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Abstract
This thesis investigates two key aspects of learning deep-based image
representations for medical diagnosis. The two are confronted with
common challenges of medical image databases, namely, the limited
number of samples, the presence of unreliable annotations and class-
imbalance; as well as, domain shift and data privacy constraints for
collaborative learning across institutions. The first part of this thesis
concerns the architectural design of deep learning approaches. We ex-
plore the importance of localizing the region of interest in the image
prior to the classification and the implicit capsule networks’ approach
to model spatial information. We verify the importance of localiza-
tion as a preliminary step to the classification, provide a sensitivity
analysis of the size of the region of interest, and discuss image re-
trieval as a clinical use case. We also validate that capsules create
equivariance, thus requiring to see fewer viewpoints of the object of
interest. The second part of the thesis focuses on easing the opti-
mization of the deep network parameters by gradually increasing the
difficulty of the training samples. This gradual increase is based on
the concept of curriculum learning and achieved with a data sched-
uler that controls the order and pace of the samples. We validate
the beneficial effect of the curriculum data schedulers in two sce-
narios. First, we leveraged prior knowledge and uncertainty for the
fine-grained classification of proximal femur fractures. In this case,
we demonstrated the benefits of our proposed curriculum method un-
der controlled scenarios: with limited amounts of data, under class-
imbalance, and in the presence of label noise. Second, we verified the
positive effect of the curriculum data scheduler for multi-site breast
cancer classification in a federated learning setup.
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Resumen
Esta tesis investiga dos aspectos fundamentales del aprendizaje de
representaciones profundas de imágenes para el diagnóstico médico.
Ambos se enfrentan a los retos comunes de las bases de datos de
imágenes médicas, a saber, el número limitado de muestras, la pre-
sencia de anotaciones poco fiables y el desequilibrio de clases; así
como, la adaptación al dominio (“domain adaptation”) y las restric-
ciones de privacidad de datos para el aprendizaje colaborativo entre
instituciones. La primera parte de esta tesis se centra en el diseño
de arquitecturas para métodos de aprendizaje profundo (“deep lear-
ning”). Exploramos la importancia de localizar la región de interés
en la imagen antes de la clasificación y el enfoque implícito de redes
capsulares (“capsule networks”) para modelar la información espa-
cial. Verificamos la importancia de la localización como paso previo a
la clasificación, proporcionamos un análisis de sensibilidad del tama-
ño de la región de interés y discutimos la recuperación de imágenes
como caso de uso clínico. También validamos que las cápsulas crean
equidistancia, por lo que requieren ver menos puntos de vista del ob-
jeto de interés. La segunda parte de la tesis se enfoca en facilitar la
optimización de los parámetros de la red aumentando gradualmente
la dificultad de las muestras de entrenamiento. Este aumento gra-
dual se basa en el concepto de aprendizaje curricular (“curriculum
learning”) y se consigue con un programador de datos que controla
el orden y el ritmo de las muestras. Validamos el efecto beneficioso
de los programadores de datos en dos escenarios. En primer lugar,
aprovechamos el conocimiento previo y la incertidumbre para la cla-
sificación granular de las fracturas de fémur proximal. En este caso,
demostramos los beneficios de nuestro método basado en aprendizaje
curricular bajo escenarios controlados: con cantidades limitadas de
datos, desequilibrio de clases y en presencia de anotaciones impreci-
sas. En segundo lugar, verificamos el efecto positivo del planificador
de datos para la clasificación del cáncer de mama en una configura-
ción de aprendizaje federado (“federated learning”).

x
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1
Introduction

1.1 Motivation
The performance of machine learning methods is heavily dependent
on the choice of data representation (or features) on which they are
applied. The key for deploying successful machine learning algo-
rithms is on designing the preprocessing pipelines and data transfor-
mations that lead to a representation useful for the task. Such fea-
ture engineering is important but labor-intensive and requires prior
knowledge. For that reason, current machine learning methods have
shifted towards automatic feature learning with Deep Learning (DL)
and, for the particular case of images, Convolutional Neural Networks
(CNNs).

In this thesis, we investigate two key aspects to learn feature rep-
resentations from medical images for the Computer-Aided Diagnosis
(CAD) task. The first aspect is related to the architectural design of
the Deep Neural Network (DNN). The second one focuses on easing
the optimization of the deep network parameters by gradually in-
creasing the difficulty of the training samples. These two aspects will
be confronted by challenges of medical data, namely limited number
of annotations or samples, and data privacy for collaborative learning
between different hospitals.
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1.2 Research goals and context
The overall objective of this thesis is to design methods to improve
current automated deep learning systems for computer-aided diag-
nosis. Medical image datasets, with main focus on the classification
task, exhibit some typical characteristics, namely, small amounts of
annotated data, class-imbalance and domain shift. These charac-
teristics limit the performance of existing supervised deep learning
algorithms. We study these subgoals with different datasets, some
of them are public, and three others were collected with medical and
industrial collaborators. This overall objective can be broken down
into the following contributions:

• Studying alternative architectures, in particular capsule net-
works, to overcome the limitations of CNNs, especifically the
spatial invariance problem. Evaluation of the method for two
tasks: mitosis detection and diabetic retinopathy.

• Design of curriculum learning strategies for multi-class classi-
fication. We leverage prior or estimated knowledge to design
data schedulers. The job of the data scheduler is to deter-
mine the order and pace of instances presented to the CNN
optimizer. Evaluation on multi-class proximal femur fractures
classification.

• Development of a curriculum learning method for a federated
setting to improve breast cancer classification. We focus on
scheduling the training samples paying special attention to those
that are forgotten during the intermediate updates of the global
model. The proposed method is combined with unsupervised
domain adaptation to deal with domain shift while preserving
privacy.

2
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1.3 Outline and contributions
In this dissertation, we investigate deep learning techniques to assist
computer-aided diagnosis. The document is divided into two parts:
the first one, with two chapters, is focused on architecture and op-
timization schemes, and the second one, also with two chapters, is
focused on training design strategies1. The four research chapters are
preceded by this introductory chapter and a chapter reviewing the
state-of-the-art and background of the thesis. The manuscript then
includes a final chapter presenting the conclusions and identifying
possible future work directions.

Chapter 2. In this chapter, we review related work on deep learn-
ing architectures and training design strategies with a focus on clas-
sification. We pay special attention to how these strategies behave
under limited amounts of data, imbalance in the class distribution
and reliability of the annotations. Finally, we discuss the challenges
of employing data from multiple sites and/or devices, as well as the
techniques to address them.

PART I: ANALYSIS OF ARCHITECTURE

We first analyze the role of the architecture for different data-challenge
scenarios.

Chapter 3 . In this chapter, we investigate the use of CNNs for
the localization and fine-grained classification of proximal femur frac-
tures. We demonstrate the importance of the localization of a Region
of Interest (ROI) in the X-ray prior to the classification. We provide
a sensitivity analysis of the size of the ROI and image retrieval as a
clinical use case. We further discuss several strategies of verification
of the CNN model for its adoption into daily clinical routine.

1The author of this dissertation is the main contributor of the publications
listed in this section
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The work described in this chapter is included in:

[JSKA+20] Amelia Jiménez-Sánchez, Anees Kazi, Shadi
Albarqouni, Chlodwig Kirchhoff, Peter Biberthaler, Nassir
Navab, Sonja Kirchhoff, and Diana Mateus. Precise prox-
imal femur fracture classification for interactive training
and surgical planning. International Journal of Com-
puter Assisted Radiology and Surgery, 15(5):847–857,
April 2020.

and virtually presented as an oral talk at the 11th International
Conference on Information Processing in Computer-Assisted Inter-
ventions — IPCAI 2020.

Chapter 4 . In this chapter, we studie alternative architectures, in
particular capsule networks, to overcome the limitations of CNNs, es-
pecifically, the spatial invariance problem. Our method is evaluated
for two classification tasks: mitosis detection and diabetic retinopa-
thy. We demonstrate the increased generalization ability of capsule
networks vs. CNNs when dealing with limited amounts of data and
class-imbalance. The performance improvement is a result of the
ability of capsule networks to model equivariance, that is, its ability
to learn pose parameters along with filter weights. Together with
the routing-by-agreement algorithm, this paradigm change requires
to see fewer viewpoints of the object of interest, and therefore fewer
images, in order to learn the discriminative features to classify them.
We found that capsule networks without using data augmentation
were able to achieve a similar or better classification performance
than CNNs using data augmentation. These results confirm the ben-
efits of equivariance over invariance.

The work described in this chapter is included in:

[JSAM18]Amelia Jiménez-Sánchez, Shadi Albarqouni, and
Diana Mateus. Capsule networks against medical imag-
ing data challenges. In Intravascular Imaging and Com-
puter Assisted Stenting and Large-Scale Annotation of
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Biomedical Data and Expert Label Synthesis, pages 150–
160, Cham, 2018. Springer International Publishing.

and presented as a poster an oral talk at the Workshop on Large-
scale Annotation of Biomedical data and Expert Label Synthesis
(LABELS) at the 21st International Conference on Medical Image
Computing and Computer Assisted Intervention — MICCAI 2018.
The code of this work is publicly available in the following GitHub
repository.

PART II: ANALYSIS OF TRAINING DESIGN

In this part, we investigate different manners of optimizing the CNN
models with the available training data. We design strategies to con-
trol the order, pace and number of images presented to the optimizer.
In particular, in the first place, we identify common scheduling el-
ements and unify them into a consolidated curriculum framework.
After that, we investigate the use of curriculum into a more challeng-
ing scenario of collaborative multi-site learning.

Chapter 5. In this chapter, we design curriculum learning strate-
gies for multi-class classification. Our curriculum learning method is
formalized as a data scheduler that determines the order and pace of
instances presented to the CNN optimizer. We propose two types of
ranking functions to prioritize training data, leveraging: prior knowl-
edge and uncertainty. We validated the benefits of our approach for
the classification of proximal femur fractures based on the AO stan-
dard, reaching a performance comparable to state-of-the-art and ex-
perienced trauma surgeons. Furthermore, in controlled experiments
with the MNIST dataset, we show that the proposed method is effec-
tive for datasets with class-imbalance, limited or noisy annotations.
Results of this chapter are published in:

[JSMK+19]Amelia Jiménez-Sánchez, Diana Mateus, Sonja
Kirchhoff, Chlodwig Kirchhoff, Peter Biberthaler, Nassir

5

https://github.com/ameliajimenez/capsule-networks-medical-data-challenges


i
i

“main” — 2021/7/15 — 12:39 — page 6 — #30 i
i

i
i

i
i

Navab, Miguel A. González Ballester, and Gemma Piella.
Medical-based deep curriculum learning for improved frac-
ture classification. In Dinggang Shen, Tianming Liu, Terry M.
Peters, Lawrence H. Staib, Caroline Essert, Sean Zhou,
Pew-Thian Yap, and Ali Khan, editors, Medical Image
Computing and Computer Assisted Intervention – MIC-
CAI 2019, pages 694–702, Cham, 2019. Springer Inter-
national Publishing.

[JSMK+21]Amelia Jiménez-Sánchez, Diana Mateus, Sonja
Kirchhoff, Chlodwig Kirchhoff, Peter Biberthaler, Nassir
Navab, Miguel A González Ballester, and Gemma Piella.
Curriculum learning for improved femur fracture classifi-
cation: scheduling data with prior knowledge and uncer-
tainty. Medical Image Analysis (submitted), 2021.

The work of this chapter was presented as a poster at the 22th In-
ternational Conference on Medical Image Computing and Computer
Assisted Intervention – MICCAI 2019, and later extended. The sec-
ond manuscript is under review. The code of this work is publicly
available in the following GitHub repository.

Chapter 6. In this chapter, we develop a curriculum learning method
for a federated learning setting that handles non-IID data from mul-
tiple sites. We assume the most challenging scenario, in which each
site has mammography systems of different vendors. We show how
curriculum learning can boost the performance classification when
combined with domain adaptation. Our method is evaluated on high-
resolution mammograms from two private and one public dataset for
the classification of breast cancer. The resulting manuscript of this
chapter is under review:

[JSTB+21]Amelia Jiménez-Sánchez, Mickael Tardy, Miguel
A González Ballester, Diana Mateus, and Gemma Piella.
Memory-aware curriculum federated learning for breast

6

https://github.com/ameliajimenez/curriculum-learning-prior-uncertainty


i
i

“main” — 2021/7/15 — 12:39 — page 7 — #31 i
i

i
i

i
i

cancer classification. IEEE Transactions on Medical Imag-
ing (submitted), 2021.

The code of this work is publicly available in the following GitHub
repository.

Chapter 7. In this chapter, we conclude this dissertation by sum-
marizing and discussing the main findings and suggesting new direc-
tions for future research.

7
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7. CONCLUSIONS AND FUTURE WORK

Part I: Analysis of Architecture

1. INTRODUCTION

2. BACKGROUND AND STATE OF THE ART

Part II: Analysis of Training Design

6. MEMORY-AWARE 
CURRICULUM FEDERATED LEARNING

5. THE IMPACT OF ORDERING AND 
PACING TRAINING SAMPLES

4. THE IMPORTANCE OF EQUIVARIANCE

3. LOCALIZATION FOR 
COMPUTER-AIDED DIAGNOSIS

Convolutional Neural Networks

Classification of proximal femur fractures 

Class-imbalance, limited data

Capsule Neural Networks

Mitosis detection, diabetic retinopathy

Class-imbalance, limited data

Curriculum data scheduler

Classification of proximal femur fractures 

Class-imbalance, limited data, noisy labels

Curriculum data scheduler

Classification of breast cancer

Domain shift, limited data

Figure 1.1. Conceptual scheme of this manuscript.

8



i
i

“main” — 2021/7/15 — 12:39 — page 9 — #33 i
i

i
i

i
i

2
Background and State of the Art

2.1 Introduction
In this chapter we provide an overview of DL techniques in medical
imaging tasks, with a special focus on CAD and multi-class classifi-
cation. We pay special attention to works related to training with
class-imbalance, limited data, unreliable or uncertain annotations,
datasets from multiple sites and suffering from domain shift. This
review is intended to make readers familiar with the background of
this thesis.

2.2 Data Challenges in Medical Image
Analysis

Nowadays, in visual pattern recognition, DL has become the de facto
standard for classification and detection challenges [Sch15, KSH12a,
SZ14, SLJ+15]. The availability of large datasets and the advances
in GPU computing power have contributed to the sucess of these
techniques. As detailed in Section A.2, CNNs are able to construct
hierarchical representations of the input images, which encode com-
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plex patterns. However, the sucess of these approaches is limited by
the availability of rich and large annotated datasets. Unfortunately,
constructing such an ideal dataset for medical image classification
presents several challenges. First, given the large patient and disease
variability, it is difficult to build a sufficiently large dataset represen-
tative of all abnormalities. Furthermore, constructing an annotated
dataset requires the expertise and time of physicians, a process which
is time consuming and expensive. Second, disease incidence along
with the difficulty to collect samples result into class-imbalanced dis-
tributions. Even when expert annotations are provided, there might
be intra- and/or inter-expert agreement in the patient’s diagnosis.
Thereby, “noisy” or unreliable annotations are expected in medical
datasets. As a consequence, investigating techniques to cope with:
restricted amounts of data, class-imbalance, and noisy and limited
annotations, without decreasing the performance of the classification
task is an area of active research.

To address the above issues, mostly against limited amounts of
data, one common-approach has been transfer learning [LKB+17a].
These type of approaches usually compare different networks trained
from scratch, vs. using off-the-shelf features from the first fully-connected
layer [vGSJC15] of a CNN pretrained on ImageNet [TSG+16, SRG+16b]
with or without finetuning. In [SRG+16b] different architectures such
as AlexNet, GoogLeNet, and VGGNet were investigated for thoraco-
abdominal lymph-node detection and interstitial lung-disease clas-
sification. It was demonstrated that training from scratch or fine-
tuning from ImageNet consistently outperforms applications using
off-the-shelf CNN features.

Another approach to cope with limited amounts of data is to ex-
tract patches from an image. However, this process often results
into the normal class being over-represented and spatial information
being of low-quality. For the detection of abnormalities and their
further classification, the prior localization of a Region Of Interest
(ROI) in the image might be beneficial [dVWdJ+16]. To that end,
supervised methods trained with manually-delineated spatial anno-

10
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tations can be leveraged [Gir15]. However, obtaining such ROI anno-
tations is still time consuming and expensive. Therefore, other works
[HK16, WPL+17, WLC+19a] have investigated the use of weakly-
supervised approaches to improve the classification without a prior
detection step. Recently, alternative architectures to CNNs have been
proposed. In particular, capsule networks [SFH17] were presented to
cope with the CNN’s poor modeling of spatial invariance. Capsules
encode the pose and presence of an entity in the image. Their abil-
ity to integrate these spatial characteristics makes them attractive to
learn representations under the mentioned data challenges.

In the first part of this thesis, we explore the role of architectural
design in dealing with spatial information for several classification
tasks and under the challenges of medical image datasets. In par-
ticular, we explore a supervised localization approach based on im-
precise ROI annotations, under different architecture configurations
[JSKA+20] (Chapter 3) as well as the implicit capsule’s approach to
model spatial information [JSAM18] (Chapter 4). In Section 2.3.1,
we expose the CNN’s shortcomings motivating the later approach.

Instead of localizing an area of interest or enforcing spatial invari-
ance, we can focus on how to select informative images to increase
the efficiency of the learning process and reduce the training time.
Boosting techniques [Sch03] were proposed to focus the learning pro-
cess on informative samples. A cascade of learners is created, each
trained consecutively, where more emphasis is put on samples mis-
classified by the previous learners. Then, classification is performed
by combining the outputs of each of them. Due to the high com-
putational cost of CNN’s optimization, a boosted cascade of them
is inefficient. In contrast to boosting techniques, dynamic sampling
strategies propose the use of a single learner, which focuses on in-
formative samples during its optimization process. Here, the prob-
lem is to define a sampling heuristic for the learner. van Grinsven et
al. [vGvGH+16] presented a selective data sampling strategy for hem-
orrhage detection in color fundus images. In particular, they showed
that by dynamically increasing the probability of misclassified normal
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samples to be selected in each training iteration, classification perfor-
mance was improved and training was sped-up, verifying the findings
in [FSST97, LTY13, EHBG07]. Included in sampling methods, Ac-
tive Learning (AL) approaches overcome data scarcity by incremen-
tally selecting the most informative unlabeled samples. For instance,
Mahapatra et al. [MBTR18] presented a framework in which a condi-
tional Generative Adversarial Network (GAN) was employed to gen-
erate realistic chest X-ray images with different disease conditions.
Then, informative samples were identified using a Bayesian neural
network. Related to sampling strategies, Curriculum Learning (CL)
rearranges the order in which samples are presented to the optimizer.
This order follows the idea of gradual learning, i.e. “easy” samples
are presented earlier to the optimizer than “hard” ones.

In the second part of this thesis, we investigate CL in the context
of medical image classification under dataset constraints. We present
a unified CL framework for multi-class classification [JSMK+21] (Chap-
ter 5), and a novel curriculum for collaborative learning [JSTB+21]
(Chapter 6). We discuss the state-of-the-art in CL for deep learning
(Section 2.4.1). We also review recent literature in Domain Adapta-
tion (DA) (Section 2.4.2) and Federated Learning (FL) (Section 2.4.3)
in order to position our most recent work on CL for FL considering
DA.

In summary, in this thesis, we deal with image classification tasks
under the dataset constraints of medical image analysis, namely,
small amounts of labeled data, class-imbalance, domain shift and
privacy perservation. In Part I we investigate the role of the archi-
tectural design (Chapter 3 and Chapter 4). In Part II we analyze and
propose different scheduling approaches based on curriculum learning
(Chapter 5 and Chapter 6).
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2.3 Architectural Design

In this section, we discuss some limitations of CNNs and the intuition
behind capsule networks.

2.3.1 Shortcomings of CNNs

As mentioned earlier, CNNs’ success depends on the use of very large
databases representative of the full-variability of the source domain.
A partial explanation for such requirement comes from two known
CNN limitations regarding the spatial invariance and the lack of con-
sideration for the orientation and the spatial relationships between
the objects within an image.

An efficient image representation for classification should be able
to discard irrelevant information (e.g. pose, lighting, etc.). For a CNN
to learn such invariant representations, all possible variations of the
object should be included in the dataset. CNNs are to some extend
translationally invariant. Translational invariance is the ability of
a network to detect an object wherever it lies in the image. It is
introduced by the pooling layers, which transfer the activation from
one layer to the next layer losing spatial information. To handle
rotation invariance, data augmentation is a common strategy. Image
transformations like rotation, cropping, zoom and others are used to
generate variations of the object.

Neurons in a CNN are trained to identify certain shapes or at-
tributes in a image. Initial layers detect low-level features such as
edges, circles, etc. Layers further in the network learn higher-level
features due to the hierarchical nature of the architecture. However,
the output probability will be high when several features of the in-
stance are present in the image. The arrangement of these activations
is not relevant for the final output.

13
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2.3.2 Capsule Networks
Capsule Networks [SFH17] were proposed as an alternative feature
representation scheme to cope with the above mentioned limitations
of classical CNNs, in particular, to cope with their poor modeling
of spatial invariance. Capsules are designed to learn the pose and
presence of a capsule’s entity, i.e. capsules not only identify the ex-
istence of a feature, but also its orientation and how it is related to
other features. To capture such relationships capsules rely on tensor
instead of scalar computations.

Learning in this new capsules regime is achieved through a dif-
ferent optimization scheme: routing-by-agreement algorithm, which
is designed to maximize agreement between low-level and high-level
features. Through dynamic routing, lower level capsules get feedfack
from higher-level capsules, and only send their output to the higher
level capsules whose output is similar. In this way, the highest-level
capsule layers can take into consideration the ‘hierarchy of parts’ or
part-whole relations of an object.

Capsule Layer

A capsule network architecture is composed of only two layers: a
first primary capsule layer, capturing low-level cues, followed by a
specialized secondary capsule layer, capable of predicting both the
presence and pose of an object in the image. A reconstruction loss and
decoder are further included for regularization to boost the coding
of the input instantiation parameters. We formally introduce these
technical details in Section 4.1.1.

Recently, the use of capsule networks has been investigated for
several tasks in medical imaging, such as segmentation [LB18a], im-
age synthesis [HLL+20] and classification [LTB20, MYCVN20].

In this thesis, we study capsules networks to overcome the lim-
itations of CNNs, especifically, the spatial invariance problem. Our
method is evaluated for two classification tasks: mitosis detection
and diabetic retinopathy. We demonstrate the increased generaliza-
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tion ability of capsule networks vs. CNNs when dealing with limited
amounts of data and class-imbalance. The performance improve-
ment is a result of the ability of capsule networks to model equiv-
ariance, that is, its ability to learn pose parameters along with fil-
ter weights. Together with the routing-by-agreement algorithm, this
paradigm change requires to see fewer viewpoints of the object of in-
terest, and therefore fewer images, in order to learn the discriminative
features to classify them. We found that capsule networks without
using data augmentation were able to achieve a similar or better clas-
sification performance than CNNs using data augmentation. These
results confirm the benefits of equivariance over invariance. Details
of the proposed method and experimental validation can be found in
Sections 4.1.1 and Section 4.2.

2.4 Training Design
In the following we introduce the second type of approaches dealt
within the thesis, i.e.methods that focus on designing training strate-
gies. Our approaches are derived from the CL concept. Next, we re-
view the state-of-the-art and position our work with respect to other
methods in CL, DA and FL. The latter two are important to handle
multi-site data suffering from domain shift.

2.4.1 Curriculum Learning
CL is based on the idea that human and animals learn better when in-
formation is presented in a meaningful way rather than randomly. A
curriculum is an efficient tool for humans to progressively learn from
simple concepts to harder tasks. The curriculum breaks down com-
plex knowledge by providing a sequence of learning steps of increasing
difficulty. Elman et al. [Elm93] brought these ideas from cognitive
science to computer science. Bengio et al. [BLCW09] made the for-
mal connection of this concept with machine learning using CNNs.
In [BLCW09], it was shown that gradually increasing the difficulty

15



i
i

“main” — 2021/7/15 — 12:39 — page 16 — #40 i
i

i
i

i
i

of the task improved both convergence and classification accuracy.
Similar to CL, Self-Paced Learning (SPL) [KPK10] also proposes to
process the samples in a meaningful order. Different from CL, in
SPL the ordering criterion is dynamically estimated from model’s
performance.

In the following, we review the works that have investigated the
use of CL for medical image classification. These works have lever-
aged: knowledge transfer across tasks [WSMM18, MBN+18], spatial
information [JGG+17, PCL+19], data scheduling [YWL+19] and ex-
tra information (text or evidence maps) [AEBS+20, ZCCL20]. Some
of these works also encountered similar data challenges: limited amounts
of data [WSMM18, AEBS+20] and class-imbalance [JGG+17, YWL+19].

Wong et al. [WSMM18] exploited the idea of CL to build medical
image classifiers with limited data using features from segmentation
networks. The proposed CL method outperformed the models pre-
trained on ImageNet [DDS+09] and trained from scratch. This CL
approach was evaluated for 3D three-class brain tumor MR image
classification, and for 2D nine-class segmentation from computed to-
mography angiography images.

Maicas et al. [MBN+18] presented an algorithm that resembles
how radiologists are trained. Instead of using all training data and
annotations at one, a series of tasks of increasing difficulty composed
of smaller datasets was used. The selection of the next task was
achieved through a teacher-student curriculum learning [MOCS17],
which depends on the model’s performance on the tasks and tries to
mimic radiologists’ training.

To handle extreme class imbalance in the lung nodule detection
task, Jesson et al. [JGG+17] presented a curriculum adaptive sam-
pling strategy. Their training design is based on CL [BLCW09],
starting with patches that only visualize the immediate surrounding
of the nodule, and increasing the neighborhood during the optimiza-
tion process. Showing only nodules would result into an extremely
sensitive model with low specificity. Therefore, a schedule is intro-
duced so that the proportion of patches containing nodules to those
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that do not is progressively increased, and reaches the data distri-
bution at infinity. The majority of voxels in typical lung images is
expected to be predicted as non-nodule. Random sampling leads to
a solution that systematically produces false positives. The authors
proposed the use of adaptive sampling to favour training examples
for which the prediction using recent model parameters produces false
results, an instance of hard negative mining [SP98].

Park et al. [PCL+19] proposed a two steps CL strategy to detect
pulmonary abnormalities in chest-PA X-ray images. On the first step,
the CNN was pretrained also using patches around the abnormalities.
Then, class activation maps were extracted to provide a weak local-
ization of the abnormalities. All classification metrics were improved
with the proposed two steps CL method.

Yang et al. [YWL+19] investigated SPL to recognize skin diseases
from RGB images while overcoming the existing imbalance scenario.
A novel metric termed complexity of image category was proposed to
integrate both the sample number and the recognition of class diffi-
culty. The intuition is that categories with large number of samples
and low intra-class variation are easy to recognize, the goal of Self-
Paced Balanced Learning here is to avoid biased results due to the
class-imbalance during the learning procedure. Following the for-
mulation of SPL in [MZJ17], the framework schedules the samples
according to their complexity and dynamically updates the metric.

Alsharid et al. [AEBS+20] proposed a dual-curriculum method for
ultrasound image captioning. Here, the method relies on a curriculum
built from both image and text information. Their approach leverages
textual descriptions that are often rare, and thus lead to small-sized
medical datasets. The CL method showed an improvement in all
performance metrics for the individual task of image classification as
well as for image captioning.

Zhao et al. [ZCCL20] leveraged an adaptive dual-curriculum for
glaucoma detection under class imbalance and limited amounts of
data. Evidence maps were used as training criterion to gradually
cure the bias in training data. In particular, the dual curriculum
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emphasizes uneven training contributions of data from easy to hard.
Their approach significantly improved the convergence speed of the
training process and obtained the best classification performances.

Similar to the above previous works, in this thesis we investi-
gate the use of CL to ease the optimization of CNNs for medical
image classification. We pay special attention to scenarios with lim-
ited or noisy annotations and under class-imbalance. Different from
them, we investigate the integration of medical knowledge derived
from medical decision trees and inconsistencies in the annotations of
multiple experts. We identify the common elements among different
data scheduling strategies and present them within a unified frame-
work. In our formulation, we propose two types of ranking functions
allowing to prioritize training data: one according to prior-knowledge,
and a second one measuring the prediction’s uncertainty according
to the model’s performance (Chapter 5).

To cope with the lack of large rich annotated datasets, new strate-
gies have recently appeared to learn DL methods collaboratively em-
ploying data from multiple sites. However, three issues appear in
this scenario. The first one concerns the heterogeneity of data from
different device systems or hospitals. To cope with such diversity,
recent works [PHZS19, LJZ+21] have proposed to integrate Unsu-
pervised Domain Adaptation (UDA) into the FL framework. The
second one refers to the preservation of patient privacy and regula-
tions being carefully respected. To address the second challenge, data
protection, cryptographic techniques [BIK+17] or differential privacy
[DKM+06, DR+14] are employed. The third one is about the re-
quirement of new optimization strategies working on distributed data
for collaborative learning. In the FL setting, individual models are
trained locally on private data and the central server is responsible
for the global aggregation of the local updates. Usually, the commu-
nication of the local models to the server occurs a certain number
of times every epoch. We introduce a novel curriculum for the FL
setup, in which samples that are forgotten after the deployment of
the global model are prioritized (Chapter 6). To position our work,
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next we discuss DA and FL state-of-the-art.

2.4.2 Domain Adaptation
Machine learning methods are widely used in medical image classifi-
cation. However, these techniques assume that the training dataset
and the test dataset share the same data distribution. When this
condition is not satisfied, i.e. there is a distribution difference be-
tween training and test datasets, the test error generally increases
in proportion to the difference. We refer to this problem as do-
main shift [QCSLS09]. This issue is of special importance for multi-
center studies. Data coming from multiple sites may be obtained us-
ing different devices, scanning image protocols, patient populations,
etc. We focus on DL techniques to tackle the distribution difference
between source and target domains. These techniques have shown
their effectiveness for distribution alignment employing maximum
mean discrepancy [LCWJ15a], adversarial learning at the feature
level [GUA+16, THSD17] or pixel level [BSD+17] or revisiting the
batch normalization layer [CPC+17].

In the following, we survey related works on DA for medical im-
age classification. These works perform DA in different manners: em-
ploying a zero-bias convolutional autoencoder [AKF+20], using image
to image translation [TNA19], revisiting batch normalization layers
[WLD20] and leveraging adversarial learning [RHS+18, ZWW+20].

Ahn et al. [AKF+20] proposed an UDA approach across differ-
ent public datasets and problems: medical imaging modality clas-
sification, skin disease classification and the detection of multi-drug
resistant tuberculosis. The UDA method consisted on a multi-layer
zero-bias convolutional autoencoder that constrains the transforma-
tion of generic features from a pretrained CNN (for natural images)
to non-redundant and locally relevant features for the medical image
data. Furthermore, a context-based feature augmentation is added
into the scheme to improve the discriminative power of the feature
representation.
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Tomczak et al. [TIM+20] presented an image to image transla-
tion DA method for digital staining and classification of leukocytes.
A novel combination of image generation with auxiliary tasks such
as classification, segmentation and pair-wise reconstruction is intro-
duced. The latter two helped to improve the quality of the generated
images.

Wang et al. [WLD20] employed domain-specific batch normaliza-
tion layers [CYS+19]. These layers enable to conduct the feature
normalization and estimate internal feature statistics for each site
separately. An individual batch normalization layer was assigned
to each site independently to tackle statistic discrepancy. Further-
more, to explicitly regularize the latent semantic feature space, the
authors proposed to include a contrastive learning [CKNH20] objec-
tive. The goal was to encourage robust semantic embeddings that
cluster samples regardless of the data source domains. The com-
bination of the domain-specific batch normalization layer and the
contrastive learning objective resulted into an improvement in the
diagnosis of COVID-19 on two public datasets.

Ren et al. [RHS+18] used UDA for classification of prostate histopathol-
ogy whole-slide images. The adaptation is achieved through adversar-
ial training to find an invariant feature space. A siamese architecture
is leveraged to add a regularization on the target domain appropriate
for the whole-slide images. In particular, this regularization works on
patches within the whole-slide images.

Zhang et al. [ZWW+20] presented a collaborative UDA approach
to deal with domain shift and label noise. Different target images
have diverse discrepancy levels with respect to the source images,
therefore the difficulty of the domain alignment is expected to vary
for each sample. That is, samples from the target domain that are
closer in similarity to the source domain are easier to align than sam-
ples that are highly dissimilar. Zhang et al.’s domain adversarial ap-
proach exploits the classification prediction inconsistency to measure
the transferability of source samples. Each inconsistency measure
is then used to weigh the domain adversarial loss in the UDA. To
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Figure 2.1. Federated learning scenario.

better find hard-to-transfer samples, the diversity of the classifier is
maximized via Jensen-Shannon divergence [GPAM+14].

Similar to [ZWW+20], we employ UDA to deal with non-IID data.
Different from them, we focus on the classification of breast cancer
in a federated setting.

2.4.3 Federated Learning

Acquiring large amounts of labeled medical data requires the effort
and expertise of physicians. Therefore, obtaining sufficient data to
train DL models is a major challenge. This can be mitigated by
the collaboration between institutions. However, sharing medical in-
formation among (international) institutions is sensitive in terms of
privacy, technical and legal issues in certain regions (GDPR1 [HM15]

1GDPR: EU/UK General Data Protection Regulation
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or HIPAA2 [Ann03]). FL arises from the need of sharing knowledge
without sharing sensitive medical data between different hospitals
[RHL+20b]. FL enables collaborative and decentralized DL training
without sharing any raw patient data [MMR+17a]. The term feder-
ated was coined because the learning task is solved by a federation
of participating models (frequently referred to as clients), which are
coordinated by a central server.

FL frameworks have been formulated in two ways: (i) differen-
tial privacy [DKM+06, DR+14], i.e. each site training a local model
with private data and only sharing model parameters [ZNH+18], (ii)
protecting the details of the data using cryptographic techniques
[BIK+17], such as secure multi-party computation [MR18] and ho-
momorphic encryption [HHIL+17].

A typical FL scenario is depicted in Fig. 2.1. In this setting, we
assume that each local site has data storage and a computing node.
Nevertheless, at the global level, only computing is possible. Once
that individual models have been trained on private data, there are
four key steps in the FL training process: (1) local updates are sent
to the global server with privacy protection or encryption, (2) the
central server is responsible for the global aggregation of the local
updates, (3) the aggregated model parameters are deployed to the
local sites, and (4) local models are updated. After that, a new
round of local training starts.

Only few FL works have been shown effective on medical im-
ages. For instance, for brain tumor segmentation [SRE+18, LMX+19,
BWRA21], prediction of disease incidence, patient response to treat-
ment, and other healthcare events [HSQ+19], and lately for classifi-
cation [GHJK20, AdTBT20, RCS+20, LGD+20, WLD20, YFNA20].

The most common approach for the aggregation of weights in the
server is Federated Averaging (FedAvg) [MMR+17b]. FedProx [LSZ+18]
proposes a proximal term to minimize the distance between the local
and global models. Alternative aggregation strategies have been pro-
posed in [YFNA20, GHJK20]. Yeganeh et al. [YFNA20] proposed in-

2HIPAA: Health Insurance Portability and Accountability Act
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verse distance aggregation with the objective of handling unbalanced
and non-IID data for the classification of dermatoscopic images. In-
verse distance aggregation proposes to adaptively weight the contri-
bution of each client by the inverse distance of its parameters to the
average model of all clients. The resulting FL model is more robust
to noisy and out-of-distribution clients. Grimberg et al. [GHJK20]
presented a non-linear aggregation FL method, termed weight ero-
sion, for the task of survival prediction. It is conceptually related
to local fine-tuning, the difference is that a weight erosion scheme is
optimized to discard contributions from unhelpful clients as early as
possible in the training process.

To deal with heterogeneous image data from multiple sites, de-
vice systems or imaging protocols, new techniques have integrated
DA into the FL framework. Standard domain approaches require ac-
cess to source and target data [LCWJ15b, GL15]. However, in the
federated setting, data is stored locally and cannot be shared. Re-
cently, federated batch normalization [LJZ+21] and federated adver-
sarial domain adaptation [PHZS19, PKM19] have been proposed to
deal with DA under the privacy-preserving requirement. Andreux et
al. [AdTBT20] proposed a FL approach for the classification of tu-
morous histopathology image patches from multi-centric data. Local-
statistic batch normalization layers are employed to handle DA. The
use of these layers results into models that are collaboratively trained,
yet site-specific. Li et al. [LGD+20] presented a multi-site f-MRI anal-
ysis on 1-D signal data using federated adversarial domain adaptation
[PHZS19]. Their analysis showed an improvement in classification ac-
curacy and revelead possible brain biomarkers for identifying autism
spectrum disorders. Roth et al. [RCS+20] investigated breast den-
sity classification using FL with data from different institutions. To
investigate the effect of domain-shift in the FL method, the authors
did not apply any domain adaptation technique to compensate the
distribution difference.

Similar to [LGD+20] we employ federated adversarial learning
[PHZS19, PKM19] to deal with the alignment between the different
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domains. However, unlike Li et al. [LGD+20] that analyze 1-D sig-
nals extracted from f-MRI, we study the screening of high-resolution
mammograms and use CL to boost the classification performance.
We validate our strategy on a setup composed of one public and two
private clinical datasets with non-IID intensity distributions. Differ-
ent from [RCS+20], who proposes a FL framework for breast density
classification and does not correct the misalignment between the do-
mains, we target the more complex task of breast cancer classification.

2.5 Clinical Applications

The methods proposed in this thesis are evaluated on different medi-
cal classification tasks. In particular, we cover: the multi-class classi-
fication of proximal femur fractures according to the Arbeitsgemein-
schaft für Osteosynthesefragen (AO) standard; detection of diabetic
retinopathy, mitosis counting, and breast cancer classification.

We employ three public datasets: TUPAC16 [tup] for mitosis
counting, DIARETDB1 [KkKV+] for diabetic retinopathy detection,
and INBreast [MAD+12] for the classification of breast lesions. For
the latter task, Hera-MI provided two private datasets from differ-
ent system vendors: Hologic and GE. Institutional board approvals
were obtained for each of the datasets (datasets can be shared upon
justified requests and subsequent right-holder approvals). The data
employed for the classification of proximal femur fractures is from a
private dataset. We collected this dataset in collaboration with the
trauma surgery department of the Rechts der Isar Hospital in Mu-
nich, Germany. The collection of these radiographs was approved by
the ethical committee of the Faculty of Medicine from the Technical
University of Munich, under the number 409/15 S.

In the following subsections we detail the clinical motivation be-
hind each dataset. Our work aims to provide support to the physi-
cians for each diagnosis task.
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Figure 2.2. AO standard and example X-ray images of proximal
femur fractures.

2.5.1 Proximal femur fractures
Proximal femur fractures are a significant cause of morbidity and
mortality, giving rise to a notable socioeconomic impact [RYY+15,
GCG16]. Elderly population in the western world are especially af-
fected. The incidence of femur fractures increases exponentially from
an age of 65 and is almost doubled every five years.

Surgery is the most common and preferred treatment for proximal
femur fractures [SSW+15]. The exact classification of the fracture is
crucial for deciding the surgical procedure and choosing the surgical
implant if needed. The Arbeitsgemeinschaft für Osteosynthesefragen
(AO-Foundation) has established a hierarchical classification system
for fractures of all bones based on radiographs. For proximal femur
fractures, the AO classification has been beneficial, in terms of repro-
ducibility, when compared against other systems such as the Jensen
classification [BDE+15]. The AO standard follows a hierarchy ac-
cording to the location and configuration of the fracture lines, see
Fig. 2.2. Fractures of type-A are located in the trochanteric region,
and fractures of type-B are those affecting the area around the femur
neck. Each type of fracture is further divided into 3 subclasses de-
pending on the morphology and number of fragments of the fracture.

The ability to adequately classify fractures according to the AO
standard based on radiographs is acquired through daily clinical rou-
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Figure 2.3. Example mammography X-ray images.

tine in the trauma surgery department. Several years are needed until
experienced trauma surgeons are significantly differentiated from res-
idents. Inter-reader agreement varies from 66% among residents to
71% among experienced trauma surgeons [Zuc96]. To reach a precise
classification, medical students and young trauma surgeons rely on
a second opinion to choose the adequate treatment option for the
patient.

In Chapter 3 we provide a supervised localization method for the
localization of the femur, and target the detection of proximal femur
fractures and the classification into {Normal, A, B}. For the more
challenging fine-grained classification into {Normal, A1-A3, B1-B3}
we present the unified CL framework in Chapter 5. Our approaches
are evaluated on a private dataset of about 1000 X-ray images col-
lected at the Rechts der Isar Hospital in Munich (Germany).

2.5.2 Breast cancer
Breast cancer is the most commonly occurring type of cancer world-
wide for women [SFS+21]. For this reason, early detection and diag-
nosis of breast cancer is essential to decrease its associated mortality
rate. Mammographic screening has proven to have a positive effect
in early diagnosis and has been implemented across many developed
countries [DTC+02].

X-ray mammography is currently considered the best imaging
method for breast cancer screening and the most effective tool for
early detection of this disease [MSMK10]. Among the common find-
ings of abnormalities by radiologists are masses, calcifications, archi-
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Table 2.1. Breast Imaging Reporting and Data System Assessment
Categories

Category Description
0 Needs additional imaging evaluation.
1 Negative.
2 Benign finding(s).
3 Probably Benign Finding(s). Follow-up is suggested
4 Suspicious anomaly.
5 Highly suggestive of malignancy.
6 Biopsy proven malignancy.

Figure 1 – Examples of two low magnification whole slide images in the auxiliary region of

interest (ROI) dataset annotated with three ROIs (green rectangle boxes) each by a pathology

resident. These ROIs represent areas where a pathologist might perform mitosis counting.

The remaining 50 cases previously used to assess the inter-observer agreement for mitosis

counting were from two other pathology centers in The Netherlands (Symbiant Pathology

Expert Center, Alkmaar and Symbiant Pathology Expert Center, Zaandam) (Veta et al.,

Figure 1 – Examples of two low magnification whole slide images in the auxiliary region of

interest (ROI) dataset annotated with three ROIs (green rectangle boxes) each by a pathology

resident. These ROIs represent areas where a pathologist might perform mitosis counting.

The remaining 50 cases previously used to assess the inter-observer agreement for mitosis

counting were from two other pathology centers in The Netherlands (Symbiant Pathology

Expert Center, Alkmaar and Symbiant Pathology Expert Center, Zaandam) (Veta et al.,

2016) Each case was represented by one WSI region with an area of 2 mm2 These WSIs

resident. These ROIs represent areas where a pathologist might perform mitosis counting.

The remaining 50 cases previously used to assess the inter-observer agreement for mitosis

counting were from two other pathology centers in The Netherlands (Symbiant Pathology

Expert Center, Alkmaar and Symbiant Pathology Expert Center, Zaandam) (Veta et al.,

2016). Each case was represented by one WSI region with an area of 2 mm2. These WSIs

were obtained using the Leica SCN400 scanner (40× magnification and spatial resolution of

0.25 µm/pixel). The annotated mitotic figures are the consensus of at least two pathologists,

similar to the AMIDA13 challenge. In total, the mitosis detection auxiliary dataset contained

1552 annotated mitotic figures (Figure 2).

resident. These ROIs represent areas where a pathologist might perform mitosis counting.

The remaining 50 cases previously used to assess the inter-observer agreement for mitosis

counting were from two other pathology centers in The Netherlands (Symbiant Pathology

Expert Center, Alkmaar and Symbiant Pathology Expert Center, Zaandam) (Veta et al.

2016). Each case was represented by one WSI region with an area of 2 mm2. These WSIs

were obtained using the Leica SCN400 scanner (40× magnification and spatial resolution of

0.25 µm/pixel). The annotated mitotic figures are the consensus of at least two pathologists

similar to the AMIDA13 challenge. In total, the mitosis detection auxiliary dataset contained

1552 annotated mitotic figures (Figure 2).

Figure 2.4. Top: Examples of whole-slide images. Bottom: Anno-
tated mitotic. Figure adapted from [tup].

tectural distortion of breast tissue, and asymmetries when comparing
the two breasts and the two views [SBWM08]. To standardize the
terminology of the mammographic report, the American College of
Radiology (ACR) developed the Breast Imaging Reporting and Data
System (BI-RADS) scale [D’O96]. This standard includes six cate-
gories according to the level of suspicion: category 0, exam is not
conclusive; category 1, no findings; category 2, benign findings; cat-
egory 3, probably benign findings; category 4, suspicious findings;
category 5, a high probability of malignancy; and category 6, proved
cancer (see Table 2.1). Usually, for categories 4 and 5, biopsy should
be considered. The breast composition tissue is also referred by the
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ACR, it is an important characteristic related to the breast den-
sity shown in X-rays. There are four categories ranging from 1, for
low density (fat tissue), to 4, for very high density (dense tissues).
The detection of suspicious findings by radiologists is a repetitive
and fatiguing task, leading to a 10%-30% rate of undetected lesions
[SBWM08, BWY92, KCG+00]. In Chapter 6 we investigate the in-
tegration of CL in a federated setting to improve breast cancer clas-
sification. Our method is combined with UDA to deal with domain
shift while preserving privacy. Our proposed scheme is evaluated on
high-resolution mammograms from three different vendors: Siemens
(public), GE and Hologic (private).

Tumor proliferation is an important biomarker indicative of the
prognosis of breast cancer patients. Patients with high tumor prolif-
eration have worse outcomes compared to patients with low tumor
proliferation [vDvdWB04]. The treatment and theratepic plan for the
patients depends on the aggressiveness of the tumor. Patients with
aggressive tumors are treated with more aggressive therapies, and
patients with less aggressive tumors go through more conservative
treatments [FPW+00]. Tumor proliferation is assessed on whole-slide
images (see Fig. 2.4-top) in a clinical setting by pathologists. This ex-
amination is perfomed on histological slides under a miscroscope. The
most common method for its quantification is to count mitotic fig-
ures (dividing cell nuclei), see 2.4-bottom. Unfortunately, tumor pro-
liferation assessment is a highly subjective and labor-intensive task
[VVDJ+16]. In Chapter 4 we compare the performance of CNNs and
capsule networks for the mitosis counting task.

2.5.3 Diabetic retinopathy
Diabetic retinopathy affects 1 in 3 adults with diabetes and remains
the leading cause of blindness in working-aged adults [WS19]. It is
projected to affect 642 million adults by 2040. Thus, it is emerging
as a major public health issue worldwide, in particular in low- and
middle-income countries. Proper and early treatment of diabetes
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abetic retinopathy when extensive lack of oxygen causes the development of new fragile
blood vessels [17]. This is called neovascularisation shown in Fig. 1(e), which is a serious
eye sight threatening state. The proliferative diabetic retinopathy may cause sudden loss
in visual acuity, or even permanent blindness due to vitreous hemorrhage or tractional
detachment of the central retina. After the diabetic retinopathy has been diagnosed, reg-
ular monitoring is needed due to the progressive nature of the disease. However, broad
pre-emptive screenings cannot be performed due to the fact that the fundus image exam-
ination requires attention of medical experts. For the screening, reliable automatic image
processing methods must be developed.

(a) (b) (c) (d) (e)

Figure 1: Abnormal findings in the eye fundus caused by the diabetic retinopathy (best
viewed in colour): (a) microaneuryms (marked with an arrow); (b) hemorrhages; (c) hard
exudates; (d) soft exudate (marked with an arrow); (e) neovascularization.

2.1 Current evaluation practises

In medical diagnosis, the medical input data is usually classified into two classes, where
the disease is either present or absent. The classification accuracy of the diagnosis is
assessed using the sensitivity and specificity measures. Following the practises in the
medical research, the fundus images related to the diabetic retinopathy are evaluated by
using sensitivity and specificity per image basis. Sensitivity is the percentage of abnor-
mal funduses classified as abnormal, and specificity is the percentage of normal fundus
classified as normal by the screening. The higher the sensitivity and specificity values,
the better the diagnosis. Sensitivity and specificity are computed as [16]:

sensitivity (SN) =
TP

TP +FN
, specificity (SP) =

TN

TN +FP
(1)

where TP is the number of abnormal fundus images found as abnormal, TN is the number
of normal fundus images found as normal, FP is the number of normal fundus images
found as abnormal (false positives) and FN is the number of abnormal fundus images
found as normal (false negatives). Sensitivity and specificity are also referred to as the
true positive rate (TPR) and true negative rate (TNR), respectively.

3 Evaluation database

A necessary tool for reliable evaluations and comparisons of medical image processing
algorithms is a database of dedicatedly selected high-quality medical images which are
representatives of the problem and have been verified by experts. In addition, information
about the medical findings, the ground truth, must accompany the image data. An accurate

Figure 2.5. Diabetic retinopathy abnormalities: (a) microa-
neuryms, (b) hemorrhages, (c) hard exudates, (d) soft exudates, (e)
neovascularization. Figure courtesy [KKK+07].
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Fig. 2a. Diabetic retinopathy classification

������������������� ����������������������
���������������������

�������

��������
�������

������
�����

��������������������������������
����������������������������

����������������

����������������������������
�����������������������������

�������������������������
����������������������������

������������������������

���������������������������
������������������������

���������������������������
�����������������������������
����������������������������

�����������������������
������������

�����������������������������
�������������������������������

�������������������������
���������������������

������������

Note: the description of each grade is simplified. For full descriptions, see Annex 2. 
 
a Photograph © Simon Harding. 
b Photograph © Vittorio Silvestre.

Source: International Council of Ophthalmology (2017).

Fig. 2b. Diabetic macular oedema classification

 
Note: the description of each grade is simplified. For full descriptions, see Annex 2.

a Photograph © Simon Harding. 
b Photograph © Vittorio Silvestre.

Source: International Council of Ophthalmology (2017).

The diabetic retinopathy severity classification (grade) indicates the risk of a person developing the most advanced 
form of sight-threatening diabetic retinopathy. 

Policy-makers should work with clinicians to discuss which detailed classification and grading system is in use in 
their country and if any amendment or change is required. 
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Figure 2.6. Diabetic retinopathy grading. Figure courtesy [O+20].

is cost effective since the implications of poor or late treatment are
very expensive. These alarming facts promote the study of automatic
diagnosis methods for screening over large populations.

Diabetic retinopathy is a microvascular complication of diabetes,
causing abnormalities in the retina, and in the worst case, blind-
ness [KKK+07]. In the initial stage, small changes occur in the reti-
nal capillaries. Abnormalities caused by diabetic retinopathy com-
prised microaneuryms (Fig. 2.5-a), hemorrhages (Fig. 2.5-b), hard
exudates (Fig. 2.5-c), soft exudates (Fig. 2.5-d), and neovasculariza-
tion (Fig. 2.5-e). Disease severity is depicted in Fig. 2.6. It is graded
as mild, moderate or severe non-proliferative diabetetic retinopathy.
The first detectable abnormalities are microaneuryms, which are lo-
cal distensions of the retinal capillary. Their rupture may cause in-
traretinal hemorrhage. These abnormalities are indicative of mild
non-proliferative type. Next, retinal edema and hard exudates ap-
pear because of the increased permeability of the capillary walls. At
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this stage, the disease is classified as moderate. With time, the ob-
struction of blood vessels may cause microinfarcts in the retina, which
are called soft exudates. When a significant number of intraretinal
hemorrhages, soft exudates, or other intraretinal microvascular ab-
normalities are encountered, the state of the retinopathy is assessed
as severe.

Fundus image examination by medical experts is required for the
diagnosis of diabetic retinopathy. Furthermore, after it has been di-
agnosed, regular monitoring is needed due to the progressive nature
of the disease. In Chapter 4 we investigate the importance of equiv-
ariance for the detection of diabetic retinopathy.
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3
Localization for

Computer-Aided Diagnosis

3.1 Introduction
Proximal femur fractures are a significant problem especially of the
elderly population in the western world. Starting at an age of 65
the incidence of femoral fractures increases exponentially and is al-
most doubled every five years. The consequences of proximal fe-
mur fractures have a significant socioeconomic impact since the mor-
tality rate one year after the accident ranges between 14 and 36%
[RYY+15, GCG16, BLC14].

In almost all cases, surgical treatment has to be considered the
gold standard [BDE+15]. If surgical treatment is decelerated, sev-
eral complications, as well as an increase in mortality rates, may
result [Zuc96, GJR14]. Early detection and classification of proximal
femur fractures are crucial for the indication of surgery and, if so,
to choose the adequate surgical implant. For the determination of
the optimal treatment option, the vascular anatomy of the proximal
femur plays an essential role, see Fig. 3.1-(c). These fractures are
often described as subcapital, transcervical, or basicervical regarding
its location along with displaced versus non-displaced. This differ-
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Figure 3.1. (a) Hierarchical classification according to the AO stan-
dard. Two scenarios are considered fracture detection (2-class), and
classification of the fracture into type A or B (3-class). (b) Exam-
ples of regions of interest of X-ray images in our dataset, from top
to bottom: healthy femur, fracture type A and B, respectively are
shown. (c) Vascular anatomy of the proximal femur, adapted from
[SSW+15].

entiation is a key factor because the blood supply to the femoral
head is at risk following intraarticular femur fractures. Elderly pa-
tients suffer more frequently from transverse subcapital femur frac-
tures arising from rather low-energy trauma compared to younger
individuals (< 65 years) showing a tendency to vertical distal fe-
mur neck or basicervical fractures resulting from rather high-energy
trauma [SWH84, PKP+99]. In this context, the Arbeitsgemeinschaft
für Osteosynthesefragen (AO-Foundation) established a generally ap-
plicable and valid classification system for fractures of all bones of the
skeleton based on X-rays [KMA+18] including the proximal femurs.

In the literature, the AO classification for proximal femur frac-
tures was claimed to present a better reproducibility compared to
other classifications such as the Jensen [JDC+05]. In cases of sub-
capital femur fractures in elderly patients, the Garden classification
is more frequently used. However, since the Garden classification de-
scribes only subcapital femur fractures, the more extensive AO clas-
sification, which includes also intertrochanteric fractures, was used
in this study. The AO classification is hierarchical, as shown in Fig-
ure 3.1-(a), and is determined by the localization and configurations
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of the fracture lines. In case the trochanteric region is broken, frac-
tures are considered as “A" while those affecting the subcapital area
“B" fractures. In general, the treatment is oriented to a restoration of
mobility and to prevent relapse after surgery. The treatment method
depends on the location of the fracture, displacement of fragments,
and further concomitant patients’ facts like age and functional de-
mands.

The skills for correctly classifying proximal femur fractures are
trained during daily clinical routine in the trauma surgery depart-
ment. However, the learning curve of young trauma surgery residents,
especially if working in small peripheral hospitals, is long and shallow.
It takes several years of practice to become an expert, as shown by
the significant difference in the inter-reader agreement of 66% among
residents vs. 71% among experienced trauma surgeons [vERMR10].
Currently, young trauma surgeons and medical students majorly rely
on the judgment call of colleagues and attendants to achieve a correct
classification to choose the best therapeutic option for the patient.
Although, there are several online support systems available such as
the “bone ninja" or the “AO surgical reference”, these do only demon-
strate the different fracture classifications comparable to a textbook.
Currently, there is no available automated system capable of classi-
fying X-ray images individually and fracture-specifically.

Therefore, this work aimed to develop a CAD tool based on radio-
graphs to automatically identify proximal femur fractures in a first
step, and consecutively classify them according to the AO classifica-
tion. Such a CAD system can not only help in the correct classifica-
tion of fractures but also be effective in planning the optimal therapy
for the individual patient since the adequate treatment plan arises
from the initial classification.

In this work, we show that Convolutional Neural Networks (Con-
vNets) trained on X-ray images and image-wise class-annotations
constitute a suitable predictive model for automatic and on the fly
classification of fractures according to the AO standard. We demon-
strate the applicability of such models on a clinical dataset of 1347
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radiographs. The achieved performance is similar to that of expert
radiologists and trauma surgeons reported in [vERMR10]. We further
propose a modification of the direct classification workflow consider-
ing a localized region of interest (ROI) around the fracture, which
further improves the classification results. Finally, we address the
question of how to effectively integrate such tool into the clinical
routine by

• performing a sensitivity analysis of the size of the localized ROI,

• investigating the potential of retrieval for the training of young
trauma surgeons.

3.2 Related Work
From a technical point of view, the automated image analysis of
fractures presents significant challenges due to the poor contrast and
large variability of the images (see Fig. 3.1-(b)). Such difficulties are
exacerbated for proximal femur fractures due to background clut-
ter and the presence of overlapping structures in the pelvic region
[WDW+12]. Initial prior work for detection and classification of
fractures [AAHR13, BÇ16] focused on conventional machine learning
pipelines consisting of preprocessing, feature extraction and classifica-
tion steps. Predictions are based on hand-crafted features which are
sensitive to the low quality of X-ray images. For example, Bayram et
al. [BÇ16] relied on the number of fragments to classify diaphyseal
femur fractures. More recently, deep learning has overcome some
limitations of such approaches thanks to the integration of the dis-
criminative feature learning within the predictive models.

The power of ConvNets for fracture detection, that is, for the
binary fracture vs. not-fractured classification task, has been demon-
strated for various anatomical regions, such as spine [RWY+16], wrist
[OFM+17], ankle [KCM19], pelvis [WDW+12], and hip [UTG+19].
Badgeley et al. [BZOR+19] investigated the complementary added
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value of hospital process variables and patient demographics for pre-
dicting the presence of fractures comparably to radiographs alone
[BZOR+19]. Another studied aspect is the pretraining of the deep
models [CHL+19, WLC+19b]. Most works in medical imaging use
ImageNet dataset as a pretraining material [UTG+19, BZOR+19,
EKN+17]. Instead, Cheng et al. [CHL+19] showed that training first
the model on an easier task (body part detection on radiographs), re-
sulted in an improvement when later optimizing for the hip fracture
detection. Wang et al. [WLC+19b] also approached the hip fracture
detection employing a sequential pipeline. First, a deeper model was
trained to learn high levels of abstraction for binary classification.
From this pretrained model, ROIs were extracted in a weak super-
vised way. Then, a shallower network was trained on the mined ROIs
targetting hip and pelvic fracture detection. These methods above
point to the effectiveness of ConvNets to assist the radiologist’s anal-
ysis, reducing the false negative rate and boosting the speed of deci-
sions. However, all of them target still the binary detection problem
(abnormal vs. not-fractured).

To the best of our knowledge, our team is the first to treat
the multi-class classification problem critical for the surgical plan-
ning. We demonstrate in this work, that the localization of a ROI
is not only important for binary detection, as suggested by Wang et
al. [WLC+19b], but even more for the multi-class problem. Differ-
ent from [WLC+19b] and our preliminary work [KAS+17a], where
weakly-supervised strategies were explored, here, we focus on the su-
pervised case given its superior performance.

3.3 Methods

Towards improving the clinical training and treatment planning, we
aim at developing an automatic CAD system based on ConvNets
capable of detecting fractures present on an X-ray image and further
predicting its class according to the AO standard. We purposely
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Figure 3.2. Schematic representation of all the considered models.
In detail, classification on (a) Full Radiographs, (b) Manual ROIs,
and (c) after Automatic Localization.

restrict the choice of architectures and optimization schemes to simple
existing methods, and focus instead on developing and evaluating
relevant use cases on clinical data.

In practice, given N X-ray images with each image I ∈ RH×W , our
goal is to train a classification model f(·) that assigns to each image
a class label y ∈ C, where C is either C ⊂ {not-fractured, fracture}
for detection or C ⊂ {not-fractured, A, B} for classification. The
conceived model depends on parameters ωf and provides as output
a class prediction ŷ = f(I;ωf ).

In addition, we define an auxiliary localization task g(·) that re-
turns the position p of the ROI, I′, within the X-ray image such
that p̂ = g(I;ωg), where ωg are the localization model parameters.
p = {tr, tc, s} is a bounding box of scale s centered at (tr, tc). The
ROI image I′ ∈ RH′×W ′ is obtained as I′ = Wp(I), where Wp(·) is
a warping operator. In the following, we detail three variants of the
proposed CAD system to solve and combine the classification and
localization tasks differently.
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3.3.1 Classification of Full Radiographs
We designed the baseline CAD model to receive a radiograph as input
and compute the predicted class in real-time. Figure 3.2-(a) shows a
simplified diagram of the used CAD-principle.

Formally, the baseline model is thus ŷ = f(I;ωf ), where I stands
for the whole X-ray image. The mapping f is approximated with a
ConvNet optimized to minimize the cross-entropy loss function:

Lclass = −
∑
j∈C

yj,c log(ŷj,c). (3.1)

3.3.2 Classification on Manual ROIs
Here, we investigated the influence of localizing a relevant ROI prior
to the classification. The ROI was provided by our experts, who
manually drew a square containing the head and neck of the femur.
We opted for a ROI around the proximal femur instead of a smaller
ROI around the fracture, in order to provide contextual information.
The cropped image was then used as input to the CAD model.

This second variant is represented in Figure 3.2-(b), and defined as
i.e. ŷ = f(I′;ωf ), where I′ denotes the ROI. Independent ConvNets
were trained to approximate f(·) in the full image and ROI cases.
The later was trained as well with a cross entropy-loss but using a
ROI-only dataset.

3.3.3 Classification after Automatic Localization
In this subsection, we focused on an automatic method to localize the
ROI within the radiograph. We leveraged the bounding box anno-
tations, manually provided by our experts, to formulate a secondary
regression problem aiming to find the ROI in the radiograph. To
this end, an auxiliary ConvNet was trained to predict the center and
appropriate scale of the bounding box.

We model the localization g(·) and classification f(·) as indepen-
dent tasks, as depicted in Figure 3.2-(c). The model for classification
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is equivalent to the one from the previous section trained on manual
ROIs, while g(·) is modeled with a regression ConvNet minimizing
the loss:

Lloc = 1
2‖p− p̂‖2, (3.2)

where ‖ · ‖ is the `2-norm, and p̂ is the predicted bounding box. The
output localized ROI image is then obtained as I′ = Wp(I) and fed
to f(I′;ωf ), only for evaluation.

3.3.4 Model Architectures and Implementation
Details

For classification tasks, we used a Residual Network (ResNet-50)
[HZRS16a], which was pretrained on ImageNet. The network was
trained on radiographs, down-sampled from the original size to 224×
224 px. In our case, the categories are the classes in the AO standard
(type A and B) and not-fractured. Data augmentation techniques
such as translation, scaling and rotation were used. The localiza-
tion network was designed following AlexNet [KSH12b]. For this
architecture, full X-ray images were down-sampled to 227 × 227 px.
All the models were trained on a Linux based workstation equipped
with 16GB RAM, Intel(R) Xeon(R) CPU @ 3.50GHz and 64 GB
GeForce GTX 1080 graphics card. Stochastic Gradient Descent was
used for optimization. All the models were trained until convergence
(80 and 200 epochs for classification and localization, respectively).
The batch size and momentum were kept constant as 64 and 0.9 for
all three models. The learning rate was initialized to 1× 10−2 for the
classification models, and to 1 × 10−8 for the localization network,
the decay varied among the different models.

3.4 Experimental Validation
Dataset Collection and Preparation. X-rays of the hip and
pelvis of 780 subsequently sampled patients (69% female), with a
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Figure 3.3. Localization capabilities of the CAD system. Manually
delineated (green) and predicted (blue) bounding boxes for the region
of interest in the radiograph.

mean patient age of 75.7 years ± 13.2, diagnosed with proximal fe-
mur fractures between 2007 and 2017 at the trauma surgery depart-
ment of the Rechts der Isar Hospital in Munich were retrospectively
gathered in an anonymized manner. The collected images of each pa-
tient contained either anterior-posterior (a-p) and lateral view (4%)
or only the a-p image. The anterior-posterior views of the pelvis with
two hip joints and femora were parted into two, containing one femur
each. In most cases, one of the images showed a normal, not-fractured
contralateral femur.

Regarding the classification, we looked at two scenarios: fracture
detection (“not-fractured” vs. “abnormal”) and further division of
the “abnormal” class into types “A” and “B”. Type “C” fractures
were not included in the study as the number of cases was signif-
icantly lower than for the other classes. Such fractures are in fact
more common in children and follow a different treatment path. For
the two-class problem, 780 fracture images and 567 not-fractured im-
ages were considered. The same setting was used for the three-class
problem considering 327-type A-, 453-type B-fractures and 567-not-
fractured X-rays. The dataset was split patient-wise into three parts
with the ratio 70%: 10%: 20% to build respectively the training,
validation and test set in all presented experiments. To train and
test the CAD system, we collected class labels from three clinical ex-
perts: one trauma surgeon, one senior radiologist, and one 5th-year
resident trauma surgeon (under the supervision of the radiologist).
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Each of them evaluated a split of the dataset. The test set was de-
signed to have a class-balanced distribution between classes A, B
and not-fractured, consisting of (55, 60, 55) images, respectively. An
additional set of 55 not-fractured images was included for the bal-
anced comparison of the two-class scenario (not-fractured: 115 vs.
abnormal: 115).

Evaluation Metrics. We used standard classification metrics de-
rived from the confusion matrices: accuracy, precision, recall and
F1-score, and the Area Under the Curve (AUC) for the Receiver
Operating Characteristic (ROC) curve. To evaluate the localization
precision of our network, we reported the percentage of ROI cen-
ters that are contained in the manually provided bounding boxes.
The retrieval task was evaluated using the 11-point precision recall
curve [ZZ09].

3.5 Results

3.5.1 Classification on Full Radiographs
Two classification scenarios of proximal femur fractures were eval-
uated. First, the two-class fracture detection, i.e. differentiating
between not-fractured and abnormal cases. Second, discriminating
among three classes: not-fractured, type A- or type B-fracture. In
Table 3.1, we present the accuracy, precision recall and F1-score for
the classification of full X-ray images in two hierarchical scenarios.
The performance of the model is maintained when the number of
classes was increased from 2 to 3, with an average F1-score of 84%
and 83% respectively.

3.5.2 Classification on Manual ROIs
As it can be seen in Table 1, the use of a region of interest instead
of the full image increased all the classification metrics, showing the
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Figure 3.4. Clinical experts and CAD performance. Comparison of
specificity measuring the proportion of negatives correctly identified,
against sensitivity accounting for the number of positives correctly
found, for (a) fracture detection and (b) classification. The set of
colors distinguish the CAD system from the individual experts. The
filled shapes illustrate the first (triangle) and second (square) read-
ings. The mean performance of every expert is depicted by colored
circles, and the average clinical expert by a black circle.
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importance of localization as reported in [KAS+17a]. In this case,
the network visualizes the characteristics (location, shape, number
of fragments) of the fracture at a preferable resolution. F1-score im-
provement accounts for 12% (from 0.84 to 0.94) for fracture detection.
When the model has to differentiate between fracture type “A” and
“B”, due to the increased difficulty of the task, the improvement is
accounted for 5%. Previous work was reported for only fracture de-
tection, i.e. binary classification, our results with an AUC of 0.98 are
comparable to state-of-the-art [CHL+19, WLC+19b]. In addition, an
AUC of 0.95 was obtained for the three-class problem.

3.5.3 Classification after Automatic Localization
In Figure 3.3, some examples of the manually provided and the pre-
dicted bounding boxes are illustrated. Even though there is not a
unique way to define a bounding box, we found that the manually
defined bounding boxes always (100%) contained the center of the
predicted ROIs. Based on the metrics reported in Table 3.1, we ob-
served that the classification model performed similarly on the auto-
matically extracted regions (F1-score of 93%) and the ones manually
provided by the experts (F1-score of 94%). However, the automatic
localization removes the need of an expert intervention during test
time.

3.5.4 Expert-level Performance
In order to evaluate the relevance of the previously obtained results,
we compared the best-performing model against the individual per-
formance of three clinical experts. We asked three experts (a trauma
surgery attendant, a senior radiologist and a trauma surgery attend-
ing 1st year) to read the test-set twice with a 2 to 3-week interval
between the readings. The evaluation of this set of images took on
average 46 minutes. In Table 3.1, the average performance of the
experts in the two readings is reported. A ROC analysis was carried
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Figure 3.5. Classification robustness and informative disagreement
across scales. Percentage of agreeing predictions across different in-
put scales: [0.75, 1.00, 1.25, 1.50, 1.75, 2.00]. We gathered the predic-
tions of the scaled regions of interest, and quantified the number of
correctly classified for (a) fracture detection and (b) classification.
The boxplot shows the median and standard deviation of the sup-
port for all test images (in blue), correctly classified (in green) and
misclassified (in red).

out by using the ground truth as target classification. To this end,
ROC curves were built from the reciprocal relation between sensi-
tivity and specificity calculated for all the possible threshold values.
In Figure 3.4, only for visualization purposes, the x-axis has been
inverted, i.e. we show “Sensitivity” instead of “1-Sensitivity”. The
average performance between the two readings of each expert com-
pared to the others can be analyzed, but in this case, only one point
of the ROC space is obtained. According to the metrics in Table 3.1
and Figure 3.4, our CAD model, trained on manual ROIs, performed
similarly compared to the average expert results in fracture classi-
fication, and it performed even better regarding the binary fracture
detection task.

45



i
i

“main” — 2021/7/15 — 12:39 — page 46 — #70 i
i

i
i

i
i

A

A

A

A
B B

Fracture

Normal

Fr. type A

Fr. type B

Normal

a

b

B B

Figure 3.6. Projected 2D space learned by t-SNE. (a) Fracture
detection and (b) fracture classification. At the top part, we observe
that the model was able to differentiate and group left or right femur.
These two clusters were especially differentiated in the not-fractured
(“normal”) class. Moreover, within the abnormal examples, images
of type A and B were differentiated, even if the network was only
trained for binary classification. 46
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3.5.5 Robustness and Retrieval

Scale sensitiveness analysis. We further investigated the robust-
ness of our model against the variability of the scale of the predicted
ROIs. The predicted bounding boxes were scaled by the following
values [0.75,1.00,1.25,1.50,1.75,2.00] and fed to the classification net-
work. We gathered the predictions at each scale and quantified the
percentage of correct predictions across scales, i.e. the number of
scaled ROIs supporting the correct classification. Results are re-
ported in Figure 3.5. They show a mean support for the correct
prediction of 93.82% and 88.35% with 12.34% and 16.58% standard
deviation for 2 and 3 classes, respectively. These values demonstrate
the robustness and stability of the CAD system to scale variations for
most of the cases. Moreover, the disagreement across different scales
was shown to be informative of spurious predictions, as suggested by
[CP18].

Clinical use case: image retrieval. Here we use the penulti-
mate layer of the network to produce a lower-dimensional representa-
tion of each image. We then measure the distance between an unseen
query image (from the test set) and the pool of retrievable images
(corresponding to the training set), in order to retrieve the most simi-
lar cases to the query. We verify the relevance of the retrieval system,
by projecting the learned feature representation of the testing images
to two dimensions by means of the t-SNE algorithm [MH08]. In the
embedded space, depicted in Figure 3.6, the points belonging to dif-
ferent classes for both the 2- and 3-class problems are successfully sep-
arated. We evaluate the classification model trained on manual ROIs
for retrieval in terms of precision and recall. The precision measures
the proportion of relevant images (of the same class as the query)
among the retrieved ones. On average, when retrieving 10 images, 9
of the proposed results are relevant. The recall evaluates how many
relevant images are retrieved out of the total number of relevant cases.
On average, with 100 retrieved images, we recover almost 70% of the
relevant cases in the training set. We summarize the results for dif-
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Figure 3.7. Precision vs. recall in the image retrieval task. The
dashed line represents our best-performing CAD model and the dot-
ted line the baseline. In black color is depicted the average perfor-
mance, while the colors stand for each of the classes.

ferent numbers of retrieved images [5, 10, 30, 50, 80, 100, 200, 300, 400]
in the 11-point precision-recall curve [ZZ09] in Figure 3.7. This curve
is based on the Euclidean distances between the query and retriev-
able images. We compared our CAD model, where the distances are
computed on the CNN embedded space, against the distances of the
“raw” images (baseline). The proposed CAD retrieval reaches a mean
average precision of 0.62 compared to 0.18 of the baseline.

3.6 Discussion
Proximal femur fractures present a huge socioeconomic problem es-
pecially in the elderly population. The adequate and exact gradu-
ation of these fractures according to the AO classification is highly
important for the following treatment and the clinical outcome of
the patients. Different to any prior approach, the presented work
focuses on a method capable of identifying multiple classes accord-
ing to a clinical classification standard such as the AO. Our CAD
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Correctly retrieved images Incorrectly retrieved images

Figure 3.8. Query and retrieval examples. Query images are sur-
rounded by a colored box: A-type fracture (blue) and B-type (green)
fracture. For each query, the closest 8 retrieved images are shown.
On average, when retrieving 10 images with our CAD model, 9 of the
proposed results present the correct classification.

framework exhibits a high F1-score and AUC of 94% and 0.98 respec-
tively for the two-class problem when differentiating between fracture
vs. not-fractured, and of 87% and 0.95 for the three-class problem
when not-fractured is further divided into type A- and B-fracture.
These classification metrics are comparable to state-of-the-art results
[CHL+19, WLC+19b]. These high values indicate that our CAD is
suitable to be implemented in the daily clinical routing of trauma
surgeons treating proximal femur fractures.

Clinical impact. In the short term, our system may assist the
trauma surgery residents during their daily clinical training by prof-
iting of a second reading from our CAD tool. In addition, the use
of retrieval cases provides an opportunity to focus training through
the query of similar and ambiguous cases. Since an inadequate initial
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classification may lead to an inappropriate treatment plan, it could
support residents in trauma surgery, especially in small peripheral
hospitals, to reach a more adequate decision. The most impactful
application of such a fracture classification tool would be in the ev-
eryday surgery planning, where it is likely that a CAD system could
help in reducing fatigue while improving accuracy, given that such
a system cannot be affected by bias, experience or workload. In
the trauma surgery department, often clinicians are faced with emer-
gency situations and decisions have to be made fast. Due to the
fact that our method is able to classify on the fly X-ray images, it
could also assist in triaging patients in the emergency room. In cases
of proximal femur fractures, time until diagnosis is critical. In fact
early surgery and mobilization have been identified as key factors
in reducing the number of complications after surgery and mortality
[FWD+18]. In treating fracture neck femurs (B-type fractures), clas-
sification remains the best option to reduce the risk of complications
like non-union and avascular necrosis in treating fracture neck femurs
[MB12]. In this context, a waiting time of 24 hours until surgery have
been shown to be associated with a greater risk of 30-day mortality
[PRW+17].

Adoption into clinical practice. In order to favor the integra-
tion of the proposed CAD system into the daily clinical routine, we
propose three layers of verification. First, along with the predicted
class labels, we provide as an additional output the localization of
the fracture in the form of a bounding box. A proper working sys-
tem provides a bounding box leaving out any irrelevant regions. If
it were the case that the system predicts an area of support outside
the expected anatomy, a supportive minimal interaction tool is pro-
cured, consisting of two clicks to manually select the ROI around
the fracture. Classification on the selected ROI leads to both a posi-
tive and significant improvement in the classification as described in
Results section. A second verification is the agreement of the class
predictions over several scales (see Figure 3.5), where we found that
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disagreement could point out misclassification examples. Finally, we
use the learned feature space of the network to retrieve similar images
(see Figure 3.8). Such a retrieval system may be used by residents to
learn variants of a single fracture type or even useful for experts to
analyze complex cases in comparison with the retrieved samples. In
this way, our method helps to speed up the diagnosis and treatment
planning for complex fractures cases.

Technical limitations. From the technical side, our dataset suf-
fers from a high imbalance in the distribution of the classes when
considering the subtypes of A- and B- fractures. Such scenarios re-
quire more complex (and thus less interpretable models) [KAS+17a]
or different optimization strategies [BLCW09, JSMK+19]. We fur-
ther plan to investigate weighting schemes, for example based on the
uncertainty of the model [GG16], or relying on triplet metric learn-
ing [HLCLT16]. Exploring bootstrapping strategies could be one way
of handling noisy labels [RLA+15]. One could also consider model-
ing label’s uncertainty to estimate the uncertainty due to intra or
inter-observer variability [TNA19].

3.7 Conclusions
We have proposed a CAD scheme for the detection and further classi-
fication of proximal femur fractures achieving results comparable to
state-of-the-art performance for the binary fracture detection task.
Moreover, we show for the first time, an in-depth evaluation of an
automatic system for the multi-class problem according to the AO
system. This level of categorization is crucial for planning the treat-
ment either conservatively or surgically, and if so, to choose the ade-
quate surgical implant. The localization of the region of interest was
highly accurate, all the predicted centers of the ROI were contained
in the original bounding box. The sensitivity of the system to the
size of the ROI was analyzed in detail; we found that disagreement

51



i
i

“main” — 2021/7/15 — 12:39 — page 52 — #76 i
i

i
i

i
i

in classification at different ROI sizes could signal the potential for
misclassification. We presented a clinical use case of retrieval to assist
the training of trauma surgery residents, especially for those working
in small peripheral hospitals. Finally, we discussed several strategies
of verification to favor the adoption of our CAD tool into the daily
clinical routine.
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2 classes 3 classes
Abnormal Type A Type B Normal Avg.

Full Radiographs
Accuracy 83% 86% 87% 94% 89%
Precision 78% 86% 78% 88% 84%

Recall 83% 67% 83% 95% 82%
F1-score 84% 76% 82% 91% 83%

Manual ROIs
Accuracy 93% 91% 91% 91% 91%
Precision 93% 98% 87% 81% 88%

Recall 94% 75% 88% 97% 87%
F1-score 94% 85% 88% 88% 87%

Automatic Localization
Accuracy 93% 89% 87% 94% 90%
Precision 94% 90% 77% 90% 86%

Recall 93% 73% 90% 92% 85%
F1-score 93% 81% 83% 91% 85%

Clinical Expert
Accuracy 92% 92% 89% 93% 91%
Precision 92% 90% 79% 94% 88%

Recall 92% 83% 92% 86% 87%
F1-score 92% 86% 95% 90% 87%

Table 3.1. Classification metrics for evaluation of the three com-
pared methods: full radiographs, manually defined ROIs (Manual
ROIs), and after automatically predicting the ROIs (Automatic Lo-
calization); and the average clinical expert. Accuracy, precision, re-
call and F1-score of our models. The highest metric values across the
three models are highlighted in bold for each metric and classification
type.
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4
The Importance of Equivariance

4.1 Introduction

Currently, numerous state-of-the-art solutions for medical image anal-
ysis tasks such as computer-aided detection or diagnosis rely on Con-
volutional Neural Networks (ConvNets) [LKB+17b]. The popular-
ity of ConvNets relies on their capability to learn meaningful and
hierarchical image representations directly from examples, resulting
in a feature extraction approach that is flexible, general and capa-
ble of encoding complex patterns. However, their success depends
on the availability of very-large databases representative of the full-
variations of the input source. This is a problem when dealing with
medical images as their collection and labeling are confronted with
both data privacy issues and the need for time-consuming expert an-
notations. Furthermore, we have poor control of the class distribu-
tions in medical databases, i.e. there is often an imbalance problem.
Although strategies like transfer learning [ZLZ+17a], data augmenta-
tion [VV17b] or crowdsourcing [ABA+16] have been proposed, data
collection and annotations is for many medical applications still a
bottleneck [CAL+17].

ConvNets’ requirement for big amounts of data is commonly jus-
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tified by a large number of network parameters to train under a non-
convex optimization scheme. We argue, however, that part of these
data requirements is there to cope with their poor modeling of spa-
tial invariance. As it is known, purely convolutional networks are not
natively spatially invariant. Instead, they rely on pooling layers to
achieve translation invariance, and on data-augmentation to handle
rotation invariance. With pooling, the convolution filters learn the
distinctive features of the object of interest irrespective of their loca-
tion. Thereby losing the spatial relationship among features which
might be essential to determine their class (e.g. the presence of plane
parts in an image does not ensure that it contains a plane).

Recently, capsule networks [SFH17] were introduced as an alter-
native deep learning architecture and training approach to model the
spatial/viewpoint variability of an object in the image. Inspired by
computer graphics, capsule networks not only learn good weights for
feature extraction and image classification but also learn how to infer
pose parameters from the image. Poses are modeled as multidimen-
sional vectors whose entries parametrize spatial variations such as
rotation, thickness, skewness, etc. As an example, a capsule network
learns to determine whether a plane is in the image, but also if the
plane is located to the left or right or if it is rotated. This is known
as equivariance and it is a property of human one-shot learning type
of vision.

In this work, we experimentally demonstrate that the equivari-
ance properties of CapsNets reduce the strong data requirements,
and are therefore very promising for medical image analysis. Fo-
cusing on computer-aided diagnosis (classification) tasks, we address
the problems of the limited amount of annotated data and imbalance
of class distributions. To ensure the validity of our claims, we per-
form a large number of controlled experiments on two vision (MNIST
and Fashion-MNIST) and two medical datasets that targets: mito-
sis detection (TUPAC16) and diabetic retinopathy detection (DI-
ARETDB1). To the best of our knowledge, this is the first study
to address data challenges in the medical image analysis community
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Figure 4.1. Comparison of the flow and connections of ConvNets
vs. CapsNets. Eq. (1) shows the difference between the sigmoid and
squashing functions. Eq. (2) is a weighted sum of the inputs (Con-
vNets use bias). In CapsNets, cij are the coupling coefficients. In (3),
ûj|i is the transformed input to the j-th capsule/neuron. In CapsNets,
the input from the i-th capsule is transformed with the weights Wij.
While in ConvNets, the raw input from the previous neuron is used.

with Capsule Networks.
In the following, we focus on the image classification problem

characteristic of computer-aided diagnosis systems. Our objective is
to study the behavior of Capsule Networks (CapsNets) [SFH17] in
comparison to standard Convolutional Networks (ConvNets) under
typical constraints of biomedical image databases, such as a limited
amount of labeled data and class imbalance. We discuss the technical
advantages that make CapsNets better suited to deal with the above-
mentioned challenges and experimentally demonstrate their improved
performance.
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4.1.1 Capsule vs Convolutional Networks

Similar to ConvNet approaches, CapsNets build a hierarchical im-
age representation by passing an image through multiple layers of
the network. However, as opposed to the tendency towards deeper
models, the original CapsNet is formed with only two layers: a first
primary caps layer, capturing low-level cues, followed by a specialized
secondary caps, capable of predicting both the presence and pose of
an object in the image. The main technical differences of CapsNets
w.r.t. ConvNets are:

i) Convolutions are only performed as the first operation of the
primary caps layer, leading as usual to a series of feature channels.

ii) Instead of applying a non-linearity to the scalar outputs of
the convolution filters, CapsNets build tensors by grouping multi-
ple feature channels (see the grid in Fig. 4.1). The non-linearity, a
squashing function, becomes also a multidimensional operation, that
takes the j − th vector sj and restricts its range to the [0,1] interval
to model probabilities while preserving the vector orientation. The
result of the squashing function is a vector vj, whose magnitude can
be then interpreted as the probability of the presence of a capsule’s
entity, while the direction encodes its pose. vj is then the output of
the capsule j.

iii) The weights Wij connecting the i primary capsule to the the
j−th secondary capsule are an affine transformation. These transfor-
mations allow learning part/whole relationships, instead of detecting
independent features by filtering at different scales portions of the
image.

iv) The transformation weights Wij are not optimized with the
regular backpropagation but with a routing-by-agreement algorithm.
The principal idea of the algorithm is that a lower level capsule will
send its input to the higher level capsule that agrees better with its
input, this way is possible to establish the connection between lower-
and higher-level information (refer to [SFH17] for details).

v) Finally, the output of a ConvNet is typically a softmax layer
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with cross-entropy loss: Lce = −∑
x gl(x) log(pl(x)).

Instead, for every secondary capsule, CapsNet computes the mar-
gin loss for class k:

Lk = Tk max(0,m+−||vk||)2+λ (1−Tk) max(0, ||vk||−m−)2, (4.1)

where the one-hot encoded labels Tk are 1 iff an entity of class k is
present and m+ = 0.9 and m− = 0.1, i.e. if an entity of class k
is present, its probability is expected to be above 0.9 (||vk|| > 0.9),
and if it is absent ||vk|| < 0.1. Since the threshold is not set as 0.5,
the marginal loss forces the distances of the positive instances to be
close to each other, resulting in a more robust classifier. The weight
λ = 0.5.

As regularization method, CapsNet uses a decoder branch com-
posed of two fully connected layers of 512 and 1024 filters respectively.
The loss of this branch is the mean square error between the input
image x and its reconstruction x̂ both of size N ×M ,

LMSE = 1
N ·M

N∑
n=1

M∑
m=1

(x(n,m)− x̂(n,m))2) (4.2)

The final loss, is a weighted average of the margin loss and the re-
construction loss Ltotal = ∑Nk

k=1 Lk + α LMSE.

4.1.2 Medical Data Challenges
It is frequent for medical image datasets to be small and highly im-
balanced. Particularly, for rare disorders or volumetric segmentation,
healthy samples are the majority against the abnormal ones. The cost
of miss-predictions in the minority class is higher than in the majority
one since high-risk patients tend to be in the minority class. There
are two common strategies to cope with such scenarios: i) increase
the number of data samples and balance the class distribution, and
ii) use weights to penalize stronger miss-predictions of the minority
class.
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We propose here to rely on the equivariance property of CapsNets
to exploit the structural redundancy in the images and thereby reduce
the number of images needed for training. For example, in Fig. 4.1,
we can see a fundus image in which diabetic retinopathy is present.
There are different patterns present in the image that could lead to a
positive diagnosis. Particularly, one can find soft and hard exudates
or hemorrhages. While a ConvNet would tend to detect the presence
of any of these features to make a decision, CapsNet routing algo-
rithm is instead designed to learn to find relations between features.
Redundant features are collected by the routing algorithm instead
of replicated in several parts of the network to cope with invariance.
We claim that the above advantages directly affect the number of
data samples needed to train the networks. To demonstrate our hy-
pothesis we have carefully designed a systematic and large set of
experiments comparing a traditional ConvNet: LeNet [LBBH98] and
a standard ConvNet: Baseline from [SFH17], against a Capsule Net-
work [SFH17]. We focus on comparing their performance with regard
to the medical data challenges to answer the following questions:

◦ How do networks behave under decreasing amounts of training
data?

◦ Is there a change in their response to class-imbalance?

◦ Is there any benefit from data augmentation as a complemen-
tary strategy?

To study the generalization of our claims, our designed experi-
ments are evaluated on four publicly available datasets for two vi-
sion and two medical applications: i) Handwritten Digit Recognition
(MNIST), ii) Clothes Classification (FASHION MNIST), iii) Mitosis
detection, a sub-task of mitosis counting, which is the standard way
of assessing tumor proliferation in breast cancer images (TUPAC16
challenge [tup]), and iv) Diabetic Retinopathy, an eye disease, that
due to diabetes could end up in eye blindness over time. It is detected
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Conv1 Pool1 Conv2 Pool2 Conv3 - FC1 Drop FC2

LeNet 5× 5
6 ch

2× 2 5× 5
16 ch

2× 2
7 - 1× 1

120 ch 7
1× 1
84 ch

Baseline 5× 5
256 ch 7

5× 5
256 ch 7

5× 5
128 ch - 1× 1

328 ch 3
1× 1

192 ch
Conv1 Pool1 Conv2 Pool2 Caps1 Caps2 FC1 Drop FC2

CapsNet 9× 9
256 ch 7

9× 9
256 ch 7 1152 caps

8D
Nk caps

16D
1× 1

512 ch 7
1× 1

1024 ch

Table 4.1. Details of each of the architectures. For convolution, we
specify the size of the kernel and the number of output channels. In
the case of pooling, the size of the kernel. And for capsule layers,
first, the number of capsules and, in the second row, the number of
dimensions of each capsule.

by a retinal screening test (DIARETDB1 dataset). Next, we provide
some implementation details of the compared methods.

Architectures. Since research of capsules is still in its infancy, we
pick the first ConvNet, LeNet [LBBH98] for a comparison. Though
this network has not many parameters (approx. 60K), it is important
to notice the presence of pooling layers which reduce the number of
parameters and lose the spatial relationship among features. For a
fairer comparison, we pick another ConvNet with similar complexity
to CapsNet, in terms of training time, that has no pooling layers,
which we name hereafter Baseline and was also used for comparison
in [SFH17].

LeNet has two convolutional layers of 6 and 16 filters. Kernels
are of size 5x5 and stride 1. Both are followed by a ReLU and pooling
of size 2x2. Next, there are two fully connected layers with 120 and
84 filters. Baseline is composed of three convolutional layers of 256,
256, 128 channels, with 5x5 kernel and stride of 1. Followed by two
fully connected layers of size 382, 192 and dropout. In both cases,
the last layer is connected to a softmax layer with cross-entropy loss.
For CapsNet [SFH17], we consider two convolutional layers of 256
filters with kernel size of 9x9 and stride of 1. Followed by two capsule
layers of 8 and 16 dimensions, respectively, as depicted in Fig. 4.1. For
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each of the 16-dimensional vectors that we have per class, we compute
the margin loss like [SFH17] and attach a decoder to reconstruct the
input image. Details are summarized in Table 4.1.

Implementation. The networks were trained on a Linux-based
system, with 32 GB RAM, Intel(R) Core(TM) CPU @ 3.70 GHz
and 32 GB GeForce GTX 1080 graphics card. All models were im-
plemented using Google’s Machine Learning library TensorFlow 1.
The convolutional layers are initialized with Xavier weights [GB10].
All the models were trained in an end to end fashion, with Adam op-
timization algorithm [KB14], using grayscale images of size 28× 28.
The batch size was set to 128. For MNIST and Fashion-MNIST, we
use the same learning rate and weight for the reconstruction loss as
[SFH17], while for AMIDA and DIARETDB1 we reduced both by
10. If not otherwise stated, the models were trained for 50 epochs.
The reported results were tested at minimum validation loss.

4.2 Experimental Validation
Our systematic experimental validation compares the performance
of LeNet, a Baseline ConvNet and CapsNet with regard to the three
mentioned data-challenges, namely the limited amount of training
data, the class-imbalance, and the utility of data-augmentation. We
trained in total 432 networks, using 3 different architectures, under 9
different data conditions, for 4 repetitions, and for 4 publicly available
datasets. The two first datasets are the well known MNIST [LC10]
and Fashion-MNIST [XRV17], with 10 classes and, 60K and 10K
images for training and test respectively.

For mitosis detection, we use the histological images of the first
auxiliary dataset from the TUPAC16 challenge [tup]. There are a
total of 73 breast cancer images, of 2K × 2K pixels each, and with
the annotated location coordinates of the mitotic figures. Images are

1https://www.tensorflow.org/

62



i
i

“main” — 2021/7/15 — 12:39 — page 63 — #87 i
i

i
i

i
i

normalized using color deconvolution [VPS+16] and only the hema-
toxylin channel is kept. We extract patches of size 100 × 100 pixels
that are downsampled to 28×28, leading to about 60K and 8K images
for training and test respectively. The two classes are approximately
class-wise balanced after sampling.

For the diabetic retinopathy detection, we consider DIARETDB1
dataset [KkKV+]. It consists of 89 color fundus images of size 1.1K×
1.5K pixels, of which 84 contain at least mild signs of the diabetic
retinopathy, and 5 are considered as normal. Ground truth is pro-
vided as masks. We enhance the contrast of the fundus images by
applying contrast limited adaptive histogram equalization (CLAHE)
on the lab color space and keep only the green channel. We extract
patches of 200 × 200 pixels that are resized to 28 × 28. This results
in about 50K and 3K images for training and test respectively. They
are approximately class-wise balanced after sampling.

4.2.1 Limited amount of training data
We compare the performance of the two networks for the different
classification tasks when the original amount of training data is re-
duced to 50%, 10%, 5%, and 1% while keeping the original class distri-
bution. We run each of the models for the same number of iterations
that are required to train 50 full epochs using all the training data.
Early-stop is applied if the validation loss does not improve in the
last 20 epochs.

The results are shown in Table 4.2. For almost all scenarios Cap-
sNet performs better than LeNet and Baseline. We can observe in
Figure 4.2 how for MNIST the gap is higher for a small amount of
data and is reduced when more data is included. LeNet with 5%
of the data has a similar performance to CapsNet, and better than
Baseline, with 1% of the data for DIARETDB1. We attribute this
behavior to the structures that are present in this type of images.
All the experiments validated the significance test with a p-value <
0.05, except for those on the TUPAC16 dataset, we presume this is
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Figure 4.2. Mean F1-score and standard deviation (4 runs) for
different amounts of training data. Solid line: CapsNet, dotted line:
Baseline, and dashed line: LeNet.

associated to the CapsNet limitations that we present in Section 6.7.

Table 4.2. F1-scores using different amounts of training data.

Training Data 1% 5% 10% 50%
LeNet Base. CapsNet LeNet Base. CapsNet LeNet Base. CapsNet LeNet Base. CapsNet

TUPAC16 0.822 0.784 0.809 0.872 0.835 0.872 0.890 0.852 0.898 0.908 0.903 0.923
DIARETDB1 0.870 0.847 0.875 0.877 0.852 0.893 0.883 0.863 0.907 0.895 0.854 0.908
Fashion-M. 0.759 0.749 0.772 0.841 0.817 0.846 0.856 0.847 0.866 0.885 0.889 0.896
MNIST 0.909 0.916 0.943 0.961 0.966 0.975 0.975 0.978 0.985 0.987 0.989 0.992

4.2.2 Class-imbalance
For the medical datasets, we simulate class imbalance by reducing
to 20% one of the two classes. Initially, we reduce abnormal class
and, afterward, the healthy class. For the other two datasets, we
decrease two classes at the same time. For MNIST, we first consider
reducing the classes “0” and “1” and secondly, the classes “2” and
“8”. Similar for Fashion-MNIST, we reduce the classes “T-shirt/top”
and “Trouser”, and in the second scenario, “Pullover” and “Shirt”.
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Table 4.3. F1-scores for different class-imbalance scenarios.

Scenario Balanced Imbalanced 1 Imbalanced 2
LeNet Base. Caps. LeNet Base. Caps. LeNet Base. Caps.

TUPAC16 0.914 0.913 0.932 0.881 0.813 0.892 0.905 0.874 0.909
DIARETDB1 0.895 0.863 0.899 0.869 0.839 0.887 0.889 0.874 0.898
Fashion-M. 0.899 0.911 0.910 0.890 0.902 0.889 0.871 0.881 0.863
MNIST 0.989 0.991 0.991 0.988 0.989 0.993 0.985 0.987 0.992

Table 4.4. Mean F1-score with and without data augmentation.

Data Augmentation No Yes
LeNet Base. Caps. LeNet Base. Caps.

TUPAC16 0.904 0.892 0.914 0.914 0.913 0.932
DIARETDB1 0.883 0.864 0.895 0.892 0.863 0.899
Fashion-MNIST 0.899 0.911 0.910 0.902 0.911 0.913
MNIST 0.989 0.991 0.991 0.990 0.993 0.994

In Table 4.3 results are reported. Again, CapsNet surpasses the
performance of ConvNets for all cases, except for Fashion-MNIST
where the f1-scores are similar. At least one of the imbalance cases
verified the significance test for all datasets.

4.2.3 Data augmentation
In the last series of experiments, we compare the performance of
the three networks using data augmentation, a common technique
to increase the amount of training data and balance class distribu-
tions. The original dataset is augmented with ±10 degrees rota-
tions, with a translation of ±30 pixels for medical datasets, and with
flips (horizontal for Fashion-MNIST and, both horizontal and verti-
cal for TUPAC16 and DIARETDB1). MNIST and Fashion-MNIST
are augmented by 5%, for the other two datasets we consider the no
augmented version to be 50% (TUPAC16) and 90% (DIARETDB1)
smaller.

The performances in Table 4.4 show that, CapsNet without data
augmentation achieves a similar (TUPAC16, MNIST, Fashion-MNIST)
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or even better (DIARETDB1) performance than ConvNets using
data augmentation. All results are significant, the only Baseline for
MNIST is comparable to the performance of CapsNet. These results
confirm the benefits of equivariance over invariance.

4.3 Conclusion

In this work, we experimentally demonstrate the effectiveness of using
CapsNet to improve CADx classification performance under medical
data challenges. In particular, we demonstrate the increased general-
ization ability of CapsNets vs. ConvNets when dealing with the lim-
ited amount of data and class-imbalance. The performance improve-
ment is a result of CapsNets equivariance modeling, that is, its abil-
ity to learn pose parameters along with filter weights. Together with
the routing-by-agreement algorithm, this paradigm change requires
to see fewer viewpoints of the object of interest, and therefore fewer
images, in order to learn the discriminative features to classify them.
We have also reported limitations to this otherwise general improve-
ment of CapsNets over ConvNets, their improvement in performance
is significant but has a limit that we observed for the more complex
TUPAC dataset at 1% (5.5K training samples). Classification tasks
where the global spatial structure plays a role can better exploit the
advantages of CapsNets (DIARETDB1). One of the disadvantages of
routing-by-agreement is that is slower than regular backpropagation,
CapsNet with 8.2M parameters take about the same training time per
epoch than Baseline with 35.4M (a ResNet-50 has 25.6M parameters).
These architectures lack purposed layers, e.g. batch normalization,
that could help to ease the convergence. Depending on the num-
ber of classes, CapsNet and Baseline need between 1-3 minutes per
epoch, while LeNet runs in 1-2 seconds. Also, when visualizing the
images reconstructed through the encoder-decoder branch (Fig. 4.3),
we observe that they are blurry, especially for medical datasets with
complex backgrounds. The fully-connected layers of this branch seem
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Figure 4.3. Test input images and their reconstructions.

to be good enough to regularize the parameter optimization but lose
a lot of information. Our future work includes replacing these layers
with deconvolutions to get a better insight into the learned latent
space.

We recommend the use of capsule networks for medical datasets
where the structure is important and patterns appear in different
parts of the input images, as it is for retina. Our results confirm that
they perform better than standard ConvNets for the limited amount
of data, at least of the order of 10k. Another potential application
would be the detection of rare diseases or segmentation due to the
high performance under class-imbalance.
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Part II

Analysis of
Training Design
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5
The Impact of Ordering and

Pacing Training Samples

5.1 Introduction

Proximal femur fractures are a significant cause of morbidity and
mortality, giving rise to a notable socioeconomic impact [RYY+15,
GCG16]. Elderly population in the western world are especially af-
fected. The incidence of femur fractures increases exponentially from
an age of 65 and is almost doubled every five years.

Surgery is the most common and preferred treatment for proximal
femur fractures [SSW+15]. The exact classification of the fracture is
crucial for deciding the surgical procedure and choosing the surgical
implant if needed. The Arbeitsgemeinschaft für Osteosynthesefragen
(AO-Foundation) has established a hierarchical classification system
for fractures of all bones based on radiographs. For proximal femur
fractures, the AO classification has been beneficial, in terms of repro-
ducibility, when compared against other systems such as the Jensen
classification [BDE+15]. The AO standard follows a hierarchy ac-
cording to the location and configuration of the fracture lines, see
Fig. 5.1. Fractures of type-A are located in the trochanteric region,
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and fractures of type-B are those affecting the area around the femur
neck. Each type of fracture is further divided into 3 subclasses de-
pending on the morphology and number of fragments of the fracture.

The ability to adequately classify fractures according to the AO
standard based on radiographs is acquired through daily clinical rou-
tine in the trauma surgery department. Several years are needed until
experienced trauma surgeons are significantly differentiated from res-
idents. Inter-reader agreement varies from 66% among residents to
71% among experienced trauma surgeons [Zuc96]. To reach a precise
classification, medical students and young trauma surgeons rely on
a second opinion to choose the adequate treatment option for the
patient. Our work aims to provide support as a computer-aided di-
agnosis (CAD) system capable of classifying radiographs.

Convolutional neural networks (CNNs) are nowadays the model
of predilection for CAD. They have been rapidly integrated in nu-
merous medical applications [SRG+16a, SWS17, GLS+18, BRPC+20,
BLZ+18] due to their strong capacity to learn, directly from data,
meaningful and hierarchical image representations. However, their
feature extraction ability heavily depends not only on the optimiza-
tion scheme but also on the training dataset. To be properly trained,
CNNs need a large dataset representative of the population of interest
[KSH12a].

In general, in medical image analysis tasks, acquiring reliable and
clinically relevant annotated data remains a key challenge. Apart
from the intra- or inter-expert disagreement, typically, manual anno-
tations call for the time and effort of clinical experts. In addition,
medical datasets usually suffer from class imbalance due to difficul-
ties in collecting cases and the incidence of rare diseases. Finally,
medical image data needs also dealing with proprietary and/or pri-
vacy concerns. As a result, these datasets generally exhibit three
main challenging characteristics: (i) limited amounts of data, (ii)
class-imbalance, and (iii) uncertain annotations.

The most common approaches to alleviate these challenges have
been transfer learning [SRG+16a, ZLZ+17b, BRPC+20, SSY+19],
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data augmentation [VV17a] and semi-supervised learning [SSCY19,
SSY+19]. More recently, the attention has been shifted towards boot-
strapping or weighting strategies [RCS+17], sample mining [XDS+19],
active learning [SCN+18], and curriculum learning [TWH+18, YWL+19,
MBN+18, JSMK+19].

The underlying intuition of strategies such as reordering, sampling
or weighting, is that they can significantly impact the optimization
of CNNs during training. Towards this objective, we reunite and for-
mulate the above curriculum learning (CL) strategies to improve the
performance of fine-grained proximal femur fractures classification,
by dealing with the lack of large annotated datasets, class imbalance,
and annotation uncertainty. Inspired by the concept of curriculum in
human learning, CL presents the training samples to the algorithm
in a meaningful order (often by difficulty from “easy” to “hard”) and
has been shown to avoid bad local minima and lead to an improved
generalization [BLCW09].

Lately, training CNNs with ordered sequences has been shown to
improve medical image segmentation by gradually increasing the con-
text around the areas of interest [HGCB16, JGG+17, KDGBA19]. To
the best of our knowledge, only few works have explored sample re-
ordering for CAD with CNNS, for instance by extracting prior knowl-
edge from radiology reports [TWH+18] or medical guidelines [JSMK+19].

The ordering can be either fixed (e.g. set heuristically by a “teacher”
or domain-specific knowledge) or, in the absence of a-priori knowl-
edge, a self-paced order [KPK10] derived from the algorithm’s per-
formance (e.g. the loss). Our unified CL formulation encompasses
both approaches. We address the lack of prior knowledge to design
an ad-hoc curriculum, by providing a ranking criterion based on un-
certainty modelling. By using uncertainty to define our ranking, the
classifier favors samples that it has not yet properly learnt, thus guid-
ing it to explore “unseen” parts of the input space. We present three
manners to actually implement the curriculum data sequencing. The
first one is based on reordering the training set. The second uses a
sampling strategy, i.e. selecting increasingly growing subsets. The
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Figure 5.1. Examples of proximal femur fractures and their fine-
grained AO classification, adapted from [KMA+18].

last one employs a weighting scheme to give different importance to
the training samples.

To show the impact of our proposed method, we perform two
types of experiments. First, on the challenging problem of multi-class
classification of proximal femur fractures. This multi-class problem
is inherently imbalanced, as the frequency of the classes reflects their
incidence. Moreover, the adequate classification takes several years
of daily clinical routine in the trauma surgery department, limiting
the collection of annotations and leading to potentially noisy labels.
Thus, to deepen the understanding of the method and to verify its
effectiveness under these challenging data conditions, we design a
series of experiments on the MNIST dataset, controlling the amount
of data, class-imbalance, and label noise.

Contributions. In this work, we propose three CL strategies to
automatically schedule the order and pace of the training samples
for an improved multi-class classification. Our contributions are:

• We identify common curriculum learning elements among dif-
ferent data scheduling strategies, and present them within a
unified formulation.
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• We propose two types of novel ranking functions guiding the
prioritization of the training data.

• We leverage domain-specific clinical knowledge to define the
first scoring function.

• In absence of domain knowledge, we propose to estimate the
ranking of the training samples by dynamically quantifying the
uncertainty of the model predictions.

• We validate our strategies on a clinical dataset for the multi-
class classification of proximal femur fractures.

• With a controlled experimental setting, we confirm that our
method is useful in reducing the classification error under lim-
ited amounts of data, imbalance in the class distribution, and
unreliable annotations. We give recommendations about the
best approaches for each scenario.

This study is structured as follows. Section 6.2 covers CL re-
lated works that are relevant for the design of data schedulers. In
Section 6.3, the details of our proposed formulation are presented.
Section 6.4 describes the specifications of the experimental valida-
tion. Section 6.5 shows the classification performance. Section 6.6
discusses our findings, recommendations and future work. Finally,
Section 6.7 summarizes our conclusions.

5.2 Related work
Recently, CL, self-paced learning (SPL), active learning (AL) and
selection strategies have been studied to improve CNN-based image
classification performance. These methods rely on ranking the train-
ing samples according to some criterion. In the following, we highlight
some works that employ the two criteria related to our method: (i)
domain-specific prior knowledge and (ii) data and model uncertainty.
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Prior knowledge is leveraged in [TWH+18, JSMK+19, YWL+19,
MBN+18] to design a curriculum for classification. Yang et al. [YWL+19]
exploited SPL to handle class-imbalance, by combining the number
of samples in each class and the difficulty of the samples, which is
derived from the loss. Tang et al. [TWH+18] proposed to feed the
images in order of difficulty based on severity-levels mined from radi-
ology reports to improve the localization and classification of thoracic
diseases. Jiménez-Sánchez et al. [JSMK+19] exploited the knowl-
edge of the inconsistencies in the annotations of multiple experts and
medical decision trees, to design a medical-based deep curriculum
that boosted the classification of proximal femur fractures. Trying to
mimic the training of radiologists, Maicas et al. [MBN+18] proposed
to pretrain a CNN model with increasingly difficult tasks, before
training for breast screening. The pretraining tasks were selected
using teacher-student CL. In this work, we schedule our training
data based on a scoring function that ranks the samples according to
domain-specific prior knowledge or uncertainty. Different from pre-
vious works [TWH+18, JSMK+19, MBN+18], which only considered
reordering the training set, here we investigate two further curricu-
lum strategies, namely, subset sampling and weighting. Furthermore,
solely Yang et al. [YWL+19] targeted one of the mentioned data chal-
lenges: class-imbalance, whereas we investigate as well noisy labels
and limited amounts of training data.

The second criterion that we consider for defining a curriculum is
uncertainty. The estimation of uncertainty provides a way of system-
atically defining the difficulty of the samples. Xue et al. [XDS+19]
proposed online sample mining based on uncertainty to handle noisy
labels in skin lesion classification. In their work, uncertainty is ap-
proximated through the classification loss. However, the most com-
mon methods for estimating classification uncertainty, in the con-
text of deep learning, rely on Bayesian estimation theory, namely us-
ing Monte-Carlo (MC) dropout [GG16]. Uncertainty is probably the
most frequent criterion in AL selection strategies. Recently, Wu et
al. [WRL+18] combined uncertainty together with image noise into
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their AL scheme to alleviate medical image annotation efforts. Un-
certainty and label correlation are integrated in the sampling process
to determine the most informative examples for annotation. AL pays
attention to examples near the decision surface to infer their labels.
Similarly, we aim to gradually move the classification decision border
by adding examples of increasing ranking scores. We prioritize in our
second scoring function the most representative samples, letting un-
certainty guide their order, pace or weight. Although uncertainty has
been used as sampling criterion for AL, we employ this information,
for the first time, to rank and define our curriculum.

We validate our proposed curriculum strategies for the classifi-
cation of proximal femur fractures. Whereas most of the previous
work on femur fractures focuses on the binary fracture detection
task [BZOR+19, CHL+19, WLC+19b], we target the more challeng-
ing multi-class classification according to the AO standard [KAS+17b,
JSMK+19, JSKA+20].

Approaches to boost fracture classification accuracy comprise prior
localization, transfer learning or medical knowledge. The localization
of a region of interest before the classification of the full image has
been studied either in a weakly-supervised [WLC+19b, KAS+17b]
or in a supervised [JSKA+20] way. Knowledge transfer has been
investigated across image domains, i.e. using ImageNet dataset for
pretraining [UTG+19, BZOR+19], and across tasks, i.e. training first
on body part detection (easier task) and then focusing on the hip
fracture detection [CHL+19]. Medical knowledge has been proposed
to train a hierarchical cascade of classifiers [TVM+20] or to schedule
training data into a set of increasing difficulty [JSMK+19]. Tanzi et
al. [TVM+20] relied on a cascade of classifiers. However, this kind of
strategies are prone to propagate errors in multi-class classification.
Furthermore, our CL approach does not rely on a complicated mul-
tistage scheme. We do not introduce any further complexity to the
CNN.

In our previous work [JSMK+19], a series of heuristics, based on
knowledge such as medical decision trees and inconsistencies in the
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annotations of multiple experts, were proposed as a scoring function
to boost fracture classification performance. Here, we further pro-
pose two more strategies, and also provide an alternative mechanism
to rank the samples, based on prediction uncertainty, in case prior
knowledge is unavailable.

5.3 Method
Given a multi-class image classification task, where an image xi needs
to be assigned to a discrete class label yi ∈ {1, . . . , T}, our training set
is defined as X = {(x1, y1), . . . , (xN , yN)}. Assume a CNN model h
with parameters θ is trained with stochastic gradient descent (SGD).
During training, samples are typically randomly ordered. Our goal is
to instead schedule the order and pace of the training data presented
to the optimizer to better exploit the available data and annotations,
and thereby improve the classification performance.

To learn the best CNN model hθ∗ from the input data, a common
choice is to use empirical risk minimization:

L(θ) = Ẽ[Lθ] = 1
N

N∑
i=1

Lθ(xi, yi)

θ∗ = arg min
θ
L(θ)

(5.1)

where Ẽ stands for the empirical expectation, Lθ is the loss function
that measures the cost of predicting hθ(xi) when the correct label is
yi.

Optimization is conducted with SGD for a total of E epochs.
Typically, the objective function Lθ is non-convex and is minimized
in mini-batches of size B. Whereas convex learning is invariant to
the order of sample presentation, CNNs are not. In the later case,
the loss function usually presents a highly non-convex shape with
many local minima, so the order of sample presentation affects learn-
ing, and thus, the final solution. It has been empirically shown that
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the variance in the direction of the gradient step defined by easier
examples is significantly smaller than that defined by difficult ones,
especially at the beginning of training [NSW16, WCA18]. This sug-
gests that favoring the easier examples may increase the likelihood to
escape the attraction basin of an initial poor local minimum. Taking
into account the mini-batches, we can rewrite Eq. (5.1) as:

L(θ) = 1
N

N/B∑
j=1

B∑
k=1

Lθ(x̂k,j, ŷk,j), (5.2)

where x̂k,j is the k-th sample in the j-th batch, x̂k,j = xk+(j−1)·B, and
ŷk,j is the corresponding label.

We propose to modify Eq. (5.2) to schedule the training data.
To do so, first, we formalize two types of scoring functions to as-
sign a priority level to each data sample. The scoring is defined in
Subsection 5.3.1 either according to domain-specific prior knowledge
or to the samples’ uncertainty measured with MC dropout. Then,
in Subsection 5.3.2, we introduce the different components required
for reordering, pacing, and weighting the training data. Finally, we
cover the implementation details of the three variants of our unified
CL formulation in Subsection 5.3.3.

5.3.1 Scoring function definition
The key element of our approach is the definition of the scoring func-
tion s or, equivalently, the curriculum probabilities p, which corre-
sponds to normalized score function values. The formal definition of
the curriculum probabilities is presented in Subsection 5.3.2. The
curriculum allow us to sample the dataset and obtain a reorder-
ing function π that schedules the training samples. In this subsec-
tion, we present two alternative scoring functions. The first one is
static and based on some initial (domain) knowledge, as in classi-
cal CL [BLCW09]. The second one is dynamic and based on the
estimation of uncertainty, inspired by SPL [KPK10, WGY+19].
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Figure 5.2. Diagram illustrating the components of the proposed
unified CL method reuniting the three scheduling strategies: reorder,
subsets, and weights. Straight lines are employed after a Yes/No junc-
tion because the flow is split. Otherwise, dotted lines are employed
when there is no split.
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Prior knowledge

In this scenario, the initial scoring s(0) and, thus, curriculum prob-
abilities p(0), are specified based on domain prior knowledge. We
assume in this variant that the scoring values are defined per class:

s(0)(·, y = t) = ωt, (5.3)

where t ∈ {1, . . . , T} serves as index of the classes. ωt is defined
specifically for each task (or dataset). Once that the scoring values
have been initialized, they can be kept fixed or decayed towards a
uniform distribution [BLCW09]. In either case, as the curriculum
probabilities are predetermined a priori in Eq. (5.3), we refer to this
approach as static CL.

Prior knowledge can be obtained, for example, extracting key-
words from medical reports [TWH+18], based on the frequency of
samples [YWL+19, JSMK+19], employing medical classification stan-
dards or quantifying inconsistencies in the annotations [JSMK+19].
Specifically for this work, we define the initial probabilities for the
proximal femur fracture images based on the Cohen’s kappa coef-
ficient [Hal12]. This statistic is used to measure the agreement of
clinical experts on the classification between two readings. Basically,
the kappa coefficient quantifies the ratio between the observed and
chance agreement. To better understand and illustrate the potential
of CL, we also analyze our method on MNIST dataset. In this case,
we extract prior knowledge by ranking the per-class F1-score perfor-
mance after few epochs of training. The exact values used for our
experiments are specified in Subsection 6.4.3.

Uncertainty estimation

In absence of domain knowledge, we propose to estimate the priority
of the training samples by dynamically quantifying the uncertainty of
the model predictions. Uncertainty provides a way of systematically
ranking the training samples based on the model’s agreement on the
predictions, with the benefit of not requiring any prior knowledge. At
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each epoch e, we compute the uncertainty in predicting a sample xk,
and use such uncertainty as its scoring value sk. See Subsection 5.3.2
for the definitions of xk and sk. The goal is to emphasize samples
with high information gain at early stages of training, i.e. to rapidly
reduce the error in highly-misleading samples.

To estimate the uncertainty of the model predictions, we employ
MC dropout [GG16]. In this training regime, each epoch includes two
stages [LLT19]: uncertainty estimation and label prediction. In the
uncertainty estimation stage, we perform L stochastic forward passes
on the model under random dropout. The L estimators are used to
measure the uncertainty of the output of the model. In the prediction
stage, a single forward pass is performed. Then, the classification loss
is used to measure the difference between the prediction and the label.

Let σ ∈ RT be the (softmax) output of the CNN. This output
represents the probability distribution of the predicted label over the
set of the possible classes for sample x, i.e. P (y = t | x, θ) := σt. We
measure uncertainty as the entropy [Sha48] of the output distribution,
i.e. predictive entropy:

H(y|x, θ) = −
T∑
t=1

P (y = t | x, θ) · logP (y = t | x, θ). (5.4)

This measurement helps to discriminate points that are far from all
training data, yet the model assigns high confident prediction (low
predictive entropy). We aim to minimize the effect of these samples,
with a small weight or bringing them at a later stage in training
[SG18].

The output distribution P (y = t|x, θ) can be approximated using
MC integration:

P̃ (y = t | x, θ) = 1
L

L∑
l=1

P (y = t | x, θl), (5.5)

where P (y = t | x, θl) is the probability of input x to take class
t with model parameters θl ∼ q(θ), with q(θ) being the (dropout)
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variational distribution. We set the scoring function to be the esti-
mated predictive entropy, computed from the MC estimated output
distribution σ̃t = P̃ (y = t | x, θ):

s = −
T∑
t=1

σ̃t · log σ̃t. (5.6)

By assigning low scoring values to predictions with low predictive en-
tropy, we decrease the priority of samples with low information gain.
Note that in contrast with Eq. (5.3), here, the scoring elements si
are defined independently for each sample, and updated after each
epoch. Only few works measure uncertainty while learning the classi-
fication task [GGG+19]. To the best of our knowledge, our proposed
dynamic uncertainty-driven curriculum strategy is novel for CAD.

5.3.2 Data scheduler
In the following, we define the scheduling elements required for re-
ordering and pacing our training data: a scoring function s, curricu-
lum probabilities p, a permutation function π, a pacing function g,
and a weighting function α. The data scheduler takes as input the
training setX, the scoring and pacing functions, s and g, respectively,
and it outputs the reordered set/subset, partitioned in mini-batches.
All components are updated at each epoch e.

• The scoring function s : X −→ R ranks the curriculum pri-
ority of each training pair. The curriculum priority can take
various forms, such as difficulty or prediction disagreement.
An example (xi, yi) has higher priority than example (xj, yj)
if s(xi, yi) > s(xj, yj). We define si = s(xi, yi) and, in an abuse
of notation, use s to denote both the scoring function and the
vector (s1, . . . , sN).

• The curriculum probabilities p are obtained by normalizing the
score function values (while preserving the order and ensuring
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they add up to 1). For example, one can choose pi = si/||s||1,
assuming si ≥ 0. A pair (xi, yi) is more likely to be presented
earlier to the optimizer than a pair (xj, yj) if pi > pj.

• The reordering function π : [1, . . . , N ] −→ [1, . . . , N ] is a permu-
tation. It is determined by resampling without replacement X
according to the curriculum probabilities p.

• The pacing function g : N −→ N controls the learning speed by
presenting growing subsets of data. The batch size B is kept
fixed. The non-decreasing mapping g determines the subset
size NS ≤ N at each training epoch e, i.e. g(e) = N

(e)
S .

• The weighting function α : X −→ R favors the samples that have
higher priority according to the curriculum probabilities. These
per-sample weights are applied directly to the classification loss.

Taking into account the scheduling elements introduced, we can
rewrite the optimization loss at epoch e as:

L(e)
θ = 1

N
(e)
S

N
(e)
S /B∑
j=1

B∑
k=1

α̂
(e)
k,j · Lθ(x̂

(e)
k,j, ŷ

(e)
k,j), (5.7)

where x̂(e)
k,j = xπ(e)(k+(j−1)·B) corresponds to the k-th sample from the

j-th batch at epoch e after reordering π. The same relation follows
for its corresponding label and weight, ŷ(e)

k,j and α̂
(e)
k,j, respectively.

We will drop superscript (e) when no confusion arises. Also, we
simplify notation and use xk (and yk, αk) to refer to a given (already
reordered) sample (and label, weight). This equation encompasses
the three main curriculum strategies from the literature: reordering,
increasing subsets, and weighting.

5.3.3 Scheduling data with curriculum learning
In practice, any curriculum is implemented by assigning a predefined
or estimated probability pi to each training pair (xi, yi), as described
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in Subsection 5.3.1. Fig. 5.2 visualizes the data flow in the differ-
ent scheduling strategies, each of them being depicted by a diamond
shape: reorder, subsets, and weights. The scoring function s and
curriculum probabilities p are common to the three scheduling ap-
proaches, whereas the reordering function π is used in the reorder
and subset strategies.

The first mechanism, reorder, presents the samples to the opti-
mizer in a “smart” probabilistic order, instead of the typical random
permutation. This strategy aims to deal with low-priority cases at a
later stage of training [BLCW09, HW19, JSMK+19]. At the begin-
ning of every epoch e, the training set X = {(x1, y1), . . . , (xN , yN)}
is permuted to X(e)

π = {(xπ(e)(1), yπ(e)(1)), . . . , (xπ(e)(N), yπ(e)(N))} using
the reordering function π(e). This mapping results from sampling
the training set according to the curriculum probabilities p(e) at the
current epoch e. Mini-batches are formed from X(e)

π .
The second method, subsets, builds upon the reordered training

set and selects gradually increasing subsets at every epoch. The
purpose is to reduce the effect of outliers at the beginning of train-
ing [HW19, XDS+19, WGY+19]. Mini-batches are obtained from
X(e)
π,g ⊆ X, where X(e)

π,g are the first N (e)
S pairs of X(e)

π . The subset
size at every epoch N (e)

S is determined by the pacing function g. For
simplicity, in our experiments we choose g to be a staircase function:

g(e) = N
(e)
S =


N

(0)
S + e ·∆ if 1 ≤ e < ES

N if e ≥ ES

(5.8)

where ∆ = (N − N
(0)
S )/ES, N (0)

S is a predefined initial subset size,
and ES is the number of epochs before considering the whole training
set.

A counter τi is introduced to track the selected pairs. Their scor-
ing vector is decreased, thus favoring new pairs in the subsequent
epoch. We choose to update the scoring vector using an exponential
decay:

s
(e)
i = s

(e−1)
i · exp(−τ 2

i /10) e = 1, . . . , E. (5.9)
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The third approach, weights, assigns scalar weights to training
samples based on their curriculum probabilities [WGY+19]. We pro-
pose to weight the classification loss Lθ of each training sample in
Eq. (5.7), in the form of a weighted cross-entropy loss. The role of
the weights is to decrease the contribution to the classification loss of
samples with low priority. We choose the weights α̂k,j to correspond
to a per-batch normalization of the curriculum probabilities:

α̂
(e)
k,j =

p
(e)
k+(j−1)·B

max
m

p
(e)
m+(j−1)·B

=
p̂

(e)
k,j

max
m

p̂
(e)
m,j

. (5.10)

When the curriculum is driven by uncertainty, the resulting ap-
proach is similar to boosting [FSA99]. In the boosting method, mis-
classified examples are given a higher weight than correctly classified
ones. This is known as “re-weighting”. Following the same princi-
ple, we use the uncertainty at every epoch, in our curriculum data
scheduler, to update the values of the weights.

5.4 Experimental validation
In order to validate the positive effect of data scheduling on the classi-
fication performance, we perform experiments on two types of image
databases: (i) a real in-house dataset of a moderate size and natu-
rally suffering from imbalance and noisy labels, and (ii) the MNIST
dataset. The second one is used for additional analysis under con-
trolled experiments to further illustrate the potential of CL.

5.4.1 Datasets
Proximal femur fractures. Our clinical dataset consists of anonymized
X-rays of the hip and pelvis collected at the trauma surgery depart-
ment of the Rechts der Isar Hospital in Munich. Images of 2500×2048
pixels were gathered from a group of 780 patients. Each patient study
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contained one or two radiographs. Most of the images were anterior-
posterior (a-p), only 4% were side view. The collection of these ra-
diographs was approved by the ethical committee of the Faculty of
Medicine from the Technical University of Munich, under the number
409/15 S. The dataset consists of 327 type-A, 453 type-B fractures
and 567 non-fracture cases. Class labels were assigned by clinical ex-
perts according to the AO classification standard [KMA+18]. Each
type of fracture is further divided into 3 subclasses depending on the
morphology and number of fragments of the fracture, see Fig. 5.1.
Subtypes of the fracture classes are highly unbalanced, reflecting the
incidence of the different fracture types. In particular, the number
of images for the subclasses is as follows: type-A (114, 197, 16), and
type-B (79, 241, 133). Clinicians also provided square bounding box
annotations containing the head and neck of the femur. We lever-
aged these annotations, cropped and resized the image to 224× 224
pixels. The dataset was split patient-wise into three parts with the
ratio 70%:10%:20% to build respectively the training, validation and
test sets. We evaluate the classification performance of the 3-class
(type-A or type-B and non-fracture) and 7-class (fracture subtypes
and non-fracture) classification tasks. The train, validation and test
distributions were balanced between fracture type-A, type-B, and
non-fracture cases. To achieve an equal proportion of subtype rep-
resentation (of approximately 12%), data augmentation techniques
were used. Specifically, techniques such as translation, scaling and
rotation were combined.

MNIST. The MNIST handwritten digit database is publicly avail-
able1. It has a training set of 50000 examples and a validation and
test sets of 10000 examples each. Classes are equally represented.

1http://yann.lecun.com/exdb/mnist/
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5.4.2 Experimental Setting
We perform a comparative evaluation of the classification task with
five series of experiments. Our method is contrasted against its “anti-
” approach, i.e. the curriculum probabilities are complemented, “ran-
dom” criterion, i.e. the curriculum probabilities are assigned ran-
domly, and the “baseline” model. The baseline model does not con-
sider any data scheduling elements, and it is trained on randomly
shuffled versions of the whole training set.

In the first series of experiments, we examine the performance
of our method driven by prior knowledge. In the second series, we
consider the use of uncertainty to overcome the lack of prior knowl-
edge. Our clinical dataset inherently suffers from class-imbalance,
unreliable annotations and a limited size. The 7-class discrimination
task is challenging as reflected by i) the existing intra- and inter-
expert agreement (66% among residents vs. 71% among experienced
trauma surgeons); and ii) the long and shallow learning curve of
young trauma surgery residents who acquire the classification skills
during the daily routine. For the remaining experiments, we employ
MNIST, as a controlled environment, to investigate such challenging
scenarios. In the third series, we evaluate the classification perfor-
mance when training with limited amounts of data. In the fourth
series, we present the results that deal with class-imbalance. Finally,
in our last series of experiments, we discuss and show the performance
under the presence of label noise.

5.4.3 Implementation details
Architectures and optimization hyperparameters. We train
our models 10 times for 30 epochs, with an early stopping criterion
of no improvement in the validation set for 20 epochs. For the digit
recognition task, we use an upgraded ConvPool-CNN-C [SDBR14]
proposed by [LA17], illustrated in Fig. 5.3 of Suppl. Material. This
architecture replaces pooling layers by convolutional layers with a
stride of two. Besides, the small convolutional kernels greatly re-
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duce the number of parameters of the network. It yielded competi-
tive performance on several object recognition datasets (CIFAR-10,
CIFAR-100, ImageNet). For the fracture classification, we deploy a
ResNet-50 [HZRS16b] pretrained on the ImageNet dataset, on ac-
count of the limited size of our dataset and the benefits of transfer
learning [SRG+16a, SSY+19]. We limit our evaluation to those two
CNNs, since Weinshall et al. [WCA18] reported that CL lead to an
improved generalization performance with both ‘small’ and ‘large’
architectures. For both architectures, we use a mini-batch size of 64,
an initial learning rate of 1e−3, and a dropout rate for the fully con-
nected layer of 0.9 (0.7 for uncertainty estimation). Our ResNet-50 is
trained with SGD and a momentum of 0.9. The learning rate is de-
cayed by a factor of 10 every 10 epochs. ConvPool-CNN-C is trained
with Adam. For the weighting strategy, since the batch size is directly
related to the computation of the sample weights, we evaluated dif-
ferent batch sizes (16, 32, and 64). We found that the curriculum
is robust, achieving the lowest standard deviation for B = 64 (see
Table 5.8 in Suppl. Material). For the subsets strategy, we choose as
hyperparameters: the warm-up epochs ES = 10 and the initial subset
size N (0)

S to 25% of the training data size at each scenario. We evalu-
ated several warm-up epochs ES = {5, 10, 20} and sizes for the initial
subset N (0)

S = {25%, 40%}. Results for the different configurations
were comparable (see Tables 5.6-5.7 in Suppl. Material).

Prior knowledge.
• Proximal femur fractures. In this setting, we leverage, as prior

knowledge the intra-reader agreement from a committee of ex-
perts: a trauma surgery attendant with one year experience, a
trauma surgery attending and a senior radiologist. The scoring
values for the seven classes are the following:

ω = (0.69, 0.56, 0.62, 0.60, 0.56, 0.38, 0.92). (5.11)

These values correspond to the multi-read kappa agreement
described in Results section [JKA+19].
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• MNIST. In absence of domain-specific knowledge, a CNN is
trained for 5 epochs. After observing the F1-score of each of
the classes, weights are assigned, by ranking the classes from
easiest (highest F1-score) to hardest (lowest F1-score). Then,
training is restarted from scratch using these particular weights.
We specify the values for the experiments with limited amounts
of data ωlimited, under class-imbalance ωimbalance, and with noisy
labels ωnoise:

ωlimited = (7, 10, 5, 4, 9, 1, 8, 6, 2, 3) (5.12)
ωimbalance = (3, 10, 7, 8, 5, 6, 9, 4, 1, 2) (5.13)

ωnoise = (8, 10, 9, 7, 5, 1, 2, 3, 4, 6). (5.14)

Prior knowledge Reorder Subsets Weights
Baseline Anti-CL CL Random Anti-CL CL Random Anti-CL CL

7-class 56.62 34.56 68.93* 58.90 50.89 66.50* 58.26 55.20 64.65*
3-class 81.71 60.46 86.23* 80.82 75.64 84.69* 80.66 75.33 85.66*

Uncertainty Reorder Subsets Weights
Baseline Anti-CL CL Random Anti-CL CL Random Anti-CL CL

7-class 56.62 61.29 64.70* 58.90 62.06 65.51* 58.26 58.29 62.29*
3-class 81.71 82.48 84.38* 80.82 82.79 84.90* 80.66 82.69 82.96*

Table 5.1. Fracture classification results over 10 runs: mean F1-
score. The highlighted indices in bold correspond to the best metric
per curriculum method. The underlined values correspond to the best
metric per scenario, i.e. 3-class (type-A or type-B and non-fracture)
and 7-class (fracture subtypes and non-fracture) classification. Sta-
tistical significance with respect to baseline is marked with *.

5.5 Results

5.5.1 Prior knowledge-driven CL
We evaluated the performance of the classifier with our data scheduler
and verified that establishing a curriculum based on prior knowledge
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Prior knowledge Reorder Subsets Weights
Baseline Anti-CL CL Random Anti-CL CL Random Anti-CL CL

30% MNIST 9.19 9.28 5.46* 5.60 13.17 4.29* 8.01 5.78 5.35*
50% MNIST 3.36 5.21 2.53* 3.96 4.21 2.05* 4.10 4.11 2.96*
100% MNIST 1.67 2.53 1.32* 1.96 1.78 1.17* 1.98 1.79 1.32*

Uncertainty Reorder Subsets Weights
Baseline Anti-CL CL Random Anti-CL CL Random Anti-CL CL

30% MNIST 9.19 8.94 4.42* 5.60 8.85 3.69* 8.01 8.50 5.62*
50% MNIST 3.36 3.23 3.04 3.96 4.21 2.15* 4.10 4.77 3.21
100% MNIST 1.67 2.29 1.45 1.81 2.02 1.17* 1.99 1.66 1.33*

Table 5.2. Digit classification results over 10 runs: mean error rate
(%). The highlighted values in bold correspond to the best metric
per curriculum method. The underlined values correspond to the best
metric per scenario, i.e. percentage of data. Statistical significance
with respect to baseline is marked with *.

Reorder Subsets Weights
Baseline Prior K. Uncertainty Prior K. Uncertainty Prior K. Uncertainty

Class-imbalance 2.53 2.08 2.05 1.79 2.08 2.31 2.22
Label Noise 9.46 8.76 8.42 8.28 7.24 8.49 5.42

Table 5.3. Comparison of curriculum strategies driven by prior
knowledge and uncertainty, under class-imbalance and label noise for
the MNIST dataset. Mean error rate (%). The highlighted values in
bold correspond to the best strategy per scenario.

is a good and suitable option to improve classification performance.
Results for proximal femur fracture classification are summarized in
Table 5.1-top, and for digit recognition in Table 5.2-top. We found
that the three variants helped to improve the performance of the two
datasets. In contrast with the anti-CL approach, accuracy was in
every case increased with respect to the baseline.

For MNIST, we found that training starting with an easy subset,
and gradually increasing the subset by adding more difficult samples
was the best strategy for the three scenarios as shown in Fig. ??-a.
A comparable improvement with respect to the baseline was found
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when we introduced the decay of Eq. (5.9) in reorder strategy and
performed instead sampling with replacement.

For fracture classification, the F1-score for 7-class was improved
up to 15% compared to the baseline. This score is comparable to
state-of-the-art results [JSMK+19] and experienced trauma surgeons
[vERMR10]. Tanzi et al. [TVM+20] reported an average F1-score
of 0.76 for the easier 5-class classification task on a private dataset.
The authors did not consider the subcategories of type-B fracture.
We hypothesize that by reordering the whole training set instead
of using subsets, we improve diversity by including the more chal-
lenging fine-grained fractures classification task. Furthermore, as
specified in Subsection 6.4.3, the CNN for fracture classification was
pretrained, whereas for digit recognition the CNN was trained from
scratch. From the results in Table 5.1, we can say that our method
is compatible with transfer learning.

5.5.2 Uncertainty-driven CL

Here, assuming lack of prior knowledge, we confirmed that uncer-
tainty estimation can guide the data scheduling. Results are pre-
sented in Table 5.1-bottom and Table 5.2-bottom for fractures and
MNIST, respectively. For the fine-grained 7-class proximal femur
fractures classification, the F1-score was improved up to 16% com-
pared to the baseline. In this case, we found that weighting the
samples was not as beneficial as reordering or sampling subsets. For
digit classification, the error rate was reduced up to 30%, see Fig. ??-
b. Anti-CL leading to a better performance than the baseline is a
behaviour also reported in [BLCW09]. Furthermore, we found that
this behaviour was sporadic and not statistically significant with re-
spect to the baseline, whereas the CL approach was consistent and
statistically significant.

92



i
i

“main” — 2021/7/15 — 12:39 — page 93 — #117 i
i

i
i

i
i

5.5.3 Limited amounts of data
Table 5.2 shows the digit recognition performance when restricting
the amount of training data to 30% and 50%. When employing our
curriculum strategies, the error rate for digit classification is reduced
in all cases. We found that employing subsets in the first epochs
based on uncertainty was the best strategy. Moreover, the effect of
our curriculum approach was more evident on the more challenging
scenario. The error rate was reduced by up to 59% training with only
only 30% of the data The fact that our CL schemes are beneficial with
limited amounts of annotated data makes it appealing for annotation-
efficient learning on other medical image datasets. Interestingly, we
found that when training with only 30% of data, the use of random
subsets also reduced the error rate. This behaviour goes along with
some findings about training with partial data [MA18].

5.5.4 Class-imbalance
We evaluated our proposed curriculum method in a controlled exper-
iment under class-imbalance with the MNIST dataset. Specifically,
the number of examples of two classes (digits 1 and 7) are limited
to 30% of the available cases. Results in Table 5.3 show that our
approach can cope with class-imbalance and improved over the base-
line result. Similar to the experiment with limited amounts of data,
the use of high-priority subsets, selected based on prior knowledge or
uncertainty, was the best approach. The subsets approach reduced
the error rate from 2.53% to 1.79%.

5.5.5 Noisy labels
Using MNIST and a controlled setting, we corrupted a randomly se-
lected 30% of training labels by assigning to them the subsequent
label digit, i.e. zeroes become ones, ones become twos, etc. Table 5.3
reports the mean error rate (%) when evaluating the digit classifi-
cation. We found that our three CL schemes were effective to deal
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with noisy labels and beat the baseline. The benefit of curriculum
under noisy regime is also confirmed on a recent work by Wu et
al. [WDN21]. We investigated the role of the curriculum probabilities
in the weights strategy. We found that the uncertainty-driven cur-
riculum assigns high-value weights to a larger amount of clean sam-
ples than the ‘random’ strategy (see Fig. 5.4 of the Supplementary
Material). Therefore, globally, the weighting curriculum gives more
importance to cleaner samples. In this case, prior knowledge was not
as beneficial as the estimation of model prediction uncertainty. The
best variant was using uncertainty to weight the classification loss,
reducing the error rate by 43%. The fact that uncertainty performed
better than prior knowledge was expected, since noise may affect in-
dividual samples and not entire classes. It is more reasonable to use
a scoring function that independently affects the samples. Moreover,
weighting seemed to be the stronger strategy to remove or reduce the
influence of the flawed labels.

5.6 Discussion

In this work, we bring together several ideas from the literature
and present them into a unified CL formulation. We experimentally
demonstrate the effectiveness of ranking and scheduling training data
for the challenging multi-class classification of proximal femur frac-
tures. Most of the previous work [BZOR+19, CHL+19, WLC+19b]
only target the fracture detection task, and Tanzi et al. [TVM+20]
does not obtain the same level of granularity. Our CL schemes achieve
state-of-the-art results on the 7-class classification task. Furthermore,
we also show the benefits of our CL strategies in a controlled set-up
with MNIST dataset, specifically, under demanding scenarios such as
class-imbalance, limited amounts of data and noisy annotations.

Inspired by classical CL, we leveraged prior knowledge to define
the data scheduling elements. In our formulation, this prior knowl-
edge only requires defining a scalar value per class. In case of mul-
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tiple experts annotating the dataset, this knowledge can be derived
from their intra- or inter-expert variability, or by asking the experts
about the perceived difficulty of each class. One limitation of this
approach is that the use of prior knowledge at the class level may
be less informative for the CNN than at sample level. When prior
knowledge is not available, we have shown that uncertainty can be
used to guide the optimization. We used MC dropout to estimate
uncertainty. This has the advantage of not requiring any change
in the CNN architecture, but it is computationally demanding. In-
deed, the training time is doubled in this variant. Instead, one could
investigate the use of a Dirichtlet distribution to parametrize the out-
put of the network. Then, the behavior of such predictor could be
interpreted from an evidential reasoning perspective, such as in sub-
jective logic [SKK18, Jøs18]. Future research directions for defining
the scoring function could be based on other uncertainty measures
such as quantifying out-of-distribution samples [HG16] or evidence
theory [SKK18]. We restricted our study to the predictive entropy of
the model, which includes both aleatoric and epistemic uncertainty.
We reckon that assessing separately each type of uncertainty could
be advantageous for some applications. Moreover, if training time
is not a concern, uncertainty does not only rank at the class but at
the sample level. This scoring function is more appropriate for noisy
annotations, since noise may affect individual samples and not entire
classes. It could also be interesting to investigate the CNN behaviour
when using prior knowledge alternatives at sample level, rather than
at class level.

We evaluated three CL variants that consisted of reordering the
whole training set, sampling subsets of data, or individually weighting
training samples. Our CL schemes are compatible with any architec-
ture and SGD training [WCA18]. They only require domain-specific
knowledge or the estimated uncertainty for the definition of the scor-
ing function, hence the curriculum. The reordering and subsets per-
formances are very similar but if the dataset is too complex for the
amount of available data (fractures), it seems better to keep the en-

95



i
i

“main” — 2021/7/15 — 12:39 — page 96 — #120 i
i

i
i

i
i

tire training set. We found similar performance when the curriculum
probabilities were decayed towards a uniform distribution [BLCW09]
or maintained stable in our reorder and weights variants. Regarding
the latter, we have proposed a simple and effective weighting scheme.
In future work, we plan to explore other weighting strategies, e.g. the
focal loss [LGG+17], which is well suited for class-imbalance scenar-
ios, and the large margin loss [EKM+18], which has been shown
beneficial under limited amounts of data and when noisy labels are
present.

5.7 Conclusions
In this work, we have designed three CL strategies for the multi-class
classification of proximal femur fractures. We validated the benefits
of our approach reaching a performance comparable to state-of-the-
art and experienced trauma surgeons. We have identified common
scheduling elements in the literature and unified their formulation
in our approach. We have proposed two types of ranking functions
to prioritize training data, leveraging: prior knowledge and uncer-
tainty. In controlled experiments with the MNIST dataset, we have
shown that the proposed method is effective for datasets with class-
imbalance, limited or noisy annotations. From our experiments, we
can conclude that for datasets of limited size or under the presence
of class-imbalance, the use of the subsets variant can lead to an im-
proved classification performance. One can either exploit prior knowl-
edge to achieve a better performance, or if the computational cost is
not an issue, leverage uncertainty. In the case of unreliable labels,
we found that the more advantageous approach is the combination
of weights with uncertainty.

Supplementary Material

96



i
i

“main” — 2021/7/15 — 12:39 — page 97 — #121 i
i

i
i

i
i

Prior knowledge Reorder Subsets Weights
Anti-CL CL Random Anti-CL CL Random Anti-CL CL

7-class 5.16E-04 3.03E-09 1.33E-01 5.61E-02 1.47E-06 3.26E-01 6.34E-01 1.48E-06
3-class 8.78E-04 5.43E-05 6.02E-01 7.20E-02 1.38E-02 4.73E-01 1.07E-02 1.57E-04

Uncertainty Reorder Subsets Weights
Anti-CL CL Random Anti-CL CL Random Anti-CL CL

7-class 7.10E-03 7.63E-05 1.33E-01 3.49E-03 2.27E-05 3.26E-01 4.11E-01 4.94E-05
3-class 4.80E-01 1.54E-02 6.02E-01 4.37E-01 2.98E-03 4.73E-01 3.10E-01 1.97E-02

Table 5.4. Statistical significance analysis for proximal femur frac-
ture experiments. T-test with respect to baseline. P-values below
0.05 are bold-faced.

Prior knowledge Reorder Subsets Weights
Anti-CL CL Random Anti-CL CL Random Anti-CL CL

30% MNIST 9.40E-01 8.70E-04 1.55E-04 1.62E-01 3.52E-06 3.29E-01 1.08E-04 6.03E-05
50%MNIST 4.58E-04 8.37E-04 7.19E-02 8.59E-02 6.83E-05 2.04E-01 5.69E-02 7.23E-03
100%MNIST 3.75E-03 1.22E-02 3.27E-01 3.88E-01 5.98E-04 3.09E-02 3.83E-01 9.95E-03

Uncertainty Reorder Subsets Weights
Anti-CL CL Random Anti-CL CL Random Anti-CL CL

30% MNIST 8.38E-01 7.16E-06 1.55E-04 7.77E-01 5.79E-07 3.29E-01 5.01E-01 3.11E-05
50% MNIST 5.87E-01 3.77E-01 7.19E-02 1.15E-01 1.86E-04 2.04E-01 8.47E-02 6.43E-02
100% MNIST 1.25E-02 6.41E-02 3.27E-01 3.44E-02 3.56E-03 3.09E-02 7.11E-01 2.49E-02

Table 5.5. Statistical significance analysis for MNIST experiments.
T-test with respect to baseline. P-values are reported.

Prior knowledge-driven CL Uncertainty-driven CL

N
(0)
S = 25% N

(0)
S = 40% N

(0)
S = 25% N

(0)
S = 40%

66.50 (66.02) ± 2.00 65.39 (65.76) ± 2.23 65.51 (66.32) ± 3.37 64.99 (65.63) ± 2.30

Table 5.6. F1-score for the 7-class fracture classification, mean (me-
dian) and standard deviation for the subsets strategy with different
initial subset sizes N (0)

S .

Prior knowledge-driven CL Uncertainty-driven CL

ES = 5 ES = 10 ES = 20 ES = 5 ES = 10 ES = 20
63.68 (63.42) ± 3.15 66.50 (66.02) ± 2.00 66.09 (64.04) ± 1.24 65.30 (65.78) ± 3.12 65.51 (66.32) ± 3.37 66.42 (66.68) ± 1.95

Table 5.7. F1-score for the 7-class fracture classification, mean (me-
dian) and standard deviation for the subsets strategy with different
number of epochs ES before considering the whole training set.
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Prior knowledge-driven CL Uncertainty-driven CL

B = 16 B = 32 B = 64 B = 16 B = 32 B = 64
65.35 (65.02) ± 2.97 65.69 (65.95) ± 2.11 64.65 (64.04) ± 1.56 64.66 (65.76) ± 2.27 66.92 (66.69) ± 2.18 62.60 (62.96) ± 1.63

Table 5.8. F1-score for the 7-class fracture classification, mean (me-
dian) and standard deviation for the weights strategy with different
batch sizes.

a b c

layer 1

a b c

layer 2

convolution + batch normalization + relu
pooling

dropout (50%)

a b c

layer 3

fully connected

Figure 5.3. Network architecture employed for the experiments
with the MNIST dataset.

Figure 5.4. Analysis of weights strategy under label corruption for
MNIST dataset. Number of samples with a weight higher than the
mean weight at that epoch. Random criterion and uncertainty are
depicted in orange and blue, respectively.
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6
Memory-aware Curriculum

Federated Learning

6.1 Introduction
Breast cancer is the most commonly occurring type of cancer world-
wide for women [SFS+21]. Early detection and diagnosis of breast
cancer is essential to decrease its associated mortality rate. The med-
ical community recommends regular screening with X-ray mammog-
raphy imaging for its early detection and follow-up. High-resolution
images showing tissue details need to be analyzed to spot abnor-
malities and to provide a precise diagnosis. Despite high incidence
(i.e. 12%)[SFS+21], the extensive breast cancer screening results pre-
dominantly in negative samples. Such class imbalance can be prob-
lematic for learning-based Computer-Aided Diagnosis (CAD) sys-
tems. A potential solution to mitigate the existing class-imbalance
and to increase the size of the annotated dataset is to employ data
coming from multiple institutions. However, sharing medical infor-
mation across (international) institutions is challenging in terms of
privacy, technical and legal issues. Secure and privacy-preserving
machine learning offers an opportunity to bring closer patient data
protection and data usage for research and clinical routine purposes.
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Figure 6.1. Left: Exemplary mammograms of benign and malig-
nant cases. Right: pixel-intensity distributions of different sites.

Federated Learning (FL) aims to train a machine learning algo-
rithm across multiple decentralized nodes holding locally the data
samples, i.e. without exchanging them. Training such a decentral-
ized model in a FL setup presents three main challenges: (i) system
and statistical heterogeneity, (ii) data protection, and (iii) distributed
optimization. We deal with the three challenges for breast cancer
classification in the context of FL.

The first challenge concerns system and data heterogeneity. For
the same imaging modality, different system vendors produce images
following significantly different intensity profiles. To cope with such
diversity, recent works [PHZS19, LJZ+21] have proposed to integrate
Unsupervised Domain Adaptation (UDA) into the FL framework.
UDA methods force the model to learn domain-agnostic features
through adversarial learning [PHZS19] or a specific type of batch
normalization [LJZ+21]. In this work, we follow an UDA adversarial
approach to handle non-IID data.

To address the second challenge, data protection, cryptographic
techniques [BIK+17] or differential privacy [DKM+06, DR+14] are
employed. Differential privacy perturbs each local model parameters
by purposely adding noise before uploading them to the server for
aggregation. We leverage differential privacy for data protection in
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our method.

The third challenge concerns the distributed optimization in the
FL setting. Individual models are trained locally on private data
and the central server is responsible for the global aggregation of the
local updates. Usually, the communication of the local models to
the server occurs a certain number of times every epoch. Therefore,
we propose a novel curriculum learning approach that provides a
meaningful order to the samples.

Contributions. In this work, we investigate for the first time the
use of Curriculum Learning (CL) [BLCW09] in FL to boost the clas-
sification performance while improving domain alignment. Our CL
approach is implemented via a data scheduler, which establishes a pri-
oritization of the training samples. We assign higher importance to
samples that are forgotten after the deployment of the global model.
We show that presenting the training samples in this order is bene-
ficial for FL, and also boosts the domain alignment between domain
pairs. Similar to [LGD+20] we employ federated adversarial learning
[PHZS19, PKM19] to deal with the alignment between the different
domains. However, unlike Li et al. [LGD+20] that analyze 1-D sig-
nals extracted from f-MRI, we study the screening of high-resolution
mammograms and use CL to boost the classification performance.
We validate our strategy on a setup composed of one public and two
private clinical datasets with non-IID intensity distributions. Differ-
ent from [RCS+20], who proposes a FL framework for breast density
classification and do not correct the misalignment between the do-
mains, we target the more complex task of breast cancer classifica-
tion. Furthermore, we propose a novel curriculum for the FL setting,
and explicitly handle domain shift with federated adversarial domain
adaptation.
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Figure 6.2. Memory-aware curriculum federated learning frame-
work with data privacy protection. (1) Local models share their
weights after the addition of Gaussian noise (dotted blue arrows).
(2) The global server performs the aggregation of the local models’
weights. (3) The resulting averaged model is deployed to each site
(purple arrows). (4) Local models are updated. The curriculum data
scheduler rearranges the training samples to prioritize samples that
were forgotten after the deployment of the global model.

6.2 Related work

6.2.1 Federated Learning
FL arises from the need of sharing sensitive medical data between dif-
ferent healthcare providers. FL has been mainly formulated in two
ways: (i) differential privacy [DKM+06, DR+14], i.e. each site trains
a local model with private data and only shares model parameters
[ZNH+18], and (ii) protecting the details of the data using crypto-
graphic techniques [BIK+17], such as secure multi-party computation
[MR18] and homomorphic encryption [HHIL+17]. We focus on the
differential privacy approach.

Only few FL works have been shown effective on medical im-
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ages. For instance, for brain tumor segmentation [SRE+18, LMX+19,
BWRA21]; for prediction of disease incidence, patient response to
treatment, and other healthcare events [HSQ+19]; and lately for clas-
sification [GHJK20, AdTBT20, LGD+20, WLD20, YFNA20]. Re-
garding breast imaging, only Roth et al. [RCS+20] have investigated
breast density classification. As in [RCS+20], we employ a client-
server-based FL method with Federated Averaging (FedAvg) [MMR+17b],
which combines local Stochastic Gradient Descent (SGD) on each site
with a server that performs model averaging. However, [RCS+20]
significantly down-sampled the input mammograms. Although low
resolutions are acceptable for density classification, the detail loss pe-
nalizes the malignancy classification task. Moreover, [RCS+20] did
not apply any domain adaptation technique to compensate the do-
main shift of the different pixel-intensity distributions. Here, we opt
for a different approach by working on high-resolution mammograms
with federated domain adversarial learning [PHZS19].

6.2.2 Domain Adaptation
Deep learning methods assume that samples from the training (source)
and testing (target) set are IID data. However, this statement does
not always hold. When the data distribution from the source and
target domains is related but different, there is a domain shift. Do-
main Adaptation (DA) aims to remove such shifts by transferring
the learned representation from a source to a target domain. When
target labels are unavailable during the training phase, UDA tech-
niques are employed. One of the UDA strategies is to learn a domain-
invariant feature extractor, which aligns the feature distribution of
the target domain to that of the source by: (i) minimizing a distance
of domain discrepancy [LWD+13], (ii) revisiting batch normalization
layers [CPC+17], or (iii) through adversarial learning [GUA+16].

Despite less annotation requirements, the above UDA approaches
need access to both source and target data [LCWJ15b, GL15]. How-
ever, in the federated setting, data is stored locally and cannot be
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shared. Recently, federated batch normalization [LJZ+21] and fed-
erated adversarial domain adaptation [PHZS19, PKM19] have been
proposed to deal with DA under the privacy-preserving requirement.
The work by Li et al. [LJZ+21] focus on mitigating feature shift,
i.e. the deviation in feature space, using batch normalization before
averaging the local models. Whereas Peng et al. [PHZS19] train in
an adversarial manner a feature extractor and a domain discrimina-
tor to learn a domain-invariant representation and alleviate domain
shift. The latter has been applied to f-MRI on 1-D signal data using
a multi-layer perceptron [LGD+20]. Different from the work by Li et
al. [LGD+20], we study federated adversarial alignment using a deep
convolutional neural network (ResNet-22) on medical images, in par-
ticular, high-resolution mammograms for breast cancer classification.

6.2.3 Curriculum Learning
CL [BLCW09] is inspired in the starting small concept from cognitive
science. CL methods follow a systematic and gradual way of learning.
A scoring function is defined to determine the priority of the training
samples. Based on this scoring function, which can measure, for
example, difficulty or uncertainty, the training samples are weighted
or presented in a certain order to the optimizer. This new order has
an impact on the local minimum achieved by the optimizer, leading
to an improvement in the classification accuracy.

CL has already demonstrated an improved performance in med-
ical image classification tasks, such as thoracic disease [TWH+18],
skin disease [YWL+19], proximal femur fractures [JSMK+19? ] and
breast screening classification [MBN+18]. These techniques exploit
either attention mechanisms [TWH+18], meta-learning [MBN+18],
prior knowledge [JSMK+19, YWL+19] or uncertainty in the model’s
predictions [JSMK+21].

There is little prior work in CL in combination with DA tech-
niques for general classification. Mancini et al. [MARC20] investi-
gated a combination of CL and Mixup [ZCDLP17] for recognizing
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unseen visual concepts in unseen domains. Shu et al. [SCLW19] ad-
dressed two entangled challenges of weakly-supervised DA: sample
noise of the source domain, and distribution shift across domains.
An extreme case of DA is that of zero-shot learning, in which at test
time, a learner observes samples from classes that were not observed
during training. Tang et al. [YBLS20] proposed an adversarial agent,
referred to as curriculum manager, which learns a dynamic curricu-
lum for source samples.

Different from [MARC20, ZCDLP17, SCLW19, YBLS20] that aim
at improving transferability between domains, we choose to schedule
the data within each domain. We design local data schedulers aim-
ing to improve the consistency between global and local models and
prevent forgetting samples that were previously correctly classified
by the local model. To this end, we monitor the training samples
before and after the deployment of the global model. We define a
scoring function that assigns high values to samples that have been
forgotten by the local model. Thus, our CL method builds locally
memory-aware data schedulers to avoid forgetting.

6.3 Methods

In this section, we formulate the details of our proposed curriculum
approach to locally schedule training samples in the FL setting. The
overall FL framework is depicted in Fig. 6.2. In this setting, we as-
sume that each local site has data storage, a computing server and a
memory-aware CL module. Nevertheless, at the global level, no imag-
ing data are stored and only computing is possible. In this type of FL
setting, it is common to share the model weights and aggregate them
at the central service. Moreover, local healthcare providers may have
diverse imaging systems resulting in datasets with different intensity
profiles. To ease the existing domain shift between the sites, we de-
ploy an UDA strategy that shares the latent representations (and not
the image data) between domain pairs. Both the model weights and
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the embeddings are blurred with Gaussian noise [LGD+20] to pro-
tect the private data using differential privacy [DKM+06, DR+14].
The memory-aware CL module compares the local and global model
predictions and assigns scores to each training sample. The data
scheduler leverages the curriculum probabilities to locally arrange
the samples.

In Subsection 6.3.1, the overall FL framework is presented. In
Subsection 6.3.2, we present the details of the FL setup with data
privacy-preserving scheme. Then, in Subsection 6.3.3, we introduce
DA into the framework. And finally, in Subsection 6.3.4 we present
the details of our proposed method leveraging CL to avoid forgetting
locally learned samples in the FL setting.

6.3.1 Multi-site learning
Next, we develop our method to learn a collaborative CAD system in
a decentralized multi-site scenario with a privacy-preserving strategy.
Let us denote each site’s dataset as Dn where n = 1, ..., N and N is
the total number of sites. Each dataset is composed of mammography
images Xn and their corresponding diagnosis Yn, i.e. Dn = {Xn, Yn}.
We aim to detect malignant cases by training a deep-learning model.
We formulate the learning objective as a binary classification task,
where malignant samples correspond to the positive class. Each local
model aims to minimize the cross-entropy loss over the training data
from a particular site n:

LCls,n = −
∑
nk

ynk
log(pnk

) + (1− ynk
) log(1− pnk

), (6.1)

where ynk
is the label of the k-th subject in the training label set

Yn = {yn1 , ...yn|Yn|
} and pnk

is the corresponding output probability
of the model for an input xnk

∈ Xn. As depicted in Fig. 6.3-left,
we split the deep learning model into a feature extractor F and a
classifier Cls. We refer to the output of the feature extractor as the
latent representation or embedding. In this work, we assume the
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most challenging scenario, in which we consider that each site has
mammography systems of different vendors (see Fig. 6.1).

6.3.2 Federated learning
We assume that data owners collaboratively train a global model
without sharing their image data. The term federated was coined
because the learning task is solved by a federation of participating
models (frequently referred to as clients), which are coordinated by
a central server.

The FL scenario is depicted in Fig. 6.2. We assume that each
local site has data storage and a computing node. Nevertheless, at
the global level, only computing is possible. Once that individual
models have been trained on private data, there are four key steps
in the FL training process: (1) local updates are sent to the global
server with privacy protection or encryption, (2) the central server
aggregates the local updates, (3) the aggregated model parameters
are deployed to the local sites, and (4) local models are updated.
After that, a new round of local training starts.

To apply SGD in the federated setting, each client n computes
gradients on the full local data for the current model, and the central
server performs the aggregation of these weights to build a global
update. Let us assume a fixed learning rate η and denote the gra-
dients at each client as gn. The central server computes the update
as wt+1 ←− wt − η

∑N
n=1

mn

M
gn, where mn is the number of images

at site n, and M the total number of images. We refer to this al-
gorithm as FedSGD. We can decompose the global update into local
client ones: first, one takes a gradient descent step from the current
model using each local dataset, ∀nwnt+1 ←− wt − η gn. Then, we let
the server make a weighted average of the resulting local updates
as wt+1 ←−

∑N
n=1

mn

M
wnt+1. Instead of performing one global update

after each local computation, we can add multiple iterations of the
local update to each client before the averaging step. Model updates
are performed at every communication round. Let us denote: Q,
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the total number of optimization iterations; τ , the communication
pace; and B, the local mini-batch size used for the client updates.
In each epoch, the communication between the models happens Q/τ
times. Federated averaging FedAvg [MMR+17b] is a generalization
of FedSGD, which allows local nodes to perform more than one batch
update on local data and exchanges the updated weights rather than
the gradients. We build on top of FedAvg to further consider domain
alignment.

6.3.3 Federated adversarial learning

Medical images collected from different healthcare providers may
originate from diverse devices or imaging protocols, leading to non-
IID pixel-intensity distributions. In this scenario, we try to compen-
sate the domain shift between every pair of domains. There is exten-
sive literature on UDA methods [GL15, HMZ18, ZPIE17]. However,
these works do not generally satisfy the conditions of a FL setting:
namely that data should be stored locally and not shared. To satisfy
the requirements of the FL framework and to address the domain
shift problem, we rely on federated adversarial alignment [PHZS19].
This method aligns the feature space by progressively reducing the
domain shift between every pair of sites. To preserve privacy, only
the noisy latent representations (Gaussian noise is added to each local
latent representation) are shared between the sites every communi-
cation round. This method leverages a domain-specific local feature
extractor F , and a global discriminator D. For source DS and target
DT sites, we train individual local feature extractors F S and F T , re-
spectively. For each (DS,DT ) source-target domain pair, we train a
domain discriminator D to align the distributions.

Optimization takes place in two iterative steps. In the first, the
objective for discriminating the source domain from the others is
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Fed
Federated Learning

Fed-Align
Federated Domain Adaptation

Figure 6.3. Architecture comparison of left: Fed and right: Fed-
Align. Colour dotted lines indicate backward passes with respect to
each loss function. (LCls: Eq. (6.1), LD: Eq. (6.2), LF : Eq. (6.3), F :
feature extractor, Cls: classifier, D: domain discriminator).

defined as:
LD(XS, XT , F S, F T ) =− E

xS∼XS
[logD (F S(xS))]

− E
xT∼XT

[log (1−D (Z ◦ F T (xT ))],
(6.2)

where Z(·) is the Gaussian noise generator for privacy preservation.
In the second step, we consider the adversarial feature extractor loss:

LF (XS, XT , D) =− E
xS∼XS

[logD (F S(xS))]

− E
xT∼XT

[log(D (Z ◦ F T (xT ))].
(6.3)

The weights of the feature extractor F and the domain discriminator
D remain unchanged for the first and second step, respectively.

6.3.4 Memory-aware curriculum federated learn-
ing

We propose to incorporate CL to improve the classification perfor-
mance of the federated adversarial learning approach. In particular,
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the implementation of the curriculum is in the form of a data sched-
uler. A data scheduler is a mechanism that controls the order and
pace of the training samples presented to the optimizer. We follow
our previous work [? ] and tailor it for the federated setting. In the
following, we introduce the required components to define our CL
method. We formalize the definition of the data scheduler through
three components: a scoring function ρ, curriculum probabilities γ,
and a permutation function π, and provide further details in the next
paragraph.

The key element of our approach is the scoring function ρ, which is
specific for FL. The scoring function ρ assigns a score to every sam-
ple, which normalized becomes a curriculum probability γ. These
probabilities are then used to sample the training set {X, Y }. The
sampling operation establishes a permutation π determining the re-
ordered dataset {Xπ, Yπ}, finally fed in mini-batches to the optimizer.

We consider a dynamic approach in which the scoring values are
computed at every epoch e for every training sample k. We get
the predictions at every site n, before and after the communication
between the models, obtaining local and global predictions ŷL, ŷG,
respectively. To avoid forgetting in the FL setting, our scoring func-
tion ρ assigns higher values (thus higher curriculum probabilities γ)
to samples that were forgotten. The order in which samples are pre-
sented to the optimizer is determined by the curriculum probabilities
γ. Our function is defined as:

ρ
(e)
k =

2.0 if ŷ(e)
L,k = yk and ŷ(e)

G,k 6= yk

1.0 otherwise.
(6.4)

We emphasize learning of samples for which the prediction changed
from correct to wrong after the model aggregation. Our memory-
aware curriculum federated learning method is summarized in Algo-
rithm 1 (Suppl. Material).
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6.4 Experimental validation
In order to validate the effect of data scheduling on the breast can-
cer classification, we perform experiments with two private and one
public dataset. We compare our proposed approach combining FL,
DA and CL, against FL alone and FL with DA.

6.4.1 Datasets

For our study, we employ 3 datasets of Full Field Digital Mammog-
raphy (FFDM), coming from three different vendors: Hologic, GE
and Siemens (INBreast [MAD+12]). The first two are private clinical
datasets, and the last one is publicly available. Institutional board
approvals were obtained for each of the datasets. Intensity profiles
[SMR+19] among the datasets varied significantly, and can also be
observed in Fig. 6.1. This variability is mainly due to the different
mammography systems and acquisition protocols used to generate
digital mammograms. We do not use any site-specific image filtering
to compensate the domain shift and we apply the same preprocess-
ing to the images from the three sites. The preprocessing consists of
standard normalization with mean subtraction and division by the
standard deviation. Each dataset was split into three parts with the
ratio approximately of 70%:10%:20% to build respectively the train-
ing, validation and test sets. Our problem is formulated as a binary
classification task. The number of samples per class and database
can be found in Table 6.1. The first class reunites benign findings
and normal cases, the second class contains only malignant cases con-
firmed with a biopsy. Mammography images are of different sizes, we
cropped the empty rows and columns, and resized to 2048 pixels in
height, and then padded to 2048 pixels in width. It is often the case
that important cues for diagnosis are subtle findings in the image,
which could be as small as 10 pixels in length [Mer14]. Therefore, we
do not apply any further downsampling and use a resolution of 2048
pixels, close to the original resolution.
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Hologic Siemens GE
Total Subjects 1460 410 852
Benign/Normal 730 287 421
Malignant 730 123 431

Table 6.1. Summary of the datasets used in this study.

6.4.2 Experimental Setting
We perform an in-depth evaluation of our proposed method Fed-
Align-CL with a series of experiments. First, we investigate the effect
of different pretraining strategies in the FL framework. Second, we
compare the classification performance of our approach against other
non-federated and federated approaches. Third, we investigate the
influence of DA and CL in the resulting feature embeddings of the
different methods.

6.4.3 Implementation details
Architectures. We employ as feature extractor F the architecture
proposed by Wu et al. [WPP+19], a ResNet-22 [HZRS16a] that is
adapted to take high-resolution images (∼ 4 megapixels) as input.
We initialize the feature extractor with the pretrained weights pro-
vided by Wu et al. [WPP+19]1. The weights of the classifier Cls and
domain discriminator D are randomly initialized. The classifier Cls
is formed by 3 fully-connected layers. The first two are followed by
batch normalization, ReLu activation, and dropout. The architecture
for the domain discriminator D is formed by two fully-connected lay-
ers with a ReLu activation in between and a sigmoid layer for the
final output. Details of the architecture of the models can be found
in Table 6.4 of the Supplementary Material. Our memory-aware CL
approach builds on top of the federated adversarial learning code pro-

1https://github.com/nyukat/breast_cancer_classifier
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vided by Li et al. [LGD+20]2. Different from [LGD+20] that employs
a multi-layer perceptron for 1-D f-MRI signals, we deploy a specific
CNN for high-resolution mammography images.

Hyperparameters. We train our models 5 times with different
seed initialization for the classifier Cls and domain discriminator D.
Adam optimization is used for 50 epochs with an initial learning
rate of 1e−5. We compute the adversarial domain loss LD, and also
introduce the curriculum data scheduling, after training the feature
extractor F and classifier Cls for 5 epochs. The dropout rate for
the classifier Cls is set to 0.5. The number of optimization iterations
Q = 120, and the local batch size Bn = bmn/Qc. In each epoch,
local models are updated according to the communication pace τ .
The shared weights are modified by the addition of random noise ε
to protect data from inverse interpretation leakage. We generated
Gaussian noise ε ∼ N(0, s2

hσ
2), assuming a sensitivity sh = 1 and

a variance σ2 = 0.001. We investigated different communication
paces τ = {10, 20, 40, 60}, and noise values σ2 = {0, 0.001, 0.01, 0.1}.
We did not find significant differences in classification accuracy for
the different communication paces τ . There is a direct correlation
between the amount of noise introduced in the system and the model
performance, we consider that adding a noise σ2 = 0.001 is a good
trade-off.

Evaluation metrics. For the classification task, we report the area
under the receiver operating characteristic curve (ROC-AUC) and
AUC for the precision-recall curve (PR-AUC).

6.5 Results
Initialization of local models. First of all, we investigate the
classification performance of the FL method with different pretrain-

2https://github.com/xxlya/Fed_ABIDE
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Initialization Hologic Siemens GE AVG

Local model 0.57 0.38 0.66 0.53
Scratch 0.73 0.52 0.65 0.63
DDSM 0.69 0.62 0.65 0.65
Wu et al. [WPP+19] 0.78 0.65 0.83 0.75

Table 6.2. AUC of the federated learning method using different
initialization approaches.

Hologic Siemens GE AVG
AUC PR-AUC AUC PR-AUC AUC PR-AUC AUC PR-AUC

Wu et al. [WPP+19] 0.65 0.69 0.67 0.75 0.79 0.78 0.70 0.73
trHologic - - 0.67 0.74 0.73 0.74 - -
trSiemens 0.59 0.63 - - 0.65 0.67 - -
trGE 0.64 0.66 0.72 0.79 - - - -
Single 0.83 0.84 0.83 0.84 0.85 0.83 - -
Fed 0.78 0.78 0.65 0.74 0.83 0.83 0.75 0.77
Fed-CL 0.80 0.80 0.63 0.72 0.81 0.81 0.75 0.78
Fed-Align 0.79 0.78 0.69 0.79 0.85 0.83 0.78 0.80
Fed-Align-CL 0.84 0.84 0.70 0.79 0.83 0.82 0.79 0.82

Mix 0.83 0.84 0.86 0.83 0.82 0.88 0.84 0.85

Table 6.3. Comparison of strategies. Median AUC and PR-AUC of
the 5 runs, except for Wu et al. [WPP+19]. The highlighted values
in bold correspond to the best federated method.

ing strategies. The first case Local model corresponds to pretraining
each model with their own private data. The second case Scratch to
a random initialization of the local model weights. The third case
DDSM corresponds to pretraining the models on the CBIS-DDSM
dataset [LGH+17]. The last case corresponds to initializing the model
with the publicly shared weights from Wu et al. [WPP+19].

In Table 6.2, the AUC for the different initialization strategies
is reported. We found that the best approach was using the pre-
trained weights from Wu et al. [WPP+19]. This behaviour is ex-
pected because their model was trained with a very-large private
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dataset. Moreover, the model in [WPP+19] was already pretrained
with the ImageNet [KSH12a] dataset. Interestingly as well, classifi-
cation results were better when all local models were initialized either
randomly or pretrained on a single dataset (DDSM) than when each
of them was pretrained on a small private dataset. Although DDSM
dataset is large, it is formed by screen film mammography instead of
FFDM, which explains the difference to Wu et al.’s weights.

Comparison with different strategies. To demonstrate the per-
formance of our proposed method (Fed-Align-CL), three non-federated
strategies and with two federated strategies. The non-federated strate-
gies consists of: (i) training and testing within a single site (Single);
(ii) training using one site and testing on another site (Cross); and
(iii) collecting multi-site data together for training (Mix). The later
does not preserve data privacy since this model requires access to all
training images and their respective classification labels. In Cross,
we denote the site used for training as ‘tr<site>‘. Also, we ignore
the performance of the site used for training in this row, and report
it in the row ‘Single’. The federated strategies consist of training a
client-server-based FL method with: (iv) FedAvg [MMR+17b], and
(v) federated adversarial learning [PHZS19, LGD+20]. We also per-
formed an ablation study to verify the individual contributions of
the domain alignment and the curriculum scheduling. Therefore, we
included in our comparison Fed-CL.

Classification metrics for breast malignancy classification are re-
ported in Table 6.3. In the first row, we include the performance of
Wu’s model [WPP+19] without further training. In the first place,
we present the results of the non-federated methods. First, as ex-
pected, we find that the Cross models do not generalize well across
manufacturers. Second, the individual models (Single) achieve an
average AUC of 0.83 for the three sites. When comparing our per-
formance to other works on the publicly available INBreast dataset
(Siemens), we achieve an AUC comparable to [WPP+19], but lower
than [RHU+18, SMR+19] with an AUC of 0.95. However, the later
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two works rely on region-wise ground truth: the first leveraging ROI
localization and the second one using patch pretraining. In contrast,
our models only rely on the full mammograms and their correspond-
ing classification label. As expected, the best performing model is
Mix, which is trained with mammography images and their corre-
sponding annotations from all sites, thus, not preserving privacy.

In the second place, we compare the federated approaches. First,
we find that the Fed-CL method improves on average the PR-AUC
with respect to Fed. However, the performance for the different do-
mains of these two methods can be uneven. The Fed-Align approach
helps to learn domain-invariant features that are beneficial for the
classification task. Finally, we can see that our proposed Fed-Align-
CL achieves on average the highest AUC and PR-AUC. We also find
a consistent improvement with our proposed method when the mod-
els are trained from scratch. However, the classification metrics were
better with the pretrained weights [WPP+19], as discussed in the
previous experiment.

Alignment of features in latent space. In order to visualize
the effect of the domain adaptation and curriculum scheduling tech-
niques, we show in Fig. 6.4 the two-dimensional t-SNE [MH08] projec-
tion of the embedded latent space. First, we can see that the features
learned by Fed are better clusterized according to the input domain,
i.e. Fed learns domain-variant features. Second, the combination of
FL with CL results in samples more spread along the manifold, al-
though still dependent on the domain. In the plots that correspond
to the models that perform DA, we can see that the input images are
better clusterized according to the label instead of the domain. We
find that the domain alignment is particularly helpful for Siemens.
Fig. 6.5 in Supplementary Material shows a similar behaviour for the
penultimate classification layer.
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6.6 Discussion
FL is a potential solution for the future of digital health [RHL+20a],
especially for classification tasks without access to sufficient data.
FL allows for collaboratively training a model without sharing pri-
vate data from different sites. A challenging aspect of sharing data
within FL is that related to legal regulations and ethics. Privacy and
data-protection need to be taken carefully into account. High-quality
anonymization from a mammography or electronic record has to be
guaranteed and in certain regions GDPR1 [HM15] or HIPAA2 [Ann03]
compliant. Privacy-preserving techniques for FL provide a trade-off
between model performance and reidentification. However, remain-
ing data elements may allow for patient reidentification [RHdM19].
Unless the anonymization process destroys the data fidelity, patient
reidentification or information leakage cannot be discarded.

Another challenging aspect of FL is that of training a model mix-
ing heterogeneous data, i.e. images obtained from different system
vendors or acquisition protocols. In this work, we have investigated
and confirmed the negative effect of domain shift for the malignancy
classification with multi-site mammograms. Models trained on single-
vendor images did not generalize adequately to others. The best per-
forming single-vendor model was the one for GE. Interestingly, we
found that our curriculum federated learning approach did not im-
prove in this case. This behaviour could be related to GE dataset
being more similar to the pretrained weights of [WPP+19]. Moreover,
due to the presence of domain shift between the datasets, the feder-
ated models that did not consider any domain adaptation performed
worse than those that included domain alignment. We attribute this
underperformance partially to the difference in the intensity profiles,
and partially to the sizes of the datasets being insufficient for good
generalization.

In this work, we have investigated the use of CL to boost the
1GDPR: EU/UK General Data Protection Regulation
2HIPAA: Health Insurance Portability and Accountability Act
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Figure 6.4. t-SNE visualization of the latent space obtained by Fed,
Fed-CL, Fed-Align and Fed-Align-CL in that order. The circles rep-
resent normal and benign samples, and the crosses malignant cases.
Each color represents a domain.

alignment between domain pairs and improve the overall classifica-
tion of breast cancer. In particular, our memory-aware curriculum
is implemented with a data scheduler that arranges the order of the
training samples. This order is defined with a scoring function that
prioritizes training samples that have been forgotten after the deploy-
ment of the global model. We believe further research will follow on
the use of CL in combination with FL and DA. We envision three ap-
proaches: those focused on prioritizing training (source) samples for
better classification; those focused on smartly weighting the aggrega-
tion of the local models; and those focused on improving alignment
between domains pairs. Similar to the work presented in this study,
other schemes can be designed to prioritize the (source) samples via
a data scheduler, for instance, motivated by boosting [FSA99]. Re-
garding the local model aggregation, one could deploy a CL-based
adaptive weighting for clients based on a dynamic scoring function
taking into account meta-information [YFNA20], and in this way,
help to cope with unbalanced and non-IID data. Finally, to improve
alignment, scoring functions could rely on computing the distance be-
tween (noisy) latent representations of the source and the remaining
domains to weigh each local model contribution.
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6.7 Conclusions
In this work, we have designed and integrated a CL strategy in a
federated adversarial learning setting for the classification of breast
cancer. We have learned a collaborative decentralized model with
three clinical datasets from different vendors. We have shown that,
by monitoring the local and global classification predictions, we can
schedule the training samples to boost the alignment between domain
pairs and improve the classification performance.
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Supplementary Material

Algorithm 1 presents the pseudo-code for our novel memory-aware
curriculum federated learning.

Architecture of the models. We provide the detailed model ar-
chitecture in Table 6.4. We denote convolutional layers as Conv,
max pooling layers as MaxPool, fully connected layers as FC, batch
normalization layers as BN, ReLu layers as ReLu, dropout layers as
Dropout and sigmoid layers as Sigmoid. For FC layers, the values
in brackets represent the input and output dimensions. For Conv
layers, we provide in this order: the input and output feature maps,
the kernel size, the stride and the padding. For MaxPool layers, we
provide in this order: kernel size, stride, padding and dilation. For
dropout layers (Dropout), we provide the probability of an element
to be zeroed. To define the feature extractor, we define a Block which
consists of a series of layers and specify for the convolutional layers:
the input and output feature maps, the kernel size, the stride for the
first convolution s1, the stride for the second convolution s2, and the
padding. In particular Block consists of: ReLu, BN, Conv(), BN and
Conv().

Statistical significance. In Table 6.5, we run a t-test between
every pair of strategies to verify the significance of our results. We
report the p-values between every federated strategy pairs.

t-SNE feature visualization. Figure 6.5 depicts the first two
components after applying t-SNE to the penultimate classification
layer of every federated method.
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input : N number of sites, X = {X1, ..., XN}
mammograms, Y = {Y1, ..., YN} classification
labels, {XS

i , Y
S
i }Ni=1 source dataset, {XT

j }Nj=1
target dataset, mn training size at site n,
fw = {fw1 , ...fwN

} local models, Z(·) noise
generator for privacy-preserving, Q number
of optimization iterations, τ communication
pace, E optimization epochs, Ew warm-up
epochs, {opt1(·), ..., optN(·)} optimizers

output: global model: gw
1

2 Initialize local models: {fw0 , ..., fwN
} ←− Wu et

al. [WPP+19]
3 for e = 1 to E do
4 if e > Ew then
5 for i = 1 to N do
6

7 Memory-aware curriculum
8 for k = 1 to mi do
9 Get the local ŷ(e)

L,k and global ŷ(e)
G,k

classification predictions ;
10 Compute the curriculum weights ρ(e)

i,k

with Eq. (6.4) ;
11 Obtain reordering function π(e)

i by
sampling with ρ(e)

i ;
12 Reorder training data:

{X, Y } −−→
π

(e)
i

{X
π

(e)
i
, Y

π
(e)
i
} ;

13 end
14 end
15 else
16 Random permutation π(e)

i ;
17 end
18

19 for q = 1 to Q do
20 for i = 1 to N do
21

22 Local classification
23 Get the next mini-batch from source site

i {XS

π
(e)
i ,b

, Y S

π
(e)
i ,b
}Bi∗Q
b=1 ;

24 Compute classification loss
LCls(fw(q−1)

i
(XS

π
(e)
i ,b

, Y S

π
(e)
i ,b

))) with Eq. (6.1)
;

25 Update w(q)
Fi
, w(q)

Clsi
←− opti(LCls) ;

26

27 if e > Ew then
28 for j = 1 to N and j 6= i do
29

30 Domain alignment
31 Get the next mini-batch from target

site j {XT

π
(e)
j ,b
}Bj∗Q
b=1 ;

32 Compute adversarial loss LD with
Eq. (6.2) ;

33 Update w(q)
Di
←− opti(LD) ;

34 Compute feature extractor loss LF
with Eq. (6.3) ;

35 Update {w(q)
Fi
, w

(q)
Fj
} ←− opti(LF ) ;

36 end
37 end
38

39 if q% τ = 0 then
40

41 Update global model

42 w̄
(q)
F ←−

1
N

∑N
i=1(w(q)

Fi
+ Z(w(q)

Fi,
) ;

43 w̄
(q)
Cls ←−

1
N

∑N
i=1(w(q)

Clsi
+ Z(w(q)

Clsi
) ;

44 Deploy weights to local model
45 for i = 1 to N do
46 w

(q)
Fi
←− w̄

(q)
F ;

47 w
(q)
Clsi
←− w̄

(q)
Cls ;

48 end
49 end
50 end
51 Return global model: gw ←− (w(E)

F , w
(E)
Cls)

Algorithm 1: Memory-aware Curriculum Federated
Learning
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Figure 6.5. t-SNE visualization of the penultimate classification
layer obtained by Fed, Fed-CL, Fed-Align and Fed-Align-CL in that
order. The circles represent normal and benign samples, and the
crosses malignant cases. Each color represents a domain.

Layer Configuration

F: Feature Extractor

1 Conv(1, 16, 3, 1, 1), MaxPool(3, 2, 0, 1)
2.1 Block(16, 16, 3, s1=1, s2=1, 1), Conv(16, 16, 1, 1)
2.2 Block(16, 32, 3, s1=1, s2=1, 1)
3.1 Block(16, 32, 3, s1=2, s2=1, 1), Conv(16, 32, 1, 2)
3.2 Block(16, 32, 3, s1=1, s2=1, 1)
4.1 Block(32, 64, 3, s1=2, s2=1, 1), Conv(32, 64, 1, 2)
4.2 Block(32, 64, 3, s1=1, s2=1, 1)
5.1 Block(64, 128, 3, s1=2, s2=1, 1), Conv(64, 128, 1, 2)
5.2 Block(64, 128, 3, s1=1, s2=1, 1)
6.1 Block(128, 256, 3, s1=2, s2=1, 1), Conv(128, 256, 1, 2)
6.2 Block(128, 256, 3, s1=1, s2=1, 1)

Cls: Classifier

1 FC(256, 128), BN, ReLu, Dropout(0.5)
2 FC(128, 64), BN, ReLu, Dropout(0.5)
3 FC(64, 2), Sigmoid

D: Domain Discriminator

1 FC(256, 4), ReLu
2 FC(4, 2), Sigmoid

Table 6.4. ResNet-22 architecture for breast cancer classification.
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Fed Fed-CL Fed-Align
AUC PR-AUC AUC PR-AUC AUC PR-AUC

Fed-CL 7.60E − 01 7.13E − 01 - - - -
Fed-Align 2.34E − 03 1.51E − 03 1.55E − 01 1.82E − 01 - -
Fed-Align-CL 1.46E − 04 9.82E − 06 5.75E − 02 3.29E − 02 5.65E − 02 1.42E − 02

Table 6.5. P-values to test statistical significance of the 5 runs
among the different methods.
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7
Conclusions

7.1 Summary of findings
In this dissertation we investigated different architectures and train-
ing strategies to learn deep-based representations for medical image
classification. We provided readers with a comparison of architec-
tures (between capsule and convolutional neural networks), and a
unified framework for scheduling data based on curriculum learning,
also for the case of a federated learning scenario.

7.1.1 Architectural design
We investigated in Chapter 3 the role of a localization architecture
prior to the classification with a CAD tool. In Chapter 4, we re-
searched the use of an alternative representation (capsules) through
a different optimization scheme (routing-by-agreement).

Importance of abnormality localization

In Chapter 3, we presented a supervised localization CNN for the
detection of a ROI in X-ray images. The localization was formulated
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as an auxiliary task prior to the classification of proximal femur frac-
tures. The localization of the ROI was highly accurate, all the pre-
dicted centers of the ROI were contained in the manually provided
bounding box. This work was done in the beginning of the thesis,
one could explore more recent supervised approaches like transform-
ers [CMS+20] or weakly supervised methods [RYY+20, HZKH20].
For our task, the localization of the femur, we found that formulat-
ing the localization as the regression of the bounding box’ coordinates
achieved satisfasctory results. We noticed that there was not a unique
scale for the definition of the ROI, i.e. how much context around the
fracture was required for a proper classification. Therefore, we ana-
lyzed in detail the sensitivity of the CAD system to the size of the
ROI. We found that disagreement in classification at different ROI
sizes could signal misclassified examples. This analysis was also car-
ried out before the now standard test time augmentation.

Impact and adoption into clinical practice of a CAD system

Given the results of Chapter 3, we made a preliminary analysis on
the clinical impact of a CAD tool for the classification of proximal fe-
mur fractures. In particular, we further discussed two possible ways
to integrate a CAD system based on our method to assist trauma
surgery residents (Section 3.6). First, we believe that such a fracture
classification tool could be used as a second reading. The tool could
help in reducing fatigue while improving accuracy, given that the ma-
chine predictions are not affected by experience or workload [Sum10].
Second, we showed that the CAD system can retrieve similar images
to a query radiograph. This tool could provide support for ambiguos
cases to reach a more adequate treatment decision. Both a second
reading or the retrieval tool could be particularly useful to assist the
training of trauma surgery residents, especially for those working in
small peripheral hospitals [Doi07]. To further verify our hypothesis
an usability study should be carried on.
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Equivariance to deal with class-imbalance or limited anno-
tations

In Chapter 4, we experimentally validated the effectiveness of us-
ing capsule networks to improve CAD classification performance un-
der medical data challenges. In particular, we demonstrated the in-
creased generalization ability of capsule networks vs. CNNs when
dealing with limited amounts of data and class-imbalance. We con-
sidered in our study a total of four datasets: two common com-
puter vision datasets: MNIST and Fashion-MNIST; and two medical
datasets: one for mitosis detection, and a second one for the detection
of diabetic retinopathy.

The performance improvement was a result of the ability of cap-
sule networks to model equivariance, that is, its ability to learn pose
parameters along with filter weights. Together with the routing-
by-agreement algorithm, this paradigm change required to see fewer
viewpoints of the object of interest, and therefore fewer images, in
order to learn the discriminative features to classify them. We found
that capsule networks without using data augmentation were able
to achieve a similar or better classification performance than CNNs
using data augmentation. These results confirmed the benefits of
equivariance over invariance.

Limitations of capsule networks

We also reported limitations to this otherwise general improvement
of capsule networks over CNNs. In particular, capsule’s performance
improvement was significant in many cases but had a limit for the
more complex datasets. Also, classification tasks where the global
spatial structure plays a role can better exploit the advantages of
capsule networks. However, the routing-by-agreement algorithm pro-
cesses images patch-wise, which can be suboptimal for some tasks.
Routing-by-agreement is also slower than regular backpropagation.
In addition, capsule networks lack purposed layers, e.g. batch nor-
malization, that could help to ease the convergence. Finally, when
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visualizing the images reconstructed through the encoder-decoder
branch (Fig. 4.3), we observed that they were blurry, especially for
medical datasets with complex backgrounds. The fully-connected
layers of this branch seemed to be good enough to regularize the pa-
rameter optimization but lost a considerable amount of information.

7.1.2 Training design
We presented in Chapter 5 a CL-inspired framework to schedule the
order and pace of training data. In Chapter 6, we dealt with a more
challenging scenario: collaboratively training a model without shar-
ing private non-IID data from different sites.

Leveraging medical knowledge to guide learning

In Chapter 5, we addressed the challenging task of fine-grained prox-
imal femur classification according to the AO standard. This task is
especially hard due to the high intra- and inter-expert disagreement
[vERMR10]. The assessment of medical images and their annota-
tion is often subjective, therefore, disagreement in the annotations
is frequent on medical image datasets. Our results confirmed that
the information derived from medical guidelines, decision trees or
inconsistencies in the annotations are effective and compatible with
modern DL approaches.

Scheduling data with prior knowledge and uncertainty

We identified in Chapter 5 common scheduling elements for multi-
class classification, and presented them in a unified CL framework.
The definition of the CL scheme was based on a scoring function,
that assigns a rank to each training sample, and a pacing function,
that schedules the proportion of the training data to be used. Both
functions are updated at every epoch. In our framework, we proposed
three variants based on the scoring and pacing functions. The first
one consists of a reordering of the whole training set, the second one
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proposes sampling a training subset, and the third one assigns weights
per training sample, following the same principle that a boosting
strategy [FSST97].

To prioritize training data, we proposed two types of ranking func-
tions leveraging: prior knowledge and uncertainty. We validated the
benefits of our approach for the classification of proximal femur frac-
tures based on the AO standard, and reached a performance com-
parable to state-of-the-art and experienced trauma surgeons. Fur-
thermore, in controlled experiments with the MNIST dataset, we
showed that the proposed method is effective for datasets with class-
imbalance, limited or noisy annotations. From our experiments, we
concluded that for datasets of limited size or under the presence of
class-imbalance, the use of the subsets variant leads to an improved
classification performance. One can either exploit prior knowledge
to achieve a better performance, or if the computational cost is not
an issue, leverage uncertainty. In the case of unreliable labels, we
found that the more advantageous approach was the combination of
weights with uncertainty.

Memory-aware curriculum federated learning

Our findings in Chapter 6 reinforce the importance of collaborative
learning, and highlight the relevance of DA in this setting. FL has
been highlighted as a potential solution for the future of digital health
[RHL+20a], especially for classification tasks without access to suffi-
cient data. The reason behind is that FL allows for collaboratively
training a model without sharing private data from different sites.

Training a model in a collaborative manner needs to address three
main challenges: privacy preservation, datasets with different pixel-
intensity distributions and distributed optimization. We dealt with
these challenges in the context of FL for breast cancer classification.
We investigated the use of CL to improve the overall classification of
breast cancer classification. Our approach was combined with UDA
to deal with domain shift while preserving data privacy. In particular,
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our memory-aware curriculum was implemented with a data sched-
uler that arranges the order of the training samples. This order was
defined with a scoring function that prioritizes training samples that
were forgotten after the intermediate updates with the global model.
We evaluated and verified the effectiveness of our curriculum feder-
ated learning approach for the classification of breast cancer from
mammograms on a collaborative setup with three clinical datasets
from different manufacturers (two private and an open database).

7.2 Future work
Based on the findings of this thesis, we discuss next open research
challenges that we have identified and that would be interesting to
address in the future.

7.2.1 Curriculum for dynamic routing
In Chapter 4, we presented an extensive evaluation of the use of
capsule networks. In this study, we employed two computer vision
datasets for multi-class classification, and two medical datasets for
binary classification. There have been many follow-up works regard-
ing capsule networks and dynamic routing [HSF18, LB18b, KSTH19,
STY+20]. To overcome the limitations of the input size and local
connectivity, LaLonde et al. [LB18b] proposed a locally-constrained
dynamic routing, which operates on large images (512 × 512 pixels)
and employs capsules in a U-Net fashion. In [HSF18], the encoding of
the pose is upgraded. Each capsule layer corresponds to a Gaussian
whose mean is the pose. A pose matrix is used instead of a vector,
and dynamic routing is updated to Expectation-Maximization rout-
ing. In [KSTH19] an unsupervised version of capsule networks called
stacked capsule autoencoders is proposed. Unlike the original capsule
network [SFH17], stacked capsule autoencoder is a generative model
with an affine-aware decoder. This forces the encoder to learn an
image representation that is equivariant to viewpoint changes. Also
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in an unsupervised manner, motion is exploited as a powerful percep-
tual cue for part definition in [STY+20]. Learning with FlowCapsules
is accomplished using flow estimation from capsule shapes and poses
as a proxy task. Given the nature of part-whole relationships within
capsule networks, the integration of CL to gradually discover more
complex relationships could be an interesting area of future research.
For instance, a CL approach could be formulated with a data sched-
uler controlling the order and pace of training samples presented to
the model.

7.2.2 Uncertainty and evidential theory

The sources of uncertainty in CNNs largely fall into two categories:
epistemic or model uncertainty and aleatoric or data uncertainty.
Epistemic uncertainty refers to uncertainty caused by a lack of knowl-
edge (about the best model). Aleatoric uncertainty refers to the
notion of randomness, i.e. the variability in the outcome of an exper-
iment that is due to inherently random effects. Because of their na-
ture, epistemic uncertainty refers to the reducible part of the (total)
uncertainty, whereas aleatoric refers to the irreducible part. In our
proposed CL framework (Chapter 5), we extracted uncertainty from
model’s predictions to define the scoring function of the CL method.
We restricted our study to the predictive entropy of the model, which
includes both aleatoric and epistemic uncertainty. We reckon that
assessing separately each type of uncertainty could be advantageous
for some applications. Samples’ uncertainty was measured with MC
dropout. Instead, one could investigate the use of a Dirichtlet distri-
bution to parametrize the output of the network. Then, the behavior
of such predictor could be interpreted from an evidential reasoning
perspective, such as in subjective logic [SKK18, Jøs18].
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7.2.3 How to define a curriculum

CL aims at making the cost function easier to minimize by increasing
the influence of simpler examples. In the work presented in this the-
sis, we showed that this can be achieved by sampling easier samples
more frequently or by assigning them larger weights in the new cost
function. We showed that, it is possible and benefitial, to integrate
knowledge extracted from medical guidelines or decision trees to im-
prove the classification task. We proposed this integration through
data schedulers. The data scheduler employs a scoring function that
ranks the priority of each training sample. The scores of the train-
ing samples were either defined a priori or they were dynamically
estimated based on the model’s performance. Depending on the clas-
sification scenario, defining the scoring function at the sample or class
level could be better. We discussed the advantages and disadvantages
of some cases, for example, we found more effective defining the score
function at the sample level when noisy annotations were present in
the dataset.

Other possibilities to ease the objective function could involve the
addition of extra regularization terms (constrained optimization) or
auxiliary tasks. Regarding the first aspect, Kumar et al. [KPK10]
proposed to jointly learn the CNN’s weights and sampling weights
by including a regularization term into the objective function. Build-
ing upon this idea, recent works focus on boosting the diversity of the
training data [JMY+14, ZB18, STD19]. The later one is particularly
interesting because also differentiates between class- and instance-
level for the curriculum definition. In this method, the data param-
eters leverage Knowledge Distillation [HVD15] to weigh the training
logits, i.e. these parameters act as temperature. In our study, we
restricted our methods to CL-based data schedulers, exploring the
definition of auxiliary tasks with a Teacher-Student setup or con-
strained optimization are interesting research directions.
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7.2.4 Curriculum for model aggregation in fed-
erated learning

Most works related to collaborative learning employ a client-server-
based FL method with Federated Averaging (FedAvg) [MMR+17b],
which combines local Stochastic Gradient Descent (SGD) on each
site with a server that performs model averaging. However, equally
weigthing the local models may not be optimal when there exists
statistical heterogeneity in data. Recently, alternative aggregation
strategies have been proposed [YFNA20, GHJK20]. Yeganeh et al.
[YFNA20] proposed inverse distance aggregation with the objective
of handling unbalanced and non-IID data for the classification of der-
matoscopic images. Inverse distance aggregation proposes to adap-
tively weight the contribution of the clients on the inverse distance
of each client parameters to the average model of all clients. Grim-
berg et al. [GHJK20] presented weight erosion for the task of survival
prediction. This method is conceptually related to local fine-tuning.
The difference is that the weight erosion scheme is optimized to dis-
card contributions from unhelpful clients as early as possible in the
training process.

Similar to [YFNA20, GHJK20], we could leverage CL for the
model aggregation in FL. Instead of defining the scoring and pac-
ing functions for the individual training samples, we could define
them for each site. Then, one would need to define a measurement
to prioritize the order or weight given to the local sites. One could
also choose to include all models in the aggregation or not. Further-
more, instead of establishing a priori the pace for the communication
rounds (between local model and global server), the communication
pace could be derived from local or global model’s performance.
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7.2.5 Knowledge distillation for federated learn-
ing

Knowledge distillation [HVD15] was proposed as a compression tech-
nique: to transfer the knowledge from a cumbersome model to a
lighter model. The model providing knowledge is referred to as
Teacher and the model learning the knowledge is referred to as Stu-
dent. Knowledge distillation is implemented by introducing a tem-
perature factor to obtain weighted logits, referred to as “soft targets”.
When the soft targets have high entropy, they provide more infor-
mation per training case than hard targets and much less variance
in the gradient between training cases. Therefore, knowledge distil-
lation can help to train models on much less data [HVD15] and to
overcome overfitting on corrupted labels [JZL+18]. The federated set-
ting resembles that of Student-Teacher learning. KD could be used to
compress the local models that are sent to the global server. CL could
be integrated in this framework to control the pace of compression
or the weights for aggregation of the model.

7.3 Final remark
We have enumerated in the previous section numerous future work di-
rections related to this doctoral thesis in the lines of capsule networks,
curriculum strategies and FL. Our work payed special attention to
the challenging aspects of medical image datasets: noisy labels, do-
main shift, class-imbalance and limited data. The clinical adoption
of DL will also depend on handling conditional challenges: bias, in-
terpretability, transparency, etc.
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A
Introduction to Convolutional Neural

Networks

A.1 Artificial Neural Networks
Artificial Neural Networks (ANNs) [ON15] are computational pro-
cessing systems heavily inspired by how biological nervous systems
operate. These networks are composed of a high number of inter-
connected computational nodes, frequently referred to as neurons,
which work in an entwine fashion to collectively learn to optimize an
expected output (from the input).

The basic structure of an ANN is composed of an input layer,
some hidden layers and an output layer, as depicted in Fig. A.1.
The input is usually a multidimensional vector. The learning process
consists of updating the hidden layers weights based on a loss function
evaluated on the output. Having multiple hidden layers stacked upon
each-other is oftenly referred to as DL.

CNNs are analogous to traditional ANNs in that they are com-
posed of neurons that are optimized through learning. The key dif-
ference between CNNs and ANNs are that neurons are connected
only locally and the remaining weights are shared reproducing the
convolution operation. This results into a reduction in the number
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Figure A.1. Artificial Neural Network representation.

Figure A.2. Convolution operation in a sliding window fashion to
obtain an activation/feature map.

of parameters, and some translational invariance. By using multiple
convolutional filters in a hierarchical fashion, CNNs encode image-
specific features, making this type of architecture better suited for
image-analysis tasks. Reducing the number of parameters is benefi-
cial for two reasons: (i) usually we do not have unlimited computa-
tional power and time to train these models, and (ii) models with a
large number of parameters are prompter to overfitting.

A.2 Convolutional Neural Networks
CNNs are comprised of three main elements: convolutional layers,
pooling layers, and fully-connected layers. A CNN architecture is a
stack of these layers. More advanced elements such as dropout layers
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or batch normalization layers. Investigating different type of layers
is an active area of research.

Convolutional layer

Convolutional layers are the key component of CNNs. The layers’
parameters define the weights of learnable convolutional kernels.

Each layer l is parameterized by four variables:

• kl: kernel size (positive integer)

• sl: stride size (positive integer)

• pl: padding applied to the sides of the input feature map (non-
negative integer)

These kernels are usually small, and are applied in a sliding win-
dow fashion across the input image. This layer convolves each filter
with a window of the input image, producing as an output a 2D ac-
tivation feature map. The network will learn kernels that produce a
high activation at given spatial positions of the input. Unlike ANN,
neurons in the CNN are only connected to a region of the input. Pa-
rameter sharing works on the assumption that features found relevant
on one region, should also be relevant on other image regions. The
dimensionality of this region is commonly referred to as the receptive
field of the neuron. At every convolutional layer, several kernels are
learned and their corresponding activation maps are stacked along
the depth dimension.

Pooling layer

Pooling layers aim to gradually reduce the dimensionality of the rep-
resentation. Thereby, also reducing the number of parameters and
the complexity of the network. The two most common pooling op-
erations are the “max” fmax or “average” favg functions. These two
are simple functions. For each kernel size kl in the input feature,
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Figure A.3. Example of a max pool operation with kernel size
kl = 2 and stride sl = 2.

fmax considers as output the maximum element within the region,
while favg computes the average. Although pooling layers perform a
different operation than convolutional layers, they are characterized
by the same parameters: kernel size kl, stride size sl, and padding pl.

Fully-connected layer

A fully-connected layer is composed of neurons connected to every
other neuron from the previous adjacent layer. This is analogous
to the way neurons are arranged in traditional forms of ANN (Fig-
ure A.1).

Dropout layer

Dropout is a regularization technique for reducing overfitting in CNNs.
The term dropout refers to randomly “dropping out” (or omitting)
neurons during the training process of a neural network [SHK+14,
WFGCB13]. It is sometimes also referred as dilution, which stands
for thinning of the weights.
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Batch normalization layer

Batch normalization layers [IS15] were initially introduced to miti-
gate internal convariate shift. The phenomenon of internal covariate
shift arises due to the randomness in the parameter initialization and
the randomness in the input data, which affect the layer’s output
distribution. During training, the mean and variance distribution
of the inputs to each layer change accordingly to the input batch.
However, recently Santurkar et al. [STIM18] argued that batch nor-
malization rather smooths the objective function, resulting into a
more predictive and stable behaviour of the gradients, allowing for
faster training.

Batch normalization layers present other benefits. One of them
is that the network can be trained with a larger learning rate with-
out the problem of vanishing gradients. Moreover, the regularizing
effect improves the network generalization properties, and it can re-
duce overfitting. After batch normalization layer, many other in-
layer normalization methods have been introduced, such as instance
normalization [UVL16], layer normalization [BKH16] and group nor-
malization [WH18].
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