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Abstract
Although tracking data have completely revolutionized the whole
data science paradigm in sports competitions with the largest eco-
nomic resources, its use in a European context is still unexplored.
In this thesis, three tracking-related contributions are presented in
the sports domain. First, the creation of vision-based basketball
multi-tracking methods is studied from a single-camera perspective,
which could be useful for clubs with low resources or for the recov-
ery of vintage games’ tracking. Then, tracking data in the soccer
domain is enriched by adding a novel layer of information: player
body-orientation, thus complementing 2D location data, which falls
short in some scenarios. Finally, the effect of proper orientation is
detailed in the most common soccer action: passes. By building
passing computational models that express which is the safest pass
at a given time, the relevance of orientation is contextualized, hence
proving that it is indeed a vital skill for soccer players.

Resum
Tot i que les dades de seguiment han revolucionat el paradigma de la
ciència de dades esportiva dins les competicions amb més recursos,
el seu ús en un context europeu és encara una incògnita. En aquesta
tesi, presentem tres contribucions dins d’aquest camp. Primer s’ha
estudiat, a través de la visió per computador, la creació de sistemes
de seguiment de jugadors/es de bàsquet utilitzant una sola càmera, el
que podria servir per equips amb pocs recursos o per recuperar dades
de partits antics. A més, donat que la manca de context és la princi-
pal limitació de les dades posicionals, la segona proposta en presenta
l’enriquiment amb una nova capa d’informació: l’orientació corporal
de jugadors/es de futbol. Finalment, s’ha analitzat l’impacte de l’ori-
entació mitjançant la creació de models computacionals de passades,
els quals esbrinen quina és la passada més viable i demostren que
l’orientació és una capacitat clau per als jugadors/es.





Preface

The most favorite present I have ever received was an empty
squared teacher-notebook that belonged to my parents. I was 9 years
old, and although it might seem odd, my main passion was to build
basketball rosters on paper based on simple player performance met-
rics; at that point, I had no clue about any statistical parameters
or distributions, but I was truly devoted about naive sports analyt-
ics. Apart from basketball, I also made some hand-crafted clustering
side-projects with Pokemon toys based on semantic features, but un-
fortunately, the lack of a universal dataset made me give up.
Once focused only on basketball analytics, I kept improving my am-
ateur General Manager skills, but I could never transfer that knowl-
edge into school-related projects: despite enjoying math and physics
(and struggling with the athletic side of sports in physical education),
I could not see myself talking about basketball statistics with my
peers or teachers. In the secondary school syllabus, there was simply
no place for that. When I was 16, the first opportunity of doing re-
search about my main interests emerged out of the blue: during the fi-
nal high-school thesis (the so-called Treball de Recerca in Catalunya),
I learned the coding basics and I built a digital coach board applica-
tion. At that point, my mind clicked, and I realized that, although I
would have had a blast taking hypothetical sports analytics courses,
I was not ready yet; the potential of sports’ advanced statistics goes
far beyond from hand-written teacher notebooks, and its basis re-
quires a high understanding level of math, data mining, and sports
science, as well as proficient dissemination skills. Therefore, during
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my engineering undergraduate studies, I also started coaching while
keeping an eye on doing sports-related research. In this context, my
bachelor thesis consisted of a couple of Computer Vision algorithms
that could automatically detect common basketball infractions, thus
being a potentially beneficial tool for officials, and two years later, I
trained classical Machine Learning models able to classify basketball
plays according to sensor data. By expanding both my engineering
and coaching background, the detail level of the published projects
improved, hence becoming slightly more relevant contributions to the
sports analytics field. Nevertheless, as it usually happens with bach-
elor / master thesis, the outcome of the presented papers was almost
purely theoretical and it did not have a direct practical application
that could help players / teams improving their performance. That
being said, the nature and the motivation of this PhD thesis are clear:
after so many years chasing a research-based career in sports analyt-
ics, I could finally spend four years learning and contributing to the
research field I have always enjoyed the most. During my thesis, I
tried not to stop coaching, and as a matter of fact, I managed to take
the assistant coach role in the Senior team of Cornellà (EBA division
2017-2018) and in the under-15 Futbol Club Barcelona youth team
(2018-2019); being in the actual court definitely made things easier
when creating projects from scratch.
Moreover, it has been proved that versatile skills are vital when work-
ing in this research field, and not only when training different models
of a single specific sport but also when working across sports. For
instance, Luke Bornn and Dan Cervone, who are two of the most
prestigious sports analysts, switched sports at some point: while
Luke has worked with both soccer (AS Roma) and basketball (Sacra-
mento Kings) teams, Dan contributed also to the research fields of
basketball and baseball (Los Angeles Dodgers). As a consequence,
although I have clearly stated that I am a basketball-based person,
I also wanted to contribute to another sports analytics field; bearing
in mind that I grew up in a town close to Barcelona whilst watching
Ronaldinho, Eto’o and Messi on TV, soccer was an obvious and a safe
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choice. Athletes of different sports (especially basketball and soccer)
share many contextual features, and ideal research outcomes should
be able to generalize properly to different scenarios. For this reason,
creating soccer-based models was an enriching experience, where I
had to adapt myself into a whole new analytics-related environment,
suddenly feeling like the 9-year-old Adrià together with his teacher-
notebook once again.
Apart from merging sports knowledge with data mining, another rel-
evant topic I would like to briefly discuss is communication. Since
data is a powerful complementary tool for sports teams, establish-
ing a data-driven communication culture is almost mandatory, and
although it seems a simple and immediate task, it is rather challeng-
ing. Once data sources have been identified and exploited, several
handicaps are faced. The first one is strictly related to the lack of
numerical-based background evidence: although it might be a huge
investment, clubs must be patient when getting started with sports
analytics, since few conclusions can be made when the gathered sam-
ple size is small; however, data scientists must be the ones to create
this non-rushing results-based culture. Moreover, in the vast major-
ity of scenarios, the methodology of the coaching staff has little to
do with scientific research groups: apart from being volatile, each
one is unique, and there is not a universal communication flow; by
learning how to ask the appropriate questions and by understanding
the coaches’ demands, the connection between analysts and coaches
improves. Finally, the last tricky facet of this data-driven culture
is the argot being used, especially in social networks and media; for
instance, currently, there is not a concrete and general definition of
big-data or advanced statistics in sports. These type of concepts are
useful to create awareness, but data scientists should be really care-
ful when describing and sharing their work, thus avoiding the use of
ambiguous trendy concepts. I truly believe that the power of data in
sports is complementary to the coaching staff knowledge and that it
can automate some scouting processes, so we should establish a fair
communication system where we concisely describe the data sources,
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their actual scope, and the possible potential outcomes. Since no one
can claim to have the perfect recipe for winning games, the dissemina-
tion of new contributions should be explained and shared accordingly.
Despite not having previous experience when it comes to sports an-
alytics dissemination, this thesis comes together with a large set
of non-academical contributions, where I aimed to create a solid
knowledge-plus-communication that could be used by coaches, an-
alysts, and fans to speak the same language when it comes to data.
First, I published an open-source side-project entitled BueStats, which
extracts automatic state-of-the-art statistical reports for all female
and male teams in FEB Competitions (Spanish Basketball Federa-
tion); I also created an open repository of Python Notebooks that
explains how to train basic Machine Learning models by using avail-
able Euroleague data. Besides, I also approached the complete com-
munication pipeline in the Keynote Talk I gave at the Computer
Vision in Sports Workshop at CVPR 2021. At the same time, the
main core of this presentation was built from several concepts that
were discussed in a set of talks I moderated, entitled Beyond the 4
Factors; in these virtual events, several basketball analysts presented
their methodology when building metrics / designing graphics for
coaches / communicating in a top competitive level, etc. Finally, I
have also been pursuing the awareness creation of sports analytics in
several talks / clinics / courses, either by presenting general topics
or by teaching from scratch how should data be handled in the very
first steps (Catalan / Basque / Spanish Basketball Federations or the
Catalan Society of Statistics).
Although it might seem a cliche-ish ending sentence, I really hope
you enjoy / learn while reading this thesis as much as I did when
writing it, I really mean it. Finding my own path into sports analyt-
ics has been a long and tough road, but it has definitely been worth
it. We will see what comes next!
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1 Introduction

Analytics have completely revolutionized the way we understand
the game. By switching from a purely intuition-based decision-making
process to a hybrid one, where data-driven processes complement
the existing know-how, professional teams have changed the exist-
ing sports patterns. Although the analytics pioneers emerged in the
baseball pitch together with the Moneyball-fever [60], the paradigm
shift was also transferred to other sports: it seems that the five well-
established basketball court positions do not exist anymore as such
[56], Formula 1 cars are constantly outperforming their speed peak
whilst optimizing pit stops, and soccer clubs are looking at brand new
features, such as player chemistry [7] in order to optimize their line-
ups. Moreover, the application of sports science is not only limited
to the competition itself, but it is also used in other multidisciplinary
facets of the game, such as injury prevention [78] or notable analysis
about conditions that might influence player performance [37].
In the past, assistant coaches were the ones in charge of crunching the
numbers, but nowadays the analyst figure has emerged. We consider
the analyst as a data scientist working for a team / organization, but
there is not a preassigned department for him/her a priori. This an-
alyst might be either included in the team’s coaching staff or in the
data science department; he/she can even be an outsourced resource
directly in touch with the coaching staff or the General Manager
(GM) of the club. But apart from defining the analyst skills and its
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role, it is vital to understand the core reasons for this abrupt change
in the last lustrum. In order to do so, we might have to analyze and
answer the following questions: what motivated teams to create data
science departments? Why did coaches start delegating certain tasks
to analysts?
Both answers converge in similar reasoning: the amount of gathered
data in the sports domain has raised substantially; therefore, coaches
must focus on their day-to-day scouting tasks, and complex analysis
will be conducted concurrently. Although baseline statistics such as
box scores have improved and are still a valid resource, what really
made a difference in terms of generated data was the inclusion of
new data sources. In this sense, the incorporation of Computer Vi-
sion (CV) techniques in sports scenarios [113] notably improved both
the precision and the quality of gathered data. Chiefly, the inclusion
of optical tracking data around 2013 in the most powerful leagues
across sports changed the whole context; i.e. spatial data, captured
by cameras, that indicates the movement of players in the court /
field / pitch. For instance, companies such as Stats Perform [103]
and Second Spectrum [97] emerged in the basketball domain as the
main tracking providers: by installing an array of cameras in the
ceiling of stadiums, their methods succeed in tracking players at a
notable temporal resolution (25 frames per second). Consequently,
the National Basketball Association (NBA) acquired their products,
and now all teams in the league benefit from this emergent technol-
ogy, thus bringing the game to the next level in terms of efficiency.

Tracking is the vehicle that will guide the reader throughout this the-
sis and the main common factor among its contributions. First of all,
and before getting started with the so-called advanced statistics, the
current need for tracking data in a European basketball context will
be studied from scratch from a technical perspective. Once different
low-cost CV-based suggestions are presented, the intrinsic limitations
of tracking are studied. Although pure tracking data are a powerful
source able to produce automatic statistics or to train meaningful
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predictive models, location information on its own may lack some
context, which might reflect the individual willingness of a player to
successfully interact with their teammates. Finally, by complement-
ing 2D tracking data with body orientation estimation, the new gen-
eration of analytics is presented in this manuscript. However, before
jumping into the thesis contributions and the corresponding proposed
methods, the upcoming Section aims to disseminate the evolution of
the sports analytics’ pipeline (in particular, basketball analytics). By
contextualizing the relevance of tracking data, the reader will be able
to realize the unlocked potential of applications that could be used
with this brand-new source of information.

1.1 From the Box Score to Tracking Data

Sports statistics themselves are nothing new, and basic studies
were already performed at the beginning of the 20th century. In
order to create a historical context, in this Section, basketball an-
alytics are discussed from the very beginning. Similar reports could
be written for other sports, especially the ones with a notable statis-
tics background, such as football or soccer.

Despite being obvious reasoning, the most important basketball stats
are the ones related to scoring. After all, the final outcome of a bas-
ketball game is binary and indicates whether a team has won / lost a
game, but this flag is always displayed by the final scoreboard, which
contains the minimum viable summary of a game and shows the total
number of scored points per team. Just by checking this scoreboard,
one can already make some assumptions: was the game close or not?
According to previous knowledge, was the result the expected one?
In order to back up all these guesses, more data are required. Team
stats can be a great resource; for instance, rebounding numbers can
show if that team dominated the boards and created extra shooting
opportunities, assists and turnovers can be useful to see game-control
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facets as well as ball-sharing, and by comparing shooting percentages,
it can be deduced if a team performed as expected or not. However,
team stats are obtained by adding individual contributions up, so
dissecting numbers among roster players might be required to get a
proper understanding of the overall game course. A clear example
of the need for individual performance quantification was provided
in March 1990 by Stacey King, former Chicago Bulls’ power for-
ward, who claimed: I will always remember this game as the night
that Michael Jordan and I combined for 70 points. If this sentence
is read straight-forward, one may think that both King and Jordan
scored 35 points each (or other similar combinations such as 40-30
or 30-40), but the truth is that while Jordan scored 69 points, King
only scored a single free throw. The complete summary of individual
(plus collective) stats is named box score (Figure 1.1), which is a
simple spreadsheet being used since 1930 approximately, and their
main listed contributions are: minutes, points, field goals (2-point
shots, 3-point shots, including both scored / attempted shots), free
throws, rebounds (offensive plus defensive), assists, steals, turnovers,
blocks, committed / received fouls. Moreover, Dean Oliver created
several contextualized statistics in his book entitled Basketball on
Paper [82], which shows several approaches on how to refine and to
normalize box score data in terms of game pace (possessions).

In order to exploit temporal information, play-by-play / eventing data
are analyzed, which attempts to contextualize the value of all events
depending on the game phase. Although the concept of value might
seem ambiguous, a simple example is provided. On paper, all 3-
point shots are worth the same in terms of score-board. However,
imagine a Player X, who scores three long-range shots in the second
half of the game while his/her team is trailing by a large margin,
and imagine a Player Y, who scores a 3-point-shot at the last second
of the game when his/her team was trailing by 2. In this situa-
tion, the contribution of Player X results in innocuous points that
do not help his/her team winning the game, while Player Y ’s game-
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Figure 1.1: Chicago Bulls’ box score against Cleveland Cavaliers on
March 28th 1990.

winner was crucial. As seen in Figure 1.2, Basketball play-by-play
summaries include a chronological timeline of events split in three
columns: (left / right) listed events regarding Team A / Team B,
together with a (center) temporal timestamp plus the current result
at the given timestamp. Apart from including stats-related events
(shots / rebounds...), eventing data also include game factors, such
as substitutions. Even though interpreting play-by-play data is way
more tedious than simple box scores, several processes have been
automated on top of temporal data to get valuable digits, such as
(regularized) plus-minus / on-off / clutch statistics.

Once analyzed the main contextual (and temporal) statistics, posi-
tional data come into play. Imagine the following situation: Team
A is playing against Team B, that have the ball in the last seconds
of a tied game. With contextualized and eventing data, the coach
of Team A might have some intuition about the player who is going
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Figure 1.2: Play-by-play summarized sample (Chicago Bulls against
Cleveland Cavaliers).

to attempt the final shot. Nonetheless, where is this player going to
shoot from? From box scores, the coach might know if a player is
likely to attempt a 2- or a 3-point shot, but deeper profiling of shooter
types is vital. Among all possible 2-point shots, players might excel
in short-, middle-, or long-range situations; similarly, the comfort
zone of three-point shots also varies depending on the type of player
(central / elbow / corner). In the same way that annotators tag all
actions with a timestamp to generate temporal data, they also create
shot charts, where the 2D location of all shots is tagged. From large
samples of shot chart data, and by using visualization tools such as
heatmaps, profiles and patterns are easily recognized. In these maps,
both the volume of shots and their accuracy can be printed, thus
providing the coach with key information regarding the opponents’
spacing tactics and characteristics. A couple of shot charts are dis-
played in Figure 1.3.
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Figure 1.3: Michael Jordan’s shot chart data: (left) single game,
(right) complete season.

Despite the mix of box score, eventing, and shot chart data results in
complete scouting reports, the overall detail level can still fall short
in elite scenarios. For instance, when analyzing a 3-point shot, ac-
cording to the previous sources, its outcome (scored / failed), timing
(minute), and 2D location are known, but some details are missing,
for instance: was that shot attempted off the dribble or in a static
spot-up situation? This question can be answered with playtype
data, which adds some metadata on top of every event. A summa-
rized individual example of playtype data is shown in Figure 1.4.
Nevertheless, who adds all these labels to the given events? Since
basketball is a fast sport with a lot of events in a reduced amount
of time, and given that table officials are already in charge of tag-
ging each action with its outcome, its timestamp, and (in the case of
shots) its location, this task is usually performed off-line. Not so long
ago, video-analysis software, such as LongoMatch [64] or NacSports
[79], was used to cut video footage into separate specific clips while
splitting and exploiting playtype data; normally, assistant coaches
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Figure 1.4: Michael Jordan’s playtype data.

Figure 1.5: Data from different sources are merged in order to build
scouting reports.

were the ones in charge of this type of time-consuming tasks. Lately,
clubs with economical resources have outsourced these processes to
specialized companies like Synergy [109] or InStat [53], that have
managed to build competitive teams of professional analysts who cut
basketball games from all over the world, thus offering clubs a lot of
playtype data without time-consuming shifts. A complete summary
of the above-explained statistics is visually displayed in Figure 1.5,
where it can be seen how different data sources complement each
other, thus reaching fine-grained scouting reports.

Other concerns regarding shot difficulty or defensive performance can
also emerge when the level of detail is deeper. On the one hand, by
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splitting shots between open / contested, coaches might detect shoot-
ing patterns that are hard to spot at first sight. On the other hand,
few defensive events are gathered in the above-mentioned basketball
data sources: shot chart data are mostly offensive-based, and in-
cluded data in box scores and play-by-play only display few defensive
items, such as steals, blocks, or committed fouls. Although both tasks
can also be performed through manual labeling, this time establish-
ing visual thresholds is not that simple; for example, it is pretty easy
to see (and to label) a pick and roll play that ends up with a scored
2-point shot, but what is the main criterion to decide whether if that
shot was contested or not? And more importantly, how can we know
if the faced defensive pressure was hard? Both answers go far beyond
from playtype, and the most appropriate way to get an automated
system that quantifies these facets is through tracking data, which
are obtained with a camera system (generally placed in the ceiling
of the arena) that manages to detect and to follow all players on the
court.

By using an accurate tracking system, apart from obtaining advanced
performance stats, we can also infer the previous analytics layers.
That is, a proper tracking system that gets the position of all court
players and the ball at a decent temporal resolution (usually 25 frames
per second) can be used to automatically generate: (1) a box score,
(2) play-by-play data if the gathered data are synchronized with the
game-clock, (3) accurate shot charts, (4) playtype data inferred with-
out time-consuming video editing tasks, and (5) tracking statistics.
Inside the latter group, the potential of tracking applications is un-
locked and may involve predictive models, defensive accurate metrics,
strategies and tactics, strength and conditioning factors for injury
prevention (displacements and speed), data visualization tools, etc.
Although basketball analytics have been discussed in this Section,
note that similar patterns apply to other sports such as soccer, where
the inclusion of tracking has been an inflection point for clubs and
organizations.



10

According to the Seth Partnow 1 (former director of basketball re-
search for the Milwaukee Bucks), at the end of the 2019-2020 National
Basketball Association (NBA) season, a total of 138 people were
working in the team’s data science departments across the league; sci-
entists are mainly focused on extracting beneficial numerical insights
from tracking patterns, transferring these to coaches, and ensuring
that analytics make a difference in the playing court. However, if
we compare the number of NBA data scientists with other leagues,
there is a huge drop. For instance, in the first division of the Spanish
league (Asociación de Clubes de Baloncesto - ACB), although sev-
eral coaches such as José Angel Samaniego, Lluís Riera, or David
Garcia made relevant contributions to the field, there is only one
data scientist (Fran Camba). The main difference is simple: in the
NBA, the same association was in charge of acquiring the products of
tracking companies in 2013 (Stats Perform [103] and SecondSpectrum
[97]), thus offering competitive resources to all teams and, as a con-
sequence, revolutionizing the data science departments of all clubs.
On the contrary, the Spanish league does not have the required re-
sources to perform this investment, hence limiting the total number
of data sources per team; besides, the overall structure of the Span-
ish (and European) leagues makes it even more challenging. While in
the NBA all teams have the same salary cap (around 109 million dol-
lars per team), and all stadiums are somewhat similar, in Europe the
lack of a salary cap creates an unbalanced market (team budgets vary
from 2 to 40 million dollars), and stadiums differ from each other,
hence resulting in camera installation set-ups that are impossible to
generalize. Given the economic cost of camera-systems, companies
such as RealTrack [91], Catapult Sports [13], or NothingButNet23
[80] emerged, offering sensor-based solutions. Their product is a set
of small sensors (mainly with Bluetooth technology) that can fit in
many places: while some products are built to be placed on top of
the player shorts’ cords lace / on the surface of their trainers, oth-

1https://bit.ly/3vUfHvZ

https://bit.ly/3vUfHvZ
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ers come with a wearable sports bra with space to carry the sensor.
Nonetheless, the vast majority of leagues do not allow to play official
games with wearables, thus these devices are mainly used for strength
and conditioning purposes during practices.
As a summary, it is crystal clear that, within the sport context, there
is a strong need for tracking data in order to perform advanced data
analyses, hence mutating to a data-driven decision-making culture.
However, since only elite organizations have managed to gather and
to share this kind of data, there is an even bigger demand to create
accessible and low-cost solutions that could unblock this bottleneck.

1.2 Manuscript Outline and Contributions

Once stated the relevance of tracking data in sports, this thesis
presents several contributions in this research field that, as a whole,
constitute a singular Computer Vision journey in sports analysis. In
this manuscript, those contributions have been split into three Parts:
tracking, body-orientation, and pass feasibility. Besides, before get-
ting started, Chapter 2 provides the reader with some required details
/ concepts regarding important thesis facets, such as a complete de-
scription of pose models, soccer basics, or even a list of open datasets
for the sake of reproducibility. The whole flow of the thesis can be
seen in Figure 1.6.

In Part I, we approach the creation of automatic basketball multi-
tracking methods through a tracking-by-detection fashion in single-
camera video footage. Roughly, the presented contributions stem
from pose models to detect players; by combining the main output
with court filtering and contextual / deep-learning features, notable
accuracy is obtained even in challenging cluttered scenarios. The pre-
sented trackers show that tracking data can be obtained / estimated
without the need for a complex camera setup; in particular, Euro-
pean competitions could benefit from this method, and tracking data
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Figure 1.6: Thesis flow. Visual overview of the context of all Parts
and Chapters. For a detailed explanation of each visualization, we
refer the reader to the corresponding manuscript’s Figures.
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could also be obtained from vintage games. Regarding this matter,
two papers have been published:

• Arbués-Sangüesa A., Haro G., Ballester C., Multi-Person Track-
ing by Multi-Scale Detection in Basketball Scenarios. Irish Ma-
chine Vision and Image Processing Conference, 2019.

• Arbués-Sangüesa A., Ballester C., Haro G., Single-Camera Bas-
ketball Tracker through Pose and Semantic Feature Fusion. In-
ternational Conference of Artificial Intelligence on Sports, 2019.

In the forthcoming Parts, we present an analysis that shows how 2D
tracking data may fall short in some scenarios, since player location
on its own might not be powerful enough to describe the current
game / player situation and its potential effect in the plays’ / events’
outcome. In order to enrich tracking data with an extra layer of
information, we decided to study the power of player orientation in
soccer. First of all, in Part II, two orientation estimation methods
are detailed. On the one hand, a model-based estimation of orienta-
tion is obtained by projecting players’ pose parts into a 2D domain,
plus by refining the final estimate with contextual information (ball
location). On the other hand, a learning-based approach is also pre-
sented; more specifically, the orientation of each player is obtained
by leveraging geometric and semantic information contained in player
crops via a classification strategy. Regarding orientation estimation,
three papers have been published:

• Arbués-Sangüesa A., Martín A., Ballester C., Haro G., Head,
Shoulders, Hip and Ball... Hip and Ball! Using Pose Data to
Leverage Football Player Orientation. Sports Analytics Summit
(Futbol Club Barcelona), 2019.

• Arbués-Sangüesa A., Martín A., Fernández J., Rodríguez C.,
Haro G., Ballester C., Always Look on the Bright Side of the
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Field: Merging Pose and Contextual Data to Estimate Orien-
tation of Soccer Players. International Conference on Image
Processing, 2020.

• Arbués-Sangüesa A., Martín A., Granero P., , Ballester C.,
Haro G., Learning Football Body-Orientation as a Matter of
Classification. AI for Sports Analytics Workshop at ICJAI,
2021.

Once again in the soccer domain, Part III attempts to verify and ex-
tend our previous claim by: (1) computing -and proving- the impor-
tance of proper orientation in pass events, and (2) building and val-
idating passing tools, which could asses the decision-making process
of coaches through a data-driven computational model. In particular,
this type of model estimates the most feasible pass at any given time.
First, passes are considered as discrete events where there is just one
passer and ten potential receivers; later on, this model is extended
into a 2D field, where the core’s model considers that players can pass
the ball towards any field spot (open spaces). By building these tools,
orientation-based metrics benefit from interpretability, thus comple-
menting raw orientation data and turning them into insights that
could be directly understood by coaches. Both contributions have
been documented:

• Arbués-Sangüesa A., Martín A., Fernández J., Ballester C.,
Haro G., Using Player’s Body-Orientation to Model Pass Fea-
sibility in Soccer. Computer Vision in Sports Workshop at
CVPR, 2020.

• Arbués-Sangüesa A., Martín A., Fernández J., Haro G., Ballester
C., Towards Soccer Pass Feasibility Maps: the Role of Players’
Orientation. Under Review in Sports Sciences Journal, 2021.

At the end of this manuscript, a final Chapter of closure is included,
which, apart from wrapping up and detailing the overall thesis con-
clusions, aims to provide the reader with possible lines of work to be
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exploited in a near future; it also seeks to state the overall context of
sports analytics at the moment.

1.3 Further Contributions
Apart from the academic publications, as stated in the Preface, this
thesis comes along with a set of contributions that fall beyond the
research scope of the PhD. Among these: (1) open-source repositories
have been shared to provide coaches and analysts with contextualized
statistics and machine learning basics; (2) talks have been given / or-
ganized in order to disseminate the relevance of data science within
the sport context, and similarly (3) several courses and workshops
have been directed to a large audience of coaches or statistics enthu-
siasts. Finally, the obtained awards are also listed.

Open-Source Repositories

• BueStats: Basketball Scrapper + Reporting Tool for FEB teams,
https://github.com/arbues6/BueStats.

• Euroleague + Machine Learning: clustering, classification, and
regression models from scratch, https://github.com/arbues6/
Euroleague-ML.

Talks

• TedxUPF Talk: When the idea meets the passion and becomes
a project, https://youtu.be/gW0Yb779Oq4, 2018.

• Invited Talk at the 4th Summer School of Deep Learning - UPC:
Tracking basketball players through deep learning features, 2019.

• Beyond the 4 Factors (I), with Justin Jacobs, Todd Whitehead
and Seth Partnow, https://youtu.be/DKv-1n5OHEc, 2020.

https://github.com/arbues6/BueStats
https://github.com/arbues6/Euroleague-ML
https://github.com/arbues6/Euroleague-ML
https://youtu.be/gW0Yb779Oq4
https://youtu.be/DKv-1n5OHEc
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• Beyond the 4 Factors (II), with Mike Beuoy, Nathan Walker
and Andrew Patton, https://youtu.be/FuUwCMpqkUE, 2021.

• Catalan Society of Statistics: Layers of basketball analytics,
https://youtu.be/QZglqEmur0U, 2021.

• Keynote Talk at XXII Exporecerca Jove: From the classroom
to the stage (youth research dissemination), https://youtu.
be/1TP7RbS9mEk, 2021.

• Keynote Talk at the Computer Vision in Sports Workshop at
CVPR: Bringing Computer Vision to the Court 2021.

Directed Workshops and Courses

• Catalan Basketball Federation - Technical Committee: Artifi-
cial Intelligence in sports (basketball). 2017.

• Basque Association of Basketball Coaches: Pseudo-advanced
statistics and Artificial Intelligence. 2019.

• Spanish Basketball Federation - Superior Coaching Course (CES).
Responsible for the Advanced Statistics module. 2020, 2021.

• ImproveSports - Advanced statistics course. 2020, 2021.

• Fundación La Caixa - Big Data Challenge (EduCoach, plus
dataset creation). 2019, 2020, 2021.

Awards

• PhD Workshop (UPF-DTIC 2018) - The Collider mVentures
Award.

• PhD Workshop (UPF-DTIC 2019) - EiTIC People’s Choice
Award.

• ICAIS (2019) - best paper award.

https://youtu.be/FuUwCMpqkUE
https://youtu.be/QZglqEmur0U
https://youtu.be/1TP7RbS9mEk
https://youtu.be/1TP7RbS9mEk
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• CVSports (CVPR 2020) - runner-up award.

• #HiloTesis dissemination contest (2021) - national winner.

Media

• Mundo Deportivo (2019) - Tras el ‘tracking’ de Michael Jordan,
https://bit.ly/3uG4I8D

• Mundo Deportivo (2019) - Los números revelan el basket del
futuro, https://bit.ly/3fD2odZ

• Universitat Pompeu Fabra (2019) - La inteligencia artificial al
servicio del deporte, https://bit.ly/3c97bSB.

• La Vanguardia (2019) - La UPF controla el partido.

• Universitat Pompeu Fabra (2020) - Los modelos computacionales
aplicados al fútbol calculan la orientación de los jugadores y
predicen el pase más fiable de balón, https://bit.ly/3uGC9aM

• La Vanguardia (2020) - Crean un modelo que predice cuándo
un futbolista puede dar el pase más fiable, https://bit.ly/
3uDhg0b.

• Mundo Deportivo (2021) - Este hilo de Twitter sobre analítica
en el deporte ha ganado el premio CRUE, https://bit.ly/
3fGZqoQ.

• Universitat Pompeu Fabra (2021) - Adrià Arbués ha sido uno
de los ganadores de la primera edición del concurso #HiloTesis,
https://bit.ly/2SOxoi9.

https://bit.ly/3uG4I8D
https://bit.ly/3fD2odZ
https://bit.ly/3c97bSB
https://bit.ly/3uGC9aM
https://bit.ly/3uDhg0b
https://bit.ly/3uDhg0b
https://bit.ly/3fGZqoQ
https://bit.ly/3fGZqoQ
https://bit.ly/2SOxoi9




2 Preliminaries

This Chapter aims to provide the reader with some required con-
cepts and details to make the lecture of this thesis more self-contained.
First of all, throughout the whole thesis, the same method for es-
timating human pose in given images will be used, encompassed
within the OpenPose library [21]. Therefore, its basis will be de-
tailed together with its evolution and improvements (2014 - 2017).
Then, some soccer-related basic preliminaries are explained before-
hand, hence contextualizing the obtained results of Part II and Part
III. Finally, several open datasets are listed, which might help the
reader to reproduce the presented methods.

2.1 Pose Models
Pose Models (or Machines) were proposed in 2014 in The Robotics

Institute of Carnegie Mellon University, and several features have
been chronologically added to better detect the pose of humans in
given frames.
The original article was called Pose Machines: Articulated Pose Es-
timation via Inference Machines [89], and it attempted to solve the
challenging scenario where the articulated pose of a human must be
estimated from an image; the main difficulties were a large number
of degrees of freedom of the underlying skeleton and the large vari-
ation of appearance. Until that point, the existing State-of-the-Art
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techniques were based on Graphical Models, where dependencies and
correlations between part locations were computed. Some simplified
models were tree-structured and had a clear double-counting sym-
metry issue (human parts counted twice for both sides of the body),
while the others tried to perform exact inference, but learning the
appropriate parameters was close to impossible. It can be then said
that there was a complexity versus tractability trade-off. The main
contributions of the original paper were: (1) a complete end-to-end
training scheme of the whole inference procedure, thus avoiding the
mentioned trade-off; (2) the merging of richer interaction among mul-
tiple variables at a time, plus (3) a novel approach to learning spatial
models directly with a modular architecture.

The method concatenated different stages; the output of each stage
was a belief map / part (from coarse to fine in terms of stages), which
provided an estimate that indicated the probability of each image lo-
cation to belong to every body part. For the first stage, the input
image was windowed (in all possible locations), and image features
(color- and gradient-based) were extracted. Then, a multi-class Ran-
dom Forest predictor was trained for every part of the body, obtaining
one belief map / part. Besides, this process was repeated L times for
L different levels, hence incorporating a hierarchy by differing in the
window size to be used (whole body, full limbs or body parts).
Afterward, context features were computed for every belief output
map: (1) patch features told coarse information regarding the con-
fidence of body-neighboring parts (i.e. how different were neighbors
inside a given window), and (2) offset features expressed precise rel-
ative local information (i.e. how far the local maxima was from the
global one). Context features were concatenated for every level and
every part, and a second multi-class classifier was trained with the
same pre-computed image features. This process was repeated for T
stages, as seen in Figure 2.1. As it can be seen, the predictor was
trained, using cross-validation, at each level and stage; in the first
step, patches extracted from ground-truth images (with annotated
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landmarks) were used, while in deeper stages, the model was trained
on top of the concatenation of feature maps and contextual data. In-
ference could be then performed at test time by extracting features
from patches at different levels and refining the estimate through
contextual features, hence obtaining confidence maps. The final pose
was obtained after picking the maxima of the last confidence map for
each part.

Figure 2.1: Architecture of the first Pose Machines model. Image
source: [89].

Two years later, the same authors realized that the presented method
could benefit from a convolutional architecture [124]; in their im-
provement, they learned feature representations for both image and
spatial context directly from data, whilst setting a training process
able to handle large datasets. Their end-to-end Convolutional Net-
work repeatedly produced 2D belief maps for the location of each
part. At each stage, and keeping the previous belief maps as in-
puts, the receptive field (patch around the output pixel location)
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Figure 2.2: Architecture of the second Pose Machine network, includ-
ing a convolutional architecture. Image source: [124].

was enlarged, hence avoiding having different levels. The main con-
cern could be vanishing gradients, which occur when the strength
of the gradient diminishes at each step while backpropagating, and
it was addressed through intermediate supervision in the suggested
loss function. Besides, implicit spatial dependencies (i.e wrist-elbow
connection) were learnt requiring neither hand-designed priors nor
careful initialization.
The architecture of each stage can be seen in Figure 2.2, where it
can be spotted how the size of both convolutional and pooling lay-
ers changed at the same time the size of the effective receptive field;
the last step of each stage was the evaluation of the loss function,
and its output was a vector containing the probabilistic score for
each part at each location. This spatial context of easier-to-detect
parts could provide strong cues for localizing stronger-to-detect parts
in subsequent stages. For instance, if the neck and the right elbow
were properly found, but the right shoulder was placed at the left
knee, the concatenation of parts would provide enough evidence to
displace it in the following stages to its appropriate location. As it
can be observed, neither image nor context features were being used.
At this point, the main problem was inferring the pose of multiple
people in images, as it has three main challenges, namely: (1) the
number of people was unknown at any position / scale, (2) interac-
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tions introduced complex spatial interference such as occlusions, and
(3) runtime complexity grew with the number of people. For this
reason, a new approach including Part Affinity Fields (PAFs) was
introduced [10]. Besides, the previous method was based on a top-
down-based technique, which has no possible recovery if the person
detector fails; the new technique used a Bottom-Up approach, where
different PAFs encoded the location and the orientation of limbs, and
a novel greedy parsing was computed at a fraction of computational
cost.
The method computed at the same time part confidence maps and
part affinity fields, and then, a bipartite matching algorithm was ap-
plied to get all part correspondences. Besides, the network was fed
with a set of generated feature maps extracted from a VGG-19 Con-
volutional Network; the architecture of this network can be seen in
Figure 2.3.

Figure 2.3: Architecture of the final Pose estimation Model (using
Part Affinity Fields). Image source: [10].

On the one hand, when computing confidence maps for part detec-
tion, the network was fed with: (a) individual maps, and (b) their
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ground truth landmarks. In the training process, one peak (max-
ima) was selected per part and per person; in the testing process,
confidence maps were computed, and candidates were obtained with
non-maximum suppression. On the other hand, PAFs were computed
in order to have a confidence measure for each pair of associations,
hence assembling the full body-pose. A 2D vector field for each limb
was created, encoding the direction of potential points inside the re-
gion with respect to both limb parts. First, using the direction from
one part (e.g. wrist) to the other (elbow), their corresponding nor-
mal vectors and the region of points corresponding to the limb were
set; then, each of these points was encoded with the unit vector in
the limb direction. During training, ground truth data of all people’s
limbs were fed into the network; during testing, the line integral over
the corresponding PAF was computed, thus measuring the alignment
that would be formed (if all points had the same direction, the align-
ment would be perfect).
Afterward, in order to integrate multi-person detection, non- max-
imum suppression should be applied together with some weighting
for each candidate, but this resulted in a computationally complex
problem. The authors suggested a greedy relaxation assuming that
pairwise association scores implicitly encoded the global context be-
cause of the large size of the receptive field. Bearing in mind that
the goal was to indicate which couple of candidates were connected
(optimal assignment issue), the problem was reduced to a maximum
weight bipartite matching problem, where weights were obtained with
the line integral; moreover, knowing that two limbs will not shared
a part, the number of choices was reduced. In order to perform a
K-dimensional problem, two relaxations were introduced: (1) there
was a minimum number of edges, and (2) a decomposition into bi-
partite matching independent subproblems. Knowing that the pre-
sented convolutional network concatenated all features for each part
and stage, the relationship between non-adjacent nodes was already
taken into account by the network, whilst adjacent nodes were mod-
eled by PAFs. Obtained results outperformed other state-of-the-art
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methods by using gold-standard MPII and COCO datasets.

2.2 Soccer Basics
Since results of Part II and Part III will contain specific soccer-

based language, this Section aims to help readers understand the ba-
sics: player positions and game phases. Moreover, please note that,
since this thesis has been written in American English, the term soc-
cer will be used; consequently, the term football refers to American
football.

Game roles / positions:
Within a soccer team, there are mainly four different positions:

• Goalkeeper, the only player that can use his/her hands during
the game, and aims to prevent the ball from crossing the goal
line.

• Defenders, who constitute the last row of players before the
opponents directly face the goalkeeper. Therefore, defenders’
main goal is not to allow the other team get past them, either
by dribbling or by running to open spaces. In fact, different
types of defenders exist:

– Centre-backs are the most focused ones on defensive stops,
and they do not normally take an active offensive role.

– Full-backs play on both sides of the field (left / right) and
face the opponent wingers.

– Wing-backs also play at the left / right side of the field,
and they usually take a more active role on offense.

• Midfielders are a hybrid profile; they play in the middle of the
field and are required to combine skills in a large set of game
facets, both in the offensive and defensive ends. Despite not
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discussing the greedy specifics of each type, midfielders can be
divided into center, defensive, attacking, or wide.

• Forwards are the most offensive players and, normally, the ones
in charge of scoring goals. Roughly, there are two types of
forwards:

– Strikers (or center forwards) play in a central position, and
they are the ones placed in a more advanced location.

– Wingers play either at the right or at the left side of the
field. Their role is also offensive-based, and they usually
transfer the ball from wing-backs to the striker.

Figure 2.4 shows all the roles and basic soccer roles / positions in
the field. In the central part of the image, a classical 4-3-3 soccer
lineup is displayed together with the position-names of each specific
spot. Other distribution combinations include tactics such as 4-2-2
or 4-3-2-1, as seen in the small side-fields of Figure 2.4.

Game phases:
Bearing in mind that in a soccer lineup there are mainly 3 rows of
horizontally distributed players, by clustering the 2D coordinates of
the players in the field, the ball position can be found in three game
states or phases:

1. Build-up phase: the ball is located before the first row of play-
ers.

2. Progression phase: the ball is located between the first and the
second row of players.

3. Finalization phase: the ball is located between the second and
third row of players.

All these phases are shown in Figure 2.5 and will be used a posteriori.
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Figure 2.4: Different lineup possibilities: (left) 4-4-2, (center, with
specific position names) 4-3-3, and (right) 4-2-3-1. In all these distri-
butions, blue, purple, and yellow dots represent different positions.

Figure 2.5: The location of the ball with respect to the spatial de-
fensive configuration will indicate the current game phase.
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2.3 Open Datasets
In the upcoming Parts, both basketball-based and soccer-based

experiments will be performed on top of four private datasets, which
contain a notable sample of games, plus high-quality image- and
eventing-data. However, for the sake of reproducibility or just in
case that the reader wants to perform similar experiments, some open
datasets are listed in this Subsection.

• SoccerNet [40], and SoccerNet-v2 [26] include video footage
(plus audio) of several soccer games, together with labelled
events, thought for performing action spotting challenges.

• SoccerDB [17] is a large-scale soccer database for comprehensive
video understanding, also complementary to SoccerNet.

• MetricaSports [73] shared a package of open soccer, including
player tracking, eventing data, and images.

• SkillCorner also opened a public soccer dataset [101], which
includes 2D tracking data of 9 complete games (without the
corresponding frames).

• Despite not including video footage nor tracking, StatsBomb
[104] created a public soccer repository with eventing data, to-
gether with game logs. Similarly, Pappalardo et al. [83] also
contributed with a large collection of soccer eventing data, in-
cluding logs of 7 different soccer competitions.

• When it comes to basketball, few datasets have been publicly
shared; the first one includes data from SportsVU, which con-
tains a set of tracking data from NBA games [77] corresponding
to the 2015-2016 season, and the second one, created by Mike
Beuoy, includes a filtered dataset about individual NBA shoot-
ing curves [5]. Apart from professional NBA data, multi-camera
amateur datasets have also been shared [90; 128; 39].
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What is more, even though open data have not been shared yet, other
companies such as SciSports [24; 7], Sport Logiq [96], Stats Perform
[99; 107] or Genius Sports [88] made a huge investment in research
groups (in some cases, in collaboration with academia) whilst pub-
lishing their findings.





If we want machines to think, we
need to teach them to see.

Fei-Fei Li

Part I:
Player Tracking
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3 Introduction

The inclusion of tracking data has been a key ingredient in the
most powerful sports competitions since several professional clubs
and organizations started digging data deeper while creating research
departments. These departments are in charge of bringing valuable
numerical insights to the field / court, thus providing the coaches
with novel sources of information that could potentially boost the
performance of a player / the whole team. However, since tracking
data come at the cost of complex and expensive setups, a strong
economical investment has to be made, not only in terms of infras-
tructure but also in terms of personnel. In the case of basketball,
the only competition that sends tracking data to teams is the NBA,
where all clubs have the same salary cap (around 109 million dollars
per team). Nonetheless, the economical conditions of the NBA have
little to do with other competitions; generally, leagues suffer from
notable differences budget-wise, thus creating an unbalanced market
where the cost of some products is a tiny / large portion of the clubs’
resources. Still in the NBA scenario, Stats Perform [103] and Sec-
ond Spectrum [97] are currently the official tracking providers of the
NBA, and their setup consists of an array of more than 10 overhead
cameras. Nevertheless, since none of these cameras are used a pos-
teriori for television broadcasting, their installation is solely thought
for tracking purposes.
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The main goal of the first Part of this thesis is to study the viability
of automatic tracking systems on top of European basketball video
footage. As opposed to the technology being used in the NBA, the
upcoming Chapters attempt to build a solid and automatic track-
ing baseline by only using video footage obtained from the main TV
broadcasting camera, which does not involve an extra cost for the
league or the club. By making tracking data accessible to European
clubs, GM’s and coaches could definitely benefit from a data-driven
assessment in several decision-making processes (e.g. hiring or scout-
ing), hence potentially boosting the performance of the team. More-
over, by creating single-camera multi-trackers based on broadcasting
cameras, apart from gathering data from new games, tracking from
vintage games’ footage could be gathered.

Given the broadcasting-camera video feed, a tracking-by-detection
algorithm is adopted: first, the court is identified, and right after,
potential players are detected and outliers are filtered out. In the
feature extraction process, by quantifying how much do players re-
semble in different frames, a similarity matrix is obtained. By maxi-
mizing the similarity among instances across frames, bounding boxes
are matched. Several types of features for establishing the similarities
are evaluated:

• Geometrical features, which involve normalized distances (in
frame coordinates) between detected targets.

• Visual features, which quantify how different bounding boxes
look alike by comparing color similarity metrics in different
small neighborhood patches.

• Deep learning features, which are obtained by post-processing
the output of a convolutional layer in a CNN.

Besides, we show that the combination of the whole feature extrac-
tion process with camera stabilization techniques helps improve the
trackers’ overall performance, reaching over 68% accuracy in terms
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of Multiple Object Tracking Accuracy metric. In particular, the im-
plemented camera stabilization method is based on homography es-
timation and leads to compensated camera-motion sequences, where
displacements of corresponding players in consecutive frames are con-
siderably reduced.

The rest of this Part is divided into the following Chapters: in Chap-
ter 4, the state-of-the-art regarding sports tracking is detailed, in-
cluding both raw-tracking methods and potential applications and
metrics that can be built on top of this kind of data. Then, Chap-
ter 5 presents the proposed multi-tracker, including all the required
steps: court filtering, player detection, feature extraction, and match-
ing. The obtained results are presented in Chapter 6. Conclusions are
drawn in Chapter 7, where future lines of work are also suggested.





4 State-of-the-Art (Tracking
and Applications)

In this Chapter, the main state-of-the-art regarding sports
multi-tracking methods is detailed, together with several ap-
plications that can be built on top of this kind of data.

For clarification purposes, the state-of-the-art techniques of this
Chapter are split into the following groups:

1. Tracking Methods designed for sports sequences are analyzed
in order to compare how players can be tracked from different
points of view.

2. Spatial Analysis of Plays (basketball-based). Based on track-
ing data, articles included in this group try to reach a high-level
understanding of complex concepts, such as ball movement or
spacing strategies.

3. Metrics Quantification (basketball-based). In this Section,
different basketball-based advanced statistics are quantified stem-
ming from tracking data. Articles are divided into offensive,
defensive and rebounding metrics.

4. Deep Predictions (basketball-based), which aim to predict
a solution of simulated ghosting scenarios by training models
with tracking data.
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4.1 Tracking Methods

Multi-object tracking has been and is still a very active research
area in CV. One of the most used tracking strategies is the so-called
tracking by detection, which involves a previous or simultaneous de-
tection step to identify the desired targets in the given scene, and
posterior matching across frames. Some of these works, like the one
presented by Girdhar et al. [41], used a CNN-based detector with a
tracking step, while others were based on global optimization meth-
ods. Among them, a joint segmentation and tracking of multiple
targets was proposed by Milan et al. [74], whereas Henschel et al.
[49] presented a full-body detector and a head detector that were
combined to boost the performance; similarly, Doering et al. [29]
combined Convolutional Neural Networks (CNNs) and a Temporal-
Flow-Fields-based method to exploit temporal information. Another
family of tracking methods, which achieves a good compromise be-
tween accuracy and speed, is based on Discriminant Correlation Fil-
ters. More concretely, features are extracted first, and then corre-
lation filters are used. To obtain these features, several approaches
have been used, such as hand-crafted methods or deep-learning-based
ones (e.g. [87]). Results improve when the feature extraction process
is learned in an end-to-end fashion, such as in the work by Wang et
al. [121]. Similarly, Brasó et al. [8] also trained a graph-based differ-
entiable framework that was not only used when extracting features
but also in the final association step. In this context, a complete
overview of different approaches together with their corresponding
state-of-the-art results, plus future lines of research, can be found in
the survey by Ciparrone et al. [18].
Although the vast majority of trackers are presented from a frame-
domain perspective (i.e. follow certain targets across frames), re-
cent contributions have succeeded when computing 3D multi-object
tracking [125], which might be really useful in the fields of robotics
or autonomous driving. Besides, in the case of tracking humans,
apart from following their position on the screen, extra layers of in-
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formation, such as their pose, can be included in the model’s target;
for instance, Ning et al. [81] presented a computationally inexpen-
sive method based on a siamese graph convolutional network that
estimated pose properly and achieved a notable performance when
matching instances across frames.

The implementation of tracking methods has a large set of potential
direct applications, each of them with their corresponding challenges.
Among all the researched fields, sports is a demanding one, because
cluttered scenarios produce partial or total occlusions and require
really precise algorithms. Besides, as it will be detailed throughout
the whole manuscript, the acquisition of tracking data in sports can
provide really meaningful statistics to the coaching staff. Therefore,
sports is a highly defying but extremely rewarding domain for new
vision-based tracking methods, not only because of its challenges but
also because of its potential use a posteriori. The remaining articles
of this Section will be chronologically listed and are related to sports-
dependent tracking methods. Nonetheless, before getting started, we
refer the reader to the book written by Moeslund et al. [114] for
a general survey of all existing CV techniques applied to sports se-
quences. This book does not only contain a deep study on player
and ball tracking, but other current commercial applications are also
detailed, such as camera calibration or broadcast enhancements, in-
cluding player modeling and analysis of motion players. Another
detailed survey about tracking was published by Manafifard et al.
[69], where the main soccer-based existing methods were analyzed
together with the proposed solutions to common challenges, such as
field detection or occlusion resolution.

In order to provide some historical context, the very beginning of
sports tracking is enclosed in the following contributions. In 2006,
Perse, Er et al. created one of the first basketball tracking meth-
ods to perform data analysis a posteriori [85; 30]. With a 2-camera
configuration setup in the ceiling of the arena, a method was de-
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signed in order to help planning training sessions based on players’
movements. Their method created a play-designer module, which
contained a playbook of stored templates with different plays. Then,
the phase of the game (offensive / defensive / time-out) was esti-
mated by clustering the distribution of players on the court with a
Gaussian Mixture Model [105]. Afterwards, the small-scale parts of
the game were found: by dividing the court into 9 sections, basic
events were used in order to define the player motion on the court.
Finally, recognition was performed by using the stored templates in
the play-designer. Although their dataset was not huge, their results
were consistent; nevertheless, there was no ball information and the
algorithm did not have the possibility of learning new plays on its
own. Two years later, Fleuret et al. presented one of the most-cited
publications in the tracking in sports research field [36], which used
video footage from different cameras to track individuals through a
probabilistic occupancy map. Their method used background sub-
traction to estimate the probability of occupancy at each spot of the
plane, and a generative model was applied: ideal synthetic images
were created by modeling humans as rectangles at each spot where
a potential person could be identified. Occupancy probabilities were
then re-approximated by using the Kullback-Leibler divergence; ba-
sically, this method computed how the probability of a synthetic im-
age changed when comparing with the initial prediction. Once found
marginal probabilities, individuals were tracked by combining color
and motion cues together. This method differed from previous tech-
niques –which pretended to perform detection at every single frame–
by computing the global optima of scores when having a long se-
quence of frames. Seven years later, authors from the same research
group combined the above-mentioned method with a novel technique
to automatically track the ball in team-sport sequences [68]. The
main challenge to be solved was the complex interactions that hap-
pen when players perform any kind of action involving the sphere.
Since classical 2D circle detection algorithms might fall short to track
the ball, their method modeled ball tracking as a graphical problem,
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where (a) position, (b) state, and (c) available image evidence were
quantified at each step; its goal was to maximize an energy function
by computing feature correlation and temporal smoothness. Besides,
a physical model was used to impose some constraints on ball mo-
tion: for instance, they introduced a prior that expressed how zero
acceleration had to be taken into account if the sphere was in a flying
free state. Their results outperformed existing contributions using
some basketball datasets such as APIDIS [23].

In terms of action spotting, Ramanathan et al. [90] published a
method to recognize events and key actors in multi-person videos by
detecting the focus of attention of different basketball plays. The
goal of this research was to amend the lack of a universal method to
emphasize attention or include key actors in sport sequences. Once
labeled a large set of plays, they extracted features for every class,
including both scene and particular player information; right after, a
deep learning framework was used to classify. To properly track the
players, the Lucas-Kanade tracker [6] was implemented in combina-
tion with a bipartite graph, which was used for matching. Their event
detection method was done through a sliding window technique that
displayed attention with a heat-map. Results outperformed some
state-of-the-art methods, and their dataset was shared publicly. How-
ever, the number of classes was simplified to a few similar plays (i.e
2-points shot success / failure, 3-point shot success / failure). Still in
the basketball field, two datasets have been recently shared. On the
one hand, the authors of [39] created a solid annotated dataset con-
taining street-ball footage and compared state-of-the-art trackers to
their approach, which was based on joint detection and embedding.
On the other hand, Wu et al. [128] used a relatively more expensive
setup, and created a dataset where cameras were placed at human
height and contained overlapped regions among them. In the lat-
ter, the association step between frames was achieved by a clustering
method that computed metrics among tracklets.
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Apart from basketball trackers, state-of-the-art tracking methods do
exist in other disciplines. For instance, in the case of soccer, Kim
et al. [58] succeeded in tracking multiple targets by approaching
the matching process as a multiscale foreground-sampling problem,
where dissimilarity metrics could express how much did detections re-
semble. More recent contributions in the soccer domain included self-
supervised methods, as the one proposed by Hurault et al. [52], which
can be used in challenging video footage; by training two networks
in a student-teacher fashion, notable performance was achieved even
with low-resolution players. Other tracking solutions have been pub-
lished from a general sports perspective using multi-camera setups,
such as the ones presented by Zhang et al. [131], which stemmed from
a deep player identification, or by Liang et al. [61], which adapted
a complete k-shortest framework in order to perform the matching
process.

4.2 Spatial Analysis of Plays

In the paper written by Lucey et al. [65], the authors analyzed how
teams managed to have open shots in order to improve shooting per-
centages. The motivation of this paper emerged when checking the
statistics of the NBA teams, as the authors realized that there is
a notable drop in shooting percentages when attempting pressured
shots (almost a 15% decrease in some cases). First, their algorithm
assigned a role (position) to every player at the beginning of the ac-
tion. Then, the different factors that might affect when attempting a
shot were checked from a more analytic point of view; these included
features such as the closest distance from a defender, the shooter’s
speed, the number of dribbles, or the number of seconds the player
kept the ball before shooting. Finally, different plays were retrieved
using tracking data, which clustered similar plays into permutations
from the original one (the exact same action will not occur twice in
a game). Extracted results showed that one of the most relevant fea-
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tures to get an open shot was the defending switches that might occur
during the game, which generate mismatches1. Although it is rather
a statistics-based paper, this project also aimed to extract relevant
information from tracking data to improve the understanding of the
game.

With Sports VU raw tracking data, Wang and Zemel [119] designed
an algorithm to classify a closed-set of plays using Recurrent Neu-
ral Networks (RNN), with the purpose of generating detailed reports
with a high-level basketball understanding. Their approach turned
tracking data into pictorial representations in order to deal with an
image classification problem. Positions of the players were estimated
by comparing their shooting tendencies and frequencies in different
positions in the court (e.g an exterior player usually moves behind
the 3-point line and attempts more long-range shots than an interior
one), and they built an anytime prediction system, as one same play
might change due to defensive strategy. Their results (expressed with
top-1 accuracy) seemed to be promising, but the system was thought
for a particular team in a specific season, so it was not automatically
tuned to any kind of team.

Miller and Bornn [76] made another relevant contribution. They or-
ganized a large set of plays by grouping structural similarities, as
they observed that there was not an efficient scouting method for
professional basketball teams. Their goal was achieved through: (1)
segmentation of short plays to shorter manageable segments (mod-
eled with Bezier curves), (2) possession modeling by adapting topic
models, and (3) a bag-of-words structure. Finally, having clustered
data with nearest-neighbors algorithms, different types of analysis
were done. Although the attached videos showed promising results,
no numerical evidence was displayed. This work was an improvement

1A mismatch occurs when a big player has to guard a small one or vice versa.
A priori, in these situations, big players can take advantage of their strength,
whilst small ones can take advantage of their speed.
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of a previous contribution of the same authors (Miller et al. [75]),
where the actions occurring in a basketball court were analyzed by a
point process factorization based on intensities.

A low-cost approach towards play recognition was introduced by
Arbués-Sangüesa et al. [2]. In this work, small sensors gathered
tracking data of youth basketball practice; after the corresponding
parsing processes, a classical Machine Learning model was trained
(in a supervised way) in order to classify a closed-set of 5 basket-
ball plays; the extracted feature vector contained 56 characteristics
of that play, relevant from the coach point-of-view (initial display,
distance among players, speed...). Results showed 98% accuracy us-
ing cross-validation and principal component analysis [55] in order to
avoid overfitting, but the set of plays being used contained roughly
100 instances, so there is still plenty of room for improvement in this
field. This method could be transferred to European leagues with
fewer resources.

Finally, Bornn et al. [72] focused on a really challenging problem:
do teams have an identity that could be described from displacement
patterns? Having Sports VU tracking data, three experiments were
performed: (1) to recognize a team from a single possession, (2) to
recognize a team from the complete set of possessions of a game, and
(3) to see what the star players’ spacing impact is. The deep trajec-
tory network took as input the stack of all player trajectories during
a series of time, and two 1D convolutional layers were used (together
with two corresponding pooling layers). Besides, in the first couple
of experiments, the origin of trajectories was always considered to be
the ball, so it could be said that the input vector was a set of dis-
tances with respect to this anchor. Results showed that identifying
a team from a single possession was really difficult (24% accuracy),
but bringing together the set of all game possessions improved team
recognition to 95%. In the third experiment, the anchor was switched
to the star player, which was manually selected; this case tried to ex-
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emplify, for instance, how different it was to identify Golden State
Warriors from a single possession with the presence of Stephen Curry
on the court, and accuracy reached 43% for a single possession. Be-
sides, the same network generalized to other sports such as football.

4.3 Metrics Quantification

In this Section, different articles containing novel metrics to quan-
tify intangible basketball aspects will be summarized in a chronolog-
ical way. First, offensive metrics will be explained; then, defensive
ones, and finally, rebounding or other techniques.

One of the first interesting offensive metrics was introduced by Kirk
Goldsberry [42], who presented new visual and spatial analytics to
determine who was the best shooter in the NBA. The problem he
tried to solve was that the league leader in field goals percentage
(measured by dividing the number of scored shots by the total num-
ber of attempts) tends to be a center who takes no mid- / long-range
shots; therefore, the goal was to define a metric to determine who
was the player that shot better from as many court spots as possible.
His system was built on top of a composite shot-map for all the shots
attempted in 5 different seasons (2006-2011), finding 1284 unique
shooting cells. Then, spread parameters were defined and weighted
by their distance to the basket (number of cells with acceptable ac-
curacy), thus favoring those players that attempted long-shots with
high reward (3 points). This metric definitely penalized those centers
that did not take risky shots, and provided a robust knowledge on
how well players shots. Obtained rankings proved to be precise, as
those coincided with the opinion of basketball journalists when talk-
ing about the top-5 shooters in the league.

Cervone et al. [14] presented a new way to mathematically model how
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good the decision-making process of players during a game posses-
sion in real-time was since basketball IQ is one of the most important
features when GM’s seek for new player hirings. The authors defined
Expected Possession Value (EPV) as a metric that expressed the ex-
pected points to be scored / received at any moment; then, having the
position of the player driving the ball, they modeled his/her added
value by dividing eventing data into macrotransitions (shoot / pass
/ turnover) or microtransitions (basic movement). With EPV met-
rics, two applications were shown: (a) a ranking of the NBA players
who made better decisions and (b) an equation to measure the shot
satisfaction, which could help to identify selfish attitudes. Both ap-
plications showed adequate results and proved that EPV models are
a promising baseline when building data-driven tools.

Although neither CV nor machine learning was applied, based on the
previous work of Goldsberry [42], Marty tried to add more dimen-
sions to understand why shooters miss [70]. In this high-resolution
method, three players attempted a total of 22 million shots, and not
only their position in the court but also the interaction with the rim
were gathered with the Noahlytics system (a sensor placed above the
rim). The main goal was to obtain a deep analysis of right-left (and
left-right) deviations when shooting from several positions and angle
values to correct flat shots. Results helped to indicate where players
should charge for the rebound (i.e. in a left-corner 3-point shot, they
should generally charge the right side, close to the baseline), but the
analysis of this technique was still naive, as the method was tested
only with three different players of different shooting percentages.

Goldsberry and Weiss [43] attempted to quantify defensive metrics
of NBA basketball games. The motivation emerged from the isola-
tion of defensive concepts in NBA box scores, where only defensive
rebounds, steals, and blocks are annotated. Their contribution was
called the Dwight Effect, and they wanted to prove that the leader of
the league in blocks might not be the best defender, but the player
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who changes the shooter’s behavior and efficiency more often. In this
article, and using Sports VU tracking data once again, they first sep-
arated frequencies and effectiveness of different kinds of shots of every
player in the NBA; then, they computed the basket proximity, which
is the balance between the percentage in field goals and the num-
ber of avoided shots when a certain interior player contests the shot.
Afterward, shot proximity was estimated by checking how often an
interior player was close to a shot attempt. Their results were mean-
ingful from the point of view of a basketball coach, as a single metric
summarized several factors regarding rim protection. However, this
quantification was restricted to interior players. In order to comple-
ment this work, Franks et al. [38] presented new defensive metrics
for exterior players, including the Volume Score, which contained the
magnitude of shot attempts in front of a certain defensive player,
the Disruption Score expressing the effectiveness of those shots and
Counterpoints, which indicated who was responsible for contesting a
certain shot. This analysis was based on: (1) modeling the evolution
of defensive matchups (different swaps when defending a team) over
the course of possession as a Markov Model, and (2) the posterior
computation of the mentioned metrics using logistic regression plus
predicting the a priori efficiency of a shot.

Another interesting quantifiable defensive metric was introduced by
McIntyre et al. [71], who analyzed how NBA teams defended ball
screen situations considering 4 different options (over, under, trap or
switch). Their goal was to quantify not only which were the most
repeated strategies but also the most efficient ones. This contribution
enabled novel analysis of defensive strategies using Sports VU track-
ing data. Their method had a validation set that comprised manual
annotations of ball screen situations of 6 different basketball games (a
total of 199 instances). Then, using an algorithm based on pairwise
distances within players, 270853 ball screen situations were tested,
obtaining 69% accuracy on three classes (traps could not be included
because of a small number of samples); besides, the defensive effort /
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strategy of the teams was shown, which provided interesting metrics
to identify the most aggressive teams in the NBA. If the validation set
had been larger, greater accuracy would have been obtained, which
could have lead to a robust system to be used in professional games.

Reinforcement learning was later introduced by Wang et al. [118] in
order to check if it was worth practicing double-team defense in NBA
games. Generally, all NBA teams have a Star Player who takes a lot
of shots. Coaches prepare special defenses for this kind of players: at
some point, instead of opting for an individual defense (five defenders
on five offensive players), coaches might want to try the alternative
of double-team defense: two defenders guard the star player when
he/she has the ball, and the other three defenders try to occupy
spaces and to contain the remaining four. The risk is obvious: if
the double-teamed player manages to give a good pass, it will be an
easy offensive situation for the opponents. Once analyzed all posses-
sions of NBA teams during one season, double-teams were detected
by a simple rule-based on timings and distances of defensive players.
Then, reinforcement learning was applied: within this framework, an
agent observed the current state (offensive situation), chose an action
(double-team or not), and transitioned to another state according to
a probability distribution and a Markov Decision Process. Besides,
the authors introduced a policy to affect the decisions made by the
agent, which included game conditions; for instance, it might not be
a good idea to double-team the best passer in the last seconds of a
tied game. Finally, the agent received an instantaneous reward (the
other team did score or not). Their results ranked the best and worst
double-team defensive pairs and teams, apart from analyzing the de-
fense of all teams against the Cleveland Cavaliers in the 2016-2017
season, which had one of the most dominant NBA players (LeBron
James) at that time. However, their conclusions were not that clear,
as the trained model suggested to double-team James less and to ap-
ply this defense to worse players, but there were not enough data of
double-team defenses over non-star players.
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Besides, other metrics were also introduced to contextualize rebounds
with the purpose of numerically identifying whether a player captures
a rebound all alone or grabs it after hustling with other players. Mah-
eswaran et al. [66] deconstructed the rebound by checking the factors
that influenced this type of action. First, they filtered Sports VU
tracking data to end up only with rebound observations and they
built a heat-map with all these locations (around 11000 instances).
Right after, rebound location probabilities were checked given the
shot position (distance and angle); from these regions, another heat-
map was built, containing the coordinates where the ball decreased
from 8 feet, which indicated the potential rebound location. Given
the position of all players, the presented model aimed to predict who
had more chances to catch the rebound as the action went forward.
Their results showed that in mid-range shots, the probabilities of
grabbing an offensive rebound were low and that there was not a
significant directional bias depending on the shot location.
The same authors [67] extended their contribution by analytically
decomposing the rebound into three concrete factors. Positioning
(modeled with a Voronoi region) was used to see the position of a
player when: (a) there was a shot and (b) few seconds after it. These
coordinates helped to indicate the player’s intention: he/she could
either try to capture an offensive rebound (also known as crashing)
or he/she could retreat to a defensive position. The second factor was
Hustle, which told if a player was able to create a rebound opportu-
nity despite not being at the best initial spot. Finally, Conversion
estimated if a certain player allowed others to grab rebounds when
he/she had the best positioning; that is, if a player captured easy
rebounds or not. Once again, their results were shown in different
rankings and coincided with the experts’ opinions. However, these
same experts could argue that Positioning might not be a skill, but
a matter of luck or other factors.

Furthermore, Wiens et al. [126] conducted more concrete research
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to analyze only offensive rebounds, trying to quantify the trade-off
between two strategies: attacking the offensive rebound (crashing)
and retreating to a defensive position. Having filtered Sports VU
tracking data and gathered only offensive rebound situations after
mid- / long-range jumpshots, a reaction time was established. Spe-
cific metrics were defined: odds ratio (probability of a good event to
occur) and net gain, which indicated the possibility of scoring hav-
ing grabbed the offensive rebound combined with the possibility of
preventing the other team to score having retreated on the defensive
end. Once modeled threat neutralization (how effective the defensive
transition in terms of pairwise distances between players is), results
showed that crashing is a risky strategy, and an early threat neutral-
ization limits the negative impact of transitions. Anyway, this article
should be tested again with the inclusion of more data, as it only had
the strategies of 12 teams (and few observations were obtained for
some of them).

4.4 Deep Predictions

Another trend within sports analytics has been the need of ob-
taining data-driven answers from what-if scenarios, which might help
a priori in terms of strategizing games or competitions.

On the one hand, the work by Seidl et al. [98] introduced the concept
of ghost defenders. This research emerged from the need of coaches
to design perfect plays, which is one of the most difficult challenges
for them, as it is almost impossible to take all details into account:
the score, the remaining time, the players that have to be on the
court, the type of defense that the other team may perform. . . The
first module of this work was an interface, which worked on any dig-
ital surface; once the coach sketched which play does he/she wanted,
an animation could be seen with the movements of all players on
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the screen. Then, a deep learning model predicted how the defense
would adapt to that play at that given scenario (ghost defenders),
and finally, the same program suggested similar plays that could op-
timize the outcome. The network to be implemented was a Recurrent
Neural Network of variable length sequences, where individual tra-
jectories were set as the input and were modeled using a two-layer
long short-term memory architecture (LSTM). They determined, at
a given point, where the player should go next given a specific role.
It has to be mentioned that each player had his/her own policy, and
those were trained by computing the distance between predicted and
real positions on existing Sports VU tracking data. Results proved
to be promising, and even complex basketball concepts such as weak-
side helps were being taken into account; besides, given that enough
data of each team were fed into the network, characteristics for each
particular game were considered.

On the other hand, the work of Sandholtz and Bornn [95] aimed to an-
alyze the new trends of NBA games, with teams shooting more long-
range shots than ever. In a basketball possession, the ball-handler
might choose within several possible actions: passing, shooting, drib-
bling. . . These states could be modeled with Markov Processes, but
the main problem was that transition probabilities are not station-
ary: i.e. if there is only one second left in the shot clock, the shooting
probability is almost 1, so a policy was introduced to take the envi-
ronment into account. Once again, there was a reward function to
be maximized by altering the policy; this function simply answered
the question “how many points do we expect to get after player X, in
a state S, decides to take action Z?”. The main problem was then
how to model the shot probability, as it is a latent skill that depends
as well on the position of the shot; the authors proposed a Bayesian
logistic regression model that clustered players with similar shooting
characteristics. Results, which were obtained on top of data from
the 2017-2018 season, showed that if teams shot 20% fewer contested
mid-range shots at the end of each possession and took more open
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long-range shots at the beginning, the total scoring points per game
of all teams of the NBA would improve. Another experiment showed
that, if teams shot 90% fewer mid-range shots, the expected outcome
would decrease, as these shots would have not been properly selected.



5 Proposed Multi-Tracking
Method

In this Chapter, the proposed single-camera multi-tracking al-
gorithm is presented, which aims to track multiple players at a
time in (single view) basketball footage. In order to track all
players on the basketball court, a tracking-by-detection ap-
proach is used. First, the court is filtered by merging line
detectors with basic segmentation or color filters. Then, pose
models are used to detect the players in the image; moreover,
the underlying location of body parts is later used to extract
features, either from a visual or DL perspective. Finally, the
matching process is also detailed, which associates detections
across frames.

5.1 Court Filtering
Individual frames belonging to basketball footage include much

more content apart from all 10 players and the ball, such as fans, real
or tv-synthetic scoreboards, bench players, coaches... Consequently,
before getting started with tracking methods, a pre-processing stage
is required to delimit the region of interest where the desired targets
(players on the court) can be found. In particular, our approach con-
sists of segmenting the court region, which is a rectangular area whose
projection to the camera results in a trapezoid. Thus, the filtering

53
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Figure 5.1: Generic Pipeline: for each frame, players are detected
(through pose models) and tracked (via feature extraction and match-
ing).
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challenge is reduced to the identification of visible court boundaries
in the image: the sidelines and baselines (from 1 to 4 depending on
the camera’s point of view). Frequently, some of these court bound-
aries are only partially visible due to occlusions, or even not visible
at all, as shown in Figure 5.1.
The method starts by detecting all the line segments in the image
using a fast and robust parameter-less method [116]. Right after,
dominant lines, i.e. lines with the longest visible parts, are esti-
mated employing a voting procedure. Those lines will correspond, in
general, to the sidelines / baselines or, in cases of strong occlusions,
to court lines parallel to the sidelines / baselines. The strength of
the vote of each line is proportional to the sum of detected segments’
length on the line, as seen in Figure 5.2, where the detected segments
are displayed in yellow. Given that in broadcasting sequences only
one baseline (or none) can be seen at a time, and that even in cases
that both sidelines are in the field of view of the camera one of them
may appear occluded by the public (e.g. Figure 5.3), the purpose
is to find a horizontal dominant line (either a sideline or its orien-
tation) and a vertical dominant one (a baseline or its orientation).
Horizontal lines are considered to be the ones which intersect the
image at the left and right boundaries (Figure 5.2(a)), while vertical
ones intersect in one of the following pairs of image sides: top-left,
bottom-left, top-right or bottom-right (examples in Figure 5.2(b)-
(c)). In order to find the location of court boundaries, the playing
area is pre-segmented and the set of lines with a dominant orientation
that better delimits the court is selected through an iterative process.
However, an important facet has to be taken into account once the
dominant orientations are found: the detected segments used to de-
termine the dominant orientation might not be part of the desired
baseline / sideline. That is, the mentioned set of lines might not only
contain the first candidate but also all the other parallel candidates
that could potentially fit. While in the case of the baseline lines are
distributed from the top to the bottom of the image, when dealing
with sidelines the line distribution goes from left to right. Two differ-
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ent solutions are proposed to pre-segment the court in two different
professional basketball scenarios: (a) European, and (b) NBA games.
For NBA games (Figure 5.3-top), the scenario is challenging, because
there is almost no space between sidelines and fans. In order to find
the horizontal boundaries, instead of checking for color components,
Conditional Random Fields [134] is applied at a coarse resolution to
find the total area of the regions in the image domain containing
people. Once having this rough estimation, an iterative algorithm
is applied to delimit court boundaries: at the very beginning, two
line candidates with the dominant orientation are placed at the top
and bottom of the image; then, for each iteration, these lines are
iteratively moved towards the middle until convergence. In each it-
eration, the product of the following percentages is computed: (a)
people-pixels above the top line, (b) people-pixels below the bottom
line, and (c) non-people-pixels below the top line and above the bot-
tom one. If there is a drop in either the first or the second percentage,
the position of the corresponding line is fixed; convergence is reached
when both lines stop moving. Potentially, in the horizontal court
limits, the product of these three terms will correspond to a max-
imum, meaning that there is a large contribution of people pixels
above and below the top and bottom line respectively (correspond-
ing to fans), and a small contribution in between (corresponding to
the court with a maximum of 10 players plus 3 officials). Once both
baselines are set, and having masked the original image, the best
vertical candidate is found in the same way but scanning only from
left to right or from right to left, depending on the situation. In Eu-
ropean games (Figure 5.3-bottom), court surroundings usually share
the same color, and fans sit far from team benches. For this reason, a
basic color filter (in the HSV colorspace) is created; for each possible
line candidate, the contribution of pixels that satisfy filter conditions
is checked at both right-left (vertical) or above-below (horizontal)
sides of the tested candidate. The horizontal and vertical candidates
with the highest response will be then considered as court limits.
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Figure 5.2: Line contributions with potential detections (and occlu-
sions): (a) sidelines, (b)-(c) right-left baselines, respectively.

Figure 5.3: Court detection results in different scenarios: (top row)
NBA, and (bottom) European games
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5.2 Player Detection

As mentioned, the presented tracker is based on multiple detec-
tions in each individual frame. More concretely, the implemented
method relies on pose models techniques [89; 124; 11] stemming from
an implementation of OpenPose [21] (more details about pose mod-
els can be found in Section 2.1). Given a basketball frame, the out-
put of the main inference pose function returns a 25 × 3 vector for
each player, with the position (in screen coordinates) of 25 keypoints,
which belong to the main biometric human-body parts, together with
a confidence score. Note that there might be situations where spe-
cific parts might not be detected, resulting in unknown information
in the corresponding entry of the pose vector of the whole skeleton.
In addition, 26 heatmaps are returned, indicating the confidence of
each part being at each particular pixel. By checking all the parts’
positions and taking the minima and maxima XY coordinates for
each detected player, bounding boxes are placed around the respec-
tive players as displayed in Figure 5.4.
Since the presented person detection method does not include priors
such as a maximum number of players on the basketball court or in-
formation on both team uniforms, the set of detected people might
include some referees (an example is displayed in Figure 5.5).

Besides, in order to ease the tracking of the players, an additional
camera stabilization step to remove the camera motion can be in-
corporated. Taking into account that its inclusion represents extra
computations, an ablation study is provided in Chapter 6 to discuss
the extent of its advantages. When enclosed, the camera stabilization
method and implementation proposed by Sánchez et al. [94], based
on homographies, is used.
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Figure 5.4: Detected parts with the corresponding bounding box.

5.3 Feature Extraction

Once bounding boxes are obtained across frames, the forthcom-
ing step should consist of assigning individual tracks to each one;
nonetheless, prior to that, all boxes must be characterized. With the
purpose of quantifying this process, different approaches can be used
whilst extracting features. For the remaining part of this Section,
Bt1 and Bt2 are considered as two different bounding boxes, detected
at t1 and t2 respectively.

5.3.1 Geometrical Features

A classical approach can be used to measure distances or over-
lapping between bounding boxes in different frames. If the temporal
resolution of the video is not coarse, it can be assumed that players’
movements between adjacent frames are not large; for this reason,
players can be potentially found at a similar position in screen co-
ordinates in short time intervals, so the distance between bounding
boxes’ centroids can be used as a metric. That is, given xBt1 and
xBt2 as the centroids of two bounding boxes, the normalized distance
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Figure 5.5: Obtained results in adjacent frames, where all players
(and referee) inside the playing court are properly detected (bounding
box) and tracked (color identifier).



5. Proposed Multi-Tracking Method 61

between centroids can be expressed as

Cd(Bt1 , Bt2) = 1√
w2 + h2

‖xBt1 − xBt2‖, (5.1)

where w and h are the width and the height of the image domain. An-
other similar metric that could be used is the intersection over union
between boxes, but due to the fact that basketball courts are usually
cluttered and players move fast and randomly, it was discarded.

5.3.2 Visual Features

Distances might help distinguish basic correspondences, but this
simple metric does not take into account key aspects, such as the
jersey color (which team do players belong to) or their skin tone.
For this reason, a color similarity is be implemented in order to deal
with these situations. Moreover, in this specific case, knowing that
body positions are already obtained, fair comparisons can be per-
formed, where the color surroundings of each body part in t1 will
be only compared to the neighborhood of the same body part in
another bounding box in t2. Nevertheless, it has to be pointed out
that only the detected pairs of anatomical keypoints in both Bt1 and
Bt2 (denoted here as pk1 and pk2, respectively) will be used for the
computation. The color and texture of a keypoint can be computed
by centering a neighborhood around it. That is, let E be a squared
neighborhood of 3×3 pixels centered at 0 ∈ R2. Then,

Cc(Bt1 , Bt2)= 1
255|S| |E|

∑
k∈S

∑
y∈E
‖It1(pk1 + y)− It2(pk2 + y)‖ (5.2)

where S denotes the set of mentioned pairs of corresponding key-
points detected in both frames, and |S| and |E| the cardinal of S and
|E|, respectively.
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5.3.3 Deep Learning Features

Deep Learning (DL) is a widely-explored research field with many
possible applications, such as classification, segmentation, or body
pose estimation. The basis of any DL model is a deep neural net-
work formed by several layers, which serve to predict values from a
given input. Convolutional Neural Networks (CNN) are special cases
in which weights at every layer are shared spatially across an image,
and their impact results in a reduced number of required parameters,
hence gaining robustness to image transformations. Then, a CNN
architecture is composed by several kinds of layers, being convolu-
tional layers the most important ones, but also including nonlinear
activation functions, biases, etc. This type of layer computes the re-
sponse of several filters by convolving with different image patches.
The associated weights to these filters, and also the ones associated
to the non-linear activation functions, are learnt during the training
process (in a supervised or unsupervised way) in order to achieve
maximum accuracy for the concrete aimed task. It is well known
that the first convolutional layers will produce higher responses to
low-level features such as edges while posterior layers correlate with
mid-, high- and global-level features associated with more semantic
attributes.

In the presented experiments, the popular VGG-19 network [100] is
used for feature extraction, initialized with weights trained on the
ImageNet dataset [27]. The original model was trained for image
classification, and its architecture consists of 5 blocks with at least
2 convolutional layers, and 2 fully-connected layers at the end that
output a class probability vector for each image. The network takes
as input a 224 × 224 × 3 image, and the output size of the second
convolutional layer of each block is shown in Table 5.1.
In order to feed the network with an appropriately sized image, a
basic procedure is followed as seen in Figure 5.6: considering that
player boxes are usually higher than wider, and having the center of
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Width Height No Filters
b2c2 112 112 128
b3c2 56 56 256
b4c2 28 28 512
b5c2 14 14 512

Table 5.1: Output size of VGG-19 convolutional layers. In the first
column, b stands for block number and c stands for the convolutional
layer number inside that block.

the bounding box, its height HBt is checked. Then, a squared image
of HBt ×HBt × 3 is cropped around the center of the bounding box;
finally, this image is resized to the desired width and height (224 and
224, respectively). In this way, the aspect ratio of the bounding box
content does not change.
However, extracting deep learning features from the whole bounding
box introduces noise to the feature vector, as part of it belongs to the
background (e.g. court). Therefore, features are only extracted in
those pixels that belong to detected body parts, resulting in a quan-
tized vector with a length equal to the number of filters. Moreover,
apart from its length, the obtained output from a convolutional layer
is smaller in terms of width and height with respect to the input im-
age, since pooling operations are applied throughout all the network
architecture. Therefore, the original 2D location of each body part
in the image domain has to be resized according to the convolutional
output shape in order to find the corresponding downscaled location.
Note that the final vector is normalized with L2 norm. An example
using the 10th convolutional layer of VGG-19 is shown in Figure 5.7,
where a 1× (25× 512) vector is obtained.
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Figure 5.6: Player and Pose Detection: (a) image patch centered
around a detected player, (b) detected pose through pretrained mod-
els, (c) black contour: bounding box fitting in player boundaries,
pink: bounding box with default 224 × 224 pixels resolution, (d)
reshaped bounding box to be fed into VGG-19.
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Figure 5.7: Feature Extraction of all body parts using the 10th con-
volutional layer of a VGG-19 network.

Once all boxes have their corresponding feature vectors, the metric
defined in [122] is used to quantify the cost error; in particular, the
cost between two feature vectors f yt1t1,k and f

yt2
t2,k, belonging to bounding

boxes detected in t1 and t2 respectively, can be defined as:

CE(f yt1t1,k, f
yt2
t2,k) =

exp(−f yt1t1,k · f
yt2
t2,k)∑ exp(−f yt1t1,k · f
yt2
t2,k)

(5.3)

where k corresponds to the particular body part and yt1 and yt2 to
the pixel position inside the neighborhood being placed around the
keypoint. Therefore, the total cost when taking all parts into account
is defined as:

CDL(Bt1 , Bt2)= 1
|S|
∑
k∈S

min
yt1∈E
yt2∈E ′

(CE(f yt1t1,k, f
yt2
t2,k)) (5.4)

where S corresponds, once again, to the set of detected parts in
both frames, and E and E ′ correspond to the set of pixels in the
neighborhood placed around each keypoint.

Nevertheless, two important remarks have to be pointed out:

1. Some of the detected pose parts have a low confidence asso-
ciated value; note that the confidence range goes from 0 to 1.
Since in the given dataset a mean of 16.2 parts are detected per
player, the ones with lower confidence can be discarded while
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preserving proper performance. In particular, all parts with
lower confidence than 0.3 are not taken into account when ex-
tracting features. Hence, the subset S in Equations (5.2) and
(5.4) considers all detected parts in both bounding boxes that
satisfy the mentioned confidence threshold.

2. Convolutional layer outputs (as implemented in the VGG-19)
decrease the spatial resolution of the input. Since non-integer
positions are found when downscaling parts’ locations (in the
input image) to the corresponding resolution of the layer of
interest, the features of the N × N closest pixels at that layer
are contemplated. Then, the cost will be considered as the
most similar feature vector to the N ×N target one given. In
Tables 6.3 and 6.4 a discussion on the effect of the approximate
correct location is included.

5.4 Matching
Having quantified all bounding boxes in terms of features, a cost

matrix containing the similarity between pairs of bounding boxes
is computed by combining the different extraction results. In the
presented experiments, the following weighted sum of different costs
has been applied:

C(Bt1 , Bt2) = αCFeat1(Bt1 , Bt2) + (1− α)CFeat2(Bt1 , Bt2) (5.5)

where CFeat1 refers to Cd given by (5.1), CFeat2 refers either to CDL in
(5.4) or Cc in (5.2) and α ∈ [0, 1]. From this matrix, unique matchings
between boxes of adjacent frames are computed by minimizing the
overall cost assignment:

1. For each bounding box in time tN , the sorted list association
costs (and labels) among all the boxes in tN−1 is stored in an
AtN ,tN−1 matrix.
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2. If there are repeated label associations (i.e. two or more boxes
in tN associated to the same box of tN−1), a decision is made
in terms of cost:

• If the cost of one of the repeated associations is consider-
ably smaller than the others (by a margin of more than
10%), this same box is matched with the one in the pre-
vious frame.
• If the cost of all the repeated associations is similar (within

a range of 10%), the box with the largest difference be-
tween its first and second minimum costs is set as the
match.
• In both cases, for all boxes that have not been assigned,

the label of their second minimum cost is checked too. If
there is no existing association with that specific label, a
new match is set.

3. In order to provide the algorithm with more robustness, the
same procedure described in steps 1 and 2 is repeated with
boxes in tN and tN−2. This results in an AtN ,tN−2 matrix.

4. For each single box, the minimum cost assignment for each box
is checked at both AtN ,tN−1 and AtN ,tN−2 , keeping the minimum
as the final match. In this way, a 2-frame memory tolerance is
introduced into the algorithm, and players who might be lost
in one frame can be recovered in the following one.

5. If there are still bounding boxes without assignments, new la-
bels are generated, considering these as new players that appear
on the scene. Final labels are converted into unique identifiers,
which will be later used in order to compute performance met-
rics.





6 Tracking Results

In this Chapter, a detailed ablation of quantitative tracking
results is provided and discussed, comparing all the above-
mentioned techniques and combinations (types of features, the
inclusion of memory, camera stabilization...). Besides, the con-
tent of the gathered dataset is explained.

A dataset of 22 European single-camera basketball sequences has
been used. Original videos have a full-HD resolution (1920 × 1080
pixels) and 25 frames per second, but in order to reduce the compu-
tational cost, only 4 frames are extracted per second. The included
sequences involve static plays of offensive basketball motion, with
several sets of screens / isolation play; moreover, different jersey col-
ors and skin tonalities are included. The court is a European one
for all situations, and there are no fast break / transition plays. The
average duration of these sequences is 11.07 seconds, resulting in a
total of 1019 frames. Ground-truth data has been manually obtained
for the given sequences, containing bounding-boxes over each player
and all three referees (taking the minimum visible X and Y coordi-
nates of each individual), plus their corresponding identifier, in every
single frame (when visible); this results in a total of 11339 boxes.
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Figure 6.1: Player Detections (green boxes) together with its ground
truth (blue boxes).

Precision Recall F1-Score
Open Pose 0.9718 0.9243 0.9470
YOLO 0.8401 0.9426 0.8876

Table 6.1: Detection Results

6.1 Quantitative Results
Although it is not part of this Part’s contribution, a quantitative

assessment of the detection method is shown in Table 6.1, where its
performance is compared to the state-of-the-art YOLO network [92];
for a fair comparison, only the person detections within the court
boundaries are kept in both cases. These detections can be seen in
Figure 6.1 with their corresponding ground truth boxes.
From now on, all quantitative tracking results will be expressed in
terms of Multiple Object Tracking Accuracy (MOTA), which is de-
fined in [4] as:

MOTA = 1−
∑
t fpt +mt +mmt∑

t gt
,
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Layer b2c2 b3c2 b4c2 b5c2
MOTA 0.5396 0.5972 0.6369 0.6321

Table 6.2: MOTA results obtained with α = 0 in (5.5), CFeat2 equal
to CDL, and by extracting DL features in the output of different
convolutional layers.

where fpt,mt,mmt and gt denote, respectively, false positives, misses,
mismatches and total number of ground truth boxes over all the se-
quence.
Another meaningful tracking metric that has been computed as well
is the Multiple Object Tracking Precision (MOTP), which can be
defined as:

MOTP =
∑
i,t IoUi,t∑

t ct
,

where IoUi,t and
∑
t ct correspond to the intersection over union be-

tween two boxes, and to the sum of correct assignments through the
sequence, respectively. The detected bounding boxes for all the up-
coming experiments are the same ones (thus the intersection with
ground-truth bounding boxes does not change either), and know-
ing that the total number of instances is large, the MOTP results
barely change in all presented combinations of techniques: it remains
0.6165± 0.0218.

Starting only with DL features (that is, α = 0 in (5.5) and CFeat2
equal to CDL), Table 6.2 shows the obtained MOTA results. As men-
tioned, a pre-trained VGG-19 architecture is used, and features are
gathered and post-processed after every second convolutional layer
in each block. The best MOTA results are obtained with the output
of the fourth block, corresponding to the 10th convolutional layer of
the overall architecture. For the remaining tests, all DL features will
be based on this layer, which has an output of size 28× 28× 512.
Having used a random-search grid [3], Table 6.3 shows the most sig-
nificant MOTA results for a non-stabilized video sequence. In this
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experiment, a comparison between Geometrical and DL features is
shown, thus displaying the performance on their own as well as its
best-weighted combination. Besides, as explained in Subsection 5.3.3,
when extracting DL features, three different tests have been per-
formed regarding the neighborhood size around each pose part. As it
can be seen in Table 6.3, DL features outperform Geometrical ones,
especially in the case of a 2x2 neighborhood. By combining them, and
by giving more weight to the DL contribution, results are improved in
all cases, thus indicating that the two types of features complement
each other. In Table 6.4 the same experiments are shown, but this
time using a stabilized video sequence. In this case, the performance
of geometrical-based features outperforms the DL-based ones, but as
mentioned, these metrics will drastically drop if the included dataset
sequences contain fast camera movements (or even large pannings).
From both Tables 6.3 and 6.4 it can be deduced that the best filter
size when extracting DL pose features is a 2 × 2 neighborhood. A
priori, one might think that a 3×3 neighborhood should work better,
as it is already including the 2×2 one, but a 3×3 spatial neighborhood
in the output of the 10th convolutional layer is equivalent to a 24×
24 real neighborhood around the specific part in the image domain.
Accordingly, adding these extra positions will include court pixels,
thus resulting in noise-prone feature vectors, and as a result, non-
meaningful matches.
Apart from comparing Geometrical and DL features through Cd and
the different mentioned CDL, the effect of Visual features (color sim-
ilarity Cc, explained in Subsection 5.3.2) is checked too. Moreover,
tracking results have been compared with [74], which is a generic
state-of-the-art tracking method by Milan et al.; in all tests, our
ground-truth detections have been used, thus starting off with the
same conditions. In Table 6.5, the best-weighted combinations in
terms of MOTA / MOTP are shown for a non-stabilized and a sta-
bilized video sequence. In both cases, DL features outperform color
ones by a 3% margin. The combination of all Geometrical, Visual,
and DL features outperforms the rest of the techniques but just by
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0.2%, which comes at a cost of computation expenses. Besides, ob-
tained results show how existing literature methods, not trained a
priori for sports sequences, perform notably in terms of MOTA, but
there is a large drop in MOTP due to the implicit challenges of clut-
tered courts.

Neighborhood α 1-α MOTA
— 1 0 0.5689
1x1 0 1 0.5923
1x1 0.3 0.7 0.6289
2x2 0 1 0.6369
2x2 0.2 0.8 0.6529
3x3 0 1 0.6171
3x3 0.3 0.7 0.6444

Table 6.3: Non-stabilized results obtained from only 4 video frames
per second.

Neighborhood α 1-α MOTA
— 1 0 0.6506
2x2 0 1 0.6369
1x1 0.6 0.4 0.6752
2x2 0.55 0.45 0.6825
3x3 0.7 0.3 0.6781

Table 6.4: Stabilized results, with the same 4 video frames per second
and weights as in Table 6.3.
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Combination of Features MOTA MOTP
Geometrical + Visual 0.6233 0.6185
Geometrical + VGG 0.6529 0.6276

Geometrical + Visual [Stab] 0.6583 0.6225
Geometrical + VGG [Stab] 0.6825 0.6197

Geometrical + VGG + Visual [Stab] 0.6843 0.6238
Joint Track. + Segm. [74] 0.6714 0.3375

Table 6.5: Effect of Visual and Deep Learning features in combination
with Geometrical ones.

In order to break down and to evaluate the contribution in MOTA
of every single pose part, Table 6.6 is displayed; these results have
been obtained with a 2x2 neighborhood around parts, and without
combining with Geometrical features. As it can be seen, there are
basically three clusters:

1. Discriminative features, above a 0.35 MOTA, that manage to
track at a decent performance only with a 1×512 feature vector
/ player. These parts (shoulders, chest, and hip) belong to the
main shape of the human upper-torso, and it coincides with the
jersey-skin boundary in the case of players.

2. Features that fall within a MOTA of 0.20 and 0.35, which are
not tracking players properly but their contribution might help
the discriminative ones to achieve higher performance. These
parts include skinned pixels of basic articulations such as el-
bows, knees, and ankles.

3. Concrete parts that have almost no details at a coarse resolu-
tion, thus resulting in low MOTA performance. Eyes could be
an example: although people’s eyes have many features that
make them discriminative (such as shape, color, pupil size, eye-
brow’s length), players’ eyes in the dataset images do not em-
brace more than a 3x3 pixel region, and all of them look the
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same shape and brown or darkish. This results in poor tracking
results when checking only for these parts.

Given the mentioned clusters, 3 different tracking tests have been
performed by taking only some parts into account, in particular, and
in terms of MOTA:

1. Taking the top-6 parts (over 0.35 MOTA).

2. Taking the top-12 parts (over 0.2 MOTA).

3. Taking the top-20 parts (over 0.1 MOTA).

Results are shown in Table 6.7, where it can be seen that the sec-
ond and third clusters complement the top ones, while the bottom-5
parts actually contribute to a drop in MOTA. The drawback of this
clustering is that it requires some analysis that cannot be performed
in test time, and different video sequences (i.e different sports) might
lead to different part results.
Finally, the obtained effect after the inclusion of memory between tN
and tN−2 is shown in Table 6.8. By comparing the extracted features
across three consecutive frames, the obtained MOTA results improve
by a margin larger than 5%; a particular scenario that benefits from
memory inclusion are missed players in a single frame, which are suc-
cessfully recovered due to preserved features of tN−2.

A qualitative visual detection and tracking result (obtained with the
best combination of Geometrical + Deep Learning features without
camera stabilization) is displayed in Figure 6.2, where players are
detected inside a bounding box, and its color indicates their ID; as it
can be seen, all 33 associations are properly matched except a missed
player in the first frame and a mismatch between frames 2 and 3
(orange-green boxes).
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Part MOTA
Chest 0.5349

L-Shoulder 0.4726
R-Shoulder 0.4707

R-Hip 0.3961
Mid-Hip 0.3956
L-Hip 0.3867
L-Knee 0.3156
R-Knee 0.3062
L-Elbow 0.2862
R-Elbow 0.2545
R-Ankle 0.2418
L-Ankle 0.2407
L-Toes 0.1935
R-Toes 0.1920
L-Ear 0.1348
L-Heel 0.1259
L-Wrist 0.1235
R-Heel 0.1126

L-Mid-Foot 0.1116
R-Wrist 0.1111

R-Mid-Foot 0.0964
L-Eye 0.0916
Nose 0.0771
R-Eye 0.0655
R-Ear 0.0677

Table 6.6: Individual Part Tracking Performance, obtained with α =
0 in (5.5) and CFeat2 equal to CDL.
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Min. MOTA No of Parts Total MOTA
>0.35 6 0.6105
>0.20 12 0.6412
>0.10 20 0.6423
all 25 0.6369

Table 6.7: Clustering Part Results (α = 0 and CFeat2 = CDL) without
stabilization.

MOTA MOTP
Geometrical + VGG (No Memory) 0.6237 0.6086
Geometrical + VGG (Memory) 0.6825 0.6138

Table 6.8: Tracking performance with the inclusion of memory.

Figure 6.2: Obtained tracking and pose results in three consecutive
frames, where each bounding box color represents a unique ID.





7 Conclusions

Once stated the current unbalanced situation regarding basketball
tracking data, where only clubs in the NBA benefit from this type of
resource, the first Part of this thesis has consisted in exploring the
viability of single-camera trackers. To this end, we have proposed a
method to automatically track multiple targets (players). Roughly,
the presented tracking methods have been built from the following
four main steps:

1. Court filtering, that limits the boundaries where players may be
located. This segmentation has been achieved through different
approaches depending on the type of video footage. Apart from
using line segment detection: (a) in the case of European courts,
a simple color filter has been applied, and (b) in crowded NBA
games, an iterative approach through coarse CRF has been
used.

2. Player detection, obtained through a pre-trained model, Open-
Pose, able to detect not only the location but also the pose of
multiple humans.

3. Feature extraction. In particular:

• Geometrical features have been obtained in terms of pair-
wise distances between players across frames (in pixels).
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• Visual features benefit from the previously estimated pose
and characterize color features from small neighborhoods
around key body parts.
• Similarly, deep learning features have been extracted by

combining pose information with the output of convolu-
tional layers of a VGG-19 network.

4. Finally, player detections have been matched according to their
associated features by solving a cost minimization problem.

Having gathered a dataset from scratch, and having labeled more
than 11k ground-truth bounding boxes, an ablation study –in terms
of tracking metrics, such as MOTA and MOTP – has been included
to justify all the choices of the presented tracker.
Several conclusions can be extracted from the presented experiments:

• First of all, detections of OpenPose proved to work better than
other state-of-the-art networks such as YOLO [92], reaching a
final 0.947 F1-Score.

• DL features outperformed Visual ones when combining them
with Geometrical information; in particular, the obtained MOTA
boost is +0.03. On the contrary, the combination of all of them
has not implied a significant performance boost (only +0.0018
MOTA).

• In the case of VGG-19, DL extracted features from the 10th
convolutional layer have provided the best accuracy; moreover,
placing a 2x2 neighborhood around downscaled body parts (in-
stead of single pixels) has improved the tracking performance.

• Classical CV techniques such as camera stabilization have im-
proved the overall method’s performance, but it might have
related drawbacks, such as the incapability of generalization to
all kinds of camera movements.
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• When extracting pose features from convolutional layers, those
body parts that are not distinguishable at a coarse resolution
(e.g. nose, ears, wrists, heels...) have had a negative effect
on the overall performance. That is, instead of considering all
25 default body-parts, a combination of the most important
ones (for instance chest, shoulders, and hips) might generalize
better.

7.1 Future Work
Despite obtaining promising results, tracking data require being

really precise in order to train models on top of it and to build track-
ing reports that can be interpreted by coaches or GM’s. The pres-
ence of missed targets, or even miss-detections, results in noise-prone
tracking reports that cannot be used to draw valuable conclusions.
Moreover, in the cluttered basketball scenario, there are a lot of sit-
uations where miss-detections occur with ease and are crucial for
the play’s outcome. For example, the most common basketball plays
nowadays are based on ball-screens, where 2 offensive players, who are
wearing a similar jersey, aim to create a scoring opportunity through
a screen in a really small space; moreover, two (or even three) de-
fenders are also standing in the same space, which generates notable
partial-occlusions of pose parts. The decision-making process in this
type of plays needs to be precisely tracked at high confidence (over
0.95 MOTA). Therefore, the presented method should be a solid base-
line to be combined with other synchronized video footage a poste-
riori. Actually, the effect in terms of accuracy when adding more
cameras to the existing set-up should be studied, thus finding out
the minimum number of cameras to get decent results. Hopefully, by
including video footage from 3-5 existing broadcasting cameras (not
only the main one), accurate tracking data could be gathered without
increasing the overall cost. Besides, the presented method should be
able to handle fast basketball situations; for instance, during offen-



82

sive transitions, players (and the ball) move fast from one side of the
court to the other, thus involving large camera panning that cannot
be handled when stabilizing the sequence.
Another line of research could include the refinement of the court-
filtering process; so far, the presented approach properly segments
the playing area, but we lack specific coordinates or labels that could
indicate where each corner / relevant part of the court is. By hav-
ing at least 4 correspondences between the image and a given tem-
plate, tracking data could be expressed not only in terms of bounding
boxes (pixels) in the given image but also in 2D court-coordinates.
Moreover, geometrical features, which consist of pairwise distances
between detections, could also be expressed in terms of court co-
ordinates instead of pixels. This strategy, which involves computa-
tions in the 2D space, will be followed in the upcoming Parts of this
manuscript.
Another alternative that could be beneficial in terms of accuracy
would be switching from a tracking-by-detection approach to an end-
to-end training process. Given the lack of ground-truth labeled data,
unsupervised approaches could be helpful to tackle this challenge as
a self-supervised method [52]. Some experiments were performed by
fine-tuning existing networks such as Unsupervised Deep Tracking
[120], but the obtained results did not seem to generalize to basket-
ball players. Generally, state-of-the-art tracking networks are able to
confidently track single targets within non-cluttered scenes (or less
challenging, at least); however, the process of turning the problem
into multi-class classification results in a notable fall in terms of the
model’s performance.
Apart from orientation-based metrics, which will be detailed in the
next Parts of this manuscript, other applications could be built us-
ing the content of bounding boxes. For instance, action recognition
models would definitely improve raw tracking data, by indicating not
only where a player is located, but also detailing what he/she is doing
(i.e. running, shooting, dribbling, jumping...).



NBA is a very competitive league,
so whatever can give us an
advantage, we try to keep it.

Ivana Seric

Part II:
Orientation Estimation
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8 Introduction: Beyond
Tracking

Until this Part, the importance of tracking methods has been
contextualized, and as mentioned, with this brand-new data source,
the overall structure of data-science sports departments has changed
completely. Despite the unlocked potential of tracking data, exhaus-
tive post-processing techniques have to be applied in order to use their
insights. The outcome of tracking a complete game of any sport is
a large file that cannot be understood anyhow at first sight; play-
ers, coaches, or analysts cannot draw conclusions from raw data as if
they were analyzing, e.g., a simple box score. Consequently, sports
data scientists are continuously attempting to build automatic appli-
cations from tracking (and eventing) data that could be easily inter-
preted. Among many other applications, with this type of tracking-
based tools, coaches and analysts: (1) can study the effect of tactical
strategies, (2) are able to split the player performance into different
game phases, or (3) can estimate / back-up intangible statistics, thus
finding out who is the player that adds more value to a team instead
of the one with the highest number of scored goals. These models are
currently the holy grail of soccer analytics and they are solely based
on tracking data, but... Are 2D tracking data powerful enough to
encompass all types of events? Do we have unexploited metadata in
the image that could improve the model’s performance? Luckily, yes;
if 2D tracking data are used on their own, not enough evidence is
obtained to determine if a player is in a favorable condition of prop-

85



86

erly acting during the play, since external factors such as the player’s
own pose and orientation are crucial. In fact, coach Pep Guardiola
often explains how elder people claim that, while in yesteryear soccer
you had to control the ball, then look and turn around, and finally,
make the pass, in today’s faster version of soccer, players need first
to look and orient correctly before controlling and passing the ball.
Nonetheless, body orientation is a yet-little-explored area in sports
analytics research. For the sake of clarification, and despite being
an inherently ambiguous concept, player orientation is defined in this
thesis as the projection (2D) of the normal vector placed in the center
of the upper-torso of players (3D).

An existing type of tool that could benefit from the inclusion of
body-orientation could be Expected Possession Value (EPV) mod-
els. Given that the main reward of soccer players is to score a goal,
and knowing that this type of action is a rare event, Fernandez et
al. [34] extended the previous basketball-based work of Cervone et
al. [14] by creating an EPV framework that values player actions.
The main objective of this metric is to predict an expected value of
scoring / receiving a goal at a given time in any field position, based
on a spatial analysis of the whole offensive and defensive setup at
that moment; more concretely, in pass events, having a passer P ,
an EPV map can be computed for each field position x ∈ R2, which
estimates the above-mentioned expected-value if P passes the ball to
x. The main EPV model consists of different likelihood components,
especially emphasizing a passing probability model. Ultimately, the
inclusion of body-orientation into EPV models or the creation of com-
putational passing models will be studied, but first, this second Part
aims solely to estimate body-orientation from soccer video footage,
thus enriching tracking data with an extra variable. Note that from
now on, for both Part II and Part III, all conducted research will
be focused on soccer instead of basketball, since better datasets were
available for our purpose in terms of tracking and orientation ground-
truth data (extracted from EPTS-held devices). Two different types
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of orientation estimation methods are proposed:
• On the one hand, a model-based approach is proposed. It relies

on the combination of pose models and 3D vision techniques.
Furthermore, extra steps such as enhancing image quality –
through a super-resolution network –, a coarse skeleton cor-
roboration, and a final refinement based on the ball position
improve the overall performance. Validated results show less
than 30 degrees of median absolute error per player.

• On the other hand, a learning-based approach that does not
depend on pose models is proposed as well. Instead, a VGG-19
network [100] is fine-tuned to classify players’ bounding boxes
into different orientation bins; the network benefits from an
angle compensation strategy and a cyclic loss function. Our
results show a mean absolute error of fewer than 12 degrees.

Moreover, three novel types of orientation maps are proposed in order
to make raw orientation data easy to visualize and understand, thus
allowing further analysis at team- or player-level. More concretely,
OrientSonars integrate player orientation and show how players are
oriented during pass events. Reaction Maps show how players move
during the pass, by comparing their orientation at the beginning and
at the end of the event. Finally, On-Field Maps merge and compare
the pure body orientation of players with their relative orientation
with respect to the offensive goal.
The rest of this Part is organized as follows: since several sources
of data will be employed, Chapter 9 provides a complete definition
of the given datasets, their corresponding domains, and completion
techniques. Later, Chapter 10 details the existing related work re-
garding generic pose and gaze orientation. Proposed methods are
then described in Chapters 11 and 12, where the model- and the
learning-based approaches are described, respectively. While numer-
ical results can be found in Chapter 13, Chapter 14 suggests several
visual orientation maps. Finally, Chapter 15 lists the final conclu-
sions regarding orientation estimation.





9 Data Sources and
Completion

Before introducing the proposed method, a detailed description
of the required materials to train this model is given. Similarly, since
we are going to mix data from different sources, their corresponding
domains should be listed as well:

• Image-domain, which includes all kinds of data related to the
associated video footage. That is: (i1 ) the video footage it-
self, (i2 ) player tracking and (i3 ) position of the field’s corners.
Note that the result of player tracking in the image-domain con-
sists of a set of bounding boxes (as the output of the methods
of Part I), expressed in pixels; similarly, corners’ location is also
expressed in pixels. In this research, full HD resolution (1920 x
1080) is considered, together with a temporal resolution of 30
frames per second.

• Sensor-domain, which gathers all pieces of data generated
by wearable EPTS devices. In particular, data include: (s4 )
player tracking, and (s5 ) orientation data. In this case, players
are tracked according to the universal latitude and longitude
coordinates, and orientation data are captured with a gyro-
scope in all XYZ Euler angles. In this work, sensor data were
gathered with RealTrack Wimu wearable devices [91], which
generate GPS / Orientation data at 100 / 10 samples per sec-
ond, respectively.
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• Field-domain, which expresses all variables, such as (f1 ) player
tracking, in terms of a fixed two-dimensional football field,
where the top-left corner is the origin.

In the upcoming Chapters of this same Part and also in Part III,
three different datasets are used:

• A complete dataset, in which all variables (i1, i2, i3, s4, s5, f1 )
are available. Note that both image- and sensor-data include
unique identifiers, which are easy to match by inspecting a small
subset of frames. In particular, our complete dataset contains
a full game of F.C. Barcelona’s Youth team recorded with a
tactical camera that contains almost no panning and without
zoom; this dataset will be named youthFCBDS.

• An orientation-based dataset, where only part of the informa-
tion is available (in particular, i1,s4,s5 ). More specifically, our
orientation-based dataset contains a full preseason match of
CSKA Moscow’s professional team, recorded in a practice facil-
ity (without fans) with a single static camera that zooms quite
often and has severe panning. Similarly, this second dataset will
be named CSKADS. Furthermore, the intersection of field lines
and field corner coordinates in the image were manually identi-
fied and labeled in more than 4000 frames of CSKADS (1 frame
every 45, i.e. 1.5 seconds), with a mean of 8.3 ground-truth
field-spots per frame (34000 annotations). In order to estimate
the missing pieces (i2, i3 ) and match data across domains, a
sequential pipeline is proposed in Section 9.2.

• A tracking-based dataset, which contains data from both the
image- and the field-domains (i.e. i1, i2, i3, f1 ), but no sen-
sor data. In this research, the tracking-based dataset, named
FCBDS contains data from 9 games of the professional F.C.
Barcelona during the 2019-2020 season; by filtering eventing
data, around 6000 event passes have been gathered among 12
different players. Note that this dataset will not be used to
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assess the performance of orientation estimation methods. In-
stead, its main purpose is to bring together a large number
of passing events in order to create orientation-based data vi-
sualization tools once orientation has already been estimated;
furthermore, as it will be detailed in Part III, this large dataset
will be also used in Part III to evaluate pass feasibility.

9.1 Homography Estimation
Since the reference system of the image- and the sensor-domain

is not the same, corners’ positions (or line intersections) are used to
translate all coordinates into a 2D template representing the field-
domain. On the one hand, obtaining field locations in the sensor-
domain is pretty straightforward: since the sensor’s gathered coordi-
nates are expressed with respect to the universal latitude / longitude
system, the corners’ locations are fixed. By using online tools such
as the Satellite View of Google Maps, and by accurately picking field
intersections, the corners’ latitude and longitude coordinates are ob-
tained. On the other hand, corner’s positions in the image-domain
(in pixels) depend on the camera shot and change across the different
frames; although several literature methods [15; 20] can be imple-
mented in order to get the location of these field spots or the camera
pose, our proposal leverages homographies computed from manual
annotations. From now on, the homography that maps latitude and
longitude coordinates into the field will be named HSF , whereas the
one that converts pixels in the image into field coordinates will be
named HIF . The complete homography-mapping process is illus-
trated in Figure 9.1.

For the sake of clarification, in the field-domain, it can be assumed
that 0o / 90o / 180o / 270o are the corresponding orientations of play-
ers facing towards the right / top / left / bottom sides of the fields,
respectively, as shown in Figure 9.2. Moreover, as it will be detailed
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Figure 9.1: Several domains are merged in the upcoming parts.
(left) Sensor-, (middle) field-, and (right) image-domain. By using
corners and intersection points of field lines, the corresponding homo-
graphies are used to map data across domains into one same reference
system.

afterward, similar angles will be clustered into orientation bins for
both the presented methods (orange and yellow lines in Figure 9.2).
As it will be enclosed afterward, in our methods and experiments, we
will consider either 12 bins (corresponding to the 12 angular regions
limited by the orange lines in Figure 9.2) or 24 bins (corresponding to
the union of orange and yellow lines). Chiefly, when sorting, the first
/ last orientation bins will always correspond to the ones including
0o / 360o, respectively. Last but not least, throughout the remaining
parts of this thesis, the pink camera of Figure 9.2 will be referred to
as the reference camera, in which there is no panning and the viewing
direction points to the center of the field; in some given scenarios, if
the camera pose does not coincide with the reference camera, some
compensation will have to be applied.

9.2 Automatic Dataset Completion

In this Section, the complete process to convert an orientation-
based dataset into a complete one is described. It has to be remarked
that the aim is to detect players in the image-domain and to match



9. Data Sources and Completion 93

them with sensor data, hence pairing sensor orientation with bound-
ing boxes in the image. Note that this procedure has been applied
to CSKADS, which did not contain ground-truth data in the image-
domain. The proposed pipeline is also displayed in Figure 9.3.

Figure 9.2: Orientation references in the field-domain. Besides, since
similar orientations will be clustered into bins, their portions are
shown as well.

• Player Detection: the first step is to locate players’ location
in the image. In order to do so, literature detection models can
be used, such as OpenPose [11] (used in this research) or Mask
R-CNN [48]. Once identified all different targets in the scene,
detections are converted into bounding boxes. Note that this
step does not exploit any temporal information across frames.

• Jersey Filtering: since sensor data are only acquired for
one specific team, approximately half of the detected bound-
ing boxes (opponents) are filtered out. Given that the home /
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Figure 9.3: Proposed pipeline to match sensor orientation data with
bounding boxes. Different input sources are merged: (top, image-
domain) video footage, which is used for player detection and jersey
filtering; the resulting bounding boxes are later mapped into the field-
domain. (middle, image-domain) Corner’s location, which is used
for building the corresponding mapping homographies, and (bottom,
sensor-domain) ground-truth data, which are also mapped into the
field-domain. Finally, players in the 2D-domain are matched through
pairwise distances.

away teams of football matches are required to wear distinguish-
able colored jerseys, a simple clustering model can be trained.
Specifically, by computing and by concatenating quantized ver-
sions of the HSV / LAB histograms, a single 48-feature vector
is obtained per player. Having trained a K-Means model, with
K = 3, boxes with three different types of content are obtained:
(1) home team, (2) away team, and (3) outliers.

• Mapping: in order to establish the same reference system
for both sensor and image data, all tracking coordinates are
mapped into the field-domain. More specifically, corner-based
homographies HSF and HIF are used; in the latter, since we
are dealing with bounding boxes, the only point being mapped
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for each box is the middle point of the bottom box’s boundary.

• Matching: once all points are mapped into the field-domain,
a customized version of the Hungarian method [59] is imple-
mented, thus matching sensor and image data in terms of pair-
wise field-distances.





10 Related Work

Since, to the best of our knowledge, there are no existing contri-
butions to infer body-orientation of players in the sports domain, this
Chapter aims to detail several related works regarding pose and gaze
orientation. Note that all contributions are clustered by different
fields of research, and within each field, papers are listed chronologi-
cally.

Estimating the pose of athletes from sports video footage is nothing
new. Since these methods can yield to the extraction of valuable
analytics that can numerically answer many coaching concerns, the
estimation of 2D / 3D pose has been split into many contributions,
each one solving particular sports challenges from the CV perspec-
tive. Starting with the 2D pose estimation, in 2013, Fastovets et
al. [31] presented a combination of inference algorithms and proba-
bilistic prior models to extract athlete pose estimation directly from
TV sports footage. The authors exploited spatio-temporal data in a
graph fashion to ensure the consistency of joints across frames. That
same year, Hayashi et al. [47] focused on team sports, but their work
was limited to the head and upper body pose estimation method
while using low-resolution footage. By detecting and by tracking the
player’s head and pelvis (without temporal information), an estima-
tion of the 2D spine was obtained, and together with its orientation,
a 3D spine pose was computed. The presented results of both pa-

97



98

pers showed how the head- and upper-body-pose was leveraged for
individual players, resulting in 3D visualizations that could be then
studied by coaches. Two years later, the latter authors [46] extended
their previous work by training a poselet-regressor that produced an
accurate estimation of the spine pose. By introducing priors based
on the spine angle, several body classifiers were trained, which out-
put a coarse orientation value of the upper body; note that, once
the head region of each player was detected, the contribution of the
presented regressor was to estimate the relative pelvis location for
each target. Although presented results (soccer and football footage)
showed a promising baseline, orientation was estimated in the image-
domain (perceived orientation); therefore, the challenge of estimating
the absolute player orientation in the field-domain is still unsolved.
Another head-pose contribution was made by Chen et al. [16], who
also attempted to estimate it through low-resolution frames, since
surveillance cameras may have to operate in scenarios where privacy
protection is required. Similarly, their contribution stemmed from a
feature extraction process that combined histogram of oriented gradi-
ents features and gradient-based ones, and the resulting vectors were
used in order to train and test a regressor. Obtained results were
validated with Kinect-based data, which captured depth and allowed
a further inspection of the captured frames; the final estimations con-
tained less than 13 degrees of mean-absolute error in all roll, yaw, and
pitch angles. The last sports-based 2D pose estimation is the one pro-
posed by Sypetkowski et al. [110], who focused on soccer data across
several types of video footage, including both high and low-resolution
videos / frames. Their deep convolutional network showed a notable
capability of generalization when retraining models with unseen data.

By extending 2D to the third dimension, the estimation of the 3D
human pose was the main goal of Akhter et al. [1]. By gathering (and
sharing) a large capture motion dataset, the existing pose priors that
are assumed to work on joint limits were updated, thus describing
the limits of human joints when it comes to movement-related de-
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grees of freedom. However, their main contribution was a detailed
parametrization of body poses that allowed the 3D pose estimation
using redundant information. Their results worked fine for general
non-sport datasets, but when dealing with cluttered sports scenarios
(such as the Leeds sports pose dataset), manual annotations were
required to gather accurate 3D pose data. In order to avoid the te-
dious need for extensive manual joint annotation, Sumer et al. [108]
proposed a self-supervised learning approach that was based on pose
embedding and incorporated spatio-temporal data to learn pose sim-
ilarities. The proposed architecture was a siamese convolutional net-
work, which provided training labels that were later double-checked
by a curriculum learning step. Besides, the model benefited from
repetitive poses, which might be used to detect outlier joints. Re-
sults were also tested on challenging sports datasets, and the overall
pose seemed to generalize properly to unseen bounding boxes. Zhang
et al. [132] went far beyond the widely-practiced sports, and pre-
sented a multi-view dataset that included images from less popular
disciplines, such as dancing or martial arts. Apart from providing at
least 3 color views and their corresponding depth maps – plus cal-
ibrated ground-truth poses –, which could be used to estimate the
3D pose, the authors also provided baseline pose estimation results
using state-of-the-art models (and exploiting temporal information).
Their drawn conclusions detailed that, while discriminative models
performed better when large sets of data were being used to train
the model, generative models were more robust to extreme poses.
In 2019, another 3D pose estimation contribution was published by
Bridgeman et al. [9], who attempted to correct the most common
inconsistencies of this type of model, and succeeded in tracking 3D
skeletons through the association of 2D poses between different cam-
eras in a greedy fashion. Apart from detecting joints and merging
data from several cameras, priors – when it comes to joints and limbs
– were also considered to correct the existing false positives. More-
over, their method was sports-based, and the model had to be able
to: (a) properly handle cluttered scenarios, and (b) reduce the pro-
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cessing time as much as possible without dropping accuracy; in fact,
this paper also considered the 3D pose estimation of multiple targets
at the same time. The need for fast and efficient models was also
considered by Zhang et al. [130], who proposed a light model based
on fast pose distillation learning. By leveraging pose data with sim-
ple architecture, the pose structure was post-processed by a strong
teacher network that was in charge of refining all the obtained outputs
into solid estimations. This novel approach resulted in the abolition
of the existing compromise in the trade-off that relates accuracy and
efficiency.

Apart from obtaining the 2D / 3D pose of players, other interest-
ing challenges in sports involve the identification of player’s jersey
numbers, which might be a key factor to determine the player ori-
entation and was studied by Liu et al. [63]. In this work, given
that in traditional soccer footage the camera shot changes drasti-
cally with panning and zooming, and given that players keep turning
around, an R-CNN network was trained to exploit player body cues.
Roughly, the presented model classified the bounding boxes’ pixels
into (a) background, (b) player, or (c) digit; the latter were fed into
another classifier, which stabilized the given input and ended up in-
ferring the number of the given box. Results were validated with real
soccer-match data, and the method outperformed existing number
recognition models. Note that, by using the segmented image as a
network input, an unsupervised clustering model could be trained to
distinguish between front- / back- / side-poses among players.

Once pose has been estimated, the design of pose-based tools, which
can help coaches improve the performance of players / teams dur-
ing practices or games, is sport-dependent. Stemming from a purely
basketball-based dataset, Felsen and Lucey [32] aimed to find corre-
lations between different types of shots and the body position of the
shooter. Their motivation was to complement the existing 2D Sports
VU tracking data, because when taking only spatial coordinates into
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account, some relevant information might be missed. Their method
included a quantification of the involved anatomy in a three-point-
shot and a machine learning module, where a model was trained both
to identify open / tough shots and to attribute correlations by com-
paring them. Furthermore, the authors also performed a deep analy-
sis of the shooting parameters of the best NBA shooter at that time
(Stephen Curry, 2015-2016 season), and found out that, although
there were many biometric correlated factors in open / tough shots,
those cannot be generalized into a single model, as Curry had a no-
table percentage from long-range, but he attempted more tough shots
than the vast majority of players. When considering other sports,
Zecha et al. [129] predicted the motion of pose kinematics and dy-
namics for an automatic swimming athletic performance assessment.
In this paper, the authors worked with challenging aquatic footage,
where the corresponding left / right pose parts can be swapped eas-
ily and some of them might be partially or totally occluded. By
defining a cost function in a graph fashion and by using integer lin-
ear programming, the labels of body parts (mainly shoulders, arms,
and leg parts) were constantly double-checked. Meanwhile, Zhi et al.
[135] dealt with the estimation of both individual and collective key
pose recognition, which has great value for strength and conditioning
coaches. By using a deep neural network, the authors managed to
collect data from weightlifting high-resolution footage and classified
the obtained frames into normal / abnormal scenarios, thus limiting
the potential region of interest. Consequently, the key pose was ex-
tracted.

Finally, even though body orientation is claimed to be more mean-
ingful in the sports context than gaze orientation, a brief literature
review from the latter topic could also be helpful to obtain meaning-
ful player insights. First, Kellnhofer et al. [57] presented a model to
estimate 3D gaze in the wild, together with a large-scale gaze-tracking
dataset (Gaze360). Given the diverse nature of the shared dataset
(indoors, outdoors, camera shots...), their proposed gaze model ex-
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ploited temporal information and outperformed state-of-the-art re-
sults. Moreover, the authors also tested their model with benchmark
ones using a cross-dataset self-supervised adaptation, hence prov-
ing that the trained model did not overfit. Also in 2018, Fischer et
al. [35] provided robust gaze estimations under natural conditions,
hence solving several challenges such as fast lightning changes. What
is more, the authors also suggested a solution so that the accuracy
would not drop while the detected target moved further away from
the camera. By capturing a solid training dataset with eye-tracking
glasses, and once applied semantic image inpainting to make the
train images resemble the test ones, a deep convolutional network
was trained. Cross-dataset evaluations were also performed, and re-
sults showed that not a lot of accuracy was compromised when the
human-camera pairwise distance increased.



11 Model-based Orientation
Estimation

In this Chapter, the proposed model-based approach to esti-
mate orientation from soccer players is detailed. Roughly, this
method uses pose models, contextual information, and 3D vi-
sion techniques to obtain orientation data directly from video
footage.

Our model-based orientation method benefits from two different
kinds of orientation estimation: pose data and ball position, which
will be detailed in Sections 11.1 and 11.2, respectively. An overall
pipeline of the method is presented in Figure 11.1. The output of
all these individual estimations produces both a numerical orienta-
tion result and a confidence value. More concretely, orientation is
measured in degrees and discretized into 24 probability bins using
the reference system previously displayed in Figure 9.2. Those 24
bins correspond to the 24 angular regions limited by the union of
orange and yellow lines. While the orientation value indicates the
bin with higher probability, the confidence value is used as a prior to
quantify, in an inversely proportional way, how many other neighbor-
ing bins have a non-zero probability. More concretely, the proposed
method outputs a probability density function (pdf) of the estimated
orientation, from which we define player orientation as the angle cor-
responding to the maximum of the obtained pdf, and its confidence,
defined as the inverse of the pdf support. Nevertheless, the aforemen-
tioned pdf is refined by incorporating contextual information about
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Figure 11.1: Proposed pipeline. On the one hand, pose orientation
is found by combining a super-resolution network, OpenPose and 3D
vision techniques (plus a coarse validation); on the other hand, ball
orientation is also computed. Finally, both pdf’s are merged into a
single final orientation estimation.

the position of the ball (Section 11.3) to output the final orientation
of each player.

11.1 Pose Orientation

Estimating orientation from pose data is a key ingredient of this
method, and uses pre-trained models and 3D vision techniques in
order to obtain a first orientation estimation of each player. Given
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temporally-smoothed bounding boxes of players, a combination of
super-resolution and pose detection techniques is applied to find the
pose of every player. Both the left-right shoulders and the left-right
parts of the hip will be considered as the main upper-torso parts.
By projecting these parts in a 2D space, the normal vector between
these points is extracted (Figure 11.2(b)). A detailed description of
this method is given in the upcoming Subsections.

11.1.1 Pose Detection
Having the bounding boxes for all visible players in each frame,

the OpenPose library [21] is used to extract the pose of every single in-
dividual (we refer to Section 2.1 for details of pose models). However,
detecting the pose of players in sports scenarios is always challenging
given the frequent occlusions and fast movements that lead to mo-
tion blur. Moreover, the average resolution of bounding boxes around
players in Full-HD frames is around 15×50 pixels. Hence, small im-
age crops are not always properly processed by OpenPose, resulting
in a null set of landmarks. For this reason, a super-resolution net-
work is previously used to preprocess bounding boxes and enhance
the image quality instead of a simpler interpolation technique. More
concretely, the applied model is a Residual Dense Network (RDN)
[12; 133].

11.1.2 Angle Estimation
Once the pose is extracted for each player, the coordinates (and

confidence) associated with the upper-torso parts are stored to esti-
mate the pose orientation. From the output of OpenPose, the coor-
dinates of the main upper-torso parts are found in the image domain.
By using HIF (Section 9.1), the left-right pair parts (either shoulders
or hips) can be mapped into a 2D field, thus obtaining, as seen in Fig-
ure 11.2(a), a first insight about each player’s orientation. Basically,
in the case of 24 clustered orientation bins, the player can be inclined
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Figure 11.2: (a) Different 2D combinations of left-right mapped parts;
(b) same combinations with normal vectors.

towards the right (0-90o, 270-360o, bins 0-11) or the left (90-270o,
bins 12-23) side of the field. From now on, this first binary estima-
tion, which indicates if the orientation belongs to the first or second
half of the orientation histogram, will be called LR-side parameter.
Figure 11.3 shows in more detail how pose orientation is estimated:
first, left-right shoulders and hips are mapped via the estimated ho-
mography (HIF ) into the 2D space; then, LR-side booleans (LRSh,
LRHi), angles (αSh, αHi) and confidences (CSh, CHi) are obtained,
where the suffixes Sh and Hi stand for shoulders and hips, respec-
tively. The associated confidences are the product of OpenPose’s in-
dividual shoulder and hips confidences, respectively. However, Open-
Pose might fail detecting either the left or the right hip parts / shoul-
ders; while in the case of a missing hip part, the middle-hip position
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is used as a substitute, when a shoulder is missing, the chest position
is picked. Then:

1. If LRSh and LRHi agree, both individual confidence values are
checked: in case CSh > CHi, αSh is considered as the pose
orientation estimation and CSh its confidence. If not, αHi and
CHi are selected.

2. Otherwise, if |CSh − CHi| is smaller than a threshold (set to
0.4 in our results), the player’s face direction is checked. In
the image domain, the difference among the X positions of all
face parts and the player’s neck is computed. If most of the
parts move towards the origin of the X axis (Figure 11.3(c)),
the player’s LR-side will be left; otherwise, the player’s LR-side
will be right.

Then, given the final pose orientation estimation αP and its related
confidence CP , a Gaussian probability distribution is located around
it, with effective support size

NP = max
(⌊
Nbins

(1− CP
2

)⌋
, 1
)
, (11.1)

centered at

orP=


⌊

αP
360/Nbins

+ Nbins
4

⌋
if αP

360/Nbins
< 18⌊

αP
360/Nbins

+ Nbins
4

⌋
−Nbins if αP

360/Nbins
> 18

(11.2)

where the second element of the sum is an offset that compensates
the bin order. The output vector of this orientation estimation will
be denoted as HP .

11.1.3 Coarse Orientation Validation
Despite the notable performance of Open Pose, image quality

problems (e.g. blurry or really small players) are challenging sce-
narios where the estimated players’ pose might be flipped 180o: this
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Figure 11.3: Pose orientation estimation: (a) OpenPose output and
its (b) mapped 2D coordinates. (c) Side check between shoulder and
hip parts, plus, if required, (d) face direction double-check. Right
after, (e) a final estimation is obtained.
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is, the right-left shoulders (or hip parts) of the corresponding player
are swapped. Inaccurate detection of the player pose results in huge
errors while estimating the pose angle, as the actual normal vector is
the opposite of the predicted one, thus introducing errors that might
oscillate between 120o and 180o. In order to double-check the pose
orientation estimation and to ensure that the upper-torso normal vec-
tor is computed in the correct direction, a Support Vector Machine
model has been trained to classify three types of coarse orientations:
front-, side- and back-oriented players (see Figure 11.4):

• Front-oriented players are the ones whose upper-torso is point-
ing straight to the camera position. These players usually have
an orientation between 200 and 340 degrees (red class in Figure
11.4(d)), and chest-jersey advertisements can be easily spotted.

• Side-oriented players are the ones placed almost completely per-
pendicular with respect to the camera. These players usually
have an orientation that can vary from 160 to 200 degrees (if
the LR-side parameter points left) or from 340 to 20 degrees
(LR-side pointing right and blue class in Figure 11.4(d)).

• Back-sided players are the ones whose upper-chest is pointing
in the opposite direction with respect to the camera position.
These players usually have an orientation between 20 and 160
degrees (yellow class in Figure 11.4(d)), and the number of the
player in the backside of the jersey is very visible.

Two characteristics are concatenated in the feature vector: color fea-
tures in the Hue-Saturation-Value color space (histogram of 36-18-
18 bins in the respective channel) and geometrical properties (pixel-
wise distances between the 4 upper-torso coordinates). Having the
position of the upper-torso parts, obtained from pose keypoints, the
above-mentioned features are only computed inside the defined trape-
zoid, hence discarding misleading features such as the color of the
field. Therefore, this model is used after estimating player pose ori-
entation, with two main possible outputs:
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• The resulting angle estimation coincides with the coarse clas-
sification (e.g. a player oriented towards 90 degrees according
to pose orientation classified as front-oriented). In this case,
the final pose orientation does not change from the previous
estimation.

• The player’s pose orientation does not match the output of the
coarse classification model (e.g. a player oriented towards 90
degrees according to pose orientation classified as a back-sided
player). In this situation, the final pose orientation will be
the opposite angle of the previously computed normal vector
(+180o).

Figure 11.4: (a) front-, (b) side-, and (c) back-oriented players with
their (d) corresponding potential pose orientation.
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11.2 Ball Orientation
The other performed estimation is related to the position of the

ball. Logically, players close to the ball tend to be strongly oriented
towards it, while players placed far away may not have to be duly
oriented. Hence, having all pairwise distances and the corresponding
angles, the orientation of players with respect to the ball can be
estimated. Then, for a given player at (Px, Py), in a moment where
the ball is at (Bx, By), and an angle of β degrees between player-ball,
the effective support size of the related pdf is:

NB = Nbins

4

1−
MD −

√
(P 2

x −B2
x) + (P 2

y −B2
y)

MD

+ Nbins

8 , (11.3)

where MD is a maximum distance that regularizes how far a player
can be from the ball without being influenced by it; this parameter
is set to w

6 in practice, where w indicates the field width. Then, the
central bin with the highest weight is:
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⌊
β

360/Nbins

⌋
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(11.4)

Once again, the outcome of this estimation is a discrete probability
vector, called from now on HB; the overall process can be spotted in
Figure 11.5.
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Figure 11.5: Orientation computation with respect to the ball of
4 different players, considering both the angle (direction) and the
distance (magnitude).
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11.3 Contextual Merging
Once both histograms are obtained, a simple weighting is per-

formed between them, thus merging pose and ball orientations. In
particular:

HTOT = wHP + (1− w)HB, (11.5)

with w ∈ [0, 1]; more concretely, several values of w will be tested
in Section 13.1. Ultimately, the orientation θ of each player is the
central value of the bin HTOT with the highest weight, namely:

θ = argmax (HTOT) · 360
Nbins

+ 360/Nbins

2 (11.6)

In terms of visualization, orientations can be displayed in the 2D
field; starting from a 2D point (Pb), which indicates the position
of a given player, another point (Pe) can be projected at a given
distance Tθ having an orientation of θ degrees; as a result, the vector
joining Pb and Pe will have the estimated orientation and a length
proportional to the estimated confidence Tθ. Moreover, having both
points, the same coordinates can be mapped back into the original
frames by multiplying Pb and Pe by the inverse homography (HF−I),
thus showing the orientation vector in the video frame.





12 Learning-based Orientation
Estimation

In this Chapter, another approach to estimate orientation di-
rectly from bounding boxes is detailed. In this case, instead of
approaching this challenge with the combination of CV meth-
ods, a learning-based fashion is used.

The presented learning-based orientation stems from a fine-tuning
process where a state-of-the-art network is trained with bounding
boxes and their corresponding ground-truth orientation, obtained
through ETPS-held devices. More concretely, the method compen-
sates angles a priori (Section 12.1), and uses a VGG-19 architecture
(Section 12.2); what is more, by including a cyclic loss function (Sec-
tion 12.3), and a thoughtful training setting (Section 12.4) the over-
all generalization capability of the model improves. Note that with
this proposed learning-based strategy, there is no need anymore to
compute the player’s pose, and instead, orientation can directly be
obtained with the raw content inside a bounding box.

12.1 Angle Compensation
The apparent orientation of each player is influenced by the cur-

rent image content, which is drastically affected by the camera pose
and its orientation. This means that, if a bounding box of a par-
ticular player is cropped without taking into account any kind of
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field reference around him/her, it is not possible to obtain an abso-
lute orientation estimation. As displayed in Figure 12.1 (top), the
appearance of three players oriented towards the same direction (0
degrees) can differ a lot. Since the presented classification model only
takes a bounding box as input, we propose to compensate angles a
priori, thus assuming that all orientations have been obtained under
the same camera pose; i.e. the reference camera, described in Section
9.1. For instance, if the full chest of a player is spotted in a particular
frame, its orientation must be approximately 270 degrees, no matter
what the overall image context is.

In order to conduct this compensation, as seen in the bottom row of
Figure 12.1, the orientation vector of the player is first mapped into
the field-domain. Then, the apparent zero-vector is considered in the
image-domain; for the reference camera, this vector would point to
the right side of the field whilst being parallel to the sidelines. By
using HIF , the apparent zero-vector is mapped into the field-domain,
and the corresponding compensation is then found by computing the
angular difference between the mapped apparent zero-vector and the
reference zero-vector in the field-domain. According to Figure 12.1,
this difference indicates how the orientation vector differs from the
apparent zero-vector.
Formally, for a player i with non-compensated orientation α′i at posi-
tion Pi = (Pi,x, Pi,y) and being the (unitary) apparent zero-vector Z
described by (1, 0), another point is defined towards the zero direc-
tion:

P 0
i = Pi + Z = (Pi,x + 1, Piy) (12.1)

Both points Pi and P 0
i are mapped into the field domain by using

HIF , thus obtaining their 2D position Fi and F 0
i , respectively. The

final compensated angle is then found as:

αi = α′i − ∠(
−−→
FiF

0
i ), (12.2)

where ∠ expresses the angle of the vector
−−→
FiF

0
i with respect to the

reference zero-vector.
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Figure 12.1: (Top) Three players oriented towards 0o can look re-
ally different depending on the camera pose and orientation. (Bot-
tom) Proposed technique for angle compensation: (left) detected
player together with his orientation {red} and apparent zero-vector
{cyan}; (middle-left) mapped apparent zero-vector in the field-
domain {dashed axes - apparent reference system, continuous axes
- absolute reference system} (middle-right) Applied compensation
on the original orientation {purple}; (right) resulting compensated
absolute orientation {purple}.
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12.2 Network

Once all bounding boxes have an associated compensated body-
orientation value, the model is set to be trained. In this work, orien-
tation estimation has been approached as a classification task, where
each bounding box is classified within a certain number of orienta-
tion bins. As it will be detailed in Section 13.2, orientation data
are grouped into K bins, each one containing an orientation range of
360/K degrees. Consequently, the above-mentioned bounding boxes
in the image-domain were automatically labeled with their corre-
sponding class according to their compensated orientation. Another
reason for grouping similar angles into the same class is the noisy raw
orientation signals generated by the EPTS devices.
The chosen network to be fine-tuned is a VGG-19 [100]; this type
of network has also been used as a backbone in existing literature
methods such as OpenPose [11]. However, in order to further ana-
lyze and to justify our choice, alternative results are shown in Section
13.2 when using DenseNet [50]. The original architecture of VGG-19
is composed of 5 convolutional blocks – each one containing either 2
or 4 convolutional layers –, and a final set of fully connected layers
with a probability output vector of 1000 classes. For the presented
experiments, as seen in Figure 12.2, the architecture adaptation and
the proposed method consists of:

1. Changing the dimensions of the final fully-connected layer, thus
obtaining an output with a length equal to the desired number
of classes.

2. Freezing the weights of the first couple of convolutional blocks.

3. Re-training the convolutional layers of the third block and the
fully connected layers of the classifier.

4. Omitting both the fourth and fifth convolutional blocks.
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Figure 12.2: Proposed architecture for fine-tuning a VGG-19 accord-
ing to the main blocks of the original network.

By visualizing the final network weights with Score-CAM [117] (Fig-
ure 12.3), it can be spotted how the most important body parts re-
garding orientation (upper-torso) are already being vital for the sake
of classification after the third block. In fact, the responses of the
fourth block do not provide useful information in terms of orienta-
tion. Therefore, omitting blocks 4 and 5 is a safe choice to have an
accurate model whilst decreasing the total number of parameters to
be trained.
Let us finally remark that image values in bounding boxes are con-
verted into grayscale, thus improving the overall capability of gen-
eralization, since the model will not be learning the specific jersey
colors as happened with the coarse corroboration of the model-based
method (Subsection 11.1.3). In terms of data augmentation, bright-
ness, and contrast random changes are performed for all boxes in the
training set.
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Figure 12.3: Obtained ScoreCam [117] responses. While the 1st block
mainly responds to edges and shapes, the 3rd one has a high response
over the players’ upper-torso. The last row shows how the 4th block
learns specific features that have little to do with orientation.
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12.3 Cyclic Loss

An important aspect of the training process is the definition of
the loss function. A priori, state-of-the-art loss functions such as
binary cross-entropy could be a valid resource, but in general classi-
fication scenarios, the order and the distance within classes are not
taken into account. Nonetheless, in this particular scenario, we have
K ordered-cyclic classes and a distance between them that can be
well-defined. Besides, in this classification problem, since similar ori-
entations have been grouped into bins, enforcing a one-hot encoding
is not the best solution. For example, if K = 12 and each orientation
bin encompasses 30 degrees, imagine a player P1 oriented towards 31o
and another P2 oriented towards 59o; both players are included in the
second bin, which encompasses all orientations between 30-60. With
one-hot encoding, it would be assumed that since both P1 and P2
are in the second bin, both of them have the same orientation (45o).
However, alternatives such as soft labels [28] can describe the players’
class as a mixture; in the given example, the soft labels of P1 / P2
would indicate that these players are right between the first-second
/ second-third bins, respectively. The other challenge to be solved is
the need for this loss function to be cyclic, as the first bin (number
1, 0-30o) and the last one (12, 345-360o) are actually really close.
Let {b1, b2, ..., b12} be the set of orientation classes and let
χ = {r1, r2, . . . , r12} be the set such that each rj denotes the cen-
tral angle of bin bj, for all j ∈ {1, . . . , 12}. Then, for a player i with
compensated ground-truth orientation αi, the soft labels representing
the ground-truth probability distribution are defined as the vector yij
with coordinates:

yij = exp(−φ(αi, rj))∑K
k=1 exp(−φ(αi, rk))

, for j = 1, . . . , 12 (12.3)

where φ is the cyclic distance between the ground-truth player’s ori-
entation αi and the angle corresponding to the jth bin, rj, defined
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by:

φ(αi, rj) = min(|αi − rj|, 360− |αi − rj|)2

90 . (12.4)

Let us denote as xi the estimated probability distribution of orienta-
tion of player i obtained by applying the softmax function to the last
layer of the network. Finally, our loss is the cross-entropy between
xi and the ground-truth soft labels yi.

12.4 Training Setting

As mentioned in Chapter 9, several datasets have been used through-
out this whole thesis. In this case, we are only interested in us-
ing those two datasets including orientation data, i.e. youthFCBDS
and CSKADS, which were recorded under different camera shot con-
ditions. Consequently, as seen in Figure 12.4, the content inside
both bounding boxes differs a lot: while in youthFCBDS players are
seen from a tactical camera and have small dimensions, players in
CSKADS are spotted from a camera that is at almost the same height
as the playing field, thus resulting in big bounding boxes. Although
all bounding boxes are resized as a preprocessing stage of the network,
the raw datasets suffer from concept drift [123].
The proposed solution in this thesis is to build an unbalanced-mixed
training set; that is, merging bounding boxes from both datasets
with an unbalanced distribution in the train set, whilst using the
remaining instances from youthFCBDS and CSKADS on their own to
build the validation and the test set, respectively. In particular, the
presented experiments of Section 13.2 have been carried out with a
90-10 distribution in the training set; that is, the model should be able
to generalize to both different games despite having almost no data
from one of the games. For each class, a total of 4500 bounding boxes
are included in the training set, where 4000 of them are obtained
from youthFCBDS and the 500 remaining ones are gathered from
CSKADS. While the validation set includes 500 bounding boxes from
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youthFCBDS, the test set is built with the same number of instances
from CSKADS.

Figure 12.4: Resized bounding boxes of both datasets; several arti-
facts can be spotted in youthFCBDS (e.g. JPEG, ringing, aliasing).





13 Orientation Estimation
Results

In this Chapter, results obtained with both presented meth-
ods are detailed. Note that, in order to validate the ob-
tained results, sensor data have been used: more concretely,
youthFCBDS is employed in the model-based approach, and
both youthFCBDS and CSKADS are exploited in the learning-
based one.

The obtained classification results will be shown in terms of angu-
lar difference for both methods (and confusion matrices in the latter).
Nonetheless, it has to be remarked that, when clustering orientations
as bins, an intrinsic error is being introduced: assuming that each bin
contains a spectrum of d degrees and that a player classified in bin
k has an orientation that corresponds to the central value of the bin,
players who have been properly classified may have an associated ab-
solute error up to d/2 anyway. Note that in the model-based method,
there are 24 orientation bins (d/2 = 7.5), whilst in the learning-based
one, it is limited to 12 (d/2 = 15).

13.1 Model-based Results
Bearing in mind that OpenPose detected upper-torso parts in

89.69% of the given image crops, the following metrics were validated
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with sensor data:

• Coarse orientation validation: as explained in Subsection
11.1.3. a classifier was trained from scratch, using geometrical-
and color-based features, in order to distinguish players facing
front, back, or sidewards. 14000 players were manually labeled
with a tag corresponding to one of the three classes; by ran-
domly splitting it into train and test (80-20), 85.91% accuracy
was obtained. The main limitation of this method is the need
for different trained models for different teams since feature vec-
tors include histogram data, which directly depend on the jersey
colors; tuning a new model takes up to 10 hours of manual pro-
cedure. Therefore, in the gathered dataset, only F.C. Barcelona
players wearing the red-blue jersey from the 2018/2019 and the
2019/2020 seasons were included.

• LR-side: this metric shows the accuracy of the LR-side pa-
rameter (detailed in Section 11.1.2), which indicates if a player
is facing the left or the right side of the field. Considering a
sequence of duration T and being it an individual player in a
total of NPt players in frame t, pose orientation αit , and the
corresponding ground-truth orientation ωit , this metric can be
computed as:

LRacc =
∑T
t=0

∑NPt
it=0 LRVit∑T

t=0NPt

where:

LRVit=

1 if |αit − ωit | < |αit + 180− ωit|,
0 otherwise.

LR-side performance reached 96.57% accuracy.

In terms of orientation estimation, the error between the obtained ori-
entation (αit) results and ground-truth data (ωit) can be computed
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w (1− w) MEAE MDAE
0 1 35.33 31.59
1 0 29.98 27.75
0.3 0.7 33.77 29.87
0.7 0.3 29.78 27.66

Table 13.1: MEAE and MDAE given different weights.

with their angular error. By using a random search grid [3], results
in Table 13.1 indicate the error margin of different tests, showing the
performance of each individual orientation estimation and their best
mixture. As it can be observed, ball orientation produces the less
accurate predictions; actually, pose orientation outperforms this pre-
diction by a notable margin. These individual results prove that pose
orientation needs to be heavily weighted while merging both estima-
tions: by setting w to 0.7, the mean absolute angle error (MEAE) is
reduced to 29.78o and the median absolute angle error (MDAE) to
27.66o.

13.2 Learning-based Results

The results of six different experiments are shown in Table 13.2.
More concretely: (1) t12 and (2) t24 use a VGG-19 architecture that
classifies into 12 and 24 orientation bins, respectively, both trained
with compensated angles; (3) t12nC uses the same network as in t12 but
trained without angle compensation, and (4) t12den uses a DenseNet
architecture – fine-tuning of the fourth dense block – that performs
a 12-bin classification, (5) t12CE uses binary cross-entropy instead of
the proposed cyclic loss, and (6) t12CV shows the performance of the
model-based method (this time with 12 bins as well). Table 13.2
contains the mean absolute error (MEAE) and the median absolute
error (MDAE) of the estimated angles in each experiment.
As it can be spotted, the test of 12 classes is the one providing the
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MEAEv MDAEv MEAEt MDAEt
t12 17.37 9.90 18.92 11.60
t24 13.13 7.70 24.34 13.01
t12CE 22.34 17.00 28.98 23.00
t12nC 21.47 14.16 31.75 24.54
t12den 15.22 10.46 25.27 17.29
tCV - - 38.23 32.09

Table 13.2: Obtained results in all experiments, expressed in terms
of the mean / median absolute error, both in the validation and test
set.

most reliable test results in terms of generalization; in particular,
classifying orientation into 24 classes produces better results in the
validation set, but seemingly, the model overfits and learns specific
features that do not generalize properly. Moreover, the model bene-
fits from the cyclic loss implementation, as binary cross-entropy in-
troduces errors both in the validation and in the test set due to the
unknown distance between classes and the non-cyclic angular behav-
ior. Actually, the obtained boost with this cyclic loss is displayed
in the confusion matrices of Table 13.1. The addition of angle com-
pensation also proves to be vital, especially in the test set, where
the corresponding video footage (CSKADS contained a lot of pan-
ning and zooming). Besides, the performance of DenseNet does not
seem to generalize either; however, it is likely that with an exhaus-
tive trial-error procedure of freezing weights of particular layers and
performing small changes in the original DenseNet structure, this ar-
chitecture should be able to generalize as well. Finally, it can be
spotted how the presented learning-based outperforms the model-
based, which has been tested this time without the SVM in charge
of the coarse corroboration.
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Figure 13.1: First and last rows of the obtained confusion matrix
(test set) when using the (top) proposed cyclic and (bottom) binary
cross-entropy as a loss function (t12 and t12CE respectively).





14 Visual Orientation Maps

In this Chapter, the effect of body orientation is visually an-
alyzed in soccer passes; more concretely, passing events from
FCBDS have been used for this analysis.

Before getting started, note that this Chapter aims to provide purely
orientation-based insights out of the obtained estimations, so no mod-
els are being trained on top of body-orientation data yet. For the rest
of this Chapter, three types of orientations are considered:

1. Orientation of the receiver in a Pass Event: this value quantifies
the orientation of a potential receiver right at the moment when
the passer kicks the ball.

2. Orientation of the receiver in a Reception Event: this value
quantifies the orientation of a player who is receiving the ball
at that precise moment.

3. Orientation of the passer in a Pass Event: this value quantifies
the orientation of the player kicking the ball when performing
a pass.

Moreover, the following performance statistics are used in order to
evaluate the impact of body orientation in the observed passes:

1. Pass success / accuracy, which indicates if the pass was success-
ful or not; this is, if the potential receiver has actually received
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the ball. This metric can be used to get an overall picture of
orientation, but there might be a lack of context: an easy pass
between two defenders is valued the same way as a difficult
assist that ends up in a goal. Besides, a failed pass might hap-
pen due to multiple circumstances, such as a bad pass, a bad
reception, or a remarkable performance of a defender.

2. Added EPV [34], which quantifies the contribution of each ac-
tion by modeling the conditional probability of scoring / re-
ceiving a goal at a given time and a given scenario. EPV is
computed both at the Pass Event and right after the Reception
Event; the difference between these two values will indicate the
added contribution of the receiving player and exemplifies what
happens after receiving the ball. For instance, a player might
receive the ball appropriately but he/she might lose it due to a
disadvantageous orientation, resulting in an EPV drop.

In order to introduce context in the mentioned visualizations, differ-
ent phases of the offensive plays are evaluated individually as well
(introductory soccer-based details are given in Section 2.2). Bearing
in mind that in a soccer lineup there are mainly 3 rows of horizontally
distributed players, their orientation can drastically change depend-
ing on the context: if an almost-static defender is carrying the ball,
strikers will not be strictly oriented towards it, but if a midfielder
is generating a play in the offensive court, forwards will be highly
influenced by his/her position.

14.1 OrientSonars
PassSonars have recently gained a lot of popularity in soccer an-

alytics; this kind of map is used to display the passing frequency and
the accuracy of players in different directions inside the field, just by
taking 2D information from these. In this article, OrientSonars are
proposed, which integrate player orientation and show how players
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are oriented during pass events. In this display, the following size-
color codification is adopted: the radius of each portion in the map
quantifies the volume of passes at a particular orientation, while the
color displays their associated accuracy. OrientSonars can be per-
formed at two levels:

• Individual level: simple visual reports of each player can
be built by combining different OrientSonars in the 3 above-
mentioned possible events. These visualizations can be useful
to spot specific details when scouting a particular player. An
example is shown in Figure 14.1, where the main orientation
characteristics of Ivan Rakitic are shown.

Figure 14.1: OrientSonar of Ivan Rakitic, showing his performance in
pass events (both passing and receiving the ball) and reception ones,
as well as different offensive phases. Accuracy is expressed with pass
accuracy and color encoding, while portion size indicates the passing
volume.
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In this specific example, it can be seen that Rakitic, as a mid-
fielder, has a strong duality receiving passes when oriented com-
pletely backward ( 270o) and upward ( 90o), as he has to receive
passes from defenders (backward) and organize the forwards at
the same time. In particular, Rakitic excels in reception events
when the orientation oscillates between 67.5 and 112.5 degrees,
which matches the most natural reception orientation for right-
footed players. Moreover, game phases indicate that Rakitic is
oriented towards defenders in the build-up phase (especially the
left-side ones), but when the ball is carried towards the middle
of the court, he is also oriented towards the offensive goal, thus
potentially generating passes to forwards.

• Team level: as individual performances might be biased to-
wards specific team tactics, the whole picture of the correspond-
ing lineup has to be evaluated as well. In this map, the individ-
ual OrientSonar of all players is placed at the average position
of every single individual. An example can be seen in Figure
14.2, where accuracy and added-EPV are compared, and Fig-
ure 14.3, where different game phases can be distinguished.

Several conclusions can be drawn from these maps: from Figure 14.2,
it can be inferred that the pass success might not be the best accu-
racy metric to be used when comparing all kinds of players, mainly
because defenders perform many non-risky passes among themselves,
while forwards receive the ball in fewer situations (and often under
the pressure of defenders) with higher risk and potential reward. For
this reason, defenders in Figure 14.2(a) have a lot of high-accuracy
bins, and forwards receive fewer passes at a lower accuracy rate. This
situation swaps when checking EPV: on the one hand, defenders add
less real value to the play, and on the other hand, offensive players
have some portions with high contribution when they receive in ad-
vantageous situations (facing slightly upwards).
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Figure 14.2: OrientSonar of the whole team during Pass Events as re-
ceivers, displayed with different accuracy metrics: (left) pass success
metrics, and (right) added EPV.

Figure 14.3: OrientSonar of the whole team in all three game phases:
(a) build-up, (b) middle, and (c) progression.
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Moreover, EPV peaks do not appear in random clusters: instead,
a notable increment of EPV can be observed when specific couples
of players interact. For instance, when the striker receives the ball
from approximately the position of the right forward or vice versa,
the team not only keeps the ball but also creates potential goal op-
portunities. The same pattern is repeated with the center- and left-
midfielder. Besides, orientation patterns may be useful to distinguish
the dominant player side: left-sided players (i.e. left full back) tend to
be oriented towards the middle of the field, so right-side clusters have
a higher volume of passes (and vice versa). From Figure 14.3, the in-
teraction of players is even more detailed according to the context: in
the build-up phase, midfielders are oriented towards defenders, wait-
ing for the ball in order to generate an offensive play. In the middle
phase, the same midfielders have the highest relevance in terms of
volume, distributing the ball in potentially advantageous situations;
meanwhile, strikers look for open spaces, and rarely receive the ball
backward (except the right-forward in the given example). Finally, in
the progression phase, two possible player roles can be distinguished:
while some players are oriented towards regions with high risk but
a notable potential reward, the rest occupy safe positions that allow
them to move back to another medium phase if required without los-
ing control of the ball, hence generating new offensive opportunities.

14.2 Orientation Reaction Maps

Although there are many different types of soccer passes, the be-
havior of players during the ball displacement is crucial for the out-
come of that specific play; defenders are always trying to anticipate,
so offensive players must orient and move accordingly before getting
tackled. Orientation reaction maps show how players move during
the pass, by comparing the orientation at the beginning (X-axis) and
at the end (Y-axis) of the event; once again, the color represents accu-
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Figure 14.4: (left) Leo Messi – (right) Sergio Busquets reaction maps.
The X axis represents the orientation of the player at the pass event,
and the Y axis the one in the reception. Accuracy has been expressed
with pass success.

racy, and the dot area expresses the volume. If a player keeps his/her
orientation, the resulting map will just have dots in a diagonal line;
on the contrary, if a player rotates while receiving, off-diagonal dots
will appear in the graph. Figure 14.4 shows the orientation reaction
maps of Messi (right forward) and Busquets (central midfielder).
Once again, the visual outcome differs for those players who occupy
different positions. In the given example, Messi has a main diagonal
line with some outliers, as he receives many passes from players who
are in front of him (facing backward) when he is running towards
the goal (huge blobs in the 75-105o), as well as straight passes from
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midfielders when he is facing backward (270-315o). Meanwhile, Bus-
quets has more dots in his map, mainly because he receives passes
from many different positions; besides, being close to the exact mid-
dle point of the field makes things even trickier, as he has defenders
trying to tackle him from several positions, thus forcing him to move
even more to find a safe spot. As it can be seen in the map, Busquets
has a remarkable performance in every single orientation situation,
especially in the right-side clusters. In conclusion, there is not an
optimal reaction map, and comparisons have to be performed by
contextualizing the player position in the field together with his/her
individual skills, as it is difficult to establish similarities among play-
ers with different characteristics. Instead, this tool could be a great
resource for comparing players or even to keep track of youth players’
progress.

14.3 On-Field Orientation Maps

Despite being the goal the most important part in soccer games,
all the previous displays were only based on the orientation of the
player at given non-goal events. Hence, proposed on-field orienta-
tion maps merge information and compare the pure body orientation
of players with their relative orientation with respect to the offensive
goal. On-field maps can be extracted at a player-level, as seen in Fig-
ures 14.5, 14.6, 14.7, where both left-right full-backs (Alba – Semedo)
are compared together with of a midfielder (Arthur) in terms of pass
reception. In these visualizations, the X-axis represents the orienta-
tion with respect to the offensive goal (being 0-90 on the left side and
90-180 on the right side), and the Y-axis represents the orientation of
the player. In this type of map, it is even more distinguishable how
players are clustered depending on their position. Despite the differ-
ence in spatial performance, the visualizations of Alba and Semedo
show almost symmetric results for left- and right-sided players. While
Alba is completely restricted to the left side of the court (0-45o in
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goal orientation), Semedo tends to deviate his orientation more to-
wards the middle part of the court, which results in regions with an
EPV drop. This particular scene shows one of the main differences
between experienced players and the rest: in this case, bearing in
mind that Jordi Alba has been on the team for 8 seasons in a row, it
is reasonable to conclude that he has already found his comfort zone
in court, where he manages to fit all his skills without the need of
taking unnecessary risks. Apart from the fullback comparison, the
plot of Arthur shows that this type of midfielder operates on both
the central sides of the court at more or less the same frequency;
although orientation performance could seemingly be the same when
checking pass accuracy, EPV can help detect complex patterns. In
the given example, Arthur adds higher EPV contributions when he
is placed on the right side of the court, especially when receiving in
a backward orientation (most likely from a defender); nevertheless,
this type of conclusion has to be again contextualized with different
prior information (e.g., a player who just started playing in a new
spot for the first time in the season and needs some adaptation).

Figure 14.5: On-field orientation map of Alba as a receiver in Pass
Events, evaluated both with (left) pass accuracy and (right) EPV.
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Figure 14.6: On-field orientation maps of Semedo as a receiver in Pass
Events, evaluated both with (left) pass accuracy and (right) EPV.

Figure 14.7: On-field orientation maps of Arthur as a receiver in Pass
Events, evaluated both with (left) pass accuracy and (right) EPV.



15 Conclusions

In this Part, two novel techniques to compute soccer players’ ori-
entation from soccer monocular footage have been presented.
On the one hand, the model-based method combines two different
orientation estimators: pose-based and ball-based. While pose orien-
tation is obtained by projecting OpenPose output on a 2D space and
computing the normal vector to the projected torso, the orientation
of all players with respect to the ball is also taken into account to
refine the former estimation. Having mapped both orientation esti-
mations into probability vectors, a simple weighting is performed and
an individual angle (in degrees) is obtained for each player. Results
have been tested and validated with professional soccer matches; al-
though the associated video footage was not optimal, the results are
promising. 96.6% accuracy is obtained in left-right side orientations,
and a median absolute error of 26.80o is achieved.
On the other hand, the learning-based model learns how to classify
players’ crops into orientation bins. The core of this method com-
bines a VGG structure with frozen and re-trained layers, an angle
compensation strategy to get rid of the camera behavior, and a cyclic
loss function based on soft labels that take the intra-class distance
into account. The obtained results outperform the model-based ones;
more concretely, a median absolute error of 11.60 degrees in the test
set is achieved. Moreover, since complete datasets are difficult to
gather, a sequential-based pipeline has also been proposed, which
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fuses data from different domains in order to establish the ground
truth orientation of the player (sensor-domain) in each bounding box
(image-domain). The main limitation of the learning-based model is
that only two different games have been used in the given dataset,
as ground-truth sensor data (together with high-quality frames) are
difficult to obtain. Nonetheless, this research shows that even with
unbalanced training sets it is possible to train a model with a notable
generalization capability that already outperforms the model-based
method, hence promising results should be obtained with a more var-
ied and balanced dataset in terms of different games.
Being the output of this research a set of raw time-based numerical
orientations, different types of visualizations have been proposed in
order to create tools that can provide coaches with useful orientation
insights about their players. In particular, OrientSonars, and Re-
action and On-Field maps illustrate the volume of given / received
passes at each given orientation together with the corresponding ac-
curacy at given game phases.
Future lines of research will be addressed in Chapter 21 at the end of
Part III, since that part is closely related, in terms of applications,
to the purposes of the current Part II. Nonetheless, in terms of im-
proving the presented orientation estimation methods, novel training
approaches could be explored. For instance, by training a network
with two stacked inputs, such as individual player bounding boxes
and the complete frame, and by merging their features, the angle
compensation strategy could be avoided, since the network could al-
ready learn visual clues about the current camera shot.



A trained human eye sees the game
a lot better than numbers, but the
numbers see all the games, and
that is a big advantage.

Dean Oliver

Part III:
Pass Feasibility
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16 Introduction: Exploiting
Orientation Data

In Part II, tracking data have been enriched with body orien-
tation data, and even some purely-based orientation visualizations
have been detailed, but... Does orientation really make a differ-
ence? Namely, does a pass between two properly oriented players
have higher chances of reception? And if so, how much?

Once player body-orientation is gathered with the learning-based
method presented in 13.2, this Chapter exploits these types of data
in the context of soccer and provides quantitative and qualitative ev-
idence, which prove that orientation is indeed a vital skill in a large
set of situations. More concretely, we show that the inclusion of
body-orientation benefits passing models in different key aspects:

• By modeling the passer’s field of view, the potential receiving
candidates are filtered out, since the passer does not generally
move the ball towards a receiver outside his/her viewing area.
In fact, the study of the human field of view has a long history
[127; 25; 22], and the main associated outcomes explain how the
humans’ field of view splits into central and peripheral vision.
In these articles, it is shown how humans deal with cognitive
load in these areas, and among all the presented experiments,
a large performance boost can be spotted when handling tasks
within the visible spectrum (central vision, mostly). In the
case of soccer, the so-called no-looking-passes are a rare and
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a risky event, so players generally pass to those of their open
teammates who can be spotted within their field of view.

• Given the current speed of soccer, receivers who are not prop-
erly oriented are prone to lose the ball easily because of bad
control. By running towards prolific field spots with the appro-
priate orientation, receivers can control the ball without decel-
erating. Therefore, among all receiving candidates, the player
is more likely to pass to the best-oriented one.

• Roughly, by gathering orientation data, it can be deduced whether
defenders are approaching the offensive team while running for-
ward or backward, hence drastically changing the location of
open spaces surrounding the defender’s back-side. By bringing
together the orientation of all defenders, the big-picture of the
current event is obtained, which shows the most dangerous field
spots caused either by faulty movements or by an inappropriate
set of orientations.

In particular, we present two different contributions that stem from
body orientation data:

• A novel computational model to compute pass feasibility be-
tween a specific passer and the set of potential receivers. This
model returns who is the safest ball-receiver at a time; through-
out this Chapter, we will refer to this approach as the discrete
states model. By merging positional data from both teams, and
by adopting a geometrical solution to estimate the orientation
fit between the passer and all receivers, notable accuracy in
terms of TopN measures is obtained. Moreover, the inclusion
of orientation proves to boost the obtained accuracy, not only
in terms of the presented feasibility model but also within the
context of existing EPV models.

• Since soccer is a dynamic team-sport where open spaces play
an important role, an extension of the discrete model is also
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provided, thus resulting in 2D pass feasibility maps, which esti-
mate the safest receiving spots in the field. As a matter of fact,
orientation proves to be crucial when modeling field-of-view and
correct positioning of players, since it limits the potential re-
ceiving area of all candidates. Different proposals are given to
evaluate the proposed pass feasibility map; previous results are
outperformed when orientation is included as a map feature.

Note that along this part, the notion of feasibility is used instead of
the term probability, since the outcome of the pass event highly de-
pends on the decision-making process of the passer, who is the one in
charge of kicking the ball towards his/her chosen location. Therefore,
the main goal of discrete states / feasibility maps is not to show the
probability of a player passing to a particular player / location, but
instead, to compute how safe it is, a priori, to pass the ball towards
each receiver / field-spot based on the position and orientation of all
the players in the field.

The rest of this Part is organized as follows: in Chapter 17 the state-
of-the-art regarding passing tools and models is described. Later
on, the discrete-states model is explained in Chapter 18, while its
extension to a pass feasibility map is detailed in Chapter 19. The
obtained results of both presented methods are shown and discussed
in Chapter 20; last but not least, conclusions regarding the inclusion
of orientation in this kind of applications can be found in Chapter
21.





17 State-of-the-Art (Passing
Maps and Tools)

This Chapter reviews different soccer pass maps and auto-
matic tools for analyzing pass events that have been proposed
in the existing literature.
First of all, in order to clarify the contributions of other re-

searchers, we would also like to emphasize and explain the differ-
ent types of passing tools that have been used in previous literature.
Given that there is not a universal term for the vast majority of them,
their definition according to our understanding is provided:
• Pass Networks (e.g. [84]) show the interaction of players in

terms of passing patterns in a graph style. The output of this
map is the probability of a player passing to another one based
on prior knowledge.

• Pass Maps (e.g. [86]) show where players pass to in a 2D tem-
plate by using complementary tools such as arrows. For in-
stance, it can display the most common pass directions of each
player.

• Pass Probability Maps (e.g. [33]) predict where a player will
pass in a given situation and at a given time.

• Pass Feasibility Maps predict which is the safest passing spot
at every given moment in a given situation. Note that this kind
of map is the one described in Chapter 19.
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In 2015, Gyarmati and Anguera introduced a novel automatic ex-
traction method to categorize the different passing strategies of soc-
cer teams [44]. Their approach consisted of a dynamic time warping
algorithm to identify spatial passing patterns given the ball 2D coor-
dinates, thus reducing by a large margin the amount of time that has
to be spent analyzing video clips when performing scouting-related
tasks. Using this technique, high-level passing statistics were ob-
tained, such as the frequency of a team running a particular play as
well as its accuracy. Using a dataset from the first Spanish Division,
results were split into several teams, hence showing its direct appli-
cation in the soccer domain.
One year later, in order to quantify and evaluate different types of
soccer passes in a given sequence or strategy, Gyarmati and Stanoje-
vic proposed Q-pass [45]. Normally, pass accuracy is evaluated just
by a straight-forward percentage that only takes into account if the
receiver gets (or does not get) the ball. Since there exists a large
set of possible passes (e.g. easy ones between centrals against tough
ones between a central and a forward), this metric usually falls short.
Therefore, Q-pass quantifies the quality of soccer passes given their
initial conditions, such as field spot or defensive pressure. The main
finding of the analysis of Q-Passes was that sometimes it is worth
taking the risk and committing turnovers, because in the end, if a
risky pass is successfully delivered in an advantageous field spot, a
clear goal opportunity is generated.
Also in 2016, a relevant contribution was made regarding the quan-
tification of risk and reward in passing events by Link et al. [62].
The authors proposed a real-time approach able to estimate the dan-
gerousity in a generic soccer scenario similar to the above-mentioned
EPV models [14; 34]. In that article, the concept of pass density
was introduced, where the location of offensive players and the faced
defensive pressure was modeled for every field spot. The passing
risk was later suggested as an accuracy passing metric, that could
complement the binary existing one. Similarly, Power et al. [86] also
aimed to measure the risk-reward trade-off in those types of events by
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approaching it as a regression problem. By using high-level features
(micro, tactical, and formation) on a large dataset, many regressors
were trained for specific situations (different types of passes). The
authors extracted passing individual statistics such as passing plus
minus or passes received added, which provided coaches with mean-
ingful insights that indicated which players created the most prof-
itable passes in particularly risky field locations.
Another statistical model thought for measuring the passing ability
of players was proposed in [111] by Szczepanski et al., where different
passes were classified depending on several factors such as: location,
time since the previous pass, type of pass, game time, current result,
etc. Given these diverse scenarios, passes were examined under dif-
ferent conditions: control, passing player pressure, distance, receiv-
ing player pressure, or familiarity. By statistically modeling every
single parameter based on tracking data and game knowledge, pre-
dictions were made, hence assessing whether passes were likely to be
received or not. Consequently, the passing ability could be obtained
by measuring how better / worse a player performs in terms of pass-
ing given a particular situation and comparing him/her to the rest
of the league. Despite the dataset being used by the authors was old
(Premier League 2006/2007), results were encouraging and its core
should generalize to modern soccer.
From a physics-based point of view, and by quantifying the concepts
of interception and control time, Spearman et al. also presented
a passing model [102]. By treating pass events as Bernoulli trials,
meaningful insights were obtained, such as pass value or data-driven
predictions that indicated, for each event, who was the most likely
receiver. Predicting where the ball should go during passes was ana-
lyzed by Hubácek’s et al. [51], who refined the previous work made by
Vercruyssen et al. [115]. In their paper, the authors proposed a deep
learning architecture that assessed who was the most likely player to
receive in each event. By building a feature vector of 13 dimensions,
including game knowledge of both the offensive and defensive team,
spatial relations were converted into convolutional filters, resulting in
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a vector of receiving probability for each potential receiver. Using 200
random sequences, 0.55 Top3 accuracy was obtained, outperforming
previous methods. Similarly, Fernández et al. also proposed a deep
learning architecture in SoccerMap [33], which used high-frequency
spatiotemporal data in order to output probability surfaces. Their
model was able to assess the decision-making process of players as
well as identifying potential passing options and their associated risk.



18 Discrete Pass Feasibility

In this Chapter, we propose a discrete computational model
to estimate the most plausible ball player pass at any given
time based on game factors: player orientation, location, and
faced defensive pressure.

To build the discrete model, we will attribute each potential re-
ceiver a feasibility score obtained by defining appropriate estimations
that take into account player orientation and the configuration of the
offensive and defensive team in the 2D field at that time. Intuitively,
it stems from the fact that, in a pass event, there are 10 potential
candidates of the same team who might receive the ball, each one
of them holding a particular orientation with respect to the passer
and at a certain position in the field; besides, the defensive team also
needs to be taken into account.
Let u(·, t) be a color video defined on Ω× {1, . . . , T}, where Ω ⊂ R2

denotes the image frame domain and {1, . . . , T} is the set of discrete
times. Given a time t, our method first considers the visible players in
u(·, t) (i.e., visible players in the image frame at time t) together with
their body orientation. In this case, the detection of the players is
given but, alternatively, as explained in Section 9.2, other approaches
and detectors can be used, such as, e.g., [93; 19; 54]. From now on, the
position and orientation of the players will be considered over a 2D
field template. To simplify the notation, the dependence on t of the
considered elements will be omitted. Let P denote the 2D position
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in the template field of the player with the ball at time t who is going
to execute the pass. Let {Ri, i = 1, . . . , I} and {Dk, k = 1, . . . , K}
denote, respectively, the 2D position in the field of the visible team-
mates of P , and the current defenders at time t, with I ≤ 10, K ≤ 11.
The former ones constitute the set of visible receivers of the ball at
time t+ ∆t, being ∆t the duration of the pass.

Let Hi denote the hypothesis that player P is going to pass the ball
to receiver Ri. The main idea is to define a feasibility measure which
is grounded on three elements: (a) the body orientation of every
player together with (b) the pressure of the defenders Dk, both on P
and Ri, and (c) the relative position of Ri with respect to P . Then,
the most feasible ball pass Ĥ is computationally selected as the one
maximizing

Ĥ = arg max
i
F (i), (18.1)

where F (i) is the feasibility of the event pass in Hi, which can be
defined as

F (i) = Fo(i)Fd(i)Fp(i), (18.2)

where Fo(i), Fd(i), and Fp(i) stand for the orientation, defenders and
proximity scores, respectively, defined later in this Chapter. Finally,
it must be stated that all feasibility measures are obtained right at
the moment when the passer P kicks the ball.

18.1 Orientation
One of the aspects that drastically affects the outcome of a pass

is the players’ body-orientation. If a player is relatively close to the
passer and without being defended, he/she might still not be able to
receive the ball properly if he/she is facing away. For a given pass
event, the orientation of each player is computed in a window of ±Q
frames with respect to the exact pass moment t. The median value
of these 2Q+1 observations is considered as the player orientation in
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the event at time t. In practice, a window of 5 frames is used in 25
fps videos. Once obtained this estimation, an orientation-based pass
feasibility measure is proposed, which takes into account geometrical
quantities and outputs a score of how well a player is oriented in order
to receive the ball. In order to take only the orientation information
into account (proximity between players will be considered in the 3rd
feasibility measure, as seen in Subsection 18.3) all potential receivers
Ri are placed at the same distance with respect to the passer whilst
preserving the original angle in the 2D field between the passer P
and each receiver Ri. Note that this angle is only related to relative
position and not to player body orientation. This step is illustrated
in Figure 18.1.

Figure 18.1: In order not to take pairwise distances into account
while computing orientation feasibility, all players are moved towards
an equidistant distance (unit circle).

Once all potential receivers are placed at an equidistant distance
Z > 0 with respect to the passer, the body orientation of all players,
expressed as φ(P ) and φ(Ri) for the passer and the receiver i, respec-
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tively, is considered (it corresponds to red vectors in Figures 18.1
and 18.2). Intuitively, φ(P ) provides an insight of the passer field of
view, and by setting a range of ±ψo with respect to the passer body
orientation, an approximate spectrum of the passer field of view is
obtained. By setting ψo> 0 to a fixed value (set to 30 degrees), an
isosceles triangle with the two equal sides of length 2Z is defined (see
Figure 18.2). This triangle is denoted by TP and imposes a limit to
the region where the player can pass the ball. The same procedure
is repeated for φ(Ri), with the triangle TRi indicating the field of
view of the receiver, which shows in which directions he/she can get
a pass from; the length of the two equal sides of triangle TRi is set
to Z. Figure 18.2 displays some possible scenarios. We claim, and
numerically verify in Section 20.1.1, that the weighted area of the
intersection of triangles TP and TRi gives a measure of how easy it
can be for a player to receive a pass in the given orientation configu-
ration: no intersection indicates the inability to get it, whilst partial
or total intersection indicates a proper orientation fit. Accordingly,
orientation-based feasibility is defined as

Fo(Ri) = 1
c

∫
TP∩TRi

(
e−d(P,x) + e−d(Ri,x)

)
dx (18.3)

where c > 0 is a normalizing constant and d(a, b) denotes the Eu-
clidean distance between a and b normalized so that the maximum
distance in the field is 1.
Let us first discuss the terms in (18.3), namely, both exponential
functions. The intrinsic geometry of the triangle has an obvious lim-
itation when it comes to shape intersection: considering the vertex
that coincides with the passer position as the triangle beginning, tri-
angles contain a large portion of the area in regions placed far from
their beginning. Hence, the values inside the computed triangles are
weighted according to their relative position with respect to the tri-
angle beginning, fading out in further positions. This effect can be
seen as different color opacity in the triangles displayed in Figure
18.2. Finally, the reasoning for setting different triangle heights is
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Figure 18.2: Individual scenarios of intersection given the relocated
players of Figure 18.1. As it can be seen, the top-right player is the
best oriented candidate to receive the ball.

that, if both passer’ and receiver’ associated triangles had the same
height, players that are located behind a passer who is not looking
backward would intersect notably, despite being a non-feasible pass
(like in the top-centered example sketch of Figure 18.2).

18.2 Defenders Position

Apart from considering all visible players of the offensive team,
the behavior of the defenders, {Dk}k, is continuously changing the
decision-making process. Even if a player is near the passer and
properly oriented, the probability of receiving the ball can be really
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low if he/she is properly guarded; however, it is hard to define how
well a player is being defended at a time. Considering only passing
events, defenders close to the line that connects the passer with the
receiver (passing line) are the ones in a more advantageous position
to transform a pass into a turnover. Let us denote by β(P,Ri) the
angle in the 2D template field between the passer P and the receiver
Ri (see Figure 18.1), and by β(P,Dk) the one between the passer P
and defender Dk. Using this angle, the proposed defenders-based fea-
sibility will take into account two feasibility scores: (a) the feasibility
Fd,P (Ri) of passing in the direction of β(P,Ri) and (b) the feasibility
Fd,R(Ri) of receiving the ball from P . For the first case, the distance
and the angle of all defenders with respect to the passer is computed.
Therefore, the definition of the feasibility measure Fd,P (Ri) depends
on the Euclidean distances of the closest defenders with respect to
the passer:

Fd,P (Ri) =

exp
− 1

J

∑
k∈NP

w (β(P,Dk), β(P,Ri)) (1− d(P,Dk))
 (18.4)

where NP denotes the set of the J nearest neighbor defenders from
P , according to the weighted distance dw, defined as

dw(P,Dk) = w(β(P,Dk), β(P,Ri)) d(P,Dk) (18.5)

where d(P,Dk) denotes the normalized Euclidean distance between
P and Dk. Finally, the weights w are defined as

w(β(P,Dk), β(P,Ri)) =


0.25 if α < 22.5o

0.5 if 22.5o ≤ α < 45o

2 otherwise
(18.6)

where α = |β(P,Dk)−β(P,Ri)| (modulus 360o). In practice, we take
J = 3.
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Function w is used to model that defenders close to the passing line
(and thus with an associated small ω value) entail a higher risk for
that specific pass. This whole procedure can be seen in the left side
of Figure 18.3, where the three closest defenders are highlighted for
two hypothetical passes.
For Fd,R(Ri), the same procedure is repeated with respect to the re-
ceiver; however, in order to have two independent quantities, the J
nearest neighbors considered when computing Fd(P ) are discarded.
Hence, NRi is the set of the J nearest neighbor defenders from Ri

(according to dW ) belonging to N CP , i.e., the set of the visible defend-
ers at time t that are not in NP . The feasibility to receive the ball
from a given angle can be expressed as:

Fd,R(Ri) =

exp
− 1

J

∑
k∈NRi

w (β(Ri, Dk), β(P,Ri)) (1− d(Ri, Dk))
 (18.7)

The right part of Figure 18.3 shows a graphical example, where the
top closest weighted defenders are found with respect to the receiver
once discarded the closest defenders found when computing Fd,P (Ri)
(Figure 18.3). To conclude, the defender’s feasibility is defined as
Fd(Ri) = Fd,P (Ri)Fd,R(Ri), and it is a measure of how likely the
event of passing to a particular player is, given the defensive spatial
configuration.
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Figure 18.3: Computation of Fd,P (Ri) and Fd,R(Ri) for two different
potential receivers. For both cases, (left) general setup, plus detection
of the 3 closest weighted defenders in the scenario of the (middle) left-
sided and (right) right-sided player.
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18.3 Pairwise Distances
Finally, the position in the 2D field also affects the passing op-

tions, as players placed closer to the passer have a higher probability
of receiving the ball. For this reason, the feasibility of receiving the
ball based on pairwise distances or proximity can be defined as in-
versely proportional to the distance by:

Fp(Ri) = exp (−d(P,Ri)) (18.8)

18.4 Combination
Once all three independent feasibility measures are computed,

Equation (18.2) is proposed to combine them. Notice that a low
feasibility value in one of the three features (orientation, defenders,
or distance) indicates that the pass has a high associated risk, no
matter what the other values are.





19 Pass Feasibility Maps

In this Chapter, the previously-explained discrete model is
extended into a 2D pass feasibility map whilst preserving ori-
entation as a key feature in the method’s core.

Since raw orientation data cannot be used by coaches to provide
the team with new strategies and tactics, and given that discrete
feasibility values limit the location of potential receptions, pass fea-
sibility maps get the complete picture of pass events. Once again,
by default, our model assumes that the most feasible receiving can-
didate is the (a) best oriented, (b) closest and (c) less defended one.
Orientation hereby plays a vital role both in the offensive and the
defensive team. On the one hand, the orientation of offensive players
is included in the offensive map MO (defined in Section 19.1), which
estimates the orientation fit between the passer and all potential re-
ceivers regardless of the defensive setup. On the other hand, the
defensive map MD (defined in 19.2) is in charge of modeling the de-
fensive pressure in every field spot, thus finding out which defenders
are creating larger open spaces in their surroundings. The proposed
feasibility map is defined by combining both the offensive MO and
defensive MD contributions as:

M(x) = κMO(x) +MD(x), (19.1)

where x denotes a position in the 2D field and κ ≥ 1 is a scalar
parameter that balances the given weight of the attackers’ informa-
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tion in the final feasibility map, i.e. a larger / smaller value of κ
would favor riskier / more conservative passes. An example is dis-
played in Figure 19.1: yellow regions belong to the field-zones where
safe passes can be attempted, as offensive players are in favorable
conditions (proper orientation and location) to get the ball; instead,
blue zones represent field parts where the defensive team is likely to
recover the sphere.

Figure 19.1: Procedure to obtain a feasibility map for a given pass
event. We can see the spatial configuration (plus orientation) of:
(top-left) the players in the offensive team, being the red player the
one carrying the ball, (top-center) the players in the defensive team,
and (top-right) their combination in one same display. The final
feasibility map M (bottom-right) is obtained through the aggrega-
tion of the offensive map MO (bottom-left) and the defensive map
MD (bottom-center). Note that yellowish regions are the ones with
higher associated feasibility (safer passes towards these directions),
and bluish regions are the dangerous parts of the field.
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19.1 Offensive Team Modeling
During pass events, offensive players can adopt two roles: passer

or receiver. On the one hand, the passer controls the ball and the
overall situation; after all, his/her decision-making process will make
the ball move in a particular direction. On the other hand, receivers’
goal is to facilitate the passer’s decision by moving towards field loca-
tions where the probability of scoring / receiving a goal is potentially
maximized / minimized. For instance, if the passer is surrounded by
a lot of defenders in a dangerous position, the other offensive players
need to create easy passing lines to avoid committing a turnover; on
the other hand, if the passer is in an advantageous situation in the
offensive side of the field, receivers need to find open spaces and to
create scoring opportunities. Therefore, the orientation fit between
the passer and the receiving candidates (plus their spatial distance) is
expected to influence the outcome of passes. In our proposal, the ori-
entation fit is modeled through two maps, namely, the Receiver Map
MR, which includes location and orientation data of all 10 potential
receivers, and the Passer Map MP that only includes data from the
passer. Both maps are then combined into the offensive map MO as
seen in Figure 19.2, which is defined as:

MO(x) = MP (x)MR(x). (19.2)

19.1.1 Receiver Map
Given a receiver j at position rj with orientation αRj , the aim of

this map is to model his/her receiving area, which expresses in which
part of the field the current receiver is likely to get the ball. For a
single receiver, the proposed receiver map, at a generic position x in
the 2D field, is built on Gaussian functions and defined as

MRj(x)= exp
(
−‖x− rj‖2

σ2
R

)
︸ ︷︷ ︸

gRj (x)

exp
(
−(∠(x− rj)− αRj)2

σ2
a

)
︸ ︷︷ ︸

gaRj(x)

, (19.3)
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Figure 19.2: Offensive team map modeling MO. (left column) Given
an initial 2D setup (locations plus orientation) of all the players: (top
and middle row) a receiver map MR is created by adding together all
receivers’ contributions, and it is later combined with (bottom row)
the passer map MP , which takes into account his/her field of view.

where σR, σa > 0, thus resulting in a function that decreases as point
x moves away from rj and as its orientation with respect to rj differs
from αRj. The difference of angles ∠(x− rj) − αRj is computed in
modulo 2π. A detailed explanation of parameters σR and σa is later
provided in Section 19.3.
Please also note that gRj and gaRj in Equation 19.3 express the two
priors to define who is the best-positioned candidate, i.e. location
and orientation, respectively. The final receiving map is defined as:

MR(x) =
NR∑
j=1

MRj(x), (19.4)

where NR is the number of potential receivers. As seen in Figure 19.2,
maximum values can be found in MR, where receiver’s contributions
overlap; besides, it can also be seen how both individual priors gRj
and gaRj are displayed in the middle column.
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19.1.2 Passer Map
Given the passer at position p and orientation αP , the proposed

passer map relies again on Gaussian functions and is defined as

MP (x) = exp
(
−‖x− p‖2

σ2
P

)
︸ ︷︷ ︸

gP (x)

exp
(
−(∠(x− p)− αP )2

σ2
a

)
︸ ︷︷ ︸

gaP (x)

, (19.5)

where σP > 0, and once again gP and gaP , are related to the location
and orientation of the player respectively (bottom row of Figure 19.2).

19.2 Defensive Team Modeling
The role that defenders’ orientation plays in the decision of the

passer is significantly different. As it has been mentioned, the goal
of some offensive players is to detect open spaces and occupy them
before the defenders do; these offensive players are usually oriented,
since the beginning of the event, towards the open space. Nonethe-
less, defenders’ orientation switches more often: although they start
facing the opponent nose-to-nose (moving backward), they might
have to turn around and recover back to defense at some point (mov-
ing forward). Now, instead of talking about a receiving area, the
concept of influence area will be used, expressing the part of the field
that is being controlled by each defender. Besides, when modeling
defenders, two other aspects have to be remarked:

• The defender’s current position is crucial for the pass outcome.
Nevertheless, the danger of each defender in his/her surround-
ings depends on the ball-defender pairwise distance. In short
passes, defenders who are close to the ball have almost no reac-
tion time, so the potential influence area should be limited to
a small spatial neighborhood; nonetheless, during long passes,
the reaction time is way larger, thus resulting in a broad influ-
ence area.
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Figure 19.3: Procedure to model the defensive team map MD, based
on the aggregation of individual reach contributions MDi. As it can
be seen, each individual reach is proportional to the pairwise ball-
defender distance and it points towards the player’s orientation.

• The orientation of defenders is an important factor in order to
model the shape of the influence area: in particular, a function
defined by two parts with smooth contour lines is used. The first
part corresponds to the front side of defenders (with respect to
their orientation), which is the one they attempt to control and
reach. The second part falls behind defenders; since moving
backward is slower than running forwards, its influence area is
reduced.

More concretely, given a defender i at position di plus orientation
βi, the proposed defensive pass map is defined as:

MDi(x) =


−exp

(
−‖Rβi (x−di)‖2

σ2
Di

)
if (Rβi(x− di))x < 0,

−exp
(
−( 1

2 (Rβi (x−di))2
x+(Rβi (x−di))2

y)
σ2
Di

)
otherwise,

(19.6)
where Rβi denotes a rotation of angle βi and (.)x, (.)y denote the x
and y coordinates, respectively; Figure 19.4 illustrates this map for
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Figure 19.4: (a) Level lines of an individual defensive contribution,
MDi , without taking orientation into account; (b) final individual
defensive map for a particular player with orientation β.

a certain orientation βi. Moreover, σDi > 0 depends on the pairwise
distance between the ball and the defender, and characterizes the
mentioned influence area (check Section 19.3 for a detailed explana-
tion).
Finally, the sum of all defenders’ contributions is aggregated into one
single defensive map MD:

MD(x) =
ND∑
i=1

MDi(x), (19.7)

where ND is the number of current defenders in the field (an example
is displayed in Figure 19.3). Notice also that the exponential func-
tions of the defensive team are negative, as opposed to the positive
values of the offensive team.

19.3 Parameter Choice and Discussion
This Section discusses the parameter choice in order to balance

the offensive and defensive contributions within a similar range and
reach and, thus, aiming to build an easy-to-interpret visual resource
for coaches and analysts. The optimization of these parameters has
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been approached as the maximization of Top1 and Top3 accuracy
in pass events, as it will be later defined in Section 20.2; by using
random-search [3], the values for the described parameters have been
set.

19.3.1 Offensive Gaussian Size
The first two parameters to be adjusted are σR and σP , which

can be found in gRj and gP , from (19.3) and (19.5), respectively;
both parameters aim to model, inside the player’s field of view, the
spatial reach of every offensive player. In particular:

• For the passer (σP in gRj (19.3)), this reach introduces a prior
on how far he/she is likely to pass the ball.

• For all the potential receivers (σR in gP (19.5)), this reach es-
timates the viable receiving area around each player. Since the
receiver has higher chances of getting the ball at his/her current
position or nearby, the map’s values vanish when moving away
from the receiver.

Logically, the passer must have a larger reach, since a strong kick
can move the ball far away at a much faster speed than the player’s
average velocity. The effect of different choices of σR and σP can
be observed in Figure 19.5. After the optimization step, σ2

R and σ2
P

are fixed to 103 and 104 respectively, which seem reasonable values,
since they provide the receivers / passer with a 15- / 50-meters reach
respectively.

19.3.2 Offensive Angle Compensation
The main aim of σa, included in gaRj and gaP from (19.3) and

(19.5), is to boost the pass feasibility in the field positions that match
player orientation, whilst decreasing backwards’ locations. Three ex-
amples are displayed in Figure 19.6, where the difference between the
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minimum and maximum values in the image domain decreases when
increasing σa. Among all possible values in the random-search grid,
the optimal one in terms of pass accuracy is σa = 0.75.

Figure 19.5: Offensive maps MO are adjusted by tweaking σR and
σP . Notice that the model is quite robust to the choice of these
parameters, being σ2

R = 103 and σ2
P = 104 suitable values in terms of

passer / receiver reach.

Figure 19.6: Individual defensive maps MDi are adjusted by tweak-
ing σa; noticeable differences emerge in the opposite direction of the
player’s orientation, especially when σa = 0.75.
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19.3.3 Defensive Size and Offensive Boost Weight
As detailed in Section 19.2, while modeling defenders, our goal is

to encompass the influence area in which the player might steal the
ball. Apart from the major role of the own defender’s orientation, this
area is designed to be proportional to the pairwise distance between
the defender and the ball. In particular, given a defender at position
Di and a passer at p, the parameter σDi in (19.6) is defined as:

σDi = ‖di − p‖
σ′D

. (19.8)

Thus, the only parameter to be adjusted is σ′D. Besides, σ′D has to be
optimized while taking into account the offensive boost weight κ in
(19.1). Suitable values for both parameters lead to understandable
visual pass maps, which can be directly interpreted by coaches or
analysts. Some combinations are displayed in Figure 19.7.

Figure 19.7: Pass feasibility maps M are adjusted by tweaking κ and
σ′D. By using a reasonable trade-off (e.g. κ = 4 and σ′D = 12.5), the
appropriate relevance is given both to the offensive and the defensive
teams.



20 Pass Feasibility Results

In this Chapter, a complete ablation study of both presented
methods (discrete states and pass feasibility maps) is given.
Note that for all mentioned tests, data from FCBDS have been
used.

Since the problem of building pass feasibility has not been fully
explored yet, there is still a lack of universal evaluation metrics. To
quantitatively assess it, we extract, for a given play, one feasibility
value per player, which are later sorted to get a ranking of the most
likely receivers. Then, a TopN (N ∈ {0, 1, . . . , 10}) accuracy measure
is implemented, similarly as [106; 51]. The TopN measure computes
the number of times the actual receiver of the pass is within the first
N options of the given model. For instance, on the one hand, Top1
accuracy indicates the percentage of events where the best candidate
predicted by the model matches the actual receiver; on the other
hand, Top3 accuracy returns the number of times the actual receiver
is among the best 3 predicted candidates. Note that this type of
metric has been used for the evaluation of both discrete states and
pass feasibility maps.

173
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20.1 Discrete States

In this Section, several experiments will be detailed with one main
goal: to study if proper orientation of soccer players is correlated with
successful receptions, thus maximizing the probability of creating a
potential goal opportunity. Hence, in order to examine the effect of
including the orientation, another baseline pass model will be used
for testing, which will only use the output of Fp (proximity) and Fd
(defense), thus getting rid of Fo (orientation); more concretely, F
(defined in Equation (18.2)) will be compared with Fpd, defined as:

Fpd(Ri) = Fp(Ri)Fd(Ri). (20.1)

Moreover, histograms will be plotted for each scenario. In all cases,
the number of bins is 9, as it corresponds to the number of potential
receivers of a play; note the goalkeeper has been excluded because
it does not appear in the frame domain in many events. The height
of each particular bin Bn (with n ≤ 10) represents the number of
times that the ground truth receiver has been considered the n best
candidate according to the feasibility values (for instance, B1 equals
the number of times that the actual receiver was considered as the
best option). In these Figures, the histograms of successful (blue)
and unsuccessful (orange) passes are plotted together.

20.1.1 Orientation Relevance in Pass Feasibility
The importance of orientation in the computation of the proposed

feasibility F will be shown by comparing the results of F with the
ones obtained with the baseline feasibility Fpd, which does not include
orientation. As it can be seen in Table 20.1, in both cases the Top1/3
metric shows that the introduced features in the feasibility computa-
tion are directly correlated to the outcome of the play: the difference
in Top1 accuracy between successful and non-successful passes is more
than the double, and in Top3 accuracy, it is more than 0.2. Besides,
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orientation makes a difference by complementing distance and de-
fenders. Apart from boosting the difference between successful and
non-successful passes by a margin of 0.04 / 0.02, F outperforms Fpd
Top1 accuracy by 0.07 and Top3 by 0.05. Visually, this difference can
be spotted in the first bins of the histogram displayed in Fig. 20.1.

Figure 20.1: Histogram distribution comparison between Fdp and F ;
note that the latter includes the computed orientation feasibility.

Top1
(Succ.)

Top1
(NSucc.)

Top3
(Succ.)

Top3
(NSucc.)

Fpd 0.299 0.149 0.650 0.411
F 0.367 0.175 0.702 0.487

Table 20.1: Top1/3 accuracy for successful / non-successful passes ob-
tained before (Fpd) and after (F ) including orientation as a feasibility
measure.

Decomposed Fo - Fd - Fp Performance. In order to show how
useful the individual estimations are, the performance of the three in-
dividual feasibility measures (Fp, Fd, and Fo) is studied together with
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their combination. These results are shown in Table 20.2 and Figure
20.2. For the successful passes, the histogram of all three components
shares more or less the same shape. However, the top bins of Fp have
higher values (0.34, 0.70 for Top1 and Top3 accuracy, respectively);
as a result, the bottom bins have low values, which means that it is
unlikely to pass the ball to players placed far away with respect to
the ball. For the unsuccessful passes, Fd and Fp components seem
to be the most and less relevant ones, respectively. This means that
passing to a player who is far away does not always imply a turnover,
but passing to a well-defended player does (0.14 difference in Top1
accuracy). Generally, Fo resembles Fp, but the former histogram is
more distributed (flat shape). Combining all three methods (by com-
puting their product) adds some value due to contextualization. For
instance, orientation by itself does not take pairwise distances into
account: this means that, in particular scenarios, players placed far
away in the field might be the best potential candidates in terms of
orientation, but as it has been proved, these passes will hardly ever
exist. Besides, our proposed feasibility measure F (defined in (18.2))
combines all three components and keeps the high Top1 and Top3
metrics of Fp whilst preserving the difference between the successful
/ not-successful passes of Fd. The bottom-right histogram shows that
this goal has been accomplished.

Top1
(Succ.)

Top1
(NSucc.)

Top3
(Succ.)

Top3
(NSucc.)

Fo 0.260 0.232 0.566 0.546
Fp 0.340 0.320 0.704 0.665
Fd 0.243 0.107 0.604 0.336

Table 20.2: Top1/3 accuracy for successful / non-successful passes
obtained with Fo (orientation), Fp (proximity), and Fd (defensive
pressure).
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Figure 20.2: Histogram distribution among potential receivers (fea-
sibility components). From left-right, top-bottom: (a) proximity Fp,
(b) defensive pressure Fd, (c) orientation Fo and (d) Combination.

20.1.2 Players’ Field Position / Game Phase
Once analyzed the impact of orientation as a feasibility measure,

in this Subsection, its effect on the different kinds of players and game
phases (explained in Section 2.2) are analyzed. By classifying them
according to the basic field positions (defenders, midfielders, and for-
wards), Figure 20.3 and Table 20.3 show the differences, in terms
of orientation-based feasibility, among them, which state that mid-
fielders are the ones under bigger Fo influence. When introducing
orientation in the feasibility measure, both the Top1 and the Top3
accuracy have a boost of 0.10 while preserving a similar difference
in successful-unsuccessful differences (first 3 bins of the midfield-
ers histogram). Defenders are not heavily affected by orientation,
mostly because of the many security passes that they perform: in
this type of pass (usually between defenders), both players have no
opponents surrounding them, and they can freely pass to their clos-
est team-mates without having to be strictly oriented towards them.
Forwards are also affected by orientation, but they give and receive
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fewer passes; besides, in their domain, passes do not only have a high
turnover risk, but also a high potential reward.

Figure 20.3: Histogram distribution, obtained with (left) Fdp and
(right) Fdpo, for different player positions. From top to bottom: de-
fenders, midfielders, and forwards.

Top1
(Succ.)

Top1
(NSucc.)

Top3
(Succ.)

Top3
(NSucc.)

Fpd (def.) 0.354 0.134 0.724 0.436
F (def.) 0.404 0.162 0.720 0.521
Fpd (mid.) 0.235 0.114 0.575 0.341
F (mid.) 0.341 0.196 0.673 0.456
Fpd (for.) 0.278 0.158 0.589 0.426
F (for.) 0.315 0.178 0.653 0.459

Table 20.3: Top1/3 accuracy for successful / non-successful passes,
before / after including orientation, split by player position.
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In a similar way, passes can be also classified according to the location
of the passer in relation to the defensive team spatial configuration,
thus indicating the game phase: (a) build-up, (b) progression, or (c)
finalization. Results are displayed in Figure 20.4 and Table 20.4.
Once again, the effect of orientation is vital in the half-court, with
a notable difference between successful and non-successful passes in
the progression phase (around 0.2 difference in both Top1 and Top3,
and more than 0.7 Top3 accuracy). As expected, the build-up and
finalization game phases are, respectively, the ones with lower and
higher risk, but even in these extreme cases, the inclusion of Fo also
boosts the pass accuracy metrics.

Figure 20.4: Histogram distribution, obtained with (left) Fdp and
(right) Fdpo, for different game phases. From top to bottom: build-
up, progression and finalization.
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Top1
(Succ.)

Top1
(NSucc.)

Top3
(Succ.)

Top3
(NSucc.)

Fpd (bu.) 0.282 0.143 0.610 0.382
F (bu.) 0.355 0.162 0.688 0.444
Fpd (pr.) 0.297 0.128 0.659 0.365
F (pr.) 0.372 0.162 0.712 0.480
Fpd (fi.) 0.326 0.185 0.687 0.490
F (fi.) 0.376 0.203 0.710 0.534

Table 20.4: Top1/3 accuracy for successful / non-successful passes,
before / after including orientation, split by player game phase (bu -
build up, pr - progression, and fi - finalization).

20.1.3 Combination with EPV

As mentioned throughout this manuscript, EPV is a recently in-
troduced indicator that tries to boost individual / team performance
by assigning value to individual actions, using (among others) a pass
probability model. However, the EPV model of [34] does not take
the body orientation of players into account, thus producing results
that, despite being notably accurate, can be refined. An example is
shown in Figure 20.5; for the displayed pass event, the spatial output
of the pass probability model (left) and the EPV map (right) can
be seen in the middle row. As observed in the original frame, the
passer (white circle) is the central midfielder, who is directly facing
the right-central defender; for this reason, the passer cannot see in
his field of view the left-central defender, hence lowering the latter’s
receiving chances. However, the output of the pass probability model
considers the left-central defender as a notable candidate, but EPV
does not penalize this pass as a risky one. Nevertheless, by combining
our orientation-based feasibility measure Fo with the output of the
(a) original probability model or the (b) output of the EPV model,
maps could be adapted accordingly, thus enhancing potentially good
receivers in particular regions as it is displayed in the last row of
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Figure 20.5.

Figure 20.5: (a-left) Pass event and (-right) zoom in the passer region;
(b,c-top) output of the pass probability / EPV models respectively of
[34], typically Ψ equals 0.015, (b,c-bottom) output example made by
hand; the combination of the existing models with body orientation
would refine the restricting the area of potential receivers.

The main challenge when combining both methods is the dimension
miss-alignment: both the pass probability and EPV models extract
an output map with a value for each discretized field position (down-
scaled to 104× 68), whilst the proposed model defines an individual
feasibility value for each of the 10 potential receivers. In order to get
a single probability / EPV value for each player in the field, and be-
ing ρ the output map (defined by the pixels of the downscaled field),
a geometrical solution is provided; its approach is based on the idea
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Figure 20.6: Geometrical approach to assign discretized pass proba-
bility / EPV field values to particular potential receivers.

that an individual value can be obtained by integrating the probabil-
ity / EPV values on a meaningful area that extends from the passer
to the receiver. In particular, for a given receiver Ri, first, a disc Qi

of radius q > 0 is defined around his/her 2D field position, and then,
a tubular region Si of fixed-width s > 0 is defined from P (start-
ing position) to Ri (thus, its length is proportional to the distance
between the passer and the potential receiver). The final individual
value for receiver Ri, denoted here as V (Ri), can be obtained as:

V (Ri) = 1
Area (Qi ∪ Si)

∫
Qi∪Si

ρ(x)dx (20.2)

where Area (Qi ∪ Si) denotes the area of the region Qi ∪ Si. In prac-
tice, q and s have been set to 5

Wρ
and 2

Wρ
, respectively, being Wρ the

width of the output map ρ (i.e. 104). Note that Equation (20.2) can
be used for both types of maps, being ρ the output of either the pass
probability model (from now on VP ) or the EPV generic model (from
now on VE). Visually, this whole procedure can be seen in Fig. 20.6
for four different receiver candidates.
For comparison purposes, the individual probabilities VP / expected
values VE are multiplied by our feasibility orientation estimation Fo,
(Subsection 18.1); in this way, the effect of orientation itself can be
tested for VPFo and VEFo. Note that the other components Fp and Fd
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have not been used, as both pass probability and EPV models already
include this type of information in their core. Results are displayed
in Table 20.5 and Fig. 20.7. As it can be seen, better accuracy is
obtained when taking orientation into account in all scenarios, espe-
cially in the Top1 accuracy case, obtaining a boost of almost 0.1 in the
output of the current pass probability model. Moreover, orientation
also improves the raw performance of VE (0.07 improvement in Top1
accuracy), especially by solving miss-leading cases in which players
are located out of the field of view of the passer. In conclusion, it has
been proved that merging orientation in the SoA implementation of
EPV [34] could help to get a more accurate model, which can lead to
a better understanding of the decision-making process.

Figure 20.7: Histogram distribution of VP and VE, plus the corre-
sponding addition of Fo component.

Top1
(Succ.)

Top3
(Succ.)

VP 0.243 0.567
VP + Fo 0.332 0.612
VE 0.266 0.606

VE + Fo 0.337 0.637

Table 20.5: Top1/3 Accuracy of the EPV models’ output, plus their
comparison when merging orientation feasibility.
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20.2 Pass Feasibility Maps
In this Section we define the proposed tools to evaluate the pass

feasibility map. We show not only the accuracy of the proposed
model but also the importance of orientation as a map feature. An
ablation study about the role of a star player is also included, in which
the addition of prior biases is analyzed. In the upcoming examples,
non-successful pass events of FCBDS have been filtered out; while
successful passes are well-defined, where a player B receives the ball
from a player A, non-successful passes are diverse, including several
kinds of failed passes or even dribbling turnovers tagged as such. The
filtered dataset contains more than 5000 passes and it is split into 80%
train and 20% test. Note that, in this Section, both training and test
sets only include passes from the tracking-based FCBDS dataset.

20.2.1 Map Evaluation
Three evaluation suggestions are displayed in Figure 20.8, which

consist of:

1. The most simple one would be integrating the feasibility map
values around each potential receiver rj by placing a diskD(rj, ρ)
of radius ρ > 0 centered at rj, that is,

V1(Rj) = 1
Area (D(rj, ρ))

∫
D(rj ,ρ)

M(x)dx. (20.3)

In practice, ρ = fieldlength
20 (∼ 5), being 20 the number of players

that do not play as goalkeepers. From now on, this approach
will be named disks evaluation.

2. The second one stems from the premise that in disks evaluation
all surrounding positions have the same weight in the integral.
However, defenders receive short passes without moving dras-
tically, whereas forwards usually have to sprint towards their
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front to get the ball. To obtain a mask that resembles the re-
ceiving area of players, first, the displacements of players inside
the training set are analyzed. This is, how does a player move
during a pass, from the very moment where a player kicks the
ball until the receiver gets the sphere. More concretely, consid-
ering pass events, a single displacement map is built for each
(a) player position / role λ (goalkeeper / central / full-back /
midfielder / forward) and (b) field side γ (left / right). Then,
data are fit with kernel density estimation (KDE) [112], hence
obtaining a kernel Kλ,γ that is placed on top of every receiving
candidate rj according to his/her field position λ and side γ:

V2(Rj|λ, γ) =
∫

Ω K
λ,γ(x)M(x)dx∫

Ω K
λ,γ(x)dx , (20.4)

where Ω denotes the image domain. This technique will be
called KDE evaluation.

3. The third proposal to extract results out of M is directly re-
lated to the latter, and it is obtained by thresholding Kλ,γ with
a given threshold τ > 0. A binary mask is obtained whilst
preserving the potential receiving area of players; that is:

V3(Rj|λ, γ) = 1
Area ([Kλ,γ > τ ])

∫
[Kλ,γ>τ ]

M(x)dx, (20.5)

where [Kλ,γ > τ ] = {x : such thatKλ,γ(x) > τ} denotes the
effective support of Kλ,γ. This last example will be named
bKDE, which stands for binary-KDE. In practice, τ has been
set to 0.75.

Using the training set, the tuning parameters explained in Section
19.3 have been optimized, and the KDE masks have been built; af-
terward, test accuracy scores are extracted for the best performances
on the training set. Table 20.6 shows the best results for all three
types of evaluations plus the effect of orientation in the output fea-
sibility maps. In order to assess the importance of incorporating
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Figure 20.8: Different evaluation proposals: (a) disk-, (b) KDE- and
(c) bKDE-evaluation.

orientation information, the same process has been repeated whilst
building oriented-less maps; i.e. gaRj and gaP in (19.3) and (19.5)
have been omitted when defining the feasibility map.
From the obtained results, several facets and choices can be discussed:
• First, it can be spotted that maps without orientation suffer

a huge accuracy drop, both in Top1 and Top3 metrics (around
0.2 in both cases).

• Since Top1 and Top3 metrics are similar in both the training
and testing stages, it can be said that the model is not overfitted
regardless of the choice of parameters. Besides, the KDE masks
created for evaluation also seem to generalize properly.

• Despite using different evaluation approaches, results are akin.
This means that, although using a disks evaluation might seem
a naive approach, it produces similar results (even better in
some cases) when comparing with KDE or bKDE evaluation.

• Computing the pass feasibility for each field spot (including e.g.
open spaces) outperforms the presented discrete-states model,
which only considers a single feasibility value at the receiver’s
location.

For a more thorough assessment, the upcoming paragraphs analyze
particular scenarios.
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Evaluation σ′
D κ Top1 Train Top3 Train Top1 Test Top3 Test

Disk (O) 10 6 0.4591 0.7819 0.4632 0.7852
Disk (O) 12.5 6 0.4523 0.7888 0.4690 0.7984
Disk 15 6 0.2823 0.6032 0.2614 0.6230
KDE (O) 12.5 6 0.4502 0.7812 0.4563 0.7855
KDE (O) 15 6 0.4387 0.7806 0.4661 0.7898
KDE 15 6 0.2784 0.5871 0.2555 0.5908
bKDE (O) 12.5 6 0.4511 0.7709 0.4734 0.7821
bKDE (O) 10 6 0.4604 0.7809 0.4567 0.7784
bKDE 15 6 0.2819 0.5982 0.2790 0.6135
Discrete-States - - - - 0.3710 0.7098

Table 20.6: Evaluation results of pass feasibility maps.

20.2.2 Players’ Field Position / Game Phase

Once again, specific scenarios such as the player’s role or the ball
location are checked to study the effect of orientation under several
circumstances. In order to do so, the same testing set, the best tuning
configuration (σ′D,κ) displayed in Table 20.6 and a disks evaluation
will be used. Starting with the players’ field role, four different posi-
tions (excluding goalkeepers) are analyzed: defensive (1) center-backs
and (2) left / right-backs, (3) midfielders, and (4) forwards. Results
are shown in Table 20.7.
As expected, higher values are obtained for those players that at-
tempt less risky passes (centrals), while forwards are the ones with
lower Top1 and Top3 accuracy. Nonetheless, it is worth mentioning
that forwards have the biggest difference in terms of accuracy when
including orientation in the pass feasibility map. If the orientation is
not taken into account, the pass feasibility in unoccupied free spaces
is very low; however, this feasibility increases notably when a player
is oriented towards that same space. This scenario is especially crit-
ical for forwards, who receive a considerable amount of long passes.
Moreover, midfielders are also notably affected by orientation: since
they are the ones in charge of organizing the offense, they normally
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Top1 Test Top3 Test Diff Top3
Central Def. (O) 0.5342 0.8174 0.1689Central Def. 0.2723 0.6485
Left/Right Def.(O) 0.4604 0.7723 0.1376Left/Right Def. 0.2420 0.6347
Midfielders (O) 0.4340 0.7683 0.1466Midfielders 0.2903 0.6217
Forwards (O) 0.4309 0.7724 0.2114Forwards 0.2358 0.5610

Table 20.7: Evaluation results of pass feasibility maps with respect
to player’s position.

receive the ball from defenders when oriented towards the defensive
field, and then they move the ball forward, after turning around and
facing the offensive side.

Similarly, passes can be also classified according to the game phase;
i.e. location of the passer in relation to the defensive team spatial
configuration (preliminaries of Section 2.2), since passes from the
same player can be very different depending on his/her situation in
the field with respect to the defenders.
Results in Table 20.8 show a similar pattern to the previous analysis.
The best results are obtained in the game phase with the lowest defen-
sive pressure (build-up), and the region where orientation makes the
biggest difference is the one where riskier passes are given (finaliza-
tion). In the intermediate phases, differences can be spotted between
L1, where midfielders might receive whilst looking backward, and
L2, where the pass itself aims to create a goal opportunity, so players
generally look forward. Given the fast backward-forward orientation
changes, the first part of progression is the most confusing one, thus
obtaining, by a small margin, the lowest Top1 and Top3 measures.
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Top1 Test Top3 Test Diff Top3
Build-Up L0 (O) 0.4800 0.8010 0.1398Build-Up L0 0.3026 0.6612
Progression L1 0.2313 0.6122
Progression L2 (O) 0.4910 0.7874 0.1774Progression L2 0.2800 0.6100
Finalization L3 (O) 0.4490 0.7880 0.1992Finalization L3 0.2455 0.5958

Table 20.8: Evaluation results of pass feasibility maps with respect
to the game phase.

20.2.3 Weighting Players’ Characteristics
In this Subsection, we consider the possibility of incorporating

individual players’ characteristics, since, e.g., the role of a star player
might alter the computed pass feasibility map. Take for instance the
situation shown in Figure 20.9. In this event, there is a partially-
undefended receiver placed close to the right sideline; according to
our model, this is the best available receiving candidate. However,
the final passing decision might be altered if the star player is inside
the passer’s field of view. In this ablation, we present an approach to
incorporate this type of information through two kinds of weights.

Position Weights Position priors are defined by normalizing the
number of given / received passes of each player by the number of
faced individual opportunities. In order to avoid overfitting, the prior
probabilities of receiving a pass are computed from a position-player
perspective, which answers the following question: according to the
training set, “what is the receiving probability for a player j, who
plays as a position k′, if the passer plays in a position k?" (being
k′, k ∈ [central defender, left-right defender, midfielder, forward]).
From now on, the total of received / given passes by player j will
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Figure 20.9: Effect of star role biases. (a) Initial 2D distribution of
a given play. (b) Baseline output, where the model suggests passing
the ball to the sideline-player. (c) Output when including weights,
with the star player emerging as the best receiving candidate.

be named as RPj and GPj respectively, and the faced opportunities
Opj. Two cases might emerge in this situation:

• If k′ 6= k:
pj(receive|passer k) = RPj from k

Opj from k
(20.6)

• If k′ = k:

pj(receive|passer k) = RPj from k

(Opj from k)− (GPj)
(20.7)

Line Weights As seen in Section 20.2.1, checking the game phase
might complement the player position, thus acquiring a better un-
derstanding of the passes a player has given / received. In this case,
the only probability to be computed is, given all events in the train-
ing set, the percentage of passes a player j, placed in the l′ line, has
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received from a passer who was at the l line of the field. Once again,
two similar cases emerge:

• If l′ 6= l:

pj(receive|(passer in l , j in l′)) = RPj from l when j in l′
Opj from l when j in l′

(20.8)

• If l′ = l:

pj(receive|(passer in l,j in l′)) = RPj from l when j in l′
(Opj from l,j in l′)− (GPj in l′)

(20.9)

Weights Combination: Once position and line weights are computed,
the pre-computed priors can be merged into one receiving prior prob-
ability / player pj(receive) for a single event as:

pj(rec.) = pj(rec.|passer k)pj(rec.|(passer in l, j in l′)) (20.10)

To merge this prior with the proposed offensive map (Section
19.1), we suggest:

1. For player j, the receiving prior is converted into a boosting
weight by:

wj =
(

1
1− pj(receive)

)w1

, (20.11)

where w1 is a weighting factor that regulates the impact of the
computed priors; in practice, this parameter is set to 5.

2. Afterwards, Equation (19.5) can be modified by adding the
boosting weight by:

MwRj(x) = wjexp
(
−‖x− rj‖2

σ2
R

− (∠(x− rj)− αRj)2

σ2
a

)
(20.12)
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σ′
D κ w1 Top1 Test Top3 Test

E 12.5 4 - 0.4651 0.7634
Ew 12.5 4 5 0.4556 0.7815
Es 12.5 4 - 0.4460 0.7729

Table 20.9: Ablation results: baseline method (E), including weights
(Ew) and speed (Es).

Player Rec. Passes Top1 Ew Top3 Ew Top1 E Top3 E Top1 Diff. Top3 Diff.
Central 48 0.444 0.889 0.500 0.889 -0.055 0
Right-Back 204 0.519 0.828 0.544 0.804 -0.024 0.024
Midfielder 113 0.469 0.823 0.469 0.770 0 0.053
Forward 245 0.486 0.830 0.454 0.812 0.032 0.018

Table 20.10: Individual performance of different players.

Case Study The effect of weight addition is studied in attacking
situations, defined as the events where the passer is over the second
(L2 progression) or third (L3 finalization) defensive line. In order to
isolate the effect of weights, and using the proposed disks evaluation,
two experiments (named E and Ew) are performed: the results of
E and Ew are obtained using equations (19.5) and (20.12), respec-
tively. The specific parameters and the overall performance of both
experiments are displayed in Table 20.9. As it can be spotted, the
overall performance when using weights does not abruptly change
the final performance result; although there is a slight drop in the
Top1 accuracy, a +0.02 boost emerges in Top3. To dissect the general
obtained results, the accuracy has been split into individual players;
specifically, four different players are examined in Table 20.10.
As it can be spotted:

• The chosen forward is the one obtaining the most notable Top1
individual accuracy boost; it also has to be remarked that this
forward is clearly an outlier in the finalization phase, reaching a
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16% receiving probability both from midfielders and forwards,
hence justifying the actual bias when introducing a player’s
roles.

• The displayed midfielder’s results do not show an improvement
in Top1 accuracy, but a 5% boost can be seen in Top3, since mid-
fielders usually have an active role when organizing the team’s
offense.

• The chosen right-back has significant Top1 accuracy without
weights, but prior data slightly downgrade his performance in
favor of team forwards; however, this drop is recovered in Top3.

• Finally, since central defenders do not usually participate in
plays in the finalization phase, the presented central’s results
suffer the biggest drop in Top1 accuracy and do not improve in
Top3; however, this central defender has only received 48 passes
in L2 / L3, which might be a small sample size.

20.2.4 Speed as a Feature
Apart from including roles and existing biases, more features can

be added to the models’ core. At the moment, 2D location and orien-
tation data have been merged, but the actual conditions / behavior of
each player at a time are not taken into account; among all physical
capabilities, in terms of receiving (or not) a pass, speed makes the
biggest difference. That is, while a static player has few chances of
successfully receiving a long pass, since he/she will have to accelerate
and then reach the final pass location, a player that is already run-
ning towards open spaces is a favorable receiving candidate. For the
rest of this ablation study, player speed has been computed directly
from 2D tracking data by smoothing player displacements across a
temporal window of 11 frames (with respect to the pass timestamp).
In order to include speed in the offensive map, the contribution of
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each reception map can be adapted by tuning the denominator of the
second factor in equation (19.3) as:

g′aRj(x) = exp
(
−(∠(x− rj)− αRj)2

σ2
aνr

)
,

where νr = sj/s̄rec, being sj the receiver’s speed in meters per second
at the given timestamp, and being s̄rec a normalization factor equal
to the median speed of receivers in all the set of pass events in the
included dataset (s̄rec = 1.57 meters / second).
Similarly, the same reasoning can be followed for the defensive team,
since defenders that are standing still are the ones creating the largest
open spaces in their surroundings given their limited reaction time.
Consequently, the numerator in the exponential of the second case in
equation (19.6) can be adapted as:

−exp
−( 1

2νd
(Rβi(x− di))2

x + (Rβi(x− di))2
y)

σ2
Di


where νd = max(sd/s̄def , 1); once again, sd indicates the defender’s
current speed, and s̄def is the median speed of all defenders in the
given dataset, which is 1.86. Note that when dealing with defenders,
the back-side of the double-sided Gaussian is not altered with the
players’ speed, since it corresponds to the opposite defender’s orien-
tation.

The effect of speed when modifying the original equations can be seen
in Figure 20.10, where both offensive and defensive contributions are
displayed. In terms of numerical results, Table 20.9 shows how the
effect of speed does not drastically change the obtained results, as
the presented tests perform similarly in terms of TopN accuracy. A
further study could be done by taking into account short / mid /
long passes, and by assessing the relevance of speed as a feature in
each of these. Potentially, long passes will be the ones where speed,
together with proper orientation, becomes a crucial factor.
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Figure 20.10: Speed can be included as a feature for both the offensive
(top) and the defensive (bottom) contributions. The faster the player
is moving, the larger space he/she can reach for a proper reception /
interception.

20.2.5 Discussion

From the obtained Top1/Top3 accuracy results, it has been proved
that not including orientation in the pass feasibility map leads to a
notable drop (around 0.2). This fall exemplifies that orientation plays
a crucial role in pass events, since offensive players have to exploit
open spaces, and also because players outside the passer’s field of view
will not be able to receive the ball. Overall, the best performance
is achieved by central defenders’ passes and by passes given in the
build-up phase, and the worst scenario belongs to forwards or passes
given after in the finalization phase. However, the latter scenarios
are also the ones that benefit the most when adding orientation into
the map, meaning that the overall scenario corresponds to a really
risky pass where proper orientation makes a difference.
Obtaining 0.79 of Top3 accuracy means that, by adding orientation,
the safest spots in the field are generally detected. Notice that the
pass feasibility map indicates how safe it is a priori to pass the ball
towards each field location in terms of keeping the ball; nevertheless,
other concepts such as offensive strategy or match timing, which usu-
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ally alter the decision-making process of the passer, are not consid-
ered. Although orientation is a crucial skill for soccer players, it is a
hard feature to teach by coaches; orientation-based drills are tough
to design and the best way to improve this particular skill is through
visual examples. By using 2D feasibility maps, results can be filtered
individually to detect which players react better / worse in particu-
lar field positions or even during different game moments; having the
appropriate game video clips plus the right tools to explain them can
smooth the communication between analysts-coaches-players, thus
favoring a potentially better performance. As in the case of discrete
states, the presented pass feasibility maps could also be integrated
into existing EPV models [34; 33], which would result in a refined and
more realistic output. Besides, apart from coaches benefiting from
this type of tool, strength and conditioning staff could also obtain
meaningful insights. By checking orientation throughout games and
practices, a fine-grained analysis of each players’ training load could
be performed, thus detecting running types (front / side / back) and
becoming a valuable tool for injury prevention.
Moreover, the output of feasibility maps could be adapted to other
sports, even though the aim of the presented model could differ from
passing events. Some suggestions to adapt feasibility maps to other
domains are given in Section 21.1.



21 Conclusions

In the last Part of this manuscript, the feasibility of soccer pass
events has been analyzed with two different approaches: discrete
states and pass feasibility maps. In both cases, the main contri-
bution is the inclusion of orientation data, estimated directly from
video frames, into a passing model, which has proved to be strictly
correlated to the play outcome and a key feature to characterize the
decision-making process of players.

On the one hand, when dealing with discrete states, orientation fea-
sibility is computed with a geometrical approach among offensive
players, and it is combined with two other estimations, based on the
faced defensive pressure and pairwise distances between the passer
and all potential receivers. Moreover, the combination of the model’s
output with existing pass probability / EPV models has been studied,
obtaining confident results which indicate that SoA methods can be
refined by including orientation data. Note that this model is really
light in terms of computational complexity and it could be used in
real-time.

On the other hand, pass feasibility maps provide a plausibility mea-
sure that indicates how safe it is to pass the ball towards any 2D
position of the whole field. The proposed feasibility map is modeled
through Gaussian functions that depend both on orientation and lo-
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cation. For the offensive team, the passer’s field-of-view (or reach) is
modeled and later combined with the aggregation of receivers. The
defensive contribution is also computed by estimating the individual
influence area, which also relies on player orientation. By merging
offense and defense into one same function, the 2D pass feasibility
map is obtained.
Three suggestions to evaluate this type of map are given. In this
matter, 0.46 / 0.79 Top1/Top3 accuracy are obtained, respectively,
with a -0.2 drop in both cases when not taking orientation into ac-
count, thus showing that orientation is indeed a vital skill for soccer
players. In the presented ablation study, the first steps to build an
accurate model including player characteristics (speed) and biases
have been detailed, which results in Top1/Top3 accuracy boosts for
individual star players. The visual information of the proposed fea-
sibility map can be directly used by analysts or coaches, who might
detect strengths and weaknesses in the passing spatial patterns of a
given team.

21.1 Future Work
Although the obtained pass feasibility results generalize well to

the vast majority of situations, other soccer-based facets could be
included in the model’s core to provide even more realistic outputs.
For instance, the following factors have not been taken into account:

• Intrinsic player skills that define the passing reach. Since each
player has his/her own strengths and weaknesses and given that
passing might be one of them, several scenarios come into play.
A midfielder that excels in passing to open spaces should have
a larger associated spatial reach, but a central defender whose
main goal is to recover the ball and to ensure safety passes to
midfielders should have a restricted one. Anyway, large sam-
ples of data are required to include all these specifics without
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overfitting the model.

• Similarly, game context also matters. For example, a team that
is trailing by 1 goal is willing to take a lot of risky moves in the
last minutes of the game (e.g. goalkeeper in the offensive area
in a corner play). All these contextual cues definitely affect the
outcome of passes and could be considered as game features in
the presented model.

Besides, the model could also benefit from orientation-based Voronoi
tessellation. In fact, many of the presented passing tools and models
reviewed in Chapter 17 include these kind of cells in order to assign
field regions to individual receivers; by including orientation, these
regions could be refined according to the player’s actual spatial reach.
Apart from improving the consistency of the presented computational
soccer models, the generalization to other sports could be studied.
However, in other scenarios, the aim of the presented model could
differ from passing events. In the case of basketball, body-orientation
definitely affects the passing outcome, but several other aspects could
provide much more meaningful insights, such as:

• The orientation of off-ball defenders in the weak-side of the
play is vital. These types of defenders need to be in a perfect
position and orientation in case: (a) the player carrying the
ball drives to the basket, (b) their match-up cuts to the basket
(back-door), or (c) they have to perform a close-out defense
after a skip pass. Likewise, other off-ball defensive clues could
be obtained, such as the perfect combination of spacing plus
orientation in order to build a defensive pressure set (or even
zone defense).

• The orientation of on-ball defenders is also important, espe-
cially in the current NBA context, where the defensive strategy
of several teams is based on switches. In these situations, two
miss-matches occur: first, there is a big player guarding the
small ball-handler, and then, there is a small player covering a
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big one. With proper orientation, lateral quickness is favored,
thus mitigating an unfavorable outcome of the potential miss-
match.

• On the offensive end, other practical applications can be built.
An interesting one could be the effect of screening angles ac-
cording to body-orientation in pick and roll or off-screen plays.
Since the body-orientation of the screener is fundamental to
trap the ball defender and generate a scoring opportunity, fea-
sibility offensive maps could be built. Note that in this scenario,
the raw computation of orientation might differ from the origi-
nal one, since the lower part of the body is also needed.

Therefore, feasibility maps could be a valid resource for coaches to
extract insights, and their power is not only limited to passing events
in soccer.



Closure

You can unfasten your seat belt, we have reached the end of this
particular journey of CV in sports. During this adventure, several
Parts and Chapters have guided us to understand where Computer
Vision falls inside this brand new field of sports analytics and which
are the data sources and the potential applications that clubs or
coaches are looking for.

In Chapter 1, the importance of tracking in sports has been contex-
tualized, hence proving that the overall situation of data science in
elite competitions has shifted completely; in this new decision-making
paradigm, data-driven automated processes attempt to complement
the existing know-how of coaches and general managers. Within this
context, the inclusion of tracking data has proved to be crucial, since
it encompasses other types of data sources, and moreover, several
models can be trained on top of this kind of data.

However, since tracking data are still not an exploited resource in
a large set of competitions, where teams have unbalanced economi-
cal resources, the viability of single-camera basketball multi-tracking
algorithms has been studied in Part I. More concretely, through a
CV-based pipeline, involving court filtering and player detection,
the effect of different feature extraction processes has been analyzed,
with the obtention of color- and deep-learning-based features. Once
matched all the given instances in the scene across frames, the ob-
tained results have shown almost a 0.7 multi-object tracking accuracy,
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which is a notable performance since (up to) 10 targets have to be
identified and tracked.

In Part II we have seen how tracking data may fall short in given
scenarios since the 2D location of players normally lacks the general
context. Under these circumstances, CV is an endless resource of
techniques that can be used to extract metrics and to enrich pure
tracking data. In this manuscript, a complete research about body
orientation has been provided, thus resulting in a new dimension that
complements raw tracking (2D location + body orientation). Once
defined body orientation as the 2D projection of the 3D normal vec-
tor extracted right in the middle of the player’s upper-torso, two
approaches have been described. The first one, model-based, stems
from pose models and combines classical CV and 3D-Vision tech-
niques to map the position of body parts in a 2D template, hence
obtaining the desired normal vector with ease. This estimation is
later refined with contextual information, i.e. ball location. The
second one, learning-based, tackles this challenge as a classification
problem by fine-tuning a VGG-19 network; by leveraging on a proper
compensation of angles with respect to the camera pose, and by in-
troducing a cyclic loss function based on soft labels, the network is
able to classify bounding boxes into orientation bins. Results have
been validated through EPTS-held devices, which provide ground-
truth orientation data; while the model-based method achieves de-
cent performance with less than 28 degrees of median absolute error,
the learning-based one improves its performance by a large margin,
resulting in an error less than 13 degrees. What is more, some data
visualizations are given in order to make raw orientation data under-
standable at first sight; in particular, OrientSonars-maps, Reaction-
maps, and On-Field-maps are presented.

Even though the inclusion of orientation is supposed to be benefi-
cial for any type of post-processing modeling, its real profit has to
be validated. Consequently, Part III aims to prove the vital impor-
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tance of body-orientation in the most common soccer event: passes.
More specifically, the notion of pass feasibility is introduced, which
expresses who is the most likely receiver to get the ball, or which are
the safest field spots. In the first case, a discrete computational model
is presented, which combines (a) the location, (b) the orientation, and
(c) the faced defensive pressure of every potential receiver, and ends
up ranking the safest receivers. In order to exploit open spaces, the
second computational model extends the latter by producing pass
feasibility maps. In this sort of tool, pass safety is displayed on every
field spot by merging together the offensive and the defensive team’s
contributions, both of them including location plus orientation. The
performance of feasibility-tools has been studied with a TopN fashion,
which indicates if the output of the model matches the real scenario,
and promising results have been obtained: 0.36 / 0.70 (discrete), and
0.46 / 0.79 (maps) in Top1 and Top3 respectively. Moreover, the
same experiments have been performed without including orienta-
tion in the computational model; in all cases, a drop around −0.2
accuracy appeared, thus proving that the included variable definitely
had a relevant weight in the proposed models.

Having listed all the presented contributions, I would like to give
some personal closure to this manuscript with future guidelines and
take-home messages. First of all, apart from the concrete poten-
tial improvements described in Sections 7.1 and 21.1, other lines of
research that could benefit from the enclosed manuscript’s contribu-
tions are listed:

• Individual action recognition is probably one of the most inter-
esting ways to enrich player tracking data. By training mod-
els from compensated bounding boxes, networks could classify
each player into a given set of action-related categories. For in-
stance, basketball-wise, it would be interesting to know, apart
from each player’s 2D location and his/her orientation, what
basic actions players are performing: running, screening, shoot-
ing, passing, dribbling... With this new generation of analytics,
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several meaningful improvements could be made on existing
basketball layers:

– Playtype data could be automatically collected for each
player. At a coarse level, it could be known a priori if a
player, e.g., takes more shots off the dribble or in spot-up
situations. At a fine level, e.g. novel defensive metrics
could quantify the defensive effort of a player in specific
situations (such as weak-side help or pick and rolls).

– Advanced tracking statistics could also be redefined. The
most obvious example are the defensive shot labels: roughly,
if a player shoots without a defender close to him/her, the
shot is considered as open; otherwise, the shot is consid-
ered as contested. At the given moment, this definition
is only based on pairwise distances: if the shooter has a
player nearby in the 2D space (within a radius of 1.25
meters), that shot will be considered as contested. How-
ever, without action recognition, it cannot be known if
the defensive player is truly contesting the shot (jumping,
stretching his/her arm) or he/she has a passive attitude
that does not bother the shooter at all. By adding action
recognition into the equation, a better definition of this
type of statistics would be obtained.

• Collective action recognition could also be really valuable. Al-
though individual players perform independent actions by them-
selves, the success of team sports’ offensive motions depends on
the overall synergy among players. For instance, when two bas-
ketball players are executing a ball-screen play, the ball handler
is the one generating a scoring opportunity through the screen,
the screener decides whether to roll or to pop, but what is more,
there are three other players who have to be in the right place
at the right time, thus producing the desired spacing to end up
with the better shot for the team. Capturing these collective
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patterns could help coaches identifying the playing style of a
team in different game phases.

• If all actions are being labeled with individual / collective ac-
tion recognition, the next step is to generate automatic high-
lights through action spotting. With this type of tool, not only
competitions or broadcasting companies could have accurate
and automatic summaries of the game, but also coaches could
save a lot of film time while preparing scouting reports. Note
that in this case, for the sake of completion, data from other
domains, such as eventing or audio cues, could even generate
more customized and precise reports.

• During the whole manuscript, we talked about basketball track-
ing and soccer body-orientation applications, but there is a
large set of sports-related scenarios to be explored. Obviously,
the most competitive leagues, with respect to their economical
resources, will be the ones gathering sport-dependent tracking
data first, but all these tools should be multi-sport soon. For
instance, in Part 13.2 we have shown how easy-to-adapt models
could be tested without requiring lots of input data (unbalanced
sets, at least), thus boosting the potential generalization across
sports.

• At the given moment, the vast majority of trackers are gather-
ing information only in the 2D space (X, Y coordinates). In the
case of basketball, the main reasoning is that tracking cameras
consist of an overhead setup that considers each player as a dot
in the court; by merging data from the broadcasting camera,
the Z dimension could be also inferred. Note that this dimen-
sion could also be obtained by using ground-truth data coming
from EPTS-held devices, and its output could also be helpful
for action recognition models. In this particular domain, the
3D pose models detailed in Chapter 10 could be exploited.

• Pose models have been widely used during the whole thesis for
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tracking and orientation purposes, but more applications could
be built from the obtained skeletons. For instance, player sim-
ilarity could be brought to the next level. At the moment,
similarity is just computed in terms of numerical statistics or
based on human perception through video reports, but by in-
cluding pose data, inner patterns could be detected as well: e.g.
how does a player pass in terms of a purely technical biomet-
rical perspective with his/her off-hand? How do these players
resemble from the point of view of their shooting mechanics?
This tool could be also useful for talent identification (or re-
cruitment) in youth sports.

• Until this point, we have mentioned several open datasets that
have been used to train the presented models. Actually, all
these models share one feature: included data belong to real
games and to real players. One source of data that has still not
been exploited are video games, which could be an excellent
resource given that: (a) the perception of reality in video games
is almost perfect at the moment, (b) the amount of data that
can be generated with this data source is boundless – in terms
of camera pose and also with respect to the number of games
–, and (c) metadata could be easily obtained without requiring
the need of sensor-data – e.g. player meshes and normal vectors
–. I truly believe that training models from video-game data
could really improve the generalization capability of existing
models.

• Last but not least, visualization tools of all presented methods
could be built from a computer graphics / UX-design perspec-
tive. Even though the vast majority of post-processing anal-
ysis is not done during games, with the appropriate graphic
tools, coaches could have real-time information regarding sev-
eral orientation-based metrics, such as printed pass feasibility
maps on top of game footage. These data could be displayed on
a tablet being carried by an assistant coach, and automatic per-
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formance reports could facilitate the decision-making process of
the coaching staff e.g. during half-time.

Finally, I would like to encourage all researchers working with sports
analytics in academia to keep sharing their work in order to create a
solid state-of-the-art that could encompass many game facets across
sports. When submitting our work to computer science journals, a
common flaw that some reviewers detected was that, since our work
could not be compared with previous work, it was unclear if the
obtained results could be validated. One decade ago, it was hard to
imagine that someone could pursue a professional career in sports
analytics, but once that phase has been surpassed, it is now time to
prove that sports analytics’ research can fit in the scope of reputed
journals. Fortunately, a huge effort has been made by researchers /
organizations / clubs to create a research-sharing culture in this field,
namely:

• In academia, apart from the well-known Journal of Sports Sci-
ences and the MIT Sloan Sports Analytics Conference (hybrid
between companies and academia), there has been a substan-
tial rise in the number of sports-related conferences in the last
decade, for instance:

– International Workshop on Computer Vision in Sports
at the Computer Vision Pattern Recognition conference
(CVPR) - 7 editions.

– Workshop on Machine Learning and Data Mining for Sports
Analytics at the ACM International Conference on Multi-
media - 7 editions

– International Workshop on Multimedia Content Analysis
in Sports at the European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery
in Databases - 3 editions.

– AI for Sports Analytics Workshop at the International
Joint Conference on Artificial Intelligence - 1 edition.
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• Besides, topnotch clubs / companies / organizations are also
hosting enriching events where professional analysts and re-
searchers discuss their research topics (mainly soccer), such as:

– OptaPro Analytics Forum - 5 editions.
– Futbol Club Barcelona’s Sports Tomorrow Congress - 4

editions.
– StatsBoom Innovation in Football Conference (first hosted

in 2019 and now scheduled for 2021).
– Despite being virtual sessions, the community of Friends

of Tracking is also sharing powerful resources weekly, in-
cluding open code or detailed tutorials.

• Upcoming literature will benefit from open datasets, like the
ones described in Section 2.3. For instance, the authors from
SoccerNet [40; 26] are currently hosting action-spotting chal-
lenges performed on top of their open dataset.

With all these limitless resources, there are no possible excuses: the
timing is perfect to research every possible greedy detail of this emerg-
ing field. Possibly, the main open question regarding the pursuit of
a sports analytics career is how to get started, and as far as I can
tell, since sports-analytics-based undergraduate programs still do not
exist, there is not a default-valid answer. It is crystal clear that pro-
fessional analysts must be comfortable coding, handling large struc-
tures of numbers, so any computer science / data science career will
provide the student with all required technical tools. However, what
truly makes the difference has little to do with computers: analysts
must be sports enthusiasts, and having some court / field experi-
ence is definitely a bonus. One of the main challenges for analysts
while establishing data science departments in clubs is to create a
solid communication environment. Since insights can be easily lost
in the communication transfer between analysts and coaches, both of
them need to speak the same language, or even better, the analyst
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needs to speak the same language as the coach, and he/she must be
able to translate technical sports-based argot into numbers. Bear-
ing in mind that each coach is unique, one of the key aspects for
this smooth transfer of knowledge is to ask the appropriate questions
without getting too technical, thus getting to know their true needs.
Therefore, I would say that professional analysts must be hybrid pro-
files with the appropriate tools to create, analyze, and communicate.
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