
 

 

Universitat Politècnica de Catalunya-BarcelonaTECH (UPC), Statistics and Operations 

Research Department  

 

SEQUENTIA BIOTECH SL, Bioinformatics Department 

 

PhD program in Bioinformatics  

 

Genomics tools: the new frontier in omics data 

analysis 

 

Dissertation submitted for the degree of Doctor in Bioinformatics 

 

 

 

Doctoral thesis by: 

Rosa Barcelona Cabeza 

 

Thesis supervisors: 

Walter Sanseverino 

Riccardo Aiese Cigliano 

Thesis tutor: 

Guadalupe Gómez Melis

 

 

 

Barcelona, September 2021 

   





 

 

 

 

I 

Abstract 

Substantial technological advancements in next generation sequencing (NGS) have revolutionized the 

genomic field. Over the last years, the speed and throughput of NGS technologies have increased while 

their costs have decreased, allowing us to achieve base-by-base interrogation of the human genome in an 

efficient and affordable way. All these advances have led to a growing application of NGS technologies in 

clinical practice to identify the genomics variations and their relationship with certain diseases. However, 

there is still the need to improve data accessibility, processing and interpretation due to both the huge 

amount of data generated by these sequencing technologies and the large number of tools available to 

process it. In addition to a large number of algorithms for variant discovery, each type of variation and data 

requires the use of a specific algorithm. Therefore, a solid background in bioinformatics is required to be 

able to select the most suitable algorithm in each case but also to be able to execute them successfully.  

 On that basis, the aim of this project is to facilitate the processing of sequencing data for variant 

identification and interpretation for non-bioinformaticians. All this by creating high-performance 

workflows with a strong scientific basis, while remaining accessible and easy to use, as well as a simple 

and highly intuitive platform for data interpretation. 

 An exhaustive bibliographic review has been carried out where the best existing algorithm has been 

selected to create automatic pipelines for the discovery of germline short variants (SNPs and indels) and 

germline structural variants (SVs), including both CNVs and chromosomal rearrangements, from modern 

human DNA. In addition to creating variant discovery pipelines, a pipeline has been implemented for in 

silico optimization of CNV detection from WES and TS data (isoCNV). This optimization pipeline has 

been shown to increase the sensitivity of CNV discovery using only NGS data. Such increased sensitivity 

is especially important for diagnosis in the clinical settings. Furthermore, a variant discovery workflow has 

been developed by integrating WES and RNA-seq data (varRED) that has been shown to increase the 

number of variants identified over those identified when only using WES data. It is important to note that 

variant discovery is not only important for modern populations, the study of the variation in ancient 

genomes is also essential to understand past human evolution. Thus, a germline short variant discovery 

pipeline from ancient WGS samples has been implemented. This workflow has been applied to a human 

mandible dated between 16980-16510 calibrated years before the present. The ancient short variants 

discovered were reported without further interpretation due to the low sample coverage. Finally, GINO has 

been implemented to facilitate the interpretation of the variants identified by the workflows developed in 

the context of this thesis. GINO is an easy-to-use platform for the visualization and interpretation of 

germline variants under user license.  
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 With the development of this thesis, it has been possible to implement the necessary tools for a high-

performance identification of all types of germline variants, as well as a powerful platform to interpret the 

identified variants in a simple and fast way. Using this platform allows non-bioinformaticians to focus on 

interpreting results without having to worry about data processing with the guarantee of scientifically sound 

results. Furthermore, it has laid the foundations for implementing a platform for comprehensive analysis 

and visualization of genomic data in the cloud in the near future. 

Key words: NGS, Genomics, Variants, Bioinformatics, SNPs, Indels, CNVs, SVs, Platform 
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Resumen 

Los avances tecnológicos en la secuenciación de próxima generación (NGS) han revolucionado el campo 

de la genómica. El aumento de velocidad y rendimiento de las tecnologías NGS de los últimos años junto 

con la reducción de su coste ha permitido interrogar base por base el genoma humano de una manera 

eficiente y asequible. Todos estos avances han permitido incrementar el uso de las tecnologías NGS en la 

práctica clínica para la identificación de variaciones genómicas y su relación con determinadas 

enfermedades. Sin embargo, sigue siendo necesario mejorar la accesibilidad, el procesamiento y la 

interpretación de los datos debido a la enorme cantidad de datos generados y a la gran cantidad de 

herramientas disponibles para procesarlos. Además de la gran cantidad de algoritmos disponibles para el 

descubrimiento de variantes, cada tipo de variación y de datos requiere un algoritmo específico. Por ello, 

se requiere una sólida formación en bioinformática tanto para poder seleccionar el algoritmo más adecuado 

como para ser capaz de ejecutarlo correctamente.  

 Partiendo de esa base, el objetivo de este proyecto es facilitar el procesamiento de datos de 

secuenciación para la identificación e interpretación de variantes para los no bioinformáticos. Todo ello 

mediante la creación de flujos de trabajo de alto rendimiento y con una sólida base científica, sin dejar de 

ser accesibles y fáciles de utilizar, así como de una plataforma sencilla y muy intuitiva para la interpretación 

de datos.  

 Se ha realizado una exhaustiva revisión bibliográfica donde se han seleccionado los mejores 

algoritmos con los que crear flujos de trabajo automáticos para el descubrimiento de variantes cortas 

germinales (SNPs e indels) y variantes estructurales germinales (SV), incluyendo tanto CNV como 

reordenamientos cromosómicos, de ADN humano moderno. Además de crear flujos de trabajo para el 

descubrimiento de variantes, se ha implementado un flujo para la optimización in silico de la detección de 

CNV a partir de datos de WES y TS (isoCNV). Se ha demostrado que dicha optimización aumenta la 

sensibilidad de detección utilizando solo datos NGS, lo que es especialmente importante para el diagnóstico 

clínico. Además, se ha desarrollado un flujo de trabajo para el descubrimiento de variantes mediante la 

integración de datos de WES y RNA-seq (varRED) que ha demostrado aumentar el número de variantes 

detectadas sobre las identificadas cuando solo se utilizan datos de WES. Es importante señalar que la 

identificación de variantes no solo es importante para las poblaciones modernas, el estudio de las 

variaciones en genomas antiguos es esencial para comprender la evolución humana. Por ello, se ha 

implementado un flujo de trabajo para la identificación de variantes cortas a partir de muestras antiguas de 

WGS. Dicho flujo se ha aplicado a una mandíbula humana datada entre el 16980-16510 a.C. Las variantes 

ancestrales allí descubiertas se informaron sin mayor interpretación debido a la baja cobertura de la muestra. 

Finalmente, se ha implementado GINO para facilitar la interpretación de las variantes identificadas por los 
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flujos de trabajo desarrollados en esta tesis. GINO es una plataforma fácil de usar para la visualización e 

interpretación de variantes germinales que requiere licencia de uso. 

 Con el desarrollo de esta tesis se ha conseguido implementar las herramientas necesarias para la 

identificación de alto rendimiento de todos los tipos de variantes germinales, así como de una poderosa 

plataforma para visualizar dichas variantes de forma sencilla y rápida. El uso de esta plataforma permite a 

los no bioinformáticos centrarse en interpretar los resultados sin tener que preocuparse por el procesamiento 

de los datos con la garantía de que estos sean científicamente robustos. Además, ha sentado las bases para 

en un futuro próximo implementar una plataforma para el completo análisis y visualización de datos 

genómicos en la nube. 

Palabras clave: NGS, Genómica, Variantes, Bioinformática, SNPs, Indels, CNVs, SVs, Platforma 
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Chapter 1 | Introduction 

1.1 Thesis outline 

The current thesis has been developed by the student Rosa Barcelona Cabeza at the Bioinformatics 

Department of SEQUENTIA BIOTECH SL, under the supervision of Dr. Riccardo Aiese Cigliano, Chief 

Scientific Officer (CSO) and co-founder of the company, and Dr. Walter Sanseverino, Chief Executive 

Officer (CEO) and co-founder, and under the academic tutelage of Dr. Guadalupe Gómez Melis, professor 

at the Statistics and Operations Research Department of Universitat Politècnica de Catalunya-

BarcelonaTECH. 

 This thesis has taken place with the financial aid for the training of doctors in companies (Industrial 

Doctors) contemplated in the State Training Subprogram of the State Program for the Promotion of Talent 

and its Employability, within the framework of the State Plan for Scientific and Technical Research and 

Innovation 2013-2016 (DI-17-09652, Ministerio de Ciencia e Innovación).  

 In this thesis we present multiple high-performance pipelines to identify each type of human genomic 

variation from next-generation sequencing (NGS) data and GINO, a platform to visualize and interpret 

variants. This chapter introduces the Genomics field, its value and limitations, and presents the motivation 

for the research. Chapter 2 goes through all the steps involved in improving and creating the tools to perform 

a fast and reliable pipeline for identifying germline genomic variants. Chapter 3 presents an integrated 

approach of genomic and transcriptomic data for accurate detection of genomic variants. Finally, Chapter 

4 explains the implementation of GINO, a unique platform with a robust graphical environment to perform 

visualization and interpretation of variants. 

1.2 Context  

1.2.1 The human genome 

A genome is the complete set of genetic material present in a cell or an organism, it consists of 

Deoxyribonucleic Acid (DNA) (or Ribonucleic Acid (RNA) in RNA viruses). The typical human genome 

consists of approximately 3 billion base pairs of DNA, divided among the 24 types of nuclear chromosomes 

(22 autosomes, plus the sex chromosomes, X and Y) and the mitochondrial chromosome.  

 Even if the human genome comprises around 3 billion base pairs, not all of them are functionally 

relevant. It has been estimated that only 20,000 protein-coding genes are present and their coding sequences 

(exons) comprise less than 2% of the genome. Most of the genome consists of non-coding DNA, while 
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some initially referred to it as “junk,” many of the non-coding sequences act as regulatory elements of gene 

activity and are of evolutionary importance [1].  

 In the human genome, genes are relatively sparse and distributed quite non randomly along the 

different human chromosomes, ranging from approximately 3 genes/Mb of DNA in gene-poor 

chromosomes to more than 20 genes/Mb in gene-rich chromosomes (excluding the Y chromosome and the 

mitochondrial chromosome).  

 There are coding and non-coding genes in the human genome. Most genes known or thought to be 

clinically relevant are protein-coding and their products comprise the list of enzymes, structural proteins, 

receptors, and regulatory proteins that are found in various human tissues and cell types. However, there 

are also genes that do not encode for proteins and they represent as many as a half of all identified human 

genes (Table 1). These non-coding genes have different functions in the cell and many do not have any 

identified function, yet. 

Table 1. Characteristics of the Reference Human Genome. From Ensembl, database GRCh38, patch release 
13 (accessed June 2021). 

Length of the human genome (base pairs) 3,096,649,726 

Number of known protein-coding genes 20,442 

Number of non-coding genes 23,982 

  

 Multiple techniques have been developed to visualize the human genome (Figure 1). Karyotyping of 

patient chromosomes has been a valuable and routine clinical laboratory procedure for a half century, 

however the resolution of chromosomal changes detectable by karyotyping is typically a few megabases, 

falling well short of most pathogenic DNA variants (Figure 1). The ultimate resolution comes from direct 

sequence analysis, which enables the search for novel variants or mutations that might be of clinical 

importance. 
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Figure 1. Spectrum of resolution in chromosome and genome analysis. The typical resolution and range of 
effectiveness are given for various diagnostic approaches used routinely in clinical and research practice. 
FISH, Fluorescence in situ hybridization [2, p. 546]. 

1.2.2 Variation in the human genome 

A genomic variation is an alteration in the most common DNA nucleotide sequence within a population. 

With the completion of the initial reference human genome sequence, attention was turned to the discovery 

and cataloguing of variations among different individuals and among different populations [3]–[5]. Any 

given individual carries 4-5 million sequence variants and the majority of these variants are very rare, many 

of which probably exist in only a single or a few individuals [6]. The majority of variations are benign while 

some are protective, conferring an advantage against certain conditions, and others can be harmful, 

increasing susceptibility for a condition or directly causing a disease [7].   

 Identification of variations is important for both modern and ancient genomes. Detection of variants 

in modern human genomes allow us to improve the diagnosis and prognosis of certain diseases [8]–[11]. 

Analysis and characterization of ancient human genomes, also called human paleogenomics, allows us to 

understand past human evolution and provides new insights into a wide range of topics such as demography, 

migrations or human adaptation [12]–[16]. 

 There are two different classifications of genomic variations, based on cell type and based on type of 

alteration. The first classification divides genomic variations in germline and somatic variants. A germline 

variant occurs within the germ cells (egg or sperm), such that the alteration can be passed to subsequent 
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generations. A somatic variant occurs in any of the cells of the body, except the germ cells and therefore is 

not inherited. Identification and study of both is important, germline variants interpretation focuses on 

pathogenicity of a variant for a specific disease or disease causality whereas interpretation of somatic 

variants should focus on their impact on clinical care [17]. However, for the sake of this thesis, we will 

focus only on the identification of germline variations. The second classification leads to three different 

alterations: Single Nucleotide Polymorphism (SNPs), insertions and deletions (indels) and structural 

variations (SVs). Specifically, this thesis is focused on the germline discovery of these three types of 

alterations (SNP, indels and SVs) in the human genome. Any and all of them can influence disease and thus 

must be accounted for in any attempt to understand the contribution of genetics to human health. 

1.2.2.1 Single Nucleotide Polymorphism (SNPs) 

Single nucleotide polymorphisms (SNPs) are defined as single base substitutions variation, where two or 

more different nucleotides can be observed within a given population. They are by far the most frequent 

type of variation in the human genome, occurring once every several hundred base pairs throughout the 

genome [18].  

 The biologic impact of SNVs in coding regions depends on their type: synonymous and non-

synonymous.  Synonymous SNPs are those that have different alleles that encode for the same amino acid 

while non-synonymous SNPs lead to a change of the encoded amino acids. In non-coding regions, the 

biologic effect depends on their impact on RNA processing or gene regulation [19]. The vast majority of 

SNPs are located in non-coding regions, this is due to the selection pressure that reduces the overall 

frequency of SNPs in coding DNA and in associated regulatory sequences [20]. 

1.2.2.2 Insertion and deletion (indels) 

Indels refer to insertion and/or deletion of nucleotides into genomic DNA and include events less than 1 kb 

in length [21]. Insertions or deletions of sequences larger than 1 kb are categorized as copy number variants 

(CNVs) and they are more appropriately referred to as amplifications, duplications, or deletions. 

 Accurate identification of indels is critical in clinical diagnosis, as they are commonly implicated in 

constitutional and somatic diseases. Additionally, indels are a common mechanism of kinase activation in 

cancer, a feature exploited clinically by targeted therapy with kinase inhibitors [22]. 

1.2.2.3 Structural variants (SV) 

Structural variation (SV) is generally defined as a genetic variation that occurs over a region of DNA 

approximately 1 kb or larger in size [21], [23] and includes both copy number variation (CNV) and 

chromosomal rearrangement events. 
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 Copy number variation (CNV) refers to the gain or loss of specific regions of DNA larger than 1 kb. 

CNVs are an important class of genetic variation due to their wide-ranging impacts in human disease, 

including inherited syndromes and cancer-acquired mutations [24], [25]. 

 Chromosomal rearrangements include insertions, inversions and translocations. An insertion is the 

addition of a novel sequence with respect to a reference genome. An inversion occurs when a segment of 

DNA is reversed in orientation with respect to the rest of the chromosome. Translocations occur when a 

segment of DNA changes its position, intra- or inter-chromosomally. Identification of SVs is critically 

important for the diagnosis and prognosis of both hematologic malignancies and solid tumors [26], [27].  

1.2.3 DNA sequencing 

DNA sequencing is the process of determining the nucleotide order of a given DNA polynucleotide chain 

and it has become the gold standard for identifying genetic variations [28]. 

1.2.3.1 Sequencing technologies 

Scientific advances in DNA sequencing proceeded through four major technological revolutions: first 

generation sequencing (Maxam-Gilbert and Sanger sequencing), second generation or next generation 

sequencing (NGS, high throughput sequencing), third generation sequencing (3G) and fourth generation 

sequencing (4G).  

1.2.3.1.1 First Generation Sequencing- Sanger Sequencing 

Maxam-Gilbert sequencing was developed by Allan Maxam and Walter Gilbert in 1976–1977 [29]. It was 

the first widely adopted method for DNA sequencing alongside Sanger sequencing, however it is no longer 

in common use. 

 Sanger sequencing was developed by Dr. Frederick Sanger in 1977 [30], it is based on the selective 

incorporation of chain-terminating dideoxynucleotides (ddNTPs) by DNA polymerase during in vitro DNA 

replication. The ddNTPs are radioactively or fluorescently labeled for detection in gels or automated 

sequencing machines, respectively.  

 Sanger sequencing was used to sequence the first human genome in the Human Genome Project [31]. 

Nowadays, Sanger sequencing technology remains very useful for applications where high throughput is 

not required, for example to verify plasmid constructs or PCR products. In addition, it is used to validate 

next-generation sequencing data or for projects focused on single genes or regions.  

1.2.3.1.2 Second Generation Sequencing - NGS 
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Second generation sequencing, also known as next-generation sequencing (NGS), refers to several different 

technologies of high-throughput DNA sequencing [32]. NGS technologies are different from the Sanger 

sequencing as they perform a high-throughput and massive analysis in parallel of multiple samples at much 

reduced cost [33].  Millions to billions of DNA nucleotides can be sequenced in parallel, increasing 

throughput and speeding up the sequencing process [34].  

 NGS technologies require preparing amplified sequencing libraries before sequencing amplified 

DNA clones [35]. Parallelization of a large number of sequencing reactions by NGS was achieved through 

the miniaturization of sequencing reactions and, in some cases, the development of improved microfluidics 

and detection systems [36]. Time spent in generating gigabase (Gb) size sequences by NGS was reduced 

from many years to only a few days or even hours, with the corresponding massive price reduction. For 

example, the Sanger sequencing of the human genome took almost 15 years costing more than 100 million 

dollars [31], while the genome of J.D. Watson (winner of the Nobel Prize in 1962) was sequenced by NGS 

in only 2 months with approximately the same coverage and for approximately a price 100 times lower 

[37]. 

1.2.3.1.3 Third Generation Sequencing 

Third generation sequencing methods allow sequencing of single DNA molecules without the need for a 

template amplification step although the sequencing step itself still involves sequencing-by-synthesis. The 

lack of an amplification step provides advantages over second-generation: it prevents artifactual DNA 

mutations and strand biases introduced by even limited cycles of PCR and allows higher throughput, higher 

consensus accuracy, faster turnaround times and longer read lengths (by some platforms) that enhance 

complex SVs mapping and de novo contig and genome assembly [38]. 

1.2.3.1.3 Fourth Generation Sequencing 

Fourth generation sequencing can be described as the sequence analysis of single DNA molecules without 

prior amplification; the sequencing is performed without DNA synthesis, and so is free of nucleotide 

labeling and detection steps. Nanopore-based technologies are the best examples of fourth-generation 

platforms [38].  A range of other novel technologies are still in the development stage. They will continue 

to make DNA sequencing even faster and less costly [39]. 

1.2.3.2 Sequencing strategies 

These technologies generate large amounts of complex data consisting of strings of bases which are called 

reads. In Illumina sequencing platforms, there are two different types of reads: single-end and paired-end 

reads. Single-read sequencing means sequencing DNA from only one end while paired-end sequencing 

involves sequencing both ends of a fragment.  
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 The level of coverage and resolution of these technologies can be easily tuned, providing a high 

degree of flexibility. The term coverage (or depth) refers to the average number of reads that align to known 

reference bases. Additionally, these technologies can be tuned to sequence only a subset of genomics 

regions, allowing researchers to focus time and expenses.  

 There are three types of sequencing strategies which depend on the amount and type of DNA 

sequenced: targeted sequencing (TS), whole exome sequencing (WES), or whole genome sequencing 

(WGS). 

1.2.3.2.1 Targeted Sequencing  

Targeted sequencing (TS) approach focuses on selected sets of genes or genomic regions. It is a rapid and 

cost-effective way to detect known and novel variants in the targeted regions. However, variant detection 

is limited to the pre-selected regions and chromosomal rearrangements cannot be identified [40].  

1.2.3.2.2 Whole Exome Sequencing 

Whole exome sequencing (WES) is a targeted sequencing approach that interrogates all the exonic regions 

within a genome. It also may be extended to target functional non-protein coding elements as well as 

specific candidate loci [40], [41]. Since the exome comprises less than 2% of the genome, it can be 

sequenced at a greater depth than the genome at a lower price. The greater depth provides more confidence 

in the detection of low frequency alterations. Exome sequencing also reduces data storage costs and allows 

a quicker, cheaper and easier data analysis. WES has increasingly become the favored approach, both for 

research and for clinical care [5], [42], [43]. However, whole-exome sequencing and targeted panels only 

interrogate part of the variants as they focus on reduced areas of the genome and lead to a non-uniform 

read-depth distribution among regions caused by biases in sample batches, GC content, and targeting probes 

[44]–[46]. This creates regions with high depth (a waste of sequencing power) and with low coverage which 

in turn can lead to missing variant calls. Furthermore, non-uniform coverage hinders the identification of 

copy number variations.  

1.2.3.2.2 Whole Genome Sequencing 

Whole-genome sequencing (WGS) determines the order of the nucleotides in the entire genome [40]. It 

allows the analysis of all types of variation in the entire genome, it can take advantage of longer reads and 

allows the most uniform depth of sequencing, increasing the accuracy in the identification of structural 

variants. However, it requires a much greater expense than the other sequencing approaches to obtain the 

depth required to achieve reliable results. 
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1.3 State-of-the-art  

The new sequencing technologies have allowed the field of human genomics to reach, in a short time, very 

diverse areas, including biomedicine, clinical diagnosis or evolutionary biology. In fact, the complete 

sequencing of the human genome has allowed us to understand not only its sequence but also its 

organization, its genetic variations, the differential expression of its genes and several aspects of its 

transcriptional regulation. Also, the sequencing of ancient human genomes has enabled us to track 

frequency changes of genomic variation over space and time and to understand how migration and 

admixture events produced current patterns of genetic variation. The current sequencing platforms are faster 

and have higher throughput than Sanger sequencing method but also, they generate big data that need to be 

sorted, curated, integrated, analyzed and interpreted.  

 Identification of variations is not only enabled by DNA sequencers (hardware) but also by variant 

callers (software) that combine the reads obtained by sequencing to identify where and how an individual's 

genome differs from a reference genome. Very few variant callers are versatile enough to call all types of 

genomics variants because they require very different algorithms, increasing the computational cost and 

making it more difficult for scientists [47]. 

 Due to the rapidly growing technology, there is a lack of qualified personnel to process sequencing 

data, generating a niche in the market in terms of analysis, data storage and interpretation. The vast majority 

of the existing tools require the scientist to have knowledge of programming and scripting to be able to 

execute them. Most geneticists and biologists either fail to process their own data because of its size and 

complexity or because it requires spending a large amount of time. In addition, due to the diversity of 

genomic applications, informaticians usually do not have all the knowledge required to fully understand 

the biological "problem" of the researcher, making it more complicated to reach a practical solution. More 

and more publications and funds have been directed to the study of omics, the genomics market reached a 

size of $17.2 billion in 2019 and it has been estimated to reach $31.1 billion by 2027 [48], confirming the 

importance of finding a solution to efficiently manage the large amount of data produced.  

 In this section, the main algorithms and pipelines used in germline variant calling will be reviewed. 

Firstly, we will go through the variant callers used to identify SNPs and indels (short variant discovery) and 

then, to identify structural variants (structural variant discovery) as they require quite distinct algorithms. 

Finally, the current available genomic analysis platforms will be assessed. 

1.3.1 Short variant discovery 

Short variant discovery is a multi-step process by which SNPs and indels in sequence data are identified. 

A wealth of pipelines has been and are being developed for accomplishing this challenging task. Each of 

the pipelines mainly consist of the quality assessment, read alignment, variant discovery, variant filtering 
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and annotation [49], [50] (Figure 2), and different combinations of tools belonging to each step above-

mentioned will result in varying performance of the pipelines affecting the interpretation of the short 

variants calls. 

 

Figure 2. Short variant discovery pipeline. The short variant discovery pipeline mainly consists of six steps: 
A) Quality Assessment (QA) of RAW sequence data where low quality reads, uncalled bases, adapters and 
contaminant sequences are removed.  B) Read alignment to the reference genome. C) Quality assessment 
(QA) of alignment data to verify sufficient sequencing coverage and marking or removal of duplicated 
reads. D) Variant discovery to identify short variants in sequence data. E) Variant filtering to reduce the 
false discovery rate. F) Functional variant annotation. 
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1.3.1.1 Acquisition of raw sequence data: the FASTQ file format 

The first step before starting the variant calling process is obtaining the data. The datasets used in variant 

calling usually come from the sequencing of biological samples with any of the available sequencing 

technologies, although simulated data can also be a starting point [51]. The most common format file to 

start the process of variant calling is FASTQ format (Figure 3), thus, data from sequencing technologies in 

other formats, like the binary base call format (BCL) produced by Illumina should be transformed to this 

format.  

 The FASTQ format (Figure 3) is text-based and stores sequencing read data and its base quality score 

[52]. This type of file usually contains millions of records that belong to each of the sequenced reads. Each 

record is made of four lines, the first one corresponds to the ID of the read with information about the flow 

cell, lane, tile, tile coordinates and barcode, the second one hosts the nucleotide sequence of the read, the 

third one is a separator and the fourth one contains the read quality scores per base.  

 

Figure 3. Example of a single entry in a FASTQ file. 

 The quality of each base is codified in ASCII code (American Standard Code for Information 

Interchange) that translates each character into a number. This quality is given by the PHRED score (Q) 

that considers the probability (P) of that base of being a sequencing error [53]. The higher the quality score 

the lower the probability of sequencing error according to the following formula: 

Q = -10 log10 P 

1.3.1.2 Quality assessment of raw sequence data 

The first step of the analysis is the quality control, which is performed to remove low quality reads, uncalled 

bases, adapters and contaminant sequences. None of the available sequencing technologies are absent from 

making errors [54]. 

The most commonly used tool for evaluating and visualizing the quality of sequence data is FastQC 

[55], which provides comprehensive information about data quality, including but not limited to per base 

sequence quality scores, GC content information, sequence duplication levels and overrepresented 

sequences. Alternative tools for quality assessment of FASTQ files are fastqp [56] or PRINSEQ++ [57]. 

Adapters are artificial short DNA oligonucleotides, generally of known sequence. They are used 

with the scope of binding the DNA fragments to the flow cell. Since the adapter sequences are synthetic, 

adapter contamination often leads to NGS alignment errors and an increased number of unaligned reads. 
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Furthermore, recurrent untrimmed adapters at the same genomic position can lead to spurious variant calls. 

Hence, any adapter sequences need to be removed before mapping. There are plenty of tools for adapter 

removal, namely, Trimmomatic [58], CutAdapt [59], AlienTrimmer [60], Skewer [61], BBDuk [62] and 

AdapterRemoval [63]. In addition to adapter removal, trimming can be performed with these tools to 

discard low quality reads or low quality bases.  

1.3.1.3 Read alignment 

Reads that have passed the quality control are mapped against a reference genome. This step tries to 

determine the most likely region of the reference genome for each of the reads [64]. The aligner usually 

takes the reference genome of the species (in our case, Homo sapiens), its index and the FASTQ reads. For 

Homo sapiens, the most current and widely used reference sequences are GRCh37 (hg19) and GRCh38 

(hg38). Depending on the mapping software used, additional files can be needed [64].  

 This step is one of the most time consuming and computational resource demanding steps, since the 

read mapper has to consider a high number of sequences and their similarity before assigning them to a 

specific region of the genome [65]. Repetitive regions make this task very difficult since the aligner might 

not be able to assign a read to a specific region [66]. Variants can also be a source of misalignment, for 

instance, indels can make that a substantial part of the read does not match the reference genome [67], [68]. 

There is an abundance of tools for alignment of sequences to the reference genome, some of them 

are BWA [69], Bowtie2 [70],  novoalign [71], and mummer [72]. They differ on the algorithm used, the 

sensitivity, the memory requirements, the speed, and the sequence length requirements. The most widely 

used tools are BWA and Bowtie2.  

The mapping step usually produces a Sequence Alignment Map (SAM) file consisting of the 

information of the reads aligned to the genome [73]. The SAM format is a text-based format, which contains 

a header and an alignment section having eleven mandatory fields with information relative to the 

alignment. Since this type of data can be very big and not very efficient to work with, SAM files are 

converted to BAM format, a binary version that supports quick retrieval of alignments [73].  

 At this time the alignment can be visualized using an alignment viewer for instance Integrative 

Genomics Viewer (IGV) [74]. The next step in the variant calling process is to sort the BAM file, so that 

its content gets to an arranged disposition and can be used with other sorted files containing chromosome 

information. This process also impacts greatly on the speed of later computations since the programs can 

focus just on the subset of rows of the regions of interest without the need of reading the whole file.  

1.3.1.4 Quality assessment of alignment data 
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Quality control of alignment data should be performed prior to variant discovery to evaluate key sequencing 

metrics and to verify that sufficient sequencing coverage was achieved. The most used tool for this purpose 

is Picard [75]. 

 Next, duplicated reads are marked or removed [76]. To that end, Picard [75] can also be applied. 

After the DNA is cut into pieces and adapters are ligated to each end of the fragments, PCR amplification 

occurs [32]. The sequencing of two or more duplicates of the same DNA sequence is what is called PCR 

duplicate. They can have errors resulting from the PCR application process and therefore affect allele 

frequencies since the reads supporting that mutation would be present in a higher number than others [77]. 

 In ancient DNA (aDNA) samples it is also necessary to separate between authentic aDNA and 

modern contaminant DNA from microorganisms or present-day humans. After death, tissues are colonized 

by microbial decomposers, which can introduce microbial DNA contamination [78]. In addition, despite 

extensive precautions to avoid contamination during excavation and laboratory sample preparation, many 

ancient samples show contamination from living humans [79]–[82]. Since only minute amounts of DNA 

tend to be preserved, even a small contamination can overwhelm the original DNA. This is particularly 

problematic for contamination derived from modern humans due to their high genetic similarity with 

ancient humans. 

 One way to differentiate between aDNA and present-day contaminants is to evaluate the postmortem 

DNA damage (PMD) signatures from the read alignments. The PMD most commonly associated with 

aDNA is cytosine deamination at the single-stranded ends of aDNA [83], which has been shown to increase 

over time unlike other potential diagnostic patterns [84], [85]. The cytosine deamination pattern consists of 

cytosine to thymine substitutions that increases toward the 5′ end of the sequence reads, resulting in a 

complementary guanine to adenine pattern in the 3′ end caused by enzymatic repair [83], [86]. Several tools 

have been developed to detect these PMD patterns, including mapDamage [87] or DamageProfiler [88]. In 

addition, mapDamage [87] can be used to recalculate the quality scores of bases likely to be affected by 

PMD to mitigate its impact on subsequent analysis. However, while observing this pattern suggests the 

presence of aDNA, it does not discard the presence of modern DNA contamination. Therefore, specific 

tools have been developed to separate ancient DNA from present-day contamination, such as PMDtools 

[89], Schmutzi [90], ContamLD [91] or AuthentiCT [92]. PMDtools is an effective method to isolate aDNA 

using a likelihood-ratio test and has been the tool of choice in multiple studies [93]–[97]. 

 At this point, the files are ready to proceed to most of the variant calling softwares [98], [99]. 

However, some variant callers such as Genome Analysis Toolkit (GATK) need an extra step that helps to 

increase the precision of the results: base quality score recalibration (BQSR) [76], [100], [101], which 

adjusts the base quality scores of sequencing reads applying machine learning to detect and correct any 

systematic bias.  
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1.3.1.5 Variant discovery 

After all the preprocessing steps are done, variant identification can take place. Several approaches have 

been implemented in variant callers to identify variants in sequence data. Many algorithms use a Bayesian 

probabilistic approach such as Freebayes [98], GATK [102], SAMtools [73], Platypus [103] or Dindel 

[104]. Other software uses a Poisson-binomial distribution like LoFreq [105], an approximation based on 

frequencies such as SNVer [106] and mixed methods based on heuristics and statistics like VarScan [107]. 

In recent years, other methods have arisen due to the development and implementation of artificial 

intelligence, DeepVariant [99] is the first variant caller based on the deep convolutional neural network.  

 With many variant callers available, several benchmarking studies have been conducted to assess the 

performance of different variant calling pipelines in detecting accurate variants. Liu et al. compared the 

performance of four variant callers and reported that GATK performed best on real and simulated exome 

data [108]. In Pirooznia M et al., a study based on the read-depth, allele balance and mapping quality, 

GATK outperformed SAMtools on low coverage exome data [109].  Kim BY et al. performed a 

comparative study of four variant callers (GATK, SAMtools, Dindel, and Freebayes) using human WES 

data and reported that GATK had the highest sensitivity for indel identification and that the performance 

of four algorithms was unaffected by indel size [110]. However, further studies have reported varying 

performance depending on indel size [67], [111]–[113]. Pei et al. assessed three germline variant callers 

(GATK, Sentieon and DeepVariant) and reported to have similar performance on NGS data while 

DeepVariant outperformed the others in indel calling with TS data [114]. 

 For germline variant calling, GATK’s HaplotypeCaller is one of the most commonly used callers 

[76], [100]. Sentieon has been designed as an accelerated software for GATK [115] and has become one of 

the most popular commercial variant callers. Sentieon reduced computing resource consumption and 

shortened the computation time without compromising the accuracy of the calling [114]. In addition, 

Sentieon showed the highest SNP recall and the highest indel precision using WGS data in the 

precisionFDA Truth Challenge v1 [116] and the best overall accuracy on identification of variants in 

difficult-to-map regions for PacBio sequencing technology and for a multi-technology approach 

(combination of Illumina, PacBio HIFI and Oxford Nanopore) in the precisionFDA Truth Challenge v2 

[117]. 

 The detection of variants constitutes in itself the main objective of many studies and projects [6], 

[118]–[120]. The standard format of representation of variants is Variant Calling Format (VCF). It is 

composed of a header with information about the columns and the parameters of the detected variants such 

as position, reference and alternative alleles, genotype, etc. [121].  

1.3.1.6 Variant filtering 
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Following the variant calling step, raw VCF should be filtered to reduce the number of bad called variants. 

Most variant callers are tuned to be very sensitive, more tolerant to false positives than false negatives 

[122].  

 The current state-of-the-art filtration methods include hard-filtering [76], Gaussian Mixture Models 

as Variant Quality Score Recalibration (VQSR) from GATK [76], Random Forests [123] or Convolutional 

Neural Networks (CNNs) like DeepVariant [99]. 

 Hard-filtering consists of choosing specific thresholds for one or more parameters and filtering out 

any variants above or below the set threshold. VQSR uses machine learning algorithms to learn from the 

data what are the profiles of variants that are likely to be real in a particular dataset.  It assigns accurate 

variant quality scores to each variant that are then used for filtering. VQSR is more powerful than hard-

filtering, however it requires multiple samples, a large number of variants and well-curated known variant 

resources. Random forest classifiers are trained on polymorphic variants to separate true variants from false 

positive artifacts. DeepVariant is a deep learning approach to filter variants based on CNNs. 

1.3.1.7 Variant annotation 

Variant annotation is the process of assigning functional information to genomic variants. It is a critical 

step as it can have a strong influence on the ultimate conclusions of a study. Improper or incomplete 

annotations can cause both to miss potentially relevant variants and to dilute interesting variants in a pool 

of false positives.  

 There are many different types of information that can be associated with variants, including but not 

limited to (i) genes or transcripts affected by the variants, (ii) the location of the variant (in coding sequence, 

in intronic sequence, in regulatory regions, etc.), (iii) the protein sequence consequence of the variant, (iv) 

the effects on protein structure and function, and (v) matching known variants in databases (dbSNP [124], 

1000 Genomes Project [6], gnomAD [125], ClinVar [126], etc.). 

 The annotation process can be performed using a variety of annotation software and a variety of 

transcript sets (RefSeq transcript set [127], Ensembl transcript set [128], etc.). Both the choice of the 

annotation tool and transcript set can have a significant impact on variant annotation [129]. The most widely 

used annotation tools are ANNOVAR [130], SnpEff [131] and Variant Effect Predictor (VEP) [132]. 

1.3.2 Structural variant discovery 

Structural variant (SV) discovery is the process of identification of both copy number variants and 

chromosomal rearrangements in sequence data. It mainly consists of a multi-step process including quality 

assessment, read alignment, SV discovery, filtering and annotation (Figure 4). While the quality assessment 

and the read alignment are the same used in the identification of short variants, SV discovery, filtering and 
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annotation require different algorithms. The choice of the different combination of algorithms will influence 

the performance of the SV discovery and the final interpretation of the results.  

 

Figure 4. Structural Variant discovery pipeline. The SV discovery pipeline mainly consists of six steps: A) 
Quality Assessment (QA) of sequence data where low quality reads, uncalled bases, adapters and 
contaminant sequences are removed.  B) Read mapping to the reference genome. C) Quality assessment 
(QA) of alignment data and marking or removal of duplicates reads. D) SV discovery in sequence data. E) 
SV filtering to reduce the false positive calls. F) Functional SV annotation. 

1.3.2.1 Variant discovery 

Many tools have been developed to detect structural variants from NGS data. These tools follow one (or a 

combination) of four methods: read-pair (RP), split-read (SR), read-depth (RD) and assembly (AS).  



 

 

 

 

16 

 Read-pair (RP) approach involves the identification of discordance between mapped paired-reads. 

These discordantly mapped paired-reads may be indicators of different types of SV if they are: (i) further 

apart (or closer together) than expected (deletions or insertions), (ii) in wrong orientation (inversion), (iii) 

in incorrect order (tandem duplication) or (iv) mapping in different chromosomes (translocation) [133]. 

BreakDancer [134] was one of the first software using the RP method but it has been also implemented in 

other packages, such as DELLY [135], LUMPY [136], and Prism [137].  

 Split read (SR) method uses paired-end reads where only one read of the pair has a reliable mapping 

[138]. The unmapped reads are a potential source of breakpoints. Mapping of reads that span across a 

breakpoint of a SV provides the precise breakpoints with base accuracy. SR method is powerful for 

identifying small and medium-size variants such as insertions, deletions, inversions and translocations. 

However, SR approach is limited for large size variants or those in repetitive regions [139]. Some tools 

based on this approach are Pindel [140], Gustaf [141] and CREST [142]. 

 Read-depth (RD) approach uses the correlation between depth of coverage and the copy number of 

the region [143]. It can only detect CNV being more effective for large size CNV, which are hard to detect 

with RP and SR methods [144]. In addition, RD can detect the exact number of CNV while RP and SR can 

only report their position. CNVnator [145], CNVkit [146], panelcn.MOPs [147] and DECoN [148] are 

some of the tools based on the RD approach. 

 The assembly (AS) method detects SV by aligning the contigs, assembled with the entire or 

unmapped sequencing reads, to the reference sequence [143]. All forms of SV can be detected by AS, 

however, they are less used in CNV detection due to their high demand on computational resources. The 

AS method is adopted by some tools such as Magnolya [149] and FermiKit [150]. 

 Each of the four methods mentioned above has its own strengths and limitations. For this reason, 

there are a number of tools which have been implemented with more than one method aiming for higher 

specificity and sensitivity.  Some tools based on the combined approach are DELLY [135], LUMPY [136], 

Manta [151] and GRIDSS [152].  

 The selected DNA sequencing technology has an enormous impact on the performance of the 

algorithms. Since WES and TS only cover a small portion of the whole genome, it is far more challenging 

to detect SV, especially if the breakpoints are not in the capture regions. While WGS technologies allow to 

detect all types of SV, WES and TS can only be used to detect CNV.  

 The performance of 69 algorithms for calling germline SVs from WGS data has been evaluated [153]. 

There, GRIDSS has been shown to call SVs for both simulated and real datasets with high precision and 

recall, being the best algorithm for identifying deletions, and the fourth for identifying duplications and 

inversions [153]. It has also shown a short run time and has achieved one of the highest accuracy values for 
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calling breakpoints for all size ranges of deletions and duplications [153]. In another comprehensive 

evaluation of 10 SVs callers, GRIDSS has been found to be one of the two best performing algorithms for 

SVs detection [154]. GRIDSS has been the algorithm of choice to detect germline SVs in the Medical 

Genome Reference Bank (MGRB) cohort [155]. 

 Regarding the evaluation of germline CNVs calling from WES and TS data, DECoN [148] has shown 

a high performance [156], [157]. However, its performance is highly dependent on the selected parameters 

which should be optimized for each specific dataset to maximize sensitivity [157] and should not be used 

directly with data produced differently, i.e. with different sequencing technologies, targeting probes or 

capture protocol [157]. 

 The different SV variant callers store the variants in different formats: VCF as for short variant 

discovery, Browser Extensible Data (BED) format [158] or Browser Extensible Data Paired-End (BEDPE) 

format [159]. BED format is a flexible way to represent genomic features and annotations that supports up 

to 12 columns. BEDPE format is a modified version of BED format that allows storing inter-chromosomal 

features.  

1.3.2.2 Variant filtering 

SV calling algorithms still show a high false positive detection rate, so some filtering steps must be taken. 

There are computational approaches to filter false positive SV such as DeepSVFilter [160], a deep learning 

based tool designed for WGS data.  Furthermore, manual curation can also be performed: SV can be 

validated by manually inspecting the aligned reads around the region using Samplot [161] or by choosing 

thresholds for one or more metrics of a specific algorithm and filter out any SV that do not meet that 

threshold. 

1.3.2.3 Variant annotation 

There are plenty of tools to functionally annotate SV, namely AnnTools [162], DeAnnCNV [163] or 

CNVannotator [164]. Among them is AnnotSV [165] that provides the most complete panel of annotation 

sources to date. It performs gene-based annotation, annotation with features overlapping the CNV, and 

annotation of the breakpoints. In addition, AnnotSV classifies SV according to their pathogenicity into one 

of the 5 classes proposed by the American College of Medical Genetics and Genomics (ACMG)  guidelines 

[166], [167]: benign, likely benign, variant of unknown significance (VUS), likely pathogenic or 

pathogenic.   
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1.3.3 Genomic analysis data platforms 

The large amount of data obtained from massive sequencing, especially if a large number of samples are 

analyzed, leads to two important obstacles in the field of genomics: (i) informatic issue, mainly in data 

storage and management and (ii) scientific issue, particularly in the interpretation and prioritization of data. 

 To solve these obstacles, multiple platforms have been developed to perform genomic analysis, both 

for the identification of variants and for their visualization and interpretation. Genomic platforms improve 

the management of the high amount of data produced by NGS technologies and provide users with 

automation, reproducibility and long-term data storage. The most used platforms to date are Illumina 

Dynamic Read Analysis for GENomics (DRAGEN) Bio-IT Platform [168] and VarSome [169]. 

 DRAGEN Bio-IT Platform [168] provides short and structural variant discovery for both genome 

and exome sequencing data under user’s license. It implements a field-programmable gate array (FPGA) 

hardware technique to dramatically speed up the analysis process, reducing the runtime from hours to 

minutes. Users can create their own pipeline within the platform, which provides a great level of flexibility 

and customization. However, this also complicates the use of the platform as it requires a high level of 

knowledge in genomics and variant calling algorithms, as well as a minimal knowledge of bioinformatics 

to use its command line interface. Furthermore, the DRAGEN platform does not perform full annotation of 

variants and does not have a variant inspector to browse, filter and prioritize the results. It is mainly focused 

on users who want to benefit from its computational resources, variant calling algorithms or its ultra-fast 

analysis and not on users whose main interest is the interpretation of the results. 

 VarSome [169] is a commercial web-based tool that allows short and structural variant discovery, 

annotation and interpretation for genomes, exomes and gene panels. It is intended for users whose main 

interest is the interpretation of results rather than data processing. VarSome offers cloud-based pipelines 

whose parameters are pre-configured and fixed. Its easy-to-use graphical interface allows users to browse 

and filter the variants of interest in a variant table and a genome browser. Even if it is a powerful and 

complete platform, there is always room for improvement. Variant discovery pipelines can be optimized, 

especially for identification of structural variants. Regarding the graphical interface, more features can be 

added to improve variant prioritization, such as user-specific allele frequencies. In addition, the usability 

can be improved to facilitate the user experience in the variant table as there are many subsections and tabs 

that complicates the interpretation. 

 Depending on factors such as the flexibility required during variant calling or how complete the 

annotation needs to be, users should choose the platform that best meets their needs and expectations. 
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1.4 Objectives 

As it is possible to understand from the state of the art of genomics, the data obtained from the massive 

sequencing cannot be of interest without using informatics for their analysis and interpretation. Although 

platforms already exist to call and interpret genomic variants, there is still a lot of work ahead. Regarding 

the identification of variants, there is a wide variety of algorithms and tools available that need to be 

reviewed and optimized to obtain the most appropriate approach  to ensure optimal performance. 

Concerning the interpretation of these variants, powerful platforms are needed that, in an accessible and 

scientifically robust way, help the researchers to extract interesting data from their experiments much faster.  

 Given these considerations, the main objective of this thesis is the development of workflows to 

identify germline variants from NGS data and the implementation of GINO, a platform to interpret the 

identified variants. The development of this platform with a user-friendly graphical interface, would make 

it possible to democratize, or make accessible, bioinformatics so that researchers, hospitals and scientific 

institutions can use genomic technologies to solve their scientific problems and advance knowledge to 

accelerate the development of new strategic scientific advances. 

 There are three specific objectives in this thesis that correspond to chapters 2, 3 and 4 respectively 

and are the following: 

1.  Development of genomics tools for the identification of variants of the human germline. 

2.  Integration of genomic and transcriptomic data to improve variant discovery. 

3.  Development of a genomic data analysis platform to interpret genomic variation. 

A full description of the objectives in each thesis chapter is presented below. 

1.4.1 Genomics tools 

The main objective of this chapter is to develop fast and reliable variant discovery pipelines for identifying, 

or calling, SNPs, indels, CNVs and chromosomal rearrangement events from WGS, WES or TS data. 

 A relatively large number of open-source variant calling tools is now available, most of them are 

specific for one or few different types of alterations and feature different algorithms, filtering strategies and 

different outputs. However, the literature offers limited guidance to efficiently select the tools able to meet 

the standards of good clinical practice. 

 Without hesitation, the critical point of these analyses lies in the statistical power of the identification 

of variants, particularly for CNVs and chromosomal rearrangement events. In addition, the sensitivity and 

duration of the analysis are two of the most important characteristics that are taken into account for this 

type of processing. 
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1.4.2 Data integration 

The integration of omics has an enormous potential that has been exploited in a wide range of research 

areas [170]. Several algorithms have been already developed to detect somatic variants using both WES 

and RNA-seq data [171], [172]. To our knowledge, there is not yet a tool for calling germline variants using 

WES and RNA-seq data in an integrated fashion. 

 Thus, we propose to integrate WES and RNA-seq data for germline short variant discovery. This will 

provide an orthogonal method to validate genomic variants and will allow to identify new variations in 

significantly expressed genes and outside the target regions of the WES analysis.  

1.4.3 Genomics data analysis platform 

The objective of this chapter is the development of a platform (GINO) to visualize and interpret genomic 

variations.  

 The germline variants identified through the workflows developed in the previous chapters will be 

displayed in a unique computer infrastructure with a simple, accessible and robust graphical environment. 

Users will be able to browse the results of all the samples from an experiment, visualize samples one at a 

time and even obtain comparative results between family members.  This will allow them to interpret results 

in a more convenient and easier way and, consequently, to extract more easily conclusions from 

experiments. Moreover, users will avoid data storage issues as all data will be stored in the cloud.  

 A bioinformatic platform with these characteristics could lead to a paradigm shift where researchers 

do not use their time in the production/extraction of the data but in the interpretation of them. In the near 

future and outside the context of this thesis, this platform will continue its development to run the complete 

genomic analysis in the cloud. 
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Chapter 2 | Genomics tools 

This chapter describes the different workflows implemented in this thesis to identify all the variations of 

the human germline. First, short variant discovery pipelines for both modern and ancient DNA samples are 

described. Then, structural variant discovery pipelines for modern DNA samples are detailed, including a 

pipeline for the identification of CNVs and chromosomal rearrangements from WGS data and a pipeline 

for in silico optimization of CNV detection using WES or TS data (isoCNV).  

2.1 Short variant discovery 

After reviewing the best performing algorithms and tools to identify germline SNPs and indels (see section 

1.3.1), three workflows have been implemented: (i) a workflow for the analysis of modern DNA of 

individual samples sequenced using whole genome, whole exome or targeted sequencing strategies, (ii) a 

workflow for modern DNA of parent-child trios and (iii) a workflow for ancient DNA of individual WGS 

samples. 

2.1.1 Modern DNA 

2.1.1.1 Implementation of short variant discovery per sample 

The workflow for modern short variant discovery from individual samples has been developed using Python 

3.7. Although this workflow relies on existing algorithms and tools, as far as we know, they had not yet 

been brought together in an automated pipeline to perform the complete analysis of short variant discovery, 

from sequencing data to analysis-ready SNPs and indels.  

The input to the pipeline is the raw sequence data for the sample of interest in FASTQ format and, 

for whole exome or targeted sequencing data, also their corresponding targeted regions in BED format.  

The output consists of a VCF file and table of variants in TXT format, both containing the SNPs and indels 

identified in the sample. Results are obtained in about 2,5 hours for 100x WES analysis (8 threads) and in 

10 hours for 15x WGS analysis (8 threads). 

2.1.1.1.1 Quality assessment of raw sequence data 

Adapters and low quality bases are trimmed from raw sequence data in FASTQ format using Trimmomatic 

[58] (Figure 5). The minimum base quality thresholds depend on the sequencing platform used, being 25 

for Illumina and 17 for Ion Torrent. After trimming, reads having a size less than 35 bp are excluded from 

further analysis in order to reduce the fraction of spurious alignments.  

To assess the impact of the trimming process on the sequence data, the quality metrics of the reads 

before and after trimming are obtained with FastQC [55] (Figure 5).  
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Figure 5. Quality assessment of raw sequence data in the short variant discovery of modern DNA. 

Trimmomatic [58] is applied to remove adapters and low-quality bases from raw sequence data. FastQC 
[55] is applied before and after trimming to assess the impact of the trimming process.  

2.1.1.1.2 Read alignment  

The high-quality reads resulting from the quality assessment and trimming process are aligned to the 

reference genome using the accelerated version of the BWA-MEM algorithm [69] developed by Sentieon 

[115]. Then, the aligned reads are sorted using the Sentieon sort utility v202010.02 [115] (Figure 6). Both 

GRCh37 (hg19) and GRCh38 (hg38) human genome assemblies can be used as reference genomes. 

 

Figure 6. Read alignment in the short variant discovery of modern DNA. The trimmed sequence data is aligned 
to the reference genome and then sorted using the BWA-MEM algorithm and the Sentieon sort utility 
respectively.  

2.1.1.1.3 Quality assessment of alignment data  

Quality metrics of the alignment data are obtained using CollectHsMetrics and GcBiasMetrics from Picard 

[75] (Figure 7). The minimum threshold criteria for a sample to be considered of good quality are described 

in Table 2.  

 



 

 

 

 

23 

Table 2. Overview of the default quality thresholds for alignment data. 

Field name in Picard [75] Description Tool 
Threshol

d criteria 

ZERO_CVG_TARGETS_PCT 
The fraction of targets that did not reach 

coverage=1 over any base. 
CollectHsMetrics <= 2% 

PCT_EXC_OVERLAP 

The fraction of aligned bases that were 

filtered out because they were the second 

observation from an insert with 

overlapping reads. 

CollectHsMetrics <= 5% 

PCT_EXC_DUPE 

The fraction of aligned bases that were 

filtered out because they were in reads 

marked as duplicates. 

CollectHsMetrics <= 5% 

FOLD_80_BASE_PENALTY 

The fold over-coverage necessary to raise 

80% of bases in "non-zero-cvg" targets to 

the mean coverage level in those targets. 

CollectHsMetrics <= 1.5% 

PCT_TARGET_BASES_10X 
The fraction of all target bases achieving 

10X or greater coverage. 
CollectHsMetrics > 95% 

PCT_TARGET_BASES_20X 
The fraction of all target bases achieving 

20X or greater coverage. 
CollectHsMetrics > 95% 

PCT_TARGET_BASES_30X 
The fraction of all target bases achieving 

30X or greater coverage. 
CollectHsMetrics > 90% 

PCT_TARGET_BASES_100X 
The fraction of all target bases achieving 

100X or greater coverage. 
CollectHsMetrics > 90% 

AT_DROPOUT 
A measure of how undercovered <= 50% 

GC regions are relative to the mean. 
CollectHsMetrics <= 5% 

GC_DROPOUT 
A measure of how undercovered >= 50% 

GC regions are relative to the mean. 
CollectHsMetrics <= 5% 

AT_DROPOUT  

(For Illumina samples) 
Illumina-style AT dropout metric. GcBiasMetrics <= 5% 

GC_DROPOUT  

(For Illumina samples) 
Illumina-style GC dropout metric. GcBiasMetrics <= 5% 

 

Duplicated reads are removed with LocusCollector and Dedup algorithms from Sentieon software 

v202010.02 [115] (Figure 7) which are based on Picard's MarkDuplicates tool [75]. The base quality score 

recalibration (BQSR) is then performed with Sentieon’s QualCal algorithm [115] (Figure 7) using three 

different resources as known sites: (i) the Single Nucleotide Polymorphism database (dbSNP) human build 
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152 [124], (ii) the 1000 Genomes Phase I indel calls [6] and (iii) the Mills and 1000G gold standard indels 

[6], [173]. Known sites are used by the QualCal algorithm to ensure that known locations do not get 

artificially low-quality scores. 

 

Figure 7. Quality assessment of the alignment data in the short variant discovery of modern DNA. Duplicate 
reads are removed with Sentieon LocusCollector and Sentieon Dedup [115]. Then, base quality score 
recalibration (BQSR) is performed with Sentieon QualCal [115]. 

2.1.1.1.4 Variant discovery  

Depending on the DNA sequencing strategy used to obtain the data, genomic variants are called in the 

whole genome (WGS strategies) or only in the target regions provided in the BED file containing the 

capture bait locations (WES and TS strategies). By default, there is a 200 bp upstream and downstream 

padding of the target regions that can be tailored to the user’s needs. In fact, due to the library preparation 

method, regions contiguous to the targets can also be captured and sequenced. 

Short germline variants are called with Haplotyper algorithm from Sentieon v202010.02 [115] 

(Figure 8), which is the accelerated version of HaplotypeCaller algorithm from GATK 4.0 [102]. The 

dbSNP human build 152 [124] is used to label known variants. 

 

Figure 8. Variant calling in the short variant discovery of modern DNA. Germline variant calling is performed 
with Sentieon Haplotyper [115]. 
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2.1.1.1.5 Variant filtering  

Variant filtering is performed using the hard-filtering method [76] (Figure 9). The specific thresholds used 

for a variant to be considered a high-quality variant are described in Table 3.  

Table 3. Overview of the default hard-filtering thresholds for short germline variants. 

Field name in Sentieon [115] Description Threshold 

for SNPs 

Threshold 

for indels 

Depth of coverage (DP) 
The number of filtered reads that support 

each of the reported alleles. 
>= 6 >= 6 

Genotype Quality (GQ) 
The Phred-scaled confidence that the 

genotype assignment is correct. 
>= 20 >= 20 

QualByDepth (QD) 
The variant confidence divided by the 

unfiltered depth of non-hom-ref samples. 
>= 2 >= 2 

FisherStrand (FS) 
The Phred-scaled probability that there is 

strand bias at the site. 
<= 60 <= 200 

StrandOddsRatio (SOR) 
Estimator of strand bias using a test similar 

to the symmetric odds ratio test. 
<= 3 - 

RMSMappingQuality (MQ) 
The root mean square mapping quality over 

all the reads at the site. 
>= 40 - 

MappingQualityRankSumTest 

(MQRankSum) 

The u-based z-approximation from the 

Rank Sum Test for mapping qualities. It 

compares the mapping qualities of the 

reads supporting the reference allele and 

the alternate allele. 

>= -12.5 - 

ReadPosRankSumTest 

(ReadPosRankSum) 

The u-based z-approximation from the 

Rank Sum Test for site position within 

reads. It compares whether the positions of 

the reference and alternate alleles are 

different within the reads. 

>= -8 >= -20 

 

Before short variant annotation begins, the VCF file obtained from variant discovery and hard-

filtering is pre-processed using a two-step strategy that includes decomposition of multi-allelic variants 

using vt decompose v0.5 [174] and left-normalization with BCFtools norm v1.9 [175], [176] (Figure 9). 

VCF is a format for describing locus, since multiple variants can be in the same locus (multi-allelic 

variants), a single line in a VCF file can describe multiple variants. However, our ultimate goal is to build 

a variant-centric display platform, therefore multi-allelic variants need to be decomposed into separate lines 
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so that each line contains one and only one variant. Furthermore, the number of possible combinations to 

represent the same genomic variant is non-unique. Thus, to have a unique way of describing a variant in a 

given reference genome, we perform left-normalization which means shifting the starting position of a 

variant to the left until it is no longer possible to do so. 

 

Figure 9. Variant filtering in the short variant discovery of modern DNA. Low-quality variants are removed by 
hard-filtering. Then, multi-allelic variants are decomposed with vt decompose [174] and left-normalization 
is performed with BCFtools norm [175], [176].  

2.1.1.1.6 Variant annotation  

The short variant annotation is performed with ANNOVAR v2019Oct24 [130] using the RefSeq transcript 

set [127] and 11 additional databases that are detailed in Table 4 (Figure 10). Information on the variant's 

distance to the closest exon-intron junction is also provided by an in-house annotation script in Python 3.7 

and the RefSeq transcript set [127].  

Table 4. Overview of databases for short variant annotation with ANNOVAR. 

Name Version Description Source Availability 

1000 Genomes Project [6] Aug 2015 
1000 Genomes Project allele 

frequency database 
IGSR Public 

ClinVar [126] 

Updated 

monthly on 

the 15th. 

NCBI clinically significant 

variant database 
NCBI Public 

Database for 

nonsynonymous SNPs' 

functional predictions 

(dbNSFP) [177] 

3.5 
Functional predictions and 

conservation scores database 
dbNSFP Public 

Database for Single 

Nucleotide Variants 

within splicing consensus 

regions (dbscSNV) [178] 

1.1 
dbNSFP splice site variant 

database 
dbNSFP Public 

dbSNP [124] Build 152 NCBI SNP variant database NCBI Public 
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Exome Aggregation 

Consortium (ExAC) [123] 
0.3 Allele frequency database 

Broad 

Institute 
Public 

Exome Sequencing Project 

6500 (ESP6500) [179] 
6500 

Exome Sequencing Project 

(ESP) allele frequency database 
NHLBI Public 

Genome Aggregation 

Database (gnomAD) 

exomes [125] 

2.1.1 
Allele frequency data in exome 

collection  

Broad 

Institute 
Public 

Genome Aggregation 

Database (gnomAD) 

genomes [125] 

2.1.1 
Allele frequency data in genome 

collection  

Broad 

Institute 
Public 

genomicSuperDups [180] 
14-Oct-

2014 
Segmental duplication Database UCSC Public 

Online Mendelian 

Inheritance in Man 

(OMIM) database [181], 

[182] 

Updated 

monthly on 

the 15th. 

Database of human genes and 

genetic disorders 
OMIM 

License 

required 

RefSeq [127] 96 NCBI transcript database NCBI Public 

 

 To further improve and facilitate the evaluation and prioritization of variants, TAPES v0.1.1 [183] is 

applied to assess the probability of pathogenicity of a variant and classify it into five categories following 

the ACMG guidelines [166], [167]: benign, likely benign, variant of unknown significance (VUS), likely 

pathogenic or pathogenic (Figure 10). 

 

Figure 10. Variant annotation in the short variant discovery of modern DNA. The annotation of short variants 
is performed with ANNOVAR [130] and the classification into the pathogenic categories outlined by the 
ACMG is performed with TAPES [183].  
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2.1.1.2 Implementation of short variant discovery per parent-child trios 

The short variant discovery of parent-child trios has been implemented using Python 3.7. The inputs to the 

pipeline are the raw sequence data for each family member, the family relationships in a PED file and, if 

applicable, the capture bait locations in BED format. The final SNPs and indels of the parent-child trio are 

output in a VCF file and table of variants in TXT format. 

2.1.1.2.1 Individual calling per family member 

The individual mapping and variant calling of each family member is performed following the strategy 

explained in Section 2.1.1.1, from the quality assessment of raw sequence data (Section 2.1.1.1.1) to the 

variant discovery (Section 2.1.1.1.4). The only modification to the workflow is to perform variant discovery 

with Sentieon Haplotyper [115] in GVCF mode instead of VCF mode. The main difference between a VCF 

and a GVCF is that the VCF only reports variations while the GVCF reports records for all sites, whether 

there is a genomic variation or not. 

2.1.1.2.2 Joint calling of parent-child trios 

Individual GVCF files from each family member are merged into a single multi-sample GVCF file with 

CombineGVCFs tool from GATK 4.0 [102] (Figure 11). Next, joint genotyping is performed in the multi-

sample GVCF with the GATK 4.0 GenotypeGVCFs tool [102] and the most likely genotype combination 

for the parent-child trio is computed using the CalculateGenotypePosteriors tool from GATK 4.0 [102] 

(Figure 11). 

 

Figure 11. Joint calling of parent-child trios. The individual GVCFs containing the short germline variants of 
each family member are combined into a single GVCF file with GATK CombineGVCFs [102]. Then, joint 
genotyping is performed with GATK GenotypeGVCFs and posterior probabilities of genotypes are 
calculated with GATK CalculateGenotypePosteriors [102].  
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Variant filtering is performed as described in Section 2.1.1.1.5 but it should be noted that hard-

filtering of a variant is only applied if all family members do not meet the minimum high-quality criteria 

(Table 3). Variant annotation follows the same workflow as for individual samples (Section 2.1.1.1.6). 

2.1.2 Ancient DNA 

A pipeline for the discovery of germline variants from ancient paired-end WGS data was implemented. Its 

input is the raw sequence data in FASTQ format and the outputs are a VCF file and a TXT file containing 

the identified variants. 

 This pipeline was applied to analyze DNA extracted from a human mandible dated between 16980-

16510 calibrated years before the present. Germline variants (SNPs and indels) were reported without 

further interpretation due to the low coverage of the sample (0.28 x) and the degradation of ancient DNA. 

This analysis is part of an article published in the journal Current Biology where the doctoral student is a 

one of the co-authors [184]. 

2.1.2.1 Implementation 

2.1.2.1.1 Quality assessment of raw sequence data 

Adapters, low-quality bases (quality score < 15) and ambiguous nucleotides (Ns) at sequence ends are 

trimmed from raw paired-end reads and the overlapping sequences are merged into a single sequence by 

calling a consensus using AdapterRemoval tool v2.3.1 [63] (Figure 12). Partially overlapping paired-end 

reads are also merged into a single sequence if the overlap spanned at least 11 nucleotides, and a consensus 

is called on the overlapping stretch, selecting the most probable nucleotide in the case of mismatches in the 

overlapping region. Paired-end reads with less than 11 bases overlap are excluded from further analysis.  

Only the collapsed sequences are further analyzed in an effort to exclude modern contamination 

under the assumption that such contamination would exhibit lower levels of fragmentation [81]. There are 

two different types of collapsed sequences: collapsed paired-end reads and collapsed truncated paired-end 

reads. Collapsed paired-end reads correspond to the sequences merged by AdapterRemoval [63] into a 

single sequence and are expected to represent the original template molecule. Collapsed truncated paired-

end reads are like collapsed reads but were trimmed from either end of the collapsed sequence. 

Sequences having a size less than 30 bp are excluded from further analysis to reduce the fraction 

of spurious alignments. The quality metrics of the reads before and after adapter trimming and sequence 

collapsing are obtained with FastQC [55] (Figure 12).  
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Figure 12. Quality assessment of paired-end data in the short variant discovery of ancient DNA. Adapter 
trimming and sequence collapsing is performed using AdapterRemoval [63]. FastQC [55] is applied on raw 
and trimmed reads to assess the impact of the trimming process. 

2.1.2.1.2 Read alignment 

Reads are aligned to the mitochondrial and nuclear genome separately. This is motivated by the presence 

of mitochondrial insertions in the nuclear genome (NUMTs). The presence of these sequences can hinder 

any attempts to call a consensus sequence for the mitochondrial data as they can result in: (i) both authentic 

and contaminant DNA sequences mapping the nuclear genome instead of the mitochondrial reference 

sequence or (ii) in a loss of sequence information since non-unique hits are generally discarded in 

downstream analyses.   

Collapsed sequences are mapped in single end mode (as they represent the complete insert) to the 

nuclear human genome (GRCh37 assembly) and the mitochondrial human genome (GRCh38 assembly) 

using BWA aln algorithm v0.7.12 [69] with parameters that deactivate seeding and BWA samse v0.7.12 

[69] (Figure 13). By default, BWA assumes that few differences will be observed between the query 

sequence and the reference within the first 32 bp. However, ancient DNA sequences often show an excess 

of nucleotide misincorporations at read termini due to the postmortem cytosine deamination. For this 

reason, we deactivate seeding as the mismatch expectations of a seeding approach could be too conservative 

and result in the loss of endogenous DNA sequences. 
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Figure 13. Read alignment in the short variant discovery of ancient DNA. Sequences are aligned to the 
reference genome using BWA aln [69] with seeding disabled and BWA samse [69].  

2.1.2.1.3 Quality assessment of alignment data 

The aligned reads are filtered based on SAM flags with SAMtools view v1.3 [73] to remove unmapped 

(flag 4) and QC-failed (flag 512) single reads. Then, the remaining reads are converted from SAM to BAM 

format with SAMtools view v1.3 [73] and sorted with SAMtools sort v1.3 [73] (Figure 14).   

Different procedures are used to remove duplicates depending on the type of sequence to be 

analyzed: one approach for collapsed paired-end reads and another for collapsed truncated paired-end reads. 

Collapsed reads are filtered for duplicates by treating them as paired-end reads with the rmdup_collapsed 

tool from the PALEOMIX pipeline [185] (Figure 14) as both alignment termini can be considered specific 

features of an original template molecule. Collapsed truncated reads cannot be considered paired-end reads 

as they were trimmed. Thus, deduplication on collapsed truncated reads is performed in single-end mode 

using MarkDuplicates tool from Picard software [75] (Figure 14). 

After removal of duplicates, sequences having a size higher than 60 bp are excluded from further 

analysis to exclude modern contamination. 

Then, three main steps are followed to separate between endogenous ancient DNA and modern 

contaminant DNA: (i) the evaluation of the presence of ancient DNA, (ii) removal of modern contamination 

and (iii) microbial profiling to rule out the remaining presence of modern microbial contamination (Figure 

14). 

First, to determine the presence of ancient DNA in the sample of interest, patterns of nucleotide 

misincorporation and DNA fragmentation are plotted with mapDamage2.0 [87] looking for a postmortem 

DNA damage (PMD) pattern. The observation of such a pattern suggests the presence of ancient DNA but 

does not prove that modern contamination is absent. Modern day contamination is removed using 

PMDtools v0.60 [89] and then the microbial profile of the sample is evaluated with GAIA software v2.02 

[186] to discard that microbial contamination remains. Base quality scores for misincorporations likely due 

to ancient DNA damage are recalculated with mapDamage2.0 [87] (Figure 14) to mitigate the impact of 

postmortem damage on downstream analyses. 
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Finally, local realignment around indels is performed with Sentieon Realigner v201911.01 [115] 

(Figure 14) both to achieve a consensus indel suitable for downstream analysis and to minimize spurious 

mismatches resulting from misalignments. 

 

Figure 14. Quality assessment of alignment data in the short variant discovery of ancient DNA. Unmapped and 
QC-failed single reads are filtered with SAMtools view [73]. Then, SAM to BAM conversion is performed 
with SAMtools view [73] and reads are sorted with SAMtools sort [176]. Duplicates are removed using 
two approaches: rmdup_collapsed [185] for collapsed reads and MarkDuplicates [75] for collapsed 
truncated reads. The presence of ancient DNA is determined by the patterns of nucleotide misincorporation 
and DNA fragmentation obtained with mapDamage2.0 [87]. Modern contamination is removed with 
PMDtools [89] and the microbial profiling is obtained with GAIA [186]. Base Quality Score Recalibration 
(BQSR) is performed with mapDamage2.0 [87] and the realignment of indels with Sentieon Realigner 
[115]. 

2.1.2.1.4 Genetic sex estimation 

Genetic sex is calculated using the yjasc_3752_ry_compute script from Skoglund et al. [187]. It is based 

on the estimation of the fraction of reads mapping to Y chromosome out of all reads mapping to either X 

or Y chromosome (RY). A sample is assigned as female if its confidence interval (CI) upper bound for RY 

is lower than 0.016 and as male if its RY CI lower bound is higher than 0.075.  Only reads with a mapping 

quality greater than 30 are counted for genetic sex estimation. 

2.1.2.1.5 Variant discovery and annotation 

Short variant discovery and annotation for ancient DNA follows the same strategy as for modern DNA 

(Sections 2.1.1.1.4 and 2.1.1.1.6). Germline variants are called with Sentieon Haplotyper v201911.01 [115] 
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(Figure 15) and annotated with ANNOVAR software v2019Oct24 [130] (Figure 15) using 12 different 

databases (Table 4). 

 
Figure 15. Variant discovery and annotation in the short variant discovery of ancient DNA. Short germline 
variants are called using Sentieon Haplotyper [115]. The ANNOVAR software [130] is applied for the 
annotation of variants. 

2.1.2.2 Results 

A total of 720,589,037 raw sequence reads are produced by whole genome sequencing of the ancient 

mandibular sample (Table 5). After the trimming and filtering procedures, 35,874,081 reads are mapped to 

the nuclear DNA (nDNA) and 19,780 to the mitochondrial DNA (mtDNA) (Table 5). Then, once 

duplication removal has been performed, 17,622,340 mapped reads in the nDNA and 18,243 in the mtDNA 

are retained (Table 5). 

Table 5. Overview of total reads before and after trimming, mapping, and deduplication. 

DNA 

type 
Raw reads 

Trimmed 

and filtered 

reads 

Mapped reads Duplicate filtered reads 

Total 
Collapsed 

reads 

Collapsed 

truncated 

reads 

Total 
Collapsed 

reads 

Collapsed 

truncated 

reads 

nDNA 
720,589,037 445,550,176 

35,874,081 35,826,862 47,219 17,622,340 17,575,275 47,065 

mtDNA 19,780 19,756 24 18,243 24 18,219 

 

Regarding the evaluation of the presence of ancient DNA, the typical pattern for aDNA is observed 

in the nuclear genome (nDNA). Figure 16 provides base composition profiles within the ten first and ten 

last fragment positions, as well as in their respective flanking 10 bp regions in the reference genome. As 

can be observed, the base composition of the genomic positions immediately preceding the aDNA 

fragments starts is not random and is enriched in purines (A and G) as is observed in the top four plots 

(Figure 16). The bottom two plots of Figure 16 also show the expected pattern for aDNA, an increase in C 

to T and G to A mismatches when approaching the 5’ and 3’ termini, respectively. However, such patterns 
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are not observed in the mitochondrial genome (Figure 17) indicating a lack of ancient DNA and therefore 

excluded from further analysis. 

 

Figure 16. Fragmentation and misincorporation patterns in nDNA. The four upper mini-plots show the base 
frequency outside and inside the read (the open grey box corresponds to the read). The bottom plots are the 
positions' specific substitutions from the 5’ (left) and the 3’ end (right). The following color codes are used 
in the bottom plots: Red: C to T substitutions. Blue: G to A substitutions. Grey: All other substitutions. 
Orange: Soft-clipped bases. Green: Deletions relative to the reference. Purple: Insertions relative to the 
reference. 
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Figure 17. Fragmentation and misincorporation patterns in mtDNA. The four upper mini-plots show the base 
frequency outside and inside the read (the open grey box corresponds to the read). The bottom plots are the 
positions' specific substitutions from the 5’ (left) and the 3’ end (right). The following color codes are used 
in the bottom plots: Red: C to T substitutions. Blue: G to A substitutions. Grey: All other substitutions. 
Orange: Soft-clipped bases. Green: Deletions relative to the reference. Purple: Insertions relative to the 
reference. 

After removing modern-day contamination, 3,398,029 endogenous ancient reads are obtained in 

the nDNA, of which only 413 are assigned to the bacteria domain. These low numbers ruled out microbial 

contamination in ancient DNA. Finally, genetic sex estimation and identification of variants is conducted 

in the endogenous nDNA. The sample is assigned as male since the CI lower bound for RY is 0.0826 (higher 

than 0.075) and a total of 1,774 germline variants are identified, of which there are 1742 SNPs and 32 

indels.  

2.1.2.3 Conclusion 

This pipeline allows to identify endogenous ancient DNA, remove its modern contamination, assign the 

gender of the sample (male), and identify short germline variants. Given the low coverage of the sample 
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(0.28 x), the variants are reported without further interpretation, however, this pipeline could be applied to 

perform variant calling of ancient samples with sufficient coverage. The obtained results provided elements 

to the collaborator group to obtain new insights into the migration of ancient populations [184]. Specifically, 

the diffusion in Southern Europe of a genetic component linked to Balkan/Anatolian refugia that was 

previously believed to have spread during later major warming shifts was backdated by about 3000 years 

[184].  

2.2 Structural variant discovery 

In the context of this thesis, two pipelines have been implemented for germline structural variant discovery 

in modern DNA: (i) a pipeline for identification of copy number variants and chromosomal rearrangements 

using WGS data and (ii) a pipeline for in silico optimization of copy number variant detection from WES 

or TS data (isoCNV). Both pipelines require alignment data in BAM format as input, which is obtained 

following the same strategy applied for the discovery of modern short variants and described in Section 

2.1.1.1: (i) quality assessment of raw sequence data (Section 2.1.1.1.1), (ii) alignment to the reference 

genome (Section 2.1.1.1.2) and (iii) quality assessment of alignment data (Section 2.1.1.1.3). 

2.2.1 Whole Genome Sequencing  

The structural variant discovery pipeline for WGS data has been implemented using Python 3.7. The only 

input required is a list with the full path to the BAM file(s) to be analyzed. The final duplications, deletions, 

insertions and inversions are output in a BED file and in a variant table in TXT format, while the final 

interchromosomal translocation (CTX) events are output in a BEDPE file.  

 Structural variant discovery from the alignment data is performed individually for each sample using 

GRIDSS [152] with default parameters (Figure 18). After review of the best performing tools for germline 

structural variant detection using WGS data (Section 1.3.2.1), GRIDSS [152] was the tool of choice because 

it is based on a combined approach and because of its high performance shown in several studies [153], 

[154]. 

 The output of GRIDSS is a VCF file where SVs are described with breakend notations. The 

breakends are the junctions that define structural variants in the reference genome. In breakend notations, 

each SV has two positions in the reference genome except for inversions that have four records. To improve 

the interpretation of variants, we use SV types (insertion, deletion, duplication, etc.), also called simple 

events, instead of breakend notation. This notation conversion is performed using the 

simpleEvent_annotation R script provided by the GRIDSS software [152] (Figure 18). 

  To reduce the number of false positives, low-confidence calls are removed by following the default 

GRIDSS criteria (Figure 18). Thus, SVs with a low-quality score (retrieved from GRIDSS) or lacking any 
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supporting assemblies are filtered out. In addition, to eliminate overlap with the short variant discovery 

pipeline, duplications and deletions events are filtered to be at least 50 bp in length whereas insertions 

should be at least 30 bp. Although inversions are not called by the short variant discovery workflow, they 

are also filtered to meet a minimum size of 50bp. Then, the VCF file is split into two files: a BED file 

containing duplications, deletions, insertions and inversion and a BEDPE file containing interchromosomal 

events. (Figure 18). The BED file contains five columns corresponding to chromosome, start, end, SV type 

and sample name. The BEDPE file contains eight columns: first chromosome, start and end, second 

chromosome, start and end, SV type and sample name.    

 Finally, duplications, deletions, insertions and inversions are annotated with the AnnotSV tool v2.4 

[165] while interchromosomal (CTX) events are retrieved without annotation since they are not supported 

by AnnotSV (Figure 18). AnnotSV provides annotations for 12 databases detailed in Table 6 and also 

classifies the SVs according to their pathogenicity following the ACMG guidelines [166], [167]. 

 

Figure 18. Structural variant discovery pipeline for WGS data. Structural variant calling is performed using 
GRIDSS [152]. The breakend notation in the VCF file is converted to SV types with the GRIDSS 
simpleEvent_annotation script. Then, low-confidence calls are removed, as well as duplications, deletions 
and inversions less than 50 bp in size and insertions less than 30bp. The VCF file is divided into a BED file 
containing duplications, deletions, insertions and inversion and a BEDPE file containing interchromosomal 
events (CTXs). Finally, the BED file is annotated using AnnotSV [165]. 

Table 6. Overview of databases for structural variant annotation with AnnotSV. 

Name Version Description Source Availability 

1000 Genomes Project [6] 2017 
1000 Genomes Project allele 

frequency database 
IGSR Public 

Clinical Genome 

Resource (ClinGen) [188] 

13-Jul-

2020 

Haploinsufficiency and 

triplosensitivity scores 
NCBI Public 

Database of Genomic 

Variants (DGV) [189] 
May 2016 Gold Standard Variants TCAG Public 

dbVar [190] 
29-Jun-

2020 
NCBI structural variant database NCBI Public 
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Deciphering 

Developmental Disorders 

(DDD) Study [191] 

13-Jul-

2020 

Human genome variants and 

phenotypes. 

EMBL-

EBI 
Public 

Exome Aggregation 

Consortium (ExAC) [123] 
0.3 SV frequency database 

Broad 

Institute 
Public 

Frequency annotations 

[192] 

19-Dec-

2019 
DECIPHER frequency database 

Sanger 

Institute 
Public 

Genome Aggregation 

Database (gnomAD) SV 

[193] 

2.1.1 SV frequency data 
Broad 

Institute 
Public 

Haploinsufficiency 

Predictions [194] 
3 

DECIPHER haploinsufficiency 

database 

Sanger 

Institute 
Public 

Ira M. Hall’s lab SV 

frequency [195] 

31-Dec-

2018 
SV frequency data 

Ira M. 

Hall 
Public 

Online Mendelian 

Inheritance in Man 

(OMIM) database [181], 

[182] 

Updated 

monthly on 

the 15th. 

Database of human genes and 

genetic disorders 
OMIM 

License 

required 

RefSeq [127] 96 NCBI transcript database NCBI Public 
 

2.2.2 Whole Exome Sequencing and Targeted Sequencing 

A pipeline for in silico optimization of copy number variant detection from targeted or exome sequencing 

data (isoCNV) has been implemented. As mentioned in the state-of-the-art of structural variant discovery 

(Section 1.3.2.1), when using WES or TS data, only CNVs can be properly identified. This is due to the 

fact that the sensitivity of detection of other types of SVs is much lower, since only a subset of 

rearrangements with breakpoints in or near the capture regions can be detected and that the targeted capture 

method introduces inefficiencies [44]–[46]. 

After the bibliographic review of the CNV detection algorithms for WES or TS data (Section 

1.3.2.1), DECoN [148] has been the tool of choice for this type of analysis. To maximize its sensitivity, the 

parameters of DECoN should be optimized for each specific dataset [157]. This parameter optimization 

process can be performed using an optimizer from the CNVbenchmarkeR framework [157] but requires a 

CNV validation set. The CNV validation set is usually generated using either multiplex ligation-dependent 

probe amplification (MLPA) or array comparative genomic hybridization (aCGH), which are gold standard 

methods [196] but are also time-consuming and expensive. For this reason, we have developed the isoCNV 



 

 

 

 

39 

pipeline, which optimizes the parameters of the DECoN algorithm using only NGS data. The parameter 

optimization process is performed using an in silico CNV validated dataset obtained from the overlapping 

calls of three tools: DECoN v1.0.2 with default parameters [148], CNVkit v0.9.6  [146] and panelcn.MOPS 

v1.12.0 [147]. 

The pipeline is a Python 3.7 software package comprising a command-line program, isoCNV.py. 

The inputs to the program are a batch of BAM files obtained under the same experimental conditions and 

the regions of interest (ROI) corresponding to the capture bait locations in BED format. The main outputs 

of the pipeline are a BED file with the unannotated CNVs and a variant table in TXT format that contains 

the annotated CNVs. isoCNV (in silico optimization of Copy Number Variant detection from targeted or 

exome sequencing data) is publicly available at https://gitlab.com/sequentiateampublic/isocnv. 

The performance of isoCNV pipeline has been evaluated in both TS and WES real datasets and it 

has shown to increase the sensitivity of DECoN, which is especially critical when this tool is used as a 

screening step in a diagnostic strategy. An article on this work has been submitted to the BMC 

Bioinformatics Journal with the doctoral student as first author, and is currently under review prior to 

acceptance for publication. 

2.2.2.1 Implementation 

There are 5 main steps in the isoCNV pipeline: individual CNV calling using three different algorithms, 

creation of an in silico validation dataset, parameter optimization, CNV calling with optimized parameters 

and CNV annotation (Figure 19). 
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Figure 19. CNV discovery pipeline for WES and TS data. CNV calling is performed using three different tools: 
DECoN with default parameters [148], CNVkit [146] and panelcn.MOPS [147]. The CNV validation set is 
obtained from the overlapping calls of the three tools. Then, DECoN algorithm is executed using up to 22 
different values for each parameter. The results obtained with each combination of parameters are compared 
with the validated set to obtain optimized parameters. Finally, CNV calling is performed using DECoN 
with optimized parameters and the final CNVs are annotated using AnnotSV [165].  
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2.2.2.1.1 Datasets 

A targeted sequencing dataset and a whole-exome sequencing dataset have been selected to evaluate 

isoCNV performance: ICR96 exon CNV validation series [197] and NimbleGen set [198], respectively. 

Validated CNV information is available for both datasets, ICR96 has been validated by MLPA and 

NimbleGen by SNP microarray [199]. The FASTQ files for the ICR96 exon CNV validation series can be 

accessed through European-Genome phenome Archive (EGA) under accession number 

EGAS00001002428. The NimbleGen dataset can be downloaded from the Sequence Read Archive (SRA) 

[200] under accession number SRP010920. 

2.2.2.1.2 Data pre-processing 

The raw sequence data is pre-processed to obtain the alignment data following the same approach applied 

for the discovery of modern short variants (Section 2.1.1.1). First, trimming the sequence data with 

Trimmomatic [58] (Section 2.1.1.1.1). Secondly, alignment to the reference genome and sorting with 

Sentieon v202010.02 [115] (Section 2.1.1.1.2) and finally the evaluation of the quality of the alignment 

data (Section 2.1.1.1.3). 

2.2.2.1.3 Individual CNV calling 

Preliminary identification of CNVs is performed using three different algorithms: DECoN v1.0.2 [148] 

with default parameters, CNVkit v0.9.6 [146] and panelcn.MOPS v1.12.0 [147]. All three are based on the 

Read-depth (RD) approach (Section 1.3.2.1), so the gender of the samples is a critical factor in identifying 

copy number variants on sex chromosomes. The user can provide the gender of the samples as input or it 

will be inferred automatically using the CNVkit gender tool [146]. 

 DECoN algorithm is applied using default parameters but with some modifications. DECoN creates 

a reference set for each sample of interest consisting only of those samples which are well correlated [148]. 

Our first implementation has been to add a list of related samples as an optional input to automatically 

exclude them from the reference set of their relatives, otherwise the common CNVs in the family would 

not be identified. Furthermore, DECoN has been modified to accept only a maximum of 10 samples in the 

reference set since it has been shown that its optimal size is between 5 and 10 samples [201]. By default, 

CNV calling is performed separately between male and female samples to allow detection of CNVs on the 

sex chromosomes. However, if there are less than 5 female or male samples in the batch, all samples are 

analyzed together. Optionally, only sex chromosomes can be analyzed separately between male and female 

samples, using the “batch2” option of isoCNV.  Additionally, two optional filters have been added to the 

pipeline so that the user can easily select whether or not to apply them: filter by regions of interest (ROIs) 

or by sample. ROIs are removed if they are below the default minimum median coverage threshold (100) 

for any sample (measured across all ROI in the target) or region (measured across all samples). CNVs are 
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filtered out from samples that do not meet either the minimum coverage threshold (100) or the minimum 

correlation threshold (0.98). Samples which do not have a high correlation with other samples in the set are 

likely to have suboptimal detection across the entire target. 

 The default parameters also apply for calling CNVs with the CNVkit algorithm, except for the 

filtering process where the “cn” method is applied instead of “ci”. Here, the reference set consists of all 

female samples in the batch with a standard deviation (SD) between -2 and 2. However, if the sample of 

interest is female, it will be excluded from the reference. Two exceptions should be taken into account in 

the creation of the reference set: (i) if there are less than 5 female samples, then the males are used as 

reference and (ii) if there are less than 5 females and less than 5 males, all samples are used as reference so 

calls on the Y chromosome cannot be trusted. Additionally, the CNVkit thresholds for defining copy 

numbers 0 and 1 have been modified to be more restrictive: for CN0 the threshold range (log₂ value up to) 

has changed from log₂ ≦ -1.1 to log₂ ≦ -2 and for CN1 from -1.1<log₂ ≦ -0.4 to -2<log₂ ≦ -0.4. Finally, 

the precise copy number values obtained by CNVkit (0, 1, 2, 3, etc.) are converted to deletion (DEL) or 

duplication (DUP) states taking into account the gender of the sample of interest and the gender of the 

references.  

 The identification of CNVs with panelcn.MOPS is also carried out using the default parameters of 

the tool. As with the DECoN algorithm, the analysis is performed separately between male and female 

samples, unless there are less than 5 females or males that all samples are analyzed together. Here, ROIs 

are removed if they are marked as "low quality" by panelcn.MOPS: their median read count across all 

samples does not meet the minimum default threshold (30) or if their read count shows a high variation 

across all samples as marked by the default behaviour of the algorithm. 

2.2.2.1.4 In silico validation dataset 

The output of each algorithm (DECoN with default parameters, CNVkit and panelcn.MOPS) is normalized 

to a single format, a tab-delimited BED file. This BED file has the same structure as the BED file for SV 

identification with WGS data (Section 2.2.1), contains five columns corresponding to chromosome, start, 

end, CNV type (DEL or DUP) and sample name. Then, using BEDTools utilities v2.29.2 [159] and 

pybedtools Python library v0.8.1 [202], the overlapping CNVs between call sets from the three algorithms 

are selected if meet two criteria (i) at least 60% of overlap with one of the call sets from the algorithms and 

(ii) a minimum size equivalent to the mean size of the target ROIs. If one of the tools reports no CNV in 

any sample, only the output of the other two algorithms is used to create the in silico validation set. 

2.2.2.1.5 Parameter optimization 
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The parameter optimization process is implemented using the feature optimizer from the 

CNVbenchmarkeR framework [157]. This framework runs the DECoN algorithm against a validated 

dataset using up to 22 different values for each parameter. Then, it compares the results obtained from each 

combination of parameters with the validated copy number states to obtain the optimized parameters for 

the dataset. 

 The validated copy number states correspond to those obtained in silico from the overlapped calls 

between DECoN, CNVkit and panelcn.MOPS. However, validated information about normal copy number 

states is also necessary. To obtain this data, we select as validated regions those where a CNV has been 

found (and has been validated in silico) in any of the samples, and then, for each validated region, if 

validated CNV has not been found, we assign it a normal copy number state. 

 The DECoN parameters subject to optimization are the following: (i) the minimum correlation 

threshold between the sample of interest and any other sample to be considered well correlated (0.98), (ii) 

the minimum median coverage for any sample or ROI to be considered well-covered (100) and (iii) the 

transition probability between normal copy number state and either deletion or duplication state in the 

hidden Markov model (0.01). 

2.2.2.1.6 CNV calling with optimized parameters 

Final copy number variants are identified using our modified version of the DECoN algorithm (Section 

2.2.2.1.3) with the optimized parameters obtained in the previous step instead of the default ones. Results 

are normalized in BED format with the following columns: chromosome, start, end, CNV type (DEL or 

DUP), sample name, reads ratio and the precise copy number value. Reads ratios are calculated by DECoN 

algorithm and copy number values are calculated based on reads ratio (Table 7). The calculation of the 

precise copy number values is based on the CNVkit threshold method [146] but with some modifications: 

log2 values are converted to absolute scale and then, adjusted empirically (Table 7). 

Table 7. The thresholds map to integer copy number in CNVkit and in isoCNV. The log₂ ratio thresholds 
assigned to copy number values in CNVkit [146] are converted to absolute scale and next, empirically 
adjusted to obtain the reads ratio thresholds of isoCNV. 

Copy Number 

Value 

Threshold Range 

CNVkit (log₂) CNVkit (Absolute scale) isoCNV (Reads Ratio) 

0 log₂ ≦ -1.1 Absolute scale ≦ 0.4665 Reads Ratio ≦ 0.1 

1 -1.1< log₂ ≦ -0.4 0.4665< Absolute scale ≦ 0.7579 0.1 < Reads Ratio ≦ 0.8 

2 -0.4< log₂ ≦ 0.3 0.7579< Absolute scale ≦ 1.2311 0.8 < Reads Ratio ≦ 1.2 

3 0.3< log₂ ≦ 0.7 1.2311< Absolute scale ≦ 1.6245 1.2 < Reads Ratio ≦ 1.8 

4 - - 1.8 < Reads Ratio ≦ 2.2 
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Reads Ratio * 2 - - 2.2 < Reads Ratio 

2.2.2.1.7 CNV annotation 

To facilitate prioritization of copy number variants of interest, CNVs are annotated using the AnnotSV tool 

[165] and the same 12 databases described in Table 6 for SV discovery from WGS data (Section 2.2.1). 

2.2.2.1.8 Benchmark evaluation metrics 

The performance of isoCNV is evaluated per region of interest (ROIs). The ROIs correspond to the regions 

in the target BED file of the dataset and are treated as independent entities. In addition, the evaluation takes 

into account the normal copy number states (no calls), since in a real diagnostic scenario, all no-call regions 

must be confirmed using an orthogonal method. 

If the tool matches the result of the validation information it is classified as true positive (TP) or 

true negative (TN). If the tool identifies a CNV not present in the validation information, we consider it a 

false positive (FP) and if the tool misses a validated CNV it is a false negative (FN).  

2.2.2.2 Results 

2.2.2.2.1 In silico validation dataset  

The total copy number variants per ROI identified by each algorithm (DECoN [148], CNVkit [146] and 

panelcn.MOPS [147]) are shown in a Venn diagram for each dataset (Figure 20). In both datasets, the total 

number of CNVs per ROI varies by algorithm, panelcn.MOPS identified the highest number of CNVs while 

DECoN identified the lowest number (Figure 20). The overlapping CNVs per ROI between the three call 

sets were 205 in the TS dataset (ICR96) and 693 in the WES dataset (NimbleGen) (Figure 20). From these, 

the validation dataset was composed from the CNVs that overlapped at least 60% with one of the call sets 

from the algorithms and that had a minimum size equivalent to the mean size of the target ROIs. Hence, 72 

validated CNVs were obtained in ICR96 and 388 in NimbleGen. Regions with normal copy number state 

were also included in the validation set. 
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Figure 20. Number of CNVs per ROI detected by three callers. A. Venn Diagram of the CNVs in ICR96 
dataset. B. Venn Diagram of the CNVs in NimbleGen dataset. 

The copy number states in the validation set were compared with the real copy number information 

obtained by MLPA in ICR96 and by SNP microarray in NimbleGen set (Table 8). The in silico validation 

set of both datasets showed a specificity of 1 since no FPs were identified, while its sensitivity was quite 

low as a high number of FNs was found (Table 8). These results were expected, since the filters applied to 

define a copy number as validated are quite restrictive. 

Table 8. Benchmark results for the individual callings and the in silico validation dataset.  

Dataset Method TP TN FP FN Total Sensitivity Specificity PPV NPV F-score

 
ICR96 

DECoN 247 27330 60 49 27686 0.8345 0.9978 0.8046 0.9982 0.8192 

CNVkit 205 27225 91 165 27686 0.5541 0.9967 0.6827 0.9940 0.6156 

panelcn.MOPS 278 27061 18 329 27686 0.4580 0.9993 0.9392 0.9880 0.6157 

In silico 
validation 

58 27390 0 238 27686 0.1959 1 1 0.9914 0.3277 

 
NimbleGen 

DECoN 220 7236 43 1138 8637 0.1620 0.9941 0.8365 0.8641 0.2714 

CNVkit 777 7274 582 4 8637 0.9949 0.9259 0.5717 0.9995 0.7262 

panelcn.MOPS 736 6891 619 391 8637 0.6531 0.9176 0.5432 0.9463 0.5931 

In silico 
validation 

30 7278 0 1329 8637 0.0220 1 1 0.8456 0.0432 

2.2.2.2.2 Benchmark evaluation  
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The CNV detection using DECoN with optimized parameters allowed the identification of 597 CNVs in 

ICR96 and 125,601 in NimbleGen. The parameter optimization process led to an increase in sensitivity and 

F-score for both datasets, but especially for NimbleGen. In the NimbleGen set, there was an increase in 

sensitivity from 16.2% to 84.5% and in F-score from 27.1% to 82.7% with a slight decrease in specificity 

from 99.4% to 96.3% (Figure 21 and Table 9). In both datasets, the Negative Predictive Value (NPV) was 

higher than the Positive Predictive Value (PPV) before and after optimization process (Figure 21 and Table 

9) as expected in unbalanced datasets with a much larger number of negative elements (no calls) than 

positive ones. 

 
Figure 21. Benchmark results with default and optimized parameters. Shows sensitivity, specificity, PPV, 
NPV and F-score when executing DECoN with the optimized parameters in comparison to the default 
parameters. 

Table 9. Benchmark results with default and optimized parameters. 

Dataset Parameters TP TN FP FN Total Sensitivity Specificity PPV NPV F-
score 

ICR96 
Default 247 27330 60 49 27686 0.8345 0.9978 0.8046 0.9982 0.8192 

Optimized 279 27354 36 17 27686 0.9426 0.9987 0.8857 0.9994 0.9133 

NimbleGen 
Default 220 7236 43 1138 8637 0.1620 0.9941 0.8365 0.8641 0.2714 

Optimized 1147 7009 271 210 8637 0.8452 0.9628 0.8089 0.9709 0.8267 
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To evaluate if parameter optimization of DECoN allows to identify new CNVs only detected by 

the other two algorithms (CNVkit and panelcn.MOPS) when default parameters are used, the unique CNVs 

of CNVkit (identified by CNVkit but not by DECoN with default parameters) were obtained and compared 

to the final CNVs (identified by DECoN with optimized parameters). Within the final CNVs, it was found 

a total of 86 CNVs in ICR96 and 2,727 CNVs in NimbleGen that were identified by CNVkit but not initially 

by DECoN with default parameters. The same approach was applied to the unique CNVs of panelcn.MOPS 

and 88 CNVs were found in ICR96 and 68,569 CNVs in NimbleGen within the final CNVs that were not 

identified initially by DECoN with default parameters. 

In addition, the performance of isoCNV was evaluated depending on the number of samples 

analyzed. This relates to the reference set as samples with a better correlation or a higher coverage may be 

included and could improve the performance of DECoN. The ICR96 set reached almost 100% specificity 

and NPV independently of the number of samples with both default and optimized parameters (Figure 22). 

An improvement in PPV and F-score can be observed in the ICR96 set when at least 20 samples were 

analyzed together and then, from 24 samples, both PPV and F-score remained fairly constant, being always 

higher when executing DECoN with optimized parameters (Figure 22). The sensitivity in the ICR96 set 

also remained quite constant and above 80% when at least 6 samples were analyzed with optimized 

parameters, whereas there was a decrease in the sensitivity when more than 86 samples were analyzed with 

default parameters (Figure 22). The NimbleGen set showed a fairly constant sensitivity, specificity, PPV, 

NPV and F-score with optimized parameters (Figure 23). However, sensitivity, F-score and NPV decreased 

considerably when analyzing more than 20 samples using default parameters (Figure 23). 

 

Figure 22. Benchmark results with default and optimized parameters when analyzing different numbers of 

samples in ICR96. Shows sensitivity, specificity, PPV, NPV and F-score when executing DECoN for 
different numbers of samples (from 5 to 96) with the optimized parameters in comparison to the default 
parameters. 
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Figure 23. Benchmark results with default and optimized parameters when analyzing different numbers of 

samples in NimbleGen. Shows sensitivity, specificity, PPV, NPV and F-score when executing DECoN with 
the optimized parameters in comparison to the default parameters for different numbers of samples adding 
5 each time. 

To assess the effect of the number of target regions being analyzed, the isoCNV pipeline was tested 

by identifying CNVs by chromosome and by chromosome subset rather than analyzing all genomics regions 

in the target BED file at once, which is the default approach of isoCNV.  

When applying isoCNV per chromosome, there was a decrease in isoCNV performance as well as 

DECoN performance. Regarding isoCNV performance, the parameter optimization process had no effect 

on the NimbleGen set, whose metrics remained the same before and after optimization (Table 10). In 

ICR96, optimization of parameters by chromosome also had practically no effect; there was only a small 

negative effect as two fewer TPs were identified after optimization (from 194 TPs to 192) (Table 10). 

Concerning the effect of the analysis by chromosome in DECoN, if we compare these results with those 

obtained when all genomics regions were analyzed at the same time (Table 9), we obtained worse results 

in the two datasets both before and after the optimization process (Table 10).  There was a decrease in F-

score from 91.3% when optimizing all genomics regions at the same time (Table 9) to 73.4% when 

optimizing by chromosome (Table 10) in ICR96 and from 82.7% (Table 9)  to 76.7% (Table 10) in 

NimbleGen. 

To apply isoCNV per chromosome subset, the total chromosomes found in the target BED file were 

split into four subsets. Here, parameter optimization by chromosome subset had a negative effect on both 

datasets. In ICR96, there was a decrease in sensitivity from 87.2% to 65.6% and in F-score from 81.4% to 

72.4% (Table 10). In NimbleGen, there was a decrease in sensitivity from 73.0% to 66.3% and in F-score 
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from 80.1% to 78.6% (Table 10). These results were worse in all cases (before and after optimization) and 

in all datasets (ICR96 and NimbleGen) than when all genomics regions were analyzed at once. In ICR96 

there was a decrease in F-score from 91.3% when parameter optimization was performed using all regions 

at the same time (Table 9) to 72.4% when parameter optimization was performed by chromosome subset 

and in NimbleGen (Table 10), from 82.7% (Table 9) to 78.6% (Table 10). 

Table 10. Benchmark results for the isoCNV pipeline by chromosome and by chromosome subset. 

Method Dataset Parameters TP TN FP FN Total Sensitivity Specificity PPV NPV F-
score 

By chr 

ICR96 
Default 194 27355 35 102 27686 0.6554 0.9987 0.8472 0.9963 0.7390

Optimized 192 27355 35 104 27686 0.6486 0.9987 0.8458 0.9962 0.7342

NimbleGen 
Default 897 7196 82 462 8637 0.6600 0.9887 0.9162 0.9396 0.7673

Optimized 897 7196 82 462 8637 0.6600 0.9887 0.9162 0.9396 0.7673

By chr 
subset 

ICR96 
Default 258 27310 80 38 27686 0.8716 0.9971 0.7633 0.9986 0.8139

Optimized 194 27344 46 102 27686 0.6554 0.9983 0.8083 0.9963 0.7239

NimbleGen 
Default 991  7153   127 366 8637 0.7303 0.9826 0.8864 0.9512 0.8008

Optimized 901 7246   32 458 8637 0.6630 0.9956 0.9657 0.9406 0.7862

 

Although the analysis by chromosome and by chromosome subset yielded suboptimal results, a 

new comparison was performed between the results obtained when all genomics regions were analyzed at 

once and when the analysis was performed by chromosome, but now taking into account only the sex 

chromosomes (Table 11). This comparison was conducted because the developers of ExomeDepth [201], 

the tool on which DECoN is based, recommend processing sex chromosomes separately rather than 

processing all chromosomes together but separating male and female samples.  

When evaluating results on sex chromosomes in NimbleGen set, the optimization process 

negatively affected the performance of the algorithm regardless of the approach followed (all together or 

per chromosome). There was a decrease in F-score from 70.4% to 47.8% when all regions were analyzed 

together and a decrease in F-score from 58.5% to 50.7% with the analysis by chromosome (Table 11). 

Before parameter optimization, all metrics (sensitivity, specificity, PPV, NPV and F-score) were higher 

when all genomics regions were analyzed together than by chromosome (Table 11). However, after the 

parameter optimization process, all metrics except specificity were higher with the analysis by chromosome 

(Table 11). ICR96 was not evaluated as there were no validated CNVs available on the sex chromosomes.  

In addition to the ICR96 dataset containing no validated CNVs on sex chromosomes, the 

NimbleGen dataset only contains 24. Given this low number of validated CNVs available on sex 
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chromosomes, the results obtained in this evaluation are not conclusive. Thus, the default approach for 

isoCNV was based on analyzing all chromosomes together but separating between male and female samples 

(“batch” option). In any case, an optional approach was added to the pipeline to process sex chromosomes 

separately (“batch2” option). 

Table 11. Benchmark results for sex chromosomes in NimbleGen using “batch” and “batch2” option of 
isoCNV. 

Method Parameters TP TN FP FN Total Sensitivity Specificity PPV NPV F-score

All  
Default 19 140 11 5 175 0.7917 0.9272 0.6333 0.9655 0.7037

Optimized 16 124 27 8 175 0.6667 0.8212 0.3721 0.9394 0.4776

By chr 
Default 19 129 21 6 175 0.7600 0.8600 0.4750 0.9556 0.5846

Optimized 19 119 31 6 175 0.7600 0.7933 0.3800 0.9520 0.5067

2.2.2.3 Conclusion 

We have implemented isoCNV, an easy-to-use pipeline to optimize DECoN algorithm using only NGS 

data. This pipeline can reduce the number of assays required per patient to reach a diagnosis, since 

orthogonal methods, such as MLPA or aCGH, are not required. We evaluated the performance of our tool 

and showed that it increases the sensitivity of DECoN in both TS and WES real datasets.
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Chapter 3 | Data integration 

Next-generation sequencing has greatly facilitated the identification of genomic variation. Among all NGS 

strategies, WGS is the best option to identify any types of genomic variants in the entire genome. WES 

covers only exonic regions within a genome and introduces biases due to hybridization and a non-uniform 

read depth distribution [44], [46]. However, WES is the preferred method for both research and clinical use 

[5], [42], [43] due to its lower price and faster data analysis. Here, we propose to complement WES with 

RNA sequencing (RNA-seq) to enhance the discovery of short variants.  

 RNA sequencing is the process of determining the order of nucleotides from a given RNA chain. It 

usually involves converting the RNA to be sequenced into cDNA fragments which are then analyzed by 

NGS or it can be sequenced directly without previous conversion (Nanopore technology). RNA-seq allows 

us to investigate and discover the gene expression patterns encoded within our RNA. Hence, RNA-seq 

would be able to detect variants within the expressed regions of the genome [203], [204].  

 The application of RNA-seq provides some advantages in variant discovery over WES. RNA-seq can 

identify new variations in highly expressed genes. Such highly expressed genes have a greater coverage in 

RNA-seq than in WES and, therefore, a greater statistical confidence to detect genomic variants. In addition, 

RNA-seq also allows us to identify variations in genes outside the target regions of the WES analysis and 

it can be more cost effective than WES as it bypasses the need for exome enrichment steps. However, the 

application of RNA-seq is not without its shortcomings and limitations. The transcriptome is specific to 

both tissue and cell type, therefore a transcriptome derived from a tissue type will not represent the entire 

exome. Furthermore, two significant considerations need to be accounted for: the inability of RNA-seq to 

detect variants in non-transcribed or low-expressed genes and its increased susceptibility to false positives 

calls due to errors during RNA to cDNA conversion, mapping mismatches, alternative splicing or gene 

fusion [203], [205]. 

 Discovery of genomic variants using both RNA-seq and WES data increases the target regions where 

variants can be called and provides an orthogonal method to validate variations by complementing WES 

analysis with RNA-seq. In heterozygous variants, RNA-seq data can also allow us to identify the 

preferential expression of a parental allele, also called allele-specific expression (ASE). ASE can lead to 

heterozygous sites in WES-based calling being called homozygous in RNA-seq calling and lead to 

substantial error in monoallelic genes. In addition, RNA-seq data can be used to detect variants arising from 

RNA editing. RNA editing occurs after DNA transcription and synthesis by the RNA polymerase enzyme, 

so these changes cannot be detected by WES data. Identification of RNA editing events is important as they 

have been implicated in several disorders including cancer [206]–[208] and neurodegenerative diseases 

[209]. Moreover, the availability of RNA-seq data allows for additional analyses such as measuring 
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transcript expression levels or detecting novel fusion genes. These further analyses will allow for a more 

complete picture of the organisms of interest, supporting a better understanding of biological systems and, 

eventually, the development of successful precision medicine. All of this makes it more cost effective to 

use RNA-seq and WES data than just WGS data. 

3.1 RNA-seq and WES integrated analysis for short variant discovery 

Currently, there are tools to identify short variants using only RNA-seq data such as RVBoost [210], SNPiR 

[203], eSNV-Detect [211] or GATK Haplotypecaller [76]. Furthermore, there are tools to identify short 

somatic variants using both RNA-seq and WES data like RADIA [171] or VaDiR [172]. However, to our 

knowledge, there is no tool to identify short germline variants using both RNA-seq and WES data. For this 

reason, we have developed a Python 3.7 software package comprising a command-line program, 

varRED.py, to identify short germline variation from WES and RNA-seq data. varRED (variant discovery 

from RNA and Exome Data) is available at https://gitlab.com/sequentiateampublic/varred. 

3.1.1 Implementation 

varRED is a modular program that allows for running the complete analysis in batch or step-by-step. The 

inputs to the program are the RAW sequence data in FASTQ format from the WES and RNA-seq analysis 

and the capture bait locations used in the WES analysis. The pipeline consists of 3 main steps: WES calling, 

RNA-seq calling and joint variant calling. Joint variant calling includes genotyping, filtering and 

classification of short germline variations (Figure 24). 
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Figure 24. Overview of varRED workflow. The varRED workflow mainly consists of three steps: A) WES 
mapping and calling in GVCF mode.  B) RNA-seq mapping and calling in GVCF mode. C) Joint calling 
genotyping of WES and RNA-seq data, filtering and classification of variants. 

3.1.1.1 Datasets 

Four samples were selected to evaluate the performance of varRED: NA12878 [or SAME123392], 

HG00171 [or SAME124961], HG00378 [or SAME124745] and NA20509 [or SAME124354]. All of them 

have publicly available WES data, RNA-seq data and high-quality variant information to validate true 

positive (TP) variant calls.  

 NA12878 sample is derived from the GM12878 cell line from the NIGMS Human Genetic Cell 

Repository at the Coriell Institute for Medical Research. WES and RNA-seq data of NA12878 were 

obtained from the Sequence Read Archive (SRA) [200] under accession numbers SRR2106342 and 

SRX082565, respectively. Truth data of NA12878 was generated by the Genome in a Bottle (GiaB) 

consortium, led by the National Institute of Standards (NIST) [212]. 
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 The remaining samples (HG00171, HG00378 and NA20509) are part of the 1000 Genomes Project 

[6] where their WES, RNA-seq and truth data were obtained. There are several RNA-seq datasets available 

from the 1000 Genomes Project, we selected the data generated by the Geuvadis consortium [213] to 

analyze the same type of data in the three samples, as it was the only one in common between them. 

Regarding the truth data, the phase III integrated variant set was used as high-quality variant information. 

3.1.1.2 WES calling 

The procedure is the same as for modern short variant discovery with only WES data (Section 2.1.1.1), but 

now variant discovery is performed in GVCF mode instead of VCF mode.  

 WES reads are trimmed using Trimmomatic v0.39 [58] and aligned to the human genome assembly 

using the BWA-MEM algorithm [69] implemented in the Sentieon utilities v202010.02 [115]. The Sentieon 

sort utility [115] is then used to sort and index the resulting alignment BAM files. Then, duplicate reads are 

removed and base quality score recalibration (BQSR) is performed using the Sentieon utilities v202010.02 

[115]. Finally, variant calling is performed using Sentieon Haplotyper v202010.02 [115] in GVCF mode.  

3.1.1.3 RNA-seq calling 

RNA-seq calling is similar to WES calling and follows the GATK Best Practices workflow [76]. First, low 

quality portions of the RNA-seq reads are removed with BBDuk v35.85 [62]. Only reads with a minimum 

length of 35 bp and minimum base quality score of 25 are retained. The resulting reads are aligned to the 

reference genome using STAR v 2.7.3a [214] in two-pass mode to improve alignments around novel splice 

junctions [215]. Read groups are added to the sorted alignment BAM file using Picard's 

AddOrReplaceReadGroups [75]. Then, duplicate reads are removed, reads are split at splicing junctions 

into exon segments and base quality score recalibration (BQSR) is performed using the Sentieon utilities 

v202010.02 [115]. The split step is not performed in DNA calling and consists of splitting the RNA reads 

into exon segments by removing Ns and it also consists of hard-clipping any sequences overhanging into 

the intron regions and reassigning the mapping qualities from STAR. Finally, identification of short 

genomic variation is performed using Sentieon Haplotyper v202010.02 [115] in GVCF mode and with the 

“trim_soft_clip” option activated to exclude the soft clipped bases from the variant calling. 

3.1.1.4 Joint variant calling of WES and RNA-seq data 

3.1.1.4.1 Genotyping 

Both WES and RNA-seq GVCF are collected and passed together to the joint genotyping tool, GVCFtyper 

from Sentieon v202010.02 [115] where the minimum phred-scaled confidence thresholds for calling and 

for emitting variants are adjusted to 20.   
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3.1.1.4.2 Filtering of genomic variants 

Short variants are filtered out if there is a depth of coverage (DP) less than or equal to 6 reads and a strand 

bias (SB) greater than or equal to 2 in both the WES and RNA-seq data. It should be noted that the SB filter 

is only applied if the read counts for both the major allele and the minor allele are greater than or equal to 

10. Sentieon automatically calculates the DP information during the variant calling whereas SB is 

calculated following the formula described previously in a mitochondrial heteroplasmy study [216]: 
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where a, c represent the forward and reverse reads counts of the major allele, and b, d represent the forward 

and reverse reads counts for the minor allele. 

 RNA-based variants require more filters than WES-based variants due to its greater susceptibility to 

false positives. Each RNA-seq calling tool uses different filtering strategies, but they are all based on similar 

criteria (Table 12).  

Table 12. Overview of the filtering information used by different RNA-based calling tools. 

Filters RADIA [171] PMC7708150 [203] SNPiR [203] varRED 

Repetitive regions X X X X

RNA editing sites  X X 

Exon boundaries  X X

Homologous regions  X X X X 

Not in the accessible 
genome 

X   X 

Strand Bias X X

Quality Control X X X X

Unique mapping X X X

Extra filters X X X 

 

 Before RNA-based filtering can begin, genomic variations must be annotated. Annotation of variants 

is performed using ANNOVAR software [130] and different databases: (i) RepeatMasker track from the 

UCSC Genome Browser  [158] to identify repetitive regions, (ii) the genomicsuperDups database [180] to 

obtain homologous regions and (iii) the ENCODE Blacklist [217] to annotate variants that are not in the 

accessible genome. Finally, the distance of each variant to its closest exon boundary is calculated using 
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BEDTools utilities v2.29.2 [159], pybedtools Python library v0.8.1 [202] and the Reference sequence 

(RefSeq) Gene database [127]. 

 Finally, RNA-based variants are removed if they are found in homologous regions, interspersed 

repeats or low-complexity sequences, in the inaccessible genome, or within 5bp upstream of an exon start 

or downstream of an exon end site. 

3.1.1.4.3 Classification of genomic variants 

In order to facilitate the prioritization of variants, we have implemented a classification in six groups: 

Strong-evidence, DNA-only, RNA-only, ASE, RNA-editing and RNA-rescue variants (Figure 25). RNA-

only variants do not meet the minimal threshold for DNA but meet the RNA thresholds (DP, SB and RNA-

based filters) and have an RNA genotype quality (GQ) greater than 20. DNA-only variants meet the DNA 

thresholds (DP and SB) and have a DNA GQ greater than 20 but do not meet the RNA thresholds (DP and 

SB) and/or have an RNA GQ lower than or equal to 20. Strong-evidence variants meet the DNA and RNA 

thresholds, have a DNA GQ and an RNA GQ greater than 20 and the same genotype in DNA and RNA 

data. ASE variants meet the DNA and RNA thresholds, have a DNA GQ and an RNA GQ greater than 20 

and are heterozygous for DNA but homozygous for RNA. RNA-editing variants meet the DNA and RNA 

thresholds, have a DNA GQ and an RNA GQ greater than 20 and are present in RNA but absent in DNA. 

RNA-rescue variants meet the DNA and RNA thresholds, have an RNA GQ greater than 50 but a DNA 

GQ lower than or equal to 20 (Figure 25). 

 

Figure 25. Overview of the varRED classification workflow. 
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3.1.1.5 Benchmark 

The evaluation of performance of varRED was conducted according to the Global Alliance for Genomics 

and Health (GA4GH) best practices [218] using hap.py framework [219] with the vcfeval comparison tool 

[220] and the truth variant information publicly available for each sample.  

 We considered for evaluation two types of variant matches: (i) genotype (GT) match when the 

unphased genotype and alleles of a variant match in the truth and query set, and (ii) allele (AL) match when 

the truth and query set contain the same allele regardless of genotype.  This evaluation was applied to the 

allele and genotype information obtained from WES data, to the allele and genotype information from the 

RNA-seq data, and to the allele information obtained by jointly considering both WES and RNA-seq alleles.  

 It should be taken into account that not all variants were considered for all evaluations. The variants 

to consider changed depending on the type of match (AL or GT match) and the source of information 

(DNA, RNA, or both). To evaluate the genotype information obtained from WES data, the RNA-only, 

RNA-rescue, RNA-editing and ASE variants were removed as they did not meet the minimum DNA GQ 

criteria (RNA-only and RNA-rescue) or they had a different allele expression (RNA-editing and ASE). To 

assess the genotype information obtained from RNA-seq data, the DNA-only variants were removed as 

they had an RNA GQ lower than or equal to 20 and the RNA-editing and ASE variants were also removed 

as they had a different allele expression. To evaluate the allele information, RNA-editing variants were 

removed from the analysis in all cases (DNA, RNA and both).  

 Furthermore, we perform an evaluation by type of variant according to the varRED classification: 

Strong-evidence, DNA-only, RNA-only, ASE, RNA-editing and RNA-rescue variants. 

3.1.1.5.1 Comparison of varRED with the short variant discovery from WES data 

To assess the impact of adding RNA-seq data for variant calling, we have applied the short variant discovery 

pipeline described in Section 2.1.1.1 to the WES data for each sample and evaluated their results using 

using hap.py framework [219] with the vcfeval comparison tool [220] as for varRED.  

3.1.2 Results 

3.1.2.1 Comparison of varRED with the short variant discovery from WES data 

There was an increase in the total number of identified variants when varRED was applied instead of 

performing short variant discovery from WES data (WES calling) (Table 13). There are two types of variant 

matches considered for evaluation (GT match and AL match) and each includes different variants. For this 

reason, we evaluated the number of variants obtained from varRED depending on the type of match and 

compared it with the total variants obtained from WES calling.  
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Table 13. Overview of the total variants identified with varRED and with the short variant discovery from WES 
data. 

 
Sample 

 
Analysis 

Variants 

Total SNPs Indels 

NA12878
varRED 273660 259503 14157 

WES calling 259692 224840 34852 

HG00171
varRED 142760 122761 19999 

WES calling 130068 113298 16770 

HG00378
varRED 150370 129610 20760 

WES calling 133523 116342 17181 

NA20509
varRED 124512 110355 14157 

WES calling 97676 89030 8646 

 

 Evaluation of the genotype information extracted from DNA data included two types of variants: 

strong-evidence and DNA-only variants. These two types of variants were enough to exceed the total 

number of variants obtained with WES calling in all samples except NA20509 (Table 14). For evaluation 

of genotype information, RNA data includes strong-evidence, RNA-only and RNA-rescue variants. The 

number of variants detected for genotype matching from RNA data was much lower than those obtained 

from DNA data with varRED (Table 14).  

 Regarding the assessment of AL matches, all variant types except RNA-editing variants were 

considered. Here, the number of variants detected with varRED from DNA data was higher than with WES 

calling and even higher when the allelic information of both DNA and RNA was considered (Table 14).  
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Table 14. Overview of the number of variants identified with varRED and with the short variant discovery from 
WES data.   

 
Sample 

 
Analysis 

 
Data type 

 
Match 

Variants 

Total SNPs Indels 

 
 
 
 
 

NA12878 

 
varRED 

DNA 
GT 449974 224987 224987

AL 266317 229854 36463

RNA 
GT 47288 42359 4929

AL 68881 60859 8022

DNA+RNA AL 287333 248646 38687

WES calling DNA - 259692 224840 34852

 
HG00171 

varRED 

DNA 
GT 131453 113844 17609

AL 134158 116030 18128

RNA 
GT 13295 11425 1870

AL 19922 17403 2519

DNA+RNA AL 140257 120943 19314

WES calling DNA - 130068 113298 16770

 
 

HG00378 

 
varRED 

DNA 
GT 134219 116216 18003

AL 138657 120023 18634

RNA 
GT 19761 17454 2307

AL 27187 24154 3033

DNA+RNA AL 147339 127262 20077

WES calling DNA - 133523 116342 17181

 
 

NA20509 

varRED 

 
DNA 

GT 96406 87806 8600

AL 101784 92342 9442

 
RNA 

GT 32702 28109 4593

AL 42550 37076 5474

DNA+RNA AL 119228 106337 12891

WES calling DNA - 97676 89030 8646
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 Evaluation of recall, precision and F-score in the identification of variants was performed with 

respect to the genotype information (GT match) and the allele information (AL match). There was an 

improvement in SNP genotyping from DNA and RNA data in most samples (HG00171, HG00378 and 

NA20509), but a decrease in the precision and F-score when genotyping indels from DNA (NA12878, 

HG00171 and HG00378) and RNA (NA12878, HG00171, HG00378 and NA20509) (Figure 26). 

Concerning the genotyping of SNPs from DNA data, the recall was the same with varRED or WES calling 

for all samples. Precision was the same in NA12878 (Figure 26 – A) but higher in varRED than in WES 

calling for HG00171, HG00378 and NA20509 (Figure 26 – B, C, D). F-score was higher in varRED than 

in WES calling for HG00171 (F-scorevarRED = 93.6% and F-scoreWES-calling = 93.5%), HG00378 (F-scorevarRED 

= 93.3% and F-scoreWES-calling = 93.1%) and HG00378 (F-scorevarRED = 93% and F-scoreWES-calling = 92.7%) 

(Figure 26 – B, C, D) but lower for NA12878 (F-scorevarRED = 98.0% and F-scoreWES-calling = 98.1% ) (Figure 

26 – A). Regarding the genotype of indels from DNA data, recall, precision and F-score were higher with 

varRED than with WES calling for NA20509 (Figure 26 – D), while for the rest of samples, they were 

lower (with the exception of the recall of NA12878 which is the same) (Figure 26). Concerning the 

genotyping of SNPs from RNA data, there was an improvement in recall, precision and F-score for 

HG00171, HG00378 and NA20509 with the exception of the recall for NA20509 which was the same 

(Figure 26 – B, C, D). However, all metrics for NA12878 were lower with varRED than with WES calling 

(Figure 26 – A). Regarding the genotype of indels from RNA data, there was a decrease in precision and 

F-score for all samples (Figure 26) and an increase in recall for NA12878, HG00171 and HG00378 (Figure 

26 – A, B, C), but there was also a decrease in recall for NA20509 (Figure 26 – D). 
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Figure 26. Benchmark results of the genotype match with varRED and with WES calling for different samples. 

Recall, precision and F-score in the identification of the genotype of SNPs and indels with varRED and 
WES calling for NA12878 (A), HG00171 (B), HG00378 (C) and NA20509 (D). 
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 In general, there was a decrease in precision and F-score of allele identification of SNPs and indels 

when using DNA and RNA data with varRED instead of performing WES calling (Figure 27). With regard 

to the alleles of SNPs and indels of DNA data, precision and F-score decreased in all the samples (Figure 

27). Concerning the alleles obtained from RNA data, their precision and F-score in identification of SNPs 

and indels decreased in all samples, but increased for the identification of SNPs in HG00378 and NA20509 

(Figure 27). Regarding the alleles obtained jointly considering DNA and RNA data, there was an 

improvement in the recall, precision and F-score to identify SNPs in NA20509 (Figure 27 – D), however, 

there was a decrease in the precision and F-score in the identification of SNPs in the rest of samples (Figure 

27 – A, B, C). In the detection of alleles in indels there was a decrease in the precision and F-score in all 

samples when considering jointly DNA and RNA data (Figure 27).  

 To sum up, there was an improvement in genotyping, but a decrease in allele match metrics when 

varRED is used instead of WES calling.  However, these changes of the metrics are minor, so we can 

conclude that we were able to increase the number of detected variants without a great effect on 

performance. 
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Figure 27. Benchmark results of the allele match with varRED and with WES calling for different samples. 

Recall, precision and F-score in the identification of the alleles of SNPs and indels with varRED and WES 
calling for NA12878 (A), HG00171 (B), HG00378 (C) and NA20509 (D). 
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3.1.2.2 Benchmark results by variant type 

3.1.2.2.1 Strong evidence variants 

Strong-evidence variants have a reliable DNA and RNA quality and the same genotype. Thus, the same 

alleles and genotypes will be evaluated regardless of the type of data and therefore we will obtain the same 

metrics.  

 We observed a high recall, precision and F-score in genotyping and identification of alleles for 

Strong-evidence SNPs and indels (Figure 28). As expected, these metrics were the highest of all the variant 

types (Supplementary Table A.1).  Strong-evidence SNPs were identified with a recall, precision and F-

score greater than 98% in all samples (Figure 28). Strong-evidence indels did not achieve as high metrics 

as SNPs but they did achieve the highest metrics of all types of variants (Supplementary Table A.1). 
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Figure 28. Benchmark results of Strong-evidence variants for different samples. Recall, precision and F-score 
in the identification of Strong-evidence variants with varRED for NA12878 (A), HG00171 (B), HG00378 
(C) and NA20509 (D) considering genotype (GT) and allele (AL) match. 
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3.1.2.2.2 DNA-only variants 

DNA-only variants have an RNA coverage lower than or equal to 6 and/or a strand bias in RNA greater 

than or equal to 2 and/or an RNA GQ lower than or equal to 20. For this reason, the alleles and genotype 

of the RNA data cannot be trusted, and therefore RNA-editing and ASE cannot be detected. 

 Regarding the genotyping from RNA data, there was a low recall, precision and F-score as it was 

expected (Figure 29). Furthermore, we observed a reliable recall, precision and F-score in genotyping SNPs 

and indels from DNA data but lower than the one observed in Strong-evidence variants (Supplementary 

Table A.1). DNA-only SNPs were genotyped with a F-score greater than 92% in all samples (Figure 29). 

When comparing the metrics in genotyping of DNA-only variants with the final GT metrics of varRED 

from DNA data, which includes Strong-evidence and DNA-only variants, we observed lower recall, 

precision and F-score in DNA-only variants compared to the final GT metrics (Supplementary Table A.1).  

 There was reliable recall, precision and F-score in identifying alleles of SNPs and indels from DNA 

data, RNA data and jointly using both (DNA+RNA) (Figure 29). Alleles of DNA-only SNPs were identified 

with a F-score greater than 91% in all the cases (Figure 29).  We observed a decrease in recall, precision 

and F-score in identifying DNA-only SNPs alleles relative to total SNPs alleles, which includes all variant 

types except RNA-editing variants, when using DNA data, RNA data and both (Supplementary Table A.1). 

However, in general, there was a higher precision and F-score in the allele identification of DNA-only 

indels than of total indels in DNA, RNA and with the joint use of both (Supplementary Table A.1). 
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Figure 29. Benchmark results of DNA-only variants for different samples. Recall, precision and F-score in the 
identification of DNA-only variants with varRED for NA12878 (A), HG00171 (B), HG00378 (C) and 
NA20509 (D) considering genotype (GT) and allele (AL) match. 
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3.1.2.2.3 RNA-only variants 

RNA-only variants have a DNA coverage lower than or equal to 6, therefore the alleles and genotype cannot 

be trusted from DNA data and ASE and RNA-editing cannot be identified. The presence of ASE variants 

can negatively affect the metrics when evaluating genotypes in RNA data since the truth dataset was derived 

from DNA data where the expression of the variants is unknown. The presence of RNA editing variants 

can also negatively affect the metrics when evaluating both genotype and alleles in RNA data since RNA 

editing occurs after DNA transcription and synthesis. 

 As expected, we observed a low recall, precision and F-score in genotyping from DNA data (Figure 

30). Regarding genotyping of RNA data, there was good recall, precision and F-score for SNPs and indels 

but lower than that observed in Strong-evidence variants (Supplementary Table A.1). Genotyping of RNA-

only SNPs from RNA data had a F-score greater than 94% in all samples (Figure 30). Moreover, we 

observed lower recall, precision and F-score in genotyping of RNA-only variants relative to total variants 

in RNA data, including Strong-evidence, RNA-only and RNA-rescue variants (Supplementary Table A.1).  

 Reliable metrics were observed in allele identification of RNA-only variants from RNA data and 

with the joint use of DNA and RNA data (Figure 30). There were also good metrics when using DNA data, 

but as expected, they were lower (Figure 30). In all the cases (DNA, RNA or DNA+RNA), alleles of RNA-

only SNPs were identified with a F-score greater than 89% (Figure 30). We observed higher precision and 

F-score in detecting alleles for RNA-only SNPs than for total SNPs, including all variant types except RNA-

editing variants, when using RNA data and RNA with DNA data, but a decrease when using DNA data 

(Supplementary Table A.1). However, there was a decrease in precision and F-score for allele identification 

in RNA-only in relation to the total indels in all cases (DNA, RNA or DNA+RNA) (Supplementary Table 

A.1). 

 

 

 

 

 



 

 

 

 

69 

 

Figure 30. Benchmark results of RNA-only variants for different samples. Recall, precision and F-score in the 
identification of RNA-only variants with varRED for NA12878 (A), HG00171 (B), HG00378 (C) and 
NA20509 (D) considering genotype (GT) and allele (AL) match. 
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3.1.2.2.4 ASE variants 

ASE variants are heterozygous for DNA but homozygous for RNA because only one of the alleles has been 

expressed. For this reason, recall, precision and F-score in the AL match were the same in the DNA and 

RNA data, but the metrics in the GT match changed (Figure 31). We observed an improvement in the 

metrics when using DNA data instead of RNA data (Figure 31), this is because the truth dataset had been 

obtained from DNA data so the expression of the variants was not considered. In any case, the identification 

of ASE variants had low recall, precision and F-score in all samples and cases except for SNPs identification 

in NA12878 where all metrics were greater than 70% (Figure 31).  
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Figure 31. Benchmark results of ASE variants for different samples. Recall, precision and F-score in the 
identification of ASE variants with varRED for NA12878 (A), HG00171 (B), HG00378 (C) and NA20509 
(D) considering genotype (GT) and allele (AL) match. 
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3.1.2.2.5 RNA-editing variants 

RNA-editing variants are present in RNA but absent in DNA. They cannot be evaluated as our truth dataset 

was derived from DNA data where RNA-editing variants were not present. For this reason, we observed 

very low recall, precision and F-score in genotype and allele identification from RNA data (Figure 32). 
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Figure 32. Benchmark results of RNA-editing variants for different samples. Recall, precision and F-score in 
the identification of RNA-editing variants with varRED for NA12878 (A), HG00171 (B), HG00378 (C) 
and NA20509 (D) considering genotype (GT) and allele (AL) match. 
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3.1.2.2.6 RNA-rescue variants 

RNA-rescue variants meet the minimum thresholds of coverage and strand bias in DNA and RNA, have an 

RNA GQ greater than 50 but a DNA GQ lower than or equal to 20. Therefore, the genotype information 

from RNA data can be trusted but not the genotype information from DNA data. In addition, RNA-editing 

and ASE variants cannot be detected and will be present within the RNA-rescue variants, which may affect 

the evaluation. 

 We observed sufficient recall, precision and F-score in the genotype and allele identification of RNA-

rescue SNPs in RNA data as the metrics were greater than or close to 70% in all samples (Figure 33). 

However, identification of indels in RNA data had very low metrics (Figure 33).   
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Figure 33. Benchmark results of RNA-rescue variants for different samples. Recall, precision and F-score in 
the identification of RNA-rescue variants with varRED for NA12878 (A), HG00171 (B), HG00378 (C) and 
NA20509 (D) considering genotype (GT) and allele (AL) match. 
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3.1.3 Conclusion 

varRED provides an easy-to-use tool for germline short variant discovery from WES and RNA-seq data. 

By incorporating RNA-seq data, it increases the identified variants with virtually no performance impact 

and enables the identification of ASE and RNA-editing variants. It also improves prioritization and 

interpretation of variants by classifying them into six groups: Strong-evidence, DNA-only, RNA-only, 

ASE, RNA-editing and RNA-rescue variants. 
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Chapter 4 | Genomics data analysis platform 

This chapter describes the development of GINO, an online platform for the visualization and interpretation 

of genomics variants. There, all germline variants identified through the workflows developed in the 

previous chapters (Chapter 2 and Chapter 3) are displayed to facilitate variant interpretation.   

4.1 GINO: a platform for visualization and interpretation of variants 

GINO is a platform for the visualization and interpretation of human genomic variation under license for 

use. The user's raw sequence data is analyzed on an internal server where germline variants are detected 

following the pipelines and workflows developed in this thesis (Chapter 2 and Chapter 3). Then, the 

identified variants are uploaded to GINO where the user can visualize and browse the results. GINO is 

available at the following link: https://cloud.gino.sequentiabiotech.com/. An article on GINO is scheduled 

to be submitted to bioinformatics journals and uploaded to bioRxiv until final publication, a free repository 

of unpublished preprints. 

4.1.1 Implementation 

The creation of GINO has required the development of: (i) a robust database for data storage and 

management and (ii) an easy-to-use graphical interface to dynamically display and browse genomics 

variants. 

4.1.1.1 Database structure 

The GINO database has been developed using the MySQL relational database v5.7.34 and is stored on an 

Ubuntu server v18.04. As the GINO data, consisting of a series of germline variants and their functional 

annotations, have a well-defined structure and are related to each other, the relational database has been our 

system of choice. Using a relational database provides us with a highly organized and structured system to 

ensure the validity of database transactions, safeguard data integrity, and reduce anomalies. In addition, it 

allows us to store both the data and the relationship between these data. However, it also reduces the level 

of flexibility compared to what we could achieve using a non-relational database, where it is not necessary 

to predefine the number of data types and variables to store [221]. Despite the increasing use of non-

relational databases today [221]–[224], the MySQL relational database has proven its effectiveness in 

handling genomic data as it has been used in two large projects: the Ensemble project [225] and the 

University of California Santa Cruz (UCSC) Genome Browser [158].  

 GINO is designed to be run by multiple users who perform a series of experiments. Each of these 

experiments can consist of several samples that can be related to each other. Considering this, in order to 

structure the database, each of these information are stored in independent tables but related to each other 
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through their keys. Keys are very useful as they establish relationships between tables and also uniquely 

identify a row in a table. Specifically, GINO contains four tables to store information, which are called: (i) 

users, (ii) experiments, (iii) samples and, (iv) families (Figure 34). 

Furthermore, the short variants and CNVs identified for each sample are stored using different sets 

of tables but with a similar structure. In both cases, the aim of our storage system is to minimize space 

usage on the basis that each sample has multiple variants that can be shared between samples. Regarding 

the storage of short variants, a table of variants and multiple tables of experiments were created (Figure 

34), both table types are linked by a fingerprint. This fingerprint has been created from a combination of 

the position of the variant in the genome and the reference and alternative alleles, such as 

“chr1_13657_13658_AG_-”. The table of variants contains sample-independent information, such as the 

annotations obtained using ANNOVAR (Table 4) which include the affected gene, the clinical significance 

of the variant or the population allele frequency. The tables of experiments contain information about 

variants that are unique to each sample, such as mapping quality (MQ) or genotype quality (GQ). Each user 

can have multiple tables of experiments which, in turn, contain information for multiple samples; this 

division of data avoids reaching the maximum number of rows in a table established by the SQL engine 

(approximately one billion) [226]. When a new sample is uploaded to the GINO database, if it contains a 

new variation, this is added to the table of variants and to the corresponding table of experiment, but if it is 

an already existing variant, simply the sample-related information (MQ, GQ, etc.) is added to the 

experiment table, thus avoiding duplicated information. Concerning the CNV storage in the GINO database, 

the same structure is used as for the short variants: a table of CNVs and multiple tables of experiments. 

However, the information stored in the table of CNVs corresponds to the AnnotSV annotations (Table 6) 

and the fingerprint is a combination of the CNV type (DEL or DUP) and the affected gene and region, such 

as “DUP_ABCC2_exon24_exon25”. 

 

Figure 34. Toy example of GINO database structure. 
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4.1.1.2 Graphical interface 

The graphical interface has been built using three different programming languages: HyperText Markup 

Language (HTML), Cascading Style Sheets (CSS), and Javascript. This interface communicates with the 

database through the PHP v5.6 language. There are two main sections in the graphical interface of GINO: 

samples and analysis. The samples section provides a summary of all user samples, while the analysis 

section allows users to inspect all variants of a specific sample (short variants or CNVs) or a specific parent-

child trio. 

 The samples section consists of a table of samples (Figure 35). There, users can search for a sample 

of interest via a search box and export the table of samples to an Excel file. The table of samples provides 

different columns with relevant information about each sample: 

 Sample name 

 Experiment name (Batch). By clicking on the name of the experiment, the user can get information 

about the experiment, such as a brief description, the creation date or the number of samples 

belonging to that experiment.  

 Family name 

 Metadata:  

o Sequencing platform (e.g., Illumina or Ion Torrent) 

o Reference genome 

o Gender 

o Age  

o Layout (single-end or paired-end) 

o DNA sequencing strategy (WGS, WES or TS) 

o Sequencing kit 

 General metrics: percentage of the target at different coverages (10x and 20x). 

 Detected variants: number of short variants detected in the sample. Clicking on this column will 

display the analysis section showing all the short variants in the sample. 

 Copy Number Variants: number of CNVs identified in the sample. Clicking on this column will 

display the analysis section showing all the CNVs in the sample. 

 Exports: The main samples files can be downloaded: VCF and bigWig. The VCF file contains all the 

short variants of the sample. The bigWig file stores the sample coverage information, that is the 

number of reads overlapping each base of the genome. 
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Figure 35. Screenshot of the samples section in GINO. 

 The analysis section is composed of three different visualization tools: the short variant browser, the 

parent-child trios displayer, and the copy number variant viewer. 

 The short variant browser focuses on the visualization of the short variations of a sample (SNPs and 

indels). The main core of this section is an interactive table showing all variations of a sample along with 

their functional annotation, complemented by the Integrative Genomics Viewer (IGV) tool [74], by a table 

of variants of interest selected by the user and by an automatic report creation tool. 

 Concerning the interactive table, it allows to explore genomic variations and filter them according to 

the user's needs. For example, variants can be filtered by chromosome, by genotype, by pathogenicity or 

by affected gene using the filtering boxes in the table header (Figure 36). Moreover, an additional button 

displays a pop-up for further filtering of variants regarding other features not shown in the table columns, 

such as mapping quality (MQ), genotype quality (GQ) or population frequency (Figure 37). In addition, 

potentially false positive variants are highlighted with a warning and can be filtered from the variant table 

(Figure 36). Two criteria are used to define these potentially false positives: (i) an odd allelic balance (AB) 

when the ratio of allelic depth is not ~100% or ~50% and (ii) a high homology (HOM) when the variant is 

inside a region with a percentage of similarity greater than 90% with another locus in the genome, according 

to the genomicSuperDups database [180]. 
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Figure 36. Interactive table for browsing and filtering variations in GINO's short variant browser. 

 

Figure 37. Additional filters pop-up in GINO's short variant browser. 

 This core table shows summary information of each variant but if user clicks on the "plus" button, a 

child row appears with more information about the quality of the variant (Sample section), the gene affected 

(Gene section), its pathogenicity according to the ACMG guidelines [166], [167] (ACMG section), the 

allelic frequency of that variant in different populations (Population section) and the prediction of its 

functional consequences (Functional section) (Figure 38). Furthermore, users can customize the table to be 

adapted to their specific needs: the main information to be showed/hidden in the columns of the table can 

be switched using the database visibility button (Figure 36 and 38) and the column size and order can be 
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customized through a click and drag operation, letting the user move columns that they wish to compare 

next to each other for easier comparison. In addition, users can customize the number of variants displayed 

per page (Figure 36 and 38). This pagination is extremely important for the usability and speed of GINO, 

as it allows not to load all the variants of a sample at once, but only a custom number.  

 

Figure 38. Additional information displayed in the child-rows of the interactive table of the GINO's short variant 
browser. 

It is worth stressing two important features in the table wherein there is even a higher individualized 

experience: pathogenic user classification and GINO allele frequency (AF) (Figure 39). The pathogenic 

user classification is of great value for clinical diagnosis and allows the user to manually classify the 

variations according to their own criteria into eleven different categories based on their pathogenicity: 

benign, likely benign, uncertain significance, likely pathogenic, pathogenic, common artefact, drug 

response, disease association, risk factor, protective and phenotype association (Figure 39). The GINO 

allele frequency (AF) is based on an internal pipeline that estimates the alternative allele frequency for each 

variant in the GINO database (all samples in GINO) and in the user database (all samples of the user). The 

estimation of the allele frequency is of fundamental importance in population genetic analyses and in 

association mapping, so the GINO allele frequency adds an important additional value to GINO. It is 

important to note that only samples in which the same genomics regions are sequenced are used to calculate 

this AF value. Thus, we compute different AFs for the same variation depending on the type of sequencing 

(WGS, WES or TS) and the sequencing kit.  The reasoning behind this approach is that when a genomic 

region is not present in the VCF file, it can be difficult to know the reason, it may be due to absence of 

variation, to the genomic region not being sequenced, to insufficient coverage or to technical errors. This 
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issue could be addressed through the usage of a GVCF file instead of a VCF file, since the GVCF has 

records for all sites. However, we have opted for using VCF files because they are much smaller than GVCF 

files, which saves us computational resources and storage space. 

 

Figure 39. Pathogenic user classification and GINO allele frequency in the interactive table of the GINO's short 
variant browser. 

Regarding IGV [74], it is a high-performance visualization tool that is embedded in our variant 

browser and allows interactive exploration of variants and genomic datasets. Using IGV, users can explore 

variations of a sample at their genomic locations, can compare them to the reference genome, and can check 

how many reads support the reference and the alternative allele or which gene the variant can affect (Figure 

40). 

 

Figure 40. Visualization of variations by IGV tool in the GINO's short variant browser. 
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Additionally, in the short variant browser section, the most interesting variants for the user can be 

saved, extracted and displayed in an additional table (Figure 41) from which an automatic report can be 

obtained with information on these variations. This report is created using LaTex v3.14159265 and provides 

summary information on all variants of interest, as well as detailed information on each variant in separate 

sections (Figure 42). 

 

Figure 41. Table with the variations of interest in the GINO's short variant browser. 

 

Figure 42. Example of the LaTex automatic report of GINO. 

In the parent-child trios displayer, users can visualize all short variants in any of the family 

members in the same table, allowing easier genotype comparison to verify inheritance (Figure 43). 
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Furthermore, these variants can be explored through IGV, as in the short variant browser (Figure 40). The 

parent-child trios displayer can be used to investigate potential disease relevant variants, of which 

“accumulative” and de novo variants are the most interesting. The “accumulative” mutations are present in 

a heterozygous state in the parents but are homozygous in the child. The de novo variants are present in the 

child but absent in the parents. 

 

Figure 43. Screenshot of the table of variants in the GINO's parent-child trios displayer. 

The copy number variant viewer focuses on the visualization of CNVs. All CNVs in a sample and 

their functional annotations are displayed in an interactive table (Figure 44) with the same features and 

filters as the short variant browser. Here, the criteria to warn about potentially false positive CNVs are the 

following: (i) a median coverage in the region below 100, (ii) a minimum size less than 150bp, (iii) a precise 

copy number value greater than 4, or (iv) cover more than three genes. The IGV tool (Figure 40) is also 

present in the copy number variant viewer to explore the genomic location of the CNVs. 
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Figure 44. Screenshot of the table of variants in the GINO's copy number variant viewer. 

4.1.2 Conclusion 

GINO is a comprehensive platform for easy, fast, and affordable interpretation of human variation from 

NGS data. Its main target is users who want to focus on the interpretation of results without the need to 

worry about data processing. This data processing includes both the creation of workflows and the selection 

of algorithms, as well as data management. Using GINO allows to analyze genetic variants obtained with 

a strong scientific basis, since an exhaustive bibliographic review has been performed to select the best 

tools for each analysis along with the creation of new pipelines, such as isoCNV. Furthermore, it provides 

very complete annotations for each variant to facilitate the prioritization of them. It also allows users to 

store genomic data and interpret it in a simple and accessible way, which is a critical factor when dealing 

with big data, as it cannot be analyzed without powerful tools to quickly and dynamically store, visualize 

and filter it.  
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Chapter 5 | Discussion  

Advances in NGS technologies in recent years have made it possible to sequence high-throughput human 

DNA quickly and affordably. In turn, the sequencing data obtained from NGS could be used for the 

identification of genomic variants. The detection of variants is important both in modern DNA for the study 

of its relationship with certain diseases and in ancient DNA to study past human evolution. However, this 

sequencing data is big data and therefore difficult to process and manage. 

In this scenario, it is necessary to improve data accessibility to provide researchers with useful tools 

that facilitate the efficient obtaining of conclusions. For this reason, in this thesis different genomic tools 

have been created to automate the identification of short variants and structural variants, genomic data have 

been integrated with another type of omics data, transcriptomics, to increase the range of identified variants 

and, finally, a platform to facilitate the interpretation of these variants has been developed (GINO). 

5.1 Genomics tools 

5.1.1 Short variant discovery 

Short variant discovery analyses are complex, they are multi-step processes composed of multiple software 

applications. Specifically, the entire short variant identification process requires seven different steps to 

obtain the final SNPs and indels fully annotated and ready for interpretation from the raw sequencing data. 

To carry out each of these steps, different tools are needed. These tools are often incredibly sophisticated 

and intricate in their statistical and algorithmic approaches. Although these algorithms do not need to be 

improved since it is already possible to identify short variants with high performance, it is necessary to 

invest time and resources in finding the best tools for each of the 7 steps and integrating them satisfactorily 

to achieve the most optimal results. In addition, given the significant data size and computation time 

requirements of these analyses, a good computing structure is required to carry them out, such as a server 

or a computer cluster. 

 On this basis, we have created different automated pipelines comprised of the best available tools to 

identify germline short variants in modern DNA in single samples and in parent-child trios for all types of 

DNA sequencing technology (WGS, WES and TS) as well as to identify short variants in ancient WGS 

samples. These tools make it possible to automate and democratize the identification of variants since they 

allow the entire detection process to be carried out from start to finish. They are also modular so that if a 

new tool or algorithm is developed or improved for any of the seven steps of short variant discovery, it can 

be easily implemented. It is important to note that these pipelines have been implemented on an internal 

server but, in the future and outside the context of this thesis, they will be in the cloud for integration in 

GINO. 
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 It is true that there are already very detailed manuals, which explain the tools to use and how to 

execute each of the steps of the short variant discovery for modern DNA, such as the GATK guidelines 

[76] that include all steps except the variant annotation. However, each step must be executed one by one, 

which requires at least basic bioinformatics knowledge. Recently, GATK has developed FireCloud [227], 

also called Terra, an online bioinformatics platform to launch analytics in the cloud under user license. 

Nevertheless, it is not very intuitive and still requires minimal knowledge of scripting and bioinformatics 

to understand it. Also, the variant annotation step is not yet included. For this reason, our pipelines have 

been designed to perform the complete analysis until obtaining completely annotated and filtered variants, 

so the user will only have to worry about uploading the data and interpreting the results. 

 Regarding the analysis of ancient DNA variants, different protocols are available to carry it out [185], 

[228], [229], among which PALEOMIX [185] stands out. PALEOMIX is a pipeline to perform variant 

calling from ancient WGS data. However, its main drawback is that it requires intricate command-line 

instructions to operate and set analysis parameters, hampering its use by non-bioinformaticians. For this 

reason, we have created a fully automatic pipeline with the ancestral genome as the only input and also 

with some improvements compared to PALEOMIX. For example, we use Sentieon [115], the accelerated 

version of GATK, to perform the variant discovery instead of SAMtools [73], allowing us to improve both 

the speed and performance of the variant calling. In addition, we used GAIA v2.02 [186] for the microbial 

profile, which has proven to be one of the best performing tools for identifying microbial populations [186]. 

 In brief, the creation of all these genomic tools has made it possible to improve data processing in 

terms of automation, thus bringing these analyses closer to non-bioinformaticians to potentially unlock new 

insights on important biomedical issues. 

5.1.2 Structural variant discovery 

Structural variant discovery follows the same seven steps as short variant discovery, but using different 

algorithms for the last three steps: SV discovery, filtering and annotation. Multiple tools have been 

developed for the discovery of germline structural variants from WGS data, each based on different 

approaches [134]–[137], [140], [141], [149]–[152]. In addition, several benchmarks have been performed 

to analyze these tools and they have been shown to detect structural variants from WGS data with high 

accuracy and performance [153], [154]. However, most of these algorithms start from alignment data rather 

than raw sequencing data and do not perform variant annotation. Thereby, we have implemented an 

automatic pipeline to perform the entire process, from raw sequence data to annotated variants. Annotating 

these variants against many annotation sources is extremely important as another challenge with these 

analyses lies in prioritizing variants to find meaningful results. Moreover, this pipeline has the same features 
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as those implemented for the short variant discovery pipelines, it is simple for ease of application, modular 

to easily implement updates, and scientifically robust. 

 There are also multiple tools for CNV discovery from WES or TS data [146], [147]. However, these 

tools can still be improved as CNV detection using WES or TS data is much more challenging than using 

WGS data. This is due to the fact that in the WES and TS data the breakpoint is sometimes not in the capture 

regions and due to the inefficiencies of the technique [44]–[46]. Among the different tools available is 

DECoN [148], which has shown high performance in the identification of CNV from the NGS panel data 

[156], [157]. Nevertheless, DECoN starts from aligned data rather than from raw sequence data and its 

parameters must be optimized for the highest possible detection sensitivity. There is already a tool to 

perform the parameter optimization, optimizer from the CNVbenchmarkeR framework [157]. One of the 

optimizer inputs are the validated CNVs with which to compare the results obtained by DECoN to perform 

parameter optimization. These validated CNVs are obtained from orthogonal techniques, such as MLPA or 

aCGH [196], which increase the cost and time of the analyses. Hence, we have developed isoCNV, a 

pipeline to optimize the parameters of DECoN using only sequencing data. Its effectiveness in increasing 

the sensitivity of DECoN has been demonstrated with a real dataset of WES samples and another of TS 

samples. This pipeline, like the previous ones, is automatic and allows to obtain analysis-ready CNVs from 

the raw sequencing data of a batch of samples. In addition to facilitating analysis due to its automatic nature, 

it reduces analysis time and cost as no orthogonal methods are required. 

 In this way, we have implemented workflows to analyze all types of germline variants with high 

throughput from any type of DNA sequencing data (WGS, WES or TS). All of these automated and modular 

workflows enable standardization, consistency, and reproducibility, which is critical in the clinical settings. 

In addition, they are the beginning of a democratization of the processing of sequencing data for non-

bioinformaticians, which will culminate with their implementation in the cloud outside the context of this 

thesis, thus giving even greater accessibility and simplicity. 

5.2 Data integration 

The integration of genomic data with transcriptomic data offers new opportunities for variant discovery. 

These new opportunities range from improving the accuracy of variant identification in highly expressed 

genes to finding new variants only detectable from RNA-seq data, such as RNA-editing variants or ASE 

variants, as well as offering an additional method of variant validation. There are already tools that integrate 

these two types of data, such as RADIA [171] or VaDiR [172]. However, these tools are based on the 

detection of somatic short variants and do not detect germline short variants. The main objective of RADIA 

is to use the RNA-seq data to validate the somatic variants found in DNA [171]. All somatic variants called 

by RADIA are supported by DNA, and RNA-only variants are not called. In addition, it does not include 
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the detection of RNA-editing variants or ASE variants, so part of the benefits of using RNA-seq are not 

being exploited. VaDiR calls somatic variants only using RNA-seq data, DNA data is only used to filter 

germline variants [172]. Because of this, VaDiR misses mainly low-frequency RNA-seq variants and some 

of the potential of using both types of data is not exploited. 

 Taking into account all the above, varRED has been developed to identify germline short variants by 

integrating the variants identified by both DNA and RNA-seq, thus making the most of these two omics. 

To our knowledge, there is no other pipeline to date that allows the identification of germline variants by 

integrating both DNA and RNA-seq data. Specifically, we have focused on integrating RNA-seq with WES 

data to offer a cost-efficient alternative to using WGS data, as WES data is currently preferred in both 

clinical and research use [5], [42], [43] due to its lower price. By integrating RNA-seq data into WES data 

with varRED, more variants (RNA-only variants and RNA-rescue variants) can be identified without a 

great effect on performance and the variants identified by both types of data (Strong-evidence variants) can 

be validated. However, it is important to note that the RNA-editing variants and ASE variants identified by 

varRED could not be confirmed or evaluated due to the lack of availability of validated variants from RNA-

seq. Finally, an additional benefit of this approach is that RNA-seq data can be used for further analyses on 

gene expression levels or gene fusions.  

 In the same way as the rest of the pipelines implemented in this thesis, varRED has been developed 

to be completely automatic and modular, thus facilitating its use and giving consistency and reproducibility 

to the analyses. This automation of variant discovery helps optimize time, improve productivity, and 

maintain infrastructure. 

5.3 Genomics data analysis platform 

With the increased use of sequencing and variant discovery, challenges have arisen around the ease of use 

of software, data management and reproducibility of results. Some of these challenges have been solved 

with the creation of the genomic tools that have already been discussed in the previous sections. Data 

storage is also another challenge because datasets can easily reach terabyte sizes per sequencing run. 

Furthermore, it is not only complex to store the sequencing data, but also to collect metadata and provide 

data to end users. Therefore, in this thesis a powerful database has been developed to store all this 

information and avoid users having to worry about data storage or the computational resources that this 

entails. 

 Another important challenge of these analyses lies in finding meaning and significance in the results 

of the vast variants identified. There is a need to improve simplicity in the prioritization and interpretation 

of results so that clinicians and researchers with no knowledge of bioinformatics can easily perform these 

analyses. Multiple platforms have been developed to facilitate the interpretation of results for non-
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bioinformaticians, among them VarSome [169] stands out. Although VarSome is very comprehensive, it 

can still improve both in terms of the variant discovery algorithms, especially for structural variants, and in 

usability and simplicity. For example, VarSome applies ExomeDepth [201] to identify CNVs from WES 

or TS data when a better option might be to use DECoN [148] with optimized parameters. 

 In this thesis we have developed GINO, a platform for the visualization and interpretation of variants 

obtained using the best algorithms and software available. In GINO, users are not required to have computer 

or bioinformatics knowledge because it has been designed to be as user-friendly as possible. In addition to 

being simple, it shows the most complete information possible since the variants have been annotated using 

a large number of databases. These annotations are very important when prioritizing variants to easily find 

those that may affect the patient's health. In addition, GINO has a very important feature, the GINO allele 

frequency, which allows users to obtain the frequency of a variant in all their samples. This GINO allele 

frequency provides added value, especially in population genetic analyses and in association mapping. 

 GINO makes it possible to bring variant analysis closer to institutions without bioinformatics 

facilities or with little experience in bioinformatics and gives reproducibility and consistency to the 

analyses. Currently GINO is a platform for storage and visualization of variants but in the future, and 

outside the context of this thesis, all analyses will be carried out in the cloud within the platform. 
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Chapter 6 | Conclusions and Future Research  

6.1 Conclusions 

The identification of human germline variation is important given its implication in multiple diseases [25], 

[119], [120]. These analyses are already implemented in clinical care to improve both the prognosis and 

the diagnosis of several diseases in modern genomes [8]–[11]. Furthermore, the detection of variants in 

ancient human genomes is applied to gain insight into past human evolution [12]–[16]. However, the large 

number of tools available to perform these analyses, the different algorithms required by different types of 

variations and data, and the challenge of managing big data hinder its implementation. To solve these issues, 

different workflows based on the best available algorithms have been implemented in this thesis to identify 

all types of human germline variation from NGS data (Chapter 2 and 3). In addition, GINO, a platform to 

store and visualize these variants, has been developed to avoid users having to worry about data 

management when interpreting the results (Chapter 4). 

 Regarding the development of workflows, different pipelines have been implemented for the 

identification of short variants (SNPs and indels) and structural variants (CNVs and chromosomal 

rearrangements events) from data sequenced using different NGS strategies. A pipeline for identifying short 

variants in modern WGS, WES or TS data (Section 2.1.1) and a pipeline for identifying short variants from 

ancient WGS data (Section 2.1.2) have been developed. Both pipelines are based on existing tools but, to 

date, a complete and automated pipeline has not been built with them to obtain fully annotated, filtered, and 

ready-for-interpretation variants from the raw sequencing data. Additionally, the pipeline for the discovery 

of short variants in ancient genomes has been applied to a human mandible dated between 16980-16510 

calibrated years before the present, allowing to separate between endogenous ancient DNA and modern 

DNA contamination. Although the identified variants could not be interpreted reliably due to the low 

coverage of the sample (0.28 x), the subsequent analyses carried out by our collaborating group using the 

isolated endogenous aDNA, allowed us to find new knowledge about the migration of ancient populations 

[184]. This work has been published in the journal Current Biology with the doctoral student as a co-author 

[184].  

 Furthermore, a workflow for structural variant discovery in modern WGS data (Section 2.2.1) and 

another workflow for in silico optimization of CNV detection using modern WES or TS data (Section 2.2.2) 

have been implemented. The pipeline for structural variant discovery from WGS data builds on existing 

tools that have shown high performance but have never been automated in a single pipeline. The in silico 

optimization pipeline for CNV detection from WES or TS data (isoCNV) is also based on existing tools, 

but these have been combined in a novel way. The isoCNV pipeline has shown to increase the sensitivity 

of CNV detection using only NGS data rather than orthogonal methods, such has MLPA or aCGH. An 
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article on this work has been submitted to the journal BMC bioinformatics with the doctoral student as first 

author and is currently under review. 

 The last pipeline implemented in this doctoral thesis is varRED (Chapter 3). The varRED pipeline 

relies on the integration of WES and RNA-seq data to increase the number of identified germline variants 

(such as ASE or RNA-editing variants) over those identified if only WES data were used. Moreover, this 

combined strategy is more cost-effective than the use of whole genome sequencing, since the availability 

of RNA-seq data allows for additional analyses, such as the identification of gene fusions. To our 

knowledge, there is no other pipeline to date that performs this type of integration.  

 Finally, this thesis has concluded with the development of GINO, a platform under license for use 

(Chapter 4). GINO is a powerful platform to store and interpret the SNPs, indels and CNVs obtained 

through the workflows developed in the context of this thesis. This platform solves two major obstacles in 

the variant discovery analysis, the informatic issue (data storage and management) and the scientific issue 

(data interpretation), given that it allows users to store fully annotated genetic variants in a database and 

visualize them in an easy-to-use graphical interface. It is important to note that at the moment this online 

platform only allows the visualization of results. Now, variant discovery is performed on an internal server, 

but in the future the entire process will run in the cloud. 

 This thesis has laid the foundations to create an online platform for the analysis and visualization of 

genomic data in the cloud in the near future. The workflows for the identification of variants and the 

visualization tool are now available. The last remaining part of the development process is the 

implementation of the workflows in the cloud and their union with the visualization platform to obtain 

totally online and automatic data processing. 

6.2 Future work 

Future work will mainly focus on the cloud implementation of the workflows developed in the context of 

this thesis and their integration into the GINO visualization platform. A cloud-based architecture will 

provide us with multiple benefits such as vertical and horizontal scalability. By properly enforcing 

scalability policies, the system will be able to respond to workload changes and thus provide a seamless 

user experience at all times.  

 Another key point of our cloud computing architecture will be reliability. The system will be 

designed to be fault tolerant: it will be able to retrieve and complete user analysis even if cloud resources 

are not available. In addition, a data loading system will be developed within the browser and without 

external dependencies, with integrity checks and resumable functions to allow users to upload large files 

reliably and quickly. 
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 It is important to highlight that the pipelines already implemented in this thesis will continue to be 

reviewed, optimized and updated to be up to date and have the best variant discovery tools at all times. The 

updating of the pipelines will be possible and facilitated by the modular nature of the workflows already 

implemented, which will allow modifying only a part of the workflows without affecting the rest of the 

process. These continuous updates are important due to the constant evolution and improvement of the 

genomics field, which is possible thanks to the large investment of capital and resources in this field 

nowadays. 
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Supplementary Table A. 1. Benchmark results for variants identified with varRED and with the short variant discovery. 

Sample Data type Variant type Match 
Variants 

Analyzed variant Recall Precision F-score 
Total SNPs Indels 

NA12878 DNA ALL GT 260535 224987 35548 SNP 0.9965 0.9652 0.9806 
NA12878 DNA ALL GT 260535 224987 35548 INDEL 0.9567 0.3987 0.5628 
NA12878 DNA ALL AL 266317 229854 36463 SNP 0.9998 0.9534 0.9761 
NA12878 DNA ALL AL 266317 229854 36463 INDEL 0.9901 0.4053 0.5751 
NA12878 RNA ALL GT 47288 42359 4929 SNP 0.9916 0.9614 0.9763 
NA12878 RNA ALL GT 47288 42359 4929 INDEL 0.9744 0.4027 0.5698 
NA12878 RNA ALL AL 68881 60859 8022 SNP 0.9998 0.9492 0.9739 
NA12878 RNA ALL AL 68881 60859 8022 INDEL 0.9929 0.3735 0.5428 
NA12878 DNA+RNA ALL AL 287333 248646 38687 SNP 0.9998 0.9541 0.9764 
NA12878 DNA+RNA ALL AL 287333 248646 38687 INDEL 0.9899 0.4058 0.5756 
NA12878 DNA Strong-evidence GT 21748 19671 2077 SNP 0.9999 0.9863 0.9931 
NA12878 DNA Strong-evidence GT 21748 19671 2077 INDEL 0.9908 0.437 0.6066 
NA12878 DNA Strong-evidence AL 21748 19671 2077 SNP 1 0.9864 0.9931 
NA12878 DNA Strong-evidence AL 21748 19671 2077 INDEL 0.9981 0.4403 0.611 
NA12878 RNA Strong-evidence GT 21748 19671 2077 SNP 0.9999 0.9863 0.9931 
NA12878 RNA Strong-evidence GT 21748 19671 2077 INDEL 0.9908 0.437 0.6066 
NA12878 RNA Strong-evidence AL 21748 19671 2077 SNP 1 0.9864 0.9931 
NA12878 RNA Strong-evidence AL 21748 19671 2077 INDEL 0.9981 0.4403 0.611 
NA12878 DNA+RNA Strong-evidence AL 21748 19671 2077 SNP 1 0.9864 0.9931 
NA12878 DNA+RNA Strong-evidence AL 21748 19671 2077 INDEL 0.9981 0.4403 0.611 
NA12878 DNA DNA-only GT 238787 205316 33471 SNP 0.9961 0.9627 0.9791 
NA12878 DNA DNA-only GT 238787 205316 33471 INDEL 0.9534 0.3954 0.559 
NA12878 DNA DNA-only AL 238787 205316 33471 SNP 0.9997 0.951 0.9748 
NA12878 DNA DNA-only AL 238787 205316 33471 INDEL 0.989 0.4061 0.5758 
NA12878 RNA DNA-only GT 20348 17535 2813 SNP 0.4992 0.73 0.5929 
NA12878 RNA DNA-only GT 20348 17535 2813 INDEL 0.6979 0.4465 0.5446 
NA12878 RNA DNA-only AL 20348 17535 2813 SNP 0.9998 0.9061 0.9506 
NA12878 RNA DNA-only AL 20348 17535 2813 INDEL 0.9863 0.3056 0.4667 
NA12878 DNA+RNA DNA-only AL 238795 205320 33475 SNP 0.9997 0.951 0.9748 
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NA12878 DNA+RNA DNA-only AL 238795 205320 33475 INDEL 0.9888 0.4061 0.5757 
NA12878 DNA RNA-only GT 4339 3822 517 SNP 0.5122 0.8362 0.6353 
NA12878 DNA RNA-only GT 4339 3822 517 INDEL 0.899 0.6556 0.7582 
NA12878 DNA RNA-only AL 4339 3822 517 SNP 1 0.914 0.9551 
NA12878 DNA RNA-only AL 4339 3822 517 INDEL 1 0.3363 0.5034 
NA12878 RNA RNA-only GT 25344 22607 2737 SNP 0.9841 0.94 0.9616 
NA12878 RNA RNA-only GT 25344 22607 2737 INDEL 0.9643 0.3864 0.5517 
NA12878 RNA RNA-only AL 25344 22607 2737 SNP 0.9998 0.953 0.9758 
NA12878 RNA RNA-only AL 25344 22607 2737 INDEL 0.9914 0.3985 0.5685 
NA12878 DNA+RNA RNA-only AL 25344 22607 2737 SNP 0.9998 0.953 0.9758 
NA12878 DNA+RNA RNA-only AL 25344 22607 2737 INDEL 0.9914 0.3985 0.5685 
NA12878 DNA ASE GT 1250 967 283 SNP 1 0.7768 0.8744 
NA12878 DNA ASE GT 1250 967 283 INDEL 0.7777 0.0933 0.1666 
NA12878 DNA ASE AL 1250 967 283 SNP 1 0.7768 0.8744 
NA12878 DNA ASE AL 1250 967 283 INDEL 1 0.12 0.2142 
NA12878 RNA ASE GT 1245 965 280 SNP 0 0 0 
NA12878 RNA ASE GT 1245 965 280 INDEL 0.1111 0.1666 0.1333 
NA12878 RNA ASE AL 1245 965 280 SNP 1 0.7768 0.8744 
NA12878 RNA ASE AL 1245 965 280 INDEL 1 0.12 0.2142 
NA12878 DNA+RNA ASE AL 1250 967 283 SNP 1 0.7768 0.8744 
NA12878 DNA+RNA ASE AL 1250 967 283 INDEL 1 0.12 0.2142 
NA12878 DNA RNA-editing GT 13257 10852 2405 SNP 0.9968 0.9681 0.9823 
NA12878 DNA RNA-editing GT 13257 10852 2405 INDEL 0.9448 0.3547 0.5158 
NA12878 DNA RNA-editing AL 13257 10852 2405 SNP 0.9996 0.4737 0.6428 
NA12878 DNA RNA-editing AL 13257 10852 2405 INDEL 0.9795 0.141 0.2465 
NA12878 RNA RNA-editing GT 2125 1183 942 SNP 0.0588 0.0016 0.0032 
NA12878 RNA RNA-editing GT 2125 1183 942 INDEL 0 0 0 
NA12878 RNA RNA-editing AL 2125 1183 942 SNP 1 0.0283 0.0551 
NA12878 RNA RNA-editing AL 2125 1183 942 INDEL 0.8333 0.0245 0.0476 
NA12878 DNA+RNA RNA-editing AL 13264 10857 2407 SNP 0.9996 0.4736 0.6427 
NA12878 DNA+RNA RNA-editing AL 13264 10857 2407 INDEL 0.9795 0.141 0.2465 
NA12878 DNA RNA-rescue GT 193 78 115 SNP 0.5714 0.923 0.7058 
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NA12878 DNA RNA-rescue GT 193 78 115 INDEL 0.6 0.2727 0.375 
NA12878 DNA RNA-rescue AL 193 78 115 SNP 1 0.7 0.8235 
NA12878 DNA RNA-rescue AL 193 78 115 INDEL 0.8 0.125 0.2162 
NA12878 RNA RNA-rescue GT 196 81 115 SNP 1 0.7 0.8235 
NA12878 RNA RNA-rescue GT 196 81 115 INDEL 0.4 0.0625 0.1081 
NA12878 RNA RNA-rescue AL 196 81 115 SNP 1 0.7 0.8235 
NA12878 RNA RNA-rescue AL 196 81 115 INDEL 0.8 0.125 0.2162 
NA12878 DNA+RNA RNA-rescue AL 196 81 115 SNP 1 0.7 0.8235 
NA12878 DNA+RNA RNA-rescue AL 196 81 115 INDEL 0.8 0.125 0.2162 
HG00171 DNA ALL GT 131453 113844 17609 SNP 0.9937 0.885 0.9362 
HG00171 DNA ALL GT 131453 113844 17609 INDEL 0.895 0.5655 0.6931 
HG00171 DNA ALL AL 134158 116030 18128 SNP 0.9744 0.8839 0.9269 
HG00171 DNA ALL AL 134158 116030 18128 INDEL 0.7306 0.5953 0.656 
HG00171 RNA ALL GT 13295 11425 1870 SNP 0.9954 0.9345 0.9639 
HG00171 RNA ALL GT 13295 11425 1870 INDEL 0.9285 0.4487 0.605 
HG00171 RNA ALL AL 19922 17403 2519 SNP 0.9782 0.9019 0.9385 
HG00171 RNA ALL AL 19922 17403 2519 INDEL 0.8 0.515 0.6266 
HG00171 DNA+RNA ALL AL 140257 120943 19314 SNP 0.9745 0.8858 0.928 
HG00171 DNA+RNA ALL AL 140257 120943 19314 INDEL 0.734 0.5896 0.6539 
HG00171 DNA Strong-evidence GT 4863 4667 196 SNP 0.9993 0.9907 0.995 
HG00171 DNA Strong-evidence GT 4863 4667 196 INDEL 0.9806 0.7835 0.871 
HG00171 DNA Strong-evidence AL 4863 4667 196 SNP 0.9855 0.9912 0.9883 
HG00171 DNA Strong-evidence AL 4863 4667 196 INDEL 0.8437 0.7886 0.8152 
HG00171 RNA Strong-evidence GT 4863 4667 196 SNP 0.9993 0.9907 0.995 
HG00171 RNA Strong-evidence GT 4863 4667 196 INDEL 0.9806 0.7835 0.871 
HG00171 RNA Strong-evidence AL 4863 4667 196 SNP 0.9855 0.9912 0.9883 
HG00171 RNA Strong-evidence AL 4863 4667 196 INDEL 0.8437 0.7886 0.8152 
HG00171 DNA+RNA Strong-evidence AL 4863 4667 196 SNP 0.9855 0.9912 0.9883 
HG00171 DNA+RNA Strong-evidence AL 4863 4667 196 INDEL 0.8437 0.7886 0.8152 
HG00171 DNA DNA-only GT 126590 109177 17413 SNP 0.9934 0.8803 0.9335 
HG00171 DNA DNA-only GT 126590 109177 17413 INDEL 0.8938 0.5629 0.6908 
HG00171 DNA DNA-only AL 126590 109177 17413 SNP 0.9743 0.8818 0.9258 
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HG00171 DNA DNA-only AL 126590 109177 17413 INDEL 0.7282 0.6005 0.6582 
HG00171 RNA DNA-only GT 6256 5638 618 SNP 0.4941 0.6912 0.5762 
HG00171 RNA DNA-only GT 6256 5638 618 INDEL 0.2891 0.4819 0.3614 
HG00171 RNA DNA-only AL 6256 5638 618 SNP 0.9826 0.8595 0.917 
HG00171 RNA DNA-only AL 6256 5638 618 INDEL 0.7786 0.5875 0.6697 
HG00171 DNA+RNA DNA-only AL 126590 109177 17413 SNP 0.9743 0.8818 0.9258 
HG00171 DNA+RNA DNA-only AL 126590 109177 17413 INDEL 0.7282 0.6005 0.6582 
HG00171 DNA RNA-only GT 2263 1821 442 SNP 0.4733 0.7883 0.5915 
HG00171 DNA RNA-only GT 2263 1821 442 INDEL 0.4078 0.6526 0.502 
HG00171 DNA RNA-only AL 2263 1821 442 SNP 0.9487 0.8445 0.8936 
HG00171 DNA RNA-only AL 2263 1821 442 INDEL 0.81 0.3597 0.4982 
HG00171 RNA RNA-only GT 8357 6730 1627 SNP 0.9925 0.8966 0.9421 
HG00171 RNA RNA-only GT 8357 6730 1627 INDEL 0.9186 0.42 0.5765 
HG00171 RNA RNA-only AL 8357 6730 1627 SNP 0.9696 0.9069 0.9372 
HG00171 RNA RNA-only AL 8357 6730 1627 INDEL 0.8061 0.4643 0.5893 
HG00171 DNA+RNA RNA-only AL 8357 6730 1627 SNP 0.9696 0.9069 0.9372 
HG00171 DNA+RNA RNA-only AL 8357 6730 1627 INDEL 0.8061 0.4643 0.5893 
HG00171 DNA ASE GT 372 341 31 SNP 0.988 0.253 0.4029 
HG00171 DNA ASE GT 372 341 31 INDEL 0.7692 0.3333 0.4651 
HG00171 DNA ASE AL 372 341 31 SNP 0.9696 0.2926 0.4496 
HG00171 DNA ASE AL 372 341 31 INDEL 0.6666 0.4333 0.5252 
HG00171 RNA ASE GT 371 340 31 SNP 0.0119 0.037 0.018 
HG00171 RNA ASE GT 371 340 31 INDEL 0.0769 0.25 0.1176 
HG00171 RNA ASE AL 371 340 31 SNP 0.9696 0.2926 0.4496 
HG00171 RNA ASE AL 371 340 31 INDEL 0.6666 0.4333 0.5252 
HG00171 DNA+RNA ASE AL 372 341 31 SNP 0.9696 0.2926 0.4496 
HG00171 DNA+RNA ASE AL 372 341 31 INDEL 0.6666 0.4333 0.5252 
HG00171 DNA RNA-editing GT 2501 1817 684 SNP 0.9773 0.6666 0.7926 
HG00171 DNA RNA-editing GT 2501 1817 684 INDEL 0.8955 0.4461 0.5955 
HG00171 DNA RNA-editing AL 2501 1817 684 SNP 0.9242 0.495 0.6447 
HG00171 DNA RNA-editing AL 2501 1817 684 INDEL 0.6475 0.1059 0.1821 
HG00171 RNA RNA-editing GT 835 362 473 SNP 0.1333 0.0057 0.011 



 

 

 

 

119 

HG00171 RNA RNA-editing GT 835 362 473 INDEL 0.1111 0.0021 0.0041 
HG00171 RNA RNA-editing AL 835 362 473 SNP 0.6753 0.144 0.2374 
HG00171 RNA RNA-editing AL 835 362 473 INDEL 0.5862 0.0359 0.0677 
HG00171 DNA+RNA RNA-editing AL 2503 1818 685 SNP 0.9253 0.495 0.645 
HG00171 DNA+RNA RNA-editing AL 2503 1818 685 INDEL 0.6393 0.1044 0.1796 
HG00171 DNA RNA-rescue GT 70 24 46 SNP 0.25 0.5 0.3333 
HG00171 DNA RNA-rescue GT 70 24 46 INDEL 0.5 0.3333 0.4 
HG00171 DNA RNA-rescue AL 70 24 46 SNP 0.9285 0.5909 0.7222 
HG00171 DNA RNA-rescue AL 70 24 46 INDEL 0.7142 0.25 0.3703 
HG00171 RNA RNA-rescue GT 75 28 47 SNP 0.9375 0.5769 0.7142 
HG00171 RNA RNA-rescue GT 75 28 47 INDEL 0.6666 0.05 0.093 
HG00171 RNA RNA-rescue AL 75 28 47 SNP 0.9444 0.6538 0.7727 
HG00171 RNA RNA-rescue AL 75 28 47 INDEL 0.7333 0.2682 0.3928 
HG00171 DNA+RNA RNA-rescue AL 75 28 47 SNP 0.9444 0.6538 0.7727 
HG00171 DNA+RNA RNA-rescue AL 75 28 47 INDEL 0.7333 0.2682 0.3928 
HG00378 DNA ALL GT 134219 116216 18003 SNP 0.9936 0.8797 0.9332 
HG00378 DNA ALL GT 134219 116216 18003 INDEL 0.8869 0.568 0.6925 
HG00378 DNA ALL AL 138657 120023 18634 SNP 0.9742 0.8774 0.9232 
HG00378 DNA ALL AL 138657 120023 18634 INDEL 0.7271 0.5993 0.657 
HG00378 RNA ALL GT 19761 17454 2307 SNP 0.9965 0.9425 0.9687 
HG00378 RNA ALL GT 19761 17454 2307 INDEL 0.9272 0.5179 0.6646 
HG00378 RNA ALL AL 27187 24154 3033 SNP 0.9753 0.9044 0.9385 
HG00378 RNA ALL AL 27187 24154 3033 INDEL 0.7897 0.5792 0.6683 
HG00378 DNA+RNA ALL AL 147339 127262 20077 SNP 0.974 0.8809 0.9251 
HG00378 DNA+RNA ALL AL 147339 127262 20077 INDEL 0.732 0.5983 0.6584 
HG00378 DNA Strong-evidence GT 7260 6985 275 SNP 0.9995 0.9941 0.9968 
HG00378 DNA Strong-evidence GT 7260 6985 275 INDEL 0.9613 0.7252 0.8267 
HG00378 DNA Strong-evidence AL 7260 6985 275 SNP 0.9859 0.9945 0.9902 
HG00378 DNA Strong-evidence AL 7260 6985 275 INDEL 0.806 0.7435 0.7735 
HG00378 RNA Strong-evidence GT 7260 6985 275 SNP 0.9995 0.9941 0.9968 
HG00378 RNA Strong-evidence GT 7260 6985 275 INDEL 0.9613 0.7252 0.8267 
HG00378 RNA Strong-evidence AL 7260 6985 275 SNP 0.9859 0.9945 0.9902 
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HG00378 RNA Strong-evidence AL 7260 6985 275 INDEL 0.806 0.7435 0.7735 
HG00378 DNA+RNA Strong-evidence AL 7260 6985 275 SNP 0.9859 0.9945 0.9902 
HG00378 DNA+RNA Strong-evidence AL 7260 6985 275 INDEL 0.806 0.7435 0.7735 
HG00378 DNA DNA-only GT 126959 109231 17728 SNP 0.9931 0.8722 0.9287 
HG00378 DNA DNA-only GT 126959 109231 17728 INDEL 0.8856 0.5655 0.6903 
HG00378 DNA DNA-only AL 126959 109231 17728 SNP 0.9738 0.8745 0.9215 
HG00378 DNA DNA-only AL 126959 109231 17728 INDEL 0.7248 0.6038 0.6588 
HG00378 RNA DNA-only GT 6808 6124 684 SNP 0.4401 0.7032 0.5414 
HG00378 RNA DNA-only GT 6808 6124 684 INDEL 0.2974 0.6216 0.4023 
HG00378 RNA DNA-only AL 6808 6124 684 SNP 0.9761 0.8615 0.9153 
HG00378 RNA DNA-only AL 6808 6124 684 INDEL 0.7629 0.6543 0.7044 
HG00378 DNA+RNA DNA-only AL 126960 109232 17728 SNP 0.9738 0.8745 0.9215 
HG00378 DNA+RNA DNA-only AL 126960 109232 17728 INDEL 0.7248 0.6038 0.6588 
HG00378 DNA RNA-only GT 3683 3157 526 SNP 0.4624 0.7438 0.5703 
HG00378 DNA RNA-only GT 3683 3157 526 INDEL 0.4493 0.6754 0.5396 
HG00378 DNA RNA-only AL 3683 3157 526 SNP 0.9616 0.8482 0.9013 
HG00378 DNA RNA-only AL 3683 3157 526 INDEL 0.7973 0.458 0.5818 
HG00378 RNA RNA-only GT 12357 10388 1969 SNP 0.9943 0.909 0.9497 
HG00378 RNA RNA-only GT 12357 10388 1969 INDEL 0.9247 0.5038 0.6522 
HG00378 RNA RNA-only AL 12357 10388 1969 SNP 0.9686 0.9115 0.9392 
HG00378 RNA RNA-only AL 12357 10388 1969 INDEL 0.8059 0.5513 0.6547 
HG00378 DNA+RNA RNA-only AL 12357 10388 1969 SNP 0.9686 0.9115 0.9392 
HG00378 DNA+RNA RNA-only AL 12357 10388 1969 INDEL 0.8059 0.5513 0.6547 
HG00378 DNA ASE GT 618 576 42 SNP 0.9841 0.1213 0.216 
HG00378 DNA ASE GT 618 576 42 INDEL 0.6363 0.1707 0.2692 
HG00378 DNA ASE AL 618 576 42 SNP 0.885 0.1506 0.2575 
HG00378 DNA ASE AL 618 576 42 INDEL 0.5555 0.2439 0.3389 
HG00378 RNA ASE GT 618 576 42 SNP 0.0158 0.05 0.024 
HG00378 RNA ASE GT 618 576 42 INDEL 0.0909 0.25 0.1333 
HG00378 RNA ASE AL 618 576 42 SNP 0.885 0.1506 0.2575 
HG00378 RNA ASE AL 618 576 42 INDEL 0.5555 0.2439 0.3389 
HG00378 DNA+RNA ASE AL 618 576 42 SNP 0.885 0.1506 0.2575 
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HG00378 DNA+RNA ASE AL 618 576 42 INDEL 0.5555 0.2439 0.3389 
HG00378 DNA RNA-editing GT 3024 2343 681 SNP 0.9757 0.7036 0.8176 
HG00378 DNA RNA-editing GT 3024 2343 681 INDEL 0.8404 0.4488 0.5851 
HG00378 DNA RNA-editing AL 3024 2343 681 SNP 0.9294 0.5252 0.6712 
HG00378 DNA RNA-editing AL 3024 2343 681 INDEL 0.6385 0.1527 0.2465 
HG00378 RNA RNA-editing GT 797 383 414 SNP 0.1904 0.0113 0.0213 
HG00378 RNA RNA-editing GT 797 383 414 INDEL 0.3 0.0075 0.0148 
HG00378 RNA RNA-editing AL 797 383 414 SNP 0.7125 0.154 0.2533 
HG00378 RNA RNA-editing AL 797 383 414 INDEL 0.5526 0.0502 0.0921 
HG00378 DNA+RNA RNA-editing AL 3031 2348 683 SNP 0.9302 0.5248 0.671 
HG00378 DNA+RNA RNA-editing AL 3031 2348 683 INDEL 0.6385 0.1523 0.2459 
HG00378 DNA RNA-rescue GT 137 74 63 SNP 0.4489 0.8461 0.5866 
HG00378 DNA RNA-rescue GT 137 74 63 INDEL 0.375 0.4285 0.4 
HG00378 DNA RNA-rescue AL 137 74 63 SNP 0.8709 0.7605 0.812 
HG00378 DNA RNA-rescue AL 137 74 63 INDEL 0.4285 0.1607 0.2337 
HG00378 RNA RNA-rescue GT 144 81 63 SNP 1 0.6794 0.8091 
HG00378 RNA RNA-rescue GT 144 81 63 INDEL 0.375 0.0526 0.0923 
HG00378 RNA RNA-rescue AL 144 81 63 SNP 0.8787 0.7341 0.8 
HG00378 RNA RNA-rescue AL 144 81 63 INDEL 0.4285 0.1578 0.2307 
HG00378 DNA+RNA RNA-rescue AL 144 81 63 SNP 0.8787 0.7341 0.8 
HG00378 DNA+RNA RNA-rescue AL 144 81 63 INDEL 0.4285 0.1578 0.2307 
HG00145 DNA ALL GT 179773 161639 18134 SNP 0.991 0.775 0.8698 
HG00145 DNA ALL GT 179773 161639 18134 INDEL 0.9014 0.5819 0.7072 
HG00145 DNA ALL AL 187864 168683 19181 SNP 0.9737 0.7842 0.8687 
HG00145 DNA ALL AL 187864 168683 19181 INDEL 0.7403 0.6165 0.6727 
HG00145 RNA ALL GT 20229 18203 2026 SNP 0.9953 0.971 0.983 
HG00145 RNA ALL GT 20229 18203 2026 INDEL 0.9245 0.6591 0.7696 
HG00145 RNA ALL AL 30022 27278 2744 SNP 0.981 0.8899 0.9332 
HG00145 RNA ALL AL 30022 27278 2744 INDEL 0.8203 0.6919 0.7506 
HG00145 DNA+RNA ALL AL 192533 172609 19924 SNP 0.9739 0.7889 0.8717 
HG00145 DNA+RNA ALL AL 192533 172609 19924 INDEL 0.7437 0.6211 0.6769 
HG00145 DNA Strong-evidence GT 8486 8208 278 SNP 0.9987 0.9887 0.9937 
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HG00145 DNA Strong-evidence GT 8486 8208 278 INDEL 0.9699 0.8129 0.8845 
HG00145 DNA Strong-evidence AL 8486 8208 278 SNP 0.9864 0.9903 0.9884 
HG00145 DNA Strong-evidence AL 8486 8208 278 INDEL 0.8297 0.8273 0.8285 
HG00145 RNA Strong-evidence GT 8486 8208 278 SNP 0.9987 0.9887 0.9937 
HG00145 RNA Strong-evidence GT 8486 8208 278 INDEL 0.9699 0.8129 0.8845 
HG00145 RNA Strong-evidence AL 8486 8208 278 SNP 0.9864 0.9903 0.9884 
HG00145 RNA Strong-evidence AL 8486 8208 278 INDEL 0.8297 0.8273 0.8285 
HG00145 DNA+RNA Strong-evidence AL 8486 8208 278 SNP 0.9864 0.9903 0.9884 
HG00145 DNA+RNA Strong-evidence AL 8486 8208 278 INDEL 0.8297 0.8273 0.8285 
HG00145 DNA DNA-only GT 171287 153431 17856 SNP 0.9904 0.7624 0.8616 
HG00145 DNA DNA-only GT 171287 153431 17856 INDEL 0.8999 0.5781 0.7039 
HG00145 DNA DNA-only AL 171287 153431 17856 SNP 0.9724 0.7711 0.8601 
HG00145 DNA DNA-only AL 171287 153431 17856 INDEL 0.7339 0.6123 0.6676 
HG00145 RNA DNA-only GT 8779 8102 677 SNP 0.4539 0.6653 0.5396 
HG00145 RNA DNA-only GT 8779 8102 677 INDEL 0.2897 0.5428 0.3778 
HG00145 RNA DNA-only AL 8779 8102 677 SNP 0.9754 0.8175 0.8895 
HG00145 RNA DNA-only AL 8779 8102 677 INDEL 0.7953 0.6838 0.7354 
HG00145 DNA+RNA DNA-only AL 171288 153431 17857 SNP 0.9724 0.7711 0.8601 
HG00145 DNA+RNA DNA-only AL 171288 153431 17857 INDEL 0.7338 0.6122 0.6675 
HG00145 DNA RNA-only GT 6921 5961 960 SNP 0.5547 0.7734 0.646 
HG00145 DNA RNA-only GT 6921 5961 960 INDEL 0.469 0.7017 0.5622 
HG00145 DNA RNA-only AL 6921 5961 960 SNP 0.9816 0.9174 0.9484 
HG00145 DNA RNA-only AL 6921 5961 960 INDEL 0.8339 0.6474 0.729 
HG00145 RNA RNA-only GT 11583 9883 1700 SNP 0.9926 0.959 0.9755 
HG00145 RNA RNA-only GT 11583 9883 1700 INDEL 0.9189 0.6454 0.7582 
HG00145 RNA RNA-only AL 11583 9883 1700 SNP 0.9819 0.9398 0.9604 
HG00145 RNA RNA-only AL 11583 9883 1700 INDEL 0.8309 0.6867 0.752 
HG00145 DNA+RNA RNA-only AL 11583 9883 1700 SNP 0.9819 0.9398 0.9604 
HG00145 DNA+RNA RNA-only AL 11583 9883 1700 INDEL 0.8309 0.6867 0.752 
HG00145 DNA ASE GT 1016 975 41 SNP 0.9902 0.1079 0.1946 
HG00145 DNA ASE GT 1016 975 41 INDEL 0.923 0.3333 0.4897 
HG00145 DNA ASE AL 1016 975 41 SNP 0.8702 0.1207 0.212 
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HG00145 DNA ASE AL 1016 975 41 INDEL 0.8333 0.4166 0.5555 
HG00145 RNA ASE GT 1014 973 41 SNP 0.0097 0.0142 0.0115 
HG00145 RNA ASE GT 1014 973 41 INDEL 0 0 0 
HG00145 RNA ASE AL 1014 973 41 SNP 0.8625 0.1207 0.2118 
HG00145 RNA ASE AL 1014 973 41 INDEL 0.8333 0.4166 0.5555 
HG00145 DNA+RNA ASE AL 1016 975 41 SNP 0.8702 0.1207 0.212 
HG00145 DNA+RNA ASE AL 1016 975 41 INDEL 0.8333 0.4166 0.5555 
HG00145 DNA RNA-editing GT 3938 3435 503 SNP 0.9775 0.6083 0.7499 
HG00145 DNA RNA-editing GT 3938 3435 503 INDEL 0.8061 0.4876 0.6076 
HG00145 DNA RNA-editing AL 3938 3435 503 SNP 0.8806 0.4539 0.5991 
HG00145 DNA RNA-editing AL 3938 3435 503 INDEL 0.6666 0.2114 0.321 
HG00145 RNA RNA-editing GT 819 573 246 SNP 0.0952 0.0049 0.0094 
HG00145 RNA RNA-editing GT 819 573 246 INDEL 0.3 0.0182 0.0344 
HG00145 RNA RNA-editing AL 819 573 246 SNP 0.6507 0.1459 0.2383 
HG00145 RNA RNA-editing AL 819 573 246 INDEL 0.3333 0.0391 0.07 
HG00145 DNA+RNA RNA-editing AL 3940 3435 505 SNP 0.8806 0.4539 0.5991 
HG00145 DNA+RNA RNA-editing AL 3940 3435 505 INDEL 0.6598 0.2092 0.3177 
HG00145 DNA RNA-rescue GT 154 108 46 SNP 0.3472 0.862 0.495 
HG00145 DNA RNA-rescue GT 154 108 46 INDEL 0.2307 0.3 0.2608 
HG00145 DNA RNA-rescue AL 154 108 46 SNP 0.9605 0.6886 0.8021 
HG00145 DNA RNA-rescue AL 154 108 46 INDEL 0.7037 0.4047 0.5139 
HG00145 RNA RNA-rescue GT 160 112 48 SNP 0.9605 0.6759 0.7934 
HG00145 RNA RNA-rescue GT 160 112 48 INDEL 0.6428 0.2142 0.3214 
HG00145 RNA RNA-rescue AL 160 112 48 SNP 0.9625 0.7 0.8105 
HG00145 RNA RNA-rescue AL 160 112 48 INDEL 0.7142 0.409 0.5202 
HG00145 DNA+RNA RNA-rescue AL 160 112 48 SNP 0.9625 0.7 0.8105 
HG00145 DNA+RNA RNA-rescue AL 160 112 48 INDEL 0.7142 0.409 0.5202 
NA20509 DNA ALL GT 96406 87806 8600 SNP 0.9917 0.8763 0.9304 
NA20509 DNA ALL GT 96406 87806 8600 INDEL 0.9203 0.6641 0.7715 
NA20509 DNA ALL AL 101784 92342 9442 SNP 0.9756 0.876 0.9232 
NA20509 DNA ALL AL 101784 92342 9442 INDEL 0.7442 0.6716 0.706 
NA20509 RNA ALL GT 32702 28109 4593 SNP 0.9917 0.9497 0.9702 
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NA20509 RNA ALL GT 32702 28109 4593 INDEL 0.9097 0.4701 0.6199 
NA20509 RNA ALL AL 42550 37076 5474 SNP 0.9797 0.9386 0.9587 
NA20509 RNA ALL AL 42550 37076 5474 INDEL 0.7924 0.5501 0.6494 
NA20509 DNA+RNA ALL AL 119228 106337 12891 SNP 0.976 0.8862 0.929 
NA20509 DNA+RNA ALL AL 119228 106337 12891 INDEL 0.7541 0.6285 0.6856 
NA20509 DNA Strong-evidence GT 10393 10040 353 SNP 0.9982 0.9852 0.9916 
NA20509 DNA Strong-evidence GT 10393 10040 353 INDEL 0.9559 0.808 0.8757 
NA20509 DNA Strong-evidence AL 10393 10040 353 SNP 0.9855 0.989 0.9872 
NA20509 DNA Strong-evidence AL 10393 10040 353 INDEL 0.8149 0.828 0.8214 
NA20509 RNA Strong-evidence GT 10393 10040 353 SNP 0.9982 0.9852 0.9916 
NA20509 RNA Strong-evidence GT 10393 10040 353 INDEL 0.9559 0.808 0.8757 
NA20509 RNA Strong-evidence AL 10393 10040 353 SNP 0.9855 0.989 0.9872 
NA20509 RNA Strong-evidence AL 10393 10040 353 INDEL 0.8149 0.828 0.8214 
NA20509 DNA+RNA Strong-evidence AL 10393 10040 353 SNP 0.9855 0.989 0.9872 
NA20509 DNA+RNA Strong-evidence AL 10393 10040 353 INDEL 0.8149 0.828 0.8214 
NA20509 DNA DNA-only GT 86013 77766 8247 SNP 0.9906 0.8618 0.9217 
NA20509 DNA DNA-only GT 86013 77766 8247 INDEL 0.9185 0.6576 0.7665 
NA20509 DNA DNA-only AL 86013 77766 8247 SNP 0.9742 0.862 0.9147 
NA20509 DNA DNA-only AL 86013 77766 8247 INDEL 0.7387 0.6893 0.7131 
NA20509 RNA DNA-only GT 9337 8506 831 SNP 0.4672 0.7151 0.5652 
NA20509 RNA DNA-only GT 9337 8506 831 INDEL 0.3814 0.6036 0.4674 
NA20509 RNA DNA-only AL 9337 8506 831 SNP 0.9764 0.8965 0.9347 
NA20509 RNA DNA-only AL 9337 8506 831 INDEL 0.7808 0.7123 0.745 
NA20509 DNA+RNA DNA-only AL 86014 77767 8247 SNP 0.9742 0.862 0.9147 
NA20509 DNA+RNA DNA-only AL 86014 77767 8247 INDEL 0.7387 0.6893 0.7131 
NA20509 DNA RNA-only GT 4705 3959 746 SNP 0.4991 0.7734 0.6067 
NA20509 DNA RNA-only GT 4705 3959 746 INDEL 0.4349 0.6313 0.515 
NA20509 DNA RNA-only AL 4705 3959 746 SNP 0.9793 0.9161 0.9467 
NA20509 DNA RNA-only AL 4705 3959 746 INDEL 0.8014 0.4453 0.5725 
NA20509 RNA RNA-only GT 22135 17941 4194 SNP 0.9879 0.9306 0.9584 
NA20509 RNA RNA-only GT 22135 17941 4194 INDEL 0.9049 0.4453 0.5969 
NA20509 RNA RNA-only AL 22135 17941 4194 SNP 0.9786 0.9443 0.9612 
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NA20509 RNA RNA-only AL 22135 17941 4194 INDEL 0.7955 0.499 0.6133 
NA20509 DNA+RNA RNA-only AL 22135 17941 4194 SNP 0.9786 0.9443 0.9612 
NA20509 DNA+RNA RNA-only AL 22135 17941 4194 INDEL 0.7955 0.499 0.6133 
NA20509 DNA ASE GT 512 461 51 SNP 0.9041 0.3296 0.4832 
NA20509 DNA ASE GT 512 461 51 INDEL 0.7142 0.2083 0.3225 
NA20509 DNA ASE AL 512 461 51 SNP 0.9264 0.4126 0.5709 
NA20509 DNA ASE AL 512 461 51 INDEL 0.8181 0.3541 0.4943 
NA20509 RNA ASE GT 511 461 50 SNP 0.0598 0.0943 0.0732 
NA20509 RNA ASE GT 511 461 50 INDEL 0.1428 0.2222 0.1739 
NA20509 RNA ASE AL 511 461 50 SNP 0.9264 0.4126 0.5709 
NA20509 RNA ASE AL 511 461 50 INDEL 0.8181 0.3541 0.4943 
NA20509 DNA+RNA ASE AL 512 461 51 SNP 0.9264 0.4126 0.5709 
NA20509 DNA+RNA ASE AL 512 461 51 INDEL 0.8181 0.3541 0.4943 
NA20509 DNA RNA-editing GT 5278 4013 1265 SNP 0.9697 0.6527 0.7803 
NA20509 DNA RNA-editing GT 5278 4013 1265 INDEL 0.8992 0.472 0.619 
NA20509 DNA RNA-editing AL 5278 4013 1265 SNP 0.9009 0.4739 0.6211 
NA20509 DNA RNA-editing AL 5278 4013 1265 INDEL 0.7031 0.1238 0.2106 
NA20509 RNA RNA-editing GT 1580 734 846 SNP 0.2727 0.0166 0.0314 
NA20509 RNA RNA-editing GT 1580 734 846 INDEL 0 0 0 
NA20509 RNA RNA-editing AL 1580 734 846 SNP 0.6645 0.1426 0.2348 
NA20509 RNA RNA-editing AL 1580 734 846 INDEL 0.5744 0.0284 0.0541 
NA20509 DNA+RNA RNA-editing AL 5284 4018 1266 SNP 0.8999 0.4731 0.6202 
NA20509 DNA+RNA RNA-editing AL 5284 4018 1266 INDEL 0.7031 0.1238 0.2106 
NA20509 DNA RNA-rescue GT 161 116 45 SNP 0.4479 0.6231 0.5212 
NA20509 DNA RNA-rescue GT 161 116 45 INDEL 0.3 0.3 0.3 
NA20509 DNA RNA-rescue AL 161 116 45 SNP 0.9411 0.8362 0.8855 
NA20509 DNA RNA-rescue AL 161 116 45 INDEL 0.5142 0.2888 0.3699 
NA20509 RNA RNA-rescue GT 174 128 46 SNP 0.9813 0.8203 0.8936 
NA20509 RNA RNA-rescue GT 174 128 46 INDEL 0.5454 0.1304 0.2105 
NA20509 RNA RNA-rescue AL 174 128 46 SNP 0.9469 0.8437 0.8923 
NA20509 RNA RNA-rescue AL 174 128 46 INDEL 0.5277 0.3043 0.386 
NA20509 DNA+RNA RNA-rescue AL 174 128 46 SNP 0.9469 0.8437 0.8923 
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NA20509 DNA+RNA RNA-rescue AL 174 128 46 INDEL 0.5277 0.3043 0.386 
HG00342 DNA ALL GT 129642 112838 16804 SNP 0.9935 0.8723 0.929 
HG00342 DNA ALL GT 129642 112838 16804 INDEL 0.8995 0.5826 0.7072 
HG00342 DNA ALL AL 134542 117182 17360 SNP 0.9742 0.869 0.9186 
HG00342 DNA ALL AL 134542 117182 17360 INDEL 0.7324 0.617 0.6698 
HG00342 RNA ALL GT 22708 20502 2206 SNP 0.9942 0.952 0.9726 
HG00342 RNA ALL GT 22708 20502 2206 INDEL 0.9285 0.6485 0.7636 
HG00342 RNA ALL AL 31556 28478 3078 SNP 0.9795 0.9102 0.9436 
HG00342 RNA ALL AL 31556 28478 3078 INDEL 0.8149 0.6772 0.7397 
HG00342 DNA+RNA ALL AL 144971 126229 18742 SNP 0.9748 0.875 0.9222 
HG00342 DNA+RNA ALL AL 144971 126229 18742 INDEL 0.7397 0.6229 0.6763 
HG00342 DNA Strong-evidence GT 8184 7865 319 SNP 0.9987 0.9905 0.9946 
HG00342 DNA Strong-evidence GT 8184 7865 319 INDEL 0.9691 0.7911 0.8711 
HG00342 DNA Strong-evidence AL 8184 7865 319 SNP 0.9839 0.9917 0.9878 
HG00342 DNA Strong-evidence AL 8184 7865 319 INDEL 0.8493 0.8132 0.8309 
HG00342 RNA Strong-evidence GT 8184 7865 319 SNP 0.9987 0.9905 0.9946 
HG00342 RNA Strong-evidence GT 8184 7865 319 INDEL 0.9691 0.7911 0.8711 
HG00342 RNA Strong-evidence AL 8184 7865 319 SNP 0.9839 0.9917 0.9878 
HG00342 RNA Strong-evidence AL 8184 7865 319 INDEL 0.8493 0.8132 0.8309 
HG00342 DNA+RNA Strong-evidence AL 8184 7865 319 SNP 0.9839 0.9917 0.9878 
HG00342 DNA+RNA Strong-evidence AL 8184 7865 319 INDEL 0.8493 0.8132 0.8309 
HG00342 DNA DNA-only GT 121458 104973 16485 SNP 0.9931 0.8632 0.9236 
HG00342 DNA DNA-only GT 121458 104973 16485 INDEL 0.8976 0.5785 0.7036 
HG00342 DNA DNA-only AL 121458 104973 16485 SNP 0.9735 0.8642 0.9156 
HG00342 DNA DNA-only AL 121458 104973 16485 INDEL 0.728 0.614 0.6662 
HG00342 RNA DNA-only GT 8051 7227 824 SNP 0.4447 0.7027 0.5447 
HG00342 RNA DNA-only GT 8051 7227 824 INDEL 0.2977 0.574 0.3921 
HG00342 RNA DNA-only AL 8051 7227 824 SNP 0.9766 0.8579 0.9134 
HG00342 RNA DNA-only AL 8051 7227 824 INDEL 0.7745 0.6531 0.7086 
HG00342 DNA+RNA DNA-only AL 121465 104978 16487 SNP 0.9735 0.8642 0.9156 
HG00342 DNA+RNA DNA-only AL 121465 104978 16487 INDEL 0.728 0.6139 0.6661 
HG00342 DNA RNA-only GT 3988 3519 469 SNP 0.4738 0.7649 0.5851 



 

 

 

 

127 

HG00342 DNA RNA-only GT 3988 3519 469 INDEL 0.4041 0.6666 0.5031 
HG00342 DNA RNA-only AL 3988 3519 469 SNP 0.9707 0.8822 0.9244 
HG00342 DNA RNA-only AL 3988 3519 469 INDEL 0.8111 0.6381 0.7143 
HG00342 RNA RNA-only GT 14404 12557 1847 SNP 0.9914 0.9285 0.9589 
HG00342 RNA RNA-only GT 14404 12557 1847 INDEL 0.922 0.6344 0.7516 
HG00342 RNA RNA-only AL 14404 12557 1847 SNP 0.9785 0.9324 0.9549 
HG00342 RNA RNA-only AL 14404 12557 1847 INDEL 0.8308 0.6818 0.749 
HG00342 DNA+RNA RNA-only AL 14405 12557 1848 SNP 0.9785 0.9324 0.9549 
HG00342 DNA+RNA RNA-only AL 14405 12557 1848 INDEL 0.8308 0.6818 0.749 
HG00342 DNA ASE GT 797 749 48 SNP 0.9823 0.1541 0.2665 
HG00342 DNA ASE GT 797 749 48 INDEL 0.7692 0.2272 0.3508 
HG00342 DNA ASE AL 797 749 48 SNP 0.9492 0.1833 0.3073 
HG00342 DNA ASE AL 797 749 48 INDEL 0.6785 0.3409 0.4538 
HG00342 RNA ASE GT 797 749 48 SNP 0.0176 0.0416 0.0248 
HG00342 RNA ASE GT 797 749 48 INDEL 0.0769 0.25 0.1176 
HG00342 RNA ASE AL 797 749 48 SNP 0.9492 0.1833 0.3073 
HG00342 RNA ASE AL 797 749 48 INDEL 0.6785 0.3409 0.4538 
HG00342 DNA+RNA ASE AL 797 749 48 SNP 0.9492 0.1833 0.3073 
HG00342 DNA+RNA ASE AL 797 749 48 INDEL 0.6785 0.3409 0.4538 
HG00342 DNA RNA-editing GT 3186 2752 434 SNP 0.9779 0.6605 0.7885 
HG00342 DNA RNA-editing GT 3186 2752 434 INDEL 0.8666 0.423 0.5685 
HG00342 DNA RNA-editing AL 3186 2752 434 SNP 0.9412 0.5044 0.6568 
HG00342 DNA RNA-editing AL 3186 2752 434 INDEL 0.5755 0.194 0.2902 
HG00342 RNA RNA-editing GT 606 404 202 SNP 0.1153 0.0128 0.0231 
HG00342 RNA RNA-editing GT 606 404 202 INDEL 0 0 0 
HG00342 RNA RNA-editing AL 606 404 202 SNP 0.8028 0.1548 0.2596 
HG00342 RNA RNA-editing AL 606 404 202 INDEL 0.4 0.034 0.0628 
HG00342 DNA+RNA RNA-editing AL 3191 2757 434 SNP 0.9412 0.5034 0.656 
HG00342 DNA+RNA RNA-editing AL 3191 2757 434 INDEL 0.5755 0.194 0.2902 
HG00342 DNA RNA-rescue GT 115 76 39 SNP 0.3396 0.72 0.4615 
HG00342 DNA RNA-rescue GT 115 76 39 INDEL 0.625 0.625 0.625 
HG00342 DNA RNA-rescue AL 115 76 39 SNP 0.9636 0.7794 0.8617 
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HG00342 DNA RNA-rescue AL 115 76 39 INDEL 0.5294 0.2571 0.3461 
HG00342 RNA RNA-rescue GT 120 80 40 SNP 0.9473 0.7605 0.8437 
HG00342 RNA RNA-rescue GT 120 80 40 INDEL 0.6666 0.1621 0.2608 
HG00342 RNA RNA-rescue AL 120 80 40 SNP 0.9661 0.76 0.8507 
HG00342 RNA RNA-rescue AL 120 80 40 INDEL 0.5555 0.2702 0.3636 
HG00342 DNA+RNA RNA-rescue AL 120 80 40 SNP 0.9661 0.76 0.8507 
HG00342 DNA+RNA RNA-rescue AL 120 80 40 INDEL 0.5555 0.2702 0.3636 
NA12878 WES calling ALL GT 259692 224840 34852 SNP 0.9966 0.9659 0.981 
NA12878 WES calling ALL GT 259692 224840 34852 INDEL 0.9569 0.4182 0.582 
NA12878 WES calling ALL AL 259692 224840 34852 SNP 0.9997 0.9692 0.9842 
NA12878 WES calling ALL AL 259692 224840 34852 INDEL 0.9895 0.4338 0.6032 
HG00171 WES calling ALL GT 130068 113298 16770 SNP 0.9936 0.8845 0.9359 
HG00171 WES calling ALL GT 130068 113298 16770 INDEL 0.896 0.5843 0.7073 
HG00171 WES calling ALL AL 130068 113298 16770 SNP 0.9752 0.8931 0.9323 
HG00171 WES calling ALL AL 130068 113298 16770 INDEL 0.7329 0.6266 0.6756 
HG00378 WES calling ALL GT 133523 116342 17181 SNP 0.9934 0.8772 0.9317 
HG00378 WES calling ALL GT 133523 116342 17181 INDEL 0.8899 0.588 0.7081 
HG00378 WES calling ALL AL 133523 116342 17181 SNP 0.9748 0.886 0.9283 
HG00378 WES calling ALL AL 133523 116342 17181 INDEL 0.7306 0.6276 0.6752 
HG00145 WES calling ALL GT 176389 158968 17421 SNP 0.9908 0.7747 0.8695 
HG00145 WES calling ALL GT 176389 158968 17421 INDEL 0.9021 0.5965 0.7181 
HG00145 WES calling ALL AL 176389 158968 17421 SNP 0.9734 0.7893 0.8717 
HG00145 WES calling ALL AL 176389 158968 17421 INDEL 0.7385 0.6352 0.683 
NA20509 WES calling ALL GT 97676 89030 8646 SNP 0.9913 0.8722 0.9279 
NA20509 WES calling ALL GT 97676 89030 8646 INDEL 0.919 0.6616 0.7693 
NA20509 WES calling ALL AL 97676 89030 8646 SNP 0.9757 0.8856 0.9285 
NA20509 WES calling ALL AL 97676 89030 8646 INDEL 0.7438 0.7027 0.7227 
HG00342 WES calling ALL GT 129270 113203 16067 SNP 0.9934 0.8681 0.9265 
HG00342 WES calling ALL GT 129270 113203 16067 INDEL 0.9031 0.6015 0.722 
HG00342 WES calling ALL AL 129270 113203 16067 SNP 0.9745 0.8774 0.9234 
HG00342 WES calling ALL AL 129270 113203 16067 INDEL 0.7347 0.64 0.684 
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