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Abstract

Nowadays, lung cancer assessment is a complex and tedious task mainly per-
formed by radiological visual inspection of suspicious pulmonary nodules, using
computed tomography (CT) scan images taken to patients over time.

Several computational tools relying on conventional artificial intelligence and
computer vision algorithms have been proposed for supporting lung cancer detec-
tion and classification. These solutions mostly rely on the analysis of individual
lung CT images of patients and on the use of hand-crafted image descriptors. Un-
fortunately, this makes them unable to cope with the complexity and variability
of the problem. Recently, the advent of deep learning has led to a major break-
through in the medical image domain, outperforming conventional approaches.
Despite recent promising achievements in nodule detection, segmentation, and
lung cancer classification, radiologists are still reluctant to use these solutions in
their day-to-day clinical practice. One of the main reasons is that current solutions
do not provide support to automatic analysis of the temporal evolution of lung tu-
mours. The difficulty to collect and annotate longitudinal lung CT cases to train
models may partially explain the lack of deep learning studies that address this
issue.

In this dissertation, we investigate how to automatically provide lung cancer
assessment through deep learning algorithms and computer vision pipelines, espe-
cially taking into consideration the temporal evolution of the pulmonary nodules.
To this end, our first goal consisted on obtaining accurate methods for lung can-
cer assessment (diagnostic ground truth) based on individual lung CT images.
Since these types of labels are expensive and difficult to collect (e.g. usually af-
ter biopsy), we proposed to train different deep learning models, based on 3D
convolutional neural networks (CNN), to predict nodule malignancy based on ra-
diologist visual inspection annotations (which are reasonable to obtain). These
classifiers were built based on ground truth consisting of the nodule malignancy,
the position and the size of the nodules to classify. Next, we evaluated different
ways of synthesizing the knowledge embedded by the nodule malignancy neu-
ral network, into an end-to-end pipeline aimed to detect pulmonary nodules and
predict lung cancer at the patient level, given a lung CT image. The positive re-
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sults confirmed the convenience of using CNNs for modelling nodule malignancy,
according to radiologists, for the automatic prediction of lung cancer.

Next, we focused on the analysis of lung CT image series. Thus, we first
faced the problem of automatically re-identifying pulmonary nodules from differ-
ent lung CT scans of the same patient. To do this, we present a novel method
based on a Siamese neural network (SNN) to rank similarity between nodules,
overpassing the need for image registration. This change of paradigm avoided
introducing potentially erroneous image deformations and provided computation-
ally faster results. Different configurations of the SNN were examined, including
the application of transfer learning, using different loss functions, and the combi-
nation of several feature maps of different network levels. This method obtained
state-of-the-art performances for nodule matching both in an isolated manner and
embedded in an end-to-end nodule growth detection pipeline.

Afterwards, we moved to the core problem of supporting radiologists in the
longitudinal management of lung cancer. For this purpose, we created a novel
end-to-end deep learning pipeline, composed of four stages that completely au-
tomatize from the detection of nodules to the classification of cancer, through the
detection of growth in the nodules. In addition, the pipeline integrated a novel
approach for nodule growth detection, which relies on a recent hierarchical prob-
abilistic segmentation network adapted to report uncertainty estimates. Also, a
second novel method was introduced for lung cancer nodule classification, inte-
grating into a two stream 3D-CNN the estimated nodule malignancy probabilities
derived from a pre-trained nodule malignancy network. The pipeline was eval-
uated in a longitudinal cohort and the reported outcomes (i.e. nodule detection,
re-identification, growth quantification, and malignancy prediction) were compa-
rable with state-of-the-art work, focused on solving one or a few of the function-
alities of our pipeline.

Thereafter, we also investigated how to help clinicians to prescribe more ac-
curate tumour treatments and surgical planning. Thus, we created a novel method
to forecast nodule growth given a single image of the nodule. Particularly, the
method relied on a hierarchical, probabilistic and generative deep neural network
able to produce multiple consistent future segmentations of the nodule at a given
time. To do this, the network learned to model the multimodal posterior distri-
bution of future lung tumour segmentations by using variational inference and
injecting the posterior latent features. Eventually, by applying Monte-Carlo sam-
pling on the outputs of the trained network, we estimated the expected tumour
growth mean and the uncertainty associated with the prediction.

Although further evaluation in a larger cohort would be highly recommended,
the proposed methods reported accurate results to adequately support the radiolog-
ical workflow of pulmonary nodule follow-up. Beyond this specific application,
the outlined innovations, such as the methods for integrating CNNs into com-
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puter vision pipelines, the re-identification of suspicious regions over time based
on SNNs, without the need to warp the inherent image structure, or the proposed
deep generative and probabilistic network to model tumour growth considering
ambiguous images and label uncertainty, they could be easily applicable to other
types of cancer (e.g. pancreas), clinical diseases (e.g. Covid-19) or medical appli-
cations (e.g. therapy follow-up).

Resum
Avui en dia, l’avaluació del càncer de pulmó és una tasca complexa i tediosa, prin-
cipalment realitzada per inspecció visual radiològica de nòduls pulmonars sospi-
tosos, mitjançant imatges de tomografia computada (TC) preses als pacients al
llarg del temps.

Actualment, existeixen diverses eines computacionals basades en intel·ligència
artificial i algorismes de visió per computador per donar suport a la detecció i
classificació del càncer de pulmó. Aquestes solucions es basen majoritàriament
en l’anàlisi d’imatges individuals de TC pulmonar dels pacients i en l’ús de des-
criptors d’imatges fets a mà. Malauradament, això les fa incapaces d’afrontar
completament la complexitat i la variabilitat del problema. Recentment, l’apari-
ció de l’aprenentatge profund ha permès un gran avenç en el camp de la imatge
mèdica. Malgrat els prometedors assoliments en detecció de nòduls, segmentació
i classificació del càncer de pulmó, els radiòlegs encara són reticents a utilitzar
aquestes solucions en el seu dia a dia. Un dels principals motius és que les solu-
cions actuals no proporcionen suport automàtic per analitzar l’evolució temporal
dels tumors pulmonars. La dificultat de recopilar i anotar cohorts longitudinals
de TC pulmonar poden explicar la manca de treballs d’aprenentatge profund que
aborden aquest problema.

En aquesta tesi investiguem com abordar el suport automàtic a l’avaluació
del càncer de pulmó, construint algoritmes d’aprenentatge profund i pipelines de
visió per ordinador que, especialment, tenen en compte l’evolució temporal dels
nòduls pulmonars. Aixı́ doncs, el nostre primer objectiu va consistir a obtenir
mètodes precisos per a l’avaluació del càncer de pulmó basats en imatges de CT
pulmonar individuals. Atès que aquests tipus d’etiquetes són costoses i difı́cils
d’obtenir (per exemple, després d’una biòpsia), vam dissenyar diferents xarxes
neuronals profundes, basades en xarxes de convolució 3D (CNN), per predir la
malignitat dels nòduls basada en la inspecció visual dels radiòlegs (més senzilles
de recol.lectar). A continuació, vàrem avaluar diferents maneres de sintetitzar
aquest coneixement representat en la xarxa neuronal de malignitat, en una pipeline
destinada a proporcionar predicció del càncer de pulmó a nivell de pacient, donada
una imatge de TC pulmonar. Els resultats positius van confirmar la conveniència
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d’utilitzar CNN per modelar la malignitat dels nòduls, segons els radiòlegs, per a
la predicció automàtica del càncer de pulmó.

Seguidament, vam dirigir la nostra investigació cap a l’anàlisi de sèries d’i-
matges de TC pulmonar. Per tant, ens vam enfrontar primer a la reidentificació
automàtica de nòduls pulmonars de diferents tomografies pulmonars. Per fer-ho,
vam proposar utilitzar xarxes neuronals siameses (SNN) per classificar la simi-
litud entre nòduls, superant la necessitat de registre d’imatges. Aquest canvi de
paradigma va evitar possibles pertorbacions de la imatge i va proporcionar resul-
tats computacionalment més ràpids. Es van examinar diferents configuracions del
SNN convencional, que van des de l’aplicació de l’aprenentatge de transferència,
utilitzant diferents funcions de pèrdua, fins a la combinació de diversos mapes
de caracterı́stiques de diferents nivells de xarxa. Aquest mètode va obtenir re-
sultats d’estat de la tècnica per reidentificar nòduls de manera aı̈llada, i de forma
integrada en una pipeline per a la quantificació de creixement de nòduls.

A més, vam abordar el problema de donar suport als radiòlegs en la gestió
longitudinal del càncer de pulmó. Amb aquesta finalitat, vam proposar una nova
pipeline d’aprenentatge profund, composta de quatre etapes que s’automatitzen
completament i que van des de la detecció de nòduls fins a la classificació del
càncer, passant per la detecció del creixement dels nòduls. A més, la pipeline va
integrar un nou enfocament per a la detecció del creixement dels nòduls, que es
basava en una recent xarxa de segmentació probabilı́stica jeràrquica adaptada per
informar estimacions d’incertesa. A més, es va introduir un segon mètode per a
la classificació dels nòduls del càncer de pulmó, que integrava en una xarxa 3D-
CNN de dos fluxos les probabilitats estimades de malignitat dels nòduls derivades
de la xarxa pre-entrenada de malignitat dels nòduls. La pipeline es va avaluar
en una cohort longitudinal i va informar rendiments comparables a l’estat de la
tècnica utilitzats individualment o en pipelines però amb menys components que
la proposada.

Finalment, també vam investigar com ajudar els metges a prescriure de for-
ma més acurada tractaments tumorals i planificacions quirúrgiques més precises.
Amb aquesta finalitat, hem realitzat un nou mètode per predir el creixement dels
nòduls donada una única imatge del nòdul. Particularment, el mètode es basa
en una xarxa neuronal profunda jeràrquica, probabilı́stica i generativa capaç de
produir múltiples segmentacions de nòduls futurs consistents del nòdul en un mo-
ment determinat. Per fer-ho, la xarxa apren a modelar la distribució posterior
multimodal de futures segmentacions de tumors pulmonars mitjançant la utilitza-
ció d’inferència variacional i la injecció de les caracterı́stiques latents posteriors.
Finalment, aplicant el mostreig de Monte-Carlo a les sortides de la xarxa, podem
estimar la mitjana de creixement del tumor i la incertesa associada a la predicció.

Tot i que es recomanable una avaluació posterior en una cohort més gran,
els mètodes proposats en aquest treball han informat resultats prou precisos per
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donar suport adequadament al flux de treball radiològic del seguiment dels nòduls
pulmonars. Més enllà d’aquesta aplicació especı́fica, les innovacions presentades
com, per exemple, els mètodes per integrar les xarxes CNN a pipelines de visió
per ordinador, la reidentificació de regions sospitoses al llarg del temps basades
en SNN, sense la necessitat de deformar l’estructura de la imatge inherent o la
xarxa probabilı́stica per modelar el creixement del tumor tenint en compte imatges
ambigües i la incertesa en les prediccions, podrien ser fàcilment aplicables a altres
tipus de càncer (per exemple, pàncrees), malalties clı́niques (per exemple, Covid-
19) o aplicacions mèdiques (per exemple, seguiment de la teràpia).
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Chapter 1

INTRODUCTION

1.1 Clinical context

According to World Health Organization1 Cancer is a leading cause of death
worldwide, accounting for nearly 10 million deaths in 20202. Lung cancer, in
particular, is the second most common in terms of new cases of cancer, with 2.21
million cases (11.4%), and the most aggressive in number of deaths (both sexes,
all ages) with 1.8 million cases (18%) in 2020.

Early detection of lung cancer significantly improves the chances of patient
survival. Depending on the lung cancer type, patients with an advanced stage of
the disease have a 1-year survival rate of only 15-19%, compared with 81–85%
for patients treated with the disease identified at early stages [35]. Unfortunately,
in most cases, patients are unaware that they have a pulmonary nodule until phys-
ical symptoms appear, which most often occur in advanced stages of the disease.
For this reason, early-stage detection and classification of benign and malignant
pulmonary nodules plays an important role in clinical diagnosis.

Today, the gold standard for lung cancer detection consists in routinely taking
a computed tomography (CT) scan, and detecting nodules (i.e. small and approx-
imately spherical masses) in it [298]. Once pulmonary nodules have been identi-
fied, radiologists normally perform size and growth rate quantification studies to
assess their malignancy. However, lung CT images often have a low signal-to-
noise ratio, causing misclassifications of regions with weak or irregular contours.
Also, lung cancer diagnosis through CT is often subjective and highly affected
by observer’s experience, fatigue and emotional state [227], which can lead to
inconsistent results from the same radiologist at different times or from different
radiologists examining the same CT image.

1https://www.who.int/news-room/fact-sheets/detail/cancer
2Global Cancer Observatory: Cancer Today. https://gco.iarc.fr/today, accessed April 2021
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To support radiologists in the management of the lung cancer disease, several
guidelines like LungRADs [12] and Fleischner [194] have been proposed. These
guidelines are a compilation of well documented cases and a set of rule-based rec-
ommendations from the clinical experience designed to help clinicians to discern
among pulmonary nodules, normal tissues and artefacts, as well as to determine
the inherent malignancy of the nodules. However, they are constrained to a lim-
ited number of visual parameters (e.g. size, morphology, texture and location of
the nodules) and to a fixed range of values. In addition, the recommended clinical
actions are often too general and vague, making them insufficiently suitable for
specific patients, or for supporting rare or borderline cases.

Unfortunately, the radiological imaging units of health institutions are often
overloaded due to limited resources. This makes it unfeasible to have all the med-
ical care required at any given time for any patient. Therefore, efficient and ac-
curate computational support could help to address and unblock this complicated
healthcare scenario.

To overcome current clinical limitations, this thesis proposes the development
of accurate predictive methods to analyse lung CT scan images (potentially in-
cluding follow-up scans) to automatically provide the most relevant information
to the radiologists such as location, diameter, growth and malignancy of the nod-
ules, as well as to predict their potential evolution.

1.2 Methodological context
Traditionally, automated support for lung cancer assessment has been addressed
using conventional image analysis techniques applied to individual lung CT im-
ages. Specifically, some of these techniques have been used for the detection
of pulmonary nodules (e.g. using Laplacian of Gaussian (LoG) filters [86], his-
togram of oriented gradients [59] or wavelet feature descriptors [221]), for the
nodule segmentation (e.g. using region growing-based approaches [303]) or for
the nodule malignancy classification (e.g. building conventional machine learn-
ing algorithms such as random forest [120], gradient boosting machines [82] or
support vector machines [55]). Unfortunately, the resulting proposed solutions
[80, 303], which mostly rely on pre-conceived notions of the suspicious regions
through hand-crafted image descriptors, turned out to be not effective enough to
fully capture the complexity and variability of pulmonary nodules [124].

Recently, the advent of deep learning [167], and in particular thanks to convo-
lutional neural networks (CNN) [168], has allowed a breakthrough in the medical
image analysis domain [31, 78, 100]. Specifically, for the lung cancer assessment
problem, several studies using CNNs have shown outstanding performances, sur-
passing those of conventional approaches, for nodule detection [262], segmenta-
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tion [200] and malignancy classification [51]. Some of the reasons that explain
these achievements lie in the ability of CNNs to automatically extract high level
feature imaging representations, in which its shared-weights architecture enables
it to capture basic image properties, such as high correlation among local values
and translation invariance [54].

Hence, in a relatively short time, CNNs have been widely investigated for
analysing lung CT images. In particular, for the nodule detection problem, re-
cent solutions [212, 334] propose the use of object detection networks such as
Faster R-CNN [244]. This method together with SSD [186] and YOLO [241]
are well-known architectures originally proposed for object detection on natural
images. Specifically, Faster R-CNN although slightly slower than the others, are
particularly suitable for nodule detection because of its flexibility on defining the
initial anchor boxes. For the problem of nodule segmentation, U-Net based ar-
chitectures [248] have been extensively studied, using either 2D/3D input patch
imaging, and several variants can be found in the literature [133, 333]. This net-
work usually provides high segmentation performances thanks to a convolutional
encoder and decoder backbone tied at different levels by short-cuts, which allow
by-passing high level features of the encoder to the decoder, in order to enhance
the image reconstruction. For lung nodule malignancy classification (either using
radiological observation or diagnostically confirmed labels), tailored 2D multi-
view/multi-scale (commonly known as 2’5D) and 3D CNNs are frequently used
for this problem (e.g. [8, 184, 266]), most of them relying on standard CNN ar-
chitectures for classification [213, 214], such as VGG-16 [272], ResNet[115] or
DenseNet [128].

Despite the high performances generally reported by these studies, few works
have addressed the lung cancer assessment in an end-to-end manner [178]. One
of the main reasons is the lack of available datasets with confirmed lung cancer
diagnosis. To overcome this initial limitation, in chapter 4 we developed tailored
3D CNNs aimed at predicting nodule malignancy (i.e. subjective measure pro-
vided by radiologists) for which data are more abundant and labels are cheaper to
obtain. The proposed CNNs showed radiologist nodule malignancy classification
performances. Subsequently, we designed a transfer learning framework to inte-
grate nodule malignancy CNNs into an end-to-end lung cancer pipeline devoted
to detect nodules and predict lung cancer at the patient level, given as input a raw
lung CT image study. Interestingly, this approach allowed increasing dramatically
the cancer classification performance of the pipeline.

Since current radiological practice for lung cancer assessment is based on the
visual inspection of different lung CT studies performed at different time-points
on the patients, solutions for analysing single time-point CT images remain insuf-
ficient, providing only partial support to the entire radiological workflow. Thus,
a critical challenge is to provide algorithms capable of analysing and extracting

3



“output” — 2021/7/6 — 8:07 — page 4 — #28

relevant spatial and temporal patterns, to support clinicians in the lung nodule
follow-up. To the best of our knowledge, studies using deep learning to address
this problem are scarce, in part due to the lack of open annotated longitudinal
data. Although we can find large longitudinal cohorts for lung cancer assess-
ment, such as NLST [297], these are not publicly available and obtained through
population-based screenings, which usually present findings with different char-
acteristics from incidental cohorts and, therefore, are advised by different clinical
recommendation guidelines [12]. In this dissertation, we were able to collect (in
collaboration with radiologists of the Vall d’Hebron hospital at Barcelona) a new
cohort composed of more than 150 labelled incidental cases to enable the temporal
lung nodule analysis.

To provide automatic support to clinicians in the analysis of the temporal evo-
lution of pulmonary nodules, we had to face several challenges. In first term, nod-
ules have to be automatically re-identified from different lung CT images. Current
solutions rely on image registration techniques [39, 207]. These are usually time-
consuming and potentially need to modify the structure of the image to be able
to align both lung CTs. Therefore, in chapter 5, we addressed these limitations
by contributing with a novel and agile approach based on a 3D Siamese neural
network (SNN) [152] avoiding the need of having the lung CT images previously
registered. SNNs are a type of CNNs suitable for predicting similarity between
images thanks to its original architecture in which the features from two input im-
ages are extracted using two sibling networks (normally sharing architecture and
weights), and compared by a distance layer at the top of the network. They have
been extensively used in computer vision matching problems such as tracking ob-
jects in videos [296]. However, to the best of our knowledge, SNNs have not been
applied before to re-identify nodules in a series of lung CT scans. Another impor-
tant task to be faced for the temporal lung nodule analysis is quantifying nodule
growth. To address this issue, also in chapter 5 we built an automatic pipeline
able to, given two different CT studies of the same patient, detect, re-identify and
quantify the nodule growth by subtracting the (major) diameter from the match-
ing nodules, provided by a lung nodule detection network (i.e. 3D Faster R-CNN).
However, due to the inherent ambiguity of the images (often contours of the nod-
ules are not clearly delimited), it is desirable and safer reporting network uncer-
tainty estimates when quantifying the size of the nodules. One way to learn model
uncertainty is moving from one-input one-output to one-input multiple-output net-
works. This change of paradigm has already been tackled in deep neural networks
through different approaches. One of the simplest approximations consists in en-
sembling multiple networks in order to provide multiple opinions [164]. Another
approach consists in enabling dropout [279] at inference time in order to provide
independent pixel-wise probabilities [142]. In chapter 6, we proposed a novel
way to address nodule growth quantification extending a recent deep probabilistic
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and generative U-Net network [154], suitable for modelling ambiguous images, to
provide nodule diameter and an uncertainty on this estimated measure. Another
relevant task for temporal lung nodule analysis is to predict the lung cancer prob-
ability of the nodules. Unfortunately, few deep learning-based works have tackled
lung cancer prediction using the temporal evolution of the nodules. Some solu-
tions rely on CNNs combined with long short-term memory networks (LSTM)
[121], which are a special type of recurrent neural networks (RNN) suitable for
capturing long-term dependencies [71], or applying multi-stream CNN architec-
tures [14] (approaches typically used for activity recognition [139]). In chapter
6, we extended the pipeline proposed in chapter 5 with a new method able to
provide the lung cancer probability of a lung nodule. In particular, we proposed
a new 3D two-stream CNN. Our results confirmed the suitability of this approach
by achieving high performances and surpassing 3D CNN approaches trained on
single time-point images.

Finally, in chapter 7, we focused on the problem of predicting the evolution
of the lung nodules, given a single image of the nodule and the time at which
to provide the estimation. Cancer progression analysis has been traditionally ad-
dressed through complex and sophisticated mathematical models [254], such as
those based on the reaction-diffusion equation [287, 292]. However, the number
of parameters of such models is often limited (e.g. 5 in [318]), which might not
be sufficient to capture the inherent complexities of the growing patterns of the
tumours. Recently, deep learning has been used to predict future tumour growth,
surpassing performances reported by traditional approaches [328]. Some of these
solutions usually rely on architectures composed by CNNs in combination with
LSTMs or using generative networks such as those based on adversarial learning
[96] and variational auto-encoders [148] to estimate future images of the tumour
[76, 231]. In the lung cancer domain, to the best of our knowledge, few works
[177, 311] using deep learning have been proposed. Despite the reasonable per-
formances reported by existing solutions, those have not adequately taken into ac-
count the inter-observer variability and uncertainty in the lung nodule estimations.
Thus, we addressed the lung nodule forecasting problem, aiming to cover existing
limitations. To do this, we adapted a recent hierarchical probabilistic framework
[154] to model the posterior multimodal lung nodule growth probability distri-
bution. Our approach was able to provide growth prediction, quantification and
segmentation of the future nodule, together with a measure of uncertainty for the
estimation. This network demonstrated better performances than a similar de-
terministic approach (i.e. U-ResNet [331]) and other alternative deep generative
networks, such as a probabilistic U-Net [153], a conditional generative adversarial
network [134] and a Bayesian dropout network [142].
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1.3 Objectives of the thesis
The main goal of this thesis was to research and develop new methods based
on deep learning using images from CT scans of the patients (single time-point
and/or follow-up sets of images), to improve the performance of crucial parts of
the radiological workflow regarding lung cancer management. Therefore, this
thesis has been structured around the following specific objectives:

• Design and evaluate an automatic method to find the possible locations of
pulmonary nodules in a lung CT. This functionality would help clinicians to
rapidly detect all nodules present in a CT scan and annotate their position.

• Design and evaluate a method to automatically predict lung nodule malig-
nancy using radiologists labels acquired from single CT image observation.
This functionality would help the characterization of the malignancy pat-
terns existing in the lung nodule image, as well as evaluating the ability of
the automatic methods in comparison with the experts.

• Develop an end-to-end pipeline to predict lung cancer using the malignancy
patterns automatically extracted from the nodules. This functionality would
help clinicians to provide early indicators of cancer from a lung CT scan.

• Address the issue of the automatic spatial mapping of nodules between CT
studies. The position of the nodule may be shifted between scans due to
respiration or the positioning of the patient during the scanning process.
Therefore, supporting clinicians in this problem would help them to save
time.

• Design and evaluate a method to automatically predict cancer from series of
lung nodule images using diagnosed cases. This functionality would sup-
port clinicians in the identification of lung cancer from the temporal evo-
lution of the nodules, as well as assessing the contribution of the temporal
feature in the prediction ability of the model.

• Develop an end-to-end pipeline to predict lung cancer using the temporal
evolution of nodules in subsequent scans. This functionality would help
them to provide more accurate lung cancer assessment as well as better
therapeutic planning.

• Develop a method to predict, quantify and visualize lung nodule growth.
Since growth is considered one of the most important factors in tumour
malignancy, providing this method would help clinicians to anticipate the
development of the disease and take more accurate and personalized treat-
ments.

6
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1.4 Outline of the thesis
The core contents of this thesis are presented in the following chapters.

Chapter 2 describes the clinical background. First, we define lung cancer
and pulmonary nodules, and then the main diagnostic methods and management
options are presented.

Chapter 3 details the methodological background of this thesis. We review the
main deep learning methods and tools required for pulmonary nodule detection,
segmentation and malignancy prediction.

Chapter 4 proposes different methods to integrate a 3D CNN for malignancy
prediction into a lung cancer classification pipeline. This work has led to the
following publications:

1. Rafael-Palou Xavier, Bonavita Ilaria, Ceresa Mario, Piella Gemma, Ribas
Vicent, González Ballester Miguel A. Improving Lung Cancer Prediction
with a Deep Learning Nodule Malignancy Classifier. International Journal
of Computer Assisted Radiology and Surgery. Vol. 14 (Suppl. 1): 70-71,
2019.

2. Rafael-Palou Xavier, Bonavita Ilaria, Ceresa Mario, Piella Gemma, Ribas
Vicent, González Ballester Miguel A. Integration of convolutional neural
networks for pulmonary nodule malignancy assessment in a lung cancer
classification pipeline. Computer Methods and Programs in Biomedicine.
Vol. 185 (105172), pp. 1-9, 2020.

Chapter 5 proposes a method to re-identify lung nodules located in different
CT scan images. This work has led to the following publications:

1. Rafael-Palou Xavier, Aubanell Anton, Bonavita Ilaria, Ceresa Mario, Piella
Gemma, Ribas Vicent, González Ballester Miguel A. 3D Siamese Neural
Networks for Matching Pulmonary Nodules in Series of CT Scans. Interna-
tional Journal of Computer Assisted Radiology and Surgery. Vol. 15 (Suppl.
1), 2020.

2. Rafael-Palou Xavier, Aubanell Anton, Bonavita Ilaria, Ceresa Mario, Piella
Gemma, Ribas Vicent, González Ballester Miguel A. Re-Identification and
Growth Detection of Pulmonary Nodules without Image Registration Using
3D Siamese Neural Networks. Medical Image Analysis. Vol. 67 (101823),
pp. 1-12, 2021.

Chapter 6 proposes a pipeline to detect, quantify and predict malignancy of
pulmonary nodules using a pair of CT scan images. This work has led to the
following publications:
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1. Rafael-Palou Xavier, Aubanell Anton, Bonavita Ilaria, Ceresa Mario, Piella
Gemma, Ribas Vicent, González Ballester Miguel A. Pulmonary Nodule
Malignancy Classification Using its Temporal Evolution with Two-Stream
3D Convolutional Neural Networks. International Conference on Medical
Imaging with Deep Learning (MIDL), 2020.

2. Rafael-Palou Xavier, Aubanell Anton, Ceresa Mario, Piella Gemma, Ribas
Vicent, González Ballester Miguel A. Detection, growth quantification and
malignancy prediction of pulmonary nodules using deep convolutional net-
works in follow-up CT scans. To appear in Artificial Intelligence in Cancer
Diagnosis, Volume 1: Lung and Kidney Cancer.

Chapter 7 proposes a method to forecast lung nodule growth and its associ-
ated uncertainty given a single CT scan image. This work has led to the following
publication(s):

1. Rafael-Palou Xavier, Aubanell Anton, Ceresa Mario, Piella Gemma, Ribas
Vicent, González Ballester Miguel A. An Uncertainty-aware Hierarchical
Probabilistic Network for Early Prediction, Quantification and Segmenta-
tion of Pulmonary Tumour Growth. Under review in Medical Image Analy-
sis.

Finally, Chapter 8 concludes the thesis and discusses the outlook and direc-
tions for future work.
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Chapter 2

CLINICAL BACKGROUND

This chapter describes the clinical background of this thesis. First, lung cancer
is defined. Then, pulmonary nodules and principal malignancy factors are de-
tailed. Lastly, the main methods and tools for pulmonary nodule management are
introduced.

2.1 Lung cancer

Lung cancer is characterized by abnormal cells with an uncontrolled growth abil-
ity to potentially spread into nearby tissues or parts of the body [317]. These
abnormal cells interfere with the normal function of the lung (Figure-2.1) in pro-
viding oxygen to the blood. The malignant behaviour of these cells is due to se-
vere damage (or mutations) in the structure of their DNA sequence. Researchers
have found that it takes a series of mutations to create a lung cancer cell [223].
Therefore, before becoming fully cancerous, cells can be precancerous, in that
they have some mutations but still function normally as lung cells. However, after
several cell divisions (in which the malignant genes are replicated), the eventual
lung cell becomes more mutated and may not be as effective in carrying out its
original function. In later stages of the disease, some cells may travel away from
the original tumour and start growing in other parts of the body. This process is
called metastasis.

DNA mutations in lung cells can be caused by the normal ageing process
or through environmental factors. In lung cancer the main exogenous genotoxic
agent is tobacco (e.g. acrolein, formaldehyde, acrylonitrile, 1,3-butadiene, ac-
etaldehyde, ethylene oxide and isoprene) [58]. Specifically, long-term cigarette
smoking is implicated in 85% of lung cancer cases [9], and therefore, is consid-
ered the major factor of risk. About 10–15% of cases occur in people who have
never smoked [301], often caused by a combination of genetic factors and expo-
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Figure 2.1: The left lung and right lung. The lobes of the lungs can be seen, and the central root
of the lung is also present. Credits: Henry Vandyke Carter. Public domain.

sure to radon gas, asbestos, second-hand smoke, or other forms of air pollution
[219, 220].

When cancer arises directly at any location of the structure of the lung (Figure-
2.1), it is known as primary lung cancer [316], whereas it is secondary if it is orig-
inated in other part of the body and reaches the lung through metastasis. Accord-
ing to its histology (Figure-2.2), lung cancers are classified mainly in non-small
cell lung carcinoma (NSCLC) and small cell lung carcinoma (SCLC). They differ
clinically in terms of presentation, treatment, and prognosis [163]. Nearly 85%
of lung cancers are NSLC, whereas the rest are SCLC [64]. NSCLC are further
sub-divided into: adenocarcinoma, squamous-cell carcinoma and large-cell carci-
noma [70]. Among all lung cancer types, adenocarcinoma is the most common
with 40% of entire lung cancer incidence, followed by squamous cell carcinoma
with 25-30% [6, 7]. Large cell carcinoma comprises 5–10% of total lung cancer
[85].

Figure 2.2: Microscopic view of a non-small cell lung carcinoma (left) and a small-cell lung
carcinoma (right). Credits: KGH and Librepath, CC 3.0.
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Treatment and prognosis for lung cancer depends on its stage. Stages I and
II refer to cancers localized in the lungs, whilst latter stages (III or IV) refer to
cancers that have spread to other organs. Early-stage lung cancer is non-specific
and often asymptomatic1, which explains why most cases are diagnosed at stage
III or IV (representing 61% of all newly diagnosed lung cancers), and only 21%
are diagnosed at stage I [201]. Therefore, early detection of lung cancer is crucial
since it significantly improves the chances of survival.

2.2 Pulmonary nodules
One key characteristic of lung cancer is the presence of malignant pulmonary
nodules. By definition, a lung nodule is a small round or oval-shaped growth
in the lung, which may be well or poorly delineated, measuring less than three
centimetres in diameter. A nodule smaller than 3 mm should be referred to as
micronodule (difficult to be detected) [109]. If the diameter is larger than 3 cm, it
is called a pulmonary mass and is more likely to represent a cancerous nodule.

There are two main types of pulmonary nodules: malignant (cancerous) and
benign (non-cancerous). A wide variety of causes may originate the appearance
of nodules in the lung, such as infections (from mycobacterium like tuberculosis,
or fungal such as aspergillosis), non-infectious disorders (such as sarcoidosis) and
abnormal growths or neoplasms. In the latter case, they still may be benign (e.g.
fibroma, hamartoma) or malignant cancerous nodules (e.g. adenocarcinomas).

Figure 2.3: On the left, a solid carcinoma tumour; on the right, a part-solid adenocarcinoma.

Traditionally, to estimate the malignancy probability of a pulmonary nodule,
radiologists consider different factors, some based on the clinical history (such as
age, smoking history, and the presence of another malignancy 5 years prior to the
time of evaluation) of the patient and others relying on the subjective radiographic
appearance of the nodules [57, 102]. The typical imaging factors are:

1https://www.cancer.org/cancer/lung-cancer/detection-diagnosis-staging/signs-
symptoms.html
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• Morphology: Nodules can be categorized as solid, part-solid, and pure
ground-glass (GGN). Criteria for making these distinctions have not been
completely agreed upon and remain controversial. A solid nodule is a nod-
ule that completely obscures the entire lung parenchyma within it. Part-
solid nodules are those having sections that are solid, and ground-glass nod-
ules are those with no solid parts with focal nodular areas of increased lung
attenuation through which lung parenchymal structures can be observed.
Part-solid and ground-glass nodules have a higher likelihood of being ma-
lignant when compared with solid nodules [91].

• Edge characteristics: This feature is typically specific of solid nodules.
Nodule edges are classified as smooth, irregular, lobulated or spiculated.
Marginal spiculation has been known for many years to be associated with
malignancy, and more recent studies have confirmed spiculation as a risk
factor for cancer [199]. Examples of nodules with different edge character-
istics are shown in Figure-2.4.

Figure 2.4: On the left, well-delineated solid lung nodule with smooth border. In the centre of the
image, a lobulated nodule. On the right, a spiculated nodule. Image taken from [274].

• Location: Lung nodules can be located at any place of the lung tissue,
although malignant ones are manifested with more frequency in the upper
lobes, with a predilection for the right lung [288]. Adenocarcinomas and
metastases tend to be in the periphery, while squamous cancers are more
often found near the hila. Small solid nodules in a perifissural or subpleural
location often represent intrapulmonary lymph nodes.

• Size: This feature is one of the most important indicators of malignancy,
together with nodule growth. The size of the nodule is commonly described
with the major diameter, and it has a significant relation with lung can-
cer probability [199]. Thus, very small nodules (<5 mm) [310] have low
chances to be malignant, whereas larger nodules are more likely to be can-
cerous [310]. Other indicators, such as the volume of the nodule, have been
recently introduced in clinical guidelines [111, 195], from the recent evi-
dence found in the Dutch-Belgian Lung Cancer Screening trial (NELSON)
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[123] regarding the major inter-observer agreement with volumetric mea-
sures. Radiological guidelines establish different cut-off thresholds in the
size and morphology of the nodules for their management.

• Growth: Nodule growth, determined by imaging surveillance, allows as-
sessing nodule malignancy [97]. Due to inter-observer variability, nodule
growth is identified based on a minimum amount of diameter increase be-
tween two medical studies (e.g. more than 2 mm as suggested by Fleischner
[195] and British Thoracic [42] Societies), independently of the morphol-
ogy of the nodule [151, 197] (e.g. solid or part-solid). In general, a very
rapid growth or stability in pulmonary nodules suggest a benign aetiology.
Hence, [102] determined a malignancy likelihood close to 0 if growth was
noted in fewer than 7 days, or stability over a 2-year period. In these terms,
a wide range of rates has been reported in literature depending on meth-
ods used to measure, histological subtypes and/or radiological appearance
of the nodules [42]. For instance, solid cancers generally double in vol-
ume (approximately 26% increase in diameter [53]) over between 100 and
400 days, while subsolid cancers (generally representing adenocarcinomas)
frequently double in volume over 3 to 5 years. However, the proportion
of the nodule that contained the solid component in subsolid nodules has
been found to be an important factor of risk [286]. Figure-2.5 shows several
nodules with different sizes, growths and malignancy associated.

Figure 2.5: Diameter size (D1 and D2), growth (difference in diameter), time difference and ma-
lignancy for 5 different nodules. The top row is time-point 1, and the second row is time-point
2.

Other related risk factors have also been studied, such as the existence of calci-

13



“output” — 2021/7/6 — 8:07 — page 14 — #38

fication in benign solid nodules, distance to cavity walls or multiplicity of nodules
in the same patient.

2.3 Computed Tomography
Pulmonary nodules are detected in patients using common chest image studies
such as X-rays and computed tomography (CT) (Figure-2.6). During a CT ac-
quisition, a thin axial section of a patient is imaged by taking large series of two-
dimensional X-ray projection images of this section from different directions. Us-
ing computer processing, many continuous axial slices can be obtained and then
stacked to form a three-dimensional image of the body.

Figure 2.6: Image of a modern CT scanner (left) and an axial slice of a CT scan with a lung nodule
(right). Credits: daveynin, CC 2.0.

In a CT scan of the lung, all tissues are visualized according to their absorption
of X-rays. The level of absorption in CT scans is measured in Hounsfield Units
(HU), which is a standard quantitative scale for describing radio-density in which
every tissue has its own HU range (Table-2.1). Therefore, CT scans are calibrated
to accurately measure this range of values.

CT scans can be made at different dose levels (i.e. amount of ionizing X-
radiation). Typically, less noise is present when using higher amount of radiation.
However, current CT scans manage to produce effective images, even with low
doses of around 1.5 mSv (low-dose CT) [137]. These doses are still much higher
than those produced by a single chest X-ray, which is estimated to have an effec-
tive dose of 0.1 mSv.

Thoracic CT is nowadays a common volumetric imaging tool for lung cancer
diagnosis [209]. Thanks to it, radiologists can visualize the rich structures that
compose the lungs, such as predominantly lung parenchyma, vessels and airways.
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Substance HU
Air -1000
Lung -500
Fat 0
Water 15
CSF 30
Kidney +30 to +45
Blood +10 to +40
Muscle +37 to +45
Grey matter +20 to +45
White matter +40 to +30
Liver +40 to +60
Soft tissue, contrast +100 to +300
Bone +700 (cancellous bone) to

+3000 (cortical bone)

Table 2.1: Mapping of HU values with substance type.

Their utility for lung cancer diagnosis was scientifically proved by the results of
the National lung cancer screening trial (NLST) in which a clear survival benefit
(reduced mortality rates by 20%) for low-dose CT in current and former smokers
was reported over patients diagnosed using radiographic studies [298].

2.4 Managing pulmonary nodules
In general, to assess nodule malignancy and to prescribe the most appropriate
management, radiologists consider the clinical history of the patient, current imag-
ing features, and previous imaging studies [195].

There are different options for managing lung nodules, such as not taking
any further action, CT surveillance in intervals determined by nodule size and
clinical risk, further imaging investigation with a PET/CT scan, further invasive
investigation with non-surgical biopsies (e.g. CT-guided fine-needle biopsies),
and/or concurrent definitive histological diagnosis and treatment through surgical
excision (normally lobectomy or exceptionally sublobar excisions) [190].

Imaging is a key piece of information to assist in this decision-making. To
support radiologists in this crucial and complex task, several clinical guidelines
have been defined. Fleischner [195] provides recommendations for the follow-up
and management of indeterminate pulmonary nodules detected incidentally on CT
scans. This guideline does not apply to lung cancer screening, patients younger
than 35 years, or patients with a history of primary cancer or immunosuppression.
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Similarly, Lung-RADS guidelines [12], defined by the American College of Ra-
diology, proposed a classification to aid with findings in low-dose CT screening
exams for lung cancer. The goal of Lung-RADS is to standardize the follow-up
and management decisions, but for the subset of patients intended for low-dose
screening studies.

2.5 Challenges and limitations
Low-dose CT screening has been demonstrated to be an effective method for the
early detection of lung cancer [298]. However, this method by itself is far from
being perfect. Radiologists are forced to process large volumes of CT slices,
usually with a low signal-to-noise ratio, which causes erroneous classifications of
weak irregular limits or normal tissues. In addition to this, lung cancer diagnosis
through CT is often subjective and highly affected by factors such as the fatigue
and emotions of the observer [227], leading to inconsistent results from the same
radiologist at different times or from different radiologists examining the same CT
image.

Clinical guidelines have been designed to support clinicians in determining
lung nodule malignancy and selecting the best management options [12, 195].
However, most of these recommendations are rather weak, relying on low-quality
evidence, and followed by a minority of clinicians (approximately 40%) [294].
Therefore, the management of most patients presenting incidental lung nodules
seems to largely rely on subjective clinical judgment.

The evidence suggests that more accurate, robust and reliable assessments are
required. Therefore, there is a need to advance with the research, development and
application of more effective and efficient methods and technologies that allow
the detection, follow-up and diagnosis of lung cancer to assist in clinical decision-
making and reduce the burden in radiological health units.
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Chapter 3

METHODOLOGICAL
BACKGROUND

This chapter reviews the methodological background of this thesis. First, we pro-
vide the fundamentals of deep learning by introducing the essential methods and
the most successful network architectures for image analysis. Second, we intro-
duce the common processes involved in lung cancer assessment using conven-
tional and deep learning image analysis. Finally, we detail principal challenges
and limitations encountered.

3.1 Deep learning for image analysis
Deep learning is a data-driven approach that allows to automatically discovering
and learning multiple-levels of representations directly from the training data. To
do this, deep neural networks are organized as the composition of simple but non-
linear layers (or modules), where each layer transforms the input representation
(starting from raw data) into a higher-level, slightly more abstract representation.
More formally, the outputs of a layer l (the activation maps A<l>) are obtained
through the linear combination of the inputs (outputs of layer l-1, i.e. A<l−1>),
and then a non-linear activation function g<l>:

A<l> = g<l>(W<l>A<l−1> + b<l>),

where W<l> and b<l> are the weights and the biases of the layer l respectively.
With the composition of enough layers, complicated functions can be learned

[167] to recognize complex objects in the images. To learn or training such net-
works, back propagation mechanisms are used, such as stochastic gradient de-
scent optimization algorithms [250], to minimize the weights (W = W<l>

∀l and
b = b<l>

∀l ) of the different layers based on the difference (or loss) between the
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predicted ŷ outputs and the target y values. This process is known as empirical
risk minimization and the cost function J is usually defined as the average of the
errors committed on each training instance:

J(W, b) =
1

m

∑
xi

L(ŷi, yi),

where L is the loss function, which for a multi-class problem is usually expressed
as the cross-entropy loss:

L(ŷi, yi) = −log(p(yi|xi)),

where p(yi|xi) represents the probability of predicting the true class yi of instance
i computed by the last layer of the network, A<L>.

A basic form of deep neural networks are the fully connected (FC) networks.
An FC network consists of a stack of FC layers. An FC layer is a function from Rm

to Rn, and each neuron in one layer is connected to all neurons in the next layer.
Unfortunately, the full connectivity of FC networks make them computationally
expensive, and prone to overfitting for image data.

Much more specialized, and efficient, than an FC networks are the convolu-
tional neural networks (CNN) [168]. CNNs are designed to process data in the
form of multiple arrays (i.e. 1D signals, 2D images or 3D video/volumetric im-
ages). They can extract, without human intervention, accurate feature image rep-
resentations thanks to their shared-weights architecture [167]. Also, this type of
architectures allows capturing other basic image properties, such as high correla-
tion among local values and translation invariance [54]. The main type of layer in
CNNs is the convolutional layer. These layers are organized in feature unit maps,
in which each unit is connected to local patches in the feature maps of the previ-
ous layer through a set of weights called filters. Particularly, to obtain the feature
maps of a convolutional layer, the filters slide over (according to some initial stride
and padding values) the input feature map applying, on each step, a convolution
operation (e.g. sum of element-wise multiplications). The convolution operation
is typically denoted with an asterisk:

s = (x ∗ w),

where w are the weights (or kernel), x is the input and s the resulting vector (or
feature map). Other important type of layers in CNNs are the Pooling layers.
These layers aim to merge similar features, reducing the dimension and creating
invariance to small shifts and distortions.

The advantages of CNN in terms of performance and efficiency for image
analysis have made them one of the preferred solutions used today to solve most
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image analysis problems [144]. In the following subsections, we tackle some
of the most well-known network architectures and proposed solutions, making
special emphasis on those based on CNNs.

3.1.1 Image classification
One of the earliest CNNs for image classification was LeNet-5 [168]. Applied
originally on the hand-written digit recognition problem (MNIST dataset [LeCun and Cortes]),
this network is structured basically by a stack of convolutional and pooling layers
with an FC layer at the head of the network, as schematized in Figure-3.1.

Figure 3.1: Vanilla architecture of a CNN.

Despite the success of LeNet-5, the first CNN that really supposed a major
breakthrough in the computer vision field was AlexNet [158]. This network won
the 2012-ILSVRC [63], a yearly international competition where researchers sub-
mit the results of their classification algorithms trained on ImageNet, a large scale
annotated dataset of images. AlexNet unseat previous methods (i.e. based on
traditional machine learning algorithms) reducing the classification error by more
than 10%. This CNN incorporated three novel ideas in its architecture and in
the way how it was trained. First, it used Rectified Linear Units (ReLU) in-
stead of previously used activation units (e.g. hyperbolic tangent, sigmoid) to
solve the vanishing gradient problem during training. Second, it used heavy data
augmentation techniques by applying label-preserving transformations (e.g. mir-
roring, rotation, cropping) to make the training data more varied. Third, it used
dropout layers to turn off neurons with a predetermined probability to reduce over-
fitting [279]. Another relevant deep network was VGG [272], which obtained 2nd
place in 2014-ILSVRC. This network proposed using multiple small filters with-
out pooling stacked together. This allowed increasing the representational depth
of the networks while limiting the number of parameters. Also in VGG, 1x1 con-
volutions were used in between the convolutional layers to regulate complexity
and to learn a linear combination of the resultant feature maps. Moreover, in this
network max-pooling was placed after the convolutional layer, while padding was
performed to maintain the spatial resolution. GoogLeNet [290] was another rel-
evant architecture. This network defined inception blocks (composed by parallel
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convolution layers with different sizes) to leverage feature detection at different
scales and dimensionality reduction (Figure-3.2). Other prominent contributions
were presented in ResNet network [114]. This network posits the use of batch
normalization[132] to reduce internal co-variance shift during training, the re-
placement of fully connected layers by convolutions thanks to one by one con-
volution [179], and the creation of residual blocks (Figure-3.3). These blocks
allowed adding further (convolutional) layers in the network without performance
damage, as by default the identity function was learnt. In case the filters could
learn any new information, it is subtracted or added to the base representation.

Figure 3.2: Overview of an Inception network block in GoogLeNet (Image taken from [290]).

Figure 3.3: Residual block by ResNet networks (Image taken from [114]).

Beyond the aforementioned networks, new methods and architectures con-
tinue to be developed [144], although in recent years the performance increase
seems to have reached a standstill, based on the scores obtained in public bench-
mark rankings (currently Top-1 accuracy1 is already above 86% without extra
training data). Nonetheless, recent architectures can be highlighted such as the
inception-ResNet network [289], which combines the power of residual learn-
ing and inception blocks, the DenseNet [128] network, which defines direct con-

1https://paperswithcode.com/sota/image-classification-on-imagenet
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nections between any two layers with the same feature-map size, or the SENet
[125], which developed the SE (Squeeze-Excitation) block to adaptively recali-
brate channel-wise feature responses by explicitly modelling interdependencies
between channels. Other recent network is NasNet [338] created thanks to an au-
tomatic method for exploring new convolutional blocks (or cells) [118]. Also, it
uses a new regularization technique called ScheduledDropPath to drop each path
in the cell with a probability linearly increased over the course of the training.
As a continuation of NasNet, we can also highlight the EfficientNet [293], which
is a new family of networks obtained thanks to the recent progress in automatic
network architectures search [118], together with a novel scaling method which
aims to uniformly scale each dimension (width, depth and resolution) with a fixed
set of scaling coefficients.

3.1.2 Object detection
Object detection is also a prolific and active research field in which deep learning
has contributed largely during last years, providing top scores on well-known pub-
lic benchmarks [2, 63]. In object detection, the model is tasked with localizing the
objects present in an image, and at the same time, classifying them into different
categories.

Figure 3.4: Overview of the Faster R-CNN object detection network (Image taken from [243]).

We could broadly differentiate between two types of deep network architec-
tures for object detection. The first of them is a two-step detector based on the use
of region proposals or rectangular boxes. One of the most well-known architec-
tures is the Faster-RCNN [243] (which is an evolution of Fast R-CNN [89] and
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R-CNN [90] networks). This type of networks (Figure-3.4) are composed by three
sub-networks: a feature extraction CNN that reads the initial image and outputs
a set of features maps; a region proposal network (RPN) that generates automati-
cally several proposals (using different anchor boxes or predefined fixed windows)
in a sliding window fashion on the feature maps; and finally a feature extraction
(RoI Pooling layer) with two parallel FC layers to obtain the predicted bounding
box coordinates and probability scores for each object class in each bounding box.

Figure 3.5: Example of a SSD network architecture for object detection (Image taken from [186]).

The second type of networks for object detection are one-stage detectors, in
which region proposal and region classification are tackled together in the same
CNN. They propose partitioning the input image into a grid of cells and then
assigning the centre of the regions to one of the cells, allowing to identify ob-
jects with a single convolutional run. Examples of this type of networks are ”You
Only Look Once” (YOLO) [240], or ”Single Shot multi box Detector” (SSD)
[186]. This last architecture (Figure-3.5) incorporated three remarkable ideas to
overcome YOLO (first version) performance limitation: first, it applies different
anchor boxes (taken from Faster R-CNN) per each grid cell; second, it uses hard
negative mining to prioritize complex cases in the computation of the loss func-
tion; third, it aggregates multi-scale features to pick up fine-grained local features
while preserving coarse global features.

Beyond these two detectors, we highlight another recent network, RetinaNet
[181]. This network basically incorporates two new concepts over previous works.
First, the backbone of this network combines a ResNet [115] for deep feature
extraction, a feature pyramid network (FPN) [180] to efficiently detect objects at
multiple scales, and two task-specific subnetworks for classification and bounding
box regression. Second, it defines the focal loss, a new loss function specifically
designed to reduce the impact of the large number of ”easy” cases, or proposals
without any object, allowing to focus in ”hard” cases during training. Also, we
should mention that YOLO network has been evolved into its version 3 [241],
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where an upgraded architecture is used adding most of the previously mentioned
features (i.e. FPN, focal loss, anchors) to offer better performances and same fast
detection speed.

3.1.3 Image segmentation
Semantic image segmentation or pixel-wise classification is an essential topic in
computer vision. It typically involves clustering together or isolating parts of an
image that belong to the same object [187].

Several deep learning methods have been created to address the image seg-
mentation problem [203]. One of the earlier deep segmentation architectures was
the fully convolutional network (FCN) [188]. In this approach, all fully-connected
layers were replaced by convolutional layers to manage arbitrary sizes of input im-
ages and generate a segmentation map of the same size. This approach presented
different limitations, such as object localization problems. New techniques, like
Conditional Random Fields [46], were added on top of it to improve initial per-
formance limitations.

Figure 3.6: Example of a U-Net network architecture. Credit Mehrdad Yazdani CC 4.0.

As an alternative to the previous segmentation approach, an encoder-decoder
backbone was proposed in [215]. In this network, the encoder part takes the in-
put image and pass it through a set of convolutional layers (usually following
the VGG architecture) to obtain a smaller feature vector, and the decoder part
uses deconvolutions and upsampling layers to convert the feature vector into a
map of pixel-wise class probabilities. Some networks, such as SegNet [25] and
its probabilistic version BayesSegNet [142], evolved this architecture introducing
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the concept of passing information from the encoders (i.e. the max pooling in-
dices) into the corresponding upsample layers of the decoders. However, the most
well-known network using this approach is the U-Net [248]. This network uses
a convolutional encoder and decoder backbone tied at different levels by short-
cuts, which allow by-passing high level features of the encoder to the decoder, in
order to enhance the image reconstruction task, diminished by the flow of data
through the convolutional and pooling layers of the architecture (necessary at the
same time, to improve the generalizability of the network). Several extensions of
this architecture can be found in the literature, such as its 3D formulation [50]
or the incorporation of ResNet-like blocks and a Dice-based loss [202]. Also, re-
cent works have proposed integrating in the U-Net architecture recent mechanisms
originally created for other data type problems (i.e. natural language processing),
such as attention gates [217], to automatically learn to focus on target structures
of varying shapes and sizes, or recurrent layers [10] to accumulate features and
ensure better feature representation for segmentation tasks.

Another different alternative for image segmentation is represented by the
Mask-RCNN [113]. This network is based on the Faster-RCNN architecture
in which a new branch is added at the head for predicting class-specific object
masks, in parallel with the existing bounding box regressor and the object classi-
fier branches.

3.1.4 Image generation
Image generation with deep learning is one of the most challenging but more
actively research areas in computer vision.

One of the most popular deep learning models to generate new images are
generative adversarial networks (GAN) [96]. This framework consists of two net-
works, the generator and the discriminator, that compete with each other in a zero-
sum game where the generator aims to increase the error rate of the discriminator
network. Thus, the generator learns to map points from a latent space, usually
sampled from a multivariate standard normal distribution, into observations that
look as if they were sampled from the original dataset. The discriminator tries to
predict whether an observation comes from the original dataset.

Another well-known approach for addressing image generation is deep auto-
encoders (AE). This framework uses an encoder, which embeds the input into a
representation vector, and a decoder, which projects the vector back to the original
manifold. The representation vector is a compression of the original image into
a lower dimensional, latent space. The idea is that, by choosing any point in a
latent space, a novel image is generated by passing this point through a decoder
(as it learned to convert points, or representations, in a latent space into viable
images). Therefore, the learning process of this network consists on minimizing
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the reconstruction error, which is the error between the original image and the re-
construction from its representation. Since auto-encoders do not force continuity
in space, images are poorly generated at sampling time.

One successful extension from auto-encoders are variational auto-encoders
(VAE) [148, 246]. In particular, the encoder retrieves two vectors, the mean and
log-variance vectors, which together define a multivariate distribution in the latent
space. When a random point is sampled from this distribution, the decoder pro-
duces a similar image, guaranteeing the continuity in the latent space. The way
to achieve this, is by making the output distribution of the encoder as close as
possible to a standard multivariate normal distribution using the Kullback-Leibler
divergence (KL) loss. Thus, the total loss function of the VAE is composed by
the sum of the KL-divergence loss and the reconstruction loss. A variant of VAEs
was created to generate multiple outputs from a single input. Precisely, condi-
tional variational auto-encoders (CVAE) [275] were proposed to model the dis-
tribution of a high dimensional space as a generative model conditioned on the
input. Therefore, the prior on the latent variable is conditioned by the input.

3.1.5 Temporal image analysis
Many computer vision problems, such as activity recognition, change detection,
object tracking, require the analysis of temporal sequences of images. The emer-
gence of deep neural networks have overcome results from state-of-art conven-
tional methods as shown in public large scale datasets (e.g. UCF101 [278]) devel-
oped for this type of tasks. In these terms, one of the common deep architectures
used are the Siamese neural networks (SNN) [38]. SNNs are designed as two sib-
ling networks, connected by a distance layer at the top, trained to predict match-
ing or mismatching between two input images. To achieve this, SNNs are usually
trained using the contrastive loss more suitable for learning to differentiate a pair
of instances. This loss function comes described as follows:

Lcontrastive = yD2
w + (1− y)(max(0,m−Dw))2

where y is the binary label,m is a margin at which dissimilar paired inputs will not
contribute further to the loss and Dw is a distance function (e.g. L2) between the
two embedding vectors resulting from the sibling networks (i.e. f(A) and f(B)).
The original Siamese architecture, first introduced for the problem of signature
verification, was extended by [152] using convolutional layers and adjusting the
optimization metric with a weighted L1 distance between the twin feature vectors
of both networks. SNNs have been extensively used in computer vision matching
problems such as tracking objects in videos [296], matching pedestrians across
multiple camera views [307], and matching corresponding patches in satellite im-
ages [131].
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Other typical CNN architectures for image sequence analysis was defined in
[271], in which two separate CNNs for recognition of spatial and temporal fea-
tures were combined by late fusion. The spatial stream performed action recogni-
tion from still video frames, whereas the temporal stream was trained to recognize
action from motion in the form of dense optical flow. Decoupling the spatial and
temporal nets allowed using a pre-trained spatial net on the ImageNet [63]. Fur-
ther extensions [43, 302] of this approach propose the use of 3D convolution filters
by either using a single or two seamless 3D CNN networks. Alternatively, in [79]
proposed a model based on frequency domain representation for predicting object
movement in the video. One of the recent methods in modelling temporal data
is temporal convolution networks (TCN) [166]. The critical advantage of TCN is
the representation gained by applying the hierarchy of dilated causal convolution
layers on the temporal domain, which successfully capture long-range dependen-
cies.

Beyond the use of CNN architectures for the analysis of image time series, we
can also find the use of recurrent neural networks (RNN) [252]. They are leading
methods applied to longitudinal data, such as natural language [315]. RNN intro-
duces the concept of state or memory of the network. The state of a network is
updated with each image of the sequence during the training stage, and it is used
to generate the output of the RNN. The main component of an RNN is the cell,
which is applied to each image of the sequence. There may be multiple cells in
an RNN. A cell receives as input both the current image of the sequence and the
previous state of the network (initially, a zero matrix or null state, h<0>) and it
retrieves the following state (h1). An RNN cell combines the current state and the
image to generate a new state. This happens as following:

h<t> = g(Wrech
<t−1> +Winputx

<t> + b)

where b is the bias term,Wrec the recurrent weight matrix,Winput the input weight,
xt the input image, ht−1 the current state, ht the new state and g an element-wise
non-linearity (e.g. hyperbolic tangent). The final hidden state is eventually used
in combination with a weight matrix V to compute the final prediction (ŷ).

ŷ<t> = g(V h<t>)

A significant limitation of RNN models is known as the ”vanishing gradient”
problem, i.e. the impossibility to back propagate the loss value through a long-
range temporal interval. To overcome this limitation, the Long Short-Term Mem-
ory (LSTM) networks [121] were designed for the next time-step status prediction
in a temporal sequence capable of learning long-term dependencies. In particular,
LSTM networks incorporate, within a layer or cell (A), the concept of gates. Up to
4 different gates were originally proposed in an LSTM: The input gate it designed
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to control the information to be stored, the forget gate ft created for controlling the
information to be forgotten, the cell state gate ct to control what new information
is going to be stored and the output gate ot to decide what information is going to
output the network at step Tt.

Figure 3.7: Example of an LSTM network architecture. Image taken from [218].

RNNs are usually combined with convolutional layers to learn compositional
representations in space and time. Thus, at first stage CNN layers extracts features
from the raw data and generates high-level representations, then at second stage,
recurrent layers uses the features yielded by the CNN layers to learn time depen-
dencies ([71]). More recent works have proposed combining both type of layers
(i.e. CNN and RNN) into a new type, the ConvLSTM [267], specially suitable
for learning spatio-temporal features. These layers are recurrent components that
compound convolutions to determine the future state of the cell based on its local
neighbours instead of the entire input.

3.2 Automatic lung cancer assessment
Lung cancer assessment using CT scan images is a complex and tedious work with
large inter-observer variability. Clinical studies quantified manual lung nodule
detection sensitivities close to 80% with an average of 1 false-positives per study,
and inter-observer agreements below 34% [20, 119]. These performances make
lung cancer as the third most frequently missed diagnosis based on expert readers’
visual assessment, as corroborated in [255].

To support radiologists in this task, conventional image analysis and machine
learning algorithms have been extensively studied for automatic pulmonary nod-
ule assessment [80, 208, 303, 304]. However, the resulting predictive models,
built from hand-crafted features on top of the images, turned out to be not effec-
tive enough to fully capture the complexity and variability of pulmonary nodules
[124].

Deep learning emerged as a step forward over conventional methods thanks to,
among others, its ability to automatically extract intricate feature representations
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directly from the data [224]. However, the application of this technology in the
lung cancer domain was circumstantial until the recent release of the LIDC-IDRI
dataset [16], the largest public annotated cohort of CT scan images, and the cre-
ation of two open medical image challenges, the LUng Nodule Analysis [4, 262]
and the Data Science Bowl competition [3]. The outstanding scores achieved by
methods relying on CNNs, drowning out those using conventional techniques,
ended up convincing the scientific community about the advantages of using deep
learning for lung cancer assessment, flooding rapidly the medical image analysis
research literature [183, 264].

Next, we provide further details regarding the main image analysis datasets
and tasks for automatic lung cancer assessment.

3.2.1 Common lung cancer datasets
The most commonly used lung CT datasets for research purposes are described
below:

• LIDC/IDRI. With a total of 1018 CT scans, the LIDC [18] is the largest
publicly available reference database for lung nodules. Each CT scan is as-
sociated with a file containing annotations from four experienced thoracic
radiologists. The annotations are the result of a two-phase reading process
in which the radiologists were asked to mark suspicious lesions and to pro-
vide additional characterization of lesions of diameter larger or equal to 3
mm which were marked as a nodule [19]. Additionally, the four radiologists
annotated a malignancy rating ranging from 1 (highly unlikely for cancer)
to 5 (highly suspicious for cancer) on the nodules >= 3 mm [16].

• LUNA16. An updated version of the LIDC dataset was provided in the
LUng Nodule Analaysis 2016 challenge [262], which includes only scans
with at least one lesion of size >= 3 mm marked as a nodule by at least
three of the four radiologists. The LUNA16 dataset consists of 888 CT
scans comprising a total of 1186 nodules. Annotations with coordinates
of each nodule in the three spatial axes inferred from the original LIDC
annotations are also provided.

• TCIA. For 157 cases the LIDC dataset provides diagnostic data at patient
level obtained from biopsy, surgical resection, progression or reviewing of
the radiological images showing stable nodules after two years [52].

• DSB17. From mid-January till early April 2017 the data mining platform
Kaggle launched a global challenge (Data Science Bowl [3]) to build accu-
rate methods able to determine probability of a case to be diagnosed with
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lung cancer. For this, a labelled dataset was made available with 2001 pa-
tients (1397, 198, 506 cases in its training, validation and test set respec-
tively). The DSB dataset only includes per-subject binary labels indicating
whether a subject was diagnosed with lung cancer in the year after the scan-
ning. Note that this dataset does not provide information about nodules in
the CT scans. For each patient, the CT scan data consists of a variable num-
ber of images (typically around 100-400 axial slices) of 512 x 52 pixels.
The slices are provided in DICOM format. Around 70% of the provided
labels in this dataset are negative cases.

• NLST. Launched in 2002, the initial findings were released in November
2010. The National Lung Screening Trial dataset [297] enrolled 53,454
current or former heavy smokers with ages between 55 and 74. Participants
were required to have a smoking history of at least 30 pack-years and were
either current or former smokers without signs, symptoms, or history of
lung cancer. NLST was conducted by the American College of Radiology
Imaging Network, a medical imaging research network focused on the con-
duct of multicentre imaging clinical trials, and the Lung Screening Study
group, which was initially established by NCI to examine the feasibility
of NLST. The total amount of data available (under contract agreement) is
formed by 15,000 participants distributed in 622 participants with screen-
detected lung cancer, 419 participants with non-screen-detected lung cancer
(false negatives or post-screening cancers), 8,205 participants with at least
1 nodule detected on any screens, 5,754 participants with no lung cancer
and no nodules.

3.2.2 Lung preprocessing
Prior to any analysis of lung CT images, it is necessary to carry out a series of im-
age processing techniques to be able to successfully perform subsequent analyses
on them. One of the first processes consists on converting the pixel values of lung
CT images into Hounsfield Units (HU) [324]. After that, pixel image intensities
(in HU) are typically masked or clipped, in order to be consistent with that of lung
tissues. Additionally, pixel values are normalized, usually adjusting their values
between 0 and 1 [159]. Moreover, due to the dataset contains CT scan images ac-
quired at different resolutions, a re-sampling mechanism is performed on each CT
to a fixed resolution (e.g. isotropic at 1x1x1 mm) in order to reduce the variance
given by the different pixel size/coarseness (e.g. the distance between slices) of
the scans.

More elaborated techniques are also usually conducted to attenuate the effect
of the multiple structures that exist in the lungs and highlight regions of interest to
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avoid confusion with parenchyma, such as linear interpolation [60], median filter
[314], morphological top-hat transformation [325] or Gaussian filters [175].

The lung parenchyma segmentation is another common preprocessing task in
which the pulmonary tissue is selected from the CT slices so that the subsequent
detection stages can operate in optimal conditions [62]. In particular, different
strategies have been proposed such as knowledge-based techniques [225], thresh-
old methods [17], region growing [33], mathematical morphology [40], active
contour/shape models [45] or cluster analysis methods [101].

3.2.3 Nodule detection

This task aims to examine the entire lung CT volume, searching for small suspi-
cious regions or nodules (usually between 3 mm to 30 mm) [270].

I) Conventional approaches

To support clinicians, several conventional image analysis techniques (either in
2D and 3D data) have been developed, as shown in [80, 303]. One of the widely
used techniques is blob detectors, such as the Laplacian of Gaussian filter (LoG),
which detect edges or regions of rapid intensity change by approximating the sec-
ond derivative measurement on the image [86]. Another interesting technique is
descriptors of histogram of oriented gradients (HOG) [59] in which the distribu-
tion (i.e. histograms) of directions of gradients are used as features. Gradients (x
and y derivatives) of an image are used because they are larger around edges and
corners than in flat regions. Alternatively, local binary patterns [263] and wavelet
feature descriptors [221] are also two common techniques for extracting relevant
features from CT scans. Other broader techniques have been used for extracting
candidates such as curvature computation, voxel clustering, intensity thresholding
or morphological operations [135, 208]. Although these techniques offer adequate
sensitivity scores, they produce too many false positives. For reducing the false
positive rate, low-level descriptors have been carefully and heuristically defined.
The literature is plenty of studies that uses multitude of features to characterize
the regions [135, 208, 260]. Some features aim to quantify the morphology of the
regions such as size, curvedness, length of the axis. Others aim to measure the
texture of the region e.g. mean grey intensity, entropy or uniformity, which give
further insight into the distribution of tissue attenuation information lost when av-
eraging intensity over a large area. On top of these features, classical machine
learning algorithms have been built to discriminate among candidates or real nod-
ules (e.g. Logistic Regression [56], Support Vector Machines [55], Random Forest
[120]).
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II) Two-stage detectors

Recently, deep learning has extensively tackled the problem of lung nodule detec-
tion by offering a multitude of diverse solutions [104, 247, 299]. Some of them
address this task in a two-stage process consisting of, first, achieving high sensitiv-
ities (finding the large number of potential nodule candidates) and then reducing
its false positive rate. For the first task, earlier works explored alternative deep net-
works such as autoencoders [162], or deep belief networks [127]. However, this
task is currently tackled using CNN as they have been shown easier to be trained.
For instance in [305], the authors proposed using transfer learning from an earlier
2D object detection CNN, named OverFeat [259], trained for object detection in
natural images. Thus, from the CT scan they extract 2D sagittal, coronal and axial
patches for each nodule candidate. In a posterior work [68], a 2D Faster R-CNN
[244] modified with a deconvolutional layer for candidate detection on axial slices
was used. In a more recent study [323], a 3D version of the U-Net architecture,
named V-Net [202], was adapted for the detection of nodule candidates.

Regarding the false positive stage, some works use 2D CNNs on patch images
of the nodule candidates. For instance, in [261], a 2D multiple view approach
was proposed for analysing in parallel different image planes using shallow 2D
CNNs with a late fusing feature mechanism. However, 3D-CNN approaches are
currently used as they work more efficiently because of the 3D nature of the lung
nodules [73, 323].

III) One-stage detectors

Alternatively, other studies address the lung nodule detection in an end-to-end
fashion. One of the solutions [92] proposes a 3D CNN to detect lung nodules in
sub-volumes of CT images. In [334], authors used 3D RPN based on a 3D Faster
R-CNN with a U-net-like encoder-decoder structure for nodule detection to cap-
ture spatial image representations with high discrimination capabilities. Another
approach [212] also used 3D Faster R-CNN-like scheme for directly identifying
lung nodules, but using a U-Net-like architecture improved with the advantages of
ResNet, DenseNet, and Dual path networks [334]. Alternatively to RPN, in [159],
inspired by the class probability map of YOLO network [240], the search space
was divided into a uniform grid to perform detection in each grid cell. For this,
they used a 3D ResNet network [115]. In another work [An2], which ranked first
at the nodule detection LUNA16 Challenge [262], authors adopted a 3D feature
pyramid network (FPN) [180].

On a recent survey [6] made over 56 different studies with 74 separate patient
cohorts, they reported a pooled specificity of 0.89 (95% CI 0.87-0.92) and a sen-
sitivity of 0.86 (95% CI 0.83-0.89) and an AUC of 0.93 (95% CI 0.92-0.94) for
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diagnosing lung nodules on CT scans.

3.2.4 Nodule segmentation
Having the masks of the suspicious regions or nodules of the lung, allows applying
further post-processes such as quantifying their diameter, area or volume, which
in fact are fundamental information for estimating their malignancy. However,
automatically segmenting or providing a pixel wise classification of the nodules
is a challenging task due to the existing ambiguity (e.g. poor image resolution) in
the lung CT images.

I) Conventional approaches

As in lung segmentation, conventional image analysis methods have been applied
to segment the nodule from the lung parenchyma [21]. To do this, traditionally
two categories of methods were used [176]: Region-based and edge-based. The
former uses similarity or homogeneity between pixels. To this category belong
methods such as thresholding, which was applied on the volumetric lung region
in [15], or region growing, which was used in [303] where a seed point was given,
and it had to be decided whether surrounding pixels could belong to the grow-
ing region. The latter category relies on the detection of contours in the image,
assuming that different objects are separated by these type of structures. Some
popular edge detection algorithms are based on differential operator, including
Sobel and Laplacian [283]. More advanced methods rely on morphological cri-
teria, and they were used in [160] for segmenting complex nodules with attached
structures of similar attenuation values (e.g. vessels, airways, and pleura). Al-
ternatively, temporal image subtraction [5, 13] was proposed as a technique to
increase radiologist sensitivity in detecting nodule changes.

II) U-Net based networks

Deep learning has also successfully addressed nodule segmentation, outperform-
ing limitations of prior conventional approaches. Most of these works are built
upon the U-Net [248] segmentation network. For instance in [333], a 2D U-Net
was modified with re-designed skip pathways aiming at reducing the semantic gap
between the feature maps of the encoder and decoder sub-networks, demonstrat-
ing an average intersection over union (IoU) gain of 3.9 points over U-Net. A
Probabilistic version of the 2D U-Net was proposed in [29, 153, 154] to generate
multiple coherent segmentations for pulmonary nodules given different possible
ground truths. Also in [331] a patch-based 3D U-Net was used for nodule seg-
mentation from raw CT scans. The network was trained in an adversarial way,
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using as generator the 3D U-Net and as discriminator a 3D Inception with resid-
ual convolutional blocks. The Inception network incorporated additional context
surrounding the nodules, allowing a larger receptive field for better classification.
In [133], an automatic configurable U-Net named nn-Unet was defined in order
to adapt the architecture and tuning parameters to the particular type of images
to be segmented. This approach reached the top ranking score in a recent medi-
cal image segmentation challenge consisting of performing 10 different semantic
segmentation tasks [273].

III) Alternative segmentation networks

In [312], authors proposed a network with 2 branches which combined multi-view
3D features and 2D local texture features simultaneously. Also, this approach pro-
vides multi-scale feature extraction and a novel central pooling to select features
according to their spatial relevance to the target voxel. This method reported a
Dice score of 0.82 for LIDC dataset, outperforming previous conventional seg-
mentation methods [200]. Also in [185] a 2D Mask R-CNN model trained on the
COCO data set was fine-tuned to segment pulmonary nodules. The model was
tested on the LIDC-IDRI dataset. In [156] a 3D version was presented reporting
detection and segmentation at same time with competitive results for lung nodule
detection (0.936 sensitivity at 7 FP) and segmentation (70% of Dice) on LUNA16
data set.

3.2.5 Malignancy classification
Given the location of a lung nodule on a CT image of a patient, another important
task is to automatically determine its possible malignancy or likelihood of being
lung cancer.

I) Conventional approaches

Until recently, nodule classification and characterization in CT relied mostly on
conventional machine learning algorithms. One of the first studies to estimate
malignancy was [198] which created a predictive model from a relatively small
balanced dataset of 31 malignant and benignant nodules. To build this type of
models, typically hundreds of 2D and 3D features were extracted for each nodule
(such as size, density, shape or texture). This task was so common for any medi-
cal imaging problem that it became an important research field by itself, known as
radiomics [170]. One of the major challenges of this field is how to integrate ra-
diomic feature descriptors with clinical, pathological, and genomic data to decode
the different types of tissue biology [157]. Once the nodule features are computed,
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then different types of machine learning classifiers (such as logistic regression or
support vector machines) are trained to ultimately provide the malignancy class
and posterior probabilities estimates. A review of different works using this type
of approach for chest and colon with CT scans can be found at [284]. Addition-
ally, in the medical literature, we can find different statistical tools for inferring
the probability of malignancy for a nodule. To do this, typically a logistic regres-
sion is fitted on a small data set, using sensible imaging features (such as nodule
size, type, location, spiculation) and clinical information from the patient. One of
the best known tools is the PanCan model [199]

II) Networks using radiological labels

Outstanding performances have been reported for lung nodule malignancy clas-
sification using deep neural networks trained on physicians annotations [313]. A
frequent referenced dataset for this task is the LIDC/IDRI dataset, which contains
a large set of CT scans (>1000) with nodule malignancy annotations (ranging
from 1 to 5) performed by up to 4 radiologists. Several approaches can be found
in the literature for nodule malignancy classification. For instance, in [266] au-
thors handle pulmonary nodule classification by utilizing a multi-scale 2D CNN
in which three images at different scales (resampled them to a fixed size) are in-
put into the network. In [184, 213], a multi-view 2D CNN (to mimic 3D image
volumes) was built using several 2D planes of the nodules. To avoid lack of infor-
mation from 2D approaches, in [66], 3D CNNs were built and compared against
2D and 2D multi-view networks for nodule malignancy classification. The best
reported method was a 3D DenseNet network [128] using a multi-output strategy,
consisting of merging last layer features with earlier layer outputs. An alternative
solution was proposed in [44], where a 3D CNN was built and merged together
with radiological quantitative features to obtain higher performances.

III) Networks using confirmed labels

Alternatively, other deep learning works focused on predicting malignancy us-
ing diagnosed labels (or confirmed nodule malignancy). These labels are usually
more difficult to collect since they have to be validated (usually under biopsy or
after a close follow-up along more than two years) limiting the size of the co-
hort. Different studies have addressed this approximation, for instance, in [214],
authors built a 2D multi-view CNN with a VGG-16 [272] backbone (pre-trained
from ImageNet) to distinguish between benign and cancer (primary or metastasic)
nodules. The inputs of this network were stacked on 3 images of same size cor-
responding to 3 orthogonal planes (e.g. axial, sagittal, coronal) from the centre of
the nodule. Best model reported an accuracy of 68%. In [8] a shallow 3D CNN
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was built using data from DSB17 challenge. Results from testing this network in
an independent subset (400 cases with almost 70% non-negative cases) were 83%
of AUC and 86% of accuracy. In [326], a 3D RPN with a U-Net like backbone was
presented to identify nodules with different sizes, in which a second branch was
attached (containing two FC layers) to provide nodule malignancy classification.
Interestingly, this network was trained in a two-stage process, first, it learned to
detect the nodules, and then to predict the nodule malignancy reusing the weights
learned from the first stage. Results from this network reported an 85% of AUC
in TCIA (subset of LIDC with confirmed cases) and in a test set of 50 cases (25%
malign) of the DSB17 an accuracy of 92%. Similarly, in [178], a modified 3D
RPN with a U-Net backbone was shown to detect nodules. The feature map of the
top-5 candidates were fed into a leaky noisy-or model [228], a causal probabilis-
tic model to infer cancer probability from multiple nodule candidates assuming
a leakage probability even when none of the nodules of a patient were predicted
as malignant. This is specially appropriated for the DSB17 dataset since the la-
bels are at the patient level (benign or cancer), rather than at the nodule level.
This work won the DSB17 challenge, reporting a cancer performance of 0.87% of
AUC.

3.2.6 Temporal nodule analysis
In the current clinical practice, a closer follow-up on the temporal evolution of the
tumours is required to determine its cancer probability. To do this, radiologists
mainly need to detect, match and quantify, each of the suspicious nodules from the
different CT scan images taken from the patients (at different time-points) before
to assess their malignancy. Nowadays, this work is basically manual and relies
on the visual understanding and knowledge expertise of physicians. To reduce the
amount of work, stress, cost and errors derived from this process, researchers on
computer vision and artificial intelligence have tried to build different pipelines
(or sequence of processes) to provide automatic support to clinicians. Next, we
detail the main tasks addressed by these pipelines and significant work carried out
for each of them.

I) Lung CT image alignment

For the correct automatic analysis of the pulmonary nodules from a series of CT
scans of the lung, it is previously necessary that these images are adequately
aligned spatially. In computer vision, this problem is known as image registration
[39]. To perform registration, two images are involved, the moving image IM(x),
which is deformed to fit the other image, the fixed image IF (x). Thus, regis-
tration is the problem of finding a displacement u(x) that makes IM(x + u(x))
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spatially aligned to IF (x). An equivalent formulation is to say that registration is
the problem of finding:

T (x) = x+ u(x)

that makes IM(T (x)) spatially aligned to IF (x). Good reviews on the subject are
given in [196, 204].

In the context of temporal lung nodule analysis, the prior and follow-up lung
CT exams have to be spatially aligned to facilitate, for instance, the correct match-
ing of pulmonary nodules. Several factors may compromise the effectiveness of
the lung CT registration process, such as the variability in the images size and
resolution, and the variability in the position and breath cycle of the patient when
performing the scanning [206]. Also, to obtain a good registration, the selection
of the right transformation method and an appropriated evaluation metric are im-
perative for this task.

There are numerous conventional methods for registering medical images in
the literature [276]. In particular, in [207], we can find a comprehensive evalu-
ation and comparison of more than 20 algorithms on 30 thoracic CT pairs from
the EMPIRE10, a pulmonary image registration challenge. From this work, top-5
algorithms used different non-rigid transformations. Also, in [295] we can find
the evaluation of a commercial system for lung nodule matching applying a reg-
istration mechanism. The performance obtained was 92.7% of accuracy on three
serial CT scans from 40 subjects with 143 nodules from the NLST. In another
study [155], the automatic lung nodule matching ability was evaluated using an-
other commercially available system using a conventional registration method.
The performances obtained were between 79% and 92% of accuracy using anno-
tations from 4 experts in 57 patients.

Despite the relevant results reported by some of these conventional methods,
further demand for faster registration methods motivated the development of deep
learning approaches for medical image registration [112]. For instance, in [47] a
stacked denoising autoencoder was used to learn a similarity metric for assessing
the quality of the rigid alignment of CT and MR images. This metric outper-
formed conventional ones, such as local cross correlation. In [77], a 3D CNN
was designed to perform the deformable registration of inhale–exhale 3D lung CT
image volumes. In [280], another CNN was used to both linearly and locally reg-
ister inhale–exhale pairs of lung volumes. Both, the affine transformation and the
deformation were jointly estimated, and the loss function used was composed of
MSE and a regularization term. This method outperformed several state-of-the-art
methods that do not use ground truth data, including Demons [189] and SyN [22].

Although satisfactory advances have been produced in lung CT alignment,
concerns regarding time latency (e.g. 5 minutes according to [251] per case), and
distortions introduced in the intrinsic structure of the lung images, still hinders
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their wide acceptance in the clinical practice [309].

II) Nodule malignancy classification

Despite the medical importance of monitoring the evolution of pulmonary nod-
ules for determining its malignancy likelihood, few works have really taken into
account the temporal dimension to provide a malignancy estimate. In addition,
most of these works rely on a subset of the NLST (accessible under prior com-
mittee agreement), which is probably the largest longitudinal lung cancer dataset.
However, cases from this cohort are constrained to certain parameters (e.g. yearly
CT scans on a subset of the population), which limits the complexity of the data
to analyse.

In this regard, a recent deep learning work [87] proposed a modified LSTM
network for nodule malignancy classification using lung nodule follow-up im-
ages. In particular, they aggregate in the forget and input gates a method to weight
the importance of the temporal distance between scan images. This method was
trained using a subset of the NLST (with 1794 cases) and obtained performances
around 82% of AUC. In another study [14], an end-to-end deep learning based
pipeline was built for lung cancer prediction using two CT images per patient (cur-
rent and previous year). This approach proposed a pipeline composed by three 3D
CNN networks, one for analysing the lung CT image, another for analysing nod-
ule patches, and a final one, to provide cancer risk prediction using outcomes from
previous two components. The method reported high AUC score of 94.4% using a
subset of NLST (for 6,716 cases, 86 cancer-positives), although predictions were
restricted to 1-year cancer risk. More recently, in [308] an attention-based 2D
CNN network was built using pre-trained weights and a multi-time-point classifi-
cation in a Siamese structure. Attention was on slice-wise for reducing network
parameters to learn an appropriate nodule malignancy classifier. The Siamese-
style architecture was proposed by allowing various number of inputs to be pro-
cessed concurrently while also reducing the number of overall weight parameters
since they are shared across twin branches. Best results of this approach reported
an AUC of 88% in a test set of 170 nodules with 2 time-points. Also in [129], a
deep learning approach was described for predicting lung cancer risk at 3 years
and lung cancer-specific mortality. This study, although not being focused on
automatic image analysis, uses a multilayer perceptron to ensemble nodule and
non-nodule features associated to lung abnormalities.

III) Nodule growth forecasting

Determining the growth of the nodule is central for a proper malignancy estima-
tion and treatment prescription [199]. However, lung tumours are highly hetero-
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geneous (e.g. in size, texture and morphology) and their growth assessment is
subject to inter and intra-observer variability (up to 3 mm in diameter on spic-
ulated nodules [106]), making it complex to derive general patterns of tumour
growth.

Traditionally, the tumour growth prediction problem has been addressed through
complex and sophisticated mathematical models [254], such as those based on the
reaction-diffusion equation [287, 292] also known as Fisher-Kolmogorov model.
These methods provide informative and interpretable results. However, the num-
ber of model parameters is often limited (e.g. 5 in [318]), which might not be
sufficient to model the inherent complexities of the growing patterns of the tu-
mours.

Deep learning has recently addressed the tumour growth estimation to over-
come the limitations of conventional approaches. For instance, in [328], authors
proposed the use of two (invasion/expansion) stream CNNs for pancreatic can-
cer. The network reads 2D patch images of the tumour and predicts future tumour
segmentation as well as tumour volume growth rate. Interestingly, the method al-
lowed integration with clinical data to enable personalization. Best method perfor-
mances achieved 86% of Dice score and 8.1% relative volume difference (RVD).
Those overcame state-of-the-art of conventional mathematical models [319] for
that disease type. However, the size of the test set was too small (10 cases) to
extract robust conclusions. Also, to make inference this network required multi-
modal images (i.e. dual phase contrast-enhanced CT and FDG-PET), as well as
three time points spanning between three and four years, which represented strong
pre-conditions for the usability of the model. Alternatively, a recent work used the
ability of RNN for exploiting the temporal patterns on tumour growth prediction.
For instance, in [329], a 3D convolutional LSTM network [267] was proposed for
predicting pancreatic tumour growth. Interestingly, in this study, features from
the clinical history of the patient were integrated in the network with the inten-
tion to find extra non-linear relationships between spatial and temporal features.
This approach used a limited dataset (33 cases) and required having series (≥
2) of previous images of the lesion, which for early tumour growth estimation
is not the best scenario due to the aggressiveness of the disease. In [173], a 2D
deep convolutional GAN was presented for discriminating between true tumour
progression and pseudo-progression of glioblastoma multiforme. The results con-
firmed its suitability for prediction and feature extraction, although only one im-
age per tumor was used in the study. In [76], a stacked 3D GAN was built for
growth prediction of gliomas using temporal evolution of the tumour. Although
high performances were reported (88% Dice score), the database was composed
by only 18 subjects, in which all tumours always grew. In [235], different GAN
networks were built to predict the evolution of white matter hyperintensities. They
also demonstrated the potential of using GANs in a semi-supervised scheme, im-
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proving results of a deterministic U-ResNet [330]. Despite the satisfactory per-
formances obtained with GANs, this type of networks suffers from mode collapse
[94], that is, they hardly generate correct representations of the probability output
distribution, so they may not be adequate to model uncertainty. Alternatively, in
[140], a deep auto-encoder attached to an FC network was shown for colorectal
tumour growth detection. Despite providing results close to the RECIST method-
ology2 and radiomic measures, the use of the auto-encoder was for mere feature
reduction. In [28], authors applied a VAE for progression of Alzheimer’s disease
from structural MRI images. Their experiments demonstrated that VAE outper-
forms conventional CNNs on doubtful cases, as it acts as a soft classifier learning a
Gaussian distribution. Also, for patient risk analysis they observed that VAE pro-
duced less false positive cases, sampling from the latent space, than deterministic
CNNs. However, CNNs provided better overall performances. In another study
[239], a deep auto-encoder, conditioned on fixed characteristics such as age and
diagnosis, was defined to generate sequences of 3D MRI for Alzheimer’s disease
progression. Despite results outperformed previous 2D versions, some artefacts
and false structures were noted on the generated images. Moreover, additional
terms were required to ensure loss stability, latent space continuity, reducing mem-
ory constraints and restoring 3D outputs. Given the ambiguity present in medical
images, in [231] a deep probabilistic generative model (sPUNet) [29, 153] was
used to model glioma growth for radiotherapy treatment planning. The model,
based on a combination of a U-Net [248] and a CVAE [275], was able to gener-
ate multiple future tumour segmentation modes on a given input. Although they
demonstrated the potential of providing multiple views over a single solution, they
did not report nodule growth performances.

Regarding forecasting lung tumour growth, in [311] a network was proposed
to combine convolutional layers and gated recurrent units with an attention mech-
anism [193]. The goal was to predict spatial and temporal trajectories over a
course of radiotherapy using a longitudinal MRI dataset. Although the purpose
of this study is similar to ours (i.e. future lung tumour growth estimation), the
complexity of the problem differs in that the images analysed were MRI (instead
of CT), the period of the predictions were weeks (instead of months/years), and
the number of input images (i.e. 2-3) to the network was larger than in our case.
In another recent work [177], a method was proposed to generate a future image
of the nodule. To do this, a temporal module encoded the distance at which to
make the prediction, and two 3D U-Net [202, 248] networks extracted the warped
and texture image features of the lung nodule. The network was trained with more
than 300 pairs (prior and current studies) of 3D nodule centred patches. Exper-
iments reported a high balanced accuracy score of 86% for nodule progression,

2https://recist.eortc.org/
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although a relative Dice score of 65% for future nodule segmentation.
The gap in the model’s ability to provide future segmentations of the tumours,

the use of a tailored criterion to determine nodule growth instead of conventional
metrics (e.g. the longest diameter or double time volume) or not taking into ac-
count inter-observer variability, shows the need to continue with the investigation
of more reliable and effective solutions.

3.3 Challenges and limitations
One of the main concerns when adopting data-driven approaches for medical
imaging problems is precisely the quality of data from which to learn from. In
automatic lung cancer assessment using CT scans, the acquisition protocol (e.g.
pixel spacing, slice thickness, volume size, contrast agents) is a principal limiting
factor on the quality of the generated data. CT scans usually work at the minimum
radiation possible in order to reduce its interaction with the disease, obtaining im-
ages with limited resolution. Building highly predictive models on top of these
ambiguous images (e.g. low contrast and SNR) is hard. Models struggle to ex-
tract useful image representations that let them distinguish among different labels
(e.g. normal and malign tumour). At the same time, image ambiguity limits the
quality of the annotations. The large variability in shape and texture of nodules
(specially on smaller ones) without a clear image resolution lead to inter-observer
variability, producing weak labels. As we have shown, several deep learning con-
tributions to lung cancer assessment have focused on making the networks better
on extracting predictive features from these images (e.g. multi-scale, multi-view,
attention gates). However, due to the relevance of having accurate networks, fur-
ther work is still required in these terms.

At the same time, as we have seen, the amount of available data for train-
ing deep learning models for lung cancer assessment is scarce. Restrictive data
sharing policies, or the lack of resources in clinical institutions, makes it complex
to release publicly annotated data for the research community. Labelling medi-
cal data is time-consuming, annotators are usually overloaded and do not dispose
of the pace and time desired to perform meticulous annotations (e.g. semantic
segmentation), limiting the amount of labelled data and introducing variability in
the data. This poses a challenge for deep learning algorithms, since they require
large amounts of data for training the large number of parameters of such deep
networks. In this chapter we have seen several techniques to overcome this lim-
itation, although still further research is still required. One clear case, worth to
be investigated could be the possibility to transfer knowledge from models learnt
with weak radiological labels but with more voluminous datasets (since they are
annotated just by visual inspection), to models with few confirmed malignancy
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cases (more difficult to collect), although with stronger beliefs.
As already seen, providing automatic support for lung cancer assessment is a

challenging task due to it is highly conditioned by the different sources of variabil-
ity (e.g. data acquisition, tumour heterogeneity, quality of annotations, agreement
between readers). Although several works have shown high accurate deep learn-
ing solutions, they mostly come as black boxes, i.e. they only provide a single
outcome directly to the clinicians. This really limits the reliability and trustfulness
of these models for such critical tasks. In these terms, we believe it is required
further work on this topic to enhance the interpretability of the model outcomes.
Related to this, an interesting research direction is quantifying the uncertainty of
the model estimates. This could permit providing to the clinicians how much
certain is the model on their predictions (e.g. nodule detection, segmentation,
growth, malignancy). We also believe this problem still requires further research,
as demonstrated by the scarce number of works which have addressed this impor-
tant feature for clinicians.

Another factor observed in the literature review, is the large effort done by
computer vision and artificial intelligence researchers on lung cancer assessment
focusing on single time-point CT images. Although single time-point pipelines
have the potential to automatize the early lung cancer prediction, they do not have
information regarding the temporal evolution of the nodule, even if as stated by
international clinical guidelines, lung nodule malignancy is highly determined by
how it evolves (i.e. its growth rate). Providing automatic support on the lung
nodule follow-up could have great implications on the current clinical practice.
Actually, for each suspicious detected nodule, clinicians have to perform a closely
follow-up. This means having to perform more costly studies, subsequently re-
quiring further resources to compare and analyse each of these studies. This pose
a clear bottle-neck for the already overloaded radiological units of health institu-
tions. Unfortunately, few works have really addressed this topic. The main reason
that explains this fact is the lack of available longitudinal annotated data. There-
fore, most of the studies rely on small in-house datasets which limits the reliability
and the performance of the methods. Further research is required for the longi-
tudinal analysis of lung nodule malignancy, but also more efforts are required for
collecting large and heterogeneous longitudinal datasets.

Beyond providing support to automatize lung nodule follow-up, little research
has been addressed towards lung tumour growth forecasting. This functionality
could help clinicians to determine following treatments and clinical interventions.
Unfortunately, several challenges have to be faced, such as the lack of longitu-
dinal annotated data (as already mentioned), the inter-observer variability on the
growth annotations and the stochastic growth factor involved in the nodule ma-
lignancy (e.g. sub-solid nodules grow at different rates than solids, size is also
another determining growth factor). Despite these complications, recent advances
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in recurrent and deep generative models have demonstrated to be promising lines
of research on this topic.

In the following sections we aim to provide further details regarding some of
these principal limitations, how we have faced them and which have been our
contributions to most of these problems.
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Chapter 4

INTEGRATION OF PULMONARY
NODULE MALIGNANCY IN A
LUNG CANCER
CLASSIFICATION PIPELINE

4.1 Introduction

Lung cancer is the uncontrolled growth of abnormal cells in one or both lungs.
These abnormal cells can form tumours and interfere with the normal functioning
of the lung.

Although the 5-year survival for lung cancer has improved over the last fifty
years, it is still one of the most common cancers, accounting for over 225,000
cases, 150,000 deaths, and $12 billion in health care costs yearly in the U.S. [48].
It is also one of the deadliest cancers; only 17% of people in the U.S. diagnosed
with lung cancer survive five years after the diagnosis, and the survival rate is even
lower in developing countries.

Early detection of lung cancer significantly improves the chances of patient
survival. However, in most cases, a patient is unaware that she/he has a pulmonary
nodule until a chest X-ray or a low-dose computed tomography (CT) scan of the
lungs is performed, typically after physical symptoms appear, which occur most
often in advanced stages of the disease. For this reason, early stage detection of
benign and malignant pulmonary nodules plays an important role in clinical di-

The work described in this chapter is based on the following journal publication: Rafael-
Palou X, Bonavita I, Ceresa M, Piella G, Ribas V, González Ballester MA. Integration of convolu-
tional neural networks for pulmonary nodule malignancy assessment in a lung cancer classification
pipeline. Computer Methods and Programs in Biomedicine. Vol. 185 (105172), pp. 1-9, 2020.

43



“output” — 2021/7/6 — 8:07 — page 44 — #68

agnosis. Today, the gold standard for lung cancer detection consists in routinely
taking a CT scan, and detecting nodules (i.e. small and approximately spherical
masses) in it. Once lung nodules are detected, radiologists perform size measure-
ments to assess their malignancy. To support them in this task, several guidelines
like LungRADs [12] and Fleischner [194] have been proposed. These guidelines
are a compilation of well documented cases and a set of rule-based recommen-
dations from the clinical experience designed to help clinicians to discern among
pulmonary nodules, normal tissues and artefacts, as well as to determine the inher-
ent malignancy of the nodules. However, they are constrained to a limited number
of visual parameters (e.g. size, morphology, texture and location of the nodules)
and to a fixed range of values.

Low-dose CT is an effective method for radiologists to early identify lung
cancer [298], although it presents several limitations. First, radiologists need to
process large volumes of CT slices, usually with a low signal-to-noise ratio, which
causes erroneous classifications of regions with weak or irregular contours. In
addition, lung cancer diagnosis through CT is often subjective and highly affected
by observer’s experience, fatigue and emotional state [227], which can lead to
inconsistent results from the same radiologist at different times or from different
radiologists examining the same CT image.

Emulating the decision process of radiologists to determine malignancy of
a nodule would be an extremely useful tool to help physicians plan future in-
terventions for patients. Several approaches can be found in the literature rely-
ing on artificial intelligence and computer vision techniques. Conventional solu-
tions (e.g. [93, 141]) propose engineering handcrafted features extracted directly
from the CT image to build standard machine learning classifiers. This approach
achieves satisfactory results when nodule candidates are well-defined, but shows
some shortcomings when the nodules present complex and different sizes, shapes
and context. An alternative recent solution to this problem is the use of convolu-
tional neural networks (e.g. [44, 266, 321]), which are able to learn automatically
inherent representations directly from the raw images.

In this chapter, we aim to evaluate the relevance of nodule malignancy to au-
tomatically predict lung cancer. To this end, we propose to use 3D convolutional
neural networks to build accurate nodule malignancy classifiers trained on a public
dataset of CT images with the annotations made by radiologists on the pulmonary
nodules.

The main contribution of this chapter with respect to previous works is two-
fold. First, we provide a framework to allow integrating nodule malignancy clas-
sifiers, built at nodule level, into a pipeline that does not take into account malig-
nancy information, but predicts lung cancer at the patient level. To this aim, three
different features obtained from the malignancy classifiers were concatenated to
a baseline lung cancer classifier: predicted classes, probabilities and features ex-
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tracted from the last layer of the network. Secondly, we quantified the contribution
of the nodule malignancy classifiers for lung cancer prediction. For this objec-
tive we evaluated the three different types of integration, and we compared their
performances with that of a baseline lung cancer pipeline. This baseline was im-
plemented using well established methods so that we could reliably quantify the
impact of the nodule malignancy integration within the cancer detection pipeline.

The chapter is organized as follows: in the next section we review the existing
related work on nodule malignancy and cancer classification. Then, we present
the methods and materials used. Finally, we provide the results and a thorough
discussion about the main outcomes presented in the chapter.

4.2 Related Works

In the past years, numerous works have addressed the problem of classifying the
malignancy of pulmonary nodules in CT scans; some of these works use as fea-
tures the radiologists’ annotations of the nodules and perform classification for
example with rule-based [141] and statistical learning [108] methods or by build-
ing a machine learning classifier [93] or an ensemble of classifiers [336, 337].
In other works, in addition or as alternative to radiologist annotations, shape-
based, margin-based, and texture-based features [67] or 3D features of the nodules
[242] are computed directly from the image with classical image analysis tech-
niques.
In more recent years, it has been shown that deep learning techniques can outper-
form standard techniques in discriminating benign from malignant nodules (e.g.
[266, 277, 322]). In [127], a deep belief network is used to extract from nod-
ules features that are fed to a convolutional neural network aimed at classifying
nodule malignancy. In [162], deep features are extracted from an autoencoder. In
[44], high malignancy classification accuracy is achieved by using a convolutional
neural network and radiological quantitative features.

Despite the abundance of papers focusing on classification of nodule malig-
nancy and on nodule detection [72, 145, 334] in CT scans, little effort has been
put in providing a systematic analysis of the effects of combining both, to assess
whether predicting malignancy at the nodule level is beneficial for cancer predic-
tion at patient level. To the best of our knowledge, [265] is the closest work to ours
that tackles this issue. However, the focus of [265] is limited to the transferability
of deep features of nodules to the cancer prediction task and the input data are ex-
actly located nodules. Our aim is, instead, to provide and evaluate different types
of nodule malignancy integration within an end-to-end cancer detection pipeline
that takes as input raw CT scans.
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4.3 Materials and Methods

4.3.1 Data
LIDC and LUNA16 datasets

The LIDC [18] is the largest publicly available reference database for lung nod-
ules. It contains a total of 1018 CT scans, each of which is associated with a file
containing annotations from four experienced thoracic radiologists. The annota-
tions are the result of a two-phase reading process in which the radiologists were
asked to mark suspicious lesions and to provide additional characterization of le-
sions of diameter larger or equal to 3 mm which were marked as a nodule [19].
In this work, we use an updated version of the LIDC dataset provided in the
LUNA16 challenge [262], which includes only scans with at least one lesion of
size >= 3 mm marked as a nodule by at least three of the four radiologists. The
LUNA16 dataset consists of 888 CT scans comprising a total of 1186 nodules.
Annotations with coordinates of each nodule in the three spatial axes inferred
from the original LIDC annotations are also provided.
We obtained the malignancy outcome of our classifiers from the annotation files
in the LIDC database as they provide, among other characteristics, the subjective
assessment of each radiologist of the likelihood of malignancy of the nodule. The
admitted malignancy scores are discrete values ranging from 1 (highly unlikely
for cancer) to 5 (highly suspicious for cancer). Since for each nodule included in
LUNA16 we have the assessment of three or four radiologists, in order to obtain
a unique label we averaged their scores.

TCIA Diagnosis Data

For 130 cases the LIDC dataset provides diagnostic data at patient level obtained
from biopsy, surgical resection, progression or reviewing of the radiological im-
ages showing stable nodules after two years [52].
We retained this small dataset from the data used for building the malignancy
classifiers, and we used it for training and testing the baseline and integrated lung
cancer classifiers.

4.3.2 Method
Malignancy Classifiers

We describe here the approach used to build the nodule malignancy classifiers that
will be integrated in our cancer prediction pipeline.
The input data to train the malignancy classifier consists of 3D cubes measuring
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(32, 32, 32) mm centred in the centroid of the nodule computed from the coordi-
nates in the LUNA16 annotation file. Note that each CT scan (i.e. subject) can
contain more than one nodule; hence, to avoid any data leakage we assigned all
the nodules belonging to a subject to only one of the training, validation or test
sets. Additionally, we performed clipping (using a filter of [-1000, 400] HU) and
normalization of the cubes.
The malignancy score of each nodule was obtained from the original XML an-
notations using a parser provided by the second place winner of the DSB Kaggle
competition [105] and averaging the radiologist scores as described in 4.3.1.
Given the binary nature of the final cancer prediction we want to achieve, we
decided to remove nodules of ambiguous or intermediate malignancy from our
experimental dataset. A Principal Component Analysis performed on some of
the most relevant features annotated by radiologists showed that nodules of ma-
lignancy 1, 2 and 3 have similar feature distributions differently from those of
malignancy 4 and 5 (Figure 4.1 b). Additionally, nodules of class 3 present higher
variance, and form a less well-defined cluster in the principal components space
(Figure 4.1 a). Therefore, we decided to remove them from our analysis. We
hence opted for training and validating our classifiers on: Dataset 145, in which
we selected only nodules labelled as 1, 4 or 5 and Dataset 1&245, in which we
selected nodules of malignancy 4 and 5, and we merged them into one single cat-
egory (renamed 1&2) nodules labelled as 1 and 2. Both datasets were split into
stratified training (60%) and validation (40%) sets. As stated above, the test set for
both the malignancy classifiers and the cancer pipeline consists of the TCIA data.
However, only CTs containing at least one nodule with label 1, 4 or 5 (Test 145 )
or 1,2,4 or 5 (Test 1&245 ) were selected. Sample sets size and labels distribution
are presented in Table 4.1.

Dataset N subjects
N nodules

1(&2) 4 5 total
Dataset 145 247 72 213 48 333
Dataset 1&245 351 287 213 48 548
Test 145 65 15 65 9 89
Test 1&245 82 59 65 9 133

Table 4.1: Dataset used for building and testing the malignancy classifier.

The 3D nodule-cubes and corresponding malignancy labels are fed to a ma-
chine learning multi-class classifier. The model is based on a convolutional neu-
ral network (CNN). We designed two tailored networks for this purpose: a 3D
CNN with 3 convolutional blocks, each followed by a 3D Max-Pooling layer and
a dense block with a final dropout layer (CNN without BN ), and a similar 3D
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(a) (b)

Figure 4.1: PCA analysis and boxplot of radiologists annotated features per malignancy class.

CNN (CNN with BN ) in which we applied batch normalization in each block,
and we made more extensive use of dropout by adding it after each block. Note
that for this last network we increased the kernel size of the last convolutional
block and the number of units in the dense block.

Figure 4.2: Architecture of the two CNN networks designed for the malignancy classifiers.

We trained the model weights with a batch training approach for 150 epochs
and adopting early stopping with Adam optimizer [147] for regularization. We
set the learning to 0.001, and we chose categorical cross-entropy as loss function.
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Moreover, given the small size of our dataset, we used data augmentation on the
training set (90 degrees of rotation, 0.02 of shear, zoom range of 0.1, shift of
0.05 and horizontal and vertical flip). Different training and validation batch sizes
together with other input parameter combinations have been tested. A detailed
description of the network architectures is presented in Figure 4.2.
The combination of the two network architectures and of the two datasets led to
the creation of four malignancy classifiers:

• CNN without BN 145 and CNN without BN 1&245

• CNN with BN 145 and CNN with BN 1&245

Performances of these classifiers are presented in the results section whereas their
integration and evaluation in the cancer prediction pipeline is described below.

The lung cancer pipeline

With the intention of setting a baseline method, we developed a two-stage lung
cancer pipeline that did not take into account any information regarding nodule
malignancy. We refer to this pipeline as our baseline method.

1. Nodule detection

To build the automatic nodule detection stage, we used the LUNA16 dataset
(reserving 10% for testing purposes) since it contains, for each CT, the lo-
cation and diameter of the nodules. The first process performed was re-
sampling each CT to an isotropic resolution (1, 1, 1) mm in order to reduce
the variance given by the different pixel size/coarseness (e.g. the distance
between slices) of the scans.

Secondly, we performed a segmentation of the lungs from the re-sampled
CTs, with the intention of reducing the analysis to the area of interest. For
this task, we relied on a method proposed by the most cited kernel of the
Data Science Bowl Kaggle competition [339]. This method consists in ap-
plying a threshold (i.e. -320 HU) to separate the air from the tissues. Then,
it uses connected components to separate the lung air from outside, and fi-
nally it applies a morphological dilation to fill the existing gaps in the lung
tissue.

To detect nodule candidates in a CT, we used a 3D blob detector based on
the Difference of Gaussian method [303]. This technique tries to detect nod-
ules by retrieving those parts of the image that differ in properties, such as
brightness or grey-level, compared to surrounding regions. One advantage

49



“output” — 2021/7/6 — 8:07 — page 50 — #74

of this method is its intuitive parameterization. In particular, we needed to
tune 5 parameters: the minimum and maximum diameter of the region to
look for (i.e. the minimum and maximum Gaussian standard deviations),
the steps (i.e. the number of standard deviations to try between the defined
ranges), a similarity threshold and the overlap score used for pruning closely
located regions of interest. The configuration selected for this method was
5 mm and 60 mm as minimum and maximum nodule diameters, 5 steps,
a threshold of 0.15 and 0.9 of overlapping. More details on the evaluation
results of this method are available in the supplementary material (A.2).

As this candidate detection method tends to be optimistic (i.e. to accept sev-
eral candidates similar in shape and texture to nodules), we implemented a
classifier aimed at reducing the rate of false positive candidates. We chose
to solve this task with a 3D CNN and, after empirical tests with different
network architectures, we opted for the ResNet-50 [115]. To train this net-
work, we used the same training set used for building the nodule detection
method, along with a list of candidate nodule locations, provided by the
LUNA16 challenge. The inputs to the network were volumes of (32, 32,
32) mm extracted from the nodule candidate positions. We used 0.0001 as
initial learning rate, Adam optimization and binary cross-entropy for the
loss function. Additionally, to improve the generalization ability of the net-
work, in the training phase, we used data augmentation of the positive class
by a factor of 1:240. In particular, we applied a 90 degree of rotation, 0.2 of
shear, zoom range of 0.1, up and downs shifts of 0.5 and horizontal and ver-
tical flips. The network reached its best performance in the training phase
after 6 epochs with a batch size of 32. Further details regarding the evalua-
tion of this method are also available in the supplementary material (A.2).

2. Cancer classification

The following stage of the pipeline consisted in building a lung cancer clas-
sifier, fed with the detected nodules, in order to predict cancer probability
for each patient. For this purpose, we used the TCIA dataset that only pro-
vides patient labels (cancer or non-cancer). Given the lack of nodule labels,
one of the main difficulties we had to face in building the classifier was to
establish a nodules-patient labels relationship. We created a ground truth
for the detected nodules from the ground truth of the patients by labelling
all the nodules detected in a CT as 0/1 depending on the presence (1) or
absence (0) of cancer in the patient scan. For example, if three nodules
were detected by the pipeline in a CT scan of a patient with cancer, all the
nodules were labelled as cancerous. Thus, we constructed a lung cancer
classifier that predicts the probability of cancer of every nodule in a CT.
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Then, since we were interested to report cancer predictions at the patient
level, we reported as cancer probability of the patient the predicted cancer
probability of his/her most cancerous nodule (i.e. the highest among the
predicted cancer probabilities of all his/her nodules).

Additionally, in the classification, we included the main features provided
by the 3D blob detector. In total, we selected three main features (radius,
power and relative z position) referring respectively to size, signal inten-
sity and location of the nodules. Texture related information was partially
provided by the power feature (obtained from the 3D Difference of Gaus-
sian method), which contains information about the spatial arrangement of
grey intensities of the selected region of an image. Although further im-
age descriptors could be envisaged, we limited our choice to those three not
only to highlight the contribution of the nodule malignancy knowledge but
also to approximate as closely as possible the features recommended in the
current radiologist guidelines to focus on when screening nodules in a CT
scan.

Several classification algorithms were used to train the classifiers, each
accounting for a different classification strategy (i.e. linear, non-linear,
distance-based, and tree-based). Moreover, different hyper-parameters were
defined for each algorithm (Table A.6 of the supplementary material). In
order to determine the best classification model, we used a grid-search and
5-fold cross-validation, a technique suitable for our sample size range [81].

Nodule Malignancy Integration

In order to assess the effects of the automatic nodule malignancy classification
(section 4.3.2) for lung cancer prediction, we proposed three different methods
to integrate the nodule malignancy models in the lung cancer pipeline: integra-
tion of predicted classes, integration of probabilities or integration of the models
themselves (Figure 4.3).

1. Class integration

The class integration method consisted in creating a new categorical fea-
ture containing the label predicted by the nodule malignancy classifiers.
Thus, this feature was 0, 1 or 2 depending on whether the malignancy clas-
sifier predicted malignancy level of 1 (or 1&2 for CNN without BN 1&245
and CNN with BN 1&245 classifiers), 4, 5 respectively. To build the lung
cancer classifier, we then concatenated this feature to the three basic fea-
tures defined in 4.3.2 (cancer classification), namely, radius, power and z-
position.
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Figure 4.3: Pipeline proposed for lung cancer classification.

2. Probability integration

The second integration method consisted in creating three new features,
each containing the predicted probability of the nodule to be of malignancy
level 1 (or 1&2 for CNN without BN 1&245 and CNN with BN 1&245
classifiers), level 4 or level 5. To build the lung cancer classifier, we then
concatenated these three features to the three basic features.

3. Model integration

The third integration method aimed to directly use the nodule malignancy
models for the task of lung cancer prediction. Several techniques can be
envisaged for this type of integration. We propose using transfer learning
[95] since both problems have the same type of input data (CT scans) and a
similar objective (identifying malignancy). To perform transfer learning, all
the weights of the layers of the 3D malignancy networks were frozen, the
last softmax layer was removed and replaced by a dense network (several
configuration parameters of this network are presented in the supplementary
material, Table A.7) and a final sigmoid layer. The first layer of the dense
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Classifier Precision Recall F1-score F1-macro Support

CNN without BN 145 0.83 0.81 0.82 0.68 89
CNN with BN 145 0.80 0.73 0.76 0.63 89
CNN without BN 1&245 0.83 0.83 0.83 0.67 133
CNN with BN 1&245 0.82 0.80 0.81 0.66 133

Table 4.2: Results of nodule malignancy classification on test set (at nodule level).

network was combined with the three basic features defined for the lung
cancer classifier of the pipeline. The last layer of the final network outputs
a value between 0 and 1 that represents the probability of lung cancer.

For tuning and evaluating the classifiers, independently of the integration method
used, we applied a grid-search and 5-fold cross-validation as we did for building
the cancer classifier of the pipeline.

4.4 Results

4.4.1 Malignancy classification

Although nodule classification is not the focus of our work, it is important to
determine that these classifiers are able to extract useful information from the
CTs before integrating them into the cancer pipeline. In Table 4.2 we summa-
rize the weighted average performance metrics and the macro averaged F1-score
on the test set of the four classifiers. The models CNN without BN 145 and
CNN with BN 145 achieved the best performances with batch size of 32 in train-
ing and validation, while for CNN without BN 1&245 and CNN without BN 1&245
batch size of 32 and 16 respectively in training and validation were selected. In
all the experiments we augmented each nodule in the training set by a factor be-
tween 10 and 25, augmenting more nodules of malignancy 5 given their lower
representation in the dataset.

Overall, the more shallow architectures slightly outperformed the deeper ones;
nevertheless, all the classifiers achieved a weighted F1-score above 0.75 with the
best one (CNN without BN 1&245 ) achieving 0.83. These results indicate that
the nodule deep features extracted by the CNN are good predictors of nodule
malignancy.
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Consistency between nodule-level malignancy predictions and patient-level
diagnostic ground truth

To validate our hypothesis that the integration of a nodule malignancy classifier
in a cancer detection pipeline can improve the predictions, we evaluated the con-
sistency between the diagnosed cancer status of a patient and the predicted malig-
nancy of his/her nodules. To do so, we inferred the cancer label of each patient
from the malignancy labels of his/her nodules: if the CT scan of the patient con-
tains at least one nodule with predicted malignancy 4 or 5, then the patient is
positive to cancer, otherwise (i.e. all the nodules in the CT are benign) the patient
is negative to cancer. Given this rule, we obtained cancer predictions at patient
level in the cases where the predictions of nodule malignancy come from: 1) the
radiologists, 2) the four malignancy classifiers. Performance metrics of these rule-
based predictions are evaluated in the Test 145 and Test 1&245 sets (as they are
the only provided with truth cancer labels) and are reported in Table 4.3. It is
worth noting that both radiologist and CNN classifiers achieved comparably high,
although not perfect, predictions (in Test 145 the best F1-score was 0.92 achieved
by radiologists and CNN with BN 145 while in Test 1&245 the best F1-score
was 0.85 achieved by CNN without BN 1&45 followed by 0.84 obtained from
the radiologists prediction).

Dataset Prediction source Precision Recall F1-score Support

Test 145 radiologist 0.89 0.94 0.92 65
Test 145 CNN without BN 145 0.86 0.96 0.91 65
Test 145 CNN with BN 145 0.88 0.96 0.92 65

Test 1&245 radiologist 0.89 0.79 0.84 82
Test 1&245 CNN without BN 1&245 0.87 0.84 0.85 82
Test 1&245 CNN with BN 1&245 0.83 0.78 0.80 82

Table 4.3: Cancer prediction at patient level from nodule malignancy.

4.4.2 Lung cancer
The pipeline described in section 4.3.2 was applied on the diagnosed TCIA dataset.
From the 130 cases, we obtained that 100 (76.9%) were predicted with potential
lung nodules, 11 cases (8.4%) were correctly predicted without any cancerous
nodule and 19 cases (14.1%) were false negatives as they had some missing can-
cerous nodules.

On the 100 CT cases with detected nodules (227 nodules), we ran the can-
cer classification stage of the pipeline. The data was imbalanced with a non-
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cancer/cancer class ratio of 1:3.61. This ratio was respected during the random
partitioning of the data in training and test datasets. In total, for training we had
75 cases (21 non-cancer, 54 cancer) with 220 nodules (48 non-cancer, 172 can-
cer). In contrast, for testing we had 25 cases (6 non-cancer, 19 cancer) with 57
nodules (12 non-cancer, 45 cancer). Figure 4.4 shows the distribution of nodules
by patient and the box-plot of nodules for cancer and non-cancer CTs.

Figure 4.4: Data distribution for lung cancer classification.

The results of evaluating the different malignancy integration pipelines for
lung cancer prediction are summarized in Table 4.4. This table shows the weighted
precision, recall and F1-scores for cross-validation, test at the nodule level and test
at the patient level. The baseline method achieved 0.65 +/- 0.021 of weighted F1
in cross-validation, whereas 0.55 in test at the nodule level and 0.593 in test at
the patient level. The pipeline with malignancy probabilities integration method
achieved the best results with 0.709 of weighted F1 in test at the nodule level and
0.74 of F1-weighted score in test at the patient level.

Figure 4.5 shows a bar-plot with the accuracy and the weighted F1-scores
achieved by the different integration pipelines. The dashed lines represent the
baseline classification performances. On the right, we show a precision-recall
curve of the different lung cancer pipelines. This type of curves are especially
appropriate when the classes are imbalanced as it shows the trade-off between
precision and recall for different thresholds [253]. Basically, this type of curves
is obtained applying several thresholds (th) on the predicted probabilities of the
positive class (pr) of the dataset. The thresholds, which are typically the different
predicted probabilities of the positive class (including 0.0 and 1.0), allow to define
the positives cases (pr > th) and the negative cases (pr < th). Therefore, to
obtain the list of pairs of precision and recall that conform the curve, we iteratively
calculate these metrics for each of the different thresholds defined. To generate
these curves, we have used the implementation provided by the scikit-learn library
[229].
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Metric
Baseline
Pipeline

Malignancy Integrated
Pipelines

Class Probabilty Model

CV
prec 0.627+/-0.03 0.737+/-0.01 0.766+/-0.02 0.715+/-0.06
rec 0.711+/-0.05 0.587+/-0.03 0.732+/-0.03 0.712+/-0.05
F1 0.650+/-0.02 0.623+/-0.02 0.743+/-0.02 0.712+/-0.05

Test
(ND)

prec 0.615 0.685 0.692 0.703
rec 0.509 0.491 0.737 0.684
F1 0.550 0.536 0.709 0.693

Test
(PT)

prec 0.553 0.660 0.842 0.704
rec 0.640 0.640 0.800 0.720
F1 0.593 0.640 0.740 0.711

Table 4.4: Cross-validation and test (ND: nodule level, PT: patient level) results for the lung cancer
pipelines.

Figure 4.5: Performance comparison of the lung cancer pipelines.

4.5 Discussion

One of the most critical tasks that radiologists have to perform when examining
lung CTs is to identify nodules from normal lung tissue. Highly malignant nod-
ules are usually candidates of being lung cancer. Therefore, radiologists should
precisely quantify the malignancy of the pulmonary nodules before planning ex-
pensive and sometimes traumatic clinical interventions.

Measuring nodule malignancy is a complex and tiresome process with signif-
icant levels of intra- and inter-observer variability. Several tools relying on image
processing and conventional machine learning techniques or, more recently, con-
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volutional neural networks have been proposed to support radiologists in this task.
However, to the best of our knowledge, very few of them (e.g. [265]), indepen-
dently of the technique selected, use nodule malignancy for the classification of
lung cancer. With the intention of providing a realistic evaluation of the impor-
tance of nodule malignancy for the automatic lung cancer classification, in this
work we have provided a framework with different methods to integrate nodule
malignancy in a cancer detection pipeline.

With this aim, we created several nodule malignancy classifiers using 3D con-
volutional neural networks. To build these classifiers, beforehand, we knew the
level of malignancy, the position and the size of the nodules to classify. The
best nodule malignancy classifier (CNN without BN 1&245) achieved a relevant
performance 0.83 of weighted F1-score when classifying the malignancy of the
nodules in an independent test set.

The expected usefulness of these classifiers to the task of lung cancer pre-
diction was validated by deriving a cancer classification from the nodule malig-
nancy prediction on the TCIA diagnosed dataset. The best malignancy classi-
fier (CNN with BN 145) achieved a performance of 0.92 of a weighted F1 score,
comparable to the performance using the malignancy annotations given by the ra-
diologists. However, it is worth noting that the evaluation was performed knowing
a priory the location of the nodules and that the nodules annotated with a label 3
were removed due to their ambiguous malignancy.

To have a more realistic evaluation, we first created a baseline pipeline com-
prising a nodule detection and a cancer classification that uses a very simple set
of descriptors (such as the radius, signal intensity and location of the candidates).
We limited the number of features to this basic set to reasonably emulate the fea-
tures recommended in the current radiologist guidelines. More radiomic features
could have been added to further increase the performance. This would however
complicate the assessment of the contribution of malignancy in cancer prediction,
which is the main focus of this study. It remains for future work the extraction of
more advanced features that could be useful, along with malignancy, to improve
cancer prediction.

Eventually, to assess the effects of automatic nodule malignancy classification
for lung cancer prediction, we provided three different ways to integrate the nod-
ule malignancy classifiers into a lung cancer pipeline. The first approach aimed to
use only the predicted classes as a new feature to add into the basic set of features
of the baseline pipeline. The second approach consisted in creating three new
features, representing the nodule malignancy probability distribution, and adding
them to the features of the baseline. Finally, the last integration method consisted
in using directly the malignancy model for lung cancer classification. In particular,
we used a transfer learning technique which consisted on freezing the weights of
the malignancy classifiers, removing the last layer and replacing it by new dense

57



“output” — 2021/7/6 — 8:07 — page 58 — #82

layers.
In total, three new pipelines were created by applying the different integration

techniques within the baseline pipeline. The three pipelines and the baseline were
trained using the TCIA dataset and evaluated using a grid-search with a 5-fold
cross-validation.

Results show that the best pipeline with integrated nodule malignancy outper-
forms up to a 15.9% and 14.7% of weighted F1 score in comparison with the base-
line at the nodule and patient level. The best pipeline was using the malignancy
probabilities, and it achieved a difference of 2.9% of weighted F1 score at the
patient level with respect to the second-best integration pipeline, the malignancy
model integration. This result may appear surprising since the model integration
adds to the classifier more features and hence more information. However, this ex-
tra information comes at the cost of an increased dimensionality of the problem,
suggesting that this transfer learning approach may be better suited when a larger
dataset would be available. Alternatively, a further fine-tuning (e.g. unfreezing or
removing more layers) of the transfer learning proposed can be envisaged. Never-
theless, the model integration pipeline significantly outperformed the baseline by
11.8% of weighted F1 score at the patient level. In contrast, malignancy class in-
tegration did not significantly improve the lung cancer classification performance
of the baseline. The poorer performance of the class compared to the other inte-
gration methods was expected, since the information was compressed into a single
categorical feature not able to capture the complexity of the problem.

The findings of our study suggest that systematically integrating the assess-
ment of nodule malignancy in an automated cancer detection system may improve
significantly the ability of the system to identify cancer in lung scans. Emulating
the malignancy assessment with powerful techniques such as deep learning, able
to extract complex information directly from raw data, can relieve the difficulties
and costs of a manual assessment. However, we believe that the lack of larger
datasets with manual malignancy annotations and diagnostic cancer labels consti-
tutes the main limitation of our study. If datasets of this kind become available in
the future, our pipeline will highly benefit from the additional amount of informa-
tion, which will likely result in more accurate predictions. Better predictions will
eventually: reduce the need for time-consuming manual annotations and feature
engineering approaches, provide a reliable support to radiologists and automatize
to a greater extent cancer detection pipelines adopted in clinical applications.

Our work is, to the best of our knowledge, the first attempt to build this nodule-
malignancy/patient-cancer integrated framework. Despite the encouraging results,
several improvements can be envisaged to extend this approach. For instance,
more advanced nodule detection methods [145, 320, 334] could be implemented
for increasing the overall performance. Also, implementing an ensemble of all
the malignancy classifiers instead of using them individually could enhance the
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classification performance. Furthermore, nodule malignancy could be also used
for filtering nodule candidates detected by the cancer pipeline. Thus, rather than
using all the detected nodules, we could use only the most malignant ones as
input for the lung cancer classifier. Finally, another approach for building the lung
cancer classifiers at the patient level would be to summarize all the nodules of the
patient in a single row by computing several aggregated functions (e.g. max, min,
mean) of the features (radius, power, z-position and CNN-malignancy features)
obtained per each nodule. This would eliminate the need to infer the labels of
each nodule of the patient, although at the cost of increasing the overall number
of features.

4.6 Conclusions
In this chapter we have proven that it is feasible to build highly accurate ma-
lignancy classifiers relying on deep learning techniques to predict nodule malig-
nancy. We have validated that they are also good predictors of lung cancer at the
patient level when having the location of nodules beforehand. In order to provide
a more realistic evaluation of nodule malignancy for lung cancer classification,
we finally proposed a novel framework to quantify and assess nodule malignancy
for lung cancer given only CTs and labels at the patient level. The experimen-
tal findings of this study suggest that systematically integrating the assessment
of nodule malignancy in an automated cancer detection system improves up to
14.7% of F1-score the ability of the system to identify cancer in lung scans. The
encouraging results presented are, to the best of our knowledge, the first attempt
to build this nodule-malignancy/patient-cancer integrated framework to quantify
nodule malignancy for future research in lung cancer classification.
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Chapter 5

RE-IDENTIFICATION AND
GROWTH DETECTION OF
PULMONARY NODULES
WITHOUT IMAGE
REGISTRATION USING 3D
SIAMESE NEURAL NETWORKS

5.1 Introduction

Few CAD systems [14] have been proposed for the automatic support of lung
cancer follow-up. Major developments in the field are mainly limited by the lack
of open datasets with annotated series of CTs. To analyse series of CT scans, prior
and follow-up lung exams have to be initially registered to facilitate, for instance,
the correct re-identification of pulmonary nodules. Several factors compromise
the effectiveness of the registration process, such as the variability in the image
size and resolution originated by the use of different CT scans, and the variability
in the position and breath cycle of the patients when performing the scanning.

Although current medical image registration methods [276], especially non-
linear [251], report accurate CT alignments, they are still slow and introduce some
distortions in the intrinsic structure of the lung, hindering their wide clinical ac-

The work described in this chapter is based on the following journal publication: Rafael-Palou
X, Aubanell A, Bonavita I, Ceresa M, Piella G, Ribas V, González Ballester MA. Re-Identification
and growth detection of pulmonary nodules without image registration using 3D siamese neural
networks. Medical Image Analysis. Vol. 67 (101823), pp. 1-12, 2021.
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ceptance [309]. In addition, other complexities must be addressed, regardless of
the quality of the image registration, to enable a proper nodule re-identification,
such as the existence of several nodules close to each other, and/or the alteration in
texture, size, and even location of the nodules due to disease progression. There-
fore, more research is still needed to reliably include the nodule re-identification
in different CT scans, in automated tools to support physicians in the analysis of
longitudinal studies of lung cancer.

This work aims to take a step in this direction, and proposes a novel approach
for the re-identification of pulmonary nodules. In particular, we propose a 3D
siamese neural network [152] to predict the most likely matching nodules from a
series of lung CT scans of the same patient. This approach does not require prior
registration of the CT scans, avoiding some of the shortcomings that it entails.
In addition, to demonstrate the value of this approach, we integrate it into an
automated pipeline aimed to detect the growth of pulmonary nodules over time.

The contributions of this paper with respect to previous works is two-fold.
First, we investigate and provide several models for re-identifying lung nodules
in CT scans series, relying directly on 3D volumetric data, transfer learning, and
siamese neural networks. In this sense, to the best of our knowledge, this would be
the first time that the problem of pulmonary nodule re-identification is addressed
through deep learning techniques. Secondly, we build and evaluate an automatic
pipeline that integrates the proposed models to predict nodule growth from longi-
tudinal CTs.

5.2 Related work

5.2.1 Automated nodule re-identification

Lung nodule re-identification (i.e. matching) between current and former CT ex-
aminations is necessary for assessing nodule growth or shrinkage. While the ma-
jority of lung cancer CAD systems found in the literature focus on the nodule de-
tection task [191], relatively few automated nodule matching systems have been
proposed (partly because of the limited availability of follow-up datasets).

An early CAD system for nodule re-identification in series of lung CT scans
was proposed in [150]. They reported high performances (86% nodules re-identified)
using 8 patients (310 nodules), although some parts of the system required man-
ual intervention (lung apex identification) and no train/test split was reported. In
[171] a commercial CAD system was evaluated for nodule re-identification for
30 patients (210 nodules) with lung metastasis, reaching a matching rate of 67%.
In a cohort of 54 pairs of low-dose multi detector CT screening, a CAD system
successfully matched 91.3% of nodules≥4mm [30]. In another commercial CAD
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evaluation study [295], a matching rate of 92.7% was achieved in three serial CT
scans from 40 subjects with 143 nodules from the NLST1. Another CAD system
evaluation [155] for automated lung nodule matching using annotations from 4
experts in 57 patients reported between 79% and 92% of accuracy scores. Deep
learning-based CAD systems for analysis of longitudinal lung cancer studies are
practically non-existent in the literature. An exception is in [14], where a CAD
system for end-to-end lung cancer screening is proposed. However, nodule match-
ing was not directly tackled in the study.

All these CAD systems rely on registration of the lungs in the different CT
examinations. Performing an accurate registration of lung images is particularly
challenging [206] due to the high deformability of the lung tissue and the volume
changes during the breathing cycle. Previous studies [122, 281] evaluated meth-
ods for rigid and non-rigid registration for matching lung nodules on sequential
chest CT scans. [207] presented the results of the EMPIRE10 pulmonary image
registration challenge, which comprised a comprehensive evaluation and compar-
ison of more than 20 algorithms on 30 thoracic CT pairs. Top-5 algorithms were
using different non-rigid transformations. Although non-rigid registration is usu-
ally more accurate than rigid registration, rigid registration is substantially more
computationally efficient, potentially making it more useful in a busy clinical set-
ting in which real-time processing is necessary. A more recent and complete re-
view of registration methods for medical image series analysis can be found in
[276]. The choice of the right registration method and of the correct evaluation
metric to assess its performance are of crucial importance, as they can affect the
results of the analysis.

5.2.2 Siamese Neural Networks

The problem of nodule re-identification can be closely related to the one of rec-
ognizing the same object in different images. This type of problems has been
successfully addressed by Siamese neural networks [38] (SNNs). They are de-
signed as two sibling networks, connected by a distance layer at the top, trained
to predict matching or mismatching between two input images. The original ar-
chitecture, first introduced for the problem of signature verification, was later ex-
tended by [152] using convolutional layers and adjusting the optimization metric
with a weighted L1 distance between the twin feature vectors of both networks.

SNNs have been extensively used in computer vision matching problems such
as tracking objects in videos [296], matching pedestrians across multiple camera
views [307], and matching corresponding patches in satellite images [131].

In the medical image domain, SNNs have been used primarily to extract a la-

1https://www.cancer.gov/types/lung/research/nlst
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tent representation for content-based image retrieval. For instance, [49] proposed
a SNN, pre-trained on the ImageNet dataset and using a contrastive loss function
[103] to retrieve similar images to the query, using a publicly available dataset of
diabetic retinopathy fundus images. Another example is the work by [41], which
applied SNNs to retrieve similar images from several medical image databases of
lung, pancreas, and brain. As far as we know, SNNs have not yet been applied to
re-identify nodules in a series of lung CT scans.

5.3 Method

5.3.1 Nodule re-identification

To solve the problem of nodule re-identification in a pair of CTs of the same
patient taken at different time points, we propose building a SNN [152]. An ap-
pealing characteristic of SNNs is that they rely on a distance metric computed on
features extracted automatically by a deep learning network. This should allow
greatly accelerating and simplifying the nodule re-identification process, avoid-
ing introducing a registration technique as a source of variability and error in the
analysis.

Siamese neural networks are composed of a feature extraction component in
which two subnetworks (with shared architecture and weights) process a pair of
images at a time to produce two embedding feature vectors directly from the im-
ages. A second component (i.e. the head of the network) aims to classify whether
the two embedding feature arrays are similar or not. To assess this, the features
are passed to a pairwise distance layer that computes a similarity score.

In a previous study [37], we trained a deep convolution neural network (CNN)
for nodule classification, able to effectively reduce the number of false positives in
the nodule detection problem. In the present work, we have adjusted that network,
improving its final performance. In particular, we propose a 3D CNN based on
a ResNet-34 architecture that expects nodule patches of 32x32x32. As described
in the original paper, the patches are pre-processed crops done around the centre
of the annotated nodules of the lung CT. The nodule classification network was
trained from scratch using a large amount of nodule candidates (> 750K) from
the LUNA-16 challenge dataset [262]. Further details on its architecture and per-
formance are shown in the supplementary material (B.1).

In the current study, we removed the fully connected layers of the nodule clas-
sification network to use it as the backbone of the sibling networks of the feature
extraction component of the SNNs. Figure-5.1 shows the SNN architecture for
the nodule re-identification problem. In this figure, we can observe the two com-
ponents. First, the feature extraction component, which pre-processes the input
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nodule patches (i.e. taken at different time points, T1 and T2) and uses the sib-
ling network to extract the corresponding feature maps. Second, the classification
component composed of the head of the network that predicts if both feature maps
are similar or not. These feature maps (solid arrows in Figure-5.1) come from dif-
ferent levels of the pre-trained sibling networks. Further details about the feature
maps and the network heads are described in Subsection 5.3.1.

Figure 5.1: Siamese network proposed for lung nodule re-identification. The network is composed
of a feature extraction and a basic head network to perform the prediction.

Figure 5.2: Alternative head networks to configure different siamese networks.

Different SNNs configurations were proposed (Table-5.1) to gain further in-
sights into the best parameterizations. To allow a fair comparison of the config-
urations, we trained the SNNs with the same parameter values. Concisely, the
number of epochs was set to 150, the learning rate to 1e-4, the batch size to 8,
dropout to 0.3, the early stopping at 10 epochs without any significant improve-
ment, and Adam [147] was used for optimization. Finally, random rotation, flip,
and zoom were applied for data augmentation.

Below we describe in more detail the main configurations and parameters used
in the experiments.
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Pre-trained Feature maps Head Loss
FIBC Frozen Individual Basic Contrastive
UIBC Unfrozen Individual Basic Contrastive
FIFB Frozen Individual FC BCE
UIFB Unfrozen Individual FC BCE
FICB Frozen Individual CNN BCE
UICB Unfrozen Individual CNN BCE
FCMB Frozen Combined MFC BCE
UCMB Unfrozen Combined MFC BCE

Table 5.1: List of the different siamese network configurations. The index column contains the
acronyms of the networks, resulting from joining the first letter of the options placed in the next 4
columns.

Pre-trained network weights

Two configuration values were proposed for this setting: frozen and unfrozen.
Usually, the weights of the pre-trained networks in a SNN remain frozen. In this
study the pre-trained network had a related but slightly different learning goal than
the target (siamese) network. Thus, we allowed also the option of unfreezing the
weights of the pre-trained network and updating them during the back-propagation
steps of the siamese network training process. To un/freeze the networks, we
dis/abled the option to update all the weights and biases of the pre-trained layers
during training.

Feature maps

We propose two options: using the feature maps individually and combining the
feature maps together. Feature maps extracted from the first layers of a CNN refer
to low-level and less domain-specific representations (e.g. lines, circles, spikes),
whereas features extracted from deeper layers are generally more high level and
domain-related representation (e.g. morphology, texture). To analyse the potential
of both general and more specific nodule features, we used features from different
depths of the network (i.e., from the last layer of each of the 4 convolution blocks
that holds the pre-trained Resnet-34 network). The resulting feature maps were
obtained after a forward-passing through the network for each of the nodule im-
ages of the whole dataset. Table-5.2 shows the layer name, the number of filters
per layer, the output dimension of each filter, and the total number of parameters
for each of the selected feature maps.

We designed experiments to evaluate each of the possible feature maps, i.e.
4 individual features maps - one per layer - and 11 feature maps resulting from
combinations: (6 over 2) + (4 over 3) + (1 over 4).
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Layer Filters Dimension Total params
layer1 64 [16,8,8] 65536
layer2 128 [8,4,4] 16384
layer3 256 [4,2,2] 4096
avgpool 1 [1,1,512] 512

Table 5.2: Layers selected from the pre-trained part of the SNNs.

Siamese heads

We proposed four different head networks, one meant to follow a more conven-
tional siamese architecture and the others with more exploratory purposes, more
precisely:

1. A basic head network (Figure-5.1) composed of a flatten (to homogenize all
features to one dimension) and a pairwise distance (i.e. L1) layer, just after
the feature extraction part of the network.

2. A fully connected (FC) head network (Figure-5.2b) composed of a pairwise
distance, a flatten, and an FC block layer. The FC block comprises a FC
layer (with 64 units), a batch norm, a ReLU, a dropout layer and a final FC
layer (with one unit). This classifier head aims at finding non-linear patterns
among the merged features (from both sibling networks).

3. A CNN head network (Figure-5.2c) composed of a pairwise distance layer
and a clean (without pre-trained weights) ResNet-34 CNN. Several arrows
connect the pairwise distance layer with this clean ResNet-34. There are as
many arrows as pre-trained layers used to extract the features. The arrows
redirect the features to a specific part of the clean ResNet-34. The redirec-
tion had to make compatible the dimensions of the output from the previous
layer with the layers of the input. For instance, features extracted from last
layer of block1 were linked to the initial layer of the block2, features from
layer2 were linked to the initial layer of the block3 and so on. This head
network aimed at exploring non-linear patterns between features but with-
out losing the space dimension (i.e. no flattening of the features was done
between the pairwise layer and the clean ResNet-34).

4. A multi-features combined (MFC) head network (Figure-5.2d) composed
of a pairwise distance layer, a flatten layer, a concatenation layer (to merge
all features), and a FC (already described above). This head network aimed
at exploring combination of features from different parts of the network.
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It is important to note that in the basic head network, the pairwise distance
layer not only computes the batch-wise L1-distance between each component of
the previously flattened input vectors, but also it sums the components up to even-
tually generate an output of size bs × shape (where bs is the batch size). This
is done to accommodate the expected inputs of the contrastive loss function with
which the basic head network is configured. For the rest of the head networks,
the pairwise distance layer does not perform any reducing sum operation, leaving
its input and output with the same size bs × 1 × z × y × x, and therefore, al-
lowing its output to be exploited more deeply with additional layers (for example,
convolutional or fully connected).

Loss functions

We explored two options: a contrastive loss and a binary cross entropy (BCE) loss
function. Traditionally, SNNs are trained using a contrastive loss [103] function.
This function encodes both similarity and dissimilarity (between the feature maps)
independently in a loss function. It ensures that semantically similar pairs are
embedded close together while forcing the dissimilar pairs to be apart from each
other. Another option to train these networks is through a prediction error-based
approach. For our case we adopted the binary cross entropy loss. This implied to
apply a sigmoid function on the outputs to transform them into probability values
(between 0 and 1).

5.3.2 Nodule growth detection pipeline

A valuable application of nodule re-identification is to predict nodule growth be-
tween current and follow-up CT scans of a patient. This is a crucial, complex, and
time-consuming task for lung cancer assessment since nodule growth has a clear
predictive importance for benignity and malignancy [102]. Thus, further efforts
are required to support clinicians to increase the precision and effectiveness of
such endeavour.

To this end, we propose an end-to-end pipeline (Figure-5.3) comprised of two
different components: 1) a nodule detector that, given a pair of CTs of the same
patient but taken at different time points, generates a list of nodule candidates
per each CT, and 2) a nodule matching component (embedding the siamese net-
works) that, given the list of nodule candidates of the CTs, matches the nodules
and computes the difference in diameter between them.
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Figure 5.3: Nodule growth detection pipeline.

Nodule detector

To build the nodule detector, we followed the work of [178], with which they won
the Data Science Bowl lung cancer challenge2. The authors proposed a 3D Faster
R-CNN [244] scheme for nodule detection. The backbone of the network was
similar to the U-net [248] architecture, in which the information flows not only in
a classical bottom-up way but also between the encoder and decoder parts of the
network thanks to some symmetric links (or short-cuts) that bound both parts of
the network. The output of this network were probability feature maps, useful for
the lung cancer classification problem.

To the original network, we proposed attaching a double CNN head as in
[244]. One head was used for regression and the other for classification. The
regression branch infers the centre (x,y,z locations) and the diameter of the nod-
ule, while the classification branch predicts the probability of being a nodule.

The input lung CT was pre-processed before entering the nodule detection
network. The image was resampled to an isotropic resolution (1 × 1 × 1 mm),
pixel intensities clipped between [-1000, 600] HU and normalized between 0 and
1. The full lung image, without any previous lung segmentation, was then split
in overlapping patches (due to memory constraints) of 128 × 128 × 128 with an
overlap of 32 pixels per dimension. Since the location of the patch may influ-
ence the decision of whether it is a nodule and whether it is malignant, we also
introduce the location information in the network as in [178]. Thus, each patch
was fed to the network together with its corresponding location crop of size 32
× 32 × 32 × 3, which contains the location of the patch image with respect to
the whole lung image. The final network architecture used for nodule detection as
well as the performance obtained in LUNA-16 [262] dataset can be found in the
supplementary material (B.2).

2https://www.kaggle.com/c/data-science-bowl-2017
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Nodule matching

This component performs the re-identification of the nodules among all CT pairs.
To do this, for each pair of CTs, we took each candidate found at T1, and we
paired with each of the candidates found at T2. The pairs were pre-processed
following the specifications described in Section 5.3.1, and then they were fed to
the SNN. The network, trained off-line, provided a matching probability for each
pair of candidates. The pairs with the highest probability were selected as the
matching ones.

To assess the performance of this process, we computed for each pair of CTs,
whether the candidate at T2 predicted with the highest probability by the SNN,
matched with the annotated nodule at T2. Additionally, we computed the time
required for finding the matching nodules. We repeated this process for each of
the SNN configurations.

Once having predicted all matching nodules for each pair of CTs, the pipeline
returns the nodule growth along with the location and diameter of the matching
nodules. The nodule growth is calculated directly by the difference between the
predicted nodule diameters at T1 and T2 for each pair of lung CTs.

To evaluate the nodule growth detection, we selected all the correctly matched
CT pairs and compared whether the nodule growth difference was of the same
sign in both ground truth and predicted. True positive (TP) and false negative
(FN) cases were those that had (in both ground truth and predicted) positive and
negative growth differences, respectively. A false positive (FP) case was consid-
ered when the predicted growth difference was positive and the ground truth one
was negative; and a false negative (FN) was considered in the opposite case.

5.4 Experiments and results

5.4.1 Evaluation datasets

LUNA-16

In this work we used an updated version of the LIDC dataset [18] provided in the
LUNA-16 challenge [262], which includes only scans with at least one lesion of
size ≥ 3 mm marked as a nodule by at least three of the four radiologists. The
LUNA-16 dataset consists of 888 CT scans comprising a total of 1186 nodules.
Annotations with coordinates of each nodule in the three spatial axes inferred from
the original LIDC annotations are also provided.
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VH-Lung

This dataset was designed specifically to identify and follow up suspicious lung
nodules in time. Ethics approval was obtained from the Medication Research
Ethics Committee of Vall d’Hebrón University Hospital (Barcelona) with refer-
ence number PR(AG)111/2019 presented on 01/03/2019.

Inclusion criteria were patients without a previous neoplasia, with a confirmed
diagnosis, and with visible nodules (≥ 5 mm) in at least two consecutive CT scans.
The interval between current and previous CT examinations ranged from 32 to
2464 days. These nodules were located in the three spatial axes by two different
specialists at each time point and quantified by another experienced radiologist.
The size mean of annotated nodules was 11.08 ± 5.35 at T1 and 13.49 ± 5.18 at
T2, and the growth size mean is 2.41 ± 4.38 mm.

The chest helical CT studies were performed using different scanners: Phillips
(Brilliance 16/64, iCT 256), Siemens (SOMATOM Perspective/ Definition) and
General Electrics (LightSpeed16). Acquisition and reconstruction protocols were
set according to subject biometrics and clinical inquiry: 100–120 kV, 33-196 mAs
and exposure time 439-1170 ms. Each image had 512 × 512 pixels with 16-bit
grey resolution, spacing between slices 0.75-1.5 mm and slice thickness 1-5 mm.

In total, the dataset contains 151 patients with two thoracic CT scans. For
each patient, the clinicians annotated only one relevant nodule in both CT scans.
We randomly divided the dataset into two subsets, one for training (113 patients)
with 70 cancers and 43 benign cases, and the other for testing (38 patients) with
25 cancers and 13 benign cases.

5.4.2 Nodule re-identification

In this paper we propose the use of SNNs for nodule re-identification. In order to
train the SNNs, we first identified positive cases, i.e. pairs of the same nodule from
the same patient taken at different time points (T1 and T2), as well as negative
cases made up of pairs of mismatched nodules. In the VH-Lung dataset we had
already annotated (N=151) positive cases. To create the negative cases, we used
the nodule locations of the VH-Lung dataset at T1 together with a random nodule
location of the annotated nodule locations at T2 (avoiding selecting the correct
nodule location). In total, we build a balanced dataset (N=302) composed of 226
CT pairs in the training set and 76 CT pairs in the test set, thus respecting the
initial training/test (75% / 25%) partition of the VH-Lung dataset.

We optimized the different SNNs (Table-5.1) with the training data using a
stratified 10-fold cross-validation, and we tested them with the testing set. Re-
sults of the best SNNs configurations are shown in Table-5.3. Additional SNNs
configuration results can be found in Table-B.4 (supplementary material).
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Config. Layer tr acc val acc
FIBC layer2 0.790 ± 0.01 0.775 ± 0.05
UIBC layer3 0.891 ± 0.01 0.864 ± 0.04
FIFB layer1 0.939 ± 0.02 0.899 ± 0.03
UIFB layer2 0.918 ± 0.03 0.890 ± 0.03
FICB layer1 0.867 ± 0.03 0.857 ± 0.06
UICB layer1 0.868 ± 0.06 0.888 ± 0.04
FCMB layer1, layer2 0.938 ± 0.03 0.882 ± 0.03
UCMB layer1, layer2, avgpool 0.954 ± 0.02 0.897 ± 0.04
Config. Layer test acc test prec test rec
FIBC layer2 0.709 ± 0.01 0.806 ± 0.01 0.550 ± 0.00
UIBC layer3 0.798 ± 0.01 0.765 ± 0.02 0.863 ± 0.03
FIFB layer1 0.921 ± 0.03 0.905 ± 0.05 0.944 ± 0.03
UIFB layer2 0.896 ± 0.02 0.871 ± 0.05 0.934 ± 0.01
FICB layer1 0.831 ± 0.04 0.824 ± 0.07 0.860 ± 0.06
UICB layer1 0.859 ± 0.07 0.842 ± 0.09 0.900 ± 0.04
FCMB layer1, layer2 0.918 ± 0.01 0.907 ± 0.02 0.934 ± 0.03
UCMB layer1, layer2, avgpool 0.925 ± 0.02 0.904 ± 0.04 0.952 ± 0.03

Table 5.3: Performance results (accuracy (acc), precision (prec) and recall (rec)) obtained on train-
ing (tr), validation (val) and test for the different SNN configurations. The meaning of the config-
ured methods is detailed in Table5.1.

In addition, we investigated the nodule re-identification performance in terms
of nodule growth. In total, we found 14 cases (CT pairs) with an increase in
nodule diameter > 9 mm (aprox. Mean + 1.5*std), and 4 cases with a decrease
in nodule diameter > 4 mm (aprox. Mean – 1.5*std). We labelled these cases
as large growth changes (Other similar studies [155] defined large nodules as >
10 mm). We also found 50 cases with a nodule change ± 1 mm, labelling them
as small growth changes, and the remaining 87 cases were labelled as medium
growth changes. The results for our best method (FIFB) can be found in the
Table-B.5 of the supplementary material.

5.4.3 Nodule growth detection pipeline
For the evaluation of the initial stage of the pipeline described in Section 5.3.2,
we first computed the performance of the pipeline to detect the annotated nodules
(one per CT). To do this, we proposed different thresholds (1, 4, 8, 16, 32, and
64) or number of nodule candidates, and we computed per each CT whether the
annotated nodule was in each subset of predicted nodule candidates (ranked by
probability). To have a better estimation of the nodule detection performance, we
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repeated this process on 10 random train-test partitions (respecting the proposed
size of the initial partitions of the dataset) of the VH-Lung. Results are plotted in
Figure-5.4. This FROC curve [262], shows the sensitivity, in average, of finding
the (only) annotated nodule per scan at different nodule candidate rates. As we
can observe, in training the detector reaches a sensitivity of 0.951 with 32 nodule
candidates (missing 10.5 ± 1.02 annotated nodules in 226 different CTs), and in
test set a sensitivity of 0.973 with the same threshold (missing 2.5 ± 1.02 nodules
in 76 CTs).

We therefore configured the nodule detection component of the pipeline with
a threshold of 32 candidates per CT, since it empirically showed a good balance
between sensitivity (real nodules detected) and precision (number of nodule can-
didates not really targeted by the clinicians) both in training and test.

Figure 5.4: FROC-curve of the malignant nodule detection algorithm for training and test partition.

To gain insight into the complexity of the re-identification problem, we com-
puted how many candidates were located within a chosen Euclidean distance from
the nodule ground truth position (Figure-5.5). We defined 5 different distance
thresholds: radius squared Euclidean distance (as used in the LUNA-16 challenge
to accept a nodule detection as correct) and 4 fixed Euclidean distances (30, 20,
15, and 10 mm). For every distance, we computed the number of CTs in which
0, 1, 2, 5 or more than 10 candidates fell within the distance. Moreover, we com-
puted an accuracy of detection for every distance choice by dividing the number
of CTs for which only one candidate is within the distance by the total number of
CTs. Results are shown in Table-5.4.

Next, we evaluated the performance of the best SNN (Table-5.3) for nodule re-
identification using the location of the nodule candidates provided by the nodule
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Figure 5.5: Candidates predicted (yellow marks) at a maximum distance from the ground truth
centroid (red circle).

Distances N=0 N=1 N=2 N=5 N>=10 Accuracy
radius2 0 18 6 2 3 0.500
30 mm 1 22 7 1 0 0.611
20 mm 1 26 6 0 0 0.722
15 mm 1 32 3 0 0 0.888
10 mm 1 34 1 0 0 0.944
5 mm 3 33 0 0 0 0.916
3 mm 5 31 0 0 0 0.861
1.5 mm 18 18 0 0 0 0.500

Table 5.4: Number of CTs (in T2) containing N candidates located within a chosen euclidean
distance from the actual nodule centroid. The accuracy score represents the number of CTs at
N=1 respect to the total of CTs.

detector. The best results were achieved by the FIFB network with only 4 CT-
pairs incorrectly matched and an accuracy of 0.888. All results are presented in
Table-5.5.

Configuration Correct Incorrect Accuracy Time(s)
FIBC 25 11 0.694 18.71
UIBC 27 9 0.750 36.01
FIFB 32 4 0.888 9.36
UIFB 30 6 0.834 12.73
FICB 30 6 0.834 20.12
UICB 28 8 0.777 20.16
FCMB 31 5 0.861 12.41
UCMB 31 5 0.861 19.10

Table 5.5: Results of the different nodule re-identification pipelines. The meaning of the config-
ured methods is detailed in Table5.1.

As in the standalone evaluation of our method, we also conducted some ex-
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periments with the best pipeline (FIFB) to investigate nodule re-identification per-
formance in terms of nodule growth. Results are shown in Table-B.6 of the sup-
plementary material.

Then, we evaluated the performance of the best pipeline (i.e. the pipeline
configured with the FIFB network) for the nodule growth detection task. A correct
prediction was achieved when the difference on diameters between predicted and
ground truth nodules had both the same sign. In this way, having 32 correctly
identified cases (out of 36), we obtained a 0.92 of recall, a 0.88 of precision and a
0.90 of F1-score. The confusion matrix is shown in Figure-5.6.

Additionally, we assessed the precision in the measurement of the nodule
growth prediction. Agreement between the predicted and ground-truth nodule
growth vectors was assessed with a Bland-Altman [11, 136] plot (Figure-5.7).
The mean difference between the two measurements was 0.17 mm with a 95%
confidence interval (from -3.35 to 3.70 mm). Predicted and ground-truth nodule
growth vectors were not found statistically different on the basis of a 1-sample t-
test (p-value = 0.99). Also, we computed the mean absolute error of the predicted
nodule growths (1.38± 1.17 mm), their mean squared error (3.26± 5.30 mm) and
its coefficient of determination (r2=0.71). Finally, Figure-5.8 shows the predicted
and real difference of diameters for all CT pairs of the test dataset. To support the
interpretation of this figure, we have included the axial slice with major diameter
taken at time points T1 and T2 of an illustrative subset of nodules.

Figure 5.6: Confusion matrix for nodule growth prediction.

5.4.4 Automatic lung CTs registration
We also computed lung nodule re-identification using conventional image registra-
tion methods. To do this, we aligned the CT pairs of the VH-Lung dataset, and we
computed how far apart were the nodule centroids, annotated by the radiologists,
at T2 with the warped locations obtained after applying the transformation-fitted
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Figure 5.7: Bland−Altman plot for agreement between ground truth and predicted nodule growth.

Figure 5.8: Comparison between real and predicted cases. Upper
panel: diameter differences for all test set. Lower panel: axial slices

at two time points of different nodules.
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function on the nodule centroids at T1. To do this, we used two well-established
methods for image alignment, one for rigid and the other for non-rigid registra-
tion. Rather than exploring and fine-tuning new registration setups, we lever-
aged the Elastix [149] database3 of published registration configurations. This is
a publicly-available repository of configurations aimed at promoting research re-
producibility. Therefore, for the rigid approach we selected a recent configuration
already applied for CT images on [7], and for the non-rigid approach we used an
affine registration [234] previously applied for lung CTs.

Table-5.6 shows the nodule re-identification performances obtained for the
two registration methods on the train, test and the whole dataset. Correct cases
were those in which the Euclidean distances between the location of the centroids
at T2 and the warped locations of the centroids at T1 were less than the nodule’
radius squared (same threshold as proposed in LUNA-16 challenge). Accuracy
was obtained after summing all correct alignments divided by the total of CT pairs
in the dataset. We also computed mean absolute errors (MAE) between the ground
truth and the warped centroids and the average time required for performing the
alignments.

Rigid Non-Rigid
Accuracy MAE (mm) Time (s) Accuracy MAE (mm) Time

Train (113 CT pairs) 0.672 30.8±44.2 52.6±10.0 0.761 23.8±39.7 82.2±12.5
Test (38 CT pairs) 0.684 29.6±38.7 52.9±7.7 0.605 30.2±44.3 82.8±9.5
All (151 pairs) 0.675 29.5±43.0 52.7±9.4 0.721 25.4±41.0 82.3±11.8

Table 5.6: Results after applying automatic registration using rigid and non-rigid approaches.

5.5 Discussion
In this chapter, we provide a novel way to address the nodule re-identification
problem. In particular, we propose a deep SNN that can directly re-identify nod-
ules located in a series of pairs of CT scans without the need for any image regis-
tration.

The SNN allows matching pulmonary nodules in different CTs in a single
stage by outputting a similarity score (i.e. the probability of being the same nod-
ule). In contrast, standard techniques require at least two stages: first registering
the image and then identifying matching nodules with some distance function.
Moreover, with the proposed solution, no additional deformations/perturbations
of the lung scan are performed, so that nodule measurements can be done directly
from the image itself. Another advantage is that the re-identification process is fast

3http://elastix.bigr.nl/wiki
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since all weights of the network have already been calculated during the training
phase.

We designed and tested several SNN architectures in order to fully understand
the complexities of the problem and find the best network configuration. To this
end, we collected a longitudinal cohort of two CT scans per patient taken at dif-
ferent time-points. In each of the CT scans of the patients, the most suspicious
nodule was annotated according to two different radiologists. Despite the richness
of the cohort in terms of heterogeneity in the parameters that affect the image ac-
quisition (e.g. scanners, protocols and setups), in the selected nodules (e.g. size,
growth, malignancy), and in the temporal differences between CT studies, the to-
tal number of cases to test our approach was limited (38 patients, 25% of the total).
Thus, the test set may not be representative enough of the whole nodule spectrum.
To mitigate this issue, despite having presented two different evaluation scenarios,
more and diverse number of pulmonary nodules (with different morphologies, lo-
cations, sizes, growth rates, or degrees of malignancy) are recommended to collect
for a more exhaustive validation of the present work.

As previously mentioned, we have provided two different evaluation scenar-
ios with the intention of showing reliability and usefulness of our approach. In
the first evaluation scenario, we trained the models with previous localized fixed
image patches from 226 CTs pairs (doubling the original training partition with
random negative cases) and we evaluated them using 10-fold cross validation as
well as with image patches from 76 CT pairs from the independent test partition
(doubling the original test partition with random negative cases). Results (Table-
5.3) showed that, in general (7 out of 8 experiments), the networks obtained high
accuracy scores, above 85% in validation and 80% in test. Indeed, several of the
SNN configurations (e.g. FIFB, UCMB) achieved accuracy scores in test above
92%. Also, as shown in Table–5.3 there is no relevant performance gap between
training, validation and test sets, which suggests that there is no overfitting.

Regarding the ability to re-identify matching nodules according to their growth
(Table-B.5 supplementary material), the best SNN (FIFB) obtained a high accu-
racy score both in training (99.1%) and in test (97.3%), and no significant dif-
ferences in performance were found despite their nodule growth rates. However,
the performance for identifying non-matching nodules was lower than that of the
matching cases. In particular, the performance in training was 96.4% and in test
86.8%. This slight drop in test performance was due to errors for predicting non-
matching nodules with moderate (2 out of 6 errors) to large change in size (3 out
of 6 errors) between time-points. Beyond growth factor, other visual aspects, such
as the density and size of the nodules at T0, were not relevant as they were equally
distributed among the 6 mismatched pulmonary nodules in the test set. However,
4 of them were found in the left lung and 2 of them in the superior lobe. Also,
3 of these nodules were attached to blood vessels, 2 were close to or attached to
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the lung wall, and 1 of them was difficult to distinguish from the surrounding lung
tissue at T0, whereas at T1 it was clearly visible. The usual appearance of the
edges of these nodules was irregular (4 out of 6).

One of the main factors contributing to the good performance is the use of
transfer learning, namely initializing the backbone of the different SNNs with
the weights of a previously trained 3D network. This can be noted by the fact
that the simplest network configuration (FIBC), which it mainly performs a di-
rect forward-pass mechanism of the input through the network, initialized with
the weights of the transferred network, reaches, in our opinion, a considerable
performance of 77.5% in validation and 71% in tests.

Regarding the loss functions configured in the different experiments, the meth-
ods using the BCE loss (which are based on probabilities) slightly outperformed
the ones using the contrastive loss (which is based on distances). This can be seen
in the difference in accuracy (3.5% in validation and 12% in test) obtained by the
best network configured with probability-based loss function (FIFB) compared to
the best network configured with loss function based on distance (UIBC).

Another finding was that unfreezing the weights of the pre-trained networks
usually allowed for better performances. This is particularly evident in the UIBC
case, which exceeded of almost 10% in validation and testing the corresponding
frozen configuration (FIBC). Somehow, this finding was expected as weights were
transferred from networks trained in a different, although closely related, domain.

With respect to the features used by the networks, we can observe (Table-
5.3) that, in almost all the methods, the best performance was achieved by using
features extracted by layer1 and/or layer2, while only for two methods it was
achieved using features from layer3 and avgpool (i.e. the global average pooling).
This may suggest that features encoding simple patterns (from earlier layers) are
preferred for this problem, whereas layers that contains more specific features
(from the last layers) are less useful. It is also worth noticing that networks com-
bining features from different layers did not clearly outperform networks using
features from a single layer. This is the case of UCMB in which the reported val-
idation performances are just a bit lower (0.2%) than the performances reported
by the FIFB configuration, although in the test, UCMB outperformed by 0.4% the
performance of FIFB.

Concerning the type of heads with which the networks were configured, the
best option was using fully connected layers (FC head). Surprisingly, networks
with extra convolution layers before the fully connected layers (CNN head) achieved
worse performances (1% and 6% less in validation and test, respectively) than net-
works with FC heads. This might suggest that adding extra convolution layers to
find patterns between locally connected features increases the complexity of the
model, leading to more weights to adjust but with the same amount of training
data.
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In the second evaluation scenario, more ambitious and practical, we inte-
grated the SSNs into automatic pipelines intended first for the detection and re-
identification of nodules, and then for the prediction of nodule growth given series
of CTs of the same patient. This evaluation was done for both training (113 CT
pairs) and testing (38 CT pairs) random partitions of the VH-Lung dataset.

The nodule detector component of the pipeline was configured to provide only
the top-32 scored nodule candidates per CT. This threshold was empirically set
based on the good balance between precision and recall in terms of nodule detec-
tion obtained in both training and test partitions of the VH-Lung dataset. In test,
this component reported a nodule detection sensitivity of 97% in 32 nodule can-
didates (FP) per CT in average. This performance is far from 81.7% sensitivity in
0.125 FP per CT scan in [130] and from the results we obtained when training the
nodule detector standalone (0.84 sensitivity with 1 FP, in average) in the LUNA-
16 dataset. However, the comparison is not fair since the nodule detector was not
trained to find the most questionable nodule per patient according to radiologist
but for detecting any nodule in the lungs, that is why more nodule candidates were
needed to find the annotated nodules in the VH-Lung dataset.

Regarding the nodule re-identification step of the pipeline, the performances
obtained by the different SSNs networks (Table-5.5) were lower than when eval-
uating the models standalone. This was expected since, as opposed to in training,
where the patched images were cropped around the ground truth centroid of the
nodules, in the pipeline the patches were cropped around the position predicted by
the nodule detector, making its correct matching more difficult if the centroid po-
sition was not as precise. However, 5 out of 8 networks reached a nodule matching
accuracy score above 80%, and the best network (FIFB) reached an accuracy of
88.8%.

In Table-B.6 (supplementary material), we reported the performance of the
different sub-processes of the best pipeline (FIFB) according to the growth of the
nodules. Looking at the results, we can highlight that nodule detection and re-
identification steps had high performances both in training (>92%, >85%) and
testing (>94%, >88%). However, the training performance for growth detection
in small nodules dropped down to 47%. This was not the case for moderate and
large nodule changes in neither training nor testing. Different interrelated fac-
tors may explain this limitation. One reasonable factor could be the different data
proportions between training and test set for this type of nodules. A second fac-
tor could be the errors in the ground truth annotations. Another factor could be
the limitations from the nodule detector when out-coming the diameter for these
nodules. More experiments and tests are required to improve this particular case.

Independently of the growth of the nodules, some common visual appearances
were found along with the nodules incorrectly re-identified by the pipeline. In
particular, from the 2 non-detected nodules at T0, we would highlight that both
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were solid and difficult to distinguish from the lung parenchyma (< 9 mm of
diameter). From the 4 non-re-identified pair of nodules, 3 of them were malignant
and greater than 10 mm at T0. Also, they were located on the right lung and close
to or attached to the wall of the lung with irregular edges. Among the 5 pairs
of nodules with incorrect growth classification, all of them were solid, 4 of them
were malignant and 3 had sub-centimeter diameters at T0. Moreover, 3 of them
were in the lower right lobe of the lungs, whereas the others were in the upper left
lobe. Furthermore, 3 of them were close to the lung wall, 2 had an attached vessel
whereas another was close to the mediastinum. Regarding the characteristics of
its edges, 2 were irregular and the other 3 smooth.

In terms of computational time, our approach achieved satisfactory perfor-
mances being able to re-identify the nodules of the complete test set in times
ranging from half a minute (in the worst case, UIBC) to less than 10 seconds
(for the best configuration, FIFB), as can be seen in Table-5.5. This is a particu-
larly appealing feature of our method, since even the most recent techniques for
registration of lung CT images, necessary by any standard pipeline for nodule re-
identification, require significantly more time, for instance 5 minutes according
to [251] or approximately 1 minute by [335] per case. These processing times
fluctuate substantially depending on the technique and the quality of the image
registration.

To have a better intuition of the performances obtained using the proposed
pipelines for the automatic nodule re-identification problem, we compared them
with two conventional methods for lung image registration (Table-5.6). Both reg-
istration mechanisms were slower and did not outperform the performances re-
ported by any of the configured pipelines. The accuracy differences using the
worst (FIBC) and best (FIFB) pipelines compared with the rigid alignment were
between 1% and 20.4%, and with the non-rigid alignment between 8.9% and
28.3%. Despite these differences in performance, more advanced registration
techniques and further fine-tunning of its parameters would lead to greater re-
identification performances. For example, in [98], the authors compared rigid
and non-rigid registration methods for matching 60 diverse nodules in 60 lung
CT pairs obtaining average registration errors (Euclidean distances between base-
line and follow-up after alignment) between 9.5 and 10 mm. Also, in [138], the
authors using a rigid registration along with a rib based adjustment mechanism
reported registration errors of 17 ± 7 mm for 69 lung nodules in 50 subjects with
series of two CTs.

Compared to the latest CAD systems providing nodule re-identification [155,
295], our method reports similar performances ( 92% accuracy) when evaluated
standalone, but slightly below when integrated in pipelines. A number of factors
may explain this difference. First, our approach is fully automated, whereas in
those systems the position of the reference nodule, to match with, was given by
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the radiologists. Second, in those systems the data they used for evaluation was
from lung cancer screening population, which makes the underlying lung tissue
structure more consistent when compared to patients with lung metastases or from
incidental cases like ours. Third, in our study, the total number of patients was
more than double the number of patients used in these studies (40 and 53), which
makes re-identification more difficult since the similarity of the lung structures
between nodules is less plausible. In another related study [138] for lung nodule
re-identification, they reported rates from 29% to 100% in 69 nodules from 50
different patients. However, in their experimental dataset, no severe lesions were
reported (e.g. 14 nodules had no changes in diameter between corresponding nod-
ules), and their method was evaluated using the entire cohort, making it difficult
to know their ability to generalize to new cases.

Although the focus of the paper is the nodule re-identification, we also quan-
tified and assessed nodule growth. To do this, we selected the best network for
nodule re-identification (FIFB) and integrated it in the nodule-growth pipeline.
In total, nodule growth was correctly detected in 27 cases and erroneously in 5
cases. However, only 2 of these errors were false negatives (that is, the pipeline
failed to predict growth); one of them was on a benign nodule (B01) with growth
difference of less than 1 mm, whereas the other was on a malignant nodule (C50)
with growth difference of 1.8 mm. As shown in Figure-5.7, there is an agreement
when comparing predicted and real nodule growths as most of the measures fall
between the two standard deviations of the mean, there is a non-significant differ-
ence between them (p=0.99), and they show a good correlation score (r2=0.71).
Despite this positive results, the values obtained for the 95% limits of agreement
(> 3 mm) are still high. This was somehow expected as quantifying lung nodules
is complex and subject to multiple variability factors [174] (e.g. slice thickness,
reconstruction kernel algorithms, attachment of vessels, patient inspiration depth).
An example of this was shown in a previous study [61], in which up to six dif-
ferent open software packages measured the volumetry of solid lung nodules, and
reported large nodule inter-variabilities (from 16.4% to 22.3%) on repeated CTs
of the same patient in a cohort of 20 patients.

In our case, as we can see in the BA plot (Figure-5.7), the cases that exper-
iment higher disagreements are those nodules with larger mean nodule growth
(i.e. observations located in the right part). A reason that could explain it is that
the nodule detector (which reports the nodule diameter) was trained in a database
(LUNA-16) with a smaller nodule size distribution (8.30± 4.75 mm) than the one
used for the evaluation of the pipeline (VH-Lung dataset with 12.45 ± 4.32 mm).
Alternatives to address this issue could range from gathering more annotated data,
increasing the distribution of large nodules by applying further data augmentation,
implementing more sophisticated mechanisms (e.g. attention networks [256]) in
the nodule detector, or instead of using the predicted diameter and centroid of the
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nodule detector, implementing deep nodule segmentation networks.
From a clinical point of view, the majority of the nodule differences were cor-

rectly classified (growth, no-growth) as shown in Figure-5.6. Indeed, we reported
a mean absolute error of 1.38 ± 1.17 mm in diameter with respect to the ground
truth, which is slightly less than the 1.73 and 2.2 mm of the variability error re-
ported in different retrospective analysis [146, 245] measuring changes in solid
and subsolid nodules (<2 cm) using only their diameter.

This study, however, is subject to several limitations. First, the limited num-
ber of cases to build our models. In the medical domain, longitudinal data is
scarce, and much more complex to collect and manage than single time-point
studies. Specially for lung cancer assessment, gathering large quantities of sam-
ples is even more difficult for different reasons. First, the disease in the early
stages is asymptomatic and very aggressive, so when patients are explored, their
pulmonary nodules often have clear signs of malignity, and radiologists do not
require further studies for its diagnosis. Second, data is usually incomplete or
missing, which suppose a real challenge in evolutionary studies. Although there
are different initiatives that aim to screen large populations at risk (e.g. NLST),
the access to these assets is not publicly open. Thus, having an insufficiently large
dataset can negatively impact the performance of deep learning-based models.
This is even more concerning for re-identification of lung nodules, since for each
patient, twice as many images and annotations are needed. Another main limita-
tion of the study is that the only expert annotation provided for nodule quantifi-
cation was the major axial diameter. Although the diameter is the most common
radiological measure used in practice for nodule growth assessment, using 3D
measurements could lead to a more accurate quantification. In addition, if we had
had nodule measurements from more experts, we could have better explained the
clinical variability, reporting more accurately the performance of our pipeline with
respect to nodule growth prediction. Another limitation of our method could be on
re-identifying structures with strong size variations. Some actions may be done
to amend this aspect. First, retraining the model with larger input patch sizes.
Second, making further data augmentation especially on image pairs with large
size variation or collecting more cases of this typology. However, according to
radiologists’ recommendations, clinical guidelines [12], and literature [165], the
challenge is to provide automatic support for growth detection at small/medium
nodule change sizes, since larger nodules are easier to identify and substantial dif-
ferences in growth ratio indicate a clear symptom of either malignancy [270] or
benignity [102]. Finally, in this work, we focus on training and evaluating several
SNNs to explore different configurations. Finer tuning of hyperparameters (e.g.
the learning rates, batch sizes or dropout values) may lead to improved results.

Nevertheless, the automated re-identification of regions of interest in medical
images over time, without the need to warp the inherent image structure, could be
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an appealing application beyond lung cancer assessment such as therapy follow-
up as well as for different diseases located at different organs (e.g. prostate, breast
cancer) in the body.

Several future works have been described in the paper, and some others are
envisaged to extend the research presented in this paper. For example, it would be
interesting to longitudinally evaluate the pipeline for more than one nodule per pa-
tient, or exploring the nodule spatial localization for the re-identification problem.
Also, applying different feature fusion techniques, introducing different manners
to weigh the feature maps, applying new techniques to reduce the dimensionality
of the problem, as well as the use of segmentation could be some other research
lines that would be worth exploring beyond this paper.

5.6 Conclusions
In this paper, we address the problem of automatic re-identification of pulmonary
nodules in lung cancer follow-up studies, using siamese neural networks (SNNs)
to rank similarity between nodules, which overpasses the need of image registra-
tion. This change of paradigm avoids possible image disturbances and provides
computationally faster results. Different configurations of the conventional SNN
were examined, ranging from the application of transfer learning, using different
loss functions, to the combination of several feature maps of different network lev-
els. The best results during the off-line training of the SNNs reached accuracies
(0.89 in cross-validation and 0.92 in test) similar to those reported by state-of-
the-art registration mechanisms. Finally, we embedded the best SNN into a two-
stage nodule growth detection pipeline. Nodule re-identification results reported
by the pipeline in an independent test set were fast (<10 seconds, matching 38
pairs of CTs) and precise (0.88 accuracy score). Nodule growth predictions were
also accurate (0.92 sensitivity score), and both the predicted, and the ground truth
measurements were not significantly different (p=0.99).
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Chapter 6

END-TO-END AUTOMATIC
PIPELINE FOR PULMONARY
NODULE FOLLOW-UP
ASSESSMENT

6.1 Introduction

The use of computed tomography (CT) scan images has increased dramatically
over the last decades, becoming a crucial tool for the diagnosis and follow-up of
malignant lung tumours [192, 230]. Radiologists are able to detect, measure and
monitor the evolution of abnormal tissues in their lungs by visually inspecting
CT scans of the patient’s chest. However, tumours, specially at early stages, are
complex to detect and diagnose due to large heterogeneity in their morphology,
size, texture, localization and growth rates [27]. Moreover, spatial resolution in
computerized axial tomography images is often limited by the acquisition protocol
[24]. This leads to some ambiguities and conflicts for radiologists when having
to determine the next study, whether to discharge the patient from the follow-up,
or whether to resolve a clinical intervention for the patient [107]. Therefore, the
experience and expertise of physicians is fundamental for the early diagnosis and

The work described in this chapter is based on the following publications: Rafael-Palou X,
Aubanell A, Ceresa M, Piella G, Ribas V, González Ballester MA. Pulmonary Nodule Malignancy
Classification Using its Temporal Evolution with Two-Stream 3D Convolutional Neural Networks.
Medical Image with Deep Learning (MIDL), 2020.
Rafael-Palou X, Aubanell A, Ceresa M, Piella G, Ribas V, González Ballester MA. Detection,
growth quantification and malignancy prediction of pulmonary nodules using deep convolutional
networks in follow-up CT scans. To appear in Artificial Intelligence in Cancer Diagnosis: Lung
and Kidney Cancer.
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prognosis of lung cancer. Unfortunately, the aggressive nature of this disease, its
important incidence in the adult population, and the constant need for specialized
professionals, make it necessary to have accurate and efficient tools to reduce the
workload of clinicians as well as to help them in making critical decisions.

The idea of providing automatic support for the detection and diagnosis of
lung cancer is not new, and large efforts have been made with conventional ma-
chine learning and artificial intelligence techniques [54, 141, 285]. Recently, the
advent of deep neural networks [167] has allowed a major breakthrough in the
medical image domain [31, 78, 100]. Specifically for lung cancer, outstanding
performances have been achieved in a very short period of time, outperforming
conventional approaches for nodule detection [262], pixel segmentation [200], or
lung cancer classification [51]. Despite this, most of the research focuses primar-
ily on a single CT scan. This fact conditions the potential of these contributions,
since they do not consider the temporal evolution of the tumour, which, indeed, is
one of the most important clinical factors influencing prognosis [165].

In this chapter, we take a step forward in supporting the radiological work-
flow, by proposing an automatic tool that takes into account the evolution of the
pulmonary nodules in the predictive modelling task. To do this, we defined a
data-driven approach with a flexible and configurable four-stage pipeline, which
1) automatically detects nodules, 2) re-identifies them from different CT scans
of a given patient, 3) quantifies their growth, and 4) predicts their malignancy.
To configure each of the pipeline components, we have integrated existing solu-
tions [37, 236, 237] and proposed new ones based on deep convolutional neural
networks. Hence, in the remainder of this chapter we describe the background,
present the pipeline and its different components, and show the results of its eval-
uation in a longitudinal cohort of more than 30 patients. We conclude this work
by discussing the present solution and establishing future works for the automatic
temporal lung nodule assessment.

6.2 Background

In this section, we review some of the most relevant and recent works proposed
for supporting radiologists in the lung cancer assessment. From the different tasks
encompassed by radiologists in the management of this disease, we focus on the
most essential ones, such as nodule detection, nodule quantification, and lung
cancer prediction.
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6.2.1 Nodule detection

This task consists on screening the entire lung CT volume, searching for small sus-
picious regions or nodules (usually between 3 mm to 30 mm) [270]. Nowadays,
this problem, as in most of the computer vision research areas, is addressed by
convolutional neural networks (CNN) [54] able to extract, without human inter-
vention, accurate feature image representations thanks to their shared-weights ar-
chitecture and translation invariance characteristics. A common approach for au-
tomatic nodule detection consists on dividing the problem in two steps [68, 321]:
candidate detection and false positive reduction. In the first stage, 2D region pro-
posal networks, such as faster region-based networks (Faster-RCNN) [244], are
used to extract suspicious regions of interest from the whole CT scan. In the
second stage, these regions are classified as normal tissues or nodules using 3D
CNN networks, in which the input is 3D image patches around the centre of the
nodules. Other recent approaches directly address this problem in a single step
[159, 178, 334]. They re-adapt region proposal networks with 3D deeper archi-
tectures (such as ResNet [116] or DenseNet [128]) to directly predict 3D bounding
boxes surrounding the nodules.

6.2.2 Nodule quantification

Another important task for lung cancer assessment is determining the size of the
nodule. Currently, radiologists calculate the size of the nodule by visual inspec-
tion on the CT scan, locating and measuring the largest diameter (in mm) [195].
Usually this measure is extrapolated to 3D dimensions, by means of mathemat-
ical operations [257], to approximate the volume of the tumour. Although this
process is simple and fast, it entails significant intra and inter-observer variability
in the size of the nodule, which can go up to 3 mm in diameter [106]. Since this
variability may negatively impact the disease management, several deep learning
solutions have addressed nodule size measurement to support clinicians. Some
works [178, 334] propose learning the diameter of the tumour by extending the
nodule detection network (either in 2D or 3D) with a new output in the network.
Other solutions build semantic segmentation networks to automatically determine
the pixels of the nodules, from which the diameter or volume can later be ex-
tracted. One of the most common successful architectures for segmentation is the
U-Net [248]. This type of networks uses a convolutional encoder and decoder
backbone, tied at different levels by short-cuts, which allow by-passing high level
features of the encoder to the decoder, in order to enhance the image reconstruc-
tion task. Several extensions of this architecture can be found, such as its 3D
formulation [50] or the incorporation of ResNet-like blocks and a Dice-based loss
layer, more suitable for segmentation tasks [202]. A more recent approach, nnU-
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Net [133] has been successfully applied to a multitude of medical segmentation
problems (including pulmonary nodule segmentation). One of the benefits of this
approach is the automatic fine-tuning of several configuration parameters to the
particular type of images to be segmented.

Despite the high performances reported by U-Net-like networks, they address
the segmentation problem from a deterministic point of view. However, due to the
inherent ambiguity of the problem (often contours of the nodules are not clearly
delimited), it is desirable reporting network uncertainty estimates when predicting
the size of the nodules. One way to learn model uncertainty is moving from one-
input one-output to one-input multiple-output networks. This change of paradigm
has already been tackled in deep neural networks through different approaches.
One of the simplest approximations consists in ensembling multiple networks in
order to provide multiple opinions [164]. Another approach consists in enabling
dropout [279] at inference time in order to provide independent pixel-wise prob-
abilities [142]. Another approximation is by deep generative networks, such as
generative adversarial networks [96]. This type of networks try to learn, in an
unsupervised manner, a direct mapping from a random noise to an output im-
age. To do this, a generator network creates new valid images (from the random
noise) with the intention to fool a discriminator network that evaluates whether
an image is valid or fake. An extension of this type of networks are conditional
GANs [134], in which the goal is to learn structured outputs conditioned on an
input image. To do this, the discriminator receives as input the target image to
which conditioning the generator. Similar to cGANs, we can find the conditional
variational autoencoders (CVAE) [275]. This type of networks propose learning
a multi-dimensional latent space that encodes all possible output images. During
training, the latent space distribution defined by the encoder is approximated to
a normal distribution to ensure continuity and avoid ‘mode collapse’ commonly
seen in GAN approaches [94]. Also, the random vector sampled from the la-
tent space, together with the target image are passed to the decoder (only during
training) in order to generate a new plausible image. A recent work, hierarchi-
cal probabilistic U-Net (HPU) [154], has been proposed to cover the gap between
the generative ability of producing new structured images of the CVAE, with the
accuracy of segmenting images of the U-Net. To do this, during training, a pos-
terior U-Net like network, conditioned on the radiologist ground truth nodule, is
added to transfer the latent features to a prior U-Net like network by injection, at
different levels of the decoder part of this network.

6.2.3 Lung cancer prediction
To support radiologists in the lung cancer prediction, several works have been
proposed relying on 2D and 3D inputs, using different deep learning architectures
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(e.g. CNN, RNN) [44, 66, 282], but mostly relying on single CT scan images
(commonly derived from the LIDC dataset [19]). Therefore, very few deep learn-
ing works have addressed the temporal evolution of pulmonary nodules to support
the clinical decision-making. In [14], an end-to-end deep learning based pipeline
was presented for lung cancer prediction using two CT studies per patient (cur-
rent and previous year). This approach proposes three 3D CNN networks, one for
analysing the lung CT image, another for analysing nodule patches, and a final
one, to provide cancer risk prediction using outcomes from previous two compo-
nents. In [129], a deep learning approach is proposed for predicting lung cancer
risk at 3 years and lung cancer-specific mortality. This study, although not being
focused on automatic image analysis, uses a multilayer perceptron to ensemble
nodule and non-nodule features associated to lung abnormalities.

6.3 Method
Our pipeline takes as input two images from the same patient at different time-
points, identifies the lung nodules, and estimates their malignancy and growth.
The pipeline consists of 4 main components (see Figure-6.1): 1) nodule detection,
which is done independently on each image; 2) nodule re-identification, which
finds the correspondence between nodules across time points; 3) nodule malig-
nancy classification; and 4) nodule growth quantification.

Figure 6.1: Pipeline architecture for the temporal analysis of lung nodules.

Pre-processing

Lung CT images are usually originated by different scanners and at different im-
age resolutions. Therefore, the pipeline makes an initial pre-processing step with
the intention to standardize the input images. Precisely, first, the images (T1 and
T2) are resampled to an isotropic resolution of 1x1x1 mm3. Second, the image
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pixel intensities are clipped between [-1000, 600] Hounsfield Units to filter out
non-tissue related regions. Finally, the pixels are normalized between 0 and 1.

Nodule detection

Both pre-processed lung CT scan images, without any previous lung segmenta-
tion, are separately analysed to find possible nodules. Thus, each lung image is
split in overlapping patches (due to memory constraints) of [128x128x128] with
an overlap of 32 pixels per dimension. Since the location of the patch may influ-
ence the decision of whether it is a nodule, we also compute the location informa-
tion of the patch with respect to the whole lung image as in [178], and we send it
all together to the nodule detection network.

The nodule detection network (Figure-6.2) was developed and tested in our
previous work [237], and consists of a 3D Faster-RCNN [244] using as a back-
bone a U-Net like framework. The input of the network is a lung patch image of
[128x128x128]. The location information of this patch is concatenated in the de-
coder part of the network. The output of the network is the location of the nodules
(x, y, z coordinates), the diameter, and a probability of being a nodule. Once all
patches of the lung CT are analysed by the network, those are resembled (due to
overlapping areas between patches) and clear out the repeated findings.

Figure 6.2: Architecture proposed for the nodule detection network of the pipeline.

For further information regarding the configuration parameters for training the
3D Faster-RCNN, we refer the reader to the supplementary material (B.2).
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Nodule re-identification

Once the nodules from two different CT scans of the same patient are detected,
a second component automatically matches or re-identifies these nodules using a
3D Siamese neural network (3D-SNN) as presented in our previous work [237].
A SNN [152] is made up of two components: feature extraction and classification.
In the first, two subnetworks (with shared architecture and weights) process a pair
of images at a time to produce two embedding feature vectors directly from the
images. In the second, a head network determines whether the two embedding
feature arrays are similar (i.e., correspond to the same nodule).

From the different re-identification network setups of our previous work [237],
we used the one that obtained the best results (i.e. FIFB). This setup (Figure-6.3)
consisted on freezing the sibling networks of the feature extraction component
with the weights of a pre-trained network, initially built for nodule identification
[37]. From the different convolution blocks of the pre-trained network, we used
the output from the first block as input for the head component of the 3D-SNN,
since they reported the best performances. The classification head component was
configured with a L1-pairwise distance, a flattening layer, and a fully connected
(FC) block, comprising an FC layer (with 64 units), a batch norm, a ReLU, a
dropout layer and a final FC layer (with one unit).

Figure 6.3: Architecture of the 3D-SNN for the nodule re-identification component of the pipeline.

For further information regarding the configuration parameters used for train-
ing the 3D-SNNs, we refer the reader to the subsection 5.3.1 of this thesis.

Nodule growth quantification

The set of re-identified nodules are analysed by the nodule growth quantification
pipeline component. A couple of methods are proposed for this component. The
first one, already used in [237], consists on computing the diameter difference of
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the paired nodules from the re-identification component. The diameters of both
nodules are taken from the nodule detection component of the pipeline.

The second approach differs from the previous one in that we use a proba-
bilistic generative network (HPU) [154] to provide not only nodule growth, but
also the uncertainty associated with such prediction. This network (Figure-6.4) is
composed by two sub-networks, the prior, which models the prior distribution of
possible segmentation maps for a given input image Ti, and the posterior, which
models the joint probability distribution of the input image Ti and its annotated
segmentation Si.

Figure 6.4: Hierarchical probabilistic U-Net network architecture overview. Ti is the nodule image
i, Si is the ground truth segmentation of the nodule Ti, and S′

i the predicted segmentation of the
nodule Ti.

During the training, both networks learn, in parallel, to adapt their latent dis-
tributions to be able to generate consistent segmentations. To do this, the different
latent features, defined at different levels of the decoder of the posterior network,
are injected to the corresponding following layer from the decoder of the prior net-
work. In this way, gradients can flow through both networks using any stochas-
tic gradient descent-based optimization algorithm. At inference time, a random
sample zi from the distribution defined by the different latent features, located at
different levels of the decoder of the prior network, are injected into the following
layer of this same network to output a new segmentation S ′i.
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Following the same notations as in the original paper [154], the loss function
used for training this network, also named as ELBO, is composed by the sum of
the cross-entropy loss (below formulated as Pc) between the segmentation ground
truth Y and the predicted segmentation S, given an input X and a sample z, and
the distance DKL (Kullback-Leibler divergence) between the prior and the pos-
terior distributions. Since it is a non-deterministic network, the authors [154]
proposed to evaluate this network with the generalized energy distance (GED2),
a metric to account for quality of the segmentation and variability in generating
segmentations, according to the variability in the ground truths:

D2
GED(Pgt, Pout) = 2E [d(S, Y )]− E [d(S, S ′)]− E [d(Y, Y ′)] ,

where d is a distance measure (in our case, 1 − IoU ), S and S ′ are independent
segmentations from the predicted distribution Pout, Y and Y ′ are independent
segmentations from the ground truth distribution Pgt.

In the original paper, the HPU network was already trained for segmenting
lung nodules using data from the LIDC dataset [19], which contains nodule seg-
mentation annotations from up to four radiologists. However, when no nodule was
marked by a radiologist, an empty segmentation image was used. This made the
network to model as well the probability that there is no nodule. For our particular
settings, this was undesired, as the nodule detector already filters out non-nodule
cases. Thus, we retrained the HPU network using the same specifications and ar-
chitecture as in the original paper, but omitting empty segmentation cases. Then,
we use the HPU (prior) network to estimate the nodule growth and a measure of
dispersion (standard deviation). To do this, we run N times (N=1000) the HPU
network for the nodule at T1, obtaining N segmentations. From each of these
nodule segmentations, we extract the major diameter, obtaining a random vector
of N diameters. We repeat this same process, but for the nodule at T2. Then, we
obtain the mean diameter growth as the mean difference of both random diameter
vectors, and the standard deviation, as the squared root of the sum of the variances
of the difference of both random diameter vectors.

Nodule malignancy classification

The re-identified nodules are also analysed by the nodule malignancy pipeline
component. To provide nodule malignancy we propose three different approaches,
one using nodule malignancies annotated by radiologists (i.e. not confirmed cases
of cancer) from a single time-point image, and the other two using nodule malig-
nancies confirmed by diagnosis (either from biopsy or without significant growth
increase during at least 2 years) with two patches of the same nodule taken at two
different time-points.
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The first approach consists on re-using the best network to quantify nodule
malignancy from [37]. This network (3D-CNN-MAL) receives as input a single
volumetric nodule of 32x32x32. The network has a tailored architecture com-
posed of 4 blocks of 3D CNNs, interleaved with dropout and a final dense layer
with a softmax layer at the end. The outputs of this network are 3 probabilities
corresponding to 3 categories of nodule malignancy (benign, suspicious and ma-
lignant). Further details regarding the configuration parameters for training this
network can be found at section 4.3.2 of this thesis.

Figure 6.5: Nodule malignancy classification architecture of the TS-3DCNN-MAL network.

The second approach uses our method presented in [236]. In particular, this
approach analyses, at a time, two volumetric input patch images of 32x32x32 cen-
tred around the nodule. The two patches correspond to the two CT scans made
on the same patient, but at different time-points. The network is a two-stream
3D CNN, in which two feature extraction sub-networks, with the same architec-
ture and weights, analyse in parallel the nodule patches, while the classification
network part provides a cancer probability risk. Given the limited amount of lon-
gitudinal data, the siblings of the TS-3DCNN were transferred from a pre-trained
3D ResNet-34 network, used for identifying pulmonary nodules. We used the
features from the last layer of the second block of the 3D ResNet-34, as the ones
that reported better performances in our previous work [237]. The classification
head component of the TS-3DCNN was configured with a flattening, a concate-
nation, and an FC block layer comprising an FC layer (with 64 units), a batch
norm, a ReLU, a dropout and a final FC layer (with one unit). Figure-5 shows the
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architecture of the TS-3DCNN network. The third approach builds upon the inte-
gration of the other two previous approaches. Given a new nodule to classify, we
predict the malignancy using 3D-CNN-MAL network and integrate this informa-
tion in the TS-3DCNN network. Precisely, 6 extra features (corresponding to the
3 outcomes of the 3D-CNN-MAL for each time-point nodule) were concatenated
with the features of the last fully connected layer of the TS-3DCNN.

To allow a fair comparison between these two last approaches, we defined the
same initial training settings. Thus, binary cross-entropy was set as the loss func-
tion, the number of epochs was set to 150, the learning rate to 1e-4, the batch
size to 32, dropout to 0.3, the early stopping strategy to 10 epochs without im-
provement of the validation loss, and Adam was used for optimization. Moreover,
random rotation and flip were applied for data augmentation.

6.4 Results

In this section, we report the performance of the pipeline obtained on the VHLung
test set, broken down into each of its components.

Nodule detection

First, we evaluate the ability of the pipeline to detect the annotated nodules (one
per each CT) among all nodules predicted by the 3D-FasterCNN network. There-
fore, we measured the performance of the network to find the annotated nodules
in the least number of predicted nodule candidates. Results show that, taking a
reasonable threshold of top-32 predicted nodule candidates per CT, the pipeline
obtained a sensitivity score of 0.973 on the 76 CT scans of the test set (taken
individually), missing only 2 of them.

Nodule re-identification

To evaluate the second stage of the pipeline, we used the 36 pairs of CT scans
where the pipeline found the radiologist’s annotated nodules. For each pair of
CTs, we input 64 (32 per each time-point) nodule candidates into the 3D-SNN
network to obtain those that correspond. In total, the 3D-SNN network reported
only 4 CT-pairs incorrectly matched, with an accuracy of 0.888. Table-1 provides
a summary of the results for the re-identification step, stratifying them by the
initial size of the nodules.
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Small Medium Large Total
Accuracy 1.0 0.84 0.75 0.88
#Nodule-pairs 13 19 4 36

Table 6.1: Performance of the re-identification component of the pipeline.

Nodule growth quantification

Two different approaches for nodule growth quantification were evaluated on the
32 matching nodules obtained from the nodule re-identification component. The
first approach used the predicted nodule diameter measurements from the 3D-
FasterCNN network, while the second used the predicted nodule diameter mea-
surements from the HPU network. For a proper usage of the HPU in the context
of the nodule growth quantification, we retrain this network according to [154]
with same data from LIDC dataset but omitting ’empty’ cases where radiologists
did not mark any nodule in the axial slices. The model reported a GED2 of 0.38
and a reconstruction Dice of 0.91.

Table-6.2 shows the mean absolute error, mean squared error and r-coefficient
of correlation with respect to the ground truth. Results show the mean and 2
standard error associated with 95% of confidence, obtained with 1000 bootstraps
with replacement of the test set. Figure-6.6 shows estimated nodule growth sizes
from both networks per each nodule of the test set.

MAE MSE R2

3D-FasterCNN 1.400 ± 0.422 3.333 ± 1.927 0.637 ± 0.344
HPU 1.348 ± 0.370 2.889 ± 1.561 0.667 ± 0.418

Table 6.2: Nodule growth performance comparison between 3D-FasterCNN and HPU networks.

These results show that the HPU network (segmentation based approach) pro-
vides closer estimates to radiologists annotations than the 3D-FasterCNN net-
work.

Nodule malignancy classification

Three different methods (3DCNN-MAL, TS-3DCNN and TS-3DCNN-MAL) were
evaluated on the resulting 32 matching lung nodules (65% of them cancerous)
from the re-identification step. For the evaluation of these methods, we directly
used the 3DCNN-MAL classifier on the evaluation cases, while for the other two
classifiers, to avoid data leakage for this evaluation, we retrained them before
being evaluated, using the training partition of the VHLung with a 10-fold cross-
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Figure 6.6: Comparative of radiologist growth measurements with results from nodule detector
and nodule segmentation.

validation. Particularly for the 3DCNN-MAL classifier, as it outputs 3 proba-
bilities, we assumed cancer prediction when this classifier reported as maximum
probability either the category suspicious or malignancy. Table-6.3 shows the re-
sulting classification performances for these models on the 32 matching nodules.
We computed, precision (PREC), recall (REC) and specificity (SPEC), as well as
balanced accuracy (BA). Due to the data was unbalanced towards the cancer case,
the BA was used as the reference metric. Results show for each of the metrics the
mean and 2 standard error associated with 95% of confidence, obtained with 1000
bootstraps with replacement of the matching nodules.

Bacc Prec Rec Spec
3DCNN-MAL 0.776+/-0.153 0.808+/-0.152 1.0+/-0.0 0.552+/-0.307
TS-3DCNN 0.810+/-0.203 0.899+/-0.167 0.791+/-0.309 0.829+/-0.296
TS-3DCNN-MAL 0.825+/-0.201 0.910+/-0.179 0.821+/-0.330 0.830+/-0.348

Table 6.3: Performance of the different nodule malignancy classifiers of component of the pipeline.

The 3DCNN-MAL classifier obtained a balanced accuracy score of 0.77, while
the TS-3DCNN achieved a 0.81. However, the TS-3DCNN-MAL, which inte-
grated the outcomes of the 3DCNN-MAL model, improved the balanced accuracy
score of the TS-3DCNN model, a 1.5%. For further comparison of these models,
we show Figure-6.7 with the ROC-curves of the two best models.

For a further intuition and visual interpretability of the areas of the images
that the TS-3DCNN-MAL network took most seriously in deciding which class to
assign to the image, we extracted the Grad-CAMs features for this classifier [258].
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Figure 6.7: ROC curves of the nodule malignancy classification models.

In particular, on the last layer of the first block of the TS-3DCNN-MAL network
we obtained the gradients and the feature activations, and they were multiplied
after being pooled on the channel dimension. Figure-6.8 shows the results of
this visualization technique on the three-planes of different lung nodules (either
benign as malign).

6.5 Discussion

The still incomplete knowledge of malignant patterns in the course of multi-
factorial diseases such as lung cancer makes it necessary to support physicians
with automatic, fast and reliable predictive tools to reduce the workload in radi-
ological services. Unfortunately, the vast majority of research is still focused on
specific tasks with data from single time-points [36, 44, 66, 159, 178, 282, 334],
which limits their potential impact and usability in real clinical settings.

In this chapter, we presented a computer vision pipeline aimed at automatiz-
ing the main tasks involved in the lung cancer follow-up. To do this, we relied
on a deep learning solution aiming at modelling the temporal evolution of this
disease to assess nodule growth and malignancy. The pipeline was formed by 4
different components: nodules detection, nodule re-identification, nodule growth
and nodule malignancy classification. The evaluation of the pipeline was done on
an independent test set composed by 38 CT pairs. To train the models, we used
two different training datasets, LIDC [19] for nodule detection and nodule growth
estimation, and VHLung for nodule re-identification and cancer classification.

The evaluation of the first component of the pipeline, aimed at detecting the
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Figure 6.8: Grad-CAM features from the TS-3DCNN-TL-MAL network for 2 malign (upper row)
and benign (bottom row) nodules.

suspicious nodules marked by the radiologists. To this end, we re-used a deep
convolutional network based on the 3D Faster-CNN scheme already published in
a previous work [237]. This network reported on the available data for the evalu-
ation of the pipeline (test set of the VHLung dataset) a sensitivity score of 97.6%
for 32 nodule candidates. When evaluating this model in a larger test set (e.g.
LIDC test set), the performance decreased to 84% sensitivity at 1 false positive.
This value is slightly below compared with top performances (81.7% at 0.125 FP)
in LUNA-161 benchmarks. However, it is not clear if those performances are
realistic or just an overfit on the provided dataset.

For the nodule re-identification component of the pipeline, we re-used the
best model reported in [237]. One of the main benefits of using this approach for
matching nodules is that no previous registration of the lung CTs was required
(which usually it is slow and introduce artefacts in the original images). The
results for nodule re-identification reported also high performances (88.8% of ac-
curacy). However, we should note that they are still a bit below the performances
reported, by the same method, when performing in an isolated way, the matching
task (92% of accuracy).

Two different approaches were proposed and compared for the nodule growth
component. The first one relied directly on the predicted nodule diameters re-
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ported by the model of the nodule detection component of the pipeline. There-
fore, the growth was computed from the subtraction of both measurements. The
second approach for nodule growth estimation relied on a hierarchical probabilis-
tic U-Net (HPU) [154]. This method, based on the generation of several feasible
segmentations of the nodule, allowed us to provide an estimation of the growth
of the nodule together with an uncertainty of the reliability of the model on this
measure. This method obtained the best result, specifically, a mean absolute error
(MAE) of 1.34 mm (with a standard error of +/-0.37 mm at 95% of confidence).
This approach slightly outperformed by 0.05 mm of MAE the previous approach
based on the nodule detection network. Somehow this result was expected since
the nodule detection network was trained without any information regarding the
contour of the nodules. Nonetheless, both approaches reported errors that were
below 2 mm, the threshold determined by radiological guidelines from which to
consider nodule growth [195]. Beyond these results, the ability of the HPU-based
approach to provide a measure of uncertainty could help clinicians to make better
decisions, since it provides how confident the model is about its predictions.

Regarding lung cancer classification, our best model (TS-3DCNN-MAL) ob-
tained 82.5% of balanced accuracy score. This performance is competitive with
those reported from recent cancer classification systems. For instance, in [44]
they achieved 86% and 87% of precision and recall, while we obtained 91% and
81.9%. In [14], they reported an AUC of score 92.6% while our model obtained
91.1%.

Despite the notable performances of the pipeline, our work still presents sev-
eral limitations. First, the great heterogeneity and complexity of the problem
makes the amount of data used for the evaluation of the pipeline too small. Hence,
greater emphasis is needed on collecting new data for a more comprehensive eval-
uation. Second, although in the clinical practice the nodule growth is measured
with the size of the diameter, we believe building a growth detection method re-
lying on 3D volumetric measures should capture more accurately the patterns of
nodule growth. Third, more efforts could be done on visualization and inter-
pretability techniques to allow a better understanding of how the models of the
pipeline behave, and thus an easier implantation of this tool in clinical domains.

Finally, several future works can be envisaged. The integration of non-image
data, such as the clinical history of the patient, could be an added-value on the
pipeline for modelling the whole context of the disease. Also, further efforts in
fine-tuning the current networks or adopting recent advances in computer vision
[32, 226] could lead to an overall improvement of the performances reported.
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6.6 Conclusions
In this chapter, we address the problem of supporting radiologists in the longitudi-
nal management of lung cancer. Therefore, we proposed a deep learning pipeline,
composed of four stages that completely automatized from the detection of nod-
ules to the classification of cancer, through the detection of growth in the nodules.
In addition, the pipeline integrated a novel approach for nodule growth detection,
which relied on a recent hierarchical probabilistic U-Net adapted to report uncer-
tainty estimates. Also, a second novel method was introduced for lung cancer
nodule classification, integrating into a two stream 3D-CNN network the esti-
mated nodule malignancy probabilities derived from a pre-trained nodule malig-
nancy network. The pipeline was evaluated in a longitudinal cohort and reported
comparable performances to the state-of-the-art.
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Chapter 7

AN UNCERTAINTY-AWARE
HIERARCHICAL
PROBABILISTIC NETWORK
FOR EARLY PREDICTION,
QUANTIFICATION AND
SEGMENTATION OF
PULMONARY TUMOUR
GROWTH

7.1 Introduction

Pulmonary nodule malignancy is usually assessed based on relatively few param-
eters such as longest axial diameter, tumour growth and time between observa-
tions1. Depending on these values and the recommendations made by interna-
tional radiological guidelines [195], experts make conjectures and draw their con-
clusions. From the different malignancy parameters, pulmonary tumour growth
is one of the most important indicators when assessing lung cancer by computed

The work described in this chapter is based on the following publication: Rafael-Palou X,
Aubanell A, Ceresa M, Piella G, Ribas V, González Ballester MA. An Uncertainty-aware Hierar-
chical Probabilistic Network for Early Prediction, Quantification and Segmentation of Pulmonary
Tumour Growth. Under review in Medical Image Analysis

1https://my.clevelandclinic.org/health/diseases/14799-pulmonary-nodules
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tomography (CT) [306]. In particular, clinicians commonly assess tumour growth
by imaging surveillance, measuring the nodule diameter along different CT stud-
ies taken at different time-points [26].

Anticipating the tumour growth rate would help clinicians to prescribe more
accurate tumour treatments and surgical planning. However, lung tumours are
highly heterogeneous (e.g. in size, texture and morphology) and their assessment
is subject to inter and intra-observer variability (up to 3 mm in diameter on spic-
ulated nodules [106]), making it complex to derive general patterns of tumour
growth.

Due to the importance of supporting clinicians in this task, several efforts have
been done from the computer vision and artificial intelligence community. Tradi-
tionally, the tumour growth prediction problem has been addressed through com-
plex and sophisticated mathematical models [254], such as those based on the
reaction-diffusion equation [287, 292] also known as Fisher–Kolmogorov model.
These methods provide informative results and explainability. However, the num-
ber of model parameters is often limited (e.g. 5 in [318]), which might not be
sufficient to model the inherent complexities of the growing patterns of the tu-
mours.

Recently, deep learning and in particular deep convolutional neural networks
(CNN) have shown a great ability to automatically extract high-level representa-
tions from image data [211]. This has enabled performance improvements over
conventional approaches in various medical imaging problems, such as nodule
detection [262], segmentation [200], re-identification [237] and malignancy clas-
sification [51].

Tumour growth estimation has also been addressed with deep learning for
brain, pancreatic and/or colorectal cancer, using data from longitudinal CT/PET
or magnetic resonance imaging (MRI) [140, 328, 329]. Proposed deep architec-
tures usually rely on CNNs and recurrent neural networks (RNN) [121], for ex-
tracting spatial and temporal tumour growth patterns and correlations. Recently,
generative networks such as those based on adversarial learning [96] and varia-
tional auto-encoders [148] have also been proposed to enhance grow prediction
and clinical interpretability by estimating future images of the tumour [76, 231].

Few works have tackled lung tumour growth estimation [177, 311]. In [177],
they proposed two 3D CNNs to extract warping and texture patterns to predict ma-
lignancy risk and future aspects of the tumour. In contrast, in [311], they proposed
a CNN combined with an RNN extended with an attention mechanism [193] to
find temporal patterns to provide trajectories of lung tumour evolution using MRI
images. We provide further details of these recent works in section 7.2. These
works, however, address the problem of growth prediction in a deterministic way,
providing a single prediction without considering uncertainties. Therefore, the
models do not usually take into account neither the variability in the annotations
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of the experts, nor the risk of failure. This could partially explain why, in clinical
settings, the credibility of these models is questioned and their adoption limited.

Along with the recent interest on tumour growth prediction and uncertainty
with deep learning, this work aims to take a step forward in these promising re-
search directions. In particular, we propose a probabilistic-generative model able
to predict, given a single time-point image of the lung nodule, multiple consis-
tent structured output representations. To do this, the network learns to model the
multimodal posterior distribution of future lung tumour segmentations by using
variational inference and injecting the posterior latent features. Eventually, by
applying Monte-Carlo sampling on the outputs of the trained network, we esti-
mate the expected tumour growth mean and the uncertainty associated with the
prediction.

The contribution of this work is three-fold. First, to the best of our knowledge,
this is the first time pulmonary nodule growth is estimated using deep learning
and nodule diameter annotations from multiple experts. Second, this is the first
time that model uncertainty is reported using a deep learning approach to predict
lung nodule growth. Third, a new deep learning solution is presented, building on
an existing hierarchical generative and probabilistic segmentation framework, for
lung nodule growth prediction, quantification and visualization.

The rest of the chapter is organized as follows. Section 7.2 describes the
most recent works on tumour growth estimation. Section 7.3 details the proposed
method for modelling lung tumour growth and its related uncertainty. Sections
7.4 and 7.5 report and discuss the experimental results of applying our approach,
and other competing solutions, on a longitudinal cohort. Finally, the conclusions
are summarized in Section 7.6.

7.2 Related work

7.2.1 Deep learning deterministic approaches

Deep learning, and in particular CNNs, seems a perfect match for leveraging tu-
mour growth for its intrinsic capability of automatically extracting deep represen-
tations and correlations between multiple images [34].

One of the earliest deep learning studies addressing tumour growth estima-
tion was for pancreatic cancer [328]. The authors proposed the use of two (in-
vasion/expansion) stream CNNs, relying on 2D patch images of the tumour, for
predicting future tumour segmentations as well as tumour volume growth rates.
Interestingly, the method allowed integration with clinical data to enable personal-
ization. Best method performances achieved 86% of Dice score and 8.1% relative
volume difference (RVD). Those overcame state-of-the-art of conventional math-
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ematical models [319] for that disease type. However, the size of the test set was
too small (10 cases) to extract robust conclusions. Also, to make inference this
network required multimodal images (i.e. dual phase contrast-enhanced CT and
FDG-PET), as well as three time points spanning between three and four years,
which represented strong pre-conditions for the usability of the model.

Aiming to go beyond black-box predictions for lung tumour malignancy [51,
129], recent work [177] proposed a method to generate a future image of the
nodule. To do this, a temporal module encoded the distance at which to make
the prediction, and two 3D U-Net [202, 248] networks extracted the warped and
texture image features of the lung nodule. The network was trained with more
than 300 pairs (prior and current studies) of 3D nodule centred patches. Exper-
iments reported a high balanced accuracy score of 86% for nodule progression,
although a relative Dice score of 65% for future nodule segmentation. The gap
in the model’s ability to provide future segmentations of the tumours, the use of
a tailored criterion to determine nodule growth instead of conventional metrics
(e.g. the longest diameter or double time volume) or not taking into account inter-
observer variability, shows the need to continue with the investigation of more
reliable and effective solutions.

An alternative approach, especially suitable for temporal series, are the RNNs,
in particular the Long Short-Term Memory (LSTM) networks [121]. They were
designed for the next time-step status prediction in a temporal sequence capa-
ble of learning long-term dependencies. Some recent works have used this type
of architectures for tumour growth prediction. For instance, in [329], a 3D con-
volutional LSTM network [267] was proposed for predicting pancreatic tumour
growth. Interestingly, in this study, features from the clinical history of the pa-
tient were integrated in the network with the intention to find extra non-linear
relationships between spatial and temporal features. This approach used a limited
dataset (33 cases) and required having series (≥ 2) of previous images of the le-
sion, which for early tumour growth estimation is not the best scenario due to the
aggressiveness of the disease. Regarding lung tumour growth, in [311] a network
was proposed to combine convolutional layers and gated recurrent units with an
attention mechanism [193]. The goal was to predict spatial and temporal trajecto-
ries over a course of radiotherapy using a longitudinal MRI dataset. Although the
purpose of this study is similar to ours (i.e. future lung tumour growth estimation),
the complexity of the problem differs in that the images analysed were MRI (in-
stead of CT), the period of the predictions were weeks (instead of months/years),
and the number of input images (i.e. 2-3) to the network was larger than in our
case.
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7.2.2 Deep generative networks

Another way to tackle tumour growth prediction is by using deep generative mod-
els. One of the most popular is generative adversarial networks (GAN) [96]. This
framework consists of two networks, the generator and the discriminator, that
compete with each other in a zero-sum game where the generator aims to increase
the error rate of the discriminator network. Thus, the generator learns to map
points from a latent space, usually sampled from a multivariate standard normal
distribution, into observations that look as if they were sampled from the original
dataset. The discriminator tries to predict whether an observation comes from the
original dataset.

GANs have been recently applied to predict future tumour/disease growth over
time. For instance, in [173] they proposed a 2D deep convolutional GAN for dis-
criminating between true tumour progression and pseudo-progression of glioblas-
toma multiforme. The results confirmed its suitability for prediction and feature
extraction, although only one image per tumour was used in the study. In [76] they
built a stacked 3D GAN for growth prediction of gliomas using temporal evolution
of the tumour. Although high performances were reported (88% Dice score), the
database was composed by only 18 subjects, in which all tumours always grew.
In [235], they compared different GAN networks to predict the evolution of white
matter hyperintensities. They also demonstrated the potential of using GANs in
a semi-supervised scheme, improving results of a deterministic U-ResNet [330].
Despite the satisfactory performances obtained with GANs, this type of network
suffers from mode collapse[94], that is, they hardly generate correct representa-
tions of the probability output distribution, so they may not be adequate to model
uncertainty.

Another well-known approach for addressing image generation is deep auto-
encoders (AE). This framework uses an encoder which embeds the input into a
representation vector, and a decoder, which projects the vector back to the orig-
inal manifold. The representation vector is a compression of the original image
into a lower dimensional, latent space. The idea is that, by choosing any point in
a latent space, a novel image is generated by passing this point through a decoder
(as it learned to convert points, or representations, in a latent space into viable
images). Therefore, the learning process of this network consists on minimizing
the reconstruction error, which is the error between the original image and the re-
construction from its representation. Since auto-encoders do not force continuity
in space, images are poorly generated at sampling time.

One successful extension from auto-encoders are variational auto-encoders
(VAE) [148, 246]. In particular, the encoder retrieves two vectors, the mean and
log-variance vectors, which together define a multivariate distribution in the latent
space. When a random point is sampled from this distribution, the decoder pro-
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duces a similar image, guaranteeing the continuity in the latent space. The way
to achieve this, is by making the output distribution of the encoder as close as
possible to a standard multivariate normal distribution using the Kullback-Leibler
divergence (KL) loss. Thus, the total loss function of the VAE is composed by
the sum of the KL-divergence loss and the reconstruction loss. A variant of VAEs
was created to generate multiple outputs from a single input. Precisely, condi-
tional variational auto-encoders (CVAE) [275] were proposed to model the dis-
tribution of a high dimensional space as a generative model conditioned on the
input. Therefore, the prior on the latent variable is conditioned by the input.

Few works have applied auto-encoders and their variants for tumour/disease
growth prediction. In [140] they proposed using a deep auto-encoder attached
to a fully connected network architecture for colorectal tumour growth detection.
Despite providing results close to the RECIST methodology2 and radiomic mea-
sures, the use of the auto-encoder was for mere feature reduction. In [28], the au-
thors applied a VAE for progression of Alzheimer disease from structural MRI im-
ages. Their experiments demonstrated that VAE outperforms conventional CNNs
on doubtful cases as it acts as a soft classifier learning a Gaussian distribution.
Also, for patient risk analysis they observed that VAE produced less false positive
cases, sampling from the latent space, than deterministic CNNs. However, CNNs
provided better overall performances. In another study [239], they conditioned
a deep auto-encoder on fixed characteristics like age and diagnosis, to generate
sequences of 3D MRI for Alzheimer’s disease progression. Despite results out-
performed previous 2D versions, some artefacts and false structures were noted
on the generated images. Moreover, additional terms were required to ensure loss
stability, latent space continuity, reducing memory constraints and restoring 3D
outputs.

7.2.3 Uncertainty in deep learning

Contradictorily, given the multifactorial and complex nature of the problem, un-
certainty in the prediction of tumour growth was not addressed in any of the afore-
mentioned studies. However, uncertainty information about the output of a net-
work could make them safer and more reliable since it would allow indicating
potential mis-segmented or low confident regions, or guiding user interactions
for refinement of the results. Two common approaches have been proposed for
modelling uncertainty in deep learning, Monte Carlo dropout networks (MCDNs)
[83] and Bayesian neural networks (BNNs) [268]. MCDNs use dropout layers
as a Bayesian inference approximation in deep Gaussian processes, and although
their implementation is easy, criticism has emerged recently regarding the type of

2https://recist.eortc.org/
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uncertainty that is captured [222]. BNNs use variational inference to learn the pos-
terior distribution of the weights given a dataset. These weights are implicitly de-
scribed as (multivariate) probability distributions. This has several consequences.
First, it makes the neural network non-deterministic; for every forward pass, we
must sample from each weight distribution to obtain a point estimate. Repeated
applications of this sampling technique, through Monte Carlo sampling, will re-
sult in different predictions which can then be analysed for uncertainty. Second, it
changes the backpropagation algorithm, since we cannot flow back the gradients
through a sampling operation.

Uncertainty estimation in deep neural networks has been widely investigated
for medical image tasks. For instance, in segmentation of multiple sclerosis le-
sions, some works [210, 249] showed that by filtering out predictions with high
uncertainty, the models improved lesion detection accuracy. For brain tumour
segmentation, other work [75] demonstrated that MCDNs can be calibrated to
provide meaningful error bars overestimates of tumour volumes. Moreover, the
uncertainty metric based on MCDNs also showed promising results in disease
grading of retinal fundal images [23, 172]. In [182] a Bayesian method predicted
patient-specific tumour cell densities with credible intervals from high resolution
MRI and PET imaging modalities.

Unfortunately, few works have modelled uncertainty for tumour growth esti-
mation. In [231] a deep probabilistic generative model (sPUNet) [29, 153] was
used to model glioma growth for radiotherapy treatment planning. The model,
based on a combination of a U-Net [248] and a CVAE [275], was able to gener-
ate multiple future tumour segmentation modes on a given input. Although they
demonstrated the potential of providing multiple views over a single solution, they
did not report nodule growth performances.

7.3 Method
We present a novel approach to estimate the future growth of pulmonary nodules
along with its uncertainty. Our approach exploits the generative and probabilistic
nature of a recent framework, the hierarchical probabilistic U-Net [154] (HPU),
to estimate the output probability distribution of lung nodule growth, conditioned
on an initial image of the nodule. Before delving into the details, in the following
sub-section we describe the basics of the underlying framework.

7.3.1 Hierarchical probabilistic U-Net
A segmentation framework that provides multiple segmentation instances for am-
biguous images was proposed in [154]. This network, schematized in Figure-7.1,
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Figure 7.1: General overview of the HPU network architecture. On the left of the picture we can
observe the prior network and on the right the posterior. Both networks have different probabilistic
latent blocks interleaved along the decoder component.

is composed of two inter-related sub-networks, the posterior and the prior. Both
follow a CVAE scheme with a couple of changes. First, the encoder-decoder struc-
ture is implemented by a 2D U-Net [248] extended with residual blocks [74, 117]
(U-ResNet) and filters adjusted to the input size. Second, instead of a single proba-
bilistic latent block (see Figure-7.3) at the end of the encoder, several probabilistic
latent blocks are interleaved at different levels of the hierarchy of the decoder, to
provide fine-grained segmentation samples closer to the ground truth probabilistic
distribution.

The inference process of this network consists on forward-passing an input
image, X, through the prior network. Specifically, along the decoder part of the
network, feature activation maps are concatenated with vectors, zi (i ≤ L, being L
the number of latent hierarchies), obtained from sampling different latent distribu-
tions interleaved in the decoder. As a result, we obtain a predicted segmentation,
Y’.

The training process of this network aims to pull to each other the prior dis-
tribution p, encoded by the prior network, and the posterior distribution q, defined
by the posterior network, while minimizing the loss of the reconstructed images.
This is the same as maximizing the evidence lower bound (ELBO) in variational
inference. Therefore, the KL divergence loss (DKL) between the posterior and the
prior distributions is added to the reconstruction objective (Lrec) obtained through
the log likelihood (represented by the pixel-wise categorical distribution P c) be-
tween the reconstructed image Y’, and the ground truth segmentation Y. Addition-
ally a weighting factor β, is multiplied to the DKL term to balance the overall loss
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Figure 7.2: General overview of the proposed U-HPNet network architecture. This network is
also composed by a prior network (on the left, with further details) and a posterior (on the right).
Attached at the end of the posterior we observe the post-process module aimed at reporting the
estimated future growth prediction, size and appearance with the associated uncertainty.

function:

LELBO =

E z∼Q[−logP c(Y |Y ′)] + β
L∑
i=0

E z<i∼QDKL(qi(zi|z<i, X, Y )||pi(zi|z<i, X))

where E z∼Q is the expectation operator, and z a vector sampled from the posterior
distribution Q.

7.3.2 U-HPNet
Based on the HPU framework, we propose a network (U-HPNet) able to gener-
ate plausible future nodule segmentations conditioned on the nodule image, its
diameter at time T0, and the temporal distance at which to make the prediction.
To do this, the U-HPNet uses variational inference to approximate the estimated
output distribution to the ground truth, in our case, provided by different graders.
Figure-7.2 shows the overall architecture of the proposed network.

Architecture

Both sub-networks of the U-HPNet (prior and posterior) receive as input an axial
nodule image I0 at time T0, while the posterior receives also the axial nodule image
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I1 at T1. The images are centred patches of 32x32 pixels rather than 128x128 as in
the original network. We down-scaled the input size of the network to focus in the
relevant parts of the image (i.e. contour and close surrounding of the nodule), and
to reduce the number of parameters of the network, especially convenient for small
datasets [233]. Smaller patches were discarded due to the size of the nodules, and
larger patches (e.g. 64x64) experimentally did not report any performance gain.

We conditioned the latent space, learnt by the network, with a couple of ex-
tra features: the time difference (Tdiff) at which to predict nodule growth, and
the diameter size (sz0) of the nodule image at time T0. Tdiff is an ordinal value
representing the main time-elapses defined by radiological guidelines (i.e. 6, 12,
24 or more months) [195]. Sz0 is a numerical value provided (in our case) by
radiologists to better estimate the tumour growth. In particular, with this feature,
we aimed to facilitate the network to learn the intrinsic patterns followed by the
experts when measuring tumours from the images. Both features (Tdiff, sz0) were
normalized between 0 and 1, and concatenated with the encoder output.

Figure 7.3: On the left, we show a more detailed view of the different components of a decoder
layer of the U-HPNet. On the right, we see the elements that compose an attention block.

Regarding the network architecture, both sub-networks use the same 2D U-
ResNet as in the original HPU, but adapted to the proposed input size (32x32).
Also, up to 4 prior/posterior latent blocks are interleaved in the decoder of the
sub-networks, generating latent feature vectors (z) of 1, 4, 16, 64 dimensions
respectively.

Additionally, we integrated a soft attention mechanism in the decoder part
of the sub-networks with the intention of detecting small and minor changes in

112



“output” — 2021/7/6 — 8:07 — page 113 — #137

the structure of the nodule images. To do this, we followed a recent work [217]
in which a grid-attention mechanism was integrated in a U-ResNet. The attention
mechanism aims at progressively suppressing feature responses in irrelevant back-
ground regions. To do this, attention gates are integrated before the concatenation
operation to merge only relevant activations. Figure-7.3 provides further details
regarding the components of the attention mechanism and how it was integrated
in the decoder of the sub-networks.

Loss function

On the conventional ELBO loss function used in the original HPU paper, we in-
corporated a couple of modifications in the reconstruction loss (Lrec) term. In
particular, we used the L1 distance between the predicted D1′ and the ground
truth D1 tumour diameters, and the intersection over union (IoU) between the
predicted Y ′ and ground truth Y tumour segmentation. Also, a weighting (γ)
factor was used on the combined loss to balance the ranges of both terms.

Lrec = LIoU(Y, Y ′) + γLL1(D1, D1′)

We used the L1 loss to prioritize the diameter fidelity, and consequently improve
network performance. Also, we used IoU loss as a good approximation function
when learning on imbalanced data conditions [216], which in our case was caused
by having a much smaller number of pixels belonging to the tumour than to the
background. In our experiments, we found better performances setting γ to one.

Post-processing

The generative ability of the proposed network offers the possibility to produce
future nodule segmentations, sampling from the latent space and injecting the
resulting vectors in the network, for a given input. This may be useful from a
medical exploratory point of view, but for practical reasons a more useful out-
come should be presented to the clinicians. To this end, we formulated a generic
and embeddable post-processing module that converts multiple predicted segmen-
tations into a lung nodule growth prediction, size and segmentation visualization
with the uncertainty associated to each of them. Precisely, the post-processing
module applies Monte-Carlo sampling by running the networkK times (K=1000)
with the same input image. In particular, for each iteration, a sample from all the
hierarchical latent blocks of the prior network is injected in the corresponding lo-
cation of the decoder part of the (prior) network, to produce a new segmentation.
As a result, we obtained K random nodule segmentations. For each predicted
segmentation, we extracted its longest diameter D1′, using conventional image
processing libraries. With the vector of K nodule diameters, we computed the
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vector of predicted nodule growths, ∆, by subtracting the input nodule diameter
size D0 (the aforementioned sz0) to the predicted diameters D1′. From the result-
ing vector ∆ of predicted nodule growths, we computed its mean and standard
deviation as measures of nodule growth size and its associated uncertainty.

In addition, we computed the probability that the nodule growth is at least of
2 mm (threshold recommended in clinical guidelines for tumour growth [195]).
For this, for each of the K nodule growths, we used the logistic function f(∆i) =
1/(1+e−∆i+2). From the resulting K-length vector of probabilities, we considered
the mean and the standard deviation as the estimated nodule growth probability
and its associated uncertainty.

Finally, the post-processing module also outputs two images, both correspond-
ing to the predicted future tumour appearance (at T1). In particular, and inspired
by [142], one of the images is the per-pixel mean of allK predicted segmentations
and the other the per-pixel standard deviation.

7.3.3 Comparison with related works
Since we did not find any other deep generative network to provide lung tu-
mour growth predictions and their associated uncertainty, we adapted 4 different
state-of-the-art deep architectures to compare the performance of our method (see
Figure-7.4), one deterministic network and three generative.

To allow a fair comparison, all these networks had the same U-ResNet back-
bone proposed for the U-HPNet, with the same number of layers and filters. Also,
these models were configured with same data augmentation, optimization algo-
rithm, batch size and learning rate than the U-HPNet network. Moreover, these
networks had the same input (I0, sz0 and Tdiff) and output as the U-HPNet (i.e.
an estimated future segmentation of the nodule). For the non-deterministic mod-
els, the output was post-processed to evaluate tumour growth prediction, diameter
growth and the segmentation performance.

As for the deterministic (or baseline) approach, we used a single U-ResNet
like network, Figure-7.4a. This network was trained using a conventional loss
function, formed by a pixel-wise binary cross entropy, without any additional con-
figuration.

The first generative selected method consisted on a Bayesian dropout network
(BAYES TD) inspired by the Bayesian SegNet network proposed in [142]. This
approach provides a probabilistic pixel-wise semantic segmentation by enabling
dropout at inference time. Therefore, this approach aims to find the posterior
distribution over the convolutional weights, W, given the observed image I0 and
labels Y, i.e. p(W |I0, Y ). According to the authors, the best configuration was
obtained using dropout in the central part of the network. Thus, we followed the
same suggestion and we setup dropout (p=0.5) layers in the 3 last encoder and
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Figure 7.4: Four alternative network architectures proposed for lung nodule growth estimation. At
the top we have the U-ResNet and the generative Bayesian dropout. In the centre, we show the
probabilistic U-Net. Below we find the Pix2Pix cGAN network proposed.

3 initial decoder blocks of the U-ResNet, Figure-7.4b. This network was trained
using pixel-wise binary cross entropy. Hence, we used dropout at inference time
as a way to get samples from the posterior distribution.

The second proposed generative network was the former version of the HPU,
the standard probabilistic U-Net (SPU) [153]. This approach goes beyond the
notion of reporting a per-pixel probability map, by capturing the co-variances be-
tween pixels and providing consistent structured outputs. To do this, two net-
works: the prior (having as input a nodule I0) and the posterior (which also re-
ceives the nodule I1), learn to map the input into a low dimensional latent space
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which encodes the distribution of all possible segmentation variants for the given
input. In particular, we configured a latent vector of 6 features (or dimensions)
as in the original paper, Figure-7.4c. This network was trained to maximize the
ELBO function composed by the pixel-wise binary cross entropy between the
predicted and the ground truth segmentation, and the KL-divergence between the
posterior (which can see the future image of the nodule) and the prior distribu-
tions. By sampling on the latent features of the prior network, this method allows
generating multiple segmentations at inference time.

The last generative approach consisted on a conditional GAN named Pix2Pix
[134]. The framework allows learning, in a model-free fashion, a mapping be-
tween two images. In our case, the two images were a tumour image I0 and a
segmentation image Y at T1. The proposed network (P2P GAN) is composed by
two networks; a generator formed by U-ResNet configured with dropout (p=0.5)
along the decoder (no specific locations were indicated by the authors), and a dis-
criminator composed by the encoder part of a U-ResNet, Figure-7.4d. These two
networks learn to generate images that are as similar as real ones, as well as to
discriminate between images that are increasingly similar between real and fake
ones. This network was trained as suggested by the authors, using the LcGAN loss:

LcGAN(G,D) = E I1,Y[logD(I1, Y )] + E I0,I1,z[log(1−D(I1, G(I0, z)))],

which represents the sum between the discriminator D loss (i.e. binary cross
entropy) of a nodule I1 and the segmentation ground truth Y , and one minus the
discriminator loss of a nodule I1 and the segmentation Y ′ produced by the genera-
tor at T1, i.e. Y ′ = G(I0, z). Additionally, a second term was added into this loss
to figure out the fidelity of the generated samples with the ground truth. Thus, the
L1 distance was computed between the generated sample Y ′ and the truth Y . The
final loss G* is as follows:

G* = arg min
G

max
D
LcGAN(G,D) + λLL1(G).

This approach allowed generating multiple samples by adding noise in the form
of dropout, applied during training and testing time.

7.3.4 Tumour growth assessment

We assess tumour growth in terms of growth prediction, size and segmentation
mask. For this, we considered not only the generative nature of our approach,
but also the fact of having per each nodule the opinion of up to three different
radiologists. In the following, we provide further details regarding the tumour
growth assessment.
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Metrics

We proposed to evaluate how well the distributions produced by the generative
model and the given ground-truth distributions agree. To this purpose, we consid-
ered two evaluation scenarios:

1) Using the expected value of the distributions, we computed conventional
metrics such as precision (Prec), recall (Rec), specificity (Spec) and balanced
accuracy (Bacc) for growth prediction, mean absolute error (MAE) and mean
squared error (MSE) for nodule growth, and Dice for segmentation fidelity.

2) Using confidence intervals, we defined the following metrics:

• For nodule growth prediction:

We proposed the metric Bacc 2std. This computes the balanced accuracy
between the radiologist tumour growth predictions (i.e. 1 if the tumour
growth size was above 2 mm) and the predicted tumour growths at 2 stan-
dard deviations away from the estimated growth size means.

To do this, we re-defined a true positive case as when the ground truth and
the lower value of the predicted interval were above 2 mm. A false negative
was when the ground truth was above 2 mm, but the lower value of the
interval was not. A true negative was when the ground truth and the upper
value of the interval were less or equal to 2 mm. False positive was when the
ground truth was less or equal to 2 mm, but the upper value of the interval
was not.

• For nodule growth size:

We proposed the ratio P(RX∈2std). This reports the proportion of tumours
(over all tumours), whose growth size is within the interval (2 standard de-
viations away from the estimated tumour growth mean).

To do this, we compared, for each tumour, if the distance between the tu-
mour growth size (ground truth) and the predicted growth size distribution
was below the distance between the estimated mean with 2 standard devi-
ations and the predicted growth size distribution. To compute this distance
we used the Mahalanobis distanceDMH , which is the distance of a test point
x, from the centre of mass m, divided by the width of the ellipsoid defined
by the covariance matrix C in the direction of the test point.

D2
MH = (x−m)TC -1(x−m).

• For nodule segmentation:

We used the estimation of the Generalized Energy Distance (GED) [291]
metric. This metric reports the segmentation performance in terms of the
variability in the ground truth as in the generated samples of the network.
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D2
GED =

2

nm

n∑
i=1

m∑
j=1

d(Y ′i , Yj)−
1

n2

n∑
i=1

n∑
j=1

d(Y ′i , Y
′
j )− 1

m2

m∑
i=1

m∑
j=1

d(Yi, Yj).

where m and n are the number of generated and ground truths segmenta-
tions, Y ′i and Yj are a predicted and ground truth tumour segmentation and d
is the distance obtained using the 1-IoU metric. The resulting GED distance
will be better the closer to 0.

Ground truths

To evaluate the models we used the annotations provided by the 3 different radi-
ologists (RX0, RX1 and RX2). However, given that the annotations of the dif-
ferent radiologists may diverge (although all of them may still be correct), we
derived two more ground truths, precisely, the mean of the radiologists annota-
tions (RX mean), and the radiologist annotations that stands closest to our predic-
tions (RX closest). Although the former is direct to obtain, the second has some
particularities:

• For the deterministic model, we computed the closest radiologist tumour
growth size and tumour growth prediction selecting the radiologist annota-
tion with the minimum growth size difference with respect to the prediction.
We computed the closest radiologist segmentation, selecting the segmenta-
tion with the highest Dice with respect to our prediction.

• For the generative models, we computed the closest radiologist tumour
growth size and tumour growth prediction selecting the radiologist annota-
tion with the minimum Mahalanobis distance between the radiologist growth
size and the estimated output distribution. We computed the closest radiol-
ogist segmentation, selecting the radiologist segmentation with the highest
average Dice score obtained from the generated samples of the network.

7.4 Experiments and Results

7.4.1 VH-Lung
In this study, we used a longitudinal lung CT dataset [237] for the follow-up anal-
ysis of incidental pulmonary nodules. In total, the cohort contains 161 patients
(10 more cases compared to the previous version) with two thoracic CT scans per
patient. The most relevant pulmonary nodule in each patient was located in each
study by two different specialists. We address the reader to the source article for
further details regarding the ethics, inclusion criteria, and acquisition protocol of
the dataset.
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A new feature included in this updated version of the cohort is that up to
3 different clinicians (RX0, RX1 and RX2) reported the diameter size of the
nodules (D0, D1) at the two different time-point (T 0, T 1) studies. From here, we
computed the tumour growth by subtracting the diameters (D1−D0). The tumour
growth mean in the dataset was 2.52±3.85 mm for RX0, 2.76±3.63 mm for RX1
and 2.68±4.01 mm for RX2. The inter-observer mean absolute difference was
1.55 mm, whereas the inter-observer mean standard deviation was 0.97 mm (both
metrics were computed pair-wise) [232]. The time interval between current and
previous CT studies ranged from 32 to 2464 days.

Tumour segmentations were obtained in a semi-automatic way, being visually
verified and curated with the annotations provided by each of the radiologists (that
is, location of the centroid, diameter and growth of the tumours) with a residual
margin of 0.25 mm.

Figure 7.5: Description of the training and test set cohorts in terms of tumour growth size (in mm),
time between studies (days) and the annotators (RX-0,1,2).

To train and evaluate the proposed methods, the whole data was randomly di-
vided into training (70%) and test (30%) sets. In this process we assured that all
entrances of the same nodule were in the same set in order to avoid data leakage
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between partitions. Therefore, the training set was composed of 313 (122 unique)
nodule growth annotations from up to three different radiologists (118 for RX0,
99 for RX1 and 96 for RX2), whereas the test set was formed by 104 (39 unique)
nodule growth annotations (38 for RX0, 34 for RX1 and 32 for RX2). Hence, for
each data entrance (i.e. nodule growth annotation) of these partitions we had 2
nodule images (at T0 and T1), 2 nodule segmentations (at T0 and T1), a growth
label (indicating whether it grew (1) or not (0)) and a growth size (in mm) corre-
sponding to a particular radiologist. Further details regarding training and test set
partitions can be seen in Figure-7.5.

7.4.2 Qualitative results
We present some qualitative results (Figures-7.6,7.7,7.8) obtained from the U-
HPNet using lung nodules from the test set. We recall that these results were ob-
tained from a post-processing (see section 7.3.2) aimed at obtaining the estimated
growth probability, size and visualization together with its associated uncertainty.

Figure 7.6: Comparison of ground truth annotations and predictions from the U-HPNet for the
tumour case C94.

The figures are composed of six columns, the first one shows the nodule at
T0 overlapped with the segmentation of a radiologist. The second column shows,
overlapped with the nodule image at T0, the difference between the ground truth
segmentation at T0 and the estimated mean segmentation at T1. The third column
provides, overlapped with the nodule image at T1, the estimated tumour mean
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Figure 7.7: Comparison of ground truth annotations and predictions from the U-HPNet for the
tumour case B01.

segmentation. The fourth column visualizes the estimated uncertainty probability
map with the per pixel-standard deviation. The fifth column shows the histogram
of the (K=1000) estimated tumour growths (i.e. predicted diameter at T1 minus
radiologist diameter at T0). The last column shows the nodule image at T1 over-
lapped with the segmentation of the radiologist at T1.

The first tumour case (Figure-7.6) was cancerous with 280 days between im-
age studies. The tumour, attached to the chest wall, was annotated by three radiol-
ogists. Our method correctly predicted the existence of growth (> 2 mm) for each
of the three radiologists, reporting high growth probabilities or estimated means
(0.9, 0.82 and 0.8) and low uncertainties (0.04, 0.06 and 0.04) or standard devia-
tions. The predicted tumour growth sizes were especially close (4.2, 3.6 and 3.4
mm) to those reported by the first two radiologists (4.2, 3.2 and 2.3 mm).

The second tumour case (Figure-7.7) was benign, with almost 3 years be-
tween studies (900 days). All three radiologists did not detect any relevant tu-
mour growth (diameter difference ≤ 2 mm) for this case. Our method correctly
predicted the existence of no growth for each of the three radiologists, reporting
low tumour growth probabilities (0.14, 0.03 and 0.3), especially for the first two
radiologists, with low uncertainties (0.03, 0.01 and 0.05). The predicted tumour
growth sizes were approximately less than 0.6 mm (0.2, -1.7 and 1.2 mm) apart
from those reported by the radiologists (0.8, -1.4 and 0.9 mm). Moreover, the
network agrees with the second radiologist to correctly predict tumour recession
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Figure 7.8: Comparison of ground truth annotations and predictions from the U-HPNet for the
tumours C17, B64, B19 and C16. In this example, the network incorrectly predicts growth for the
three first cases while for the last one it guesses the prediction, although the predicted growth size
is far from the radiologist measurement.

and also correctly guess to provide slightly higher probability, and greater tumour
growth size for the third radiologist than for the other two.

Figure-7.8 shows 4 tumour examples in which our model struggles to find
correct predictions. In particular, for the tumour case C17, the model predicted
a tumour growth size of 2.3±0.6 mm whereas the radiologist reported less than
2 mm (i.e. 1.2 mm). Nevertheless, the network provides a tumour growth prob-
ability close to 0.5 with an uncertainty of 0.14, which implies that the network
is not highly confident on the nodule predictions. Looking at the ground truth
provided for this case (first column of the figure), this mistake could be due to a
probable overestimation of the diameter size of the nodule at T0. For the second
tumour case, B64, the model predicted a growth size of 4.2±0.7 mm whereas the
radiologist detected tumour recession (i.e. -0.2 mm). In this case, the network in-
correctly provides high tumour growth probability and low uncertainty. However,
if we look at the estimated per-pixel uncertainty image, the model correctly out-
puts a relevant quantity of uncertainty surrounding the nodule. In the third tumour
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case, B19, the model predicted a tumour growth size of 0.9±0.2 mm whereas the
radiologist found a tumour growth of 3.0 mm. This could be caused by a relevant
change in the context of the nodule, i.e. the nodule at T1 was attached to the lung
wall whereas at T0 it was aerial. In the last case, C16, the model correctly pre-
dicted tumour growth. However, the radiologist indicated a high tumour increase
of 12.2 mm, whereas the network only detected 4.0±0.4 mm. If we observe the
estimated segmentation mean image of the nodule, we see that the network missed
detecting the longitudinal growth direction of the tumour due to not enough rep-
resentation of this kind of tumour growth behaviour in the training set.

7.4.3 Quantitative results
Next, we detail the test performances of the proposed networks in terms of esti-
mated nodule growth size, prediction and segmentation fidelity (for further details
on the used metrics, see section 7.3.4). To obtain these performances, the methods
were optimized with the training data using a 5-fold cross-validation, and tested
with the testing set. The setup of the learning hyperparameters was the same for
all methods, thus we used 1e-4 of learning rate, 8 of batch size, 200 epochs and
Adam [147] as optimization algorithm.

The performances provided in the tables of the following sections show for
each of the metrics, the mean and the standard deviation obtained from a boot-
strapping process (with N=1000 iterations), in which for every iteration we per-
formed a resample with replacement from the test set (N=104).

Nodule growth prediction

The performances of the U-HPNet regarding lung nodule growth prediction are
shown in Table-7.1. These results were obtained using the annotations from three
different radiologists (RX0, RX1 and RX2), their mean and the radiologists’ an-
notations closest to our predictions (closest), with the intention to provide a more
complete analysis of the performance of our method and to detect disparities be-
tween radiologists annotations (see section 7.3.4 for further details).

Despite the heterogeneity in the morphology, density and location of the nod-
ules, the fact of using a single image (I0) of the tumour and the variety on the time
at which to make the predictions, our method was able to satisfactorily report pos-
itive performances, such as 0.74 of balanced accuracy, 0.71 of recall and 0.76 of
specificity.

Further details regarding the tumour growth prediction of the U-HPNet are
provided in Figure-7.9. This figure shows the prediction accuracy stratified by the
time to predict, the real growth of the nodules and the ground truth type. From
this figure, we can observe that, the best performances were usually obtained when
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RX Bacc Prec Rec Spec
RX0 0.49±0.07 0.46±0.11 0.42±0.11 0.56±0.11
RX1 0.68±0.08 0.63±0.13 0.64±0.13 0.72±0.10
RX2 0.67±0.09 0.58±0.15 0.59±0.15 0.75±0.10
Mean 0.55±0.04 0.50±0.07 0.47±0.07 0.63±0.06
Closest 0.74±0.07 0.65±0.12 0.71±0.12 0.76±0.08

Table 7.1: Nodule growth prediction performances obtained by the U-HPNet using expected
means.

Figure 7.9: Tumour growth prediction accuracy of the U-HPNet stratified by time to predict,
nodule growth size and ground truth (i.e. Closest, RX0, RX1 and RX2).

predicting in the range of 12 to 24 months, whereas the worst performances were
obtained when predicting above 24 months. Also, the best performances were
usually obtained when the nodules had a growth between 0 and 2 mm.

Additionally, we provide Table-7.2 with the balanced accuracy obtained at 2
standard deviations away from the expected means.

From this table, we observe that the performances are clearly below the 0.74 of
balanced accuracy obtained using single point estimates (i.e. the expected mean).
The reason is that Bacc 2std reports the balanced accuracy at 2 standard deviations
away from the expected mean. Therefore, at this extreme, our approach is still able
to correctly predict tumour growth in 57% of the test cases.
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RX Bacc 2std
RX0 0.37±0.08
RX1 0.53±0.09
RX2 0.57±0.10
Mean 0.45±0.05
Closest 0.57±0.08

Table 7.2: Nodule growth balanced accuracy performances for the U-HPNet obtained within 2
standard deviations from the mean.

Nodule growth size

We also computed the nodule growth size performance of the U-HPNet. Table-7.3
provides the mean absolute error (MAE) and mean squared error (MSE), obtained
from the comparison of the estimated tumour growth size mean of the network
for the different ground truths. Also, this table reports the metrics regarding the
probability of finding the radiologist measurements within 2 standard deviation
P(RX∈2std) from the estimated tumour growth size mean.

RX MAE ↓ MSE ↓ P(RX∈2std)
RX0 2.99±0.42 16.60±4.94 0.20±0.06
RX1 2.52±0.45 13.11±4.40 0.21±0.07
RX2 2.62±0.41 11.86±2.98 0.28±0.08
Mean 2.83±0.23 14.40±2.39 0.17±0.04
Closest 1.74±0.34 7.55±2.87 0.44±0.08

Table 7.3: Nodule growth size performances of the U-HPNet using the estimated mean (MAE,
MSE) and the interval composed by the mean and 2 standard deviations. A down arrow next to a
metric means that the metric is more accurate the smaller the value.

As we observe from Table-7.3 the best performances on tumour growth size
reported a MAE of 1.74 mm close to the 1.55 mm of inter-observer mean absolute
difference. Moreover, this method reported that in 44% of the cases, the exact
tumour growths annotated by the radiologists were found at 2 standard deviations
from the mean. Further details are exposed in the discussion section.

Nodule segmentation

Subsequently, we report the performance of the U-HPNet for predicting accurate
future nodule segmentations. To do this, we computed for each nodule of the test
set, the average Dice score obtained from each generated tumour segmentation
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with respect to the proposed radiologist segmentation. Table-7.4 summarizes the
resulting Dice performances for each of the radiologists.

RX0 RX1 RX2 Mean Closest
0.74±0.02 0.77±0.02 0.75±0.02 0.76±0.02 0.78±0.02

Table 7.4: Nodule segmentation performances of the U-HPNet for each of the ground truths.

The best Dice score was 78%, achieved for the closest radiologists ground
truths. Complementary, we also computed the GED metric to report the ability of
the network to generate accurate and diverse future tumour segmentations (Table-
7.5). From this result, we remark that a high segmentation agreement (i.e. 0.14
of 1-IoU) was found between ground truths (YY). This may explain why a small
variability (i.e. 0.04 of 1-IoU) was also found between predicted segmentations
(Y’Y’).

GED 2*(Y’Y) Y’Y’ YY
0.29±0.04 0.48±0.04 0.04±0.01 0.14±0.01

Table 7.5: GED nodule segmentation performance of the U-HPNet. Each score reports 1-IoU
metric.

As a general observation about the results shown previously (Tables-7.1,7.2,7.3
and 7.4), we should mention that the best performances were always achieved with
the radiologists’ annotations closest to our predictions. This ground truth is as im-
portant as any of the others since, as mentioned in section 7.3.4, the annotations of
each of the radiologists were assumed to be equally valid. Therefore, we already
expected that our method would work somewhat better with this criterion since,
by definition, for each tumour growth prediction we compared it with the radi-
ologist’s annotation closest to that prediction. Regarding the rest of the ground
truths, the results obtained with the RX1 and RX2 annotations were found near to
the best performances, while the results obtained with RX0 annotations and the
mean of the radiologists’ annotations were the lowest.

7.4.4 Ablation studies
An ablation study was made to isolate the effects of the different components of
the U-HPNet using the radiologists’ annotations closest to our predictions. Table-
7.6 shows the different network setups evaluated and their acronym for better
identification.

Table-7.7 shows the performances obtained for tumour growth prediction, size
and segmentation for each of the network setups using their estimated means.
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Acronym Lossrec Attention D0
BD0 BCE 7 X
ID0 IoU 7 X
IDD0 IoU+L1 7 X
IDAOD0 IoU+L1 X 7

U-HPNet IoU+L1 X X

Table 7.6: Different network setups of the U-HPNet configured in the ablation study.

Prediction Size ↓ Segmentation
(Bacc) (MAE) (Dice)

BD0 0.66±0.09 1.93±0.35 0.74±0.02
ID0 0.72±0.08 1.80±0.35 0.79±0.02
IDD0 0.75±0.08 1.84±0.37 0.80±0.02
IDAOD0 0.74±0.08 1.79±0.38 0.81±0.02
U-HPNet 0.74±0.08 1.74±0.34 0.78±0.02

Table 7.7: Performance comparison between the different U-HPNet setups.

An interesting observation to note from these results is that the configurations
using IoU clearly outperformed the setup using BCE (BD0). Particularly, a rise
of 0.09 in Bacc was achieved with the IDD0, an improvement of 0.19 mm in
MAE was obtained with the U-HPNet and an increase of 0.07 in Dice score was
reached with the IDAOD0. Also, the networks using attention (i.e. U-HPNet
and IDAOD0) obtained the best performances in terms of MAE, in particular the
U-HPNet obtained the lowest value with 1.73 mm. Regarding the Dice score, all
networks using IoU loss obtained performances above 0.78, although the IDAOD0
with 0.81 was the one with the highest performance.

Prediction Size Segmentation ↓
(Bacc 2std) (P(RX∈2std)) (GED)

BD0 0.08±0.04 0.87±0.05 0.24±0.02
ID0 0.59±0.08 0.38±0.08 0.31±0.02
IDD0 0.64±0.08 0.33±0.08 0.31±0.03
IDAOD0 0.67±0.08 0.36±0.08 0.30±0.04
U-HPNet 0.57±0.08 0.44±0.08 0.29±0.04

Table 7.8: Generative ability comparison between the different U-HPNet setups.

Table-7.8 shows the performances of the generative ability of the different
network configurations. The best option regarding prediction performance was
IDAOD0 with 0.67 of Bacc 2std. The best network for size and segmentation
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was BD0, although it reported an unacceptable prediction performance of 0.08 in
Bacc 2std due to a high variability in the generated samples. If we do not consider
this option, the best option was the U-HPNet either in P(RX∈2std) and GED.

7.4.5 Comparison with other networks

We evaluated 4 different alternative deep networks for nodule growth estimation
using the radiologists’ annotations closest to our predictions, to enable their com-
parison with the proposed method. In particular, we evaluated 1 deterministic (U-
Net) and 3 generative architectures (GAN-P2P, BAYES TDO, SPU). Table-7.9
shows the performances obtained for these models regarding nodule growth pre-
diction (Bacc), size (MAE) and segmentation quality (Dice) using the predicted
value for the deterministic approach and, using the expected mean of the output
distribution for the generative approaches.

Prediction Size ↓ Segmentation
(Bacc) (MAE) (Dice)

U-Net 0.64±0.09 2.94±0.43 0.77±0.02
BAYES TD 0.67±0.08 2.29±0.45 0.78±0.02
SPU 0.73±0.08 2.14±0.46 0.77±0.01
P2P GAN 0.69±0.07 2.62±0.43 0.71±0.02
U-HPNet 0.74±0.08 1.74±0.34 0.78±0.02

Table 7.9: Performance comparison with alternative networks for tumour growth using the ex-
pected mean.

From the four alternative methods, the SPU obtained the best Bacc score with
0.73 and MAE with 2.14 mm. In contrast, the BAYES TD method obtained the
best Dice score with 0.78. If we compare these results with the U-HPNet none
of them could outperform their results neither in terms of prediction, size nor
segmentation.

In Table-7.10, we summarize the performances regarding the generative abil-
ity to report accurate results. In particular, we provide nodule growth prediction
using BA 2std metric, nodule size using P(RX∈2std) and estimated nodule seg-
mentation using GED.

The best Bacc 2std score was 0.46 for the BAYES TD, the best P(RX∈ 2std)
was for the SPU with 0.68 and the best GED with 0.25 mm for the GAN-P2P. If we
compare these results with the U-HPNet, we observe that other methods showed
better segmentation and size generative ability to capture the ground truth, how-
ever this made them to be less accurate with the lowest prediction performances.
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Prediction Size ↓ Segmentation
(Bacc 2std) (P(RX∈2std)) (GED)

BAYES TD 0.46±0.08 0.49±0.08 0.27±0.03
SPU 0.28±0.06 0.68±0.08 0.23±0.02
GAN-P2P 0.26±0.07 0.67±0.08 0.25±0.04
U-HPNet 0.57±0.08 0.44±0.08 0.29±0.04

Table 7.10: Generative performance of alternative networks for tumour growth.

7.5 Discussion

With the aim of supporting radiologists in the early detection of lung cancer, we
proposed a new predictive method capable of estimating tumour growth at a given
time. In line with current clinical practice, our method predicts tumour progres-
sion when there is substantial growth (i.e., more than 2 mm) in the longest diam-
eter of the pulmonary nodule [195]. Although this criterion is commonly used for
its simplicity and applicability, it entails significant inter-observer [106] variabil-
ity that may impact on the reliability of the predictive models. Along with the
inter-observer variability, other inter-related factors may also have a direct impact
on the trustworthiness of the estimator, such as the ambiguity, partiality or scarcity
of the data to model. Therefore, in medical settings it is important that predictive
models also provide a measure of uncertainty, which is especially of interest when
complex or doubtful cases have to be assessed.

In this work we have taken this aspect into account, and we have built a predic-
tive model capable of also estimating the associated uncertainty when predicting
tumour growth. To do this, we collected a longitudinal dataset with more than
160 selected pulmonary tumours with two CT images per case (taken at differ-
ent time-points), labelled by up to three different radiologists. To model these
data, we opted for a generative deep learning approach as opposed to the deter-
ministic approaches used to date [177, 311] for lung tumour growth prediction.
The suitability of the generative approach was already proved in [231], where
they modelled glioma tumour growth using an early probabilistic and generative
framework [153] to estimate the tumour growth output distribution. Nonetheless,
tumour growth prediction was not quantified, model uncertainty was not reported,
and multiple observer variability was not addressed.

To address the aforementioned aspects, we relied on a more recent hierarchical
generative and probabilistic framework [154] to estimate the output distribution of
the future lung tumour appearance (at T1) conditioned on the previous image of
the nodule (at T0). Our method (U-HPNet) extended this framework with the fol-
lowing modifications. First, we used smaller image patches (32x32) to focus on
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the tumour and its immediate surrounding tissues, and to reduce the number of
parameters to be adjusted by the network. Second, we added two new features
to the network to extract additional patterns from the tumour images: the time
to predict, and the diameter of the nodule (at T0). Third, we integrated an atten-
tion mechanism [217] in the decoder part of the network to boost its performance.
Fourth, we proposed a new reconstruction loss function composed of the IoU and
the L1 distance to provide more accurate segmentation and diameter estimations.
Finally, we created a new post-processing module that applies Monte-Carlo sam-
pling to estimate the mean and standard deviation of the tumour growth prediction,
diameter growth and segmentation of a given nodule at a specific time.

We evaluated the U-HPNet using the annotations provided by 3 different radi-
ologists, but also with their average and the radiologists’ annotations closest to our
estimates, to provide a more complete assessment of our approach and to detect
possible divergences between the experts.

Regarding the evaluation of our approach using the expected values, the best
results were obtained using the radiologists’ annotations closest to our predictions.
This ground truth criterion always reports real radiological annotations (specifi-
cally, the closest ones to our predictions), therefore since we take all radiologists’
opinions equally, in a sense, this criterion is equally comparable to any of the three
radiological criteria available in the study. In particular, we achieved 74% of tu-
mour growth balanced accuracy (Bacc), 1.73 mm of diameter mean absolute error
(MAE) and 78% of Dice score (Tables-7.1, 7.3, 7.4). Near to these results, we
found the performances obtained with RX1 and RX2 annotations. Specifically,
for RX1 we achieved 0.68 of Bacc, 2.52 of MAE and 0.77 of Dice score (Tables-
7.1, 7.3, 7.4). Lower performances were found using the RX0 annotations and the
mean of all radiologists, especially on tumours with a growth size greater than 2
mm and predictions over 24 months (Figure-7.9).

Compared to similar recent work in the literature [177], they reported higher
balanced accuracy scores (86%) but much lower segmentation Dice scores (64%)
than us. Results however are not fully comparable since both networks used dif-
ferent in-house cohorts, with different tumour case complexities, and both defined
tumour progression differently, theirs relied on a tailored volumetric threshold
and ours on the diameter growth convention established in radiological guidelines
([195]).

We also evaluated the ability of the network to produce consistent samples
matching with the ground truths. To this end, we proposed different metrics (see
section 7.3.4), i.e. the balanced accuracy for tumour growth prediction in an in-
terval of 2 standard deviations (Bcc 2std), the probability of matching with the
tumour growth size in an interval of 2 standard deviations (P(RX∈2std)) and
the generalized energy distance for tumour segmentation (GED). Our method
achieved the best performances with the closest radiologists criterion, in partic-
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ular 57% of Bacc 2std, and 44% of P(RX∈2std) (Tables-7.2,7.3). These values
reflect that our approach still has room for improvement to make the estimated
tumour growth sizes more accurate (i.e. bringing the tumour growth size mean
closer to the radiologists ground truths). However, we should stress that these per-
formances (as seen in Figure-7.9) were affected especially by complex cases with
higher uncertainty (i.e. with a temporal prediction distance above 24 months).
Different solutions could be applied to improve these performances, such as ac-
quiring more tumour cases (e.g. especially on those cases where the method was
not as accurate), using more aggressive data augmentation techniques (e.g. gen-
erating synthetic tumours); or using volume images, rather than single slices, to
extract better predictive features. Breaking down the GED performance (Table-
7.5), we observed that the network obtained 23% of segmentation variability be-
tween predicted and ground truths (Y’Y), being not far from 14% of inter-observer
variability (YY). Also, the network showed a relatively small variability of 4%
between the generated sample segmentations (Y’Y’). This may indicate that the
network, during training, preferred to concentrate the predictions around the mean
rather than predict highly disperse values in order to optimize performance.

For a better understanding of the effects of the main components of the net-
work, we provided an ablation study with different network configurations using
the closest radiologists criterion (Table-7.6). From this analysis, we obtained that
the largest improvement was achieved replacing binary cross entropy (BCE) by
IoU in the reconstruction loss. This can be observed by comparing BD0 and ID0
networks. Specifically, the Bacc increased approximately 7%, MAE decreased
almost 0.2 mm, and the Dice improved to nearly 5%. Moreover, the Bacc 2std
raised to almost 60% (Table-7.7). Different reasons may explain the suitability of
using IoU for this problem. First, this loss is robust to data unbalance. Second,
IoU had values with similar magnitude to the KL-divergence distance, allowing
a better optimization of the network than using BCE. Despite the benefits of us-
ing IoU, we realized that the P(RX∈2std) and GED decreased significantly due
to higher variability around the estimated mean. A second network configura-
tion (IDD0) allowed improving previous performance limitations. In particular,
this network incorporated the L1 distance between the predicted and ground truth
diameters in the reconstruction loss together with IoU. Results showed that the
IDD0 network increased its growth prediction performance (3% in Bacc and 5%
in Bacc 2std) and segmentation ability (1% in Dice and GED), despite slight de-
crease of performance in diameter growth prediction (0.05 mm in MAE and 4%
in P(RX∈2std)). Adding attention (current U-HPNet network) in the decoder part
of the sub-networks, outperformed the IDD0, precisely, reducing 0.1 mm in MAE
and increasing 10% in P(RX∈2std). However, it implied a certain increase also
in the estimated diameter growth variability, reducing 1% of its Bacc and 7% of
Bacc 2std. A final comparison was performed between IDAOD0 and U-HPNet
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to obtain the importance of adding nodule diameter (at T0) in the input of the U-
HPNet. According to the results, using this feature we reduced 0.6 mm of MAE,
increased 8% the P(RX∈2std)), and consequently improved the Bacc almost 2%.
This reflects that using D0, the network was able to predict more accurately the
diameter growth of the nodule. However, this feature increased the estimated di-
ameter growth variability, resulting in 9% decrease of Bacc 2std and 2% of Dice.

Due to the lack of similar studies for early lung tumour growth prediction, we
built different alternative networks to allow their comparison. In particular, we
proposed a deterministic (U-Net), and 3 different generative networks: Bayesian
dropout (BAYES TD), probabilistic U-Net (SPU), Pix2Pix GAN (P2P GAN).
The comparison was performed using the closest radiologists criterion. Results
from Tables-7.9,7.10 showed that, using the estimated sample means, the genera-
tive approaches outperformed the performances reported by the deterministic net-
work (U-Net). This result consolidates the suitability of the generative approach
for this type of problem. Also, among all generative methods, the U-HPNet ob-
tained the best performance metrics using the estimated means (i.e. in tumour
growth prediction, size and segmentation). Regarding the metrics measuring the
generative ability of the networks, the U-HPNet obtained the best Bacc 2std al-
though the poorest P(RX∈2std). In contrast, the SPU reported a large sample vari-
ability in tumour growth size as shown by the highest performance in P(RX∈2std)
and GED, but one of the lowest performances in Bacc 2std. The GAN-P2P,
similarly to the SPU, obtained high P(RX∈2std) and GED, but poor Bacc 2std
due to high variability in the sample distribution of tumour growth size. The
BAYES TD in contrast obtained lower variability in tumour growth size, achiev-
ing better P(RX∈2std) and GED than the U-HPNet but lower Bacc 2std. Interest-
ingly, BAYES TD and U-HPNet networks reported rather similar generative per-
formances, despite employing two different ways to generate samples (by weight
randomization and by randomly selecting a vector in the latent space). Thus, com-
bining both approaches could help to disentangle different types of uncertainties
(as in [126] for tumour segmentation) and disclose a potential increase in the per-
formance of the network.

Our method still has a number of limitations. First, the number of cases anal-
ysed in this study was low, which clearly impacted on the reported performances
of our approach due to its data eager nature. However, this data was clinically val-
idated, and selected by different radiologists according to their relevance and in-
terest. Second, segmentations were generated semi-automatically according to the
original diameter, growth and centroid annotations with a final visual expert vali-
dation. However, we believe using manual expert segmentations could make our
method more precise, especially in the contour of the tumours. Third, our method
relied on a single axial slice of the tumour to predict tumour growth. However,
tumour growth is a tri-dimensional biological process, hence using volumetric im-
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ages may allow capturing further relevant features and patterns to explain better
the tumour progression. Nevertheless, using 2D information made our solution
more compact, with fewer parameters to fit, faster to train and more suitable for
smaller datasets.

Beyond this work, further efforts in fine-tuning the proposed approaches are
required such as exploring different number of layers, latent hierarchies, loss
weights factors and other optimization parameters. Also, future extensions are
suggested along this chapter, such as exploring a 3D version of the network,
deepen in the uncertainty ability of the network, evaluate its integration with
Bayesian dropout or adversarial learning, and incorporate the newest advances
in deep learning to extract better spatial and temporal features from the tumours.

7.6 Conclusion
In this chapter, we addressed early lung tumour growth prediction as a multi-
modal output problem, as opposed to existing solutions that provide determinis-
tic outputs. Several reasons motivated our decision, such as the complexity of
the problem, the inter-observer variability, or the importance of estimating uncer-
tainty in medical settings. To this end, we adapted an existing deep hierarchical
generative and probabilistic framework to encode the initial image of the nodules
in a continuous multidimensional latent space, to sample from it, and to generate
multiple consistent future tumour segmentations conditioned on the given nodule.

Our network (U-HPNet) extended the original framework with the intention
to predict and quantify tumour growth, as well as to visualize the future semantic
appearance of the tumour. Therefore, we added new context features (i.e. the time
to predict, and the initial nodule diameter measured by the specialist), we used a
new reconstruction loss (combining IoU and diameter distance), and we integrated
an attention mechanism in the decoder parts of the network. Finally, we attached
a new post-processing module on the network to perform Monte Carlo sampling,
and retrieve the estimated tumour growth probability, size and segmentation, along
with their associated uncertainty.

The network was trained and evaluated on a longitudinal cohort with more
than 160 cases. Best performances reported a tumour growth balanced accuracy
of 74%, a tumour growth size MAE of 1.77 mm and a tumour segmentation Dice
score of 78%. Finally, we compared the performance of our method with 4 differ-
ent networks based in a U-Net, probabilistic U-Net, Bayesian dropout and Pix2Pix
GAN. The U-HPNet outperformed the proposed alternatives for tumour growth
prediction, size and segmentation.
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Chapter 8

CONCLUSIONS AND FUTURE
WORK

8.1 Overview

The main goal of this thesis was to provide useful and effective image analysis
tools, relying on recent advances of deep learning, to support the current clinical
workflow involved in the management of lung cancer disease. The motivation
lies in the complexity and cost of accurately detecting and diagnosing pulmonary
nodules in early stages through visual inspection of computed tomography (CT)
lung images, as well as the lack of tools to support physicians in the follow-up
of suspicious lung tumours. In the following paragraphs, a summary of the main
contributions introduced in each chapter of the thesis is provided, highlighting the
strengths and limitations that need to be further addressed.

In Chapter 4, we addressed the problem of accurately predicting lung nodule
malignancy given beforehand the location of the nodules, as well as the challenge
of automatically providing lung cancer prediction at the patient level in an end-
to-end manner given a raw lung CT image study. Traditional solutions for auto-
matic lung nodule malignancy classification [93, 336, 337] have been approached
through machine learning algorithms based on nodule image descriptors [67, 242].
However, these approaches usually show generalization problems, specially on
doubtful and infrequent cases. In this work, inspired by outstanding performances
on nodule malignancy classification using 2D and 2’5D CNNs [72, 145, 334], we
investigated the use of 3D CNNs for this problem, achieving radiologist perfor-
mances and confirming the suitability of this approach. Beyond learning accurate
CNNs, only in [265] tackled the concept of transferring deep nodule features for
lung cancer prediction. Consistent to this idea, we developed an integration frame-
work to enable transfer learning from nodule malignancy models, for which data
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are more abundant and labels cheaper to obtain, to predict lung cancer (diagnos-
tically confirmed) at the patient level, usually more costly and difficult to get. To
validate our approach, we built a basic two-stage lung cancer pipeline able to de-
tect lung nodules and provide lung cancer prediction at the patient level. Several
works have addressed the lung nodule detection problem using adjustable and
agile conventional image analysis techniques [80, 303], such as wavelet feature
descriptors [221]. Recently, accurate but data demanding deep object detection
networks, such as Faster R-CNN [244], have been adapted for tumour identifica-
tion, surpassing performances of prior approaches. In this work, we proposed a
two-steps solution combining the flexibility of conventional image analysis tech-
niques (i.e. 3D Laplacian of Gaussian [86] filters) and the classification perfor-
mance of a CNN (i.e. a 3D ResNet-50 [114]) for detecting lung nodules. For
the second stage of the pipeline, conventional machine learning algorithms were
trained using few radiological image descriptors (i.e. size, texture and morphol-
ogy) of the nodules, extracted during the detection stage, to predict lung cancer
classification at the patient level. The successful results of integrating the CNN
for nodule malignancy classification into the pipeline confirmed the convenience
of the approach. Nevertheless, some limitations were identified in this work. First,
the pipeline was configured with a basic two-stage nodule detector, using a more
modern deep object detector [244], as we already did in Chapter 5, we could
obtain better performances. Second, the nodule malignancy CNN had a shallow
architecture, thus more recent and deeper architectures could obtain better results.
Third, we used a naive but intuitive algorithm to provide lung cancer prediction
for cases with multiple nodules; more elaborated strategies could be envisioned
(e.g. local causal probability models [228]) to improve the predictions of the
pipeline. Fourth, using further radiomic descriptors as well as clinical history data
of the patient could potentially enhance the reported lung cancer classification
performances of the pipeline. Despite these limitations, the work presented in
this chapter was, to the best of our knowledge, the first attempt to build a nodule-
malignancy/patient-cancer integrated framework.

In Chapter 5, we made a step forward in our research by incorporating the
temporal dimension into our goal of providing automatic lung cancer assessment.
Despite the medical importance of monitoring the evolution of pulmonary nod-
ules for determining their malignancy likelihood, few works [14, 87, 308] have
really taken into account the temporal dimension to provide a malignancy esti-
mate. In addition, most of these works rely on a subset of the NLST (accessible
under prior committee agreement), which is probably the largest longitudinal lung
cancer dataset. However, cases from this cohort are not publicly available and are
constrained to certain parameters (e.g. yearly CT scans on a subset of the popula-
tion), which limits the complexity of the data to analyse. In this work, given the
unavailability of open longitudinal lung cancer datasets, we collected a rich and

136



“output” — 2021/7/6 — 8:07 — page 137 — #161

heterogeneous longitudinal dataset composed of more than 150 confirmed cases
with two CT scans of the same patient taken at two different time-points, from the
Vall d’Hebron Hospital. Once the data was appropriately stored and anonymized,
we focused on a way to automatically re-identify nodules located at different lung
CT studies of the same patient. Typically, this problem is addressed through im-
age registration processes [39], consisting on aligning the prior and current lung
CT scan images of the patients. However, several factors compromise the effec-
tiveness of the registration process, such as the variability in the image size and
resolution originated by the use of different CT scans, and the variability in the
position and breath cycle of the patients when performing the scanning. Cur-
rent medical image registration methods [276], especially non-linear [251], report
accurate CT alignments. However, they are still slow and potentially introduce
some distortions in the intrinsic structure of the lung, hindering their wide clinical
acceptance [309]. To overcome these limitations, we proposed a fast and accu-
rate solution that does not require having lung CT images previously registered,
avoiding some of the shortcomings that it entails. In particular, our solution con-
sisted on adopting a 3D Siamese neural network (SNN) [152]. SNNs have been
extensively used in computer vision matching problems, such as tracking objects
in videos [296], or in the medical image domain, to extract a latent representation
for content-based image retrieval [49]. However, to the best of our knowledge,
SNNs had not been applied before to re-identify nodules in a series of lung CT
scans. Thus, for this problem, we configured several SNNs to find the most suit-
able one for our problem. To do this, we made emphasis on the use of transfer
learning, namely configuring the backbone of the different SNNs with the archi-
tecture and weights of the 3D ResNet built for nodule classification, a problem
for which we had a larger set of data compared to that of the temporal evolu-
tion of pulmonary nodules. Despite achieving state-of-the-art performances for
nodule re-identification, either in a standalone mode or integrated within a de-
veloped pipeline aimed at automatically providing nodule growth quantification,
some limitations were discovered in our approach. The SNN struggled to iden-
tify nodules that had undergone a large change in their size. Although this was
infrequent in our cohort, different simple solutions were envisaged to overcome
this limitation, such as stronger focus on data augmentation, adding the nodule
location in the network or using larger patch images. A couple of limitations were
encountered in the data collection process, and thus also affecting our subsequent
studies. First, data annotations for nodule quantification were based on the major
axial diameter. Although the diameter is the most common radiological measure
used in practice for nodule growth assessment, using 3D measurements (e.g. vol-
ume) could lead to a more accurate quantification. Second, the cohort size was
small, which, as seen in the literature, is a common occurrence. Gathering large
longitudinal lung cancer cohorts based on incidental cases is difficult due to the
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asymptomatic nature of the disease, and the overloaded radiological units of the
health institutions. Population screening based cohorts have usually more volu-
minous sets of cases, which makes them more suitable for deep learning, however
their access is restricted, their management is assessed by different clinical guide-
lines [12], and the case heterogeneity is reduced (e.g. larger number of controls,
prone to contain common malignancies, fixed timings between studies). Nonethe-
less, the automated re-identification of regions of interest in medical images over
time, without the need to modify the image structure, could be an appealing ap-
plication beyond lung cancer assessment such as therapy follow-up as well as for
different diseases located in other organs (e.g. prostate, breast cancer) in the body.

In Chapter 6, we presented a novel pipeline, relying on deep learning, for
supporting the automatic analysis of the lung nodule follow-up. In particular, we
extended the pipeline proposed in Chapter 5 to provide in an end-to-end fashion
detection, re-identification, growth quantification and cancer classification of the
nodules given a pair of CT image studies (e.g. prior and current) of the patient.
Few works have tried to automatize the radiological workflow, taking into account
the temporal evolution of nodules [14]. However, to the best of our knowledge,
this is the first attempt to cover nodule growth quantification and cancer predic-
tion in an end-to-end approach. The methodological novelty part of this pipeline,
compared with the one presented in Chapter 5, lies in the nodule growth quantifi-
cation and cancer classification components. Specifically, for the nodule growth
component, instead of relying on the outcomes of the nodule detection network
(i.e. 3D Faster R-CNN, built in Chapter 5), we proposed a nodule segmentation
network to provide more accurate measurements. Also, since lung CT images
are ambiguous, mostly caused by the image acquisition protocol, we extended
this network to provide a measure of the uncertainty of the model on their es-
timations. Providing uncertainty in the predictions of a model is important in
the medical domain. This allows clinicians to make crucial subsequent decisions
more safely as well as increase their reliability on the predictive models. One
of the alternatives to provide uncertainty for image segmentation in deep learn-
ing is ensembling multiple networks in order to provide multiple opinions [164].
However, diversity is not assured and limited by the subset of models. Other
common approach is using dropout [279] at inference time in order to provide
independent pixel-wise probabilities [142]. However, providing only pixel-wise
probabilities ignores co-variances between pixels, which may drive to inconsis-
tent results. In this work, we relied on a recent 2D hierarchical probabilistic U-
Net (HPU) [154] able to generate multiple consistent nodule segmentations. This
network combines the generative and probabilistic capability of conditional varia-
tion autoencoders [275] with the segmentation ability of U-Nets [248]. The HPU
improves a previous work [153] with a hierarchy latent space formulation that en-
ables modelling ambiguities at different scales. Our approach extended the HPU
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network with a Monte-Carlo sampling post-processing to estimate the lung nod-
ule diameter mean and its uncertainty. This approach slightly outperformed our
previous solution based on a deterministic nodule detection network for measur-
ing nodule growth. Somehow, this result was expected since the nodule detection
network was trained without any information regarding the contour of the nod-
ules. Nonetheless, both approaches reported errors that were below to 2 mm, the
threshold determined by radiological guidelines from which to consider nodule
growth [195]. Further extensions of this method are envisioned for future work,
such as implementing a 3D version of the network to obtain better spatial image
representations of the nodule growth, or using 3D metrics (such as volume) to
provide more precise and stable nodule growth measures. To enable the pipeline
to predict the lung cancer probability of a nodule given its temporal evolution, we
found few deep learning related works, mostly relying on data from lung cancer
screening programs. For instance, in [87] they aggregated in the forget and input
gates of an LSTM for lung nodule cancer prediction, a method to weight the im-
portance of the temporal distance between scan images. In [14], they proposed
an end-to-end deep learning-based pipeline for which, the cancer risk model, was
composed by a two stream 3D CNN networks to analyse patches from the prior
and current lung CT images. More recently, in [308] an attention-based 2D CNN
network was built using pre-trained weights and a multi-time-point classification
in a Siamese structure. Our approach was similar to [14], proposing a 3D two-
stream CNN (TS-3DCNN-MAL) able to predict lung cancer nodule probability,
given two images of the same nodule taken at different time-points. However,
given the limited training data for building from scratch this network, the sib-
ling architecture of this network was re-used (including the weights) from the 3D
ResNet built for nodule classification (Chapter 4). In addition, into the head com-
ponent of the TS-3DCNN-MAL network, we concatenated the malignancy prob-
ability predictions reported by a 3D CNN built for nodule malignancy prediction
(presented in Chapter 4). Results from the evaluation of the TS-3DCNN-MAL
network surpassed the results of the networks using a single time-point image,
and they reported state-of-the-art performances similar to approaches trained with
more voluminous datasets. Despite the high performances achieved, we strongly
recommend evaluating this network and the whole pipeline on a larger and multi-
centric dataset. In addition, further efforts could be done on visualization and
interpretability aspects to allow a better understanding of how the models of the
pipeline behave, and thus an easier implantation of this tool in clinical domains.

In Chapter 7, we faced the challenge of forecasting lung tumour growth. Tra-
ditionally, tumour progression has been addressed through complex and sophis-
ticated mathematical models [254], such as those based on the reaction-diffusion
equation [287, 292]. However, these models are limited in number of parameters
(e.g. 5 in [318]), which might not be sufficient to capture the growing patterns
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of the tumours. Recently, deep learning has been used to predict future tumour
growth, surpassing performances reported by traditional approaches [328]. This
kind of solutions usually relies on architectures combining CNNs and LSTMs
[71] or using generative networks, such as those based on adversarial learning
[96] and variational auto-encoders [148] to estimate the future image of the tu-
mour [76, 231]. In the lung cancer domain, to the best of our knowledge, few
deep learning-based works [177, 311] have been proposed. Moreover, despite the
multifactorial and complex nature of the problem, uncertainty in the lung tumour
growth was not addressed in any of the aforementioned studies. In Chapter 7,
we adapted the HPU [154], to provide a novel tumour growth forecasting network
(e.g. adding context features, incorporating attention gates in the decoder, and us-
ing a new reconstruction loss function). Hence, the proposed deep neural network
allows producing, given a single image of the nodule, a growth prediction, a size
estimation and a future semantic segmentation of the nodule at a given time. In
addition to this, we added into the network a new component, based on Monte-
Carlo sampling, to compute the uncertainty associated to each of the predictions.
We performed an ablation study to quantify the gains of each of the integrated
features of the model. Also, we provided a comparative study implementing al-
ternative deterministic (i.e. U-ResNet [331]) and generative state-of-art networks
adapted to this specific problem, such as a probabilistic U-Net [153], a conditional
generative adversarial network [134] and a Bayesian dropout network [142]. The
generative aspect of the network led us to provide two kinds of evaluations, one
regarding the performance of the estimated predictions and another regarding the
ability of the network to produce consistent samples matching with the ground
truths. Although our approach reported better performances with respect to the
rest of tested alternatives, some limitations were found in this solution. First,
the ground truth segmentations were generated semi-automatically according to
the original diameter, growth and centroid annotations with a final visual expert
validation. However, we believe that using manual expert segmentations could
make our method more precise, especially in the contour of the tumours. Second,
the method relied on a single axial slice of the tumour to predict tumour growth.
Nonetheless, tumour growth is a tridimensional biological process, hence using
volumetric images may have allowed capturing further relevant features and pat-
terns to better explain the tumour progression. Third, given the limited size of the
cohort, further evaluation of the approach in a larger dataset could help to verify
the robustness and correctness of the solution. Despite all these limitations, the
presented solution provides some unique characteristics that makes it useful for
the clinical practice, such as the combination of numerical and visualization re-
sults, along with a measure of network reliability in these predictions. A further
aspect worth investigating could be the disentanglement of the latent features of
the network. This could provide advanced clinical functionalities, such as giv-
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ing additional control of the factors/conditions to explore the future growth (or
appearance) of the nodules.

Beyond this specific application, the outlined innovations, such as the meth-
ods for integrating CNNs into computer vision pipelines, the re-identification of
suspicious regions over time based on SNNs, without the need to warp the inher-
ent image structure, or the proposed deep generative and probabilistic network to
model tumour growth considering ambiguous images and label uncertainty, they
could be easily applicable to other types of cancer (e.g. pancreas), clinical dis-
eases (e.g. Covid-19) or medical applications (e.g. therapy follow-up).

8.2 Outlook and future work
In the previous section, we summarized the presented work towards temporal lung
nodule assessment, highlighting its strengths and limitations as well as pointing
out specific future work. However, there is much work ahead to make the proposed
methods widely used in the daily clinical practice. In the following section, we
detail each of the foreseen tasks.

Integration with other data types

The predictive models presented in this work (e.g. nodule detection, re-identification,
malignancy prediction and growth forecasting) could be extended/combined with
other kinds of data, such as the clinical history of the patient (e.g. smoking, med-
ical history, family cancer and alcohol antecedents), genomics data (e.g. genetic
variants associated with lung cancer) [300] and/or other imaging studies (e.g. X-
rays, PET, MRI) [161]. Interactions between these data, may uncover novel pat-
terns and thus increase the predictive ability of the resulting models [332]. A
straightforward way to integrate these data could be done by concatenation at spe-
cific levels of the networks. However, further research is required for fusing and
filtering these data on the models.

Emphasis on fine-tuning the models

For time reasons, we did not explore all the parameter possibilities when train-
ing the proposed deep neural networks in our experiments. Therefore, it would
be highly advantageous to perform further fine-tuning of the proposed networks
using different parameter configurations (e.g. input size, number of layers, ker-
nel size, dropout percentage) and different meta-learning parameter settings (e.g.
learning rate, batch size or epochs) from those used during the training of the
networks.
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Model interpretability

To improve the reliability of the provided tools, more efforts should be made to-
wards being able to explain the reasons behind the reported predictions. Currently,
there already exist several mechanisms that make the networks more interpretable,
such as those based on back-propagation and those based on input perturbation.
In the former ones, the signal from the output can be propagated back to the in-
put layer, and several approaches have been provided to capture which features
have more importance. Usually, these techniques output a heat-map overlapped
with the original image. This allows checking which parts of the input were more
involved in the model outcomes [205]. In the perturbation-based approaches, a
portion of the input is changed and the effect of this change on the model output
is observed [99]. These methods have high computational complexity, but they
are easy to visualize. We have already presented some interpretation work for
lung nodule malignancy classification by implementing the grad-CAM technique
[258]. However, we believe further efforts are required for providing, for instance,
a holistic interpretation of all decision/predictions made by the pipeline in an easy
and accessible way to the clinicians.

Deepening on uncertainty estimation

Modelling uncertainty is an important feature in medical scenarios since it informs
clinicians about the trustworthiness of a model’s outputs, making them safer and
more reliable [143]. In Chapter 6 and 7, thanks to the generative and probabilis-
tic ability of the proposed models, we provided a measure of how uncertain the
models were on their predictions (e.g. tumour growth quantification and forecast-
ing). To do this, we relied on a Monte-Carlo sampling post-processing, consist-
ing on generating an enough number of future nodule reconstructions from the
proposed networks to estimate the mean and standard deviation. Further work
could be devoted to distinguish the different types of uncertainty [65], typically
epistemic (i.e. knowledge uncertainty) and aleatoric (i.e. data uncertainty), to en-
hance interpretability of the results and/or to potentially reduce model (epistemic)
uncertainty [126].

Given the importance of modelling uncertainty for detecting low confident
predictions, further work should be addressed on the rest of proposed networks
(e.g. nodule detection) to enhance their potential acceptability in the clinical prac-
tice. For instance, in [210] they applied a threshold on the uncertainty measures
computed for each of the detected candidates for Multiple Sclerosis lesion de-
tection. Beyond this task, other applications using uncertainty can be foreseen
for lung cancer assessment, such as rejecting cases with higher predictive uncer-
tainty [84], detecting outliers depending on the estimated uncertainty, extracting
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the most robust feature embeddings from the network, or in general applying un-
certainty for learning better models (e.g. filtering small part of training samples
with the highest predictive uncertainty [88]).

Increasing the amount of data

Having more annotated data would be highly recommendable and advantageous
for improving current work. These data could be partially used to fine-tune, re-
train and evaluate the presented methods. Therefore, having extra amount of data
would help to enhance performance and robustness of the methods, to improve the
reliability of the models for the clinical practice, as well as to be able to extract
further conclusions from the predictive methods.

Beyond allocating more resources to extend the number of collected cases of
the VH cohort, it is also equally important to ensure that the variability of the
problem is well represented (e.g. using different acquisition protocols, different
nodule sizes, morphologies and textures) in the cohort to build robust and reliable
predictors. Additionally, it would be highly recommendable to extend the cohort
with further time-points for each of the cases. This would permit learning better
the temporal evolution of the nodules and capturing better representative patterns
and predictive features.

Because of the cost of collecting and annotating new data, further emphasis
could be put on alternative technical solutions to overcome this limitation. First,
we could investigate more recent transfer learning techniques from existing mod-
els (e.g. from different medical disciplines or domains) to our problem. Second,
we could use more advanced techniques for data augmentation (e.g. mix-up [327]
to randomly interpolate both inputs and labels) in order to improve the generaliza-
tion ability of the models. Third, we could spend further efforts on recent methods
able to generate realistic synthetic data (e.g. based on GANs [96]). Lastly, another
technique worth exploring consists on having the data itself to provide their super-
vision [69] (e.g. withhold some information about the data, and task the network
with predicting it). This is known as self-supervised learning, and it is a type of
unsupervised learning, which is recently gaining a lot of attention from the com-
puter vision community.

Pilot test

Although we have exhaustively evaluated each of the different proposed methods
both individually and integrated in a pipeline, we have not tested them in a clinical
setting. Thus, it is part of future work to validate the effectiveness of the pipeline
in a realistic scenario. To do this, a pilot test should be conducted on a specifically
designed cohort of patients and for a limited period of time. For instance, two
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groups of patients could be randomly selected, and only one of them would be
further managed through the support of the provided pipeline.

Graphical user interface

Related with the previous task, with the support of the digital health and soft-
ware development units of Eurecat, we are currently working on a graphical user
interface to wrap-up the functionalities proposed by the temporal lung cancer as-
sessment pipeline [238].

This web interface has the goal to demonstrate the viability and facilitate the
uptake of the current solution. To this end, we aimed to provide an intuitive and in-
formative front-end that should allow clinicians to be more effective and efficient
in their day-to-day routines. Precisely, the front-end is organized to summarize
in few screens all crucial information and main functionalities resulting from the
automatic temporal lung nodule analysis.

Figure 8.1: Findings section window of the front end interface with the results of a CT study.

Figure-8.1 shows the window to present the findings detected on a single CT
scan image. In the main panel of this screen, we find, on the left side, a slice
navigator with the axial slice of the lung in which a nodule was found. On the right
side, we find a clickable table with the nodules detected by the pipeline. The table
also shows information regarding the location, diameter, ”subjective” malignancy,
and other related features computed from the pipeline results (e.g. nodule area in
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the slice, volume, and density). Below the slice navigator, we observe a zoom
component, which shows an augmented view of the area of interest in which the
nodule was found. This zoom component is updated every time the user moves the
cursor above the main slice navigator. The nodules are automatically surrounded
by a red circle. Other extra functionalities are available for the radiologists such
as showing the pixel segmentation of the nodule, adding comments directly on the
slice image or a full-screen view.

Figure 8.2: Screen with the results of the re-identification analysis. In this particular example, we
observe the same nodule found in both CT studies, its growth and its estimated malignancy.

Figure-8.2 shows the screen with the results of the temporal evolution of a
selected nodule. The re-identified nodules can be examined directly using the two
slice navigators located on the centre of the screen. A table with the detected and
re-identified nodules from both studies is also shown on the bottom part of the
screen. Furthermore, the screen also shows the exploration capabilities of the tool
by showing a zoom component, updated when the user moves the cursor over the
slice navigator.
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ran Xavier, Yokota Jun, Gavaldà Ricard, Rafael-Palou Xavier, and de Cid

147



“output” — 2021/7/6 — 8:07 — page 148 — #172

Rafael. ”Pipeline design to identify key features and classify the chemother-
apy response on lung cancer patients using large-scale genetic data”. BMC
Systems Biology 12, no. 5 (2018): 55-74.

148



“output” — 2021/7/6 — 8:07 — page 149 — #173

Appendix A

SUPPLEMENTARY MATERIAL I

A.1 Significance of radiologists’ annotated features

We discussed in the paper our choice to restrict the radiomics features included
in the pipeline to a minimal set of classical nodule characteristics. For the sake
of completeness, we report here the statistical significance of the complete set of
features detected by radiologists through visual inspection (reported in the LIDC
annotation file). To find the p-values we performed a generalized linear model
with the annotated features as predictors and the five malignancy categories as
outcome.

Nodule Feature P-value

diameter (mm) <2e-16
subtlety 0.002223
internal structure 0.646398
calcification <2e-16
sphericity 0.000756
margin 0.005173
lobulation 4.42e-08
spiculation 8.16e-07
texture 0.165262

Table A.1: Statistical significance of the radiologists annotated features. P-values are obtained
through Wald test of significance.
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A.2 The lung cancer pipeline
Here we present the results of the first stage of the lung cancer pipeline. Those
were obtained using an independent testset (10% of the data) of the LUNA16
dataset.

Nodules detection
Tables A.2 and A.3 show the description and results of three different configura-
tions tested for the nodule detection part of the lung cancer pipeline.

Option 1 Option 2 Option 3
Minimum radius 10 5 5
Maximum radius 40 30 60
Steps 10 10 5
Threshold 0.2 0.15 0.15
Overlap 0.9 0.7 0.9

Table A.2: Configurations of the Difference of Gaussian method for lung nodules detection.
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DoG configurations
Option 1 Option 2 Option 3

Total detected nodules 21 29 73
Total detected candidates 1142 7130 76631

Min,Max,Mean,Std radius
of detected nodules (real)

3.51
12.14
8.03
2.33

2.8
12.14
6.82
2.74

1.7
12.14
4.69
2.65

Min,Max,Mean,Std radius
of detected nodules (predicted)

5.0
12.6
8.6
2.31

3.05
12.29
7.33
2.74

2.5
8.66
4.41
2.35

Min,Max,Mean,Std intensity
of detected nodules (pred)

0.21
0.45
0.31
0.07

0.16
0.57
0.32
0.13

0.15
1.31
0.46
0.3

Total missing nodules 84 76 32

Min,Max,Mean,Std radius
of missing nodules (real)

1.64
8.36
3.2
1.16

1.64
8.36
3.15
1.25

1.64
6.28
2.97
1.12

Table A.3: Results from three different configurations of the Difference of Gaussian method for
lung nodules detection. The total number of nodules in the test set was 105.

False Positive Reduction
Tables A.4, A.5 and Figure A.1 present the results achieved by the 3D ResNet
deep convolutional network used for the false positive reduction task.

Predicted

Real
False
(0)

True
(1)

Candidate (0) 75726 54
Nodule (1) 58 86

Table A.4: Confusion matrix results for the 3D ResNet network.
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Precision Recall F1-score Support
Candidate (0) 1.00 1.00 1.00 75780
Nodule (1) 0.61 0.60 0.61 144

Table A.5: Classification results for the 3D ResNet network.

Figure A.1: FROC curve achieved in testing for the 3D ResNet network.

Cancer classification
In this section we describe the pipeline parameters (Table A.6) used for training
the machine learning classifiers as well as the parameters used for the dense fully
connected network (Table A.7) for lung cancer prediction.
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Table A.6: Pipeline parameters tested using grid-search and 5-fold CV.

Algorithm Options

k-NN
n neighbors = [1,3,5,7,9,11]
weights = [’uniform’, ’distance’]

LR
C = [0.001,0.01,0.1,0.5,1,3]
class weight = [’balanced’]
penalty = [’l1’, ’l2’]

RF

n estimators = [100,150,200,250,500,750]
criterion = [’entropy’,’gini’]
max depth = [’None’,2,4,6]
class weight = [’balanced’]

SVM

C = [0.001,0.01,0.1,0.5,1,3]
gamma = [0.005,0.01, 0.05,0.1,1,3]
kernel = [’radial’,’poly’]
degree = [3,5,7,9]
class weight = [’balanced’]

Table A.7: Parameters for training the dense network.

Method Options

Hidden-Layers
(size/4),(size/3),
(size/2),(size)

Alpha 1e-5,1e-3,1e-2,1,3,10
Activation ’relu’, ’sigmoid’
Solver ’lbfgs’
Max iter 200
Tol 1e-4

(*) The value of ’size’ is the output of the N-1 layer of the nodule malignancy
model together with the 3 features of the lung cancer baseline pipeline.
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Appendix B

SUPPLEMENTARY MATERIAL II

B.1 Nodule classification
The model implemented for nodule classification is a 3D ResNet-34, borrowed
from [110]. We used this architecture rather than the ResNet-50 described in our
previous work [37] because we achieved better sensitivity and FROC scores. To
train the network, we used the Adam optimization algorithm, a batch size of 128,
a weighted binary cross entropy loss function (to attenuate the heavy data imbal-
ance) and 3D data augmentation (flip, rotation, lighting, and zoom transforms).

Results
Tables (B.1, B.2) describe the evaluation results of the network in the test set of
the LUNA-16. This partition represented 10% of the total amount of data, and it
was composed of 75780 candidates (labeled as 0) and 144 nodules (labeled as 1).

Predicted
Real 0 1
Candidate (0) 75677 103
Nodule (1) 15 129

Table B.1: Confusion matrix results for the 3D ResNet network.

Precision Recall F1-score Support
Candidate (0) 1.00 1.00 1.00 75780
Nodule (1) 0.56 0.90 0.69 144

Table B.2: Classification results for the 3D ResNet network.
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B.2 Nodule detector architecture
The nodule detection network was implemented using the available code of two
recent and successful works [178] and [334]. The network reports five regression
values that correspond to the centre of the candidate (x, y, z), its diameter d and
the probability of being a nodule. For this latter value, the network uses a sigmoid
activation function and no activation function is used for the others.

The network was trained using a batch size of 8, Adam as optimization algo-
rithm, and a learning rate of 0.1 with a decay of 0.001 every 100 epochs, with a
total of 450 epochs. Moreover, we used hard negative mining [269] with a factor
of 20 times the batch size, as well as random rotation, flip, and zoom for 3D data
augmentation. The final network architecture is shown in Figure-B.1.

Figure B.1: Architecture for the nodule detector.

We followed [334] for designing the loss function of this network. Therefore,
we set up 3 anchor boxes of 5,10 and 20 mm based on the nodules’ distribution.
For each anchor we defined 5 parts in the loss function, a classification loss Lcls

for whether the current box is a nodule or not, regression loss Lreg for nodule
coordinates x, y, z and nodule size d. Whether an anchor overlapped a ground
truth bounding box with the intersection over union (IoU) higher than 0.5, we
considered it as a positive anchor (p∗ = 1). On the other hand, if an anchor has
IoU with all ground truth boxes less than 0.02, we considered it as a negative
anchor (p∗ = 0).

The multi-task loss function for an anchor i was defined as:

L(pi, ti) = αLcls(pi, p
∗
i ) + p∗iLreg(ti, t

∗
i )

The α is set as 0.5. For Lcls , we used a binary cross entropy loss function. For
Lreg , we used smooth l1 regression loss function [89].
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Results
We evaluated the performance of this network with the test set partition of the
LUNA-16 dataset. This partition was composed of 88 CT scans (out of 888 in
total) with 105 annotated nodules. For each nodule annotation, we had its location
(x, y, z) and its diameter. The resulting nodule detection performances are shown
in Table-B.3. The first column of the table has the different 0 positive (FP) ratios
(averaged per scan), and the rest of columns show the sensitivity obtained (mean,
upper, and lower bounds). Upper and lower bounds were obtained after a 1000
bootstrapping. Figure-B.2 shows the FROC curve reported by this method.

FPRate Mean Lower Upper
0.125 0.5799 0.45217 0.7176
0.25 0.6926 0.56976 0.7978
0.50 0.7961 0.71544 0.8666
1.0 0.8421 0.76800 0.9036
2.0 0.8755 0.81132 0.9306
4.0 0.9290 0.87962 0.9743
8.0 0.9419 0.89423 0.9809

Table B.3: Performances of the lung nodules detector at different FP in average per scan.

Figure B.2: FROC curve of the lung nodule detector computed for the test set.

B.3 Nodule re-identification
To gain further intuitions about the performances obtained between different SNNs,
we show the results of additional experiments using different configurations (de-
scribed in Section 3.1 of the manuscript):
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B.4 Lung nodule re-identification performance

Train Test
Small Medium Large Total Small Medium Large Total

Matching 0.972
(37)

1.0
(66)

1.0
(10)

0.991
(113)

1.0
(13)

0.952
(21)

1.0
(4)

0.973
(38)

Non
matching

0.933
(15)

0.962
(53)

0.977
(45)

0.964
(113)

1.0
(5)

0.9
(20)

0.769
(13)

0.868
(38)

Total 0.952
(52)

0.981
(119)

0.985
(55)

0.977
(226)

1.0
(18)

0.926
(41)

0.884
(17)

0.921
(76)

Table B.5: Performances for the whole training and test datasets stratified by lung nodule change
size and matching/non-matching nodule pairs. Each cell contains accuracy and total number of
nodule pairs.

B.5 Nodule growth pipeline performance

Train Test
Small Medium Large Total Small Medium Large Total

ND 0.945
(37)

0.954
(66)

0.7
(10)

0.929
(113)

1.0
(13)

0.90
(21)

1.0
(4)

0.947
(38)

RI 0.914
(35)

0.841
(63)

0.71
(7)

0.857
(105)

1.0
(13)

0.84
(19)

0.75
(4)

0.888
(36)

GD 0.47
(32)

0.837
(53)

0.857
(5)

0.74
(90)

1.0
(12)

0.929
(16)

0.842
(4)

0.90
(32)

Table B.6: Performances for the whole training and test datasets stratified by lung nodule change
size. In each cell we provide the accuracy for nodule detection (ND), nodule re-identification (RI)
and F1-score for nodule growth detection (GD). In parenthesis we show the total number of nodule
pairs involved per pipeline process and change size.
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