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Chapter 1

Introduction

Feedback linearization of nonlinear control systems is a problem on which several scientists
have been working during the last twenty years. Its importance lies in the fact that it enables
us to transfer the properties of a linear system to a nonlinear one, as well as to propose a
simple solution to one of the main problems of automatica, which is stabilization around a given
trajectory of the system.

Feedback linearization is in general an open problem. There are solutions for specific cases,
such as linearization by static feedback, the equivalence between static feedback and dynamic
feedback linearization for single input systems, systems with m inputs and m+-1 state variables,
some cases of systems without drift,....

For many years differential geometric tools have been used in order to solve the problem of
feedback linearization. Notions such as Lie brackets and involutive fields or distributions are the
most common tools in this context. But to solve partial differential equations is also needed.
In the nineties, a new way of tackling the problem was proposed. This method, related to
the notion of flatness, was introduced in the differential algebraic setting. This setting led to
new concepts, and it has implied the introduction of new concepts for linear and nonlinear
systems. It allows us to deal with a greater number of problems than the classic framework.
Some years after the first works on the differential algebraic setting were done, two new versions
of flatness appeared, one using the differential geometry of infinite jets, and the other in the
exterior differential systems.

1.1 Linear systems

In 1963, Kalman [36] introduced a new method for describing linear control systems. In this first
work the foundations for a good comprehension and a revision of the results known at that time
can be found. Keywords introduced by Kalman are state variables, controllability, observability,
realization, minimal realization ....

At the end of the sixties and the beginning of the seventies, the algebraic theory of linear control
systems in an arbitrary field was developed . Roucheleau {55] and Roucheleau, Wyman and
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2 CHAPTER 1. INTRODUCTION

Kalman [56] studied the realization problem over commutative rings. The situation in the non
commutative case, treated in [60] by Sontag in 1976, is different because the Cayley-Hamilton
fails to hold.

Willem’s papers [64] - [67] must be mentioned here, because the geometric concept of trajectories
introduced therein plays a crucial role, and allows us to deal with many questions without
distinguishing between inputs, outputs, states and other variables. Also important was the
work of Brunovsky [5], who gave a classification of linear controllable systems. Since then, the
researchers in this area have referred to the Brunovsky canonical form, both those who work in
linear systems and those who try to linearize nonlinear control systems.

At the beginning of the nineties, Michel Fliess suggested a new algebraic treatment for linear
control systems ([10], [11], [15], [16], [20]). The cornerstone of his work resides in the fact that
it enables us to put linear control theory in an algebraic setting which utilizes module theory in
a more general manner than that commonly employed since Kalman. According to Fliess, these
papers sketch an attempt to rehabilitate Kalman’s point of view in the new context of module
theory. His work is based on a state variable representation, where the dynamics is strictly in
the Kalman form, but where the output map not only involves the state but also the control
variables and their derivatives. This is the frame we wish to use in Chapter 2.

1.2 Static feedback linearization

Since 1973, the problem of linearization of continuous nonlinear control systems has been ex-
tensively studied. Krener [41] found conditions for linearizing a system by means of state space
diffeomorphisms. A particular type of state feedback transformation was first introduced by
Brockett [4]. This was later generalized for single input systems by Su [61], who also related his
results to the notion of relative degree. The problem for multi input systems was finally solved
by Hunt, Su and Meyer [31] and Jakubczyk and Respondek [34]. Their works used mathemati-
cal tools such as Lie brackets and involutive distributions. In fact, they proved the equivalence
between the static feedback linearization and the rank and involutivity of certain distributions.
The Kronecker indices [51] were also a fundamental to this procedure.

For non static feedback linearizable systems, some authors have considered partial linearizations
([42],[44]), as well as approximate feedbacks ([29], [32]).

1.3 Dynamic feedback linearization

Partial feedback linearization is related to input-output decoupling. Necessary and sufficient
conditions are available for this problem. For linear systems it is known that those conditions
can be weakened if one allows for a dynamic compensator. This motivated the introduction
of a nonlinear dynamic state feedback transformation, which is a generalization of the static
state feedback transformation. In [6] and [7], the problem of dynamic feedback linearization
was studied by Charlet, Levine and Marino. Approaching the problem from the differential
geometric point of view, they showed that single input systems that are dynamically feedback
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linearizable are also statically feedback linearizable, and two very special cases of dynamically
feedback linearizable multi input systems are also given in [6]. In [7] they presented fairly general
sufficient conditions for a system to be dynamic feedback linearizable by prolongations, as well
as a necessary conditions. Unfortunately, as they also showed with examples, neither are the
sufficient conditions necessary nor are the necessary conditions sufficient.

Aranda-Bricaire, Moog and Pomet gave a different approach in [1] and [2]. They characterized
the flat or linearizing outputs in their framework, the so-called infinitesimal Brunovsky form.
Again, although their result establishes a sufficient condition for the existence of a dynamic
feedback transformation that linearizes the system, this condition is not necessary in general.
Sluis and Tilbury [59] gave an upper bound on the number of integrators needed to linearize a
control system, but they proved only the sharpness of the bound for systems with two inputs.
Their work was based on exterior differential systems. In the same framework, Rathinam and
Sluis [53] obtained a test for dynamic feedback linearization by reduction to single input systems.

1.4 Flatness in the differential algebraic setting

Differential algebra was established by Ritt [54], Kaplansky [39] and Kolchin [40]. What interests
us most about this theory is the differential field extensions. Fliess was the first to introduce
differential algebra into control theory for linear and nonlinear systems. One of the chief features
of the utilization of differential algebra is the avoidance of explicit equations. This enables us
to deal with a greater number of problems.

Using the differential version of the theorem of the primitive element, Fliess proposed a gen-
eralized canonical form in [10]. This was followed by a series of papers as a result of his joint
work with Levine, Martin and Rouchon. See, for instance, [13], [14], [17], (18], [19], [22], [45].
In these papers some concepts such as flatness and defect were introduced. One major property
of flatness is the existence of what the authors called flat or linearizing outputs. The system is
flat, if and only if, without integrating any differential equation, the state and input variables
can be directly expressed in terms of the flat outputs and a finite number of their derivatives.
Flatness is best defined by not distinguishing between input, state, output and other variables.
This standpoint matches Willems’ approach in [64] well. He did not make distinctions among
the different types of variables.

Flatness might be seen as another nonlinear extension of Kalman’s controllability. In fact, any
flat nonlinear system is controllable. In addition, for linear systems, flatness is equivalent to
controllability. A set of flat outputs is the nonlinear analogue of a basis of a free module. It
must be emphasized that from trajectories of the flat outputs, trajectories for the states and the
inputs are immediately deduced.

The relationship between the nonlinear theory (using differential field extensions) and the linear
theory, which utilizes modules, is given by what is called the Kéahler differential [35]. This
mathematical tool is used in this context to compute the associated tangent system to a nonlinear
one. This tangent system is linear. Therefore, one strategy to obtain the flat outputs could be
to compute the tangent system, and to find out an integrable basis of this tangent system.
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1.5 Contents and contributions

The aim of Chapter 2 is to present the state of the art on linear control systems within the
framework of module algebraic theory. Fliess’ papers are collected, although some proofs and
examples are new. Among new proofs, we would like to emphasize the proof of proposition 1,
which gives the equivalence between a linear control system in state-space representation and
modules over a ring of differential operators. The proofs of section 2.4 are extensions of known
proofs, including all the details required to make such proofs more clear. This chapter has been
submitted as a survey to the journal Linear algebra and its applications.

In Chapter 3 some background necessary for understanding the main results of this work is
given. The different types of linearization are presented: namely, static feedback linearization,
linearization by prolongations, dynamic feedback linearization, and flatness. Some known results
in this field are stated, with appropriate references to locate the proofs.

Chapter 4 deals with the problem of flatness in a nonlinear multi input (m inputs) system. In
the framework of differential algebra, the tangent system is used in order to find out the m®*
flat output when m — 1 flat outputs have been guessed. The quotient of modules is crucial in
this procedure. The contributions in this Chapter include:

1. A new proof of the well known fact that linearization by static and dynamic feedback are
equivalent for single-input systems.

2. A new algorithm to linearize single-input systems, as well as an algorithm to linearize
multi-input systems by static feedback.

3. A theoretic procedure to linearize any multi-input systems, together with a software pack-
age to carry out the computations. Once the system is linearized, a condition to check
whether or not the system can be linearized via prolongations is also derived.

4. An application of the procedure to a vertical take off and landing (VTOL) aircraft. Two
new flat outputs have been obtained, and it is proven that these flat outputs can be found
just by using prolongations.

These results have been published in two conferences. In 1997 SAAEI [25], which refers to static
feedback linearization, and in 1998 ACC [26], which is related to dynamic feedback lineariza-
tion. Some parts of this Chapter, together with a part of Chapter 5, have been submitted to
Automatica.

In Chapter 5, the problem of linearization by prolongations of systems with two inputs is studied.
A bound on the number of integrators needed to linearize a control system is obtained, using the
most elementary tools of differential geometry, such as Lie brackets and involutive distributions.
An algorithm derived from this result is applied to some examples, some of which were thought
until now to be not linearizable by prolongations. For instance, the VT'OL and the planar ducted
fan. A part of this Chapter will appear in 1999 SAAEI [28].

Chapter 7 generalizes the results of Chapter 5 to an arbitrary number of inputs, improving the
existent bounds in the literature when the number of inputs is greater than or equal to four. It
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also contains a new proof of the fact that, when linearization by prolongations are considered,
not all the inputs must be prolonged. This Chapter has been submitted to Systems and Control
Letters.

In the case of three inputs, better results are given in Chapter 6. These results have appeared

in 1999 IFAC [27].
This work ends with the conclusions and some suggestions for future research.
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Chapter 2

Linear systems

This Chapter is organized as follows: Section 2.1 is devoted to comparing two definitions of
linear control systems in order to show their equivalence, and examples are given at the end.
In Section 2.3, controllability and observability are presented in the module formalism. Modes,
poles and zeros are treated in section 2.4. Some examples clarify the work. Finally, some
applications to sliding control and linear systems interconnections are explained.

2.1 Linear control systems

This section deals with two definitions of linear control systems, the classical one in state-

variables and a new one using left modules ([10]). The equivalence between both definitions is
shown and some examples are given.

Definition 1 A linear control system in state-space representation is a system described by:
| X = A®)X + BO)U
Y=Ct)X
where U = (U1, ...,um) € R™, A(t) € Muxn, B(t) € Mmxn, X =(z1,...,2,) € R"* and
Y = (y1,...,yp) € RP

X are called state variables, U are input variables and Y are output variables.

Definition 2 A linear control system using left modules is a left finitely-generated K [a‘it]-module
A. ( K is supposed to be a field! )

Definition 3 A linear dynamic with input U = (uy, ..., up) is a linear control system A (that is
to say a left finitely-generated K[%]-module) which contains < U > and such that A/ < U > is
a torsion module. An output Y = (y1,...,¥p) 15 a finite set of elements of the system.

'K = R or C for constant linear control systems, otherwise K is a field of meromorphic functions

7
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Proposition 1 The above definitions are equivalent in the sense that if a system as in definition

1 is given, the left module of the definition 2 can be built, fulfilling the desired conditions. -

Conversely, if a system as in definition 2 is given, a realization as in 1 can be obtained.

Proof: First we see that definition 1 implies definition 2.
Let

X = A@t)X + B(t)U (2.1)

be a linear system as in definition 1. Consider the left K [%]—module generated by X and U.
That is to say

d
M=K [-&2] <X,U>
On the other hand, let V be the submodule generated by the relations of 2.1. Consider
‘ A=M/N

the quotient submodule. As M is finitely generated ( a finite number of X and U ), A will also
be finitely generated. So, it remains to be shown that A/ < U > is torsion. Let z € M. Then,

z=a1Z1 + .. + @nTy + biur + DU,

where a;,b; € K [%]. Consider the natural projection over A,

Z =121+ ... + AnZTy + by + Lbnupy,

By construction, any element of A has this form. Making the quotient A/ < U > we get:

Z=a121 + ... + QpTy

If the torsion elements make up a submodule, it is only necessary to show that T; is torsion. Vi.
In order to end the proof the following lemmas are stated (the proof will be performed later):

Lemma 1 VYz; 3P; € K[%] such that

d
Pim,-eK[a]<U>

This lemma states that z; is torsion in A/ < U >.
Lemma 2 The torsion elements make up a submodule.

Now, it must be proven that definition 3 implies definition 1. As will be seen in lemma 4,
A=Teo F, where T is a torsion submodule and F is a free submodule. \
Let be {r;};1, a set of generators of F and {2;}72, a set of generators of T. z; are torsion
elements, so there exists Qj(é'i‘t') such that

Qj(5)z =0
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On the other hand, there exists a submodule U such that A/U is torsion. That is to say:
d

d
V:I:,;E]Pi((—iz) I R(E‘:)J;, eU

An output y is an element of A. So

o d e d
y= ;Ri(a;)mi +j§5j(gi)zj
For all 4, 7 let the next integers be defined by:
di = maz{degree(P;),degree(R;) + 1}
e; = maz{degree(Q;),degree(S;) + 1}

Then, for any ¢ we have a system of the form:

.0 1
Ty = i
p di—1
. d;—1 k
z; = Z QET; + Ug
k=0
where zf = mgk), the coeffiecients a; come from the equation Pi(‘%):ci € U or the

(d; — degree(P;))t* derivative of this equation, if necessary, and u; = Pi(ad;) or also the (d; —
degree(P;))t" if necessary.
The same can be done for z;:

0 _ Ll
Zj Zj
3 2
ZJ' = Zj
ej—1
&=1 k
g7 = ) by
k=0
where z;-‘ = 2®) and the coeffiecients by come from the equation Qj(%)zj = 0 or the

(ej — degree(Q;))-th derivative of this equation, if necessary.

With all these variables each output y can be written as a linear combination of z¥ and z;-‘
t=1...,n,3=1,...,m, k=0,...,di -1, h = 0,...,e; — 1), which will be the state
variables. So a system in the state-space form is obtained. Notice that the module generated
by the new state-variables is A. And also

A

< UyyeenyUpny >

=AU
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That is to say, the dynamic generated by the realization obtained is the dynamic A/U. n

Now we are going to prove the two lemmas previously stated.

Proof of lemma 1: First case: A is a matrix with constant coefficients. Then, P4 ( the charac-
teristical polynomial of A ) accomplishes

d d
PA(EE)zi € K[EZ] <U>
Indeed, in A/ < U > the system is only
X =AX

The solution of this system is X (£) = e4*Xj. If P, is applied to this system we obtain
d d
Pa()X = Pa(5:)e? Xo = P4(A)e** X0 =0

Where the Cayley-Hamilton theorem has been applied to the last equality. So, each component
of X, labelled z; fulfills P4(&%)z; = 0.

Since X (t) = e X} in the non constants coefficients case cannot be assured, this demonstration
does not hold. The corresponding equation to z; must be derived, replacing the other variables
by their corresponding equations. If this method is iterated until the n* derivative of z;, we
obtain:

T 0 1 0
5 1 1 1
Zi an ] in
= Zy+-e+| . Ti+-+ . + 2z,
n n n n
:vf ) ai1 Qi Gin

This is a (n+1)-vector which is a linear combination of n vectors. For this reason these vectors
are linearly dependent. Hence their determinant is vanishing and this determinant yields a
polynomial with indeterminate % such that when it is applied to z;, it is zero.

Obviously this can be done for any state-variable. Thus we can state that

Vi 3P, | Pz =0

in A/ < U >. In other words, z; is torsion in the quotient submodule. n

(1 1) ()e

Example: Consider the system
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Let A be
_ < Z1,T2,U >

<ZIy—try—To, L0 —x1 —tTo—u

Following the above algorithm, torsion of z; in A/ < U > will be proven. z; fulfills the following
equations (the same notation is used for z; in A or in A/U):

Iy = Ih
tzy + 22

I

Deriving this equation: Z; = z; + tZ1 + £2. And making the substitution for £, and z,, it
becomes
£y = (2 4 2)zy + 2txy (2.2)

The following system can be written

I1 1 0
#1 2+ 2 ot

So the following determinant is vanishing:

T 1 0
] t 1
3 t2+2 2

That is
£1—2t51 + (2 —2)z1 =0

in A/U. So there exists a polynomial with inderminate 2%: that voids z; in A/U. The same can
be done for zs.

Proof of lemma 2: The torsion elements must make up a submodule. Let T be the set of torsion
elements. Two conditions must be proven:

Ve, yeT=>z+yeT (1)

d
VzeT,ke€ K[EE] =>kzeT (2)
First of all a property of the ring of differential operators A = K [%] will be proven:
Lemma 3

Va,b€ A,a #0,b#0,3a’,b' |0 # ba=ad
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Proof: Let be

e= Dl b=2 (g
= j=0
If there exist,
! = d k / = / d l
a —kZ:%ak(a) ; =§ z(a)

The equality a’b = b'a must be verified; that is to say:

o (e (S b Dy = (S Ly naiii
(Igak(dt) )(122% i(5)) (z=o i(5) )(;} (7))

Equaling term to term, a system with n+m+ 1 homogeneous equations and n+m+2 unknowns
is obtained. So it has a non trivial solution, and hence the existence of o’ and b’ fulfilling the
required conditions can be deduced. n
Once this fact has been proven, it is not difficult to prove lemma 2: Asz €T,Jda€ A |az =0
Analogously, as y € T, 3b € A | by = 0. Using the property just proved 3a’,¥ | a'b = b'a # 0.
Then Vta(z +y) = baz + Vay =bay=a'by=0. Soz+y e T.

On the other hand, a’kz = k'az = 0 = kz € T. This fact finishes the proof of the lemma 2. m
Now, another lemma will be stated and proven. This lemma will be useful in order to decompose
the submodule A into a direct sum of a torsion submodule and a free submodule.

Lemma d A =T @ F, where T is a torsion submodule and F is a free submodule ( that is to
say, without torsion elements ).

Proof: Consider the canonical morphism:
O:A— A/T

By definition this morphism is linear and exhaustive. It is clear that the kernel of this morphism
is T. So it must must ensured that A/T is free. Let § # 0 be a torsion element of A/T.
Such element is the image by the morphism II of an element y € A. As 7 is a torsion element
dp; € K[%] | p17 = 0 Thus p1y € T and, consequently, Ip; € K[c-‘fz] | pap1y = 0. This is the
same as y is torsion or, in other words, ¥ = 0, which contradicts our initial assumptions. Thus,
there is no torsion element in A/T; that is to say A/T is a free module. F' will be generated by
the one element of each subset of inverse images of the generators of the free module A/T. =

2.2 Examples
1.

1 = T3
:i:2=u
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In this example, M =< z1,z9,u >. N is generated by the above equations. So,

M < Zy,To,U >
A=——= - 1) 2.1 =<$1>
N <y —Z9,Tyg—U>

When the quotient A/ < u > is done, it can be seen that ad—:fx]_ = (. Then an element
of the ring of differential operators that cancels z; is obtained. So A/ < u > is torsion
because its only generator is torsion.

2.
i=z1+u
i’2=.’113
T3 =1u

In this example, M =< z1,z9,23,u >. N is also generated by the above equations. So

A—M— < Z1,Z9,T3,U > _ < T1,To >
N <% —2x1+u,T2 ~ T3,T3 — U > <z —-z1+u>

In A/ < u > the relations (% —I)z; =0 and di:g:z:g = 0 are satisfied. Thus, the quotient
module is torsion again.

3.
X =AX+BU

01 \ 0 0

01 00

0 10

01 00

A= 01 B=|00

0 01

01 00

0 00

00

O

N

. 2 3
Notice that a‘%xg = Uy, %2-11:2 = u; and a‘%g‘l‘l = u;. The same happens to x4, z5 ,z¢ and
ug. Furthermore, z7, 23, g9 are torsion elements. Therefore, it can be written

< T1y ey Tg, UL, U2 > < T1,T4,Z7 > <z7>
— i 1). 340y ]:7 2 — 1, (:)a 7 =< 71,74 > ® (;)
<Zy —T9,T2 —Z3,T3 — Uly... > <zy > <z;’ >

So the system has a torsion submodule, generated by z7 and a free submodule generated
by z; and z4. Notwithstanding, A/ < uj,us > is a torsion submodule.
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xz(jj>x+(g)u

This is an example of a non-constant coefficient. The ring over which is defined the system
is R(t)[%], where R(t) is the field of fractions of real polynomials. The system is rewritten
in the following way:

_ < Z1,To,U >
< Iy —tr] — Lo, Lo — ] —tTo —u >

The relation

d
22 = (5 —tl)z
can be deduced from the first equation. And from the second equation
_ (2 _ 8y _o, 4 2
u—(dt—tI).'L‘g I:Bl—((dt) 2tdt+(t 2)z
So it can be said that
A=<z >

So, It is clear that, using the latest relations written, A/ < u > is a torsion module.

& =z+u?

The derivatives of the input are not considered in the state-space representation. Let be
y =2 —u— . yis a generator of the module and the module is free. The equation in the
variable y is:

y=y+u

2.3 Controllability and observability

In this section, simple characterizations of controllability and observability based on module
theory techniques are given. See [10] again. The equivalence between control systems in state-
space form and control systems in module theory will be used.

Theorem 1 A system A is controllable if and only if it is a free module.

Proof: First assume that A is free. If the system is uncontrollable, as in [36], we have a Kalman
realization as follows:

()= (% %) (%) ()7
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where A, is a square matrix and belongs to the uncontrollable part. Now lemmal can be applied.
Therefore, the elements of X, are torsion. So there exists a contradiction with the freeness of
A.

Now assume that the system is controllable. Let A = F @ T be a descomposition in a direct
sum of a free left module and a torsion left module. If A was not free, T # 0. Let be

T=<2Z1,y..,T >

Thus Vz; 3P, € K [‘—fz] | Piz; = 0, because z; are torsion elements. Thus a system with &
equations of order nyx (polynomial degree) is obtained. This can be transformed into a system
with order 1 equations where the state variables are z11,...,Z1,n;5 s Tk,1y -+) T,n,, This is an
expression of the form:

X, = A X,
Here there is a further contradiction because this is an uncontrollable Kalman realization. The
contradiction comes from the assumption of non-freeness of the module. |

The above proof also shows an equivalence between the torsion submodule and the uncontrollable
part of the Kalman realization.

It can also be seen that, if the system is controllable, each element of A is related, directly or
indirectly, to the inputs: directly, if it can be expressed as a linear combination of the inputs;
or indirectly, because each state-variable accomplishes a differential equation where there are
inputs.

Next the relation between observability and module theory is shown. In the classical theory, a
system:

X =AX +BU
Y=CX
is called observable if and only if
d d
t (at L Gt ty Syn-1pt
rank < C*, (A +dt)C’,...,(A +dt) C'>=n

where n is the dimension of the state-variable vector.

Theorem 2 A system is observable if and only if
A=<UY >

That is to say, if and only if each variable of A can be written as a linear combination of inputs,
outputs and their derivatives.

Proof: Let Y = (yi1,...,yp). There is no loss of generality in assuming that y1,...,y, are linearly
independent. First of all, we suppose that A =< U,Y > or, in other words, < U,Y >=< U, X >.
This is also equivalent to
<UY> <UX>
<U> <U>
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So, the Kalman realization is written in the quotient, where the variables are overlined:

X =AX
Y=CX
Deriving k times:
2 ¥ - @+ Loy
dtk dt
Consider the linear system obtained by gathering the former equation for k =0,...,n—1. Since
we have assumed that yi,...,yp are linearly independent, the system has a unique solution if,
and only if,
d d. .
rank(Ct, (A* + %)Ct, ey (AY + %)" 1ty =n
which is the classical observability condition. Therefore,
rank(C?, (A® + i)Ct (A* + i)"_ICt) =n
’ dat’ " dt

if, and only if, X are written as a unique linear combination of Y and their derivatives; if, and
only if, X are written as a unique linear combination of U,Y and their derivatives.

Notice that, from this proof, an equivalence between the observability part of the Kalman
realization and the submodule < U, Y > follows. [

2.4 Modes, poles and zeros

In this section we attempt to give an algebraic interpretation of the hidden modes, poles and
zeros of the constant linear systems. It follows [11], although some proofs have been extended.
Let us recall the Kalman realizations in the uncontrollable and in the unobservable cases. In
the uncontrollable case the Kalman realization is:

()= (% %) () (5)

where A; is the uncontrollable part matrix. And in the unobservable case:

()= (% % ) () +(5)v
r=(5) (%)

where A3 is the unobservable part matrix.
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Classically, the hidden modes were the eigenvalues of A; (input-decoupling zeros ) and Aj
(output-decoupling zeros). What is the interpretation of these matrix in the module theory?
Let us begin with A;:

As this is the uncontrollable part matrix, A is not free. So the module can be decomposed in a
direct sum of its free part and its torsion part: A = F @ T. Let us denote the linear mapping
induced by the derivative % by

7:T—T

This mapping is well defined because % is an element of the ring over which the module A has

been defined, and T is a submodule of A. Recall also the equivalence between the uncontrollable
part and the torsion submodule T'. So A; is the matrix of 7, and therefore the input-decoupling
zeros are the eigenvalues of the mapping 7.

Analogously, note that there is an equivalence between the observable part and < U, Y >.
Consider the quotient submodule S = A/ < U,Y >. Obviously there is an equivalence between
this quotient submodule and the unobservable part. Denote the linear mapping induced by ‘—%
by:

c:85— 8

This mapping is again well-defined and its matrix will be A3. Therefore the output-decoupling
zeros are the eigenvalues of this mapping.
Now, an interpretation for poles is looked for. Let be

AT <X, X, U> /<X >
T <U> <U>

which is torsion, because A/ < U > is also torsion. As in the above interpretations, denote the
linear mapping induced by gt- by:
§:A— A

Again remember that poles are the eigenvalues of A3 ( the controllable part matrix ). Then,
since z € A, the equation

§I=A3:I:

is satisfied, because when the quotient is done, the U part vanishes. Thus we obtain the proof
that poles are the eigenvalues of §.

Lastly, let us look for an interpretation of zeros. Consider the greatest torsion submodule in
<U,Y > and call it T}. Let

_<UY>

T <Y, T >

be a quotient module. Notice that < U,Y > / < T} > is free because the torsion part has
been removed. If when the quotient by < Y > is done, a torsion submodule appears, then the

J
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quotient submodule J will be a dynamic where Y are now the inputs. More precisely, there
exist two polynomial matrices P(%) and Q(%), in such a way that

PV = QUpY

Now, it is straightforward procedure to obtain a realization of the system such as
7 = AZ+BY
U = CZ

This is the inverse system, where U are the outputs and Y the inputs. We know that zeros are
the poles of the inverse system. On the other hand denote the linear mapping induced by % by:

e:J—J

The poles of the inverse system are the eigenvalues of this mapping and, therefore, the zeros of
the initial system are the eigenvalues of e.

2.5 Examples

1. Consider the linear control system described by

-4 —4 0 —1 — 0 1
. 1 0 0 0
X = 0 O —4 —5 -2 -1 0 |U
0 O 0 0
0 O 0 0
0 0 0 0
Y= ——1 010 0 X
The module description of the system is

A= < T1,T2,T3,T4,T5, U1, U2 > =< 29,75 >

< equations >

This is a free module and the system is therefore controllable. On the other hand it is clear

that A/ < U > is torsion. The observability of the system can also be checked: z; = y1,
2 2

T3 =y1 + Y2, T2 = (Er +43 + 4Dy + (1 +v2) — Syug, 75 = —1/2%5 (y1 + y2) — 4(v1 +

y2) — 5z4 — u; and z3 = —1/4(3‘%2:1 +4z1 + x4 + T5 + u2). Inshort < X, U >=< Y, U >.

So, the system is observable.

Now, the derivatives of u; and ug are written as functions of the outputs:

d? a3 d? d
put = (5 +ags + 5 2D + 1)
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d? d3 d? d d
a2 = (Ei + 4@ + 435)111 + (E + I)(y1 +y2)

The submodule J such that J =< U,Y > / < U,T} > is, in this example, the same as
J =< U,Y >/ <Y >. By the above equalities it can be affirmed that J is a torsion
module. And the matrix of the mapping € is

A=

[l e I e B )
OO O
SO OO
O = O O

Thus, it is clear that there is only one eigenvalue, which is zero. Moreover, it can be
checked that this is the unique zero of the system. See [38] for more details.

2. Consider the linear control system described by an aircraft altitude dynamics ( [58] ).

0 1 00 0

- —4 -4 0 0 3

X=119 0 o1 {X*T| o |
6 0 0 0 -1

Now the module of the system is

_ < I1,Z2,T3,T4,U >

A ;
< equations >

In order to find a generator for this module, the next procedure is shown:

Write z = az1+bze+cz3+dzs. Then, the following condition must be imposed: derivatives
up to order three cannot contain the control variable ». With this condition a generator of
the system is z = 15z; + 229 + +21z3 + 6z4, because the following equalities are verified:

o)

I = —98—

5(3)

TI9 = TS—

25— 14z — 4z — 29
294
143 — 420 — (3
= 204

So, z is a generator of A. Moreover, A =< z > is a free module or, in other words, the
system is controllable.
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C 'J— Ry
u l Ty ‘ Ty
R L
4

Figure 2.1: Elementary RLC-circuit worked in example 3

Let us recall that A =< u,y > is the observability condition. This is an easy computation
and can be left to the reader. Looking for poles and zeros is equivalent to finding a relation
like:
d, .d
p(5)y = a(5)u
And in this case we have:

d.4 d .3 d .9 d s d

= = ol = (—(—=)2 —4(—=

() + 45 + 4y = (~(3) — 4(5) + 14D

Therefore, poles are the zeros of the polynomial p(z) = z* + 423 + 422, that is to say,
z=0and z = 2.

On the other hand, zeros are the zeros of the polynomial q(z) = z2 44z —14 and, therefore,
are z = —2 =+ 3v/2.

. Consider the circuit shown in figure 2.1. The equations are:

. ( -1/RiC 0 1/R,C
X“( 0 —mL)X+(1ﬁ %‘
y=(-1/R 1)X+1/Ru

Using the same method as in the last example, a generator of the module is found: z =
:%0—3:1 + z9. So A =< z >. This module is free in all cases except L = R;RyC. In this
case, (La‘% + RyI)z = 0. That is to say, there are torsion elements in A, and therefore the
system is not controllable.

Let us consider the observability condition. It is necessary to check whether or not A is
equal to < y,u >. The state variables are involved in the following equations:

y—1/Riu=~1/Riz) + 22
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K K,
wall my |t -
o) C
i
0 Y1 Y2

Figure 2.2: Mechanical system with springs and dampers corresponding to example 4

y—1/Rit+ (== —1/L)u z1 — Ra/Lzs

1 1
R:C " RC
This system has a solution if, and only if, L # R;RyC. Therefore the system is observable
if and only if L # R R,C.

In the case L = R; RyC there exist decoupling zeros. Remember that the input-decoupling
zeros are the eigenvalues of the linear mapping induced by % in the torsion submodule T'.
The generator of this submodule is z and it fulfills the following equation:

1
Z+RTEZ 0

So, 'R_l_lc is the eigenvalue sought.

The output decoupling zeros are the eigenvalues of the linear mapping induced by 4 4 in

S = <u S A generator of this submodule is ;. In this submodule the equation is
T = 1 z
1= "R 0™

So, again, the output-decoupling zero is ﬁlc

4. Another example is drawn in figure 2.2 and modelled by the linear system:

0 0 1 0
0 0 0 1 0 0
x=| Btk 5 _cve o |x4| 0 0 1y
m m) my m1 1/my O
1z ko _c 0 1/mg

Mo m2 ma2 ma
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1000
Y= ( 0100 )
It can be shown that A =< z1,2z9 >. This module is free and, for this reason, the system is

controllable. It is also very easy to check the observability condition A =< u1,ug,y1,y2 >.

It is possible to find the following relation between the input and the output variables:

If
dy _ munz(ﬁ)“+(m1cz+mzm+mzcz)(%)3+(C1c-z+lc2m1+Ic1rnz+k2m2)(j"t-)2
p(d_t) - mimg +
(kacr+kice)(L)+kikal
m1ma
Then:
d d d
(L0 ) y= mz(a—t)2-(|i'c2(d-5) + k2 e c2(z) ks U
d\ 01 ca(g) + k2 m1(5)* + (c1 +e2) () + (k1 + k2)

For this reason the zeros are the zeros of the determinant of the last matrix, and the poles

are the zeros of p(a).

2.6 Final remarks

A formal Laplace tranform and the transfer function matrix are naturally defined in the module
formalism in [20], where the relationship between left(right) coprime matrix decomposition and
controllability (observability) is also studied.

Most of the concepts and results in linear control systems have been presented within the frame-
work of the new algebraic formalism introduced by- M. Fliess. In addition to the concision,
clarity and stylishness of the concepts, this approach is specially appropriate for problems in-
volving tracking of references and generation of signals. Moreover, this algebraic framework
enables the classical results to be improved. On the other hand, the concision, clarity and
stylishness make it easier to consider some phenomena which have sometimes been ignored in
the control literature and seem difficult to explain in any classical framework, as will be seen in
the next subsections:

2.6.1 The matching condition in sliding control mode

Let )
X = AX 4+ Bu
y = CX

be a linear single-input system, and assume that we want y = 0 to be achieved as steady state;
that is to say, a sliding regime on the sliding surface CX = 0. In classical references ( [62],[16]
) the existence of a sliding regime and the description of the ideal sliding dynamics is closely
related to the equivalent control (ueg) , which is derived from § = CX = 0. A necessary
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Figure 2.3: Not stabilizable example

condition for obtaining ue, from ¢ = 0 is that the relative degree of y is 1. Otherwise u.q cannot
be well defined.
In the framework of module theory, the module over K [%] spanned by y is considered instead
of the sliding surface equations. In this module an element
an a1 d

O’(y) = (aﬁ--(-alzﬂl—_T-*-...-!-an_lzl—t-l-anI)y (23)
where n = reld®(y,u) — 1 ( relative degree minus one ) and p(z) = 2" +a12" 4. . +ap_12+an
is a Hurwitz polynomial, can be chosen.
Thus, equation 2.3 determines a well defined equivalent control ueq. The control policy

ut(y) if ZB>0
“@‘{uwmifg£<o

with ™ (y) < ueq(y) < ut(y) guarantees the achievement of equation 2.3. Finally y = 0 is the
assymptotically stable equilibrium solution of equation 2.3. Hence y = 0 is obtained as steady
state and the control objective is attained.

2.6.2 The linear system interconnections

Let us consider a motivating example. The system:

y(2) —y=t-u (2.4)
whose transfer function is
s—1 _ 1
2—1 s+1

corresponds to the block diagram in figure 2.3, since t ~u=0+v, v =9y —y.

Let z =y + 9 — u. Then z — z = 0. So, z satisfies an unstable equation. This implies that
system 2.4 is not stabilizable.

The reverse block diagram is figure 2.4.

It corresponds to u = w — w = y + y. That is to say,

y+ty=u (2.5)

Its transfer function is also s_-}-—l; but this is input-output stable.

Finally, let us consider the feedback system in figure 2.5.
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Figure 2.4: Reverse block diagram of 2.3

Figure 2.5: Ill-posed system

Its transfer function is Tf;’_s If T'S = —1, then the system is ”ill-posed” in the sense of Willems
[68].
It is difficult to explain these phenomena in any classic framework. There is no difference between
systems 2.4 and 2.5 in the transfer function approach. But in the module framework we notice
that system 2.4 is not free torsion because z is a torsion element. On the other hand, system 2.5
is free and y is a generator.
These kinds of systems, called interconnections, have been examined by M. Fliess and H. Bourlés
[21] via a standard algebraic tool, coproducts of modules ( [8],{43] ). They confirm Willem’
standpoint [64]: .
"It is often misleading to distinguish between systems variables”.
Consider a family of modules {M,, o € A}. Let E be a given module such that, for any a € A4,
there exists a morphism:

ho i E— M,

Define the submodule € of the cartesian product Xoc4 M, spanned by the elements of the form

(«.e0,... hg, (€),...,0,..., —hg,(€)y...,0,...)

where e € E and a; # ag. The quotient module X4caMy/F is called the coproduct ( or the
fibered sum, or the amalgamated sum ) of the M, s(referencies). It is written Uyea, g M.
When the modules M,’s are viewed as linear systems, the above coproduct is called a system
interconnection. These interconnections are defined without distinguishing between system vari-
ables. Some examples are studied below. Let D* be a dynamic with inputs «* = {u},...,u,}
and outputs y* = {¢,... ,y;',} fori=1,2.

1

1. If m:= m! = m? and p := p! = p?, consider the parallel interconnection from figure 2.6.
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Dl _311_.
ul — u2
D2 __112_.

Figure 2.6: Parallel interconnection

ul 1_,2 2

—% . pt Yy =u D2 r——y—>

Figure 2.7: Series interconnection

Consider the free module [§] = [41,. .., 8] of rank m, and the two canonical isomorphisms:

68 — u‘;

€ is the submodule of D! x D? spanned by the elements of the form {(¢!(5s), —¢?(ds), s =
1,...,m}. The interconnection is represented by D! U,1_,2 D?, which is defined, in prac-
tice, by the sets of equations of each module plus the equation u! = u2?. An output of this
parallel interconnection will be any K-linear combination of the components of y* and y2.

2. Assume that p' = m? and y! = u2. Consider the series interconnection 2.7.
Consider the free module [€] = [e,...,€,] of rank p! and the canonical isomorphisms:

¢: [ — [u]
€ — U

The interconnection is D! Uy1_,2 D?, which is defined by the equations of each module

plus the equation y! = u2.

The first two cases of the motivating examples are examples of this type of interconnection.
3. Let D® be a third dynamic with input +® = {u3,... ,u3m3} and output y® = {y3,... ,yga}.
Consider the feedback interconnection whose block diagram is figure 2.8.

The input u® = v Uw is divided into two parts. Set 33 = ul, y! = u?, y? = w. Therefore,
the above block diagram corresponds to the coproduct Uys_yi y1oy2 y2= (D, D2, D?).
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D1 Y

D2

Figure 2.8: Feedback interconnection

A frequent phenomena is the lack of controllability or observability; that is to say, interconnecting
controllable (or observable) linear systems may give rise to an uncontrollable (or unobservable)
one. This cannot be detected by transfer functions. Moreover, when K is a field of constants,
the hidden modes corresponding to the lack of controllability (or observability) may exhibit
positive real parts which imply unstability. Let us see the examples stated at the beginning
of this subsection. As has been said, example 2.4 is not torsion free. In other words, it is not
controllable. The corresponding input decoupling zero, which is 1, is unstable.

In system 2.5, w cannot be expressed as a linear combination of u,y and a finite number of their
derivatives. So, the system is unobservable.

Consider the third example. Write T'(s) = %g% and S(s) = %, a,b,c,d € R[s], abed # 0, a,b
(resp. ¢,d) coprime. The system is governed by the equations:

d d

a(=)u—v) = b5y (2.6)
Sy = T (27)

There are two possible situations:

1. If ac+ bd # 0 (i.e. ST # —1), then (b(s)d(s) + a(s)c(s))y(s) = a(s)d(s)u(s). Therefore, y
can be obtained from u; and v can also be obtained from y, and, consequently, from w.

2. If ac + bd = 0, then u must satisfy a(%)u = 0. So u becomes a torsion element. The
remaining variables y,v span a free module of rank 1. Here, the lack of controllability
concerns the control variable.

Another strange phenomena is the change of rank. Generally speaking the rank is the maximum
number of independent channels, but may change in some interconnections. Let us consider an
example: ‘

The system in figure 2.9 is governed by the equations:

d d

—a(z)v = ()Y (2.8)
Ay = )y C(29)
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Figure 2.9: Example illustrating possible changes of rank

There are also two possible situations:

1. If ac + bd # 0 (i.e. ST # —1) then (ac + bd)v = 0. This implies that v, and consequently
y, are torsion. Therefore, the rank is zero. .

2. If ac+ bd = 0 (i.e. ST = —1) the module is free of rank 1.



28

CHAPTER 2. LINEAR SYSTEMS



Chapter 3

Linearization of nonlinear systems
and flatness

This chapter serves as an introduction to different types of linearizations for nonlinear control
systems: static feedback linearization, dynamic feedback linearization and linearization by pro-
longations, which is a particular case of dynamic feedback linearization. The concept of flatness
will be also introduced, as well as the concept of flat outputs. The tools and concepts of the two
different frameworks used throughout this thesis will be stated in this chapter. These frameworks
are: differential geometry and differential algebra.

3.1 Different types of linearizations

Definition 4 A nonlinear system
m
z=f(z)+ Zgi(av)ui z€R"
i=1

1s said to be static feedback linearizable if it is possible to find a feedback
vu=a(z)+B(zv veR™ veR™ z€R"

and a diffeomorphism
z = ¢(z)

such that the original sistem is transformad into a linear controllable system
z2=Az+ Bv
where A and B are matrices of appropiate size.

The next theorem is a characterization of static fedback linearizability in the differential geom-
etry framework. A proof can be found in ([34], [31], [51)).

29
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Theorem 3 Let m
&= f(z) + ) gil@)us
i=1
be a nonlinear system with m inputs. This system is static feedback linearizable if and only if

the following distributions have constant rank and are involutive:

Dy = < Giyeors9m > .
D; = <Di—1,ad}91,...,ad;gm> i=1,...,n—1
and the rank of Dy,_1 isn

In the case that the above system is static feedback linearizable, there exists a change of variables
and a feedback such that the system is written in the following way

:l;.l'l = y1+1 V'i:l,...,n i#kj,j=1,...,m
ykj = Uj j=1,...,m

k; are the so called Brunovsky indices [5],(51]. The definition of these indices is as follows: Define

po = dimDy
pi = dimD;—dimD;—; 12>1

Then,

A generalization of the static feedback is a dynamic feedback transformation.
Definition 5 A nonlinear system

z = f(z,u) z € R" u € R™ (3.1)
is said to be dynamic feedback linearizable if there exists:

1. A regular dynamic compensator

{ z = a(z, z,v) (3.2)

u = b(z, z,v)

with z € R? and v € R™. The regularity assumption implies the invertibility of 3.2 with
input v and output u. \

2. A diffeomorphism
Y =¥(z,2) (3.3)

with ¥ € R, such that the original system 8.1 with the dynamic compensator 8.2,
after applying 3.3, becomes a constant linear controllable system:

¥ = Ay + BV
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This linear system may be written in Brunovsky canonical form ([5],{51]) by means of a static
state feedback and a linear invertible change of coordinates:

y,gk‘)=vi Vi=1,...,m

where {k;}]~; are the Kronecker indices. Therefore, setting

k1-1 _
v =@ D)

it is possible to write y = T4, where T is an invertible matrix. This can be transforned, using
the invertibility of the diffeomorphism 3.3, into

(j)=w4@*w

And from 3.2, u = (¥~} (T1y),v). That is to say, z and u can be expressed as real-analytic
functions of the components of (y,...,¥m) and their derivatives. The dynamic feedback 3.2 is
called endogenous if, and only if, the converse holds; that is to say, if, and only if, (y1,...,¥m)
can be expressed as real-analytic functions of z, u and a finite number of their derivatives.

Definition 6 A dynamics 8.1 is called (differentially) flat if, and only if, is linearizable via
dynamic endogenous feedback. The variables (y1,...,Yym) are called flat or linearizing outputs.

Therefore, a flat system is not only linearizable, but is also a system where z and u trajectories
can be deduced immediately from (y1,...,ym) trajectories. In fact, this is the power of flatness.
Once the flatness of a system is known, it does not imply that one intends to transform the
system into a single linear one. When a system is flat, it is an indication that the nonlinear
structure of the system is well characterized, and one can exploit that structure by designing
control algorythms for motion planning, trajectory generation, and stabilization. Indeed, the flat
outputs are the nonlinear analogue of a basis of the free module for linear controllable systems.
Flatness was first introduced by Fliess and coworkers in [13],[14],{19],[22] using the formalism of
differential algebra. In differential algebra, a system is viewed as a differential field generated by
a set of variables (states and inputs). Recently, flatness has been defined in a more geometric
context. One approach is to use exterior differential systems, and to regard a nonlinear control
system as a Pfaffian system on an appropiate space (see, for instance [49] and referencies therein).
A somewhat different geometric point of view is to consider a Lie-Bécklund framework as the
underlying mathematical structure ([23],(24]). In this context, a system is a smooth vector field
on a smooth manifold, possibly of infinite dimension.

3.2 Flatness and differential algebra

For an introduction to differential algebra see [39],[40],[54].
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Definition 7 Let k be a given differential field. A system is a finitely generated differential
extension D/k. This corresponds to a finite number of quantities which are related by a finite
number of algebraic differential equations over k. The differential order of the system D/k is
the differential transcendence degree of the extension D/k. '

Let k£ < u > the differential field generated by k£ and a finite set u = (uy, ..., un) of differential
k-indeterminates. Assume uj,...,Un differentially k-algebraically independent; that is to say,
diff tr d°k < u > /k = m. A dynamics with input v is a finitely generated differentially algebraic
extension D/k < u >. Note that the number of independent inputs is equal to the differential
order of the system D/k as was proven in [63]. An output y = (yi1,...,Yp) is a finite set of
differential quantities in D.

According to theorem 6, there exists a finite trascendence basis ¢ = (z1,...,z,) of D/k < u >.
Therefore, since &;,y; € D, &;,y; are k < u >-algebraically dependent on z. That is to say,
there exist A; and B;, polynomials over k, such that

Ai(Ei, z,u,0,...,ul™)) =0 Vi=1,...,n
B (95,2, U, 1, ..., u%)) =0 Vj=1,...,p

z; are called generalized states and n is the dimension of the dynamics D/k < u >.

As was stated in the former section, linear systems are viewed as finitely generated modules over
principal ideal rings. The relation between these two approaches (field extensions and modules)
is established by what is called Kdhler differential ([35]). See appendix A for an introduction
to differential algebra and details on the Kahler differential. To a finitely generated differential
field extension L/K, associate a mapping (the Kéhler differential)

dL/K : L _).QL/K

where Qp, /g is a finitely generated left L[%]-module, such that:

Yae L dL/K'dd—(: = éit(dL/Ka)
Va,be L dL/K(a+b) = dL/Ka-l-dL/Kb
Ya,be L dL/K(ab) = de/Ka + adL/Kb
Vce K dr/xc¢ = 0

As was seen in the previous section, a module like this corresponds to a linear system. In this
case, this system is called the tangent or variational system. The inputs of this tangent system
are (dp kxu1,...,d/kum). Properties of the extension L/K can be translated into the linear
module theoretic framework:

o Aset = (¥1,...,%n) is a differential transcendence basis of L/K if, and only if, their
respective Kahler differentials (d/x¥1,...,dr/k%¥m) make up a maximal set of L[adz]-

linearly independent elements in Qy,/x. In other words, if, and only if, (dz/x¥1,...,dr/k
are a basis of Qp/k. Thus, diff tr d®L/K = rk Qp k.
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e The extension L/K is differentially algebraic if, and only if, the module Q , /K is torsion.
And a set X = (z1,...,2Zn) is a transcendence basis of L/K (not differential) if, and only
if, (dp/x X = dp xT1,---,dr/KTn) is a basis of Q7 as a L-vector space.

o The extension L/K is algebraic if, and only if, Q7,5 = {0}.

The following definition states precisely what dynamic endogenous feedback means in this frame-
work.

Definition 8 Two systems Dy /k and D3 /k are said to be equivalent (by endogenous feedback) if,
and only if, there ezist two algebraic extensions (not differential algebraic) D1/D; and Do/Ds
and a differential k-automorphism between D1/k and Da/k. In other words (identifying the
systems with their respective images in the bigger fields), D1/k and Dy /k are equivalent if, and
only if, any element of Dy (respectively D3 ) is algebraic over Dy (respectively D1). Two dynamics
Di/k < U > and Dy/k < V > are said to be equivalent if, and only if, their corresponding
systems D1 /k and Dy /k are equivalent.

Proposition 2 Two equivalent systems have the same differential order (and, therefore, the
same number of inputs). And the same happens to the dynamics.

Proof: Let K be the differential field generated by D; and D5. Since D; and Dj are equivalent,
K/D; and K/D, are algebraic extensions. So

diff tr °D; /k = diff tr d°K/k = diff tr d° Da/k

Remark: Consider two equivalent dynamics, D /k < u > and Da/k < v >. Let n; and ny be
the dimension of Dy /k < u > and Dy/k < v > respectively. Write the generalized state variable
representations of both dynamics:

17 . 1 .
AlEi, zu, .., u) =0 i=1,...,m

C’iz(éi,z,v,ﬁ,...,v(riz)) =0 i=1,...,n9

On the other hand, since any element of D; is algebraic over D, and viceversa,

p_}(uj,z,v,'t},...,v(lJ)) =0 I

oMz, 2,0,0,..., 00N =0 i=1,...,7} ”
P2, 2w,y ..,u) =0 j=1,...,m :
(2,2, U, 0, ., uP) =0 i=1,... 77

where pjl-,p?, q},q? are polynomials over k. 3.4 corresponds to two endogenous dynamic feed-
backs because they do not use any variable trascendental over D; and Ds.
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3.3 Linearization by prolongations
Definition 9 Let m
&= f(z)+ Y gil)us
i=1

be a nonlinear system with m inputs. A prolongation of this system is

& = flz)+ XL giz)y]
@ - l
Vi=1l...m
dfi_l = V;
where u{, which corresponds to ugj), are new stale variables Vi = 1...m jg=0...k—1.

And the new inputs are v;.

Definition 10 Let m
&= f(z) + ) gile)u;

i=1
be a nonlinear system with m inputs. This system is said to be linearizable by prolongations if
there ezists a prolongation of the original system which is static feedback linearizable.

In fact, a system which is linearizable by prolongations is dynamic feedback linearizable. That is
to say, a linearization by prolongations is a particular case of dynamic feedback linearization. Let

us see the relationship between these two types of linearizations. Consider a dynamic feedback
compensator, affine respect to the inputs: ’

(3.5)

with 2z € R? and v € R™. A dynamic feedback compensator is a prolongation if, and only if,

21
Zk1+1

TS D *

5= Zi+1 if i#kj,j=1,...,m
: v; if i=k;,5=1,...,m

where 1 <1 <gq.
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That is to say,
21

0 Zki+1
b°(z,2) =

DD
bl(z,z) =0
0(:1;,z)={ Zin if i# ks, j=1,...,m

i 0 if i=kjj=1,...,m

. [0 if i#k,i=1,...,m
ai("”z)_{1 i oi=kj,j=1,...,m

The following lemma will be used in some proofs related to linearization by prolongations in
chapters 4, 5 and 6.

Lemma 5 Let

—,1€1
dy;’
a family of coordinate vector fields in RY;
Dy = <oy...,05 {a%};‘i_rflﬂ >
— a8 +
Dy = <{g titnti41>
where
« a; €< 9 9 >
1yeey O ayl,...,ayn

and not depending on the variables

Yn+i+1y+ -1 Ynts

Then Dy & Dy is involutive if, and only if, D, is involutive.

Proof: It is straightforward.
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Chapter 4

Linearization using differential
algebra

4.1 Introduction

This chapter deals with the problem of linearization of nonlinear control systems; that is to
say, with the problem of flatness. Using the methods of differential algebra, we explain the
conditions which in this framework must be satisfied in order for a nonlinear control system to
be linearizable. First of all, the tangent system is computed using the K&hler differential. Then,
for a single-input system, we give a new proof of the fact that a single-input system is static
feedback linearizable if, and only if, it is dynamic feedback linearizable. We also tackle the static
feedback linearizability problem for a multi-input system, thereby obtaining the conditions that
a system must fulfill in order to be transformed into a linear one in this context. The problem of
dynamic feedback linearizability is solved by trying to guess m — 1 flat outputs and computing
the last one. The quotient of modules appears to be a cornerstone in this procedure. Finally,
without computing the tangent system, a procedure based also on guessing m — 1 flat outputs is
be designed. The main tool here will be the intermediate differential field extensions. A helpful
software package in Maple V is created in order to simplify the computations required. The
listing of this program can be found in appendix B.

4.2 Single-input systems

Consider the single-input system:

z = f(z, u) (41)
where the state £ = (z1,...,%,) € R” and the control u € R. Assume that 4.1 is controllable.
Thanks to the property

d d
d(dta) dt(da) Va €

37
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where d is the Kéhler differential and L is the field extension corresponding to 4.1, the tangent

system is: of f
dz 6zd Y B 8u
Therefore, the basis of the corresponding module Q contains just one element. Let w be such an
element. In this context, a characterization of flatness for a single-input system is shown, and
consequently the well known equivalence between dynamic and static feedback linearization for
single input systems can be deduced (see [7], [2], [49] for other proofs of the same result):

(4.2)

Proposition 3 : System 4.1 is static feedback linearizable if and only if the module Q charac-
terizing 4.2 is generated by an integrable one form w.

Proof: The necessity is obvious.
Sufficiency: Since w is assumed to be a generator:

d
dz; = qZ (dt)w Vi=1,. (4.3)

where qi"(dit) are elements of the ring K [%], and [; are the respective degrees. Therefore, 4.3
can be written as follows:

Lo
dz; = Z b wh) (4.4)

Note that w and its derivatives of any order are L-independents. If there exists a combination
among them such as w(”) = pIy akw( ) then, w is a torsion element, which contradicts the
hypothesis of controllability (recall that the controllobality of a linear system is equivalent to
the freeness of the module). )

On the other hand, dzi,...,dz, are L-indepents too (there are no algebraic relations between
the state variables). Since n independent elements can not be written as a combination of a set
of | independent elements, with | < n, there exists [; greater than or equal to n — 1. Let us take

L @asxn{lz} 2n-—1

and substitute the expression of dz;; from 4.4 in the j*h equation of 4.2.

d I ) 6f I () af
a(};b}lw >_<EE_)] (,;,b;lw +<577>de

Thus, in the left hand side we have d:’L'j, which is a polynomial in the indeterminate % of degree
l; + 1. And in the right hand side of the above equation we have dz;, which is a polynomial in
the indeterminate % of degree smaller than or equal to ;. Therefore,

(gé)jdu #0



4.2. SINGLE-INPUT SYSTEMS 39

because, if it is zero, the above equation becomes
d f:bj ) _ (9f ibj ()
£ (Boe)- (), (e
dt = oz ) ; o

which implies that w is a torsion element, in contradiction with the controllability of the system.

Now, since
of

it is possible to isolate du:
L i o | _ (OF (i b (®
du = — W - (—) A%
(%E)j dt \ 15 0z /i \hzo

1, d
du = p”“(a)w (4.5)

So,

where pli“(adz) is a polynomial in the indeterminate d% of degree [; +1 > n.
Note that it is no possible that
d

dt
with degree s < n, because if 4.6 holds, then, equalling 4.6 and 4.5:

du = p*(=)w (4.6)

plj+1

(Syw = du=p*( S

which implies that w is a torsion element, in contradiction with the controllability hypothesis.
Summarizing, the relative degree of w with respect to du is I; + 1 > n. But, it is well-known
that the relative degree is always smaller than or equal to the dimension of the state. Therefore,
the relative degree of w with respect to du is n.

Now, using the integrability condition of w, a variable y (the flat output) such that dy = w is
obtained. And since the Kahler differential commutes with the time derivative, this variable y,
the flat output, fulfills the relative degree condition with respect to v . [

Corollary 1 : Linearization by static and dynamic feedback are equivalent for single-input
systems.

Proof: As already stated in chapter 2, flatness (or linearization by dynamic feedback) is equiv-
alent to the existence of an integrable basis of the tangent system. From the proposition this
last fact is equivalent to linearization by static feedback. Hence, dynamic and static feedback
linearization are equivalent for single-input systems. n
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Now, imposing the former relative degree condition, w is computed as a solution of an homoge-
nous linear system. Since w lies in §2 the expression of w must be:

w=a1dzry +... +apdz, :=a-dX
And an expression for w is obtained:
W = ado+a-(§do+ Gdu)
= (d+ag£) -dm+a-§5du

Therefore, the condition of the relative degree implies:

of
a o =0 (4.7)
Deriving 4.7, it is possible to compute another condition, useful in the following steps:
.. 80 of )
" 5u +a "G ( " 0 (4.8)

The value of ¥ is calculated:
2
W = (a+2a51 +adt5£+a(-g£) ) -dz
. a -]
+ (a + agg) gﬁdu

The condition of the relative degree leads to:

of\ of
(a+a%5) 55 =0
which thanks to equation 4.8, becomes:
of d . \of
(32: I) ou 0

Here it is also possible to obtain another useful expression:

% 4 () o (%)

Imposing once again the relative degree condition, now to w(®):

af d of f Bf
( et it
(a2 +2a6 ta dt@:r: ta (6:1;) ) du =0
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Using 4.8 and 4.9, this last equation becomes:
af d \? af

Iterating this process, a system of equations is obtained:

of d \*of _ _ B

This is an homogeneous system with n — 1 equations and n unknowns ( ay,...,a, ). So, the
solution w will depend upon a certain function A. Now, a variable y such that dy = w must be
obtained. The role of A is the role of an integrant factor.

4.3 Static feedback linearization of multi-input systems

Once again the intention is to compute the basis of the module corresponding to the tangent
system. As was stated in chapter 2, this basis contains the same number of elements as the
number of the inputs. Let m be this number. And let wy,...,w,, be the elements of this basis.
And again, as in the single-input case, the conditions that must be imposed to find the basis are
the relative degree conditions. The following lemmas will translate the relative degree conditions
of a nonlinear system to its tangent system.

Lemma 6 For all f, g vector fields, and for any w differential one form, the next equality is
satisfied:
Lf<wag >=< wavg>+<w1[fag]> (410)

Lemma 7 The Lie derivative with respect to a vector field f commutes with the exterior deriva-
tive:
L¢(dh) = dLs(h) (4.11)

The proof of these two lemmas can be found in any elementary text on differential geometry.

Lemma 8 For any C* function y and any vector fields f and h, it follows the equality:
T r _
< dLjy,h >= ;(—m (k> L% < dy,adfh > (4.12)
=0
Proof: It will be proven by induction. For r = 1, and thanks to 4.11
< dLsy,h >=< Lzdy,h >

Applying now 4.10, we have
< Lydy,h >= Ly < dy,h > — < dy,[f,h] >
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which is the desired equality for r = 1.
Assuming the trueness of the statement for the case r, the case r + 1 will be proven. Applying
4.11 and 4.10:

< dLTf‘-Hy,h S=< Lde}y,h >= Lf < dL’}y,h > —-< dL}ya [fvh] >

Using the induction hypothesis, the latter expression becomes

k=r k=r
L; (Z(—nk (1:) L7* < dy,adbh >> - (Z(—l)’“ (I’;) L7* < dy, adbadh >)

k=0 k=0

which, in turn, is equal to

k=r k=r
(Z(-nk (]:) L * < dy, adbh >) - <Zj(-1)’c (;) L7* < dy,ad} + 1h >)

k=0 k=0

() +(5) = (%)

applied to the former expression, leads to

=r+1
( Z (-1)F (r: 1) L;H_k < dy, ad’}h >>

k=0

Finally, the equality

This is the desired expression for the case r+1. ]

Proposition 4 When a system
m
&= f(z)+ ) gi(z)ui
i=1
18 linearizable by static feedback, then

dar
Y=Ly Yr<ki-2

where y; and its derivatives up to order k; —1 are the coordinates of the change of variables that
linearizes the nonlinear system; and k; are the Kronecker indices.

Proof: Again it will be proven by induction. For r =1

d n
1Y% =< dyj, f(z) + D gi(z)u; >=< dy;, f >
i=1
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since the static feedback linearization conditions imply
< dyj,adpg; >=0 Vr<k;j—2 (4.13)

Assuming that the statement is true up to r, the case r + 1 will be studied. Using the induction
hypothesis we have

drtt d r r =
grri¥i = g7 (L7ys) =< dLjy;, f(2) + Zgi(fﬂ)uz >

Applying now the equation 4.12, we get:

r

Z(_l) (k>Lr k < dy]iadf(f z)+ Zgz(z uz

k=0

which thanks to 4.13 can be written

r r Lo
1}- <dyj, f>+ Z(—l)k (k) L; kZui < dyj,ad’}gi >

k=1 i=1

Again, because of 4.13,

r r _ n
Z(—l)'C (k) L} k Z“i < dyj,ad’}g,- >=0

i=1

Therefore,
dr+t .
Qi = LF My

Corollary 2 The Kéhler differential of y; does not depend on the inputs of the tangent system
duji=1,...,m

Proof: In the previous proposition it has been proven that %yj does not depend on the input
variables u; Vi = 1,...,m. The commutativity between the time derivative and the Kahler
differential was commented on in chapter 2. Putting them all together, the statement of the
corollary is derived.
So, the relative degree of w; = dy; with respect to du must be k;, where k; are the Kronecker
indices ([51}).
Let

= f(z,u) z€R" ueR™

a multi-input system. Its Kéhler differential is

dz = 6fd+f

4.14
oz aud ( )
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The basis can be written
wi=a’idz1+...+aflda:n =a'-dz Vi= 1,...,m

Leading the relative degree condition to

i (0f d N of _ _ _
. (a—x_EI> G =0 Vi=0. k-2 W=1..m

The solution of this system will be a basis of Q2. Note that, if the Kronecker indices are such
that k1 > k2 > ..., then w; depends upon, at least, n — (k; — 1)m parameters; wy depends at
least upon n — (kg — 1)m parameters; and so on. These parameters act as integrant factors in
order to find y; € L such that dy; = w;.

Note that even though the original system was not affine in the inputs, this procedure can still
be applied

Example: Let us consider the following system:

Ty = T+ T1up
Tg = mguluz + Tous
T3 = UT3

Its tangent system is:

C[Il = wusdry + dzo + z1dus
dry = updzg + 2z3u1usdrs + Tusdus + (T2 + T3uy)dug
dry = uodzs + z3dus

The Kronecker indices are ky =2y ky = 1.
Denoting
w; = ajdz; +aydzy +azdzy i=1,2

Applying the conditions explained above, the next equations for w; are obtained:
a3 =0 and alz)+alz3=0

and no conditions for wy. Therefore
w; = Azzdz; —z1dz3) ANEL

and wy can be choosen freely, taking into account that wy has to be differentially independent
with respect to w;. As A is an integrant factor for wi, it can be chosen in such a way that w;
is an exact one form. A possibility is to choose

1
Z173

A=
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Hence:
1 1
w = —d:z:1 - —-d:L‘3
Ty I3
and, for the sake of simplicity,
wo = dzy
It can be checked that 1
n=lh— yp=1x
Zz3

are such that w; = dy;, 1 = 1,2. In other words, the flat outputs of the system are y;,yo.

4.4 Dynamic feedback linearization for multi-input systems

Let us consider a controllable multi-input system:

z = f(z,u) (4.15)
where z € R™ and u € R?. Recall that the tangent system is:
. _Of of 4,
4.1
dz = ==dz + -du (4.16)

Let Q be the module characterization of 4.16. Suppose that a flat output can be guessed ( for
example y; ). In order to obtain the second flat output y2, a quotient of modules is made. Let
us consider the quotient module:

Q/ <dy > (4.17)

This is a controllable single-input system, and by application of the algorythm explained in the
former section a basis of this module can be found. Let ws be this basis. Therefore, a basis of
Q will be:

d
wy = dyi, wy = Wo +p(dt)dy1

p(%) must be chosen in such a way that ws is a K-integrable one form. So a system of partial

differential equations must be solved.

This procedure can be generalized for systems with m inputs. In that case, m — 1 flat outputs
must be guessed, but the algorythm to get the last one is the same.

Once the flat outputs 4, ..., ¥ have been obtained, it is possible to know if the original system
is dynamic feedback linearizable by derivation of the inputs [7]. To get such a condition, let us
define the parameters I—cj,-, Tp, N as follows:

let

. d d
w; = dyj = AJdCE +p§’1 (d )du1 +. +pk’"‘( )dum (418)

dt
On the other hand, the system variables can be written using wy,...,wn:

d d
dz = R’ll(d—t)dyl +.o 4 R’"‘(dt)dym
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hing @ him( @

du; = qzll(dt)dyl +ooo Gt (dt)dym
where R} (£),..., Rim(£) are vectors with coefficients in K[(%)] and i, ...,y are the maxi-
mum degrees of the indeterminate in each vector. qh”( d) +...+ qh"“( %) are polynomials in
the indeterminate ( dt) and h;i,...,him are the degrees of the respectlve polynomials.
Now

A if pji # 0

e —rel d°(dy;,du;) ifpj; =0

rp = max{{lj + kjp,Vj = 1...m},{hij + kjp,Vi=1...m,¥i=1...m}}
nj = max{l;, hi;,Vi = 1,...,m}
It must be noticed that I; := —co (respectively h;; = —o0) if R; = 0 (respectively g;; = 0).

Corollary 3 The system is dynamic feedback linearizable by prolongations if and only if the
sets V and W have the same number of variables, where W =:

{dz1,...,dzn,duy,... ,dugrl), vy dUm, ... ,duS,’;"‘)}

and
V= {dyl,.. . ,dygnl),. ey dYmy - .,d:l/,(;:'")}

That is to say

n—|—§:rp an
=1

Proof: Note that
dzy,...,don, dug, ..., dul™, ... dum,...,duli™)

can be written as linear functions of

dyi,. .. ,dygn’), ey QYmy .. ,dy,(ff'”)
And conversely,

dyty. .., dyi™, ... dym, ..., dyfom)

d$| o d.’D du e du( “e e dUm “e du( )
bl b ny b ] ? ? bl 1 m

In other words, there exists a linear change of variables between the variables in V and W. This
change of variables is, in fact, thanks to the integrability conditon, the jacobian of the change
of variables between

(r1) T
L1y TnyUly..0yUg auma"';ugnm)
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and

7""ym1"‘7 7(77"1)

Ytyee- 1y§nl)

So, as the change of variables exists, the system

{i" = f(mau)
i

is static feedback equivalent to

d () _ . (+1)

Eyi =Y; Yi=1,....m Vj=0,...,

In other words, the original system
z=f ((E, u)

is linearizable by prolongations.

4.5 Software

WY vi=1,...m Vi=0,..

< Ti-1

ni—1
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In order to simplify the calculations needed in the method presented above, a software package
has been developed. It consists in many Maple V functions that allow us to use a computer to
perform the basic operations -such as the computation of the tangent system- and those that are
harder. For example, given a single input system, a basis of the module 2 can be determined
and quotients in this module with arbitrary expressions can also be made. Given a two-input
dynamic feedback linearizable system, it can be reduced to a single input one through a quotient,

and, in this single input system, a basis can be computed.

The integrability of the basis is automatically tested, and, if it holds, the integrals will be the

flat outputs.

4.6 Examples

1. This example has been borrowed from [45].

Let:
I = w
o = ug
T3 = Ulug

be a nonlinear system.

The tangent system associated to it is a quotient K [%]-module A defined by the generators

{dz1,dzs,dz3,dus, dus}
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and the relations:

d.’IJ 1 = d’LL1
dxz = dUQ
dzs = usduy + uidug

dz; can be guessed as one of the two generators of the free module. Let us consider
the quotient module Q; = <T¥5 In the state space representation, €; is given by the
equations:

dze = duy
d:;}3 = uld’l—,l,g

Clearly, a basis of §2; is given by w; = uidzo — dzs.

|e

Going back to wy = uydzy — dz3 +p(ad;)dm1; where p($) € K[ft-]. In order for wy to be

K-integrable, an appropriate choice for p(%) is

a

(&) =2t
P’ = "2
Hence, an K-integrable basis of 2 is
w = d:cl
we = udzo —dz3 + Toduy
and the flat outputs are:
Y1 = o1
Y2 = w2 — I3

The relationship between the state variables of the tangent system and the basis of the
tangent module is:

d:L'1 = w
2 .
—x2w§ ) + ws
dzg = ———=
Ui
—_— @ _ .. .
ToUjW) — U1 Tawy UIWwe + UIW9
dil:g = .
U1
du1 = (.Jl
duy = involves third derivatives of w;

and second derivatives of wq
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Therefore

rp1 = max{1,1,0,—00,2,2} =2
T9 max{—00, —1, —00, —00, —00,0} =0
n1 = max{2,1,3} =3

ng = max{l,—00,2} =2

Summarizing, the nonlinear system defined by

T = Ui

Ty = v

T3 = uUIV2
ull = U2
uiz = v

is static feedback equivalent to the system

Yii = Y12
Y12 = Y13
Yis = Yue
Y21 = Y22
Y22 = Y23

which is linear.
2. This example has been borrowed from [53].

:L'Q:Ifl—.’L‘lafz = I3

T1T3 = T4

This system can be written down in the following way:

. . z3t+Tiu
rrT = T3
Ty = ug

: - u
T3 .:5%
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Its tangent system is:
Uy _za-i;;]u] 3:12
dz = 0 0 0 |dz+
_u
;% 0 0
a0
1 0 |du
1
0 =

Making quotient by dz; — Aduy ( that is to say, 1 — Az4 in the original system ) we get

T3t+zTiu 1
U1 __a_zgu. =

dZ: = 0 0 0 dz+
A
— 24T 22 Ax 0 0
T3
T2 -
1 du
0

Applying the algorithm for single-input systems, the basis w3 is obtained:

. To(usd —z1) -  ud—1 -
2 === )

where a; is a function depending upon the variables z's and u's. Therefore:
. d
wy = W3 +P(a)(d-’b‘1 — Adus)

But this one form is not integrable. So, 1 — Az4 in the original system cannot be a flat
output. If X is zero ( that is to say, guessing z; as a flat output ), the quotient is:

dop | _ ( mme = [ d,
0 0 dzs;

d.'.B3
+< 1 )dUZ
z1

Clearly, dz, is a basis of this module. Therefore, the flat outputs are z; and zs.
Comparing this method with the method used in [53], note that our algorithm reduces to

(a) Making a quotient of modules.
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(b) Solving an homogeneous linear system.

(c) Checking the integrability condition of just one form.

Therefore, it seems simpler than the procedure appearing in [53] .

3. The following example is related to a vertical take off and landing aircraft (VTOL). This
aircraft was assumed to be not linearizable by prolongations since [23], but it was known
to be flat . In our framework we prove not only that is flat, but that it is also linearizable
by prolongations. Here are the equations of the system:

= wuysinf— wugecosé
= wujcosf+ wgesing -1

P
y
g ug

I

Reducing the system to order 1 in order to be able to apply our algorithm:

1= g

Lo = U1 SinTs— U2E COS Ty
.7,"3 = T4

Zy= -1+ wujycoszst+ uzesinzs
Iy = Ts

Tg = U2

where
Ty=2C =1 Zy3=Y T4=Y Tz=0 z6=10

As in the preceding examples, its Kéhler differential is computed:

dl.L‘l = d$2

dfvz = (ujcoszs + ugesinzg)dzs+ sinzsdu;— € cos zsdug
dzz = dzy

dzs = (—sinzs + use cos z5)drs+ coszrsdui+ esinzsdug
dz}:s = dzg

dzg = dug

Guessing y; = z5 as a flat output, the quotient is

d:.I:l = d.’IIz
d'zg = sinzsdu
d:y;; = dxy

dzs = cos T5du;
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A basis of this quotient module is

~— _ 2zcisinzstugcoszs
2= 216 COS Ty

Adzy + Adzo+

2z2 cos 5 —uz sinzs ;
__ sinzs
2r6C0S 5 }\dﬂis COST5 )‘d$4

When
A = ZgCOST5

and p(a‘it) is the appropiate polynomial,

2x2 sinzs+u
Ya= T ( S 2‘:0”5) + ToTg COS T+

22 coszs—uz sinz .
& 52 22 + z4zgsinzs

Once the flat outputs have been obtained, we are able to decide whether or not this system
is linearizable by prolongations. For this purpose the parameters previously defined are
computed:

=3 lp=5

hiit=4  hia=6  hyy=-0c0  hyp=2
kin=-4 ki2=0 ky=-00 kpp=-2

Therefore, .
™= 0 To = 4

and
ny=4 ny==6

That is to say,
n+ri+ro=6+0+4=10

While
ny+ng =10

Therefore, following the corollary, the VTOL is linearizable by prolongations.

4.7 An analogous procedure using field extensions

The procedure explained in section 3.3 admits a nice counterpart using only field extensions.
Let us consider a nonlinear control system

z=f(z,u) z€R" u€R™
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As was stated in chapter 2, this is a differential field extension L/R, where L is the minimum
field containing the variables z, u and where the equations of the system are satisfied. If m — 1
flat outputs y1,...,Ym are guessed, let us consider the intermediate differential field extension
L/R<yi1,...,Ym—1 > /R. Then, the extension L/R < y1,...,Ym—1 > is a single-input system.
In this single-input system, the relative degree condition can be applied in order to find its flat
output, which will be the remaining flat output y, of L/R. This procedure has a disadvantage
with respect to the one explained in section 3.3. The procedure in section 3.3 uses quotient
of modules, and because of this, some equations and m — 1 inputs are eliminated. In the field
extension procedure, neither equations nor variables can be eliminated. Another difficulty is
that there is no software package to apply the procedure, and neither is there a sistematic way
to obtain the last flat output.

Example: Let us consider again the VTOL. Let us also recall that the system equations can be
written as follows:

.’1:'1 = o)

Tog = u;sinTs— UECOSTy
953 = T4

Iy = -1+ wujcoszs+ uxesinzs
.’Ifs = Ie

Tg = U

If y; = z5 is guessed as one of the flat outputs, the extension R < y1,y2 > /R < y1 > is
represented by the following system

T1= g
Iy = upsinzs— UE COS T5
T3 = T4
4= —1+ujcoszs+ wusesinzs

which is a single-input system. Applying the usual static feedback linearizability conditions to
this single-input system, the following distributions have to be involutive:

0
sinz
D, =< 5
0
COoS Ty
is trivially involutive.
0 —sinzs
sinz TgCOST
Dy =< 5 ) 5 >
0 — COS T3

COS T5 —Zgsinzs
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is involutive because the Lie bracket between its two elements is zero.

—21¢ COS Ty
—z2sin 5 4 ug cos 5
2zgsinx;

—-:z:% COS Ty — Ug Sin T

D3 =< D,

is involutive because the Lie brackets between its elements are zero. And, finally, D4 is also
involutive because its dimension is 4. Therefore the system is static feedback linearizable and
its flat output y, can be computed from the ortogonality between Vys and Ds. The solution of
this linear system leads to a system of partial differential equations. One solution of this system
is
2 .
Yo = T (21;6 sin :z:séi-uz cos:cs) + Zog COS L5+

252 cosTs—uz sinz .
g =%+ zywesinTs

which coincides with the solution found using the quotient module algorithm.



Chapter 5

Linearization by prolongations of
2-input systems

This chapter deals with the problem of linearization by prolongations for 2-input systems. A
necessary and sufficient condition for a two input system to be linearizable is derived. As an
application, two flat outputs for the VTOL and a planar model of a ducted fan are obtained.
These examples were thought to be not linearizable by prolongations in the existent literature
([59], [23]). Another example, which shows the sharpness of the bound obtained, is also given.

5.1 Prolongations of m inputs are not necessary

The following proposition will be helpful for establishing conditions so that a two input system
may be linearizable by means of prolongations. Thanks to this proposition, it suffices to prolong
the system by derivatives of just one input. In other words, prolongations by derivatives of both
inputs are not necessary. This proposition has been already proven in [59], but our proof uses a
different approach.

Proposition 5 If the system:
£ = f(z) + g1(z)u1 + ga(z)uz z€R™

is linearizable by derivation of u; ny times and ug ny times (with ny > ng > 1), then the system
is linearizable by derivation of u; ny — 1 times and ugy ng — 1 times.

Proof: Let 72 and ng:} be the systems obtained by prolongation of u; n; times and uy no

times, and u; n; — 1 times and ugs ng — 1 times respectively. The drifts associated to these
systems are

ni—1 8 na—1 9
' =7+ 01Uns1 + G2Untm1 + Y Untiet -+ > Yntnititig——
=1 aynJr-J i=1 Un+ni+j

)
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for system 372, And

ny—2 8 ng—2 5
f = f 4+ 01Yn+1 + G2Un4ni+1 + Z yn+j+la + Z yn+n1+g+1a—'—'f
j=1 Yn+ny+j
for system £27{. While the input fields are
15} d
1 1
G1i=5— =75
! OYntny 2 OYntni+n,
and
PO NN
! 6yn+n1—1 2 3yn+n1+n2 1

for the systems X;? and 2"2'1 respectively. By hypothesis, the system X7? is static feedback
linearizable. Therefore, the following distributions are involutive and constant rank:

0 0 d ; a
Dzl =< ’ aad}l aa(f}l—“_'—>
OYntny 6yn+n1+n2 OYn+n, OYn+ny+ns
It is a straightforward computation to check the following equalities
0 0 0 0
D} = feens '3 yenes >
ay'n+n1 6yn+n1-—i Un+ny+no ayn+n1+n2—i
foralli <ns —1. And
0 0 0
D! =< - cee g >
"z OYntny T OYn+ny—ns ’ ayn+n1+nz T OYn4ny+1 9
While
D? =< 0 d o a S
’ ayn+n1-1’- B ayn+n1—1—i, aynj—m—%nz—l Y OYn+ny+ng—1—i
for alli <no —2. And
o 0 ad a
D _ =< . . >
n2=1 ayn+n1—1, ’ ayn+n1—n2’ ayn+m+n2—1’ ’ ayn+m+1’g2
Therefore, for all ¢ # ng,
5 o 0
D =D ®6< ,
ayn+n1 6yn+n1+n2
For 1 > ny, some computationals lemmas are required.
Lemma 9
0 0 13 ;
D} .. e adtig9 >
nati = 6yn+n1 Y ayn+m—nz—i’ ayn+n1+n2, ’ 3yn+m+1’ flgz
where
n1— -1 6

T =f+ayns + > Yntj+lg
=1 Yn+j
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Proof: The proof will be done by induction.
Fori=1,

-1 -1
adpgs =[f',02] = [ g2 + Untny41l02, 92) = [, 92
Assuming the equality is true up to order ¢,

adiitgs = [f1, adbi )]

can be replaced, through application of the induction hypothesis, by
[f 11 ad§1 92]

which is equal to

" na-2 o .
adf- 2 + [g2 1+ Y 1 ad%90
g [g Yn+ni+ :[:1 n+n1+j+ n +n1+j, fl ]

However, due to the involutivity of the distributions and the next lemma, the last summand
belongs to D} ;. Therefore, ad}flm can replace adii'gy in D} iyq.

Lemma 10

) 0
ad’?lgz = h'igx‘ + Yn+ilg1, 92

where h; is a function depending on the variables (T, Yn+1,.- - Un+i=1)
Proof: It is done by induction. When ¢ =1,

adpgz = [f,92] + Yn+1{g1, 92]
Assuming the trueness of the equality up to order 1,

odies = [F,adn] =

[fa ] + [f yn+z[gl,g2]]

- . 0 0
lf hia—x] +[f + 91Ynt1 + jglyn-i-j+1 8yn+j,yn+i[91,gz]] =

1)
hi+15; + Yn+it1lg1, 92]
where

1.+1 = [f, hs ]+yn+z[f) [91, 921} + Yn+1Yn+ilg1, (91, g2]]
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Lemma 11

0 0 a -
Drll2+i =<

.o N adi_zgz >
OYntn, ’ ’ ayn+n1—nz—i’ ayn+n1+nz’ ’ ayn+n1+1 T

where
n1 -2 a

-2
F =f+ansi+ D Yntjt1
j=1 ayn+]

Proof: The statement is clear for all ¢ < nj since
diigy = adt
a f1g2 a f292
because of the former lemma. When i = nq,

- - -1 —
adligy = [f',adi g = [F', adi o] =

= ad;zl’92 + yn+m[ ,ad;%—lgg]

ayn+m—1
which, thanks to the former lemma, is equal to

ad;%gz + Yn+ny (91, g2]

Notice that g1,g92 € D,l11 c D} Therefore, due to the involutivity of this distribution,

ni+ng—1

ad;} g2 can be replaced by ad;é g2 in D,l11 np-
Lemma 12

D2

noti —

< 0 0 d
ayn-i-m—l Y aZ‘/n+n1—-nz—i—1 ’ ayn+m+n2—1 T 6yn+n1+1

, ad’%zgz >

Proof: This proof is equal to the one made for the first of these lemmas.
Summarizing,

0 0
Ontn, OYntnitny
Since the former equality has also been proven in the case ¢ # no,

0 7]
ntny OYntnytng

Therefore, since the hypotheses of lemma 5 are satisfied, the static feedback linearizability
conditions are the same for both systems. |

Dz'2®< >= D}—l Vi > ny

Do < >=Dl | Vi

Corollary 4 If a system is linearizable by prolongation of uy ny times and ug ny times (with
ny > ng), then the system is linearizable by prolongation of uy ny — ny times.

Proof: It is the result of applying the former proposition ny times. u
Thus, in the following, prolongations by derivatives of just one input will be taken into consid-
eration for two input systems. The same proof can be done for a system with m inputs, where
only m — 1 have to be prolonged.
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5.2 Main result

The following theorem, which establishes a necessary and sufficient condition for the existence of
prolongations, also provides a finite algorithm to decide whether or not a system is linearizable
by prolongations.

Theorem 4 The system
&= f(z) +g1(z)ur +g2(z)us z€R"

is linearizable by prolongations if and only if one of the following systems is static feedback
linearizable:

T = f(z) + g (2)ynt1+ 92(z)ws
g : Untj = Yn+j+1 Vi=1,...,k—-1
yn+k = w1
or
. & = f(z) + g(D)yan+ gilz)wr
Ek . yn-l-] = yn+j+1 V] = 1, e ,k' -1
?)n+k = wo

where k=1,...,2n —3 and
L
Yn+j =u§‘7 ) j=1...,k
(or, respectively) yny; = ugjul) j=1,...,k
are the new state variables and

wyp = u(lk) Wy = Uy (respectively w1 = U1 Wy = ugk))
are the new inputs.

Proof: It will be proven that the static feedback linearizability conditions for the system:

& = f(z)+ 91(2)yns1+ g2(z)w2
EQn_3 : 'gn+j = Yn+j+1 Vj = 1, e ,2n —4
Ydn-3 = w1

and the static feedback linearizability conditions for the system:

T = f(z)+ g1(z)yYn+1+ g2(z)ws
E[ : yn+1 = Yn+j+1 Vj = 1, e ,l -1
Qn-{-l = wy

with | > 2n— 3 are equivalent. So, this being proven, if a system is linearizable by prolongations
adding [ derivatives of u; (I > 2n — 3), then it will also be linearizable by prolongations adding
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only 2n — 3 derivatives of u;, and, obviously, the same fact occurs with ug. Therefore, a finite
algorithm for checking the linearization by prolongations will be to check the static feedback
linearizability conditions for &y, and Ty, Vk = 1,...,2n — 3. As the same proof is valid for both
types of prolongations (resulting from adding derivatives of u; or us), it will be proven just once,
in this case for prolongations of u;. The details for the prolongations by derivation of us can be
rewritten in the following proof by changing u; by us, and viceversa.

So, let
73z, y) = £(@) + 01(@)Uns1 + D, Yt
j=1 ayn j
be the drift associated with the system 9,3, and let
2n—-3 4 2n—-3

g (z,y) = 95" " (z,y) = go(z)

0Y3n—3

be the its control fields.
Yon—3 is static feedback linearizable if and only if the following distributions are involutive and
constant rank:

2n~-3 __ Js)
Dyg = < Fyan—392 >
2n—3 5 j ) j
Djn = < m,"'7ad}2n—3m,g2,“'9ad:7f2n—392 >

Denote
Mk = adlﬁzn-—agz V>0

The following lemmas clarify what {n;, k > 0} are.
Lemma 13 7, € § =< 565 >

Proof: It is proven by induction. For ¢ =1,

2n—4
m=I[f+0Yns1+ Y Unti+lyg -, 92] = [f,92) + Un+1[91,92] € S
j=1 yn+]
Assuming n; € S, i <k,
2n—4 a
Mhar = [f + Q1¥nt1 + Y yn+j+18——_,77k] =
j=1 Yn-+j

2n—4

0

= (f + Yngr01+ Y Yn+i+l g, — ) () = Me(f + Ynt191) € S
j=1 yn+]

thanks to the induction hypothesis. u
Therefore, the maximum independent number of these functions is n. In other words

M €<T05-«yTn-1 >
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Lemma 14 7 depends only on the variables ,yn+1,. .- Yn+k-

Proof: As in the previous lemma,

m = [f,g2] + Yn+1(g1, 9]
On the other hand,
T+t = [F27 72, 0k (@, Ynt1s - - Ynt]
where the induction hypothesis has been applied. Therefore, it is clear that
k-1 8 3
Me+1 = [f + Ynt191 + ;yn+j+1m,77k] + [yn+k+1m,'flk]

which depends. only on the variables z,yn+1,. .- Yn+k+1- n
Let us now compute a‘dyf2ﬂ—35y_3a':§'

Lemma 15 1.

; 0 ; 0
adlgps—— = (-1 —— Vj<2n—-4
f2 362/3,]..3 ( ) ay3n—-3_J .7 —_
2.
0
2n—3 =
adf2n~3 ayzn_3 gl
Proof:
1. For j =1,
adfan-3 =y 9 9 4.__29
7 Oyan—a 3 a2’ OYan—3 OYan-2

Assuming the equality is true up to 7,

) 8 . ) .9
adJ+n1_ — 2n-3,ad1 o — 271—3, -1y
%72 Bysn_s Lf frm=s 3y3n—3] |/ (=1) OY3n—3—j
where the induction hypothesis has been applied. This Lie bracket is equal to
2n—4
0 ;0 ; a
f + 91t + 1 (1) o] = (~1)!
[ n+ ng Yntj+1 ayn+J ( ) ay3n-—3—j] ( ) ay3n_3_j_1
2. From the former proof we have
é) 0
adZA =
frm? OYsn-3  OYnt1
Therefore,
0 0
ad?n=3 = [f27-3, - _
fon=3 O0y3n-3 f 6yn+1] 9
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It has been pointed out that n, €< n9,...,7n—1 >. But n may not be is not the least integer
satisfying such property. So, let us define

r = min{k|nx €< M0, ..., Mk-1 >}
There are two possibilities for these distributions:
l.r=n
2.r<n

1. If r = n, the distribution D2"7? is equal to

0 d

-1 ves >
T Oyan-3’ Oyon-2

<0y« Tn

Thus, this distribution being involutive, D,%”"s are involutive for all & > n. The reason
for this fact is that
0 0

D#-3 =« 0y« +« -1
k el A LY. W

>

and the Lie brackets

0 . :
[maﬂj]55=<ﬂ0,---,ﬂn—1> Vi<k, Vi<n-1
n—3—1

So, system o, _3 is linearizable by static feedback (in the case r = n) if, and only if,

[, 7] €< M0y vk > Vi<k, Vk=1,...,n-2

Note that P
———1=0 Vi<k, Vk=1,...,n-2
In 6y3n-3-—k] I ’
because 7; depends upon the variables z,yn41,...,9n4; and n + j < 2n — 2, while

In—-3—k>2n-1.
2. If r < n, the conditions for the distributions of the system 33,3 to be involutive are

e Vk L,
. a a
< Mk R
" Oyan-3’ " Oysn—s—k
Conditions: [n;j,7x] €< Mo, ...,Mk >, Vj < k. The reason is the same as in the former
case.

Dzn-—i} =< 70,--
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e fork=r+1,...,2n—r—4,

0 0

D=3 =« TR
k s Bams’ " Oan—3—r

>

have no conditions to check. Again, the reason is the dependence of n; on

ZyYn+ly - sYntj

and the fact
nt+j<n+r<n+r+1<3n-3-2n—-r—-4)

e The following distributions to be studied are

0 0
D3 . =< D73 >
In-r—3+k n-r—41 ayn+r, , OYntr—k
with k£ =0,...,r — 1. The involutivity conditions are

[

g‘y——:aﬂj]€<ﬂ0,---,ﬂr> Vr>j2r—k
n+r—

Particularizing for k = r — 1,

0 0

D3 =<« .
2n—4 M0y---7r 3y3n_3’ ,ayn+1

<

e In order to establish the elements belonging to Dan3 +i» With 7 > 0, we need the
following lemma:

Lemma 16
D3 =< Diniunadig > Vi20
Proof: when ¢ =0,
(28, — ay ] = g1 = ad}gs

Thus,
D=8 =< D73, ad%gs >

When 7 > 1, in fact we will prove, by induction, the following equality
ad_if2ﬂ—3gl = adifgl + D%Z;?_4 (5.1)
where ad}gl + D%ﬁ;?q means

adigi +h he D3
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Fori=1,
(2%, g1] = [, 1] + Ynt1l91, 01] = [F, 91]
Fori>1,

ad’ =[f+ + 9 +o+ _9 ad ]
fin—-3g1 = g1Yn+1 yn+26yn+1 ysn—30y3n_4, fan-3g1

Using the induction hypothesis, this expression becomes:

0 0 . -
[f + 919n+1 + Yns2g— +...+ T — adit +Donid ] =

3n—4

[f + g1Yn+1 + Yns2 + ...+ Y3n-3 adi ) + Dyl

b
OYnt1 0Y3n—4
2n-3 n—3

by construction of the distributions D377 « and Dan +i_q- Moreover, the elements

g 0 0
Ly eeey
,6yn+1, 6y3n—4

belong to D2n2 , (in fact, they belong to D3n=3). Therefore, because of the involu-

tivity of D377 ,,

0 - -
+...+ ysn_am,ad} 191] € D§g+g—4
n—

+
[91 Yn+1 T Yns2 Bmit

The proof of 5.1 ends by using this fact and [f, ad“}"lgl] = ad’}gl. =

This concludes the study of system ¥o,_3.
Now, the system ¥s,_o will be studied. Let

) 2n-3 a
2n—

=f+ + 3 ynsg

f [+ 91Yn41 & Yn+j+1 Tonts

be the drift associated with the system ¥o,_2, and let

gin = Ty 9" = g2

be its control fields. The distributions associated with this system are

o V<, 5
0
D2 =g,y ey >

k R P

So, the equality 5 5
Dr-2g =D 3 < >
k Oysn-3-k  * OYan—2

holds, and the hypotheses of lemma 5 are fulfilled. Therefore, the involutivity conditions
are the same for D,Qc”_2 and for D,QC"'3, with k <r.
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e Fork=r...,2n—r—4,
n 0 7]
U Bysn_a " Oysn—3—k

-2
D% =<m,.. >

satisfies the equality
Dfa’ =Dy e <

>
8y3n—2

As the hypotheses of lemma 5 are also fulfilled, the involutivity conditions are the same
for D,%’_}_f and for Din_s, with2n—r+4>k>r.

e In fact, the former equality

Dl = Do < i >

OY3n—2
is also valid for any k greater or equal than r. Thus, the static feedback linearizability
conditions are the same for both systems when r < n.

If r = n, the distribution D2"72 is equal to

0o} 0
Sl Oyan-2" " OYon—1

Thus, this distribution being involutive, Dﬁ”'2 are involutive for all £ > n. The reason for this
fact is that p P

s NMn—-1 ceey
" Oysn—s’ OYsn—2—k

<o, .- >

Dzn—Z =< 7o, - - >

and the Lie brackets

[ay3n—2—i

So, system Xo,_5 is linearizable by static feedback (in the case r = n) if, and only if,

,nj]€S=<T)0,---,77n—1> Vi<k, Vj<n-1

iy 6] E<Moyeeeyme > Vi<k, Vk=1,...,n-—2
which are the same conditions as those for ¥o,_3. u
REMARKS
1. The proof required in order to show that ¥q,_3 is static feedback linearizable if, and only
if, ; (VI > 2n — 3) is static feedback linearizable, is the same using the fact
2n-3 % 4

> Vizr
Oyan—2’  OYsn—3+h

where h = [ —(2n —3), and the lemma 5. This means that it is not necessary to add more
than 2n — 3 derivatives of the input in order to check whether or not a system is linearizable
by prolongations. In other words, it is sufficient to check the static feedback linearizabil-
ity conditions of 3,...,89n—3 (and Zi,...,59,—3) in order to check the linearizability by
prolongations of a certain system.
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Let us compare the static feedback linearizability conditions of X4, _3 and X5,_4. In order
to be involutive, the distribution

0 0
DIt~ R T ¢
n—2 ay3n—4 » 7705 ) a'y2n—-2 yMn—2 >

needs an extra condition (which is not necessary for the system ¥o,_3):

aﬂn—?] € D'r21,7154

[

OYan—2

or, in other words,

By 21"]11—2] €< N0y yn—2 >
n_

This is the reason why, in general, 2n — 4 or any smaller number cannot be a bound of the
number of derivatives added to the original system.

Examples

. As an application of the former theorem, a static feedback linearizable prolongation will

be sought in the following system:

4

Ty = I
L9 = u18inTs — Ug€COSITs
Q%= T . (5.2)
4 = —1 4+ wujcoszs + uzesinzs
Ts = Zg
\ T = U2

This system comes from the Vertical Take Off and Landing (VTOL) aircraft model ([30],
[23]), a model of a mechanical system with two inputs, whose evolution is restricted in the
vertical plane. The original equations are:

Z= wu;sinf@ — wugecosl
= ujcosf + wugesinf -1 (5.3)
8= Uz

The changes made in 5.3 to obtain 5.2 are

T1=2 Z9=2% T3=Y Ta4=Y ZT5=0 z=40
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To apply the algorythm explained above, the input us is derivated up to 2n = 12 times.
And the static feedback linearizability of the systems

n = Y2
Yg = —Y7€COS Y5 + wvsinys
ys = Y4
94 = —14+yresinys + v1COSYs
ki g5 = Ys
Yo = Y7
| Y6+k = U2

is checked (Vk = 1,...,12). A straightforward computation shows that ¥, 33, X3 does
not satisfy the static feedback linearizability conditions.

System ¥4. The distributions

0 0
sinys \ 0 \
0 0
CoS Y5 0
D} =< 8 , 8 >
0 0
0 0
0 k 0
0 1)
( 0 0 —sinys 0
sinys 0 Y6 COS Y5 0
0 0 —Cos Y5 0
COoS Y5 0 —yp sinys 0
pt=<| 5 Lloll o [0l
0 0 0 0
0 0 0 0
0 0 0 1
0 1 0 0
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and D% =

0
sinys
0

COs Y5
0

OO O OO

~

LINEARIZATION BY PROLONGATIONS OF 2-INPUT SYSTEMS

_HOOODOOOCO OO

—sinys
Y6 COS Y5
—COS Y5
—Ye Sinys
0

OO O OO

OrRr OO0 OO OOOO0o

—2yg cos ¥
—yZ sinys + y7 cos ys
2y6 sin Ys
—y2 cos ys — yrsinys

OO OO0 OO OO

OO O O OO0

are involutive because the Lie brackets between two of their elements are zero. The fol-
lowing distribution is

D} =< D3,

It is also involutive because

S =<mp=

(

0
sinys
0

COs Y5
0

=

3y§ sinys — 3y cos ys ( 0
(—y3 cos ys — y7sinys)ys — 2yey7 sinys + ys cos ys 0
3y2 cosys + 3yr sinys 0
(y2sinys — yr cosys)ys — 2ysy7 COS Y5 — s Sinys 0
0 0
0 o |”
0 1
0 0
0 0
0 0
—sinys \ —2yg COS Y5
Y6 COS Y5 —y#sinys + y7 cos ys
— COS Y5 2yg sinys
—Yy6Sinys —y§ cosys — yrsinys
0 0
0 32 = 0 y
0 0
0 0
0 0
0 0 ),

OO OO0 O
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3y sinys — 3y7 cosys

(—¥2 cos ys — yr sinys)ys — 2ysy7 sinys + Ys COS Ys
3y2 cos ys + 3yrsinys
(v2 sinys — yr cos ys)ys — 2yey7 COSYs — Ys sinys
3 = 8 >=
0
0
0
0

{(a1, a2,0a3,04,0,0,0,0,0,0) where a; are functions of yi,...,y10}

and all the Lie brackets between two elements of D§ belong to S. The next distribution is

0
—€CoS Y5
0
€Sin Y5
0
Di =< Dj, 1 >
0
0
0
\ 0
because
_ - -
—e€y7 CO8 Ys
Ya
—1+ eyrsinys
Ys
€S
Y7 s T3
Ys
Yo
Y10
L 0 }
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and also the Lie brackets between two of its elements are in S.
Finally

€COS U5
€Ys Sin Y5
—esinys
€1J6 COS Y5

1

D} =< Dj, >= R0

OO O OO

which is obviously involutive.

2. Another interesting example, very similar to the VTOL, is exhibited by a planar model
for the ducted fan ([46],[47] (veure ST)), given by:

T = Z2
o w up

By = M cos T — Y2 sinzs

r3 = T4

2 — u H Uu

4 = Jrsinzs+ 72 coszs —myg

Ty = Ze

Tg = Ly
6 = TJUlL

where m, J and r are constants. This system was thought to be not linearizable by
prolongations ([59]). However, we are in fact able to prove that it is linearizable by
prolongations. Take the prolongation coming from adding four derivatives of u; and zero
derivatives of ug:

1i31 = o
. x ‘u .
Tg = 2L coszs — 2 8inzs
T3 = Z4
2 _— T H U
£y = ZFsinzs + 2 coszs —mg
Is = Tg
Tg = Lz
6 = TeT
7 = g
Ty = Tg
T9 = V1

The distributions associated with this prolonged system are

0
Dy =< mﬂlo >

0
D, =< Dy, 5:—6?771 >
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0
Dy =< Dy, ;9—3:‘;’772 >

where

_ _sinzs 8 _*_cosa:ii_
T = m Ozg m Ot

— sinzs 8 _ zgcoszs 8 _ cosms O __ zesinws 8
m m 0z m Oz m Oz3 m  0z4

2 2 .

. 2zgcoszs 8 ZgSINT5  rzycosTs 2rgsinzg 8 _ (TgCOSZTs rrzsinzsy 8

2 = ™m 1 +( m mJ )axz + m dz3 ( m + mdJ Oz4

Remark that all the Lie brackets between their elements are zero. Therefore, Dy, D1, Do
are involutive.

a
D3 =< Dy, 5;;,713 >

where 73 is such that

< oo 0 0 0 0
M0,M,"2,M3 »= 8.731, 8552, 61'3, 6224

Notice that the Lie brackets between the elements in D3 belong to < etag,n1,72,173 >. So,
D3 is also involutive.

coszs O sinzg 0 r 8
5 9 5 0 | T

Dy =< Ds, Ozy m Oz4 = J Ozg

And, because of

coszs O sinzs &8 0 )
[ni’ ms—a—a—v;-'- m58x4 +3"a—"] €< N0,M1,NM2, 73 > VZ=0)1,2a3

Dy is also involutive. Finally, D5 = R!0. That is to say, the static feedback linearizability
conditions are fulfilled for the prolonged system, or, in other words, the planar ducted fan
is linearizable by prolongations.

3. This example shows the sharpness of the bound 2n — 3.

1 = I Touy

1':2 = I3 T1U1

Tk = T4 k=3,...,n—2
In-1 = U2

Tn = In—-1U1

The system is clearly not static feedback linearizable since

s, 0 0

Dy =
0 =< Tg— B2, + ZTh- 16 ,a$n1>

a +$1
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is not involutive.

It is also easy to check that the system is not linearizable by prolongation of us: let

= 9
Z 931-{-1 + Ynt1g— + Z Yn+j+1 Bmes

n...

be the drift of the system 3 prolonged with r derivations of ug, and let
0 0 d

+ Tn-157— G

5}
9 =T25— +T15— =
91 amn 92 ayn+r

8:1:1 0z
be its corresponding input fields. Then,
0 0

—D— ? b H >
' OYnir OYnir-1 0,

where

==z —6—— +z 9 +zT 0

=0 = 252, " oz, T 155,
and 8 9 9

=[f,q] = 1’2%2‘ + (23 — ml)a_:z:l + y““%;

Therefore,

0 d
(M0, m] = —23?2-871 + (22, — 333)5;; ¢ D,

Hence, D; is not involutive.

Finally, let us try with a r-prolongation of u;. Let

] i, = ]
Z $z+1 + Yn+1T2 5 B2, + Ynt1T1 5= B2y + Yn+1Zn— 15~ + Z Yn+j+1 P
n n+_7

be the drift of such a prolongation, and
0 a

N Bgner 2T Ban

its corresponding input fields. The distributions associated with this system are:

- d
Dy =< ,
° ayﬂ-l-r axn——l
which is involutive.
1<i<n-3,
D o 9 8 B 8 G _ 8
D-: ey ) 3 + sy + __11—1 . >
i OYntr OYntr—i O0Tn-1 OTn-2 Un+1g— EE (=1 Yn4i P
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are involutive if, and only if, n +r — ¢ > n + ¢ or, equivalently, if, and only if, » > 2i.

a _ ] ,
Dp_3 =< Dp_3, E (1 +'!/n+1)%? +(=1)"3ygpo0—> 1<i<n-3

Oz,
is involutive if, and only if, r + 2 > 2n — 2; that is to say, if, and only if, r > 2n — 4
(r = 2n — 3). On the other hand, the main result of this chapter states that r < 2n — 3.
Therefore, since
9 cD

< ’a'; >C n-1
there are no more conditions to check. Hence, the system 3 is linearizable by adding
exactly 2n — 3 derivatives of the input u;. So, in general, the bound 2n — 3 cannot be
improved.
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Chapter 6

Improvement of the bounds for
3-input systems

In Chapter 7, a bound in the number of integrators needed for the linearization of a nonlinear
control system will be obtained. This bound is an improvement on the bounds existent in the
literature ([59]) for systems with 4 or more inputs. However, for systems with 3 inputs the bound
still needs to be better. This chapter, therefore, is devoted to the search for an inprovement on
the bound for three-input systems obtained in Chapter 7.

6.1 Main Result

The following theorem, which states a necessary and sufficient condition for the linearizability
by prolongations of a three input system, also provides an algorithm for determining whether
or not a 3-input system is linearizable by prolongations, and improves on the bounds that have
appeared before in the literature.

Theorem: The system X defined by

3
&= f(z)+) gz
i=1

is linearizable by prolongations if, and only if, at least one of the following systems Eﬁ'f is static
feedback linearizable. X} is given by

T = f(:l:) + Ghy (x)yn-H + Gh, (m)yn+k1+l “+ Ghs (m)wii

Un+j = Ynt+j+1s i=1..., k-1
Yn+ky =uw
Yn+ky+i = Yntki+Hi+1s I=1,...,kp—1

?)n+k1 +ky = W2

75
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ky € {1,...,2r + 1}, k2 € {1,...,2n — 2+ r}. The new state variables y, and inputs w; are
reiated to the old ones by

-1 .
vnri  =ulY =1,k
-1
Ynt+k14+l = USLZ ) [= 1) 7k2
k
wy = u§111)
w _ (k)
2 =Up,
w3 = Upg

being {h1,h2,h3} = {1,2,3}. And, finally, r is defined in the following way: let consider the
prolongation £Z. Compute the Lie brackets

= ad'lfgha
where 7 is the drift associated with the prolonged system, and define
r=min{i € {0,n — 1} | 741 €< Mo, ..., M >}

Proof: There is no loss of generality in assuming that h; =14, i = 1,2,3. The proof is based on
the lemma 5 from Chapter 2, and on the justification of the following items:

1. The static feedback linearizability conditions for the system S37,Z*" and £72 (with ry >
2r +1 and r9 > 2n — 2+ r) are the same.

2. The static feedback linearizability conditions for the system )3%’1‘"2'” and X}? (with k; <
2r +1 and ro > 2n — 2 +r) are the same.

3. The static feedback linearizability conditions for the system T2 +1 and T2 (with k; <
2n —2+r and r; > 2r + 1) are the same.

This being proven, and in order to check if a system is linearizable by prolongations, a finite
algorithm can be applied: it is only necessary to check if any of the systems E’,ﬁf (with kg < 2r+1
and ky < 2n — 2+ r) is static feedback linearizable. Obviously, this fact must be checked for
any permutation of the inputs.

1. First of all, let us study the static feedback linearizability conditions for the system
2n—2
Dot
Let

f = [+ 91Un+1+ goYnsorsat

2r . ¢l 2n—3+r a
+ Xim Yntitiggy T 2IE1  Ynt2r HH By

be the drift of the system 2%’,‘;12"" (z must be understood as (y1,...,yn)). And let

0 . 0 __
92————8 93 = g3

ﬁ =
Y3n+3r—1

OYntart1
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be the vector fields associated with the new inputs.
Using the conditions stated in Chapter 2 to check whether or not a system is static feedback
linearizable, the following distributions of 2%;‘;12"” must be involutive and constant rank:

2r4+1.2n—24r __ a8 3
'DO - 6yﬂ+2r+1 ! ay3n+3r—1 ! gB >

2r+1,2n-24r __ 2r+1,2n-2+4+r 7 n2r+l,2n-24r
il =< D (s Dj 1>

for all 7 such that dim DX 124 < 3 4. 3r — 1.

Let us examine these distributions in some detail. First of all, a computational lemma is
stated and proven.

Lemma 17 (a)

; 0 ; 0
adi- (__) (- Vi<
5 \Oynsart1 (=1) OUnt2r+1-i
(b)
0
i ) -
o \Oyns2r+1 o
(c)
. 15} . 0
ad*-(——————) = (-1 - Vi<2n—-3+r
F \Oysny3r-1 (=D OY3n+3r—1-i
(d)
20— 241 < 0 ) 2n—2+4r
adZ M () = (-1,
f OY3n+3r—1
Proof:
(a) This part will be proven by induction. The case i = I:
o —- 0 0 0 0
oty (5-2—) = 7, 52 - 0y
F \Byntors1 s 5yn+2r+1] [y"+2r+13yn+2r 3yn+2r+1] Oyn+or

Assuming the equality is true up to 7, the case 1 + 1 (with i + 1 < 2r):

. d . 8
o) e )
¢ f ayn—i»2r+1 [f @ f ayn+2r+1 ]

Applying the induction hypothesis, this becomes

[7, (1) (5?;?3;)] = [Yn+2r—it1 (Eﬁ:) , (1)} (a—y;%:l:)] =

: 0
-1 i+1 ( )
(=1) OYns2r—i
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(b) Using the former equality

0 - 0 - 0
dz_r+1 ( ) =[f, dgr ( ) =[f, (-1 2r ( ) =
¢ ! OYntor+1 [f i OYn2r+1 ) [f =D OYn+ar+1-2r ]

- 0 d
= [f, ayn+1] = [g1¥Yn+1, ayn+1] = —q

(c) Again, it will be proven by induction. When i =1

(. —8 \ = [Ff _ 90 _ 1 i) 3 —
adf (ay3n+3r-—1) /5 3y3n+3r—1] [y3”+3"“1 Oy3n43r—2" 3yan+3r-1] -

T 8Y3ntar—2

Assuming the trueness of the statement up to ¢, the equality will be proven for i + 1
(withi+1<2n—3+r).

. 5 . 5
5 k)T
7 OYan4ar—1 Lf,adz O0Yant3r-1 )

which becomes, by application of the induction hypothesis,

7, (-1) (5@;_1:)] = [Y3nt3r—1-¢ (%%:_—2) (-1 (%ﬁ::)) =

: d
-1 41 ( )
(=1) OY3n+3r~i—2

(d) Using the former equality

g — 0
dgn-2+r (_______) = [7, d_2_n-3+'r (________) =
i O0Ysnt3r—1 fa f OY3n+3r—1 ]
— o — d
— , _1 2n—3+r ( ) — _1 r-—-1 S ——] =
15, (=1) OYsn+3r—1-2n+3—r =07 5yn+2r+2]

_ 3]
= (=1)""}g2¥n+2r+2, = (-1)"g2
Yn+2r+2

Remarks:
(a) Denote 7y = adj%gg Vk < r. Note that

0
nkES-—<5a—:>
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Proof: 5
m = [f, 93] = [(f + 91Yn+1 + G2Unt2r12), 93] €< Bz
Th+1 = [?, ] =
9p 2n—-3+r ]
+ G1Uns1 + O2Unsarsa) 1p— + 2L 5 — Tk
[(f + 91Yn+1 + G2Yns2rt2) ;yn+]+ Oyt ; Yn+2r+141+1 BYnszrsiet n

Let us recall that, by the induction hypothesis, n; €< 585 >. Therefore,

Me+1 = f(m6) — e ((f + 19n+1 + g2Yn+2r+2))
which belongs to < a% >. n
(b) 7m depends upon the variables

LyYntly -« s Yntks Ynt2r4+25 - o - s Unt2r+14k
Proof: B
m = [f,93] = [(f + g1Un+1 + g2Un+2r+2), 93] =
[fs 93] + Yn+1lg1, 93] + Yn+2r+2(92, 93]
which depends on z,¥Ynt1, Ynt2r+1+1- |

— 0
k41 = [fa H(ib', Yntls e oy Untks Ynt2r 42y - -+ ,yn+2'r+1+k)'6';]

where the induction hypothesis has been applied. Therefore, it is clear that 7z =

k k
0 0 0
[f + 919n41 + G2¥Unt2rr2 + D Yntjtig— + D Yntort14i41

—  H—
i Unti 1o Yntar4141 O
depends upon the variables Z,Yn+1, ..., Yntk+1, Yn+2r+2) « + « » Ynt 2r+14+k+1- n

Let us enumerate the conditions to be checked in order for the corresponding distribution
to be involutive. Henceforth, when the involutivity of D}‘ is studied, we will assume the
involutivity of D', [ < j — 1.
(a) Distributions Dir+1’2n*2+r, k<r DItlen—r
7] 0 0 0
> Mo 3yn+2r+l, ’ ayn+2r+l~k, ay3n+3r—1’ ’ OY3ntar—1-k

=< 1No,.. >

Taking into account that 7 depends on the variables

TyYn+ly -« oy Yntks Ynt2r4+2s -+ oy Yn+2r4+14k
note that n+k<n+2r+1—kandn+2r+1+k<3n+3r—1-k%. So, the only
involutivity conditions are
[, 7] €< Moy - -y M >
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(b) Distributions Dfﬁcl’zn—ﬂr, 1 < k < r. The condition 7,4y €< n,...,n, > implies
D27‘+1,2’n—2+r _
r+k -
<q n 0 0 ad 0 S
e T ces ..
YU Byngorar’ T Oynarai—k Osntar—1’ OYsntor—1-k

The additional involutivity conditions are:

3}

m,nr+l—j] E< N0y o3 >
n—+r _—

V1l < j < k, because ny41—-; depends on, among other variables, ypiry1-x (take
j = k). Note also that 3n+2r—1 -k > n+2r + 1+ k. So, there are no more
conditions except those explained above.

The distribution D577 1"**"**" is spanned by

< NoyeeesTry 9 N 9 » 01, 9 yeeey 9 >
OyYntar+1 Oyn+1”"" Oysn+sr—1 OyYsntr—2
Ifr=n-1, then
< Noye-eyp >=8
Therefore,
- 0 0 0 3}
Dg:ﬁﬂn =< 052l OYntor+1’ OYnt1’ OYsn+dr—1  OYsnir—2 >
is involutive since P .
[m5: 5571 € S € D™ Wi>m

And, for the same reason, any distribution with subindex greater than 2r +1 will also
be involutive.

Thus, it can be assumed that r < n — 2. This implies
In+r—-2>n+3r+1 (6.1)
Proof: The above equality is equivalent to the following:
2n—-2>2r+1

which, in turn, is equivalent to 7 < n — 3/2. The facts r < n — 2 and r,n integers
imply r <n - 3/2. ’ ]

6.1 and the dependance of 7, (see the above remark (b)) on the variables

ZyYndls e s Yntry Yn+2r425 - o« 1 Yn43r41
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lead to the following involutivity conditions:

[nkagl] €SNy -3 NMry g1 > VOSkST

since 5
[y 7] =0 V0<j<2r+1
OYan+3r—1—j
and 5
[g1, =————] =0 Y0<j<2r+1
OY3n+3r—1—j
0

lg ]=0 Y0<j<2r

Ly —————
’ 8yn+2r+l—j
In order to proceed, another computational lemma is required

2r+1,2n—-24r _
Lemma 18 D2r+1’+j =

2r+1,2n—24r 0

< Ds. adlg, >=
2rtg  Byantr—z—g T

< D2r+1,2n—2+r

J
2+ aadfgl >

, ———————
OYsntr—2-;

where
. 2n—24r a
f=7F+gun+ort2+ Z yn+2r+1+z+15—-“——
=1 Yn+2r41+1

Proof: It will be proven by induction. For j =1,
adzgr = [f,q1] =

2n—3+4r b
+ D Yntorsl+iel
=1

g =

2r
[f + 919n+1 + G2Uni2r42 + Z Yn+j+1 By
n

a. b
ot 3yn+2r+1+l

+J

= [f,01] + Yn+1(91, 91] + Ynt2r42lg2,91] =

2n—-24r 8
= [f + g2Yntort2 + Z yn+2r+1+l+18—‘———’—,91] = adfgl
=1 Yn+2r+1+1

because [g1,91] = 0.
Assuming that the statement is true up to j,

ad?-lgl = [7) ad%gl]
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span in Dg;ﬂf;‘;f“, by application of the induction hypothesis, the same as

7, ad}gﬂ = [f ,ad§91]+yn+1[91,ad§91]+yn+2r+2[92,ad§-91]+

2n—2+ a J
+ [T Yntor 14 gy 99591]

However, due to the involutivity of the former distributions,

j 2r41,2n-2+
[gl,adfggl] € Dorinhy

So, ad%+1 g1 can be replaced in D2 Fh2no247 by adff'f’lgl.

2r41454+1
So, let us define §; = ade'-gl.
Remarks:
i.
;€S

Proof: It will be performed by induction on j.

= [f,01] = [f, 91] + Yn+2r42l92, 91]

since g; depends only on the z variables.

S541 = [£,85] = F(6;) — 0;()

The induction hypothesis implies that d; € S. Therefore d;4; € S, because the
only members in f depending on z are

f(z) + Ynt2r+292

ii. ; depends upon the variables z,yn12r+2,. - - Yntor+1+5-
Proof: As has been said,

61 = [f, g1] + Ynt2r+2[92, 1]

which proves the statement for 7 = 1. By application of the induction hypothesis
and the preceding remark

841 = [f, 6]

is equal to

0
[f’ H($7 yn+27‘+2, v ,yn+2r+1+j)?a__] —_

3] d
f,H ]+yn+2r+2[92, p ]+ ;[yn+2r+l+l+l oo Loz
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which will depend on the same variables as dj, plus the variable yniort14541.
This last variable comes from

0 0

Ynt2rltjel o H o=
[ T Oyntarirr;’ Oz

Define also
h =min{j € {0,n —r —2}|0;41 €< Moy..., W, 00,...,0; >}
(d) For all 0 £ j < h, the distributions

2r41,2n—-24+r __ 2r+41,2n~24r 0 o)
D2T+1+J —<D2T k ,60,...,6]‘,8 ,...,8
Y3n4r—2 Y3ntr—2—j

>
must fulfill the following conditions in order to be involutive:

(05me] | e o My erTry 80y, 8> VYOS kST YOLi<j—1

{53,52]

Proof: The definition of A implies j < A < n—r—2. This is equivalent ton—j > r+42.
So,3n+r—2—j3>2n+r—2+r+2=2n+ 2r. Note that r < n — 2. Therefore,

In+r—-2—3>22n+2r>n+2r+r+2>n+3r+1

Observe that n+ 37 + 1 is the maximum subindex of the variables y appearing in 7,,
while 3n+7—2—j is the minimum subindex of the coordinate charts in Dar+12n=2+

2r+1+j
So, the Lie brackets between 7 (k < r) and g—a——j > are vanishing.

Y3ntr-—2-
On the other hand, 3n+r—-2-2j>n+r—-24+2(r+2)=n+3r+2>n+3r+1.
Or, equivalently,

In+r—-2—j3ij>n+3r+14j

Note that n + 3r + 1 + j is the maximum subindex that appears in 4;. n

Now, the static feedback linearizability conditions for %72 (with vy > 2r+1 and ro >
2n — 2 + r) will be studied. More precisely, the systems L2r 2%", £2'71*" and 23;‘;21”
will be detailed (that is to say, systems where an extra derivative of u; and/or uy have
been added).

(a) System T3riitm.
Note that forall j < r

PP i 5 9 o
D;

=Ny Ny >
U Bynvardt” T OYntor+i-5 OVsntar OYangar—j
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Comparing this distribution with DJ2-T+1’2"+T"2, the following equality can be written:

_ a -
D?r+l,2n 1+rEB < S= D§r+l,2n 2+7'ea < S
ay3n-l~37—1—j OY3n+3r
Whenr <j<2r
D2r+1,2n+r—1 =< o n 0 a a a >
% = e Ty o .
I U Oyngarsr’ T OYnaorti—j OYantar | OYsntsr—j

and the same equality as above is fulfilled:

- 0 -
D2r+1,2n l+rGB < S= DJ‘L_’r+1,2n 2-H~EB <

>
I OY3nt3r—1—j

O0Yan+3r

Furthermore, this equality is also true for 2r +1 < j < 2r + 1 + h. Moreover, in all
three cases, the hypothesis of lemma 5 are satisfied. Thus, one may be sure that
the involutivity conditions are the same for DJ2-T+1’2""1+T and D§r+1’2""2+r, with
0<j<2r+1+h.

When j > 2r + 1+ h, DXV =

0 0 5 a 0
. e 05+ 50R -
1 Ontar+1’ " OUnt1 T OYangsr’ OYsnisr—j1

=<"0,.- >=

- 0
D)2_r+1,2n 2+’r®< >
ay3n+3r

and the technical lemma 5 is also fulfilled. Thus, the conditions for both distributions
to be involutive are the same. Hence, both systems satisfy the same static feedback

linearizability conditions. n
System T3r 2+
Denoting
— 2+ —
Ysn+3r = Uy Y3n+3r = W1

which appears in the equation

Un+2r+1 = Ysn+3r

the distributions associated with this system are

2 +2,2n—24r 0 0
D+ =<1 >
0 ’ ay3n+3r, ay3n+3r-—1
So 9 9
1)(5§r+2,2'n—2+1‘€B < >= D§r+1,2n—2+re <

OYn+2r+1 OYsn+3r
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If1<j<r, DIrt2n=24r
—— -_— ) ]

<n n d d 0 d 0 >
= N0y.--3 74
T Oysngar’ OYntordl’ OYni2ria—i OUsntdr—1 OYsntdr—1—j
Then 5 5
D?r+2,2n—2+r@ < S Djz-r+1’2"—2+r® < >
ayn+2r+1—j OY3n+3r
. 2 4+2,2n—24r
For r < j < 2r, D™ =
0 0 0 0 d
=< 1n0,-- >

',T’T’ b ) bl y
OYsn+3r OYni2r+l OYntoryi—j OYsntdr—1 OY3ni3r—2-j

satisfies the equality

2r42,2n—24r 2r+1,2n—2+r 9 9
Djia = Dj ® o
Oyan+3r OYsn+3r—2—j
Moreover, DJQ-TTZ’%—%T =
= <n07'°'1n1"7 3y3n+3r,ayn+2,+1""’ayn+1’
§0y--r5 2 :
0s+--90j—-2r—1, BYan+ar—1" OYsnt3r—2-j

also fulfills the above equality for 2r+1 < j <2r+1+hA.
Finally, if j > 2r + 1+ A, D§r+2,2n—2+r —

— a <) d
= < 7701"'»nr,3y3n+3,,’ OUnqargr? " Oynt1?
i) 0 —
005 - -+ » Oy 9Yan+3r—1" OYant3r—1-j >=
- 0
OY3n+3r
Therefore, taking into account the lemma 5, both systems fulfill the same conditions.
[
(c) Finally, the relationship between system Zar-2*" and system %3775 %" is the same as
that one between system Z377 21" and system Sjrp .
Proof: The equality
2r+2,2n—14r 4 2r4+2,20-2+r 0
Dj ! << 77— >= Dj ’ < 7 >
OY3n+3r—1—j OYan-+3r+1
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is satisfied forall 0 < j <2r+2+h. Andfor 7 > 2r+ 2+ h,

- - 0
D2r+2,2n+r ID.?T+2,‘2TL 2+7'ea <

2r+ _— >
* OYant3r+1

In addition, the hypotheses of the lemma 5 are fulfilled. Therefore, the static feedback
linearizability conditions are the same for both systems.

To summariza, it is proven that the static feedback linearizability conditions for system
2%;’;12“ and the system where one more derivative of u; and/or uy have been added are
the same. The same proof is also valid for addition of more derivatives of the inputs.

2. Systems Ei’:“z*" and X2 (with k1 < 2r +1 and r2 > 2n — 2 + 1) are compared. In fact,
in order to clarify the proof, systems 22’:‘2“" and 2%?_“”" are studied. Extra additions
of us does not affect the proof. Using the same notations as before, let us define:

hy = min{i € {0,7} | niy1 €< n0y..., 7 >}

The reason for this definition is that h; could be smaller than 7. There are two possibilities,
namely h; < k; and hy > k;. Note that the drift of 2%’1"2” is

f =17 2‘ G1Yn+1 + 92yn+k1+1;‘ \
1—-1 . [} n—3+r a3
+ 24 Ynt+i+lgg,; T 2zt YnbkiH41 T

while the input vector fields are

0 _ 0

0= Jo=qg——— 03=93
o OYntky ? OYdn+ky4+r—2 3
The distributions for the case hy < k; are:
®
0 0 0 0
DRI =T e, s , >
J 0 sk ayn+k1 ’ , ayn-{»kl——j 8y3n+k1+’r—2’ ’ a?J:in-i-kl-{-1‘—-2—]’
if § < hy.
On the other hand,
0 0 0 7]
DRI — Ty sy - >
I N OYntky’ OYniki—j OUsntkidr—1  OUsniki+r—1—j

They satisfy the same involutivity conditions because 7; does not depend on the
variables y3n44, +r—j—2. Note that ; depends on the variables

ZyYn+ly ey Yntis Yntki+1r - oy Ynd ki +5
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o Yhy < j < kg, DJVATHT =

<2 0 9 o N
= e sy T]O e .
ayn-!-kl ’ ) 6yn+k1_j ’ 6y3n+k1+,-_2, ay3n+k1+r—2~j y 70y 1 Thy
and D;-CI’ZH_H'T -
<9 9 9 d .
= yooe ves 09+ ++3 TR
6yn+kx , 6yn+kz-j’ OYantky+r-1 AR Bygn+k1+,_1_j 17105+« Ty
Therefore, the equality
- - 0
D;gu,?n 2+1‘Ga «c—92 S_ Df1,2n 1+r69 <9 o
6y3n+ﬁc1+r-—1

893n+k1+r~2-j
holds, and because of the lemma 5 they provide the same conditions.
¢ Let us define
ho = min{i|6i+1 e< ngy. .. ,nh1,50, ceey 05 >}

and let DFVIn—247

ki+i
< yn+k + n (5 >
‘e “ee ’”0.'_ h 60.'. .
o L 4 ? 9yn 11 6y3n+k1+r—2’ ’ aygn_ r—2 i’ ’ 1R U [

be the following distributions to be studied, Vi < hy. Note that hg < n — h; — 3,
because when ho = n — h; — 2, then

<770;"'77"111501"-’6n—h1-—2 >=5

and D,’gifg:iﬂz is trivially involutive, as well as all the distributions after it. Since

ky2n—1+4r __
Dk; i =
< X ° 2 9 ) T & >
= T emmm—— { [ PIRTRIPRN {7 1 Oyeee90%
Onsky” OYntt Osnakyar—1 OYsnr—1—i’ T
Then 5 )
k1,2n—24r k1,2n—1+r
D 1, " @ < e— s >= D 127 @ < >
fus OYantky+r—1 kit OY3ntr—2—i

However, to assure that the hypotheses of lemma 5 are fulfilled, one must prove that
3n+r—2—1>n+k; +1, which is the maximum subindex of the variables on which
d; depends. It is enough to check this inequality when ¢ = n — hy — 3, which is the
highest possible value for . Then,

2n+r+1+h;>2n+k1—hy -3

must be proven or, equivalently, 7 — k; + 4 > —2h;. This is obvious when k; < r.
If k, > r, note that h; = . In this case, the inequality to be proven becomes
r—ki +4 > —2r, also trivial.
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e Finally, for all ¢ > k1 + ho, Df—il-’l.zn—1+r _

< 0 0 0 0 n - 5>
= . ces Oy +»»3sTh1y00s -« 0h
Ontky OUn+1l Osntkidr—1  OUsntkidr—o—i o
and ij_,l.?n—2+r —
< 0 ) 15} 0 . _ s
= e een 0y+++3sThyy00,---,0p
OYniky OUn+1l OYsntkitr—2  Osntkitr—o—i o0 TR
So, 5
k1,2n-14+r __ nk1,2n-24r
i1 = D;* ®

ay3n+k1 +r—1

which, thanks to lemma 5, assures that both distributions satisfy the same involu-
tivity conditions. This ends the proof for the case h; < k1.

Now, for the case h; > ki,

e Vi<k
phian=2tr _ o n; 2 0 0 2] S
=< 10y s e ,

J P Oyniks Oyntkimi Osntkitr—2  OYsntki+r—a—j

and

phian=ltr _ oo n; 0 0 0 d S
. —_— LR Y , .. l’ , ] .ol,
J , T ayn+k1 ’ ayn-i—k; —j ay3n+k1+7‘—l ay3ﬂ+lc1+r—1—j

o Vk; < j < hy (if b1 < k1 + ho. The case by > k; + ho is treated analogously and is

left to the reader), D;?1,2n—2+r _

g 0

=< P ¢ X .
70, s M3y ayn-Hc; 3 3yn+1’
and D§1,2n—1+r —
0 0
=< 1o, .

. 7"]) ayn+k1 1Y 8yn+1,
o Vhy < j < ky+hy, DFVPTHT =

3} 0

=< N0y-++3TA RN} ’
T By e Byt
and D§1,2n—1+1‘ —_
0 g
=< 70y

8yn+k1 Y ayn+1 ’

30,y

8oy

00y~ .-

do, .-

é 4 9 >
Pk N
TR ay3n+k;+r—2, ! ay3n+k:1+r—2~—j
) 4 9 >
ik een
TR 3y3n+k1+r—1’ ’ 3y3n+k1+r—1-j
) 9 9 >
ik cee
TR ay3n+k1+r—2, ' ay3n+k1+r—2-—j
0 15}
)6 >

—k1 sees
T Bysnk 4r—1 OYan+ky+r—1-j
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Therefore, in any of the three cases, the following equality holds

0 0

D_?l 2n=—2-+r ®
ay3n+k1+r—1 39’3n+k1 47 =23

— D§1,2n—1+1‘ o

and the following inequalities must be fulfilled in order to satisfy the hypotheses of
lemma 5 (just studying the maximum possible value for j, j =n+ k; — hy — 3):

n+r+hi+1>n+h 2n+r+hi+1>n+k1+n—h; -3
or, equivalently, the trivial inequalities
n+r+1>0 r+2h+4>k

e Finally, Vj > k; + ho,

ki2n—14r _ ) 9
D_)-}-’l =< no"“’nhl’ayn+k1""’8yn+1’
8 el
00+ Ohss anthy+r=1’"""? OYsntk;fr—2-j
and k1, 2n—2+ 8 8
1,4N—2+T
Dj, =< N0y« 3Tk yn+k1,“"m’
8 Il
005+ s Ona, OYantky+r—1"" "7 OYantky+r—2-j
SO, o
ki,2n—-1+4r _ nk1,2n—2+4r
Djii = D;” R
Yn+ky+r—1

Therefore, both systems satisfy the same static feedback linearizability conditions.

3. The third case to compare is the static feedback linearizability conditions for the systems

2§$+1 and TF2 (with 2r < k3 < 2n — 2+ and r; > 2r + 1). In fact, systems 2"2°3+1 and

)3’2“,2,1'% are compared (which still satisfies the restriction kg + 1 < 2n — 2 4 7). Denoting

Yntor+itke+l = u?‘”'“’ Yn+2r+1+ke+2 = ngz)
which appear in the equations
Un+2r+l+ka+l = U(1n+2r+2) = W1 Ynt2r+ltkg+2 = ng2+1) = w2
o Ifj S r, D?r-%—l,kz =
3} 0 a g

=<770,---a77j7 >

IRRER ] 1o
OYn+2r+1 OYn+2r+1-j OUn+2r41+ks OYnt2r+1+ky—j
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and 2r+2,ko+1 P P
T+ 4,K2 — .
DJ =< M0s- -5 s OYnt2rtltko+l OYnt2rd1’ """ OYnqarya—;’
<) 8
OUnt2r+3+ky | OUnt2rtltky’ "' OYni2rdi2tko—j
then the following equality holds:
2r+2,ka+1 3 a
D™ =
J ® < Oyn+tarti-j’ OYntartitky—j >
2r4+1,ks Fe) a3
DJ © < OYn+ar+14ko+1? OUnt2r+itho+2

e Forr<j<2r, D]2-T’H’k2 =

0 0 d 0
=<7707-"’n7':8 g 8 ) >
Yn+42r+1 Yn+2r+1—j OYn42r+i+ks Yn+2r+14+ka—j
and 2r+2,ka+1 8 8 a
Tre,Kg —
D]+1 =< M0y-- 5 OYnt2r+1thy+1 OYntzet1? """ OYnyoryi—j’
a 3 a
ayn+2r+3+k2 ! ayn+2r+1+kz L ayﬂ+27‘+l+k2—j
Therefore
0 0

2r4+-2,k2+1 _ p2r+41lk2
DYkt - plrithag o

>
b
OYntor+1+ka+1 OUnt2r+14ka+2

Note that this last equality is still valid wheh j > 2r. Moreover, all these distributions
satisfy the hypotheses of lemma 5. Thus, one system is linearizable by static feedback
if, and only if, the other one is also.

The three different cases stated at the beginning of the proof having been proven, the
proof is concluded. n

6.2 Where do the bounds 2r +1 and 2n — 2 + r come from?

If the bound 2r + 1 is relaxed to 2r, then the distribution D227~2+" of the system 2" ~2%" is

0 d 0 0

D2r,2n—2+r n
s flry IR 3 yrey
" 8yn+2r ayn+r 8y3n+3r—2 6y3n+2r—2

=< Ng,.. >

Therefore, a new involutivity condition appears, which is different from those appearing in
D2r+1,2n—2+r.
I :

[n | €<moy...,mr >

" ayn+r
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Therefore, it is not possible to relax that bound.

In the same way, the purpose of the bound 2n — 2 + r is to avoid extra involutivity conditions
among n; (j < r), & (¢ < h) and the other elements of Dy,y14;. Nevertheless, it remains to be
seen whether or not this last bound can be improved.
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Chapter 7

Linearization by prolongations of
m-input systems

This chapter gives a bound on the number of integrators needed to linearize a control system
with an arbitrary number of inputs. Although some work have been done in this direction in
[59], our bound improves the existing results for systems with four or more inputs. The bound
for two input systems is the same as the one that appeared in [59], and has already been studied
in Chapter 5. The bound for three input systems is further improved in Chapter 6. Nevertheless,
the sharpness of our bound remains an open question.

7.1 Main results

First of all, we state and prove a proposition useful in the proof of the main result.

Proposition 6 If a system with m inputs is linearizable by prolongation of u; k; times (with
k; > 1 for all i), then the system is also linearizable by prolongation of u; k; — 1 times.

Proof: Note that there is no loss of generality in assuming that k1 < kg <... < k. Let g be
the system obtained by prolongation of u; &; times (with k; > 1 for all 7) and Xy be the system
obtained by prolongation of u; k; — 1 times. And consider

m ki—1

~f+Zylgz+ZZyz+1a 7

i=1 [=1

and
m ki-2

—f+zy1gz+z Z y1+1

i=1 i=1 =1
the drifts associated to ¥y and L respectively. And let
g

k= —
g'l ay;cx

93
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17,
ayk.—l
the input vector fields of ¥y and ¥ys. The main idea of this proof is to see the equalities

gz

Df =Df, @<{a,,'=1,...,m}> (7.1)

for all [ > 1. Note that D{g and D{“' are the distributions associated to system X, and X
respectively. We will also check to see if lemma 5 can be applied. Some lemmas are needed for
this proof.

Lemma 19 1.

adlfk,xg1
can replace ad?,kgl n D,’gl 11y Where
m ki—1
= f‘l"zylgz >3 yl+1
i=2 I=1
2. And, in general,
adick_,-gj
can replace aa!f’,,c gj in D,’gj 415 where
m  ki—
A= f+ Z yigi + Z Z yH—l
t=j-+1 i=j+1 I=1
Lemma 20
adlfk,jgj

belongs to < 3%: > and depends on the variables
m1{yi’; |h= 17"'al; p=J+11’m}
Lemma 21
adi;k,,»gj

can be replaced by
adlf,c/'j 9j

i Dk
in Dy 4
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Lemma 22 1.

adffkl,lgl
can replace adz,k,gl in D,’g;“, where
m ki-2 3
—f+2y19z+2 > yl+1
1=2 =2 [=1
2. And, in general,
ad‘lfk’,jgj
can replace adf,c,gJ n D,’j;+,, where
m k-2
I =f+ Z yigi + Z Z?ﬂﬂa
i=j+1 i=j+1 =1 yl

The proof of these lemmas is exactly the same as that carried out for lemmas 9,10,11 and 12 in
Chapter 5. Thanks to these lemmas, the equality 7.1 holds, and lemma 5 can be applied. m

Corollary 5 If a system with m inputs is linearizable by prolongation of u; n; times (withn; > 1
for all i), then the system is also linearizable by prolongation of u; n; — miny<i<m{ns} times.

Proof: This is straightforward after the application of the former proposition minlSiSm{ni}
times. =

Thanks to this corollary, we will only consider prolongations where one input is not prolonged.
When a prolongation is considered, the inputs are ordered by the number of derivatives added
to each one. So, the number of derivatives of u; is zero, and the number of derivatives of u; is
less than or equal to the number of derivatives of u;y;, for all ¢ from one to m — 1. Our main
result is established in the following theorem:

Theorem 5 Let m
T: z=f(z) +Zgi(z)ui z € R"
=1
be a m-input control system not static feedback linearizable, and such that the prolongation Ly
is static feedback linearizable, where 5y is given by

£t = fl@)+a@v+ Tl vie(z)

] = vl l=1,...,¢j, for certain j € {2,...,m}
i o= g i=2...m ikil=1,... k-1
.C.j'l“l = Yy

.1 —

Y, v; . 1=2,...,m
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ki beingk; <¢; =20 —1)n— (1 —1)(i +4)/2, i=2,...,m. The new state variables and inputs
are related to the old ones by

g o= o™ 1=1, g +1
y[i = u(l 2 I=1,...,k

vj = U(CJ‘H)

v = u(k‘) i=2,... mi#]
v = U1

Then, Ty is static feedback linearizable, where Ly is given by

= f(@)+ale)n+ Tl yigi(z)

gZ = yZ_H l=1,...,¢;—1

i o= i i=2,...mi<jl=1,... k-1
yz = Y1 i=2,...m i>5l=1... k-2
yc_, = Y

yk, = Y 1<j

Vb1 = Ui 1> 7

Proof: Denote by f*, ¥ (resp. f¥, g¥') the drift and the input fields of £¥ (resp. £¥'). Then

—f+§:y1gz+ Z Zyz-uayl +Z1/J+1

1=2 1=2,i#7 I=1 =1 ay]
0 3}
k k k
=9 6 =37 9=+7
Yooy, Y aygj'f'l
and 5
=f+ Zylgz + Z Zk 1yt+1 7t Z Cj — 1yl+1 7
- y; dy
i=2 i=2,i7#7 =1
! ! a ! 6
ko Mo T of = =
91 91 G 8,9,;“ 9; ay_gJ
The main idea of the proof is to see the equalities
1.
0 7] 0 0
D{CGB< { : y 1> j}>= Dl@< { -,Z>J}> I<Ekj1+rj1
ayi i—1 kl"']- -1 ayf; (1 k,’
2.
6 a ._ .
Df,,=Df® < —— Az i>3}> 1>2kjia+ria

7 cj+1 ki
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and to verify the hypotheses of lemma 5, where

r; = min{s|p},, €< MoreeorMiysee sl ey Tty Moyt >}
and ‘
n =adlfkg,; i=2,...,m;[>0
A series of lemmas lead us to the proof.
Lemma 23 For2<i<m,
1.
0 i}
d, ~ | = (-1)! Vi<k
& fk (6 }c‘) ( ) ayk‘-l <
2.
0
dfk (ay ) = ("Ufgz
ks
Proof:
1. It is proven by induction. For I =1,
0 0 .0 0 0
adg, (ay;ci) [f ’ayk,-] [ylct ayzi_l’ ay}ci] ay}ci—-l
Assuming the trueness of the equality up to [,
0 0
Lt I NPT
“i (592,-) it (3%)]
which becomes, by application of the induction hypothesis,
E(_1) 2 ] = =
[f 1( 1) ay;c,--l] {yk —layk 1( ) ayk l]
— (1}+1__8
( 1) ay}ci—-lwl
2.
0\ ok k-1 O
dfk (a ,"c‘)—[f ,adfk '5;;]2
is equal, using the first part of the lemama, to
_ a 0
7%, (~ 187 ] = Iyigs, (- D)5 ] = (=D

O~ (ki-1) v

97



98 CHAPTER 7. LINEARIZATION BY PROLONGATIONS OF M-INPUT SYSTEMS

Lemma 24 1.

n;s€S=<§§> Vi=2,...,m; s;<r;

2. ni only depends upon the variables (z,{y}, h=2,...,m; [ =1,...,s}).
Proof: Both results are proven by induction.
1. For s; =1,
i k o h
nt =5 a6l =1+ vign g
h=2
which clearly belongs to S.

Assuming that the statement is true up to s,

iy =[50l = f2 ) —ni(fF) e S
because 7t € S and because the part of f* depending on z is

m
F+3 vhon

h=2

["f]'. = [fkagi] = [f + Zy?ghagi]

h=2
only depends on y?. _ .
[77;4-1 = [fk’ 77;]
where it can be assured, thanks to the induction hypothesis and the previous lemma, that
nt € S and depends on the variables (z, {y?, h =2,...,m; | = 1,...,s}). Therefore,

77.9+1 f+ Zylgh+zzy[+la h,"’s
h=2 h=21{=1

will depend only on the variables (z, {4}, h=2,...,m; I =1,...,s+1}). n
Lemma 25 nf, [ >0, i=2,...,m, can be replaced by
ad;k,igi
in all the distributions where they appear, where

m kp—1

fk”"f+2y1gh+z Zyma A

h=t h=i =1



7.1. MAIN RESULTS 99

Proof: Again, the proof uses induction. For [ =1
7?3 = [fka .9:]
appears in the distribution D,c 41 for the first time. Notice that D’,gi contains g1,...,g; and is

involutive since the system is static feedback linearizable. Therefore, all the Lie brackets between
them are in D,’j‘_. So,

m
=1f+> yign g
h=2
can be replaced by
m
=[f+> yion gi
h=i
in Df ., and all the distributions which follow.
If the statement is assumed to be true up to [,

My =[5,

can be replaced, by using the induction hypothesis, by

[fk) adgfk.igi] = [f’ ad'lfk,ig‘l:] + hZ[yl Gh, a'dfk 1gz + hZ IZ yl+1 6 h. ’ adflc ;gz]
=1 i 1

And due to the involutivity of all the previous distributions,

i—1 =1 kp-1
Z[yfgh,adlfk,igz +> 310 yz+1a h,adfk,g,] € Dk,+l
h=1 h=1 I=1

Therefore, 7}, , can be replaced by

adf,k,.- gi
in D",gi 4141 and all the distributions which follow. n
Thanks to this lemma, we are able to assume

nf=adlfk,,-g,- 120,i=2,....m

Now it is possible to write the distributions associated to both systems, £¥ and ¥, In order
to do that, first we assume r; < k;j+1 — ki, Vi < j. Then:

a
{ .,z 2,...,mi £ Gt >
3y1+1 ki

0 0 0 0
Df =<n§,...,n 4 {1 v 3=
3 3 3 ,6’!./'21,_*_1_!’ 3yZ‘.’ H ay;q_[’

Df =<n} = g1, ——

i=2,....myi#jt> I<n

7 cj+1
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Eo el 1 . e
Dk2_1—<770,...,7;r1, —, . s - ,{Bi,...,57*—,1—2,...,m,2#]}>
aygj'f-l ?féj+1~k2+1 Yk Yki~ka+1
Dt = <pl ... onl n?=gy —2—,... 2 —Ta ey T —
ka2 770a 7777-1’770 92, ayij+l, ! 6y<1:j+1-k2 ’ ayk2, ’ 6yk2~k2+1,
a a . o o
{555t =3,...,mt # j} >
ay’ci’ ki
. . . k —
And, in general, if p < j, ka =
_ 1 1 -1 p—1 a i)
- <n01°~-377r11--'7ng 1'-':7]1';,_117]31'-'377?:aygj+1:"'aay_;j+l_kp~l:
8 3 <] a8 s __ . :
= =z, i=2,... e ET = 1,...,m;4 [<r
{ay;ctl bl ayi’z ? ’p}’{ayki’ ? ay;’:‘-—kp—l, p+ ? ) 3 # .7} > —_— p
and Df =
kp+l
- 1 1 -1 p _0 —90
= <770,...,T]n, T]p a77r,,_11 0y ,nrpaayéj+17 .,ayf:j+1—~kp—l’
a 8 ;s _ 8 a L .y :
{b?;:,...,-a-?;{,z—2,...,[)},{?3?{:,...,-6?;'._—,:;,2—p+1,...,m,’t#]}) Tp<l<kp+1_
On the other hand, for £F,
/ 1 1 -1 - a a8
DII:L—H = <7701"-a77r11"'7ng 1“,77?,,_1) 0’“.,17?,ayéj,”.’ayij—kp—l,
8 8 ;_ ) P . -
{33/3:,-""’3?11’1—2""’p},{_—ayi,—’:”’“3yii_kp-z’z p+1,...,5 -1},
{zE—,... >35> 1<
ay;c"—l ’ ’ 6yi;—1—kp—l -

and
Dllg£,+l = <77[1))'--17711'1a~°"778—’ ’771-,,_1,778’ 177?,,75‘5;:?---,'6—3,?]‘%;:,
{ﬁ,...,%,i:z, ..,p},{éfg,...,ﬁf;:,z‘=p+1,,,,,j_1},
{311?3-1 TERRY - w—— >3 > <l <kpyr—kp
Therefore,
Dfe < 9 { ,i>j}>=DF e < —— 9 {ai,z'>j}> I <kji+rj

Oy,

=l 0 cj+1 ki

kp
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It remains to be seen that lemma 5 can be applied. Indeed, it can be applied since
Tp<e¢—kj-1—rj-1 Vp<j—1 (7.2)
In fact, it must also be checked
rp<ki—1l-kj1—rji_1 Vp<j-—LVi>j (7.3)

But if 7.2 holds, 7.3 also holds because k; — 1 > ¢; Vi > j since the inputs are ordered
following the number of derivatives added to each one. To prove inequality 7.2, remark that

¢i—ki12ci—ci1=20-Un-(G-1)0+4/2-20-2)+(-2)(+3)/2=2n—-j -1
On the other hand 7, <n —(p+1) for all p < j — 1. Then,
pt+rici<n—(pP+1)+n—j7j<2m—-j-2<2n—-j—-1<c¢i—kj1 Vp<j—-1

which is 7.2. In conclusion,

i} o] d o]
—, {== y 1> >= Dl B < — —.—,
ayij—t ayki"l" ayi,+1 15

and lemma 5 can be applied. This implies that the involutivity conditions are the same for Dz
and D} for [ <k] 1+ 71
Now, we are going to prove the equa.lity

Dfe < i>j}> 1<kj-1+rim

3
D, = DIk'EB = 1>4}> 12>kji+ria
3yJ +1 ki
also checking that lemma 5 can be applied.
k _ 1 1 a
ij-1+"j"l+l - < ZO} o ’77?1’ N ’77] ’7#‘,-1; By-’ j+1 P h ayij‘H—kj—l"rj—l-l ’
Tyt 1 ; 0 < T 1>
{aykia 1 .7} {3y y . ’ayk*3—1—T3 - 11 .7}
implies
D ytrjor41 = Dy ® < —5— 0 {8 i>j}>
j—1TTj=1 -17TTjm1 i )
#) 7 = i aycj+1 ay‘llc‘

And, in general, using induction,

8

Dby = Dyt < {If*,8], 6 € Dly} =< 57—, (500, i > j} > +DF + < {If*,0), 6 € D} >=

;
Oyg;11 9k

0 0
=< {—'*a i>j} > +Dfy

41
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Moreover, lemma. 5 can be applied since 77}; does not depend on yzj +13++-1 Y% - So, the involu-
tivity conditions are the same for D¥ and Df,,, for alll > kj_y +rj_;. This, together with the
fact that the involutivity conditions for le' and DF are the same for all [ < k;j—1+rj_1, implies
that X4 is static feedback linearizable providing that Xy is too.

Remarks:

1. If for some 1, r; > ki1 — ki, it is not difficult to check that the above equalities between

distributions of ¥ and X also hold.

2. Let I be a static feedback linearizable prolongation of ¥ with k = (0, k2, ..., k. Assume
ki, > ¢;, for some i5. Then, Xy is static feedback linearizable with k' = (0,k,... k),
where

M:{h if i<i
i ki—1 if i>i

The proof is exactly the same as the one previouly made. We have chosen to do the above

proof in order to clarify the notation.

7.2 About the bounds

The bounds ¢; = 2(1 — 1) — (¢ — 1)(2 + 4)/2 have been chosen to enable us to apply lemma 5.
Notice that the equality ¢; —¢j—1 = 2n — j — 1 has become fundamental for proving 7.2. This
does not mean that these bounds are sharp. In order to prove the sharpness of these bounds,
an example has to be constructed. This example must satisfy that the only static feedback
linearizable prolongation was that with k; = ¢;, for all 5. To date, the authors have been unable
to find such an example, except that mentioned in Chapter 5.

In any case, the bounds obtained here improve the bounds existent in the literature when the
number of inputs is greater than or equal to four. The two and three input cases have been
treated in previous chapters. In [59], the bound for the number of integrators is

9. 3

3177.-—22 _ v hd
@n-3)+3

while the bound obtained here is

Zcz Z2(z—1 f‘_122(_"+_4)=m(m_1)n_m3+6rg2—7m

This equality is obvious for m = 1. Assuming the equality for the case m, we prove the case
m + 1 using induction:

%12(1’—1)71 (___Z_’*:i iz —1)n (‘—1)2(i+4)+2mn_m(m2+5)=

i=1 i=1
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3 2 _
=m(m—1)n—m +6rg 7m+2mn_m_(7%iél=
3 2 3 2 _
=m(m+1)n - = +9’g T8 (4 1)n — (ML) +6(m;1) 7(m +1)

Proposition 7 For m > 4,

m2 + 6m?2 — Tm

3 2m— N4 35 mim—1yn -

2" 2 6
Proof: Note that n > 5 because n > m > 4. Then 2n — 9/2 > n. Therefore, for m > 5,
9 3 3 3
m—2 _ 2 hd m—2 el _ bl
3™(2n 2)+2>3 n+2>m(m l)n-}-2

On the other hand, since m3 + 6m? — Tm >0 (if m > 1),

3 m® + 6m2 — Tm
- > —
302 6
Putting everything together,
md + 6m?2 — Tm

3200~ D) 4 35 mim - 1)n - i

272

The case m = 4 reduces to prove

9. 3
9(2n - 5) +35 > 12n - 22

which is equivalent to see 6n > 17. This is true since n > 5.
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Note that for the two inputs case, the bounds are equal, and also equal to 2n — 3, which is the
bound obtained in Chapter 5. For the three inputs case, our general bound is worse than that
in [59]. However, the different approach we adopted in Chapter 6 has improved the bound in
[59]. Let us recall that the bound obtained in Chapter 6 is 2n — 2 + r 4 2r + 1, while the bound

in [59] is 6n — 12.

1. If r = n —1, there is no need to consider derivations of us greater than 2r + 1. Therefore,

the number of integrators is
22r+1)=4r+2=4n-2
which is smaller than 6n — 12 for all n > 5 (and equal if n = 5).
2. In the case r < n — 2, the maximum number of integrators is
2n—-2+4+r+2r+1=2n+3r-1<2n+3n-6—-1=6n—-7

also smaller than 6n — 12 if n > 5 (and also equal for n = 5).
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Chapter 8

Conclusions and suggestions for
further research

In this dissertation we have presented different methods for linearizing nonlinear control systems
or for studying differential flatness. These have been carried out using two different frameworks,
namely: differential algebra and differential geometry. Since our approaches apply only to special
classes of systems, the general problem remains open.

8.1 The differential algebraic approach

There are two Chapters in which the differential algebra setting for control systems has been
used. In Chapter 2, a survey on linear control systems from the module theory has been
presented, while Chapter 4 deals with nonlinear control systems. By means of the tangent
system, obtained by application of the Kahler differential, a procedure for finding the last flat
output has been designed, providing that the first m — 1 flat outputs have been guessed. In this
context, an easy new proof is given of the well known fact that dynamic and static feedback
linearization are equivalent for single-input systems. This has been used to make a new algorithm
to linearize single-input systems, working with the concept of relative degree.

Another algorithm for linearizing multi-input systems by static feedback has been created from
the translation of the meaning of relative degree into the differential algebraic framework. For
not static feedback linearizable systems, a procedure for reducing to single-input systems has
been carried out. This procedure is based on guessing the first m — 1 flat outputs and making
a quotient of modules. Here, the results of Chapter two have been crucial.

However, a way of obtaining the first flat output is still a problem. Sometimes, when work-
ing with a concrete problem, some variables with physical meaning (center of oscillation {23],
center of mass, ...) can be flat outputs. In other problems, one can guess some flat outputs
from the structure of the system (backstepping, variables not appearing in any equation, ...).
Unfortunately, there is no general method which is good for all systems. One possibility could
be to make quotients in the tangent system by the input variables, until a single-input system
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is obtained. We have applied this procedure to some examples with good results, but we have
not obtained any general solution for all systems. Another difficulty in such a procedure is
to struggle with modules with torsion elements, which implies that there exists no basis that
generates all the elements of the module.

Another concept strongly related to dynamic feedback linearization and flatness is the concept
of defect. The defect can measure how far a system is from being flat. Thus, a system with
defect zero is, indeed, a flat system. Let us recall that a system is flat if, and only if, there exists
an integrable basis of the module associate with the tangent system. One may suspect that the
defect is the minimum number of not integrable elements of a basis, taking int@ account that
there are infinite different basis for a module.

8.2 Linearization by prolongations and possible extensions

In Chapters 5, 6 and 7, a necessary and sufficient condition for a system to be linearizable by
means of prolongations is given. This condition states that the involutivity of a finite number of
distributions must be checked. The upper bounds on the number of derivatives of the controls
added to the original system have been improved. For two-input systems, it has been shown
that the bound is sharp, and the results have been applied to some systems that hitherto were
thought to be not linearizable by prolongations. This procedure can be applied to other concrete
examples. The first case that arises is a driftless system affine in the inputs. We have performed

initial explorations in this direction for two-input systems. Let us write the equations of such a
system: )

L: z=gi(z)us + goz)ug z € R”

Let I, be a prolongation of ¥ based on adding r derivatives of ua (recall that it is only necessary
to add derivatives of just one input), the drift of the prolonged system becomes:

r—1
0
T — .
= g2(x)yn+l + Z:l Ynsi+l ayn+i
and the input vector fields are
o
il ‘'
= 91 T g =
gl ( ) 2 ayn+r
where
(i-1)
Ynsti = Uy
Remark that
(/7 91) = g2, 91}

and, in general,

ad}rgl = ad§291
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The conditions for ¥, to be static feedback linearizable are the involutivity of the distributions

0 3 )
oo .. 0d Vi=0,...,r—1
ayn+r ’ayn+r—i’g1’ 1 g2gl)A ) ’

D; =

and

0 0
OYntr T Oynt

Dr:( lygly'-',ad;291792>

Since D, must be invoiutive,
adjtlgy = [g2,ad},g1] € D-
while
[fTg2] =0

Therefore, Dr+1 = Dy. Thus, it is not necessary to check the involutivity of more distributions.
Furthermore, since the rank of D, must be n+r, then r+2 > n. Summarizing, X is linearizable
by prolongations if, and only if,

(gl’ vee ’ad;291>
are involutive for all ¢ < r — 2 and the rank of
<gl7 vee 7ad;;191192)

is n. Or, exchanging g; by g2 and viceversa,

(927 ) ad;g2>

are involutive for all 2 < r — 2 and the rank of

(92a cee 7ad;:1927gl>
is n.
These good results encourage us to tackle systems with more inputs using this technique.

As already stated in Chapter 3, a linearization by prolongation is a particular type of dynamic
feedback linearization. Let us recall that a dynamic feedback linearization requires the existence
of a dynamic compensator

{ z=a%z,2) +al(z, 2)v (8.1)

u = b2z, 2) + bl(z, 2)v
with z € R? and v € R™. A dynamic feedback compensator is a prolongation if, and only if,
21

Rk1+1
¥z, 2) =

z m-—1
1+ i=1 k‘l
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bl(z,z) =0

o oz i itk i=1,...,m
“i(z’z)‘{ 0 if i=kjj=1,...,m

0 if i#k;i=1,...,m
]: — 7 1 ¥
az(x’z) { 1 if i:kj’ j=1,---,m

In order to proceed with the research on dynamic feedback linearization, the authors suggest
studying dynamic compensators in an increasing order of difficulty.

Since the sharpness of the bounds obtained here is not clear, new work could well be done with
the purpose of finding better bounds. Let us recall that the procedure used in the proofs has been
the comparison between distributions of differents systems. However, to ensure the involutivity
of a certain distribution of a given system, only some distributions of the other system have been
considered. Taking into account all the distributions could lead to more restrictive bounds.
Considering the great number of systems and distributions involved in the application of the
procedure in Chapters 5, 6 and 7, a software package for carrying out all the computations should
definitively be done. This software package must be programmed carefully, to avoid repetitions
of the same calculations.
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Appendix A

Introduction to differential algebra

This appendix is written in order to this thesis be self-contained. It follows [22] and [35].

A.1 Basics on differential algebra

Definition 11 An ordinary differential ring A is a commutative ring equipped with a single

derivation Etit such that

. da
Va € A, a_?i—t-EA
°
\ d da db
Va,b € A, E(a—*-b)::ﬁ”i--tﬁ

db

d da
Ya,b € A, az(ab) = Et'b'i'aa?

A constant ¢ € A is an element such that ¢ = 0.

An ordinary field is an ordinary ring ring which is a field. A differential field extension L/K
is given by two fields, L and K, such that the restriction to K of the derivation of L coincides
with the derivation of K.

Definition 12 An element x € L is said to be differentially algebraic over K if, and only if, it
satisfies an algebraic differential equation with coefficients on K. The extension L/ K is said to
be differentially algebraic if, and only if, any element of L is differentially algebraic over K.
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Definition 13 An element € L is said to be differentially K-trascendental if, and only if,
it is not differentially algebraic over K. And the exztension L/K is said to be differentially
transcendental if, and only if, there ezists at least one element © € L that is differentially K-
transcendental.

Definition 14 A set {z; |i € I} of elements in L is said to be differentially K-algebraically
independent if, and only if, the set of derivatives of any order {xEJ) i€, 5 >0}is K-
algebraically independent. Such an independent set which is mazimal with respect to the inclusion
is called a differential transcendence basis of the extension L/K.

Two different transcendence basis of an extension L/K have the same number of elements. This
cardinality is called the differential transcendence degree of L/ K, and it is denoted dif f tr d°L/K.
The following theorem establishes a relation between differential algebraic extension and tran-
scendental extensions.

Theorem 6 For a finitely generated differential extension L/K, the next two properties are
equivalent:

1. L/K is differentially algebraic.

2. The transcendence degree (not the differential transcendence degree) of the extension L/ K
is finite.

Let K a given differential field. The ring of differential operators over K is denoted by K [?;ii]v
and it contains all the elements of the form

T
i~
1=0 de*
This ring is commutative if, and only if, K is a field of constants. In the non-commutative

case is always a principal ideal ring. Thus, the most important properties of the modules over
commutative rings are fulfilled also by the left modules over K[4]. Let M be a left module over

K4
Definition 15 An element m € M is said to be a torsion element if, and only if, there ezists

pE K[%] such that prn = 0. A torsion module is a module in which all the elements are torsion
elements.

The following proposition relates a torsion module with a vector space:

Proposition 8 For a finitely generated left K [%]-module M, the nezt two properties are equiv-
alent:

1. M is a torsion module.
2. The dimension of M as a K-vector space is finite.

Definition 16 A finitely generated module over a principal ideal ring is free if, and only if,
there does not ezist any torsion element.
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A.2 The Kahler differential

Let A be a differential ring and let B be a differential A-algebra (in our case, A is a differential
field and B is a differential field extension of A). Let

p: B4 B— B
the canonical A-algebra homomorphism such that p(6®b') = bb'. Let I be the kernel of p. Then,
" be®l-1®b) el
Since p is exhaustive and I an ideal of B, applying the theorem of isomorphism we have
(B®4aB)/I=B

Let us recall that I/I? is a differential (B ® 4 B)/I-module, because it is also a differential
(B ® o B)-module. Therefore, I/I? is a differential B-module. Let us define now the differential

B-module
Qpa =1/I

and the application (Kahler differential):
d= dB/A : B— QB/A
defined by d(b) = (b®@ 1 —1®b) + I

Proposition 9 Qp/4 has a canonical structure of differential module over B such that, for any
derivation 8, §(d(b)) = d(6(b)).

Proof: The uniqueness of the differential structure is clear since the differential B-module is
generated by the elements d(b), for b € B. The existence of the differential structure comes from
the above construction. And, for b € B,

S(d(®) =0((b®1-1®b)+1%) = (6(b) ® 1 — 1 ® &(b)) + I = d(5(b))

More details on the Kéhler differential can be found on [35] and referencies therein.
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Appendix B

Software package for Chapter 4

HHSH R R R R R R R

# #
# MAPLE V PROGRAMS TO LINEARIZE CONTROL SYSTEMS #
# USING THE KHLER DIFFERENTIAL #
# #

HARBHHFHRER AR RR BB R BB R R R H AR S

HESHHHH B RR B EE R R HEHEREHHRH R

# #
# Function afegir_temps: it transforms expressions of the form #
# x_i, u_j, dx_i, du_j in x_i(t), u_j(t), dx_i(t), du_j(t) #
# #

g i S T S
afegir_temps := # 0Ok!
proc(expr)

local res,i,j;
global F,x,u,dx,du,n,m;

res := expr;
for i to n do

res := subs({x[i] = x[i](t), dx[i] = dx[i]l(t)},eval(xres));
od;
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for j tom do
res := subs({ul[jl = uljl(t), dulj]l = duljl(t)},eval(res));
od;

eval(res);
end;

RERBRHHR R B R AR BB R S S R R R R

# #
# Function treure_temps: it transforms expressions of the form #
# x_i(t), u_j(t), dx_i(t), du_j(t) in x_i, u_j, dx_i, du_j #
# #

HHEHHBHH SRR R R R R
treure_temps := # Ok!
proc(expr)

local res,i,j;
global F,x,u,dx,du,n,m;

res := expr;
for 1 to n do

res := subs({x[i] (%)
od;
for j to m do

res := subs({ulj](t)
od;

x[i],dx[i]1(t) = dx[i]},eval(res));

uljl,duljl(t) = duljl},eval(res));

eval(res);
end;

HHRHAUHH S R R R R R R R R R
#

# Function d_dt: it computes temporal derivatives
# of expressions of the form x_i, dx_i, doing the
# substitutions given by the systems sys and lin.
#

FHRH RS R R R SRR R R R R R R

# H #* H R



d_dt := # Ok!
proc(expr,sys,lin)

local res,i,j;
global F,x,u,dx,du,n,m;

res := expr;
res := afegir_temps(res);
res := diff(res,t);

for i ton do
res := subs({sys[i],1in[il},eval(res));
od; .
for j to m do
res := subs(diff(ulj](t),t)=Diff(uljl,t),eval(res));

od;
res := treure_temps(res);
eval(res);

end;

LS s e S s s e s S S
#

# Function Kahler: it computes the tangent system of a

# systema x’=F(x,u). Writing down this tangent system as
# dx’=Adx+Bdu, the outputs are the matrixes A and B, and
# the right hand side of the equatioms.

#

LS S S S S e S e e S S s S s

H#H o* H R ¥ I

Kahler:= # Ok!
proc()

local A,B,1lin,i,j;
global F,x,dx,u,du,n,m;

A:=matrix(n,n); B:=matrix(n,m);
lin:=vector(n); i:=0;
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A:=jacobian(F,x); B:=jacobian(F,u);
for i to n do
1lin[i] :=dotprod(row(A,i) ,dx)+dotprod(row(B,i),du);
od;
eval ([evalm(A) ,evalm(B),eval(1lin)]);

end;

HHESHH R R RN R R R

# #
# Function EqSys: it computes the equations of the original #
# system in the form x’ (t)=F(x(t),u(t)). #
# #

RERRUH BB R B R RRH R R BRI SRR R R R R
EqSys:= # 0Ok!
proc()

global F,n,m,x,dx,u,du;
local i,sortida;

sortida:=vector(n); i:=1;
for i to n do
sortidalil:= diff(x[i](t),t)=afegir_temps(F[il);
od;
eval(sortida);

end;

FRG BB H BB R R R R R R R

# #
# Function EqLin: it computes the equations of the tangent system #
# in the form dx’(t)=A(x(t),u(t))dx(t)+B(x(t),u(t))du(t). #
# The third output of the function Kahler must be given as a #
# parameter. #
# #

HEFHEEHEEEHEHEER B R R R R R



EqLin:= # Ok!
proc{kah3)

global F,n,m,x,dx,u,du;
local i,sortida;

sortida:=vector(n); i:=1;
sortida:=afegir_temps(eval(kah3));
for i to n do

sortidal[i] :=diff(dx[i] (t),t)=sortidali]l;
od;

eval(sortida);
end;

HESHBRHHH B R R S R R R R i

# #
# Function equacions: it gives the result of the former #
# two equations, EqSys i EqLin. #
# #

s S s s s s s b i i s s s s
equacions:= # 0Ok!

proc (kah3)
global F,n,m,x,dx,u,du;
eval([EqSys(),EqLin(kah3)]);
end;

HERHBRFHAFFHEEE R R RS R H R R R R R AR R R R H

Function integrable: the result is 1 or 0, depending

whether or not the 1-form given to the function is

integrable (exact 1-form) or not. It is done using

Schwarz’s conditions of integrability:

w=a_1 dx_1+...+4a_n dx_n integrable if, and only if,
diff(a_i,x_j)==diff(a_j,dx_i), for all i,j

# O H HE H R R
H O H B HHER KR

HFEH R S R R S R R R R
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integrable:= # Ok!
proc(w)

local i,j,sortida;
global F,x,dx,u,du,n,m;

sortida:=1;

for i ton do
for j ton do
if diff(coeff(w,dx[i]),x[jl1)<>diff(coeff(w,dx[j]1),x[i]) then sortida:=0; fi;
if sortida=0 then j:=n; fi;
od;
if sortida=0 then i:=n; fi;
od;

eval (sortida);
end;

HHEHEEH R SRR R R R R R

# #
# Function SinglelInput: it computes the coefficients of #
# the basis w for single-input systems . #
# #

HHEH R R R R R R R R R
SingleInput:= # Ok!
proc()

local sol,kah,eq;
global F,n,m,x,dx,u,du;

kah:=vector(3); eq:=vector(2);
kah[1] :=matrix(n,n); kah[2]:=matrix(a,m);

kah:=Kahler();
eq:=equacions(kah{3]);
sol:=trobar_base(kah[1] ,kah[2],eq,n,1);



eval([eval(sol),eval(dotprod(sol,dx))]);
end;

FHBHHER AR R R BHHR AR R S R R R
M .

# Function SinglelInput2: it computes the coefficients of
# the basis w for single-input systems coming from

# quotients done in dynamic feedback linearizable

# multiple-input systems.

#

HEHBH R AR R R R

# O H H W

SingleInput2:= # QOk!
proc(lin2,zeros)

local i,j,compt,A,B,eq,so0l,variable,uns,auxA,auxxA,auxB,auxdx;
global F,n,m,x,dx,u,du;

uns:=sum(’zeros[i]’,’i’=1..n);

auxA:=matrix(n,n); auxxA:=matrix(n,n-uns); auxB:=matrix(n,1);
A:=matrix(n-uns,n-uns); B:=matrix(n-uns,1);

eq:=vector(2); eqll]:=vector(n); eq[2]:=vector(n);
sol:=vector(n-uns); auxdx:=vector(n-uns);

variable:=0;
for i to n do
for j to m do
if coeff(1in2[i},dulj])<>0 then
variable:=j;
j:=m+i;
fi;
od;
if variable<>0 then i:=n+1; fi;
od;

eq:=equacions(lin2);
auxA:=jacobian(lin2,dx);
auxB:=jacobian(lin2, [dufvariablel]);
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compt:=1;
for i to n do
if zeros[i]=0 then
copy.vec_col(n,col(auxA,i) ,auxxA, compt) ;
compt :=compt+1;
fi;
od;
compt:=1;
for i to n do
if zeros[i]=0 then
copy._vec_row(n-uns,row(auxxi,i) ,A,compt);
copy_vec_row(l,row(auxB,i) ,B,compt) ;
compt :=compt+1;
fi;
od;

sol:=trobar_base(4,B,eq,n-uns,2);

compt:=1;
for i to n do
if zeros[i]l=0 then
auxdx[compt] :=dx[i];
compt :=compt+1;
fi;
od;

eval([eval(sol),eval(dotprod(sol,auxdx))]);
end;

HE#BER SR AR R BRI H R AR H GRS SR B R R BB H R R H USSR B RS HBRER R B HHH]
#

# Function trobar_base: it is an auxiliar function for

# SingleInput and SingleInput2. It solves a linear system
# in order to find the coefficients of the basis w.

#

H#EH AU EH AR HF R H SR HH LGSR ESHEEHHEFHHBHB R G R RS S S SHH AR

* 3% = I H

trobar_base:= # 0k!

proc(A,col,eq,dim,flag)
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local aux,M,i,0,a,0ldm,o0ldn;
global F,n,m,x,dx,u,du;

oldm:=m; oldn:=n;

if flag=2 then
m:=1; -
n:=dim;

fi;

a:=vector(n); M:=matrix((dim-1)#*m,n);
o:=vector((dim-1)*m,t->0); aux:=matrix(n,1);

aux:=col;

M:=transpose (aux) ;

for i from 2 to dim-1 do
aux:=evalm(multiply(A,aux)-map(d_dt,aux,eql1],eq[2]));
M:=stack(M,transpose(aux));

od;

m:=0ldm; n:=o0ldn;

eval(linsolve(M,o0,’r’,a));
end;

REHHHH B R R R R )

# # v
# Function vec_col: It is an auxiliar function that #
# transforms a vector in a column matrix. #
# #

HH R R R R e
vec_col:= # 0Ok!
proc(dim,v)

local i, M;
global F,n,m,x,dx,u,du;

M:=linalg{matrix] (dim,1);



128 APPENDIX B. SOFTWARE PACKAGE FOR CHAPTER 4

for i to dim do M[i,1]:=v[i]; od;

evalm(M) ;
end;

EES R s s e S g

# #
# Function col_vec: it is an auxiliar function that #
# transforms a column matrix in a vector. #
# #

H#ESHHEERR R R R R R R R R R R R R 1
col_vec:= # QOk!
proc(dim,B)

local i, v;
global F,n,m,x,dx,u,du;

vi=linalg[vector] (dim);
for i to dim do v[i]l:=B[i,1]; od;

eval(v);
end;

R R R SRR
# #
# Function copy_vec_col: it is an auxiliar function that #
# writes a vector ’vec’ of dimension ’dim’ in the column #
# ’j’ of the matrix ’Mat’. #
# #
R R R R R R R R

copy_vec_col:= # Ok!
proc(dim,vec,Mat,j)

local i;
global F,n,m,x,dx,u,du;



for i to dim do Mat[i,jl:=vec[il; od;

evalm(Mat);
end;

HHRHHEH R R R R R i
" .

# Function copy_vec_row: it is an auxiliar function that
# writes a vector ’vec’ of dimension ’dim’ in the row ’i’
# of the matrix ’Mat’

#

HESHRBRRRB R AR R R

#* H K R

copy_vec_row:= # Ok!
proc(dim,vec,Mat,i)

local j;
global F,n,m,x,dx,u,du;

for j to dim do Mat[i,jl:=vec[jl; od;

evalm(Mat);
end;

HER BRI BRI R R R R R
#

# Function Kronecker: it is am auxjliar function that
# computes the Kronecker indices for static feedback
# linearizable multi-input systems

#

HERHRBRHAR R R R R R R R R R R R

H# H H H

Kronecker:= # Ok!
proc(kah,eq)

local D,d,j,k,rho,K,Aux;
global F,n,m,x,dx,u,du;
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D:=matrix(n,m); Aux:=matrix(n,m);
d:=vector(n); rho:=vector(n); K:=vector(m);

Aux:=evalm(kah[2]);

D:=evalm(Aux);

d[1] :=rank(Aux);

for k from 2 to n do
Aux:=evalm(multiply(kah[1],Aux)-map(d_dt,Aux,eq[1],eq[2]));
D:=augment (D, Aux) ;
d[k] :=rank(D);

od;

rho[1]:=d[1];

for k from 2 to n do
rho[k] :=d[k]-d[k-1];

od;

for j from 1 to m do
K[jl:=0;
for k from 1 to n do
if (rho[k]>=j) then
K([jl:=K[jl+1;
fi;
od;
od;

eval(K);
end;

HEH S R R S R R R R R
#

# Function MultiInputSFL: it computes the coefficients
# of the 1-forms w_1,...,w_m that make a basis for

# static feedback linearizable multi-input systems.

# It is analagous to the function Singlelnput.

#

HHR S R R AR R R R R R

H o o H K R

MultiInputSFL:= # 0Ok!

proc()



131

local i,1,j,k,eq,kah,aux,aux2,k,W,a,0,M,formes;
global F,n,m,x,dx,u,du;

kah:=vector(3);
kah([1] :=matrix(n,n); kah[2] :=matrix(n,m);
W:=matrix(n,m); K:=vector(m); formes:=vector(m);

kah:=Kahler();
eq:=equacions(kah[3]);

K:=Kronecker (kah,eq);

for 1 from 1 to m do
if (X[1] > 1) then
a:=vector(n); M:=matrix((K[1]-1)#*m,n);
o:=vector ((K[1]-1)*m,t->0);
aux:=vector(n); aux2:=vector(n);

aux:=vec_col(n,col(kah[2],1));

M:=transpose(aux) ;

for i from 2 to (K[1]-1) do
aux:=evalm(multiply(kah[1],aux)-map(d_dt,aux,eq[1],eq[2]));
M:=stack(M,transpose (aux));

od;

for j from 2 to m do
aux:=’aux’; aux:=vec_col(n,col(kah[2],j));
M:=stack(M,transpose(aux));
for i from 2 to (K[1]-1) do
aux:=evalm(multiply(kah[1],aux)-map(d_dt,aux,eq[1],eql[2]));
M:=stack(M,transpose(aux)) ;
od;
od;

aux2:=linsolve(M,o0,’r’,a);
copy_vec_col(n,aux2,W,1);
else

a:=vector(n);
copy_vec_col(n,a,W,1);
fi;
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od;

for j tom do
formes[j]:=dotprod(col(W,j),dx);

od;

eval([evalm(¥W) ,eval (formes)]);
end;

HARBHBHHS SRR R R R A R R B R R R R R R R R

# #
# Function quocient: it makes the quotient of a certain #
# system by a general expression ’w’. #
# #

L s R S S s R s s s S s T
quocient:= # 0Ok!
proc (w)

global F,n,m,x,dx,u,du;
local i,final,currenteq,expr,kah,sys,lin,lin2,k,var,zeros;

final:=0; expr:=w;

kah:=Kahler();
sys:=EqSys(); lin:=EqLin(kah[3]);
1lin2:=kah([3]; zeros:=vector(n);

for i to n do zeros[i]:=0; od;

while final<>1 do
if coeff(expr,dul1})<>0 then
currenteq:=du[1]=solve(expr,dulll);
for k to n do
1in2[k] :=subs(currenteq,lin2[k]);
od;
final:=1;
elif coeff(expr,dul2])<>0 then
currenteq:=du(2]=solve(expr,dul2]);
for k to n do
1in2[k] :=subs(currenteq,lin2[k]);
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od;
final:=1;

else
var:=1;
while coeff(expr,dx[var])=0 do var:=var+l; od;
zeros [var] :=1;
currenteq:=dx[var]=solve(expr,dx[var]);
for k to n do

1in2[k] :=subs(currenteq,1in2[k]);

od;
lin:=EqLin(1in2);
expr:=d_dt (expr,sys,lin);
expr:=subs(currenteq,expr) ;

fi;

od;

eval ([map(simplify,eval(1in2)),eval(zeros)]);
end;
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