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Abstract

The industry of cinema has experienced a radical change in the last
decades: the transition from film cinematography to its digital for-
mat. As a consequence, several challenges have appeared, but, at the
same time, many possibilities are open now for cinematographers to
explore with this new medium.

In this thesis, we propose different tools that can be useful for
cinematographers while doing their craft. First, we develop a tool for
automatic color grading. It is a statistics-based method to automat-
ically transfer the style from a graded image to unprocessed footage.
Some advantages of the model are its simplicity and low computa-
tional cost, which make it amenable for real-time implementation,
allowing cinematographers to experiment on-set with different styles
and looks.

Then, a method for adding texture to footage is created. In
cinema, the most commonly used texture is film grain, either di-
rectly shooting on film, or adding synthetic grain later-on at post-
production stage. We propose a model of "retinal noise" which is
inspired by processes in the visual system, and produces results that
look natural and visually pleasing. It has parameters that allow to
vary widely the resulting texture appearance, which make it an artis-
tic tool for cinematographers. Moreover, due to the "masking" phe-
nomenon of the visual system, the addition of this texture improves
the perceived visual quality of images, resulting in bit rate and band-
width savings. The method has been validated through psychophys-
ical experiments in which observers, including cinema professionals,
prefer it over film grain emulation alternatives from academia and
the industry.

Finally, we introduce a physiology-based image quality metric,
which can have several applications in the image processing field,
and more specifically in the cinema and broadcasting context: video
coding, image compression, etc. We study an optimization of the
model parameters in order to be competitive with the state-of-the-art
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quality metrics. An advantage of the method is its reduced number
of parameters, compared with some state-of-the-art methods based
in deep-learning, which have a number of parameters several orders
of magnitude larger.

vi



i
i

“output” — 2021/7/15 — 14:54 — page vii — #9 i
i

i
i

i
i

Resumen

La industria del cine ha experimentado un cambio radical en las úl-
timas décadas: la transición de su soporte fílmico a la tecnología del
cine digital. Como consecuencia, han aparecido algunos desafíos téc-
nicos, pero, al mismo tiempo, infinitas nuevas posibilidades se han
abierto con la utilización de este nuevo medio.

En esta tesis, se proponen diferentes herramientas que pueden
ser útiles en el contexto del cine. Primero, se ha desarrollado una
herramienta para aplicar color grading de manera automática. Es un
método basado en estadísticas de imágenes, que transfiere el estilo
de una imagen de referencia a metraje sin procesar. Las ventajas del
método son su sencillez y bajo coste computacional, que lo hacen
adecuado para ser implementado a tiempo real, permitiendo que se
pueda experimentar con diferentes estilos y ’looks’, directamente on-
set.

En segundo lugar, se ha creado un método para mejorar imágenes
mediante la adición de textura. En cine, el grano de película es la tex-
tura más utilizada, ya sea porque la grabación se hace directamente
sobre película, o porque ha sido añadido a posteriori en contenido
grabado en formato digital. En esta tesis se propone un método de
’ruido retiniano’ inspirado en procesos del sistema visual, que produ-
ce resultados naturales y visualmente agradables. El modelo cuenta
con parámetros que permiten variar ampliamente la apariencia de
la textura, y por tanto puede ser utilizado como una herramienta
artística para cinematografía. Además, debido al fenómeno de en-
mascaramiento del sistema visual, al añadir esta textura se produce
una mejora en la calidad percibida de las imágenes, lo que supone
ahorros en ancho de banda y tasa de bits. El método ha sido valida-
do mediante experimentos psicofísicos en los cuales ha sido elegido
por encima de otros métodos que emulan grano de película, métodos
procedentes de academia como de industria.

Finalmente, se describe una métrica de calidad de imágenes, ba-
sada en fenómenos fisiológicos, con aplicaciones tanto en el campo del

vii



i
i

“output” — 2021/7/15 — 14:54 — page viii — #10 i
i

i
i

i
i

procesamiento de imágenes, como más concretamente en el contexto
del cine y la transmisión de imágenes: codificación de vídeo, compre-
sión de imágenes, etc. Se propone la optimización de los parámetros
del modelo, de manera que sea competitivo con otros métodos del
estado del arte . Una ventaja de este método es su reducido núme-
ro de parámetros comparado con algunos métodos basados en deep
learning, que cuentan con un número varios órdenes de magnitud
mayor.
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Resum

La indústria de cinema ha experimentat un canvi radical en les últi-
mes dècades: la transició del seu suport fílmic a la tecnologia del ci-
nema digital. Com a conseqüència, han aparegut alguns desafiaments
tecnològics, però, a el mateix temps, infinites noves possibilitats s’-
han obert amb la utilització d’aquest nou mitjà. En aquesta tesi, es
proposen diferents eines útils en el context de cinema. Primer, s’ha
desenvolupat una eina per aconseguir color grading automàticament.
És un mètode basat en estadístiques d’imatges, que transfereix l’estil
d’una imatge de referència a metratge sense processar (o a què encara
no se li ha aplicat color grading). Els avantatges de l’mètode són la
seva senzillesa i baix cost computacional, que el fan adequat per a
ser implementat a temps real, permetent que es pugui experimentar
amb diferents estils i ’looks’, directament on-set.

Segon, s’ha creat un mètode per millorar imatges mitjançant l’ad-
dició de textura. En cinema, el gra de pel·lícula és la textura més uti-
litzada, ja sigui perquè la gravació es fa directament sobre pel·lícula,
o perquè ha estat afegit a posteriori en contingut gravat en format
digital. En aquesta tesi es proposa un mètode de ’soroll retinià’, ins-
pirat en processos de sistema visual, que produeix resultats naturals
i visualment agradables. El model compta amb paràmetres que per-
meten variar àmpliament l’aparença de la textura, i per tant pot ser
utilitzat com una eina artística per cinematografia. A més, a cau-
sa de el fenomen d’emmascarament de el sistema visual, a l’afegir
aquesta textura es produeix una millora en la qualitat percebuda de
les imatges, la qual cosa suposa estalvis en ample de banda i taxa de
bits. El mètode ha estat validat mitjançant experiments psicofísics
en els quals ha estat elegit per sobre d’altres mètodes que emulen gra
de pel·lícula, tant d’acadèmia com d’indústria.

Finalment, es descriu una mètrica de qualitat d’imatges, basada
en fenòmens fisiològics, amb aplicacions tant en el camp de l’proces-
sament d’imatges, com més concretament en el context de el cinema
i la transmissió d’imatges: codificació de vídeo, compressió d’imat-
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ges, etc . Es proposa l’optimització dels paràmetres de el model, de
manera que sigui competitiu amb altres mètodes de l’estat de l’art.
Un avantatge d’aquest mètode és el seu reduït nombre de paràmetres
comparat amb alguns mètodes basats en deep learning, que compten
amb un número diversos ordres de magnitud major.
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1
Introduction

Many possibilities have emerged for cinematographers with the tran-
sition to digital format. This new medium offers many options to
explore in terms of special effects, color manipulation, etc. In this
thesis, we focus on different methods that can be useful for movie
creators as artistic tools. The algorithms behind these methods ex-
plore active topics of research in the image processing field. First,
we present an efficient solution for automatic color grading, then, we
propose a method to add texture to footage, and finally, a physiology-
based quality metric and its optimization process are explained.

Usually, footage is processed at post-production stage: colors are
modified, effects are added, and the visual "look" of the movie is
created. However, leaving all these decisions to post-production stage
prevents cinematographers from experimenting on-set and making
the necessary adjustments. The result is that more and more movies
tend to have a similar look. The proposed tools are designed to be
used on-set, allowing experimentation.

Color grading is a common process in cinema, video, and pho-
tography, which consists in altering the colors of images in order to
develop an appropriate style for the image. Usually, this process is
done manually and it is very costly in terms of budget and time.
Therefore, automatic color grading methods are very useful in the
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cinema and photography context. Moreover, real-time color grad-
ing allows cinematographers to experiment with these looks on-set.
There exists a vast literature about methods to transfer the style
between images. However, some of them produce results whose lack
of photo-realism is not acceptable for the high-quality standards of
cinema. Other methods, which produce photorealistic results, are
computationally very costly, so they cannot be implemented for real-
time applications. Moreover, few methods exist which transfer the
style to video footage, as most of them are oriented to transform still
images.

The second problem we address in this thesis is the addition of
texture to images. Usually, the goal of adding texture is to generate
visually pleasing images and to improve their perceived quality. The
most commonly used texture in cinema and photography is film grain.
However, shooting in film nowadays is unpractical and expensive,
therefore, synthesized film grain is added to digital images at post-
production stage. The main disadvantage of film grain models is the
high computational cost, which makes them unpractical for real-time
implementations, preventing cinematographers from using it on-set.

Our last application focus on image quality assessment. Some
simple but effective quality metrics are based on the mean square
error (e.g. PSNR), however, these metrics are not very well corre-
lated with perceived visual quality. Therefore, these metrics have
been improved using models that mimic the early stages of the visual
system. Some state-of-the-art approaches, based on deep-learning,
produce significant results but they have a large amount of parame-
ters to be optimized. Moreover, most of these models are not based
on the human visual system processes.

1.1 Contributions
Our first contribution in this thesis is the creation of a method for
automatic, real-time color grading. With this purpose, we have de-

2
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veloped a style transfer algorithm based on image statistics, which
is amenable to produce real-time results due to its low computa-
tional cost. The code of the method can be found at: https:
//github.com/izabalra8/VideoStyleTransfer.

Our second contribution is the proposal of a model for generating
"retinal noise", which is a texture inspired by processes in the visual
system. The model is simple, its computational cost is low, and
it has parameters that allow cinematographers to experiment on-
set with different textures. The method was patented under the
patent name: "Computer-implemented method for adding texture to
a digital image". The code of the method can be found at: https:
//github.com/izabalra8/retinalNoise.

Our last contribution is related to image quality assessment. With
this purpose, a physiology-based quality metric is presented, and its
optimization process is explained. The model, unlike most vision
models in the vision science literature, assumes a non-linear response
of neurons. It counts with a reduced number of parameters (4 param-
eters), compared to the state-of-the-art deep-learning based methods.
The method achieves significant results in benchmark image quality
databases such as TID2008, TID2013, LIVE, or CSIQ. The code
of the method can be found at: https://github.com/izabalra8/
INRF-IQmetric.

1.2 Publications
This thesis is based on our work described in the following papers.
Journals

• Itziar Zabaleta, Mateo Cámara, César Díaz, Trevor Canham,
Narciso García, and Marcelo Bertalmío. Retinal noise emula-
tion: A novel artistic tool for cinema that also improves com-
pression efficiency. IEEE Access, 8:67263–67276, 2020.

• Itziar Zabaleta and Marcelo Bertalmío. Photorealistic style
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transfer for video. Signal Processing: Image Communication,
95:116240, 2021.

Conferences

• Itziar Zabaleta and Marcelo Bertalmío. In-camera, photorealis-
tic style transfer for on-set automatic grading. SMPTE Annual
Technical Conference & Exhibition, 2018.

• Itziar Zabaleta and Marcelo Bertalmío. Photorealistic style
transfer for cinema shoots. Colour and Visual Computing Sym-
posium (CVCS), 2018 (best student paper award).

1.3 Thesis outline
Hereby, we introduce the structure of the thesis, following the Intro-
duction. Chapter 2 is an introductory section describing the evolution
of the cinema since its beginning to the present day. This description
serves as a context for understanding the current necessities for digi-
tal cinema. Chapter 3 explains some important concepts concerning
digital cinema, which are important for the following chapters. Chap-
ter 4 is a description of processes present in the human visual system,
and the consequent visual models derived from them. The chapter
finishes with an explanation of the most commonly used color spaces,
which will be mentioned in the different chapters of this thesis. In
Chapter 5, we propose an efficient automatic color grading method,
which produces photorealistic results with a low computational cost.
Chapter 6 illustrates how the perceived quality of images can be im-
proved by the addition of certain type of texture. We also propose
a "retinal noise" model for adding texture, which produces visually
pleasing images, and can be used with coding efficiency purposes.
Chapter 7 describes a physiology-based image quality metric, and
the optimization of the model parameters is explained in detail.
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2
From film to digital cinema

2.1 Beginning

The creation of images is inherent to human history, since prehistoric
times with cave paintings as one of the earliest examples, until the
current century, with images being of crucial importance in the cul-
ture. Pictographic communication not only reflects the contributions
of a specific culture, through paintings, sculptures, drawings, etc, but
it also derives in intellectual and scientific progress.

For instance, during the Renaissance, Italian artists developed
the laws of perspective as a consequence of their attempts of giving
a faithful representation of the reality. During that time, the camera
obscura was created. It was used as an aid for drawing and painting,
to trace real-world scenes before transferring them to canvas. This
invention was developed further into the photographic camera in the
first half of the 19th century, and it was the technology of what
sometime later would produce moving images. A camera obscura is a
darkened room or a box with a small hole at one side through which
light enters and reflects on the opposite interior wall. An image of
the external objects is projected within the wall inside the box or
room. In the 17th century, the camera obscura became small enough
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to be portable, and around that time lenses were also introduced
to focus light. Therefore, the basics for the photographic camera
existed, but it was not until the 19th century, with the development
of light-sensitive materials, that photography was invented.

Figure 2.1. Illustration of how camera obscura works. Fig-
ure from https://commons.wikimedia.org/wiki/File:001_a01_
camera_obscura_abrazolas.jpg.

Along with the invention of photography, other optical devices
were developed at that time. The magic lantern dates from the 17th
century. It is a device to project light through a transparent mate-
rial onto a surface, and it could be considered a predecessor to the
modern cinema projectors. At that time, this device was used as an
aid for artists, in an attempt to achieve realism in depictions of the
surrounding world.

During the late eighteenth and early nineteenth centuries, in the
context of the first industrial revolution, amusement and education
were bound together. At that time, there was no separation between
art and science, or between popular amusement and the development
of scientific instruments. In fact, the emergence of photography and
film is related to optical devices such as magic lanterns, phantasmago-
ria, dioramas, etc created with the purpose of popular entertainment.
Magic, visual illusions, the scientific study of visual phenomena and
a development of technology occurred simultaneously during those
years [91]. In 1824, British doctor Peter Mark Roget in his book
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"The persistence of vision with regard to moving objects", explained
the visual illusion by which the brain interprets rapid sequential,
still images as continuous motion. The thaumatrope, a popular disc-
shaped toy at that time, demonstrated Roget principle: when spun,
separate images on either side of the disc appeared to be in the same
picture. This optical toy is considered as the earliest antecedent of
motion pictures and animation, the images of which are comprised
of many individual still images. Some years later, between 1830 and
1860, a list of motion-image devices appeared: the Phenakistiscope or
the Praxinoscope are some examples. The illusion of moving images
was created by using rotating drums where sequential images were
displayed for being viewed through some slots.

2.2 The industry of motion pictures
In 1870, Henry R. Heyl invented the Phantasmatrope, a magic lantern
device that for the first time projected a motion-picture onto a screen
for an audience. At the same time that the technology for screening
was developed, advancements in photography were done. In 1872,
Eadweard Muybridge recorded a sequence of galloping horses im-
ages that were projected using a device called the Zoopraxiscope.
In 1890, inspired by Muybridge’s work, Thomas Edison along with
William Kennedy Laurie Dickson created the Kinetograph, a device
that recorded motion pictures in 35mm film strips, and some years
later they invented the Kinetoscope, a viewing apparatus that made
use of the electric bulb for illumination, and the Phonoscope which
incorporated a phonograph.

At the same time in France, the Lumière brothers invented the
Cinematographe, the first mass-produced motion picture film cam-
era that at the same time served as a projector. They also made
their own films and they gave their first screenings in 1895, causing
a sensation between audiences. In the following year, several movie
theatres were opened in different cities of Europe. Since 1920 there

7
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Figure 2.2. Timeline with the main discoveries in the cinema his-
tory.
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were some steady advances in the film technology, and by the end of
the decade, sound movies became the standard in cinemas. By 1920,
films were a huge industry, especially after the emergence of Holly-
wood. From the 1910s until the 1960s, the world market would be
dominated by American movies in the period known as "the golden
age" of Hollywood.

2.3 Technological advances
The technology of film has remained essentially unchanged since its
invention. Basically, film is a long strip of transparent plastic, coated
on one side with a gelatin emulsion containing microscopically small
light-sensitive silver halide crystals. This ribbon is mechanically
transported through a camera, where a shuttering mechanism exposes
it to light, activating the halide crystals depending on the amount
of light received. A series of separate, sequential still images are
recorded on the film strip. Afterwards, the film is passed through
a chemical bath to develop the images recorded on it. The film is
finished after being edited or cut into the final parts. This final ver-
sion is duplicated in a laboratory and copies of it are distributed to
theatres [47].

The first motion pictures were shot using a single photographic
emulsion that produced black-and-white images. Color film was in-
vented at the beginning of the 20th century, but it was not widely
used for commercial motion-picture production until the early 1950s.
Initially, the techniques to create the effect of color in film were tint-
ing, that consisted in dying the emulsion of the film base giving the
image a uniform monochromatic color, or the toning process, that
replaced the silver particles in the film with metallic salts creating a
color effect in the dark areas of the image.

The development of color film came after some advances in the
study of colors and light. In 1861, the three-color method was firstly
suggested by the physicist James Clerk Maxwell, and it was the basis
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for the additive color system. In color theory, there exist two methods
to produce color, the additive system, and the subtractive system.
Additive colors are obtained by mixing different amounts of light
colors. On the contrary, subtractive colors are created by absorbing
some light wavelengths and reflecting others.

Figure 2.3. Additive color system on the left, subtractive system
on the right.

Around 1900, the first systems for achieving color images ap-
peared, and they were based on the additive color system. Red, green,
and blue filters (sometimes two opposite colors instead of three: red
and blue or red and green) were used to capture each color compo-
nent information separately, into normal black-and-white film. These
color components were projected using similar filters to reconstitute
the final color image. An early example of this technology is the
Kinemacolor, its mechanism is shown in Fig.2.4. These systems re-
quired an intense use of light and they were replaced by the subtrac-
tive color system some years later.

The subtractive color process uses either separate negatives to
capture each color component by using filters (as it is done in the
additive system) or a single film coated with three layers of color-
sensitive emulsion, where each layer reacts to each different color
stimuli. The final color image is created by superimposing three pos-
itive images, obtained by using the corresponding layer information
from the negative, with an opposite color dye. For many years the
three-layer film process, owned by Technicolor, monopolized the color

10
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Figure 2.4. A schematic series showing how the two-color Kinema-
color additive motion picture process operated. Figure from [13].

cinematography, but after 1950 some alternatives appeared, such as
Eastman Kodak Kodachrome, Eastman color, etc.

Since the 1920s, as the quantity of film and filmmakers was grow-
ing, film stock manufacturers began to diversify their products, for
black and white and color cinema. The availability and diversification
of film stocks offered some freedom to filmmakers to make a selection
based on the desired aesthetic. Advancements in film emulsion and
grain structure provided a wide range of available film stocks.

Another essential variable in the film stock is its speed or sen-
sitivity to light [90]. A film with a lower speed index requires more
exposure to light to produce the same image density as a faster speed
index film. At the same time, the use of higher sensitivities generally
leads to coarser film grain. Texture in analog images depends on the
film stock chosen by the photographer. The film speed varies from
ISO 50, which is slow and least sensitive to light, to 800, which is
very fast and extremely sensitive to light.

The post-production techniques used in the laboratory to pro-
cess the film stock can also offer a considerable variance in the re-
sulting images [90]. Push-processing is a film developing technique
consisting in increasing the recommended developing time of the film,
compensating for under-exposure in the camera. The image produced
shows an increased amount of grain, higher contrast, reduced quality,
and saturated and distorted colors. On the contrary, pull-processing,
consisting in overexposure and underdevelopment, results in images

11
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Figure 2.5. Film grain used for artistic effect. Figure from https:
//en.wikipedia.org/wiki/Film_grain.

that display the opposite change in visual properties. The bleach by-
pass is a chemical effect achieved by skipping the bleaching function
while processing a color film, so the silver is retained in the emulsion
along with the color dyes, resulting in a black-and-white image over
a color image. Cross processing consists of processing film in a chem-
ical solution intended for a different type of film, so the images show
unnatural colors and high contrast.

Figure 2.6. Bleach by-pass, push processing, and cross
processing techniques in film photography. Figures from
https://handwiki.org/wiki/Push_processing, and https://
crossprocessing.info/.
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Film gauge is the physical characteristic of film stock that defines
its width [90]. The major movie film gauges are: 8 mm for amateur
cinema, 16 mm for semi-professional, 35 mm for professional, and 65
mm for shooting epic photography, rarely used except in special event
venues. A larger film gauge corresponds to a higher image resolution
and technical quality.

All these factors plus the wide variety of cameras at the time con-
tributed to the aesthetic of the resulting images in film cinematogra-
phy. It allowed filmmakers to experiment, find and test new possibil-
ities for creative expression. There exist numerous additional aspects
that contribute to the art of film cinematography.

Figure 2.7. Increasing the focal length, the field
of view decreases. From left to right, top to bot-
tom: 16mm, 35mm, 50mm, 85mm, 135mm, and 200mm.
Adapted figure from https://www.colesclassroom.com/
focal-length-basics-every-photographer/.

Lenses can be attached to the camera to give a certain look or
effect to the images, different lenses are used for different purposes.
Focal length can be varied by the use of lenses. The focal length
determines the angle of view and the field of view. Cinematogra-
phers can use wide-angle lenses (shorter focal length), that appear to
expand the distance between objects and they produce perspective
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distortions, normal lenses, that produce a field of view similar to the
one we perceived with our naked eye, or long lenses or telephotos,
resulting in compressed distances between objects and a magnifica-
tion of the subject. Lenses can be divided into two categories, prime
lenses or zoom lenses. Prime lenses or lenses with fixed focal length
produce superior quality images, on the other hand, zoom lenses al-
low to change the focal length within a shot or quickly between setups
for shots.

Figure 2.8. Decreasing the aperture of the lens, the depth of field in-
creases. From left to right, top to bottom: f/3.5, f/5.6, f/10, and f/22.
Shooting with wide aperture values, in the range of f/1.8 to f/3.5, will
result in an image with a narrow depth of field. Conversely, narrow
aperture values, in the range of f/18 to f/22 will result in a wider
depth of field. Figure from http://www.boostyourphotography.
com/2014/10/depth-of-field.html.

Focal length and diaphragm aperture affect the depth of field
of a scene, that is the distance between the nearest and the farthest
objects that are in sharp focus in an image. In cinematography, the
use of tighter apertures to create every detail of the foreground and
background in sharp focus is known as deep focus, on the contrary,
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the use of a small depth of field is known as shallow focus. Depth of
field is also affected by the format size, for instance, a 70mm film has
less depth of field than 35mm for a given field of view.

2.4 The transition to digital cinema
It is hard to say precisely when digital cinematography started. In
terms of digital projection, during the 20th century there were some
early attempts at electronic projection, consisting in using video as a
substitute for film in theatrical movie production and exhibition [47].
However, they were unsuccessful because the television image reso-
lution was not enough for being projected at the big screen. More-
over, there existed some differences between the broadcasting and
the motion-picture formats that made this projection impractical:
the standard frame rate (frames per second) for motion-picture is 24
fps in a progressive manner, while for broadcasting video, some usual
frame rates are 30, 60, 25, or 50 fps, employing interlace scanning.
Although large-scale electronic image projection improved over the
time, by 1960s was still not practical in economical terms, as cath-
ode ray tubes (CRTs) projectors were used [47] (these projectors use
a small, high-brightness cathode ray tube as the image generating
element, and the image is then focused and enlarged onto a screen
using a lens kept in front of the CRT face). It was not until the
1990s, when the D-ILA (Digital Image Light Amplifier) technology
was designed and commercialized, that digital projectors started be-
ing used in theatres. In 1999, for the first time, two digital projectors
of this type were used to project Star Wars Episode I: The Phantom
Menace. Although being projected digitally, the movie was shot on
film. The convenience of using digitally captured content was huge,
as the movie already contained a large amount of computer-generated
imagery, and the digital technology would imply saving money and
speeding up the production work-flow.

The transition to digitally shot films was also progressive. In 1987,
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the film Julia and Julia was shot using a Sony analog High Definition
Video System (HDVS) camera, and then transferred to 35mm film
for exhibition. However, this system met with little success due to
image artifacts originated from the differences between broadcasting
video and film formats. In the 1990s, the first digitally shot and post-
produced films were released, but afterwards, they were converted to
film for exhibition. George Lucas was one of the predecessors of
fully digital cinematography, he included footage filmed with high-
definition digital cameras into traditionally film shot movies. As it
was mentioned above, he also used the digital projection technology
for theatrical exhibition for the first time. Nowadays, the digital
technology dominates the market: the major camera manufacturers
offer a wide variety of Ultra High Definition video cameras specifically
designed for digital cinema. In the last years, digital screening and
digital shooting format has overtaken the film based technologies,
some examples of this tendency can be observed in Fig. 2.9.
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Figure 2.9. The graphic above shows the tendency in movie shoot-
ing among the top 100 grossing films in US, the graphic below how
movies are displayed in the last years in UK. Figure from https:
//stephenfollows.com/film-business-became-digital/.
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3
Digital cinema

The term digital refers to the way computers process information,
that is as a series of zeros and ones, in contrast with the term analog,
which refers to film and non-digital video (such as VHS tape) that
are based on continuously variable signals [47].

Although there is no single definition of digital cinema, it gen-
erally involves four major categories which are digital production,
post-production, distribution, and exhibition of theatrical movies.

Professional film-making consists of three main phases: pre-
production, which encompasses all aspects that are prepared before
the camera starts shooting, such as screenwriting, casting, costume
design, location scouting, etc; production, the period of time when
the film is shot, which includes direction, camera operation, acting,
sound recording, lighting, etc; and post-production, the phase that
comes after production and before releasing the film in its final form
and it includes editing, color-grading, sound edition, mastering, etc.
In the following sections, the aspects of cinematography that are
concerned with images will be explained: image recording and image
post-processing.
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3.1 Production

The term production refers to the phase when the raw footage is
recorded. The final resulting images are affected by decisions made
at this stage of the workflow: the type of camera used, the selected
recording format, etc.

3.1.1 Digital cameras

One of the first decisions made in film-making is the camera used
for shooting. Since the 2010s, digital movie cameras have replaced
film cameras in the motion picture industry. Digital cinema cameras
capture footage in digital format rather than shooting on film stock
as the traditional movie cameras do. They can be characterized by
their resolution, the most common ones used by cinema camera man-
ufacturers being: Standard Definition (SD), High Definition (HD),
Full HD, Ultra High Definition (UHD), 4k, 6k, until 8k at the cur-
rent moment. Digital cinema video formats are specified in terms
of horizontal resolution, as multiples of 1024 pixels. For instance, a
2K image is 2048 pixels wide, a 4K image is 4096 pixels wide, and
its corresponding vertical resolutions depend on their aspect ratios
(relationship of the width of the picture to its height). The other res-
olution formats usually refer to 1280×720 pixels for HD, 1920×1080
pixels for Full HD, and 3840× 2160 for UHD.

Although digital camera manufacturers do not make available the
exact processes of their pipelines, there are three main phases com-
mon in the image formation of a digital camera: 1) the image ac-
quisition, which explains how the light passes through the optics of
the camera and reaches the sensor, 2) the transformation of light into
electrical signals at sensor level, and 3) the in-camera color processing
pipeline, which are the steps that occur inside the camera to obtain
the final image [27].
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Figure 3.1. Digital image processing pipeline. Adapted figure from
[64].

Exposure control

In photography, exposure is the amount of light per unit area reaching
a frame of photographic film or the surface of an electronic image
sensor. In the case of digital cameras, the exposure is controlled
through two settings: the aperture and the shutter speed. Moreover,
there is a third camera setting that affects the sensor output lightness
values: the ISO number.

The aperture stop is an opaque part of an optical system that
blocks certain rays. In a camera, a device called diaphragm serves
as the aperture stop. The lens aperture is usually specified as an
f-number, that is the ratio of the focal length f to the diameter D of
the clear aperture of the diaphragm:

N = f

D
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Figure 3.2. Adapted figure from www.photoblog.com/learn/
exposure-triangle-guide/.

where N is the f-number. The shutter speed (or exposure time)
is the length of time when the sensor (or the photographic film) is
exposed to light, that is when the camera shutter is open when taking
a photograph. The shutter speed is measured in fractions of a second.
In the case of digital cameras, the ISO value controls the relationship
between the exposure and the output image lightness. The lower the
number, the less sensitive the camera is to light. In other words, with
a smaller ISO number the output lightness value is lower compared
to a higher ISO value.

Sensor

Once the light passes through the optics of the camera, it reaches
the sensor. An image sensor is a device that converts light (photons)
into electrical signals (electrons)[3]. It is formed by an array of cells.
The electrical charge is accumulated in each cell while the sensor is
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being exposed to light, and then, it must be converted into voltage
through the scanning of the image array.

Figure 3.3. Two camera sensor types: on the left a CCD, and on
the right a CMOS sensor. Figure from [53].

There exist two types of image sensors depending on how this
scanning is performed:

1. The CCD sensor: It transfers the signal vertically from each
column of cells, then it is transferred horizontally and converted
into voltage at one single output amplifier.

2. The CMOS sensor: It has an amplifier at each cell location
and it performs the conversion into voltage at each amplifier at
the same time.

Once the voltage has been measured for each cell location, it has
to be converted into digital values. The bit depth specifies how much
information is kept for each pixel in the image, that is the range of
integer values used for keeping the pixel information. For instance,
an 8-bit image is represented by values in the range 0 to 28 (0 to
256), a 12-bit image is represented by values in the range 0 to 212 (0
to 4095), etc. Therefore, a larger bit depth implies a wider palette of
colors to represent the image.

At this point, the sensor has transformed the photons into digital
values as a measure of the incident light intensity, but there is not

23



i
i

“output” — 2021/7/15 — 14:54 — page 24 — #52 i
i

i
i

i
i

color information yet [3]. Color is a property of light relative to its
wavelength and not to the light intensity. There exist two types of
configurations to capture colors:

1. Three-sensor systems: The incoming light is separated into
short, medium, and long wavelengths using a beam splitter,
and three different sensors are used to capture each wavelength
information. See Fig. 3.4.

2. Color filter arrays (CFA): The array of cells of the sensor is
covered by a mosaic of individual color filters, making each cell
in the array capture one color channel (red, blue, or green). The
values of the other two channels are interpolated later on in a
process called demosaicking. This system is the most popular
since it needs only a single sensor. The most common CFA is
the Bayer pattern, which is a 2 × 2 ’RGGB’ pattern that is
repeated over the entire sensor, as it can be observed in Fig.
3.4.

Figure 3.4. Capturing color information. A three-sensor system on
the left, a Bayer color filter array on the right. Figure from [3].

Most of the professional cinema cameras, such as ARRI, RED, or
Blackmagic cameras, use CMOS sensors with a single sensor system.
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Camera processing pipeline

The values captured by the sensor can be directly stored before apply-
ing any transformation to them, these values form what is known as
RAW image. In professional cinema productions, the RAW footage
is edited at post-production stage: color grading, tone-mapping and
gamut mapping are applied in the post-production laboratory. How-
ever, a chain of transformations can be applied to the RAW data
inside the camera, in order to get an image ready for display. This
is the usual practice in not-professional productions or in TV broad-
casting. These steps and the order in which they are applied may
vary from one camera manufacturer to another, but in general, they
are listed as:

1. White balance: This step is based on the property of the
human visual system of color constancy (or chromatic adapta-
tion), that is the ability to perceive as constant the color of an
object under different illumination conditions. Our perception
of the color of the object is independent of the illuminant and
matches the reflectance values of the object.
The triplet RGB value captured by the camera sensor is:

R =
∫
ω
r(λ)I(λ)S(λ) dλ

G =
∫
ω
g(λ)I(λ)S(λ) dλ

B =
∫
ω
b(λ)I(λ)S(λ) dλ (3.1)

where ω is the spectral range over which the camera is sensitive,
r(λ), g(λ) and b(λ) are the spectral sensitivities of the red, green
and blue filters used by the camera (see Fig. 3.5), I(λ) is the
power distribution of the illuminant, and S(λ) is the spectral
reflectance of the object.
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Figure 3.5. On the left: the spectral sensitivity of Nikon D5000
camera sensor, and on the right: the spectral sensitivity of Canon
EOS 500D camera sensor. Image from [27].

A simplified model of these equations are:

R = I(λR)S(λR)
G = I(λG)S(λG)
B = I(λB)S(λB) (3.2)

where λR, λG, and λB are the corresponding peak sensitivities
for each filter.
If the illuminant values are known, the reflectance values can
be recovered by doing:

S(λR) = R/I(λR)
S(λG) = G/I(λG)
S(λB) = B/I(λB) (3.3)

Therefore, the matrix form of the white balance transformation
is:
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R
′

G′

B′

 =


1

I(λR) 0 0
0 1

I(λB) 0
0 0 1

I(λB)


RG
B

 (3.4)

where R, G, B are the values detected by the sensor and R′,
G′, B′ are the resulting white-balanced values.

In a real scenario, the illuminant values are unknown, so in
order to apply the previous formulas, these values have to be
estimated. This estimation can be done manually or automat-
ically. The illuminant estimation is an ill-posed problem and
there exist numerous methods that aim to estimate it, a review
on them can be found in [33].

2. Demosaicking: As it has been shown in Fig. 3.4, in the color
filter array image each pixel contains information about one
color channel: red, green, or blue. The other two channel val-
ues must be interpolated in a process known as demosaicking,
so a 3-channel image is created from the original 1-channel CFA
image. One of the simplest demosaicking methods is based on
bilinear interpolation (see Fig. 3.6), which is an eight neigh-
borhood filter that obtains the missing value of a certain color
channel by taking the average of the adjacent pixels of the same
color channel.

Figure 3.6. Demosaicking by bilinear interpolation. Image from
https://slazebni.cs.illinois.edu/spring19/assignment0.
html.
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This approach produces modest results, that may show arti-
facts: false colors or zipper-effect. More complex models incor-
porate directional information into the reconstruction, so edges
are estimated correctly and fine details are preserved. There
exists an extensive literature on demosaicking techniques. A
survey on several approaches for this task has been done in
[48].

3. Color transformation: At this point, the obtained color im-
age values are defined in the RGB color space of the camera
sensor. During color correction, the image is firstly converted
from the camera RGB color space to XYZ tristimulus values,
and then from the CIE XYZ color space to a standard RGB
color space (e.g. RGBs, ITU-R BT.709), for display purposes.
This conversion is needed because usually, the spectral sensi-
tivity functions of the camera sensor color channels are not
identical to those of the displaying output color space.

Typically, this transformation is a chain of two multiplications
by 3× 3 color conversion matrices.

Rs

Gs

Bs

 = B · A ·

Rc

Gc

Bc

 (3.5)

where Rs, Gs, Bs are the values in a standard RGB color space,
A is the color transformation matrix from the camera RGB to
CIE XYZ color space, and B is the transformation matrix from
CIE XYZ to standard RGB color space, and Rc, Gc, Bc are the
values of the sensor in the camera RGB color space.

4. Encoding techniques: Image encoding aims to compress the
demosaicked, white-balanced image in the most efficient man-
ner, so the usage of bits is optimized. Perceptual encoding is
essential to maximize the perceived image quality.
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The most common encoding techniques are based on brightness
perception models (explained more in detail in Section 4.3).
The Weber-Fechner’s law describes the relation between the
sensation S, and the base stimulus I:

S = k′log
(
I

IT

)
(3.6)

where k′ is a constant, and IT is the threshold value that makes
the perceived stimulus become zero. This law implies a loga-
rithmic relationship between physical stimulus and perceived
magnitude.
Steven’s law, on the other hand, states that perceptual sen-
sation and the physical stimulus are related through a power
law:

S = kIa (3.7)
where S is the sensation, k is the proportionality constant, and
a is an exponent that depends on the type of stimulus. In the
case of lightness sensation, as explained in [48], a has a value
of 0.42.
These two perception models imply that the brightness func-
tion has a compressive nature, meaning that for darker values
its slope is higher, and as the luminance increases it gets pro-
gressively lower. The consequence is that a small change in
luminance in a dark region will be more noticeable than the
same change in a bright region [4].
Camera sensors transform light into numerical values that are
proportional to the light intensity. The camera signal has to
be quantized into a certain number of bits to provide a digital
output. In practice, the signal is transformed by a non-linearity
that follows a brightness function, and quantization is applied
afterwards: this process is called perceptual linearization. In

29



i
i

“output” — 2021/7/15 — 14:54 — page 30 — #58 i
i

i
i

i
i

this way, more bits are used at the darkest regions, where we
are more sensitive to differences, while fewer bits are used at
the brightest regions, where we are less sensitive to differences.
See Fig. 3.7.

Figure 3.7. Comparison of perceived brightness of quantized steps
using linear (red) and gamma encoding (blue). Image from [70].

The function that the camera applies before quantization is
known as opto-electro transfer function (OETF), which takes
into account the perception models explained before. In this
subsection, the most commonly used OETFs will be explained:
gamma correction, for SDR content; and logarithmic encoding,
PQ, and HLG for HDR image sequences.
Gamma correction is a power-law transform, except for low
luminances where it is linear, so as to avoid having an infinite
slope at luminance zero (which can cause numerical problems).
Gamma correction was originally used due to the cathode ray
tube (CRT) displays. The relation between the device input
voltage and the luminance of the screen for these displays is

L = kV γ (3.8)
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where L is the screen luminance, V is the voltage, and γ is the
exponent of the power function, which has a value of around
2.4. At the same time, the luminance values captured by the
camera are linearly proportional to light intensity. Therefore,
for correct luminance reproduction on the display, the camera
luminance signal Vs must be transformed by applying the in-
verse of the γ value:

Vc = V 1/γ
s (3.9)

where Vc is the corrected voltage, Vs is the source voltage from
the camera sensor, and 1/γ is the gamma correction exponent,
that has a value of around 0.42, and it is known as encoding
gamma. The γ is known as decoding gamma, and 1/γ is called
encoding gamma. The process of compensating the CRT dis-
play response to luminance is known as gamma correction.

Although gamma correction is attributed to the CRT non-linear
response, our perception of lightness (accordingly to Steven’s
law, see Eq. 4.7), follows a non-linearity with respect to the
luminance in the scene that is very similar to the gamma cor-
rection exponential function: both functions are a power law
of exponent approximately 0.42. While CRT displays are ob-
solete, gamma correction is still used in the camera output to
emulate the perception of luminance in HVS.

In order to implement gamma correction, different transfer
functions can be used. For instance, the BT.709, used for high
definition television (HDTV) is

V ′ =
{

4.5V if 0 ≤ V ≤ 0.018
1.099V 0.45 − 0.099 if 0.018 ≤ V ≤ 1 (3.10)

where V denotes pixel value in any of the color channels.

The standard used for screen monitors and internet is called
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Figure 3.8. Graph of transfer functions BT.709 and sRGB. Adapted
figure from [61].

sRGB,

V ′ =
{

12.92V if 0 ≤ V ≤ 0.0031308
1.055V 1/2.4 − 0.055 if 0.0031308 ≤ V ≤ 1 (3.11)

where V denotes pixel value in any of the color channels. See
Fig. 3.8.
Gamma correction has been the most used encoding technique
for a long time, however, due to quantization issues, it is not
suitable to work with high dynamic range (HDR) imaging. [4].
Logarithmic curves are commonly used for encoding high dy-
namic range content. The logarithmic color space has its origin
in the first digital film systems, which consisted in scanning film
negatives for subsequent computer-based post-processing. The
data was stored in logarithmic format, directly corresponding
to density of the original negative.
The reason to still use the logarithmic curve is that, as it has
been seen in Eq. 4.6, it follows the Weber-Fechner’s brightness
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perception law and, at the same time, it retains the most dy-
namic range of information from the camera sensor, in the case
of high luminance values. Each camera manufacturer may have
its own definition for this logarithmic function, but its general
form, common to the most popular log-encoding approaches, is
expressed as:

V ′ = c · log10(a · A · V + b) + d (3.12)

where V denotes pixel value in any of the color channels, and
the parameters a,b,c, and d are constant real values varying for
different camera manufacturers and camera settings. If the re-
sulting images from this transformation are directly displayed,
they appear under-saturated and with low contrast, so a look-
up table (LUT) needs to be applied for preview in on-set mon-
itors.
The PQ (Perceptual Quantization) is a family of curves.
Each curve depends on the peak luminance of the display where
the image is going to be presented. The PQ general formula
can be expressed in the form of a Naka-Rushton equation [4]:

V (L) = K1

c1 + c2( L
k0

)m1

1 + c3( L
k0

)m1

m2

(3.13)

where L is the luminance value, ci is the minimum contrast that
can be detected on an image of luminance Li, i ∈

[
1, 2N

]
, and

N is the number of bits for encoding the transform.
By construction, this linearization transform ensures that quan-
tization errors are not visible, as they are at the JND threshold.
Therefore, the PQ curve does not model brightness perception.
The experiments show that PQ requires fewer bits than gamma
correction to avoid banding artifacts.
The HLG function is a curve based on classic brightness per-
ception models. It can encode a wide dynamic range, while still
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making the signal compatible with regular SDR displays. The
HLG function is expressed as [4]:

HLG(I) =


√

3I, 0 ≤ I ≤ 1/12
a · log(12I − b) + c, 1/12 < I ≤ 1

(3.14)

where I is proportional to relative light intensity in a camera
color channel (R, G, or B). See graphic in Fig. 3.9.

Figure 3.9. HLG and gamma correction. Figure from [4].

5. Displaying: The last step in the camera pipeline is the adap-
tation of the footage to the device where it will be displayed.
Some basic concepts will be defined before introducing the most
common final transformations in the camera pipeline: dynamic
range is the ratio between the brightest and the darkest values
that can be captured or reproduced, and color gamut is the
range of colors achievable on a given display.
Therefore, tone mapping is the process of reducing the dy-
namic range of the input for displaying purposes, while pre-
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serving the perceived detail of the image. (A more detailed
description of the tone mapping process can be found in Sec-
tion 5.3). For accurate on-set monitoring of High Dynamic
Range (HDR) footage, it is very common that 3D LUTs are
created beforehand by cinematographers and colorists [4]. And
gamut mapping consists of altering the range of colors of the
original content to adapt it to the display color gamut. In TV
broadcasting or low-budget movie productions, this process is
carried out within the camera. For professional cinema produc-
tions, both tone mapping, and gamut mapping are performed
off-line by expert technicians at post-production stage.

3.2 Post-production
This phase includes all the transformations made to footage after
production and before distribution. During post-production the im-
age content is altered by the colorist, so the footage is adapted to
the device where is going to be displayed, and also its "visual look"
is defined. These transformations are done in a process called color
grading. However, during pre-production and production phases, be-
fore the actual color grading takes place, grades can be created by the
director of photography (DoP), and they can be stored in a variety
of ways:

• Lookup tables (LUTs) are saved image-processing operations
to set looks for on-set display. Moreover, they can be passed
to colorists during post-processing stage, for reference, or as
a starting point for color grading. As it has been explained
before, LUTs can be used on-set for displaying HDR content.
See Fig. 3.10.

• Color decision lists (CDLs) are an industry-standard file
format for the exchange of basic primary color grading infor-
mation. A CDL defines the parameters slope, offset, and power,
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Figure 3.10. Visualization of a LUT color transforma-
tion. Adapted figure from https://www.inventome.com/read/
the-truth-about-luts.

following the color correction formula

i′ = (i× s+ o)p (3.15)

where i′ is the color graded pixel code value, i is the input pixel
code value, s is slope, o is offset, and p is power. These three
parameters are defined for each R, G, and B channels. The
CDL consists of these 9 parameters, plus an extra parameter,
saturation, that is applied in R, G, and B channels in combina-
tion. A CDL is used to organize primary grade adjustments for
a collection of shots, and it is also a starting point for adjusting
colors in post-production.
Ideally, the intended color look is conceived beforehand, in pre-
production stage, and it is stored as a LUT or a CDL. Then,
during post-production and usually in a color suite, this look is
implemented and carefully rendered by the colorist in a process
called color grading. Color grading consists of adjusting the
image in specific ways to improve its appearance, or to create
stylistic effects. Colorists use color grading for artistic pur-
poses to ensure that the footage conveys a specific atmosphere,
mood, or look. It also includes the processes of tone-mapping
and gamut mapping, that adapt the footage to the displaying
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device. This whole process is very costly in terms of budget
and time, and it may require a significant amount of work from
very skilled artists and technicians.

3.3 Distribution
Once the footage has been recorded and post-processed, it needs to
be compressed. Uncompressed video represents quite large quantities
of data. Different properties of the image contribute to the size of
this data:

• The image quality or video resolution indicates the number
of pixels that form the image, and it is expressed as the number
of horizontal pixels. The number of rows of pixels depends on
the aspect ratio (relationship of the width of the image to its
height). For instance, a 2K image with 1.78:1 aspect ratio has
2048× 1152 pixels, or 23.6 Megapixels.

• The bit depth specifies much color information, or how many
bits are available for each pixel, in an image. For example, an
image with a bit depth of 8 has 28, or 256, possible values for
each channel. See Fig. 3.11.

• The bit rate is the number of bits per second. It is a measure
of video file size, and it is affected by the image resolution , the
bit depth, the video frame rate (number of frames per second),
and the method used for compressing the video.

The amount of data needed to represent images or video is reduced
in a process called compression, so this image content can be stored
in a disc or can be watched with good quality by streaming. The goal
of compression is not only to meet a bitrate requirement, but it must
also do it while at the same time keeping the image quality above a
certain level and using methods of affordable computational complex-
ity [3]. Compression is possible due to the redundancy that exists in
any video content, and to some properties of "natural" images:
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Figure 3.11. Comparison of different bit depths.

• Temporal redundancy: In a video, from one frame to the next,
the percentage of pixels that change their value is small com-
pared to the total number of pixels. Therefore, each frame can
be very well approximated by a version of the previous frame.

• Spatial redundancy: In homogeneous regions, each pixel is sim-
ilar to its neighbours, also at image contours, or within textured
regions. Compression can be achieved by expressing pixels in
terms of their neighbours.

Compression also exploits some perceptual properties of the HVS,
so less data is used to represent regions that are perceived less. Vi-
sual masking is a phenomenon of perception that occurs when the
visibility of one image, called a target, is reduced by the presence of
another image, called a mask. Several types of masking are exploited
for compression purposes:

• Luminance masking: According to Weber’s law, Eq. 4.4, an
increment in a stimulus is perceived only if it is larger than a
certain threshold value. This property is used when quantiz-
ing a signal, assigning more bits to darker values, and less for
brighter regions.
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• Texture masking: Artifacts are more visible in uniform regions
than in textured ones. Therefore, quantization is adapted to
the intensity variation of image regions, using fewer bits in more
variable regions.

• Temporal masking: The HVS takes some time to adapt to
abrupt scene changes. During this period the sensitivity to
details is lower, so images can be represented in a coarser way.

• Color masking: The sensitivity to luminance is higher than
to chrominance. This property can be used for more efficient
quantization.

3.4 Analog vs. digital cinema
As it has been exposed in [43], until the end of the 20th century,
most film professionals and critics preferred celluloid film. Digitally
recorded images were considered technically and aesthetically infe-
rior. Until recently, production companies preferred digital tech-
nology for budgetary reasons, while directors of photography and
filmmakers often chose analog film. There have been some techni-
cal reasons for this preference: until the launch of the ARRI Alexa
in 2011, the dynamic range capacity of digital cameras was inferior
compared to analog film stock. However, modern digital cameras
are comparable or sometimes superior to film stock in terms of dy-
namic range. Therefore, the difference between analog and digital
film is not only a question of dynamic range but rather lies in the
characteristics of film grain and pixel: the random spatial distribu-
tion of film grain is described as pleasing to the eye, compared to
the stability of the pixels fixed grid, which is perceived as cold and
sterile. Some other differences between these two formats are color
reproduction, or the mechanical movement that is present in analog
cameras. Despite these differences, in the last years, digital has be-
come the standard for shooting and projecting, mainly due to lower
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costs. In their work [43], the authors state that an empiric study
comparing the two technologies has not been conducted. Therefore,
they compare some narrative films recorded with analog and digital
cinematography, in terms of cognitive and emotional reactions, en-
joyment, and immersive experiences. They also test whether the type
of projection influences audience reactions. Their main observations
are the following:

• The two capturing technologies produced similar emotional and
immersive experiences during digital projection.

• There exist significant differences in the memory of visual de-
tails, with higher recall scores for the digitally captured ver-
sions.

• The mechanical projection of celluloid film produced higher lev-
els of emotional reactions.

The conclusion of the study is that the gap between analog and digital
aesthetics has been closed with the current advances in digital tech-
nology. On the other hand, the transition to this new technology cre-
ates numerous challenges for cinematographers. Digital cinematog-
raphy and the aid of computers is a great advantage in many aspects,
however, cinematographers are becoming increasingly frustrated by
some artistic limitations that the digital medium imposes, and that
current movie production trends promote. Since the beginning of cin-
ema and for many decades, there was a wide variety of cameras, film
stocks and film developing options that allowed cinematographers to
experiment, find and test new possibilities for creative expression, of-
ten carefully thought out in advance, while the limitations of film in
terms of dynamic range required a mastering of the craft of lighting
the scenes which also fostered artistic creativity; cinematographers
performed the bulk of their work at pre-production and during the
film shoot, with relevant but usually minor adjustments during post-
production. Currently, virtually all professional productions resort
to the same digital cinema camera model, causing the default look to
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be quite homogeneous to begin with. And these cameras have ever
increasing dynamic range capabilities, so there is less and less need
to light the scenes. Consequently, producers are pressing directors of
photography to complete more and more shots per day, just ensuring
that the image quality is good in the barest possible sense (detail
visibility, focus, and so on), but as much as possible leaving artistic
decisions regarding contrast and color for the color-grading stage in
post-production.

As a result, cinematographers have increasingly less opportunities
to properly exercise their craft: on the set there is pressure not to
devote too much time for lighting and just make sure everything is
properly visible, while in post-production the cinematographer must
communicate the artistic intent to the colorist, who must be able to
translate it into operations performed on the color grading suite (and
the time devoted for this is also being progressively reduced). The net
result is that more and more movies tend to have a similar look, with
directors of photography growing dissatisfied with the diminishing
role their craft seems to be taking.
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4
The human visual system: Perception

and visual models

This chapter starts with the definition of visible light and a sum-
marized description of the human visual system. Then, some visual
processes in the retina are developed more in depth, and it concludes
with the explanation of some perception models of brightness and
color.

4.1 Light
Electromagnetic radiation is characterized by its wavelength (repre-
sented by λ) and its intensity. Light, or visible light, is defined as
the electromagnetic radiation with wavelengths within the spectrum
that can be perceived by the human eye, that is between 380 nm and
740 nm.
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Figure 4.1. Electromagnetic spectrum and visible light. Figure
from [3].

Some definitions related to light will be given before going any
further:

• The irradiance function, I(λ), describes light by its power spec-
trum, that is, for each wavelength λ, it defines the amount of
power I the light has. See Fig. 4.2.

Figure 4.2. Irradiance function I(λ) of various common types of
illuminations. Adapted figure from [45].

• The reflectance function, R(λ), describes the light absorption
properties of a surface, that is, for each wavelength λ, it states
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the percentage of photons that are reflected by the surface. See
Fig. 4.3.

Figure 4.3. Spectral reflectance of various colored patches. Adapted
figure from [45].

• The radiance function, E(λ), defines the light reflected by a
surface that reaches our eyes. It is defined as:

E(λ) = I(λ)R(λ) (4.1)

• The luminosity function describes the spectral sensitivity of the
human eye. As Fig. 4.4 shows, V (λ) has a higher response on
wavelengths in the middle of visible light, and it decreases in
the extremes of the visible spectrum.

• Luminance is a measure of the luminous intensity of light per
unit area. It is calculated as the integral of a weighted radiance
over the visible spectrum:∫ 740

380
V (λ)E(λ)dλ (4.2)

where V (λ) is a luminosity function.

• Brightness is a subjective measure. It is the visual sensation
according to which an area appears to exhibit more or less light
[61].

• Lightness is defined as the brightness of an area judged relative
to the brightness of a similarly illuminated area that appears
to be white or highly transmitting [61].
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Figure 4.4. The standard CIE photopic luminosity function V (λ).
Image from [27].

4.2 Biological vision
Visual perception is the ability to perceive the surrounding environ-
ment using light within the visible spectrum. The visual system refers
to all the physiological components involved in vision. It comprises
the eye and parts of the central nervous system: the retina and the
photoreceptor cells, the optic nerve, the optic tract, and the visual
cortex.

4.2.1 Human visual system
The optical system of the human eye acts similarly to the optics of
a camera. Light enters the eye through the outermost coat of the
eye: the cornea, or the clear, curved layer located in front of the iris
and pupil. The front of the eye is protected by the cornea. After
passing through it, light travels through the pupil. The pupil forms a
variable diaphragm, that regulates the amount of light going through.
The iris controls and determines the maximum aperture of the pupil
size. Behind the iris sits the lens. By changing its shape, the lens
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focuses on near or far objects. The structure of the eye and its main
components are shown in Fig. 4.5.

Figure 4.5. Cross-sectional diagram of the human eye. Image from
[35].

The retina has photoreceptor neurons that convert light into elec-
trical signals, which are carried to the brain by the optic nerve. These
signals reach the brain through the lateral geniculate nucleus (LGN)
in the thalamus, which transmits the information to the visual cor-
tex, more specifically to the primary visual cortex (V1), where the
color representation is formed. Some cells in the LGN respond to
color, and for some time the chromatic properties of these neurons
were thought to correspond to the perception of color, but more re-
cently has been shown that this is not the case [4]. Recent studies
demonstrate that some color perception phenomena, such as color
contrast and color constancy, can be explained by the presence of
double-opponent cells, which are found in the primary visual cortex
(V1).
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4.2.2 The retina
There are two main types of photoreceptors in the retina, depending
on their sensitivity to light luminance:

• Rods work with low and mid-low luminances. At high lumi-
nances are active but saturated.

• Cones work with high luminances, at low luminances are not
active because their pigments are less sensitive compared to
rods pigments. There exist three types of cones: S-cones for
short wavelengths, M-cones for medium wavelengths, and L-
cones for long wavelengths. The spectral absorbance functions:
l(λ),m(λ), and s(λ) describe the sensitiviy to light of each sort
of cone photoreceptor, as a function of wavelenght. See Fig.
4.6.

Figure 4.6. Spectral sensitivities (normalized) of S, M, and L-
cones as functions of wavelengths. Adapted figure from https:
//en.wikipedia.org/wiki/Spectral_sensitivity.

The sensation produced by a light of power spectrum E(λ) is
determined by a triplet of values, the tristimulus values, given by the
following formula:
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L =
∫ 740

380
l(λ)E(λ)dλ

M =
∫ 740

380
m(λ)E(λ)dλ

S =
∫ 740

380
s(λ)E(λ)dλ

(4.3)

where l(λ),m(λ), and s(λ) are the spectral absorbance functions of
each photoreceptor type.

Low luminance vision, or scotopic vision, is mediated only by
rods and it is therefore color-less. In a low-medium range of lumi-
nances, or mesopic vision, both rods and cones are active, and in
high-luminance, or photopic vision, cones are active and rods are sat-
urated [3].

4.2.3 Low-level visual processing in the retina
The retina is composed of five cell types that are arranged in three
cellular layers separated by two in-between layers, called plexiform
layers (See Fig.4.7).

The photoreceptor cells, rod and cones, in the outermost layer,
absorb light and convert it into electrical signals. These signals are
passed to bipolar cells (BCs), which in turn connect to retinal gan-
glion cells (RGCs) in the innermost layer. In addition to this ver-
tical pathway, the retinal circuit includes many lateral connections
provided by horizontal cells (HCs) in the outer plexiform layer and
amacrine cells (ACs) in the inner synaptic layer. Retinal ganglion
cells are the output neurons of the retina and their axons form the
optic nerve that transmits the visual signal from the retina to the
brain.

Photoreceptors transform the light reaching the retina into elec-
trical signals. The response of photoreceptors is nonlinear and, for
a single cell without feedback, it can be well approximated by the
Naka-Rushton equation [75], which is a particular instance of a di-
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Figure 4.7. Neurons in the retina of the macaque monkey. Adapted
figure from [35].
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visive normalization operation [11], i.e. a process that computes the
ratio between the response of an individual neuron and some weighted
average of the activity of its neighbors, and this in turns allows the
photoreceptor response to adapt to the average light level, therefore,
optimizing its operative range.

The lateral inhibition or center-surround processing, in which a
cell response is modeled as the difference between the activity of the
cell closest neighbors and the activity of the cells in the near ring-
shaped surround, allows to encode and enhance contrast, therefore
being key for efficient representation, and is present at every stage
of visual processing from the retina to the cortex. Lateral inhibition
is often modeled as a linear operation, a convolution with a kernel
shaped as a difference of Gaussians (DoG). See diagram in Fig. 4.8.

Figure 4.8. Diagram of the divisive normalization operation, and
lateral inhibition in the retina.

4.3 Brightness perception models
This section adapts and summarizes some concepts explained in "Vi-
sion models for high-dynamic-range and wide colour gamut imaging"
[4], Chapter 5. As it has been defined at the beginning of this chap-
ter, the term brightness refers to the visual sensation according to
which an area appears to exhibit more or less light, therefore, it is a
subjective measure. Brightness perception is the relation between the
intensity of light , which is a physical magnitude, and how bright it
appears to us, which is a subjective magnitude. This relationship is
not linear, and different models have been proposed so far. However,
it is not a solved problem since the models depend on the type of
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experiments conducted, the viewing conditions, image background,
etc.

The Weber-Fechner law is a hypothesis in the field of psy-
chophysics (or quantitative study of perception), that explains the
relation between physical stimulus and perceived magnitude. We-
ber’s law states that the perceived change in stimuli is proportional
to the initial stimuli:

∆I
I

= k (4.4)

where I is the base stimulus, and k is the constant of proportionality.
Assuming that all the ∆I, or just noticeable difference (JND) are
equal, Fechner derived that each JND produces the same increase
∆S in the amount of sensation S, then:

∆I
kI

= ∆S (4.5)

Fechner also assumed that the total magnitude S of the sensation can
be computed by adding up the contributions of all the ∆S increments.
Therefore, by integrating the previous equation, and assuming that
the perceived stimulus becomes zero at some threshold stimulus IT ,
the Weber-Fechner’s law is obtained:

S = k′log( I
IT

) (4.6)

where k′ is a constant. See Fig. 4.9.
This law implies a logarithmic relationship between physical stim-

ulus and perceived magnitude.
Steven’s law, on the other hand, states that perceptual sensation

and the physical stimulus are related through a power law:

S = kIa (4.7)
where S is the sensation, k is the proportionality constant, and a is
an exponent that depends on the type of stimulus. In the case of
lightness sensation, as explained in [48], a has a value of 0.42. See
Fig. 4.10.
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Figure 4.9. Weber-Fechner’s law. Graph of the sensation S as a
logarithmic function that depends on the intensity I.

4.4 Color perception and color spaces

This section adapts and summarizes some concepts explained in "Vi-
sion models for high-dynamic-range and wide colour gamut imaging"
[4], Chapter 6. Color is an attribute of the visual perception, therefore
is a subjective quality, not a physical property of light. Color sen-
sations are associated with light wavelengths, reflectance of objects,
and the sensitivity of the cone cells in the human eye. There exist
models that predict color appearance in controlled environments, but
for the case of natural images in arbitrary viewing conditions, there
is not a vision model that can explain all the perceptual phenom-
ena that come into play. Therefore, the color appearance problem
remains very much open, see Fig. 4.11.
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Figure 4.10. Steven’s law. Graph of the sensation S as an expo-
nential function that depends on the intensity I.

The trichromatic theory states that each color in the visible spec-
trum can be defined using a combination of three primaries. This
is a property of HVS and not a property of light. It is a conse-
quence of the fact that there exist three types of cones, and each of
them detects specific wavelengths, see Eq. 4.3. Around 1930, exper-
iments were performed by Wright and Guild to study trichromacy:
subjects were asked to adjust the intensity of a set of red, green,
and blue monochromatic lights (650, 530, and 460 nm), in order to
color-match a given monochromatic light. The color matching func-
tions r̄(λ), ḡ(λ), and b̄(λ), were obtained by averaging the resulting
functions of each subject (see Fig. 4.12).

Therefore, each perceived color can be defined by triplets of nu-
merical values, corresponding to the contribution of the different
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Figure 4.11. Wavelength does not determine color: the inner rings
are identical, yet they appear to us as having different colors. Figure
from [4].

Figure 4.12. Color matching functions r̄(λ), ḡ(λ), and b̄(λ). Figure
from [27].

types of wavelengths. This mathematical model, which associates col-
ors with tristimulus values (primaries in some additive color model),
is known as color space.

4.4.1 The first standard color spaces
In 1931, the CIE, using the data collected from Wright and Guild’s
experiments, proposed two color matching functions: CIE RGB and
CIE XYZ.

The CIE RGB color system is defined by the previously men-
tioned color matching functions r̄(λ), ḡ(λ), and b̄(λ). The RGB tris-
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timulus for a light source with spectral distribution E(λ) are ex-
pressed as follows:

R =
∫ 740

380
r̄(λ)E(λ)dλ

G =
∫ 740

380
ḡ(λ)E(λ)dλ

B =
∫ 740

380
b̄(λ)E(λ)dλ

(4.8)

To represent any visible color, the red component of the CIE RGB
color space sometimes becomes negative. To address this limitation,
a new color space called CIE XYZ is defined, whose values are always
positive.

The CIE XYZ tristimulus values XYZ, for a light source with
spectral distribution E(λ) are:

X =
∫ 740

380
x̄(λ)E(λ)dλ

Y =
∫ 740

380
ȳ(λ)E(λ)dλ

Z =
∫ 740

380
z̄(λ)E(λ)dλ

(4.9)

where the color matching functions x̄(λ), ȳ(λ), and z̄(λ) are de-
fined as a linear combination of r̄(λ), ḡ(λ), and b̄(λ), by imposing
certain constraints:

• x̄(λ), ȳ(λ), and z̄(λ) must be always positive.

• ȳ(λ) is equal to the standard luminosity function V (λ), see Fig.
4.4.

• x̄(λ), ȳ(λ), and z̄(λ) are normalized so a white light has equal
tristimulus values X = Y = Z.

Perceived colors can be defined in terms of luminance, and chro-
maticity, which is the quality of color regardless of its luminance.
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Figure 4.13. Color matching functions x̄(λ), ȳ(λ), and z̄(λ). Image
from [27].

We now define the values x, y, z as:

x = X

X + Y + Z

y = Y

X + Y + Z

z = Z

X + Y + Z

(4.10)

It can be easily observed that for lights E1 and E2 = αE1, their
corresponding x, y, z values are identical. For this reason, the tris-
timulus values x, y, z are called the chromaticity coordinates, as they
do not change if the light stimulus only changes its luminance. By
construction, x+ y+ z = 1, then, all the chromaticity information is
contained in the pair (x, y). Therefore all the chromaticity informa-
tion can be represented in a plane, called the CIE xy chromaticity
diagram (see Fig. 4.14).

It is worth remarking that any visible color can be defined by its
chromaticity coordinates (x, y), and its luminance Y .

4.4.2 Perceptually uniform color spaces
The CIE XYZ is not a perceptually uniform color space; that is, the
distance between two points in XYZ space is not proportional to the
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Figure 4.14. CIE xy chromaticity diagram. Figure from [4].

perceived difference between the colors corresponding to the points.
Perceptual uniformity is a very useful property for color reproduction
systems as it allows to define error tolerances.

In 1976, the CIE introduced the CIE L∗a∗b∗ color space, or
CIELAB. It was intended as a perceptually uniform color space,
with the channel L∗ representing lightness, a∗ representing red-green
response, and b∗ representing yellow-blue response.

The formula to transform the CIE XYZ values to CIELAB is:

L∗ = 116f
(
Y

Yn

)
− 16

a∗ = 500
(
f
(
X

Xn

)
− f

(
Y

Yn

))
b∗ = 200

(
f
(
Y

Yn

)
− f

(
Z

Zn

)) (4.11)

where Xn, Yn, Zn are the tristimulus values of a reference white, and
f is the function:

f(x) =

 x
1
3 if x >

(
6
29

)3

1
3

(
29
6

)2
x+ 4

29 otherwise
(4.12)
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First of all, CIELAB performs a normalization with respect to
the tristimulus values Xn, Yn, Zn of a reference white. It emulates the
adaptation to the ambient illuminant, therefore, the normalization is
an approximation to the color constancy property of the HVS.

After that, CIELAB applies a power-law of value 1
3 to estimate

the lightness. It can be recalled, from Steven’s law (Eq. 4.7), that
lightness perception is related to luminance through a power-law.

Finally, the signals a∗, and b∗ are calculated, based on the theory
of color opponency. This theory, developed by Hering in the late
19th century, states that there exist two opponent axes for color
perception: the red-green axis, and the yellow-blue axis. Each color
can be represented by two values, corresponding to the proportions
of the color on each opponent channel. The a∗, b∗ coordinates can be
positive or negative, therefore CIELAB colors are often expressed in
cylindrical coordinates L∗C∗h∗, where:

• C∗ =
√
a∗2 + b∗2

• h∗ = arctan
(
b∗

a∗

)
where C∗ represents the chroma, which is the color intensity, or degree
of colorfulness with respect to a white color of the same brightness,
and h∗ is the hue, which represents the basic color. An angle h∗ =
0◦ corresponds to red, h∗ = 60◦ corresponds to yellow, h∗ = 120◦
corresponds to green, etc (see Fig. 4.15).

The CIELAB color space was introduced to overcome the non-
uniformity of the previous ones, still, it is not fully uniform. Exper-
iments show that in some parts of the color space (mainly around
blue), CIELAB suffers from cross-contamination, that is changing a
color attribute produces perceptible effects on the other attributes.

In 1998, Ebner and Fairchild proposed the IPT color space [19],
to improve hue uniformity. This model, based on some experimental
results, first transforms the (X, Y, Z) values to (L,M, S) cone tris-
timulus values, then the cone responses are transformed by a power
law of value 0.43, and finally, a linear transformation is applied to
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Figure 4.15. CIE L∗a∗b∗ color space in both cartesian and cylindri-
cal coordinates. Figure from [4].

obtain the (I, P, S) tristimulus values. The formula to transform the
CIE XYZ values to IPT is:LM

S

 =

 0.4002 0.7075 −0.0807
−0.2280 1.1500 0.0612

0 0 0.9184


XY
Z

 (4.13)

L′ =
{
L0.43 if L ≥ 0
−(−L)0.43 if L < 0

M ′ =
{
M0.43 if M ≥ 0
−(−M)0.43 if M < 0 (4.14)

S ′ =
{
S0.43 if S ≥ 0
−(−S)0.43 if S < 0

IP
T

 =

0.4000 0.4000 0.2000
4.4550 −4.8510 0.3960
0.8056 0.3572 −1.1628


L
′

M ′

S ′

 (4.15)
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In the same year, Ruderman et al. [74] proposed the lαβ color
space, based on the efficient coding theory, which states that the
human visual system is optimally designed to process natural im-
ages. They gathered a set of natural images and found a logarithmic
color space, wherein decorrelation produced three principal orthogo-
nal axes. The first axis corresponds to radiance information, and the
two other axes are reminiscent of the color opponency theory: one
corresponds to the yellow-blue chromatic-opponent mechanism and
the other to the red-green one.

The formula to transform the LMS information to lαβ values con-
sists of two stages: first, the LMS values are transformed to logarith-
mic values (the reason for this is that the natural images data showed
a great deal of skew in the LMS cone space, being concentrated near
the origin):  LM

S

 =

 log Llog M
log S

 (4.16)

Then, the logarithmic values are transformed to lαβ by a matrix
multiplication:

 lα
β

 =


1√
3 0 0

0 1√
6 0

0 0 1√
2


1 1 1

1 1 −2
1 −1 0


 LM
S

 (4.17)

The advantages of the lαβ color space are:

• Decorrelation between axes.

• Logartihmic color space, which means that uniform changes in
channel intensity are equally detectable, following the Weber’s
law of perception 4.4.

• Description of the data according to its perceptual information,
following the chromatic-opponency theory.
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4.5 Conclusions
In this chapter, a basic knowledge of light and how the visual system
works has been developed, in order to understand some commonly
used models of brightness perception and color perception. The de-
velopment of these models is important due to their applications.
As it has been seen in Chapter 3, brightness perception models are
crucial for camera manufacturers, to develop efficient quantization
functions in the camera pipeline. On the other hand, accurate per-
ceptual color spaces are of great importance for color reproduction
systems, as they allow to define error tolerance. Extensive research
is being carried out to develop uniform color spaces, and it follows
two independent lines: finding a uniform lightness scale, and devising
a uniform chromaticity diagram for colors of constant lightness [4].
The perceptual color spaces previously exposed are based on exper-
iments that used data whose dynamic range was limited, compared
to High Dynamic Range (HDR) imaging. Therefore, there currently
exists an active line of research to develop color spaces specifically
designed for HDR systems.
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5
Photorealistic style transfer

In this section, we describe the importance of a process called color
grading in cinema, and the current solutions in the academic litera-
ture and in the cinema industry. Our contribution in this chapter is
to propose a method to automatically transfer the style from a refer-
ence image to the original unprocessed footage, easing the workload
of cinematographers. The computational cost of the method is low,
making it amenable for real-time implementation. It can be used
on-set, allowing cinematographers to experiment with different looks
and styles.

This chapter is an adaptation of our article "Photorealistic style
transfer for video" published in Signal Processing: Image Commu-
nication [95], and the conference paper "In-camera, photorealistic
style transfer for on-set automatic grading" published in SMPTE
2018 [94]. The code of the method can be found at: https:
//github.com/izabalra8/VideoStyleTransfer.

5.1 Motivation
Color plays a critical role in cinema, as it greatly affects how we per-
ceive the film and the characters. It can build harmony or tension
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within a scene, or bring attention to a key theme. If it is chosen care-
fully, a well-placed movie color palette evokes mood and sets the tone
for the film. The first movie to be fully digitally color graded is the
Coen Brothers’ 2000 film, O’ Brother, Where Art Thou?, that uses
a sepia-tinted color palette to evoke its setting of rural Mississippi
during the time of the Great Depression. Before deciding to digitally
manipulate the footage, the director of photography (DoP) of the
film tried to obtain the look of the movie by using different types of
photo-chemical processes at a film lab, but his attempts were unsuc-
cessful due to the huge difference between the recorded images and
the desired look: the colors of the footage needed to be completely
altered, as it can be observed in Fig. 5.1. They finally decided to use
a digital intermediate process. This process consists in digitizing the
film negative after it has been edited, so the colors and other image
characteristics can be modified digitally. Once the whole film has
been color graded and assembled on the digital station, it is recorded
back out to film again, using a laser film recorder. Then, the print is
approved by the cinematographer, and multiple prints are made that
go to the movie theatres.

In the ideal scenario for color grading, the intended color look
would be conceived beforehand, then, carefully enhanced and ren-
dered by the colorist during post-production in a stage called color
grading. In the past, color grading was a photochemical process per-
formed at a photographic laboratory, but nowadays it is generally
performed digitally in a color suite. Usually, in professional cinema,
3D lookup tables (LUTs) are created under the supervision of the
DoP to set a look as well as to endow images with specific looks.
Later on, these 3D LUTs along with the ungraded footage are passed
to the post-production stage, where the LUTs are used as a starting
point for the final color grading of the movie. This whole process is
very costly in terms of budget and time and it may require a signifi-
cant amount of work from very skilled artists and technicians.
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Figure 5.1. Top image: footage before color grading, bottom image:
color graded image of the final movie. Images from the documentary
Painting With Pixels: (O’ Brother, Where Art Thou).
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5.2 Current methods
In the last years, style and color transfer have received significant at-
tention from the image processing and computer vision community.
The methods proposed so far have numerous applications: generate
more realistic renderings, some methods can be used for panorama
stitching, tone mapping may employ color transfer techniques, they
can be used for color stabilization (match images from the same scene
taken with different camera configurations), etc. In the field of cin-
ema, style transfer techniques applied to the video footage can be
very helpful, in terms of time and work savings. However, there are
still open research problems on how to extend the current color trans-
fer approaches to video content, or how to achieve realistic results,
free of artifacts, acceptable for cinema quality standards, etc.

We will summarize some of the most significant approaches in
this field, that are also important for explaining our proposed style
transfer method.

5.2.1 Color and style transfer
Since Reinhard et al. [69] presented their pioneering work about
color transfer, this has been an active research topic. They describe
their method as a form of color correction for borrowing the color
properties of one image from another image (see Fig. 5.2). Their
technique takes advantage of the decorrelation property of the lαβ
color space (explained in Chapter 4), and transfers simple statistical
moments (mean and standard deviation) between each channel of the
two images, i.e. from reference to source image. This method works
well in many scenarios, but it is restricted in lαβ color space, which is
constructed with the aim of decorrelating natural images on average,
but not to decorrelate the specific images that are being modified.

Some methods try to overcome this restriction by applying Princi-
pal Component Analysis (PCA) to individual images [36], [92], find-
ing a dedicated color space for each image. The PCA-based method
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Figure 5.2. Color transfer by Reinhard et al. [69]. a) Source image,
b) reference image, and c) color transferred image. Adapted figure
from [69].

proposed by Kotera [36] will be explained more in detail, as it will be
important to understand our proposed method. In statistics, Princi-
pal Component Analysis is a technique that uses an orthogonal trans-
formation to convert a set of observations of possibly correlated vari-
ables into a set of values of linearly uncorrelated variables, called
principal components. This transformation is calculated through the
covariance matrix of the data (which is a symmetrical matrix), find-
ing its spectral decomposition. In the eigenvector basis (formed by
orthogonal vectors), the covariance matrix becomes diagonal, there-
fore the variables are uncorrelated in this basis. In this context, the
principal components are the eigenvectors of the covariance matrix,
that also satisfy:

• The first principal component is the direction that maximizes
the variance of the projected data (or equivalently, minimizes
the average squared distance from the data points to the vector
line). Therefore, it corresponds to the eigenvector associated
with the greatest eigenvalue.

• The i-th component has the highest variance possible, under the
constraint that it is orthogonal to the first i− 1 components.

In the work of Kotera [36], the principal components of the source
color cluster are matched to that of the reference by multiplying by
a matrix M , obtained as follows:
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Figure 5.3. PCA of an image. The first PCA axis (in red) has the
highest variance (9%), the second PCA axis, shown in yellow, has
the second highest variance (2%), and the third PCA axis, shown in
blue, has a variance of 0.1%. The PCA axes have been scaled by
their variance. The origin of the PCA vectors indicates the mean of
the observations.

M = A−1
ref · S · Asrc (5.1)

where Asrc and Aref are the eigenvector matrices for the source and
reference color clusters respectively, and S is a diagonal matrix with
the eigenvalues’ ratio, given by:

S =



√
λ1ref
λ1src

0 0

0
√

λ2ref
λ2src

0

0 0
√

λ3ref
λ3src

 (5.2)

As it is shown in Fig. 5.4, the matrix M has two functions: It
matches the PC axes by rotating the cluster along the eigenvectors
(matrices A−1

ref and Asrc), and it matches the variances by scaling the
color distribution according to the eigenvalues’ ratio (matrix S). As
it is explained [36, 92], a PCA-based method (and more generally,
any statistics-based method) is a global transformation, therefore,
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Figure 5.4. Color matching using PCA. The principal components
of the source image are matched to the principal components of the
reference, and the standard deviation along each axis is transferred
from the reference to the source. Figure from [36].

it has some limitations. In some cases, the color characteristics of
the image cannot be represented by a single cluster. Results can be
improved by having user interaction such as segmenting the images
[7, 36, 44], or by recovering dense pixel correspondences between
the images [31, 84]. Vazquez-Corral and Bertalmío [84] propose a
method for color stabilization (match the colors of images of the
same scene taken with different cameras). They assume that, in a
standard camera pipeline, the output values can be expressed as:RG

B


out

=

A
RG
B


in


γ

(5.3)

where RGBin are the camera RAW values at a given pixel location.
Then, using SIFT, they find pixel correspondences between the im-
ages that have to be color matched. The corresponding pixels p1 and
p2 satisfy:

RG
B


p1

=

A1

RG
B


p


γ1

;

RG
B


p2

=

A2

RG
B


p


γ2

(5.4)
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Therefore, to obtain the values of p1 from the pixel values of p2
the following formula has to be applied:

RG
B


p1

=

A1 · A−1
2

RG
B


1
γ2

p2


γ1

(5.5)

Assuming that the values γ1 and γ2 can be estimated from the
images, the only unknown variables are A1 and A2. Let us call H the
matrix H = A1 ·A−1

2 . The specific values of A1 and A2 are not needed
to obtain the transformation that matches image 2 to image 1, an
estimation of the value of H is enough. Then, the transformation is
obtained by an optimization procedure, finding the matrix H that
minimizes the error in equation 5.5 for all the pairs of corresponding
pixels p1, p2 found in the previous step.

Optimal transport is another popular framework for performing
color transfer between images. The work by Frigo et al. [24] uses the
Monge-Kantorovich formulation to map a pair of meaningful color
palettes. Optimal transport theory is also used in the work of Fer-
radans et al. [23] and the work of Rabin et al. [63], where they in-
corporate a spatial regularization of colors and a relaxation of the bi-
jectivity constraint in order to avoid artifacts. An alternative frame-
work to this theory has been recently proposed by Grogan et al. [30],
where they use a cost function defined as the L2-divergence between
two color distributions (modeled as compact Gaussian mixtures). It
must be noted that in these types of approaches a minimization of
the distance between color distributions can lead to the creation of
color artifacts.

In the last years, there has been a line of research that has in-
creased in popularity: style transfer using convolutional neural net-
works, which was first introduced by Gatys et al. [26]. These meth-
ods were initially designed to transfer the style of an artwork to a
photograph, and they are able to produce good non-realistic results
from images with very different content and style; however, they fail
in the case of producing photorealistic results free of painting-like
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distortions. A semantic segmentation of the source and reference
images has been proposed [44], in order to adapt these methods to
transfer the style between photographs. Although the results look
visually more satisfying compared to the previously mentioned ap-
proach, user interaction is required and they are not completely free
of painting-like artifacts, see Fig. 5.5.

Figure 5.5. Photorealistic style transfer result, using a deep-
learning approach combined with a segmentation mask, by Luan et
al. [44]. a) Source image, b) segmentation mask, c) reference image,
d) resulting image. Convolutional neural network approaches may
produce artifacts, creating non-photorealistic results. Adapted figure
from [44].

Recently, Li et al. [41] proposed a state-of-the-art method that
aims to overcome these limitations by adding a smoothing step to the
stylization step (see Fig. 5.6); moreover, it is faster than the previ-
ous photorealistic deep-learning approaches. However, when segmen-
tation masks are not used, this method often generates inconsistent
results with noticeable color and spatial artifacts.
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Figure 5.6. Deep-learning approach of style transfer, using a seg-
mentation mask, by Li et al. [41]. a) Source image, b) reference
image, c) resulting style transferred image. Adapted image from [41].

5.2.2 Video style transfer methods

While many image color transfer methods exist, only a few video color
transfer algorithms have been proposed so far. One state-of-the-art
color transfer method for video is the one proposed by Bonneel et al.
[7]. It consists of a per-frame chromaticity color transfer based on im-
age statistics, followed by a curvature-flow smoothing to avoid color
bleeding and flickering that may appear when applied to videos. As
they explain in their work, some color styles have spatially varying
characteristics that cannot be replicated with global color adjust-
ments, therefore they use a user-specified segmentation to produce
results that are more faithful to the style (see Fig. 5.7).

Figure 5.7. Video style transfer, using segmentation masks, by
Bonneel et al. [7]. a) Source image, b) reference image, c) resulting
style transferred image.
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5.3 Proposed approach
We propose a method that can ease the workload of cinematogra-
phers and colorists during shooting and post-production. In many
cases, the director wants to emulate the style and look present in a
reference image, e.g. a still from an existing movie, a photograph,
or even a previously shot sequence in the current movie. Given a
color graded reference image, our approach automatically transfers
the style, in terms of tone, color palette and contrast to the source un-
graded footage: the algorithm is applied directly on the unprocessed
images and it generates a display-ready result that matches the style
of the reference image (see Fig 5.8). It is a low computational cost
process that can be implemented in-camera, so the lighting and scene
elements can be adjusted on-set while seeing the resulting image on
the screen. While the method is proposed as a substitute for some of
the post-production tasks, it is compatible with further refinements,
both on-set and in post-production.

Some preliminary concepts will be reviewed before going any fur-
ther: tone-mapping and contrast normalization.

Tone-mapping is the process of reducing the dynamic range of an
image while reproducing the visual appearance and preserving the
perceived detail (as it was defined in Chapter 3). There exist two
types of tone-mapping operators:

• Global operators, which apply the same transformation to all
the pixels in the image. These methods are computationally
efficient, as they can be implemented in lookup tables, at the
cost of losing contrast and image detail.

• Local operators, whose parameters change for each pixel in the
image accordingly to the local features of the image at that
specific pixel. These methods are inspired by the local adapta-
tion process of the human visual system, which is the ability to
adapt to different luminance levels when viewing natural im-
ages. These local operators produce images with more contrast
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Figure 5.8. After applying our style transfer method to the original
image (on top), it can be observed that the colors in the background
of the reference image (in the middle) are correctly transferred to the
background of the source image, as it is shown in the resulting image
(in the bottom).
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and higher detail level, but they are computationally more ex-
pensive, and they may show artifacts, such as halos around
high-contrast edges.

A naive solution for dynamic range reduction is to linearly scale
the image values, but it would result in loss of detail, as it can be ob-
served in the example of Fig. 5.9. Therefore, tone-mapping methods
are usually based on visual appearance models, making use of some
knowledge of psychophysics and perception.

Within the global operators, the method proposed by Cyriac et
al [14] will be explained more in detail, as it will be mentioned in the
following sections. This method performs a constrained histogram
equalization, and it is based on some properties of natural image
statistics. It has been found [34, 73] that natural images have a
cumulative histogram that can be modeled as:

H(x) = xγ(x) (5.6)

where x is the luminance value, and γ is a piece-wise function. In
[14], the function γ increases linearly with some slope γL until the
intensity valueM , and then, with a different slope γH , with a smooth
transition between the two slopes around M , as follows:

γ(x) = γH + (γL − γH)
(

1− xn

xn +Mn
lin

)
(5.7)

On the other hand, histogram equalization is a well-established
method for increasing the contrast (and therefore, the perceived de-
tail), using the image histogram. Let H be the cumulative histogram
of an image, histogram equalization consists in applying the trans-
formation

Ieq(i, j) = H (I(i, j)) (5.8)

to every pixel I(i, j) of the image I, where (i, j) stands for each
specific pixel location. This transformation spreads the histogram
of the original image, so the intensity levels of the equalized image
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Figure 5.9. HDR image depicting outdoor and indoor information.
Comparison of linear scaling (top) with a tone-mapped result (bot-
tom). It can be observed that linear scaling leads to a loss of detail
information in the dark areas. Images from [70].
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span a wider range of the intensity scale, resulting in contrast en-
hancement. However, complete histogram equalization can lead to
unnatural looking images. Therefore, the method proposed by Cyr-
iac el al. [14], applies a constrained histogram equalization defined
as follows: first, the transformation γ(x) (defined in Eq. 5.7) is cal-
culated; the values γL, γH , and M are obtained from the cumulative
histogram of the considered image. Then, a constrained histogram
equalization is done by applying the transformation:

H
(
I(i, j)

)
=
(
I(i, j)

)γ(I(i,j))
(5.9)

as this is the function that models the average cumulative histogram
of natural images.

Contrast normalization is a process present in the human visual
system which consists in scaling the contrast by a factor that depends
on the standard deviation of light intensity, where contrast is the
difference between light intensity and its mean value (as explained in
[8]).

In this context, we can now describe the proposed algorithm,
which can be summarized as follows:

1. Linearize the encoded source video sequence.

2. Calculate a style transfer transformation for a selected frame
in the sequence.

3. Apply the transformation calculated in the previous step to all
the frames in the sequence.

5.3.1 Linearization of encoded source video
As a first step, our method applies to the input footage the inverse of
the encoding non-linearity (the main encoding techniques have been
explained in Section 3.1) so as to ensure that the source content is
linear. This assumes that the non-linearity of the source material is
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known, which is the case in all practical shooting scenarios. In the
case that the source footage is RAW data from the camera (demo-
saicked and white balanced), this step is not required because the
information is already in linear form.

5.3.2 Style transfer for a still image
Once the source footage has been converted to linear information, a
style transformation is calculated for a selected frame (typically the
first one) in the sequence. This transformation consists of luminance,
color, and contrast transfer steps.

Luminance transfer

Let S0 be a frame of the linearized footage (that we will call source
image) and let R be the color graded image used as reference. Lu-
minance transfer consists in applying a transformation to the source
image S0, so as to match the luminance of the reference image R.

The transformation calculated in this step is based on the
tone-mapping approach proposed by Cyriac et al. [14], explained
above. This tone-mapping algorithm performs a constrained his-
togram equalization to the original image, creating an image Ieq:

Ieq(i, j) = TM
(
I(i, j)

)
=
(
I(i, j)

)γ(I(i,j))
(5.10)

where I(i, j) is the pixel luminance value at the pixel location (i, j),
and the function γ has been defined in Eq. 5.7.

On the other hand, we will assume that the reference image R has
been encoded with the standard gamma correction formula gc (as it
has been defined in Chapter 3, Eq. 3.11):

gc(V ) =
{

12.92V if 0 ≤ V ≤ 0.0031308
1.055V 1/2.4 − 0.055 if 0.0031308 ≤ V ≤ 1 (5.11)

where V denotes pixel value in any of the color channels. Therefore,
gc−1(R) will be the linearized version of the reference R.
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Figure 5.10. Our style transfer method consists of three steps:
First, the luminance is transferred, then the colors are matched, and
finally, the contrast is transferred from the reference image to the
source image. See image credits on Section 5.7.
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Figure 5.11. Estimation of the transformation to be applied to
the source image S0 so its luminance matches the luminance of the
reference image R.

According to the diagram in Fig. 5.11, the histogram of
TMs(S0) can be considered approximately equal to the histogram
of TMr

(
gc−1(R)

)
, as the tone-mapping method of Eq. 5.10 performs

an approximate histogram equalization, therefore both histograms
are approximately flat. Then:

histogram
(
TMs(S0)

)
≈ histogram

(
TMr(gc−1(R))

)
(5.12)

where TMs and TMr are the tone-mapping functions calculated for
the source image S0, and for the reference image R, respectively.

Therefore, and following the diagram in Fig. 5.11, the trans-
formed source image S1 that matches the luminance of the reference
R will be:

S1 = gc(TM−1
r (TMs(S0)) (5.13)

Color transfer

We seek to transfer the colors of the reference image R to the image
S1 (resulting from the previous step). Following the same line as in
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[36, 69, 92], we transfer the statistics (mean and standard deviation)
along each channel separately in a decorrelated color space. Princi-
pal Component Analysis (PCA) is applied to the RGB source and
reference images to find decorrelated spaces for each of them, but in
our method there exist some modifications with respect to the tra-
ditional color transfer methods based on PCA analysis, as we will
explain below. Additionally, our method can incorporate a region of
interest previously selected by the user.

As it has been explained in Section 5.2.1, the transformation pro-
posed by Kotera [36] for color transfer consists in a pixel-wise multi-
plication by a matrix M , that associates the following pair of points
of the source and reference images:

• The points pm and p′m, that represent the mean value of the
source and reference images respectively, (therefore M · pm =
p′m).

• The vectors
√
λisrcvi and

√
λirefv

′
i, where vi and v′i represent

the i-th PCA axes of the source and reference images respec-
tively, λi the i-th eigenvalues, and i = {1, 2, 3}, (therefore
M ·

√
λisrcvi =

√
λirefv

′
i).

The matrix M is associated with the linear transformation that con-
verts these source image points to those of the reference. Therefore,
M is fully determined by these 4 pair of points.

In the same line as the work of Kotera, our transformation con-
sists in multiplying by a matrix MCT . This matrix also associates
pairs of points of the source S1 and reference R images, but there are
some differences between our method and the method by Kotera: in
our case, the standard deviation along the first axis of the source im-
age PCA is not matched to that of reference, as this axis contains the
luminance information of the image that has been already matched
in the luminance transfer step; our method can incorporate addi-
tional statistical information from regions of colors to be matched,
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previously manually selected. Then, our color transfer function, rep-
resented by the matrix MCT , associates the following pairs of points:

• The points pm and p′m, that represent the mean value of the
source and reference images respectively.

• The vectors v1 and v′1, that represent the first PCA axis of
the source and reference images respectively. As it has been
explained in [9, 51], the first axis of PCA contains the lumi-
nance information of the image, therefore the standard devia-
tion along this axis is not matched because the luminance infor-
mation has been already transferred in the previous luminance
transfer step.

• The vectors
√
λisrcvi and

√
λirefv

′
i, where vi and v′i represent

the i-th PCA axes of the source and reference images respec-
tively, λi the i-th eigenvalues, and i = {2, 3}. As it has been
explained in [9, 51], the second and third axis of PCA contains
the chromaticity information of the image.

• If there is user input, there is an extra pair formed by the points
ps and p′s, where ps is the mean of the selected region of interest
in the source image in the chromaticity channels (that is the
projection of the point on the plane formed by the second and
third axes of the PCA), and p′s is the mean of the selected region
of interest in the reference image in the chromaticity channels.

We extend MCT as a projective transformation with size 4 × 4
(inspired by the color stabilization approach of Gil et al. [28] and
Vazquez-Corral and Bertalmío [84]). Therefore, the matrix MCT as-
sociated with the color transfer function is calculated by solving the
system of equations formed by all the conditions listed above:

MCT ·


R
G
B
1


src

=


R
G
B
1


ref

(5.14)
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Figure 5.12. Source image on the left, reference image on the right.
Statistical properties of the reference image (mean p′m, PCA axes v′i
and variances along the axes) are transferred to the source image
through the matrix MCT .

for the points listed above (in homogeneous coordinates), and:

MCT ·


R
G
B
0


src

=


R
G
B
0


ref

(5.15)

for the vectors listed above (in homogeneous coordinates).
We have 16 unknowns for the 4 × 4 matrix MCT . Each pair of

point correspondences gives us 4 equations, and if there is no selection
of a region of interest by the user, we have 4 point correspondences
and therefore 16 equations: the matrix MCT is calculated by solving
this linear system of equations. In the case that the user selects a
region of interest, there are 5 point correspondences, so 20 equations.
Then, the system is overdetermined and the solution can be found
by an optimization procedure that minimizes the distance between
corresponding points. We use a least squares error approach to ap-
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proximate the matrix MCT that performs the color transfer, that is
the matrix MCT that minimizes:∑

j

wj · (p′j −MCT · pj)2 (5.16)

where pj and p′j is each of the 5 pairs of points (or vectors) mentioned
above.

Additionally, a weighted least squares approach can be used to
give priority to some of the conditions that the matrix has to sat-
isfy. By default, the weights are equally distributed with a value of
wj = 0.2, so each condition has the same importance as the others;
however, these parameters can be adjusted by the user to give more
priority to one condition over the others, see Fig. 5.13.

Then, if MCT is the matrix calculated as it has been explained
above, the resulting image S2 from our color transfer transformation
will be:

S2(i, j) = MCT · S1(i, j) (5.17)

for each pixel location (i, j) in the image S1.

Local contrast transfer

This step is based on the contrast normalization formula proposed by
Cyriac et al. [14]. We assume that contrast information is kept in the
luminance channel of the image, so the local contrast transformation
is applied on the first axis of the PCA of the image S2.

If we define local contrast of an image as the difference between
light intensity and its local mean value, I(x) − µ(x), our approach
transfers the standard deviation of the local contrast from the refer-
ence to the source image through the following formula:

S3(x) = µ(x) + (S2(x)− µ(x)) · σref
σsrc

, (5.18)

where S2 is the image obtained after the color transfer step, µ(x)
is the local mean of S2 (µ is obtained by convolving the image with
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Figure 5.13. From top to bottom: (a) Source and reference image,
(b) style transfer result with no region of interest, (c) result with
region of interest for the skin areas with weight w = 0.2, (d) result
with weight w = 0.4. See image credits on Section 5.7.

85



i
i

“output” — 2021/7/15 — 14:54 — page 86 — #114 i
i

i
i

i
i

a kernel W that is a linear combination of two Gaussian kernels, of
standard deviation 1

4 and 1
16 of the height or width of the image,

whichever dimension is smaller), σsrc is the standard deviation of the
local contrast of S2, and σref is the standard deviation of the local
contrast of the reference image R.

5.3.3 Video style transfer
Extending an image-based method to video sequences is not triv-
ial: applying an independent style transfer to each frame of a video
sequence might result in strong texture flickering and temporal inco-
herence, even if neighboring frames are similar in content and color.
It is also computationally expensive to calculate the parameters for
each frame without taking into account the common content between
frames. To avoid that, we propose a simple but effective method
(shown in Fig. 5.14) designed to handle these limitations. The style
transfer transformations previously explained are calculated for a rep-
resentative frame of the source sequence (e.g. simply the first frame of
the video), then the same transforms are applied to each frame of the
video, instead of calculating per-frame transformations. Temporal
coherence is guaranteed by applying the same transformation to all
the frames in the video. This approach has a very low computational
cost and produces temporal-coherent and flickering-free results.

5.4 Results and experimental validation
We demonstrate style transfer results on a wide range of source and
reference sequences, where the luminosity and color range vary from
one to another. Fig. 5.8 and 5.10 are examples of our style transfer
method. The algorithm has been tested with videos with resolution
of 1920× 1080 pixels, some of the resulting frames are shown in Fig.
5.14.

The computational cost of the algorithm is low so it is amenable
for real-time implementation and in-camera processing. The lumi-
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Figure 5.14. A transformation T is calculated for a given source
image and reference image, the same transformation is applied to all
the frames in the video. See image credits on Section 5.7.
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nance transformation can be stored in a LUT, the color transforma-
tion matrix MCT is obtained by an optimization procedure using a
least squares error approach, and the contrast transformation uses
a convolution, so the total transformation consists of a sequence of
low-computational cost operations.

5.4.1 Psychophysical evaluation
We must remark that quantitative evaluation of stylization is very
difficult since there is no ground truth. Therefore, we conduct psy-
chophysical experiments in order to validate our results and to com-
pare them with style transfer methods for still images from the state
of the art in academia, like the optimal transport based algorithm
by Grogan et al. [30] and by Rabin and Papadakis [63], or the deep-
learning approach by Li et al.[41]; and in the industry as well, like the
Color Match tool provided by the professional software Adobe Photo-
shop. For a fair comparison between methods, we use the automatic
implementation of our method, so there is no region of interest se-
lected by the user.

To test our approach we use a selection of 11 frames from Black-
magic Pocket Cinema footage and a selection of reference images.
Those images reflect a variety of image scenarios, including outdoors
and indoor scenes, portraits, daylight and night scenes, and differ-
ent color palettes. For the evaluation, fifteen observers (3 women
and 12 men) have taken part in the experiments, all of them hav-
ing normal or corrected vision. We use a dark room where observers
are instructed to sit approximately two picture heights away from
a Sony PVM-250 25" Full HD OLED display (Rec709, gamma 2.4
calibrated). The experiment consists of two parts, in the first one we
evaluate which is the preferred method, in the second one we mea-
sure the amount of artifacts that each method produces. In the first
task, a two-alternative forced-choice comparison (2AFC) technique is
used. For each comparison, the observer can navigate between four
images: the source image, the reference image, and two style trans-

88



i
i

“output” — 2021/7/15 — 14:54 — page 89 — #117 i
i

i
i

i
i

ferred images, each of them obtained from one of the methods. Then,
observers are asked to choose between the style transferred images
selecting the most similar to the reference image. In the second part
of the experiment, the task consists in rating the amount of artifacts
in the images, on a scale from 1 to 5: 1 for highest image quality, 5
for lowest image quality.

To compute accuracy scores from the raw psychophysical data we
use the same approach as in [50], which is based on Thurstone’s law
of comparative judgment, and which we will now describe.

In order to compare n methods with experiments involving N
observers, we create a n × n matrix for each observer where the
value of the element at position (i, j) is 1 if method i is chosen over
method j. From the matrices for all observers, we create a n × n
frequency matrix where each of its elements shows how often in a pair
one method is preferred over the other. From the frequency matrix
we create a n × n z-score matrix: given a percentage of times that
method i was chosen over method j, the corresponding z-score is the
distance from the mean (on a scale whose units are the distribution’s
standard deviation) that corresponds to an area under the normal
distribution’s curve equaling the given percentage. The accuracy
score A for each method is given by the average of the corresponding
column in the z-score matrix. The 95% confidence interval is given
by A± 1.96 σ√

N
, as A is based on a random sample of size N from a

normal distribution with standard deviation σ. In practice σ = 1√
2 ,

because the z–score represents the difference between two stimuli on
a scale where the unit is σ ∗

√
2 (in Thurstone’s paper this set of

assumptions is referred to as “Case V”); as the scale of A has units
which equal σ∗

√
2, then we get that σ = 1√

2 . The higher the accuracy
score is for a given method, the more it is preferred by observers over
the competing methods in the experiment.

Fig. 5.15 depicts the results of comparing the five methods men-
tioned previously. The experiments show that on still images, our
method outperforms the methods from academia, and it is compara-
ble to the Match Color tool from Photoshop, both in terms of fidelity
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Figure 5.15. LEFT: Accuracy scores of competing methods, with
95% confidence intervals. The higher the accuracy score is for a given
method, the more it is preferred by observers over the competing
methods in the psychophysical experiment. RIGHT: Visual artifacts
produced by competing methods, in a range from 1 to 5: 1 denotes
the lowest amount of artifacts (highest image quality), 5 corresponds
to highest amount of artifacts (lowest image quality.) Over each bar
there is a 95% confidence interval.

to the reference and amount of artifacts.
Some visual comparisons of the images used for the experiments

are shown in Figs. 5.16 and 5.17.

5.4.2 Video comparisons
In this section, a visual comparison has been made between our pro-
posed method and the successful example-based video color grading
approach of Bonneel et al. [7].

When the source video comes without foreground-background seg-
mentation, both methods are on par in terms of visual quality and
absence of artifacts, as the examples in Fig. 5.18 show.

On the other hand, when the source material has a user-specified
segmentation in order to assist the matching, the style transfer pro-
cedure of Bonneel et al. [7] may produce visible color artifacts, while

90



i
i

“output” — 2021/7/15 — 14:54 — page 91 — #119 i
i

i
i

i
i

a) Source image 1

b) Source image 2

c) Source image 3

Figure 5.16. Example results for the five different methods on
some source images used in the psychophysical experiment. For each
source image, the 6-panel block shows, from top to bottom and left to
right: original image with reference shown as inset, results by: Rabin
et al.[63], Li et al.[41], Grogan et al.[30], Photoshop, and proposed
method. See image credits on Section 5.7.
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c) Source image 4

d) Source image 5

b) Source image 6

Figure 5.17. Example results for the five different methods on
some source images used in the psychophysical experiment. For each
source image, the 6-panel block shows, from top to bottom and left to
right: original image with reference shown as inset, results by: Rabin
et al.[63], Li et al.[41], Grogan et al.[30], Photoshop, and proposed
method. See image credits on Section 5.7.
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our proposed method does not suffer from this shortcoming, as it can
be observed in Fig.5.19.

Figure 5.18. Left: source frame, with reference shown as inset.
Middle: result by Bonneel et al. [7], without using segmentation.
Right: result by proposed method. See image credits on Section 5.7.

5.5 Limitations
Despite its overall good performance in a wide range of scenarios, the
proposed method has some limitations that we want to illustrate in
this section.

For scenes where foreground and background have very different
color palettes, our method may not be able to transfer and sepa-
rate colors properly, as it is based on a global color transformation
that does not consider spatial locality, see Fig. 5.20. In these cases,
a foreground/background segmentation procedure would probably
solve the problem.

In our proposed method a single transformation is calculated for
one frame and applied to all the frames in the video sequence, there-
fore the results might be sub-optimal if the raw content shows sig-
nificant changes along the frame sequence. This is illustrated in Fig.
5.21, where between the first and the last frames in the video there
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Figure 5.19. Left: source frame, with reference shown as inset.
Middle: result by Bonneel et al. [7], using segmentation; zoomed-in
detail shows artifacts produced by the method. Right: result by our
proposed method, notice absence of artifacts. See image credits on
Section 5.7.

is an apparent color difference in the skin tone. A possible solution
for this problem would be to define a number of keyframes for the
sequence, compute one style transfer transformation for each, and
compute a temporal average of these transforms as the final process
that is applied to the source video.

Finally, if the content of the source and the reference image are
quite different, the results obtained by our algorithm might not be
satisfactory, e.g. see Fig. 5.22.

5.6 Conclusions and future work
We have presented a method for transferring the style from a color
graded reference image to unprocessed video footage that produces
results that look natural and are free of artifacts. The computational
complexity of the method is very low, appearing suitable for a real-
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Figure 5.20. Style transfer failure due to a very different color
palette between foreground and background. See image credits on
Section 5.7.

Figure 5.21. Top: Original footage, initial and last frame of a video
sequence in a video sequence. Bottom: Resulting images showing skin
color variation along time. See image credits on Section 5.7.
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Figure 5.22. Underwhelming result due to large difference between
source and reference images. See image credits on Section 5.7.

time implementation in order to be used on the set. A psychophysical
validation was conducted, showing that the proposed method outper-
forms algorithms from the state of the art in the academic literature
and is comparable to the methods in the industry. Also, for video
content, a visual comparison has been made between our method and
one of the most successful methods of academia for automatic color
grading. Both are on par in terms of visual quality, and when using
segmentation masks, our method outperforms the other method as
it is free of artifacts.

As future work we intend to incorporate to our method a number
of extensions, like allowing for foreground/background segmentation
and the use of keyframes, in order to overcome some of the limitations
that have been observed.
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5.7 Video credits
Image sequences are property of RED, Blackmagic, A24, and
Paramount Pictures.
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6
Adding texture to digital footage

We will start by outlining some reasons to add texture to digital im-
ages: on the one hand, there aesthetical reasons; on the other hand,
we will explain how the addition of texture can be used with cod-
ing efficiency purposes, and it can also improve the perceived quality
of images. Then, we will describe the most common approaches for
adding texture to images. Finally, we will propose a method to add
"retinal noise" to images that serves a double purpose: one is aes-
thetic, as it has parameters that allow to vary widely the resulting
texture appearance, which make it an artistic tool for cinematogra-
phers; the other purpose is to improve the quality of compressed video
by masking compression artifacts, which allows to lower the encoding
bit rate while preserving image quality, and to improve image quality
while keeping the bit rate fixed. This chapter is based on our work
"Retinal noise emulation: a novel artistic tool for cinema that also
improves compression efficiency" [96]. The method has been patented
under the patent name: "Computer-implemented method for adding
texture to a digital image". The code of the method can be found at:
https://github.com/izabalra8/retinalNoise.
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6.1 Motivation

Nowadays, some directors still use analog film for shooting their
movies. At the same time, in cinema, it is standard practice to im-
prove the appearance of digital images by adding noise that simulates
film grain. The film grain texture is highly valued in the cinema in-
dustry and between photographers, and synthesized film grain is often
added to digital images to reduce the "digital look".

On the other hand, in the media industry, there is a constant push
in cinema, broadcast, and streaming services towards ever higher res-
olution, frame rate, and dynamic range. The accompanying increase
in data volume that these new formats bring imposes considerable de-
mands on transmission bandwidth and memory, and as a result the
problem of compressing video is as relevant as ever. Specifically, Ultra
High-Definition (UHD)/4K video requires bit rates nearly 10 times
higher than Standard Definition (SD) video and Full HD (FHD)/2K
around four or five times higher [1, 12]. In addition, video traffic
is expected to account for 82% of all IP traffic by 2022. Moreover,
by that year, UHD/4K video will be around 22% of IP video traffic,
and FHD/2K video around 57% [12]. Faced with these remarkable
data, content and service providers are constantly searching for ways
to provide increasingly higher quality video and quality of experience
(QoE) at restrained bit rates.

In this respect, the fact that most users are not able to perceive
some objective quality drops under some conditions [72, 81] can be
exploited. In fact, the visibility of image distortions is reduced by the
presence of another stimulus, a masking pattern. This phenomenon
is called "visual masking" and it is a well known property of visual
perception. Visual masking takes several forms, as it depends on
different properties of the image stimuli: luminance, color, temporal
variations, spatial patterns. Visual masking is a key perceptual phe-
nomenon for the design of image and video compression algorithms
[80] (see Section 3.3), and in particular texture masking or pattern
masking has been successfully applied for video coding [52].
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Moreover, an established way to improve the appearance of digital
images is to add to them a certain amount of fine-detail texture, and
user studies have shown that observers indeed prefer images with
some noise [37, 85]. In cinema and TV fiction the standard practice
is to always add texture to digitally-shot content, and this texture
invariably takes the form of film grain. This particular choice of
texture aims to mimic the look of film, which is still considered as
the gold standard by many cinematographers.

6.2 Related work
Film grain is the resulting texture from the silver halide based analog
photographic process: the film emulsion contains photosensitive silver
halide crystals, and when a photon hits a crystal, small particles of
metallic silver are created. The non-homogeneous density of these
particles produces what is known as film grain. As we will describe
now, most of the methods to add texture to images consist in either
synthesizing film grain or adding scannings of it. The texture is added
at post-production stage.

In the movie industry, the most popular methods for film grain
emulation are based on assembling a database of scannings of differ-
ent types of film stock with varying forms of grain, that are super-
imposed on the digital image that is processed. For these methods
there is a compromise between speed and the realism of the result:
the fastest algorithms overlay grain that is somewhat independent
from the content of the digital image, which may produce noticeable
artifacts especially when there is motion, and the methods producing
the more visually pleasing results are computationally very intensive,
requiring special hardware.

The state-of-the-art and most relevant work in the academic lit-
erature is done by Newson et al. [54]. They propose a physical
model of film grain which explains the distribution of grain in the
film emulsion, in order to produce realistic-looking synthesized grain.
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First, using stochastic geometry, the grain is modelled as a sequence
of randomly distributed disks, whose centers are distributed in the
plane following a Poisson law, and their radii follow a log-normal
distribution. Secondly, a filtering step is done to produce the out-
put grey-levels from the previous binary model. One advantage of
this approach is that is able to produce grainy images at any resolu-
tion. The main limitation of the method is its computational cost,
therefore the authors propose two alternative implementations whose
computational complexities depend on the grain radius, and they also
propose parallelization for a more efficient execution.

Figure 6.1. The method by Newson et. al [54] is able to render
images at any desired resolution. Figure from [54].

On the other hand, image content with high-frequency detail, like
film grain, requires a higher bit rate in order to be compressed prop-
erly, i.e. for a given visual quality level, “clean” video requires less
bits than video with film grain. For this reason, there are several
works in the field of video compression [15, 55, 56] that improve cod-
ing efficiency by synthesizing film grain. The process consists, first,
of denoising the input video (removing the film grain), then modeling
the noise with a set of parameter values which are transmitted along-
side the denoised video, and finally at the decoder re-synthesizing the
film grain noise and adding it back to the decoded denoised video.
We are not aware of any of these methods actually being used in
practice in video streaming, and they require practical solutions to
very challenging problems like video denoising.
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Due to their computational complexity, existing methods impose
a restriction on the creative work of filmmakers, preventing them
from having on the set an accurate representation of how the movie
will look in post-production after the synthetic texture is added. The
emulation of film grain is also limiting because the artists are not able
to really experiment with a wide diversity of texture options, nor to
introduce novel looks.

6.3 Proposed framework: retinal noise
The proposed algorithm emulates retinal noise, and the motivation
for using a retinal noise model is that the resulting images will have
a more natural appearance, since noise is always present in retinal
signals, in photopic (daytime) vision as well. Nonetheless, in our
case the magnitude of emulated retinal grain that is added to day-
like scenes is an artistic choice: it must be noticed that the method
is proposed as an artistic tool and an aesthetic alternative to film
grain emulation, rather than a physiologically accurate simulation
of perceived noise. It has a very low computational complexity, so
it is amenable for a real-time implementation that can be used on
set. It has parameters that can be varied to achieve a wide range of
texture appearances, allowing movie creators to try out new looks.
Results are validated through psychophysical experiments in which
observers, including cinema professionals, prefer our method over film
grain emulation alternatives from academia and the industry.

Another contribution of our work is to show that the retinal noise
emulation can also be used to improve the quality of compressed video
by masking compression artifacts. Once the movie creator has taken
the artistic decision to add a certain amount and type of this "retinal
grain" to improve the look of the digital film, the movie distributor
can use this fact to its advantage by encoding the "clean" content
at a lower bit rate and adding the retinal grain after decoding, the
exact same grain that the content creator decided was right for the
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movie for aesthetic reasons, thus masking the visual artifacts pro-
duced by the reduced bit rate and yielding the same QoE of a higher
bit rate. The extra data that is required at reception to introduce
the retinal noise is negligible, as it only consists of the values for the
user parameters (up to 5 floating point numbers per frame). This is
completely novel because in the literature, as mentioned above, the
grain is roughly estimated via a denoising process (which is an open
problem), parametric models of film grain provide coarse approxima-
tions, and those works have a limited application because they are
intended just for films with grain, whereas our approach can be used
with any kind of content. We performed psychophysical experiments
using color-graded professional cinema content shot in 4K, where the
amount of retinal noise was selected by a motion picture specialist
based solely on aesthetic preference. This content was encoded at
different bit rates, and the retinal grain was added after decoding.
The participants rated the quality of the resulting videos, and the
results show that when reducing the bit rate, the loss of perceived
quality is consistently smaller when the video has had retinal grain
added to it than when it has not. Our method is shown to yield
remarkable savings in bit rate, of over 22.5% on average.

Additionally, we can mention some other application scenarios for
our method. As the proposed scheme is able to provide better sub-
jective quality to compressed video, it can also be applied to scalable
video, thus opening its use in the adaptive bitrate scenarios consid-
ered in streaming applications. Even more, it can be applied in novel
multicamera scenarios, like high quality free viewpoint video, where
the synthesis artifacts due to occlusions and missing data could be
hidden by the addition of retinal noise. Finally, our method can be
applied in-camera to enhance photographs and video, especially in
the case of acquisition devices with limited capabilities.

As a closing point, we want to briefly discuss the possibility of
our proposed work being replaced by a deep neural network (DNN)
procedure. In our opinion, given that the applications discussed in
this paper are all based on the perceived (aesthetic) appearance of
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images and videos, the use of a DNN for these tasks would first require
the ability of said DNN to represent aesthetic preference, and while
there are some recent works in this regard, e.g. [62, 101], they have
been shown to be unsuitable in the professional media production
scenarios [4, 98] for which the method introduced in the current paper
is intended.

6.3.1 The algorithm
The proposed method takes as input an image I, and creates an
output image O with added texture emulating retinal noise. The
transformations applied to the image are based on neurophysiological
models of the visual system (a detailed description of these processes
can be found at Section 4.2). The method can be summarized in the
following stages:

1. Transform the input image I with a model of retinal processes,
producing an intermediate image R that emulates the retinal
output.

2. Add "retinal" noise to R to obtain a noisy image Rn.

3. Create the final output image O by applying to Rn the inverse
of the previous transformations that emulate retinal processes.

The following transformations are applied separately in each RGB
channel of the input image. In this section, the image I will represent
each R, G, B channel of the input image in the range [0,1].

Given that our method is based on the emulation of retinal noise,
we must start by ensuring that the input image I has values that
are proportional to the intensity of light arriving at the retina. This
is already the case if I is a RAW image, otherwise we assume that
a nonlinear transform like gamma-correction has been applied to I
with a standard exponent such as 1/2.2 [3] and we undo it, obtaining
the linear image IL:

IL = I2.2. (6.1)
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After this, the photoreceptor response P (IL) to the light stimulus
IL is emulated via the Naka-Rushton equation [75], yielding IP :

IP = P (IL) = IL
n

IL
n + Is

n , (6.2)

where Is is the semi-saturation constant and n controls the slope of
the Naka-Rushton curve.

The lateral inhibition or center-surround organization of both
bipolar cells and retinal ganglion cells is modelled as a convolution
between the photoreceptor response and a kernel K similar to a DoG.
The resulting image R, which will be our proxy for the clean retinal
image, is obtained as follows :

R = K ∗ IP . (6.3)

Motivated by the work of [97], we choose forK the following form:

K = F−1
(

1
0.81 + 0.2F(GK)

)
(6.4)

where F is the Fourier transform and GK is a 2D Gaussian kernel
with standard deviation equal to 1/3 of the maximum of the image
dimensions (height or width). A key advantage of this choice of kernel
is that it is invertible, which will be very useful for us as we will see:

K−1 = F−1 (0.81 + 0.2F(GK)) . (6.5)

We add to R a certain amount a of retinal noise nr, that emulates
the noise measured in the RGCs,

Rr = R + anr, (6.6)

and therefore the image Rr corresponds to the noisy image created
in the retina.

For the noise signal nr we use the same distribution as the noise
observed in RGCs [58, 79], which has a constant standard deviation
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(that does not depend on the input contrast), and we impose as well a
bandpass frequency spectrum as approximately given by the contrast
sensitivity function of the visual system [89]:

nr = (Gc −Gs) ∗ IN , (6.7)

where IN is a Gaussian noise image with standard deviation
σ = 1, and Gc and Gs are 2D Gaussian kernels. As it is mentioned
in [89], contrast sensitivity depends on the orientation, and this ef-
fect could be modeled with the 2× 2 covariance matrices Σc and Σs

of the kernels Gc and Gs. In practice, in our experiments we will
use symmetric kernels, and in this case, the covariance matrices are
not needed as the kernels can be described simply with the standard
deviation of the Gaussians, σc for Gc and σs for Gs.

Recapping, the noisy retinal image Rr results from adding noise
to

R = K ∗ P (I2.2), (6.8)
so we can find the noisy light stimuli O that would directly produce
Rr by undoing the previous chain of operations:

O = (P−1(K−1 ∗Rr))
1

2.2 . (6.9)

The image O is the final output produced by our method (see Fig.
6.2), which as mentioned above is applied independently to each of
the three color channels.

We would like to stress that all the operations performed by our
algorithm are of low or very low computational complexity. The
linearization, the Naka-Rushton transform, and their inverses can be
encoded as 1D look-up tables (LUTs), so the method is essentially
as fast as the time it takes to compute two convolutions, one with
kernel K and the other with its inverse K−1.

6.3.2 User parameters
The full list of parameters for our method, by order of appearance, is:
Is, n, a, σc, σs. Default values are proposed for these parameters so the
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Figure 6.2. Image with added retinal grain on the left. Close-up of
the image with retinal noise in the center, and close-up of the original
image on the right.

method can be used as fully automatic. Moreover, these parameters
can be modified by the user to control the visual aspect of the noise
in the resulting image.

For the Naka-Rushton equation, we have fixed both its parame-
ters: n = 0.74 following [22], and Is = 0.18 given that 18% is the
reflectance value for mid-gray, taking 100% as diffuse white. The in-
tensity of the noise in the final output image O is controlled by the
parameter a, which can vary in the range [0, 1], and whose default
value is set as a = 0.015. As a increases, the noise becomes more
visible, as Fig. 6.3 shows. For the sizes of the Gaussians Gc and
Gs used to generate nr, we have chosen as default values σc = 0.7
and σs = 1.5. These parameters can be adjusted by the user allowing
certain control in the size and distribution of the noise. Higher values
of σ result in bigger size noise. The effect of using non-symmetrical
Gaussian filters, defined by their 2×2 covariance matrices Σc and Σs,
is a non-symmetrically distributed noise as it can be observed in Fig.
6.3 (d) and (f). Modifying these values alters the power spectrum of
the noise, as it can be observed in Fig. 6.4.

6.3.3 Psychophysical evaluation
The goal of adding noise to images with a creative intent is to produce
results that are visually appealing for observers. Therefore, we con-
duct psychophysical experiments in order to validate our results and
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Figure 6.3. Resulting images with different parameter choices:
a) σc = 1, σs = 2, a = 0.05
b) σc = 0.5, σs = 1, a = 0.05
c) σc = 0.5, σs = 1, a = 0.1
d) Non-symmetrical kernels Gc and Gs, with covariance matrices

Σc =
(

0.2 0
0 0.05

)
and Σs =

(
1 0
0 0.25

)
, a = 0.05

e) σc = 0.05, σs = 1, a = 0.05
f) Non-symmetrical kernels Gc and Gs, with covariance matrices

Σc =
(

0.05 0
0 0.4

)
and Σs =

(
0.25 0

0 4

)
, a = 0.05
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Figure 6.4. Proposed method applied to a flat grey image, with
parameter values σC = 0.7, σs = 1.5 (left) and σc = 1.2, σs = 2.6
(right). Top: power spectrum. Bottom: resulting grain from our
proposed method applied to a flat grey image.

to compare them with methods from the state of the art in academia,
like the algorithm of Newson et al. in its implementation [54], and
in the movie industry as well, like the film-grain emulation provided
by the professional post-production software DaVinci Resolve 14.

For this study, the parameters of each method have been selected
by a cinema expert to get the most appealing visual appearance of
images according to his liking. For the method of Newson et al., grain
radius is set to r = 1/200, type of algorithm is pixel-wise and number
of MonteCarlo iterations is set to N = 1000. For DaVinci ResolveFX
texture film grain effect, the 35mm film settings have been used with
an intensity of I = 0.75. For our method, the parameters used are
a = 0.015, σc = 0.7 and σs = 1.5. Fig. 6.5 shows samples of four video
frames, showing the four different versions used in the psychophysical
experiments: a clean version, a version with retinal noise, a version
with film-grain noise from the work by Newson et al., and a version
with film grain using the DaVinci ResolveFX texture effect. All the
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Figure 6.5. Left: frame without noise. Right: zoomed-in detail,
a) original, b) film grain emulation by Newson et al. [54], c) film
grain emulation by DaVinci Resolve 14, d) proposed retinal noise
emulation. 111
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methods are applied using the parameter values just specified. It is
however worth noting that, in order to fully distinguish the difference
between the methods, the temporal dimension is crucial.

For the evaluation, we used a room with dim ambient illuminance.
Observers were instructed to sit approximately one meter away from
the screen. A two-alternative forced-choice comparison (2AFC) tech-
nique was used: each observer was shown two consecutive videos on
the screen, each of them obtained from one of the methods. The ob-
servers were asked to choose the most visually appealing video from
the pair compared. Thirteen observers took part in the experiments,
one of them being a cinema professional from a major postproduction
house.

Figure 6.6. Accuracy scores of competing methods for adding tex-
ture: 13 observers took part in each experiment and 5 videos were
used. Left: average. Right: scores per video.

The analysis of the psychophysical experiment is presented in Fig.
6.6. To compute accuracy scores from the raw psychophysical data,
we use the same approach as in [50] (Chapter 5), which is based on
Thurstone’s law of comparative judgment.

As it can be seen in Fig. 6.6, our method is preferred over the
other two. This result is also consistent for each video separately
in all the cases except one. The individual preference of the movie
professional that took part in the experiment follows the same trend
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of the whole group of observers.

6.4 Retinal noise emulation for improv-
ing compressed video quality

We test here the suitability of retinal noise emulation to improve the
quality of compressed video, or, more precisely, to mask the image
degradation inherent to the compression process (i.e. compression
artifacts) in order to prevent users from perceiving it. To evaluate
this masking effect, we have designed a set of experiments that simu-
lates a video on demand (VoD) service where the content is provided
via HTTP/TCP-based adaptive bit rate streaming (ABR) techniques
[2]. Under this paradigm, content is encoded at different quality lev-
els associated with unequal bit rates in accordance to a given quality
ladder and segmented. These segments are stored in a server or set of
servers (Content Delivery Network (CDN)) and are provided to the
client upon request [21]. The client selects throughout the streaming
session the segments that best suit the system state (channel avail-
able bandwidth, terminal capabilities, quality control policies. . . ) to
optimize the quality provided to the user [2].

The results of the experiments will indicate down to what point,
if retinal grain is added, service providers will be able to decrease
the encoding bit rates included in the quality ladders, and therefore
the objective quality of the encoded sequences, without the users
noticing. To be able to remove the effect of coding and so isolate
that of retinal noise, sequences with and without noise are used in
the experiments.

All the procedures and selections related to the subjective tests
fulfill the guidelines included in Recommendations ITU-R BT.500-
13 [66], ITU-T P.910 [67] and ITU-T P.913 [68].
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6.4.1 Test material
The test material is made up of four 10-second-long 4K (4096x2160p)
Source sequences (SRCs) acquired at 24 fps. They all use a 4:2:2
chroma subsampling at 12 bits. The SRCs were selected from a pub-
lic dataset made available by Blackmagic including representative,
varied, and habitual contents for users [6]. The number, duration,
and characteristics of the source content were selected in accordance
to Rec. ITU-T P.913 [68]. Table 6.1 includes the characteristics of
the SRCs in terms of the average spatial and temporal complexity
considering the spatial information (SI) and the temporal information
(TI) indicators [38, 67].

Table 6.1. SRCs’ spatial and temporal complexity

Balloon Nature Bugs Closeup
SI 30.85 66.05 23.83 11.47
TI 28.64 44.08 43.21 43.21

Retinal noise was later on added to the ’clean’ SRCs to obtain
’noisy’ versions of them. The procedure is described next.

Addition of retinal noise

The proofing observer, a motion picture specialist, was seated two
picture heights away from a Sony PVM-250 25" Full HD OLED dis-
play (Rec709, gamma 2.4 calibrated [3]). The display was driven by a
Blackmagic 4K video card via DaVinci Resolve. A Tangent Element
color correction panel was used as a control interface. The clips were
shown in their native resolution (4096x2160) but were cropped to fit
onto the Full HD display. The Tangent Element panel provided con-
trols to shift the crop to different areas of the image. These controls
could be operated with some small delay while the clip was playing.

First, proofing to select the proper noise shape parameters was
conducted. Eight different noise shapes were generated for a one-
second excerpt of a single video clip at three different intensity levels.
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Each of these shape sets were placed on the Resolve timeline and
viewed through the OLED display in a dark surround. The pan and
tilt functions were used to determine the areas of the clip where the
noise was most prominent and observations were recorded about each
of the clips’ appearances. It was found that several of the generated
noise shapes added textures to the image which appeared gritty and
blocky, while others introduced a finer grain that was more pleasing
to the eye. The most ideal grain shape of those generated in the first
round was selected to be σc = 0.5, σs = 1, which differs from the
values obtained in the experiment discussed in Section 6.3.3 because
now the tests are performed on a higher resolution monitor.

This noise was then added at varying intensity levels (0.025, 0.05,
0.075) to all of the tested clips (1 second excerpts). For this test, the
clips were arranged on the Resolve timeline along with the “clean”
version of the clip with no noise added. These different intensities
were then compared in the dark surround viewing environment. In
many cases, the clean versions themselves had a considerable amount
of camera noise upon capture, which led to an unpleasant static on
the clips. However, when some of the retinal noise was added, this
camera noise was to some degree obscured and an overall more pleas-
ing image was produced. In general, the lowest noise setting was se-
lected for these images (0.025). In other cases of brighter images, it
was found that a higher intensity of noise (0.05) seemed to improve
the visual texture and appearance of the test clips, particularly in
high-frequency areas.

Figure 6.7 shows screenshots of the four sequences, with the op-
timal amount (in terms of image appearance) of retinal grain added
to them.

Generation of test sequences

We have tested 30 different combinations of encoding and network
parameter values. Each of these combinations, called Hypothetical
Reference Circuit (HRC) [67], is applied to all source sequences, re-
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Figure 6.7. Screenshots of the four sequences used in the subjective
assessment, with optimal amount (in terms of image appearance) of
retinal grain added. Each image shows a zoomed-in region (marked
with a red square) in two versions, with (top) and without (bottom)
the retinal grain. From left to right, top to bottom: "Balloon", "Na-
ture", "Bugs", and "Closeup".

sulting in a set of Processed Video Sequences (PVSs), one per SRC
and HRC, that are presented to the users for evaluation. The com-
binations considered in the tests are included in Tables 6.2 and 6.3.
HRCs are 4:2:0 and have a color depth of 10 bits to match com-
mon broadcast conditions. Furthermore, they preserve the fram-
erate of the sources: 24 fps. Five of them (named HRCC

i,1, where
i = {1, . . . , 5}) are anchor points derived directly from the quality
ladders included in Apple’ HLS technical note [1]. To decrease the
gap between consecutive quality levels and so enable a finer-grained
analysis, two additional HRCs (named HRCC

i,j, where j = {2, 3})
were created from each anchor point HRCC

i,1. The spatial resolutions
of these 15 HRCs, marked with the superscript "C" for clean, nearly
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Table 6.2. HRCs used to create the test sequences presented to the
observers

HRC Resolution bit rate Retinal
(Mbps) Noise

HRCC
1,1 2160p 22.2 No

HRCN
1,1 2160p 22.2 Yes

HRCC
1,2 2160p 18.4 No

HRCN
1,2 2160p 18.4 Yes

HRCC
1,3 2160p 14.6 No

HRCN
1,3 2160p 14.6 Yes

HRCC
2,1 1440p 10.7 No

HRCN
2,1 1440p 10.7 Yes

HRCC
2,2 1440p 9.7 No

HRCN
2,2 1440p 9.7 Yes

HRCC
2,3 1440p 8.7 No

HRCN
2,3 1440p 8.7 Yes

HRCC
3,1 1080p 7.8 No

HRCN
3,1 1080p 7.8 Yes

HRCC
3,2 1080p 6.7 No

HRCN
3,2 1080p 6.7 Yes

HRCC
3,3 1080p 5.6 No

HRCN
3,3 1080p 5.6 Yes

follow a geometric progression with ratio 1/
√

2. So, each picture res-
olution is close to half the previous one. The other half of the set
of HRCs, marked with the superscript "N" for noise, share the same
characteristics as the original set of HRCs and, in addition, they
include retinal noise.

All HRCs are H.264/AVC encoded. Bit rates for the anchor HRCs
were obtained from the H.264/AVC ladder whenever the associated
resolution was included there and extrapolated accordingly to the
ladder rule for the remaining resolutions. The bit rates for the rest of
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Table 6.3. HRCs used to create the test sequences presented to the
observers

HRC Resolution bit rate Retinal
(Mbps) Noise

HRCC
4,1 720p 4.5 No

HRCN
4,1 720p 4.5 Yes

HRCC
4,2 720p 3.7 No

HRCN
4,2 720p 3.7 Yes

HRCC
4,3 720p 2.9 No

HRCN
4,3 720p 2.9 Yes

HRCC
5,1 540p 2.0 No

HRCN
5,1 540p 2.0 Yes

HRCC
5,2 540p 1.7 No

HRCN
5,2 540p 1.7 Yes

HRCC
5,3 540p 1.4 No

HRCN
5,3 540p 1.4 Yes

the HRCs were obtained by linearly interpolating between the values
of the anchor HRCs.

Finally, we generated a total of 120 Processed Video Sequences
(PVS’s). As mentioned before, the aspect ratios of the HRCs, and
therefore of the PVS’s, were 16:9 (∼1.78:1), following the SMPTE
ST 2036-1 standard [78] and Recommendation ITU-R BT.2020 [65].
As the aspect ratio of the SRCs is 256:135 (∼1.9:1), according to
the Digital Cinema System Specification of the Digital Cinema Ini-
tiatives (DCI) [16], the PVS’s resolutions required a minor cinema-
to-broadcast format adaptation that was conducted using a bicubic
filter [10].

6.4.2 Environment and equipment
The test room was set to simulate home viewing conditions. Fur-
thermore, the brightness was controlled according to recommended
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values [67]: 24.4 Lx in front of the subjects, 16.5 Lx to their left,
85.4 Lx to their right, 71.7 Lx above them, and 20.1 Lx behind them.

The device used in the tests was a TV set with a 43-inch screen
and a 3840x2160 pixel resolution (Samsung UE43NU7475). The
viewing distance was set to twice the height of the screen, in ac-
cordance to Rec. ITU-T P.913 [68].

6.4.3 Methodology
Before starting the experiments, the test designer read the guidelines
of the tests to the observers. Next, subjects were trained by showing
them examples of the best and worse quality levels they should ex-
pect for sequences with and without retinal noise (four extra PVS’s
created from a fifth content according to HRCC

1,1, HRCN
1,1, HRCC

5,3
and HRCN

5,3). In this way, subjects were more aware of the scale of
qualities that they would encounter and rate the sequences accord-
ingly.

During the experiments, all the PVS’s, that is, every combination
of video sources -SRC’s- and encoding and network conditions to be
tested -HRC’s-, including the reference sequence, were sequentially
and randomly presented to the subjects. Each PVS was presented
once to each subject. The order of presentation of the PVS’s was dif-
ferent for each pair of observers and was set randomly, in accordance
with Rec. ITU-T P.910 [67]. The whole session was slightly shorter
than 30 minutes, as recommended by ITU-R BT.500-13. The test
method followed in the tests is the Absolute Category Rating with
Hidden Reference (ACR-HR) proposed in Rec. ITU-T P.910 [67],
where subjects have five possible answers to choose from: "Excellent",
"Good", "Fair", "Poor", and "Bad". The subjects were asked to assess
each PVS right after its visualization. To help it, a four-second grey
sequence was included between consecutive PVS’s, also as stated in
Rec. ITU-T P.910 [67].

There were 18 observers (6 women and 12 men) in the experiment,
all of them having normal or corrected vision, aged between 20 and
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30 years. The number of subjects is sufficiently significant, as stated
in Rec. ITU-R BT.910 [67]. The observers were rewarded for their
participation in the tests, and a maximum of two observers were
allowed in each test session. Due to the characteristics of the play-out
system, the assessment was conducted sequentially on the two demi-
sets of PVS’s: first the PVS’s including retinal noise (named HRCN

i,j),
called ’noisy’ PVS’s, and then the ’clean’ PVS’s (named HRCC

i,j). No
observers were rejected after the screening of the subjective results.

6.4.4 Test Results

Figure 6.8. DMOS per content and bit rate. From left to right,
top to bottom: "Balloon", "Nature", "Bugs", and "Closeup". Orange
bars are used for ’clean’ content and blue bars indicate content with
retinal grain.

Figure 6.8 depicts the results in terms of the evolution per content
of the differential mean opinion score (DMOS) versus the encoding
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bit rate. The DMOS is defined as follows:

DMOS(PVS) = MOS(PVS)−MOS(REF) + 5 (6.10)

where MOS is the Mean Opinion Score computed for a given content
(PVS or reference sequence). Therefore, the better the image quality
of the sequence presented to the user (i.e. the more it looks like the
reference one), the greater it will be the MOS of that sequence, and
so the resulting DMOS.

The DMOS values have been computed per user for each one of
the ’clean’ and ’noisy’ sets of PVS’s with respect to the scores given
to their corresponding references, HRCC

1,1 and HRCN
1,1, as it is usually

done in the literature. Each bar includes its 95% confidence intervals.
We can easily distinguish two trends in the figures per content:

that of sequences "Balloon" and "Nature" and that of sequences
"Bugs" and "Closeup". The results of the assessment of the first two
sequences show a clear and steady decrease in the quality perceived
by observers with the reduction of bit rate on average. However,
the results for the other two sequences do not show any clear con-
nection between the perceived quality and the bit rate. This is an
interesting outcome of this exploratory analysis on the addition of
retinal noise, as this discrepancy stems from the different nature of
the video contents. On the one hand, all the elements in every pic-
ture in the sequences "Balloon" and "Nature" are in focus. On the
other hand, a significant part of every picture in the sequences "Bugs"
and "Closeup" is out of focus due to the limited depth of field used
in their acquisition. As this experiment has been carried out on vi-
sual information in a bit rate limited scenario, it means that the last
two sequences were always better treated by the compression and
decompression system, as more bits could be devoted for the encod-
ing of the in-focus part of the picture. Therefore, the selection of
test material in subsequent experiments should consider the depth of
field information in addition to their spatial and temporal informa-
tion. Moreover, it is important to note the type of content presented.
Since the sequence "Bugs" did not show any benefit of being treated
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with noise, there is a possibility that documentary content may be
less susceptible to being processed by adding noise. Thus, utmost
care should be placed on content selection where texture noise could
be added.

Figure 6.9. Global DMOS per bit rate. Orange bars are used for
“clean” content and blue bars indicate content with retinal grain.

The analysis of the aggregated DMOS, presented in Figure 6.9,
shows a reduced but significant advantage on the addition of retinal
noise in the outcome of the assessment. Even if the confidence inter-
vals overlap, the DMOS of each “noisy” PVS is always higher than
the one of its “clean” counterpart, the advantage is more evident for
resolutions up to high definition. We consider the results significant
since there is a clear tendency for the results with noise to be better
rated on average. From these results, we conclude that, when the bit
rate is reduced, the decrease in perceived image quality is smaller if
the video has had retinal grain added to it.

In order to measure properly the benefits of applying our proposal
to mask compression artifacts in terms of bit rate saving and quality
improvement, we have applied a regression on the noise and clean
sets of points. The regression has been performed using a sigmoid
function [83] and the least squares method. Figure 6.10 shows the

122



i
i

“output” — 2021/7/15 — 14:54 — page 123 — #151 i
i

i
i

i
i

Figure 6.10. Regression on the bit rate-DMOS values. Green
crosses represent ”noise” scores, blue crosses are ”clean” scores, the
red line represents the regression on ”noise” values and the orange
line regression on ”clean” values.

result of the process. The green and blue crosses represent the average
user scores for noisy and clean contents, respectively. The red and
yellow lines are their respective regression.

First, one can verify the conclusions drawn above: the addition
of noise represents an enhancement of quality over the clean signal
for all considered bit rates. Moreover, this result can also be seen
from another point of view: for a given quality level, using the ver-
sion that includes the emulation of retinal noise leads to significant
savings in bandwidth. Both gains have been analyzed quantitatively.
So, the former has been measured in terms of BD-DMOS by comput-
ing the area between the lines (represented in purple in Figure 6.11)
by means of a vertical integration [25, 71]. Results point at a DMOS
average improvement of 0.2. Regarding bit rate savings, they have
been measured in terms of BD-Rate by computing the area between
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Figure 6.11. Regression on the bit rate-DMOS values including
the area between the lines where the BD-DMOS is computed by
vertical integration. This plot highlights the fact that, at any given
bit rate, the addition of emulated retinal noise improves perceived
image quality (the DMOS value is higher for the sequence with retinal
noise).

the lines (represented in purple in Figure 6.12) through a horizontal
integration [25, 71]. Results indicate that the application of the reti-
nal noise emulation method allows for a significant improvement in
coding efficiency, with average bit rate savings of over 22.5%. Nev-
ertheless, let us point out that our experiments suggest a potential
weakness of our approach in that the applicability of the method may
depend on the specific video sequence that is dealt with, because as
remarked earlier there is the possibility that for some kind of content,
like documentary footage, a cinema-like appearance is not preferable
for the viewer. However, a mere previous analysis of the content
could determine the suitability of the inclusion of retinal noise.
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Figure 6.12. Regression on the bit rate-DMOS values including
the area between the lines where the BD-Rate is computed by hor-
izontal integration. This plot highlights the fact that, for any given
perceived quality level (DMOS value), the encoding of the sequence
with emulated retinal noise is more efficient (the required bit rate is
lower than the one necessary to attain the same DMOS value with
the clean sequence).

6.5 Conclusions and future work
We have presented a method for adding texture to digital cinema that
is inspired by processes in the visual system and produces results that
look natural and visually pleasing even for challenging scenes. The
computational complexity of the method is very low, appearing suit-
able for a real-time implementation in order to be used on the set.
The method has three parameters whose default values produce sat-
isfactory results in a variety of scenarios, and that can be modified for
artistic purposes, in order to achieve different looks. A psychophys-
ical validation was conducted, showing that the proposed method
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outperforms algorithms from the state of the art in the academic
literature and in the industry.

The retinal noise emulation method can also improve the quality
of compressed video by masking compression artifacts. The aim was
to help concealing distortions due to compression and thus allowing
to maintain image quality while reducing the bit rate or improv-
ing image quality while maintaining the bit rate fixed. The pro-
posed method has been validated through subjective assessment on
4K professional cinema sequences, where the amount of retinal noise
was selected by a motion picture specialist based solely on aesthetic
preference. The experiment has shown that the proposed method
can yield very impressive savings in bit rate. A special effort has
been made to maintain the rigorousness and reproducibility of the
subjective tests carried out. As future work, we intend to explore
the impact of the type of content in the usefulness of the addition of
retinal grain noise to mask compression artifacts.

Our results point to a novel and, we believe, very promising av-
enue of research in computer vision which is the connection between
vision models of retinal grain, perceived image quality (a very ac-
tive area of interest in computer vision because the main challenges
remain unsolved), image compression algorithms and image compres-
sion as performed by the visual system: the connection here is even
more explicit since the classic work of Olshausen and Field [57], that
allows to link convolutional neural netowrks (CNNs) trained for com-
pression with the receptive fields that are actually measured in the
human visual system. Ongoing work involves training CNNs for com-
pression on natural images with and without retinal grain.

6.6 Supplementary material
The videos used for the experiments and some supplementary images
can be found at: http://ip4ec.upf.edu/RetinalNoise
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7
Perceived image quality

This chapter starts by emphasizing the importance of accurate qual-
ity assessment and describing some widely-used image quality met-
rics. Then, we explain in detail a physiology-based quality met-
ric, INRF-IQ, that takes into account various perception phenomena
present in the HVS. Finally, we propose different strategies to opti-
mize the INRF-IQ model parameters, so the resulting metric is com-
petitive with state-of-the-art methods. The chapter is ended with a
description of the experiments performed to test the proposed metric
optimization. This work has been done in collaboration with Adrián
Martín, from Universitat Pompeu Fabra.

This work, and more specifically the Pytorch implementation
of the optimization method, and the Matlab implementation of
the INRF transformation, has been developed in collaboration with
Adrián Martín, from Universitat Pompeu Fabra.

7.1 Motivation
Quality evaluation is of crucial importance in the image and video
processing field. It has numerous practical applications, and it also
plays an important role in the development, optimization, and test-
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ing of algorithms. Many tasks in image processing require validation
by comparing the result with the original data, e.g. image denoising,
image deblurring, etc. Subjective evaluation, consisting in measur-
ing image quality by human beings, is costly and time-consuming.
Therefore, the goal of objective quality assessment is to develop quan-
titative measures to automatically predict perceived quality in a way
that is consistent with subjective human evaluation.

In the context of cinema and broadcasting, a quality metric can
be useful for many applications: as an automatic video streaming
quality measure, for video coding, image compression, etc.

7.2 Related work on image quality esti-
mators

Image quality (IQ) methods can be divided into three categories, de-
pending on the amount of information available about the original
reference image: full-reference methods, for which an original refer-
ence image is available, make a comparison between the distorted
and the reference image; reduced-reference methods compare some
characteristics of the distorted and reference image since the com-
plete reference image is not available; and no-reference methods (also
called blind models) operate solely on the distorted image.

The vast majority of image quality approaches consist in full-
reference methods and in this chapter we will focus on this type of
methods. A simple solution, and most widely used metric to estimate
image quality is the peak signal-to-noise ratio (PSNR), based on the
mean square error (MSE), which at the same time is also a very
popular metric. These methods are simple to calculate, and they have
a clear physical meaning, however, they are not very well correlated
with perceived visual quality (see Fig. 7.1).

Therefore, in the last decades, the goal of IQ research has been to
improve these metrics and develop more sophisticated methods, using
models that mimic the early stages of the visual system, or sometimes
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Figure 7.1. Original and 11 distorted images, from the CSIQ
database. All distorted images have a PSNR of 22.5 dB, however,
there exists a large variation in perceived quality between images.
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applying information theory models. We will describe a selection of
them more in detail. Full-reference methods can be divided into:

• The model-based methods incorporate different models (e.g.
HVS models, information theory models) to address the quality
perception problem. Some methods of this type are:

– The Normalized Laplacian Pyramid Distance (NLPD) [39]
is based on transformations present in the early visual sys-
tem: local luminance subtraction and local gain control,
obtained from a decomposition of images using a Lapla-
cian pyramid. The quality of a distorted image, relative to
its original reference image, is the root mean square error
in this "normalized Laplacian" domain.

– The Structural Similarity Index (SSIM) [86] is based on
the hypothesis that the HVS is highly adapted for extract-
ing structural information from the viewing field. The
structural similarity measurement is obtained from three
comparisons: luminance, contrast, and structure, which
are considered relatively independent components. The
comparison is made into local patterns of pixel intensities
that have been normalized for luminance and contrast.

– The Feature Similarity Index (FSIM) [100] is based on the
assumption that HVS understands an image according to
its low-level features. The primary feature employed by
FSIM is the phase congruency, which measures the signif-
icance of a local structure, but it is contrast invariant.
Therefore, the secondary feature is the image gradient
magnitude, which encodes contrast information. These
features are complementary since they reflect different as-
pects of the HVS.

– The Visual Information Fidelity Measure (VIF) [76] mea-
sures the mutual information between the perceived ref-
erence and distorted images. It is based on natural scene
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statistics (NSS), and models of the image degradation pro-
cess and the human visual system (HVS).

• The learning-based methods use supervised machine learning
methods to learn a metric from a set of training images and
their corresponding distances. Some methods of this type are:

– The Learned Perceptual Image Patch Similarity (LPIPS)
Metric [101] is based on the hypothesis that perceptual
similarity is a consequence of visual representations, and
not a special function all of its own. They found that in-
ternal activations of networks trained on high-level image
classification tasks, do correspond well to human percep-
tual judgments, outperforming widely-used metrics such
as PSNR, SSIM [86], or FSIM [100].

– The Deep Image Structure and Texture Similarity
(DISTS) Metric [17] uses a variant of the VGG convo-
lutional neural network to construct a function that com-
bines structure and texture similarity measurements be-
tween corresponding feature maps of the reference and
distorted images. The parameters of the network are opti-
mized to match human ratings. This measure is explicitly
designed to be robust to texture resampling and modest
geometric transformations, and it correlates well with hu-
man perceptual scores, both on conventional image quality
databases, as well as on texture databases.

– PerceptNet [32] is a convolutional neural network where
the architecture reflects the structure and various stages
in HVS: a cascade of canonical linear filters + divisive
normalization layers simulate the retina-LGN-V1 cortex
pathway. This domain replicates the image representation
at the end of the primary visual cortex (V1). Then, the
network is trained to maximize the Pearson correlation
between the mean opinion score (MOS) and the l2-distance
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of the reference and distorted images in this perceptual
domain. The TID2008 dataset is used for training the
model. The performance of PerceptNet is similar to other
neural networks, but the number of parameters is several
orders of magnitude less.

7.3 INRF as an image quality metric
This section summarizes some definitions and results that can be
found in [5]. The INRF quality metric, named INRF-IQ, is based
on physiology and HVS perception knowledge, and it assumes a non-
linear response of neurons, explained below.

In the vision science literature, most vision models assume a linear
response of the receptive field (the portion of the visual field where
light can evoke a sensory neural response) of neurons. However, this
assumption conflicts with some HVS properties:

• According to the visual adaptation phenomena, the spatial re-
ceptive field properties of neurons are modified depending on
the input. Therefore, the receptive field cannot be a fixed, con-
stant property of a neuron.

• The visual system is nonlinear, therefore it has no basis func-
tions, while a linear receptive field presupposes a set of basis
functions for the visual system.

• A linear receptive field followed by an output nonlinearity
model is questioned by recent works in vision science, that de-
scribe neuron response as being highly nonlinear.

The intrinsically nonlinear receptive field (INRF) is a model for
a single-neuron receptive field response, whose general formula is [5]:

INRF(x) =
∑
i

miI(yi)− λ
∑
i

wiσ[I(yi)−
∑
j

g(yj − x)I(yj)] (7.1)
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where mi stands for m(x, yi) and wi for w(x, yi), and σ represents a
non-linearity.

The model is based on some knowledge about dendritic cells:
Some dendritic branches act as non-linear units, while a single non-
linearity σ is not enough to model dendritic computations. More-
over, there is feedback from the neuron soma to the dendrites. In
the INRF model some dendrites are linear and their contributions
are summed with weights mi, and some other dendrites are nonlinear
and their contributions are summed with weights wi. The feedback
from the soma is reflected in the shifting term of the non-linearity
σ, expressed by the term ∑

j g(yj − x)I(yj). The final neural output
can be obtained by applying a non-linearity (such as rectification,
divisive normalization, etc.) to the INRF values.

Based on this neural response model, a perceptual metric is pro-
duced, named INRF-IQ. For this metric, the transformations m, w,
and g in Eq. 7.1 are Gaussian kernels with standard deviations σµ,
σw, and σg, respectively. The metric is obtained as follows: given
an image I, and its distorted version ID, the INRF transformation
is applied to both of the images, obtaining O and OD, and then, the
root mean square error between the processed images is computed:

dist(I, ID) =
√

MSE(O,OD) (7.2)

This metric has five parameters: the standard deviation σµ of
the Gaussian kernel m, the standard deviation σw of the Gaussian
kernel w, the standard deviation σg of the Gaussian kernel g, and
the weighting parameter λ. Using the optimized parameters for a
brightness perception experiment (σµ = 10, σw = 30, λ = 5, and the
non-linearity σ being σ(z) = z0,5 when z ≥ 0 and σ(z) = z0,7 when
z < 0, as explained in [5]), the metric INRF-IQ reaches a Pearson
correlation value with the MOS of 74% on the database TID2013,
which is comparable to a state-of-the-art deep learning perceptual
metric LPIPS [101] with a correlation of 76%, see Table 7.1.

In the following sections, we will explain how the parameter values
are optimized in order to maximize the Pearson correlation between
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TID2013
PSNR 0,570
SSIM 0,650
LPIPS 0,760

INRF(Ours) 0,740

Table 7.1. Numbers indicate Pearson correlation with Mean Opin-
ion Scores (MOS) in TID2013 database for different image quality
metrics: PSNR, SSIM [86], LPIPS [101], INRF-IQ. The parameters
used for the INRF transformation are the optimized parameters for
brightness perception. Adapted table from [5].

the INRF distance and the Mean Opinion Score in the TID2008 [60]
image quality database.

7.4 Experimental results
For the optimization and validation processes of the proposed metric
INRF-IQ, different databases have been used. A detailed description
of them can be found in Appendix I.

The parameters of the INRF quality metric have been optimized
using the database TID2008 [60], to achieve the highest correlation
between the mean opinion scores (MOS) of observers and the INRF
perceptual distance following Eq. 7.1 and 7.2. Different methods
have been used for optimizing the model parameters: interior point
method (implemented in the fmincon Matlab function), grid search,
genetic algorithm, and a neural network optimization approach, as it
is explained more in detail in Section 7.5.

The INRF quality metric is implemented as follows: in a pre-
processing stage, the image signal is converted into a more appro-
priate color space for the HVS. The CIELAB space, intended as a
perceptual color space, will be used, so the INRF transformation will
be applied to the luminance channel of this color space. The INRF
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metric has been extended to color (explained in Section 7.7), how-
ever, the obtained correlation between the mean opinion score and
the INRF distance is lower compared to the standard implementa-
tion correlation. Even though in certain scenarios (INRF model with
fixed parameters, see [5]) a cascade of INRF transformations can lead
to better results with respect to a single INRF transformation, in our
proposed approach a single INRF outperforms the stack implemen-
tation. Different non-linearities have been tested for the function
σ: a piece-wise exponential function, a hyperbolic tangent, and an
arctangent σ non-linearity, which produced the best correlation.

Therefore, the final INRF transformation consists of a sin-
gle INRF transformation applied to the luminance channel in the
CIELAB color space, using an arctangent non-linearity σ, and with
parameters σµ = 1.74, σw = 25, σg = 1, and λ=3 (obtained with a
grid search optimization approach to achieve the highest correlation
between the INRF distance and the MOS in TID2008 database).

Using this transformation and calculating the INRF-IQ distance
as indicated in Eq. 7.2, the following Spearman rank correlation
coefficient (SRCC) values are obtained (see Table 7.2):

We compared the INRF metric against a set of full-reference image
quality methods, including eight knowledge-driven models and three
data-driven CNN-based models. Results, reported in Table 7.2, show
that INRF performs favorably in comparison to some CNN-based
models (e.g. LPIPS [101], and DISTS [17]), and some widely-used
classic methods (NLPD [39]). Overall, the best performances across
all three databases are obtained with PerceptNet [32], GMSD [93],
and our proposed INRF metric.

As it is explained in [18], image quality metrics are usually
tested by computing their agreement with standardized image quality
datasets (i.e. TID2008, TID2013, LIVE, or CSIQ), consisting of arti-
ficially distorted images. It is important to test image quality metrics
in other databases, to avoid over-fitting to the standard types of dis-
torsions. Therefore, we have tested our method in a series of image
generation/restoration databases, and we have compared the perfor-
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Figure 7.2. Visualization of INRF transformation. a) Original
image, b) distorted image with comfort noise level 3, c) distorted
image with comfort noise level 5, d), e), and f) INRF transformations
of the corresponding above images (scaled for visualization).

mance of INRF-IQ with other metrics on these databases (details in
Section 7.6).

7.5 Optimization process details

The optimization of the model parameters has been done using dif-
ferent approaches, detailed below. The list of parameters to be op-
timized is: the standard deviation σµ of the Gaussian kernel m, the
standard deviation σw of the Gaussian kernel w, the standard devi-
ation σg of the Gaussian kernel g, and the weighting parameter λ.
Overall, the highest correlation has been obtained using a grid search
optimization approach.
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LIVE CSIQ TID2013 (mean)
MS-SSIM 0,951 0,886 0,782 (0,873)
CW-SSIM 0,781 0,738 0,680 (0,733)

VIF 0,963 0,911 0,676 (0,850)
NLPD 0,938 0,937 0,800 (0,892)
GMSD 0,960 0,950 0,804 (0,905)
MAD 0,960 0,941 0,773 (0,891)
FSIM 0,963 0,916 0,802 (0,894)
VSI 0,950 0,923 0,793 (0,889)

LPIPS 0,932 0,837 0,616 (0,795)
DISTS 0,942 0,905 0,764 (0,870)

PerceptNet 0,98 0,96 0,87 (0,93)
INRF(Ours) 0,947 0,952 0,802 (0,900)

Table 7.2. Numbers indicate Spearman rank correlation coefficients
(SRCC). The INRF metric is compared against a set of full-reference
image quality methods: MS-SSIM [87], CW-SSIM [88], VIF [76],
NLPD [39], GMSD [93], MAD [40], FSIM [100], VSI [99], LPIPS
[101], DISTS [17], and PerceptNet [32]. Adapted table from [18].

7.5.1 Interior point method
First, the optimization has been done using the fmincon function in
Matlab. This function uses the interior point method to solve the
optimization problem. The initial values for the parameters to be
optimized have been selected randomly. Different parameter initial-
izations have been tried.

7.5.2 Grid search
The search space is defined as a grid of parameter values, and every
position in the grid is evaluated. The optimal parameters are those
which generate the highest correlation. The grid values are: {1.74}
for σµ, {1.5, 3, 4.5} for λ, {10, 50, 150} for σw, and {1} for σg.
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7.5.3 Pytorch implementation

We code a class INRF as torch.nn.module to define a specific in-
stance of the model to be trained. The forward method of the class
receives an image as input and outputs the result from applying Eq.
7.1 on this image. In order to do so, Gaussian kernels as a func-
tion of the corresponding standard deviations are generated before
being convolved with the data. The main difference between a “stan-
dard neural network” designed as a torch.nn.module arises from
the fact that we do not learn the kernel weights individually but we
just learn the standard deviation of each Gaussian kernel, therefore
dramatically reducing the number of parameters. The INRF module
is trained to maximize the Pearson correlation between the MOS and
the mean square error between the reference and the distorted images
after applying the INRF transformation. For this purpose, we build
a specific data-loader in which the data are 3-tuples that contain a
reference and a distorted image and their associated MOS. The train-
ing is performed in batches of 25 tuples from which a single value of
training loss is obtained. The INRF module implements a one-step
pass of Eq. 7.1. For adding more “layers”, a torch.nn.Sequential
module can be used to concatenate an arbitrary number of INRF
modules, so the input of each layer is the output from the previous
one after the application of INRF.

7.6 Experimental results in not-
standardized image quality
databases

As it can be observed in Table 7.3, the proposed metric shows a lim-
ited performance when generalizing to alternative datasets contain-
ing other types of distortions: denoising, rendering, texture synthesis,
etc. For a further description of these databases see Appendix I.
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Denoising Deblurring Super-res. Dehazing Rendering Texture synt.
FLT Liu13 Ma17 SHRQ Tian19 SynTEX

PSNR 0,183 0,803 0,592 0,74 0,536 0,114
SSIM 0,355 0,777 0,624 0,692 0,23 0,62

MS-SSIM 0,246 0,898 0,795 0,687 0,396 0,469
VIF 0,169 0,864 0,831 0,667 0,259 0,448

CW-SSIM 0,101 0,742 0,706 0,698 0,522 0,496
FSIM 0,182 0,897 0,864 0,605 0,622 0,134
GMSD 0,555 0,921 0,747 0,695 0,476 0,093
VSI 0,389 0,918 0,851 0,663 0,479 0,006

NLPD 0,528 0,92 0,71 0,696 0,531 0,123
PieAPP 0,629 0,786 0,771 0,725 0,298 0,709
LPIPS 0,457 0,867 0,788 0,777 0,311 0,663
DISTS 0,636 0,941 0,878 0,789 0,671 0,92

INRF(Ours) 0,1526 0,8681 0,7365 0,401 0,3772 0,4429

Table 7.3. Numbers indicate Spearman rank correlation coeffi-
cients (SRCC). Comparison of INRF-IQ to other image quality met-
rics: PSNR, SSIM [86], MS-SSIM [87], VIF [76], CW-SSIM [88],
FSIM [100], GMSD [93], VSI [99], NLPD [39], PieAPP [62], LPIPS
[101], and DISTS [17] in not-standardized image quality databases.
Adapted table from [18].

7.7 Extension to color image quality as-
sessment

Although the INRF-IQ metric is designed to be applied in the lumi-
nance component of color images, the chrominance information can
be incorporated by means of a simple extension of INRF-IQ, and we
call this extension INRFC-IQ. Since many distortions affect the color
information of images, better performance is expected if the chromi-
nance information is incorporated in INRF for color image quality
assessment. Two alternative extensions of the model have been im-
plemented and tested in the TID2008 database:

• One INRFC-IQ implementation consists in applying the INRF
transformation to each RGB channel separately (with differ-
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ent parameters for each channel), and then calculate the MSE
between the transformed reference and distorted images. The
optimization of the parameters is done iteratively: first, the
optimal parameters are found for the R-channel, then the op-
timal G-channel parameters are found (using the previously
found optimal R-channel parameters), and finally the optimal
B-channel parameters are found (using the previously found
optimal R and G-channel parameters).

• An alternative implementation of INRFC-IQ is to apply the
INRF transformation to each RGB channel, using the optimal
parameters obtained in Section 7.4. Then, the INRF-IQ dis-
tance is calculated following the formula in Eq. 7.2 for each
RGB channel separately. Finally, the INRFC-IQ distance will
be obtained by applying the following formula:

dist(I, ID) = α · distR(I, ID) + β · distG(I, ID) + δ · distB(I, ID)
(7.3)

where distR, distG, and distB are the INRF-IQ distances calcu-
lated in each RGB channels respectively, and the parameters
α, β, and α are obtained by maximizing the correlation be-
tween the INRFC-IQ distance and the mean opinion score in
the TID2008 database.

Since the correlation obtained using these two implementations was
lower than the correlation obtained with the standard INRF-IQ im-
plementation (applied to the luminance channel of CIELAB color
space), they were discarded.

7.8 Discussion and future work
The proposed metric with the optimal parameters obtained as de-
scribed in Section 7.4 achieves significant results in benchmark im-
age quality databases (i.e. TID2008, TID2013, LIVE, or CSIQ), see
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Table 7.2, outperforming some neural network metrics (e.g. LPIPS
[101], and DISTS [17]), but with a number of parameters several
orders of magnitude less (4 parameters). However, it shows a lim-
ited performance when generalizing to alternative datasets contain-
ing other types of distortions: denoising, rendering, texture synthesis,
etc, see Table 7.3. This behaviour can be explained by analyzing each
database individually. For instance, the texture synthesis database
synTEX [29], consists of a set of synthesized texture images. Some
metrics that measure texture similarity, such as DISTS [17] outper-
form our proposed metric, as the INRF metric is a spatial dependent
metric. Other databases that contain spatial distortions, such as
Tian19 [82], are also a challenge to spatial dependent metrics.

As future work, we propose study more in detail and create alter-
native implementations of INRF-IQ to deal with color information.
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8
Conclusions and future work

In this thesis, we have focused on developing different image pro-
cessing algorithms that can be useful for movie creators as artistic
tools. Therefore, the proposed algorithms have low computational
cost, so they can be used on-set to produce real-time results, allow-
ing cinematographers to experiment with them. We have described
the transition from film cinematography to its digital format to be
able to understand the current necessities of digital cinema. We have
also studied the camera inner processes to redefine these problems in
terms of digital camera knowledge.

In Chapter 5, different methods for style transfer have been ana-
lyzed. It has been observed that statistical-based methods are simple,
have low computational cost, and are effective in terms of produc-
ing results free of artifacts. The election of an uncorrelated color
space is important for statistical-based methods, so PCA has been
applied to images in order to choose an adequate color space. Most
of these types of methods are designed to transfer the style between
still images, so an extension of them is proposed to transfer the style
to video. A psychophysical validation has been conducted, showing
that the proposed method outperforms algorithms from the state of
the art in the academic literature and is comparable to the methods
in the industry.
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In Chapter 6, the addition of texture to images has been proposed
with two complementary purposes: for aesthetical reasons, and for
coding efficiency purposes. A "retinal noise" model is proposed, in-
spired by processes of the visual system, which produces visually
pleasing results. The method is preferred over other methods that
emulate film grain, as psychophysical experiments show. Also, the
perceived quality of images is increased by the addition of retinal
noise, allowing for a significant improvement in coding efficiency, with
average bit rate savings of over 22.5%.

Quality evaluation is of crucial importance in the image and video
processing field. Therefore, in Chapter 7, an image quality metric
is presented, and its optimization process is explained. The vision
model behind the metric, unlike most models in the vision science
literature, assumes a non-linear response of neurons. This metric
achieves significant results in benchmark image quality databases (i.e.
TID2008, TID2013, LIVE, or CSIQ), outperforming some neural net-
work metrics (e.g. LPIPS [101], and DISTS [17]), but with a number
of parameters several orders of magnitude less (4 parameters).

8.1 Future work
Our current implementation in Chapter 5 can be improved by
incorporating a number of extensions, like allowing for fore-
ground/background segmentation in order to overcome challenging
transformation where a global approach is not able to represent the
characteristics of the images. Also, the use of keyframes can be help-
ful to select the most suitable image for video style transfer.

The retinal noise model proposed in Chapter 6 can be improved
by exploring the impact of the type of content in the usefulness of
the addition of retinal grain noise to mask compression artifacts, as
it has been observed a large variability between different videos.

In Chapter 7, the proposed quality metric obtains significant re-
sults in standard quality databases, while in other types of databases
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its performance is limited. These results can be analyzed more in
detail in order to improve the metric. An interesting line of research
is to develop alternative implementations of INRF-IQ to deal with
color information.
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9
Appendix I

This appendix includes a compilation of some databases used for im-
age quality assessment. An image quality database generally contains
a set of reference and distorted images, along with the corresponding
average ratings for each distorted image, obtained from quality-rating
studies. Some of the databases used for optimization and validation
of our proposed metric are:

• TID2008 and TID2013 databases were proposed by Pono-
marenko et al. [59, 60]. The first one contains 25 reference
images and 1700 distorted images (25 reference images × 17
types of distortions × 4 levels of distortions). The types of dis-
tortions in this database are: additive Gaussian noise, additive
noise in color components is more intensive than additive noise
in the luminance component, spatially correlated noise, masked
noise, high-frequency noise, impulse noise, quantization noise,
gaussian blur, image denoising, JPEG compression, JPEG2000
compression, JPEG transmission errors, JPEG2000 transmis-
sion errors, non-eccentricity pattern noise, local block-wise dis-
tortions of different intensity, mean shift (intensity shift), and
contrast change. TID2013 database contains 24 types of distor-
tions, 17 are common with TID2008, and the additional types
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are: change of color saturation, multiplicative Gaussian noise,
comfort noise, lossy compression of noisy images, image color,
chromatic aberrations, and sparse sampling and reconstruction.
This database contains 25 reference images and 3000 distorted
images (25 reference images trusted× 24 types of distortions
× 5 levels of distortions). The ratings were collected from 838
observers for the first database, and 971 for TID2013 database.

• LIVE Image Quality Database [77] contains 29 reference im-
ages, and 779 distorted images. There are five distortion types:
JPEG compression, JPEG2000 compression, additive Gaussian
white noise, Gaussian blurring, and JPEG2000 with bit errors.
The ratings were collected from 29 observers.

• Categorical Subjective Image Quality (CSIQ) Database [40],
contains 30 reference images, and 866 distorted images. There
are 6 types of distortions: JPEG compression, JPEG2000 com-
pression, additive Gaussian white noise, additive Gaussian pink
noise, Gaussian blurring, and global contrast decrements. The
ratings were obtained from 35 subjects.

• The FLT denoising database [20] is created from distorted im-
ages by white Gaussian noise addition. It contains 75 refer-
ence images, and 300 denoised images, with a special empha-
sis on images with low contrast and noise-like texture. The
denoised images have been obtained by filtering the distorted
images with BM3D filters with four different thresholds. The
authors describe the FLT database as more complex than ear-
lier datasets, as noise-like textures can visually mask the noise
affecting the perceived image quality.

• The Liu13 deblurring database [42] is created from synthetically
motion-blurred images. It contains 40 reference images, and
1200 deblurred images, resulting from 5 different deblurring
algorithms.
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• The Ma17 super-resolution database [46] contains 30 reference
images, and 1620 resulting images from applying nine super-
resolution methods to low-resolution images (generated from
the reference images).

• The SHRQ dehazing database [49] is created from 75 synthetic
hazy images (regular and aerial images). It contains 75 ref-
erence images and 600 dehazed images from 8 dehazing algo-
rithms. In this case, the quality of the dehazed image is rated
by comparing it with the hazy image and the reference image
(unlike the standard way of rating, where only the distorted
and the reference images are shown to observers).

• The Tian19 rendering database [82] is created from depth-
image-based rendered (DIBR) images, obtained from seven dif-
ferent DIBR algorithms. The process of DIBR synthesis con-
sists in generating novel views of a scene from original texture
images and associated depth information. Usually, DIBR algo-
rithms incorporate inpainting techniques to fill the disocclusion
holes that appear when generating novel views, and these in-
painted areas can be a challenge to image quality metrics. This
database contains 10 reference images and 90 synthesized im-
ages.

• The SynTEX texture synthesis database [29] is created from
synthesized texture images. It contains 30 reference images,
and 150 synthesized texture images, from 5 different texture
synthesis algorithms.
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