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ABSTRACT 

 

Retinopathies are a heterogeneous group of conditions that inevitably 

lead to vision incapacitation and blindness. Currently, they are 

incurable. Cell therapy has been proposed as a potential solution, but 

further development and optimization are required. In particular, this 

study addresses the problem of inadequate migration and integration 

of transplanted cells into the host tissue. In fact, the majority of the 

cells transplanted in the eye are unable to reach the injury site, where 

they are most needed. Hence, we hypothesize that improving cells’ 

migratory ability could appreciably enhance the therapeutic outcome 

of transplantation-based strategies.  

 

After identifying the chemokines that are most upregulated during 

retinal degeneration, we have over-expressed the corresponding 

receptors on mouse mesenchymal stem cells.  Overall, we found that 

combined exogenous expression of two specific chemokine receptors 

significantly improves both ex vivo and in vivo migration of mouse 

mesenchymal stem cells.  

 

The strategy explored in this study provides a way to generate ad hoc 

engineered stem cells with an increased responsiveness to retina-

specific signals. Ultimately, our findings could be integrated with 

alternative optimization strategies to make stem cell therapy in the 

eye a feasible and realistic option for the treatment of retinopathies, 

and for the achievement of visual restoration. 
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RESUMEN DE LA TESIS 

 

Las retinopatías representan un grupo heterogéneo de enfermedades 

que causan, de forma inevitable, discapacidad visual y ceguera. En la 

actualidad no se dispone de una cura para estas enfermedades para 

las que la terapia celular podría ser una solución válida, en el caso de 

que ésta pudiera ser mejorada y optimizada.  

 

El presente estudio enfrenta el problema de la escasa e inadecuada 

migración de las células trasplantadas en el tejido diana. De hecho, la 

mayoría de las células trasplantadas en el globo ocular no consiguen 

llegar allí donde se las requiere; donde se encuentra la lesión. Por este 

motivo, se plantea la hipótesis de que mejorar la capacidad migratoria 

de las células podría resultar en una mejora substancial del resultado 

terapéutico de los trasplantes celulares.  

 

Después de identificar las quimiocinas más expresadas durante la 

degeneración de la retina, se ha procedido a sobre-expresar los 

receptores correspondientes en células madre mesenquimales de 

ratón. En general, los resultados obtenidos indican que la expresión 

exógena combinada de dos receptores específicos de quimiocinas 

mejoran significativamente la migración de células madre 

mesenquimales, tanto ex vivo como in vivo.  

 

La estrategia desarrollada en este estudio proporciona una forma de 

generar células madre con una mayor capacidad de respuesta a 



 iv 

señales específicas de la retina. Tanto es así, que los hallazgos que en 

él se detallan podrían integrarse con otras estrategias de 

optimización, de forma que la terapia con células madre sea una 

opción factible y realista para el tratamiento de retinopatías. 
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RESUM DE LA TESI 

 

 

Les retinopaties són un grup heterogeni de condicions que 

provoquen, de manera inevitable,  la incapacitació visual i la ceguera, 

i és que, malauradament, a dia d’avui no se’n disposa d’una cura. La 

teràpia cel·lular sorgeix com una solució potencial a aquestes 

malalties, tot i que encara manca un llarg camí per recórrer.  

 

Concretament, aquest estudi es centrarà en el problema de la migració 

inadequada de les cèl·lules mare dins del teixit diana, ja que la 

majoria de cèl·lules trasplantades dins del globus ocular no arriben a 

la zona lesionada, que és on són necessàries. La hipòtesi que s’hi 

exposarà és que la millora de la migració cel·lular en el procés de 

trasplantament cel·lular significarà, alhora, una  millora terapèutica.  

 

Una vegada definides les quimiocines més expressades durant la 

degeneració del teixit retínic, s’ha procedit a sobre-expressar els 

corresponents receptors en cèl·lules mesenquimals de ratolí. En 

termes generals, ha estat possible observar que la combinació de 

l’expressió exògena de dos receptors específics de quimiocines  

incrementa significativament, tant ex vivo com in vivo, la migració de 

les cèl·lules mares mesenquimals de ratolí. 

 

Així doncs, l’estratègia exposada en aquesta tesi proporciona una 

nova forma de generar cèl·lules mare amb una major capacitat de 

resposta a senyals específiques de la retina.  
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Finalment, cal tenir en compte que els resultats obtinguts en el decurs 

del desenvolupament d’aquest treball podrien arribar a integrar-se 

amb altres estratègies d’optimització per tal de fer de la teràpia 

cel·lular al globus ocular una opció factible i realista per al tractament 

de les diferents retinopaties i,  fins i tot,  per tal d’assolir objectius tan 

importants com la restauració visual. 
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PREFACE 

 

 

A simplified view of stem cell therapy 

 

 

 

Over 250 million people in the world suffer from visual disabilities 

and blindness. Indeed, it is estimated that every five seconds one 

person out of five goes blind. In most cases, this is due to conditions 

that involve damage and/or degeneration of the retina, i.e. the tissue 

of our body that responds to external light.  

In contrast to most invertebrates, mammals cannot regenerate 

diseased retinae. For this reason, the scientific community is trying 

to find an alternative solution. Among the various proposals, stem 

cell therapy stands out for the promising outcomes of both pre-

clinical and clinical studies. 

 



 x 

Stem cell therapy is based on the injection of stem cells directly into 

the eye. There, they can help either by providing dying retinal cells 

with everything they need to survive (cell rescue), or by becoming 

functional retinal cell types themselves (cell replacement).  

 

Retinal cells at the injury site “communicate” their location through 

the secretion of soluble signals, called chemokines. In order to pick 

up these signals, stem cells need to express the right types of 

receptors on their cell surface. Nonetheless, this rarely happens. As a 

result, only a small percentage of transplanted cells reaches the site 

of damage, where they are most needed. 

 

Here, we unravel the identity of the chemokines secreted during 

retinal degeneration; then, we express their receptors on stem cells 

prior to transplantation. In this way, stem cells become able to pick 

up the signals coming from the injury site, and they can reach it with 

higher efficiency.  Transplanted stem cells that reach the injury site 

slowly start converting into retinal-like cells, as revealed by the fact 

that they start producing a protein exclusively found in cells with a 

neuronal phenotype.   

 

Hopefully, our results will contribute to the optimization of stem cell 

therapies approaches, helping the millions of people that suffer from 

visual disabilities and blindness as a result of retinal disease and 

degeneration. 
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CHAPTER 1: Retina architecture and retinopathies 

 

1.1 Retina structure and architecture 

 

The retina is the light-sensitive tissue of the body. It lines the inner 

surface of the back of the eye, and it mediates the first step in the 

process of vision: it converts light into signals that can be received 

and interpreted by highly-specialized centers in the brain. Both its 

anatomy and physiology have been comprehensively characterized.  

Developmentally, the retina is originated from outgrowths of the 

embryonic brain; this makes it the most easily accessed area of the 

central nervous system (CNS) (1). Interestingly, all retinal cell types 

are derived from a common retinal progenitor cell (RPC) population 

(2, 3). 

 

Architecturally, the retina is organized into three main layers (Fig. 1), 

namely: (1) the ganglion cell layer (GCL); (2) the inner nuclear layer 

(INL); (3) the outer nuclear layer (ONL) (4). Adjacent cells within 

the same layer are linked through gap junctions, whereas cells from 

different layers are connected through chemical synapses (5). 

 

Ganglion cells represent around 2% of the total retinal neurons, and 

they are the first specialized retinal cell type that arise during 

embryonic development.  
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The INL contains horizontal, bipolar and amacrine cells, which are 

collectively referred to as interneurons. These are morphologically 

and functionally distinct neurons. Additionally, the INL contains the 

cell body of the Müller glia cells (MGCs).  

MGCs are the main glial cell type of the retina, where they fulfil 

typical functions of glia in the CNS. In particular, they are involved 

in the maintenance of retinal structure, architecture and homeostasis 

(6-8); they also actively participate in the regulation of 

neurotransmitter recycling (9).  

 

Finally, the ONL contains the rod and cones photoreceptors, which, 

together, constitutes about 70 % of the total retinal population. Rods 

are responsible for black-and-white, dim-light vision; they are 

extremely sensitive and can detect even a single photon (10). Cones, 

instead, respond to bright light and generate high-acuity color vision. 

The kinetics of their response are considerably faster than those of 

rods photoreceptors; however, on average, cones are 100 times less 

sensitive than rods. While rods are diffusely distributed throughout 

the retina, cones are spatially restricted to a limited area of the central 

retina, known as the macula. Within the macula, there is a small, pit-

like structure called fovea, which exclusively contains cone 

photoreceptors. This makes it the point in the retina responsible for 

maximum visual acuity and color vision.
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Fig. 1 - Mammalian retinal structure. (A) Hematoxylin and eosin staining of 
retinal sections showing the different retinal cell layers. (B) Schematic 
representation of the major retinal cell types and layers. The outer nuclear layer 
contains rods and cones photoreceptors, and it’s lined by the retinal pigment 
epithelium. Interneurons (i.e., horizontal, bipolar and amacrine cells) and the cell 
bodies of the MGCs are located in the inner nuclear layer, whereas ganglion cells 
are found in the homonymous layer. 
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Light coming from the external environment passes through all 

retinal layers and it interacts with photoreceptors in the ONL. This 

interaction induces changes in the membrane potential of 

photoreceptor cells. Such changes are translated into alteration of 

neurotransmitter release at synapses. Rods and cones photoreceptors 

make synapse with rods cones and bipolar cells respectively at the 

level of the outer plexiform layer. The signals relayed by 

photoreceptors to bipolar neurons is modulated by horizontal cells. 

Bipolar cells then connect with amacrine and ganglion neurons at the 

level of the inner plexiform layer. While amacrine neurons primarily 

integrate and modulate the signals received by ganglion cells, 

ganglions project their axons to higher visual centers of the brain 

through the optic nerve. 

 

 

1.2 Retinopathies and retina degeneration 
 

Degenerative retinal diseases represent a heterogeneous group of 

conditions for which no effective therapy is currently available. They 

inevitably lead to the development of visual disabilities and, in most 

cases, blindness. Indeed, one in five people in the world are estimated 

to go blind every five seconds (Fig. 2).  
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Fig. 2 – Global impact of retinopathies (from Bourne et al., 2017) (11). Global 
trends and predictions of numbers of people affected by vision impairment or 
blindness, 1990-2050.  
 

 

Among all of the retinopathies, age-related macular degeneration 

(AMD) stands out as the most frequent cause of blindness in the 

industrialized world (12). It is a progressive chronic disease with a 

polygenic hereditary component (13, 14); however, in addition to 

genetic predisposition, it can also be favored by environmental 

factors (e.g. smoking or obesity). AMD is characterized by 

degeneration of the retinal pigment epithelial (RPE) cells, and the 

consequential defect in the phagocytosis of the photoreceptor outer 

segment (15). This leads to excessive accumulation of lipofuscin, a 

toxic lysosomal protein that eventually induces photoreceptor 

apoptosis.  

Build-up of lipofuscin is also responsible for an alternative form of 
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inherited juvenile macular degeneration named Stargardt disease 

(STGD). STGD affects approximately 1 in 10’000 individuals 

worldwide and it is associated with gradual loss of central vision (16, 

17). 

 

Retinitis Pigmentosa (RP) is another frequent form of debilitating and 

currently incurable retinal dystrophy. It affects 1 in 4.000 individuals, 

therefore representing the most common inheritable eye disorder. 

Indeed, more than 100 causative genetic mutations have already been 

described and characterized (18).  

RP involves progressive and severe loss of rods and cones 

photoreceptors. The first symptoms are usually observed in early 

adulthood, beginning with nyctalopia (i.e. night blindness), 

continuing with loss of mid-peripheral vision, and eventually 

culminating with loss of fine central vision and with blindness (18, 

19).  

 

Laber congenital amaurosis (LCA) is another condition with an 

autosomal recessive inheritance; it accounts for approximately 5% of 

all inherited retinopathies (20). LCA induces rapid vision loss at 

birth, and it’s usually accompanied by nystagmus and other 

neurological and systemic abnormalities, including mental 

retardation (21, 22). 

 

Finally, optic neuropathy is a term used to define a heterogeneous 

group of conditions associated with optic nerve damage, regardless 

of the cause. Underlying causes can include traumas, infections, 
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inflammation, autoimmune disease (e.g. neuromyelitis optica), 

ischemia or glaucoma. Most optic neuropathies can be managed with 

surgery, corticosteroids, immunosuppressants and other drugs; 

however, such solutions do not represent a definitive cure, and their 

effects are only temporary (23, 24).  

 

To summarize, as previously mentioned, most retinopathies are 

currently incurable. On one side, efforts are being made to gain a 

more in-depth understanding of their underlying mechanisms. This 

could prove to be instrumental in our understanding of the molecular 

events that determine normal and aberrant retinal development. On 

the other side the possibility of using various interventional and 

potentially curative strategies is being explored. These include gene 

therapy (especially for monogenetic hereditary diseases), drug 

cocktails and stem-cell transplants.  

 

 

1.3 Rodent models of retina degeneration 
 

Numerous rodent models of retina degeneration have been 

characterized and are currently available. We have decided to 

proceed in parallel with two of them. On the one hand, we have a 

pharmacological model of N-methyl-D-aspartate (NMDA)-induced 

excitotoxicity; on the other hand, we have a genetic model of RP.  

 

NMDA is an amino acid derivative that is remarkably similar to 

glutamate, the main excitatory neurotransmitter of CNS. Through the 
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activation of glutamate receptors, intra-ocular administration of 

NMDA can induce intra-cellular accumulation of calcium. Excessive 

intra-cellular accumulation of calcium activates a series of neurotoxic 

cascades. As a result, 30% to 80% of the ganglion and amacrine 

neurons are lost, in a dose-dependent manner (25-28).  

 

The rd10 mouse model of autosomal recessive RP is characterized 

by a missense point mutation in the exon 13 of the Phosphodiesterase 

6b (Pde6b) gene (29, 30). The Pde6b gene is located on chromosome 

5 and codes for a peripheral membrane cGMP phosphodiesterase 

enzyme involved in the phototransduction cascade. As a consequence 

of their Pde6b mutation, homozygous rd10 animals progressively 

lose their rods and cones photoreceptors, starting at post-natal day 16 

(P16). The peak of retinal inflammation and photoreceptor loss 

occurs at post-natal day 18 (P18) (29, 31). No normal ERG responses 

can be ever recorded for these mice. However, rod and cone a- and 

b-waves can be measured at P18; they steadily decline, becoming 

undetectable at two months of age (30).  

Compared to the widely used rd1 model of RP, the rd10 one is 

characterized by a later onset and a milder degeneration; therefore, it 

might provide a better experimental model for the investigation and 

the development of pharmacological intervention and cell therapy 

(29). 
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CHAPTER 2: Regenerative medicine 
 
 

2.1 Tissue regeneration 
 

The term regeneration describes a process that is initiated following 

injury with the final goal of re-establishing (at least partially) tissue 

structure and function. Regenerative capacities are not conserved 

throughout the animal kingdom. As a consequence, some organisms 

can successfully regenerate entire parts of their bodies, while others 

can suffer permanent damage following even a mild injury.  

 

During evolution, two main regenerative mechanisms have been 

selected, namely morphologic and epimorphic (32, 33). On the one 

hand, morphallatic regeneration involves recruitment of stem cells to 

the damage site; here, stem cells can differentiate into tissue-specific 

cell types, without passing through a proliferative stage. On the other 

hand, epimorphic regeneration is based on proliferation of either pre-

existing stem/progenitor cells (e.g. planaria) or resident tissue cells 

(e.g. salamanders). In the case of resident cells, a previous 

dedifferentiation step is required.  

 

Amphibians, for instance, can replace not only damaged organs, but 

also entire limbs and tails (34). Their remarkable regenerative 

potential depends on the formation of a specialized structure termed 

blastema, which involves dedifferentiation of cells located in the 

proximity of the injury site. “Neoblasts” pass through a proliferative 
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phase and consequently re-differentiate into tissue cells. This process 

can regenerate almost the entire body size of the organism(35). 

Outstanding regenerative potential is also present in animals from 

other phyla, including Platyhelminthes (e.g. planarians) and 

Chordates (such as ascidians and zebrafish). As an example, an entire 

planaria can be formed starting from a tissue fragment that is only 

1/279th of the original body size. Zebrafish also possess good 

regenerative capacities. For instance, they can completely regenerate 

their heart following amputation of up to 20% of the ventricle (36, 

37).  

 

Nonetheless, in contrast to most cold-blooded vertebrates, mammals 

have very limited regenerative capacity when it comes to repairing 

tissues following injury and/or disease (Fig. 3). Years of intense 

investigations and debates have led to the hypothesis that it is the 

absence of cell dedifferentiation that underlies this fundamental 

incapability of repairing tissue damage in mammals. Schwann cells 

represent a remarkable exception as, when nerve damage occurs, they 

can dedifferentiate, re-enter the cell cycle and begin to express genes 

of immature precursor cells (38). However, this does not happen 

following injury in most other organs, including the liver, which 

undergoes “compensatory regeneration” instead. This means that, in 

order to replace lost cells and restore physiological function, 

hepatocytes closed to the injured site re-enter the cell cycle without 

prior de-differentiation. 
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Fig. 3 – Spectrum of regenerative potential across the animal kingdom (from 
Pesaresi et al., 2018) (39). Platyhelminthes (e.g. planarians) are found on the left-
end of the regeneration spectrum, as they are characterized by outstanding 
regenerative capacities. Amphibians also possess remarkable regenerative 
capacities; newts, for instance, can fully regenerate their lenses following complete 
lentectomy (40). Regenerative potential is also present in animals from other phyla, 
including Chordates such as ascidians and zebrafish, which also can completely 
regenerate damaged retinal tissue (41). Potential for retinal regeneration is also 
maintained in birds, even if only partially. In fact, the avian retina can be efficiently 
regenerated in the early postnatal period; this capacity, however, is lost as the 
animal ages (42). Mammals are found on the right- (and lower-) end of the 
spectrum. In fact, the liver is the only mammalian organ that can be endogenously 
repaired following injury, regaining sufficient function to lead a normal life. Most 
of the other organs, instead, are endowed with very limited regenerative capacity. 
 

 

 

It is however important to highlight how an increasing number of 

reports are now showing that some mammalian cell types can be 

induced to dedifferentiate upon stimulation with very specific 

signals. Such investigations are opening up new and provocative 
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questions regarding the potential applicability of these methods for 

the enhancement of endogenous regeneration and the development of 

regenerative medicine approaches. 

 

 

2.2 Regenerative medicine 
 

The term regenerative medicine describes a heterogeneous group of 

approaches and techniques finalized at the re-establishment of tissue 

homeostasis and functionality following injury. Such approaches 

generally belong to one of two categories: either stimulation of the 

body’s endogenous regenerative capabilities, or cell therapy.  

The focus of this Thesis is on the development and the optimization 

of stem cell therapy approaches. Therefore, alternatives based on 

stimulation of endogenous regeneration will only be briefly 

discussed. 

 

2.2.1 Endogenous regeneration in mammals 

Mammalians tissues contain a reservoir of adult stem cells (ASCs) 

that contribute to the maintenance of tissue homeostasis (43). ASCs 

are located within specialized tissues niches, where they are 

responsible for the constitutive and physiological turnover of 

mammalian organs (44-47).  

The exact kinetics and mechanisms of adult tissue self-renewal have 

not been thoroughly elucidated yet. However, it is becoming 

increasingly clearer that turnover rates vary enormously depending 
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on the organ (48). For instance, the intestinal epithelium is 

completely replaced in less than a week, whereas the heart can take 

up to several decades (49, 50). 

 

ASCs could also potentially become active as a response to tissue 

damage and inflammation (47). Indeed, if exposed to the appropriate 

stimuli, they can exit quiescence, proliferate and replace lost or 

deteriorated cells to maintain organ integrity (51). 

Nonetheless, the regenerative potential of ASCs is not unlimited, and, 

generally speaking, is characterized by a prominent age-dependent 

decline. This means that ASCs often are unable to adequately repair 

severe injuries, such as myocardial infraction and cerebral ischemia; 

organ integrity is irremediably compromised.  

This is why a lot of effort is being put into designing strategies that 

would promote endogenous regenerative capacities. Possible 

approaches include activation of resident stem cells, or 

reprogramming of other healthy resident cells in vivo (52-56). 

 

These types of strategies offer multiple advantages. For instance, the 

cells that would eventually mediate regeneration are already 

physically located in the proximity of the injury, where they are 

needed. In this way, migration and integration difficulties are greatly 

reduced, if not eliminated. Contemporarily, differentiation into 

tissue-specific cell types is promoted by the exposure to the 

appropriate local microenvironment. The problem of immune 

rejection is also avoided, as newly generated cells will be autologous 

by definition. Furthermore, the risk of tumorigenesis is lowered (57, 
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58). Importantly, promoting the body’s self-repair capabilities would 

also remove from the equation the need of thoroughly assessing cells’ 

integrity and phenotype prior to transplantation.  

 

2.2.2 Endogenous regeneration of the retina 

Retinal tissue can be regenerated via one of two main strategies. 

Resident stem cells present in the ciliary body (CB) or in the ciliary 

marginal zone (CMZ) can exit quiescence and become active, 

proliferating and replacing lost retinal cells. Alternatively, resident 

retinal cells can undergo dedifferentiation and generate retinal 

progenitor cells (RPCs). RPCs are multipotent progenitors that first 

proliferate and then differentiate into all retinal cell types (59).  

In particular, there are two main cell types that can be converted into 

RPCs: MGCs and cells of the retinal pigmented epithelium (RPECs). 

RPECs are the main players in regenerating the amphibian retina, 

whereas MGCs represent the main source of retinal regeneration in 

zebrafish (60-62) and chicken (42, 63, 64). 

 

Even in mammals, MGCs can re-enter the cell cycle and contribute 

to neuronal regeneration following pharmacological damage of either 

ganglion or photoreceptor cells (65-70). Importantly, activated 

MGCs tend to differentiate into the cell type that has been damaged 

(66, 71, 72). However, the frequency of such events is extremely low 

and the regenerative potential of mammalian MGCs is very limited. 

As a consequence, proliferative MGCs are unable to fully rescue 

retinal functionality (73). 
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Over the past 10-15 years, some of the signaling pathways and the 

molecular mechanism involved in endogenous retinal regeneration 

have been characterized. For instance, MGCs can be stimulated by 

overexpression of Ascl1, a transcription factor essential during retinal 

development (74, 75). Remarkably, MGC reprogramming ability can 

be further increased when Ascl1 over-expression is combined with 

inhibition of a histone deacetylase, which results in a more open 

chromatin state that favors accessibility at key gene loci (76). 

Pharmacological perturbation of Wnt/β-catenin, EGF, FGF, Cxcr4-

Sdf1 and insulin pathways can also stimulate the neural regenerative 

potential of mammalian MGCs (65, 67-69, 77-80). 
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CHAPTER 3: Stem cell therapy 

 

3.1 Stem cell therapy 

 

As the name strongly suggests, stem cell therapy approaches are 

based on the transplantation of either stem or progenitor cells (Fig. 

4).  

 

 
 
Fig. 4 – The three steps of cell therapy approaches. The overall cell therapy 
procedure involves three distinct steps: (1) cell extraction - cells are extracted from 
a donor, who, importantly, can be the patient themselves; (2) cell isolation - cells 
are isolated and, if possible, cultured, expanded and/or differentiated; (3) transplant 
- finally, cells are transplanted back into the patient, with the aim of restoring tissue 
functionality. 
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Therapeutically, stem cells (SCs) can exert beneficial effects in one 

of two ways (Fig. 5).  

 
Fig. 5 – Mechanisms of stem cell therapy beneficial effects. On the one side, 
stem cells can promote survival and recovery of endogenous cells through the 
secretion of neurotrophic factors and other biologically active molecules with anti-
inflammatory properties (i.e. the paracrine effect). On the other side, they can 
integrate within the tissue and differentiate themselves into new functioning tissue-
specific cell types, thereby replacing lost and/or damaged cells. This can occur via 
either transdifferentiation or cell fusion-mediated events. 
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On the one side, they can secrete biologically active molecules in a 

process that is termed paracrine effect. The paracrine effect of SCs 

has neuroprotective and anti-inflammatory properties; it strongly 

promotes cell survival and recovery.  

On the other side, SCs can generate new functioning tissue-specific 

cell types, thereby replacing lost and/or damaged cells. To promote 

and facilitate this process, SCs can be differentiated towards specific 

desired progenitor types in vitro, prior to transplantation. 

Importantly, the possibility of culturing and expanding cells in vitro 

facilitates the obtainment of abundant starting material; this, in turn, 

significantly increases the probability of adequately replacing lost 

tissue. 

 

However, several issues remain to be satisfactorily addressed. For 

instance, cell therapy can raise important concerns with respect to the 

risk of tumorigenesis; indeed, most protocols and procedures for the 

generation of clinical-grade cells remain to be established and 

standardized (81). Furthermore, beneficial outcomes are generally 

dampened by poor migration and poor functional integration of 

transplanted cells within the host tissue.  

 

For these reasons, currently, cell therapy is routinely used only for 

bone marrow replacement. Significant advances are required to 

establish its reliability and therapeutic value in other tissues and 

organs.  
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3.2 The eye as a target for cell therapy approaches  
 

The eye represents an exceptionally good target for the first 

generation of CNS cell therapy approaches.  

Firstly, both the anatomy and the physiology of the eye and of the 

retina have been extensively characterized. Secondly, surgical 

techniques are already well established and routinely performed in 

clinics, with excellent safety records (82). Thirdly, patients and 

transplant functionality can be monitored continuously and with 

minimal risk thanks to the availability of numerous non-invasive and 

high-resolution ocular imaging techniques; these techniques include 

optical coherence tomography (OCT), fluorescein angiography (FA) 

and adaptive optics scanning laser ophthalmoscopy (AOSLO) (83-

87). Fourthly, since the eye is a small and encapsulated organ, a 

relatively small number of viable transplanted cells would most likely 

be sufficient to support visual restoration (88).  

Additionally, most retinopathies initially affect a single cell type, 

meaning that therapy could be focused on the replacement of one 

specific cell group. Finally, under non-disease circumstances, the 

subretinal space is an immunoprivileged site; this means that cell 

grafts are significantly less likely to be rejected (89, 90). 

 

For all of these reasons, stem cell therapy represents an attractive and 

promising possibility for the treatment of retinal diseases. Indeed, 

plenty of pre-clinical studies have extensively shown the beneficial 

effects that stem cell-based therapies can have in rodent models of 

retinal injury and degeneration (Table 1). Moreover, we are now 

starting to gather the results coming from over a decade of clinical 
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trials, performed using a variety of cell sources with patients affected 

by a wide range of diseases. It is important to stress that most trials 

have not reached pre-established endpoint. However, the available 

preliminary results are encouraging. 

 
 

 
 

Cell 
type 

 

Disease Route Animal Model Reference 

MSCs 

Retinal 
degeneration S 

Rat 
(RCS) 

(91, 92) 
(93) 

Rat 
(Light-damage) (94) 

RP S Mouse 
(Rhodopsin KO) (95) 

Glaucoma I 

Rat 
(Laser-induced ocular 

hypertensive glaucoma) 
(96) 

Rat 
(Ligation of episcelar 

veins) 
(97) 

Trauma I 
Rat 

(Optic Nerve 
Transection) 

(98, 99) 

BMDCs 

Retinal 
degeneration 

 

S Rat 
(RCS) (100) 

I 
Mouse 

(Pde6bRd1 and 
Pde6bRd10) 

(101) 

RP 

S Mouse 
(Pde6bRd10) (102) 

I 
Mouse 

(NMDA-induced RGC 
degeneration) 

(71) 

Trauma I Mice 
(Laser injury) (103) 

Retinal 
vasculopathy I 

Mice 
(Acute retinal ischemia-

reperfusion injury) 
(104) 

ESC or 
iPSC-

derived 
RPECs 

Retinal 
degeneration S RCS Rat (105-107) 

(108) 

STGD S Elov14 Mouse (105) 

RPECs Retinal 
degeneration S RCS rat (109) 
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NPCs 

 
 
 

Retinal 
degeneration 

S RCS rat (110, 111) 
(112) 

I 

Mouse 
(mnd mouse – lysosomal 

storage disease with 
retinal and CNS 
degeneration) 

(113) 

RP 
Mouse 

(Pde6bRd1 and 
Pde6bRd10) 

(114) 

Trauma Rat 
(Mechanical injury) (115) 

Ischemia 
Rat 

(Damaged by acute 
ocular hypertension) 

(116) 

RPCs RP S 

Mice 
(Rhodopsin KO) (117) 

Rat 
(Mutations in the 
rhodopsin gene) 

(118) 

PRPs 

RP 

S 

Mouse 
(Rhodopsin KO) (81) 

Congenital 
stationary 

night 
blindness 

Mouse 
(Gnat1-/-, lacking rod 

function) 
(119) 

hMGC-
derived 
RGCs 

RGC 
degeneration I 

Rat 
(NMDA-induced RGC 

degeneration) 
(120) 

 
Table 1 (adapted from Sottile et al., 2019) (121) - Comprehensive list of stem 
cell-based studies in rodent models of retinal degeneration and disease (MSC = 
mesenchymal stem cells; BMDCs = bone marrow-derived cells; ESCs = embryonic 
stem cells; iPSCs = induced pluripotent stem cells; RPECs = retinal pigmented 
epithelium cells; NPCs = neural progenitor cells; RPCs = retinal progenitor cells; 
PRPs = photoreceptor precursors; hMGCs = human Müller glia cells; RGCs = 
retinal ganglion cells;  S = subretinal injection; I = intravitreal injection) 
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3.2.1 The immune privilege of the eye 

 
Broadly, a site is defined as immunoprivileged if foreign tissue grafts 

that would normally be rapidly rejected can survive there for 

extensive periods of time.  

The immune privilege of the eye makes perfect sense from an 

evolutionary point of view. In fact, in the process of eliminating 

foreign pathogens, antigen-specific immune responses often cause 

the destruction of some adjacent tissue, in a process that is often 

called bystander injury. Bystander injury would not cause irreparable 

damage to bigger organs (such as the heart, or the liver), but it would 

surely have devastating effects in the eye, especially if spatially 

located in the proximity of the fovea (which, as already discussed, is 

responsible for central vision).  

 

The immune privilege of the eye is achieved thanks to both anatomic 

and functional factors. Anatomic factors include, for instance, the 

absence of lymphatic drainage and, most importantly, the presence of 

a blood-retinal barrier. This is formed by tight junctions between 

RPECs (which protect the outer retina) and retinal vascular 

endothelial cells (which protect the inner retina). Partial physical 

isolation is further reinforced by the establishment of an intraocular 

immunosuppressive microenvironment (122), in which: (1) antigen-

presenting cells are tolerogenic; (2) T-cell activation is inhibited by 

direct cell-to-cell contact and cytokine secretion (123); (3) 

CD8+/CD4+ cytotoxic T lymphocytes are converted into regulatory T 

cells (124, 125); (4) numerous soluble immunosuppressive factors 
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are constitutively secreted. Furthermore, activity of the complement 

system is tightly regulated. More specifically, the complement 

system is chronically activated at low levels as a preventive 

protective measure against pathogens and infections.  

At the same time, the harmful effects of inadvertent and/or excessive 

complement activation are prevented by various soluble and 

membrane-bound regulatory molecules (126, 127). In this way, the 

risk of functional tissue destruction is minimized (126, 127). 

Additionally, corneal epithelial cells and endothelial cells express no 

class II MHC antigens, and only very low levels of MHC class I 

molecules (128) This means that they will be “invisible” to 

surveilling immune cells. Such “immunologic ignorance” of the 

tissue is at the very heart of the success of corneal transplantation. 

 

 

3.2 Stem cell sources  
 

Stem cells are defined by three fundamental properties. Firstly, they 

are capable of self-renewal and can proliferate indefinitely. Secondly, 

they exist in an undifferentiated state, with no specific cell fate 

defined. Thirdly, they can differentiate towards various types of cells 

and tissues. In particular, pluripotent SCs can give rise to all cell 

types of the body (endoderm, ectoderm, mesoderm), with the 

exception of those forming extra-embryonic tissues (e.g. the 

placenta) (129, 130). Multipotent SCs, instead, can only differentiate 

into a limited number of cell types that will generate certain tissues.   
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Both pluripotent and multipotent SCs represent potential sources for 

cell therapy in the eye (Fig. 6). 

 

 
Fig. 6 – Potential sources for cell therapy in the eye. Cell therapy approaches 
can be developed starting from either adult stem cells (e.g. HSPCs, MSCs) or 
somatic cells that have been converted to iPSCs. Alternatively, pluripotent stem 
cells can be obtained from the early embryo (i.e., ESCs). ESCs/iPSCs can then be 
differentiated prior to transplantation (e.g. in retinal progenitor cells – RPCs; retinal 
pigmented epithelium cells – RPECs; or photoreceptor precursors – PRPs). 
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3.2.1 Pluripotent stem cells 

 

Embryonic stem cells (ESCs) are pluripotent cells that can give rise 

to entire new organisms (131). They were isolated for first time in the 

early 1980s, when the groups of Martin Evans and Gail R. Martin 

independently derived them from the inner cells mass (ICM) of the 

early blastocyst.  

Induced pluripotent stem cells (iPSCs), instead, are a type of 

pluripotent cells that can be derived from accessible adult tissues. 

They were generated for the first time in 2006, when Shinya 

Yamanaka transduced mouse fibroblasts with a set of four defined 

transcription factors, namely Oct4, Sox2, Klf4 and c-Myc (or 

OSKM) (132, 133). 

 

Due to their proliferative activity and their differentiation potential, 

ESCs and iPSCs potentially represent the single cell source that could 

be used to regenerate multiple tissues and organs. Indeed, countless 

protocols are available to efficiently differentiate them towards very 

specific lineages of choice (133-135).  

Transplantation of iPSC-derived cells has already been proven 

beneficial in rodent models of sickle cell anaemia (136), Parkinson’s 

disease (137), diabetes (138), and spinal cord injury (139). In the 

attempt of treating retinopathies, mouse and human pluripotent SCs 

have been used as a starting point to generate not only neural 

precursors cells (NPCs) (140), but also RPCs (141), RPECs and 

photoreceptor precursors (PRPs) (142).  
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SC-derived NPCs are able to successfully integrate within the 

recipient retina. Moreover, they can moderately delay photoreceptor 

degeneration thanks to their phagocytic activity (112, 114, 143, 144). 

However, they are fundamentally incapable of differentiating into 

mature retinal cell types (115, 116, 145).  

RPCs, RPECs and PRPs, instead, are highly efficient in generating 

mature ganglion neurons and photoreceptors. Indeed, SC-derived 

photoreceptor precursors produce normal calcium oscillations, and, 

when transplanted into animal models of ONL degeneration, they can 

rescue visual function to some extent (81, 146-148). However, their 

functional integration into the retinal neural circuit remains 

worryingly low (107, 113, 142, 149, 150). 

 

The use of ESCs and iPSCs for clinical purposes is associated with a 

number of issues. For instance, the cost of derivation and 

differentiation protocols is considerably elevated. More disturbingly, 

transplantation comes with an intrinsic high risk of teratoma and 

malignant tumor formation (81, 151). As an example, ESCs-derived 

NPCs have been reported to generate teratomas in 50% of treated 

animals in the long term (152). However, the tumorigenic side-effects 

are strongly believed to be mediated by residual pluripotent cells; if 

that was really the case, then they could be eliminated through the 

establishment of detailed, standardized differentiation protocols and 

strict quality and purity control procedures. In other words, 

terminally differentiated ESC/iPSC-derived cells do not seem to pose 

a threat with respect to tumor formation (81, 108). Accordingly, no 

tumors formation was observed in a cohort of 45 immunodeficient 
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mice (lacking both mature T and B cells) transplanted with ESC-

derived RPE cells (105).  

 

hESC derived RPE cells have also been transplanted in human 

patients with Stargardt or AMD in a phase I clinical trial. The trial 

met its safety endpoint, with no adverse effects being reported (153). 

Actually, only one eye showed worsened best-corrected visual 

acuity, whereas the majority of patients benefited from a modest, but 

sustained, improvement in visual acuity (154). Transplanted cells 

appeared to engraft at the boundaries of areas where endogenous 

RPECs and photoreceptors had undergone atrophy (154). 

 

Interestingly, in addition to SC-derived PRPs, sheets of fetal and 

cadaveric photoreceptors have also been transplanted in human 

patients. Such grafts were reported to be safe and to last for extended 

periods of time without eliciting any immune reaction, even though 

patients were not immunosuppressed (155, 156). This is consistent 

with the fact that the immunogenicity of photoreceptors is lower than 

that of RPECs (157-159). However, transplanted photoreceptors 

were unable to rescue visual function. 

 

3.2.1.1 ESCs or iPSCs? 
 
 
iPSCs generation does not involve destruction of pre-implantation 

stage embryos, thereby eliminating much of the ethical and moral 

controversy associated with the use of ESCs. Additionally, their 

availability is not limited, and they can be used to create autologous, 
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patient-matched cells that would theoretically not be rejected by the 

recipient immune system (133, 160). For instance, when subretinally 

transplanted, iPSC-derived RPECs from MHC-matched donor and 

recipient can survive without the need for immunosuppression (161). 

Nonetheless, immune response is rapidly elicited by MHC-

mismatched grafts. This implies that there still are considerable 

concerns regarding the potential immunogenicity of iPSCs (162-

164).  

 

The use of iPSCs also faces challenges in the context of genetic 

diseases. In fact, iPSCs derived from the patients will still harbor the 

disease-causing mutation; genetic correction would thus be required 

prior to transplantation.  

Moreover, iPSCs have been traditionally associated with safety 

concerns deriving from the use of viruses to express the OSKM 

reprogramming factors in somatic cells. In fact, OSKM-carrying viral 

vectors randomly integrate in the host genome, potentially causing 

unpredictable mutations. To address this concern, new protocols are 

being developed; some of them eliminate the need for potentially 

transforming factors such as c-Myc or Klf4, while others rely on the 

use of non-viral vectors (165-172). In both cases, the safety of iPSCs 

is increased.  

 

It is also important to consider that gene expression and DNA 

methylation profiles of iPSCs can be significantly different from that 

of their naturally-occurring counterparts (173). For instance, hiPSC-

derived RPECs show a gene expression profile that significantly 
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differ from that of human fetal RPE, whereas that of ESC-derived 

RPECs is much more similar to the endogenous one (174).  

 

To sum up, the use of ESC/iPSC for therapeutic transplants has not 

reached a sufficiently advanced and safe stage yet. Nonetheless, it 

holds a tremendous potential for the further development of cell 

replacement strategies. Indeed, various clinical trials have been 

conducted or are currently underway to investigate the effects of 

hESC-derived RPE cell transplantation in multiple conditions, 

including AMD and Stargardt disease (175).  

Preliminary results are encouraging, as they provide some evidence 

that hESC-RPEC grafts can survive for several months and have 

some biological activity. Even though some patients showed signs of 

hyperproliferation, no excessive inflammatory response or 

tumorigenic side-effects have been reported to date (175, 176).  

Special attention should and will be placed in evaluating the long-

term risk of tumor formation and immune rejection. 

 

3.2.2 Adult stem cells 

As already discussed, ASCs are multipotent cells that can generate 

subsets of cells belonging to specific lineages. Over the past couple 

of decades, numerous protocols to isolate and culture ASCs have 

been defined. This has allowed not only to gain insights into the 

molecular mechanisms regulating their regenerative capabilities, but 

also to start exploiting them for the establishment of new therapeutic 

approaches (177, 178). 
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Retinal progenitor cells (RPCs) are located within the pigmented 

ciliary epithelium of adult mammals and are intrinsically efficient at 

differentiating into mature retinal cell types (119, 179-183). When 

transplanted subretinally, they can improve visual behavior not only 

in mice, but also in human patients with photoreceptor loss (184-

186).  

However, their migratory ability is very poor and harvesting them 

remains technically challenging. Indeed, for the time being, their 

availability is extremely limited and associated with considerable 

ethical concerns, as they can only be isolated from fetal tissue (187). 

 

Among all other ASCs, hematopoietic stem and progenitor cells 

(HSPCs) and mesenchymal stem cells (MSCs) can be regarded as the 

most promising sources for the further development of stem cell-

based therapy in the eye. 

 

3.2.2.1 Hematopoietic Stem and Progenitor Cells  
 

The bone marrow represents an attractive source of ASCs. In fact, it 

contains HSPCs, which are responsible for the maintenance of the 

hematopoietic tissue homeostasis and for the generation of both red 

and white blood cells. HSPCs are used for the treatment of patients 

with conditions like anemias. Such patients are incapable of 

producing healthy red blood cells, and are treated through the 

replacement of their HSPCs with the bone marrow of a healthy donor.  
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Bone marrow cells are also used for the treatment of some blood 

cancers, including leukemia. In this case, bone marrow cells are 

wiped out by chemotherapy, and replaced in order to provide the 

patient with a functioning immune system.   

 

In the late 1990s, bone marrow-derived cells (BMDCs) were shown 

to possess a wider plasticity than previously assumed. They were 

reported to migrate to several organs, where they could generate a 

variety of different cell types that included myocytes (188), 

cardiomyocytes (189, 190), hepatocytes (191, 192) and neurons 

(193-195). This could occur via either trans differentiation or cell 

fusion-mediated events. As a consequence of such observations, the 

therapeutic potential of HSPCs started to be intensively investigated 

in other disease contexts, including retinopathies.  

 

Evidence for the beneficial and neuroprotective effects of HSPCs in 

the context of retinopathies is steadily accumulating, not only in 

experimental animal models (92, 101, 196-198), but also in human 

patients (104, 199). As an example, our group has shown that Wnt-

activated HSPCs can ameliorate retina degeneration following 

NDMA-damage and in the rd10 mouse model of (71, 72). In these 

cases, the therapeutic outcome was dependent on the fusion of 

transplanted HSPCs with resident MGCs. Resulting hybrids passed 

through a proliferative phase and eventually differentiated into 

ganglions, amacrine cells and photoreceptors, thus participating in 

the repair of the retinal tissue. 
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3.2.2.2 Mesenchymal Stem Cells  
 

During development, MSCs are responsible for the generation of 

adipocytes, chondrocytes and osteocytes. However, under the 

appropriate environmental stimuli, they display a much broader 

differentiation potential, generating other cell types that include 

cardiomyocytes, skeletal muscle cells and even neural cells (200-

202).  

Most adult tissues contain MSC populations. However, MSCs are 

primarily concentrated in the bone marrow and in the adipose tissue. 

In the bone marrow, they serve as haematopoietic-supporting stromal 

cells (203-205). Although MSCs constitute a mere 0.001-0.1% of the 

total bone marrow cell population, they can be rapidly and easily 

expanded ex-vivo (in contrast to HSPCs). Importantly, this allows for 

production of MSCs on a clinical scale.  

 

Recently, a set of minimum criteria for cells to be considered MSC 

has been defined (206). In addition to their osteogenic, adipogenic, 

and chondrogenic differentiation capacity, MSCs have a fibroblastic 

morphology and spontaneously adhere to plastic substrates. 

Moreover, they are positive for CD73, CD90 and CD105 expression, 

but negative for CD34, CD45, CD14, CD11b, CD19, CD79α or 

HLA-DR.  

 

MSCs mainly exert their beneficial effects through their paracrine 

activity (Fig. 7).  
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Fig. 7 – MSC paracrine activity. The paracrine activity of MSCs can be divided 
into six main actions: (1) immunomodulation; (2) chemoattraction; (3) anti-
apoptotic signaling; (4) activation and support of local stem cells; (5) antiscarring 
and beneficial remodeling of the extracellular matrix; (6) increased angiogenesis 
to chronically ischemic tissues (98, 207, 208). In particular, MSCs suppress 
apoptosis through secretion of vascular endothelial growth factor (VEGF), 
hepatocyte growth factor (HGF), insulin-like growth factor 1 (IGF-1), transforming 
growth factor β (TGF-β), basic fibroblast growth factor (beg), and granulocyte 
macrophage colony–stimulating factor (GM-CSF). Ischemia-induced scarring is 
inhibited by HGF and bFGF, while angiogenesis is promoted by VEGF, IGF-1, 
bFGF, phosphatidylinositol-glycan biosynthesis class F protein (PIGF), monocyte 
chemoattractant protein 1 (MCP-1), and interleukin 6 (IL-6). They also promote 
activation of tissue-resident stem and progenitor cells by secreting stem cell factor 
(SCF), macrophage colony–stimulating factor (M-CSF), stromal cell–derived 
factor (SDF-1), leukemia inhibitory facto (LIF), and angiopoietin 1. A group of at 
least 15 chemokines produced by MSCs can elicit leukocyte migration to the 
injured area. Finally, MSCs mediate their immunomodulatory effects by strongly 
inducing the M2-alternative polarization of macrophages; this boosts IL-10 
production and cytoprotection (209). Contemporarily, they inhibit the maturation 
of antigen-presenting cells and the activity and proliferation of natural killer (NK) 
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cells and of CD4+/CD8+ double positive cytotoxic T lymphocytes, while promoting 
the maturation of T cells towards the regulatory CD4+/CD25+ phenotype (210-
215). Such effects are induced through the secretion of factors such as HGF, 
prostaglandin E2 (PGE2), human leukocyte antigen G5 (HLA-G5), inducible nitric 
oxide synthase (iNOS), indoleamine-2,3-dioxygenase (IDO), and interleukin 10 
(IL-10). 
 
 

 

In particular, they secrete a plethora of cytokines and neurotrophic 

factors that are critical for the repair of injured tissues; these include 

NGF, BDNF, NT-3, NT4/5, CNTF, GDNF and PDGF (216-227). In 

this way, MSCs can potently stimulate the survival, the proliferation 

and the self-repair capabilities of endogenous cells, often resulting in 

the slowdown of disease progression (95, 100, 228). It is important 

to stress that, in contrast to that of MSCs, the secretome of ESCs and 

iPSCs has not been proven to have any beneficial paracrine effect in 

the context of retinal disease. 

MSCs also have prominent immunomodulatory properties. When 

exposed to tissue injury and inflammation, they acquire a potent anti-

inflammatory, immunosuppressive and protective phenotype.  

Furthermore, MSCs have little or no immunogenicity, due to their 

relatively low expression of the Major Histocompatibility Complex 

(MHC) class I proteins, and to the absence of MHC class II molecules 

at the cell surface (229-231). Thanks to their almost negligible 

immunogenicity, MSCs represents very good candidates for the 

development of not only autologous, but also allogenic therapies 

(100, 232). On the contrary, the immunogenicity of iPSCs appears 

more complex, and it requires careful study before clinical 

application (162, 163).  
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3.2.2.2.1 Mesenchymal stem cell sources 
 

Traditionally, MSCs have been derived from the bone marrow (BM-

MSCs). BM-MSCs, however, are characterized by a limited growth 

rate and a quality that is mostly dependent on the age of the donor. 

Additionally, there are some considerable risks in sample collection. 

For these reasons, nowadays, there is a growing interest in the use of 

MSCs derived from alternative sources.  

 

MSCs can be isolated with less invasive methods from full-term 

umbilical cord blood (UCB) donations. Subretinal injection of UCB-

MSC seems to improve visual function in a rat model of retinitis 

pigmentosa (91). However, the success rate of isolation is 

considerably lower than that of BM-MSCs, and their adipogenic 

differentiation potential seems to be impaired (233). 

 

Adipose tissue-derived MSC (AD-MSCs) probably represent the 

most attractive alternative to BM-MSCs. In fact, AD-MSCs can be 

easily collected in high amounts from liposuction procedures. 

Moreover, compared to BM-MSCs, they display not only higher 

proliferative rates, but also higher secretion of some neurotrophic 

factors, including BDNF and VEGF (233, 234).  

Unfortunately, the therapeutic potential of AD-MSCs remains largely 

untested in the eye. Nonetheless, their neuroprotective effects have 

been extensively described in other models of CNS injury and 

degeneration, including spinal cord injury (234, 235) and stroke 

(236). 
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Recently, dental pulp-derived MSCs (DP-MSCs) are also being 

investigated. Analogously to the other MSC populations, DP-MSCs 

do not stand out for their ability to migrate and integrate within the 

host retina (99). However, they secrete more neurotrophic and 

protective factors than BM-MSC, and they can promote neurite 

outgrowth with higher efficacy than both BM-MSCs and AD-MSCs 

(99, 237).  

 

 

3.3 Routes of administration  

 

Stem cells can be delivered via one of three routes: intravitreal, 

subretinal and systemic.  

 

Systemic administration is based on intravenous infusion of cells. 

Compared to the other routes, it generally has a significantly lower 

efficiency, especially in the case of MSCs. This is mostly due to the 

fact that MSCs are recruited and trapped in the lungs (238). 

Additionally, even if they escaped lung entrapment, their migration 

into the tissue would be further prevented by the blood-retinal barrier. 

This could explain why systemically transplanted MSCs fail to reach 

the retina and to exert neuroprotective effects (239). Therefore, 

intravitreal or subretinal routes are typically preferred, at least in the 

context of retinal diseases. 

 

Overall, the suitability of each administration route may vary 

depending on the type and on the extent of tissue damage. Indeed, the 
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disease type appears to majorly affect the outcome of the therapy. For 

instance, the success of rod-photoreceptor transplant has been shown 

to vary across six different models of inherited photoreceptor 

degeneration and also with disease progression (240).  As a general 

rule, intravitreal injection is preferred when ganglions and/or INL 

cells are damaged, whereas subretinal administration is the standard 

route in the context of photoreceptor loss.  

 

Intravitreal transplantation represents an attractive choice, as it is 

technically simple and minimally invasive. It also allows for injection 

of relatively large volumes. Indeed, numerous studies have shown 

that intravitreal injection of MSCs is beneficial in various models of 

glaucoma and retinal dystrophy (97, 239). Moreover, integration into 

the RGC layer and into the INL appears to be favored following 

intravitreal transplantation rather than in subretinal grafts (241).  

However, intravitreal injection does not target cells directly into the 

host tissue; cells have to pass through the vitreous, where they will 

be exposed to macrophages and other immune cells. Moreover, 

transforming cells in the vitreous have the potential to induce 

proliferative vitreoretinopathy and retinal detachment (242). 

 

Subretinal transplantation is a much more challenging, demanding 

and complex procedure. If the integrity of the blood-retinal barrier is 

compromised during surgery, then the immunoprivilege of the 

subretinal space is lost, and immunosuppressive therapy becomes 

necessary. However, when correctly performed, subretinal implants 

generally provide greater and longer-lasting benefits than their 
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intravitreal counterparts, especially in the context of photoreceptor 

degeneration (93, 243). Indeed, the subretinal microenvironment can 

better support and promote the differentiation of precursors cells 

towards photoreceptors (150, 241).  

Moreover, subretinal grafts are generally associated with better 

migration and integration, also owing to the closer proximity of the 

transplant site to the injured retinal layers. Importantly, this correlates 

with increased therapeutic effects (93). This may be especially 

relevant from a clinical perspective, as human eyes have a 

comparatively larger globe and a thicker retina. As a result, 

transplanted cells would have to cover larger distances and pass 

through a thicker neuroretina before reaching the ONL. Furthermore, 

secreted cytokines and neurotrophic factors would probably be 

excessively diluted.  

 

Finally, it is interesting to comment that cells can be injected not only 

as suspensions, but also as monolayers supported by scaffolds. 

Scaffolds could be natural or synthetic, biodegradable or non-

biodegradable. Several different types and variations are being 

studied, and some of them have provided encouraging results in vivo 

(244-246). This could be of particular importance for RPE 

replacement (e.g. in the case of AMD), as, when transplanted as a cell 

suspensions, RPECs tend to clump and fail to properly attach to the 

vitreous lamina (247). As an alternative, they can be transplanted on 

supportive scaffolds that closely resemble the native Bruch’s 

membrane, which normally lies between the RPE and the choroidal 

vessels. Bruch’s membrane is involved in the regulation of diffusion 
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of materials between the retina and choroid; additionally, it supports 

RPECs on its basal side (248). As a proof of principle, confluent 

RPEC monolayers have been delivered using vitronectin-coated 

polyester membranes (244) and parylene C scaffolds (249). In both 

cases, improved integration and cell function were reported. 

However, additional studies are still required to combine the best cell 

type for transplantation with the appropriate scaffold. 

 

 

3.4 Migration and integration for cell replacement 

   
The advancement of effective stem cell therapy approaches has been 

limited by inadequate migration and integration rates into the host 

retina. On average, less than 1% of the transplanted cells are 

engrafted within the tissue (92, 182, 250-252), especially following 

intravitreal injection (97, 208). This can somehow be ascribed to the 

presence of two physical barriers, on either side of the retinal layers 

(Fig. 8). 

The inner (ILM) and outer (OLM) limiting membranes prevent the 

migration of intravitreally (97) and subretinally transplanted cells 

respectively. Accordingly, engraftment of transplanted photoreceptor 

precursors has been reported to significantly improve when the OLM 

is temporarily disrupted (253). Interestingly, if the phenotype of a 

given disease included physical disruption of the retinal barriers, then 

integration of transplanted cells would be promoted (240). 
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Fig. 8 – Retinal barriers (from Hosoya et al. 2011) (254). The inner blood-retinal 
barrier is located below the GCL, and is formed by the tight junction between 
endothelial cells and the foot processes of astrocytes and MGCs. The outer blood-
retinal barrier, instead, consists of tight junctions between the RPECs and the 
choroidal capillaries. Additionally, adherens junctions between MGCs and 
photoreceptors are also present.  
 
 

 

Not all cell types are characterized by the same integration efficiency. 

As an example, NPCs can migrate extensively, even when 

transplanted intravitreally; however, they very rarely manage to 

differentiate into mature retinal cell types (255, 256). On the contrary, 
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RPCs are exceptionally efficient at differentiating into retinal 

neurons, but their migration and integration capability remains very 

limited (117, 118, 187, 257).  

 

In general, it is reasonable to hypothesize that the beneficial 

outcomes of cell-based therapies could be higher if a larger 

percentage of the transplanted cells were incorporated into the host 

tissue.  

 

3.4.1 Reactive gliosis  

In addition to the presence of the outer and inner limiting membranes, 

migration of transplanted cells in the damaged retina is further 

impeded by reactive gliosis (258).  

Reactive gliosis is a process that accompanies tissue injury and 

inflammation. Moreover, there’s evidence suggesting that it can be 

further promoted by the transplantation procedure itself, especially in 

the case of intravitreal injection. This occurs in response to 

transplantation of multiple cell types, including MSCs, iPSCs, 

neuronal cells and photoreceptor precursors.  

 

Reactive gliosis is characterized by a number of events that include: 

up-regulation of intermediate filaments; macrophage recruitment; 

microglia accumulation; and deposition of chondroitin sulfate 

proteoglycans (CSPGs) (259, 260).  

CSPGs are molecules of the extracellular matrix (ECM) that consist 

of a protein core to which glycosaminoglycan (GAG) side chains are 
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attached. The length, number and sulfation degree of GAG chains is 

variable.  

During development, CSPGs contribute to the regulation of pattern 

cell migration and axonal path-finding. In the adult CNS, they are 

involved in numerous processes, such as migration, adhesion and 

receptor binding. In general, they strongly limit cell plasticity and 

they have potent inhibitory effects with respect to both CNS 

regeneration and migration/integration of transplanted cells (261, 

262).  

 

Inhibition of reactive gliosis is critical for the success of cell-based 

therapies. Indeed, it has already been established that adjuvant anti-

inflammatory therapy and local degradation of the ECM can 

significantly improve migration and survival of transplanted cells. 

CSPG activity, in particular, can be inhibited using the 

chondroitinase ABC (ChABC) enzyme.  

ChABC selectively cleaves GAG chains from the protein core, 

thereby markedly reducing the inhibitory effects of CSPGs (120, 

263). This not only results in enhanced axonal regeneration, but also 

facilitates transplanted cell migration (264, 265). Indeed, ChABC has 

been shown to promote synaptogenesis between transplanted 

photoreceptors and the host retina (266).  

In other words, ChABC could represent a valuable tool to be 

incorporated in repair strategies, and to be used in combination with 

different approaches to achieve the greatest regeneration possible.  
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CHAPTER 4: Chemokines and their receptors 

 

4.1 Chemokine structure and classification 

 

Chemokines are small peptides of about 8-14 kDa that act as 

“chemotactic cytokines”. They are crucially important for the 

regulation of leukocyte growth, maturation, differentiation and 

recruitment.  

 

Chemokines have been classified into four families based on the 

relative position of their highly conserved cysteine residues (267). 

These cysteine residues pair up to form disulphide bonds that 

contribute to the stabilization of the typical Greek-key three-

dimensional shape of chemokines.  

With the exception of the C-chemokines (which contain a total of two 

cysteine residues), members of all other families contain four 

cysteines. Depending on the relative position of the N-terminal ones, 

they are classified into: (1) CC-chemokines (cysteines are adjacent to 

one another); (2) CXC-chemokines (cysteines are separated by a 

single amino acid, X); (3) CX3C-chemokines (cysteines are 

separated by three amino acids, X3) (Fig. 9A). Depending on the 

nature of the intercalating amino acid, CXC-chemokines can be 

further classified into neutrophils- or lymphocytes- chemoattractants.  

 

Overall, chemokines are highly basic proteins, which makes them 

prone to bind to negatively-charged molecules. As a consequence, 
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they strongly interact with heparin and heparan sulfates, present in 

the extracellular matrix (ECM) and on the surface of endothelial cells 

(268). Chemokine retention and immobilization in the ECM creates 

a local concentration gradient, with the highest chemokine 

concentration close to the original release site (269). Such 

concentration gradient is responsible for guiding directed leukocyte 

migration.  

 

 
Fig. 9 – Chemokine structure and evolution. (A) Relative position of the 
conserved cysteine residues in the chemokines of the CC and the CXC families. In 
the former, the two N-terminal cysteines are adjacent; in the latter, they are 
separated by a single amino acid, X. (B) Chromosomal map of the human 
chemokine and chemokine receptor genes (from Zlotnik & Yoshie, 2012) (270). 
The locations of the chemokines genes are highlighted in white boxes, whereas 
those of the chemokine receptors are in grey. Inflammatory CXC chemokines are 
concentrated on chromosome 4, while inflammatory CC chemokines are mainly 
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found on chromosome 17. (C) Sequence relationship analysis of the human (h) and 
mouse (m) chemokines (from Zlotnik et al., 2006) (267). The four groups of 
chemokines with a common evolutionary origin are highlighted by dark circles. 
Red letters indicate proteins that are found only in one species, but not in the other. 
Blue letters indicate proteins for which the relationships have a level of uncertainty.  
 

 

4.2 Homeostatic vs inflammatory chemokines  
 

The primary role of chemokines is to provide cues for the directed 

movement of immune system cells during development, homeostasis 

and inflammation. Indeed, based on their expression patterns and 

function, chemokines can be divided into two broad families.  

On the one side, there are the homeostatic chemokines; on the other 

side, the pro-inflammatory ones. It is however important to stress that 

the distinction between homeostatic and inflammatory chemokines is 

not absolute: some inflammatory chemokines may have homeostatic 

functions, and vice-versa.  

 

Homeostatic chemokines are involved in tissue maintenance and in 

the organization of the immune system. They are expressed in 

specific sites, and in the absence of activating stimuli. They can be 

regarded as “master regulators” of the movement and localization of 

lymphocyte and dendritic cell subsets in the body (267, 271). 

 

Inflammatory chemokines, instead, are secreted exclusively in 

response to tissue injury and/or inflammation. They are involved in 

the regulation of leukocyte migration and recruitment.  
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While genes coding for homeostatic chemokines are sparsely located 

in the genome, the vast majority of the inflammatory genes map to 

two discrete chromosomal sites, one for CC chemokines and one for 

the CXC ones (270, 272). Based on phylogenetic, CC and CXC 

clusters can be further subdivided into four groups with a common 

evolutionary origin (Fig. 9B). The CC cluster, located on the human 

chromosome 17, contains the monocyte chemotactic protein (or 

MCP) and the macrophage inflammatory protein (or MIP) groups; 

the GRO and the IP-10 groups of CXC chemokines, instead, are 

found in the human chromosome 4 (270). While molecules belonging 

to the GRO cluster are mostly attractants for neutrophils, MCP and 

MIP proteins are responsible for the recruitment of several 

leukocytes, including monocytes, T cell subsets and eosinophils 

(273). 

 

Chemokines have been implicated in the pathophysiology of several 

diseases, including inflammation, cancer, autoimmune and infectious 

diseases (267, 274). Inflammation-dependent increases in chemokine 

secretion have been detected in most organs, including the skin, 

brain, lungs, and gastro-intestinal tract. Such increases occur in 

response to bacterial products (e.g. lipopolysaccharides), viral 

infection, or the secretion of early pro-inflammatory cytokines (such 

as Interleukin-1β - Il1-β - or Tumor necrosis factor-α - Tnf-α) (275). 

Heightened chemokine levels are responsible for the selective 

recruitment of leukocytes into inflamed tissue. Importantly, each 

disease has a characteristic profile of secreted factors; in this way, a 
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“customized” response can be established, fine-tuning the subgroups 

of recruited leukocytes (276).  

 

 

4.3 Chemokine receptors  
 

Chemokines bind to seven transmembrane, class A G protein-

coupled receptors (277). Homeostatic chemokines, in general, exhibit 

a rather restricted ligand usage, with only one or two chemokines 

binding to a given receptor. Inflammatory chemokine receptors, 

instead, display a high level of promiscuity: a given receptor can be 

engaged by several ligands, and a given ligand can interact with 

multiple receptors (270). However, CC and CXC receptors can 

exclusively bind to CC and CXC chemokines respectively. Such 

specificity can be most likely explained by the differences that exists 

between CC and CXC molecules at level of their quaternary 

structures (278).  

 

Ligand-mediated activation of chemokine receptors results in the 

regulation of numerous processes, including cell migration, survival, 

growth, proliferation, and cytokine release (268). Members of the 

Ras and Rho families are also activated, contributing to the 

remodeling of the actin cytoskeleton and to the control of focal 

adhesion and cell motility (279).  

 

So far, 18 functionally signaling chemokine receptors have been 

described in human and mouse. Just like their ligands, receptor genes 
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also form clusters. However, in contrast to inflammatory 

chemokines, they are considerably better conserved among species, 

including mouse and human (272).  

Additionally, five atypical “scavenger” or “decoy” receptors have 

been identified, namely DARC, D6, CXCR7, CCRL1 and CCRL2 

(270). They are able to bind to a large number of ligands, but do not 

activate intracellular cascades. In other words, they are non-signaling 

molecules that function as “sinks”, removing chemokine from the 

environment, and therefore avoiding their excessive build-up. 

DARC, for instance, can bind several CC and CXC inflammatory 

chemokines; D6, instead, can only respond to inflammatory CC 

ligands. CCRL1 and CCRL2 differ from all other scavenger receptors 

as they are the only ones that can sequester homeostatic chemokines.  

 

In addition to chemokine “scavenging”, receptor signaling can be 

dampened by some chemokines acting as antagonists. Ligands of the 

CXCR3 and CCR3 receptors represent the most prominent example. 

In fact, they are reciprocally antagonists, meaning that CXCL9, 

CXCL10 and CXCL10 can inhibit CCR3 activity, whereas CCR3-

ligands are natural antagonists for CXCR3 (280). Such balancing 

system makes perfect sense considering that CXCR3 is expressed by 

T helper 1 (Th1) cells, whereas CCR3 is present on T helper 2 (Th2): 

in this way, CXCR3- and CCR3-ligands can create 

microenvironments that favors either the Th1 or the Th2 cell 

differentiation respectively (281).  
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Chemokine receptor expression is highly heterogeneous. Some 

receptors are present only on a restricted number of cell types, 

whereas others are more widely expressed. CXCR1, for instance, is 

almost exclusively present on neutrophils, while CCR2 is expressed 

on monocytes, T cells, natural killer cells, dendritic cells, and 

basophils (268). Furthermore, their expression can be constitutive or 

inducible. As an example, CCR2 levels on lymphocytes are 

appreciable only after stimulation by interleukin-2 (282). 

Generally, expression of homeostatic chemokine receptors is 

constitutive, and restricted to specific cell types or organs. 

Inflammatory receptors expression, instead, is considerably more 

heterogeneous, variable, and responsive to external stimuli (270). 

 

 

4.4 Of mice and men: chemokine evolution and conservation 
across species   
 

Homeostatic chemokines’ structure and function are very well 

conserved across species. Inflammatory chemokines, instead, are one 

of the most rapidly changing proteins of the genome. This is due to 

the strong positive selective pressure that they are subjected to, which 

makes them evolve more rapidly than most other genes (267, 272, 

283).  

Furthermore, clusters of chemokine genes have been duplicated 

during the course of evolution (272, 276). Following duplication, two 

copies of the same gene can evolve independently and acquire 
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distinct functions; this most likely contributed to the prominent 

promiscuity of the ligand-receptor relationships.  

Importantly, some of these duplication events have occurred recently 

(in evolutionary terms), i.e. after the branching of human and mouse. 

As a consequence, some chemokines have evolved independently in 

the two species. In other words, mouse and human chemokines do 

not always correspond well (276) (Fig. 9C). 

 

In particular, three main differences can be highlighted. First, genes 

that appear to be very similar can have markedly different functions 

(284). Second, a given chemokine can be represented by more than a 

single orthologue in the other species. Third, some ligands exist in 

one organism, but not in the other. Ccl12, for instance, exclusively 

exists in mouse. On the contrary, CCL13 and CCL14 are only present 

in human. This probably is the result of diverse pathogen-driven 

selective pressures (267, 270).  

For these reasons, care must be taken when extrapolating 

experimental results and conclusions based on the investigation of 

chemokines from mouse to humans.  

Nonetheless, the mouse remains an extremely valuable model, and 

can definitely be used for the study of stem cell migration for the 

optimization of therapeutic approaches. 
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AIM OF THE STUDY 

 
 
The overall aim of the study was to address the problem of inadequate 

migration of stem cells transplanted into the damaged and/or 

degenerating retina (Fig. 10). In particular, we decided to focus on 

mouse MSCs (MScs), and we tackled the following main objectives:  

 

- Profile the CC and CXC chemokines released during NMDA- 

and RP-induced retinal degeneration 

- Exogenously express the receptors responding to the 

identified damage-dependent chemokines in MScs 

- Assess whether mMSCs over-expressing the identified 

receptors display an improved migratory phenotype ex vivo 

- Assess the migration and integration capabilities of mMSCs 

over-expressing the most promising chemokine receptor(s) in 

the context of retinal degeneration, in vivo  

 

The ultimate goal was to improve the chemotactic responsiveness of 

transplanted mMSCs, and, as a consequence, their migration and 

integration into the host tissue. 
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Fig. 10 – A strategy to improve mMSC chemokine-induced migration in the 
retina. In this study, we aim at: (1) identifying the chemokine released in the 
context of NMDA- and RP-induced retinal degeneration; (2) over-express their 
cognate receptors on the surface of mMSCs prior to transplantation; (3) test the 
migratory capability of engineered mMSCs ex vivo and in vivo. The ultimate goal 
is to improve the chemotactic responsiveness of transplanted cells, and, as a 
consequence, their migration and integration into the host tissue.   
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PART I: Identification of CC and CXC chemokines 

eliciting mMSC migration towards the damaged retina 

 

Soluble factors released during retinal degeneration 
chemoattract mMSCs 
 
 
Tissue injury and inflammation have been extensively described to 

induce the release of chemotactic factors (267, 270). For this reason, 

we hypothesized the peak of retinal inflammation to be concomitant 

with the maximum secretion of molecules able to chemoattract 

mMSCs. In order to identify such time window, we analyzed 

expression of the Il1-β pro-inflammatory cytokine at multiple time 

points along the process of retina degeneration (Fig. 11). In 

accordance to previously published studies (29, 31), we found that 

Il1-β expression peaked 24h post-damage in the NMDA-induced 

model of degeneration (Fig. 11A), and at P18 in the rd10 mouse (Fig. 

11B). The peak in Il1-β mRNA was indicative of the occurrence of a 

strong, damage-dependent inflammatory response. Inflammation 

subsided over time, and it reached low levels one month post-NMDA 

damage (Fig. 11A) and at six months of age for the rd10 mice (Fig. 

11B).  
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Fig. 11 - Retinal damage is associated with an acute peak in expression of the 
pro-inflammatory cytokine Il1-β. qRT-PCR of Il1-β levels in the (A) NMDA-
damaged retina (24 hpi, 48 hpi, 4 dpi, 7 dpi, 4 wpi) and in the (B) rd10 retina (P14, 
P18, P22, adult). Transcript levels are expressed as fold-changes to control (PBS-
injected or P14) retinae. Data is presented as mean ± SEM from n ≥ 3 independent 
experiments. One Way Anova was used for statistical analysis. 
 

 

Next, we investigated whether damage-dependent inflammation 

would indeed induce the release of soluble factors able to stimulate 

mMSC migration. To do so, we performed a series of chemotactic 

assays using ex vivo cultured mouse retinae (Fig. 12). Based on our 

findings (Fig. 11A-B), we decided to focus on specific time points, 

i.e. 24 hpi for the NMDA-damage and P18 for the rd10 mouse. 

Results from chemotactic assays revealed a clear tendency for 

mMSCs to migrate more towards the NMDA-damage retinae, as 

compared to the PBS-injected controls (Fig. 13A-B). A remarkably 
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similar phenotype was also observed in the case of the rd10 model of 

RP (Fig. 13C-D). 

 
Fig. 12 - Experimental scheme of chemotactic assays. WT mice received 
intravitreal injection of NMDA to induce retinal degeneration; the contralateral eye 
was injected with PBS, as a control. PBS/NMDA-injected animals were sacrificed 
24 hpi, while rd10 mice (and their age-matched WT controls) were sacrificed at 
P18. Retinae were then cultured for 24h in SF medium. At the moment of the assay, 
a suspension of 2*105 MSC in SF medium was seeded in the upper chamber for 
1.5h. Following incubation, non-migrated cells were removed. Migrated cells stuck 
in the porous membrane of the transwell were stained with DAPI, imaged and 
quantified. 
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Fig. 13 - mMSCs are chemoattracted by soluble factors released during retina 
degeneration. (A) Quantification of migrated MSCs towards the conditioned 
media from PBS- or NMDA-injected retinae. Number of migrated cells is 
expressed as fold-change to control (PBS-injected) retinae. Data is presented as 
mean ± SEM from n ≥ 3 independent experiments. Mann-Whitney test was used 
for statistical analysis. (B) Representative DAPI-stained fields from transwell 
assays performed with conditioned medium from PBS- (up) or NMDA- (down) 
injected retinae. (C) Quantification of migrated MSCs towards the conditioned 
media from WT- or rd10 P18 retinae. Number of migrated cells is expressed as 
fold-change to control (WT) retinae. Data is presented as mean ± SEM from n ≥ 3 
independent experiments. Mann-Whitney test was used for statistical analysis. (D) 
Representative DAPI-stained fields from transwell assays performed with 
conditioned medium from WT (up) or rd10 (down) P18 retinae. 
 

 

Given the high structural and functional similarity that exists among 

injury-dependent molecules in mouse and human, we then decided to 

explore whether soluble factors released by the damaged human 

retina would stimulate mMSCs migration (Fig. 14A). We divided the 

central part of retinae from deceased human donors into quarters. For 

each of the experiments, a quarter was cultured in control medium, 

while another one was cultured in medium containing NMDA 

(1mM). We also received retinae from patients affected by RP; we 

could therefore test mMSC migration in this degenerative context as 

well. Analogously to what observed for the mouse retina, 

chemotactic assays showed that the soluble factors released by the 

damaged human retina could stimulate mMSC migration to a greater 

extent than those secreted under control conditions (Fig. 14B-E). This 

applied both to the NMDA-damage (Fig. 14B-C) and to the RP (Fig. 

14D-E) degenerative models.  
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To summarize, our results indicate that retinal damage is associated 

with the secretion of soluble factors that are able to chemoattract 

mMSCs.  
 
 
 
 
Fig. 14 - mMSCs are chemoattracted by soluble factors released by the 
damaged human retina. (A) Experimental scheme. The central part of the retina 
was divided into quarters. One of them was cultured in control medium, while 
another one was cultured in medium containing 1mM NMDA. Similarly, a quarter 
from a healthy control and a quarter from a RP retina were cultured in parallel. 
After 24h, the conditioned medium was collected and used to perform chemotactic 
assays. (B) Quantification of migrated MSCs towards the conditioned media from 
human retinae cultured for 24h in control medium (healthy) or in medium 
containing NMDA. Number of migrated cells is expressed as fold-change to 
control (healthy) retinae. Data is presented as Min to Max boxes (with line at 
median) from n ≥ 3 independent experiments. Mann-Whitney test was used for 
statistical analysis. (C) Representative DAPI-stained fields from transwell assays 
performed with conditioned medium from healthy (up) or NMDA-damaged 
(down) human retinae. (D) Quantification of migrated MSCs towards the 
conditioned media from healthy and RP human retinae cultured for 24h. Number 
of migrated cells is expressed as fold-change to control (healthy) retinae. Data is 
presented as Min to Max boxes (with line at median) from n ≥ 3 independent 
experiments. Mann-Whitney test was used for statistical analysis. (E) 
Representative DAPI-stained fields from transwell assays performed with 
conditioned medium from healthy (up) or retinitis pigmentosa (down) human 
retinae. 
 

 

Specific subsets of inflammatory CC and CXC chemokines 

chemoattract mMSCs during retina degeneration  

 

In order to identify the factors responsible for the observed increase 

in mMSC migration, we profiled inflammatory chemokines in retinal 

lysates. We decided to focus on the two largest and most extensively 

characterized families of chemokines, i.e. the CC and the CXC 

chemokines. Compared to their control counterparts, both NMDA-
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damaged (Fig. 15A) and rd10 (Fig. 15B) retinae showed heightened 

levels of multiple inflammatory chemokines. Most notably, levels of 

Ccl5, Ccl6, Ccl12, and Cxcl16 were increased. Interestingly, Cxcl5 

levels were reduced in the rd10 retina, but not in the NMDA-

damaged one; the opposite phenotype was observed for Cxcl9 and 

Cxcl10. 

 

 
 
Fig. 15 - Retinal damage is associated with increased levels of specific CC 
and CXC inflammatory chemokines. Cytokine profile of retinal lysates. Pixel 
intensity is directly proportional to the total amount of protein in sample. Green 
arrows point at representative chemokines whose levels are increased during 
retina degeneration; purple arrows point at representative chemokines whose 
levels are decreased. (A) CC and CXC chemokine profile of PBS- and NMDA-
injected retinae, 24 hpi. Protein levels are expressed as fold-changes to control 
(PBS-injected) retinae. Data is presented as mean ± SEM from n = 2 independent 
experiments. (B) CC and CXC chemokine profile of WT and rd10 P18 retinae. 
Protein levels are expressed as fold-changes to control (WT) retinae. Data is 
presented as mean ± SEM from n = 2 independent experiments. 
Results from the cytokine arrays were validated by gene expression 

analysis, which confirmed a strong, damage-dependent upregulation 

of Ccl5, Ccl6, Ccl12, Cxcl9, Cxcl10 and Cxcl16, 24 hours post-

NMDA damage (Fig. 16A), and at P18 for the rd10 mouse (Fig. 

16B). We did not observe upregulation of Cxcl1, Cxcl2 or Cxcl5. 
 
 
 
Fig. 16 - Retinal damage is associated with inflammation and increased 
expression of specific CC and CXC chemokines. qRT-PCR of CC and CXC 
chemokines in (A) NMDA-damaged (24 hpi) and (B) P18 rd10 retinae. Transcript 
levels are expressed as fold-changes to control (PBS-injected or WT) retinae. Data 
is presented as mean ± SEM from n ≥ 3 independent experiments. Mann-Whitney 
test was used for statistical analysis. 
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qRT-PCR analysis was also performed at different time points along 

the process of retinal degeneration (Fig. 17). Interestingly, we found 

that chemokine expression followed a trend that was remarkably 

similar to that of Il1-β (Fig. 18; Fig. 19). In other words, chemokine 

upregulation peaked with the inflammatory response, and decreased 

over time, in parallel with the decrease in tissue inflammation.  

Fig. 17 - Experimental set-up of the time course qRT-PCR analysis. (A) For 
the NMDA-damage, samples were collected 24 hpi, 48 hpi, 4 dpi, 7 dpi and 4 wpi. 
PBS-injected retinae were used as a control. (B) For the rd10 model of RP, samples 
were collected at P14, P18, P22 and at 6 months of age (adults). P18 WT retinae 
were used as a control. 
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Fig. 18 - NMDA-damage is associated with time-dependent inflammation and 
increased expression of specific CC and CXC chemokines. Time course analysis 
of Il1-β and of CC (A) and CXC (B) chemokines transcript levels in NMDA-
damaged retinae (24 hpi, 48 hpi, 4 dpi, 7 dpi, 4 wpi). Transcript levels are expressed 
as fold-changes to control (PBS-injected) retinae. Data is presented as mean from 
n ≥ 3 independent experiments. 
 
 
 
 
 
Fig. 19 - Retinal degeneration in rd10 mice is associated with time-dependent 
inflammation and increased expression of specific CC and CXC chemokines. 
Time course analysis of Il1-β and of CC (A) and CXC (B) chemokines transcript 
levels in rd10 retinae (P14, P18, P22, adult). Transcript levels are expressed as 
fold-changes to P14 retinae. Data is presented as mean from n ≥ 3 independent 
experiments. 
 
 
Gene expression analysis was also performed on cultured human 

retinae, both in the case of NMDA-damage and in that of RP (Fig. 

20A-C). Encouragingly we could detect an inflammatory response in 

both models, as indicated by the upregulation of IL1-β and TNF-α 

pro-inflammatory markers (Fig. 20A). Inflammation was 

accompanied by increased expression of multiple CC (Fig. 20B) and 

CXC (Fig. 20C) chemokines, including CCL5, CCL22, CCL23 

(mCcl6), CXCL3 (mCxcl1), CXCL10, CXCL11 and CXCL16. 
 

 
 

Fig. 20 - Human retinal damage is associated with inflammation and increased 
expression of CC and CXC chemokines. qRT-PCR of pro-inflammatory 
cytokines IL1-β and TNF-α (A), CC (B) and CXC (C) chemokines levels in 
healthy, NMDA-damaged and RP human retinae, cultured for 24h. Transcript 
levels are expressed as fold-changes to the healthy controls. Data is presented as 
mean ± SEM from n ≥ 3 (NMDA-damage) or n = 2 (retinitis pigmentosa) 
independent experiments. Mann-Whitney test was used for statistical analysis. 
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To summarize, proteomic screens and qRT-PCR analysis showed 

consistently higher levels of multiple inflammatory chemokines 

during retinal degeneration.  

We could identify several potential ligands-receptor chemotactic 

axis, including: Ccl5/6/12-Ccr1/Ccr3/Ccr5; Cxcl9/10-Cxcr3; 

Cxcl16-Cxcr6 (Fig. 21). We decided to keep the Cxcl1/2/5-Cxcr2 

axis in the study as it had been previously described to be implicated 

in the recruitment of stem cells in different degenerative contexts 

(285, 286).   
 

 
 
Fig. 21 - Receptor(s)-ligand(s) interaction scheme. Scheme summarizing the 
interactions among chemokine receptors and ligands of interest. Ccr1, Ccr3 and 
Ccr5 can all bind to Ccl5, Ccl6 and Ccl12. Cxcr2 can be engaged by either Cxcl1, 
Cxcl2 or Cxcl5. Cxcr6 is activated by Cxcl16.  
 

To confirm that the observed phenotype was mediated by the 

identified signaling axis, we tested mMSC migration in the presence 

of small molecule antagonists of chemokine receptors. In particular, 

we used: J 113863, SB 328437 and Maraviroc (inhibitors of the Ccr1, 

Ccr3 and Ccr5 receptors respectively); SB 332235 (Cxcr2 inhibitor); 

and ML 339 (Cxcr6 inhibitor). Of note, we opted for combined 

inhibition of the three Ccrs receptors as they can all be engaged by 

Ccl5.  

In the context of both NMDA- (Fig. 22A-B) and the RP- (Fig. 23A-

B) induced degeneration, we found that mMSC migration could be 

appreciably reduced by inhibition of the Cxcr6 receptor, or by 

combined inhibition of Ccr1, Ccr3 and Ccr5. The observed 

phenotype was greater when Ccrs and Cxcrs receptors were inhibited 
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simultaneously. However, Cxcr2 inhibition did not lead to any 

significant phenotype.  

 

 
 
Fig. 22 - mMSC migration towards NMDA-damaged retinae is impaired by 
inhibition of Cxcr6 and Ccrs (Ccr1, Ccr2, Ccr3), but not Cxcr2, receptors. (A) 
Quantification of migrated MSCs towards the conditioned media from NMDA-
damaged retinae (24 hpi) in the presence of Cxcr2 (iCxcr2), Ccrs (Ccr1, Ccr3 and 
Ccr5 – iCcrs) or Cxcr6 (iCxcr6) inhibitors. Number of migrated cells is expressed 
as fold-change to control (vehicle - DMSO). Data is presented as Min to Max boxes 
(with line at median) from n ≥ 3 independent experiments. Mann-Whitney test was 
used for statistical analysis. (B) Representative DAPI-stained fields from transwell 
assays assessing migration of MSCs towards NMDA-damaged retinae (24 hpi) in 
the presence of DMSO (vehicle), iCxcr2, iCcrs, iCxcr6 or iCcrs + iCxcrs (iCxcr2 
+ iCxcr6). 
 
 
 
 
 
Fig. 23 - mMSC migration towards P18 rd10 retinae is impaired by inhibition 
of Cxcr6 and Ccrs (Ccr1, Ccr2, Ccr3), but not Cxcr2, receptors. (A) 
Quantification of migrated MSCs towards the conditioned media from P18 rd10 
retinae in the presence of Cxcr2 (iCxcr2), Ccrs (Ccr1, Ccr3 and Ccr5 – iCcrs) or 
Cxcr6 (iCxcr6) inhibitors. Number of migrated cells is expressed as fold-change to 
control (vehicle - DMSO). Data is presented as Min to Max boxes (with line at 
median) from n = 3 independent experiments. Mann-Whitney test was used for 
statistical analysis. (B) Representative DAPI-stained fields from transwell assays 
assessing migration of MSCs towards P18 rd10 retinae in the presence of DMSO 
(vehicle), iCxcr2, iCcrs, iCxcr6 or iCcrs + iCxcrs (iCxcr2 + iCxcr6). 
 
 

Endogenous expression profile of chemokine receptors in 

mMSCs  

 

In accordance with published literature (286, 287), we found that 

MSCs express chemokine receptors (Ccr1, Ccr3, Ccr5, Cxcr2, Cxcr3 

and Cxcr6) at an almost negligible level when compared to the very 

well-characterized mesenchymal marker Thy (Fig. 24A).  



Results 
 

 75 

Indeed, we also analyzed levels of cells surface receptor expression 

by FACS, and we found them to be extremely low (Fig. 24B). Only 

a small percentage of the population was positive for Ccr5 (<1%), 

Cxcr2 (<1%), Cxcr3 (<2%) and Cxcr6 (<0.5%). Ccr1 represented the 

only notable exception, as it was expressed by the majority of the 

cells (>80%).  

 

In other words, mMSCs displayed a heterogeneous profile with 

respect to chemokine receptor expression. Actually, it could be 

concluded that their repertoire of functional receptors is quite limited. 
 

 
 
 
Fig. 24 - mMSCs endogenous mRNA and cell surface expression of chemokine 
receptors. (A) qRT-PCR of endogenous Ccr1, Ccr3, Ccr5, Cxcr2, Cxcr3 and 
Cxcr6 levels of expression in mMSCs. Transcript levels are expressed as fold-
change to Thy. Data is presented as mean ± SEM from n = 3 independent 
experiments. (B) FACS analysis of endogenous Ccr1, Ccr3, Ccr5, Cxcr2, Cxcr3 
and Cxcr6 protein levels at the cell surface of mMSCs. Results are expressed as 
percentage of positive cells. Data is presented as mean ± SEM from n = 3 
independent experiments. 
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PART II: Over-expression of Ccr1, Ccr5, Cxcr2 and 

Cxcr6 chemokine receptors enhances mMSCs 

migration towards the damaged retina ex vivo 

 

Generation and characterization of mMSCs lines over-

expressing specific CC and CXC chemokine receptors 

 

After identifying specific subsets of chemokines whose expression 

and secretion were increased during retinal degeneration, we 

exogenously expressed their cognate receptors on mMSCs. Based on 

our results, we decided to proceed with the following receptors: Ccr1, 

Ccr3 and Ccr5 (responding to Ccl5, Ccl6 and Ccl12); Cxcr2 

(responding to Cxcl1, Cxcl2 and Cxcl5); Cxcr3 (responding to Cxcl9 

and Cxcl10); and Cxcr6 (responding to Cxcl16) (Fig. 25A). mMSC 

over-expressing (OE-MSCs) lines were generated via lentiviral 

infection and characterized using multiple, complementary 

approaches (Fig. 25-27).  
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Fig. 25 - Generation of OE-MSC lines. (A) Scheme of the lentiviral plasmids 
used to infect mMSCs. Constitutive EF1α and SV40 promoters drive expression of 
the HA-tagged receptors (i.e. Ccr1, Ccr3, Ccr5, Cxcr2, Cxcr3 and Cxcr6) and of 
the eGFP marker respectively. (B, C) qRT-PCR showing expression of the Ccr1, 
Ccr3, Ccr5, Cxcr2, Cxcr3 and Cxcr6 genes in the corresponding mMSC-OE lines. 
Transcript levels are expressed as fold-changes to WT-MSC control (B) or as 
relative expression to GAPDH (C). Data is presented as mean ± SEM from n = 3 
independent experiments. Mann-Whitney test was used for statistical analysis. 
 

 

Firstly, we ensured that OE-MSCs were upregulating the receptors at 

the mRNA level (Fig. 25B). Secondly, we performed 

immunostaining to confirm the expression of the GFP marker and of 

the HA-tagged receptors at the protein level (Fig. 26). Thirdly, we 

checked for the presence of the receptors at the cell surface by FACS 

(Fig. 27A). Interestingly, despite the dramatic upregulation of 

receptor expression (Fig. 25B), the percentage of positive cells 

generally remained below 50% (Ccr5+=34%; Cxcr2+=47%; 

Cxcr3+=24%) (Fig. 27A). Ccr1 (92%) and Cxcr6 (82%) represented 

notable exceptions. The high percentage of Ccr1+ cells was not 

surprising, as the majority of mMSCs already expressed Ccr1 

endogenously (>80%; Fig. 24B). Nonetheless, the increase in the 

number of Cxcr6+ cells was particularly remarkable (<400-fold).  

Finally, we ensured that the receptors were functional by testing their 

migratory response towards a defined chemokine gradient (Fig. 27B). 

In this case, the bottom well was filled with SF medium containing 

50 ng ml-1 of a specific chemokine. We tested the following receptor-

chemokine combinations: Ccr1-Ccl5; Ccr3-Ccl5; Ccr5-Ccl5; Cxcr2-

Cxcl1; Cxcr3-Cxcl10; Cxcr16-Cxcl6. In all cases, we found that OE-
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MSCs migrated significantly more than their WT counterparts (Fig. 

27B), which indicated that the exogenously expressed receptors were 

able to better response to stimulation with their cognate ligands.  

 

Collectively, our results indicate that OE-MSCs exogenously 

expressed relatively high levels of the chemokine receptors, that such 

receptors were correctly localized at the cell surface, and that they 

were functional.  
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Fig. 26 - OE-MSC lines express the GFP and the HA tag at the protein level. 
Representative immunofluorescence staining of OE-MSC lines (Ccr1, Ccr3, Ccr5, 
Cxcr2, Cxcr3 and Cxcr6) to verify expression of the eGFP (green) and of the HA 
(red) tags. 
 
 
 

 

Fig. 27 - OE-MSCs show increased levels of functional chemokine receptors at 
their cell surface. (A) FACS analysis of Ccr1, Ccr5, Cxcr2, Cxcr3 and Cxcr6 
receptors on the cell surface of the corresponding OE-MSC lines, and of WT-MSC. 
Results are expressed as percentage of positive cells. Data is presented as mean ± 
SEM from n ≥ 3 independent experiments. Two-tailed Student’s T-test was used 
for statistical analysis. (B) Quantification of migrated mMSCs towards a 
concentration of 50 ng ml-1 of Ccl5 (Ccr1-MSC, Ccr3-MSC and Ccr5-MSC), Cxcl1 
(Cxcr2-MSC), Cxcl10 (Cxcr3-MSC) or Cxcl16 (Cxcr6-MSC), from transwell-
based assays. Number of migrated cells is expressed as fold-change to control (WT-
MSC). Data is presented as mean ± SEM from n ≥ 3 independent experiments. 
Mann-Whitney test was used for statistical analysis. 

Over-expression of Ccr1, Ccr5, Cxcr2 and Cxcr6 chemokine 
receptors enhances mMSCs migration towards the damaged 
retina ex vivo  
 

 

Next, we investigated whether chemokine receptor over-expression 

would increase the extent of mMSC migration towards the cocktails 

of soluble factors secreted during retinal degeneration. To do so, we 

tested migration of OE-MSCs towards the conditioned medium from 

ex vivo cultured mouse retinae. Our results showed that mMSC 

migration could be significantly improved via over-expression of 

Ccr1, Ccr5, Cxcr2 and Cxcr6 (Fig. 28). This applied to both the 

NMDA-induced (Fig. 28A) and the RP (Fig. 28B) models of retinal 

degeneration. 
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Based on our findings, we decided to further proceed with the Ccr5, 

Cxcr2 and Cxcr6 OE-MSC lines. We opted for Ccr5 rather than Ccr1 

on the basis of the following considerations: (1) both Ccr1 and Ccr5 

respond to Ccl5, Ccl6 and Ccl12 (Fig. 21); (2) the majority of mMSC 

endogenously express Ccr1 (Fig. 24B); (3) exogenous expression of 

Ccr5 led to an overall greater phenotype than that induced by Ccr1 

over-expression (Fig. 28A-B).  
 
 
 
 
Fig. 28 - OE-MSC migrate more efficiently towards the degenerating retina. 
(A) Quantification of migrated mMSCs towards the conditioned media from 
NMDA-injected (A) or rd10 (B) retinae, from transwell-based assays. Number of 
migrated cells is expressed as fold-change to control (MSC-WT). Data is presented 
as mean ± SEM from n ≥ 3 independent experiments. Mann-Whitney test was used 
for statistical analysis. 
 
We also tested OE-MSC migration towards the NMDA-damaged and 

the RP-affected human retinae (Fig. 29A-C). In both cases, 

chemotactic assays clearly showed that exogenous expression of the 

Ccr5, Cxcr2 or Cxcr6 receptor could significantly improve mMSC 

migration. 

 

 
 
 
Fig. 29 - OE-MSCs migrate more efficiently than their WT counterparts 
towards the degenerating human retina. Quantification of migrated mMSCs 
towards the conditioned media from (A) NMDA-damaged and (B) RP human 
retinae, from transwell-based assays. Number of migrated cells is expressed as 
fold-change to control (WT-MSC). Data is presented as mean ± SEM from n ≥ 3 
independent experiments. Mann-Whitney test was used for statistical analysis. 
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PART III: Combined over-expression of Ccr5 and 

Cxcr6 chemokine receptors enhances mMSCs 

migration towards the damaged retina in vivo 

 

Over-expression of Ccr5 and Cxcr6 chemokine receptors 

enhances mMSC migration towards the damaged retina in vivo  

 

Results from our in vitro and ex vivo assays showed that mMSC 

migration towards the degenerating retina could be improved via 

over-expression of either Ccr5, Cxcr2 or Cxcr6. We therefore 

proceeded to test migration of these OE-MSC lines in vivo.  

As illustrated in Fig. 30A, we intravitreally transplanted 500’000 

cells, 12h post-NMDA damage. After four days, animals were 

sacrificed and the percentage of GFP+ mMSC in the retina was 

quantified by flow cytometry.  

We found that both Ccr5 and Cxcr6, but not Cxcr2, over-expression 

led to a significant increase in the percentage of GFP+ mMSCs in the 

retina (Fig. 30B).  
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Fig. 30 - Over-expression of Ccr5 and Cxcr6 chemokine receptors enhances 
mMSCs migration towards the damaged retina in vivo. (A) Experimental 
scheme. Eyes were damaged via NMDA-injection 12h prior to transplantation of 
either WT-MSC or OE-MSC (Cxcr2-MSC, Ccr5-MSC or Cxcr6-MSC). FACS 
analysis was performed 4 days after the transplant (4dpi). (B) FACS-based 
quantification of GFP+ MSCs (WT-, Cxcr2-, Ccr5-, or Cxcr6-) in transplanted 
retinae, 4 dpi. Results are expressed as percentage of total retinal cells. Data is 
presented as Min to Max boxes (with line at median) from n ≥ 3 independent 
experiments. Two-tailed Student’s T-test was used for statistical analysis. 

 

Combined over-expression of Ccr5 and Cxcr6 chemokine 

receptors enhances mMSC migration towards the damaged 

retina in vivo 

 

Since both Ccr5 and Cxcr6 OE-MSCs showed an improved 

migratory phenotype in vivo, we decided to test whether combined 

over-expression of the two receptors would lead to a further increase 

in overall cell migration.  

To do so, we generated a Ccr5-Cxcr6 double-expressing MSC line. 

This was achieved via simultaneous infection of mMSCs with two 

lentiviral constructs, each driving expression of a single receptor 

(Fig. 31A). We ensured that our Ccr5-Cxcr6-MSCs were over-

expressing both Ccr5 and Cxcr6 (Fig. 31B). Of note, upregulation of 

Ccr5 and Cxcr6 in Ccr5-Cxcr6-MSCs was found to be comparable to 

that of single expressing OE-MSC lines (i.e. Ccr5-MSC and Cxcr6-

MSC).  
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Fig. 31 - Generation of Ccr5-Cxcr6-MSCs. (A) Scheme of the lentiviral plasmids 
used to infect mMSCs. Constitutive EF1α and SV40 promoters drive expression of 
the HA-tagged receptors (i.e. Ccr5, and Cxcr6) and of the markers (i.e. eGFP or 
Hygromycin) respectively. Ccr5-Cxcr6 double positive cells were isolated by 
FACS-sorting for eGFP and applying hygromycin selection. (B) qRT-PCR 
showing expression of the Ccr5 (left) and Cxcr6 (right) genes in the Ccr5-Cxcr6 
double positive MSCs and in the corresponding single-expressing OE-MSC lines 
(i.e. Ccr5-MSC or Cxcr6-MSC). Transcript levels are expressed as fold-changes to 
GFP+ Empty-MSC control. Data is presented as mean ± SEM from n = 3 
independent experiments. Two-tailed Student’s T-test was used for statistical 
analysis.  
 

We also confirmed that Ccr5-Cxcr6-MSCs were expressing both the 

GFP and the HA tags (Fig. 32A). Lastly, we performed chemotactic 

assays to ensure that exogenously expressed Ccr5 and Cxcr6 were 

indeed endowing cells with an improved ability to respond to a 

defined Ccl5-Cxcl16 chemokine gradient (Fig. 32B).  

 

Ccr5-Cxcr6-MSCs displayed an increased migratory phenotype 

towards the soluble factors released by the retina during NMDA- and 

RP-induced degeneration (Fig. 33A). Importantly, both Ccl5-

Cxcl16- and damage-induced migration was significantly higher for 

Ccr5-Cxcr6-MSCs as compared not only to WT-MSCs, but also 

single-expressing Ccr5- and Cxcr6-MSC lines. 

Finally, we tested migration of the Ccr5-Cxcr6-MSCs in vivo. We 

analyzed the percentage of GFP+ Ccr5-Cxcr6-MSCs by FACS, 4 dpi. 

We found the number of Ccr5-Cxcr6-MSCs to be significantly higher 

not only of the empty vector (WT) control, but also of the Ccr5- and 

Cxcr6- single expressing MSCs (Fig. 33B).  
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Fig. 32 - Ccr5-Cxcr6-MSCs express GFP, HA-tag and functional Ccr5 and 
Cxcr6 receptors. (A) Representative immunofluorescence staining of Ccr5-
Cxcr6-MSCs to verify expression of the eGFP (green) and of the HA (red) tags. 
(B) Quantification of migrated MSCs (Ccr5, Cxcr6, or Ccr5-Cxcr6) towards a 
concentration of 50 ng ml-1 of Ccl5 and Cxcl16, from transwell-based assays. 
Number of migrated cells is expressed as fold-change to control (WT-MSC). Data 
is presented as mean ± SEM from n ≥ 3 independent experiments. Mann-Whitney 
test was used for statistical analysis. 
 
 
 
Fig. 33 - Ccr5-Cxcr6-MSCs migrate more efficiently than Ccr5- or Cxcr6- 
single expressing MSCs towards the degenerating retina ex vivo and in vivo. 
(A) Quantification of migrated MSCs (Ccr5-, Cxcr6, or Ccr5-Cxcr6) towards the 
conditioned media from NMDA-injected or rd10 retinae, from transwell-based 
assays. Number of migrated cells is expressed as fold-change to control (WT-
MSC). Data is presented as mean ± SEM from n ≥ 3 independent experiments. 
Mann-Whitney test was used for statistical analysis. (B) FACS-based 
quantification of GFP+ MSCs (WT-, Cxcr2-, Ccr5-, Cxcr6-, or Ccr5-Cxcr6-) in 
transplanted retinae, 4 dpi. Results are expressed as percentage of total retinal cells. 
Data is presented as mean ± SEM from n ≥ 3 independent experiments. Two-tailed 
Student’s T-test was used for statistical analysis. 
 

 

Our data indicates that double expressing Ccr5-Cxcr6-MSCs display 

a better migratory performance towards the degenerating retina than 

Ccr5- and Cxcr6- single expressing MSCs, both ex vivo and in vivo. 

 

We then decided to investigate cell migration and integration in the 

long term. To do so, we sacrificed NMDA-damaged mice whose eyes 

had been transplanted with either WT-MSC or Ccr5-Cxcr6-MSC, 4 

wpi. Retinal flat mounts were prepared and stained for GFP (marking 

the genetically modified MSCs) and βIII-tubulin, a neuron-specific 

marker expressed by ganglion cells and interneurons. We found that 

GFP+ MSCs could be detected in the tissue in the long term, as 
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exemplified in Fig. 34. The almost complete absence of βIII-tubulin+ 

cells most likely is the result of the NMDA-induced apoptosis of 

ganglion cells and interneurons (Fig. 34).  

Interestingly, we could not observe the presence of GFP+ cells in 

areas that had not been visibly affected by the NMDA-damage and 

that contained a high number of βIII-tubulin+ cells (Fig. 35). This 

indicated that mMSCs were capable of “sensing” the areas of 

damage, and selectively migrated towards them.   
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Fig. 34 - Representative immunostaining of retinal flat mounts harvested from 
NMDA-damaged mice transplanted with Ccr5-Cxcr6-MSCs and sacrificed 4 
wpi. MSCs are GFP+ (green). βIII-tubulin (red) is a neuron-specific marker. The 
field displays a remarkable low density of βIII-tubulin+ neuronal cells, indicating 
that this specific area has been visibly affected by the NMDA-damage.  
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Fig. 35 - Representative immunostaining of retinal flat mounts harvested from 
NMDA-damaged mice transplanted with Ccr5-Cxcr6-MSCs and sacrificed 4 
wpi. The field displays a high density of βIII-tubulin+ (red) neuronal cells, 
indicating that this specific area has not been visibly affected by the NMDA-
damage. No GFP+ (green) MSCs can be observed.   
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To quantify the extent of the change in migratory capabilities, we 

decided to count the number of GFP+ mMSCs in retinal sections 

prepared 4 wpi (Fig. 36). We still are in the process of gathering 

enough data as to make firm claims supported by solid statistical 

analysis. Nonetheless, our preliminary results indicate that the 

number of GFP+ Ccr5-Cxcr6-MSCs tend to be higher than that of 

GFP+ WT-MSCs (Fig. 37). 

 

In order to assess whether transplanted cells would undergo a change 

in their identity, we stained retinal sections for the neuron-specific 

marker βIII-tubulin, and counted the number of GFP+/βIII-tubulin+ 

cells. Most of the mMSCs that had reached the retinal layers were 

found to express βIII-tubulin (Fig. 38), which is indicative of a switch 

to a neuronal-like phenotype. Even though the absolute number of 

GFP+/βIII-tubulin+ cells tended to be higher in the retinae of mice 

transplanted with Ccr5-Cxcr6-MSCs (Fig. 38A), we were unable to 

observe any difference in the “transdifferentiation rate” or “TD”, i.e. 

the percentage of the GFP+/βIII-tubulin+ cells over the total GFP+ 

cells (Fig. 38B; TDWT-MSCs = 83,2% ± 0,2%; TDCcr5-Cxcr6-MSCs = 86,7% 

± 4,6%). A representative section from this experiment is presented 

in Fig. 39.  
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Fig. 36 – Representative immunostaining of retinal sections harvested from 
NMDA-damaged mice transplanted with either WT- (left) or Ccr5-Cxcr6- 
(right) MSCs and sacrificed 4 wpi. MSCs are GFP+ (green). Higher magnification 
images from the white boxes are shown in the top-left or top-right corners.  
 
 
 
 
Fig. 37 – Quantification of GFP+ MSCs found within the retinal layers of 
NMDA-damaged mice transplanted with either WT- (left) or Ccr5-Cxcr6- 
(right) MSCs and sacrificed 4 wpi. Cells were counted in a minimum of ten 
sections, and in at least three random fields per section. Data is presented as mean 
± SEM from n = 1 experiment. Representative fields from WT- and Ccr5-Cxcr6-
MSCs transplanted retinae are shown in Fig. 36. 
 
 
 
 
Fig. 38 – Quantification of βIII-tubulin+ MSCs found within the retinal layers 
of NMDA-damaged mice transplanted with either WT- or Ccr5-Cxcr6-MSCs 
and sacrificed 4 wpi. Cells were counted in a minimum of ten sections, and in at 
least three random fields per section. Data is presented as mean ± SEM from n = 1 
experiment. A representative field from Ccr5-Cxcr6-MSCs transplanted retinae is 
shown in Fig. 39. Results are presented either as (A) absolute number of GFP+/βIII-
tubulin+ or as (B) “transdifferentation rate”, i.e. as the percentage of the GFP+/βIII-
tubulin+ cells over the total GFP+ cells. 
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Fig. 39 – Representative immunostaining of retinal sections harvested from 
NMDA-damaged mice transplanted with Ccr5-Cxcr6- (right) MSCs and 
sacrificed 4 wpi. MSCs are GFP+ (green). βIII-tubulin (red) is a neuron-specific 
marker. Magnification images from the white boxes are shown in the bottom-left 
corners. They point at a GFP+ cell differentiating into a βIII-tubulin+ neuronal-like 
cells. 
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DISCUSSION 

 

In this work, we have improved migration of mMSCs, both ex vivo 

and in vivo, via combined over-expression of Ccr5 and Cxcr6 

chemokine receptors. A similar strategy has already been employed 

by other groups for stem cell therapy in different diseases, including 

epidermolysis bullosa (1), radiation-induced oral mucositis (2) and 

myocardium infarct (3). Importantly, the chemotactic axis exploited 

in these studies were not always the same. For instance, Cxcr2-over-

expressing MSCs performed better than WT-MSCs in the context of 

epidermolysis bullosa and radiation-induced oral mucositis (1, 2); 

however, they could not confer any advantage when transplanted into 

the injured myocardium (3). In this case, over-expression of Ccr1 was 

able to improve MSC migration (3).  

Before selecting potential ligand(s)-receptor(s) signaling axis to be 

further investigated, we have therefore considered necessary to reveal 

the identity of the chemokines produced at the injury site. Eventually, 

we narrowed it down to the Ccr5 and the Cxcr6 receptors.  

By doing so, we contributed to the generation of a more 

comprehensive understanding of the signaling pathways and cues 

involved in migration and chemoattraction during retinal 

degeneration. 

 

We reported that NMDA-damaged and RP-affected retinae, both 

murine and human, were characterized by a strong inflammatory 

response, and by upregulation of several CC and CXC chemokines 
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(Fig. 16, 20). The peak of chemokine production occurred 

concomitantly to the peak in expression of pro-inflammatory markers 

(Fig. 11, 18, 19). Our observations are in accordance with published 

literature, as tissue injury has been strongly associated with the 

secretion of TNF-α and IL-1β. The concomitant release of 

inflammatory chemokines can then induce the recruitment of 

leukocytes expressing the corresponding repertoire of receptors (4).  

 

Compared to the mouse ones, NMDA-damaged human retinae seem 

to upregulate a broader spectrum of chemokines, including CCL21, 

CCL22, CXCL2, CXCL3 (mCxcl1), CXCL6 (mCxcl5), and CXCL9. 

This could be explained by the fact that a 24h-long in vitro (rather 

than an injection-based in vivo) damage of the tissue might 

exacerbate chemokine release, generating some artefacts. Results 

from RP-affected retinae might be more reliable, since degeneration 

is induced by genetic mutation(s). However, we are still waiting for 

at least an additional RP sample in order to be able to draw more 

definite conclusions.  

For the time being, we can state that both of the tested human models 

are characterized by consistent up-regulation of CCL5, CCL22, 

CCL23, CXCL11 and CXCL16. Of note, human CCL23 correspond 

to the murine Ccl6 (5). Importantly, CCR5 and CXCR6 ligands (i.e. 

CCR5 and CXCL16) are included in the list of overlapping 

chemokines, suggesting that our strategy could be potentially applied 

to RP patients.  
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NMDA-damage and RP are associated with apoptosis of 

ganglion/amacrine neurons and photoreceptors respectively. 

Nonetheless, there is evidence that the inflammatory response of the 

retina is mainly orchestrated by MGCs, RPECs and activated 

microglia (4). For instance, as assessed by hybridization and 

immunohistochemical studies, Ccl5 in the rd mouse retina at P18 is 

mainly produced in the inner retinal layers, especially by MGCs and 

microglia cells (6). CCL5 is also released by cultured human RPECs 

upon exposure to TNF-α and IL-1β (7, 8). In other words, 

cytokine/chemokine-releasing cells are the same independently of 

the injury model and of the type of retinal neurons that undergo 

apoptosis. It is therefore not surprising that the subsets of upregulated 

chemokines we identified in NMDA-damaged and RP retinae were 

strikingly similar and largely overlapping. Indeed, the strong increase 

in Ccl5, Ccl6, Ccl12 and Cxcl16 that we observed was also reported 

in other disease models, including autoimmune uveitis and AMD (7-

13).  

Crucially, the existence of these highly comparable, site- (rather than 

disease-) specific patterns of chemokine upregulation would make 

our strategy widely applicable, and suitable even for patients with 

other types retinopathies, such as AMD and optic neuropathies.  

 

The success of our approach is dependent on the secretion of 

chemotactic factors into the vitreous cavity. Importantly, this is 

known to happen during retinal degeneration in human patients (14-

17). Indeed, there seems to be a correlation between the number of 

inflammatory cells recruited in the vitreous cavity and the visual 
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function of the patient: the higher the former, the lower the latter (18). 

For instance, CXCL16 levels in the aqueous humor of wet AMD 

patients have been reported to positively correlate with lesion size 

(17). 

Since inflammation tend to subside over time in our murine 

degenerative models (Fig. 11), it could be argued that an 

inflammation-dependent approach would have no validity for adult 

patients affected by genetic conditions with a relatively early onset 

(or that it would be only applicable during an extremely narrow time-

window). What is important to stress, in this respect, is that 

inflammation seems to be chronic in human RP patients. In fact, even 

though stronger inflammatory reactions are generally found in 

younger patients with active disease processes, the inflammatory 

state continues even after photoreceptor loss (18). This is not to be 

underestimated, and it needs to be taken into account for the 

development and the optimization of therapeutic strategies. In 

particular, long-term, persistent inflammation means that the levels 

of chemokines released by the tissue will be elevated throughout the 

lifespan of RP-affected patients.  This is consistent with our results, 

which showed that conditioned medium from the retina of elderly RP 

patients can strongly chemoattract mMSCs (Fig. 14). In fact, the 

samples we received were all from patients that passed away at an 

age of at least 65, and therefore had already gone through the acute 

phase of photoreceptor loss.  

 

We found that mMSC possess a highly heterogeneous and quite 

limited repertoire of chemokine receptor (Fig. 24). For instance, 
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based on our FACS analysis, less than 1% of the cells are positive for 

Ccr5 (<1%), and even a smaller percentage is positive for Cxcr6 

(<0.5%). This is consistent with published literature (2, 19), and 

could provide an explanation for the low response of mMSCs to the 

damage-dependent chemokine gradient in vivo. The validity of the 

strategy presented in this study becomes clear in light of these 

considerations: in order to reach the injury site, MSCs need to express 

the receptors that recognize the chemokines produced there at 

sufficiently high levels. Since mMSCs hardly express any Ccr5 or 

Cxcr6, it’s not surprising that exogenous expression of these 

receptors can enhance their homing capabilities.  

 

Analogously to that of mMSCs, human MSCs expression of 

chemokine receptors is also heterogeneous. However, they seem to 

generally express more CC and CXC chemokines than murine ones. 

For instance, 40-70% of hMSCs have reported to express CCR1, 

CCR2, CXCR1, CXCR2, CXCR3, CXCR5 and CXCR6 (20-22). 

Chemotaxis assays have shown that such receptors interact with their 

cognate ligands and are functional (20), with the exception of CCR2 

(21). In fact, intriguingly, hMSCs migration is not increased upon 

stimulation with the CCR2-ligand CCL2 (21). It’s also enthralling to 

note that expression of CCR1 is clearly detectable by PCR, but that 

of CCR5 is not (22). This further supports our decision to over-

express CCR5 rather than CCR1. 

It is also important to consider that MSC chemokine receptor profile 

is sensitive to time in culture (23). More specifically, prolonged ex 

vivo cell culturing and expansion can lead to substantial 
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downregulation of chemokine receptor expression (23). Genetic 

modification of cultured MSCs would allow to overcome the 

problem.  

It could be reasonably argued that FACS-sorting of MSCs 

subpopulations endogenously expressing Ccr5 and Cxcr6 could 

represent a valid alternative to exogenous expression of such 

receptors. However, exogenous expression offers two significant 

advantages: (1) expression levels are considerably higher, which 

most likely means that cell responsiveness to their cognate 

chemokines will be too; (2) it will be easier to obtain a sufficiently 

high number of Ccr5- and Cxcr6-expressing cells as to adequately 

replace the lost/damaged ones. Indeed, there are some reports 

supporting the hypothesis that receptor expression-based positive 

selection of MSCs cannot provide a sufficient number of number of 

viable cells (1).  

 

Interestingly, the fold-change increase in Cxcr6 expression (Fig. 

25B) and its absolute expression levels (Fig. 25C) were of a smaller 

magnitude than those of the other tested receptors. Nonetheless, the 

percentage of Cxcr6+ MSCs was above 80% when assessed by 

FACS, which represented an approximately 400-fold upregulation 

with respect to WT-MSCs (Fig. 27A). This probably explains why 

Cxcr6-MSCs represented the OE-MSC line with the highest 

migration capabilities in vivo (Fig. 30). Actually, in vivo homing of 

the cells could most likely be further improved by more restrictive 

cell sorting prior to transplantation.  

Ex vivo, Cxcr6-MSCs performance was equivalent to that of Ccr5-
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MSCs, and both of them performed slightly worse than Cxcr2-MSCs 

(Fig. 28). In vivo, however, Cxcr2-MSCs were not able to migrate as 

much as either Ccr5- or Cxcr6-MSCs (Fig. 30). Such apparent 

contradiction could be due to additional effects played by the local 

microenvironment in vivo (24). We are currently unable to provide a 

definitive explanation. Nonetheless, our results are in line with a 

recent study showing that over-expression of Cxcr2 was unable to 

enhance chemokine-induced MSC migration in the injured 

myocardium, despite the significant upregulation of Cxcl1 and Cxcl2 

(3). Ccr1-MSCs, instead, displayed increased migratory capabilities, 

and their transplantation was associated reduced infarct size and 

improved cardiac function (3). 

 

Despite the promising results presented in this study, our strategy 

holds potential for further improvements. In particular, to generate 

OE-MSC lines, we have used lentiviral vectors. In a clinical setting, 

this would raise important concerns with respect to the risk of 

tumorigenesis. In fact, lentiviral vectors randomly integrate into the 

genome, and can therefore lead to undesired, harmful mutations. 

Moreover, lentiviral-mediated exogenous expression would be 

maintained indefinitely by the cells, with unknown consequences. 

Considering that exogenous receptor expression might be 

dispensable once the cells reach the damage site, transient cell 

modification could represent a safer option. 

 

A number of potentially valid alternatives to lentiviral infection are 

available, including the use of integration-free viruses, such as Sendai 
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viruses or adenoviral vectors. Sendai viruses are RNA-based viruses 

that exclusively replicate in the cytoplasm; as a consequence, they 

will be diluted out as the cells proliferate. Adenoviral vectors contain 

a single-stranded DNA genome and are able to infect cells regardless 

of their proliferative activity. They are considered not to be 

pathogenic, and they can generally provide transient, high-level 

expression of the transgene. However, adenoviruses preparation 

represents a costly and lengthy procedure that requires painstaking 

optimization of several variables, including the serotype of choice. In 

fact, identification of the serotype that can optimally infect the 

specific cell type of interest is of utmost importance for the success 

of the approach. Furthermore, even though MSCs have been 

genetically modified with adenoviruses in vitro, there still is room for 

significant improvement (25, 26). In particular, high viral titers were 

required to achieve a satisfactory efficiency; such titers appeared to 

slightly diminish MSC proliferation and adipogenic differentiation 

potential (26).  

The possibility of using non-viral systems is also being broadly 

explored, including the use of naked DNA or the direct delivery of 

synthetic mRNAs. Another option could be to subject MSCs to 

specific treatments and/or culturing conditions that would lead to an 

increase in endogenous receptor expression. For instance, both high-

density culture (1) and hypoxic conditions (27-31) have been 

reported to stimulate upregulation of several chemokine receptor 

genes.  

To conclude, the identification of safer and less-invasive delivery 

strategies, coupled to the establishment of detailed procedures for the 
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generation of clinical-grade cells, will help overcome some of the 

major hurdles that currently hinder the translation of stem cell 

therapy approaches to the clinical setting.  

 

Additionally, it is reasonable to hypothesize that our approach would 

lead to greater beneficial outcomes if adipose-derived (AD) MSCs 

were used in spite of bone-marrow derived (BM-) ones. In fact, 

compared to BM-MSCs, AD-MSCs are characterized by higher 

proliferation rates and higher paracrine activity (32, 33). Moreover, 

they can be effectively isolated in high amounts with minimally 

invasive methods. Just like their BM-derived counterparts, they have 

a heterogeneous repertoire of chemokine receptors. However, the 

percentage of cells positive for Ccr1, Ccr5, Cxcr2, Cxcr3 and Cxcr6 

appears to be higher in AD-MSCs than in BM-MSCs (1, 34). This 

opens up the possibility that AD-MSCs may display better baseline 

migration capacities, in addition to having more potent 

neuroprotective effects. As a consequence, they might represent 

better candidates for the development of therapeutic approaches.  

 

Lastly, it’s appropriate to mention that even though mouse models of 

retina degeneration are very valuable for the development of cell-

based therapeutic approaches, it could be extremely useful to further 

investigate our technology in non-human primates. In fact, 

translation from rodent models directly into humans might cause the 

underestimation of important issues, such as the anatomical and 

structural differences between species. As an example, rodent eyes 

are characterized by a large lens with a very small vitreous volume; 
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the human eye, instead, has a considerably larger vitreous cavity, 

with a small lens (35). This might significantly alter the dynamics of 

cell migration and integration. Therefore, transplantation methods 

developed for rodents might require further optimization prior to 

applicability to humans.  

Importantly, all primate eyes are anatomically very similar, with 

comparable sizes and architectures. They also possess unique 

structures (such as the macula and fovea) that are not present in the 

murine retina (36). Furthermore, primates have immunological 

reactions that resemble those of humans more than rodents do; this is 

essential for the careful evaluation of possible adverse immune 

responses to grafts (36). 

For these reasons, studies on non-human primate models could 

represent an important intermediary preclinical step, allowing for the 

meticulous assessment of the efficacy and the safety of cell therapy 

in the eye.  

 

To summarize, the fundamental aim of this study was to address the 

problem of inadequate migration and integration of transplanted 

cells, with the final goal of improving the therapeutic outcome of 

stem cell therapy in the eye. To this end, we generated ad hoc 

engineered stem cell with improved responsiveness to retina-specific 

signals. The modified cells can more efficiently reach the host tissue 

after transplantation, thanks to the engagement and the activation of 

the Ccr5 and the Cxcr6 receptors by a subset of CC and CXC 

chemokines that are released in a damage-dependent manner.  

 



Discussion 
 

 108 

We also have some preliminary evidence suggesting that Ccr5-

Cxcr6-MSCs can acquire a neuronal phenotype in vivo (Fig. 38-39).  

Indeed, the vast majority of the transplanted cells (>80%) were found 

to express βIII-tubulin, one month post-injection. Interestingly, 

chemokine receptor over-expression does not seem to alter the 

capacity of MSCs to acquire a neuronal phenotype, as exemplified by 

the fact that we could not detect any difference in the 

transdifferentiation rates of WT- and Ccr5-Cxcr6-cells. The 

observation that the absolute number of GFP+/βIII-tubulin+ cells is 

higher in mice transplanted with Ccr5-Cxcr6-MSCs reflects the 

increase in the total number of GFP+ MSCs that are able to reach the 

retinal layers.  

 

In addition to gathering further data to support our findings, we 

currently are evaluating whether transplantation of Ccr5-Cxcr6-

MSCs can lead to increased retinal rescue, as compared to WT-

MSCs.  

If that was the case, transplantation of genetically engineered cells in 

the degenerating retina would stand as an efficient approach with an 

extremely high degree of adaptability and versatility. In fact, in 

addition to being suitable for patients with different types of 

retinopathies, it could potentially be applied not only to MSCs, but to 

the all range of transplanted cell types. As a significant example, it 

could be employed to improve homing of retinal and/or 

photoreceptor precursors cells, which are inherently good at 

differentiating into mature retinal neurons, but display very poor 

migratory capabilities (37-40).  
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In conclusion, this study provides a possibly viable solution to the 

challenge of achieving effective delivery and engraftment at the site 

of injury.  

Undoubtedly, there still is considerable work to be carried out. 

Nonetheless, our findings could eventually be integrated with 

alternative optimization strategies to make stem cell therapy in the 

eye a feasible and realistic option for the treatment of retinopathies, 

and for the achievement of visual restoration.  
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CONCLUSIONS 

 
1. Soluble factors released during retinal degeneration can 

chemoattract mMSCs 

 

2. Retinal degeneration is associated with a strong inflammatory 

response and with concomitant upregulation of specific 

subsets of inflammatory CC and CXC chemokines (Ccl5, 

Ccl6, Ccl12, Cxcl9, Cxcl10 and Cxcl16) 

 

3. Our findings apply both to gangliar/amacrine (i.e. NMDA-

damage) and to photoreceptor (i.e. rd10 mouse) degeneration, 

not only in rodent, but also in human models 

 

4. Ex vivo mMSC by inhibition of the Ccrs (Ccr1, Ccr3, Ccr5) 

and the Cxcr6 receptors 

 

5. The repertoire of chemokine receptors endogenously 

expressed by mMSCs is heterogeneous and quite limited 

 

6. Over-expression of Ccr1, Ccr5, Cxcr2 and Cxcr6 chemokine 

receptors enhances mMSCs migration towards the damaged 

retina ex vivo 

 

7. mMSCs over-expressing Ccr5 or Cxcr6 display an improved 

migratory phenotype towards the damaged retina in vivo 
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8. mMSCs simultaneously over-expressing Ccr5 and Cxcr6 

display an even greater migratory phenotype, both ex vivo and 

in vivo 

 

9. Transplanted mMSCs that reach the retinal layers are able to 

survive in the long-term, and 

 

10. They start expressing the neuron-specific marker βIII-tubulin, 

indicating that they can acquire a neuronal-like phenotype 
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MATERIALS AND METHODS 

 

Cell and tissue culture 
 

Bone marrow-derived mMSCs (C57BL/6) were purchased from 

GIBCO (S1502-100) and maintained in DMEM/F-12-GlutaMAX 

supplemented with 10% fetal bovine serum (FBS), penicillin (100U 

ml-1) and streptomycin (100μg ml-1).  

Mouse retinae were dissected and cultured in serum-free (SF) 

DMEM/F-12-GlutaMAX with penicillin (100U ml-1) and 

streptomycin (100μg ml-1).  

Human retinae were dissected and cultured in SF Neurobasal A 

medium supplemented with GlutaMAX (0.5%), N2 (1x), B27 (1x), 

penicillin (100U ml-1) and streptomycin (100μg ml-1).  

 

Animal care and treatment 

 

Mice were maintained under a 12-hour light/ dark cycle with access 

to food and water ad libidum, in accordance with the Ethical 

Committee for Animal Experimentation (CEEA) of the Government 

of Catalonia. The CEEA of the Parc de Recerca Biomèdica de 

Barcelona (PRBB, Spain) reviewed and approved all animal 

procedures. Additionally, procedures and experiments were 

performed in accordance with the  ARVO Statement for the Use of 

Animals in Ophthalmic and Vision Research, and with ARRIVE 

(Animal Research: Reporting of In Vivo Experiments) guidelines 

(288).  
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Male and female animals between 8-12 weeks were used for the study 

and assigned randomly to the various treatment groups. A minimum 

of three mice per treatment group was used. General anesthesia was 

induced when needed with intraperitoneal injection of ketamine (70 

mg/kg) and medetomidine (10 mg/kg). Anesthesia was reversed with 

atipamezole (2 mg/kg). At endpoints, mice were euthanized using 

CO2. 

 

Retinal Damage and Cell Transplantation 

 

Mice were anaesthetized and intravitreally injected with 2 µl of either 

NMDA (20 mmol µl-1; Sigma) or PBS, as a control. Briefly, a 30-G 

needle was used to carefully make a small, punch incision at the 

upper temporal ora serrata. The 33-gauge needle of a Hamilton’s 

syringe was then inserted into the incision, angled toward the optic 

nerve, to inject PBS or NMDA into the vitreous. The needle was left 

in place for a couple of seconds before being retracted to avoid reflux.  

 

For cell transplantation, mMSCs were detached using Accutase 

(StemPro® Accutase® Cell Dissociation Reagent, Life 

TechnologiesTM), counted and resuspended in PBS plus 

chondroitinase ABC (ChABC, 0.1 U µl-1) at a concentration of 

250’000 cells µl-1. Adult mice that had received NMDA-damage 

were transplanted intravitreally with 2 µl of mMSCs (i.e. 500’000 

cells), 12h post-damage. Rd10 mice were transplanted with 1 µl of 

mMSCs subretinally (i.e. 250’000 cells) at P18.  
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Human retinae culture 

 

Eye globes from donors whose cornea had been classified as non-

suitable for transplantation were received from the “Banc d´Ulls 

per a Tractaments de Ceguesa” (BUTC). Explicit, written informed 

consent for the removal and use of the eye globes for diagnostic 

and research purposes was obtained from patients and/or relatives. 

All of the samples we received were from donors aged 65-90. 

 

The retina was dissected employing a procedure and a set-up 

optimized in our laboratory in collaboration with “Centre 

d’Oftalmologia Barraquer”. Briefly, the eye globe was placed in a 

holder that generated vacuum, thereby providing sufficient internal 

pressure as to perform the dissection. Cornea, iris and crystalline 

were removed performing an incision 6mm away from the Iris. This 

exposed the internal part of the eye globe, allowing to easily 

identify the retina, attached to the retinal pigmented epithelium 

(RPE). The vitreal excess was removed and the retina was 

separated mechanically from the RPE with the help of two forceps. 

The eye globe was then placed up-side-down in a sterile petri dish. 

In this way, the junction with optic nerve was exposed, and could 

be severed, thereby allowing to completely separate the retina from 

the rest of the eye globe. After the removal of the periphery and of 

the vitreal leftovers, the central part of the retina was cultured for 

12-24h and then processed for experiments.  
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RNA extraction and quantitative real-time PCR (qRT-PCR) 

 

RNA was extracted from dissected retinae using the RNA Isolation 

Mini kit (QIAGEN), according to the manufacturer protocol. RNA 

was reverse-transcribed with SuperScript III (Invitrogen). qRT-PCR 

reactions were performed using Platinum SYBR green qPCix-UDG 

(Invitrogen) in a LyghtCycler 480 (Roche) machine, according to the 

manufacturer recommendations. The oligoes used are listed in Table 

2. qRT-PCR data was normalized to GAPDH expression. For each 

sample, we had at least a technical duplicate. A minimum of three 

independent experiments were averaged. 

 

For the investigation of NMDA-damage, eye samples were collected 

24 hours (24hpi), 48 hours (48hpi), 4 days (4dpi), 7 days (7dpi) or 4 

weeks (4wpi) post-injection.  

Rd10 mice were sacrificed at P14, P18, P22 and at 6 months of age 

(adults). To study gene expression in human retinae, RNA was 

extracted following 24 hours culturing in SF medium with or without 

NMDA (1mM).  

 

RNA for the qRT-PCR analysis of cultured mMSCs was extracted 

from pelleted cells using the RNA Isolation Mini kit (QIAGEN). The 

oligoes used are also listed in Table 2. 
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Gene 

 

 

Primer FW 

 

Primer RV 

mIl1-β gccaccttttgacagtgatgaga ggacagcccaggtcaaaggt 

mCcl5 tgcagaggactctgagacagc gagtggtgtccgagccata 

mCcl6 tctttatccttgtggctgtcc tggagggttatagcgacgat 

mCcl12 ggtattggctggaccagatg gggacactggctgcttgt 

mCxcl1 agactccagccacactccaa tgacagcgcagctcattg 

mCxcl2 actccagactccagccacac cagttcactggccacaacag 

mCxcl5 tcttgggtgtgttaagagtgttct cacagcagctttctaaaaccataa 

mCxcl9 ccatgaagtccgctgttctt tgagggatttgtagtggatcg 

mCxcl10 atcagcaccatgaacccaag ttccctatggccctcattct 

mCxcl11 gcggctgctgagatgaac cgcccctgtttgaacataag 

mCxcl16 tgaactagtggactgctttgagc gcaaatgtttttggtggtga 

hIL1-β tacctgtcctgcgtgttgaa tctttgggtaatttttgggatct 

hTNF-α cagcctcttctccttcctgat gccagagggctgattagaga 

hCCL2 agtctctgccgcccttct gtgactggggcattgattg 

hCCL5 cgctgtcatcctcattgcta ggtgtggtgtccgaggaata 

hCCL21 tccatcccagctatcctgtt agctcctttgggtctgcac 

hCCL22 cgtggtgaaacacttctactgg ccttatccctgaaggttagcaa 

hCCL23 ccaggaggatgaaggtctcc catcatgaactctgtctctgcat 

hCXCL1 tcctgcatcccccatagtta cttcaggaacagccaccagt 

hCXCL2 cccatggttaagaaaatcatcg cttcaggaacagccaccaat 

hCXCL3 aaatcatcgaaaagatactgaacaag ggtaagggcagggaccac 

hCXCL6 gtccttcgggctccttgt cagcacagcagagacaggac 

hCXCL9 tgttcccctttgcttcattc gaaaggcactgcattgtgg 

hCXCL10 gaaagcagttagcaaggaaaggt gacatatactccatgtagggaagtga 

hCXCL11 agtgtgaagggcatggcta tcttttgaacatggggaagc 

hCXCL16 gccctttcctatgtgctgtg caggtatataatgaaccggcagat 
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mCcr1 ctgtgtggacaaaatactctgga tggggtaggcttctgtgaaa 

mCcr3 gaatcaaagagctggggtca caggaggccgatgatgaa 

mCcr5 caactttggggtgataacaagtg tggtaaagattatttctgggagaga 

mCxcr2 caggaccaggaatgggagta tcccctccaaatatccccta 

mCxcr3 gtggccaagtcagtcacctc cccacaaaggcatagagcag 

mCxcr6 ccagctttaagtatgccatcg ttaaggcaagcccgaaagta 

 

Table 2. Primers used for qRT-PCR analysis.  

 

Chemotaxis assays 

 

Chemotaxis assays were performed using transwell inserts (pore 

size, 8 µm, BD Biosciences - 353182) and 12-well culture plates.  

 

To test migration towards defined chemokine gradients, each lower 

chamber was loaded with 1.2 ml of SF DMEM/F-12-GlutaMAX 

medium with mCcl5, mCxcl1, mCxcl10, mCxcl16 or a combination 

of Ccl5 and mCxcl16 (all 50ng ml-1, Peprotech). To test migration 

towards control and damaged tissues, each lower chamber was 

loaded with 1.2 ml cell-free conditioned medium from either mouse 

or human retinae. For the NMDA-damage, mice were sacrificed 24 

hpi; rd10 mice were sacrificed at P18. Mouse and human retinae were 

cultured for 24 hours in SF DMEM/F-12-GlutaMAX and SF 

Neurobasal A (with or without 1mM NMDA) respectively.  

 

The upper chamber of the insert was loaded with 2*105 mMSCs in 

SF medium. The medium used to resuspend mMSCs was matched to 
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the medium in the bottom chamber: either DMEM/F-12-GlutaMAX 

(to test migration towards medium from mouse retinae) or 

Neurobasal A (to test migration towards medium from human 

retinae).  

To test migration impairment, MSC were incubated for 20min at 4°C 

with small molecule receptors antagonists, used as indicated Table 3.   

 

Transwell plates were incubated for 1.5h at 37°C. Afterwards, non-

migrated cells remaining on the upper surface of the inserts were 

removed with a cotton swab. Tranwells were then washed (PBS), 

fixed (4% paraformaldehyde - PFA, 10min) and stained with 5mg ml-

1 6-diamidino-2-phenylindole (DAPI, Sigma). For each insert, seven 

random field were imaged and analyzed. Cells were automatically 

counted using a custom-made macro for the ImageJ software (US 

National Institutes of Health, Bethesda, Md., USA; 

http://rsb.info.nih.gov/ij/).  
 
 

 

Compound 

Name 
 

 

Catalogue Number 

(R&D Systems) 

 

Receptor 

Inhibited 

 

Working 

Concentration 

J 113863 2595/10 Ccr1 6 µM 

SB 328437 3650/10 Ccr3 25 µM 

Maraviroc 3756/10 Ccr5 7 µM 

SB 332235 5671/10 Cxcr2 8 µM 

ML 339 5943/10 Cxcr6 18 µM 

 
Table 3. Name, catalogue number and working concentration of 
selective receptor antagonists.  
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Chemokine antibody arrays 

 

Proteome Profiler™ Mouse Chemokine Antibody Array (R&D 

Systems) was used to assay retinal lysates derived from PBS/NMDA-

injected (24 hpi) and from WT/rd10 (P18) mice. Manufacturer’s 

recommendations were followed. Briefly, arrays were probed with a 

total of 200 µg proteins from retinal lysates. Membranes were 

developed by standard chemiluminescence techniques. Pixel 

intensity was quantified using the ImageJ software. The net level of 

each protein was calculated by the mean of the individual spot 

intensity minus the mean of the background intensity. Relative spot 

intensities are presented as mean ± SEM.  

 

Lentiviral constructs and MSC infection 

 

Mouse Ccr1, Ccr3, Ccr5, Cxcr2, Cxcr3 and Cxcr6 coding sequences 

(CDSs) were amplified by reverse transcribing total mouse spleen 

RNA (Superscript III RT Kit, Invitrogen) and then amplifying the 

full-length CDSs by PCR (using the Phusion hot start high fidelity 

polymerase, Thermofisher). The oligoes used are listed in Table 4. 

Resultant cDNA was C-terminally tagged with an HA and inserted 

into a lentiviral vector with a p1494 backbone, containing an EF1α 

promoter. An eGFP reporter was also present, with its expression 

being driven by a constitutive SV40 promoter (EF1α_HA-Receptor-

SV40_eGFP). For the generation of the Ccr5-Cxcr6 double 

expressing MSC line, the constitutive eGFP reporter of the Cxrc6 
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construct was replaced by a hygromycin resistance marker 

(EF1α_HA-Cxcr6-SV40_Hygro). 

 

For infection, lentiviral particles were produced following the RNA 

interference 

Consortium (TRC) instructions for lentiviral particle production and 

infection in 10 cm plates 

(http://www.broadinstitute.org/rnai/public/). At day 0 HEK293 cells 

were plated at a density of 5*104 cell cm-2 in p150 plates. At day 1, 

using the calcium phosphate transfection kit (Clontech 631312), cells 

were co-transfected with: (A) 19.5 µg pCMV-DR8.2; (B) 10.5 µg 

pCMV-VSV-G; (C) 30 µg of the EF1α_ HA-Receptor-SV40_eGFP 

or the EF1α_ HA-Ccr5-SV40_eGFP + EF1α_ HA-Cxcr6-

SV40_Hygro construct(s). At day 2, the medium of the transfected 

HEK293 was replaced with fresh DMEM/F-12-GlutaMAX 

supplemented with 30% FBS. Meanwhile, mMSCs were plated at a 

density of 5*104 cell cm-2. The lentiviral particles-containing 

medium was harvested from HEK293T cells at 48h and 72h post-

transfection (day 3 and 4), filtered, and directly used for cell 

infection.  

 

mMSCs infected with EF1α_ HA-eceptor-SV40_eGFP constructs 

were FACS-sorted based on fluorescent intensity. Cells transduced 

with EF1α_Ccr5-SV40_eGFP + EF1α_ HA-Cxcr6-SV40_Hygro 

were FACS-sorted based on fluorescent intensity and subjected to 

hygromycin selection (50 µg ml-1) starting two days after the second 

round of infection. 
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Gene 

 

 

Primer FW 

 

Primer RV 

mCcr1-CDS atggagatttcagatttcacagaag tcagaagccagcagagagc 

mCcr3-CDS atggcattcaacacagatgaaatc ctaaaacaccacagagatttcttg 

mCcr5-CDS atggattttcaagggtcagttcc tcataaaccagtagaaacttcatg 

mCxcr2-CDS atgggagaattcaaggtggataag ttagagggtagtagaggtgtttg 

mCxcr3-CDS atgtaccttgaggttagtgaacgt ttacaagcccaggtaggagg 

mCxcr6-CDS atggatgatgggcatcaagagtc ctacaattggaacatactggtggtc 

 
Table 4. List of primers used to amplify receptors’ CDSs from total 
mouse spleen cDNA. 
 
 
 
Immunofluorescence of OE-MSC lines 

 

mMSCs were plated into Lab-Tek chambers. The following day, they 

were washed (PBS), fixed (4% PFA, 10 min), permeabilized (0.2% 

Triton X-100 in PBS, 10 min) and blocked (3% BSA, 300 µM 

glycine, 0.02% Triton X-100 in PBS, 1h).  

Incubation with primary antibodies lasted 3h (at RT). Cells were then 

washed with PBS and incubated with secondary antibodies (1.5h, at 

RT). DAPI (5mg ml-1) was also used to stain for cell nuclei. Images 

were acquired using the Leica SP8 confocal microscope.  

The following antibodies were used: chicken anti-GFP (1:200; 

ab13970, Abcam); mouse anti-HA (1:150; 11583816001, Roche); 

mouse anti-βIII-tubulin (1:200; ab7751, Abcam); anti-chicken Alexa 

Fluor 488; anti-mouse Alexa Fluor 568. All secondary antibodies 
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were provided by Molecular Probes (Invitrogen) and used 1:1’000 in 

PBS.  

 

Flow cytometry analysis of mMSCs and retinal samples 

 

For flow cytometry analysis, cultured mMSCs were detached with 

Accutase and collected by centrifugation at 300 rcf for 5 min. They 

were resuspended at a concentration of 1*106 cells ml-1 and incubated 

with purified Rat Anti-Mouse CD16/CD32 (Mouse BD Fc BlockTM; 

BD PharmingenTM) at a concentration of 5 µg ml-1 (in PBS), 20 min 

at 4 °C. Following two washes in PBS, cells were incubated with 

conjugated primary antibodies (in PBS) for 30 min at 4 °C, in the 

dark. Finally, they were washed (PBS) and resuspended in PBS + 

DAPI (5mg ml-1) for flow cytometry analysis. The following 

antibodies were used: PE anti-mouse CCR1 (FAB5986P); APC anti 

human/mouse/rat CCR5 (FAB1802A); Per-CP anti-mouse 

CXCR2/IL8 RB (FAB2164C); Alexa Fluor®700 anti-mouse CXCR3 

(FAB1685N); Alexa Fluor®700 anti-mouse CXCR6 (FAB2145N). 

All antibodies were purchased from R&D Systems and used at a 

concentration of 10µl/106cells. 

 

For flow cytometry analysis of retinal samples, retinae were dissected 

from the enucleated eyes and incubated (30 min, 37 ºC) in trypsin 

supplemented with 0.1 mg ml-1 DNAseI for 20-30 minutes at 37ºC. 

Samples were then mechanically triturated, filtered, pelleted, and re-

suspended in PBS for flow cytometry analysis. DAPI (5mg ml-1) was 

also added to exclude dead cells from the analysis. Both NMDA-
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damaged rd10 eyes were analyzed 4 dpi.  

 

Fixing, sectioning and immunofluorescence 

 

Eyes were enucleated and fixed by immersion in 4% PFA overnight 

at 4°C; they were embedded in paraffin the following day. Serial 

transversal sections of 5µm of thickness were prepared and processed 

for immunofluorescence staining. Briefly, sections were de-

paraffinized by sequential treatment with Xilene and EtOH gradient; 

slices were then placed in a plastic rack with a permeabilization 

buffer containing 0.3%Triton X-100 and 0.1M NaCitrate in PBS (1h 

at RT). Antigen retrieval was then performed by boiling the slides for 

4 minutes in a domestic microwave. After a wash with cold water, 

sections were blocked for 1h (3% BSA, 300 µM glycine, 0.03% 

Triton X-100, 0.01M NaCitrate in PBS). They were then incubated 

overnight at 4ºC with primary antibodies diluted in PBS, 1.5% BSA. 

On the following day, slides were washed with PBS and incubated 

with secondary antibodies for 2h at room temperature.   

 

For retinal flat mount immunostaining, whole retinae were dissected 

from previously fixed eye globes, and left an additional 30min in 4% 

PFA. They were then permeabilized (0.3% Triton X-100 in PBS, 1.5h 

at RT) and blocked for 1h at RT (3% BSA, 300 µM glycine, 0.03% 

Triton X-100, in PBS). Incubation with primary antibodies lasted two 

consecutive overnights at 4ºC. Retinae were then washed with PBS 

and incubated with secondary antibodies (overnight at 4ºC). DAPI 

(5mg ml-1) was also used to stain for cell nuclei. 
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Following imaging, retinal flat mounts were embedded in paraffin, 

sectioned and processed for immunofluorescence re-staining as 

described for eye globes transversal sections.  

 

The following antibodies were used: chicken anti-GFP (1:200; 

ab13970, Abcam); mouse anti-βIII-tubulin (1:200; ab7751, Abcam); 

anti-chicken Alexa Fluor 488, anti-mouse Alexa Fluor 568, anti-

rabbit Alexa Fluor 568, anti-mouse Alexa Fluor 647 and anti-rabbit 

Alexa Fluor 633. All secondary antibodies were provided by 

Molecular Probes (Invitrogen) and used 1:1’000 in PBS. DAPI (5mg 

ml-1) was used to stain for cell nuclei.  

 

Both retinal flat mounts and sections were mounted with Vectashield 

(Vector Laboratories, 42 Burlingame, CA, USA) and imaged using 

either Leica laser SP5 or SP8 confocal microscopy systems.  

 

Image processing and quantification 

 

Images from both sections and whole retinal flat mounts were 

processed with the ImageJ software. Quantifications were based on 

analysis of at least three animals. We analyzed a minimum of ten 

sections per mouse, and three random fields per section. For each flat 

mount, we imaged at least three random fields.  

 

To quantify the number of GFP+ MSCs differentiating into ganglion-

amacrine neurons in flat mounts, GFP+ total MSCs and double 

positive GFP+/βIII-tubulin+ cells were counted in at least ten sections 
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per animal (20X objective). The “transdifferentiation rate” was 

expressed as the percentage of the GFP+/βIII-tubulin+ cells over the 

total GFP+ cells, ± SEM.  

 

Statistical Analysis 

 

As specified in the figure legends, data is presented as mean ± SEM 

or Min to Max boxes (with line at median). All statistical tests and 

graphs were generated using the Prism 8.0 software (GraphPad, San 

Diego, CA). Depending on the experimental setup, we used Mann-

Whitney test, Two-tailed Student’s T-test or One Way Anova. In all 

cases, a p value < 0.05 was considered significant (*, P <0.05; **, P 

<0.01; ***, P <0.001; ****, P <0.0001; ns, not significant). 
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