases as cancer and viral infections. 

• Overall, human prion-like proteins tend to be modular, interconnected, regulating gene 

transcription and its gain or loss-of-function can be directly or indirectly linked to diseases. 

• All in all, prion-like proteins seem to act as a cellular tool to regulate gene expression (in multiple 

organisms); by taking advantage of its potential phenotypic conversion, as a fast response in front 

of changing conditions. The conformational switch would have an immediate effect on the 

nucleic acids they bind or regulate. This aspect seems clearer in organisms with higher degree of 
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annotation like human or yeast. Disfunction of these proteins can originate protein aggregation, 

causing multiple pathologies either by the loss or the gain of function.  
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9. Appendices 

9.1  List of software used in the present thesis. Developed software marked with an *. 

Adobe Photoshop/Acrobat Reader 

AGGRESCAN 

Aggrescan 3D * 

Aggrescan 3D Standalone * 

AMYCO * 

Anaconda python distribution 

Bash programming language 

Biopython 

Bitbucket 

CABS-Flex 

CSS style sheet language 

DAVID 

DispHred * 

FreeSasa 

FoldIndex 

FoldX 

Github/Git bash 

GOStat 

HTML markup language 

IUPred 

JavaScript programming language 

Jupiter Notebook (iPython) 

Matplotlib python module 

MODELLER 

MS Office suite 

NCBI BLAST 

Notepad++ 

Numpy python module 

PAPA 

Perl programming language 

PLAAC 

PrionScan 

pRANK 

PrionW * 

PyMOL 

PythonAnywhere 

Python programming language 

pWALTZ 

Scypy python module 

SolupHred 

Sublime Text 

TANGO 

UniprotKB BLAST/Retrieve-ID mapping tool 

WALTZ 

 

 

 

 

9.2 List of databases used in the present thesis. 

DisGeNET   

Disprot  

Interactome3D 

Malacards 

NCBI 

OMIM 

Pfam 

PDB 

STRING 

UniprotKB 
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9.3 List of Operative systems used in the present thesis. 

Android 

iOS 

MacOS 

Ubuntu 

Windows

 

9.4 List of Web browsers used in the present thesis. 

Chrome 

Edge 

Firefox 

Internet Explorer 

Opera 

Safari 
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9.5 Supplementary Material 

Chapter II – Effect of pH in protein compaction 

Supplementary material S4.1 – Sequence of the PNTs variants 

We used the N-terminus moiety of measles virus phosphoprotein (PNT) as a model IDP. Acidic and basic 

variants were obtained as described in Tedeschi, G., et al. (2017). Briefly, basic (H, K, R) residues from 

the wild type protein were substituted with acidic (E or D) in the acidic variant; while in the basic variant 

wild type acidic residues were almost all substituted by basic ones. 

PNT wild type (N-terminus moiety of measles virus phosphoprotein) 
MHHHHHHAEEQARHVKNGLECIRALKAEPIGSLAIEEAMAAWSEISDNPGQERATCREEK 

AGSSGLSKPCLSAIGSTEGGAPRIRGQGPGESDDDAETLGIPPRNLQASSTGLQCHYVYD 

HSGEAVKGIQDADSIMVQSGLDGDSTLSGGDNESENSDVDIGEPDTEGYAITDRGSAPIS 

MGFRASDVETAEGGEIHELLRLQSRGNNFPKLGKTLNVPPPPDPGRASTSGTPIKKENLY 

FQGSHMPGTMPGTM 

 
PNT acidic variant 
MHHHHHHAEEQADDVENGLECIEALDAEPIGSLAIEEAMAAWSEISDNPGQEDATCEEEE 

AGSSGLSEPCLSAIGSTEGGAPDIDGQGPGESDDDAETLGIPPENLQASSTGLQCDYVYD 

HSGEAVDGIQDADSIMVQSGLDGDSTLSGGDNESENSDVDIGEPDTEGYAITDEGSAPIS 

MGFDASDVETAEGGEIEELLELQSDGNNFPELGDTLNVPPPPDPGEASTSGTPIDDENLY 

FQGSHMPGTMPGTM 

 
PNT basic variant 
MHHHHHHAEEQARHVKNGLECIRALKAEPIGSLAIKEAMAAWSEISRNPGQKRATCREEK 

AGSSGLSKPCLSAIGSTEGGAPRIRGQGPGESDRDAKTLGIPPRNLQASSTGLQCHYVYR 

HSGKAVKGIQDARSIMVQSGLDGRSTLSGGRNESRNSRVDIGKPRTEGYAITDRGSAPIS 

MGFRASDVKTAEGGKIHELLRLQSRGNNFPKLGKTLNVPPPPDPGRASTSGTPIKKENLY 

FQGSHPGTMPGTM 

 

Supplementary material S4.2 – Correlation between charge distribution and 

change in solubility in a range of pH for PNTs 

Correlation between the experimental solubility and net charge variation. Solid line corresponds to the 

fit of the data to a linear regression with a p-value < 0.05. 

 

0 50 100

0

20

40

60

80

Experimental solubility

N
e

t 
c

h
a

rg
e

R2 = 0.20



187 
 

Supplementary material S4.3 – SolupHred predictions correlation with 

experimental solubilities of disease-associated IDPs. 

 

 

 

 

 

 

 

 

 

 

 

α-syn: alpha-synuclein (Kapp: apparent rate constant, Tlag: latency time) 

IAPP: Islet Amyloid Polypeptide 

Aβ-40: 40 residues beta amyloid-peptide 
Tau K19: a truncated construct of the 3R the microtubule-binding protein Tau  

 

Supplementary material S4.4 – Performance of SolupHred in predicting 

changes in the solubility of the disease-related proteins and functional 

amyloids upon deviation from neutral pH. 

 

Measure 
SolupHred 
predictions 

Sensitivity 0.96 
Specificity 0.85 
Precision 0.88 

False Discovery rate 0.12 
Accuracy 0.91 
F1 Score 0.92 

Matthews Correlation Coefficient 0.81 

 

For each protein set, the experimental data obtained at a pHs closer to pH 7.0 was considered the 

aggregation at neutral pH. pHs in which the proteins showed increased experimental aggregation relative 

to neutral pH were considered positives, while less aggregative pHs were labeled as negative. SolupHred 

statistics were: TP (n=22), TN (n=17), FP (n=3) and FN (n=1). 

 

 

 

 

 

 

Protein R2 p-value 

α-syn (Kapp) 0.82 0.013 

α- syn (Tlag) 0.87 0.0066 

IAPP 0.95 < 0.00001 

Aβ-40 0.99 0.000039 

Tau K19 0.8 0.000037 
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Supplementary material S4.5 – Evaluation of the pH-P-corrected 

hydropathy scale.   

 

 

 

A) Correlation between pH-P-corrected hydropathy scale and IDP-hydropathy scale. B) ROC curve 

analysis of the performance of pH-dependent and pH-P-corrected hydropathy scales in discriminating a 

dataset of a fully disordered (n=111) and single-chain folded (n=150) proteins. 

 

Supplementary material S4.6 – C-H plots of disordered proteins and 

peptides 

 

A) Ac-AKAAKAKAAKAKAAKA-NH2, B) a 36-loop region of the influenza hemagglutinin C), A-domain of the 

Toc132 receptor D), LL-37 E) and human histones. Solid line delimits folded-unfolded boundary condition. 

Blue and orange data points correspond to bibliographically unfolded and folded conditions, respectively. 

Open circles represent the same points considering a constant hydrophobicity (pH 7). 
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Supplementary material S4.7 – SVM-based classification of pH-

conditioned ordered-disordered protein sequences based on their C-H 

relation. 

  

 

 

A, B) C-H plots containing 59 datapoints; 35 labeled as disordered (blue) and 24 as folded (orange). Each 

point is defined by its calculated NCPR and its mean hydrophobicity at their A) experimental pH B) or 

neutral pH. The solid line represents the optimal boundary condition, whereas dashed lines delimitate the 

maximum margin. 

 

Supplementary material S4.8 – Performance of the pH-independent 

hydrophobicity model derived by SVM in Supplementary material S4.7 in 

predicting order-disorder transitions in a C-H plot analysis 

 

Measure 
pH-independent 

hydrophobicity SVM 
analysis 

Sensitivity 0.74 
Specificity 0.88 
Precision 0.90 

False Discovery rate 0.08 
Accuracy 0.80 
F1 Score 0.81 

Matthews Correlation Coefficient 0.60 

 

Unfolded sequences correctly predicted to be unfolded were classified as true positives.  
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Chapter III – Prediction of prion-like behaviour 

Supplementary material S5.1 – PrLD dataset used in the benchmarking of 

pWALTZ.  

 

Prion/Non-Prion (P/NP) classification according to Alberti et. al. scale of prion propensity (Alberti, et al., 

2009). Sequences scoring ≤ 2 (1 positive assay as a maximum) were considered non-prions (NP) while 

sequences scoring ≥ 9 (all four assays positives) were considered prions (P). PFDs were as described in (2). 

 

 

 

 

 

 

UniprotKB Ac. Gene Name Prion/Non-Prion UniprotKB Ac. Gene Name Prion/Non-Prion 

Q12221 PUF2 P Q00772 SLT2 NP 

P09547 SWI1 P P41696 AZF1 NP 

P38691 KSP1 P P31384 CCR4 NP 

Q05166 ASM4 P P48837 NUP57 NP 

P23202 URE2 P P24276 SSD1 NP 

P18494 GLN3 P Q08831 VTS1 NP 

P25367 RNQ1 P P50896 PSP1 NP 

Q08972 NEW1 P P53309 YAP1802 NP 

P32770 NRP1 P P39523 YMR124W NP 

P40070 LSM4 P Q05785 ENT2 NP 

P38180 YBL081W P P32900 SKG6 NP 

P05453 SUP35 P Q06251 YLR177W NP 

P11746 MCM1 NP Q06449 PIN3 NP 

P32505 NAB2 NP P43582 WWM1 NP 

Q03761 TAF12 NP P38996 NAB3 NP 

P23291 YCK1 NP P29295 HRR25 NP 

Q12124 MED2 NP P32896 PDC2 NP 

P38080 AKL1 NP Q02792 RAT1 NP 

P25339 PUF4 NP P32790 SLA1 NP 

P39081 PCF11 NP P22579 SIN3 NP 

P43572 EPL1 NP Q12151 UPC2 NP 

P22082 SNF2 NP P39936 TIF4632 NP 

P45978 SCD6 NP P48562 CLA4 NP 

P14680 YAK1 NP Q06315 SKG3 NP 

P53829 CAF40 NP P39935 TIF4631 NP 

P53617 NRD1 NP    
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Chapter IV – Characterization of prion-like proteins 

Supplementary material S6.1 – Computational analysis of the Q/N-rich 

proteins devoid of PrLDs in P. falciparum proteome. 

 

 

Clusters of GO enriched terms for each ontology; biological process in blue, cellular component in green 

and molecular function in orange. The enrichment analysis was performed with Functional Annotation 

Tool of DAVID 6.7 database using high stringency clusters, p-value ≤ 0.05 for GO terms. 

 

Supplementary material S6.2 – Size of P. falciparum Q/N-rich prion-like 

proteins. 

 

 

The size of 5353 and 503 proteins were analysed and averaged for the complete proteome and the prion-

like subset, respectively. The mean size of the proteins in the entire proteome is 764 ± 1193 residues. The 

mean size of the proteins in the prion-like subset is 1755 ± 59 residues. The P value for the unpaired t test 

< 0.0001. 
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Supplementary material S6.3 – Developmental stages with highest prion-

like protein expression. 

 

Highest expression stage for prion-like proteins in P. falciparum’s life cycle. Data corresponds to 10% 

highest scoring prion-like proteins (n=51). 

 

Supplementary material S6.4 – P. falciparum soft-amyloid cores 

aggregation prediction. 

 

Protein Soft-amyloid core AGGRESCAN Tango (%) Zyggregator 

Sec24b NYNNNYNNNYNNYNYNNNNYN -44.40 0 -4.14 

IF2c NNNNIYNNNIYNNNNIYNIYN -27.00 2.55 -0.93 

PK4 NMNNINNMNNINNMNNINNIN -26.40 18.32 -3.23 

 

Analysis of the aggregation tendencies of the P. falciparum soft-amyloid cores using AGGRESCAN 

(Conchillo-Sole, et al., 2007), Tango (Fernandez-Escamilla, et al., 2004) and Zyggregator (Tartaglia and 

Vendruscolo, 2008) prediction methods. None of them is able to correctly identify any significant amyloid 

propensity in the peptides. 
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Supplementary material S6.5 – Disorder context of the soft-amyloid cores. 

 

Prediction method Sec24b IF2c PK4 

FoldIndex 100 100 100 

PONDR-FIT 100 100 100 

IUPRED 79 80 61 

RONN 69 62 69 

AVERAGE 87 86 83 

 

To predict disorder, FoldIndex (Prilusky, et al., 2005), PONDR-FIT (Xue, et al., 2010), IUPRED (Dosztanyi, et 

al., 2005), RONN (Yang, et al., 2005) prediction methods were used. Disorder was analysed for the 21 

residues-long peptides and 20 flanking residues at each end and expressed as the percentage of 

disordered residues in those 61 residues-long segments. Average disorder accounts for the mean of all 

disorder predictions for a given segment. 
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