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Abstract   

Proteins  are  large  macromolecules  constituted  by  amino  acids  that  are  responsible             

for  most  of  the  biological  processes  within  a  cell.  Proteins  showing  high              

complementary  affinity  may  bind  forming  protein-protein  complexes.  In  this  context,            

antibodies  are  proteins  that  recognize  abnormal  particles  in  the  body  (known  as              

epitopes),  and  are  elicited  by  means  of  random  recombinatory  events  followed  by              

strict  screening  selection  processes.  Along  their  production,  antibodies  can  be            

modified   by   mutation   events   leading   to   potent   antibody   variants.   

In  this  sense,  there  is  an  industrial  and  biomedical  interest  for  the  artificial               

optimization  of  antibodies.  The  rise  of  the  computational  era  together  with  the  deeper               

understanding  of  structural  biology  allowed  the  design  and  implementation  of            

predictive  algorithms  for  simulating  the  effects  of  mutations  in  protein-protein            

complexes.  This  process  usually  involves,  among  others,  the  prediction  of  changes             

in  Gibbs  free  energy  upon  mutation  and  the  use  of  other  computational  simulations               

for  unveiling  motions  and  binding  patterns,  such  as  Molecular  Dynamics  and  Monte              

Carlo   techniques.   

During  this  thesis,  we  have  developed  and  implemented  predictive  algorithms            

focused  on  the  design  of  potent  antibody  variants.  We  developed  UEP,  an              

open-source  code  for  predicting  the  effects  of  mutations  in  protein-protein            

complexes.  UEP  differs  from  the  state-of-the-art  and  employs  other  sources  of             

knowledge  rather  than  experimental  binding  affinity  determinations  upon  mutation.          

Moreover,  we  designed  a  PELE  protocol  to  simulate  the  binding  affinity  of  antibodies               

against  hypermutated  HIV-1  viral  isolates.  Finally,  we  describe  three  different            

computational  workflows  for  antibody  optimization.  We  particularly  focused  on  the            

challenge  of  increasing  the  binding  potency  of  the  N6  antibody,  one  of  the  best                

antibodies  against  HIV-1.  Each  computational  workflow  has  been  evaluated           

experimentally  by  our  collaborators  from  Irsicaixa,  and  such  combined  computational            

and  experimental  effort  resulted  in  the  design  of  an  improved  variant  of  the  N6                

antibody   against   HIV-1.   
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Introduction   

Proteins   

Proteins  are  large  and  complex  macromolecules  formed  by  the  linear  addition  of              

amino  acids.  Proteins  play  a  variety  of  crucial  roles  in  living  organisms  including               

protection  against  dangerous  elements,  serving  as  structural  basis,  transportation  of            

molecules  through  the  body,  catalysis  of  chemical  reactions,  storage  of  ions,             

signalling  processes,  among  others   (Alberts   et  al. ,  2002) .  Proteins  are  coded  by              

genes,  and  they  are  synthetized  in  two  stages:  translation  and  transcription.  A              

scheme   of   these   two   stages   is   illustrated   in    Figure   1 .     

  

Figure  1 .  Flow  of  genetic  information  from  DNA  to  mRNA,  and  from  mRNA  to                

proteins.  The  processes  of  transcription  and  translation  in  an  animal  cell             

(https://flickr.com/photos/119980645@N06/13083355814)  from  NHS  National      

Genetics  and  Genomics  Education  Centre,  licensed  by  CC  BY  2.0            

(https://creativecommons.org/licenses/by/2.0/).     
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Transcription  takes  place  in  the  nucleus  of  the  cell,  and  it  is  the  process  where  genes                  

coded  in  the  deoxyribonucleic  acid  (DNA)  are  used  as  a  template  to  generate               

messenger  ribonucleic  acids  (mRNA).  Then,  mRNA  molecules  leave  the  nucleus            

and  go  to  the  cytoplasm,  where  translation  occurs.  During  translation,  ribosomes  link              

amino  acids  in  the  order  specified  by  mRNA  molecules  to  generate  a  polypeptide               

chain.  This  flow  of  genetic  information  is  part  of  the  famous  central  dogma  of                

molecular  biology  described  by  Francis  Crick  in  1958   (Fh,  1958) ,  which  originally              

states  that  once  the  information  has  been  trespassed  into  a  protein,  it  can  not  get  out                  

again   and   be   transferred   into   other   biopolymer   (such   as   DNA   or   RNA).     

Proteins  may  be  organized  in  four  structural  levels.  A  scheme  of  the  four  levels  of                

protein   structure   is   illustrated   in    Figure   2 .    

  

Figure  2 .  Four  levels  of  protein  structure  conformation.  OSC  Microbio  07  04              

(https://openstax.org/resources/85eae7ae8e3b242fa836f16b6abedfe5104e8ec6)   

from  OpenStax  Microbiology,  licensed  by  CC  BY  4.0          

(https://creativecommons.org/licenses/by/4.0/).   Adapted   version.   

The  primary  structure  is  represented  by  the  amino  acid  sequence  of  the  protein  and                

lacks  a  three-dimensional  structure.  The  nascent  polypeptide  chain  from  the            

ribosomes  is  thermodynamically  unstable,  and  quickly  folds  into  semi-stable           

conformations  driven  by  secondary  structure  conformations.  Secondary  structure          

units  are  classified  into  helices  (α-helix),  planar  sheets  (β-sheet),  and  stretched             

regions  known  as  loops.  Eventually,  the  protein  adopts  a  completely  folded             

conformation,  also  known  as  a  tertiary  structure,  where  multiple  secondary  structure             

units  are  organized  into  sophisticated  protein  domains.  Monomeric  proteins  adopt            

the  tertiary  structure  as  a  native  conformation,  however,  oligomeric  proteins  can             
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achieve  another  layer  of  structural  complexity  by  adopting  quaternary  structures,            

where   two   or   more   polypeptide   chains   arrange   to   form   a   native   conformation.     

It  has  been  assumed,  under  the  hypothesis  of  “one  protein  coding  gene  =  one                

protein”,  that  there  are  at  least  20.000  unmodified  canonical  proteins  in  the  human               

body   (Ponomarenko   et  al. ,  2016) .  However,  the  canonical  sequence  of  proteins  can              

be  modified  upon  different  processes  including  alternative  splicing,  single  amino  acid             

polymorphisms  and  posttranslational  modifications,  and  certainly,  the  amount  of           

different  proteins  in  the  body  is  expected  to  be  much  higher.  Such  protein  tuning                

modifications  are  subjected  to  evolutionary  pressure  conditions  and  play  a  major  role              

in  natural  selection  and  speciation  processes.  Remarkably,  such  important  effects            

are  achieved  (in  eukaryotic  organisms)  by  the  different  combination  of  21             

proteinogenic  amino  acids:  the  20  found  in  the  standard  genetic  code,  plus              

selenocysteine.     

Amino  acids  differ  one  from  each  other  by  their  physicochemical  properties.  A              

graphical  scheme  of  the  21  proteinogenic  amino  acids  is  illustrated  in   Figure  3 .               

Here,  some  features  are  included  such  as  size,  polarity  and  charge.  Those  features               

are  mainly  driven  by  the  properties  of  the  amino  acids  side  chains.  Hence,  side                

chains  may  be  classified  into  electrically  charged,  polar,  hydrophobic  and  special             

cases.  Charged  side  chains  may  be  positive  (Arginine  -Arg,  R-,  Histidine  -His,  H-  and                

Lysine  -Lys,  K-)  or  negative  (Aspartic  acid  -Asp,  D-  and  Glutamic  acid  -Glu,  E-).                

Uncharged  polar  side  chains  may  be  small  (Serine  -Ser,  S-  and  Threonine  -Thr)  or                

large  (Asparagine  -Asn,  N-  and  Glutamine  -Gln,  Q-).  Hydrophobic  side  chains  may              

be  small  (Alanine  -Ala,  A-)  or  large  (Valine  -Val,  V-,  Isoleucine  -Ile,  I-,  Leucine  -Leu,                 

L-,  Methionine  -Met,  M-,  Phenylalanine  -Phe,  F-,  Tyrosine  -Tyr,  Y-  and  Tryptophan              

-Trp,  W-).  Special  amino  acids  are  the  ones  that  behave  differently  from  the  other                

residues  (Cysteine  -Cys,  C-,  Selenocysteine  -Sec,  U-,  Glycine  -Gly-  G-,  and  Proline              

-Pro,  P-).  Here,  for  instance,  cysteine  makes  disulphide  bonds,  glycine  induces             

protein  flexibility  and  Proline  induces  tight  turns  in  proteins.  Histidine,  however,             

shows  different  protonation  states  (as  other  residues,  such  as  Glutamate,  Aspartate             

and   Lysines),   and   can   be   also   classified   in   the   uncharged   polar   group.   
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Figure  3 .  The  21  proteinogenic  amino  acids  in  eukaryotes  are  classified  by  the               

physicochemical  properties  of  their  side  chains:  positively  charged,  negatively           

charged,  uncharged  polar,  hydrophobic  and  special  cases.  Amino  Acids-wide.           

(https://commons.wikimedia.org/wiki/File:Amino_Acids-wide.svg)  from  Ben  Hubert,      

licensed   by   CC   BY-SA   4.0   (https://creativecommons.org/licenses/by-sa/4.0/deed.en).   

As  stated  previously,  proteins  exert  multiple  biological  functions.  However,           

independently  of  the  biological  role,  all  proteins  have  the  duty  to  serve  as  binders.  In                 

fact,  the  composition  of  the  protein  (this  is,  both  amino  acid  sequence  and               

three-dimensional  conformation)  determines  the  compounds  that  the  protein  can           

bind  (known  as  ligands).  Ligands  are  diverse,  from  small  compounds  such  as  ions  or                

small  drugs,  to  large  molecules  such  as  cofactors  or  proteins.  The  canonical              

protein-ligand  complex  is  driven  by  transitory  non  covalent  intermolecular           

interactions,  which  are  mediated  by  hydrogen  bonds,  hydrophobic  forces,           

electrostatic,  π-π  stacking  and  cation-π  interactions.  The  main  non  covalent            

intermolecular   interactions   are   depicted   in    Figure   4 .     
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Figure  4 .  Non  covalent  intermolecular  forces  in  proteins:  hydrogen  bond,            

hydrophobic  forces,  electrostatic,  π-π  stacking  and  cation-π  interactions.  Adapted           

from  (https://slideplayer.com/slide/6613248/).  Original  credit  to  Pearson  Prentice         

Hall,   Inc   (2010).     

The  interaction  strength  of  a  protein-ligand  complex  is  described  by  the  addition  of               

the  above  mentioned  intermolecular  forces  and  it  is  defined  as  the  binding  affinity.               

However,  independently  of  the  binding  strength,  the  binding  process  is  always  highly              

specific,  in  the  sense  that  a  protein  is  able  to  bind  a  range  of  tens  of  binders  in  a  very                      

selective  way  from  the  thousands  that  it  encounters  (with  particular  exceptions).  This              

phenomenon  is  especially  relevant  for  protein-protein  interactions  (PPI),  where  two            

or  more  proteins  physically  interact  in  a  very  specific  manner  by  means  of  their                

binding  sites.  Protein-protein  binding  events  can  occur  in  at  least  three  different              

ways,  depending  on  the  nature  of  the  interacting  partners:  surface-string,  helix-helix             

to  form  a  coiled-coil  and  surface-surface.  A  scheme  of  those  binding  events  is               

illustrated   in    Figure   5 .   
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Figure  5 .  Three  different  protein-protein  binding  events:  surface-string,  helix-helix           

and  surface-surface.  Adapted  from   Figure  3-41  of  the  Molecular  Biology  of  the  Cell               

book.   4th   edition.   Alberts   B,   Johnson   A,   Lewis   J,    et   al .   

The  most  common  interaction  found  in  protein-protein  complexes  consists  of  the  two              

semi-rigid  surfaces,  where  the  shape  of  the  interface  perfectly  matches  for  both              

proteins.  This  binding  event  results  in  a  very  tight  interaction,  favoured  by  a  large                

number  of  weak  contacts  along  the  enormous  binding  surface.  This   Lego -like  shape              

complementarity  between  the  interacting  partners  usually  leads  to  an  extremely  high             

specificity,  which  enables  a  protein  to  bind  to  just  one  (or  few)  partner/s  from  the                 

enormous  pool  of  encounters.  Within  a  cellular  environment,  the  combination  of  all              

PPIs  is  known  as  interactome,  and  its  preservation  (homeostasis)  is  crucial  for  the               

correct  function  of  the  host  cell.  In  fact,  interactome  disorders  are  the  basis  of                

multiple  aggregation-related  diseases,  such  as  Alzheimer's  and  Creutzfeldt–Jakob          

diseases.  An  unlimited  source  of  protein  variability  of  protein-protein  networks  may             

be  found  in  the  immune  system  and  particularly  in  the  context  of  antibodies.  In  the                 

following  section,  we  describe  some  details  about  the  role  of  proteins  in  the  immune                

system.   

Role   of   proteins   in   the   immune   system   

The  immune  system  is  a  complex  network  of  many  biological  structures  and              

processes  that  serves  as  a  protective  mechanism  against  pathogens  without            

compromising  the  host  integrity.  Two  major  subsets  of  the  immune  system  can  be               

differentiated  in  most  of  the  species:  innate  immune  system  and  adaptive  immune              

system.  An  illustrative  scheme  of  the  main  cellular  components  and  the  kinetics              

response   of   the   innate   and   adaptive   immune   systems   is   depicted   in    Figure   6 .   
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Figure  6 .  The  principal  components  and  kinetics  of  response  of  the  innate  and               

adaptive  immune  systems.  Extracted  from  Figure  5.1  of  the  Robbins  Basic  pathology              

book.   10th   edition.   Kumar   V,   Abbas   A,   Aster   J,   et   al.   

The  innate  immune  system  is  the  first  defensive  line  of  our  body  against  pathogens                

and  it  is  activated  by  the  chemical  properties  of  the  foreign  body  (antigen).  The                

mechanism  of  action  of  the  innate  immunity  is  highly  innespecific,  in  the  sense  that                

the  effective  response  is  similar  among  different  antigens.  Because  of  this  reason,              

the  innate  immunity  is  able  to  exert  a  rapid  response,  involving  the  passive  use  of                 

physical  barriers  (epithelial  and  mucous  membranes)  or  the  action  of  specialized             

immune  cells  including:  phagocytic  (mainly  macrophages  and  neutrophils),  dendritic,           

natural  killer  and  other  innate  lymphoid  cells.  Moreover,  the  innate  immunity  also              

involves  the  release  of  proteins,  including  the  complement  system  and  cytokines  to              

initiate   the   recruitment   process   of   immune   cells   in   the   vicinity   of   the   antigen   source.     

On  the  other  hand,  the  adaptive  immunity  acts  when  the  innate  immunity  is  not  able                 

to  completely  neutralize  the  antigen  source.  Adaptive  immunity  generates  a            

high-specific  response  that  requires  the  processment  and  recognizement  of  the            

antigen  source.  Therefore,  adaptive  immunity  is  slower  than  the  innate  immunity.             

However,  it  includes  immunological  memory  (which  is  the  basis  of  vaccination),  in              

the  sense  that  the  adaptive  response  towards  previously  known-antigens  is  faster             

and  more  efficient  than  during  the  first  encounter.  Compared  to  the  innate  immunity,               

the  adaptive  immunity  shows  a  larger  army  of  defensive  mechanisms,  including  T              
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lymphocytes  (T  cells),  B  lymphocytes  (B  cells)  and  their  products,  including             

antibodies.  Moreover,  there  are  two  types  of  adaptive  immunity:  cellular  (mediated  by              

T  cells)  and  humoral  (mediated  by  B  cells).  An  illustrative  scheme  of  the  main                

mechanism   for   both   cellular   and   humoral   immunities   is   depicted   in    Figure   7.   

  

Figure  7 .  The  principal  components  and  kinetics  of  response  of  the  innate  and               

adaptive  immune  systems.  Adapted  from       

(https://www.pinterest.de/pin/686658274413051231).  Original  credit  to  Elsevier      

Science   (USA),   2002.   

There  are  multiple  differences  between  both  cell-mediated  and  humoral  responses.            

However,  the  main  difference  relies  on  the  mechanism  of  action.  Hence,  cellular              

responses  target  cells  presenting  antigens  (including  for  instance,  cancer  cells,  cells             

infected  by  viruses  and/or  transplanted  tissues),  while  humoral  responses  secrete            

macromolecules  to  the  extracellular  fluid  (mainly  antibodies)  to  target  pathogens.  In             

this  context,  T  cells  (helper  T  cells,  cytotoxic  T-cells,  natural  killer  cells,  and               
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macrophages)  are  the  main  drivers  of  cellular  response,  while  humoral  responses             

are   mainly   driven   by   B   cells   and   antibodies   (also   assisted   by   CD4+   T   helper   cells).   

Despite  that  all  components  of  the  humoral  immunity  play  very  important  roles  and               

most  of  them  are  irreplaceable,  antibodies  are  highlighted  to  be  one  of  the  major                

contributors  of  the  immune  system.  Hence,  a  simpler  definition  of  humoral  immunity              

can  be  understood  as  the  generation  of  antibodies  accompanied  by  accessory             

processes  leading  to  the  neutralization  of  pathogenic  substances.  There  is  a  detail              

about  the  structure  of  antibodies,  their  production  mechanism  of  antibodies  and  their              

importance   in   the   following   section.   

Antibodies   

As  stated  previously,  antibodies  are  generated  by  B  cells  (or  plasma  cells).              

Antibodies,  also  known  as  immunoglobulines  (Ig),  are  large  Y-shaped  proteins            

whose  function  is  to  bind  antigens  for  their  downstream  removal.  An  scheme  of  the                

basic   structure   of   an   antibody   is   illustrated   in    Figure   8 .     

  

Figure  8 .  Basic  structure  of  an  antibody  consisting  of  crystallizable  fragment  (Fc)              

and  fragment-antigen  binding  (Fab)  region,  which  is  in  charge  of  binding  the  antigen.               

Adapted   from   (https://bxcell.com/antibody-structure).   Original   credit   to   BioXCell.     
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Classically,  antibodies  are  formed  upon  the  arrangement  of  two  polypeptide  pairing             

chains  known  as  heavy  and  light.  Both  heavy  and  light  chains  contain  a  crystallizable                

fragment  (Fc)  and  a  fragment-antigen  binding  (Fab)  variable  region.  Heavy  chains             

are  composed  by  three  to  four  constant  Ig  domains  (depending  on  the  antibody               

isotype),  while  light  chains  are  composed  by  a  constant  and  a  variable  Ig  domain.                

Mammalians  show  five  different  antibody  isotypes  (IgA,  IgD,  IgE,  IgG  and  IgM),              

which  are  determined  by  the  type  of  the  heavy  chains  (α,  δ,  ε,  γ,  and  μ,  respectively).                   

A   structural   overview   of   the   mammalian   antibody   isotopes   is   illustrated   in    Figure   9 .     

  

Figure  9 .  Basic  structure  of  the  mammalian  antibody  isotypes:  IgG,  IgD,  IgE,  IgA               

and  IgM.  The  number  of  constant  Ig  domains  and  the  overall  three-dimensional              

structure  differs  among  antibody  isotypes.  Adapted  from         

(https://bxcell.com/antibody-structure).   Original   credit   to   BioXCell.     
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Antibody   isotypes   differ   from   each   other   on   the   heavy   chain   by:   

● The   number   of   constant   domains.   

● The   amount   and   location   of   the   interchain   disulfide   bonds.   

● The   number   of   attached   oligosaccharide   moieties.   

● The   length   of   the   hinge   region   that   adds   flexibility   to   the   antibody.     

The  constant  domains  of  the  Fc  region  are  identical  in  all  antibodies  from  the  same                 

isotype  group.  However,  the  variable  domains  of  the  Fab  region  differ  from              

antibodies  produced  by  different  B  cells  clones.  Regarding  mammalian  light  chains,             

two  types  have  been  described  (κ  and  λ).  It  is  unknown  if  there  exists  functional                 

differences  between  the  κ  and  λ  light  chains,  but  both  can  occur  in  any  of  the  above                   

mentioned   antibody   isotypes.   

It  has  been  estimated  that  the  human  body  may  generate  more  than  10 12  different                

antibodies,  despite  that  the  human  genome  contains  roughly  40,000  genes            

(including  coding  and  non  coding).  It  is  important  to  note  that  the  mechanism  for  the                 

generation  of  antibody  diversity  has  evolved  differently  across  species.  In  this  way,              

birds,  fish,  sheeps,  rabbits,  camels,  llamas,  alpacas  and  humans  show  different             

antibody  generation  processes.  For  instance,  camels,  llamas  and  alpacas  have            

evolved  to  generate  camelid  antibodies,  which  are  smaller  than  regular  antibodies.  In              

this  sense,  those  special  antibodies  can  be  made  up  by  only  two  heavy  chains                

(missing  light  chains),  or  just  by  the  antigen  binding  domain  of  the  heavy  chain  (V H H,                 

also   known   as   nanobodies).     

Despite  the  above  mentioned  differences,  the  immune  system  of  mammals  has             

developed  unique  genetic  mechanisms  enabling  the  generation  of  almost  an            

unlimited  set  of  different  antibodies.  This  milestone  is  accomplished  by  sophisticated             

molecular  mechanisms  consisting  of  joining  multiple  gene  segments  together  before            

their  transcription.  This  process  is  known  as  V(D)J  recombination.  A  representative             

scheme  of  the  V(D)J  recombination  is  depicted  in   Figure  10 .  Here,  V,  D,  and  J                 

genes  are  placed  in  tandem  within  a  variable  gene  locus  section  followed  by  a                

constant  one.  The  initial  stage  of  the  V(D)J  recombination  consists  of  removing  the               

unwanted  D  and  J  gene  segments,  followed  by  a  DJ  recombination  of  the  D  and  J                  

exons.  The  same  process  is  repeated  for  removing  the  unwanted  V  and  D  exons                
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during  V-DJ  recombination.  Errors  during  the  recombination  process  may  further            

increase  the  variability  of  the  final  antibody  transcript,  which  will  also  include  the               

constant   domain   gene.   

  

Figure  10 .  Representative  scheme  of  the  V(D)J  recombination  process  during            

antibody  diversity  generation,  involving  removal  of  unwanted  gene  sections  and            

recombination  processes  to  generate  a  transcript  coding  for  the  full  antibody             

sequence.   Public   domain   image.   Original   credit   to   Gustavocarra.     
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Hence,  billions  of  different  antibodies  are  generated  by  recombining  different  gene             

segments,  which  are  distant  in  the  genome,  into  a  new  random  pseudo-gene  effector               

sequence.  Moreover,  the  antibody  diversity  can  be  further  increased  by  additional             

factors,  which  may  include  errors  during  the  recombination  process  (decreasing  or             

decreasing  the  amount  of  nucleotides  at  the  site  of  gene-segment  joining)  or  the               

acquisition  of  somatic  mutations  (which  occurs  at  high  frequency  during  antibody             

maturation   processes).   

Despite  the  enormous  diversity  of  antibodies,  the  immune  system  minimizes  the  risk              

of  generating  antibodies  binding  to  self-antigens.  This  achievement  is  reached            

through  complex  regulatory  mechanisms,  involving  positive  and  negative  selection  of            

the  B  cells  occurring  at  the  bone  marrow.  The  initial  stage  involves  the  positive                

selection  of  B  cells  expressing  a  functional  BCR  receptor  complex,  which  eventually              

will  bind  to  antigens  and  it  will  initiate  the  antibody  response.  During  this  process,  B                 

cells  expressing  a  functional  BCR  (functional  heavy  and  light  chains,  among  other              

accessory  proteins)  are  positively  stimulated  in  order  to  ensure  their  proper             

development,  while  the  others  cease  to  exist.  Later  on,  a  negative  selection  process               

takes  place,  involving  the  active  elimination  of  B  cells  that  are  able  to  recognize  and                 

bind  to  self-antigens.  After  this  process,  selected  B  cells  migrate  from  the  bone               

marrow  to  the  spleen,  where  they  keep  differentiating  into  mature  B  cells.  At  this                

stage,  B  cells  act  as  antigen-presenting  cells  in  the  sense  that  they  endocitate               

antigens.  Those  antigens  will  be  processed  into  large  peptides,  and  presented  into              

the  B  cell  surface,  through  the  major  histocompatibility  center  II  (MHC-II).  At  this               

moment,  the  CD4+  T  cell  repertoire  (also  called  T  helper  cells)  will  screen  the                

peptide-MHC-II  complexes.  Upon  T  cell  binding  the  B  cell  is  activated  and  it  starts  to                 

further  differentiate  into  more  specialized  cells,  such  as  plasma  B  cells  whose  major               

role  is  to  produce  and  secrete  large  amounts  of  antibodies.  Those  plasma  B  cells                

may  undergo  hypersomatic  mutation  and  clonal  selection  processes,  which  will            

increase   the   specificity   of   the   antibody   towards   the   binding   epitope.   

Previously,  we  introduced  a  basic  schematic  structure  of  an  antibody  ( Figure  8 )  and               

different  isotypes  ( Figure  9 ).  Three-dimensionally,  antibodies  form  complex          

structures  by  combining  multiple  domain  regions  linked  by  loops.  An  overview  of  the               

three-dimensional   structure   of   an   IgG   is   illustrated   in    Figure   11 .   
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Figure  11 .  Three-dimensional  structure  of  an  IgG  antibody  consisting  of  three             

constant  domains  (C H 1,  C H 2,  C H 3)  and  a  variable  domain  (V H )  for  the  heavy  chain,                

and   a   constant   and   a   variable   domain   for   the   light   chain   ( V L    and    C L ,   respectively) .   

In  IgG,  heavy  chains  have  four  domains:  three  constant  ones  (C H 1,  C H 2,  C H 3)  and  a                 

variable  one  (V H ).  IgG  light  chains  are  formed  by  a  constant  (C L )  and  a  variable  (V L )                  

domain.  For  both  heavy  and  light  chains,  a  short  stretch  known  as  a  switch  connects                 

the   variable   and   constant   regions.     

All  antibody  domains  adopt  a  conserved  structure  termed  as  immunoglobulin  fold,             

which  consists  of  an  antiparallel  beta  barrel  motif.  Such  structure  is  formed  by  the                

interaction  of  two  beta  sheets  packed  tightly  against  each  other  and  it  is  stabilized  by                 

different  forces:  i)  hydrogen  bonds  between  the  beta  strands  of  each  sheet,  ii)               

hydrophobic  forces  coming  from  opposite  sheets  in  the  interior  of  the  fold,  and  ii)  the                 

formation  of  disulphide  bonds  between  the  sheets.  Constant  domains  are  typically             

formed  by  a  3-stranded  sheet  packed  against  a  4-stranded  sheet.  Variable  domains              

show   additional   beta   strands   arranged   in   sheets   of   4   and   5   strands.     
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Variable  domains  of  the  heavy  and  light  chains  are  the  ones  that  recognize  and  bind                 

to  the  epitope.  This  process  is  mainly  mediated  by  hypervariable  loops,  also  known               

as  complementarity-determining  regions  (CDRs).  Each  heavy  and  light  variable           

domains  show  three  different  CDRs.  A  representative  illustration  of  the  antibody             

CDRs  is  shown  in   Figure  12 .  As  can  be  observed,  CDRs  are  the  loops  that  connect                  

the  beta  strands  of  the  immunoglobulin  fold.  In  total,  the  six  CDRs  are  placed                

three-dimensionally  close  in  space,  cooperating  for  building  an  antigen-specific           

binding   surface.   

  

Figure  12 .  Heavy  (yellow)  and  light  (blue)  antibody  variable  domains  in  a  IgG               

antibody.  Red  loops  represent  the  six  hypervariable  loops  or  CDRs  for  heavy              

(CDRH1,  CDRH2  and  CDRH3)  and  light  (CDRL1,  CDRL2  and  CDRL3)  variable             

domains.   

In  this  way,  all  residues  placed  at  the  CDRs  will  play  a  major  role  for  the  recognition                   

of  the  epitope.  One  of  the  main  driving  forces  of  binding  antibodies  comes  from                

hydrophobic  and  van  der  Waals  interactions.  This  is  represented  in   Figure  13 ,  where               

from  the  enormous  antigen  binding  surface  only  a  few  polar  contacts  are  formed               

( Figure  13A )  compared  to  the  entire  interface  ( Figure  13B ).  In  this  example,  the               

Protein  Data  Bank  (PDB)  entry  1JHL  was  used  to  represent  this  phenomena,              

containing  a  monoclonal  antibody  (heavy  and  light  chains,  in  orange  and  green              

respectively)   targeting   an   avian   lysozyme   (red).   
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Figure  13 .  Most  of  the  interacting  binding  surface  of  antibodies  is  determined  by               

hydrophobic  and  van  der  Waal  forces.  Binding  mode  of  a  monoclonal  antibody              

(heavy  and  light  chains  in  orange  and  green,  respectively)  against  an  avian              

lysozyme  (red),  extracted  from  the  1JHL  PDB  entry.  A)  only  a  few  polar               

intermolecular  contacts  are  formed  from  B)  the  entire  protein-protein  binding            

interface.  Hydrogen  bonds  and  ionic  bonds  are  represented  by  dashed  yellow  and              

pink   lines.   

In  this  thesis,  we  are  particularly  interested  in  the  study  of  antibodies  elicited  against                

the  human  immunodeficiency  virus  1  (HIV-1).  The  following  section  provides  an             

overview  of  this  virus  and  the  antibodies  that  have  been  described  to  broadly               

neutralize   its   infectivity.   

Human   immunodeficiency   virus   

The  human  immunodeficiency  virus  (HIV)  englobes  two  species,  HIV-1  and  HIV-2.             

HIV  is  a  member  of  Lentivirus  (from  the  retrovirus  family)  that  infects  humans  and                

causes  acquired  immunodeficiency  syndrome  (AIDS).  AIDS  is  a  progressive  disease            

that  leads  to  the  failure  of  the  immune  system.  In  2019,  the  WHO  estimated  that                 

nearly  38  million  of  people  were  dealing  with  AIDS,  and  about  700,000  died  of                

AIDS-related  complications.  HIV-1  is  more  virulent  and  infective  than  HIV-1   (Gilbert             

et  al. ,  2003)  and  it  is  widely  distributed  around  the  globe  compared  to  HIV-2,  which  is                  
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mainly  restricted  to  West  Africa   (Reeves  and  Doms,  2002) .  Without  treatment,  the              

average  survival  time  after  HIV-1  infection  is  from  9  to  11  years.  Advancements  in                

the  use  of  antiretroviral  therapy  largely  increased  the  average  survival  time  to  nearly               

40  years.  However,  there  is  no  available  cure  for  AIDS  and  most  treatments  aim  to                 

reduce  the  viral  load  (or  viremia)  in  blood  circulation,  reducing  the  impact  and  the                

transmissibility  of  the  virus.  The  HIV-1  genome  takes  advantage  of  a  very              

sophisticated  RNA  splicing  system  to  code  nine  genes  from  two  copies  of             

positive-sense  single-stranded  RNA  of  approximately  10kb.  Those  nine  genes           

encode  for  an  amount  of  15  different  proteins  that  have  multiple  roles.  Depending  on                

the  function  of  the  proteins,  the  genes  encoding  them  can  be  classified  in  three                

different  groups:  viral  structural  elements  ( gag ,   pol ,  and   env ),  essential  regulatory             

elements  ( tat  and   rev )  and  accessory  regulatory  elements  ( nef ,   vpr ,   vif  and   vpu ).  A                

scheme   of   the   RNA   genome   of   HIV-1   is   illustrated   in    Figure   14 .   

  

Figure  14 .  Structure  of  the  RNA  genome  of  HIV-1,  encoding  for  nine  different  genes:                

gag,   pol ,   env ,   tat ,   rev ,   nef ,   vpr ,   vif   and  vpu .  The  RNA  genome  has  a  length  of                   

approximately  10kb.   HIV-genome  from  Thomas  Splettstoesser        

(https://commons.wikimedia.org/wiki/File:HIV-genome.png),  licensed  under  CC      

BY-SA   3.0   (https://creativecommons.org/licenses/by-sa/3.0/deed.en).   

The  genome  of  the  virus  is  embedded  within  a  viral  capsid  forming  a  virion.  A                 

representative  scheme  of  the  virion  of  HIV-1  is  illustrated  in   Figure  15 .  HIV-1  virion  is                 

roughly  spherical  with  a  diameter  of  ~100nm  (around  70  times  smaller  than  a  red                

blood  cell).  It  contains  all  elements  to  ensure  viral  infection:  the  RNA  genome               

embedded  within  a  capsid  and  surrounded  by  protective  proteins  against  nucleases             

(nucleocapsid),  enzymes  to  ensure  viral  production  (such  as  reverse  transcriptase,            

integrase  and  protease)  and  surface  proteins  to  initiate  the  viral  entry  into  the  host                

cell   (envelope   glycoprotein),   among   others.   
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Figure  15 .  Structure  of  the  HIV-1  virion  containing  all  elements  for  viral  transmission,               

including  RNA  genome,  nucleocapsid,  reverse  transcriptase  and  the  envelope           

glycoprotein,  among  others.   HI-virion-structure  from  Thomas  Splettstoesser         

(https://commons.wikimedia.org/wiki/File:HI-virion-structure_en.svg),  licensed  under     

CC   BY-SA   4.0   (https://creativecommons.org/licenses/by-sa/4.0/deed.en).   

The  envelope  glycoprotein  is  the  major  driver  of  the  viral  entry,  and  it  is  formed  by                  

two  different  proteins:  gp120  and  gp41.  A  representative  scheme  of  the  viral              

mechanism   entry   of   HIV-1   is   illustrated   in    Figure   16 .     

The  target  cells  of  the  HIV  are  mainly  CD4+  T  cells  and  macrophages.  The  viral                 

entry  starts  upon  the  binding  between  the  gp120  of  the  virus  and  the  CD4  receptor  of                  

the  host  cell.  The  region  of  the  gp120  that  binds  to  the  CD4  receptor  is  known  as                   

CD4  binding  site  (CD4bs),  and  it  is  conserved  among  HIV-1.  After  this  initial               

protein-protein  interaction,  the  gp120  undergoes  a  conformational  change  and           

exposes  its  chemokine  receptor  binding  domains,  which  will  be  able  to  initiate  a               
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secondary  interaction  with  chemokine  co-receptors.  Numerous  chemokine         

co-receptors  have  been  described  to  bind  to  the  chemokine  receptor  binding             

domains  of  the  gp120,  such  as  CXCR4  (mainly  found  in  CD4+  T  cells)  and  CCR5                 

(mainly  found  in  macrophages)   (Chan  and  Kim,  1998;  Wyatt,  1998) .  At  this  stage,               

the  N-terminal  fusion  peptide  of  the  gp41  penetrates  the  cellular  membrane  of  the               

host.  After  this  process,  the  gp41  undergoes  conformational  changes  that  lead  to  the               

fusion  of  both  viral  and  cellular  membranes,  allowing  the  entry  of  the  viral  capsid                

within   the   host   cell.   

  

Figure  16 .  Mechanism  of  viral  entry  of  HIV-1  into  the  CD4+  T  cells  and                

macrophages,  mediated  through  CD4  and  co-receptor  proteins  of  the  host  cell             

(CXCR4  and  CCR5,  respectively).  Adapted  from   HIVs  invasive  strategy           

(https://cen.acs.org/articles/92/i35/Aiming-HIVs-Weak-Spot.html)  from  Science     

Source/C&EN.   

The  envelope  glycoprotein  is  the  sole  protein  on  the  surface  of  the  virus,  being  the                 

major  target  of  antibodies  against  HIV-1.  However,  the  envelope  glycoprotein  is             

surrounded  by  a  glycan  shield  that  protects  the  virus  from  the  immune  system               

recognizement.  In  this  context,  the  envelope  glycoprotein  of  HIV-1  is  one  of  the  most                

glycosylated  proteins  described  in  the  literature,  where  almost  half  of  its  mass  is               

represented  by  N-glycan  covalent  modifications.  A  comparison  of  the  glycosylation            

density  between  HIV-1  and  other  surface  proteins,  including  the  Spike  proteins  from              

SARS-CoV-1,  SARS-CoV-2,  MERS-CoV  and  the  GP  complex  of  LASV  is  illustrated             

in    Figure   17 .   
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Figure  17 .  Different  glycosylation  levels  of  the  HIV-1  envelope  glycoprotein            

compared  to  other  surface  glycoproteins  including  spike  protein  from  SARS-CoV-1,            

SARS-CoV-2  and  MERS-CoV  and  the  GP  complex  of  LASV.  Green  color  represents              

highly  glycosylated  epitopes.  Figure  4  of  “Site-specific  glycan  analysis  of  the             

SARS-CoV-2  spike”,  Science  (2020)  Vol.  369,  Issue  6501,  pp.  330-333,  DOI:             

10.1126/science.abb9983   (https://science.sciencemag.org/content/369/6501/330).   

Overall,  there  are  five  phenomenons  that  impossibilities  the  immune  system  to             

completely   deplete   the   HIV-1   from   an   infected   patient:     

● HIV  targets  immune  cells,  and  therefore,  decreases  the  potential  of  the             

immune   system   to   combat   the   virus.   

● The  existence  of  latent  infected  CD4  cells  that  can  not  be  effectively  targeted               

(known   as   HIV-1   reservoir).   

● The  glycan  shield,  protecting  the  envelope  glycoprotein  from  the  immune            

system.   

● The   short   replication   cycle   of   the   virus.   

● The   high   mutation   rate   of   the   virus.     

Nonetheless,  the  immune  system  is  able  to  elicit  antibodies  against  HIV-1,  which  can               

be  strain-specific  or  broadly  neutralizing  antibodies  (bNAbs).  The  main  difference            

between  both  groups  is  that  bNAbs  are  able  to  neutralize  multiple  viral  isolates,  while                
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strain-specific  antibodies  are  restricted  to  a  few  and  similar  viral  isolates.  The              

discovery  of  bNAbs  in  patient’s  samples  has  motivated  their  use  as  therapeutic  tools               

against   AIDS.     

Over  the  past  decades,  large  screening  efforts  have  been  made  for  isolating,              

describing  and  characterizing  potent  bNAbs.  Some  bNAbs  have  been  reported  to             

neutralize  up  to  90%  of  the  viral  isolates  with  great  potency.  The  high  efficacy  of                 

bNAbs  for  binding  multiple  viral  isolates  is  achieved  by  targeting  conserved  regions              

of  the  virus,  while  also  tolerating  and  accommodating  mutations  on  the  binding              

interface.     

In  this  way,  the  efficacy  of  a  bNAb  is  represented  by  a  tradeoff  between  coverage                 

and  potency.  On  the  one  hand,  coverage  refers  to  the  different  strains  that  an                

antibody  can  bind.  On  the  other  hand,  potency  refers  to  the  ability  to  strongly  bind                 

and  neutralize  the  virus.  A  comparison  of  the  coverage  and  potency  of  some  of  the                 

most   well-characterized   bNAbs   is   illustrated   in    Figure   18 .   

So  far,  six  different  epitopes  of  the  envelope  glycoprotein  have  been  described  to               

elicit  potent  bNAbs:  the  CD4bs,  the  V1/V2  apex  (or  V2-apex),  the  V3  high-mannose               

loop  (or  V3-glycan),  the  membrane  proximal  external  region  of  gp41  (MPER),  the              

gp120-gp41  interface  (Interface/FP)  and  the  highly  glycosylated  ‘silent’  face  of  gp120             

(silent  face).  However,  the  most  well-characterized  epitopes  are  the  CD4bs,  the             

V1/V2  apex,  the  V3  high-mannose  loop  and  the  MPER  region.  The  relative  position               

of  the  above  mentioned  four  epitopes  on  the  envelope  glycoprotein  and  the              

occupancy   of   some   bNAbs   targeting   them   is   illustrated   in    Figure   19 .   
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Figure  18 .  Strain  coverage  (%)  and  binding  potency  (μg/mL)  of  some  of  the  most                

well-characterized  bNAbs  targeting  different  epitopes  of  the  envelope  glycoprotein.           

Adapted  from  Figure  1  of  “Recent  progress  in  broadly  neutralizing  antibodies  to  HIV”,               

Nature  Immunology  (2018)  Vol.  19,  p.p  1179–1188,  DOI:          

10.1038/s41590-018-0235-7   (https://www.nature.com/articles/s41590-018-0235-7).   
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Figure  19 .  The  four  main  epitopes  of  the  HIV-1  envelope  glycoprotein  (the  CD4bs,               

the  V1/V2  apex,  the  V3  high-mannose  loop  and  the  MPER  region)  and  the               

occupancy  of  some  bNAbs  targeting  them  (VRC01,  PG9,  PGT128  and  10E8,             

respectively).  Adapted  from  Figure  1  of  “Sites  of  HIV-1  vulnerability  to  neutralizing              

antibodies”,  Nat  Rev  Immunol  (2014)  Vol.  13,  p.p  693–701,  DOI:  10.1038/nri3516             

(https://www.nature.com/articles/nri3516).   

From  all  bNAbs,  the  ones  targeting  the  CD4bs  and  the  MPER  reach  higher               

neutralization   efficacy   since   they   show   a   high   strain   coverage   (usually   up   to   90%).     

However,  most  of  the  research  in  HIV  has  been  based  on  antibodies  targeting  the                

CD4bs  (anti-CD4bs),  because  they  can  achieve  higher  potency  than  others  while  still              

preserving  a  great  HIV-1  strain  coverage.  This  phenomena  is  achieved  by  the              

blockage  of  the  CD4bs,  which  initiates  the  viral  entry  by  establishing  the  initial               

contact  with  the  host  cell.  Hence,  anti-CD4bs  antibodies  occupy  the  same             

three-dimensional  epitope  as  the  CD4  receptor.  Despite  the  fact  that  the  virus  has               

evolved  to  escape  the  antibody  recognizement  (mainly  by  means  of  acquiring             
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mutations  and  changing  its  glycosylation  pattern),  the  biological  role  of  the  CD4bs              

must  be  preserved  for  the  sake  of  the  infectious  process.  Hence,  the  CD4bs  cannot                

freely  be  modified  to  escape  from  bNAbs,  since  there  exists  a  biological  pressure               

towards  preserving  the  binding  with  the  CD4  receptor.  Hence,  mutations  that  hamper              

the  binding  with  the  CD4  receptor  result  in  non-infective  viruses  which  are  (in               

principle)   innocuous.   

Despite  that  anti-CD4bs  target  the  same  epitope  of  the  gp120,  some  differences              

arise  from  their  mode  of  recognition  and  their  heavy  chain  characteristics   (Zhou   et               

al. ,  2019) .  In  this  way,  those  antibodies  can  be  classified  into  two  groups:  VRC01-like                

class  (VRC01,  NIH45-46,  3BNC117,  N6)  and  non-VRC01  classes  (CH103,           

8ANC131,  VRC13  and  VRC16)   (Zhou   et  al. ,  2015,  2013) .  From  both  groups,  bNAbs               

from  the  VRC01-like  class  have  drawn  substantial  attention  to  researchers  since             

they  mimic  the  binding  mode  of  the  CD4  receptor.  In  fact,  VRC01-like  class               

antibodies  share  some  features  with  the  CD3  receptor,  including  some  known-key             

residues  at  certain  positions  that  are  crucial  for  a  potent  binding   (Wu   et  al. ,  2011;                

Zhou   et  al. ,  2010,  2013) .  Some  of  those  antibodies  have  been/are  being  evaluated  in                

clinical  trials,  and  relative  therapeutic  success  has  been  observed.  So  far,  none  of               

them  have  been  reported  to  cure  AIDS  since  viral  rebound  occurs  after  days/weeks               

of  stopping  the  treatment  (such  as  during  antiretroviral  therapy).  However,  some             

computational  efforts  have  been  made  aiming  to  better  understand  and  characterize             

those  antibodies.  Such  knowledge  is  intended  to  contribute  for  the  generation  of              

potent  antibody  variants  against  HIV-1.  In  this  context,  computational  simulations            

may  be  key  for  the  prediction  of  improved  antibodies.  The  following  sections  will               

illustrate   the   current   state-of-the-art   of   computational   protein   design.     
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Protein   design   

Recent  advances  in  the  availability  of  large  computational  resources  have  allowed             

the  concept  of  computational  protein  design.  This  field  takes  advantage  of             

experimental  knowledge  to  develop  computational  algorithms  that  can  be  exploited            

to  generate  predictive  models.  Such  predictive  power  can  be  used  to  engineer              

variants  of  proteins,  including  enzymes  and  protein-protein  systems,  for  an  improved             

application  of  interest.  Enzyme  engineering  is  probably  one  of  the  most             

representative  applications  of  computational  protein  design.  Many  successful          

examples  of  enzyme  design  are  described  in  the  literature,  since  they  have  found               

their  way  into  (mainly)  industrial  applications.  During  the  last  years,  enzyme             

engineering  has  drawn  the  attention  of  industrial  companies,  especially  for  the   green              

chemistry  solutions  that  enzymes  offer,  in  the  sense  that  engineered  enzymes  can              

substitute  chemical  reactions  that  are  environmentally  harmful  and  costly.  A  recently             

described  milestone  of  enzyme  engineering  consists  of  adding  additional  catalytic            

active  centers  into  a  protein  ( Pluryzimes TM ),  aiming  to  increase  the  activity  by  having               

more  than  one  active  site,  or  to  allow  other  different  chemical  reactions  than  the  one                 

found  for  the  native  enzyme   (Santiago   et  al. ,  2018;  Alonso   et  al. ,  2020) .  This                

demonstrates  the  usefulness  of  computational-aided  protein  design  and  the  need  of            

developing   and   improving   algorithms   to   generate   accurate   predictions.   

Regarding  protein-protein  design,  a  lesser  amount  of  examples  can  be  found  in  the               

literature  compared  to  enzyme  engineering,  which  is  (probably)  originated  because            

of  the  two  following  main  reasons.  Firstly,  protein-protein  interactions  occur  by  the              

formation  of  a  large  amount  of  weak  and  transitory  interactions,  which  are              

challenging  to  model  and  estimate.  Secondly,  protein-protein  systems  are  larger  and             

thereby,  more  difficult  to  simulate  than  protein-small  ligand  studies.  Hence,  usually             

the  bigger  is  the  system  the  more  expensive  are  the  simulations.  As  a  consequence,                

cheaper  algorithms  are  necessary  for  protein-protein  design  projects,  which  in  turn             

may  decrease  the  performance  of  the  prediction.  Alchemical  methods,  such  as  the             

ones  based  on  Free  Energy  Perturbations  (FEP),  have  found  a  niche  for  ligand               

screening  processes  in  drug  discovery  efforts.  However,  despite  that  they  are             

described  to  be  accurate,  they  demand  large  computational  resources  and  more             

importantly  their  application  in  protein-protein  systems  is  still  limited   (Clark   et  al. ,              
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2017,  2019) .  The  same  phenomenon  occurs  for  quantum  simulations,  which  are  still              

too  expensive  for  performing  large  screening  processes  in  protein-protein  complexes            

(Bottaro  and  Lindorff-Larsen,  2018) .  However,  with  the  rise  of  the            

supercomputational  era  during  the  following  decades,  techniques  that  are  not            

widely-applicable  at  this  moment  may  substitute  the  current  state-of-the  art  for             

performing  large  screening  processes  aiming  to  design  an  improved  protein-protein            

interaction.  Currently,  most  of  the  work  found  in  the  literature  is  based  on  molecular                

mechanics   (Siebenmorgen  and  Zacharias,  2020) .  The  following  section  describes           

the  concept  of  molecular  mechanics  and  the  basis  of  some  approaches  based  on               

this  concept,  including  the  prediction  of  changes  in  Gibbs  free  energy  upon  mutation,              

Molecular   Dynamics   and   Monte   Carlo   simulations.   

Molecular   mechanics   

Molecular  mechanics  is  a  physics-based  approach  widely  used  to  model  atomistic             

processes.  Molecular  mechanics  assumes  that  each  atom  is  a  solid  sphere,  which              

may  be  connected  to  other  atoms  by  means  of  springs,  simulating  a  covalent  bond.                

Each  atom  has  a  radius  and  an  electrostatic  charge  associated  and  it  is  placed  in  a                  

three-dimensional  space.  The  concept  of  force  field  is  based  on  the  above              

mentioned  characteristics,  which  can  be  defined  as  a  set  of  atoms  in  the              

three-dimensional  space  with  associated  potential  energy  values.  Potential  energy           

( U )  can  be  mathematically  modeled  by  means  of  a  general  equation  consisting  of               

multiple   terms   ( Equation   1 ):   

                     (1)    V V V V   V    U =   BS +   AB +   PT +   IT + V LJ +   EL + V SO  

The  first  four  terms  (V BS ,  V AB ,  V PT  and  V IT )  are  known  as  bonded  interactions,  while                 

the  last  three  terms  (V LJ ,  V EL  and  V SO )  are  known  as  non-bonded  interactions.               

Bonded  interactions  describe  bond  lengths,  bond  angles  and  dihedral  angles  of             

covalent  bonds.  On  the  other  hand,  non-bonded  interactions  describe  non-covalent            

forces,  such  as  van  der  Waals  and  electrostatic  energies.  Starting  by  the  bonded               

interactions,  V BS  represents  the  bond-stretching  energy,  which  stands  for  the  elastic             

interaction  of  covalent  bonds  between  atoms.  V AB  represents  the  angle-bending            

energy,  standing  for  the  interaction  among  three  atoms  connected  by  covalent             

bonds.  V PT ,  and  V IT  represent  the  proper  and  improper  torsional  energies,  standing              
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for  the  interaction  among  four  atoms  connected  by  covalent  bonds  that  form  proper               

and  improper  dihedral  angles,  respectively.  Regarding  the  non-bonded  interactions,           

V LJ  represents  the  Lennard-Jones  potential,  which  stands  for  the  van  der  Waals              

energy  (an  attractive  term)  and  the  Pauli  repulsion  (a  repulsive  term).  V EL  represents               

the  potential  energy  according  to  Coulomb’s  Law.  V SO  represents  the  solvation             

energy  of  the  system,  which  may  be  considered  by  means  of  explicit  or  implicit                

waters.  For  explicit  waters,  the  water  molecules  are  three-dimensionally  modeled            

and  their  energy  contribution  is  taken  into  account.  Some  of  the  most  widely  used                

explicit  water  models  are  SPC   (Berendsen   et  al. ,  1981)  and  TIP3P   (Jorgensen   et  al. ,                

1983) .  For  implicit  waters,  the  contribution  of  the  waters  is  simplified  by  means  of                

implicit  solvent  models,  such  as  for  instance  OBC   (Onufriev   et  al. ,  2004)  and               

VDGBNP    (Zhu    et   al. ,   2007) .   

The  above  mentioned  descriptors  aim  to  generally  describe  the  essence  of  a  force               

field.  However,  multiple  force  fields  have  been  developed  over  the  past  years,  such               

as  OPLS   (Jorgensen  and  Tirado-Rives,  1988) ,  CHARMM   (Vanommeslaeghe   et  al. ,            

2009) ,  GROMOS   (Reif   et  al. ,  2012)  and  AMBER   (Maier   et  al. ,  2015) .  Despite  that                

those  force  fields  may  follow  different  approaches,  they  usually  take  into  account  all               

described  terms.  However,  they  mainly  differ  on  the  parameterization  process  such             

as  for  instance  the  numerical  terms  on  the  partial  charges  or  in  the  van  der  Waals                  

parameters.   

The  following  sections  aim  to  provide  some  insights  about  the  different  molecular              

mechanics-based  methodologies  that  have  been  used  along  this  thesis.  We  will             

particularly  focus  on  the  prediction  of  changes  in  Gibbs  free  energy  upon  mutation,               

Molecular   Dynamics   simulations   and   Monte   Carlo   simulations.   

Describing   the   ΔΔG   upon   mutation   

Gibbs  binding  free  energy  changes  upon  mutation  (ΔΔG)  is  determined  by  the              

intermolecular  forces  found  between  proteins.  It  is  computed  by  the  difference  in              

Gibbs  free  energy  (ΔG,  also  known  as  binding  affinity)  between  the  mutation  and  the                

native  protein-protein  complexes.  There  are  many  experimental  methods  for  the            

determination  of  the  ΔG  including  isothermal  titration  calorimetry,  surface  plasmon            

resonance,  fluorescence,  spectroscopy  and  stopped-flow  assays   (Geng   et  al. ,  2016) .            
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However,  experimental  ΔG  determinations  are  expensive  and  time-consuming  and           

therefore,  there  is  an  interest  towards  their  computational  prediction.  In  this  way,  the               

accurate  estimation  of  the  effects  of  mutations  would  contribute  to  decrease  the              

amount  of  mutations  to  evaluate  experimentally  for  a  desired  effect.  Hence,             

computational  techniques  have  the  potential  of  guiding  experimental  mutagenesis           

studies,   reducing   time   and   costs.   

There  are  many  different  ΔΔG  predictors,  which  are  mainly  classified  as  physical              

energy  descriptors,  statistical  potentials,  shape  complementarity,  sequence         

conservation  and  more  recently,  machine  learning-based  techniques.  A  timeline  of            

some  representative  ΔΔG  binding  predictors  and  databases  of  experimental  ΔΔG’s            

determinations   is   illustrated   in    Figure   20 .   

  

Figure  20 .  Timeline  of  some  representative  protein-protein  binding  ΔΔG  predictors            

and  databases.  Adapted  from  Figure  2  of  “Finding  the  ΔΔG  spot:  Are  predictors  of                

binding  affinity  changes  upon  mutations  in  protein–protein  interactions  ready  for  it?”,             

WIREs  Comput  Mol  Sci .  (2019);  9:e1410,  DOI:  10.1002/wcms.1410          

(https://onlinelibrary.wiley.com/doi/full/10.1002/wcms.1410).   

The  following  section  will  describe  the  basis  of  the  ΔΔG  predictors  and  the               

databases   used   in   the   “ Predicting   ΔΔG:   UEP ”   result   section.   

ΔΔG   Predictors   

Seven  different  ΔΔG  predictors  have  been  benchmarked  in  this  thesis  including  five              

physical  energy  descriptors  (FoldX,  EvoEF1,  EvoEF2,  pyDock,  and  PRODIGY),  an            

statistical  potential  method  (BeAtMuSiC)  and  a  machine  learning-based  technique           

(mCSM).  As  described  in  the  following  lines,  most  of  their  force  fields  share  some                
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potential  energy  descriptors  and  partially  overlap  in  some  key  aspects.  However,             

they  mainly  differ  on  the  amount  of  descriptors  they  use  for  the  energy  estimation.  It                 

is  not  intended  here  to  describe  the  differences  in  the  parameterization  process  of               

those   techniques,   but   to   provide   a   general   overview   of   their   scoring   functions.   

FoldX  is  one  of  the  first  published  ΔG  predictors  for  protein-protein  complexes.  The               

first  version  of  the  method  was  published  in  2002  and  it  was  available   via  a                 

web-interface   (Guerois   et  al. ,  2002) .  FoldX  has  been  updated  through  the  years,              

including  two  updates  of  the  method  in  2005   (J.  Schymkowitz   et  al. ,  2005;  J.  W.  H.                  

Schymkowitz   et  al. ,  2005) .  FoldX  5.0  is  the  latest  release  of  the  method  (portable                

version),  and  it  was  published  in  2019   (Delgado   et  al. ,  2019) .  The  core  of  the                 

algorithm  relies  on  the  FOLDX  force  field  (FOLDEF),  which  was  designed  for  fast               

and  accurate  estimation  of  free  energy  changes  upon  mutations.  FOLDEF  is  based              

on  the  linear  combination  of  multiple  energy  terms  weighted  to  experimental             

determinations.  The  FoldX  energy  ( ΔG FOLDX )  accounts  for  six  energy  terms            

( Equation   2 ):   

         (2)      E     E   E   E  ΔGFOLDX = EV DW +   ELECT +  EHB +   SOLV +   CLASH +   ENTRO  

Here,   E VDW ,   E ELECT ,   E HB ,   E SOLV ,   E CLASH  and   E ENTRO  represent  the  total  van  der  Waals,                

electrostatic,  hydrogen  bonds,  solvation  of  polar  and  apolar  groups,  atomic  clash             

penalties  and  entropic  cost  penalties  contributions  for  a  protein  system,  respectively.             

Differently  to  other  ΔG  predictors,  FoldX  offers  a  swiss-army  of  functions  to              

manipulate  three-dimensional  structures,  ranging  for  repairing  them,  reconstructing          

missing  side  chains,  performing  modelization  of  mutations,  etc.  Moreover,  it  is  not              

limited  to  protein-protein  structures,  and  it  can  generate  base  substitutions  on             

three-dimensional   structures   of   DNA   and   RNA.   

EvoEF1  is  a  recent  ΔG  predictor  published  in  2019   (Pearce   et  al. ,  2019) .  Its  scoring                 

function  takes  advantage  of  five  different  energy  terms  optimized  on  stability  and              

binding  affinity  mutation  data.  The  terms  for  the  EvoEF1  energy  ( ΔG EvoEF1 )  are              

( Equation   3 ):   

                (3)      E     E   E  ΔGEvoEF1 = EV DW +   ELECT +  EHB +   DESOLV    REF  
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Here,   E VDW ,   E ELECT ,   E HB ,   E DESOLV  and   E REF  represent  the  total  van  der  Waals,               

electrostatic,  hydrogen  bonding,  desolvation  energy  of  polar  and  apolar  groups  and             

reference  energy  terms  for  a  protein  system,  respectively.  The  van  der  Waals  energy              

is  modified  from  the  Lennard-Jones  12-6  potential,  and  the  reference  term  is  used  to                

model  the  energy  of  the  protein  unfolded  state.  The  authors  described  that  EvoEF1               

outperforms  EvoEF2  for  ΔΔG  predictions.  Similarly  to  FoldX,  EvoEF1  also            

incorporates   the   needed   functions   for   generating   mutation   files.   

EvoEF2  was  published  in  2020   (Huang   et  al. ,  2020) ,  and  it  is  recommended  for   de                 

novo  protein  sequence  design  for  a  given  protein  scaffold.  The  EvoEF2  scoring              

function  ( ΔG EvoEF2 )  uses  nine  different  energy  terms,  preserving  the  five  energy  terms              

of  EvoEF1  while  taking  into  account  four  new  terms  to  tackle  difficult   de  novo  protein                 

designs   ( Equation   4 ):   

                    (4)    E   E E   E  ΔGEvoEF2 = EEvoEF1 +   SS +   AAPP +   RAMA +   ROT  

Here,  the  additional  energy  terms  for  EvoEF2  compared  to  EvoEF1  are   E SS ,   E AAPP ,               

E RAMA  and E ROT ,  which  describe  the  disulfide-bonding  interactions,  the  energy  for  the              

calculation  of  amino  acid  propensities  at  a  given  backbone  (φ/ψ)  angles,  the              

Ramachandran  term  given  an  amino  acid  for  specific  backbone  (φ/ψ)  angles  and  the               

energy  term  for  modeling  the  side-chain  rotamer,  respectively.  The  authors  described             

that  EvoEF2  shows  a  decrease  in  performance  for  ΔΔG  predictions,  but  an  increase               

of  performance  for   de  novo  design  of  proteins  compared  to  EvoEF1.  As  EvoEF1,               

EvoEF2   incorporates   the   needed   functions   to   generate   mutation   files.   

PyDock  is  an  algorithm  specifically  designed  for  protein-protein  docking  simulations            

and  it  was  firstly  published  in  2007   (Cheng   et  al. ,  2007) .  In  2013,  a  web  server                  

version  of  the  method  was  released   (Jiménez-García   et  al. ,  2013) .  More  recently  in               

2020,  another  web  server  version  of  the  method  was  released,  which  provides              

details  about  the  energetical  contribution  of  each  residue  of  the  protein-protein             

interface   (Romero-Durana   et  al. ,  2020) .  Compared  to  other  physical  energy-based            

predictors,   pyDock   scoring   function   ( ΔG pyDock )   only   uses   two   terms   ( Equation   5 ):  

                                      (5)    EΔGpyDock = EELEC +   DESOLV  
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Here,   E ELECT ,  and  E DESOLV  represent  the  electrostatic  and  the  desolvation  energy             

contribution  for  a  protein  system,  respectively.  The  authors  described  that  the  sum  of               

electrostatics  and  desolvation  energy  accounts  for  more  than  70%  of  the  total  energy               

contribution,  showing  enough  predictive  power  for  scoring  rigid-body  docking  poses.            

In  this  sense,  pyDock  is  not  a  widely  used  ΔΔG  but  its  ranking  as  one  of  the  best                    

protein  docking  protocols  in  a  recent  blind  prediction  competition  motivated  its             

evaluation  in  this  thesis   (Lensink   et  al. ,  2019) .  pyDock  was  not  specifically  designed               

to  perform  ΔΔG  predictions  and  therefore,  it  is  not  intended  to  generate  mutation               

files.  Because  of  this  reason,  pyDock  predictions  must  be  performed  on  models              

generated   by   third-party   applications   (such   as   FoldX,   EvoEF1   or   EvoEF2).   

PRODIGY  was  first  published  in  2015   (Vangone  and  Bonvin,  2015)  and  a  web  server                

version  was  released  in  2016   (Xue   et  al. ,  2016) .  According  to  the  authors,  the                

method  predicts  the  ΔG  based  on  a  weighted  network  of  interfacial  contacts  (ICs)               

corrected  by  a  non-interface  surface  (NIS).  The  interfacial  contacts  are  defined  by              

the  contacts  within  a  5.5  Å  cut-off  distance  between  the  protein  groups.  A               

simplification  of  the  PRODIGY  scoring  function  ( ΔG PRODIGY )  is  represented  by           

( Equation   6 ):   

(6)    ICs   ICs   ICs   NIS NIS  ΔGPRODIGY = ICschar char/ +   char apo/    pol pol/ +   pol apo/    apo    char  

Here,   ICs char/char ,  ICs char/apo ,   ICs pol/pol ,  ICs pol/apo ,   NIS apo  and  NIS char  represent  the  ICs  of              

charged/charged,  the  ICs  of  charged/apolar,  the  ICs  of  polar/polar,  the  ICs  of              

polar/apolar,  the  NIS  apolar  and  the  NIS  charged  groups  properties.  The  authors              

describe  that  their  energy  function,  based  on  ICs,  is  less  affected  by  sensitive               

conformational  changes  occurring  upon  binding.  PRODIGY  does  not  incorporate  the            

needed  tools  to  generate  mutation  files,  and  therefore,  its  predictions  must  be  based               

on  mutation  files  generated  by  third-party  applications  (such  as  FoldX,  EvoEF1  or              

EvoEF2).   

BeAtMuSiC  was  first  released  in  2013   (Dehouck   et  al. ,  2013)  as  a  web-server               

application.  Differently  to  the  other  methods,  BeAtMuSiC  is  specifically  designed  for             

the  evaluation  of  ΔΔG  and  does  not  require  the  previous  modeling  of  the  mutation.                

The  algorithm  returns  the  predicted  ΔΔG  of  a  mutation  compared  to  a  native               

reference,   and   its   scoring   function   ( ΔΔG BeAtMuSiC )   works   as   follows   ( Equation   7 ):   
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                                    (7)    α(ΔΔW ΔΔV )ΔΔGBeAtMuSiC =   +    

Here,  α,  ΔΔW  and  ΔΔV  represent  the  accessibility  of  the  solvent  of  the  mutated                

residue,  energy  changes  and  volume  changes  induced  by  the  mutation,  respectively.             

The  accessibility  of  the  solvent  is  used  as  a  sigmoid  function  to  weight  the  other  two                  

parameters,  and  it  is  based  on  experimental  binding  affinity  determinations  upon             

mutation.  Energy  changes  are  described  by  13  statistical  potentials  extracted  from  a              

dataset  of  known  protein  complexes.  Those  potentials  include  correlations  between            

amino  acids,  pairwise  inter-residue  distances,  torsion  angles  of  the  backbone,  and             

solvent  accessibilities.  The  term  of  changes  in  volume  was  introduced  to  account  for               

possible   packing   effects   originated   by   the   mutation.   

mCSM  is  one  of  the  first  machine  learning-based  techniques,  and  it  was  released  in                

2013   (Pires   et  al. ,  2014)  as  a  web  server  application.  Several  modifications  of  the                

original  algorithm  have  been  published  along  the  past  years,  including  algorithms             

specifically  designed  for  antibody  predictions   (Pires  and  Ascher,  2016;  Myung,            

Rodrigues,   et  al. ,  2020;  Myung,  Pires,   et  al. ,  2020) ,  protein-ligand   (Pires   et  al. ,               

2016) ,  protein-nucleic  acids   (Pires  and  Ascher,  2017) ,  and  stability  of  membrane             

proteins  upon  mutation   (Pires   et  al. ,  2020) .  Differently  to  the  other  algorithms,  mCSM               

scoring  function  is  not  formed  by  the  linear  combination  of  individual  energy  terms.  It                

is  based  on  graph-based  signatures  of  the  changes  in  contacts  originated  by  the               

mutations  weighted  to  the  experimental  binding  determinations.  The  mCSM           

hierarchical  procedure  works  as  following:  i)  given  a  mutation  with  an  experimental              

ΔΔG  associated,  the  contacts  of  the  wildtype  and  mutant  residues  with  the  partner               

protein  are  extracted,  ii)  for  both  wildtype  and  mutant,  a  pharmacophore  based  on               

the  physicochemical  properties  of  the  contacts  is  generated,  iii)  the  difference  of  the               

wildtype  and  mutant  pharmacophores  is  computed,  which  will  be  the  descriptors  for              

the  known  experimental  ΔΔG  determinations,  iv)  the  model  is  trained  based  on  those               

descriptors  and  the  associated  experimental  ΔΔG  determinations,  v)  for  generating            

predictions,  the  same  hierarchical  procedure  is  followed  for  the  estimation  of  the              

ΔΔG   under   the   trained   model.   
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Databases   related   to   ΔΔG   predictors   

In  this  section,  we  will  introduce  two  databases  that  have  been  used  in  the  context  of                  

this  thesis:  SKEMPI  2.0  and  Interactome3D.  They  have  been  used  in  the              

“ Predicting   ΔΔG:   UEP ”   result   section.   

SKEMPI  2.0  was  released  in  2018   (Jankauskaite   et  al. ,  2019)  and  it  is  the  updated                 

version  of  the  original  database   (Moal  and  Fernández-Recio,  2012) .  SKEMPI  2.0  is              

one  of  the  largest  databases  manually  curated  of  experimental  data  upon  mutation              

for  three-dimensionally  solved  protein-protein  complexes.  The  database  consists  of           

6187  unique  mutations  (from  an  amount  of  7085)  comprising  345  different  PDB              

entries  of  protein-protein  complexes.  The  authors  raise  several  concerns  about  the             

quality  of  the  data  used  for  the  construction  of  the  database,  which  may  be  of  great                  

interest  for  computational  design  efforts.  First  of  all,  the  authors  cautiously  state  that               

the  experimental  determinations  come  from  a  broad  range  of  studies  that  intrinsically              

add  bias.  This  is  because  the  data  they  have  collected  from  the  literature  is  biased                 

towards  the  interests  and  the  capabilities  of  the  research  community.  For  instance,              

almost  three  quarters  of  the  database  consists  of  single  mutations,  and  more  than  a                

half  of  them  are  mutations  to  alanine.  Moreover,  mutations  consisting  of  swapping              

charges  (negative  -  positive)  and  mutations  between  aromatic  residues  are            

overrepresented.  Furthermore,  most  of  the  mutation  data  belongs  to  the  binding  site,              

concretely  at  the  core  of  the  protein-protein  interface.  Taking  everything  together,             

there  is  no  doubt  that  the  data  found  in  the  literature  shows  some  degree  of  bias,                  

which  will  affect  the  development  and  benchmarking  of  algorithms  using  this  source              

of   data.   An   overview   of   the   SKEMPI   2.0   database   is   illustrated   in    Figure   21 .   

Regarding  the  mutation  data,  SKEMPI  2.0  contains  the  information  contained  on  the              

previous  version  of  the  database  (SKEMPI)  together  with  new  data.  Also,  it  contains               

data  from  other  known  databases,  including  dbMPIKT   (Liu   et  al. ,  2018) ,  AB-BIND              

(Sirin   et  al. ,  2016)  and  PROXiMATE   (Jemimah   et  al. ,  2017) .  Most  of  the  ΔΔG  values                 

fall  within  a  range  of  -3  to  +7  kcal/mol.  ΔG  values  are  the  most  common  binding                  

measurement,  and  the  most  popular  methods  for  determining  binding  affinity  are             

surface  plasmon  resonance  (SPR)  and  fluorescence  (FL).  Belonging  to  the            
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protein-protein  complex  category,  protease  inhibitor  and  antibody-antigen  systems          

are   overrepresented   compared   to   other   systems.   

  

Figure  21 .  An  overview  of  SKEMPI  2.0.  (A)  Mutations  partitioned  according  to  their               

origin,  the  number  of  altered  residues,  location  within  the  complex,  by  the  availability               

of  additional  kinetic  and  thermodynamic  data,  according  to  the  experimental  method             

used,  and  by  category.  (B)  Distribution  of  ΔΔG.  (C)  Source  and  target  amino  acids                

for  single  point  mutations.  Figure  1  of  “SKEMPI  2.0:  an  updated  benchmark  of               

changes  in  protein–protein  binding  energy,  kinetics  and  thermodynamics  upon           

mutation”,  (https://academic.oup.com/bioinformatics/article/35/3/462/5055583),    

Bioinformatics  (2018)  Vol.  35,  p.p  462–469,  DOI:  10.1093/bioinformatics/bty635.          

Licensed   by   CC   BY   4.0   (http://creativecommons.org/licenses/by/4.0/).   
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Interactome3D  is  a  web  service  that  contains  structural  annotation  of  protein-protein             

interaction  networks.  Despite  that  the  database  was  first  published  in  2013   (Mosca   et               

al. ,  2013) ,  it  is  being  updated  yearly.  In  this  sense,  the  modeling  pipeline  of                

Interactome3D  is  fully  automatized  and  handles  two  types  of  input  data:  a  set  of                

interactions  defined  by  the  user,  or  a  list  of  organisms  for  modeling  their  full  or  partial                  

interactomes.  The  authors  describe  the  algorithm  as  a  dynamic  resource  that             

collects  the  necessary  structural  data  for  single  proteins  and  binary  interactions,             

followed  by  an  automatized  protocol  for  selecting  the  best  scaffolds  for  modeling,              

returning  the  three-dimensional  coordinates  of  binary  complexes.  An  overview  of  the             

automatized  Interactome3D  pipeline  is  illustrated  in   Figure  22 .  The  first  pipeline  step             

consists  of  collecting  the  structures  for  each  of  the  individual  proteins  in  the               

interactome  network.  Here,  the  first  stage  consists  of  identifying  the  available             

experimental  structures  on  the  PDB,  and  to  increase  the  structural  coverage  by              

using  homology  models  using  ModBase   (Pieper   et  al. ,  2014) .  Then,  individual             

proteins  are  classified  into  three  categories  depending  on  the  sequence  coverage             

with  three-dimensional  data:  complete  experimental  structures  (covering  >80%  of  the            

length  of  the  protein  with  fully  sequence  identity),  complete  homology  models             

(covering  <80%  of  the  length  of  the  protein  with  fully  sequence  identity)  and  partial                

structures  and  models  (the  rest;  here  protein  fragments  are  grouped  to  increase  the               

protein  length  coverage).  Next,  the  algorithm  proceeds  to  identify  interaction            

structures  coming  from  experimental  determinations  or  suitable  templates  for           

modeling  them.  For  the  modeling  part,  only  are  considered  scaffolds  having  more              

than  >30%  sequence  identity  with  the  protein  pairs  to  be  modeled,  by  using               

protein-protein  interactions  found  on  the  PDB  or  in  3did   (Stein   et  al. ,  2011) .  The                

models  are  built  with  Modeller   (Sali  and  Blundell,  1993) ,  and  the  three-dimensional              

coordinates  are  examined  under  different  conditions.  Finally,  the  algorithm  ranks  all             

structures  and  models  assessing  completeness  and  quality,  obtaining  a           

representative  set  of  three-dimensional  models  for  each  interactome  consisting  of            

the   top-ranked   models   for   every   protein-protein   interaction.   

In  this  thesis,  we  have  used  the  representative  Interactome3D  database  from             

2019-01.  This  release  contains  33,607  unique  three-dimensional  protein-protein          

complexes  from  a  set  of  18  species  from  different  Kingdoms:  Plant  (1),  Protist  (1),                

Fungi  (2),  Animal  (6),  and  Eubacteria  (8).  The  three-dimensional  complexes  of             
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Interactome3D  are  classified  in  three  groups,  depending  on  their  source:            

experimental  structures  (44.2%),  homology  models  from  generic  PDB  templates           

(35.0%)   and   domain-domain   structural   templates   (20.8%).     

  

Figure  22 .  Overview  of  the  Interactome3D  pipeline.  The  fully  automatic            

Interactome3D  platform  recollects  experimentally  resolved  (PDB)  and  homology          

templates  (ModBase)  for  single  interacting  proteins,  and  maps  them  into  a  binary              

interaction  scaffold.  Homology  models  for  the  protein-protein  interaction  are  built            

using  Modeller  from  PDB  or  3did  scaffolds.  Figure  1  of  “Interactome3D:  adding              

structural  details  to  protein  networks”,  Nature  methods  (2013),  Vol.10,  p.p  47–53,             

DOI:   10.1038/nmeth.2289   (https://www.nature.com/articles/nmeth.2289).     
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Molecular   Dynamics   

Molecular  Dynamics  (MD)  is  a  computational  method  for  predicting  the  time             

evolution  of  a  system  of  interacting  particles.  In  order  to  do  so,  MD  integrates                

Newton's  equations  of  motion  under  an  energy  potential  described  by  a  force  field.               

Unless  otherwise  specified,  MD  employs  a  molecular  mechanics  force  field.  MD             

simulations  can  be  used  for  investigating  dynamic,  thermodynamic  and  structural            

properties  of  the  system   (Braun   et  al. ,  2019) .  A  general  workflow  of  an  MD                

simulation   consists   of   the   following   four   steps:   

● System   preparation.   

● Minimization/relaxation.   

● Equilibration.   

● Production.     

The  system  preparation  focuses  on  generating  a  valid  three-dimensional  structure            

fulfilling  the  requirements  for  an  MD  simulation,  including  modeling  the  system,             

solvation  (if  necessary)  and  applying  a  force  field  of  choice.  This  is  one  of  the  most                  

critical  steps,  and  in  many  cases  receives  the  least  attention.  The  worst  case               

scenario  is,  probably,  when  the  system  is  incorrect  (for  instance,  errors  in  the               

protonation  state)  but  maintaining  a  correct  chemical  composition  described  by  the             

force  field,  which  propagates  the  error  (without  being  noticed)  in  the  further  steps.               

This  example  does  not  only  play  an  important  role  in  MD,  but  also  in  all  other                  

molecular  modeling  computational  techniques.  After  the  system  is  properly  built,            

minimization  and  relaxation  steps  are  often  used  to  stabilize  the  complex  into  an               

energy  minima,  aiming  to  guarantee  the  success  of  the  further  steps.  Once  the               

structure  is  at  an  energy  minimum,  the  equilibration  stage  begins.  The  equilibration              

process  consists  of  slowly  adapting  the  dynamics  of  the  system  to  the  experimental               

conditions  of  the  simulation,  such  as  for  instance  temperature  and  pressure.  There  is               

no  universal  protocol  for  performing  this  equilibration  process;  its  choice  depends  on              

the  statistical  production  ensemble,  being  the  most  common  ensemble  variants:  NPT             

(constant  pressure  and  temperature),  NVT  (constant  volume  and  temperature)  and            

NVE  (constant  volume  and  energy).  When  the  equilibration  stage  reaches  the             

experimental  designed  conditions  and  the  system  remains  stable,  the  production            
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phase  begins.  The  production  phase  consists  of  applying  the  equations  of  motions              

and  saving  the  new  coordinates  periodically  until  some  criteria  is  met,  such  as  the                

total  simulation  time.  A  suggested  workflow  for  MD  simulations  is  illustrated  in              

Figure   23 .   

  

Figure  23 .  An  suggested  equilibration  and  production  ensemble  workflow  for  MD             

simulations.  Usually,  an  initial  phase  at  constant  volume  and  temperature  (NVT)  is              

required  to  reach  the  desired  temperature  or  energy  of  interest  (even  if  the  goal  is  to                  

also  bring  the  system  to  a  target  pressure).  For  NVE  ensembles  (first  row),  it  is                 

recommended  to  use  an  initial  NVT  phase  followed  by  a  short  additional  NVE               

equilibration.  For  NVT  ensembles  (second  and  third  row),  protocols  may  differ  after              

the  initial  NVT  phase  depending  if  the  density/volume  is  known  or  not.  For  NPT                

ensembles  (fourth  row),  an  initial  NVT  phase  is  followed  by  a  NPT  equilibration  in                

order  to  equilibrate  the  system  into  a  target  pressure.  After  the  equilibration  step,  the                

production  ensemble  is  performed.  Figure  5  of  “Best  Practices  for  Foundations  in              

Molecular  Simulations  [Article  v1.0]”  (2018),  Living  J.  Comp.  Mol.  Sci.  2019,  1(1),              

5957,   DOI:   10.33011/livecoms.1.1.5957.   

MD  simulations  are  relatively  expensive  compared  to  other  cheaper  computational            

approaches.  This  is  because  the  displacement  of  all  atoms  of  the  system  is               

computed  for  each  timestep,  which  is  an  herculean  effort  that  typically  requires  GPU               

parallelization.  With  the  current  technologies,  the  daily  length  of  a  regular  MD              

simulation  of  a  protein-protein  system  is  in  range  between  tens  and  hundreds  of               
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nanoseconds  per  day,  depending  on  the  amount  of  atoms  of  the  system  and  the                

computational  potency.  Most  of  the  processes  happen  in  nature  within  the  order  of              

milliseconds  to  seconds,  and  therefore  they  would  require  extensive  simulation            

processes.  Therefore,  one  must  know  the  current  limitations  of  the  MD  simulations,              

and  they  must  be  used  accordingly.  Aiming  to  address  those  limitations,  several              

enhancing  sampling  methods  have  been  developed  such  as  umbrella  sampling  MD             

or  replica  exchange.  Most  of  those  methods  consist  of  forcing/directing  the  evolution              

of  the  dynamics  of  the  system  into  a  desired  conformation/effect.  Despite  that  those               

techniques   are   of   great   interest,   they   are   out   of   the   scope   of   this   thesis.  

Monte   Carlo   

Monte  Carlo  (MC)  methods  are  based  on  probabilistic  rules  to  generate  a  new               

configuration  from  the  previous  one  (known  as  a  MC  step).  The  consecutive              

combination  of  MC  steps  generate  a  sequence  of  states  that  can  be  used  to  estimate                 

structural  and  thermodynamic  properties.  However,  MC  simulations  are          

time-independent,  and  dynamical  properties  based  on  the  evolution  over  time  can             

not  be  estimated.  This  is  true  for  almost  all  MC  algorithms  with  the  exception  of  the                  

Kinetic  Monte  Carlo  techniques,  where  dynamical  properties  can  be  extracted  from             

the  simulations.  The  idea  behind  MC  methods  is  that  the  ensemble  of  configurations               

generated  reflect  those  that  could  be  dynamically  sampled  by  large  MD  simulations.              

There  are  different  MC  algorithms  for  performing  biomolecular  simulations,  including            

PELE   (Borrelli   et  al. ,  2005) ,  MCPRO   (Jorgensen  and  Tirado-Rives,  2005)  and             

ProtoMS   (Woods   et  al. ,  2018) ,  among  others.  In  the  “ Predicting  antibody  binding              
efficacy:  PELE-antibody ”  result  section  we  describe  a  PELE  workflow  for  predicting             

antibody  binding  efficacy.  Hence,  we  will  focus  on  the  description  of  PELE  as  a                

representative   MC   method.   

PELE  stands  for  Protein  Energy  Landscape  Exploration,  and  the  method  was  first              

published  in  2005   (Borrelli   et  al. ,  2005) .  PELE  is  based  on  the  notion  that  an  efficient                  

conformational  sampling  can  be  obtained  by  the  generation  of  a  large  ensemble  of               

conformations  by  applying  small/mid  perturbations  to  the  system  in  every  PELE  step.              

PELE,  contrary  to  the  other  mentioned  MC  methods,  takes  into  account  a  complex               

perturbation  step  including  protein  structure  prediction  algorithms.  Hence,  proteins           
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simulated  by  PELE  are  not  considered  as  rigid  structures  (such  as  in  docking               

algorithms),  but  their  structure  is  harmonically  sampled  over  the  entire  simulation             

(giving  the  notion  that  the  protein  “breathes”).  A  basic  scheme  of  a  PELE  step  is                 

illustrated   in    Figure   24 .     

  

Figure  24 .  Schematic  representation  of  a  PELE  step.  (Image  author:  Ryoji             

Takahashi).     

Each  PELE  step  is  composed  of  two  phases:  perturbation  and  relaxation.  The              

algorithm  is  based  on  the  concepts  of  MC  minimization   (Li  and  Scheraga,  1987) ,               

activation-relaxation  fundamentals   (Malek  and  Mousseau,  2000)  and  basin  hoppin           

(Wales  and  Doye,  1997) .  The  initial  stage  of  PELE  consists  of  measuring  the  initial                

total  energy  of  the  system  ( Ei ).  Then,  PELE  initiates  the  perturbation  phase,  where               
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the  ligand  is  randomly  translated  and  rotated.  Here,  several  movements  are  sampled              

and  the  one  having  the  lowest  energy  is  selected  for  the  following  stages.  Next,  a                 

protein  structure  prediction  protocol  is  applied  by  means  of  Anisotropic  Network             

Models  (ANM)   (Atilgan   et  al. ,  2001) .  This  protocol  is  typically  used  for  every  4-5                

PELE  steps.  Then,  an  energy  minimization  protocol  is  applied  where  the  alpha              

carbons  of  the  protein  backbone  are  typically  constrained  in  order  to  favour  protein               

backbone   reorganization.   

The  relaxation  process  begins  after  the  perturbation  stage.  Initially,  a  side  chain              

prediction  protocol  is  applied  aiming  to  sample  local  interactions,  such  as  hydrogen              

bonds  or  hydrophobic  forces   (Jacobson,  Kaminski,   et  al. ,  2002) .  Then,  a             

minimization  stage  is  used  to  relax  the  entire  complex  aiming  to  improve  the               

acceptance  of  the  movement.  After  the  minimization,  the  total  final  energy  ( Er )  is               

computed  and  is  compared  with  the  total  initial  energy.  In  short,  the  movement  is                

always  accepted  if  there  is  an  energy  gain  after  the  movement.  If  not,  the  movement                 

may  be  accepted  or  not  depending  on  the  Metropolis  criterion   (Metropolis  and  Ulam,               

1949) .  If  the  movement  is  accepted,  it  will  be  used  as  the  starting  conformer  for  the                  

next  PELE  step;  otherwise,  the  previous  conformer  is  used  as  starting  point  for  the               

following   PELE   step.   

PELE  can  use  two  different  force  fields,  OPLS2005   (Kaminski   et  al. ,  2001;  Banks   et                

al. ,  2005)  or  AMBER99sbBSC0   (Pérez   et  al. ,  2007) ,  and  two  implicit  solvents,  OBC               

(Onufriev   et  al. ,  2004)  or  VDGBNP   (Zhu   et  al. ,  2007) .  Several  external  packages               

developed  in  the  group  take  advantage  of  the  PELE  algorithm  for  diverse  finalities:               

enhancing  the  sampling  efficiency  to  reduce  the  computational  demand   (Lecina   et             

al. ,  2017) ,  estimating  binding  free  energies  through  Markov  State  Models   (Gilabert   et              

al. ,  2019,  2020) ,  hit-to-lead  drug  design  by  means  of  dynamic  ligand  growing   (Perez               

et  al. ,  2020)  and  more  recently,  MC  perturbation  of  explicit  waters  within  biological               

systems.  PELE  has  been  typically  linked  to  drug  design   (Branco   et  al. ,  2020;  Díaz   et                 

al. ,  2020;  Saen-Oon   et  al. ,  2019;  Kotev   et  al. ,  2018) ,  ligand  diffusion  assays   (Carro                

et  al. ,  2018)  and  enzyme  design  campaigns   (Khersonsky   et  al. ,  2018;  Salas   et  al. ,                

2019;  Santiago   et  al. ,  2016;  Pardo   et  al. ,  2016) .          
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Objectives   

Along  the  introduction,  the  basis  of  the  mechanisms  of  the  immune  system  have              

been  presented,  paying  special  attention  to  antibodies  and  to  the  computational             

protein  design  field.  Here,  the  main  aim  of  this  thesis  is  the  development  and                

application  of  computational  algorithms  and  workflows  for  the  design  of  antibodies             

for  biomedical  applications.  To  achieve  this  goal,  we  have  conducted  numerous             

computational  studies  which  ultimately  lead  to  the  design  of  a  potent  antibody  variant               

with  experimental  characterization.  Hence,  this  thesis  is  presented  as  a            

“compendium”  of  research  works,  some  of  them  already  published  in  the  literature,              

amining   to   define   the   following   specific   objectives:   

● Elucidate  the  principles  of  protein-protein  design  and  understand  the  basis  of             

ΔΔG  predictors.  This  led  to  the  development  of  UEP,  our  estimator  of  the               

effects   of   mutations   in   protein-protein   complexes.   

● Unveil  the  principles  of  antibody  binding  affinity  and  to  provide  insights  about              

the   resistance   mechanisms   of   hypermutated   HIV-1   epitopes   towards   bNAbs.     

● Apply  computer-aided  molecular  simulations  techniques  to  design  an          

improved  variant  of  the  N6  bNAb,  one  of  the  most  potent  antibodies  against               

HIV-1.     
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Results   

In  this  section,  we  will  describe  the  results  of  three  computational  projects  for               

understanding  the  principles  of  protein-protein  design.  Firstly,  we  describe  UEP,  a             

method  developed  during  this  thesis  for  predicting  the  effects  of  mutations  in              

protein-protein  complexes.  Moreover,  the  performance  of  UEP  is  compared  with            

multiple  ΔΔG  state-of-the  art  predictors  (see   Describing  the  ΔΔG  upon  mutation:             

ΔΔG  predictors  section  for  a  detail  of  the  methods).  Secondly,  we  will  describe  a                

protocol  using  PELE  (see   Molecular  mechanics:  Monte  Carlo  section  for  a  detail  of               

the  method )  for  predicting  antibody  binding  efficacy  towards  hypermutated  HIV-1            

epitopes.  Thirdly,  we  will  describe  three   in  silico  attempts  using  all  above  described               

methodologies  (see   Molecular  mechanics   section)  for  improving  the  binding           

efficacy  of  the  N6  antibody  (see   Designing  a  potent  broadly  neutralizing  antibody              

section   for   an   overview   of   the   N6   antibody).     

Predicting   ΔΔG:   UEP   

Almost  all  ΔΔGs  for  predicting  the  effects  of  mutations  in  protein-protein  complexes              

fit  their  scoring  function  to  experimental  ΔΔG  determinations  to  generate  predictive             

power.  However,  as  discussed  in  the  section  “ Databases  related  with  ΔΔG             
predictors ”,  experimental  data  is  limited  and  highly  heterogeneous  which  may            

impact   the   reliability   of   the   predictions.     

Here,  we  propose  UEP,  a  ΔΔG  predictor  trained  on  other  sources  of  data  different                

from  experimental  ΔΔG  determinations.  Our  results  indicate  that  UEP  shows            

competitive  predictive  performance  than  the  best  evaluated  state-of-the  art           

algorithms  to  perform  this  task.  The  algorithm  has  been  recently  published             

(Amengual-Rigo,   Fernández-Recio,    et   al. ,   2020) .     
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UEP   algorithm   

UEP  algorithm  takes  advantage  of  the  representative  release  of  the  Interactome3D             

database  (2019-01  version)  to  generate  a  predictive  model  based  on  statistical             

potentials.  Experimental  binding  determinations  of  mutations  in  protein-protein          

complexes  (from  SKEMPI  2.0)  were  used  to  determine  the  performance  of  UEP,              

together  with  the  state-of-the  art  methods  described  in  the  “ ΔΔG  predictors ”  section:              

FoldX,   EvoEF1,   EvoEF2,   pyDock,   BeAtMuSiC,   PRODIGY   and   mCSM.   

All  protein-protein  complexes  found  in  SKEMPI  2.0  are  also  found  on  the              

interactome  Interactome3D  database,  and  moreover,  there  is  a  high  degree  of             

redundancy  between  the  complexes  used  in  both  databases.  Aiming  to  minimize  the              

risk  of  observing  results  biased  towards  this  redundancy  effect,  we  aimed  to  filter  out                

the  complexes  from  Interactome3D  (that  will  be  used  to  develop  the  predictive  power               

of  UEP)  that  are  similar  to  the  SKEMPI  2.0  ones.  Hence,  all  possible  pairwise                

sequence  alignments  between  Interactome3D  (33,607)  and  SKEMPI  2.0  (345)           

protein-protein  complexes  were  performed  using  the  BLOSUM62  matrix   (Henikoff           

and  Henikoff,  1992)  and  the  Needleman-Wunsch  algorithm (Needleman  and           

Wunsch,  1970) .  Sequence  identity  analysis  revealed  that  most  Interactome3D           

complexes  (31,736  of  33,607)  share  less  than  30%  identity  to  any  protein  involved  in                

a  protein-protein  complex  of  SKEMPI  2.0  ( Figure  25 ).  Thus,  this  threshold  (30%)              

was  used  for  selecting  the  complexes  from  Interactome3D  to  train  UEP  (31,736              

protein-protein  complexes  sharing  less  than  30%  sequence  identity  to  any  of  the              

complexes  found  in  SKEMPI  2.0).  Overall,  13,773  experimental  structures,  11,044            

models  from  generic  PDB  templates  and  6,919  from  domain-domain  structural            

templates   were   selected.   
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Figure  25 .  Sequence  identity  from  pairwise  alignments  between  the  Interactome3D            

and  SKEMPI  2.0  protein-protein  complexes.  Most  of  the  Interactome3D  complexes            

(31,736  of  33,607)  share  less  than  30%  to  any  of  the  proteins  found  in  SKEMPI  2.0.                  

Selected   protein-protein   complexes   were   used   to   train   the   predictive   power   of   UEP.   

Once  that  dissimilar  protein-protein  complexes  from  Interactome3D  were  selected,           

we  proceeded  to  build  the  UEP  algorithm.  Our  goal  was  to  generate  a  fast  algorithm                 

to  generate  rapid  scans  on  protein-protein  interfaces,  and  therefore  we  designed  the              

algorithm  in  such  a  way.  A  representative  scheme  of  the  UEP  algorithm  is  illustrated                

in   Figure  26 .  To  start  with,  UEP  algorithm  takes  advantage  of  interactome  data  of                

protein-protein  complexes  (the  ones  with  low  sequence  identity  <30%  to  SKEMPI             

2.0).  For  every  protein-protein  complex,  UEP  scans  the  highly-packed  residues  of             

the  protein-protein  interface.  The  highly-packed  term  refers  to  positions  having  more             

than  two  intermolecular  heavy-atom  contacts  within  a  distance  of  5  Å  (this  is,  being                

at  least  in  contact  with  two  different  residues).  We  observed  that  mutations  on  the                

highly-packed  region  exert  larger  impacts  on  the  experimental  ΔΔG  than  the             

non-highly  packed  ones  ( Table  1 ),  and  therefore  they  are  easier  to  be  correctly               

predicted  by  any  predictor.  We  also  observed  that  mutations  other  than  alanine  exert               

larger  impacts  on  the  experimental  ΔΔG  than  alanine  mutations,  and  therefore,  they              

are   also   easier   to   be   correctly   predicted   by   any   method.     

59   



  

  

Figure  26 .  Scheme  of  the  UEP  algorithm.  UEP  is  based  on  interactome  data  of                

protein-protein  complexes.  From  those  structures,  UEP  scans  the  packed  interface            

residues  to  generate  the  UEP  contact  matrix.  Such  contact  matrix  can  be  used  for                

the  prediction  of  suitability  of  mutations  for  certain  positions  at  a  packed  interface               

region.  This  process  is  fast  and  works  without  the  generation  of  mutation  files,               

allowing   for   computationally   inexpensive   large   screening   processes.   
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Table  1 .  Summary  of  experimental  ΔΔG  determinations  in  SKEMPI  2.0.  Average             

ΔΔG  determinations  (kcal/mol)  upon  mutation  depending  on:  (i)  mutation  nature:  if             

the  mutation  is  to  alanine  or  to  other  than  alanine,  and  ii)  if  the  mutation  data  belongs                   

to  a  highly-packed  interface:  more  than  two  intermolecular  heavy-atom  contacts            

within   a   distance   of   5   Å.   

Once  that  the  highly-packed  residues  have  been  located  in  the  three-dimensional             

space,  a  statistical  potential  scheme  is  built:  the  amino  acids  forming  intermolecular              

contacts  with  a  highly-packed  residue  are  taken  into  account  following  a  three  body               

scheme.  In  the  three-body  scheme,  one  residue  of  one  protein  is  in  contact  with  (at                 

least)  a  pair  of  residues  of  the  other  protein.  In  the  case  that  the  number  of  contacts                   

is  higher  than  two,  the  combination  of  all  possible  pairs  of  residues  (without  repetition                

and  order)  is  performed.  An  example  is  depicted  here:  (protein  A:  TRP  27)  is  in                 

contact  with  (protein  B:  PRO  45,  TYR  47  and  SER  48).  In  this  way,  contacts  that                  

would  be  accounted  into  the  contact  matrix  for  TRP  would  be  PRO-TYR,  PRO-SER               

and  TYR-SER.  We  observed  that  this  contact  scheme  results  in  higher  prediction              

accuracy   than   using   the   classical   pairwise   contact   scheme.   

Benefits  of  using  the  UEP  three-body  scheme  compared  to  a  pairwise  architecture  is               

shown  in   Table  2-3 ,  for  mutations  to  alanine  and  to  other  than  alanine,  respectively.                

A  description  of  such  statistical  determinations  (PPV,  NPV,  TPR,  TNR  and  MCC)  is               

provided  in  the  “ UEP  compared  to  the  state-of-the  art ”  section.  As  can  be               

observed,  mutations  other  than  alanine  are  easier  to  be  predicted  (in  this  case,  by                

UEP),  since  the  MCC  values  are  higher  (0.20  and  0.12,  for  the  three-body  and                

pairwise  contact,  respectively)  than  mutations  to  alanine  (0.10  and  -0.04,  for  the              

three-body   and   pairwise   contact,   respectively).   
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Mutation   Alanine   Other   than   alanine   

Highly-packed   interface   YES   NO   YES   NO   

ΔΔG   increase   (kcal/mol)   -0.79   -0.44   -2.24   -1.28   

ΔΔG   decrease   (kcal/mol)   2.84   1.23   3.63   1.72   



  

Table  2 .  Performance  of  the  three-body  contact  potential  compared  to  the  classical              

pairwise  contact  scheme  for  985  mutations  to  alanine  evaluated  in  this  work.  P+/-               

indicate  the  prediction  output,  while  the  C+/-  indicate  experimental  value  (increasing             

and  decreasing  the  ΔΔG,  respectively.  Statistical  descriptors  PPV,  NPV,  TPR,  NPR             

and   MCC   are   shown.   

Table  3 .  Performance  of  the  three-body  contact  potential  compared  to  the  canonical              

pairwise  contact  scheme  for  1251  mutations  other  than  alanine  evaluated  in  this              

work.  P+/-  indicate  the  prediction  output,  while  the  C+/-  indicate  experimental  value              

(increasing  and  decreasing  the  ΔΔG,  respectively.  Statistical  descriptors  PPV,  NPV,            

TPR,   NPR   and   MCC   are   shown.   

From  those  results  we  concluded  that  the  predictive  power  towards  alanine             

mutations  is  still  limited  (not  only  by  UEP  but  also  for  all  the  other  predictors,                 

illustrated  in  the  following  sections),  probably  because  of  the  short  range  of              

experimental  ΔΔG  determinations  compared  to  mutations  to  other  than  alanine            

( Table  1 ).  Here,  the  average  experimental  ΔΔG  determinations  of  mutations  to             

alanine  located  in  the  highly-packed  interface  are  -0.79  and  2.84  kcal/mol  (for              

mutations  improving  and  decreasing  the  binding  energy,  respectively),  while  for            
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Three-body   contact     Pairwise   contact   
      

  C+   C−         C+   C−     

P+   25   94   PPV   0.21     P+   11   112   PPV   0.30   

P−   97   769   NPV   0.89     P−   111   751   NPV   0.80   

TPR   0.20   TNR   0.89   MCC     TPR   0.52   TNR   0.61   MCC   

  0.10       -0.04   

Three-body   contact     Pairwise   contact   
      

  C+   C−         C+   C−     

P+   197   404   PPV   0.37     P+   155   367   PPV   0.30   

P−   101   549   NPV   0.83     P−   143   586   NPV   0.80   

TPR   0.66   TNR   0.58   MCC     TPR   0.52   TNR   0.61   MCC   

  0.20       0.12   



  

mutations  to  alanine  placed  in  the  non-highly  packed  region  are  -0.44  and  1.23               

kcal/mol  (mutations  improving  and  decreasing  the  binding  energy,  respectively).          

However,  larger  changes  in  experimental  ΔΔG  were  observed  for  mutations  to  other              

than  alanine  for  mutations  placed  in  the  highly-packed  interface:  -2.24  and  3.63              

kcal/mol  (mutations  improving  and  decreasing  the  binding  energy,  respectively)  and            

for  mutations  placed  in  the  non-highly  packed  region:  -1.28  and  1.72  (mutations              

improving   and   decreasing   the   binding   energy,   respectively).   

The  UEP  contact  matrix  is  generated  after  the  scan  of  the  selected  complexes  of                

Interactome3D.  The  matrix  consists  of  the  sum  of  all  of  the  three-body  contacts               

observed  in  all  protein-protein  complexes.  After  constructing  the  matrix,  the  method             

is  able  to  make  computationally  inexpensive  predictions  of  the  mutations  in             

highly-packed  positions  from  any  protein-protein  complex.  In  order  to  do  so,  UEP              

only  works  on  the  native  structure,  and  does  not  rely  on  the  modelization  of  the                 

mutation,  which  can  be  a  time-consuming  step.  In  this  sense,  the  average  time  for                

modelling  a  single  mutation  using  FoldX  and  EvoEF1/2  was  ~30  and  ~5  seconds,               

respectively,  while  the  evaluation  of  the  energy  of  the  complex  takes  less  than  a                

second  for  every  single  predictor.  Hence,  the  need  to  explicitly  generate  the  models               

for  the  mutations  highly  increases  the  computational  requirements  in  some  orders  of              

magnitude,   which   is   counterproductive   for   large   screening   processes.   

Instead  of  generating  (or  using)  mutation  files,  UEP  works  on  the  native  structure               

and  approximates  the  contacts  that  the  mutation  would  have  by  estimating  changes              

in  side-chain  volume   (Lin   et  al. ,  2008) .  We  observed  that  this  simplification  correctly               

approximates  the  real  contacts  of  the  mutation.  After  deciphering  the  contacts  of  the               

native  and  the  mutant  amino  acids  with  the  partner  chain,  two  scores  (for  native  and                 

mutant  residues)  are  obtained  following  the  three-body  scheme  described  previously.            

Both  scores  are  normalized  by  the  frequency  of  finding  those  residues  (native  and               

mutant,  respectively)  in  the  UEP  contact  matrix.  Thus,  a  potential  ΔΔG UEP  can  be               

estimated  from  the  ratio  of  such  normalized  scores   (Moal  and  Fernandez-Recio,             

2013) .   

                    (8)    og  ΔΔGUEP =    l )  ( Normalized native score
Normalized mutant score
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In  this  sense,  UEP  does  not  perform  additional  normalizations  based  on             

physicochemical  properties,  such  as  hydrophobicity,  polarity  or  charges  (such  as            

other  predictors  described  along  this  thesis).  We  expected  that  our  contact  network              

would  implicitly  address  such  features  by  the  observed  contact  frequencies  in  the              

interactome  data.  In  the  following  section,  we  evaluated  the  ΔΔG  predictions  of  UEP               

compared   to   the   state-of-the   art   algorithms   described   previously.   

UEP   compared   to   the   state-of-the   art   

UEP  performance  was  evaluated  for  predicting  SKEMPI  2.0  data  together  with  five              

physical-energy  descriptors  (FoldX,  EvoEF1,  EvoEF2,  pyDock,  and  PRODIGY),  an           

statistical  potential  method  (BeAtMuSiC)  and  a  machine-learning  based  one           

(mCSM).  All  single  mutations  in  SKEMPI  2.0  having  no  discrepancies  on  the              

experimental  binding  energies  were  used.  This  is,  all  determinations  pointing  out  that              

the  mutation  increases  or  decreases  the  binding  affinity  in  an  unanimous  way.  This               

resulted  in  an  amount  of  2103  mutations  to  alanine  and  1762  mutations  to  other  than                 

alanine.  From  those,  985  mutations  to  alanine  and  1251  mutations  to  other  than               

alanine  are  embedded  within  the  highly-packed  interface  region,  and  can  be  scored              

by  UEP  (representing  264  out  of  354  protein-protein  complexes  in  the  database).  A               

comparison  of  the  binding  affinity  data  between  highly-packed/non-highly  packed           

regions  and  mutations  to  alanine/other  than  alanine  has  been  previously  exposed  in              

Table  1 .  We  splitted  the  SKEMPI  2.0  dataset  in  different  ways  to  provide  insights                

about  the  prediction  mechanism  by  all  methods  regarding  their  ability  to  classify              

(improving/decreasing  the  binding  affinity)  and  to  correlate  mutations  (with  the            

experimental  binding  values).  For  both  classification  and  correlation  studies,           

mutations   to   alanine   and   to   other   than   alanine   were   evaluated   independently.     

Evaluation  of  the  classification  performance  was  based  on  the  statistical  analysis  of              

the  confusion  matrix.  Confusion  matrix  indicates  the  amount  of  True  Positives  (TP),              

True  Negatives  (TN),  False  Positives  (FP)  and  False  Negatives  (FN).  Hence,  the              

confusion  matrix  interprets  the  input  conditions  (C+  and  C-)  and  the  output              

predictions  (P+  and  P-)  of  a  simulation  case.  A  simple  confusion  matrix  looks  as                

following:   
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Here,  TP  and  TN  represent  the  amount  of  mutations  correctly  predicted  as  such:  this                

is,  mutations  predicted  to  increase  (P+  and  C+)  or  decrease  (P-  and  C-)  the  binding                 

affinity  of  the  complex,  respectively.  FP  represents  the  amount  of  mutations             

incorrectly  predicted  to  increase  the  binding  affinity,  while  in  fact  they  are  decreasing               

it  (P+  and  C-).  FN  represents  the  amount  of  mutations  incorrectly  predicted  to               

decrease   the   binding   affinity,   while   they   are   increasing   it   (P-   and   C+).   

Several  statistical  descriptors  for  classification  analysis  can  be  computed  from  the             

confusion  matrix:  Positive  Predictive  Value  (PPV),  Negative  Predictive  Value  (NPV),            

True  Positive  Rate  (TPR),  True  Negative  Rate  (TNR)  and  Matthew’s  Correlation             

Coefficient   (MCC).     

● PPV  ( Equation  9 )  is  also  known  as  precision,  and  indicates  the  proportion  of               

TP   from   the   ones   predicted   to   be   as   such   (increasing   the   binding   energy).     

                                          (9)  PVP =   TP
TP+FP  

● In  a  similar  way  to  PPV,  NPV  ( Equation  10 )  indicates  the  proportion  of  TN                

from   the   ones   predicted   to   be   as   such   (decreasing   the   binding   energy).     
  

                                                    (10)  PVN = TN
TN+FN  

● TPR  ( Equation  11 ),  also  known  as  recall,  sensitivity  or  power,  indicates  the              

fraction  of  TP  from  the  amount  of  entries  that  are  experimentally  increasing              

the   binding   energy.     

                                                    (11)  PRT = TP
TP+FN  
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● In  a  similar  way  to  TPR,  TNR  ( Equation  12 )  also  known  as  specificity,               

represents  the  fraction  of  TN  from  the  amount  of  entries  that  are              

experimentally   decreasing   the   binding   energy.   

                                                    (12)  NRT = TN
TN+FP  

● MCC  ( Equation  13 )  is  a  statistical  measurement  widely  used  for  classifying             

unbalanced  data,  which  is  the  case  for  the  SKEMPI  2.0  data,  since  only  122                

out  of  985  mutations  to  alanine,  and  298  out  of  1251  mutations  other  than                

alanine   increase   the   binding   affinity   compared   to   the   native   counterpart.     

                     (13)  CCM = (TPxTN )(FPxFN )

√(TP+FP )(TP+FN )(TN+FP )(TN+FN )
 

● On  the  other  hand,  evaluation  of  the  correlation  performance  was  based  on              

the  Pearson  Correlation  Coefficient  (PCC)  and  the  Root  Mean  Square  Error             

(RMSE)   between   experimental   and   predicted   ΔΔG.   

As  mentioned  previously,  mutations  were  grouped  depending  on  their  location:  if             

they  are  placed  on  the  highly-packed  interface  or  not.  Regarding  the  highly-packed              

interface  group,   Figure  27  and   Figure  28  represent  the  confusion  matrices  from  all               

methods   for   mutations   to   alanine   and   mutations   to   other   than   alanine,   respectively.     

Full  data  regarding  the  confusion  matrices  and  the  statistical  descriptors  is  shown  for               

highly-packed  positions  in   Table  4  and   Table  5  (for  mutations  to  alanine  and               

mutations  to  other  than  alanine,  respectively)  and  for  non-highly-packed  positions  in             

Table  6  and   Table  7  (for  mutations  to  alanine  and  mutations  to  other  than  alanine,                 

respectively).     
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Figure  27 .  Performance  of  all  predictors  on  the  985  alanine  mutations  embedded              

within  the  highly-packed  region.  Left  panel  shows  the  TPR,  TNR,  PPV,  and  NPV               

patterns.  On  the  right  panel,  confusion  matrices  are  shown  (same  data  as   Table  4 ):                

experimental  conditions  are  represented  in  vertical  (C+  or  C−,  if  mutation  increases              

or  decreases  experimental  binding  affinity,  respectively)  while  predictions  are           

represented  in  horizontal  (P+  or  P−,  if  mutation  is  predicted  to  increase  or  decrease                

the  binding  affinity).  MCC  scores  and  the  approximated  computer  wall  clock  time  are               

also   provided.   Time   is   not   shown   for   web   server   based   methods.   
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Figure  28 .  Performance  of  all  predictors  on  the  1251  mutations  to  other  than  alanine                

embedded  within  the  highly-packed  region.  Left  panel  shows  the  TPR,  TNR,  PPV,              

and  NPV  patterns.  On  the  right  panel,  confusion  matrices  are  shown  (same  data  as                

Table  5 ):  experimental  conditions  are  represented  in  vertical  (C+  or  C−,  if  mutation               

increases  or  decreases  experimental  binding  affinity,  respectively)  while  predictions           

are  represented  in  horizontal  (P+  or  P−,  if  mutation  is  predicted  to  increase  or                

decrease  the  binding  affinity).  MCC  scores  and  the  approximated  computer  wall             

clock   time   are   also   provided.   Time   is   not   shown   for   web   server   based   methods.   
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Table   4.  Confusion  matrices  for  985  mutations  to  alanine  embedded  within  the              

highly-packed  interface  region.  P+/-  indicate  the  prediction  output,  while  the  C+/-             

indicate  experimental  value  (increasing  and  decreasing  the  ΔΔG,  respectively.           

Statistical   descriptors   PPV,   NPV,   TPR,   NPR   and   MCC   are   shown.   
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Unanimous   C+   C−   PPV/NPV     Consensus   C+   C−   PPV/NPV   

P+   9   11   0.45     P+   37   101   0.27   

P−   33   481   0.94     P−   85   762   0.90   

TPR/NPR   0.21   0.98   MCC:   0.27     TPR/NPR   0.30   0.88   MCC:   0.18   
                  

FoldX   C+   C−   PPV/NPV     UEP   C+   C−   PPV/NPV   
P+   51   154   0.25     P+   25   94   0.21   

P−   71   709   0.91     P−   97   769   0.89   

TPR/NPR   0.42   0.82   MCC:   0.19     TPR/NPR   0.20   0.89   MCC:   0.10   
                  

UEP   UNT   C+   C−   PPV/NPV     pyDock-F   C+   C−   PPV/NPV   

P+   12   53   0.18     P+   59   246   0.19   

P−   61   485   0.89     P−   63   617   0.91   

TPR/NPR   0.16   0.90   MCC:   0.07     TPR/NPR   0.48   0.71   MCC:   0.14   
                  

pyDock-E   C+   C−   PPV/NPV     PRODIGY-F   C+   C−   PPV/NPV   

P+   64   267   0.19     P+   43   193   0.18   

P−   58   596   0.91     P−   79   670   0.89   

TPR/NPR   0.52   0.69   MCC:   0.15     TPR/NPR   0.35   0.78   MCC:   0.10   
                  

PRODIGY-E   C+   C−   PPV/NPV     EvoEF1   C+   C−   PPV/NPV   

P+   45   195   0.19     P+   47   169   0.22   

P−   77   668   0.90     P−   75   694   0.90   

TPR/NPR   0.37   0.77   MCC:   0.11     TPR/NPR   0.39   0.80   MCC:   0.15   
                  

EvoEF2   C+   C−   PPV/NPV     BeAtMuSiC   C+   C−   PPV/NPV   
P+   37   158   0.19     P+   7   23   0.23   

P−   85   705   0.89     P−   115   840   0.88   

TPR/NPR   0.30   0.82   MCC:   0.10     TPR/NPR   0.06   0.97   MCC:   0.06   
                  

mCSM   TRA   C+   C−   PPV/NPV     mCSM   UNT   C+   C−   PPV/NPV   
P+   3   3   0.50     P+   2   7   0.22   
P−   46   322   0.88     P−   71   531   0.88   

TPR/NPR   0.06   0.99   MCC:   0.14     TPR/NPR   0.03   0.99   MCC:   0.04   



  

Table  5.  Confusion  matrices  for  1251  mutations  to  other  than  alanine  embedded              
within  the  highly-packed  interface  region.  P+/-  indicate  the  prediction  output,  while             
the  C+/-  indicate  experimental  value  (increasing  and  decreasing  the  ΔΔG,           
respectively.   Statistical   descriptors   PPV,   NPV,   TPR,   NPR   and   MCC   are   shown.   

  

70   

Unanimous   C+   C−   PPV/NPV     Consensus   C+   C−   PPV/NPV   

P+   113   117   0.49     P+   215   361   0.37   

P−   23   281   0.92     P−   83   592   0.88   

TPR/NPR   0.83   0.71   MCC:   0.47     TPR/NPR   0.72   0.62   MCC:   0.29   
                  

FoldX   C+   C−   PPV/NPV     UEP   C+   C−   PPV/NPV   
P+   162   277   0.37     P+   197   404   0.33   

P−   136   676   0.83     P−   101   549   0.84   

TPR/NPR   0.54   0.71   MCC:   0.23     TPR/NPR   0.66   0.58   MCC:   0.20   
                  

UEP   UNT   C+   C−   PPV/NPV     pyDock-F   C+   C−   PPV/NPV   

P+   94   138   0.41     P+   217   418   0.34   

P−   40   167   0.81     P−   81   535   0.87   

TPR/NPR   0.70   0.55   MCC:   0.23     TPR/NPR   0.73   0.56   MCC:   0.25   
                  

pyDock-E   C+   C−   PPV/NPV     PRODIGY-F   C+   C−   PPV/NPV   

P+   206   371   0.36     P+   153   390   0.28   

P−   92   582   0.86     P−   145   563   0.80   

TPR/NPR   0.69   0.61   MCC:   0.26     TPR/NPR   0.51   0.59   MCC:   0.09   
                  

PRODIGY-E   C+   C−   PPV/NPV     EvoEF1   C+   C−   PPV/NPV   

P+   158   395   0.29     P+   200   375   0.35   

P−   140   558   0.80     P−   98   578   0.86   

TPR/NPR   0.53   0.59   MCC:   0.10     TPR/NPR   0.67   0.61   MCC:   0.24   
                  

EvoEF2   C+   C−   PPV/NPV     BeAtMuSiC   C+   C−   PPV/NPV   
P+   123   197   0.38     P+   79   126   0.39   

P−   175   756   0.81     P−   219   827   0.79   

TPR/NPR   0.41   0.79   MCC:   0.20     TPR/NPR   0.27   0.87   MCC:   0.15   
                  

mCSM   TRA   C+   C−   PPV/NPV     mCSM   UNT   C+   C−   PPV/NPV   
P+   86   22   0.80     P+   16   30   0.35   

P−   78   626   0.89     P−   118   275   0.70   

TPR/NPR   0.52   0.97   MCC:   0.58     TPR/NPR   0.12   0.90   MCC:   0.03   



  

Table   6.  Confusion  matrices  for  1118  mutations  to  alanine  located  in  the              

non-highly-packed  interface  region  (the  ones  that  UEP  could  not  score  because  of  a               

lack  of  intermolecular  contacts).  P+/-  indicate  the  prediction  output,  while  the  C+/-              

indicate  experimental  value  (increasing  and  decreasing  the  ΔΔG,  respectively.           

Statistical   descriptors   PPV,   NPV,   TPR,   NPR   and   MCC   are   shown.   
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FoldX   C+   C−   PPV/NPV     pyDock-F   C+   C−   PPV/NPV   

P+   79   228   0.26     P+   115   319   0.26   

P−   193   618   0.76     P−   157   527   0.77   

TPR/NPR   0.29   0.73   MCC:   0.02     TPR/NPR   0.42   0.62   MCC:   0.04   
                  

pyDock-E   C+   C−   PPV/NPV     PRODIGY-F   C+   C−   PPV/NPV   
P+   138   357   0.28     P+   28   124   0.18   

P−   134   489   0.78     P−   244   722   0.75   

TPR/NPR   0.51   0.58   MCC:   0.07     TPR/NPR   0.10   0.85   MCC:   -0.05   
                  

PRODIGY-E   C+   C−   PPV/NPV     EvoEF1   C+   C−   PPV/NPV   

P+   38   111   0.26     P+   73   212   0.26   

P−   234   735   0.76     P−   199   634   0.76   

TPR/NPR   0.14   0.87   MCC:   0.01     TPR/NPR   0.27   0.75   MCC:   0.02   
                  

EvoEF2   C+   C−   PPV/NPV     BeAtMuSiC   C+   C−   PPV/NPV   

P+   67   174   0.28     P+   28   71   0.28   

P−   205   672   0.77     P−   244   774   0.76   

TPR/NPR   0.25   0.79   MCC:   0.04     TPR/NPR   0.10   0.92   MCC:   0.03   
                  

mCSM   TRA   C+   C−   PPV/NPV     mCSM   UNT   C+   C−   PPV/NPV   

P+   11   13   0.46     P+   20   53   0.27   

P−   107   294   0.73     P−   134   486   0.78   

TPR/NPR   0.09   0.96   MCC:   0.10     TPR/NPR   0.13   0.90   MCC:   0.04   



  

Table   7.  Confusion  matrices  for  511  mutations  to  other  than  alanine  located  in  the                

non-highly-packed  interface  region  (the  ones  that  UEP  could  not  score  because  of  a               

lack  of  intermolecular  contacts).  P+/-  indicate  the  prediction  output,  while  the  C+/-              

indicate  experimental  value  (increasing  and  decreasing  the  ΔΔG,  respectively.           

Statistical   descriptors   PPV,   NPV,   TPR,   NPR   and   MCC   are   shown.   
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FoldX   C+   C−   PPV/NPV     pyDock-F   C+   C−   PPV/NPV   

P+   75   132   0.36     P+   108   171   0.39   

P−   90   214   0.70     P−   57   175   0.75   

TPR/NPR   0.45   0.62   MCC:   0.07     TPR/NPR   0.65   0.51   MCC:   0.15   
                  

pyDock-E   C+   C−   PPV/NPV     PRODIGY-F   C+   C−   PPV/NPV   
P+   105   156   0.40     P+   73   151   0.33   

P−   60   190   0.76     P−   92   195   0.68   

TPR/NPR   0.64   0.55   MCC:   0.17     TPR/NPR   0.44   0.56   MCC:   0.01   
                  

PRODIGY-E   C+   C−   PPV/NPV     EvoEF1   C+   C−   PPV/NPV   

P+   74   144   0.34     P+   66   161   0.29   

P−   91   292   0.69     P−   99   185   0.65   

TPR/NPR   0.45   0.58   MCC:   0.03     TPR/NPR   0.40   0.53   MCC:   -0.06   
                  

EvoEF2   C+   C−   PPV/NPV     BeAtMuSiC   C+   C−   PPV/NPV   

P+   69   111   0.38     P+   45   74   0.38   

P−   96   235   0.71     P−   120   272   0.69   

TPR/NPR   0.42   0.69   MCC:   0.1     TPR/NPR   0.27   0.79   MCC:   0.07   
                  

mCSM   TRA   C+   C−   PPV/NPV     mCSM   UNT   C+   C−   PPV/NPV   

P+   25   6   0.81     P+   16   24   0.40   

P−   42   187   0.82     P−   82   129   0.61   

TPR/NPR   0.37   0.97   MCC:   0.46     TPR/NPR   0.16   0.84   MCC:   0.01   



  

Several  conclusions  can  be  extracted  from  the  different  simulation  groups.  Aiming  to              

facilitate  the  comprehension  of  the  results,  MCC  values  from  all  groups  were              

recopilated  in   Table  8 .  Here,  it  can  be  observed  that  the  quality  of  the  prediction                 

differs  depending  on  the  location  and  the  nature  of  the  mutation.  Overall,  larger               

differences  in  MCC  values  have  been  observed  between  the  location  groups,  where              

prediction  of  mutations  placed  in  the  highly-packed  interface  are  more  accurate  than              

the  non-highly  packed  group.  The  same  pattern  is  observed  for  mutations  other  than               

alanine,   which   are   easily   to   be   correctly   predicted   than   mutation   to   alanines.   

Table  8 .  Summary  of  the  MCC  values  from  all  predictors,  depending  on  the  location                

of  the  mutation  (highly-packed  interface  or  non-highly-packed  interface)  and  nature            

of  the  mutation:  mutations  to  alanine  or  to  other  than  alanine  (to  not  alanine).  Method                 

within  parenthesis  was  used  for  the  generation  of  the  models.  Mutations  other  than               

alanine  are  predicted  accurately  compared  to  mutations  to  alanine  (large  difference             

in  MCC  values).  The  same  tendency  was  observed  for  comparing  mutations             

depending  on  their  position,  where  highly-packed  mutations  are  predicted  accurately            

for   any   method   compared   to   non-highly   packed   positions.     
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Location   Highly-packed   interface   Non-highly-packed   interface   

Nature   To   alanine   To   not   alanine   To   alanine   To   not   alanine   

Unanimous   0.27   0.47   n.d   n.d   

Consensus   0.18   0.29   n.d   n.d   

FoldX   (FoldX)   0.19   0.23   0.02   0.07   

UEP   0.10   0.20   n.d   n.d   

UEP   UNT   0.07   0.23   n.d   n.d   

pyDock   (FoldX)   0.14   0.25   0.04   0.15   

pyDock   (EvoEF1)   0.15   0.26   0.07   0.17   

PRODIGY   (FoldX)   0.10   0.09   -0.05   0.01   

PRODITY   (EvoEF1)   0.11   0.10   0.01   0.03   

EvoEF1   (EvoEF1)  0.15   0.24   0.02   -0.06   

EvoEF2   (EvoEF2)  0.10   0.20   0.04   0.10   

BeAtMuSiC   0.06   0.15   0.03   0.07   

mCSM   TRA   0.14   0.58   0.10   0.46   

mCSM   UNT   0.04   0.03   0.04   0.01   



  

The  authors  of  the  mCSM  method  reported  which  mutations  from  SKEMPI  were              

used  for  the  construction  of  their  algorithm.  We  noticed  that  mCSM  outperformed  all               

other  methods  for  predicting  the  entire  dataset.  Aiming  to  provide  insights  on  this               

effect,  we  splitted  the  benchmark  in  two  groups:  those  mutations  reported  to  be  used                

during  the  training  of  the  mCSM  algorithm  (mCSM  TRA)  or  not  (mCSM  UNT).  After                

evaluating  the  performance  of  mCSM  on  both  groups,  we  noticed  a  large  drop  in                

predictive  performance  for  new  mutations  (MCCs  of  0.04/0.04,  and  0.03/0.01  for            

mutations  to  alanine  and  other  than  alanine,  respectively)  compared  to  the  ones              

found  in  the  training  group  (MCCs  of  0.14/0.10  and  0.58/0.46  for  mutations  to               

alanine  and  other  than  alanine,  respectively)  ( Table  8 ).  As  can  be  observed,  the  drop                

in   performance   is   accentuated   in   the   case   of   mutations   to   other   than   alanine.    

It  looks  that  the  mCSM  method  shows  a  very  high  degree  of  overfitting  towards                

already  trained  data,  and  that  it  encounters  difficulties  for  classifying  new  mutations              

into  improving  and  decreasing  the  binding  energy  of  the  complex.  As  can  be               

observed  in  the  confusion  matrices  ( Table  4-7 ),  mCSM  tends  to  predict  almost  all               

new  mutations  as  decreasing  the  binding  energy  of  the  complex,  which  explains  the               

low  MCC  values.  Because  of  this  reason,  it  is  very  important  to  develop  generalistic                

algorithms  to  avoid  overfitting  issues;  otherwise  their  performance  on  real  case             

scenarios  will  be  lower  than  expected  (as  simulated  here  with  a  group  of  mutations                

not  used  for  developing  the  mCSM  algorithm).  Aiming  to  discard  possible  effects              

related  to  difficulties  for  predicting  this  particular  set  of  mutations,  we  compared  the               

performance  of  UEP  for  classifying  the  same  new  group  of  mutations  for  mCSM.  As                

shown  in   Table  8 ,  UEP  predictions  on  this  set  of  mutations  do  not  differ  much  in                  

MCC  terms  compared  to  the  entire  UEP  benchmark  (MCC  of  0.07  to  0.10,  and  0.23                

to  0.20  for  mutations  to  alanine  and  to  other  than  alanine,  respectively).  Hence,  we                

discarded  possible  effects  that  make  the  prediction  of  mCSM  UNT  group  more              

difficult  than  mCSM  TRA,  and  we  concluded  that  the  main  reason  for  this  drop  in                 

performance   is   intrinsically   related   to   the   mCSM   algorithm.   

As  may  have  been  observed  previously,  some  predictors  called  “Unanimous”  and             

“Consensus”  are  described  along  this  section.  From  the  classification  point  of  view,              

the  decision  of  multiple  algorithms  may  be  consensuated.  Therefore,  the  conclusion             

of  multiple  predictors  would  help  to  decrease  particular  errors  of  individual  methods.              
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Hence,  the  decision  of  multiple  predictors  should  provide  a  more  robust  indicator  of               

the  effect  of  the  mutations,  since  it  would  involve  the  statistical  sampling  of  multiple                

and  different  force  fields.  Here,  we  used  the  decision  of  three  algorithms  for  deciding                

the  effects  of  a  mutation.  In  this  sense  and  from  the  binary  classification  point  of  view                  

of  the  effects  of  the  mutations  (this  is  improving  or  decreasing  the  binding  affinity),  a                 

consensus  decision  is  the  choice  of  at  least  two  out  of  three  predictors,  while  a                 

unanimous  decision  is  when  the  three  predictors  agree.  We  evaluated  the  binary              

classification  decision  using  the  combination  of  the  four  best  individual  classifiers  in              

our   benchmark:   UEP,   pyDock,   EvoEF1   and   FoldX.   

It  is  important  to  mention  that  following  this  approach  results  in  a  substantial  increase                

in  computational  requirements.  Hence,  an  increase  in  the  classification  performance            

must  justify  the  increase  in  computational  cost.  Consensus  and  unanimous  selection             

for  mutations  to  alanine  are  represented  in   Table  9 .  On  the  other  hand,  consensus                

and  unanimous  selection  of  mutations  other  than  alanine  are  represented  in   Table             

10 .  In  both  tables,  time  for  predicting  the  benchmarks  is  illustrated.  We  observed  that                

the  main  bottleneck  in  computational  time  belongs  to  the  generation  of  the  mutation               

file,  which  can  take  5  seconds  (EvoEF1)  to  30  seconds  (FoldX).  The  groups  of                

predictors  that  were  used  are:  i)  UEP,  pyDock-EvoEF1  and  EvoEF1,  ii)  UEP,              

pyDock-FoldX  and  FoldX,  iii)  UEP,  EvoEF1  and  FoldX,  iv)  FoldX,  pyDock-FoldX  and              

pyDock-EvoEF1,   and   v)   EvoEF1,   pyDock-EvoEF1   and   pyDock-FoldX.   

Table  9 .  MCC  scores  on  the  decision  of  three  of  the  best  classifiers  of  the  effects  of                   

alanine  mutations  (985)  placed  on  the  highly-packed  interface.  Time  for  performing             

such   simulations   is   shown.   
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Predictors   Consensus   Unanimous  Time   

UEP,   pyDock-E,   EvoEF1   0.19   0.10   55’   

UEP,   pyDock-F,   FoldX   0.18   0.27   145’   

UEP,   EvoEF1,   FoldX   0.16   0.21   175’   

FoldX,   pyDock-F,   pyDock-E     0.18   0.27   185’   

EvoEF1,   pyDock-E,   pyDock-F  0.18   0.18   185’   



  

Table  10 .  MCC  scores  on  the  decision  of  three  of  the  best  classifiers  of  the  effects  of                   

mutations  other  than  alanine  (1251)  placed  on  the  highly-packed  interface.  Time  for              

performing   such   simulations   is   shown.   

For  the  design  of  an  enhanced  protein-protein  interface,  mutations  other  than  alanine              

may  be  more  suitable  depending  on  the  context.  This  is  represented  by  the  fact  that                 

we  have  observed  that  this  group  of  mutations  exert  a  larger  impact  on  the                

experimental  ΔΔG  and  therefore,  they  are  easier  to  be  correctly  predicted  by  any               

method.  Moreover,  and  without  taking  into  account  a  few  exceptions  related  to              

conformational  dynamics,  mutations  other  than  alanine  are  more  likely  to  improve             

the   binding   energy   of   the   complex   than   mutations   to   alanine.     

Because  of  this,  the  following  sections  will  focus  on  the  analysis  of  mutations  other                

than  alanine.  As  observed  in   Table  10 ,  both  consensus  and  unanimous  decisions  of               

any  combination  result  in  a  classification  improvement  compared  to  any  method             

alone  ( Figure  28   and   Table  5 ).  From  both  selections,  the  unanimous  one  achieves               

higher  classification  performance  than  the  consensus,  but  cautious  must  be  taken             

into  account.  Not  all  mutations  are  predicted  unanimously  by  the  three  methods,  and               

therefore  the  amount  of  selected  candidates  is  reduced  (from  1251  to  534).  In  this                

context,  consensus  selection  may  be  an  alternative  approach  to  tackle  most  of  the               

real  case  scenarios  despite  achieving  lower  classification  performance  than  the            

unanimous  selection.  From  all  combinations,  the  use  of  UEP,  EvoEF1  and  pyDock              

(the  latter  used  for  the  energy  evaluation  of  the  models  generated  by  EvoEF1)  is  the                 

one  achieving  the  best  tradeoff  in  accuracy  and  computational  time.  As  can  be               

observed  the  time  needed  for  evaluating  the  1251  mutations  is  ~70  minutes  (almost               

three   times   less   than   the   second   faster   combination,   185’).   
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Predictors   Consensus   Unanimous  Time   

UEP,   pyDock-E,   EvoEF1   0.29   0.47   70’   

UEP,   pyDock-F,   FoldX   0.29   0.47   185’   

UEP,   EvoEF1,   FoldX   0.26   0.42   220’   

FoldX,   pyDock-F,   pyDock-E     0.25   0.47   235’   

EvoEF1,   pyDock-E,   pyDock-F  0.29   0.42   235’   



  

After  observing  that  the  use  of  the  decisions  taken  by  multiple  algorithms  increases               

the  classification  performance,  we  aimed  to  assess  if  the  predictors  show  some              

predictive  particularities  towards  any  group  of  mutations.  In  this  sense,  we  splitted              

the  benchmark  of  1251  mutations  to  other  than  alanine  depending  on  the  changes  in                

volume  (ΔV)  and  changes  in  hydrophobicity  (ΔH).  Side  chain  volumes  and             

hydrophobicity  indices  were  extracted  from  literature  to  perform  this  evaluation   (Lin             

et   al. ,   2008;   Eisenberg    et   al. ,   1984) .     

A  threshold  of  0.1mm 3   was  used  to  determine  whether  a  side  chain  mutation               

increases  the  volume  (ΔV>0.1mm 3 ,  Gain  group,  consisting  of  490  mutations),            

decreases  (ΔV<-0.1mm 3 ,  Loss  group,  consisting  of  423  mutations)  or  shows  a             

similar  volume  compared  to  its  original  residue  (|ΔV|≤0.1mm 3 ,  Neutral  group,            

consisting  of  338  mutations).  Confusion  matrices  of  each  predictor  regarding  those             

volume  subgroups  are  found  at   Tables  11-19  for  UEP,  pyDock-FoldX,            

pyDock-EvoEF1,  FoldX,  PRODIGY-FoldX,  PRODIGY-EvoEF1,  BeAtMuSiC,  EvoEF1        

and   EvoEF2,   respectively.   

Table  11.   UEP  confusion  matrices  depending  on  gain,  neutral  or  loss  volume  upon               

mutation.  Top  left:  entire  benchmark,  top  right:  mutations  inducing  a  gain  in  volume,               

bot  left:  neutral  mutations,  bot  right:  mutations  resulting  in  a  loss  in  volume.               

Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR  and  MCC  are  shown  (MCC  in                

bold).   
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UEP   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   197   404   0.33   
  

P+   140   263   0.35   

P−   101   549   0.84   
  

P−   19   68   0.78   

TPR/NPR   0.66   0.58   0.20   
  

TPR/NPR   0.88   0.21   0.11   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   42   88   0.32   
  

P+   15   53   0.22   

P−   34   174   0.84   
  

P−   48   307   0.86   

TPR/NPR   0.55   0.66   0.19   
  

TPR/NPR   0.24   0.85   0.09   

https://paperpile.com/c/gPXPLf/m4XP+tKcX
https://paperpile.com/c/gPXPLf/m4XP+tKcX
https://paperpile.com/c/gPXPLf/m4XP+tKcX
https://paperpile.com/c/gPXPLf/m4XP+tKcX
https://paperpile.com/c/gPXPLf/m4XP+tKcX


  

Table  12.   pyDock  confusion  matrices  on  the  FoldX  mutation  models  depending  on              

gain,  neutral  or  loss  volume  upon  mutation.  Top  left:  entire  benchmark,  top  right:               

mutations  inducing  a  gain  in  volume,  bot  left:  neutral  mutations,  bot  right:  mutations               

resulting  in  a  loss  in  volume.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR               

and   MCC   are   shown   (MCC   in   bold).   

Table  13.   pyDock  confusion  matrices  on  the  EvoEF1  mutation  models  depending  on              

gain,  neutral  or  loss  volume  upon  mutation.  Top  left:  entire  benchmark,  top  right:               

mutations  inducing  a  gain  in  volume,  bot  left:  neutral  mutations,  bot  right:  mutations               

resulting  in  a  loss  in  volume.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR               

and   MCC   are   shown   (MCC   in   bold).   
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pyDock-F   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   217   418   0.34   
  

P+   124   203   0.38   

P−   81   535   0.87   
  

P−   35   128   0.78   

TPR/NPR   0.73   0.56   0.25   
  

TPR/NPR   0.78   0.39   0.17   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   61   125   0.33   
  

P+   32   90   0.26   

P−   15   137   0.90   
  

P−   31   270   0.90   

TPR/NPR   0.80   0.52   0.27   
  

TPR/NPR   0.51   0.75   0.20   

pyDock-E   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   206   371   0.36   
  

P+   117   172   0.40   

P−   92   582   0.86   
  

P−   42   159   0.79   

TPR/NPR   0.69   0.61   0.26   
  

TPR/NPR   0.74   0.48   0.21   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   59   106   0.35   
  

P+   33   93   0.26   

P−   20   156   0.89   
  

P−   30   267   0.90   

TPR/NPR   0.74   0.60   0.28   
  

TPR/NPR   0.52   0.74   0.21   



  

Table  14.   FoldX  confusion  matrices  depending  on  gain,  neutral  or  loss  volume  upon               

mutation.  Top  left:  entire  benchmark,  top  right:  mutations  inducing  a  gain  in  volume,               

bot  left:  neutral  mutations,  bot  right:  mutations  resulting  in  a  loss  in  volume.               

Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR  and  MCC  are  shown  (MCC  in                

bold).   

Table  15.   PRODIGY  confusion  matrices  on  the  FoldX  mutation  models  depending  on              

gain,  neutral  or  loss  volume  upon  mutation.  Top  left:  entire  benchmark,  top  right:               

mutations  inducing  a  gain  in  volume,  bot  left:  neutral  mutations,  bot  right:  mutations               

resulting  in  a  loss  in  volume.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR               

and   MCC   are   shown   (MCC   in   bold).   
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FoldX   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   162   277   0.37   
  

P+   108   132   0.45   

P−   136   676   0.83   
  

P−   52   199   0.79   

TPR/NPR   0.54   0.71   0.23   
  

TPR/NPR   0.67   0.60   0.26   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   33   83   0.28   
  

P+   22   62   0.26   

P−   43   179   0.81   
  

P−   41   298   0.88   

TPR/NPR   0.43   0.68   0.10   
  

TPR/NPR   0.35   0.83   0.16   

PRODIGY-F   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   153   390   0.28   
  

P+   103   180   0.35   

P−   145   563   0.80   
  

P−   56   142   0.72   

TPR/NPR   0.51   0.59   0.09   
  

TPR/NPR   0.65   0.43   0.07   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   34   104   0.25   
  

P+   16   97   0.14   

P−   42   158   0.79   
  

P−   47   263   0.85   

TPR/NPR   0.45   0.60   0.04   
  

TPR/NPR   0.25   0-73   -0.01   



  

Table  16.   PRODIGY  confusion  matrices  on  the  EvoEF1  mutation  models  depending             

on  gain,  neutral  or  loss  volume  upon  mutation.  Top  left:  entire  benchmark,  top  right:                

mutations  inducing  a  gain  in  volume,  bot  left:  neutral  mutations,  bot  right:  mutations               

resulting  in  a  loss  in  volume.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR               

and   MCC   are   shown   (MCC   in   bold).   

Table  17.   BeAtMuSiC  confusion  matrices  depending  on  gain,  neutral  or  loss  volume              

upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations  inducing  a  gain  in               

volume,  bot  left:  neutral  mutations,  bot  right:  mutations  resulting  in  a  loss  in  volume.                

Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR  and  MCC  are  shown  (MCC  in                

bold).   
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PRODIGY-E   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   158   395   0.29   
  

P+   104   195   0.35   

P−   140   558   0.80   
  

P−   55   136   0.71   

TPR/NPR   0.53   0.59   0.10   
  

TPR/NPR   0.65   0.41   0.06   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   37   101   0.27   
  

P+   17   99   0.15   

P−   39   161   0.81   
  

P−   46   261   0.85   

TPR/NPR   0.49   0.61   0.09   
  

TPR/NPR   0.27   0.72   0.00   

BeAtMuSiC  C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   79   126   0.39   
  

P+   46   70   0.40   

P−   219   827   0.79   
  

P−   113   261   0.70   

TPR/NPR   0.27   0.87   0.15   
  

TPR/NPR   0.29   0.79   0.09   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   24   36   0.40   
  

P+   9   20   0.31   

P−   52   226   0.81   
  

P−   54   340   0.86   

TPR/NPR   0.32   0.86   0.19   
  

TPR/NPR   0.14   0.94   0.12   



  

Table  18.   EvoEF1  confusion  matrices  depending  on  gain,  neutral  or  loss  volume              

upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations  inducing  a  gain  in               

volume,  bot  left:  neutral  mutations,  bot  right:  mutations  resulting  in  a  loss  in  volume.                

Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR  and  MCC  are  shown  (MCC  in                

bold).   

Table  19.   EvoEF2  confusion  matrices  depending  on  gain,  neutral  or  loss  volume              

upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations  inducing  a  gain  in               

volume,  bot  left:  neutral  mutations,  bot  right:  mutations  resulting  in  a  loss  in  volume.                

Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR  and  MCC  are  shown  (MCC  in                

bold).     
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EvoEF1   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   200   375   0.35   
  

P+   127   203   0.38   

P−   98   578   0.86   
  

P−   32   128   0.80   

TPR/NPR   0.67   0.61   0.24   
  

TPR/NPR   0.80   0.39   0.19   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   44   103   0.30   
  

P+   29   69   0.30   

P−   32   159   0.83   
  

P−   34   261   0.90   

TPR/NPR   0.58   0.61   0.19   
  

TPR/NPR   0.46   0.81   0.23   

EvoEF2   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   123   197   0.38   
  

P+   69   63   0.52   

P−   175   756   0.81   
  

P−   90   268   0.75   

TPR/NPR   0.41   0.79   0.20   
  

TPR/NPR   0.43   0.81   0.26   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   34   73   0.32   
  

P+   20   61   0.25   

P−   42   189   0.82   
  

P−   43   299   0.87   

TPR/NPR   0.45   0.72   0.15   
  

TPR/NPR   0.32   0.83   0.13   



  

As  observed,  some  predictors  show  better  performance  for  classifying  mutations            

depending  on  changes  in  amino  acid  volume.  For  instance,  pyDock-EvoEF1,  UEP             

and  BeAtMuSiC  tend  to  accurately  classify  mutations  not  involving  drastic  changes             

in  mutation  size.  However,  FoldX  and  EvoEF1  show  a  different  behaviour.  FoldX              

tends  to  better  classify  mutations  involving  a  gain  in  mutation  size,  while  EvoEF1               

seems  to  better  classify  mutations  involving  a  loss  in  mutation  size.  This  information               

may  be  valuable  for  a  protein-protein  design  campaign,  where  predictions  of  those              

methods   could   be   taken   into   account   depending   on   these   observations.   

Regarding  the  hydrophobicity  classification,  a  threshold  of  0.3  Eisenberg  units  (Eu)             

was  used  to  determine  whether  a  mutation  increases  (ΔH>0.3Eu,  Gain  group,             

consisting  of  604  mutations),  decreases  (ΔH<-0.3Eu,  Loss  group,  consisting  of  466             

mutations)  or  shows  similar  hydrophobicity  (|ΔH|≤0.3Eu,  Neutral  group,  consisting  of            

181  mutations).  Confusion  matrices  of  each  predictor  regarding  those  volume            

subgroups  are  found  at   Tables  20-28  for  UEP,  pyDock-FoldX,  pyDock-EvoEF1,            

FoldX,  PRODIGY-FoldX,  PRODIGY-EvoEF1,  BeAtMuSiC,  EvoEF1  and  EvoEF2,         

respectively.  

Table  20.   UEP  confusion  matrices  depending  on  gain,  neutral  or  loss  hydrophobicity              

upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations  inducing  a  gain  in               

hydrophobicity,  bot  left:  neutral  mutations,  bot  right:  mutations  resulting  in  a  loss  in               

hydrophobicity.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,  NPR  and  MCC  are              

shown   (MCC   in   bold).   
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UEP   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   197   404   0.33   
  

P+   96   172   0.36   

P−   101   549   0.84   
  

P−   64   272   0.81   

TPR/NPR   0.66   0.58   0.20   
  

TPR/NPR   0.60   0.61   0.19   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   23   48   0.32   
  

P+   78   184   0.30   

P−   15   95   0.86   
  

P−   22   182   0.89   

TPR/NPR   0.61   0.66   0.22   
  

TPR/NPR   0.78   0.50   0.23   



  

Table  21.   pyDock  confusion  matrices  on  the  models  generated  by  FoldX  depending              

on  gain,  neutral  or  loss  hydrophobicity  upon  mutation.  Top  left:  entire  benchmark,  top               

right:  mutations  inducing  a  gain  in  hydrophobicity,  bot  left:  neutral  mutations,  bot              

right:  mutations  resulting  in  a  loss  in  hydrophobicity.  Statistical  descriptors,  such  as              

PPV,   NPV,   TPR,   NPR   and   MCC   are   shown   (MCC   in   bold).   

Table  22.   pyDock  confusion  matrices  on  the  models  generated  by  EvoEF1             

depending  on  gain,  neutral  or  loss  hydrophobicity  upon  mutation.  Top  left:  entire              

benchmark,  top  right:  mutations  inducing  a  gain  in  hydrophobicity,  bot  left:  neutral              

mutations,  bot  right:  mutations  resulting  in  a  loss  in  hydrophobicity.  Statistical             

descriptors,   such   as   PPV,   NPV,   TPR,   NPR   and   MCC   are   shown   (MCC   in   bold).   
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pyDock-F   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   217   418   0.34   
  

P+   133   261   0.34   

P−   81   535   0.87   
  

P−   27   183   0.87   

TPR/NPR   0.73   0.56   0.25   
  

TPR/NPR   0.83   0.41   0.23   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   29   58   0.33   
  

P+   55   99   0.36   

P−   9   85   0.90   
  

P−   45   267   0.86   

TPR/NPR   0.76   0.59   0.29   
  

TPR/NPR   0.55   0.73   0.24   

pyDock-E   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   206   371   0.36   
  

P+   127   254   0.33   

P−   92   582   0.86   
  

P−   33   190   0.85   

TPR/NPR   0.69   0.61   0.26   
  

TPR/NPR   0.79   0.43   0.20   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   32   50   0.39   
  

P+   47   67   0.41   

P−   6   93   0.94   
  

P−   53   299   0.85   

TPR/NPR   0.84   0.65   0.40   
  

TPR/NPR   0.47   0.82   0.27   



  

Table  23.   FoldX  confusion  matrices  depending  on  gain,  neutral  or  loss             

hydrophobicity  upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations            

inducing  a  gain  in  hydrophobicity,  bot  left:  neutral  mutations,  bot  right:  mutations              

resulting  in  a  loss  in  hydrophobicity.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,               

NPR   and   MCC   are   shown   (MCC   in   bold).   

Table  24.   PRODIGY  confusion  matrices  on  the  models  generated  by  FoldX             

depending  on  gain,  neutral  or  loss  hydrophobicity  upon  mutation.  Top  left:  entire              

benchmark,  top  right:  mutations  inducing  a  gain  in  hydrophobicity,  bot  left:  neutral              

mutations,  bot  right:  mutations  resulting  in  a  loss  in  hydrophobicity.  Statistical             

descriptors,   such   as   PPV,   NPV,   TPR,   NPR   and   MCC   are   shown   (MCC   in   bold).   
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FoldX   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   162   277   0.37   
  

P+   102   170   0.38   

P−   136   676   0.83   
  

P−   58   274   0.83   

TPR/NPR   0.54   0.71   0.23   
  

TPR/NPR   0.64   0.62   0.23   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   21   31   0.40   
  

P+   39   76   0.34   

P−   17   112   0.87   
  

P−   61   290   0.83   

TPR/NPR   0.55   0.78   0.30   
  

TPR/NPR   0.39   0.79   0.17   

PRODIGY-F   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   153   390   0.28   
  

P+   76   158   0.32   

P−   145   563   0.80   
  

P−   84   286   0.77   

TPR/NPR   0.51   0.59   0.09   
  

TPR/NPR   0.47   0.64   0.11   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   26   54   0.33   
  

P+   51   178   0.22   

P−   12   89   0.88   
  

P−   49   188   0.79   

TPR/NPR   0.68   0.62   0.25   
  

TPR/NPR   0.51   0.51   0.02   



  

Table  25.   PRODIGY  confusion  matrices  on  the  models  generated  by  EvoEF1             

depending  on  gain,  neutral  or  loss  hydrophobicity  upon  mutation.  Top  left:  entire              

benchmark,  top  right:  mutations  inducing  a  gain  in  hydrophobicity,  bot  left:  neutral              

mutations,  bot  right:  mutations  resulting  in  a  loss  in  hydrophobicity.  Statistical             

descriptors,   such   as   PPV,   NPV,   TPR,   NPR   and   MCC   are   shown   (MCC   in   bold).   

Table  26.   BeAtMuSiC  confusion  matrices  depending  on  gain,  neutral  or  loss             

hydrophobicity  upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations            

inducing  a  gain  in  hydrophobicity,  bot  left:  neutral  mutations,  bot  right:  mutations              

resulting  in  a  loss  in  hydrophobicity.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,               

NPR   and   MCC   are   shown   (MCC   in   bold).   
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PRODIGY-E   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   158   395   0.29   
  

P+   77   156   0.33   

P−   140   558   0.80   
  

P−   83   288   0.78   

TPR/NPR   0.53   0.59   0.10   
  

TPR/NPR   0.48   0.65   0.12   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   24   0.58   0.29   
  

P+   57   181   0.24   

P−   14   85   0.86   
  

P−   43   185   0.81   

TPR/NPR   0.63   0.59   0.18   
  

TPR/NPR   0.57   0.51   0.06   

BeAtMuSiC  C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   79   126   0.39   
  

P+   61   101   0.38   

P−   219   827   0.79   
  

P−   99   343   0.78   

TPR/NPR   0.27   0.87   0.15   
  

TPR/NPR   0.38   0.77   0.15   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   7   11  0.39   
  

P+   11  14   0.44   

P−   31   132   0.81   
  

P−   89   352   0.80   

TPR/NPR   0.18   0.92   0.15   
  

TPR/NPR   0.11   0.96   0.13   



  

Table  27.   EvoEF1  confusion  matrices  depending  on  gain,  neutral  or  loss             

hydrophobicity  upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations            

inducing  a  gain  in  hydrophobicity,  bot  left:  neutral  mutations,  bot  right:  mutations              

resulting  in  a  loss  in  hydrophobicity.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,               

NPR   and   MCC   are   shown   (MCC   in   bold).   

Table  28.   EvoEF2  confusion  matrices  depending  on  gain,  neutral  or  loss             

hydrophobicity  upon  mutation.  Top  left:  entire  benchmark,  top  right:  mutations            

inducing  a  gain  in  hydrophobicity,  bot  left:  neutral  mutations,  bot  right:  mutations              

resulting  in  a  loss  in  hydrophobicity.  Statistical  descriptors,  such  as  PPV,  NPV,  TPR,               

NPR   and   MCC   are   shown   (MCC   in   bold).   
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EvoEF1   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   200   375   0.35   
  

P+   110   209   0.34   

P−   98   578   0.86   
  

P−   50   235   0.82   

TPR/NPR   0.67   0.61   0.24   
  

TPR/NPR   0.69   0.53   0.19   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   27   46   0.37   
  

P+   63   120   0.34   

P−   11  97   0.90   
  

P−   37   246   0.87   

TPR/NPR   0.71   0.68   0.32   
  

TPR/NPR   0.63   0.67   0.25   

EvoEF2   C+   C−   PPV/NPV   
  

Gain   C+   C−   PPV/NPV   

P+   123   197   0.38   
  

P+   71   122   0.37   

P−   175   756   0.81   
  

P−   89   322   0.78   

TPR/NPR   0.41   0.79   0.20   
  

TPR/NPR   0.44   0.73   0.16   
                  

Neutral   C+   C−   PPV/NPV   
  

Loss   C+   C−   PPV/NPV   

P+   12   24   0.33   
  

P+   40   51   0.44   

P−   26   119   0.82   
  

P−   60   315   0.84   

TPR/NPR   0.32   0.83   0.15   
  

TPR/NPR   0.40   0.86   0.27   



  

Similarly  to  the  results  observed  for  changes  in  amino  acid  size,  some  predictors               

show  some  particularities  for  predicting  mutations  depending  on  changes  in            

hydrophobicity.  In  this  case,  most  of  the  predictors  show  increased  accuracy  for              

predicting  mutations  with  neutral  changes  in  hydrophobicity.  Some  exceptions  have            

been  found,  such  as  EvoEF2,  which  seems  to  accurately  predict  mutations  resulting              

in  hydrophobicity-loss,  or  BeAtMuSiC  which  shows  a  similar  (but  low)  classification             

performance  in  all  groups.  MCC  values  of  all  predictors  grouped  by  changes  in               

amino   acid   size   and   volume   are   illustrated   in    Figure   29 .   

  

Figure  29 .  Performance  of  the  binding  affinity  predictors  upon  mutations  depending             

on  changes  in  amino  acid  size  change  (left  panel)  and  hydrophobicity  (right  panel).               

Subgroups  represent  MCC  score  for  the  entire  group  of  mutations  other  than  alanine               

embedded  within  the  highly-packed  interface  (All),  those  who  exert  a  gain  in              

size/hydrophobicity   (Gain),   neutral   changes   (Neutral)   and   a   loss   (Loss).   
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Next,  we  aimed  to  calculate  the  similarity  between  predictors  on  the  estimation  of  the                

effects  of  mutations.  Thus,  we  investigated  the  similarity  between  pairs  of  predictors              

for  classifying  mutations  into  improving  or  decreasing  the  binding  affinity.  In  this              

sense,  we  assessed  the  similarity  percentage  between  predictors  for  all  1251             

mutations  other  than  alanine.  A  comparison  of  the  similarity  percentages  of  all  pairs               

of   predictors   is   illustrated   in    Table   29 .   

Table  29 .  Percentage  of  similarity  between  all  possible  pairs  of  predictors.             

Percentage  represents  the  number  of  mutations  of  the  entire  benchmark  (1251             

mutations  other  than  alanine  placed  in  the  highly-packed  region)  that  are  predicted  in               

the  same  way  (this  is,  improving  or  decreasing  the  binding  affinity  of  the  complex).                

Numbers  inside  parentheses  indicate  the  amount  of  mutations  corresponding  to  such             

percentage.   
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Predictors   Percentage   Predictors   Percentage   

UEP/pyDock-F   59.1   (739)   pyDock-E/PRODIGY-F   56.7   (709)   
UEP/pyDock-E   56.5   (707)   pyDock-E/PRODIGY-E   57.0   (713)   
UEP/FoldX   64.0   (801)   pyDock-E/BeAtMuSiC   61.6   (771)   
UEP/EvoEF1   65.3   (817)   pyDock-E/PRODIGY   56.7   (709)   
UEP/EvoEF2   55.6   (696)   FoldX/EvoEF1   68.5   (857)   

UEP/PRODIGY-F   57.6   (721)   FoldX/EvoEF2   71.3   (892)   
UEP/PRODIGY-E  57.6   (721)   FoldX/PRODIGY-F   56.4   (705)   
UEP/BeAtMuSiC   56.7   (709)   FoldX/PRODIGY-E   56.2   (703)   
pyDock-F/pyDock-E   80.2   (1003)   FoldX/BeAtMuSiC  64.5   (807)   
pyDock-F/FoldX   60.5   (757)   EvoEF1/EvoEF2   64.9   (812)   
pyDock-F/EvoEF1   63.5   (795)   EvoEF1/PRODIGY-F   57.6   (721)   
pyDock-F/EvoEF2   53.9   (674)   EvoEF1/PRODIGY-E   57.5   (719)   
pyDock-F/PRODIGY-F   54.9   (687)   EvoEF1/BeAtMuSiC   59.2   (741)   
pyDock-F/PRODIGY-E   55.1   (689)   EvoEF2/PRODIGY-F   56.0   (700)   

pyDock-F-BeAtMuSiC   56.7   (709)   EvoEF2/PRODIGY-E   55.5   (694)   
pyDock-E/FoldX   63.7   (797)   EvoEF2/BeAtMuSiC   69.4   (868)   
pyDock-E/EvoEF1   63.5   (795)   PRODIGY-F/BeAtMuSiC   58.1   (727)   
pyDock-E/EvoEF2   61.6   (770)   PRODIGY-E/BeAtMuSiC  57.0   (713)   



  

These  results  indicate  that  the  pairwise  similarity  of  all  pairs  of  predictors  is  in  the                 

range  of  53.9-80.2%.  The  most  dissimilar  pair  of  predictors  are  pyDock  (on  the               

models  generated  by  FoldX)  and  EvoEF2,  and  the  most  similar  pair  is  constituted  by                

pyDock  predictions  on  the  models  generated  by  FoldX  and  EvoEF1.  Overall,  the              

agreement  between  predictors  is  quite  low,  and  it  seems  that  the  modeling  process               

plays  a  very  important  role  in  the  final  ΔΔG  prediction.  This  is  represented  by  the  fact                  

that  pyDock  predictions  on  the  models  generated  by  FoldX  and  EvoEF1  show  a  low                

similarity  rate  of  80.2%.  This  effect  highlights  the  importance  of  the  modeling              

process,  and  the  need  of  standard  protocols  for  generating  mutations  and  the  need               

of  using  the  same  force  field  from  the  generation  of  the  mutation  to  the  energy                 

prediction.   

Regarding  the  correlation  ability  with  the  experimental  binding  affinity  values,   Figure             
30  and  31  indicate  the  PCC  and  RMSE  of  all  predictors  for  mutations  to  alanine  and                  

other  than  alanine,  respectively.  As  can  be  observed,  PCC  values  are  low  for  all                

predictors:  from  0.16  to  0.35  for  mutations  to  alanine  and  from  0.06  to  0.43  for                 

mutations  other  than  alanine.  UEP  reached  PCC  values  of  0.16  and  0.22  for               

mutations  to  alanine  and  other  than  alanine,  respectively.  Despite  that  those  PCC              

values  are  low,  we  actually  believe  that  observing  correlations  similar  to  the              

state-of-the  art  without  using  any  experimental  value  of  binding  affinities  is             

remarkable.  This  is  even  more  relevant  considering  the  fact  that  all  other  algorithms               

have  been  partially  trained  on  the  data  we  are  using  for  the  benchmarking  process.                

In  other  words,  it  is  very  likely  that  those  methods  will  work  better  for  predicting                 

pre-calibrated  mutations  on  their  scoring  function  than  when  predicting  new            

mutations.  This  phenomenon  is  common  during  the  design  of  any  kind  of  predictive               

algorithm;  however,  large  overfitting  effects  towards  the  training  data  must  be             

avoided.  This  is  the  case  of  the  mCSM  algorithm,  as  we  introduced  previously.  As                

can  be  observed,  PCC  values  for  mutations  to  alanine  are  0.72  (trained)  and  0.33                

(new  mutations),  while  PCC  values  for  mutations  to  other  than  alanine  are  0.88               

(trained)  and  -0.34  (new  mutations).  We  also  benchmarked  the  same  set  of  new               

mutations  using  UEP,  and  we  did  not  observe  a  large  drop  in  performance  as                

mCSM,  which  corroborated  that  this  group  of  mutations  does  not  show  peculiarities              

difficulting   their   prediction.   
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Figure  30 .  Performance  of  all  tested  protein-protein  affinity  predictors  upon  mutation             

on  the  985  selected  mutations  to  alanine  of  the  SKEMPI  2.0.  Predicted  ΔΔG               

(kcal/mol)  and  Experimental  ΔΔG  (kcal/mol)  are  depicted  in  the  vertical  and             

horizontal  axis  of  each  subplot.  PCC  and  RMSE  statistics  are  shown  for  each               

predictor   in   the   top   right   section   of   each   graphic.   
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Figure  31 .  Performance  of  all  tested  protein-protein  affinity  predictors  upon  mutation             

on  the  1251  selected  mutations  to  other  than  alanine  of  the  SKEMPI  2.0.  Predicted                

ΔΔG  (kcal/mol)  and  Experimental  ΔΔG  (kcal/mol)  are  depicted  in  the  vertical  and              

horizontal  axis  of  each  subplot.  PCC  and  RMSE  statistics  are  shown  for  each               

predictor   in   the   top   right   section   of   each   graphic.   
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Overall,  several  conclusions  can  be  extracted  from  our  experience  in  the  field  of               

ΔΔG  predictions.  First  of  all,  we  would  like  to  highlight  the  challenge  of  making  this                 

kind  of  prediction  taking  into  account  the  current  limitations.  As  reported  previously,              

the  gain  in  binding  affinity  for  most  mutations  is  low  (<1  and  ~2  kcal/mol  for  alanine                  

and  other  than  alanine  mutations,  respectively).  Here,  understanding  the  limits  of             

detection  of  computational  techniques  is  a  must.  In  this  sense,  it  has  been  reported                

that  the  most  accurate  techniques,  such  as  FEP  protocols  used  in  drug  design               

efforts,  work  under  an  estimated  error  of  1kcal/mol  (for  “easier”  benchmarks).  In  this               

sense,  simpler  techniques  such  as  ΔΔG  predictions  are  expected  to  work  under              

larger  errors  than  just  1kcal/mol.  Therefore,  it  is  very  likely  that  the  errors  associated                

with  the  ΔΔG  predictions  evaluated  in  this  thesis  are  higher  than  the  observed               

experimental   ΔΔG.   

Another  interesting  conclusion  belongs  to  the  dependency  of  high-quality  data  for  the              

development  of  useful  predictors.  Currently,  available  data  is  highly  heterogeneous            

and  is  not  sufficient  for  the  design  of  improved  algorithms.  This  is  especially  relevant                

for  the  study  of  mutations  to  other  residues  than  alanine,  which  is  underestimated  on                

public  databases  such  as  SKEMPI  2.0.  As  reported  along  the  introduction,  all              

predictors  follow  different  approaches  to  make  ΔΔG  predictions  and  in  the  end  they               

show  a  similar  performance  for  classification  and  correlation  studies.  Therefore,            

divergence  in  experimental  determinations  could  play  a  major  role  for  the  observed              

low   performance   of   all   methods.     
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Predicting   antibody   binding   efficacy:   PELE-antibody   

To  date,  PELE  has  been  mostly  restricted  to  small  molecule  recognition  in  the  fields                

of  enzyme  design  and  drug  discovery  efforts.  Additionally,  there  is  no  computational              

standard  protocol  to  predict  antibody  binding  efficacy  towards  an  hypermutated            

epitope,  which  is  a  relevant  topic  for  research  against  AIDS.  In  this  section,  we                

describe  the  potential  use  of  PELE  for  predicting  antibody  binding  affinity  towards              

hypermutated  HIV-1  strains.  Previously,  PELE  was  used  for  predicting  drug  efficacy             

on  the  HIV-1  protease  using  the  patient's  virus  sequence   (Hosseini   et  al. ,  2016) .  In                

this  thesis  we  significantly  challenge  such  a  modelling  effort.  Our  system  of  study               

was  based  on  anti-CD4bs  bNAbs  binding  against  multiple  gp120  of  HIV-1.  Here,  we               

benchmarked  three  different  bNAbs:  VRC01,  NIH45-46  and  3BNC117  against           

multiple  viral  HIV-1  isolates  by  performing  PELE  simulations  of  the  three-dimensional             

binding  process.  This  work  has  been  recently  published   (Amengual-Rigo,  Carrillo,   et             

al. ,   2020) .   

Data   collection   and   system   preparation   

Binding  affinity  of  an  antibody  towards  an  epitope  can  be  experimentally  determined              

in  multiple  ways.  The  data  that  we  have  collected  in  this  section  was  produced  by  an                  

ELISA  assay,  where  the  binding  is  measured  between  captured  antibodies  and             

monomeric  gp120  dissociated  from  pseudovirus  proteins.  Essentially,  resistant          

gp120  strains  are  out  of  the  detection  limits  of  the  method  and  have  an  IC50                 

determination   >50   μg/mL.     

Our  case  studies  consisted  of  performing  a  large  benchmark  for  VRC01,  and  a               

smaller  benchmark  for  VRC01,  NIH45-46  and  3BNC117  bNAbs.  Here,  a  set  of  45               

sensible  and  19  resistant  gp120  strains  were  collected  from  the  literature  against              

VRC01  ( Figure  32 ).  From  the  best  of  our  knowledge,  all  known  resistant  strains  with                

available  sequence  in  GenBank  were  collected.  IC50  determinations  of  sensitive            

strains  are  illustrated  in   Figure  33 .  As  can  be  observed,  most  sensitive  gp120  strains                

have  a  binding  value  of  <  0.2  μg/m,  which  makes  challenging  a  correlation  assay.                

Hence,  we  will  focus  on  the  binary  classification  point  of  view:  if  an  antibody  binds                 

and   neutralizes   sensitive   strains   or   not   (resistant   strains).   
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Figure  32 .  List  of  evaluated  strains  for  the  large  VRC01  benchmark,  consisting  of  a                

set  of  45  sensitive  (blue)  and  19  resistant  (red)  gp120  strains.  Clade  identity,  and  the                 

linear  sequence  in  contact  with  the  VRC01  antibody  from  the  loop  D,  the  CD4  loop,                 

β20-β21   and   β23-V5-β24-α5   are   shown   to   illustrate   the   diversity   of   the   HIV-1.   
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Figure  33.   Experimental  IC50  determinations  (μg/mL)  of  the  VRC01  sensitive  strains             

evaluated  in  this  work.  As  can  be  observed,  most  of  all  binding  determinations  have                

values   <0.2   μg/mL.   

Some  HIV-1  clades  (or  subgroups)  show  a  series  of  sequence  and  structural              

peculiarities  that  have  been  linked  to  certain  resistance  patterns.  Because  of  this              

reason,  the  selection  of  sensitive  strains  (from  172  available  sequences  in  GenBank)              

was  ( per  se )  not  random:  we  aimed  to  select  sensitive  gp120  strains  coming  from               

similar  clades  than  the  resistant  ones.  By  following  this  approach,  we  minimized  the               

risk  of  observing  biased  results  towards  clade  representation  between  sensitive  and             

resistant  groups.  Hence,  sensitive  strains  used  in  this  work  belong  to  the  following               

clades:  A,  AC,  AD,  ACD,  AE,  AG,  B,  BC,  C,  CD  and  D,  while  resistant  ones  belong                   

to:   AC,   AE,   AG,   B,   C,   CD,   D   and   G.   

One  of  the  main  limitations  of  this  project  is  the  lack  of  experimentally  solved  gp120                 

three-dimensional  structures.  In  this  sense,  most  of  the  gp120  strains  have  no              

available  crystal  structure,  and  this  is  even  more  accentuated  in  the  case  of  resistant                

strains.  This  phenomenon  may  constitute  a  bottleneck  for  understanding  and            

designing  antibody  variants  and  vaccines  against  AIDS.  To  overcome  this  limitation,             

we  modelled  all  gp120  strains  by  homology  modeling  techniques,  aiming  to  mimic              

the  unknown-real  conformation  of  the  envelope  glycoproteins.  Prime  from           

Schödinger   (Jacobson   et  al. ,  2004;  Jacobson,  Friesner,   et  al. ,  2002)  was  used  to               

generate  the  homology  models.  We  used  the  gp120  protein  co-crystallized  with             

VRC01  found  on  the  3NGB  PDB  accession  as  template  structure  for  the  homology               

models.  This  gp120  is  known  as  93TH057,  and  it  is  widely  used  for  unveiling  the                 
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binding  conformation  of  antibodies  and  therefore,  is  overrepresented  on  the  PDB             

database.   

After  the  generation  of  the  homology  models,  we  proceeded  to  glycosylate  all  viral               

structures.  It  has  been  reported  that  glycosylation  levels  shape  the  antibody  binding              

effectivity.  After  analyzing  all  available  envelope  glycoproteins  with  three-dimensional           

structures  on  the  PDB,  we  found  out  that  the  most  common  glycosylation  consists  of                

a  covalent  modification  of  asparagine  amino  acid  with  a  molecule  of  N-acetyl              

glucosamine  (NAG).  This  kind  of  glycosylation  follows  a  linear  motif  of  N-X-T/S,              

where  N  is  the  asparagine  residue  to  be  glycosylated,  X  is  any  amino  acid,  and  T/S                  

represents  threonine  and  serine,  respectively.  Moreover,  such  asparagine  residue           

must  be  exposed  on  the  surface  of  the  protein  to  be  glycosylated.  Hence,  all                

exposed  asparagines  found  in  a  N-X-T/S  motif  were  glycosylated  with  a  NAG              

molecule.   

After  generating  the  fully  glycosylated  gp120,  we  proceeded  to  generate  the  initial              

antibody-epitope  conformation  for  initializing  PELE  simulations.  Here,  we  aimed  to            

simulate  the  three-dimensional  binding  process  between  the  antibody  (VRC01,           

NIH45-46  and  3BNC117)  and  the  selected  gp120s.  Therefore,  we  placed  the  gp120              

strains  10  Å  away  (in  the  vertical  axis)  from  the  docked  conformation  with  the  bNAbs,                 

aiming  to  provide  enough  space  to  simulate  the  binding  process  (from  out  to  in                

conformations).   

PELE-antibody   algorithm   

Simulating  the  binding  process  of  two  proteins  is  not  substantially  different  to              

simulating  the  binding  process  of  a  small  molecule  towards  a  target  protein.  Usually,               

the  larger  body  remains  fixed  (in  this  case,  the  antibody)  and  the  smaller  one  (the                 

gp120)  moves  around  the  other.  In  fact,  this  is  also  the  basis  of  most  protein-protein                 

docking  algorithms.  However,  and  especially  for  the  analysis  of  the  binding  patterns              

in  PELE  simulations,  it  is  important  to  start  with  an  undocked  conformation.  This  is                

because  the  acceptance  of  the  PELE  steps  strongly  relies  on  the  contacts  generated               

between  the  stimulating  proteins.  Hence,  usually  once  that  the  interacting  partners             

bind,   PELE   steps   detaching   the   complex   are   not   likely   to   be   accepted.  
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In  the  “ State  of  the  art:  Monte  Carlo ”  section,  the  basics  of  the  PELE  algorithm  is                  

provided.  The  protocol  used  in  this  work  is  similar  to  the  one  described  previously,  as                 

can   be   observed   by   comparing    Figure   24   and   34 .   

  

Figure  34 .  Graphical  representation  of  a  PELE  step  in  protein-protein  complexes.             

PELE  consists  of  two  phases:  perturbation  and  relaxation.  During  the  former,  a              

protein  is  translated  and  rotated,  and  a  backbone  sampling  protocol  (ANM)  is              

performed.  During  the  latter,  side  chain  conformations  are  sampled  followed  by  a              

minimization  step  to  generate  energetically  stable  conformations.  The  movement           

may   be   accepted   according   to   the   Metropolis   criterion.   

However,  some  modifications  were  made  to  optimize  the  efficiency  of  the            

simulations,  since  that  protein-protein  simulations  are  computationally  more  costly           

than  other  smaller  systems  (such  as  protein-ligand).  Hence,  the  acceptance  of  a             

PELE  step  takes  longer  for  protein-protein  systems  than  protein-ligand  because  of             

some  particularities  originated  by  the  size  of  the  system:  i)  clashes  are  common  (a                

small  rotation  of  one  protein  may  originate  several  clashes  with  the  partner  protein),               

ii)  side  chain  prediction  takes  longer  because  the  interface  involves  larger  amount  of               
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residues,  and  iii)  the  minimization  process  of  the  system  involves  more  atoms  and               

therefore,  it  takes  longer.  Aiming  to  optimize  the  simulation  parameters,  we:  i)              

reduced  the  magnitude  of  translations  and  rotations  (contributing  to  reduce  the             

amount  of  clashes  produced  by  large  displacements),  ii)  restricted  the  side  chain              

prediction  step  to  the  binding  interface  between  the  antibody  and  the  epitope              

(decreasing  the  amount  of  rotamers  to  predict),  iii)  reduced  the  resolution  of  the  side                

chain  prediction  step  (expecting  that  the  minimization  process  would  relocate  them             

into  optimal  energy  conformations),  iv)  restricted  the  minimization  step  only  to  the              

binding   interface.   

After  the  fine-tuning  of  these  parameters,  we  ran  PELE  simulations.  We  enabled              

ANM  sampling  every  4  PELE  steps,  and  we  used  the  OPLS2005  force  field  with  the                 

VDGBNP  implicit  solvent.  PELE  simulations  were  performed  using  144  independent            

trajectories   during   48h.   

By  performing  many  PELE  steps  over  time  the  binding  process  of  the  epitope               

(gp120)  and  the  antibody  can  be  simulated.  Our  original  hypothesis  was  that,  taking               

everything  together,  the  rate  of  reaching  bound  conformations  would  be  different             

between  sensitive  and  resistant  strains.  Concretely,  we  believed  that  reaching            

deeper  bound  conformations  will  be  difficult  or  impossible  for  resistant  ones  (since              

they  have  been  experimentally  described  to  not  bind  to  the  antibody).  Therefore,  we               

believed  that  the  analysis  of  these  PELE  simulations  would  provide  hints  that  could               

be   exploited   for   the   prediction   of   antibody   binding   efficacy.   

PELE-antibody   results   

Population  analysis  of  the  PELE  simulations  was  conducted  to  evaluate  the  binding              

process  of  gp120-antibody  systems.  Such  (statistical)  analysis  was  mainly  based  on             

the  solvent-accessibility  surface  area  (SASA)  of  the  gp120,  which  indicates  the             

proportion  of  the  protein  that  is  exposed  to  the  solvent.  A  representative  scheme  of                

such   population   analysis   is   illustrated   in    Figure   35 .   
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Figure  35 .  Graphical  representation  of  a  PELE  population  analysis.  PELE            

simulations  start  from  unbinding  conformations,  and  over  time,  contacts  between  the             

epitope  and  the  antibody  may  form.  SASA  of  the  gp120  indicates  the  amount  of                

contacts  formed  with  the  antibody.  Relative  binding  affinities  can  be  determined  by              

applying   a   SASA   threshold   along   the   simulation   ( Equation   14) .   

Here,  simulation  starts  from  an  unbinding  state  (SASA  value  of  1)  where  there  are  no                 

contacts  between  the  epitope  (gp120)  and  the  antibody  (bNAb).  As  the  PELE              

simulations  progress,  the  amount  of  contacts  between  the  epitope  and  the  antibody              

may  increase,  which  in  turn  will  decrease  the  SASA  value  of  such  conformations               

(part  of  the  gp120  would  bind  to  the  antibody  instead  of  being  exposed  to  the                

solvent).  Population  analysis  of  the  PELE  simulations  for  the  large  VRC01             

benchmark  is  shown  in   Figure   36 .  As  can  be  observed,  the  binding  profiles  of                

sensitive  strains  differ  from  the  resistant  ones:  sensitive  strains  bind  better  to  the               

antibody   (lower   SASA   values)   than   resistant   strains   (higher   SASA   values).   
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Figure  36 .  Frequency  of  SASA  values  of  the  PELE  simulations  in  a  set  of  45                 

sensitive  and  19  resistant  gp120  HIV-1  strains  against  VRC01.  Stripped  line             

indicates  a  SASA  threshold  of  0.85,  used  for  defining  a  binding  and  unbinding  cut-off                

event   for   the   prediction   of   a   relative   binding   affinity   (see    Equation   14 ).     

A  contact  SASA  threshold  of  0.85  was  used  to  compute  the  predicted  relative               

binding  affinity  of  each  strain  against  VRC01  ( Equation  14 ).  This  threshold  was              

selected  by  computing  the  mean  of  the  SASA  values  from  the  maximum  frequency               

peaks   in   all   sensitive   strains.   

      (14)  redicted relative binding af f inity   P = og( )   l Amount of  binding events
Amount of  unbinding events  

By  computing  the  predicted  relative  binding  affinity,  the  complex  information  from  the              

SASA  distribution  is  converted  into  a  numerical  score,  which  facilitates  the             

comprehension  of  the  current  output  of  the  simulations.  Predicted  relative  binding             

affinities  for  the  VRC01  benchmark  are  reported  in   Figure  37 .  Favourable  predicted              

binding  affinities  are  those  having  a  negative  score,  while  desfavorable  affinities             

have  a  positive  score.  As  can  be  observed,  most  of  the  strains  are  correctly                

predicted  by  our  contact-based  approximation  on  the  PELE  simulations:  33  out  of  45               

sensitive   strains   and   16   out   of   19   resistant   ones.   
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Figure  37 .  Predicted  relative  binding  affinities  of  45  sensitive  and  19  resistant  HIV-1               

strains  towards  VRC01,  extracted  from   Figure  36  and   Equation  14 .  Most  strains              

were  correctly  predicted  according  to  the  experimental  determinations:  33  out  of  45              

sensitive   and   16   out   of   19   resistant   strains   towards   VRC01.   

The  distribution  and  the  Receiver  Operator  Characteristic  (ROC)  curve  of  such             

predicted   affinities   is   illustrated   in    Figure   38 .     

  

Figure  38 .  Statistics  on  the  large  VRC01  benchmark  consisting  of  45  sensitive  and               

19  resistant  gp120.  (a)  Distribution  of  the  predicted  binding  affinities;  (b)  Receiver              

Operator   Characteristic   (ROC)   curve   achieving   an   AUC   of   0.84.   
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As  can  be  observed,  the  predicted  affinity  distribution  ( Figure  38a )  between             

sensitive  and  resistant  groups  differs  substantially,  as  suggested  by  previous            

analyses.  Moreover,  analysis  of  the  ROC  curve  ( Figure  38b )  indicates  a  strong              

predictive  power  for  determining  antibody  binding  efficacy  for  the  VRC01  benchmark             

towards  sensitive  and  resistant  strains,  achieving  an  area  under  the  curve  (AUC)  of               

0.84.   

Next,  we  aimed  to  assess  the  applicability  of  this  approach  for  the  prediction  on  other                 

anti-CD4bs  bNAbs:  NIH45-46  and  3BNC117.  One  of  the  main  limitations  of  any              

classifier  is  the  choice  of  the  threshold,  which  can  shape  the  output  of  the                

predictions.  Here,  we  aimed  to  estimate  the  optimum  threshold  by  computing  the              

difference  in  contacts  between  the  bNAbs,  without  the  need  of  generating  large              

benchmarks  as  we  did  for  VRC01.  We  could  estimate  the  optimum  SASA  threshold               

for  a  given  uncharacterized  antibody  (anti-CD4bs)  by  the  fact  that  the  93TH057              

gp120  strain  is  overrepresented  in  crystal  structures.  In  this  case,  the  93TH057              

gp120  strain  has  been  co-crystallized  with  VRC01  (PDB:  3NGB),  NIH45-46  (PDB:             

3U7Y)  and  3BNC117  (PDB:  4JPV).  Hence,  the  optimum  SASA  threshold  for  the              

interpretation  of  PELE  simulations  can  be  estimated  for  uncharacterized  antibodies            

( Equation   15 ):   

          (15)    V RC01   (V RC01   bNAb )  bNAbPELE =   PELE    BOUND    BOUND  

Here,  bNAb PELE ,  VRC01 PELE ,  VRC01 BOUND  and  bNAb BOUND  represent  the  optimum           

SASA  threshold  for  PELE  simulations  for  a  uncharacterized  bNAb,  the  optimum             

SASA  threshold  for  VRC01  (0.85  units  of  SASA),  the  SASA  of  the  93TH057  gp120                

bound  to  the  VRC01  crystal  structure,  and  the  SASA  of  the  93TH057  gp120  bound                

to  the  uncharacterized  bNAb,  respectively.  Thus,  we  determined  that  the  optimum             

SASA   thresholds   for   NIH45-46   and   3BNC117   are   0.83   and   0.86,   respectively.   

For  the  PELE  simulations,  in  this  case  we  selected  nine  different  gp120  strains  from                

different  clade  identities  having  diverse  binding  affinities  for  the  three  antibodies.  This              

is,  to  be  sensitive  for  one  antibody  and  resistant  for  the  other  two,  or  the  other  way                   

around.  Selected  strains,  clade  identity  and  their  binding  affinity  towards  the  three              

bNAbs   (sensitive   and   resistant)   are   shown   in    Figure   39 .   
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Figure  39 .  List  of  the  nine  evaluated  strains  with  the  three  bNAbs:  VRC01,  NIH45-46                

and  3BNC117.  Clade  identity,  and  binding  efficacy  to  the  above  mentioned  bNAb  is               

shown.   

Predicted  binding  affinity  scores  of  the  nine  selected  gp120  towards  the  three  bNAbs               

is  illustrated  in   Figure  40 .  Our  results  indicate  that,  as  observed  for  the  large  VRC01                 

benchmark,  most  sensitive  strains  are  predicted  as  such  (12  out  of  14),  as  well  for                 

resistant  ones  (10  out  of  13).  These  results  demonstrate  the  wider  applicability  of  the                

proposed  technique  using  very  limited  knowledge  without  the  need  of  performing             

extensive   benchmarks.   

  

Figure  40 .  Predicted  relative  binding  affinities  using  PELE  simulations  of  9  different              

gp120  HIV-1  strains  towards  VRC01,  NIH45-46  and  3BNC117.  Most  of  the  sensitive              

strains  (blue)  are  correctly  predicted  (12  out  of  14),  while  also  most  of  the  resistant                 

strains   (red)   are   predicted   as   such   (10   out   of   13).   
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Finally,  we  aimed  to  investigate  the  structural  basis  that  drives  resistance  in  gp120               

strains.  After  comparison  of  the  three-dimensional  models  generated  by  PELE  for             

sensitive  and  resistant  strains,  we  observed  that  the  antibody  is  unable  to              

accommodate  two  important  contact  regions  of  the  gp120,  the  loop  D  and  the               

β23-V5-β24-α5  region.  In  fact,  mutations  in  those  regions  have  been  associated  with              

resistance  patterns  in  previous  studies   (Huang   et  al. ,  2016;  Lynch   et  al. ,  2015;  Li   et                 

al. ,  2011) .  Those  mutations  are  typically  placed  in  the  position  279            

(N/D-279-K/E/Q/R),  280  (N280D),  281  (A281T),  456  (R456W)  and  458  (G458D).            

Multiple  resistant  strains  evaluated  in  this  work  contain  the  above  mentioned             

mutations,  and  all  of  them  have  been  predicted  to  be  resistant  by  our  method.  Those                 

strains  are  TV1.29,  DU422.01,  TZA125.17,  6471.V1.C16,  620345.c1,  BL01.DG  and           

H086.8.  The  other  resistant  strains  contain  other  mutations  on  the  β23-V5-β24-α5             

region  that  could  play  a  major  role  for  resistance  mechanisms.  Importantly,  both  loop               

D  and  β23-V5-β24-α5  are  close  in  space  ( Figure  41 ),  and  mutations  in  any  of  both                 

regions  could  affect  the  conformational  dynamics  of  both  loops,  hindering  the             

accommodation   of   the   gp120.   

  

Figure  41 .  Representative  binding  mode  of  sensitive  (Q482.d12,  blue)  and  resistant             

(620345.c1,  red)  gp120  strains  to  VRC01.  Analysis  of  the  PELE  simulations  indicate              

that  the  antibody  is  unable  to  accommodate  the  loop  D  and  the  β23-V5-β24-α5               

regions   of   the   resistant   gp120   strains.     
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Designing   a   potent   broadly   neutralizing   antibody   

As  mentioned  in  previous  sections,  bNAbs  may  be  elicited  against  HIV-1.  The  most               

potent  bNAbs  discovered  so  far  bind  to  the  CD4bs  of  the  envelope  glycoprotein               

gp120.  Within  this  group,  N6  is  the  most  potent  ( Figure  18 ),  showing  one  of  the                 

greatest  strain  coverage  (~98%)  combined  with  one  of  the  greatest  antibody             

potencies  (0.066  μg/mL).  The  main  advantage  of  the  N6  antibody  compared  to  other               

VRC01-class  bNAbs  is  the  ability  to  avoid  steric  clashes  that  originate  resistance              

(Lynch   et  al. ,  2015;  Huang   et  al. ,  2016) .  In  this  section,  the  distinctive  features  of  the                  

N6  antibody  will  be  discussed  for  both  heavy  and  light  chains,  which  are  key  factors                 

for   understanding   our   rational   design   processes.   

● The  entire  antibody  adopts  a  rotation  and  shift  displacement  compared  to             

other  VRC01-class  antibodies.  This  induces  a  different  binding  mode           

orientation  that  greatly  contributes  to  the  binding  efficiency  of  the  N6   (Huang              

et   al. ,   2016) .     

● Regarding  the  heavy  chain  (HC)  of  the  N6  antibody,  its  CDRH2  loop              

contributes  to  the  ~50%  contact  surface  with  the  gp120,  and  it  contains  most               

of  the  essential-known  residues  of  VRC01-class  antibodies  for  a  potent            

binding.  Firstly,  a  large  hydrophobic  residue  (Tyr54 HC )  mimics  the  interaction            

of  Phe43 CD4  with  gp120.  Secondly,  important  salt  bridges  between  the            

antibody  and  the  epitope  (Arg71 HC  and  Asp368 gp120 )  are  conserved.  Thirdly,  a             

key  conserved  residue  (Trp100c HC )  interacts  with  loop  D  Asp/Asn279 gp120 .           

Lastly,  the  CDRH2  evolved  to  contain  a  Gly 60 GlyGly 62  motif  (not  found  in  any               

other  previously  isolated  CD4bs  antibodies),  which  helps  to  accommodate           

variations   on   the   V5   loop   by   avoiding   side   chain   clashes.     

● Regarding  the  light  chain  (LC)  of  the  N6  antibody,  the  overall  rotation  of  the                

antibody  makes  the  CDRL3  and  the  N-terminal  region  move  away  from  the              

highly  variable  V5  loop,  which  also  helps  to  prevent  clashes  that  drive              

resistance.  Moreover,  the  CDRL1  contains  another  Gly 28 GlyGly 30  motif  that           

permits  avoiding  steric  clashes  with  the  loop  D,  especially  with  the             

glycosylation   site   on   Asn276 gp120 .   
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Overall,  this  set  of  features  are  responsible  for  the  success  of  the  N6  antibody.  In  this                  

work,  we  aimed  to  design  a  potent  variant  of  the  N6  antibody.  In  this  context,  it  is                   

important  to  keep  in  mind  that  the  N6  antibody  has  been  isolated  from  blood  samples                 

of  a  patient  (Z258)  showing  potent  and  broad  serum  against  HIV-1.  N6  antibody  was                

the  most  potent  antibody  described  in  the  serum  of  that  patient,  and  to  date  N6  is  the                   

most  potent  antibody  against  AIDS.  In  this  context,  aiming  to  improve  the  potency  of                

the  N6  antibody  is  not  a  trivial  task.  In  fact,  a  very  little  increase  in  antibody  potency                   

is  expected  to  occur  from  the  best  possible  designs,  specially  for  single  mutations;               

otherwise,  such  mutations  would  have  been  positively  selected  during  the  maturation             

process  within  the  patient.  Another  layer  of  complexity  resides  in  the  fact  that  an                

improvement  of  the  design  must  be  observed  against  several  viral  isolates,  which             

challenges   the   design   process.   

In  this  section,  we  will  describe  three  different  attempts  of  improving  the  binding               

potency  of  the  N6  antibody.  Firstly,  we  will  describe  our  attempt  to  elongate  the                

CDRH3  loop  of  the  N6  with  a  sequence  described  to  improve  the  binding  potency  of                 

other  VRC01-class  antibodies.  Secondly,  we  will  describe  a  fully  computational            

approach  for  identifying  single  mutations  on  the  heavy  and  light  chain  of  the  N6                

antibody  that  could  improve  the  binding  affinity  towards  multiple  viral  isolates.  Lastly,              

we  will  describe  a  fully  rational  design  process  for  improving  the  binding  affinity  of  N6                 

by  designing  a  double  mutation  on  the  light  chain  that  helps  to  accommodate  the                

gp120  strain.  All  of  the  above  described  attempts  are  accompanied  by  experimental              

validation  performed  by  our  collaborators  from  IrsiCaixa.  The  main  topic  of  this              

section  is  to  provide  insights  about  the  rational  design  process  rather  than  providing               

an  in-depth  detail  of  the  experimental  validation  process.  However,  a  brief  detail  of               

the   experimental   protocol   is   described   in   the   following   lines:   

Both  N6  expressing  plasmid  for  heavy  and  light  chains  were  obtained  from  the               

NIH-AIDS  referent  research  reagent  (code  12967  and  12966,  respectively).  All  N6             

variants  were  generated  by  directed  mutagenesis  using  overlapping          

oligonucleotides,  which  incorporated  the  mutations.  The  Phusion  hotstart          

polymerase  (Thermofisher)  was  used  for  polymerase  chain  reaction  (PCR)           

amplification.  The  original  N6  expressing  plasmids  were  used  as  a  template.  N6              

antibody  and  its  variants  were  produced  in  vitro  by  co-transfecting  both  heavy  and               

106   



  

light  plasmids  using  the  Expi293  Cells  Expression  System  (Thermofisher).  Cell            

culture  supernatants  were  harvested  after  5  days  from  transfection  and  clarified  by             

centrifugation  (20  minutes  at  3000g  and  filtration  at  0,22μm).  Concentration  of             

antibodies  in  supernatants  was  determined  by  an  in-house  developed  ELISA.  Briefly,             

a  goat  anti-Human  IgG  (Jackson  Immunology)  was  used  at  1μg/mL  as  coating  and               

N6  purified  antibody  was  used  as  standard  starting  at  0,3μg/mL.  All  cell  supernatants               

were  evaluated  for  a  different  dilution  using  horseradish  peroxidase           

(HRP)-conjugated  goat  anti-Human  IgG  (Jackson  Immunology)  as  secondary          

antibody.   

Antibodies  were  purified  from  clarified  cell  culture  by  protein  A  chromatography  using              

HiTrap  protein  A  HP  columns  and  an  ÄKTA  Start  equipment,  and  following  standard               

methods.     

The  binding  of  N6  antibody  and  its  variants  was  measured  towards  different  HIV-1               

envelope  glycoproteins  by  ELISA  using  both  HisTag-expressing  monomeric          

recombinant  gp120  (BaL  isolate)  and  a  trimeric  recombinant  gp140  protein  (B41             

SOSIP  664  his).  Briefly,  plates  were  coated  anti-HisTag  antibody  (Thermofisher)  and            

then  gp120  or  gp140  were  used  at  0,1μg/mL.  All  N6  variants  were  tested  starting  at                 

0,3μg/ml  and  seven  1/3  serial  dilution  to  evaluate  binding  saturation.  A             

HRP-conjugated   goat   anti-Human   IgG   was   used   as   a   secondary   antibody.    

Binding  to  full  native  HIV  envelope  glycoprotein  from  different  isolates  was  evaluated              

by  flow-cytometry.  Expi293  cells  were  transfected  with  plasmid  coding  for  the             

envelope  glycoproteins.  After  24  hours,  cells  were  collected  and  incubated  with  N6              

variants  at  1μg/mL  for  30  minutes  at  room  temperature.  A  phycoerythrin             

(PE)-labelled  goat  anti-human  IgG  secondary  antibody  was  used  to  detect  cell             

surface  bound  antibodies.  Untransfected  Expi293  cells  were  used  as  negative            

control.   Cells   were   analysed   using   a   FACSCelesta   cytometer   from   Becton   Dickinson.    
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On   the   design   of   a   chimera   bNAb   

VRC01-like  class  antibodies  show  a  high  degree  of  sequence  conservation.  Some             

examples  of  this  phenomenon  may  be  found  on  the  heavy  chains  of  VRC01-like               

class  antibodies,  such  as  for  instance  N6-VRC27  (91%  sequence  conservation),            

VRC07-NIH45-46  (98%  sequence  conservation)  or  VRC01-VRC07  (94%  sequence          

conservation).  Achieving  high  sequence  similarity  results  in  very  similar           

three-dimensional  antibody  structures.  A  representation  of  the  three-dimensional          

similarity  between  four  different  VRC01-like  class  bNAbs  (VRC01,  VRC07,  NIH45-46            

and  N6)  is  illustrated  in   Figure  42 .  Color  codes  represent  the  93TH057  gp120  (blue),                

the  antibody  heavy  chain  (orange),  and  the  antibody  light  chain  (yellow).  As  can  be                

observed,   all   antibody-epitope   complexes   overlap   in   the   three-dimensional   space.   

  

Figure  42 .  Binding  mode  of  four  VRC01-like  class  bNAbs:  VRC01,  VRC07,             

NIH45-46  and  N6  (from  3NGB,  4OM0,  3UTY  and  5TE6  PDB  entries,  respectively).              

The  gp120,  the  antibody  heavy  chain  and  the  antibody  light  chain  are  represented  in                

blue,  orange  and  yellow,  respectively.  As  can  be  observed,  the  binding  mode              

between  the  VRC01-like  class  antibodies  is  conserved  and  overlaps           

three-dimensionally.   
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However,  despite  showing  very  high  sequence  and  structural  similarity,  some            

differences  may  be  observed.  Such  differences  are  mainly  located  on  the  variable              

regions  CDRH1,  CDRH2  and  CDRH3.  CDR  regions  play  an  important  role  for  gp120               

binding  and  CDRH2  is  the  most  important  region,  since  it  makes  half  of  the  contacts                 

of  the  total  antibody  with  the  gp120.  On  the  other  hand,  CDRH1  and  CDRH3  play                 

accessorial/supporting  roles,  and  depending  on  the  bNAb,  such  regions  exert  larger             

or  lesser  impact  on  the  binding  affinity.  Interestingly,  VRC01-like  class  antibodies             

accumulate  high  sequence  diversity  on  the  CDRH3.  In  this  sense,  there  are  two               

groups  of  VRC01-like  class  antibodies:  those  containing  a  4-residue  insertion            

(-ARDY-)  and  those  which  do  not.  This  insertion  has  been  described  in  NIH45-46               

and  VRC07,  while  it  is  not  found  on  VRC01  either  in  N6.  Here  we  show  the  linear                   

sequence   of   the   heavy   chain   of   those   antibodies.   

           -------------FR1--------------   CDRH1   

NIH45-46    EVRLSQSGGQMKKPGESMRLSCRASGYEFL   N C PIN   

VRC07       QVRLSQSGGQMKKPGDSMRISCRASGYEFI   N C PIN   

VRC01       QVQLVQSGGQMKKPGESMRISCRASGYEFI   D C TLN   

N6          RAHLVQSGTAMKKPGASVRVSCQTSGYTFT   AHILF     

  

           ------FR2-----   ------CDRH2------     

NIH45-46    WIRLAPGRRPEWMG   WLKPRGGAVNYARKFQG     

VRC07       WIRLAPGKRPEWMG   WMKPRGGAVSYARQLQG   

VRC01       WIRLAPGKRPEWMG   WLKPRGGAVNYARPLQG     

N6          WFRQAPGRGLEWVG   WIKPQYGAVNFGGGFRD     

  

           --------------FR3---------------   

NIH45-46    RVTMTRDVYSDTAFLELRSLTSDDTAVYFCTR   

VRC07       RVTMTRDMYSETAFLELRSLTSDDTAVYFCTR   

VRC01       RVTMTRDVYSDTAFLELRSLTVDDTAVYFCTR   

N6          RVTLTRDVYREIAYMDIRGLKPDDTAVYYCAR   

  

           ------CDRH3-----   ----FR4----   

NIH45-46    GKY C TARDYYNWDFEH   WGRGAPVTVSS   

VRC07       GKY C TARDYYNWDFEH   WGQGTPVTVSS   

VRC01       GKN C D----YNWDFEH   WGRGTPVIVSS   

N6          DRSYGD---SSWALDA   WGQGTTVVVSA   
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As  can  be  observed,  N6  sequence  differs  from  the  other  antibodies.  The  main               

structural  difference  between  N6  and  the  other  antibodies  is  the  lack  of  a  conserved                

disulphide   bond   between   the   CDRH1   and   the   CDRH3   (highlighted   in   red).   

Previous  studies  revealed  that  the  -ARDY-  insertion  is  responsible  of  an  enhanced              

antibody  potency  in  NIH45-46  and  VRC07  compared  to  the  VRC01   (Diskin   et  al. ,               

2011;  Rudicell   et  al. ,  2014) .  The  authors  demonstrated  that  this  insertion  elongates              

the  CDRH3  loop,  creating  additional  favourable  contacts  with  the  inner  domain  of  the               

gp120,  leading  to  an  increase  of  the  antibody  binding  potency.   Figure  43  indicates               

the  three-dimensional  structure  of  the  CDRH3  of  NIH45-46  ( Figure  43a ),  VRC07             

( Figure  43b ),  VRC01  ( Figure  43c )  and  N6  ( Figure  43d ).  Here,  antibodies             

containing  the  4-residue  insertion  -ARDY-  (NIH45-46  and  VRC07)  achieved  a  well             

defined  CDRH3  secondary  structure  consisting  of  an  antiparallel  beta-sheet           

organization,   while   the   others   (VRC01   and   N6)   show   a   disordered   short   loop.   

On  the  other  hand,  the  presence  (or  the  lack)  of  the  disulphide  bond  between  the                 

CDRH1  and  CDRH3  regions  is  illustrated  in   Figure  44  of  NIH45-46  ( Figure  44a ),               

VRC07   ( Figure   44b ),   VRC01   ( Figure   44c )   and   N6   ( Figure   44d )   antibody.     

Amino  acid  contacts  between  the  CDRH3  and  the  gp120  strain  are  illustrated  in               

Figure  45  of  NIH45-46  ( Figure  45a ),  VRC07  ( Figure  45b ),  VRC01  ( Figure  45c )  and               

N6  ( Figure  45d )  antibody.  Antibodies  containing  the  -ARDY-  insertion  achieve            

deeper  contacts  with  the  inner  domain  of  the  gp120,  which  is  presumably  one  of  the                 

main   drivers   of   increasing   the   antibody   potency   compared   to   VRC01.   
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Figure  43 .  Structural  conformation  of  the  CDRH3  regions  of  (a)  NIH45-46,  (b)              

VRC07,  (c)  VRC01  and  (d)  N6  VRC01-like  class  antibodies.  The  gp120,  the  antibody               

heavy  chain,  the  antibody  light  chain  and  the  CDRH3  sequence  are  shown  in  blue,                

orange,  yellow  and  red,  respectively.  An  structurated  antiparallel  beta-sheet  can  be             

observed  for  the  antibodies  containing  the  -ARDY-  insertion  on  the  CDRH3,             

NIH45-46   and   VRC07.   
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Figure  44 .  Presence  of  a  disulphide  bond  on  (a)  NIH45-46,  (b)  VRC07,  (c)  VRC01,                

and  not  in  (d)  N6  VRC01-like  class  antibodies.  The  gp120,  the  antibody  heavy  chain,                

the  antibody  light  chain  and  the  CDRH3  sequence  are  shown  in  blue,  orange,  yellow                

and  red,  respectively.  The  disulphide  bond  is  represented  in  yellow,  and  covalently              

connects   the   CDRH1   and   the   CDRH3.   

  

112   



  

  

Figure  45 .  CDRH3  residues  involved  in  binding  with  the  gp120  for  (a)  NIH45-46,  (b)                

VRC07,  (c)  VRC01,  and  (d)  N6  VRC01-like  class  antibodies.  The  gp120,  the              

antibody  heavy  chain,  the  antibody  light  chain  and  the  CDRH3  sequence  are  shown               

in  blue,  orange,  yellow  and  red,  respectively.  Dashed  lines  represent  intermolecular             

bonds:  hydrogen  bond  (yellow),  salt  bridge  (pink)  and  π-π  stacking  (cyan)  π-cation              

interactions   (dark   green).     
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Previous  research  has  demonstrated  that  CDR  and  FR  regions  are  exchangeable             

between  these  antibodies   (Huang   et  al. ,  2016) .  Hence,  chimeras  of  those  bNAbs  can               

be  produced  and  their  impact  on  binding  affinity  can  be  evaluated.  This  is               

represented  in   Figure  46 ,  where  the  authors  of  the  above  mentioned  article              

exchanged  all  CDR  and  FR  regions  of  the  N6  antibody  for  those  found  on  VRC01                 

and   VRC27,   and   in   the   other   way   around.  

  

Figure  46 .  Contributions  of  N6,  VRC01  and  VRC27  paratope  components  to  their              

breadth  and  potency.  Adapted  from  Figure  S5  of  the  article  “Identification  of  a               

CD4-Binding-Site  Antibody  to  HIV  that  Evolved  Near-Pan  Neutralization  Breadth”  ,            

Immunity .  (2016);  45(5):  1108–1121,  DOI:  10.1016/j.immuni.2016.10.027        

(https://www.cell.com/immunity/fulltext/S1074-7613(16)30438-1).   

Taking  into  account  that  CDR  exchanges  between  N6  and  VRC01  produce  antibody              

variants  that  can  be  expressed  and  produced,  we  envisioned  a  chimera  consisting  of               

the  N6  scaffold  where  the  CDRH1  and  CDRH3  are  exchanged  by  the  NIH45-46  one.                

This  construct  would  contain  the  -ARDY-  insertion  on  the  CDRH3,  together  with  the               
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two  cysteines  needed  to  form  the  disulfide  bond  between  the  CDRH1  and  CDRH3.               

The  sequence  of  the  design  is  shown  below  (CHIMERA).  Here,  the  sequence              

fragments  coming  from  the  N6  antibody  are  shown  in  black,  while  those  coming  from                

the   NIH45-46   antibody   are   shown   in   blue.     

           -------------FR1--------------   CDRH1   
N6          RAHLVQSGTAMKKPGASVRVSCQTSGYTFT   AHILF   
NIH45-46    EVRLSQSGGQMKKPGESMRLSCRASGYEFL   NCPIN   
CHIMERA     RAHLVQSGTAMKKPGASVRVSCQTSGYTF L   NCPIN   
  

           ------FR2-----   ------CDRH2------     
N6          WFRQAPGRGLEWVG   WIKPQYGAVNFGGGFRD     
NIH45-46    WIRLAPGRRPEWMG   WLKPRGGAVNYARKFQG     
CHIMERA     WFRQAPGRGLEWVG   WIKPQYGAVNFGGGFRD     
  

           --------------FR3---------------   
N6          RVTLTRDVYREIAYMDIRGLKPDDTAVYYCAR   
NIH45-46    RVTMTRDVYSDTAFLELRSLTSDDTAVYFCTR   
CHIMERA     RVTLTRDVYREIAYMDIRGLKPDDTAVY FCTR   
  

           ------CDRH3-----   ----FR4----   
N6          DRSYGD---SSWALDA   WGQGTTVVVSA   
NIH45-46    GKYCTARDYYNWDFEH   WGRGAPVTVSS   
CHIMERA      G KYCTARDYYNWDFEH   W GQGTTVVVSA   

Next,  we  generated  the  three-dimensional  structure  of  the  chimeric  variant  by             

homology  modeling  techniques  using  Prime  from  Schrödinger.  Then,  we  applied  a             

series  of  energy  minimizations  by  using  the  OPLS3e  force  field   (Roos   et  al. ,  2019)                

aiming  to  generate  adequate  conformers  for  the  native  and  the  chimera  design              

structures.  After  generating  energetically  favourable  conformations,  we  assessed          

their  binding  strength  towards  the  93TH057  gp120  strain.  Aiming  to  do  so,  we               

docked  the  antibodies  close  to  its  native  position  on  the  CD4bs,  and  initiated  PELE                

simulations.  In  this  case,  we  allowed  very  small  translations  and  rotations;  our  main               

goal  was  to  analyze  the  interaction  energy  (kcal/mol)  of  the  antibody-epitope  while              

allowing  side  chain  and  backbone  sampling.  PELE  simulations  were  carried  out             

during  48  hours,  and  we  used  the  OPLS2005  force  field,  the  VDGBNP  implicit               

solvent,  and  ANM  motions  were  allowed  for  every  four  PELE  steps.  At  this  time,  the                 
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PELE-antibody  protocol  was  not  established  and  as  stated  above,  we  focused  our              

analysis   on   the   interaction   energy   of   the   antibody-epitope   complex   ( Figure   47 ).   

  

Figure  47 .  Interaction  energy  (kcal/mol)  distribution  of  the  antibody-epitope  complex            

generated  by  PELE.  As  can  be  observed,  the  chimera  antibody  achieves  stronger              

interaction  energies  with  the  93TH057  gp120  strain,  suggesting  that  this  design             

could   improve   the   binding   potency   of   the   native   N6   antibody.   

Here,  the  distribution  of  the  interaction  energies  of  antibody-epitope  complex  during             

PELE  simulations  is  shown.  Our  chimera  design  achieved  stronger  interaction            

energies  than  the  native  N6  antibody,  which  may  indicate  that  this  design  could               

improve  the  antibody  potency  of  the  N6  antibody.  This  increase  in  the  interaction               

energy  would  be  induced  by  the  extra  contacts  originated  by  the  -ARDY-  insertion               

with   the   inner   domain   of   the   gp120,   as   observed   in    Figure   45a .   

After  these  promising  results,  the  antibody  design  sequence  was  sent  to  our              

experimental  collaborators  at  IrsiCaixa,  aiming  to  produce  and  experimentally           

evaluate  the  binding  potency  of  the  design.  However,  the  antibody  could  not  be               

produced  on  their  experimental  design  setup,  and  therefore,  we  could  not  evaluate              

the   effectiveness   of   this   design.   
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Aiming   to   improve   the   N6   antibody:   first   round   

At  the  very  beginning  of  this  thesis,  our  goal  was  to  improve  the  N6  antibody  by                  

means  of  computational  simulations.  During  this  first  round,  we  conducted  multiple             

simulation  assays  aiming  to  increase  the  binding  affinity  of  the  antibody-epitope             

complex.  Here,  we  envisioned  a  fully  computational  approach  for  identifying  single             

mutations  on  the  heavy  and  light  chain  of  the  N6  antibody  that  could  improve  the                 

binding  affinity  towards  multiple  viral  isolates.  In  this  section,  we  will  summarize  the               

computational  workflow  that  we  followed,  together  with  the  experimental  validations            

of   the   proposed   designs.   

As  mentioned  previously,  we  envisioned  a  method  for  predicting  which  single             

mutations  on  the  N6  antibody  could  lead  to  a  general  binding  potency  improvement               

towards  most  (or  all)  viral  isolates.  Aiming  to  do  so,  first  we  needed  to  obtain  a  large                   

amount  of  gp120  sequences  to  evaluate  the  binding  of  the  antibody  designs.              

Fortunately,  literature  contains  a  panel  assay  of  181  viral  isolates  representing  clade              

diversity   (Rudicell   et  al. ,  2014;  Huang   et  al. ,  2016) .  Here,  the  main  difficulty               

consisted  of  retrieving  those  sequences  from  GeneBank,  since  only  the  gp120  strain              

name  (Virus  ID)  was  provided.  The  main  problem  with  this  is  that  GeneBank  codes                

do  not  correspond  with  the  Virus  ID  for  most  of  the  viral  isolates,  and  an  extensive                  

search   followed   by   a   manual   data   curation   step   was   required.     

After  this  selection  process,  an  amount  of  172  complete  gp120  sequences  were              

successfully  located.  Virus  ID,  clade  identity,  affinity  to  N6  (N6  aff;  S,  M  and  R                 

represents  sensitive,  medium  and  resistant  binding  affinity  towards  N6)  and            

GenBank   code   of   all   172   complete   gp120   sequences   is   illustrated   in    Table   30 .   
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Virus   ID   Clade  N6   aff   GenBank    Virus   ID   Clade  N6   aff  GenBank   

0260.v5.c36   A   S   HM215256.1   MN.3   B   S   HM215430.1  

0330.v4.c3   A   S   HM215257.1   PVO.04   B   S   AY835444.1   

0439.v5.c1   A   S   HM215258.1   QH0515.01   B   S   AY835440.1   

3365.v2.c20   A   S   HM215298.1   QH0692.42   B   M   AY835439.1   

3415.v1.c1   A   S   HM215299.1   REJO.67   B   S   AY835449.1   

3718.v3.c11   A   S   HM215306.1   RHPA.7   B   S   AY835447.1   

398-F1_F6_20  A   S   HM215312.2   SC422.8   B   S   AY835441.1   

BI369.9A   A   S   DQ187019.1   SF162.LS   B   S   EU123924.1  

BS208.B1   A   S   KX364401.1   SS1196.01   B   S   AY835442.1   

KER2008.12  A   M   AY736809.1    THRO.18   B   M   AY835448.1   

KER2018.11   A   S   AY736810.1    TRJO.58   B   S   AY835450.1   

KNH1209.18   A   S   AY736813.1    TRO.11   B   S   AY835445.1   

MS208.A1   A   S   DQ187010.1   WITO.33   B   S   AY835451.1   

Q23.17   A   S   AF004885.1    YU2.DG   B   S   M93258.1   

Q259.17   A   S   AF407152.1    CH038.12   BC   S   EF042692.1   

Q461.e2   A   S   AF407156.1    CH070.1   BC   S   EF117255.1   

Q769.d22   A   S   AF407158.1    CH117.4   BC   S   EF117262.1   

Q769.h5   A   S   AF407159.1    CH181.12   BC   S   EF117259.1   

Q842.d12   A   S   AF407160.1    CNE15   BC   S   HM215401.1  

QH209.14M.A   A   S   FJ866118.1    CNE40   BC   S   HM215414.1  

RW020.2   A   S   EU855131.1   CNE7   BC   S   HM215426.1  

UG037.8   A   S   HQ702713.1   286,36   C   S   JQ362420.1   

3301.V1.C24   AC   S   HM215294.1   288,38   C   M   JQ362421.1   

3589.V1.C4   AC   S   HM215304.1   0013095-2.11  C   S   EF117267.1   

6540.v4.c1   AC   S   HM215330.1   001428-2.42   C   S   EF117266.1   

6545.V4.C1   AC   M   HM215332.1   0077_V1.C16  C   S   HM215254.1  
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0815.V3.C3   ACD   S   HM215260.1   00836-2.5   C   S   EF117265.1   

6095.V1.C10   ACD   S   HM215323.1   0921.V2.C14   C   S   HM215262.1  

3468.V1.C12   AD   S   HM215301.1   16055-2.3   C   S   EF117268.1   

Q168.a2   AD   S   AF407148.1    16845-2.22   C   M   EF117269.1   

620345.c1   AE   M   JQ362422.1    16936-2.21   C   S   EF117270.1   

C1080.c3   AE   M   AY945712.1    25710-2.43   C   S   EF117271.1   

C2101.c1   AE   S   AY945716.1    25711-2.4   C   M   EF117272.1   

C3347.c11   AE   S   AY945721.1    25925-2.22   C   M   EF117273.1   

C4118.09   AE   S   AY945722.1    26191-2.48   C   S   EF117274.1   

CNE3   AE   S   HM215410.1   3168.V4.C10   C   S   HM215289.1  

CNE5   AE   S   HM215415.1   3637.V5.C3   C   M   HM215305.1  

CNE55   AE   S   HM215418.1   3873.V1.C24   C   M   HM215311.1  

CNE56   AE   S   HM215419.1   6322.V4.C1   C   S   HM215326.1  

CNE59   AE   S   HM215422.1   6471.V1.C16   C   R   HM215328.1  

M02138   AE   M   AY713424.1    6631.V3.C10   C   S   HM215335.1  

R1166.c1   AE   M   AY945728.1    6644.V2.C33   C   S   HM215336.1  

R2184.c4   AE   S   AY945730.1    6785.V5.C14   C   M   HM215338.1  

R3265.c6   AE   S   AY945732.1    6838.V1.C35   C   S   HM215341.1  

TH966.8   AE   S   U08456.1    96ZM651.02   C   S   AF286224.1   

TH976.17   AE   S   U08458.1    BR025.9   C   S   U15121.1   

235-47   AG   S   EU513195.1   CAP210.E8   C   M   DQ435683.1  

242-14   AG   M   EU513188.1   CAP244.D3   C   S   DQ435684.1  

263-8   AG   S   EU513182.1   CAP45.G3   C   S   DQ435682.1  

269-12   AG   S   EU513194.1   CNE30   C   M   HM215411.1  

271-11   AG   S   EU513197.1   CNE31   C   M   HM215412.1  

928-28   AG   S   EU513199.1   CNE53   C   S   HM215417.1  

DJ263.8   AG   M   AF063223.1    CNE58   C   S   HM215421.1  
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T250-4   AG   S   EU513189.1   DU123.06   C   S   DQ411850.1  

T251-18   AG   M   EU513196.1   DU151.02   C   S   DQ411851.1  

T253-11   AG   S   EU513191.1   DU156.12   C   S   DQ411852.1  

T255-34   AG   S   EU513184.1   DU172.17   C   S   DQ411853.1  

T257-31   AG   M   EU513185.1   DU422.01   C   S   DQ411854.1  

T266-60   AG   S   EU513193.1   MW965.26   C   S   U08455.1   

T278-50   AG   R   EU513198.1   TV1.29   C   R   EU855132.1  

T280-5   AG   S   EU513183.1   TZA125.17   C   M   JQ362423.1   

T33-7   AG   S   EU513186.1   TZBD.02   C   S   JQ362424.1   

3988,25   B   S   AY835436.1    ZA012.29   C   S   EU855133.1  

5768,04   B   S   AY835435.1    ZM106.9   C   S   AY424163.2   

6535,3   B   S   AY835438.1    ZM109.4   C   S   AY424138.2   

7165,18   B   M   AY835437.1    ZM135.10a   C   M   AY424079.2   

89.6.DG   B   S   U39362.2    ZM197.7   C   S   DQ388515.1  

AC10.29   B   M   AY835446.1    ZM214.15   C   S   DQ388516.1  

ADA.DG   B   S   AY426119.1    ZM215.8   C   S   DQ422948.1  

Bal.01   B   S   DQ318210.1   ZM233.6   C   S   DQ388517.1  

BaL.26   B   S   DQ318211.1   ZM249.1   C   S   DQ388514.1  

BG1168.01   B   S   AY835443.1    ZM53.12   C   M   AY423984.2   

BL01.DG   B   R   AY124970.1    ZM55.28a   C   S   AY423971.2   

BR07.DG   B   M   AY124979.1    3326.V4.C3   CD   S   HM215296.1  

BX08.16   B   S   GQ855765.1   3337.V2.C6   CD   S   HM215297.1  

CAAN.A2   B   S   AY835452.1    3817.v2.c59   CD   M   HM215310.1  

CNE10   B   S   HM215397.1   231965.c1   D   S   JQ361079.1   

CNE12   B   S   HM215399.1   247-23   D   S   EU683891.1  

CNE14   B   S   HM215400.1   3016.v5.c45   D   S   HM215283.1  

CNE4   B   M   HM215413.1   57128.vrc15   D   M   AY736829.1   



  

Table  30 .  Manually  curated  search  of  the  GeneBank  identifiers  for  172  gp120  viral               

isolated.  Virus  ID,  clade  identity,  affinity  to  N6  (N6  aff)  and  GeneBank  identifier  is                

shown.  Regarding  N6  affinity,  S,  M  and  R  represents  sensitive,  moderate  and              

resistant   affinities   towards   the   antibody,   respectively.   

After  successfully  retrieving  those  sequences  from  GenBank,  we  aimed  to  obtain             

their  three-dimensional  structures  from  the  PDB  database.  However,  for  the  majority             

of  the  retrieved  gp120  sequences  there  is  no  available  three-dimensionally  solved             

structure.  Aiming  to  bypass  this  limitation,  we  modelled  all  gp120  lacking  a              

three-dimensional  structure  on  the  PDB.  The  modeling  process  was  performed  by             

using   homology   modeling   techniques   using   Prime   from   Schrödinger.     

Homology  models  were  constructed  using  the  template  structure  from  the  PDB  with              

high-sequence  similarity  to  each  gp120  sequence.  A  minimization  round  by  using  the              

OPLS3e  force  field  was  performed  after  the  generation  of  the  model.  Next,  all  gp120                

strains  were  aligned  three-dimensionally  and  were  carefully  examined.  After           

checking  their  integrity,  we  docked  the  N6  antibody  into  its  correct  binding  orientation               

in  all  gp120  strains.  After  the  docking  process,  a  series  of  minimization  rounds  were                

performed  until  the  total  energy  of  the  system  converged  into  favourable             

conformations.  Finally,  the  three-dimensional  structures  of  all  N6-gp120  complexes           

were  carefully  evaluated.  No  clashes  were  observed  in  any  of  the  protein-protein              

complexes.   

After  the  correct  generation  of  the  antibody-gp120  complexes,  we  located  the             

residues  involved  on  the  protein-protein  interface  in  all  structures.  Then,  a  position              

contact  map  of  the  interacting  residues  between  the  antibody  and  the  gp120              

structures  was  built  from  all  protein-protein  structures  ( Table  31 ).  The  position             
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CNE57   B   S   HM215420.1   6405.v4.c34   D   S   HM215327.1  

HO86.8   B   M   EF210732.1    A03349M1.4  D   M   HM215356.1  

HT593.1   B   S   U08444.1    NKU3006.ec1  D   M   AY736835.1   

HXB2.DG   B   S   K03455.1    UG021.16   D   S   U27399.1   

JRCSF.JB   B   S   AY669726.1    UG024.2   D   S   U43386.1   

JRFL.JB   B   S   U63632.1    X2088.c9   G   S   EU885764.1  



  

contact  map  was  built  using  the  common  positions  in  the  majority  of  the               

protein-protein  complexes;  concretely  those  found  in  at  least  150  out  of  172              

protein-protein  interfaces  (considering  a  contact  radius  of  5  Å  between  the  antibody              

and  the  gp120).  A  total  of  71  positions  were  located  on  the  protein-protein  interface:               

24  positions  for  N6  heavy  chain,  11  positions  for  N6  light  chain  and  36  positions  for                  

gp120.   

Table  31 .  Position  contact  map  of  the  interacting  residues  between  the  N6  antibody               

and  the  172  viral  isolates  extracted  from  GenBank.  Those  positions  were  selected  by               

a  cutoff  radius  of  5  Å  and  to  be  found  in  at  least  150  out  of  172  antibody-gp120                    

complexes.   

After  selecting  the  common  interface  positions  of  the  antibody  towards  most  of  the               

gp120,  we  aimed  to  predict  the  effects  of  all  possible  single  mutations  on  them.  In                 

order  to  do  so,  we  performed  the  unanimous  decision  of  FoldX,  pyDock  and  UEP.  As                 

we  described  in  the   UEP  section ,  the  combination  of  these  three  predictors             

improves  the  classification  performance  compared  to  any  method  alone  (EvoEF1            

was  not  evaluated  at  that  time).  An  amount  of  700  mutations  were  evaluated  for                

each  N6-gp120  complex  (20  different  possible  amino  acids  for  each  of  the  35               

different  antibody  positions).  Considering  all  172  N6-gp120  complexes,  an  amount  of             

120.400  mutations  were  evaluated  for  each  predictor  (700  mutations  per  complex  for              

a  total  of  172  complexes),  resulting  in  a  total  amount  of  361.200  predictions  made  by                 

FoldX,   pyDock   and   UEP.   
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Heavy   chain   of   N6   Light   chain   of   N6   gp120   

30,  33,  47,  50,  52,  53,        
54,  55,  56,  57,  58,  59,        
60,  61,  62,  64,  71,  73,        
74,  99,  100,  100A,      
100B,   100C.   

1,  2,  25,  27,  28,  29,  32,         
90,   91,   96,   97.   

97,  122,  124,  275,  276,       
278,  279,  280,  281,  282,       
283,  365,  366,  367,  368,       
370,  371,  425,  426,  427,       
429,  430,  431,  432,  455,       
456,  457,  458,  459,  460,       
461,  462,  469,  473,  474,       
475.   



  

After  generating  all  ΔΔG  predictions,  data  was  grouped  and  analyzed  aiming  to              

select  mutations  improving  the  binding  energy  for  most  N6-gp120  complexes.  As             

mentioned  previously,  the  selection  was  performed  following  the  unanimous  decision            

of  the  choice  of  the  three  predictors.  Hence,  all  mutations  unanimously  predicted  to               

increase  the  binding  energy  of  the  complex  in  a  minimum  of  150  out  of  172  gp120                  

strains  were  selected.  Our  final  selection  consisted  of  21  mutations  from  the  700               

possible  mutations  on  the  antibody.  Interestingly,  selected  mutations  are  located  in             

only  6  different  positions  (from  the  35  possible  ones),  indicating  possible  hot-spots              

regions.  The  three-dimensional  location  on  the  protein-protein  interface  of  the  6             

selected  positions  (heavy  chain:  30,  52,  54,  57  and  74,  and  light  chain:  96)  is                 

illustrated   in    Figure   48 .   

  

Figure  48 .  Selected  positions  for  increasing  the  binding  potency  of  the  N6  antibody               

from  the  unanimous  decision  of  FoldX,  pyDock  and  UEP.  An  amount  of  21  different                

mutations  were  selected  on  the  positions  of  the  heavy  chain:  30,  52,  54,  57  and  74,                  

and  on  the  light  chain:  96.  Selection  was  performed  under  the  binding  energy               

improvement   on   at   least   150   out   of   the   172   N6-gp120   strain   complexes.   
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The  21  mutations  selected  after  this  process  are  T30F,  T30I,  T30L,  T30M,  T30V,               

T30W,  T30Y,  K52R,  Q54K,  Q54M,  Q54R,  Q54W,  Q54Y,  A57F,  A57L,  A57M,  A57W,              

A57Y,  V74M,  V74R  and  Q96G  (this  one  for  light  chain  only).  The  three-dimensional               

modeling   of   those   mutations   y   can   be   found   in    Figures   49-69 ,   respectively.   

  

Figure  49 .  Three-dimensional  model  of  the  T30F HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  50 .  Three-dimensional  model  of  the  T30I HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  51 .  Three-dimensional  model  of  the  T30L HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  52 .  Three-dimensional  model  of  the  T30M HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  53 .  Three-dimensional  model  of  the  T30V HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  54 .  Three-dimensional  model  of  the  T30W HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  55 .  Three-dimensional  model  of  the  T30Y HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  56 .  Three-dimensional  model  of  the  K52R HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   Light   chain   is   represented   in   yellow.   
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Figure  57 .  Three-dimensional  model  of  the  Q54K HC  mutation  (mutation  and  heavy            

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  58 .  Three-dimensional  model  of  the  Q54M HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

128   



  

  

Figure  59 .  Three-dimensional  model  of  the  Q54R HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  60 .  Three-dimensional  model  of  the  Q54W HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  61 .  Three-dimensional  model  of  the  Q54Y HC  mutation  (mutation  and  heavy            

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  62 .  Three-dimensional  model  of  the  A57F HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  63 .  Three-dimensional  model  of  the  A57L HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  64 .  Three-dimensional  model  of  the  A57M HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  65 .  Three-dimensional  model  of  the  A57W HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  66 .  Three-dimensional  model  of  the  A57Y HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  67 .  Three-dimensional  model  of  the  V74M HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   

  

Figure  68 .  Three-dimensional  model  of  the  V74R HC  mutation  (mutation  and  heavy             

chain  are  colored  in  green  and  orange,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   
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Figure  69 .  Three-dimensional  model  of  the  Q96G LC  mutation  (mutation  and  light             

chain  are  colored  in  green  and  yellow,  respectively)  of  the  N6  antibody.              

Intermolecular  contacts  with  the  gp120  (93TH057  as  reference,  colored  in  blue)             

within   a   radius   of   5   Å   are   shown.   Heavy   chain   is   represented   in   orange.   

In  this  section,  we  focused  on  the  mutations  located  in  the  heavy  chain  of  the                 

antibody.  Mutations  on  the  light  chain  of  the  N6  antibody  are  the  main  topic  of  the                  

following  section  “ Aiming  to  improve  the  N6  antibody:  second  round ”.  In  the              

following  lines,  heavy  chain  sequence  conservation  of  some  of  the  VRC01-like  class              

antibodies  is  shown  (N6,  NIH45-46,  VRC07,  VRC01,  N49-P7,  CH235,  CH235.12,            

b12,  NC-Cow1  and  IOMA).  Here,  the  five  selected  positions  of  the  N6  heavy  chain                

are   highlighted   in   red   (T30,   K52,   Q54,   A57   and   V74).   

Here,  we  will  compare  the  proposed  mutations  by  our  computational  pipeline  with  the               

amino  acids  variants  found  on  the  VRC01-like  class  antibodies  for  such  positions.  As               

can  be  observed  on  the  alignments,  all  selected  positions  on  the  heavy  chain  (T30,                

K42,  Q54,  A57  and  V74)  show  a  high  variability  degree  among  the  VRC01-like  class                

antibodies.  This  is  beneficial  for  the  purpose  of  the  design,  since  mutating              

highly-conserved  residues  could  result  in  a  decrease  of  the  binding  potency  and              

even   hamper   the   stability   (and   production)   of   the   antibody.       
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           -------------FR1--------------   CDRH1   
N6          RAHLVQSGTAMKKPGASVRVSCQTSGYTF T    AHILF   
NIH45-46    EVRLSQSGGQMKKPGESMRLSCRASGYEF L    NCPIN   
VRC07       QVRLSQSGGQMKKPGDSMRISCRASGYEF I    NCPIN   
VRC01       QVQLVQSGGQMKKPGESMRISCRASGYEF I    DCTLN   
N49-P7     - ADLVQSGAVVKKPGDSVRISCEAQGYRF P    DYIIH   
CH235       QVQLVQSGAEVKKPGASVTVSCQASGYTF T    NYYVH   
CH235.12    QVRLAQYGGGVKRLGATMTLSCVASGYTF N    DYYIH   
b12         QVQLVQSGAEVKKPGASVKVSCQASGYRF S    NFVIH   
NC-Cow1     QVQLRESGPSLMKPSQTLSLTCTVSGSSL N    DKSVG   
IOMA        EVQLVESGAQVKKPGASVTVSCTASGYKF T    GYHMH   
  

           ------FR2-----   ------CDRH2------     
N6          WFRQAPGRGLEWVG   WI K P Q YG A VNFGGGFRD   
NIH45-46    WIRLAPGRRPEWMG   WL K P R GG A VNYARKFQG   
VRC07       WIRLAPGKRPEWMG   WM K P R GG A VSYARQLQG   
VRC01       WIRLAPGKRPEWMG   WL K P R GG A VNYARPLQG   
N49-P7      WIRRAPGQGPEWMG   WM N P M GG Q VNIPWKFQG   
CH235       WVRQAPGQGLQLMG   WI D P S WG R TNYAQNFQG   
CH235.12    WVRQAPGQGFELLG   YI D P A NG R PDYAGALRE   
b12         WVRQAPGQRFEWMG   WI N P Y NG N KEFSAKFQD   
NC-Cow1     WVRQAPGKALQWLG   SV D T S GN T -DYNPGLKS   
IOMA        WVRQAPGRGLEWMG   WI N P F RG A VKYPQNFRG   
  

           --------------FR3---------------   
N6          RVTLTRD V YREIAYMDIRGLKPDDTAVYYCAR   
NIH45-46    RVTMTRD V YSDTAFLELRSLTSDDTAVYFCTR   
VRC07       RVTMTRD M YSETAFLELRSLTSDDTAVYFCTR   
VRC01       RVTMTRD V YSDTAFLELRSLTVDDTAVYFCTR   
N49-P7      RVSMTRD T SIETAFLDLRGLKSDDTAVYYCVR   
CH235       RITMTRD T STSTVYMEMRSLRSEDTAVYYCAR   
CH235.12    RLSFYRD K SMETLYMDLRSLRYDDTAMYYCVR   
b12         RVTFTAD T SANTAYMELRSLRSADTAVYYCAR   
NC-Cow1     RLSITKD N SKSRISLTVTGMTTEDSATYYCIT   
IOMA        RVSMTRD T SMEIFYMELSRLTSDDTAVYYCAR   
  

           -----------CDRH3---------   ----FR4----   
N6          DRSYGD------------SSWALDA   WGQGTTVVVSA   
NIH45-46    GKYCTARDYY---------NWDFEH   WGRGAPVTVSS   
VRC07       GKYCTARDYY---------NWDFEH   WGQGTPVTVSS   
VRC01       GKNCD----Y---------NWDFEH   WGRGTPVIVSS   
N49-P7      DRSNGSGKRFESS------NWFLDL   WGRGTAVTIQS   
CH235       NVATEGS------------LLHYDY   WGQGTLVTVSA   
CH235.12    NVGTAGS------------LLHYDH   WGSGSPVIVSS   
b12         VGPYSWDDSPQD-------NYYMDV   WGKGTTVIVSS   
NC-Cow1     AHQKTNKKECPEDYTYNPRCPQQYG   WSDCDCMGDRF   
IOMA        EMFDSSADW--------SPWRGMVA   WGQGTLVTVSS     
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Of  great  interest  is  that  6  selected  mutations  from  the  20  located  on  the  heavy  chain                  

of  the  N6  antibody  are  present  on  some  VRC01-like  class  antibodies,  including  T30I,               

T30L,  Q54M,  Q54R,  Q54Y  and  V74M.  Moreover,  8  of  the  14  remaining  single  amino                

acid  variants  on  the  VRC01-like  class  antibodies  share  physicochemical  properties            

with  some  selected  mutations,  despite  not  being  exactly  the  same  mutation.  This  is               

the  case  of  the  following  selected  variants:  T30V,  T30F,  T30Y  and  T30W  (I30  and                

L30  variants),  K52R  (K52  variant),  Q54K  (R54  variant),  Q54W  (F54  and  Y54              

variants)   and   V74R   (K74   variant).   

Overall,  14  out  of  20  proposed  variants  on  the  heavy  chain  of  the  N6  antibody  are                  

conserved  along  the  VRC01-like  class  antibodies.  This  indicates  that  such  variants             

should  be  somehow  beneficial  or  at  least  should  not  disrupt  the  binding  affinity  of  the                 

antibody  with  most  of  the  gp120  strains;  otherwise  they  would  not  be  selected  for                

potent  bNAbs  in  nature.  Moreover,  this  overlapping  effect  also  indicates  the             

robustness  of  the  unanimous  decision  on  the  predictions  of  UEP,  pyDock  and  FoldX,              

for  its  ability  to  screen  an  amount  of  700  mutation  possibilities  on  all  172                

antibody-gp120  complexes,  and  select  mutations  already  found  in  multiple  potent            

bNAbs   (that   somehow   should,   in   principle,   work).   

Aiming  to  further  refine  our  selection  process  and  to  reduce  the  amount  of               

candidates  to  evaluate  experimentally,  we  ranked  the  designs  using  PELE            

simulations.  Hence,  we  followed  a  similar  pipeline  as  described  in  the  previous              

section  “ On  the  design  of  a  chimera  bNAb ”.  Here,  the  three-dimensional  structure              

of  the  93TH057  gp120  strain  was  docked  together  with  the  N6  designs  in  the  same                 

conformation  as  described  on  the  crystal  structure  of  the  docked  complex  (PDB:              

5TE6).  Then,  PELE  simulations  were  initiated  for  every  antibody  design  system,             

allowing  very  small  rotations  and  translations  to  the  gp120.  In  this  way,  we  simulated                

how  the  N6  mutations  accommodate  the  gp120  by  mainly  performing  side  chain  and               

ANM  backbone  predictions.  The  analysis  of  the  effects  of  the  mutations  was              

performed  based  on  the  SASA  determinations,  as  described  in  the  section             

“ Predicting  antibody  binding  efficacy:  PELE-antibody ”.  Changes  in  SASA          

exerted   by   all   21   mutations   of   the   N6   are   illustrated   in    Figure   70 .   
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Figure  70 .  Simulation  frequency  of  the  solvent-accessible  surface  area           

determinations  from  PELE  simulations  in  all  N6  single  mutant  variants.  Native  N6              

simulation  is  shown  as  a  pink-dashed  line.  Mutations  decreasing  the  amount  of              

contacts  along  the  PELE  simulations  compared  to  the  native  N6  antibody  were              

discarded   for   experimental   characterization.   

Here,  mutations  affecting  the  same  position  are  shown  using  the  same  color:  T30               

(blue),  K52  (red),  Q54  (green),  A57  (orange),  V74  (purple),  Q96  (cyan)  and  native               

N6  antibody  (pink  dashed).  As  observed  in  the  PELE  simulations,  only  two  of  the  N6                 

designs  produce  deeper  contacts  (SASA=0.79)  compared  to  the  native  antibody            

(SASA=0.80):  T30I  and  K52R.  Most  of  the  designs  achieved  the  same  unit  of  SASA                

than  the  native  conformation  (SASA=0.80)  but  showed  higher  simulation  frequency            

for  deeper  units  of  SASA:  T30L,  T30M,  Q54R,  T30F,  Q54W,  A57Y,  A57W  and  Q96G,                

among  others.  On  the  other  hand,  only  five  designs  reached  higher  SASA  values               

compared  to  the  native  antibody.  Here,  A57L  particularly  drew  our  attention  since  it               

shows  a  very  well  defined  frequency  peak  at  larger  SASA  than  the  native  antibody                

(SASA=0.81).   

By  taking  everything  together,  we  proposed  a  set  of  8  different  mutations  on  the  N6                 

heavy  chain  for  their  experimental  characterization.  All  antibody  designs  were            
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experimentally  evaluated  on  different  gp120  strains  than  the  ones  used  during  the              

prediction  process:  NL-43,  BaL,  AC-10,  SVBP-12  and  B41.  The  experimental            

characterization  was  performed  under  two  different  setups:  a  neutralization  assay            

(EC50,  ng/mL)  using  NL-43,  BaL,  AC-10  and  SVBP-12,  and  an  ELISA  binding  assay               

(EC50,  ng/mL)  using  BaL  monomer  and  the  B41  trimer  envelope  glycoprotein.  The              

experimental  characterization  of  the  antibody  variants  is  illustrated  in   Table  32 .  Here,              

the  color  code  indicates  if  the  design  achieves  better  binding  determinations  (no              

matter  the  amount  of  increase)  than  the  native  (green),  a  minimum  loss  (less  than                

the  double  of  the  native  antibody)  (yellow)  and  large  loss  (higher  than  the  double  of                 

the   native   antibody)   (red).   N.b   indicates   no   binding   data.   

Several  conclusions  can  be  extracted  from  the  results  of  the  experimental             

characterization.  The  most  important  conclusion  is  that  none  of  the  designs  lead  to  a                

significant  increase  in  binding  affinity  compared  to  the  native  antibody.  Despite  that,              

Q54R  design  slightly  improved  the  binding  affinity  towards  half  of  the  evaluated              

envelope  glycoproteins  (NL-42,  BaL  and  the  trimer  B41)  without  compromising  the             

binding  affinity  with  the  other  viral  isolates.  Other  designs,  including  T30I  and  K52R               

only  resulted  in  improving  the  binding  affinity  towards  a  single  viral  isolate,  without               

compromising   the   binding   affinity   of   the   other   viral   isolates.     

On  the  other  hand,  T30M,  Q54W  and  A57L  decreased  the  binding  affinity  towards               

most  viral  isolates  compared  to  the  native  antibody.  Interestingly,  A57Y  and  A57W              

increased  the  binding  affinity  of  half  of  the  neutralization  assays  for  the  gp120               

monomers  but  completely  disrupted  the  binding  affinity  towards  the  B41  trimer.  In              

fact,  all  mutations  located  in  position  57  hampered  the  binding  affinity  towards  the               

B41   trimer,   while   mutations   at   position   54   improved   it.   

  

  

  

  

  

138   



  

Table  32 .  Experimental  determination  (ng/mL)  of  the  8  evaluated  N6  designs  using              

neutralization  and  ELISA  binding  assays.  Neutralization  assays  were  performed  on            

the  gp120  monomers  of  NL-43,  BaL,  AC-10  and  SVBP-12.  ELISA  binding  studies              

were  performed  on  a  gp120  monomer  (BaL)  and  using  a  gp120  trimer  (B41).  Color                

code  represents  changes  in  binding  affinity  compared  to  the  native  antibody.  Here,              

green  color  indicates  a  gain  in  binding  affinity,  yellow  represents  a  loss  in  binding                

affinity  lower  than  the  double  of  the  native  determination,  and  red  indicates  a  loss  in                 

binding  affinity  higher  than  the  double  of  the  native  determination.  N.b  indicates  no               

binding   data.     
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  Neutralization   EC50   (ng/mL)   ELISA   EC50   (ng/mL)   

  NL-43   BaL   AC-10   SVBP-12  BaL   trimer   B41  

N6   82,6   78,8   614,9   209,6   2,0   7,2   

T30I   77,9   80,6   689,9   256,0   3,2   12,3   

T30M   314,8   291,4   1558,0   785,1   2,7   8,3   

K52R   102,1   100,3   871,1   166,8   3,4   13,0   

Q54W   233,7   208,6   2763,9   662,9   4,9   5,5   

Q54R   71,6   50,4   681,8   268,7   3,6   7,0   

A57Y   144,8   60,2   N.b.     209,0   4,3   48,8   

A57L   215,1   84,3   4418,9   437,4   3,0   195,3   

A57W   108,2   64,1     N.b.   194,4   3,6   59,1   



  

Overall,  these  results  demonstrate  the  challenges  of  improving  a  potent  bNAb,  such              

as  N6.  For  the  improvement  of  this  bNAb,  the  antibody  variants  must  increase  the                

binding  affinity  towards  multiple  viral  isolates  at  the  same  time,  and  therefore,  they               

can  not  be  designed  strain-specifically.  In  our  case,  none  of  the  experimentally              

evaluated  viral  isolates  was  used  during  the  prediction  process,  which  also  adds              

another   layer   of   complexity   for   the   success   of   the   project.   

Interestingly,  Q54R  mutation  led  to  an  slightly  increase  in  antibody  potency  for  half  of                

the  gp120  monomers  (NL-43  and  BaL),  and  towards  the  B41  gp120  trimer,  without               

compromising  the  binding  affinity  of  the  other  gp120  monomers  (AC-10  and             

SVBP-12).  However,  the  lack  of  experimental  characterization  of  this  design  together             

with  the  fact  that  the  improvement  is  modest  impossibilities  the  proper  evaluation  of               

the   impact   of   this   mutation.   

On  the  other  hand,  we  have  observed  that  neutralization  and  ELISA  binding  assays               

of  the  BaL  viral  isolate  do  not  correlate.  Regression  analysis  of  both  binding               

determinations  achieved  a  correlation  of  R 2 =0.001.  According  to  the  literature,  it  has              

been  described  that  both  experimental  techniques  show  a  certain  degree  of             

correlation   (Holzmann   et  al. ,  1996) .  In  this  sense,  it  is  unclear  which  is  the  best                 

determination  technique  and  actually  if  the  real  experimental  determinations  are            

similar   to   the   ones   presented   in   this   thesis.     
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Aiming   to   improve   the   N6   antibody:   second   round   

After  the  herculean  modeling  effort  described  in  the  previous  section,  we  were  not               

able  to  increase  the  N6  binding  potency  experimentally.  During  the  second  round  of               

design  we  followed  a  completely  different  approach  than  the  one  described             

previously.  In  this  case,  we  decided  to  take  a  step  back  and  follow  a  completely                 

rational  design  protocol  motivated  by  an  extensive  literature  search  together  with             

previous   observations   during   the   first   round   of   design.   

During  the  first  round,  an  amount  of  21  mutations  were  selected  from  the  unanimous                

decision  of  the  predictions  made  by  UEP,  FoldX  and  pyDock.  Only  one  mutation,               

Q96G,  was  selected  on  the  light  chain  of  the  antibody  ( Figure  69 )  and  also  was                 

predicted  to  achieve  higher  deeper  contact  frequencies  on  the  PELE  simulations             

( Figure  70 ).  This  mutation  particularly  drew  our  attention,  since  it  was  the  only  one                

decreasing  the  amino  acid  size  compared  to  the  natie  residue  (from  a  large               

glutamine  residue  to  glycine,  the  shortest  residue).  At  this  point,  we  decided  to               

continue  exploring  such  phenomena,  and  we  found  out  a  crucial  hydrogen  bond              

between  the  CDRH3  and  the  loop  D  of  the  gp120  takes  place  in  the  vicinity  of  the                   

Q96  position.  This  key  hydrogen  bond  is  formed  between  W100c HC  and  N/D279 GP120 ,              

and  the  W100c HC   residue  is  conserved  in  VRC01-like  class  antibodies  such  as  N6,               

VRC01,   VRC03,   NIH45-46   and   N49-P7.     

Regarding  this  intermolecular  interaction,  it  has  been  already  described  that  resistant             

strains  towards  the  N6  antibody  contain  single  point  mutations  at  the  position  279               

that  impede  the  formation  of  the  hydrogen  bond.  In  fact,  mutagenesis  studies              

revealed  this  phenomena   (Huang   et  al. ,  2016) .  It  seems  that  the  antibody  binds  to                

strains  containing  an  asparagine  or  an  aspartic  acid  in  this  position,  but  that  it  cannot                 

bind  to  strains  showing  a  glutamine  (BL01.DG  resistant  strain),  glutamic  acid             

(TV1.29  resistant  strain),  arginine  (6471.V1.C16  resistant  strain)  either  an  alanine            

(T278-50  resistant  strain).  From  this  observation,  we  followed  the  hypothesis  that  if              

the  disruption  of  this  intermolecular  contact  largely  decreases  the  binding  efficacy,  its              

improvement   may   result   in   a   potent   antibody   variant.   

To  date,  N6  has  been  co-crystallized  with  only  three  different  gp120  strains:              

93TH057  (PDB:  5TE6,  clade  AE),  X2088  (PDB:  5TE4,  clade  G)  and  DU172.17              
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(PDB:  5TE7,  clade  C).  After  inspection  of  the  above  mentioned  crystal  structures,  we               

observed  that  the  hydrogen  bond  between  W100c HC  and  N279 GP120  is  conserved  on              

the   three   bound   structures   ( Figure   71 ).   

  

Figure  71 .  Conserved  hydrogen  bond  between  W100c HC  and  N279 GP120  in  the  three              

available  crystal  structures,  (a)  93TH057  (5TE6),  (b)  X2088  (5TE4)  and  (c)             

DU172.17  (5TE7).  Hydrogen  bond  angle  is  shown.  Closest  residues  to  his  interaction              

from   the   CDRL3   (L91 LC    and   Q96 LC )   are   highlighted.   

An  hydrogen  bond  is  an  interaction  mainly  dominated  by  electrostatic  forces,  where              

the  distance  and  the  orientation  angle  of  the  involved  atoms  play  crucial  roles.  An                

illustration  of  the  importance  of  the  angle  is  represented  in   Figure  72 .   Figure  72a                

represents  the  donor  (N-H,  bound  covalently  by  a  σ  bond)  and  the  acceptor  (O)                

groups  of  an  hydrogen  bond,  and  the  angle  (θ)  involving  the  hydrogen  bond  atoms                

and  the  covalent  σ  bond.   Figure  72b  represents  the  distribution  of  hydrogen  bond               

angles  in  high-resolution  crystallographic  structures  of  proteins  and  nucleic  acids.            

Hydrogen  bond  distance  and  angle  of  the  involved  atoms  are  responsible  for  the               

strength  of  the  interaction.  Hence,  strong  hydrogen  bonds  show  angles  close             

between  170  and  180  degrees,  and  in  general,  the  lower  the  hydrogen  bond  angle                

the   weaker   the   interaction.   
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Figure  72 .  Geometry  of  a  hydrogen  bond.  (a)  represents  the  atoms  involved  in  a                

hydrogen  bond  (donor  and  acceptor  groups),  and  the  θ  angle  they  form.  (b)               

represents  the  distribution  of  hydrogen  bond  angles  in  high  resolution  crystal             

structures   of   proteins   and   acid   nucleics.   

As  detailed  in   Figure  71 ,  hydrogen  bond  angles  between  W100c HC  and  N279 GP120              

are  155.2º,  152.4º  and  164.4º  for  93TH057,  X2088  and  DU172.17,  respectively.  As              

mentioned  previously,  strong  hydrogen  bonds  have  angles  between  170º  and  180º,             

and  the  observed  angles  for  N6  are  not  even  close  to  this  range.  In  this  context,  our                   

goal  was  to  improve  this  orientation  angle  aiming  to  enhance  the  strength  of  this  key                 

hydrogen  bond.  At  this  point,  we  particularly  focused  on  the  residues  in  the  vicinity  of                 

W100c HC ,  and  concretely  on  two  residues  of  the  CDRL3:  L91 LC  and  Q96 LC .  The  side                

chain  of  those  residues  make  contacts  with  the  loop  D,  and  Q96 LC  has  been                

previously  described  to  generate  an  important  water-mediated  hydrogen  bond  with            

the   gp120    (Huang    et   al. ,   2016) .   

However,  and  from  our  modelling  experience,  we  hypothesized  that  both  positions             

on  the  CDRL3  (L91 LC  and  Q96 LC )  should  not  be  important  for  binding.  And  actually,                

after  the  visual  inspection  of  the  crystal  available  structures  ( Figure  71 )  we  believed               

that  the  presence  of  their  two  large  side  chains  could  impede  an  efficient               

conformation  of  the  loop  D  that  ultimately  would  result  in  the  observed  “bad”               

hydrogen  bond  angles.  Following  this  hypothesis,  we  aimed  to  generate  antibody             

variants  on  those  CDRL3  positions  showing  a  reduction  in  amino  acid  size  in  those                
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positions  while  keeping  the  physicochemical  properties  of  the  native  amino  acids.  In              

this  sense,  we  mutated  L91 LC  to  an  alanine  and  Q96 LC  to  a  serine.  We  expected  that                 

by  generating  space  in  the  CDRL3  region,  the  loop  D  could  be  better               

accommodated,  allowing  for  a  stronger  hydrogen  bond  between  W100c HC  and            

N279 GP120  that  ultimately  would  lead  to  an  general  increase  in  binding  affinity  for  all                

viral   isolates   ( Figure   73 ).     

  

Figure  73 .  Double-mutation  effect  consisting  of  L91A,  and  Q96S  on  the  CDRL3  loop               

of  the  N6  antibody.  Removal  of  those  large  side  chains  would  result  in  a  better                 

accommodation  of  the  loop  D,  allowing  for  a  stronger  hydrogen  bond  between              

W100c HC    and   N279 GP120 .   

Aiming  to  estimate  the  effects  of  the  double  mutation  on  the  dynamics  of  the  loop  D,                  

we  performed  MD  simulations  of  the  full  N6-gp120  bound  conformation.  Our             

template  structure  consisted  of  the  PDB:  5TE6,  where  the  co-crystal  structure  of  the               

N6  together  with  the  93TH057  gp120  strain  was  experimentally  solved.  We  used  a               

MD  platform  generated  in  the  group,  which  was  recently  published  for  estimating              

binding  free  energies   (Gilabert   et  al. ,  2020) .  This  platform  uses  OpenMM   (Eastman              

et  al. ,  2017)  for  automatizing  the  preparation,  parametrization  and  equilibration  of  the              

system.  Moreover,  the  platform  uses  the  Amber14   (Maier   et  al. ,  2015)  force  field  for                

parameterizing  the  protein  and  GAFF   (Wang   et  al. ,  2004)  using  the  Ambertools  suite               

(Wang   et  al. ,  2006)  for  the  ligands.  After  the  parameterization,  the  system  was               
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solvated  using  a  cubic  box  with  TIP3P   (Jorgensen   et  al. ,  1983)  waters  of  16  Å,  and                  

ions  were  also  added  for  neutralizing  it.  Then,  a  minimization  process  consisting  of               

2000  steps  using  the  L-BFGS  optimization  algorithm  implemented  by  OpenMM  was             

performed.  Regarding  the  equilibration  process,  it  consisted  on  a  NVT  simulation  of              

400  ps  at  300  K  with  restrains  to  the  heavy  atoms  of  the  protein  (of  5  kcal  mol -1  Å -2 ),                     

followed  by  4  ns  of  NPT  equilibration  at  300  K  and  1  atm  with  restraints  to  the  protein                    

alpha  carbons  (of  0.5  kcal  mol -1  Å -2 ).  A  time  step  of  2  fs  and  a  nonbonded  interaction                   

cutoff  of  9  Å  were  used.  After  the  equilibration  process,  a  production  phase  of  300  ns                  

was   simulated.     

After  the  generation  of  the  MD  simulation,  we  analyzed  the  mobility  and  the               

structural  fluctuation  of  the  loop  D  along  using  MDLovoFit   (Martínez,  2015) .   A              

comparison  of  the  structural  fluctuation  of  the  loop  D  between  the  native  and  the                

L91;Q96   mutant   is   illustrated   in    Figure   74 .     

  

Figure  74 .  MDLovoFit  structural  fluctuations  of  the  loop  D  along  the  MD  simulations               

for  the  native  and  double  mutant  design  of  N6-gp120  complex.  Blue  represents  rigid               

regions,  and  red  represents  mobile  sections.  Dashed-square  points  out  the  position             

N279 GP120    of   the   loop   D,   which   is   forming   a   key   hydrogen   bond   with   W100c HC .     

Here,  blue  color  represents  rigid  regions  while  red  color  represents  mobile  regions  of               

the  loop  D.  The  dashed-square  indicates  the  position  of  N279 GP120 .  As  can  be               

observed,  N279 GP120  remains  more  rigid  on  the  simulations  for  the  L91A;Q96S             

mutant  than  for  the  native  antibody.  Moreover,  adjacent  residues  to  N279 GP120  also              

show  a  lesser  degree  of  mobility  for  the  L91;Q96  mutant  compared  to  the  native                
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complex;  it  can  be  observed  that  the  dispersion  of  the  backbone  adjacent  residues  to                

N279 GP120    is   higher   for   the   native   than   for   the   L91A;Q96S   mutant.   

Next,  we  analyzed  the  distribution  of  the  hydrogen  bond  angles  between  W100c HC              

and  N279 GP120  along  the  MD  simulation.  The  distribution  of  the  hydrogen  bond  angles               

(in  ranges  of  10º,  starting  from  90º-100º  to  170º-180º)  is  illustrated  in   Figure  75 .  To                 

ease  the  representation,  the  maximum  angle  value  for  each  range  is  used  at  the                

horizontal  axis  (100º  and  180º  for  both  previous  examples,  respectively).  Moreover,             

only  MD  frames  showing  a  hydrogen  bond  distance  lower  than  2.5  Å  were  taken  into                 

account  for  the  distribution  representation.  As  can  be  observed,  the  L91A;Q96S             

mutant  shows  a  higher  amount  of  MD  frames  in  the  optimal  angle  range  (170º-180º)                

to   generate   a   strong   interaction.   

  

Figure  75 .  Distribution  of  the  hydrogen  bond  angles  between  W100c HC  and             

N279 GP120  along  the  MD  simulations  for  the  native  and  the  double  mutant.  Only  MD                

frames  with  an  hydrogen  bond  distance  <  2.5  Å  were  used.  Data  was  grouped  in                 

range  of  10º,  starting  from  90º-100º  (right)  to  170º-180º  (left).  Large  amounts  of               

frames  were  found  in  the  optimal  angle  range  (170º-180º)  for  the  L91A;Q96S  mutant               

compared   to   the   native   antibody-gp120   complex.    
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Then,  the  simulation  data  was  normalized  into  frequencies  of  observing  hydrogen             

bond  angles  within  ranges  of  5º  (starting  from  120º-125º  to  175º-180º).  Here,  we               

show  such  frequency  distribution  for  hydrogen  bond  distances  less  than  2.5  Å              

( Figure  76 )  and  less  than  1.8  Å  ( Figure  77 ).  As  can  be  observed,  the  L91A;Q96S                 

mutation  induces  substantially  better  hydrogen  bond  angles  between  W100c HC  and            

N279 GP120    along   the   MD   simulations.   

  

Figure  76 .  Frequency  distribution  of  the  hydrogen  bond  angle  between  W100c HC  and              

N279 GP120  along  the  MD  simulations  for  the  native  and  the  double  mutant.  Only  MD                

frames  with  an  hydrogen  bond  distance  <  2.5  Å  were  used.  Data  was  grouped  in                 

range  of  5º,  starting  from  120º-125º  (right)  to  175º-180º  (left).  As  can  be  observed,                

the  L91A;Q96S  mutant  design  achieves  higher  frequencies  of  stronger  hydrogen            

bonds   than   the   native   complex.   

  

  

147   



  

  

Figure  77 .  Frequency  distribution  of  the  hydrogen  bond  angle  between  W100c HC  and              

N279 GP120  along  the  MD  simulations  for  the  native  and  the  double  mutant.  Only  MD                

frames  with  an  hydrogen  bond  distance  <  1.8  Å  were  used.  Data  was  grouped  in                 

range  of  5º,  starting  from  120º-125º  (right)  to  175º-180º  (left).  As  can  be  observed,                

the  L91A;Q96S  mutant  design  achieves  higher  frequencies  of  stronger  hydrogen            

bonds   than   the   native   complex.   

We  proposed  to  experimentally  evaluate  the  single  (L91A  and  Q96S)  and  the  double               

(L91A;Q96S)  N6  antibody  variants  to  our  collaborators  at  Irsicaixa.  After  antibody             

production  and  purification,  the  designs  were  evaluated  in  two  antibody            

neutralization  assays  panels:  a  resistant  one  (consisting  of  3  resistant  gp120  strains)              

and  a  sensitive  one  (consisting  of  14  sensitive  gp120  strains).  As  expected,  none  of                

the  antibody  designs  was  able  to  neutralize  any  of  the  resistant  strains  (IC50  >  5                 

μg/mL).  This  can  be  explained  because  of  the  fact  that  those  viral  isolates  are  not                 

able  to  form  the  hydrogen  bond  with  the  W100c HC .  However,  the  double  mutant               

design  showed  a  moderate  increase  in  binding  potency  compared  to  the  native  and               

the  single  mutants  ( Table  33 ).  Concretely,  the  L91A;Q96S  mutant  achieved  a  binding              

potency  geometric  mean  of  0.011  μg/mL,  and  the  native  and  the  single  mutations               
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L91A  and  Q96S  achieved  a  binding  potency  geometric  mean  of  0.026  μg/mL,  0.024               

μg/mL  and  0.024  μg/mL,  respectively.  Comparison  of  the  IC50  values  between  the              

native  antibody  and  the  double  mutant  design  revealed  that  the  design  increases  the               

binding  potency  towards  thirteen  out  of  fourteen  gp120  sensitive  strains  ( Table  33              

and  Figure  78 ).   Figure  78  illustrates  the  changes  in  binding  potency  (in  IC50  terms)                

between   the   native   and   the   L91A;Q96S   variant   of   the   N6   antibody.   

  

Table  33 .  Neutralization  assays  of  14  gp120  sensitive  strains  to  N6  antibody              

designs,  including  the  native  form,  single  mutations  L91A  and  Q96S,  and  double              

mutation  L91A;Q96S.  Loop  D  sequence  for  each  HIV-1  strain,  IC50  determinations             

and  the  experimental  binding  ratio  between  the  native  and  the  double  mutant  design               

are  shown.  Ratio  higher  than  1  indicates  that  the  double  mutant  variant  achieves               

higher  binding  potency  than  the  native,  and  the  other  way  indicates  the  opposite.  As                

can  be  observed,  the  double  mutation  increases  the  binding  potency  of  the  N6               

antibody   towards   13   out   of   14   gp120   sensitive   strains.   
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Figure  78 .  Changes  in  binding  potency  (IC50)  between  the  native  and  the              

L91A;Q96S  mutant  of  the  N6  antibody  for  each  gp120  sensitive  strain.  As  can  be                

observed,  the  double  mutant  design  increases  the  binding  potency  towards  13  out  of               

14   gp120   strains.   

Overall,  our  results  demonstrate  that  the  N6  antibody  can  be  improved  by  means  of                

computational  predictions.  However,  the  expected  gain  in  antibody  binding  efficacy  is             

low,  since  the  binding  potency  of  the  N6  is  extremely  high.  Moreover,  it  seems  that                 

several  mutations  are  needed  to  observe  differences  in  binding  affinity.  In  this              

context,  none  of  the  two  single  mutations  on  the  CDRH3  loop  substantially  increased               

the  binding  affinity  compared  to  the  native  antibody  (see  geometric  means).             

However,  when  the  two  mutations  were  performed  at  the  same  time  a  synergistic               

effect  leading  to  an  enhancement  of  the  antibody  potency  was  observed.  In  light  of                

these  events,  we  proposed  the  evaluation  of  a  triple  mutant  consisting  of  the  CDRL3                

mutations  L91A  and  Q96S  together  with  the  CDRH2  mutation  Q54R.  As  observed              

during  the  first  round  of  design,  this  mutation  increased  the  binding  affinity  towards               

half  of  the  envelope  glycoproteins  that  were  experimentally  evaluated  without            

disrupting  the  binding  affinity  with  the  others  ( Table  32 ).  Hence,  we  would  expect               

that  the  binding  potency  of  this  triple  mutant  could  lead  to  an  improved  antibody                

variant.     
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Discussion   

This  thesis  focuses  on  the  design  of  protein-protein  interfaces,  with  particular             

attention  to  the  design  of  antibodies.  The  truth  is  that  the  principles  that  govern  the                 

binding  between  two  proteins  is  not  yet  fully  understood,  probably  because  of  the               

lack  of  experimental  characterization  of  the  effects  of  mutations.  This  is  highlighted  in               

the  SKEMPI  2.0  database,  which  is  one  of  the  largest  experimental  databases  of  the                

effects  of  mutations.  SKEMPI  2.0  contains  ~5.200  different  single  mutations  in  ~300              

protein-protein  complexes,  and  most  of  them  are  mutations  to  alanine.  One  must  to               

understand  and  accept  that  using  this  source  of  data  for  the  design  of  a  predictive                 

algorithm  presents  serious  flaws:  the  amount  of  available  data  is  certainty  low,  the               

nature  of  the  mutations  and  the  diversity  of  the  protein-protein  complexes  are  highly               

heterogeneous  and  unbalanced  and  the  experimental  determinations  show  a  high            

degree  of  estimation  error,  among  others.  Taking  everything  together,  this  situation             

originates  a  vicious  cycle,  which  can  lead  to  mistrust  of  structural  biologists.              

However,  our  mission  is  to  generate  a  predictive  model  accurate  enough,  taking  into               

account   the   enormous   difficulties   we   encounter   along   the   way.   

Algorithms  positioned  as  the  state-of-the-art  aim  to  describe  the  ΔΔG  upon  mutation              

by  using  different  approaches:  physical  energy  descriptors,  statistical  methods  or            

machine  learning,  among  others.  However,  they  do  typically  share  a  basic  scheme:              

they  describe  features  or  changes  originated  by  the  mutation  in  the             

three-dimensional  structure  and  they  fit  those  features  and  the  experimental  ΔΔG             

into  a  mathematical  equation.  Hence,  if  we  should  not  blindly  trust  the  experimental               

ΔΔG   as   mentioned   previously,   why   should   we   use   it   to   generate   a   predictive   model?     

Following  this  concern,  we  aimed  to  design  our  own  ΔΔG  predictor  by  employing               

other  sources  of  knowledge  rather  than  experimental  ΔΔG  determinations.  In  this             

sense,  we  envisioned  UEP,  a  contact-based  method  built  from  protein-protein  data  of              

Interactome3D.  UEP  algorithm  is  very  simple,  and  it  is  based  on  the  philosophy  that                

evolution  has  designed  protein-protein  interfaces  optimum  enough  for  the           

maintenance  of  the  cell  homeostasis.  Hence,  despite  that  an  individual            

protein-protein  complex  can  be  engineered  leading  to  a  stronger  interaction,  the             
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analysis  of  all  protein-protein  interfaces  should  provide  the  rules  behind            

intermolecular   contacts   for   the   design   of   a   ΔΔG   predictor.   

One  of  the  main  interesting  observations  during  this  thesis  (which  is  rather  simpler)               

is  the  fact  that  mutations  that  are  embedded  in  the  highly-packed  interface  are  the                

ones  that  exert  larger  differences  in  experimental  ΔΔG,  and  moreover,  they  are              

easier  to  be  correctly  predicted  by  any  predictor  ( Table  8 ).  The  same  principle               

applies  to  the  prediction  of  mutations  to  alanine  and  to  other  than  alanine,  where  the                 

latter  exert  larger  effects  in  experimental  ΔΔG  and  also  are  easier  to  be  correctly                

predicted  ( Table  8 ).  Hence,  we  believe  that  taking  into  account  these  effects  during  a                

protein   design   campaign   may   be   a   key   factor   for   the   success   of   the   modeling   effort.   

Most  of  the  state-of-the  art  predictors  require  the  previous  modelization  of  the              

mutation  before  the  ΔΔG  prediction,  and  most  of  them  do  not  provide  the  tools  for                 

generating  them.  This  is  a  problem,  since  the  modelization  step  of  the  mutation              

(including  for  instance,  the  rotamer  choice  of  the  side  chain)  relies  on  the  force  field                 

parameterization.  Hence,  estimating  the  energy  of  a  protein-protein  complex  using  a             

force  field  different  from  the  one  used  for  generating  the  mutation  models  may  be                

counterproductive.  In  fact,  we  have  observed  that  the  modelization  process  exerts  a              

large  impact  on  the  energy  evaluation.  This  is  clearly  represented  by  the  different               

energy  predictions  of  pyDock  made  on  the  models  generated  by  FoldX  and  EvoEF1,               

which  only  evaluate  the  electrostatics  and  solvation  properties  of  the  protein-protein             

complex.  We  observed  that  both  pyDock  predictions  show  a  low  similarity  of  80.2%               

for  mutations  to  other  residues  than  alanine  (this  is,  mutations  predicted  to  improve               

or  decrease  the  binding  affinity  compared  to  the  native  counterpart).  Therefore,             

ideally,  the  same  force  field  used  for  the  energy  prediction  should  be  also  used  to                 

select  the  optimal  orientation  of  the  mutation.  In  this  context,  UEP  is  not  an  usual                 

ΔΔG  predictor  and  it  does  not  need  the  generation  of  mutation  files  since  it  works  on                  

the  native  protein-protein  complex  (such  as  BeAtMuSiC).  We  designed  the  algorithm             

to  be  fast  and  user  friendly.  Hence,  UEP  predicts  the  effects  of  all  possible  mutations                 

in  a  protein-protein  interface  in  less  than  a  second,  and  returns  a  single  CSV  file  with                  

the  prediction  results.  In  this  sense,  other  algorithms  are  computationally  expensive             

and  are  unable  to  screen  the  entire  protein-protein  interface  using  a  single  command               
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line.  Usually,  a  run  for  each  mutation  is  needed  (with  some  exceptions),  which  leads                

to   the   generation   of   numerous   files   per   mutation   that   are   often   not   used.   

UEP  performance  for  the  prediction  of  the  effects  of  mutations  is  in  line  with  the  best                  

state-of-the-art  algorithms  evaluated  in  our  benchmark.  Something  that  we  do  not             

explicitly  state  in  our  article  is  the  fact  that  all  other  predictors  have  been  pre-trained                 

on  experimental  ΔΔG  data  to  generate  their  scoring  function.  SKEMPI  2.0  contains              

almost  all  described  experimental  ΔΔG  determinations,  and  it  is  very  likely  that  all               

other  predictors  have  been  trained  on  the  same  (or  partial)  data  than  the  one  we                 

evaluate  in  our  benchmark.  Aiming  to  represent  this  effect,  we  compared  the              

performance  of  mCSM  (whose  authors  explicitly  stated  which  mutations  were  used             

to  train  the  algorithm)  for  mutations  used  during  the  training  process  together  with               

new  mutations.  Here,  we  observed  a  very  important  drop  in  predictive  power  for               

mCSM  when  comparing  training  and  new  mutation  groups  ( Figures  27-28,  Table  8 ).              

Interestingly,  UEP  performance  on  both  groups  of  mutations  did  not  result  in  a               

significant  decrease,  indicating  that  the  set  of  new  mutations  does  not  contain              

particularities  making  their  prediction  challenging.  Despite  that  the  performance  of  all             

other  methods  is  similar  to  the  expected  one  in  this  field,  a  small  degree  of  overfitting                  

could  also  occur  in  some  of  them.  In  this  way,  we  consider  that  achieving  similar                 

performance  to  the  best  algorithms  in  the  field  without  using  experimental  ΔΔG              

determinations   is   a   milestone,   which   indicates   the   usefulness   of   our   approach.   

Moving  to  the  antibodies  field,  their  discovery  and  characterization  is  an  expensive              

and  time-consuming  process.  Hence,  this  field  could  potentially  take  advantage  of             

diverse  computational  algorithms  to  easen  the  antibody  discovery  and  optimization            

process.  Because  of  this  reason,  there  is  an  interest  for  the  prediction  of  antibody                

effectiveness  towards  an  epitope  (specially  for  hypermutated  epitopes).  This  is  of             

great  importance  in  the  HIV-1  research  field,  where  bNAbs  have  been  positioned  as               

a  potential  therapeutic  cure  of  the  disease.  HIV-1  is  characterized  by  a  short               

replication  cycle  and  a  very  high  mutation  rate,  which  makes  the  virus  recalcitrant  to                

bNAb  effectivity.  Hence,  being  able  to  predict  which  is  the  optimal  combination  of               

bNAbs  for  a  given  patient  will  be  of  great  importance  for  the  design  of  efficient                 

therapies  against  AIDS.  The  fact  is  that  despite  being  of  great  interest  there  are  not                 

many  protocols  to  predict  if  an  antibody  will  bind  to  an  hypermutated  HIV-1  strain  (of                 

153   



  

course,  without  taking  into  account  protein-docking  algorithms).  Most  available           

algorithms  are  based  on  sequence  conservation,  which  limits  their  use  for             

uncharacterized  antibodies.  In  this  sense,  we  envisioned  a  computational   ab  initio             

approach  using  PELE,  a  Monte  Carlo  algorithm,  for  the  classification  of  resistant  and               

sensitive  hypermutated  epitopes  towards  an  antibody  ( Figures  34  and  35 ).  Our             

protocol  consists  of  evaluating  the  three-dimensional  binding  process  between  the            

epitope  and  the  antibody,  which  is  used  to  estimate  a  relative  binding  affinity               

( Equation  15 ).  One  of  the  main  problems  we  encountered  during  this  project              

belonged  to  the  fact  that  resistant  gp120  strains  are  poorly  three-dimensionally             

described.  Hence,  we  needed  to  perform  homology  models  of  all  evaluated  strains              

for  the  PELE  simulations.  From  the  predictive  point  of  view  this  can  be  problematic,                

since  the  gp120  epitopes  are  highly  hypermutated  showing  large  variable  loops  (that              

are  difficult  to  model).  After  bypassing  this  limitation  by  homology  modeling             

techniques,  our  approach  consisted  in  simulating  the  binding  process  from  out-to-in             

positions;  we  placed  the  gp120  epitopes  separated  by  10  Å  in  the  vertical  axis  from                 

the  docked  position  with  the  antibody,  and  we  then  simulated  how  the  attachment               

process   takes   place.   

Our  results  showed  that  the  binding  process  of  resistant  and  sensitive  strains  behave               

differently.  Concretely,  resistant  strains  do  not  accommodate  into  the  antibody            

binding  region  as  much  as  the  sensitive  ones.  Hence,  by  analyzing  the  contacts  that                

are  being  formed  between  the  epitope  and  the  antibody,  the  binding  process  can  be                

mapped  into  a  distribution  pattern  ( Figures  36 ).  In  this  sense,  resistant  strains  can               

be  easily  determined,  since  they  do  not  tend  to  generate  a  high  amount  of  contacts                 

with  the  antibody  compared  to  the  sensitive  ones  with  an  AUC  of  0.84  on  the  VRC01                  

benchmark  ( Figures  37  and  38 ).  One  thing  that  must  be  considered  is  that  those                

simulations  can  be  only  used  for  comparative  studies:  the  estimation            

(resistant/sensitive)  of  an  unknown  epitope  will  be  based  on  the  similarity  of  its               

contacts  distribution  with  known  benchmarked  epitopes.  Hence,  for  the  prediction  of             

other  systems,  a  comparative  study  or  benchmarking  should  be  performed  prior  to              

the  evaluation  of  unknown  effects.  In  fact,  this  is  how  many  simulation  processes               

work  and  should  not  represent  an  impediment  for  the  use  of  this  technology  in  other                 

protein-protein  scenarios.  Aiming  to  extrapolate  our  method  to  other  CD4bs  bNAbs             

(NIH45-46  and  3BNC117),  we  conducted  an  approximation  of  the  optimum  contacts             
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threshold  for  new  antibodies  that  resulted  into  accurate  antibody  binding  predictions             

( Figure  40 ).  These  results  demonstrate  that  the  antibody  binding  affinity  towards  an              

epitope   can   be   simulated   by   means   of   MC   techniques.   

Regarding  the  antibody  design  field,  one  of  the  main  goals  of  this  thesis  consists  on                 

improving  the  binding  potency  of  an  antibody.  We  have  been  collaborating  with              

experimentalist  researchers  at  IrsiCaixa  in  multiple  different  projects,  and  some  of             

them  have  been  included  in  this  thesis.  During  this  process,  we  have  encountered               

many  challenges  for  improving  the  efficacy  of  the  N6  bNAb.  The  fact  is  that  N6                 

antibody  is  the  best  bNAb  in  the  market  against  HIV-1,  and  it  is  extremely  efficient  on                  

its  own.  Probably,  larger  changes  in  experimental  binding  affinity  could  have  been              

obtained  if  we  worked  on  less  potent  antibodies.  Nonetheless,  we  have  discussed              

three  projects  aiming  to  improve  the  efficacy  of  the  N6  antibody:  a  chimera  bNAb                

case   and   two   rounds   of   antibody   design.  

Regarding  the  chimera  bNAb  case,  we  envisioned  an  antibody  variant  of  the  N6               

antibody  by  taking  advantage  of  previous  experimental  determinations  found  in  the             

literature.  It  is  known  that  a  four-residue  insertion  on  the  CDRH3  present  in  some                

VRC01-like  class  antibodies  is  responsible  for  an  increase  in  binding  potency.             

Moreover,  it  is  also  known  that  the  CDR  and  FR  regions  of  the  VRC01-like  class                 

antibodies  are  exchangeable,  in  the  sense  that  they  can  be  produced  and  evaluated               

experimentally.  This  insertion  on  the  CDRH3  loop  is  not  found  on  the  N6  design,  and                 

we  envisioned  that  enlarging  this  loop  could  be  beneficial  for  the  binding  potency,  as                

previously  described  for  NIH45-46  and  VRC07  compared  to  VRC01.  Aiming  to  do              

so,  we  designed  an  antibody  variant  of  the  N6  antibody  by  exchanging  its  CDRH1                

and  CDRH3  regions  for  the  ones  located  in  NIH45-46  antibody.  It  is  important  to                

exchange  both  regions  at  the  same  time,  since  both  loops  are  covalently  bound  by  a                 

disulphide  bond  that  stabilizes  the  insertion.  After  the  generation  of  the             

three-dimensional  variant  of  this  antibody,  we  evaluated  the  binding  potency  by  using              

PELE  simulations.  We  observed  that  the  insertion  resulted  in  an  increase  in              

predicted  binding  affinity  (kcal/mol)  against  the  93TH057  gp120  strain.  Unfortunately,            

the  antibody  could  not  be  produced  in  the  laboratory  and  the  experimental  binding               

efficacy   could   not   be   assessed.   
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Next,  we  conducted  the  first  round  of  design  on  N6  by  means  of   in  silico                 

mutagenesis  studies.  Here,  we  manually  recopilated  all  possible  gp120  sequences            

with  experimental  characterization  towards  the  N6  antibody  (172  out  of  181             

described).  We  generated  the  three-dimensional  models  of  the  gp120  strains  (if  no              

crystal  structure  was  available  on  the  PDB)  and  we  docked  the  N6  antibody  on  its                 

original  binding  region  on  all  172  strains.  After  ensuring  that  there  are  no  clashes  in                 

any  of  the  models,  we  predicted  all  possible  mutations  on  the  binding  interface  of  the                 

antibody  with  the  gp120.  This  prediction  process  was  performed  using  FoldX,             

pyDock  and  UEP,  resulting  in  361.200  predictions.  An  amount  of  21  designs  that               

unanimously  improve  the  binding  affinity  (predicted  by  the  three  methods)  in  at  least               

150  gp120  strains  were  selected.  Then,  all  selected  mutations  were  assessed  using              

PELE  simulations.  PELE  simulations  were  performed  against  the  93TH057  gp120            

strain,  where  we  evaluated  the  amount  of  tight  contacts  that  could  be  formed               

between  the  antibody-epitope  complexes.  After  PELE  simulations,  an  amount  of  8             

designs  were  proposed  to  be  experimentally  evaluated,  and  we  concluded  that  only              

one  design  (Q54R)  could  slightly  improve  the  binding  affinity,  while  the  others  did  not                

result   in   a   generalized   improvement   ( Table   32 ).   

It  is  important  to  mention  that  literature  does  not  contain  many  cases  of  antibody                

improvement.  It  is  generally  accepted  that  candidates  increasing  the  contacts  in  a              

particular  region  also  increase  the  binding  affinity  towards  the  epitope.  In  fact,  two               

published  studies  for  antibody  design  in  HIV-1  follow  this  approach (Diskin   et  al. ,               

2011;  Kwon   et  al. ,  2018) .  One  of  them  introduces  a  missing  hydrophobic  residue  to                

the  heavy  chain  of  the  NIH45-46  antibody  (G54W)  that  mimics  the  key  F43  of  the                 

gp120.  The  other  study  is  based  on  a  surface-matrix  screening  of  the  interface               

regions  of  the  10E8  bNAb,  aiming  to  introduce  large  residues  (only  phenylalanines              

and  arginines)  that  could  enhance  the  binding  potency.  In  our  case,  none  of  the                

single  mutations  produced  on  the  N6  antibody  resulted  in  a  large  improvement  of  its                

binding  potency.  We  should  underline,  however,  that  some  increase  in  binding  affinity              

was  produced  in  certain  virus  clades,  partly  backing  up  the  approach  (that  should               

probably  be  tested  in  a  less  optimized  bNAb).  Moreover,  it  is  worth  mentioning  that                

several  mutations  proposed  by  our  approach  are  also  found  in  other  VRC01-like              

class  antibodies;  indicating  that  this  methodology  can  mimic  the  evolution  of  nature              

partially.   
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After  receiving  the  feedback  from  our  experimental  collaborators,  we  decided  to  take              

a  step  back  and  to  follow  a  different  rational  approach.  Instead  of  enhancing  the                

amount  of  contacts,  we  aimed  to  do  the  opposite  while  aiming  to  favour  some  key                 

interactions  already  found  in  the  N6  antibody.  In  this  way,  we  focused  on  a  key                

hydrogen  bond  interaction  between  W100c HC  and  N279 GP120 .  This  hydrogen  bond            

has  been  reported  to  be  crucial  in  previous  publications,  and  its  disruption  is  believed                

to  drive  antibody  resistance.  This  comes  with  the  fact  that  some  single  mutations  at                

the  position  279  in  the  gp120  (to  glutamine,  arginine,  glutamate  and  alanine)  results               

in  a  complete  loss  of  N6  binding.  Moreover,  it  has  been  described  that  removal  of  the                  

W100c HC    largely   decreases   the   binding   efficacy   of   the   antibody.     

Taking  everything  together,  we  hypothesized  that  if  the  disruption  of  this  hydrogen              

bond  hampers  the  binding  potency  of  the  antibody,  facilitating  the  formation  of  this               

hydrogen  bond  could  lead  into  an  enhanced  variant.  In  this  sense,  we  observed  that                

the  orientation  angle  of  this  hydrogen  bond  is  not  optimal  for  the  three  available                

N6-gp120  crystal  structures  ( Figure  71,72 ),  and  we  hypothesized  that  removing  the             

large  side  chains  of  the  CDRL3  in  the  vicinity  of  the  W100c HC  could  help  to  optimize                  

the  geometry  of  this  key  hydrogen  bond  by  accommodating  better  the  loop  D.               

Therefore,  we  decided  to  mutate  L91  and  Q96  into  smaller  amino  acids  with  similar                

physicochemical  properties:  alanine  and  serine,  respectively.  Then,  we  performed           

MD  simulations  and  observed  that  the  L91A;Q96S  mutation  adds  rigidity  to  the  loop               

D  ( Figure  74 )  by  stabilizing  the  hydrogen  bond  orientation  between  W100c HC   and              

N279 GP120 .  ( Figures  75-77 ).  After  these  results,  we  proposed  the  characterization  of             

the  single  (L91A  and  Q96S)  and  double  mutants  (L91A;Q96S)  of  the  N6  light  chain.                

Our  collaborators  expressed,  produced  and  purified  the  antibody  variants,  and  they             

evaluated  their  binding  affinity  against  3  resistant  and  14  sensitive  strains.  As  we               

expected,  none  of  the  designs  could  bypass  resistance  because  the  key  hydrogen              

bond  cannot  be  produced.  However,  a  generalized  increase  in  antibody  potency  was              

observed  in  13  out  of  14  sensitive  strains  ( Table  33  and   Figure  78 )  for  the  double                  

mutation,   a   major   achievement.     

Interestingly,  no  significant  binding  improvement  was  observed  for  any  of  the  single              

mutation  designs,  as  we  observed  during  the  first  round  of  designs  (especially  for  the                

Q54R  case).  It  is  likely  that  only  when  combining  more  than  one  mutation,  binding                
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increase  can  be  observed  upon  a  synergistic  effect  between  multiple  mutations.  In              

this  sense,  a  triple  mutant  consisting  of  the  double  mutation  of  the  CDRL3               

(L91A;Q96S)  and  the  single  mutation  on  CDRH2  (Q54R)  could  lead  to  an              

improvement  in  N6  potency.  This  hypothesis  comes  with  the  fact  that  Q54R  mutation               

achieved  an  increase  in  antibody  potency  in  half  of  the  evaluated  strains,  without               

hampering  the  binding  affinity  with  other  strains  ( Table  32 ).  We  have  proposed  this               

triple  mutation  to  our  experimental  collaborators,  and  its  experimental           

characterization   is   on   its   way.   

In  fact,  it  is  biologically  logical  that  single  mutations  on  potent  antibodies  are  likely  to                 

not  substantially  improve  the  binding  affinity.  Potent  antibodies  have  been  generated             

under  hypermutation  and  hyper  screening  processes  within  the  host,  and  single             

mutations  are  more  probable  to  occur  than  multiple  mutations  at  the  same  time.               

Hence,  for  a  given  optimized  scaffold  it  is  very  likely  that  most  single  mutations  have                 

been  screened  and  discarded  within  the  host,  leading  to  probably  the  best  template               

antibody.  However,  the  probability  that  the  host  has  generated  multiple  mutations  on              

a  single  antibody  variant  is  lower,  and  therefore  it  seems  that  is  the  only  way  to                  

improve  the  binding  affinity  of  potent  antibodies.  If  this  is  true,  the  amount  of                

combinations  to  evaluate  computationally  increases  exponentially,  and  methods  for           

reducing   this   combinatorial   space   will   be   required.   

Overall,  this  thesis  highlights  the  complexity  of  the  prediction  of  the  effects  of               

mutations  in  protein-protein  complexes,  and  especially  on  their  application  into  the             

antibody  design  field.  Probably  in  the  future,  protein  design  may  be  an  automatized               

and  trivial  process,  but  at  this  time  it  is  an  herculean  effort  where  structural  biologists                 

and  experimentalists  must  work  together  to  pave  the  way  to  the  future  generations  of                

scientists.     
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Conclusions   

The   conclusions   that   can   be   extracted   from   this   thesis   are:   

● Prediction  of  the  effects  of  mutations  in  protein-protein  complexes  is  still  one              

of  the  main  challenges  in  protein  design  due  to  (probably)  the  scarce              

experimental  ΔΔG  determinations.  Methods  using  only  this  source  data  may            

tend  to  have  biased  predictions,  limiting  their  use  in  de  novo  predictions.  The               

development  of  novel  methodologies  using  alternative  sources  of  data  may            

provide   new   insights   on   the   prediction   process.   

● Three-dimensional  protein-protein  data  may  offer  an  alternative  and          

complementary  source  of  data  for  the  estimation  of  the  ΔΔG  upon  mutation,              

which  can  be  a  crucial  factor  for  reducing  overfitting  towards  biased  ΔΔG              

determinations.   

● From  the  binary  classification  point  of  view,  prediction  of  antibody  binding             

efficacy  can  be  performed  by  analyzing  the  contacts  of  the  three-dimensional             

binding  process  using  PELE  simulations.  Hence,  sensitive  epitopes  would           

bind  tightly  and  the  contact  surface  will  be  higher  rather  than  the  resistant               

ones.   

● Biomedical  antibodies  are  potent  and  improving  their  binding  efficacy  is  a             

challenging  process  from  the  computational  and  experimental  point  of  view.            

Here,  we  have  followed  several  approaches  aiming  to  improve  the  N6             

antibody,  one  of  the  best  bNAbs  against  HIV-1.  Most  of  the  single  mutation               

designs  we  proposed  were  not  successful,  which  highlights  the  complexity  of            

this  task.  However,  one  of  the  designs  consisting  of  a  double  mutation              

(L91A;Q96S)  on  the  CDRL3  of  the  antibody  achieved  higher  neutralization            

potency  in  13  out  of  14  evaluated  sensitive  strains  than  the  native  antibody               

(geometric  mean  of  0.011  μg/mL  and  0.026  μg/mL,  respectively).  This  design             

favours   a   known   key   hydrogen   bond   between   W100c HC    and   N279 GP120 .     

● Single  mutations  are  unlikely  to  be  enough  for  improving  the  binding  potency              

of  potent  antibodies.  Our  results  suggest  that  the  synergistic  effect  of  multiple              

mutations  may  play  a  very  important  role  during  the   in  silico  design  of               

improved   antibody   variants.   
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