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Abstract

This thesis consists of three chapters on topics in Macroeconometrics. Chapter 1 develops

a hypothesis test to evaluate economic models and their forecasts robust to instabilities.

The test is particularly powerful in the presence of multiple breaks and can be applied to

in-sample and out-of-sample moment conditions. An application to predictability of the

U.S. equity premium provides evidence in favour of “predictability pockets”. Chapter 2

investigates the evolution of the Federal Reserve information advantage and the information

channel of U.S. monetary policy. It provides evidence that the information channel is

historically relevant, but finds substantially weaker evidence of its presence in recent

years, once instabilities are accounted for. Chapter 3 develops a semi-parametric approach

to conduct inference in non-Gaussian SVAR models robust to “weak” non-Gaussianity.

The method exploits non-Gaussianity when it is present, while yielding correct coverage

regardless of the distribution of the structural errors. An application revisits U.S. labor

supply and demand elasticities and highlights the limitations of using non-Gaussianity for

identification.

Resum

Aquesta tesi consta de tres capı́tols sobre temes de macroeconometria. El capı́tol 1

desenvolupa una prova d’hipòtesi per avaluar els models econòmics i les seves previsions

robustes a les inestabilitats. La prova és particularment potent en presència de trencaments

múltiples i es pot aplicar a condicions de moment dins i fora de la mostra. Una aplicació a la

predictabilitat de la prima de renda variable dels Estats Units proporciona evidències a favor

de “bosses de predictibilitat”. El capı́tol 2 investiga l’evolució de l’avantatge informativa

de la Reserva Federal i el canal d’informació de la polı́tica monetària dels Estats Units.

Proporciona evidències que el canal d’informació és històricament rellevant, però troba

proves substancialment més febles de la seva presència en els darrers anys, un cop es

comptabilitzen les inestabilitats. El capı́tol 3 desenvolupa un enfocament semiparamètric

per conduir la inferència en models SVAR no gaussians robustos a no gaussianitat “feble”.

El mètode explota la no-gaussianitat quan hi és present mentre proporciona una cobertura

correcta independentment de la distribució dels errors estructurals. Una aplicació revisa les

elasticitats de la oferta i la demanda de mà d’obra dels Estats Units i posa de manifest les

limitacions de l’ús del no gaussianisme per a la identificació.
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Preface

This thesis consists of three independent chapters on topics in Macroeconometrics.

In the first chapter, titled “Specification Tests Robust to Multiple Instabilities”, I develop

a hypothesis test for model evaluation which is robust to time-variation in parameters.

The proposed method is general and can be applied to any economic model which is

characterized by moment conditions. The test can be conducted in-sample to select between

two nested specifications of an economic model in the presence of parameter instabilities

or out-of-sample to evaluate the performance of model or judgmental forecasts robust to

time-variation. The key feature of the proposed test is that it is particularly powerful in the

presence of multiple shifts in parameters without imposing a specific form of time-variation.

Further, the test statistic provides narrative evidence on which parts of the sample drive the

rejection of the null hypothesis. Monte-Carlo simulations of the finite-sample performance

of the proposed test show that the test is accurately sized and has high power even when

model parameters only undergo one shift or are constant. Hence, researchers can use the

test even when there is uncertainty about whether and how parameters change over time.

In the empirical part of the paper, I use the test to document the presence of short-horizon

predictability in the U.S. equity premium during the postwar period. I find evidence of

predictability for a large set of variables once time-variation is taken into account. Further,

the test provides evidence of heterogeneity in the location of predictability episodes across

variables. The findings explain why traditional tests often fail to uncover predictability

in the full sample and why studies that split the sample at different dates often arrive at

conflicting results regarding the predictive ability of a wide class of financial variables.

The second chapter, titled “Has the Information Channel of Monetary Policy Disappeared?

Revisiting the Empirical Evidence”, which is joint work with Barbara Rossi and Tatevik

Sekhposyan, explores the empirical importance of the information channel of U.S. monetary

policy. The paper studies two questions related to the information channel, making an

important departure from the literature by explicitly taking instabilities into account. First,

we investigate a sufficient condition for the information channel and evaluate whether

the Federal Reserve has an information advantage relative to market participants when
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forecasting the current and future state of the economy. We show that instabilities are an

important empirical feature of the data and find that the Federal Reserve lost its short-

horizon information advantage regarding key macroeconomic variables in recent years.

Second, we study the evolution of the information channel. Specifically, we allow the

nature of monetary policy shocks to vary over time, depending on whether the information

advantage is present in the data. Similar to the information advantage, we find that the

information channel appears to be historically important, but that there is substantially

weaker empirical evidence of its presence in recent years, once instabilities are accounted

for. Our analyses show that in the most recent sample period, (i) market surprises are no

longer predictable by the Federal Reserve’s forecasts, (ii) private forecasters’ responses are

less sensitive to monetary policy shocks, and (iii) impulse responses to monetary policy

shocks are no longer confounded while an information-robust instrument is required to

recover responses with the expected signs in the previous sample period. Our results are

consistent with the hypothesis that the decline in the relevance of the information channel

is linked to improvements in the communication strategy of the Federal Reserve in recent

years.

The third chapter, titled “Robust Inference in Structural VAR Models Identified by Non-

Gaussianity”, which is joint work with Adam Lee and Geert Mesters, develops robust

inference methods for structural vector autoregressive (SVAR) models that are identified

using non-Gaussian error distributions. A growing literature exploits non-Gaussianity

identification to conduct inference in SVAR models. These papers build on a mathematical

result that in a stationary SVAR model with independent shocks, if at least all but one

components of the error term have a non-Gaussian density, all model parameters are

identified (up to signs and a potential re-ordering of the structural shocks). However, as

we show in this paper, existing inference methods in non-Gaussian SVARs are not robust to

situations in which the densities of the structural errors that generated the data are “close”

to a Gaussian distribution. In such cases, local identification deteriorates and coverage

distortions occur. We provide a solution to this problem by treating the SVAR model as a

semi-parametric model and using a semi-parametric equivalent of the Neyman-Rao score

statistic in order to conduct inference on the possibly weakly identified (or not identified)

parameters of the SVAR. We conduct a large simulation study to assess the finite-sample

performance of our method and find that the empirical rejection frequencies of the proposed

test are close to the nominal size, regardless of the true distribution of the structural errors.

Further, we find that the power of the semi-parametric score test comes close to that of

a parametric test which uses the true structural error densities. Finally, we employ the

proposed approach in an empirical study that revisits identification of supply and demand

elasticities in the U.S. labor market. We construct identification-robust confidence regions

for the labor supply and labor demand elasticities and construct robust confidence bands

for the impulse responses. We find that a non-Gaussianity identification strategy is not

sufficient to identify the dynamic response of the economy.
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Chapter 1
Specification Tests Robust to Multiple
Instabilities

1.1 Introduction

Instabilities in models of economic and financial time series are widespread. For example,

when forecasting U.S. stock returns, financial ratios might contain useful information during

some periods, but have no predictive ability during other periods (Farmer et al., 2019;

Chinco et al., 2019). Similarly, when estimating a structural model of real economic

activity, the absence of financial frictions in economic models might be unproblematic if

the estimation sample covers “normal” periods, but might be a crucial omission during

financial crises (Christiano et al., 2018). Instabilities are often implicitly acknowledged

by conducting sensitivity checks over different subsamples and are sometimes explicitly

addressed by testing for structural breaks in model parameters. However, they are

commonly ignored when evaluating the specification of a model by means of hypothesis

tests. Recently, a growing literature has raised concerns about this practice, arguing that

in unstable environments, traditional specification tests have low power and may give

conflicting results depending on the subsample considered (Rossi, 2013, 2020). This issue is

particularly relevant when estimation samples span long time periods which cover different

policy regimes, making it likely that model parameters undergo more than one shift. In

such an environment, researchers face an econometric problem: “How can we take multiple

instabilities into account when evaluating economic models or their forecasts?”

In this paper, I provide a general approach to test whether a parameter should be included

in a model robust to instabilities. The proposed hypothesis test can be applied in-sample

to select between two nested specifications of an economic model in the presence of

parameter instabilities1 or out-of-sample to evaluate the forecasting performance of model
1Such tests are widely used in the macroeconomic and financial literature and many studies document evidence
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or judgmental forecasts robust to time-variation.2 The main advantage of the proposed test

is that it is particularly powerful in the presence of multiple shifts in parameters without

imposing a specific form of time variation. At the same time, the test is accurately sized in

finite-samples and has high power even when model parameters only undergo one shift or

are constant. This makes the test particularly useful when the researcher faces uncertainty

about whether and how parameters change over time. The test is simple to compute, can be

efficiently implemented by a dynamic programming algorithm provided in the paper and the

test statistic path can be plotted to provide narrative evidence on which parts of the sample

drive the rejection of the null hypothesis.

The proposed test is a joint hypothesis test for both parameter instability and a constant

non-zero value of the parameter. In particular, the null hypothesis of the test specifies that

the parameter, which can potentially be time-varying, has a zero value at every point in time

throughout the sample. The test rejects against alternatives in which the parameter has a

non-zero value at some point in time over the sample. Therefore, the test detects departures

from the null hypothesis even when they only occur over short periods of the sample. This

makes the test more powerful than traditional hypothesis tests (such as t-tests, Wald or LM

tests) which are based on the full sample and fail to reject the null hypothesis if instabilities

“average out” over the sample. The joint null hypothesis also distinguishes the test from

tests of multiple structural breaks which are designed to detect parameter instability only

and do not reject against constant alternatives.

The novel test statistic is intuitive and flexible. The test statistic jointly considers all possible

splits of the sample at K splitting points into a sequence of consecutive blocks of variable

lengths. For each block, a statistic is computed which evaluates whether the data inside

each block supports a rejection of the null hypothesis. The test rejects if the combined

information from all possible splits supports the alternative hypothesis. This allows the test

to achieve high power in the presence of multiple shifts. The test can be constructed based

on a set of moment conditions involving the parameters of interest using both a Lagrange-

Multiplier (LM) form and a Wald form. The LM form imposes the null hypothesis that the

parameter is zero at every point in time. In contrast, the Wald form estimates the entire

parameter vector for each considered block by a partial-sample Generalized Method of

Moments (GMM) estimator. The test statistic can be computed for a fixed number of splits

or by specifying an upper bound of splits to take into account. Regardless of the number

of splits taken into account, the test statistic can be implemented efficiently by a dynamic

programming algorithm provided in the paper.

of instabilities. For example, Rossi (2006b) evaluates whether exchange rates are random walks and finds
instabilities in the parameters of interest. Similarly, Rossi (2013) finds instabilities when evaluating predictive
models of inflation. Welch and Goyal (2007) and Timmermann (2008) evaluate a wide set of predictive models
for US stock returns and document that predictive ability is time-varying.

2There is a large literature evaluating out-of-sample forecast performance by means of specification tests; Clark
and McCracken (2013) provide an overview. Rossi and Sekhposyan (2016) and Rossi (2020) document that
out-of-sample specification tests are affected by instabilities and discuss how to take instabilities into account
when evaluating forecasts.
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Finally, the test is widely applicable. In particular, the test can be applied to any economic

model which is described by a set of moment conditions. Moment conditions can be

derived from many reduced form models and structural models such as linear regressions,

vector autoregressions, structural equations identified using instrumental variables or even

dynamic stochastic general equilibrium models. Alternatively, the test can be used to

evaluate out-of-sample forecasting performance by applying it to a moment condition

describing a sequence of out-of-sample forecast errors. These forecast errors can be

obtained either from a forecasting model whose parameters are estimated using a recursive

scheme or from model-free forecasts such as survey or judgmental forecasts. Applications

include testing in the presence of instabilities for forecast unbiasedness, rationality,

efficiency or forecast encompassing.

This paper makes three contributions to the literature.

First, I provide an instability-robust hypothesis test for a general class of models, explicitly

taking multiple discrete shifts in parameters into account. In contrast to structural break

tests which test parameter stability only, the procedure jointly tests parameter stability and

a linear hypothesis on the parameter vector specified by the researcher. Contrary to tests

which assume a single break in parameters and only indicate the location of the largest

shift, the path of the proposed test statistic can be plotted to provide narrative evidence

on which periods of the sample are driving the rejection of the null hypothesis. I derive

the limiting distribution of the test statistic which is a function of independent Brownian

Motions and tabulate its critical values.

Second, I investigate the finite sample performance of the proposed test across a series

of data-generating processes and compare its performance to that of other tests from the

literature. The simulations illustrate that asymptotically, traditional hypothesis tests using

the full sample and tests of structural change, such as the UDmax test of Bai and Perron

(1998), have no power against some of the relevant alternatives. In contrast, the proposed

test exhibits significant and monotonic power for these alternatives. The simulations further

show that the proposed test is accurately sized across a variety of sample sizes and various

forms of serial correlation. Finally, I compare the finite sample power of the proposed

procedure to that of traditional specification tests based on the full sample and the QLR∗T
specification test imposing one break by Rossi (2005). I find that the proposed test yields

substantially larger finite-sample power if the data-generating process exhibits multiple

shifts in parameters. Further, if the data-generating process exhibits one shift or constant

coefficients, the power loss compared to existing tests is small. Thus, researchers can use

the proposed test without prior knowledge of whether and how parameters vary over time.

Third, I use the proposed test to document the presence of local short-horizon predictability

in the U.S. equity premium during the 1946-2019 period using a set of financial variables

considered by Welch and Goyal (2007). Recently, various studies have provided theoretical

and empirical evidence that predictability is concentrated in short-lived periods, so-called
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“pockets of predictability” (Timmermann, 2008).3 This form of predictability is particularly

difficult to detect using traditional specification tests (Rossi, 2020) and previous efforts are

based on repeated tests in overlapping samples of the data, leading to issues associated

with multiple testing (Farmer et al., 2019). In contrast, the test proposed in this paper

explicitly takes the search across multiple subsamples into account, thereby avoiding the

multiple testing problem. Hence, the test can be used to detect predictability even in the

presence of “predictability pockets”. I find that one-month-ahead excess market returns are

predictable from a larger set of variables than typically found in the literature once multiple

shifts in predictability are taken into account. In contrast to traditional predictability tests,

the conclusions from the proposed test are invariant to starting the sample after the 1951

Treasury Accord Act. Furthermore, the paths of the test statistics provide evidence of

heterogeneity in the location of predictability episodes across predictors. The findings

explain why traditional tests often fail to uncover predictability in the full sample and why

studies that split the sample at different dates often arrive at conflicting results regarding the

predictive ability of a wide class of variables.

LITERATURE. Several papers have proposed specification tests robust to instabilities.

However, these focus either on the case of a single break or on a different class of

alternatives than the one considered in this paper.

A related method to the one proposed in this paper which also builds on moment conditions

and tests a joint hypothesis is developed in Rossi (2005) which considers optimal tests for

the case of a single break in parameters. In contrast, the test statistic considered in this

paper allows the researcher to consider an unknown number of shifts in parameters up to

a specifiable upper bound and nests the case of a single break. This makes the test more

powerful in the presence of multiple shifts in parameters while retaining comparable power

if the parameter shifts only once. In addition, the path of the proposed test statistic provides

narrative evidence on which periods of the sample are driving the rejection of the hypothesis

whereas a test imposing one break indicates the location of the largest shift in the parameter

vector.

A different strand of the literature designs hypothesis tests which are robust against

particular alternatives. These include tests for predictability in threshold models (Gonzalo

and Pitarakis, 2012, 2017), tests of relative forecasting performance under Markov-

switching alternatives (Odendahl et al., 2020), automated model-selection in the presence

of instabilities (Castle et al., 2012) and real-time detection of predictability regimes (Harvey

et al., 2020). The advantage of the test which is proposed in this paper is that it remains

agnostic about the specific process driving the changes in parameters and thus offers a

general approach that can be used if the researcher has no prior knowledge on whether
3Timmermann (2008) notes that “[...] there appear to be pockets in time where there is modest evidence of local
predictability; [...] the identity of the best forecasting method can be expected to vary over time, and there are
likely to be periods of model breakdown where no approach seems to work”.
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and how parameters vary over time.

Finally, there is a large literature on testing for multiple structural changes. A seminal

contribution is Bai and Perron (1998) who proposed supF tests in a class of linear

regression models. Structural break tests of multiple changes have since been extended

to more general classes of models (Sowell, 1996; Perron and Qu, 2006; Qu and Perron,

2007; Elliott and Müller, 2006). A related literature provides structural change tests for

predictive regression models; Pitarakis (2017) and Georgiev et al. (2018) are two examples

of recent contributions. In contrast to the approach presented in this paper which tests a

joint hypothesis, structural change tests focus on the null hypothesis of parameter stability

only and therefore do not have power against some of the alternatives considered in this

paper.

OUTLINE. Section 1.2 discusses the hypotheses of interest and proposes the test statistic.

Sections 1.3 and 1.4 discuss the relevant asymptotic theory to conduct in-sample and

out-of-sample inference, respectively. Section 1.5 provides a guide for implementing the

test. Section 1.6 explores the finite sample performance of the proposed test by means of

extensive Monte Carlo simulations. Section 1.7 applies the test to study the predictability

of the U.S. equity premium robust to instabilities. Section 1.8 concludes.

1.2 Specification tests robust to multiple instabilities

This section formalizes the testing problem of parameter inclusion under instabilities and

introduces the test statistic.

1.2.1 Model and hypotheses

Consider a model indexed by a v-dimensional parameter vector θt for t = 1, . . . , T . Assume

the parameter vector partitions θt = (β′t, δ) where βt is (p × 1) and δ is (q × 1). Further,

assume the model satisfies the following m-dimensional moment condition

E
[
f(zt, βt, δ)

]
= 0 (1.1)

where zt is an r-dimensional random vector of data and f : Rr ×Rp×Rq → Rm.

Based on the moment condition in (1.1), the researcher wants to test whether the sequence

of possibly time-varying parameters βt should be included when modeling the data. The

relevant hypotheses are

H0 : βt = 0 ∀ t vs. HA : βt 6= 0 for some t ≥ 1 (1.2)
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Under the null hypothesis βt is zero at any point in the sample and thus can be excluded

from the model. Under the alternative, βt is different from zero at some point in the sample

and should be included in the model.4 The test of parameter inclusion is thus required to

be sensitive to situations in which βt departs from zero only during short periods over the

sample.

It will be useful to express the null hypothesis as an intersection. Let β0 denote the true

parameter value under the null hypothesis that βt is constant in which case θ0 = (β0, δ0).

Then, we can express the null hypothesis in (1.2) as

H0 : βt ∈ B1 ∩B2 with B1 ≡
{
βt ∈ Rp : βt = β0 ∀ t

}
B2 ≡

{
β0 ∈ Rp : β0 = 0

} (1.3)

Denote the first part of this null hypothesis imposing a constant parameter vector by

H
(1)
0 : βt ∈ B1 and the second part imposing a zero value by H(2)

0 : βt ∈ B2.

It is important to note that the hypotheses in (1.2) are different from those of a test assuming

constant parameters. In particular, if the researcher misspecifies the moment condition in

(1.1) by assuming that θ is constant and tests the hypothesis H0 : β = 0 against the

alternative HA : β 6= 0, the test will reject if the constant parameter β is different from

zero rather than βt being zero. Depending on the form of time-variation in βt, it can be the

case that β = 0 but that βt 6= 0 for some t. In that case instabilities “average out” over

the sample and a test of the hypotheses in (1.2) will reject while a test assuming constant

parameters will not.5

One might be tempted to think that a test of the hypotheses in (1.2) is simply a test

of parameter stability. However, as (1.3) shows, the relevant null hypothesis is a joint

hypothesis which simultaneously imposes (i) a constant coefficient vector and (ii) a zero

value on the constant coefficient vector. In contrast, the null hypothesis of a test for

parameter stability only focuses on the first part, that is H(1)
0 . This implies that there are

data-generating processes for which a test of parameter stability does not reject while the test

considered in this paper does. In particular, this would be the case when the true parameter

vector is constant, but different from zero.

The test statistic proposed in this paper detects violations of the null hypothesis in equation

(1.2) by combining information obtained from partitioning the sample into a series of

discrete consecutive blocks. In particular, the test searches over all possible combinations of

K+1 discrete segments and evaluates whether there is evidence to reject the null hypothesis.

While the test does not impose an alternative of a particular form, it has particularly high

power when the parameter undergoes a series of discrete changes. Specifically, assume that

βt has a “baseline value” of βA but that it undergoes a series of K discrete changes where
4Note that by redefining βt one can similarly test any linear hypothesis on the parameter.
5For a detailed explanation of this argument see the discussion in Rossi (2005) and Rossi (2013).
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the value of βt departs from βA. Collect these change-points expressed as a fraction of the

sample in a K-dimensional vector λK := (λ1, . . . , λK) where λj ∈ (0, 1) and λj > λj−1.

Further, collect the magnitudes of these changes in a K-dimensional vector β∆. Under this

assumption, the alternative hypothesis in (1.2) can be expressed as

HA : βt = βA +

K∑
j=1

1
(
[λjT ] < t ≤ [λj+1T ]

)
· β∆,j t = 1, . . . , T (1.4)

where β∆,j denotes the j-th element of β∆, λ0 ≡ 0, λK+1 ≡ 1 and [·] is the integer

part operator.6 The proposed test statistic searches across all possible values of λK to best

approximate the path of βt and evaluates for each candidate λK whether the null hypothesis

βt = 0 ∀t can be rejected. If the path of βt takes the form described in (1.4), there is a value

of K and λK for which the approximation will be exact. This makes the test particularly

powerful in the presence of discrete changes.

Tests of the hypothesis considered above have many applications in empirical work. At

the end of this section, I provide various examples of problems which have been studied

in the macroeconomic and financial literature and illustrate how they fit into the testing

framework.

1.2.2 Test statistics

This section introduces a class of test statistics which can be used to test the null hypothesis

defined in (1.2). As previewed before, the main idea of the tests is simple: To detect

departures from the null hypothesis, the test statistic jointly considers all possible splits

of the sample at K splitting points into a sequence of K + 1 consecutive blocks of variable

length. For each block, a statistic is computed which evaluates whether the data inside each

block supports a rejection of the null hypothesis. If there is a sample split for which the

sum of statistics computed on each block supports the alternative, the test rejects. In what

follows, I first describe how to construct the test statistic for a fixed number of sample splits

K. Consecutively, I discuss how to robustify the test against the choice of K.

Test with a fixed number of splits K

Assume the researcher wants to test parameter inclusion robust to time-variation according

to the hypotheses in (1.2) on a sample t = T0, . . . , T where T0 denotes the first observation

and is typically set to 1. Let λK denote a K-dimensional vector of splitting points

λK := (λ1, . . . , λK) where λj ∈ (0, 1) and λj > λj−1. Each value of λK implies a

different partition of the sample into a sequence of K + 1 consecutive blocks where block

j spans data from t = [λj−1T ] + 1, . . . , [λjT ] with T0 ≡ [λ0T ] + 1 and λK+1 ≡ 1.

6For example, when βt = 0 for t = 1, . . . , [T/2] and βt = β∆ for t = [T/2] + 1, . . . , T , then βA = 0,
λ1 = 1/2, K = 1 and β∆ is a scalar. In contrast, when βt is constant at βA for t = 1, . . . , T , K = 0.
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For simplicity of exposition, I first abstract from the choice of the number of splits and

assume that K is a known value. The proposed test statistic for testing the null hypothesis

in (1.2) using K sample splits takes the following form.

sup ΦT (K) := sup
λK∈Λε

K+1∑
j=1

ΦT,j(λj−1, λj)

Λε ≡
{
λj : λj ∈ (λ0 + ε, λK+1 − ε), λj > λj−1 + ε, j = 1, . . . ,K

} (1.5)

For a given sample split λK , the test statistic is simply the sum of K + 1 statistics

ΦT,j(λj−1, λj) computed on each block of the data. The supλK part of the test statistic

searches over all possible combinations of K splitting points for the choice of λK which

maximizes this sum. The value at the optimal choice of λK which yields the maximum

value for the sum term is the final value of the test statistic.

Note that the search of λK is restricted to a set Λε defined by a trimming parameter ε ∈ (0, 1)

which imposes that each of the blocks contains at least [εT ] observations. This parameter

is set by the researcher prior to conducting the test and its choice depends on the stochastic

properties of the data.7 The simulations presented in Section 1.6 provide guidance on

the trade-offs of choosing a lower or higher value of ε. In most applications, a choice

of ε = 0.05 or ε = 0.1 is sufficient.

Choice for ΦT,j(·, ·)

The test statistic above crucially depends on the choice for ΦT,j(·, ·). In this paper, I

consider two forms, a Lagrange-Multiplier (LM) statistic and a Wald statistic. The LM

form imposes the value of βt to be zero in each block while the Wald form estimates βt in

each block. In both cases, the test statistic builds on partial sums of the moment condition

defined in equation (1.1), evaluated at estimates of δ.

The tests proposed in this paper can be conducted based on moment conditions formulated

in-sample or out-of-sample. These two cases differ in the portion of the sample on which

the test statistic is constructed as well as the estimation scheme which is used to estimate

δ. In the in-sample case, the test is conducted on the full sample setting T0 = 1 and δ

is estimated based on the moment condition in (1.1). The resulting estimate is denoted δ̂.

In contrast, in the out-of-sample case the test is conducted on an out-of-sample portion of

the data setting T0 = R where R � 1. Here, δ is the parameter of a forecasting model

identified by a separate moment condition which is estimated using a recursive scheme on

an in-sample portion of the data, yielding a sequence of estimators of δ denoted {δ̂t}Tt=R.

The in-sample case is discussed in more detail in Section 1.3 while the out-of-sample case

is discussed in Section 1.4 of the paper.
7The use of trimming parameters is standard in tests for structural breaks, see e.g. Andrews (1993) or Bai and
Perron (1998).
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LAGRANGE-MULTIPLIER FORM. If the test is implemented using the Lagrange-Multiplier

form, the test statistic is constructed using the following choice for ΦT,j(·, ·).

ΦLM
T,j (λj−1, λj) := F̂ ′T,j × Ω̂T,j × F̂T,j

F̂T,j := (T − T0 + 1)−1/2 Σ̂
−1/2
ff

[λjT ]∑
t=[λj−1T ]+1

f(zt, θ̃t)
(1.6)

Note that f(·, ·) is the moment function which was defined in equation (1.1), Σ̂ff is

a consistent estimator of the long-run variance of the sample moments under the null

hypothesis and Ω̂T,j is a consistent estimator of the long-run variance of F̂T,j . Formulas to

compute these estimators are given in Section 1.5 of this paper. θ̃t is a restricted generalized

method of moments (GMM) estimator of θt that imposes the joint null hypothesis defined

in (1.2) which restricts βt = β0 = 0 ∀ t while leaving δ unspecified.

The difference between testing in-sample and out-of-sample using the statistic above lies

in how the estimate of δ, and consequently θ̃t is obtained. In the out-of-sample case, the

restricted estimator is formed as θ̃t := (0p×1, δ̂t) where {δ̂t}Tt=T0
is a sequence of estimates

of δ which is obtained via a recursive estimation scheme. Section 1.4 discusses in detail

how to obtain these estimates. In contrast, in the in-sample case θ̃t = θ̃ ∀t where θ̃ is a

constant GMM estimator which is defined as follows.

θ̃ := arg max
θ ∈ Θ

Q̂T (θ) Q̂T (θ) ≡ F̂T (θ)′ WT F̂T (θ)

F̂T (θ) ≡ (T − T0 + 1)−1
T∑

t=T0

f(zt, θ)

subject to A θ = 0p×1 A =
[
Ip×p 0p×q

] (1.7)

F̂T (θ) is the sample analogue of the moment condition defined in (1.1) andWT is a positive

definite weighting matrix.

WALD FORM. If the test is implemented using the Wald form, the test statistic is constructed

using the following choice for ΦT,j(·, ·).

ΦW
T,j(λj−1, λj) := (T − T0 + 1)

[
β̂j(λj−1, λj)

]′ × Ω̂−1
T,j ×

[
β̂j(λj−1, λj)

]
(1.8)

The difference between conducting the test in-sample and out-of-sample lies in how the

estimate of β̂j(·, ·) is obtained. In the in-sample case, β̂j(λj−1, λj) := A θ̂j(λj−1, λj)

where A ≡
[
Ip×p 0p×q

]
and θ̂j(λj−1, λj) is defined as the following GMM estimator
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which assumes the parameter θ has a constant value in block j.

θ̂j := arg max
θ ∈ Θ

Q̂T,j(θ) Q̂T,j(θ) ≡ F̂T,j(θ)′ WT F̂T,j(θ)

F̂T,j(θ) ≡
(
[λjT ]− [λj−1T ]

)−1
[λjT ]∑

t=[λj−1T ]+1

f(zt, θ)
(1.9)

where F̂ is a partial-sample analogue of the moment condition defined in (1.1) and WT is a

positive definite weighting matrix.

In contrast, in the out-of-sample case β̂j is obtained using a similar GMM estimator.

β̂j := arg max
β ∈ B

Q̂T,j(β) Q̂T,j(β) ≡ F̂T,j(β)′ WT F̂T,j(β)

F̂T,j(β) ≡
(
[λjT ]− [λj−1T ]

)−1
[λjT ]∑

t=[λj−1T ]+1

f(zt, β, δ̂t)
(1.10)

In contrast to the in-sample case, the estimator does not define an estimate of δ, but evalu-

ates the partial-sample moment at the given sequence of parameter estimates, {δ̂t}Tt=T0
.

In a given application, both the LM and the Wald form of ΦT,j(·, ·) can be used to construct

the sup ΦT (K) test statistic defined above. However, their performance may differ in finite

samples depending on the application considered. Generally, the LM form of the test

statistic is computationally efficient as it only requires computing an estimate of θ under

the null hypothesis. In contrast, the Wald form of the test statistic requires re-estimating θ

for each block and every sample partition considered.8 Because of its general computational

benefits, the rest of the paper will mainly focus on the LM form of the test statistic.

To implement the LM and Wald statistics, one requires the variance estimators Σ̂ff and

Ω̂T,j . Formulas to compute these estimators are given in Section 1.5. Computation of the

supKλ operator in (1.5) can be achieved efficiently by means of a dynamic programming

algorithm which is also provided in Section 1.5. The algorithm computes the LM form in

O(T 2) operations computing the sum term in equation (1.5).

Test for an unknown number of splits

The discussion in the previous section has made a simplifying assumption, namely that the

researcher wants to conduct the test with a specific number of splits K in mind. However,

in practice it is unlikely that the researcher has prior information about the appropriate

choice of K. To circumvent this problem, this section presents a robustified version of

the test statistic which abstracts from the choice of K by combining information from

computing the test statistic for different values for K, starting at one and stopping at some
8For linear models, this estimator can be implemented efficiently by a recursion.
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pre-defined ceiling, K̄.9 The proposed test statistic for testing the joint null hypothesis in

(1.2) considering up to K̄ splits of the sample has the following form.

D sup ΦT (K̄) := max
1≤k≤K̄

{
sup ΦT (k)/k

}
(1.11)

where sup ΦT is the test statistic defined in equation (1.5).

To compute this test statistic, one computes the sup ΦT (k) statistic for different choices

of k = 1, . . . , K̄. The resulting values are then weighted by the number of shifts used to

compute them. The maximal value of this re-weighted series of test statistics is the final

value of the test statistic.

In practice, a choice of K̄ as low as five or ten is often sufficient in applications. In fact,

simulations show that the choice of K̄ has little impact on size and power of the test beyond

these values.10 In general, the admissible values of K̄ are bounded above by the choice of

the trimming parameter ε which is used to compute the sup ΦT statistic since it imposes

a minimum number of observations for each segment and therefore implicitly defines an

upper bound on K. For instance when ε = .1, the maximum number of admissible splits

which can be considered is K̄ = 10.

1.2.3 Examples

Tests which are robust to heterogeneity in parameters over time have many applications in

empirical work. In the following, I provide two examples of testing problems which have

been widely studied in the macroeconomic and financial literature and illustrate how they

fit into the testing framework.

PREDICTIVE REGRESSIONS. Consider the following model

yt+h = δ +X ′t β + ηt+h t = 1, . . . , T (1.12)

where yt+h is a scalar series to be predicted in-sample at horizon h, Xt is a (p × 1) vector

of predictors which are suspected to have a time-varying relationship with yt+h, δ is the

constant of the regression and ηt+h is a sequence of unforecastable errors. A large literature

in macroeconomics and finance studies tests of the hypothesis H0 : β = 0 in the model

above e.g. to determine the predictive ability of financial variables (Pitarakis and Gonzalo,

2019) or to evaluate model specifications for variables such as inflation (Rossi, 2005).

However, in recent years many studies have documented that predictive ability in these

models, which is captured by β, is time-varying and that tests based on the full sample may

fail to reject in the presence of predictability (Welch and Goyal, 2007; Timmermann, 2008;

Rossi, 2013).
9A similar method to robustify tests to the choice ofK was first proposed in the context of structural break tests
in Bai and Perron (1998).

10The simulation results are available on request.
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To implement the test robust to instabilities in the parameters, replace β in equation (1.12)

by βt and note that the resulting model implies the following moment condition.

E
[
f(zt, βt, δ)

]
= 0 f(zt, βt, δ) ≡

[
Xt · (yt+h − δ −X ′tβt)
1 · (yt+h − δ −X ′tβt)

]

where zt = (yt+h, X
′
t)
′ and θt = (β′t, δ)

′.

To conduct the D sup ΦT (K) test based on the LM statistic, compute the restricted GMM

estimator θ̃ via the estimator in (1.7) which imposes the null hypothesis βt = 0 ∀t. Set

T0 = 1 and use the variance estimator in (1.15) or (1.17) to compute Σ̂ff and use (1.18)

to compute Ω̂T,j . Then, compute D sup ΦT (K̄) defined in (1.11) by means of the dynamic

programming algorithm described in Section 1.5. Reject the null hypothesis of no predic-

tive ability if the computed value of the test statistic is larger than the appropriate critical

value reported in Section 1.3.

OUT-OF-SAMPLE PREDICTIVE ABILITY. West and McCracken (1998) proposed a

framework to evaluate out-of-sample predictive ability by testing the null hypothesis H0 :

β = 0 vs. HA : β 6= 0 in the following linear model

vt+h(δ̂t) = ξ̂(zt, δ̂t)
′ β + ηt+h, t = R, . . . , T (1.13)

where vt+h(δ̂t) is a sequence of forecast errors derived from a parametric forecasting

model which depend on the sequence of estimated parameters of the forecasting model

δ̂t. By appropriately choosing the function ξ̂(zt, δ̂t), the framework includes popular

test for forecast evaluation such as tests of forecast unbiasedness, forecast rationality

or forecast encompassing. Many studies provide empirical evidence that out-of-sample

predictive ability is time-varying e.g. for forecast rationality of private sector forecasts or

for forecast encompassing tests evaluating the information-advantage of Federal Reserve

forecasts (Rossi and Sekhposyan, 2016; Hoesch et al., 2020).

To implement the proposed test robust to heterogeneity in β, note that for time-varying βt,

the model above implies the following moment condition.

E
[
f(zt, βt, δ̂t)

]
= 0 f(zt, βt, δ̂t) ≡ ξ̂(zt, δ̂t) ·

(
vt+h(δ̂t)− ξ̂(zt, δ̂t)′βt

)
(1.14)

where zt = vt+h(δ̂t).

For the purpose of this example, focus on a test of forecast unbiasedness which sets

ξ̂(zt, δ̂t) = 1. West and McCracken (1998) showed that in this case parameter estimation

error in δt is asymptotically irrelevant (for more details see Section 1.4) so that we can

use the simple formulas for the variance estimators reported above. To conduct the

D sup ΦT (K) test based on the LM statistic, set θ̃t = (0′p×1, δ̂t) and T0 = R and use
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the variance estimator in (1.15) or (1.17) to compute Σ̂ff and use (1.18) to compute Ω̂T,j .

Then, compute D sup ΦT (K̄) defined in (1.11) by means of the dynamic programming

algorithm described in Section 1.5. The null hypothesis of forecast unbiasedness can be

rejected if the computed value of the test statistic is larger than the appropriate critical value

reported in Section 1.4.

1.3 In-sample inference

This section describes the relevant asymptotic theory to conduct in-sample inference. In the

in-sample case, the sup ΦT (K) test statistic defined in equation (1.5) and theD sup ΦT (K̄)

test statistic in equation (1.11) are constructed setting T0 = 1 and evaluating ΦT (·, ·) at the

relevant GMM estimators defined in equations (1.7) and (1.9) for the LM and Wald case,

respectively. This section presents and discusses a set of regularity assumptions which are

sufficient to obtain weak convergence of the test statistics under the null hypothesis to a

function of Brownian Motions. This result is established in the main theorem of this section.

NOTATION. I introduce some notational conventions that are required for this section and

used throughout the rest of the paper. Let (Ω,F ,P) denote a probability space on which

all of the random elements are defined. Unless specified otherwise, all limits are taken

as the sample size T → ∞. The symbol
p→ denotes convergence in probability and d→

denotes convergence in distribution. Next, ⇒ denotes weak convergence for sequences of

measurable random elements of a space of bounded Euclidean-valued cadlag functions on

the product spaceD[0, 1]m as defined in Phillips and Durlauf (1986) where each component

space D[0, 1] is equipped with the Skorohod metric. ‖·‖ denotes the Euclidean norm of a

vector or matrix.

The following regularity assumptions are sufficient to obtain weak convergence of the test

statistics under the null hypothesis to the limiting distribution characterized in the theorem

below.

ASSUMPTION 1.3.1 (Regularity conditions): Assume the following regularity conditions

hold.

(i) {zt} is strong mixing with strong mixing coefficients {α(n)},
∑∞

n=1 α(n)1−2/γ <∞
with γ > 2.

(ii) {zt} is weakly stationary. In addition E[f(zt, θ0)] = 0 for all t = 1, . . . , T and

T = 1, 2, . . . and the individual elements of f(zt, θ0) have the finite absolute moment

E
[
|f (i)(zt, θ0)|γ

]
<∞ for i = 1, . . . ,m and γ > 2.

(iii) Σff ≡ limT→∞ E
[
T−1

{∑T
t=1 f(zt, θ0)

}{∑T
t=1 f(zt, θ0)

}′] ∈ Rm ×m is

positive definite.
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(iv) f(z, θ) is continuously partially differentiable in θ in a neighborhood of θ0 for every

θ0 ∈ Θ∗ where Θ∗ is some convex or open set that contains Θ. The functions

f(z, θ) and ∇θf(z, θ) ≡ ∂f(z, θ)/∂θ are measurable functions of z for each

θ ∈ Θ and E
[

supθ∈Θ∗‖∇θf(zt, θ)‖
]
< ∞. E[f(zt, θ0)′f(zt, θ0)] < ∞, and

supθ∈Θ‖f(zt, θ)‖ < ∞ for all t = 1, . . . , T and T = 1, 2, . . .. Each element of

f(zt, θ0) is uniformly square integrable, for all t = 1, . . . , T and T = 1, 2, . . ..

(v) The parameter space Θ is a compact subset of Rv.

(vi) limT→∞ E
[

1
T

∑T
t=1 f(zt, θ)

]
= 0, only when θ = θ0

(vii) The sequence of positive definite weighting matrices WT →p Σ−1
ff .

(viii) M ≡ limT→∞ E
[
T−1

∑T
t=1

∂f(zt,θ)
∂θ′ |θ=θ0

]
∈ Rm×v has full column rank.

I now discuss Assumption 1.3.1. Assumptions 1.3.1.(i) and 1.3.1.(ii) are asymptotic weak

dependence and stationarity conditions on the data which are typical of those found in other

literature on nonlinear dynamic models and are closest to the conditions given in Sowell

(1996) or Rossi (2005).11. Together with Assumption 1.3.1.(iii) which assumes positive

definiteness of the long-run variance of the sample moments, the assumptions are sufficient

to obtain weak convergence of the partial sample moments to Brownian Motions using the

multivariate functional central limit theorem of Phillips and Durlauf (1986). Assumption

1.3.1.(iv) are standard smoothness and boundedness conditions on the sample moment

function under the null hypothesis f(z, θ). An analogue of this assumption is used in

Sowell (1996). Together with Assumption 1.3.1.(v) which assumes a compact parameter

space and Assumption 1.3.1.(i), the conditions ensure uniform convergence of the GMM

objective function via the generic uniform law of large numbers of Andrews (1987). To-

gether with Assumption 1.3.1.(vi) which assumes identification under the null hypothesis,

the conditions are sufficient to obtain consistency of the GMM estimators used to construct

the test statistic. Assumption 1.3.1.(vii) restricts the choice of weighting matrices used

to construct the GMM estimators by requiring that an efficient GMM estimator is used.

Finally, Assumption 1.3.1.(viii) which requires the gradient of the sample moment to have

full rank ensures that the test statistic has a well-defined asymptotic variance.

The following theorem establishes the asymptotic distribution of the test statistic under the

null hypothesis.

11The assumptions, in particular the weak stationarity condition, are stronger than necessary and the results
presented in this paper are expected to hold if the assumptions are relaxed to the near-epoch-dependence case
in Andrews (1993).
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THEOREM 1.3.1 (Limiting distribution for in-sample tests): Assume that the regularity

conditions in Assumption 1.3.1 hold. Under the null hypothesis defined in (1.3), it holds

that

sup ΦT (K) ⇒ sup
λK ∈ Λε

K+1∑
j=1

{
‖Bp(λj)− Bp(λj−1)‖2

λj − λj−1

}

D sup ΦT (K̄)⇒ max
1≤k≤K̄

(1/k) sup
λK ∈ Λε

K+1∑
j=1

{
‖Bp(λj)− Bp(λj−1)‖2

λj − λj−1

}
Λε ≡

{
λj : λj ∈ (ε, 1− ε), λj > λj−1 + ε, j = 1, . . . ,K

}
where λ0 ≡ 0, λK+1 ≡ 1 and Bp(·) is a (p × 1) vector of independent standard Brownian

motions on [0, 1].

The proof of this theorem is reported in Appendix C.

One can show that the limiting distribution of sup ΦT (K) is equivalent to

sup
λ ∈ Λε

K∑
i=1

‖λi+1 Bp(λi)− λi Bp(λi+1)‖2

λiλi+1(λi+1 − λi)
+ Bp(1)′ Bp(1)

where the first term is the same as (1/Kp) times the limiting distribution of the supF test

for parameter stability of Bai and Perron (1998) and depends on the number of splitting

points K. The second component reflects the additional restrictions on β and does not

depend on K. It is equivalent to the χ2 distribution with p degrees of freedom which is the

limiting distribution of a standard LM test conducted on the full sample. Further, note that

for K = 1, the limiting distribution reduces to the limiting distribution of the QLR∗T model

selection test robust to instabilities which was proposed in Rossi (2005) and imposes one

break.

Critical values of the test statistics can be obtained by directly simulating the limiting

distributions in Theorem 1.3.1 using a dynamic programming algorithm analog to the one

provided in Section 1.5. Table 1.1 reports a selection of critical values for the D sup Φt(K)

test for commonly used significance levels and trimming parameters for p = 1, 2. The

critical values were obtained by simulating the asymptotic distributions based on 10,000

Monte Carlo replications and an approximation length of N = 3, 600 for the Brownian

Motions. Details and a full tabulation of the critical values for a wide array of values for

p, ε and significance levels, α, are provided in Appendix A.
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Table 1.1: Selected critical values for D sup ΦT tests

ε = .05 ε = .1 ε = .15

p 10% 5% 1% 10% 5% 1% 10% 5% 1%

1 10.12 11.57 15.20 9.39 10.99 14.54 8.84 10.48 14.17
2 14.01 15.79 19.96 13.30 15.06 19.20 12.80 14.65 18.62

Notes: This table reports simulated quantiles of the limiting distributions of the D sup ΦT tests. The critical values were
obtained based on 10,000 Monte-Carlo replications and an approximation length of N = 3, 600 observations for the partial
sums to simulate the Brownian Motions. Appendix A provides the full table.

1.4 Out-of-sample inference

This section describes the relevant asymptotic theory to conduct out-of-sample inference.

The limiting distributions derived in this section apply when the test statistics proposed in

Section 1.2 are used in conjunction with a moment condition formulated on out-of-sample

forecast errors. I start by discussing the forecasting environment, in particular how to obtain

the sequence of estimates {δ̂t}Tt=T0
which are used to construct the test statistics proposed

in Section 1.2. I then present and discuss the required regularity conditions and derive the

limiting distribution of the proposed test statistics.

Assume the available sample is of size T + h and that the data zt = (y′t+h, x
′
t) includes a

random variable yt to be predicted h steps ahead as well as a vector of predictors, xt. The

sample is divided into an in-sample portion of lengthR and an out-of-sample portion of size

P such that R + P = T + h. Given the sample split, forecasts of yt+h for t = R, . . . , T

are generated using parametric models of the form yt+h = g(xt, δ) + ut+h for a known

function g(·, ·) and an unknown q-dimensional parameter vector δ.

The parameters of the forecasting model are estimated based on a d-dimensional vector

of moment equations E[h(zt, δ)] = 0. This allows for a variety of estimation methods

such as (nonlinear) least squares, maximum likelihood or generalized methods of moments.

The parameters of the forecasting model are assumed to be estimated using a recursive

scheme where the parameter vector is estimated at each t = R, . . . , T using all available

information which yields a sequence of parameter estimates {δ̂t}Tt=R. The predictors and

parameter estimates are used to generate forecasts ŷt+h = ĝt+h(xt, δ̂t) for t = R, . . . , T .

which are used in turn to construct a series of forecast errors, v̂t+h = yt+h − ŷt+h. Figure

1.1 illustrates the out-of-sample forecasting environment described above.

The following regularity assumptions are sufficient to obtain weak convergence of the test

statistics under the null hypothesis to the limiting distributions characterized in the main

theorem of this section.
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Let ξ(zt+h, θ) ≡
[
f(zt+h, β, δ)

′, ht(δ)
′]′ be an (m + d × 1) vector stacking the moment

functions. Further, let F ≡ E
[
∂f(zt,θ)
∂δ |θ=θ0

]
∈ Rm×q. The following regularity conditions

are assumed to hold under the null hypothesis.

ASSUMPTION 1.4.1 (Regularity conditions): Assume the following regularity conditions

hold.

(i) Assume that h <∞ and thatK is fixed whileR→∞, T →∞ and limT→∞R/T =

ρ ∈ (0, 1).

(ii) The estimate δ̂t satisfies δ̂t − δ0 = BtHt where Bt is a (q × d) matrix which satisfies

Bt
as→ B where B has rank q and Ht is (d × 1) with Ht = t−1

∑t
r=1 h(zr, δ0)

(recursive estimation scheme) for a (d× 1) moment condition h(zr, δ).

(iii) For some p > β > 2, ξ(zt+h, θ0) is zero mean, strong mixing with mixing coefficients

αm of size −pβ/(p− β) and it holds that supt≥1‖ξ(zt+h, θ0)‖p = C <∞.

(iv) {zt+h} is weakly stationary. In addition, E
[
ξ(zt+h, θ0)

]
= 0 for all t = 1, . . . , T

and T = 1, 2, . . ..

(v) Σ ≡ limT→∞ E
[
T−1

{∑T
t=1 ξ(zt+h, θ0)

}{∑T
t=1 ξ(zt+h, θ0)

}′] ∈ R(m+d)×(m+d)

is positive definite.

(vi) f(z, θ) is continuously partially differentiable in θ in a neighborhood of θ0 for every

θ0 ∈ Θ∗ where Θ∗ is some convex or open set that contains Θ. The functions

f(z, θ) and ∇θf(z, θ) ≡ ∂f(z, θ)/∂θ are measurable functions of z for each

θ ∈ Θ and E
[

supθ∈Θ∗‖∇θf(zt, θ)‖
]
< ∞. E[f(zt, θ0)′f(zt, θ0)] < ∞, and

supθ∈Θ‖f(zt, θ)‖ < ∞ for all t = 1, . . . , T and T = 1, 2, . . .. Each element of

f(zt, θ0) is uniformly square integrable, for all t = 1, . . . , T and T = 1, 2, . . ..

(vii) The parameter space Θ is a compact subset of Rv.

(viii) limT→∞ E
[

1
T

∑T
t=1 f(zt, θ)

]
= 0, only when θ = θ0

(ix) The sequence of positive definite weighting matrices WT →p Σ−1
ff .

(x) M ≡ limT→∞ E
[
T−1

∑T
t=1

∂f(zt,θ)
∂θ′ |θ=θ0

]
∈ Rm×v has full column rank.

(xi) limT→∞ supr,s∈(0,1),s>r>ρ T
−1/2

∑[sT ]
t=[rT ]+1

(
∇δft(θ0, δ0)− F

)
BHt = op(1)

(xii) limT→∞ supr,s∈(0,1),s>r>ρ T
−1/2 F

∑[sT ]
t=[rT ]+1(Bt −B)Ht = op(1)

(xiii) limT→∞ supr,s∈(0,1),s>r>ρ T−1/2
∑[sT ]

t=[rT ]+1

(
∇δft(θ0, δ0) − F

)
(Bt − B)Ht =

op(1)

(xiv) limT→∞ supr,s∈(0,1),s>r>ρ

[
T−1

∑[sT ]
t=[rT ]+1

(
∇θft(θ0, δ0)−M

)]
= op(1)

I now discuss Assumption 1.4.1. Assumption 1.4.1.(i) defines the relevant asymptotic

experiment as one where both the size of the in-sample and out-of-sample portions di-

verge to infinity while the size of the in-sample and out-of-sample portions remains a fixed

proportion of the total sample size. Assumption 1.4.1.(ii) is a regularity assumption on

the sequence of parameter estimates of the forecasting model. It allows for a variety of

estimation methods such as (nonlinear) least squares, maximum likelihood or generalized
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Figure 1.1: Illustration of the out-of-sample forecasting environment

1 R T + hT

{
f(zt+h, βt, δ̂t)

}T
t=R

Notes: The figure shows how the data sample is partitioned into an in-sample and out-of-sample portion at R. A forecasting
model specified by the researcher is used to generate a sequence of parameter estimates {δ̂t} using data from the in-sample
portion of the sample up to a specified point in time. The forecasting model is used to obtain a sequence of forecast errors
for the out-of-sample portion of the data which enters the moment condition. The test builds on the sample moments in the
out-of-sample portion of the data t = R, . . . , T .

methods of moments. In addition, the assumption describes the recursive parameter estima-

tion scheme. This assumption is typical of the literature on forecast evaluation, see West and

McCracken (1998) or Rossi and Sekhposyan (2016). Assumptions 1.4.1.(iii) and 1.4.1.(iv)

are weak dependence assumptions equivalent to the ones discussed in the previous section.

Together with Assumption 1.4.1.(v) which assumes positive definiteness of the long-run

variance, the assumptions are sufficient to obtain weak convergence of the partial sample

moments to Brownian Motions using the multivariate functional central limit theorem of

Phillips and Durlauf (1986). Assumption 1.4.1.(vi) are standard smoothness and bound-

edness condition on the sample moment function under the null hypothesis f(z, θ). An

analogue of this assumption is used in Sowell (1996). Together with assumption 1.4.1.(vii)

which assumes a compact parameter space and Assumption 1.4.1.(viii) which assumes

identification under the null hypothesis, the conditions are sufficient to yield consistency

of the GMM estimator used to construct the test statistic. Assumption 1.4.1.(ix) restricts

the choice of weighting matrices used to construct the GMM estimators by requiring that

an efficient GMM estimator is used. Assumption 1.4.1.(x) ensures that the test statistic has

a well-defined asymptotic variance. Finally, Assumptions 1.4.1.(xi)-1.4.1.(xiv) are bound-

edness conditions which guarantee that the remainder of a mean-value expansion of the

sample moments around δ is asymptotically negligible.

Before I derive the limiting distribution, I provide some intuition on why the limiting dis-

tribution in the out-of-sample case differs from the limiting distribution in the in-sample

case which was derived in Section 1.3. The crucial difference to the in-sample case is that

the moment functions f(zt, ·, ·) depend on the sequence of estimated parameters {δ̂t}Tt=R
which were obtained from a separate moment condition. This makes it necessary to take

parameter estimation error in δ explicitly into account when evaluating the limiting distri-

bution of the test statistics proposed in Section 1.2 (see West (1996) for a similar argument).
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Under the regularity conditions provided in Assumption 1.4.1, the following mean-value

approximation of the partial sample moments evaluated at {δ̂t}Tt=R holds.

LEMMA 1.4.1 (OOS Mean-Value Approximation): Under the regularity conditions in

Assumption 1.4.1 and the null hypothesis defined in (1.3), for any r, s ∈ [0, 1] with

s > r > ρ it holds that

P−1/2

[sT ]∑
t=[rT ]+1

f(zt+h, β0, δ̂t) =

(T/P )1/2

{
1√
T

[sT ]∑
t=R

f(zt+h, β0, δ0)− 1√
T

[rT ]∑
t=R

f(zt+h, β0, δ0)

}

+ (T/P )1/2 FB

{
1√
T

[sT ]∑
t=R

Ht(δ0)− 1√
T

[rT ]∑
t=R

Ht(δ0)

}
+ op,rs(1)

where Ht, B are as defined in Assumption 1.4.1.(ii) and xt(r, s) = op,rs(1) denotes that

supr,s∈[0,1], s>r>ρ ‖xt(r, s)‖ = op(1).

The proof of the Lemma is reported in Appendix C.2.

The expansion in Lemma 1.4.1 decomposes the partial sample moment into two terms. The

first term on the right hand side represents uncertainty that is present even if δ0 is known.

The second part reflects uncertainty about δ0 originating from estimating the parameters of

the forecasting model δ based on the moment function E
[
h(zt, θ)

]
= 0. This is in contrast

to the in-sample case where δ is estimated using the same moment condition which is used

to construct the test statistic, E
[
f(zt, θt)

]
= 0. Further, note that whether parameter esti-

mation error in δ needs to be taken into account crucially depends on F having a non-zero

value.

The following theorem establishes the asymptotic distribution of the test statistic under the

null hypothesis.
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THEOREM 1.4.1 (OOS Inference): Assume that the regularity conditions in Assumption

1.4.1 hold. Under the null hypothesis defined in (1.3), it holds that

sup ΦT (K) ⇒ sup
λK ∈ Λε,ρ

K+1∑
j=1

Φj(λj−1, λj)

D sup ΦT (K̄) ⇒ max
1≤k≤K̄

(1/k) sup
λK ∈ Λε,ρ

K+1∑
j=1

Φj(λj−1, λj)

Λε,ρ =
{
λj , j = 1, . . . ,K : λj ∈ (ρ+ ε, 1− ε), λj > λj−1 + ε

}
,

with λ0 ≡ ρ, λK+1 ≡ 1 and where

Φj(λj−1, λj) ≡
[
Bm

(∫ λj

0
ω(u, λj−1, λj)ω(u, λj−1, λj)

′ du

)]′
×{∫ λj

0
ω(u, λj−1, λj) ω(u, λj−1, λj)

′ du

}−1

×
[
Bm

(∫ λj

0
ω(u, λj−1, λj)ω(u, λj−1, λj)

′ du

)]
with

ω(u, r, s) ≡M ′ Σ−1
ff (1− ρ)−1/2

[
Im FB

]
×
{[

Ω(u, s)1/2 − Ω(u, r)1/2
]
1(u ≤ r)

+ Ω(u, s)1/2 1(r < u ≤ s)
}

Σ1/2

and where Ω(s, τ) is as defined as

Ω(s, τ)1/2 ≡

(
1(s ≤ ρ) · Im 0m×d

0d×m
{

[ln τ − ln ρ]1(s ≤ ρ) + [ln(τ)− ln(s)]1(ρ < s ≤ τ)
}
· Id

)

The proof of this theorem can be found in Appendix C.2.

Note that in the general case, the limiting distribution in Theorem 1.4.1 depends on nuisance

parameters of the data-generating process and has to be simulated for each application.12

12Critical values for this limiting distribution can be simulated by a dynamic programming algorithm similar
to the one discussed in Section 1.5 of this paper where Φj is simulated using a modification of the algorithm
described Rossi and Sekhposyan (2016).
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Forecast unbiasedness, efficiency tests and survey forecasts

The general result presented in Theorem 1.4.1 above simplifies considerably in two cases

that are of great interest to practitioners.13

The first case applies when parameter estimation error in δ̂ is irrelevant i.e. if it holds that

F = 0. This case is particularly of interest when the tests are used to evaluate the out-of-

sample predictive ability of survey forecasts where the model which generated the forecasts

is not available and thus the correction for parameter estimation error can not be applied.

Relevant examples of such forecasts are survey and judgemental forecasts produced by

central banks such as the Greenbook projections produced by the Federal Reserve Board or

private sector forecasts such as the Survey of Professional Forecasters (SPF) or the Blue-

Chip Economic Indicators (BCEI).

The second case applies when the parameter estimation error is asymptotically negligi-

ble. This case was discussed in West and McCracken (1998) Corollary 5 for the case of

regression-based tests of out-of-sample predictive ability based on the full-sample and is

also considered in Rossi and Sekhposyan (2016). In such cases, a special condition holds

which considerably simplifies the asymptotic distributions of the proposed test statistic.

The condition is given in Corollary 1.4.1 below. This condition is satisfied in many ap-

plications of interest to empirical researchers, particularly tests for forecast unbiasedness

and efficiency under general conditions as well as several other tests under more specific

assumptions. These cases are discussed in West and McCracken (1998).

The limiting distribution for the special cases is provided in the following Corollary of

Theorem 1.4.1.

COROLLARY 1.4.1 (OOS Inference in Special Cases): If (a) F = 0, that is parameter

estimation error is irrelevant, or (b) the following condition holds

Σff = −1

2
(FBΣhf + ΣfhB

′F ′) = FBΣhhB
′F ′

then, the result of Theorem 1.4.1 simplifies to

sup ΦT (K) ⇒ sup
λ ∈ Λε,ρ

K+1∑
j=1

{
‖Bp(λj − ρ)− Bp(λj−1 − ρ)‖2

λj − λj−1

}

D sup ΦT (K̄) ⇒ max
1≤k≤K̄

(1/k) sup
λ ∈ Λε,ρ

K+1∑
j=1

{
‖Bp(λj − ρ)− Bp(λj−1 − ρ)‖2

λj − λj−1

}

The proof of this corollary can be found in Appendix C.2.
13These special cases were also considered in Rossi and Sekhposyan (2016).
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Note the similarities between the limiting distribution in the in-sample case which was

discussed in Section 1.3 and the limiting distribution in the special cases provided above.

In particular, the limiting distribution of the in-sample case is obtained when setting ρ = 0.

Under the special cases, the critical values do not depend on the data-generating process and

can be tabulated.14 In the case where the tests are applied to survey or judgemental forecasts,

the only sample available to researchers is t = R, . . . , T . In particular, the researcher cannot

specify a value of ρ as the length of the in-sample portion is unknown. In these cases, critical

values for the proposed tests can be obtained by setting ρ = 0 in the limiting distribution

above and the critical values provided in Section 1.6 can be used to conduct the test.

1.5 Implementation

This section gives detailed instructions on how to implement the tests.

1.5.1 Variance estimators

To implement the test statistics defined in (1.5) and (1.11), we require the estimators Σ̂ff

and Ω̂T,j that appear in the formulas of the LM and Wald statistics.

Computation of Σ̂ depends on whether there is serial correlation in the moment conditions.

When f(zt, θ0) consists of mean-zero uncorrelated random variables, a consistent estimator

is given by

Σ̂ff =
1

T − T0 + 1

T∑
t=T0

[
f(zt, θ̃)− f̄T (θ̃)

] [
f(zt, θ̃)− f̄T (θ̃)

]′
(1.15)

f̄T (θ̃) ≡ 1

T − T0 + 1

T∑
t=T0

f(zt, θ̃) (1.16)

where f̄T (θ̃) is the mean of the sample moments. Alternatively, if f(zt, θ0) consists of
mean-zero but serially correlated random variables, then a consistent estimator is given by
a kernel-based HAC estimator such as

Σ̂ff =

T−1∑
l=0

{
κ(l/qT )

1

T − T0 + 1

T∑
t=l+T0

(
f(zt, θ̃)− f̄T (θ̃)

)(
f(zt−l, θ̃)− f̄T (θ̃)

)′}

+

T−1∑
l=1

{
κ(l/qT )

1

T − T0 + 1

T∑
t=l+T0

(
f(zt−l, θ̃)− f̄T (θ̃)

)(
f(zt, θ̃)− f̄T (θ̃)

)′} (1.17)

where κ(·) is a kernel and qT a bandwidth parameter which can depend on the data. A ker-

nel choice that guarantees that the estimator Σ̂ff is positive semi-definite is the Quadratic

Spectral Kernel discussed in Andrews (1991).
14A table of these critical values is available upon request.
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Next, consider the estimator Ω̂j,T . This estimator crucially depends on whether the test is

conducted in-sample or out-of-sample. In the case where the test is conducted in-sample,

Ω̂T,j can be computed from simple formulas. Specifically, Ω̂j,T can be computed as

Ω̂j,T = (λj − λj−1)−1 Ĉ ′(ĈĈ ′)−1Ĉ

Ĉ ≡ M̄ ′β(Im − P̄δ)

P̄δ ≡ M̄δ(M̄
′
δM̄δ)

−1M̄ ′δ

M̄ = Σ̂
−1/2
ff

1

T − T0 + 1

T∑
t=T0

∂ft(zt, θt)

∂θ′
|θt=θ̃

(1.18)

where M̄β and M̄δ are obtained from partitioning M̄ = (M̄β, M̄δ). θ̃ is the restricted GMM

estimator defined in (1.7).

1.5.2 Dynamic programming algorithm

This section discusses how to compute the test statistics described above via an efficient

dynamic programming algorithm. First, note that given a fixed vector of sample splits, λ, the

computation of the ΦT,j parts of the test statistic defined in equation (1.6) is straightforward.

It simply requires computing the restricted GMM estimator defined in equation (1.7) and

computing the components of equation (1.6) via the estimators provided in the previous

section.

However, to compute the sup ΦT and D sup ΦT test statistics which allow for an

unknown vector of sample splits, one has to compute the sup operator over λ ∈ Λε.

This is computationally challenging as it involves computing a series of test statistics

{ΦT (λj−1, λj)}K+1
j=0 for every possible partition of the sample into K segments, respecting

the minimal segment length implicitly defined by the trimming parameter, ε. In principle, a

grid search procedure could be used, but with K > 2 this becomes quickly infeasible as it

involves the computation of ΦT (·) of order O(TK).

To solve the computational problem, I employ a dynamic programming algorithm which

efficiently computes the sup ΦT and D sup ΦT statistics inO(T 2) operations, regardless of

the value ofK. The algorithm is based on the early work of Hawkins (1976) and extensions

by Bai and Perron (1998, 2003) and Qu and Perron (2007).15

The basic idea of the algorithm is as follows. For any given number of changes, K,

the sup ΦT test statistic in equation (1.5) is given by the sum ΦT,j(·) statistics for

15The dynamic programming algorithm of Bai and Perron (1998, 2003) computes the sum of squared residuals
(SSR) of a linear regression model for every possible partition of the sample intoK+1 regimes. Qu and Perron
(2007) extend this algorithm to compute QMLE estimates assuming a linear pseudo-model with gaussian
errors. In contrast, I modify the dynamic programming algorithm to directly compute the sup-ΦT test statistics
which are functions of sums of partial sample moments as well as the restricted GMM estimator.
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j = 1, . . .K + 1, which are associated with a specific partition of the sample defined

by λ = (λ1, . . . , λK). The problem of computing the sup over all possible values of

λ ∈ Λε can therefore be transformed into several steps which are described in the following

algorithm.

ALGORITHM 1.5.1 (Computation of sup ΦT (K) and D sup ΦT (K̄) tests): The sup ΦT (K)

test is computed by implementing Steps 1 and 2 of the following algorithm. The D sup ΦT

test is computed by implementing Steps 1-3, setting K = K̄ for the first two steps.

Step 1: Compute and store all possible segments of the test statistic ΦT,j(Tm, Tn) :=

ΦT,j([λmT ], [λnT ]) for Tm, Tn ∈ t = 1, . . . , T which satisfy Tm > Tn and Tr := [λrT ].

In the case of the LM test, ΦT,j is as defined in equation (1.6).

Step 2: Recursively maximize the sum of k+1 of these partitions for k = 1, 2, . . . ,K using

the following Bellman equation.

ΦT ({λk,T }) = max
kh≤Tj≤T−h

[
ΦT ({λk−1,Tj}) + ΦT (Tj + 1, T )

]
(1.19)

where ΦT ({λk,Tj}) denotes the value of the sup ΦT statistic associated with an optimal

partition based on k changes and using observations t = 1, . . . , Tj and h = [εT ] is the

minimum segment length implied by the trimming parameter. The recursion is initialized

with ΦT ({λ0,Tj}) ≡ ΦT (Tj + 1, T ).

Step 3: Carrying out Steps 1-2 withK = K̄ yields a series of test statistics under k changes,{
ΦT ({λk,T })

}K̄
k=1

. Then, computeD sup ΦT (K̄) as in equation (1.11) by first normalizing

each element of the series, dividing by the respective k, and computing D sup ΦT (K̄) as

the maximum element of the normalized series.

An efficient software implementation of the steps above is described in Appendix A.

Note that the computation of all possible segments in Step 1 requires computing less than

T (T + 1)/2 times the ΦT test statistics and is therefore of order O(T 2).16

As stated previously, the test presented in Section 1.2 can be conducted based on a

Lagrange-Multiplier form (ΦLM
T ) or a Wald-form (ΦW

T ). If all coefficients of the model

are to be tested (i.e. θ = β is the full parameter vector), both the LM and Wald tests

can be computed via the algorithm described above. However, when the test is carried

out on a subvector of θ, the algorithm above needs to be modified to compute the Wald

test. One has to augment the steps above with another layer, conditioning on estimates
16Depending on the value of the trimming parameter, ε, substantially less than T (T + 1)/2 computations are

needed. This is because one only has to consider segments which have a minimum length of h = [εT ]
observations. Further, for specific models, additional computational simplifications are possible by using an
updating rule to compute ΦT .
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δ̂ under the alternative hypothesis and iterating until convergence.17 Therefore, the LM

test has considerable computational benefits over the Wald versions as it only requires the

computation of the restricted GMM estimator under the null hypothesis.

1.6 Simulation studies

To investigate the finite sample performance of the specification tests proposed in this paper,

I conduct a series of Monte-Carlo experiments using several data-generating processes. The

goal of the simulation exercises is three-fold: First, they illustrate the difference between

the proposed model specification test, tests of multiple structural breaks and traditional

hypothesis tests assuming a constant parameter. Second, they assess the finite-sample

properties of the proposed tests for a variety of data-generating processes. Third, they study

under which conditions allowing for multiple shifts in the coefficient vector leads to power

gains relative to tests imposing one break. In what follows, I describe each simulation

exercise, define the respective data-generating processes and discuss the simulation results.

1.6.1 Asymptotic power illustration

Before studying the finite-sample approximation quality of the limiting distributions, I

conduct an asymptotic power exercise to illustrate why it is useful to jointly test the

hypotheses in (1.3) rather than relying on traditional hypothesis tests or traditional structural

break tests. Recall from the discussion in Section 1.2 that traditional tests are designed

to test either H(1)
0 or H(2)

0 and therefore might not reliably detect departures originating

in the other part of null hypothesis. In contrast, the tests proposed in this paper, jointly

test H(1)
0 and H(2)

0 and reject against any combination of these hypotheses. To illustrate

this argument, I conduct a simulation exercise using the following simple data-generating

process:

yt+1 = βt,T xt + ηt xt, ηt ∼ iid N (0, 1) (1.20)

I simulate data from this model using a large sample size of T = 1, 000 and inspect rejection

rates of (i) a full-sample LM test, (ii) Bai and Perron (1998)’s UDmax(5) test, (iii) Rossi

(2005)’s QLR∗T test and (iv) the D sup(5) test proposed in this paper against two stylized

data generating-processes capturing a departure from H
(1)
0 and H(2)

0 , respectively.18 The

next two paragraphs briefly describe the two considered designs and discuss the simulated

power curves which are reported in Figure 1.2.

17A similar strategy to compute Wald tests has been used in the structural break literature, see e.g. the algorithms
in Qu and Perron (2007) and Bai and Perron (2003). Details on the modified algorithm are available from the
author on request.

18All tests are conducted at 95% level and a trimming parameter of ε = 0.05 is used for tests (ii)-(iv).
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Figure 1.2: Asymptotic power illustration
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Notes: The figure shows simulated rejection rates for tests of the null hypothesis H0 : β = 0 in model (1.20) with 5%
nominal size. D sup(5) denotes the proposed instability-robust test with a maximum of K̄ = 5 shifts in the parameter
vector. LM denotes a traditional full-sample Lagrange-Multiplier test. QLR∗ denotes Rossi (2005)’s QLR∗T test which
imposes one break. ’UDmax(5)’ denotes Bai and Perron (1998)’s UDmax test with a maximum of 5 breaks. Rejection rates
are based on 5,000 replications and T = 1, 000 observations.

DESIGN AP1. The first design has βt,T = βA ∀ t i.e. the parameter which is tested is not

time-varying. Figure 1.2 panel AP1 shows the “asymptotic” power of the tests as a function

of βA. It illustrates that when the parameter is not time-varying, the full-sample parameter

test (LM ) is the most powerful test among the four tests considered. In contrast, the test for

a structural break (UDmax(5)) has a flat power function equal to the nominal size 5%. The

test robust to multiple instabilities proposed in this paper (Dsup(5)) exhibits high power

against this alternative.

DESIGN AP2. The second design has βt,T = βA 1(t ≤ T/2)−βA 1(t > T/2) i.e. there is

a single shift in the parameter which is tested. Figure 1.2 panel AP2 shows the “asymptotic

power” of the tests as a function of βA. It illustrates that this shift is not detected by a

traditional hypothesis test (LM ) which has a flat power function equal to the nominal size

5%. In contrast, the structural break test (UDmax) and the instability-robust tests (QLR∗

and D sup(5)) exhibit substantial power against this alternative. Finally, it is important to

note that while the QLR∗ test is optimal for the case of one break, both the structural break

test and the proposed D sup(5) test exhibit virtually the same power.

1.6.2 Finite-sample size

Next, I assess the quality of the finite-sample approximation of the limiting distribution of

the test. I first focus on the finite-sample size of the proposed test procedure. Size control

in finite-samples is an important feature of any test procedure since a researcher choosing

a particular significance level α expects the test to reject only in (1 − α)% of cases when

the null hypothesis is true. I study a data-generating process resembling a linear regression

which predicts a scalar series, yt, with past values of a predictor, xt, and a control variable,
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wt correlated with the predictor. Both the prediction error and the predictor variable admit

serial correlation in the form of an AR(1) process. This class of models has received

considerable attention in the predictability literature, both in macroeconomics and finance

(see the reviews in Pitarakis and Gonzalo (2019) and Rossi (2013)). The data-generating

process is defined as follows

yt = βt,T xt + δ wt + ηt ηt = φη ηt−1 + ζt (1.21)

xt = φx xt−1 + ξt wt = ρxw xt + ιt (1.22)

where ζt, ξt, ιt are independent and iid N (0, 1) and x0, η0 are drawn from the unconditional

distribution of the respective AR process.

To assess the finite-sample size of the tests, I simulate 10,000 samples from the model

above, imposing the null hypothesis βt,T = 0, and compute rejection rates for (i) the tradi-

tional LM test, (ii) Rossi (2005)’s QLR∗T test and (iii) the D sup(5) test proposed in this

paper. All tests are conducted on the β subvector while leaving δ unspecified. I simulate

specifications with sample sizes T ∈ {125, 250, 500, 1000} and various degrees of serial

correlation in the predictor and prediction errors, φη, φx ∈ {0, 0.25, 0.5} and consider tests

both with and without HAC correction.19 In all specifications, the correlation between the

predictor and control variable is fixed at ρxw = 0.25.

RESULTS. Table 1.2 reports the results regarding the empirical size of the model

specification tests for the model in equation (1.21) for 5% nominal size and a trimming

parameter of ε = 0.05. First, consider the case in which no serial correlation is present in

the data (φx = 0, φη = 0). When constructed using a heteroskedasticity-robust variance

estimator (upper-left corner of Panel A), we observe that the proposed D sup test allowing

for up to K̄ = 5 shifts exhibits good size control with finite-sample size being virtually

identical to the size of Rossi (2005)’QLRT test which imposes one break. In comparison to

the traditionalLM test, both instability-robust tests are slightly undersized in small samples,

but size quickly converges to the nominal level as T grows. Using a variance estimator with

HAC correction as described above yields similar size results; only in small samples are the

D sup(5) andQLR∗T more conservative than without the HAC correction (upper-left corner

of Panel B). Next, consider the case with serial correlation in the predictor and/or prediction

error. If serial correlation is ignored and the tests is constructed using a heteroskedasticity-

robust variance estimator, size control crucially depends on the structure and amount of

serial correlation in the data. The table illustrates that when serial correlation is present only

in the predictor variable or the prediction errors (second and third row/column of Panel A),

finite-sample size is barely affected. However, when serial correlation is present in both

model components, all three tests become oversized with rejection rates growing both with
19The HAC correction is based on AR(1) approximation using Andrews (1991) data-dependent method and a

Quadratic-Spectral kernel.
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φx and φη. In that case, the instability-robust tests have significantly larger size-distortions

than the LM tests with the proposed D sup(5) test exhibiting mildly worse size control

than the QLR∗ test. However, when the serial correlation is acknowledged and the test

is constructed using the variance estimator with HAC correction provided in Section 1.2,

the D sup(5) test recovers good size control and nominal size is close to 5% in medium to

large samples. Finally, it is interesting to assess the robustness of these findings to choosing

a larger trimming parameter. As Table B.5 in the appendix shows, increasing the trimming

parameter to ε = 0.1 yields nearly identical results.

To conclude, the simulation exercise shows that, when constructed using the appropriate

variance estimator, the D sup(K) test exhibits good size control across a variety of

specifications with finite-sample size comparable to that of Rossi (2005)’s QLR∗T test. This

implies that it is possible to allow for more than one break under the alternative without

incurring a penalty with respect to the finite-sample size of the testing procedure.

1.6.3 Finite-sample power

Finally, I examine the finite-sample power of the proposed test. Understanding the power

properties of (correctly sized) testing procedures is important as a researcher ideally would

like to choose the testing procedure that maximizes the chances of correctly detecting a

departure from the null hypothesis based on an available data sample. As power properties

typically depend on the data-generating process considered, a careful analysis of finite-

sample rejection rates helps to understand under which conditions testing procedures should

be used. To assess finite-sample power of the proposed tests, I focus on a class of

alternatives where βt,T exhibits local departures from the null hypothesis, β0. Specifically,

I focus on alternatives in which the coefficient has a value of zero for the majority of the

sample, but there are multiple short episodes during which the coefficient departs from zero.

This type of data-generating process has received considerable attention in the predictability

literature in recent years (see e.g. the “pockets of predictability hypothesis” in Timmermann

(2008) and Farmer et al. (2019) and empirical studies Gonzalo and Pitarakis (2012, 2017)

and Rossi (2020).

As in the size simulations discussed in the previous subsection, I employ the following

data-generating process

yt = βt,T xt + δ wt + ηt ηt = φη ηt−1 + ζt (1.23)

xt = φx xt−1 + ξt wt = ρxw xt + ιt (1.24)

where ζt, ξt, ιt ∼ iid N (0, 1) and x0, η0 are drawn from the unconditional distribution of

the respective AR process.

To assess the finite-sample power of the tests, I simulate 5,000 samples from the model

above and compute rejection rates for (i) the traditional LM test, (ii) Rossi (2005)’s QLR∗T
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Table 1.2: Finite-sample size for ε = 0.05 (nominal size 5%)

φη = 0 φη = 0.25 φη = 0.5

T φx Dsup(5) LM QLR∗ Dsup(5) LM QLR∗ Dsup(5) LM QLR∗

Panel A: Heteroskedasticity-robust

125 0.00 0.043 0.052 0.040 0.047 0.051 0.044 0.057 0.051 0.048
250 0.00 0.042 0.046 0.040 0.043 0.047 0.041 0.049 0.047 0.042
500 0.00 0.044 0.049 0.042 0.045 0.049 0.044 0.051 0.048 0.045

1,000 0.00 0.047 0.050 0.046 0.047 0.050 0.048 0.049 0.052 0.050

125 0.25 0.043 0.051 0.040 0.074 0.065 0.064 0.133 0.081 0.102
250 0.25 0.046 0.045 0.042 0.074 0.061 0.068 0.130 0.078 0.108
500 0.25 0.043 0.051 0.044 0.080 0.066 0.075 0.138 0.079 0.120

1,000 0.25 0.049 0.051 0.046 0.083 0.064 0.078 0.143 0.081 0.128

125 0.50 0.054 0.051 0.045 0.126 0.080 0.101 0.265 0.118 0.194
250 0.50 0.049 0.048 0.044 0.130 0.080 0.110 0.289 0.121 0.224
500 0.50 0.048 0.048 0.045 0.135 0.080 0.119 0.310 0.119 0.247

1,000 0.50 0.048 0.053 0.050 0.141 0.085 0.125 0.330 0.125 0.263

Panel B: HAC - AR(1) approximation, QS kernel, Andrews (1991) bandwidth

125 0.00 0.032 0.047 0.030 0.031 0.048 0.032 0.036 0.046 0.035
250 0.00 0.036 0.044 0.034 0.036 0.045 0.035 0.039 0.044 0.036
500 0.00 0.043 0.049 0.041 0.041 0.049 0.042 0.046 0.048 0.042

1,000 0.00 0.045 0.049 0.044 0.045 0.050 0.046 0.046 0.051 0.048

125 0.25 0.030 0.046 0.030 0.034 0.052 0.035 0.039 0.053 0.038
250 0.25 0.037 0.044 0.036 0.041 0.050 0.041 0.045 0.052 0.043
500 0.25 0.040 0.049 0.042 0.048 0.054 0.049 0.054 0.054 0.048

1,000 0.25 0.047 0.050 0.045 0.054 0.053 0.052 0.057 0.055 0.054

125 0.50 0.033 0.047 0.034 0.038 0.053 0.039 0.035 0.053 0.036
250 0.50 0.040 0.045 0.038 0.046 0.052 0.046 0.045 0.053 0.044
500 0.50 0.042 0.048 0.040 0.051 0.054 0.048 0.050 0.052 0.049

1,000 0.50 0.047 0.052 0.046 0.055 0.056 0.056 0.055 0.054 0.053

Notes: The table reports simulated finite-sample size for tests of the null hypothesis H0 : β = 0 with 5% nominal size.
D sup(5) denotes the proposed instability-robust test with a maximum of K̄ = 5 breaks, LM denotes a traditional LM test
andQLR∗ denotes Rossi (2005)’s instability-robust test imposing one break. Rejection rates are based on 10,000 replications
from the model in equation (1.21) using a sample of T observations where the serial correlation of the predictor and prediction
error is controlled by φx, φη , respectively.
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test and (iii) the D sup(5) test proposed in this paper. All tests are conducted on the β

subvector while leaving δ unspecified. The instability-robust tests use a trimming parameter

of ε = 0.05. I focus on a sample size T = 400 to ensure all tests have a similar

size and raw power can be compared between the tests. As in the size simulations, the

correlation between the predictor and control variable is fixed at ρxw = 0.25. For clarity of

exposition, the main text presents results for the case without serial correlation and using

a heteroskedasticity-robust variance estimator. Appendix B reports additional results for

φx = 0.5, φη = 0.5 and a variance estimator with HAC correction, based on an AR(1)

approximation using Andrews (1991) data-dependent method and a Quadratic-Spectral

kernel.

I consider power curves based on three designs for the time-varying coefficient vector, βt,T
which are denoted P1 - P3. Figure 1.3 Panel D illustrates the three designs which differ in

the number and location of the local departures from the null hypothesis βt,T = 0 over the

sample as well as the sign of the shifts. The width of the predictability pockets is fixed at

5% of the sample size i.e. each pocket has a duration of 20 observations. The magnitude of

the shifts is uniform over the pockets and scaled by a scalar parameter βA, where βA = 0

implies no predictability at any point in time. In what follows, I briefly discuss the consid-

ered designs and the corresponding power curves in Figure 1.3.

DESIGN P1. Figure 1.3 Panel P1 shows power curves for the predictability process P1

which features two predictability pockets of opposite signs, located at one-third and three-

fourths of the sample, respectively. The simulation illustrates the need for predictability

tests that take instabilities into account. It is evident that the traditional LM test exhibits no

power against alternatives of this form; the rejection rate of the LM test stays constant at

nominal size 5%, regardless of the magnitude of the shift, βA. In contrast, the predictability

tests that allow for instabilities have power in detecting predictability of this form. Further,

we note that the power of the D sup test uniformly dominates that of Rossi (2005)’s test,

showing that allowing for multiple shifts in the coefficient vector under the alternative leads

to power gains in finite-samples.

DESIGNS P2 & P3. The bottom two panels in Figure 1.3 show power comparisons for the

predictability processes P2 and P3, respectively. These processes are calibrated to empiri-

cal results from Farmer et al. (2019) who conduct non-parametric regressions to study the

presence of predictability pockets in various commonly considered predictors of the equity

premium. When evaluating power of the proposed test in the presence of predictability

pockets, there are many choices of processes for βt,T that differ with respect to number of

the pockets, their location and duration as well sign and magnitude of the implied coeffi-

cient shifts. Calibrating βt,T allows to assess the test’s performance under conditions that

could be encountered in “real-world” empirical examples and therefore provides a good
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benchmark for assessing the power of the test. I calibrate the processes P2 and P3 to the

empirical findings of Farmer et al. (2019) by matching the number of simulated pockets,

the relative location of the pockets over the samples as well as the sign of the implied shifts

to the results reported by the authors in predicting excess returns from (i) the term spread

using daily data (P2) and (ii) the T-bill rate using monthly data (P3).20 For both processes,

the power of the proposed D sup test uniformly dominates the power of the test imposing

one break. This confirms that allowing multiple shifts in the coefficient vector under the

alternative leads to power gains in empirically relevant scenarios. Further, as with P1, the

traditional LM test shows substantially lower power for P2 and almost no power for P3

which features both negative and positive pockets, reiterating the need for predictability

tests that explicitly take instabilities into account.

SENSITIVITY CHECKS. I assess the sensitivity of the conclusions drawn above to variations

in the specification of the considered tests. Figure B.5 reports finite-sample power curves

for the same data-generating process without serial correlation (φx = 0, φη = 0), but using

variance estimator with a HAC correction is used. All conclusions regarding relative power

of the tests discussed above remain unchanged. Finally, I inspect power in the case where

both φx = 0.5 and φη = 0.5. Figure B.6 shows that the power of all of the three test

decreases considerably relative to the case without serial correlation, but that the proposed

D sup test remains the most powerful among the three tests considered.

20Specifically, Farmer et al. (2019) find 3 pockets which have “less than a 5% chance of being spurious” for
predicting from the term-spread using daily data. These pockets are located at 12%, 21% and 37% of the
sample with all pockets exhibiting positive coefficient shifts. For predicting using the T-bill rate in monthly
data, using the same criterion, they find 3 pockets which are located at 6%, 30% and 65% of the sample with
the first two pockets exhibiting negative shifts of the coefficient and the third pocket having a positive shift.
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Figure 1.3: Finite-sample power for ε = 0.05
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Notes: The figure shows simulated rejection rates for tests of the null hypothesisH0 : β = 0 against different designs for the
alternative, βt,T , denoted P1 - P3. Panel D illustrates the different designs for βt,T . Power curves are reported for increasing
size of the shifts, βA, under the alternative. All tests are conducted at α = 5% significance level. The solid black line
denotes the proposedD sup(5) instability-robust test with a maximum of K̄ = 5 breaks. The blue shaded line denotes Rossi
(2005)’s QLR∗T test imposing one break and the red dotted line denotes a traditional LM test. Rejection rates are based on
5,000 replications for a sample of T = 400 observations from the model in equation (1.23) where the serial correlation of
the predictor and prediction error φx = 0, φη = 0, respectively.
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1.7 Local stock return predictability

Are stock returns predictable by financial valuation ratios or term-structure variables? This

question is at the center of an important research agenda in finance and has been analyzed

by a large array of seminal studies.21 However, despite a significant volume of research

being devoted to this question, the predictability debate has not yet reached a consensus.

For example, while some studies find evidence of predictability by valuation ratios or

consumption ratios (Lettau and Ludvigson, 2001), other studies find that these results are

unstable and crucially depend on the stochastic properties of the predictors or the sample

period studied (Campbell and Yogo, 2006). Welch and Goyal (2007) came to the conclusion

that “[...] the literature has yet to find some variable that has meaningful and robust

empirical equity premium forecasting power [...]” (p. 1505).

One explanation for the difficulty of establishing a consensus is that predictability can

vary over time. For example, Pesaran and Timmermann (1995) find that the ability of

various economic variables to predict stock returns changes with the volatility of returns

and Rapach and Wohar (2006) provide evidence of parameter instability in predictive

regressions. Recently, some studies have presented evidence that predictability is a local

phenomenon and is concentrated in short subsamples of the data. Timmermann (2008)

concludes that the “[...] empirical findings suggest that most of the time stock returns are

not predictable, but there appear to be pockets in time where there is modest evidence

of local predictability.” Pesaran and Timmermann (2000) note that oil prices were an

important predictor for stock prices during the 1970s but that their importance subsequently

vanished. Similarly, Gonzalo and Pitarakis (2012, 2017) and Henkel et al. (2011) find that

predictability is linked to measures of business cycle conditions, leading to short episodes

of significant predictability. Further theoretical support for local predictability is given

in Timmermann (2008) who argues that investors’ successful search for good forecasting

models itself might generate ”pockets of predictability“ i.e. short-lived periods of significant

predictability that are followed by long periods without predictability. In a recent study,

Farmer et al. (2019) argue that such pockets of return predictability are consistent with an

asset pricing model featuring incomplete learning and provide ample empirical evidence in

support of the predictability pockets hypothesis using non-parametric regressions.

Empirical support for or against predictability crucially relies on specification tests in

predictive regressions. However, as argued throughout this paper, when predictability

varies over time, traditional hypothesis tests may have low or no power against potentially

important alternatives. Simply testing for predictability at each point in time or over a

collection of various subsamples does not offer a good alternative as it suffers from a

multiple testing problem affecting size and power of the tests. The test proposed in this
21For early research on this topic see for example Fama and French (1988) and Campbell and Shiller (1988).

Ang and Bekaert (2007), Welch and Goyal (2007) and Timmermann (2008), Cochrane (2008) provide more
recent discussions.
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paper, however, is robust to multiple shifts in magnitude and signs of the parameter vector

and can be applied to a general class of models. This makes it a good choice to investigate

the hypothesis of local predictability in return prediction.

This paper is not the first to address the issue of robustifying inference in return prediction

to episodic predictability. For example, Gonzalo and Pitarakis (2012, 2017) analyze return

predictability in a threshold model that links time variation in predictability to the state of

the economy (for example a variable measuring business cycle fluctuations). Henkel et al.

(2011) follow a similar approach. In general, however, predictability might be linked to a

variety of features of the economic environment that are not necessarily tied to the business

cycle. The advantage of using the test proposed in this paper over existing approaches is

that the researcher does not need to condition predictability on a set of known variables

measuring the state of the economy. Rather, the test can be used as a first step to establish

whether there is evidence of local predictability before the researcher comes up with a

hypothesis about potential driving forces of the predictability process.

1.7.1 Data

The issue of stock return predictability has been analyzed using a large variety of specifi-

cations. To keep the exposition in this paper compact and to ensure comparability with the

literature, I focus on the most commonly employed specification which predicts monthly

US stock market excess returns over the post-war period 1946-2019 using the set of finan-

cial variables considered in Welch and Goyal (2007).22 In the following, I give details on

the construction of the excess return series and the predictor variables.

EQUITY PREMIUM. The dependent variable is constructed based on a CRSP (Center for

Research in Security Prices) dataset that is widely used in the literature. Specifically, I

construct the excess return on the US stock market (equity premium) as the difference

between a measure of the US stock market log return and a risk-free log return. The US

stock market return is measured by the value-weighted S&P 500 total stock market return

including dividends. The risk-free rate is the three-month T-bill rate from FRED. This mea-

sure of the equity premium is widely used in the literature e.g. recently by Welch and Goyal

(2007) and Kostakis et al. (2015). For robustness, I also present results using an alternative

measure of the excess return where the US stock market return is the value-weighted CRSP

stock market return including dividends for NYSE, AMEX and NASDAQ and the risk-free

rate is proxied by a 1-month Treasury bill rate from Ibbotson and Associates Inc. This

alternative measure of the equity premium has been used recently in Gonzalo and Pitarakis

(2012) and Gonzalo and Pitarakis (2017). Figure B.7 Panel A shows the equity premium

series used in the empirical analysis.

22Studies of excess return prediction often restrict the sample to the post-war period, see e.g. Gonzalo and
Pitarakis (2012).
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PREDICTOR VARIABLES. The source of the predictor data is an updated version of

the monthly dataset used in Welch and Goyal (2007).23 This predictor dataset has been

considered in numerous studies in the literature and has become a benchmark in the

predictability literature. I focus on the same set of predictors recently considered in Kostakis

et al. (2015), namely the dividend-payout ratio, defined as the difference between the log

of dividends and the log of earnings, the earnings-price ratio, defined as the difference

between the log of earnings and the log of stock prices, the long-term yield, defined as the

long-term US government bond yield from Ibbotson’s Stocks, Bonds Bills and Inflation

Yearbook, the T-bill rate which after 1934 is the 3-month T-bill rate from FRED and before

is extracted from the NBER Macrohistory database, the term-spread which is the difference

between the long-term yield and the T-bill rate, the dividend-price ratio, defined as the

log of dividends over stock prices, the dividend-yield, defined as the log of dividends over

lagged prices, the default yield spread, defined as the difference between the BAA and

AAA-rated corporate bond yields taken from FRED, the book-to-market ratio which is the

ratio of book value to market value for the DJIA, the net equity expansion, defined as the

ratio of the twelve month moving sum of net equity issues by NYSE listed stocks divided by

the total end-of-year market capitalization of these stocks and the inflation rate calculated

from the Consumer Price Index of the Bureau of Labor Statistics. Figure B.7 panels B-L

show the predictor series used in the empirical analysis.

1.7.2 Predictability tests robust to instabilities

As is customary in the literature, I study the individual predictive ability of each of the

financial variables using the following univariate predictive model

ret+1 = α+ β xt + ηt+1 (1.25)

where ret+1 denotes the one-month-ahead excess return and xt is the considered predictor.

Predictability studies typically conduct tests of the hypothesis H0 : β = 0 over the full

sample or specific subsamples. However, as illustrated in the previous sections, these tests

are not robust to the presence of instabilities and might therefore fail to detect locally oc-

curring predictability. The test proposed in this paper considers the same null hypothesis,

but explicitly takes local predictability into account. Using the proposed test, I revisit the

specification above and re-evaluate the predictability of the set of predictors described in the

previous subsection. As in the simulation studies discussed in Section 1.6, I use a D sup(5)

test with 5% trimming. All tests are conducted based on the HAC variance estimators

reported in Section 1.2 based on an AR(1) approximation with Andrews (1991) automatic

bandwidth selection procedure and a Quadratic Spectral kernel

23The dataset updated until December 2019 was downloaded from Amit Goyal’s website and at the time of
writing this paper could be found at http://www.hec.unil.ch/agoyal/.
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RESULTS. Table 1.3 reports the predictability tests robust to instabilities for each of the

potential predictors. To facilitate comparison with the literature, the left panel reports

the full-sample least squares estimates (β̂OLS), the R2 of the full-sample regression (in

percentage points) as well as the traditional predictability tests using a t-ratio with HAC

correction for the full-sample (tHAC) and a subsample starting in 1952 (tHAC1952 ). The right

panel reports the results from the instability-robust D sup(5) predictability tests proposed

in Section 1.2 for the same subsamples.

I first discuss the traditional inference approach using test statistics constructed over the full-

sample. Note that standard least-squares inference indicates that only few of the financial

variables have significant predictive ability for the equity premium at 5% level, namely

the T-bill rate, the dividend-price ratio, the dividend-yield and the inflation rate. Further,

when considering a slightly different subsample starting in January 195224 (tHAC1952 ), the

significance of the dividend-price ratio and the dividend-yield disappears and only the

T-bill rate remains significant at 5% level. The results are in line with findings from

traditional predictability tests reported in Kostakis et al. (2015) and, more generally, match

the conclusion of previous studies documenting that predictive ability of valuation ratios

crucially depends on the subsample considered (see e.g. the discussion in Campbell and

Yogo (2006) or Welch and Goyal (2007)).25

The picture changes considerably when looking at the instability-robust tests. TheD sup(5)

test conducted on the 1946 - 2019 sample shows additional significant (local) predictability

at 5% level for the dividend-payout ratio, the earnings-price ratio, the default yield spread

and net equity expansion; only the long-term yield, the term-spread and the book-to-market

ratio are not significant at 5% level. In addition, contrary to the traditional tests, the findings

from the D sup(5) test are robust to moving to the post-1952 subsample.

The test results support the hypothesis that predictability from financial variables is a local

phenomenon and therefore difficult to detect with traditional tests which do not take insta-

bilities into account. The findings generalize those found in earlier studies which document

evidence of episodic predictability for specific variables (e.g. Gonzalo and Pitarakis (2012)

document episodic predictability for the dividend-yield.). Further, they explain why studies

that split the sample at different dates have often come to conflicting conclusions regarding

the predictive ability of a wide class of predictors and highlight the need for robustifying

inference to local instabilities.

24The post-1952 subsample is often considered in predictability studies since term structure variables are
thought to be more informative after the passing of the 1952 Treasury Accord which separated government
debt management from monetary policy.

25In particular, the tests results in Gonzalo and Pitarakis (2012) also indicate vanishing excess return
predictability for the dividend-yield and Kostakis et al. (2015) find the same variables to be significant in
the post-1952 period when using traditional tests. Finally, all regressions have low explanatory power with
R2 below 1%, a feature documented e.g. in Welch and Goyal (2007).
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Table 1.3: Predictability tests for the Equity Premium

Traditional Robust

Predictor β̂OLS R2 (%) tHAC tHAC1952 D sup(5) D sup(5)1952

Dividend payout ratio 0.002 0.03 0.30 0.45 13.72** 14.42**
Earnings-price ratio 0.005 0.28 1.10 0.61 13.86** 12.24**
Long-term yield -0.086 0.34 -1.62 -1.52 8.57 8.50
T-bill rate -0.110 0.66 -2.39** -2.40** 12.07** 11.50*
Term spread 0.192 0.38 1.70* 1.89* 8.40 9.30
Dividend-price ratio 0.006 0.41 1.98** 1.41 16.01*** 14.86**
Dividend-yield 0.006 0.46 2.08** 1.53 15.68*** 14.85**
Default yield spread 0.154 0.03 0.30 0.36 13.89** 13.54**
Book-to-market ratio 0.004 0.06 0.63 0.29 6.55 5.76
Net equity expansion -0.041 0.04 -0.37 -0.45 21.43*** 21.62***
Inflation rate -0.915 0.96 -2.58** -1.85* 17.46*** 11.03*

Notes: The table presents the results of conducting predictability tests of the null hypothesis β = 0 for the post-war sample
1946-2019 in model (1.25) using the S&P 500 Equity Premium. The left panel reports the full-sample least squares estimates,
β̂OLS , the R2 of the full-sample regression (in percentage points) as well as the traditional predictability tests using a t-ratio
with HAC correction for the full-sample, tHAC , and a subsample starting in 1952, tHAC1952 . The right panel reports the results
from the instability-robustD supLM model-specification tests with a maximum of K̄ = 5 shifts and trimming parameter set
at ε = 0.05 for the same subsamples. For all test statistics, the stars denote a rejection the null hypothesis of no predictability
at significance levels 1% (***), 5% (**), and 10% (*), respectively.

ROBUSTNESS. To assess the robustness of the results documented above, I repeat the

predictability tests using a different measure of the equity premium based on CRSP stock

returns including dividends for NYSE, AMEX and NASDAQ with a 1-month treasury bill

rate as the risk-free rate (see data section above). Table B.6 reports the test results from

this alternative measure of the equity premium. All conclusions discussed in this section

are robust to this change. I also address a potential concern regarding the persistence of

the considered predictor variables. The predictors typically studied with predictive models

such as the one in equation (1.25) are often highly persistent and recently, studies have

started to model these predictors as near-unit-root predictors when conducting predictabil-

ity tests (see e.g. the discussion in Pitarakis and Gonzalo (2019) and the IVX approach

proposed by Kostakis et al. (2015)). While it is in principle possible to apply the proposed

test to an IVX moment condition, I focus here on exploring the robustness of the results

discussed above by using first-differenced values of the predictors, ∆xt = xt−xt−1. Table

B.7 presents the results from the predictability tests using first-differenced predictors. In

comparison to the results discussed above, the evidence of predictability indeed disappears

for the earnings-price ratio, the dividend-price ratio, the dividend-yield and the inflation

rate, all variables for which there is evidence of near-unit-root behavior, highlighting the

importance of carefully assessing the stochastic properties of each predictor before applying

predictability tests. However, for the remaining predictors the main conclusions discussed

above continue to hold in the first-differenced model. Most importantly, the traditional tests

still give conflicting evidence when considering the two subsamples while the proposed

instability-robust tests provide stable inference.
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Figure 1.4: Predictability paths
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The graph shows the ΦT,j components of theD supLM(10) model-specification tests for the S&P 500 Equity
Premium based on the model in equation (1.25) with trimming parameter ε = .02. The number of coefficient
shifts is selected via the BIC criterion discussed in Bai and Perron (2006). Gray vertical bars denote NBER
recessions.

PREDICTABILITY PATHS. The evidence discussed above that predictability from financial

variables is a local phenomenon, raises an interesting question: Is there heterogeneity in the

location of predictability for different predictors? And if yes, how does predictability evolve

over the sample? Is predictability really concentrated in short “predictability pockets” such

as hypothesized by recent studies or are there larger episodes of predictability? While

the tests proposed in this paper do not allow to draw precise inference on which periods

over the sample are significant or not at a given significance level,26 the components

of the D sup(K) test statistic do provide a narrative view on how predictability might

evolve over the sample. Figure 1.4 shows the evolution of the ΦT,j components of the

D sup(K) test over the sample. In contrast to the previous section, I consider a larger

upper ceiling of shifts, K̄ = 10 and a lower trimming parameter, ε = .02. I adopt this

specification of the tests since Farmer et al. (2019) who assess predictability paths using a
26Since the proposed tests are joint hypothesis tests, it is not straightforward to extend the methods to a

sequential procedure in the spirit of Bai and Perron (1998)’s FT (k+ 1|k) test as the researcher would need to
add an intermediate step that tests whether the rejection occurred due to constant predictability or the presence
of an additional shift in the coefficient vector. However, developing repeated testing procedures that correct
for the multiple testing at each stage is an interesting avenue for future research.
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non-parametric testing procedure based on multiple t-tests report evidence of particularly

short-lived predictability episodes. Simulation studies available on request show that the

tests still exhibits good size control and has the same power properties against the data-

generating processes discussed in Section 1.6 when using a sample of the size available

here. To choose the number of shifts, I adopt the BIC criterion discussed in Bai and Perron

(2006) and only report predictability paths for the variables for which the criterion detects

at least one shift. The figure provides evidence that predictability is indeed concentrated

in different periods over the sample, depending on the predictor considered. Specifically,

while the predictive ability of the dividend-yield seems concentrated in the pre-1956 period,

the earnings-price ratio and the default yield spread predictors to have an episode of large

predictive ability during the Great Recession period. Finally, the predictive ability of the

term spread variable seems concentrated in a brief period during the early 1980s.

1.8 Conclusion

This paper develops a general approach to test whether a parameter should be included in an

economic model robust to time-variation in parameters. The hypothesis test can be used to

evaluate any economic model described by a set of moment conditions in-sample or out-of-

sample. In-sample, the test selects between two nested model specifications in the presence

of parameter instabilities. Out-of-sample, the test can be used to evaluate the performance

of model forecasts or model-free forecasts such as survey or judgmental forecasts robust

to time-variation. The key feature of the proposed test is that it is particularly powerful in

the presence of multiple breaks in parameters without imposing a specific form of time-

variation. Further, the test statistic provides narrative evidence on which parts of the sample

drive the rejection of the null hypothesis.

The approach jointly tests for both parameter instability and a constant non-zero value of

the parameter. This allows the test to detect departures from the null hypothesis, even when

they only occur over short periods of the sample and makes the test more powerful than

traditional hypothesis tests which are based on the full sample. The test statistic jointly

considers all possible partitions of the sample up to an upper bound of K̄ splits to evaluate

whether there is evidence to reject the null hypothesis. It can be constructed based on

a Lagrange-Multiplier or a Wald form and can be efficiently implemented via a dynamic

programming algorithm provided in the paper.

Extensive Monte-Carlo simulations show that the proposed test is accurately sized in finite

samples and is more powerful than tests assuming constant coefficients or a single break if

the data-generating process exhibits multiple breaks in parameters. At the same time, the

test has high power when model parameters only undergo one shift or are constant. This

makes the test particularly useful when the researcher faces uncertainty about whether and

how parameters change over time.
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The empirical study uses the test to document the presence of local short-horizon

predictability in the US equity premium during the 1946-2019 period from a set of financial

variables considered in Welch and Goyal (2007). There is significant predictive ability

with respect to one-month ahead excess market returns for a large set of predictors, once

time-variation is taken into account. In contrast to traditional predictability tests based

on the full sample, the conclusions from the proposed test are invariant to changes in the

considered sample. Furthermore, the test provides evidence of heterogeneity in the location

of predictability episodes across variables. The findings explain why traditional tests often

fail to uncover predictability in the full sample and why studies that split the sample at

different dates often arrive at conflicting results regarding the predictive ability of a wide

class of variables.
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Appendices

A Critical values & implementation

This section provides additional details on the implementation of the tests. The first section

reports the critical values for the tests and describes the simulation procedure used to obtain

them. The second section describes a software package accompanying the paper available

from the author.

A.1 Asymptotic critical values

Critical values of the test statistics can be obtained by directly simulating the limiting

distributions listed in Theorem 1.3.1 using a dynamic programming algorithm.27 The

table below reports critical values for the predictability tests discussed in the paper. The

significance levels considered in the tables are 10%, 5%, 2.5% and 1%. The critical values

were obtained by simulating the asymptotic distributions based on 10,000 Monte Carlo

replications and an approximation length of N = 3, 600 for the Brownian Motions.28

A.2 Software implementation

Accompanying the paper, the author makes available a software package that can be used

to conveniently use the tests for applied work and for simulating the critical values reported

in Table A.4. The code is mainly written in C++ using the Armadillo C++ linear algebra

library (Sanderson and Curtin, 2016) and offers an R interface provided in the form of an R

package using the Rcpp library (Eddelbuettel and François, 2011). The routines carrying out

the dynamic programming algorithm have been parallelized using the OpenMP application

programming interface (Dagum and Menon, 1998). The software package can be obtained

from the author on request.

27Alternatively, one could obtain the critical values from an approximation strategy for functions of Brownian
motions discussed in Bai (1999).

28Simulations of critical values were carried out on the Amazon Web Services Elastic Compute Cloud (AWS
EC2) using a c5.xlarge instance type (4 vCPUs, 8 GB memory) running Amazon Linux 2.
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Table A.4: Asymptotic critical values for sup ΦT (K) and D sup ΦT (K̄) tests

ε p α D sup(5) sup(1) sup(2) sup(3) sup(4) sup(5)

0.05 1 0.100 10.115 9.644 17.542 23.162 28.471 33.017
0.05 1 0.050 11.566 11.293 19.593 25.721 30.974 35.638
0.05 1 0.025 13.180 13.048 21.542 27.837 33.124 38.112
0.05 1 0.010 15.196 15.155 24.182 30.330 36.257 41.303
0.05 2 0.100 14.008 13.810 23.920 31.926 39.282 46.025
0.05 2 0.050 15.789 15.647 26.053 34.516 42.134 49.096
0.05 2 0.025 17.468 17.361 28.146 36.901 44.720 52.020
0.05 2 0.010 19.953 19.915 30.832 39.694 47.824 55.510

0.10 1 0.100 9.386 9.131 15.605 20.002 23.664 26.368
0.10 1 0.050 10.985 10.813 17.555 22.215 26.101 28.879
0.10 1 0.025 12.555 12.462 19.423 24.315 28.143 31.150
0.10 1 0.010 14.528 14.528 21.754 26.888 31.063 34.225
0.10 2 0.100 13.301 13.185 21.621 28.170 33.857 38.278
0.10 2 0.050 15.054 15.007 24.040 30.691 36.529 41.426
0.10 2 0.025 16.703 16.690 25.863 33.087 39.379 44.537
0.10 2 0.010 19.189 19.162 28.168 36.201 42.386 47.949

0.15 1 0.100 8.833 8.670 14.007 17.367 19.426 18.791
0.15 1 0.050 10.474 10.335 16.057 19.726 21.857 21.349
0.15 1 0.025 12.113 12.075 18.036 21.777 23.950 23.486
0.15 1 0.010 14.163 14.163 20.391 24.511 27.025 26.211
0.15 2 0.100 12.800 12.734 19.997 25.229 28.851 29.077
0.15 2 0.050 14.651 14.627 22.291 27.870 31.651 31.824
0.15 2 0.025 16.262 16.230 24.231 30.194 34.195 34.773
0.15 2 0.010 18.613 18.581 26.794 32.879 37.592 37.952

Notes: This table reports simulated quantiles of the limiting distributions of the sup ΦT (K) and D sup ΦT (K̄) tests.
The critical values were obtained based on 10,000 Monte-Carlo replications and an approximation length of N = 3, 600
observations for the partial sums to simulate the Brownian Motions.
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B Additional tables & figures

Table B.5: Finite-sample size for ε = 0.1 (nominal size 5%)

φη = 0 φη = 0.25 φη = 0.5

T φx Dsup(5) LM QLR∗ Dsup(5) LM QLR∗ Dsup(5) LM QLR∗

Panel A: Heteroskedasticity-robust

125 0.00 0.032 0.052 0.034 0.032 0.051 0.035 0.036 0.051 0.035
250 0.00 0.037 0.046 0.039 0.040 0.047 0.038 0.040 0.047 0.040
500 0.00 0.042 0.049 0.042 0.042 0.049 0.040 0.042 0.048 0.044

1,000 0.00 0.045 0.050 0.045 0.045 0.050 0.045 0.046 0.052 0.048

125 0.25 0.031 0.051 0.034 0.054 0.065 0.054 0.086 0.081 0.084
250 0.25 0.038 0.045 0.041 0.066 0.061 0.065 0.105 0.078 0.104
500 0.25 0.041 0.051 0.042 0.071 0.066 0.071 0.114 0.079 0.113

1,000 0.25 0.046 0.051 0.046 0.078 0.064 0.076 0.122 0.081 0.118

125 0.50 0.036 0.051 0.037 0.085 0.080 0.084 0.176 0.118 0.172
250 0.50 0.043 0.048 0.041 0.105 0.080 0.102 0.227 0.121 0.210
500 0.50 0.043 0.048 0.043 0.110 0.080 0.111 0.244 0.119 0.230

1,000 0.50 0.046 0.053 0.047 0.120 0.085 0.117 0.260 0.125 0.240

Panel B: HAC - AR(1) approximation, QS kernel, Andrews (1991) bandwidth

125 0.00 0.024 0.047 0.025 0.022 0.048 0.025 0.024 0.046 0.025
250 0.00 0.033 0.044 0.032 0.033 0.045 0.032 0.032 0.044 0.032
500 0.00 0.040 0.049 0.041 0.040 0.049 0.040 0.039 0.048 0.041

1,000 0.00 0.044 0.049 0.043 0.044 0.050 0.045 0.042 0.051 0.046

125 0.25 0.023 0.046 0.024 0.026 0.052 0.028 0.027 0.053 0.028
250 0.25 0.034 0.044 0.034 0.037 0.050 0.039 0.038 0.052 0.039
500 0.25 0.039 0.049 0.040 0.044 0.054 0.046 0.045 0.054 0.045

1,000 0.25 0.044 0.050 0.044 0.051 0.053 0.050 0.051 0.055 0.052

125 0.50 0.024 0.047 0.028 0.028 0.053 0.031 0.025 0.053 0.027
250 0.50 0.037 0.045 0.037 0.040 0.052 0.044 0.037 0.053 0.039
500 0.50 0.039 0.048 0.039 0.045 0.054 0.047 0.043 0.052 0.045

1,000 0.50 0.045 0.052 0.044 0.051 0.056 0.053 0.050 0.054 0.052

Notes: The table reports simulated finite-sample size for tests of the null hypothesis H0 : β = 0 with 5% nominal size.
D sup(5) denotes the proposed instability-robust test with a maximum of K̄ = 5 breaks, LM denotes a traditional LM test
andQLR∗ denotes Rossi (2005)’s instability-robust test imposing one break. Rejection rates are based on 10,000 replications
from the model in equation (1.21) using a sample of T observations where the serial correlation of the predictor and prediction
error is controlled by φx, φη , respectively.
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Figure B.5: Finite-sample power for ε = 0.05 (HAC correction)
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Notes: The figure shows simulated rejection rates for tests of the null hypothesisH0 : β = 0 against different designs for the
alternative, βt,T , denoted P1 - P3. Panel D illustrates the different designs for βt,T . Power curves are reported for increasing
size of the shifts, βA, under the alternative. All tests are conducted at α = 5% significance level. The solid black line
denotes the proposedD sup(5) instability-robust test with a maximum of K̄ = 5 breaks. The blue shaded line denotes Rossi
(2005)’s QLR∗T test imposing one break and the red dotted line denotes a traditional LM test. Rejection rates are based on
5,000 replications for a sample of T = 400 observations from the model in equation (1.23) where the serial correlation of
the predictor and prediction error φx = 0, φη = 0, respectively.
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Figure B.6: Finite-sample power for ε = 0.05 (HAC correction, Serial correlation)
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Notes: The figure shows simulated rejection rates for tests of the null hypothesisH0 : β = 0 against different designs for the
alternative, βt,T , denoted P1 - P3. Panel D illustrates the different designs for βt,T . Power curves are reported for increasing
size of the shifts, βA, under the alternative. All tests are conducted at α = 5% significance level. The solid black line
denotes the proposedD sup(5) instability-robust test with a maximum of K̄ = 5 breaks. The blue shaded line denotes Rossi
(2005)’s QLR∗T test imposing one break and the red dotted line denotes a traditional LM test. Rejection rates are based on
5,000 replications for a sample of T = 400 observations from the model in equation (1.23) where the serial correlation of
the predictor and prediction error φx = 0.5, φη = 0.5, respectively.
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Figure B.7: Data used in Equity Premium prediction
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Notes: The figure shows the equity premium series yt+1 in panel A and the raw predictor data used in the empirical
application, xt in panels B to L. Shaded gray bars denote recessions as measured by the NBER indicator.
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Table B.6: Predictability tests for the Equity Premium

Traditional Robust

Predictor β̂OLS R2 (%) tHAC tHAC1952 D sup(5) D sup(5)1952

Dividend payout ratio 0.003 0.05 0.43 0.58 14.58** 15.47***
Earnings-price ratio 0.005 0.24 1.02 0.57 11.80** 10.71*
Long-term yield -0.086 0.32 -1.57 -1.48 7.25 7.18
T-bill rate -0.112 0.65 -2.22** -2.23** 11.29* 10.66*
Term spread 0.205 0.41 1.70* 1.87* 8.09 8.71
Dividend-price ratio 0.006 0.42 1.90* 1.42 13.83** 12.62**
Dividend-yield 0.007 0.49 2.06** 1.61 13.60** 12.58**
Default yield spread 0.271 0.07 0.49 0.54 12.71** 12.40**
Book-to-market ratio 0.005 0.08 0.74 0.43 5.66 5.72
Net equity expansion -0.038 0.03 -0.32 -0.39 18.86*** 19.12***
Inflation rate -0.940 0.97 -2.67*** -1.89* 17.37*** 10.86*

Notes: The table presents the results of conducting predictability tests of the null hypothesis β = 0 for the post-war sample
1946-2019 in model (1.25) using the CRSP Equity Premium. The left panel reports the full-sample least squares estimates,
β̂OLS , the R2 of the full-sample regression (in percentage points) as well as the traditional predictability tests using a t-
ratio with HAC correction for the full-sample, tHAC , and a subsample starting in 1952, tHAC1952 . The right panel reports
the results from the instability-robust D supLM model-specification tests with a maximum of K̄ = 5 shifts and trimming
parameter set at ε = 0.05 for the same subsamples. For all test statistics, the stars denote a rejection the null hypothesis of
no predictability at significance levels 1% (***), 5% (**), and 10% (*), respectively.

Table B.7: Predictability tests for the Equity Premium (first differences)

Traditional Robust

Predictor β̂OLS R2 (%) tHAC tHAC1952 D sup(5) D sup(5)1952

Dividend payout ratio -0.061 0.45 -2.14** -2.29** 20.21*** 20.00***
Earnings-price ratio 0.018 0.07 0.88 0.96 4.87 4.72
Long-term yield -1.590 1.04 -3.02*** -2.92*** 11.89** 12.86**
T-bill rate -1.102 1.06 -3.30*** -3.26*** 19.37*** 17.81***
Term spread 0.350 0.11 0.96 1.00 11.37* 10.42*
Dividend-price ratio -0.037 0.14 -0.91 -1.04 9.11 9.65
Dividend-yield 0.027 0.07 0.81 0.72 3.65 3.82
Default yield spread 0.261 0.00 0.15 0.19 13.50** 13.32**
Book-to-market ratio -0.069 0.20 -1.33 -1.64 7.69 7.90
Net equity expansion -0.674 0.35 -1.52 -1.68* 11.25* 10.82*
Inflation rate -0.265 0.08 -1.22 -1.98** 3.14 4.87

Notes: The table presents the results of conducting predictability tests of the null hypothesis β = 0 for the post-war sample
1946-2019 in model (1.25) using the S&P 500 Equity Premium where all variables are transformed to first-differences. The
left panel reports the full-sample least squares estimates, β̂OLS , the R2 of the full-sample regression (in percentage points)
as well as the traditional predictability tests using a t-ratio with HAC correction for the full-sample, tHAC , and a subsample
starting in 1952, tHAC1952 . The right panel reports the results from the instability-robust D supLM model-specification tests
with a maximum of K̄ = 5 shifts and trimming parameter set at ε = 0.05 for the same subsamples. For all test statistics,
the stars denote a rejection the null hypothesis of no predictability at significance levels 1% (***), 5% (**), and 10% (*),
respectively.
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C Mathematical derivations

NOTATION. Before presenting the derivations, recall some notational conventions that are

used throughout the rest of the appendix. Let (Ω,F ,P) denote a probability space on which

all of the random elements are defined. Unless specified otherwise, all limits are taken

as the sample size T → ∞. The symbol
p→ denotes convergence in probability and d→

denotes convergence in distribution. Next, ⇒ denotes weak convergence for sequences of

measurable random elements of a space of bounded Euclidean-valued cadlag functions on

the product spaceD[0, 1]T as defined in Phillips and Durlauf (1986) where each component

space D[0, 1] is equipped with the Skorohod metric. ‖·‖ denotes the Euclidean norm of

a vector of matrix and [·] is the integer part operator. For notational simplicity, I say that

xt(r, s) = op,rs(1) if it holds that supr,s∈[0,1],s>rρ ‖xt(r, s)‖ = op(1).

C.1 In-sample inference

THEOREM 1.3.1 (Limiting distribution for in-sample tests): Assume that the regularity

conditions in Assumption 1.3.1 hold. Under the null hypothesis defined in (1.3), it holds

that

sup ΦT (K) ⇒ sup
λK ∈ Λε

K+1∑
j=1

{
‖Bp(λj)− Bp(λj−1)‖2

λj − λj−1

}

D sup ΦT (K̄)⇒ max
1≤k≤K̄

(1/k) sup
λK ∈ Λε

K+1∑
j=1

{
‖Bp(λj)− Bp(λj−1)‖2

λj − λj−1

}
Λε ≡

{
λj : λj ∈ (ε, 1− ε), λj > λj−1 + ε, j = 1, . . . ,K

}
where λ0 ≡ 0, λK+1 ≡ 1 and Bp(·) is a (p × 1) vector of independent standard Brownian

motions on [0, 1].

Proof. Note that under the null hypothesis in (1.3), it holds that θt = θ0 = (0p×1, δ) ∀ t.
Therefore, under the null hypothesis, the function defining the moment condition

f(zt, θt) = f(zt, βt, δ) can be written as a function of a constant parameter f(zt, θ).

This notation will be used in the subsequent derivations.

To prove the weak convergence results stated in the theorem, I start by showing that the

partial sample moments satisfy the following invariance principle under the null hypothesis.

T−1/2 W
1/2
T

[sT ]∑
t=1

f(zt, θ0) ⇒ Bm(s) s ∈ (0, 1]
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Recall the following result from Corollary 2.2 of Phillips and Durlauf (1986) which

generalizes the stationary version of the univariate invariance principle by McLeish (1975).

Corollary 2.2, Phillips and Durlauf (1986): Let {ut}∞t=1 be a weakly stationary

sequence of random n × 1 vectors satisfying E[ut] = 0 ∀ t. If (a) E|ui1|β < ∞ (i =

1, ..., n) for some 2 ≤ β < ∞ and (b) either
∑∞

n=1 ϕ
1−1/β
n < ∞ or, β > 2 and∑∞

n=1 α
1−2/β
n <∞, then

Σ = lim
T→∞

E
[
T−1STS

′
T

]
= E[u1u

′
1] +

∞∑
k=2

{
E[u1u

′
k] + E[uku

′
1]
}

where St =
∑[Tt]

j=1 uj . If Σ is positive definite, then XT (t) = 1√
T

Σ−1/2S[Tt] ⇒ W (t)

as T →∞.

Choose ut := f(zt, θ0) and verify the conditions of the Corollary. The first requirement and

condition (a) follow from Assumption 1.3.1.(ii) and Assumption 1.3.1.(iv). Condition (b)

follows from 1.3.1.(i). The last requirements follows from Assumption 1.3.1.(iii). Applying

the Corollary, using Assumption 1.3.1.(vii) and Slutsky’s Theorem, it follows that

T−1/2 W
1/2
T

[sT ]∑
t=1

f(zt, θ0) ⇒ Bm(s) (26)

LAGRANGE-MULTIPLIER FORM, ΦLM
T

The Lagrange-Multiplier form builds on the restricted GMM estimator defined in (1.7). I

start by proving that this estimator is consistent under the null hypothesis in (1.3) i.e. that

θ̃
p→ θ0. Recall from equation (1.7) the definition of θ̃.

θ̃ := arg max
θ∈Θ

Q̂T (θ) subject to Aθ̃ = 0

Q̂T (θ) := F̂T (θ)′ WT F̂T (θ)

F̂T (θ) ≡ 1

T

T∑
t=1

f(zt, θ)

where T0 = 1 and A ≡
[
Ip×p 0p×q

]
.

To prove consistency of θ̃, I first show consistency of the unrestricted estimator θ̂ which

is defined as the estimator above, but ignores the constraint Aθ̃ = 0. Define the limiting

objective function Q0(θ) ≡ E[FT (θ)]′ Σ−1
ff E[FT (θ)] and apply Theorem 2.1 of Newey

and McFadden (1994) to show θ̂
p→ θ0. The theorem requires that (i) Q0(θ) is uniquely
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maximized at θ0; (ii) Θ is compact; (iii) Q0(θ) is continuous and (iv) Q̂T (θ) converges

uniformly in probability to Q0(θ). Requirement (i) is satisfied by the identification assump-

tion in 1.3.1.(vi) and positive definiteness of Σff in 1.3.1.(iii). Requirement (ii) is satisfied

by 1.3.1.(v). Requirement (iii) is satisfied by 1.3.1.(iv). The uniform convergence require-

ment in (iv) follows from verifying Assumptions A1, B1, and A5 in Andrews (1987) and

applying the main theorem. Assumption A1 of Andrews (1987) follows from Assumption

1.3.1.(v), Assumption B1 follows from Assumption 1.3.1.(i) and Assumption A5 follows

from 1.3.1.(v) and 1.3.1.(iv). Having shown that all requirements are satisfied, we apply

Theorem 2.1 of Newey and McFadden (1994) and get θ̂
p→ θ0. Consistency of the restricted

estimator θ̃ → θ0 then follows from the argument of Theorem 9.1 of Newey and McFadden

(1994).

Next, I derive a preliminary asymptotic result characterizing the limiting distribution of the

normalized partial sample moment for any block of the sample with t = [rT ] + 1, . . . , [sT ],

r, s ∈ [0, 1] and s > r. Start again from the constrained GMM estimator θ̃ defined in

equation (1.7). Define the following Lagrangian for θ̃:

θ̃ = arg max
θ∈Θ
LT (θ, µ) LT (θ, µ) =

1

2
FT (θ)′WTFT (θ) + a(θ)′ µT

a(θ) := A θ = β A =
[
Ip 0p×q

]
where µT is a (p × 1) vector of Lagrangian multipliers which will be non-zero if the

constraints are binding. The first-order conditions of this optimization problem are[
0

0

]
=

[√
T ∇θFT (θ̃)′WTFT (θ̃)−∇θa(θ̃)′

√
T µ̃T

a(θ̃)

]
(27)

An element-by-element mean value expansion of f(zt, θ) around θ0, evaluated at θ̃ yields

f(zt, θ̃) = f(zt, θ0) +
∂f(zt, θ̄)

∂θ
(θ̃ − θ0)

where θ̄ = [θ̄(1), . . . , θ̄(v)]′ and θ̄(i) = α(i)θ̃(i) + (1 − α(i))θ
(i)
0 for some α(i) ∈ [0, 1] and

each t = 1, . . . , T and i = 1, . . . , k. Summing these terms from 1 to T , dividing by T and

pre-multiplying by
√
T gives

√
T FT (θ̃) =

√
TFT (θ0) +∇θFT (θ̄)

√
T (θ̃ − θ0) (28)

A similar mean-value expansion of a(θ) about θ0, evaluated at θ̃ gives

√
T a(θ̃) =

√
Ta(θ0) +A

√
T (θ̃ − θ0) (29)
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Substituting the expansions into the first order conditions and rearranging yields[
−
√
T ∇θFT (θ̄)′WTFT (θ0)

−
√
Ta(θ0)

]
=

[
∇θFT (θ̃)′WT∇θFT (θ̄) A′

A 0

][√
T (θ̃ − θ0)√
T µ̃T

]
(30)

Using the consistency result proved above that θ̃
p→ θ0 and uniform convergence of

∇θFT (θ) following from the assumptions of the theorem, we get[
−M ′Σ−1/2 Σ

−1/2
ff

√
TFT (θ0)

−
√
Ta(θ0)

]
=

[
D A′

A 0

][√
T (θ̃ − θ0)√
T µ̃T

]
+ op (31)

where D ≡M ′Σ−1M = M̄ ′M̄ .

From the formula for inverses of block matrices, we have[
D A′

A 0

]−1

=

[
D−1/2(I − P )D−1/2 D−1A′(AD−1A′)−1

(AD−1A′)−1AD−1 −(AD−1A′)−1

]
(32)

where P ≡ D−1/2A′(AD−1A′)−1AD−1/2 is an m × m idempotent matrix of rank q.

Solving for
√
T (θ̃ − θ0) using the formula for the block-inverse and re-arranging, we get

√
T (θ̃ − θ0) =−D−1/2(I − P )D−1/2M̄ ′ Σ

−1/2
ff

√
TFT (θ0)

−D−1A′(AD−1A′)−1
√
Ta(θ0) + op

(33)

Next, we calculate an alternative form for f(zt, θ̃). An element-by-element mean-value

expansion of f(zt, θ̃) around θ0 gives

√
Tf(zt, θ̃) =

√
Tf(zt, θ0) +∇θf(zt, θ̄)

√
T (θ̃ − θ0)

where again θ̄ = [θ̄(1), . . . , θ̄(v)]′ and θ̄(i) = α(i)θ̃(i) + (1− α(i))θ
(i)
0 for some α(i) ∈ [0, 1]

and each t = 1, . . . , T and i = 1, . . . , k.

Take any r, s ∈ [0, 1] with s > r. Summing the expansion above between [rT ] + 1 and

[sT ], multiplying by 1√
T
W

1/2
T and using the expression for

√
T (θ̃ − θ0) (33), we get
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1√
T
W

1/2
T

[sT ]∑
t=[rT ]+1

f(zt, θ̃) =
1√
T
W

1/2
T

[sT ]∑
t=[rT ]+1

f(zt, θ0)

−W 1/2
T (1/T )

[sT ]∑
t=[rT ]+1

∇θft(θ̄)D−1/2(I − P )D−1/2M̄ ′

×
√
T Σ

−1/2
ff FT (θ0)

−W 1/2
T (1/T )

[sT ]∑
t=[rT ]+1

∇θft(θ̄)D−1A′(AD−1A′)−1
√
Ta(θ0)

+ op

(34)

where under the null hypothesis a(θ0) = 0p×1 so that the third term disappears.

To derive the limiting distribution, we inspect the convergence of each component of the

sum above. First, note that since θ̃
p→ θ0, it follows that θ̄

p→ θ0 and under the assumptions

of the theorem we have that

(1/T )

[sT ]∑
t=[rT ]+1

∇θft(θ̄)
p→ (s− r) ·M (35)

Further, one can show that

M̄D−1/2(I − P )D1/2M̄ ′ = P̄δ (36)

where M̄ and P̄δ are as defined in the main text of Section 1.3.

Inspect the first term of the expression in (34). Rewriting the partial sum as a difference of

two partial sums, applying the result proved in 26 above as well as the continuous mapping

theorem, we get

1√
T
W

1/2
T

[sT ]∑
t=[rT ]+1

f(zt, θ0) =
1√
T
W

1/2
T

[sT ]∑
t=1

f(zt, θ0)− 1√
T
W

1/2
T

[rT ]∑
t=1

f(zt, θ0)

⇒ Bm(s)− Bm(r)

(37)

Next, inspect the second term of the sum in (34). By the same result in (26), we have that√
T Σ

−1/2
ff FT (θ0) ⇒ Bm(1). Then, using the results in equations (35) and (36) as well as
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the continuous mapping theorem, we have that

W
1/2
T (1/T )

[sT ]∑
t=[rT ]+1

∇θft(θ̄)D−1/2(I − P )D−1/2M̄ ′
√
T Σ

−1/2
ff FT (θ0)

⇒ (s− r) P̄δ Bm(1)

(38)

Using the two convergence results in (37) and (38), the continuous mapping theorem and

regrouping terms, we get

T−1/2 W
1/2
T

[sT ]∑
t=[rT ]+1

f(zt, θ̃) ⇒ Z(r, s) (39)

Z(r, s) ≡ P̄δ
[
BBm(s)− BBm(r)

]
+ (Im − P̄δ)

[
Bm(s)− Bm(r)

]
(40)

for any r, s ∈ [0, 1] with s > r where BBm(l) := Bm(l)− lBm(1) denotes a m× 1 vector

of independent Brownian bridges for l ∈ [0, 1].

Finally, I derive the limiting distribution of the sup ΦLM
T (K) test statistic. To characterize

the limiting distribution, I follow the strategy employed in Sowell (1996) by deriving a

continuous functional29 mapping from D[0, 1]m to R which defines the test statistic when

applied to the normalized partial sum of the sample moments between t = [rT ]+1, . . . , [sT ]

for some r, s ∈ [0, 1], s > r in (39). The same continuous functional is then applied to the

limiting stochastic process Z(r, s) defined in (39) to characterize the limiting distribution

of the test statistic under the null hypothesis, which follows from the continuous mapping

theorem.

Consider the following functional defining the sup ΦLM
T (K) test statistic for given K and

given λK ∈ Λε where λK ≡ (λ1, . . . , λK), λ0 ≡ 0 and λK+1 ≡ 1 where the consistent

variance estimators Σ̂ff and Ω̂T,j have been replaced by their limits.

sup ΦLM
T (K) := sup

λK∈Λε

K+1∑
j=1

FT,j(λj−1, λj)
′ ΩT,j(λj−1, λj) FT,j(λj−1, λj)

F j,T (λj−1, λj) := M̄ ′β(Im − P̄δ) ×
1√
T

Σ
−1/2
ff

[λjT ]∑
t=[λj−1T ]+1

f(zt, θ̃)

Ωj,T (λj−1, λj) := (λj − λj−1)−1
[
M̄ ′β (Im − P̄δ) M̄β

]−1

Apply this functional to the limiting stochastic process Z(r, s) defined in (39) to

characterize the limiting distribution of the test statistic. The limiting stochastic process
29Continuous with respect to the uniform metric.

53



is defined by the mapping

sup ΦLM (K) := sup
λK∈Λε

K+1∑
j=1

Aj(λ)′ Vj(λ)−1 Aj(λ)

Aj(λ) := M̄ ′β(Im − P̄δ) Z(λj−1, λj)

Vj(λ) := (λj − λj−1) M̄ ′β (Im − P̄δ) M̄β

Consider first Aj(λ). Using the properties of the projection matrix, P̄δ, we have

Aj(λ) = M̄ ′β(Im − P̄δ) Z(λj−1, λj)

= M̄ ′β(Im − P̄δ)
{
P̄δ
[
BBm(λj)− BBm(λj−1)

]
+ (Im − P̄δ)

[
Bm(λj)− Bm(λj−1)

]}
= M̄ ′β(Im − P̄δ)

[
Bm(λj)− Bm(λj−1)

]
Define C := M̄ ′β(Im − P̄δ) ∈ Rp×m. Using the result above, we have that

Aj(λ)′ Vj(λ)−1 Aj(λ) =
[
C Z(λj−1, λj)

]′ × (λj − λj−1)−1

× (CC ′)−1 ×
[
C Z(λj−1, λj)

]′
=

{
(λj − λj−1)−1/2 (CC ′)−1/2C

[
Bm(λj)− Bm(λj−1)

]}′
×{

(λj − λj−1)−1/2 (CC ′)−1/2C
[
Bm(λj)− Bm(λj−1)

]}

where the last step follows since (CC ′)−1 is a square, symmetric and positive-semidefinite

matrix and therefore has a matrix square root (CC ′)−1 = (CC ′)−1/2 (CC ′)−1/2 (Newey

and McFadden, 1994, Lemma 9.6).

Next, it is easy to verify that (CC ′)−1/2C is an orthonormal p × m matrix so that it

holds that
{

(CC ′)−1/2C
} {

(CC ′)−1/2C
}′

= Ip. Since (CC ′)−1/2C is orthonormal,

(CC ′)−1/2C Bm(s) has the same distribution as Bp(s) and we have

Aj(λ)′ Vj(λ)−1 Aj(λ) = [Bp(λj)−Bp(λj−1)]′ (λj − λj−1)−1 [Bp(λj)−Bp(λj−1)]

=
‖Bp(λj)−Bp(λj−1)‖2

λj − λj−1

and therefore

sup ΦLM (K) = sup
λK∈Λε

K+1∑
j=1

{
‖Bp(λj)− Bp(λj−1)‖2

λj − λj−1

}
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so that in conclusion we have shown that

sup ΦLM
T (K) ⇒ sup

λK∈Λε

K+1∑
j=1

{
‖Bp(λj)− Bp(λj−1)‖2

λj − λj−1

}

The limiting distribution of the D sup ΦLM
T statistic follows then from the continuity of the

max operator in (1.11) and the continuous mapping theorem. This concludes the proof of

Theorem 1.3.1 for the Lagrange-Multiplier form.

WALD FORM

The proof for the Wald form follows the same strategy as above, first showing consistency

of β̂j
p→ β0 under the null hypothesis, then deriving the limiting stochastic process of√

T (β̂j − β0) based on the estimator defined in (1.9) and finally applying a continuous

mapping to form the test statistic and to characterize its limiting distribution. The full proof

is available on request.
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C.2 Out-of-sample inference

LEMMA 1.4.1 (OOS Mean-Value Approximation): Under the regularity conditions in

Assumption 1.4.1 and the null hypothesis defined in (1.3), for any r, s ∈ [0, 1] with

s > r > ρ it holds that

P−1/2

[sT ]∑
t=[rT ]+1

f(zt+h, β0, δ̂t) =

(T/P )1/2

{
1√
T

[sT ]∑
t=R

f(zt+h, β0, δ0)− 1√
T

[rT ]∑
t=R

f(zt+h, β0, δ0)

}

+ (T/P )1/2 FB

{
1√
T

[sT ]∑
t=R

Ht(δ0)− 1√
T

[rT ]∑
t=R

Ht(δ0)

}
+ op,rs(1)

where Ht, B are as defined in Assumption 1.4.1.(ii) and xt(r, s) = op,rs(1) denotes that

supr,s∈[0,1], s>r>ρ ‖xt(r, s)‖ = op(1).

Proof. A second-order element-by-element mean value expansion of f(zt+h, β, δ) around

δ0 and evaluated at δ̂t for t = R, . . . , T yields.

f(zt+h, β0, δ̂t) = f(zt+h, β0, δ0) +∇δf(zt+h, β0, δ0)(δ̂t − δ0) + wt+h (41)

where the i-th element of wt+h is

wt+h,i ≡
1

2
(δ̂t − δ0)′

∂2fi(zt+h, β0, δ̃t,i)

∂δ ∂δ′
(δ̂t − δ0) (42)

and δ̃t,i lies between δ̂t and δ0.

Summing between t = [rT ] + 1, . . . , [sT ] and pre-multiplying by P−1/2 gives

P−1/2

[sT ]∑
t=[rT ]+1

f(zt+h, β0, δ̂t) = P−1/2

[sT ]∑
t=[rT ]+1

f(zt+h, β0, δ0)

+ P−1/2

[sT ]∑
t=[rT ]+1

∇δf(zt+h, β0, δ0)(δ̂t − δ0)

+ P−1/2

[sT ]∑
t=[rT ]+1

wt+h

(43)
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The second term in (43) can be written as

P−1/2

[sT ]∑
t=[rT ]+1

∇δf(zt+h, β0, δ0)(δ̂t − δ0) =

P−1/2

[sT ]∑
t=[rT ]+1

∇δf(zt+h, β0, δ0)BtHt(δ0)

= P−1/2FB

[sT ]∑
t=[rT ]+1

Ht(δ0)

+ P−1/2

[sT ]∑
t=[rT ]+1

(
∇δf(zt+h, β0, δ0)− F

)
BHt(δ0)

+ P−1/2

[sT ]∑
t=[rT ]+1

F
(
Bt −B

)
Ht(δ0)

+ P−1/2

[sT ]∑
t=[rT ]+1

(
∇δf(zt+h, β0, δ0)− F

)(
Bt −B

)
Ht(δ0)

(44)

where the first step follows from Assumption 1.4.1.(ii) and the second step by adding and

subtracting the relevant terms involving F and B. The second term after the last equality is

op,rs(1) by Assumption 1.4.1.(xi), the third by part 1.4.1.(xii) and the fourth by 1.4.1.(xiii).

Further, it can be shown that the remainder term P−1/2
∑[sT ]

t=[rT ]+1wt+h(r, s) = op,rs(1)

from an argument similar to the one in the proof of equation (4.1) in West (1996).

Substituting into (43) gives

P−1/2

[sT ]∑
t=[rT ]+1

f(zt+h, β0, δ̂t) = P−1/2

[sT ]∑
t=[rT ]+1

f(zt+h, β0, δ0)

+ P−1/2FB

[sT ]∑
t=[rT ]+1

Ht(δ0) + op,rs(1)

(45)

Finally, multiplying and dividing by
√
T , splitting the sums and re-arranging terms gives

P−1/2

[sT ]∑
t=[rT ]+1

f(zt+h, β0, δ̂t) =

(T/P )1/2

{
1√
T

[sT ]∑
t=R

f(zt+h, β0, δ0)− 1√
T

[rT ]∑
t=R

f(zt+h, β0, δ0)

}

+ (T/P )1/2 FB

{
1√
T

[sT ]∑
t=R

Ht(δ0)− 1√
T

[rT ]∑
t=R

Ht(δ0)

}
+ op,rs(1)
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which proves the Lemma.

THEOREM 1.4.1 (OOS Inference): Assume that the regularity conditions in Assumption

1.4.1 hold. Under the null hypothesis defined in (1.3), it holds that

sup ΦT (K) ⇒ sup
λK ∈ Λε,ρ

K+1∑
j=1

Φj(λj−1, λj)

D sup ΦT (K̄) ⇒ max
1≤k≤K̄

(1/k) sup
λK ∈ Λε,ρ

K+1∑
j=1

Φj(λj−1, λj)

Λε,ρ =
{
λj , j = 1, . . . ,K : λj ∈ (ρ+ ε, 1− ε), λj > λj−1 + ε

}
,

with λ0 ≡ ρ, λK+1 ≡ 1 and where

Φj(λj−1, λj) ≡
[
Bm

(∫ λj

0
ω(u, λj−1, λj)ω(u, λj−1, λj)

′ du

)]′
×{∫ λj

0
ω(u, λj−1, λj) ω(u, λj−1, λj)

′ du

}−1

×
[
Bm

(∫ λj

0
ω(u, λj−1, λj)ω(u, λj−1, λj)

′ du

)]
with

ω(u, r, s) ≡M ′ Σ−1
ff (1− ρ)−1/2

[
Im FB

]
×
{[

Ω(u, s)1/2 − Ω(u, r)1/2
]
1(u ≤ r)

+ Ω(u, s)1/2 1(r < u ≤ s)
}

Σ1/2

and where Ω(s, τ) is as defined as

Ω(s, τ)1/2 ≡

(
1(s ≤ ρ) · Im 0m×d

0d×m
{

[ln τ − ln ρ]1(s ≤ ρ) + [ln(τ)− ln(s)]1(ρ < s ≤ τ)
}
· Id

)

Proof. Note, as in the in-sample case above, that under the null hypothesis in (1.3), it holds

that θt = θ0 = (0p×1, δ) ∀ t. Therefore, under the null hypothesis, the function defining

the moment condition f(zt, θt) = f(zt, βt, δ) can be written as a function of a constant

parameter f(zt, θ). This notation will be used in the subsequent derivations.

To prove the weak convergence results stated in the theorem, I start by showing that the

partial sample moments satisfy the following invariance principle under the null hypothesis.

1√
T

[sT ]∑
t=R

(
f(zt+h, β0, δ0)

Ht(δ0)

)
⇒
∫ s

0
Ω(u, s)1/2 dξ(u) (46)
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where Ω(u, τ)1/2 is as defined in the theorem and ξ(u) ≡ Σ1/2 Bm+d(u) where Bm+d(u)

is an (m+ d)× 1 vector of independent standard Brownian motions.

This result can be proven by following the same reasoning as in the proof of Proposition

1 of Rossi and Sekhposyan (2016). Start by defining bR,t,j ≡ 1(t ≥ R). Then, by direct

calculations, for any j ≥ R, it holds that

j∑
t=R

f(zt+h, β0, δ0) =

j∑
t=1

bR,t,j f(zt+h, β0, δ0) (47)

Under the recursive estimation scheme in Assumption 1.4.1.(ii) and defining

aR,t,j ≡
(
R−1 + . . .+ j−1

)
· 1(t ≤ R) +

(
t−1 + . . .+ j−1

)
· 1(R < t ≤ j) (48)

for any j ≥ R it holds by direct calculation that

j∑
t=R

Ht(δ0) =

j∑
t=R

t−1

(
t∑

r=1

h(zr, δ0)

)
=

j∑
t=1

aR,t,j h(zt, δ0) (49)

Using (47) and (49) it holds that

1√
T

[sT ]∑
t=R

(
f(zt+h, β0, δ0)

Ht(δ0)

)
=

1√
T

[sT ]∑
t=1

(
bR,t,[sT ] · Im 0m×d

0d×m aR,t,[sT ] · Id

)(
f(zt+h, β0, δ0)

ht(δ0)

)
(50)

To derive the limiting distribution, as in Rossi and Sekhposyan (2016), I consider an

asymptotic approximation for the weights aR,t,j and bR,t,j . From Assumption 1.4.1.(i),

we have ρ := limT→∞R/T and thus

bR,t,j ≡ 1(t ≥ R) u 1(s ≥ ρ) s ≡ lim
T→∞

t/T (51)

Following West (1996) and Rossi and Sekhposyan (2016) it can further be shown that

aR,t,j u
(∫ j

R

1

k
dk

)
1(t ≤ R) +

(∫ j

t

1

k
dk

)
1(R < t ≤ j)

u [ln(τ)− ln(ρ)]1(s ≤ ρ) + [ln(τ)− ln(s)]1(ρ < s ≤ τ)

(52)

To prove the weak convergence in (46), I employ the result for weak convergence of

stochastic integrals based on mixing sequences of Hansen (1992). In particular, define

{ξj,T } to be the following normalized stochastic sum process

ξj ≡
1√
T

j∑
t=1

ξ(zt+h, β0, δ0) ≡ 1√
T

j∑
t=1

(
f(zt+h, β0, δ0)

ht(δ0)

)
(53)
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where ξ(zt+h, θ) is defined in the main text of Section 1.4. Further, define the stochastic

integral of interest as

∫ τ

0

(
σf (s) · Im 0m×d

0d×m σh(s, τ) · Id

)
d ξT = (54)

1√
T

j∑
t=1

(
bR,t,j · Im 0

0 aR,t,j · Id

)(
f(zt+h, β0, δ0)

ht(δ0)

)
(55)

To apply Theorem 3.1 of Hansen (1992) we need to verify its conditions. The first

requirement is Assumption 1 of Hansen (1992) which is satisfied by the mixing condition

in Assumption 1.4.1.(iii) and Assumption 1.4.1.(v). To satisfy the second requirement,

we need to show that T 1/2 ξT ⇒ Σ−1/2ξ where ξ(s) ≡ Σ1/2 Bm+d(s). This follows

from applying Corollary 2.2 of Phillips and Durlauf (1986) under Assumptions 1.4.1.(iii),

1.4.1.(iv), 1.4.1.(v) and 1.4.1.(vi).

Applying Theorem 3.1 of Hansen (1992), we get

1√
T

j∑
t=1

(
bR,t,j · Im 0

0 aR,t,j · Id

)(
f(zt+h, β0, δ0)

ht(δ0)

)
− C∗T (τ) (56)

⇒
∫ τ

0
Ω(s, τ)1/2 dξ(s) (57)

where

C∗T (τ) =

{
T−1/2

[τT ]∑
t=1

[(
bR,t,j · Im 0

0 aR,t,j · Id

)
−

(
bR,t−1,j · Im 0

0 aR,t−1,j · Id

)]
ζt

− T−1/2

(
bR,t−1,j · Im 0

0 aR,t−1,j · Id

)
ζj+1

}

with j := [τT ] and ζt =
∑∞

k=1 Et
([
f(zt+h+k, θ0)′, h(zt, δ0)′

]′). Using the same

reasoning as in Rossi and Sekhposyan (2016), based on the steps in the proof of Cavaliere

(2005), Theorem 4 and the fact that the variances σf (s), σh(s, τ) are square integrable and

bounded, we get

1√
T

[sT ]∑
t=R

(
f(zt+h, β0, δ0)

Ht(δ0)

)
⇒

∫ τ

0
Ω(s, τ)1/2 dξ(s) (58)
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LAGRANGE-MULTIPLIER FORM, ΦLM
T

To derive the limiting distribution of the sup ΦT (K) test statistic, we follow the same

strategy as in the proof of Theorem 1.3.1. The test statistic is formed by applying a

continuous functional to the stochastic process derived above. We then derive the associated

limiting stochastic process under the null hypothesis and apply the same functional to

characterize the limiting distribution of the test statistic. Given K, define the continuous

mapping

sup ΦLM
T (K) := sup

λK∈Λε,ρ

K+1∑
j=1

Aj,T (λ)′
{
Vj,T (λ)

}−1
Aj,T (λ) (59)

where

Aj,T (λ) := M ′Σ−1
ff P

−1/2

[λjT ]∑
t=[λj−1T ]+1

f(zt+h, β0, δ̂t) (60)

To characterize the limiting stochastic process of Aj,T (λ), note that under the regularity

conditions in Assumptions 1.4.1, we can apply Lemma 1.4.1 to get

P−1/2

[λjT ]∑
t=[λj−1T ]+1

f(zt+h, β0, δ̂t) =

(T/P )1/2

{
1√
T

[λjT ]∑
t=R

f(zt+h, β0, δ0)− 1√
T

[λj−1T ]∑
t=R

f(zt+h, β0, δ0)

}

+ (T/P )1/2 FB

{
1√
T

[λjT ]∑
t=R

Ht(δ0)− 1√
T

[λj−1T ]∑
t=R

Ht(δ0)

}
+ op,rs(1)

Plugging into (60) and grouping terms and omitting the op term, we get

Aj,T (λ) =M ′Σ−1
ff (T/P )1/2

[
Im FB

]{ 1√
T

[λjT ]∑
t=R

(
f(zt+h, β0, δ0)

ht(δ0)

)

− 1√
T

[λj−1T ]∑
t=R

(
f(zt+h, β0, δ0)

ht(δ0)

)} (61)

Using the weak convergence result we derived in (58) above, we get

1√
T

[λjT ]∑
t=R

(
f(zt+h, β0, δ0)

Ht(δ0)

)
⇒
∫ λj

0
Ω(s, λj)

1/2S1/2 dBm+d(s) (62)

61



and applying the continuous mapping theorem,

Aj,T ⇒ M ′Σ−1
ff (1− ρ)−1/2

[
Im FB

]{∫ λj

0
Ω(s, λj)

1/2S1/2 dBm+d(s)

−
∫ λj−1

0
Ω(s, λj−1)1/2S1/2 dBm+d(s)

}

= M ′Σ−1
ff (1− ρ)−1/2

[
Im FB

]{∫ λj−1

0

[
Ω(s, λj)

1/2 − Ω(s, λj−1)1/2
]

× S1/2 dBm+d(s) +

∫ λj

λj−1

Ω(s, λj)
1/2S1/2 dBm+d(s)

}
= M ′Σ−1

ff (1− ρ)−1/2
[
Im FB

]
×∫ λj

0

{[
Ω(s, λj)

1/2 − Ω(s, λj−1)1/2
]
1(s ≤ λj−1)

+ Ω(s, λj)
1/2 1(λj−1 < s ≤ λj)

}
× S1/2 dBm+d(s)

=

∫ λj

0
ω(s, λj , λj−1) dBm+d(s)

= Bm
(∫ λj

0
ω(s, λj , λj−1)ω(s, λj , λj−1)′ ds

)

(63)

where

ω(s, λj−1, λj) ≡

M ′Σ−1
ff (1− ρ)−1/2

[
Im FB

]{ [
Ω(s, λj)

1/2 − Ω(s, λj−1)1/2
]
1(s ≤ λj−1)

+ Ω(s, λj)
1/2 1(λj−1 < s ≤ λj)

}
S1/2

(64)

The result of the theorem then follows from applying the continuous mapping theorem to get

the distribution of ΦT (λ) and the distributions of sup ΦT (K) and D sup ΦT (K̄) as defined

in the theorem and analogue to the proof of Theorem 1.3.1.

WALD FORM

The proof of the Wald form follows similar steps and is available on request.
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COROLLARY 1.4.1 (OOS Inference in Special Cases): If (a) F = 0, that is parameter

estimation error is irrelevant, or (b) the following condition holds

Σff = −1

2
(FBΣhf + ΣfhB

′F ′) = FBΣhhB
′F ′

then, the result of Theorem 1.4.1 simplifies to

sup ΦT (K) ⇒ sup
λ ∈ Λε,ρ

K+1∑
j=1

{
‖Bp(λj − ρ)− Bp(λj−1 − ρ)‖2

λj − λj−1

}

D sup ΦT (K̄) ⇒ max
1≤k≤K̄

(1/k) sup
λ ∈ Λε,ρ

K+1∑
j=1

{
‖Bp(λj − ρ)− Bp(λj−1 − ρ)‖2

λj − λj−1

}

Proof. The proof follows from directly calculating
∫ λj

0 ω(s, λj , λj−1)ω(s, λj , λj−1)′ ds,

imposing the condition given in the corollary. The proof follows similar steps to the proofs

of Proposition 3,4, & 7 of Rossi and Sekhposyan (2016).
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Chapter 2
Has the Information Channel of
Monetary Policy Disappeared?
Revisiting the Empirical Evidence

This paper is co-authored with Barbara Rossi and Tatevik Sekhposyan.

2.1 Introduction

The recent literature has found that, in response to unexpected increases in interest rates,

survey-based estimates of expected output growth rise while those of inflation decline

(Campbell et al., 2012, 2017). This is contrary to the common New Keynesian wisdom

that contractionary monetary policy causes a decline in output growth and inflation as

well as their expectations. An explanation for this puzzling behavior is the so-called

“information channel” of monetary policy. According to the information channel, agents

update their beliefs after an unexpected monetary policy action not only because they

learn about the current and future path of monetary policy, but also because they learn

new information about economic fundamentals. The intuition is that the Federal Reserve

communicates not only the future path of monetary policy but also how optimistic it is about

the current and future state of the economy: if the Federal Reserve’s expectation of future

fundamentals is different from the state of the economy perceived by market participants,

market participants will update their expectations. In this case, the responses to a monetary

policy shock may not be estimated correctly. In fact, if the monetary policy tightening is

the endogenous reaction to a future state of the economy that is more positive than markets

anticipate, market participants might expect an increase in future output and inflation and

update their expectations accordingly.
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A sufficient, but not necessary, condition for the information channel is that the central

bank has superior knowledge about the state of the economy relative to market participants;

that is, it has an “information advantage”. When that is the case, it is likely that market

participants will update their information about the state of the economy based on the new

information contained in central banks’ announcements.1

How important is the information channel empirically? Does the Federal Reserve indeed

have an information advantage in forecasting macroeconomic variables beyond what is

known to private forecasters? And does this matter when estimating the response of the

economy to monetary policy shocks?

We revisit the empirical evidence by making an important departure from the previous

literature; namely, we allow for instabilities. That is, we allow the information advantage

of the Federal Reserve relative to market participants to change over time. As we show,

this is an important empirical feature of the data. Furthermore, we also allow the nature

of monetary policy shocks to vary over time, depending on whether the information

advantage is present in the data. We show that the latter matters when estimating

the effects of a monetary policy shock in the economy. When the central bank has

an informational advantage, the information channel is at work: the macroeconomic

responses are confounded and the researcher may estimate an expansionary response to a

contractionary monetary policy shock. On the other hand, when the information advantage

disappears, the information channel loses importance: the perils of confoundedness

disappear and researchers are able to correctly recover the response in the data.

Once we take instabilities into account, we find substantially weaker evidence for the

empirical relevance of the information channel in the most recent period: (i) The Federal

Reserve lost its short horizon information advantage regarding the state of the economy

relative to market participants; (ii) market surprises are no longer predictable by the Federal

Reserve’s internal forecasts; and (iii) macroeconomic responses to a monetary policy shock

are no longer confounded and private forecasters’ responses are less sensitive to monetary

policy shocks. Our results are consistent with the hypothesis that the decline in the relevance

of the information channel is linked to the improved communication strategies of the Federal

Reserve in recent years.

RELATED LITERATURE. Our paper is related to various strands of the literature. First,

our paper is related to the large literature estimating the effects of monetary policy shocks

– see Christiano et al. (1999, 2005), among others. Traditional Vector Autoregressions

(VAR) conventionally estimate a positive, hump-shaped response of output and inflation to
1Note that this is a sufficient but not necessary condition. The private sector might be updating its expectations
on the state of the economy even when the central bank does not have an information advantage. For
example, Timmermann (2006) has shown that forecast combination may improve forecast accuracy even if
the combination uses noisy or biased forecasts as long as they are not perfectly correlated with the forecasts
already included in the pool. Furthermore, Morris and Shin (2002) develop a theoretical model where public
information can affect the equilibrium outcomes even if it is noisier than private information.
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an expansionary monetary policy shock measured by an exogenous increase in the Federal

Funds Rate (FFR). However, as Campbell et al. (2012) and Nakamura and Steinsson (2018)

show, survey expectations of output growth typically rise after an unexpected monetary

policy tightening, thus contradicting the predictions of standard economic models.

Melosi (2017) and Nakamura and Steinsson (2018) develop theoretical models to rationalize

this “real activity puzzle”. In Melosi (2017)’s model, policy actions are publicly observable,

but private information about the economy’s fundamentals is “dispersed” across market

participants and policymakers. Thus, a change in the current policy rate not only affects

real interest rates but also provides the public with information on the central bank’s view

about macroeconomic developments. Melosi (2017) refers to the latter channel as the

“signaling channel” of monetary transmission and provides the first econometric analysis of

such “signaling effects”. He finds that his model can explain the forecast errors observed in

the data while perfect information models cannot. Nakamura and Steinsson (2018) suggest

a similar explanation based on the information channel of monetary policy. In their model,

monetary policy shocks affect not only the real interest rate but also the private sector’s

belief about the path of the natural rate of interest; this happens because, as the central bank

tracks the natural rate of interest, its announcements are likely to contain news about it.

They find strong empirical support for both the Federal Reserve (Fed) information channel

of monetary policy and the conventional one.

The presence of the information channel and its evolution over time is the objective

of our paper. Miranda-Agrippino and Ricco (2020) investigate the responses of core

macroeconomic aggregates to monetary policy announcements using an identification

strategy robust to information frictions. Their instrument is the component of high-

frequency market-based monetary surprises at the time of a policy announcement that is

orthogonal to both the central bank’s own forecasts as well as previous market surprises.

In a similar spirit, Jarociński and Karadi (2020) use sign restrictions to separately identify

monetary policy and “information shocks” from stock price dynamics. Andrade and Ferroni

(2021) investigate the information channel in forward guidance announcements in the euro

area and find evidence of information effects.2

A series of papers have investigated the empirical importance of the information channel of

monetary policy, including Cieslak and Schrimpf (2019), Lunsford (2020), Paul (2020)

and Bauer and Swanson (2020). Cieslak and Schrimpf (2019) and Lunsford (2020)

classify central banks’ announcements according to their characteristics. Cieslak and

Schrimpf (2019) distinguish among different types of central bank communication news:

news about monetary policy, economic growth and financial risk premia. Their analysis

results in a comprehensive database of international monetary policy events classified

according to their information content. They show that news about monetary policy
2On the other hand, Bundick and Smith (2020) and Inoue and Rossi (2021) show, using completely different
methodologies, that the response of the economy to forward guidance shocks is indeed consistent with standard
New Keynesian models’ predictions.
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prevails in announcements about monetary policy decisions; news about economic growth

prevails in press conferences; and the importance of risk premium shocks increases in the

unconventional monetary policy period. However, they do not investigate time variation

in the effects of monetary policy news. Lunsford (2020) investigates whether the type of

forward guidance language used by the Fed can influence information effects. He shows that

forward guidance shapes the private sector’s responses to Federal Open Market Committee

(FOMC) monetary policy statements and that forward guidance on the economic outlook

has stronger information effects than communication on the policy inclination. Similarly

to us, he finds time variation in the transmission of monetary policy shocks. In particular,

analyzing the period from February 2000 to May 2006, he finds evidence of a structural

break in the magnitude of the Federal Funds Rate surprises in August 2003. He argues that,

before this break, FOMC statements only included forward guidance about the economic

outlook, while they also included information on the FOMC policy inclinations after the

break. He concludes that financial markets, survey forecasters as well as the macroeconomy

react differently depending on the type of forward guidance. Our analysis differs from

Lunsford (2020) in that we formally evaluate the relative importance of changes in the

economic outlook versus pure monetary policy in a larger sample rather than focusing

on different forms of forward guidance in a specific sample period. Paul (2020) and

Bauer and Swanson (2020) instead focus on alternative explanations for the puzzling

response of survey forecasters to monetary policy statements. Paul (2020) finds that

the puzzling increase in private forecasters’ expectations of output growth to unexpected

increases in interest rates is present only when including unscheduled meetings. Bauer and

Swanson (2020) find that the puzzling estimates are consistent not only with the central

bank’s information channel of monetary policy but also with the central bank’s response

to macroeconomic news. According to the latter, economic news simultaneously causes

changes in the Fed’s monetary policy as well as in the private sector’s forecasts and there is

little role for an information effect. Differently from Paul (2020) and Bauer and Swanson

(2020), we focus on the interrelation between the information advantage and the information

channel of monetary policy and investigate their evolution over time.

Second, there is a large literature that focuses on the evaluation of central banks’ forecasts

as well as the quality of the Fed’s internal forecasts relative to the private sector’s. In a

seminal contribution, Romer and Romer (2000) showed that the Federal Reserve has an

information advantage relative to the private sector when forecasting inflation. On the other

hand, both D’Agostino and Whelan (2008) and Rossi and Sekhposyan (2016) find evidence

of instabilities in the information advantage. D’Agostino and Whelan (2008) show that the

Federal Reserve’s superior forecasting performance relative to survey forecasts deteriorated

since the early 1990s across medium to long forecast horizons. Our contribution is instead

to document that even the central bank’s short-horizon forecast advantage disappeared in

the most recent period. In addition, while the analysis in D’Agostino and Whelan (2008)

is based on ad-hoc sub-samples, we consider general patterns of time variation and let
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the data uncover the time period when the forecast advantage appears/disappears. Rossi

and Sekhposyan (2016) also show that the evidence of central banks’ forecast advantage

in predicting inflation depends on the time period, and has deteriorated over time. Our

paper considers instead a wider range of macroeconomic variables (such as real output

growth, unemployment and, especially, interest rates) and links the forecast advantage to

the information channel of monetary policy. In relation to this literature, our paper conducts

a comprehensive analysis of the information channel of monetary policy, looking at various

dimensions considered in the literature beyond forecast evaluation.

Lastly, our work is more distantly related to the literature on forecast rationality, in particular

Faust and Wright (2009), Patton and Timmermann (2012), Croushore (2012) and Rossi

and Sekhposyan (2016). Faust and Wright (2009), Patton and Timmermann (2012) and

Croushore (2012) note that rationality of inflation forecasts depends on the sample period

used for forecast evaluation, while Rossi and Sekhposyan (2016) formally investigate the

rationality of the central bank as well as the private sector inflation forecasts in the presence

of instabilities.

The remainder of the paper proceeds as follows. Section 2.2 presents our analysis of

the Federal Reserve’s information advantage. Section 2.3 investigates the time-varying

information content of high-frequency market-based monetary surprises typically used in

the literature to identify monetary policy shocks. Section 2.4 investigates the empirical

relevance of the information channel for determining the economy’s response to monetary

policy while Section 2.5 investigates the reaction of private forecasters. Section 2.6

concludes.

2.2 Does the Federal Reserve have an information advantage?

This section revisits the empirical evidence on whether the Federal Reserve has more

information than the private sector when forecasting key macroeconomic variables. We

establish that, while the Federal Reserve historically had an information advantage when

forecasting real GDP growth and inflation, at least at short horizons, this advantage

disappeared in the recent period. We also estimate several important change-points in

the information advantage that coincide with changes in FOMC communication policy.

Finally, we discuss the relationship between the information advantage and relative forecast

accuracy (measured by a mean squared error loss function, MSFE) and show that, based on

the latter criterion, the Federal Reserve’s advantage deteriorated as well.

2.2.1 The evolution of the Federal Reserve’s information advantage

To assess whether the Federal Reserve has an information advantage over the private

sector in forecasting a macroeconomic variable, x, we consider the following information
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advantage regression:

xt+h − xBCEIt+h|t = δ + βGB xGBt+h|t + βBCEI x
BCEI
t+h|t + ηt+h (2.1)

where xGBt+h|t is the Greenbook/Tealbook forecast at horizon h, xBCEIt+h|t is the consensus

forecast from the Blue Chip Economic Indicators’ (BCEI) survey at horizon h, xt+h denotes

the real-time realization of the variable of interest and ηt+h is an unforecastable error term.

Our goal is to test whether βGB equals zero. In fact, the Fed’s forecasts provide additional

information above and beyond that in the private sector’s forecasts if βGB is different from

zero. In other words, a value of βGB different from zero indicates that forecasters would

prefer to put weight on both Greenbook/Tealbook forecasts as well as BCEI forecasts if they

had a choice.

Because the coefficients in the above regression could be time-varying, we investigate

whether βGB is different from zero using tests robust to instabilities. Tests based on the

full sample characterize the average out-of-sample performance, which might mask the

evolution of the information advantage over time (Rossi, 2006a). Instead, we base our

analysis on what we label as the “Information-Advantage Fluctuation test” using the general

framework in Rossi and Sekhposyan (2016). Specifically, we estimate the information

advantage regression in eq. (2.1) in rolling windows ofm forecasts.3 Let βGB,t be the time-

varying parameter and let β̂GB,t denote the parameter estimated sequentially in regression

(2.1) for t = m/2, ..., T −m/2 using observations centered around time t – that is, the most

recent m/2 observations as well as the following m/2 ones. We then construct a t-statistic

at each point in time t:

τGB,t = β̂GB,t/
√
σ̂2
GB/m (2.2)

where σ̂2
GB is the Newey and West (1987) HAC estimator of the asymptotic variance of the

parameter estimate in the rolling window centered at time t.4 The Information-Advantage

Fluctuation test statistic is:

FGB = maxt |τGB,t| , (2.3)

which we use to test the null hypothesis that βGB,t = 0 at every point in time t against the

alternative that βGB,t 6= 0 at some point in time t.

Figures 2.1 and 2.2 depict τGB,t over time. The largest (absolute) value in the sequence

of τGB,t is the Information-Advantage Fluctuation test statistic, FGB . The (red) dashed

horizontal line denotes the corresponding five percent critical value.5 When FGB is outside
3Without loss of generality, m is an even integer.
4The variance estimate is based on a Newey and West (1987) HAC estimator using a truncation lag equal to
m1/4. For details on the variance estimator, see Rossi and Sekhposyan (2016). The results presented in this
section are robust to using a heteroskedasticity-consistent variance estimator instead of the HAC estimator.

5The relevant critical value is the t-statistic analog to the Wald test critical values for the survey and model-free
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the critical value lines, the test rejects the null hypothesis that βGB,t = 0 for every t, and

we conclude that the central bank had an information advantage at some point in time.

Importantly, the critical value properly controls size and guards against sequential testing

bias.6

The path of τGB,t is a local measure of forecast advantage over the rolling window, which

we attribute to the center point of the window itself (similarly to usual non-parametric

approaches).7 Since the rolling-window approach involves smoothing, by construction the

date is only indicative of when the forecast advantage started/ended; later in this section, we

complement our results with Bai and Perron (1998)’s test of multiple discrete breaks. Also,

for completeness, we report the coefficient estimates (β̂GB,t), which have the same sign as

τGB,t, in the Not-for-Publication Appendix.

DATA. To implement the Information-Advantage Fluctuation test in eq. (2.1), we require

data on the central bank’s and private sector’s forecasts as well as the corresponding real-

time realizations for key macroeconomic variables. In our analysis, we consider forecasts

of inflation, GDP growth, unemployment and the interest rate. We also require a strategy to

match the forecasts and realizations so that their targets align. As a measure of central bank

forecasts, we use the Greenbook/Tealbook forecasts between February 1984 and December

2015, which are prepared by the staff of the Federal Reserve prior to each regular FOMC

meeting (eight times per year). These forecasts are based on a maintained assumption

about monetary policy and are made available to the public after a five year lag. This lag

constrains the end of our sample period. For inflation, we use the forecasts of the annualized,

chain-weighted quarter-over-quarter growth in the GDP deflator. For GDP growth, we use

the forecasts of the annualized, chain-weighted quarter-over-quarter real GDP growth rate.

For the unemployment rate, we use the Greenbook/Tealbook projections for the quarterly

average unemployment rate in percentage points. Finally, for the interest rate, we use the

projections of the three month Treasury bill rate.

As a measure of private sector forecasts, we use the Blue Chip Economic Indicators (BCEI),

which is a monthly commercial survey-based dataset containing consensus (average)

forecasts for 16 macroeconomic variables collected from approximately 50 business

economists. We consider only forecasts up to four quarters since the series exhibit missing

values occurring systematically beyond this horizon. Since the BCEI forecasts are for fixed

events, i.e. for selected quarters in reference years, forecasts beyond four quarters are

not available for every FOMC round.8 For inflation, we use the annualized quarter-over-

forecasts reported in Table II Panel C of Rossi and Sekhposyan (2016).
6Note that a rejection does not simply indicate time-variation: the test rejects the hypothesis that the central
bank never had an information advantage relative to the survey forecasters. Importantly, the test would also
reject if there was no time variation, but the central bank had a constant information advantage. Thus, the path
of τGB,t contains valuable information on the reason behind the rejection.

7Therefore, note that the last year in the figures is 2011 only because that is the center point in the last window
we consider: our sample in fact ends in December 2015.

8For example, for the five-quarter-ahead forecasts of all the variables considered in our analysis, the BCEI
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quarter BCEI consensus forecasts of the GDP deflator price index. For GDP growth, we

use the annualized quarter-over-quarter consensus forecasts of real GDP growth and for the

unemployment rate the consensus forecasts of the quarterly average of the unemployment

rate in percentage points. Finally, for the interest rate we use the forecasts of the quarterly

average yield on a three month Treasury bill in percentage points. The forecasts are

available for our entire sample from February 1984 - December 2015. At the beginning of

the sample, the BCEI survey was conducted over three days, beginning on the first working

day of each month, and was subsequently shortened to two days starting in December 2000.

The BCEI consensus forecasts are released on the 10th of each month.

To implement the regression in eq. (2.1), we match the BCEI forecasts to the

Greenbook/Tealbook forecasts so that the BCEI forecast is always strictly before the

FOMC meeting associated with each Greenbook/Tealbook forecast. This results in the

BCEI forecasts sometimes being published before the Greenbook/Tealbook forecasts and

sometimes after, but both forecasts are made strictly before the FOMC announcement.

Appendix A reports sensitivity analyses using an alternative timing assumption that strictly

orders BCEI forecasts before the Greenbook/Tealbook forecasts.

For the realizations, we use real-time data from the Philadelphia Fed’s “Real-Time Data Set

for Macroeconomists”. We use the quarterly first-release values where available and, in a

handful of cases, we impute any missing values using second-release values. We use the

first-releases because of their timeliness. The Not-for-Publication Appendix shows that our

results are robust to using second and third releases for output growth and inflation (interest

rates are never revised and revisions to the unemployment rate are negligible). We do

not consider final releases since they include ex-post re-definitions and major classification

changes that the forecasters would not have known at the time the forecasts were made. For

realized inflation, we use the annualized quarter-over-quarter growth rate in the GNP/GDP

deflator price index in percentage points; for realized GDP, we use the annualized quarter-

over-quarter growth rate in real GNP/GDP in percentage points; for the unemployment rate,

we use the quarterly average of the monthly history of (quarterly) vintages provided by the

Federal Reserve Bank of Philadelphia. Interest rate data is not revised, thus we use the

average quarterly secondary market rate of the three month Treasury bill (TB3MS), which

we obtain from the FRED database maintained by the Federal Reserve Bank of St. Louis.

Details on the Greenbook/Tealbook forecasts, the BCEI forecasts, real-time data as well as

the data sources are documented in the Not-for-Publication Appendix.

forecasts for any FOMC meeting occurring in the last quarter of each year is systematically missing, as survey
respondents were only asked to forecast until the last quarter of the next year. This corresponds to two or three
meetings out of the eight regular FOMC meetings per year.
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Figure 2.1: Information advantage fluctuation test: Inflation and GDP growth

Notes: The figure shows τGB,t from eq. (2.1) based on m = 60 meetings rolling windows using a Newey-West covariance
estimator with a truncation lag of m1/4. Horizontal axes correspond to mid-window dates. Dashed (red) lines denote 5%
critical value lines based on Rossi and Sekhposyan (2016)’s two-sided Fluctuation test.

RESULTS. Figures 2.1 and 2.2 plot τGB,t on the y-axis for the nowcast, the one-quarter-

ahead forecast and an average of forecasts from two to four quarters ahead. Recall that

the largest absolute value of τGB,t is the Fluctuation test statistic, FGB , and the timing

reported on the x-axis is the mid-point of the rolling sample used to estimate τGB,t over time.

The figure also reports the five percent critical value lines for the Information-Advantage

Fluctuation test.

First, consider the results for inflation and real GDP growth reported in Figure 2.1. The

figure shows that, for both variables, the Greenbook/Tealbook had an information advantage

for the nowcast and one-quarter-ahead forecasts, which deteriorated in the early 2000s.

At longer horizons (two-to-four-quarter-ahead quarter ahead), the information advantage is

only sporadic and, for most of the sample, Greenbook/Tealbook forecasts do not seem to
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Figure 2.2: Information advantage fluctuation test: Unemployment and interest rates

Notes: The figure shows τGB,t from eq. (2.1) based on m = 60 meetings rolling windows using a Newey-West covariance
estimator with a truncation lag of m1/4. Horizontal axes correspond to mid-window dates. Dashed (red) lines denote 5%
critical value lines based on Rossi and Sekhposyan (2016)’s two-sided Fluctuation test.

provide additional information relative to the BCEI consensus forecasts. For unemployment

and interest rate forecasts in Figure 2.2, the information advantage weakened substantially

in one- and two-to-four-quarter-ahead forecasts, yet persists throughout the whole sample

only for the nowcast.

REMARKS. Note that our regressions shed light on whether the central bank has an

information advantage relative to survey participants from a historical point of view: finding

that the central bank lost its information advantage in a given year does not imply that survey

participants were aware of it in real time, as Greenbook/Tealbook forecasts become public

with a delay of five years. However, the private sector might have been able to gauge

the relative accuracy of the Greenbook/Tealbook forecasts in other (informal) ways. For
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example, Ericsson (2016) shows that FOMC minutes contain useful information which can

help infer the staff’s Greenbook/Tealbook forecasts of real GDP growth rate years before

the public release of these forecasts.

Finally, it is important to note that the Greenbook/Tealbook projections condition on a

hypothetical, counterfactual policy path that is not supposed to be a monetary policy

forecast. As discussed in Faust and Wright (2008), the conditional nature of the forecasts

can be neglected when “the conditioning paths are not too far from the central bank’s

unconditional expectation for policy and/or that policy feedback is not too large over

the relevant horizon”. As discussed in Faust and Wright (2008), these assumptions may

be reasonable at the very short forecast horizons we focus on. On the other hand, as

information on the current interest rate and projections of monetary policy are readily

available to private forecasters (e.g. through summaries/analyses/projections published by

the FOMC), there is reason to believe that BCEI forecasts might be conditional forecasts as

well. Berge et al. (2019) provide a framework to study the conditionality of survey forecasts

and analyze both Greenbook/Tealbook and BCEI consensus forecasts. They report that

interest rate projections were incorporated efficiently into both central banks’ and private

sector’s forecasts of common macroeconomic variables, leading to the conclusion that both

forecasts are conditional.

ROBUSTNESS. Appendix A investigates the robustness to the relative timing assumptions

of Greenbook/Tealbook and BCEI forecasts. Specifically, we report Information-Advantage

Fluctuation tests for the case where BCEI forecasts are always published before the

corresponding Greenbook/Tealbook forecasts. The Not-for-Publication Appendix reports

additional sensitivity analyses to different window sizes as well as the second and third

vintages for the real-time realizations (instead of the first release). Our results remain robust

to these changes.

2.2.2 Discrete breaks and changes in FOMC communication

The analysis in the previous section establishes that the information advantage of the

Federal Reserve weakened in recent years. This section sharpens the evidence by testing

for structural breaks and estimating break dates in the information advantage regressions.

While the Information-Advantage Fluctuation test robustly shows that there is little

evidence to reject the hypothesis that βGB is zero in recent years, the rolling-window

nature of the test makes it difficult to precisely identify the exact point in time in which

the departure from zero has taken place. In fact, the non-parametric approach we adopt is

designed for smooth changes. When the changes are of a discrete nature, our approach may

smooth them out over the rolling windows, thus making it difficult to identify exactly when

the change happened. Therefore, we present complementary evidence based on Bai and

Perron (1998)’s test, which is designed to identify multiple sharp breaks in parameters.
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However, in the context of our analysis, the Bai and Perron (1998) test has several

drawbacks. First, it requires that all the parameters change discretely and at the same time.

The Fluctuation test, instead, is a non-parametric test that summarizes the time path of

the parameter of interest (in this case the coefficient on the Greenbook/Tealbook forecast),

while allowing other regression parameters to change (or not) in a data-driven way. Second,

and most importantly, while the Bai and Perron (1998) test identifies multiple and discrete

change-points, it cannot be used to test the joint hypothesis we are interested in, namely

βGB,t = 0 at every point in time.9 Therefore, the Information-Advantage Fluctuation and

the Bai and Perron (1998) tests complement each other: we report the latter here to shed

additional light on the estimated break dates.

We conduct Bai and Perron (1998)’s test on βGB,t in the information advantage regressions

in eq. (2.1).10 Table 2.1 reports results for forecasts of inflation, real GDP growth,

unemployment and the interest rate for several forecast horizons: the nowcast, one-quarter-

ahead and the average over two-, three- and four-quarter-ahead forecasts. For each variable

and forecast horizon, consistently with Bai and Perron (1998)’s notation, the table reports

the UDmax test statistic as well as the estimated number of breakpoints according to

two criteria: the supF (k + 1|k) (denoted by ksupF ) and the BIC (denoted by kBIC). In

most cases, the two criteria agree on the number of breakpoints, although there are some

differences. We follow Bai and Perron (1998)’s recommendation and base our inference on

the ksupF criterion. The last column in the table reports the estimated break dates, together

with their 90 percent confidence intervals.

For inflation, there are broadly three break-points, dating to the early 1990s, 2002/2003, and

2008. For real GDP growth, there are breaks in the early 1990s and late 1990s/early 2000s

for the one-quarter and the average of two-to-four-quarter-ahead forecasts. For the nowcast,

on the other hand, the break date appears to be in 2010. For the unemployment rate, there

are no detected breaks in the nowcast and one-quarter-ahead forecasts, consistent with the

Fluctuation test results, while 2007 shows up as a break date at longer horizons. For the

interest rate, 2007 is detected as a robust break-point across horizons; however, there are

also breaks in 1992 and 2000 at the longer horizons.

As we emphasized earlier, Bai and Perron (1998) test for parameter stability, while the

Fluctuation test jointly evaluates parameter stability and whether the parameter equals to

zero. Nevertheless, the 2002/2003 break date is robustly detected by both tests. This date

is related to a major change in the communication strategy of the FOMC, which in August
9For example, in the case that the true βGB coefficient is constant but different from zero, the Fluctuation test
will reject, while the Bai and Perron (1998) test will not reject as there is no instability.

10We follow the recommendations in Bai and Perron (2006) and Bai and Perron (2003), and use their UDmax
statistic with a maximum of K = 5 breaks. When the test rejects the null hypothesis of no break, we
estimate the number of breaks by the sequence of supF (k + 1|k) tests and estimate the break dates by
globally minimizing the sum of squared residuals in eq. (2.1). Confidence intervals are constructed based on
the asymptotic approach provided in Bai and Perron (1998), assuming serially correlated, but homogeneous
residuals across segments.
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Table 2.1: Results from multiple break tests

Horizon UDmax ksupF kBIC Break date [90 % CI]

GDP Deflator Inflation

Nowcast 11.99 3 3 10/1991 [10/1990 - 07/1992]
12/2002 [08/2000 - 08/2005]
09/2008 [12/2006 - 11/2009]

1 q ahead 12.16 3 3 03/1991 [05/1990 - 12/1991]
09/2003 [06/2001 - 09/2005]
06/2008 [05/2006 - 11/2009]

Avg. 2-4 q ahead 19.53 3 4 10/1990 [05/1989 - 08/1991]
03/2003 [11/1995 - 08/2008]
03/2008 [08/2003 - 04/2011]

GDP Growth

Nowcast 13.17 1 0 03/2010 [03/2005 - 10/2013]

1 q ahead 17.98 2 2 07/1993 [10/1991 - 03/1995]
03/2000 [11/1998 - 12/2001]

Avg. 2-4 q ahead 13.95 2 2 10/1992 [02/1991 - 02/1994]
10/1999 [11/1998 - 08/2001]

Unemployment Rate

Nowcast 4.44 0 0

1 q ahead 4.11 0 3

Avg. 2-4 q ahead 22.19 1 3 03/2007 [07/1990 - 12/2015]

Interest Rate

Nowcast 84.25 1 1 06/2007 [06/2005 - 09/2007]

1 q ahead 89.76 1 1 06/2007 [02/2005 - 09/2007]

Avg. 2-4 q ahead 238.65 3 3 08/1992 [08/1984 - 07/1996]
02/2000 [02/1989 - 06/2006]
03/2007 [08/1992 - 12/2009]

Notes: The trimming parameter is 0.15 and the maximum number of potential breaks is five. The HAC covariance is estimated
based on Andrews (1991)’s AR(1) bandwidth selection (no prewhitening). The break dates are based on ksupF .
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2003 started including time-dependent forward guidance in its post-meeting statement. This

is an important break-point, documented in several studies (see Lunsford 2020).

The break dates in the early 1990s overall appear to coincide with many changes introduced

by the FOMC in its communication strategy, starting with the decision to publish minutes in

March 1993 and subsequently issuing statements following every meeting in May 1999. Bai

and Perron (1998)’s tests also detect break-dates in the period between 2007 to 2009. These

appear to be related to the release of the quarterly Summary of Economic Projections (SEP)

in November 2007 (which reported ranges and central tendencies of participants’ forecasts

for up to three years ahead) and the subsequent quarterly press conferences related to the

SEP in April 2011.

2.2.3 Relationship to forecast accuracy

In addition to information advantage regressions, one could consider other, potentially

different test statistics. In this section, we provide complementary evidence based on MSFE

comparisons. Just as a preview, the results confirm our main finding: the forecasting

performance is time-varying, and Greenbook/Tealbook forecasts were not significantly

more accurate than the BCEI in the latest part of the sample.

It is important to clarify at the onset that information advantage regressions and MSFE

comparisons are two very different ways of comparing forecasts: in general, finding

that a forecast has an information advantage over a competitor does not imply that the

former has a lower MSFE. In fact, information advantage regressions investigate whether

a forecaster that has access to both Greenbook/Tealbook as well as BCEI forecasts will

use both or will prefer only one of them. Hence, there is a tight link between information

advantage regressions and the forecast combination literature. As we discuss in Section

II.A in the Not-for-Publication Appendix (see also Winkler and Clemen, 1992), the optimal

forecast combination (based on the MSFE measure of accuracy) weights each forecast

proportionally to its forecast accuracy when the underlying forecasts are unbiased and

uncorrelated. When forecasts are correlated, instead, the most accurate model still gets

a higher weight in the combination, yet the weight does not reflect its accuracy because it is

“distorted” by the correlation. In addition, when the forecasts are biased, it is possible that,

depending on the direction and magnitude of the biases, the most accurate forecast in terms

of MSFE gets a lower weight than the less accurate forecast. These insights suggest caution

in interpreting the magnitude of the coefficients (that is, the weights) in the information

advantage regression (see also Sims, 2002), as they cannot always be interpreted as a

measure of forecast accuracy.

As the discrepancy between the forecast advantage and the relative MSFE measures may

depend on the correlation between the forecasts as well as their bias, we empirically

investigate them in our data. Section II.B in the Not-for-Publication Appendix shows the

existence of a time-varying (and, at times, strong) cross-correlation between the central bank

78



and private sector forecasts. The cross-correlations are particularly large for the nowcasts of

the unemployment rate, real GDP growth and interest rates and have been growing over time

for the latter two. In addition, Sections II.C and II.D in the Not-for-Publication Appendix

show that both Greenbook/Tealbook forecasts as well as the BCEI exhibit time-varying

biases and failures of rationality (see also Rossi and Sekhposyan, 2016).

Given this evidence, we complement our information advantage regressions with a time-

varying analysis of forecast accuracy. Figures 2.3 and 2.4 depict rolling estimates of

relative predictive accuracy, measured by the difference between the MSFEs of the BCEI

consensus forecasts and the Greenbook/Tealbook forecasts, scaled by its standard deviation

(labeled τGR,t). We implement a Fluctuation test in a regression similar to that in eq. (2.1),

where the left-hand side is the MSFE difference and the only regressor is the constant.

The null hypothesis is that the Greenbook/Tealbook and the BCEI forecasts have the same

predictive accuracy; under the alternative, positive values of the test statistic indicate that

the Greenbook/Tealbook predictive performance is more accurate. The dashed (red) line

indicates the five percent critical value of the Giacomini and Rossi (2010) test.

The figures show that the equal predictive accuracy of these forecasts is rejected for all

the variables and all horizons. The time path of the test statistic indicates that the forecast

accuracy of Greenbook/Tealbook in predicting inflation worsened in the early 1990s for

the nowcast and the one-quarter-ahead forecasts, while the deterioration dates to the late

1990s for the average two-to-four-quarter-ahead forecasts. For the real GDP growth rate,

the central bank either had no comparative advantage in forecasting or, in the case of the

nowcast, the information advantage disappeared in the late 1990s. For unemployment, the

performance of Greenbook/Tealbook and BCEI forecasts is broadly the same, with some

sporadic outperformance of Greenbook/Tealbook at the two-to-four-quarter-ahead horizon.

In terms of the interest rate, the central bank appears to have more accurate forecasts only

for the nowcast and that advantage disappears around 2003. Thus, even based on the relative

forecast accuracy criterion, either the central bank had no forecasting advantage or, in some

cases, the advantage disappeared even earlier than our estimates suggest, namely in the

1990s.
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Figure 2.3: Forecasting performance fluctuation test: GDP growth and inflation

Notes: The figure shows τGR,t based on m = 60 meetings rolling windows using a Newey-West covariance estimator with
a truncation lag ofm1/4. Horizontal axes correspond to mid-window dates. Dashed (red) lines denote 5% critical value lines
based on Giacomini and Rossi (2010)’s one-sided Fluctuation test.
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Figure 2.4: Forecasting performance fluctuation test: Unemployment and interest rates

Notes: The figure shows τGR,t based on m = 60 meetings rolling windows using a Newey-West covariance estimator with
a truncation lag ofm1/4. Horizontal axes correspond to mid-window dates. Dashed (red) lines denote 5% critical value lines
based on Giacomini and Rossi (2010)’s one-sided Fluctuation test.
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2.3 Do monetary policy surprises contain information effects?

The previous section provided empirical evidence that the Federal Reserve had an

information advantage in predicting key macroeconomic variables historically, but lost such

an advantage recently. A related and important question is whether the importance of the

information channel of monetary policy has similarly decreased over time. As discussed in

the introduction, the existence of the central bank information advantage is a sufficient,

but not a necessary condition for the presence of the information channel of monetary

policy. This is because the private sector might update its expectations on the state of the

economy even if the central bank does not have an information advantage (see e.g. Morris

and Shin, 2002). When studying the reaction of the economy to information effects, it is

therefore important to recognize that potential time-variation in information effects might

exist independently from the results we already established in Section 2.2. Therefore, we

investigate whether high-frequency market-based surprises can be explained by the Federal

Reserve’s economic outlook and whether this information content has changed over time.

Similarly to our information advantage analysis in Section 2.2, we find that, while high-

frequency surprises can be historically predicted by Federal Reserve staff forecasts, this

relationship has become insignificant in the recent period. Building on this finding, we then

construct an updated version of Miranda-Agrippino and Ricco (2020)’s policy instrument,

which is a monetary policy surprise cleaned from information available to the Federal

Reserve. We explicitly take time variation into account when constructing the instrument,

which is used in Section 2.4 to estimate the response of the economy to monetary policy

shocks as well as in Section 2.5 to establish whether professional forecasters revise their

forecasts in response to monetary policy.

2.3.1 The information content of market surprises

We start by investigating the information content of high-frequency market-based surprises

identified in a short window of time around FOMC announcements. Our main objective

is to establish whether market surprises are predictable by the information available to the

Federal Reserve staff and whether this predictability has changed over time. High-frequency

surprises are widely used in the literature on information effects and several papers highlight

the importance of controlling for the Fed’s private information. For example, Romer and

Romer (2004) show that Greenbook/Tealbook forecasts significantly predict changes in the

intended Fed Funds Rate around FOMC meetings. Campbell et al. (2017) demonstrate

that the “Delphic component” of high-frequency surprises (i.e. the component that reflects

the Federal Reserve’s private information on current and future macroeconomic conditions)

can explain the puzzling decrease in unemployment survey expectations after a monetary

policy tightening (Campbell et al., 2012). Jarociński and Karadi (2020) construct an

instrument for monetary policy shocks by controlling for the central bank’s assessment

of the economic outlook, revealed by stock market surprises. Finally, Miranda-Agrippino
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and Ricco (2020) construct a monetary policy shock instrument that controls for the

Federal Reserve information by extending the approach of Romer and Romer (2004) to

high-frequency-identified market surprises; they show that their instrument accounts for

information effects across a large number of Structural VAR (SVAR) specifications. In our

analysis, we follow Miranda-Agrippino and Ricco (2020)’s and Romer and Romer (2004)’s

approach and study the correlation of high-frequency market-based monetary surprises

with the Federal Reserve’s internal forecasts at different horizons. Specifically, we project

surprises in the three month Federal Funds Futures Rate (FF4) on Greenbook/Tealbook

forecasts of real GDP growth, GDP deflator inflation and the unemployment rate as well as

their revisions for different forecast horizons, via the following regression:

St = α(h) +
∑
j

θ
(h)′

j

(
FGBt (xj,q+h)

FGBt (xj,q+h)− FGBt−1 (xj,q+h)

)
+ ε

(h)
t (2.4)

where St is the high-frequency market-based surprise, FGBt (xj,q+h) denotes the h-quarter-

ahead Greenbook/Tealbook forecast of variable xj associated with the FOMC meeting at

time t; FGBt (xj,q+h) − FGBt−1 (xj,q+h) denotes the forecast revision; and θ(h)
j collects the

coefficients associated with the forecasts and forecast revisions of variable xj , where j

denotes the variable to be forecasted (j = GDP growth, inflation and unemployment). We

estimate eq. (2.4) for one quarter backcasts, nowcasts as well as one- and two-quarter-ahead

forecasts (i.e. h = −1, 0, 1, 2).

Miranda-Agrippino and Ricco (2020) find, in a similar specification over the full sample,

that the null hypothesis of no correlation between the market surprises and Fed forecasts

(θ(h)
j = 0) can be rejected. They interpret this result as evidence of an information channel

via FOMC announcements. Given our findings from Section 2.2, however, we are interested

instead in studying how this correlation evolves over time. Therefore, similarly to the

approach in Section 2.2, we define the Fluctuation test statistic for the regression in eq.

(2.4) as:

FFED = max
t
|Wt|, (2.5)

with

Wt = m θ̂
(h)′

t

{
V̂

(h)
θ

}−1
θ̂

(h)
t , for t = m/2, . . . , T −m/2, (2.6)

where θ̂(h)
t and V̂ (h)

θ are computed in rolling windows of m observations.

DATA. To implement the regression in eq. (2.4), we choose as our baseline measure

of interest rate surprises the change in the three month Fed Funds Futures in a half-hour

window starting 10 minutes before and ending 20 minutes after the announcement.11 This
11FF4 contracts exchange a constant interest for the average Federal Funds Rate over the course of the third

calendar month. In most of our sample, regular policy meetings are spaced roughly six weeks apart.
Therefore, the three month futures rate can be interpreted as the shift in the expected Federal Funds Rate
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surprise measure was used by Gertler and Karadi (2015), Jarociński and Karadi (2020), Paul

(2020) and Miranda-Agrippino and Ricco (2020). We study surprises around 234 FOMC

meetings from February 1990 to December 2015 using an updated version of the Gürkaynak

et al. (2005) dataset. While market-based monetary surprises are also available for more

recent dates, our dataset is constrained by the availability of Greenbook/Tealbook forecasts,

which are only released with a five-year lag.12 The dataset contains both scheduled as

well as unscheduled FOMC meetings and other important announcements. We associate

each Greenbook/Tealbook forecast to the relevant FOMC announcement. For scheduled

meetings, these forecasts have a direct mapping to the announcements, as they were

prepared specifically for the respective FOMC meeting. For unscheduled announcements,

we use the latest available Greenbook/Tealbook forecast made before the announcement

and correct the forecast horizon when the target quarter of the forecasts changed. We then

compute the revision of each Greenbook/Tealbook forecast as the difference between the

forecast associated with the current FOMC meeting and the previous meeting, correcting

the forecast horizon of the earlier forecast when necessary.13

RESULTS. Figure 2.5 reports Wt for the regression in eq. (2.4) for the one-quarter

backcast, the nowcast, as well as the one- and two-quarter-ahead forecasts together with

the 5% critical value line for the Fluctuation test. The largest (absolute) value of Wt is the

Fluctuation statistic, FFED. When FFED is above the critical value line, the test rejects the

null hypothesis that market surprises were never predictable by the Greenbook/Tealbook

forecasts. As in the previous sections, the timing reported on the x-axis is the mid-point

of the rolling sample used to estimate Wt over time. The figure illustrates that high-

frequency market-based surprises were significantly predictable by the Fed staff before the

mid-2000s, but that the predictability disappeared in the most recent period, regardless of

the forecast horizon. Importantly, the results hold for both scheduled as well as unscheduled

announcements. Thus, it is important to account for information effects in the first part of

the sample, but less so in the most recent period.14

2.3.2 An information-robust instrument of monetary policy

In the next two sections, we study the impact of monetary policy announcements on

the macroeconomy and forecasters’ expectations using an information-robust instrument.

Given our previous findings, namely that accounting for the Federal Reserve information is

more important in the earlier than in the later part of the sample, we modify their instrument

following the next policy meeting.
12Greenbook/Tealbook forecasts are currently available up to December 2015.
13Note that by definition, the forecast revision associated with unscheduled FOMC meetings is zero as the

forecasts have not been updated since the last scheduled FOMC announcement.
14In addition to regressions at individual horizons, Miranda-Agrippino and Ricco (2020) also consider F-tests

in a regression including all variables and horizons, following the specification in Romer and Romer (2004).
Table B.4 in the Appendix replicates the full-sample results in Miranda-Agrippino and Ricco (2020) and
shows that our conclusions are robust.
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Figure 2.5: Information content of market-based monetary surprises

Notes: The figure shows Wt from eq. (2.6) based on m = 60 meetings rolling windows using a Newey-West covariance
estimator with a truncation lag of m1/4. Horizontal axes correspond to mid-window dates. The dashed (red) line denotes the
5% critical value based on Rossi and Sekhposyan (2016)’s Fluctuation test.
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series by: (i) extending the sample to the latest available Greenbook/Tealbook data;15

and (ii) taking the time-variation in the information content of surprises into account by

estimating the instrument separately in the relevant sub-samples.

To construct the informationally-robust instrument for monetary policy shocks, we closely

follow Miranda-Agrippino and Ricco (2020). First, to control for the central bank’s private

information, we project the FF4 surprises (St) on Greenbook/Tealbook forecasts as well as

their revisions for macroeconomic variables at the meeting-level frequency:

St = α+

3∑
h=−1

θ′jF
GB
t (xq+h) +

2∑
h=−1

δ′j
[
FGBt (xq+h)− FGBt−1 (xq+h)

]
+ SMPI

t

= SCBINFOt + SMPI
t ,

(2.7)

where FGBt (xq+h) is a vector containing the central bank’s forecasts of output, inflation

and unemployment. The residual of this projection (SMPI
t ) is the monetary policy shock

“cleaned” from the Federal Reserve’s information on the economic outlook, whereas

its orthogonal component (SCBINFOt ) measures the Federal Reserve’s own information.

Motivated by our analysis from the previous sub-section, we explicitly take instabilities

into account by separately estimating the regression above in the two sub-samples before

and after August 2003.

Second, we aggregate the resulting meeting-level series to a monthly frequency, as the

meeting-level series are irregularly spaced and the analyses in Sections 2.4 and 2.5 are

conducted at the monthly frequency. Therefore, as in Miranda-Agrippino and Ricco (2020),

we transform SMPI
m and SCBINFOm to monthly series by summing the individual surprises

occurring in each month and setting them to zero in months in which there is no FOMC

announcement.16

Figure 2.6 reports our updated instrument series. The top panel shows the FF4 surprises,

St, at the monthly frequency while the bottom panel shows their decomposition into the

information robust monetary policy instrument (SMPI
t ) and the central bank’s information

shock (SCBINFOt ). The (red) vertical line in the bottom panel separates the two sub-

samples. The correlation with the original MPI shock of Miranda-Agrippino and Ricco

(2020) is 0.912 for the full sample, 0.936 for the first sub-sample and 0.868 for the second

sub-sample. In addition, our series preserves almost all of the large realizations of their

original shock.17

15The original Miranda-Agrippino and Ricco (2020) series is available from February 1990 to December 2009
whereas, at the time of writing this paper, Greenbook/Tealbook forecasts are available until December 2015.

16Miranda-Agrippino and Ricco (2020) also adjust the resulting monthly instrument series to account for
potential serial correlation by estimating an AR(12) on the SMPI

t series. As we construct our instrument
in two sub-samples, to mitigate small sample concerns we rely on the BIC criterion to select the lag length
for the AR(p) process. The BIC selects p̂ = 0 for the SMPI

t series, which is what we use to obtain our
information-robust instrument. The results are robust if the lag length were selected in individual sub-samples.

17Note that the original shock is only available until December 2009 so that the second sub-sample only partially
overlaps with Miranda-Agrippino and Ricco (2020)’s original sample.
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Figure 2.6: Contributions to the surprises in the three-month Fed Funds Futures

Notes: High-frequency market-based surprises are aggregated to monthly frequency, expressed in basis points. The
decomposition is based on eq. (2.7).

2.4 The impact of information effects on the macroeconomy

After having established that the information content of market surprises has disappeared

over time, we next turn to assessing whether the information channel played a role in

the transmission of monetary policy in the U.S. and how its importance evolved over

time. According to the information channel theory (Nakamura and Steinsson, 2018), in the

presence of informational rigidities, informationally constrained private agents could infer

from an increase in the central bank’s policy rate not only that the central bank is deviating

from its rule, but also that it is endogenously responding to stronger than expected future

fundamentals. If the latter component is not correctly taken into account, the estimated

responses to the monetary policy shock could potentially mix the response to the actual

monetary policy shock and to the signal about the future state of the economy. Several

papers have shown that impulse responses to high-frequency market-based surprises can be

contaminated by information effects and that model-consistent impulse responses can be

obtained by using an instrument that controls for the information channel (see Miranda-

Agrippino and Ricco, 2020 and Jarociński and Karadi, 2020).
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To investigate the information channel of monetary policy, we study impulse responses

of several key macroeconomic aggregates to a monetary policy shock using a SVAR with

high-frequency instruments. We consider both high-frequency surprises in the three month

Federal Funds Futures Rate (FF4), as well as our updated version of the information-

robust instrument discussed in Section 2.3. Since FF4 market surprises do not control for

information effects, the implied impulse responses reflect both the effect of the change in

the policy rate as well as any potential response of the economy to information effects. In

contrast, the impulse responses obtained using the information-robust instrument control

for the information set of the central bank, and therefore only reflect changes in the policy

rate.18 The only difference between the two impulse responses is thus whether we control

for information effects or not. By comparing the impulse responses in sub-samples, we can

thus assess how the information effect has changed in the recent period relative to the earlier

part of the sample.

2.4.1 The VAR model

We estimate a six-variable SVAR model where the vector of endogenous variables are

the industrial production index, the unemployment rate, the consumer price index, the

commodity price index, the excess bond premium by Gilchrist and Zakrajšek (2012)

and the one year nominal policy rate.19 This is the same SVAR used in Miranda-

Agrippino and Ricco (2020) and it is similar to that in Coibion (2012) and Gertler and

Karadi (2015). Details on the data series and their sources can be found in the Not-for-

Publication Appendix. All variables are monthly from January 1979 to December 2019.

The SVAR is estimated in (log) levels with 12 lags. As discussed above, the impulse

responses are identified using two external instruments: (i) the FF4 surprises (St) and

(ii) our updated version of the information-robust instrument of Miranda-Agrippino and

Ricco (2020), SMPI
t . In both cases, the impulse responses are normalized such that the

monetary policy shock increases the policy rate by one percent on impact. As discussed

in the previous section, due to the lagged release of the Greenbook/Tealbook forecasts,

the external instrument series is only available from February 1990 to December 2015.

The impact responses in the SVAR are therefore identified from a proxy regression over

the common sub-sample, February 1990 to December 2015. The VAR is estimated with

standard Bayesian Normal Inverse-Wishart priors and the tightness of the prior is set as in

Giannone et al. (2015).

2.4.2 The role of information effects

Figure 2.7 shows the BVAR impulse responses identified using: (i) the FF4 surprises (St,
dashed blue line) and (ii) the information-robust series (SMPI

t , solid black line). We report

18Because the FF4 horizon is three months, it can also capture some near-term forward guidance in addition to
policy rate changes. However, it also mitigates the effect of the zero lower bound.

19Both the commodity price index as well as the one year nominal rate series are end-of-month values.
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impulse responses for two sub-samples: January 1979 - July 2003 and August 2003 -

December 2019.20

First, focus on the sub-sample from January 1979 - July 2003 (left panel of Figure 2.7).

Using the FF4 market surprises as instruments, in response to a contractionary monetary

policy shock industrial production increases and unemployment decreases. However, using

the information-robust instrument, we recover impulse responses that are consistent with

economic theory: output decreases and unemployment increases. The large discrepancy

between the responses thus corresponds to the economy’s reaction to the information

effects. These findings are similar to Miranda-Agrippino and Ricco (2020) for their full

sample (1979 - 2014).

However, these conclusions change when we consider the second sub-sample, August 2003

- December 2019 (right panel in Figure 2.7). In this case, the responses based on the FF4

surprises are more in line with economic theory than in the earlier sample: output decreases

and unemployment increases in the short run. Overall, the discrepancy between the impulse

responses based on FF4 and those based on the information-robust instrument is negligible

in the later part of the sample, while it was substantial in the first sub-sample. Thus, we

conclude that, while information effects were important historically, they are much less

important in the most recent period.

ROBUSTNESS. Figure C.11 in the Appendix shows that our conclusions are robust

to comparing the information-robust instrument (SMPI
t ) with the associated information

component, (SCBINFOt ). We also address potential misspecification concerns by repeating

the analysis using a local projection approach. If the VAR is correctly specified,

local projections are less efficient than BVARs but have the advantage of being robust

against dynamic misspecification. Figure C.12 in the Appendix shows that, although

the local projection-based response bands are much larger than BVAR-based ones, our

main conclusions remain robust. Finally, the Not-for-Publication Appendix shows that

our conclusions remain robust regardless of whether we estimate SMPI
t using scheduled

meetings only or if we remove potential serial correlation in the shock series via an AR(12).

We also show that, in our full sample, the responses based on our updated instrument are

consistent with the full sample results in Miranda-Agrippino and Ricco (2020).

20Specifically, note that while the impact parameters are identified in each sub-sample, the lag parameters are
estimated on the full sample to improve the efficiency of the parameter estimates. Our results are robust to
re-estimating the SVAR in each sub-sample separately.
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Figure 2.7: Responses to a monetary shock: Sub-samples

Notes: Impulse responses from Bayesian SVAR with standard macroeconomic priors and external instrument identification.
VAR sample: January 1979 - December 2019. Instrument samples: February 1990 - July 2003 (left panel) and August 2003
- December 2015 (right panel). Shaded areas correspond to 90 percent credible intervals.
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2.5 The impact of information effects on forecasters’ expecta-
tions

Finally, we characterize the response of private forecasters to monetary policy

announcements. As is customary in the literature, we regress monthly revisions in the BCEI

consensus forecasts on a series of high-frequency market-based surprises in Federal Funds

Futures Rates around FOMC meetings. Using a similar regression with monetary policy

surprises that reflect both current and future short-term rates, Nakamura and Steinsson

(2018) find that the way survey forecasters update their predictions is inconsistent with

standard New Keynesian models. Their results support the existence of an information

channel according to which professional forecasters believe that FOMC policy surprises

contain useful and otherwise unavailable information to the public. Campbell et al. (2012)

come to a similar conclusion by decomposing monetary policy surprises into orthogonal

“target” and “path” components. Campbell et al. (2017) show that the puzzling signs can

be explained by decomposing the surprises into a “Delphic” component, associated with

information releases by the central bank, and an orthogonal (“Odyssean”) component: the

signs remain puzzling for the former while are consistent with economic theory for the

latter. Finally, Paul (2020) shows that there is little evidence of information releases in short

horizon Federal Funds Futures Rate when focusing on scheduled FOMC meetings, while

including unscheduled meetings leads to significant forecast revisions.

In line with the existing literature, we consider the following regression to analyze whether

forecasters revise their expectations after a monetary policy announcement:

∆xBCEIt+h|t = α+ β St + εt+h (2.8)

where ∆xBCEIt+h|t denotes the BCEI consensus forecasts revision at horizon h between FOMC

meetings and St is the FF4 surprise. We also consider an alternative specification where

St is the surprise in 30 day Federal Funds Futures Rates (MP1), used in Paul (2020) and

Lunsford (2020). Furthermore, to account for potential information effects in monetary

policy announcements, we decompose the surprises, St, into the robust monetary policy

shock and the information shock described in Section 2.3, and estimate the following

regression:

∆xBCEIt+h|t = α+ β1 SMPI
t + β2 SCBINFOt + ηt+h (2.9)

where SMPI
t is the surprise component “cleaned” from the Fed information and SCBINFOt

is the information component (see eq. 2.7). We analyze this specification both in the full

sample as well as in the two sub-samples identified in the previous sections.

DATA. To implement the regressions in eqs. (2.8) and (2.9), we focus on the same

sample of monetary policy announcements that we used to analyze the information content
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of monetary policy surprises in Section 2.3. To study the forecasters’ response, we augment

this dataset with a measure of revisions to the private sector forecasts which we calculate for

each meeting, variable and forecast horizon as the difference between the BCEI forecasts

bracketing each FOMC announcement.21 As in Nakamura and Steinsson (2018) and Paul

(2020), we drop those FOMC announcements in which the meeting date falls into the

BCEI survey period (first three business days of each month until December 2000; first two

business days of each month after December 2000) to ensure that the FOMC announcements

are after the BCEI survey dates.22 Further, as in Nakamura and Steinsson (2018), we focus

on scheduled FOMC meetings only. This is consistent with our analysis of the information

advantage from Section 2.2. Appendix D reports results for the sample which includes

unscheduled FOMC meetings.

RESULTS. Table 2.2 shows the results based on the full sample (February 1990 -

December 2015). When considering FF4 surprises (first column), the sign of the coefficient

β in eq. (2.8) is inconsistent with the responses of real GDP growth forecasts in the New

Keynesian model across all forecast horizons. In contrast, for inflation, unemployment

and the interest rate, all coefficients except for the one-quarter-ahead responses of inflation

and the unemployment rate exhibit signs consistent with economic theory. Across all

regressions, none of the coefficients are statistically significant.23 Hence, based on the

full sample, there is no evidence that regularly scheduled monetary policy announcements

lead to significant forecast revisions by private forecasters. This evidence is consistent with

the results in Paul (2020), who considers the regression in eq. (2.8) on a similar sample.

In fact, by analyzing the average of the current quarter to four-quarter-ahead responses of

the BCEI to FF4 surprises, Paul (2020) also finds a positive sign for the real GDP response

and negative signs for inflation and the unemployment rate and no evidence of a statistically

significant reaction based on scheduled meetings (see his Appendix A.10). Our results are

robust to using Paul (2020)’s shorter 30-day Federal Funds Futures surprises (MP1, see the

last column of Table 2.2).

Next, we repeat the analysis using the surprises decomposed as in eq. (2.9). A comparison

of the second and third columns of Table 2.2 with the first column highlights two important

results. First, accounting for the Federal Reserve’s information content corrects some of

the puzzling signs: the effects of the robust (MPI) surprises, particularly at the one-quarter-
21Specifically, we use the same procedure as Nakamura and Steinsson (2018) and compute the forecast revision

as the difference between the BCEI forecast from the month following the FOMC announcement and the
forecast which falls in the same month as the FOMC announcement. Since BCEI forecasts are collected at
the beginning of each month, the latter typically falls before the announcement. When the target dates of the
two forecasts used to calculate the revision are different, we use the previous BCEI forecast and adjust the
forecast horizon to keep the target date fixed.

22The strategy adopted in Nakamura and Steinsson (2018) and Paul (2020) is slightly different as they drop all
FOMC meetings occuring in the first week of each month whereas we drop only those meetings occurring
during the BCEI survey period, leading to a slightly larger sample. The results presented in this section are
robust to adopting their strategy.

23Here we use robust standard errors since the left-hand side variable is a forecast revision, which is not
correlated over time.
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ahead horizon, are more consistent with economic theory than those of FF4 surprises and yet

none are significant. Second, accounting for the information content of the surprises reveals

that survey participants react to the information component of FOMC announcements

(CBINFO) with the expected signs and the responses are large in magnitude and statistically

significant for GDP and inflation at short horizons.

Finally, Table 2.3 reports the forecasters’ response in the same sub-samples considered in

Section 2.4: February 1990 - July 2003 and August 2003 - December 2015. By comparing

the coefficients on the FF4 surprises in both sub-samples with the ones for the full sample

(reported in Table 2.2), we note that the coefficient signs and magnitudes in each of the

sub-samples are consistent with the results obtained for the full sample. Similarly, there is

no evidence of a significant reaction in any of the sub-samples. These results continue

to hold for the surprises cleaned from the Federal Reserve information (MPI). In fact,

there is only mild evidence that survey participants react to the discretionary component of

monetary policy shocks: apart from the GDP growth response in the first sub-sample, which

is significant only at a 10% level, there is no significance in either sub-sample. Similarly,

the MPI responses mostly have the expected signs across the two sub-samples.24 A striking

difference between the two sub-samples is the response of interest rates’ survey forecasts to

the central bank’s information component in monetary surprises (CBINFO): the response

is highly significant in the first sub-sample and insignificant in the second one. Again, this

evidence suggests that the information channel was relevant prior to 2003 but weakened

substantially after that.

ROBUSTNESS. We explore the robustness of our findings to including unscheduled

FOMC meetings. Such meetings may be more likely to be associated with the release of a

central bank’s private information since they often take place as a reaction to important

economic events. Tables D.5 and D.6 in the Appendix report results from including

unscheduled meetings in the full sample and sub-sample regressions, respectively. Most

of our results are robust to this change. The most important difference is that, in both

the full sample as well as in the earlier sub-sample, the inclusion of unscheduled meetings

leads to a significant reaction of interest rate forecasts to all surprises as well as a significant

reaction of short horizon GDP growth forecasts in the earlier sub-sample. This is consistent

with the findings in Paul (2020), according to whom the inclusion of unscheduled meetings

leads to statistically significant coefficients while excluding unscheduled meetings leads to

insignificant responses. Importantly, as Table D.6 shows, the significant reaction disappears

in the later sub-sample, consistently with the results presented earlier in our paper.

24There is one exception: the unemployment response at short horizons in the second sub-sample.

93



Table 2.2: Forecasters’ response - Full sample, scheduled meetings

Horizon FF4 MPI CBINFO MP1

GDP Growth

Nowcast 1.02 0.93 2.51*** 0.40
(0.90) (0.74) (0.83) (0.60)

1 q ahead 0.70 0.45 1.27* 0.39
(0.67) (0.66) (0.67) (0.40)

Avg. 2-4 q ahead 0.07 -0.21 -0.02 0.16
(0.31) (0.27) (0.63) (0.29)

GDP Deflator Inflation

Nowcast 0.10 -0.22 0.74* -0.06
(0.42) (0.22) (0.41) (0.27)

1 q ahead -0.01 -0.08 0.51*** -0.04
(0.20) (0.18) (0.17) (0.14)

Avg. 2-4 q ahead -0.08 -0.12 0.21 -0.05
(0.17) (0.14) (0.16) (0.11)

Unemployment Rate

Nowcast 0.03 0.02 -0.39 0.07
(0.22) (0.19) (0.17) (0.14)

1 q ahead -0.13 0.05 -0.67 0.06
(0.29) (0.25) (0.21) (0.20)

Avg. 2-4 q ahead 0.06 0.04 -0.49 0.18
(0.41) (0.31) (0.41) (0.26)

Interest Rate

Nowcast 0.47 0.60 1.43*** 0.19
(0.47) (0.56) (0.47) (0.33)

1 q ahead 0.78 0.87 1.99*** 0.22
(0.55) (0.70) (0.49) (0.41)

Avg. 2-4 q ahead 0.61 0.79 1.29** 0.15
(0.67) (0.74) (0.60) (0.48)

Notes: The results are based on scheduled FOMC meetings that do not fall into the BCEI survey period (first week of the
month). Robust standard errors in parentheses.
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Table 2.3: Forecasters’ response - Sub-samples, scheduled meetings

Feb 1990 - July 2003 Aug 2003 - Dec 2015

Horizon FF4 MPI CBINFO FF4 MPI CBINFO

GDP Growth

Nowcast 0.87 1.42* 2.58*** 1.30 0.05 4.19**
(0.86) (0.82) (0.85) (1.86) (1.29) (1.96)

1 q ahead 0.70 0.34 1.34* 0.84 0.32 2.85
(0.47) (0.59) (0.69) (1.52) (1.17) (1.77)

Avg. 2-4 q ahead 0.12 -0.36 -0.03 0.06 -0.15 1.36
(0.29) (0.35) (0.71) (0.66) (0.31) (1.42)

GDP Deflator Inflation

Nowcast -0.18 -0.15 0.26 0.51 -0.46 2.66***
(0.37) (0.24) (0.40) (0.89) (0.42) (0.91)

1 q ahead -0.02 -0.04 0.50*** -0.02 -0.16 0.63
(0.22) (0.21) (0.19) (0.39) (0.31) (0.43)

Avg. 2-4 q ahead -0.08 -0.11 0.08 -0.11 -0.13 0.36
(0.23) (0.22) (0.18) (0.19) (0.15) (0.54)

Unemployment Rate

Nowcast 0.07 0.12 -0.47 -0.07 -0.05 -0.54
(0.16) (0.15) (0.12) (0.50) (0.35) (0.53)

1 q ahead -0.12 0.16 -0.73 -0.14 -0.06 -0.73
(0.23) (0.21) (0.15) (0.66) (0.45) (0.71)

Avg. 2-4 q ahead -0.09 0.06 -0.69 0.31 0.05 -0.49
(0.20) (0.20) (0.19) (1.12) (0.57) (1.93)

Interest Rate

Nowcast 0.15 0.40 1.64*** 1.01 0.81 1.28
(0.37) (0.43) (0.56) (1.03) (1.11) (0.84)

1 q ahead 0.38 0.52 2.21*** 1.43 1.25 1.88*
(0.46) (0.51) (0.57) (1.21) (1.36) (1.00)

Avg. 2-4 q ahead 0.30 0.45 1.29** 1.25 1.09 2.43
(0.51) (0.54) (0.50) (1.69) (1.33) (2.30)

Notes: The results are based on scheduled FOMC meetings that do not fall into the BCEI survey period (first week of the
month). Robust standard errors in parentheses.
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2.6 Discussion

This paper explores the empirical importance of the information channel of U.S. monetary

policy, paying particular attention to how it changed over time. We find that the

information channel of monetary policy weakened around the early to mid-2000s since:

(i) impulse responses to monetary policy shocks have the expected sign only when using

the information-robust measure of monetary policy shocks before 2003, while after that the

responses have the expected sign no matter whether the shock is cleaned for information

effects or not; (ii) monetary policy surprises are correlated with central bank’s forecasts

only before 2003 but not afterward. Furthermore, the information advantage of the central

bank in forecasting the state of the economy disappeared at the same time as the information

channel weakened. These changes are related to improvements in the Fed’s communication

and transparency. Our results are robust to different estimation procedures and break tests,

no matter whether we focus on scheduled or unscheduled meetings.
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Appendices

A Information advantage and forecast timing

This section provides a sensitivity analysis to the time-ordering of the Greenbook/Tealbook

and Blue Chip Economic Indicator forecasts in Section 2.2. Recall that, in order to compare

Greenbook/Tealbook and BCEI forecasts, each Greenbook/Tealbook forecast (which is

specifically prepared prior to each scheduled FOMC meeting) needs to be assigned a

corresponding BCEI forecast. While the BCEI forecasts are always published on the tenth

of each month, the publication day of the Greenbook/Tealbook forecasts varies with the

date of the FOMC meeting. To match BCEI forecasts to Greenbook/Tealbook forecasts, in

Section 2.2 we chose the BCEI forecast which occurred just before each FOMC meeting.

Note that while this ensures a fixed ordering between BCEI forecasts and the FOMC

announcements, it does not fix the publication order of Greenbook/Tealbook forecasts.

In fact, in our dataset, there are 210 meetings for which the Greenbook/Tealbook is

published after the BCEI forecast, while for 46 meetings the Greenbook/Tealbook forecast

is published either on the same day as the BCEI or before.

Given the variation in the timing of Greenbook/Tealbook and BCEI forecasts, one might

be concerned that a systematic change in the ordering of the forecasts over time, resulting

from variation in the publication date of the Greenbook/Tealbook forecasts, might bias our

findings of the informational advantage. For example, if Greenbook/Tealbook forecasts are

systematically published after BCEI forecasts in the first part of the sample while this is

not the case in the later part of the sample, the loss of information advantage could simply

arise from this change in timing over the sample. News arriving between the publication of

the forecasts could then create systematic differences in the information sets of the private

sector and the central bank or forecasters could simply have had more time to process

available information in one part of the sample than in the other, incorrectly leading us

to conclude that there is time-variation in the information advantage.

To assess the importance of delays between the publication of both forecasts and to

inspect whether the timing undergoes a systematic change over the sample, we calculate

the difference between the publication dates of the Greenbook/Tealbook and the BCEI

forecasts for two alternative timing assumptions which are used to match BCEI forecasts

to their Greenbook/Tealbook equivalents. Figure A.8 reports boxplots for the number of

days between the publication of the Greenbook/Tealbook forecasts and the BCEI forecasts.

Positive values of the difference in publication dates imply that the Greenbook/Tealbook

was published after the BCEI while negative values imply the reverse ordering. The

difference between publication dates is computed using two different strategies for matching

the BCEI forecasts: The left panel of Figure A.8 reports the difference between the

publication dates for the baseline timing of Section 2.2 where BCEI forecasts are matched to
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Figure A.8: Difference between forecast publication dates

Notes: Number of days between Greenbook/Tealbook and BCEI forecast publication for the baseline timing of Section 2.2
and an alternative timing where the BCEI is always published before the Greenbook/Tealbook forecasts.

FOMC announcements by ensuring that they are strictly ordered before the FOMC meeting,

but without enforcing a particular ordering relative to the Greenbook/Tealbook forecasts.

In contrast, the right panel of Figure A.8 reports the difference between publication

dates when matching forecasts such that BCEI forecasts are published strictly before their

Greenbook/Tealbook counterparts.25

By inspecting the boxplots for the baseline timing in the left panel of Figure A.8, we note

several key points. First, for the majority of FOMC meetings, the Greenbook/Tealbook

forecast is typically published within two weeks after the BCEI forecasts. There are some

cases in which the Greenbook/Tealbook was published first. For those cases, the BCEI is

typically published within a week of the Greenbook/Tealbook publication.26 Second, the

distribution of the delay in Greenbook/Tealbook forecasts relative to the BCEI forecasts has

changed over time. In particular, the mean lag between BCEI and Greenbook/Tealbook

publication dates increased from about 6-7 days to about 12 days for the mid-2000s sample

period. However, in the most recent period, this lag decreases to 6 days. Note that this

change in the timing could in principle affect the results from our information advantage

tests. However, importantly, this timing change would bias our analysis towards finding

an information advantage for the Fed forecasts in the later part of the sample rather than

the earlier part of the sample. As we find the opposite, namely a disappearance of the

information advantage in the most recent sample, removing such potential bias would

further strengthen our conclusion that there is no information advantage in recent years.

Next, compare these results with the boxplots in the right panel of Figure A.8, which reports

the Greenbook/Tealbook publication lag for the alternative matching strategy where BCEI
25In practice, this matching strategy implies that if a Greenbook/Tealbook publication date falls after the 10th of

each month, the relevant BCEI forecasts is the one published in the same month as the Greenbook/Tealbook
while for Greenbook/Tealbook forecasts which are published before the 10th of each month, the previous
month’s BCEI forecast is associated with the meeting.

26Note that at the time of “publication”, the Greenbook/Tealbook forecasts are still not available to private
forecasters as they are only released to the public with a five-year delay.

98



forecasts are always published before Greenbook/Tealbook forecasts. We note that using

this matching strategy the mean publication lag of the Greenbook/Tealbook is generally

higher by about 12-15 days and there is also no systematic change in timing which could

explain a loss in information advantage. Thus, under the alternative matching scheme, the

Greenbook/Tealbook should on average have more information advantage compared to the

baseline scheme.

To verify that a difference in timing of the forecasts does not lead to a dramatically

different conclusion regarding the disappearance of the information advantage, we repeat

the Information-Advantage Fluctuation test from Section 2.2 using the alternative timing

assumption where BCEI forecasts are always published before Greenbook/Tealbook

forecasts. Figures A.9 and A.10 show the path of the τGB,t with the alternative forecast

timing (blue-dashed line) compared to the baseline timing of Section 2.2 (black solid line).

The figures clearly show that the disappearance of the information advantage in the most

recent sample period remains robust to changing the timing of the forecasts. Specifically, the

paths of τGB,t are very close to the original ones. There is more evidence of an information

advantage in the recent sample period relative to the baseline only for the nowcast and

one-quarter-ahead forecasts of GDP growth and the interest rate.
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Figure A.9: Information advantage timing: GDP growth and inflation

Notes: The figure shows τGB,t from eq. (2.1) based on m = 60 meetings rolling windows using a Newey-West covariance
estimator with a truncation lag of m1/4. Horizontal axes correspond to mid-window dates. Dashed (red) lines denote 5%
critical value lines based on Rossi and Sekhposyan (2016)’s two-sided Fluctuation test.
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Figure A.10: Information advantage timing: Unemployment and interest rate

Notes: The figure shows τGB,t from eq. (2.1) based on m = 60 meetings rolling windows using a Newey-West covariance
estimator with a truncation lag of m1/4. Horizontal axes correspond to mid-window dates. Dashed (red) lines denote 5%
critical value lines based on Rossi and Sekhposyan (2016)’s two-sided Fluctuation test.
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B Additional evidence on the information content of high-
frequency market-based surprises

In addition to the horizon-by-horizon projections reported in Section 2.3, we also consider

a specification similar to Romer and Romer (2004) which jointly includes the forecasts

and their revisions for all horizons. This specification is the same used to construct the

information-robust instrument in Section 2.3.B. Miranda-Agrippino and Ricco (2020) also

consider this regression and report that in their sample (1990-2009), an F -test rejects the

null of joint significance of the coefficients (at the 5% level).

Table B.4 below reports the same F -test for our dataset. Column (1) shows that for the

sample considered in Miranda-Agrippino and Ricco (2020), we replicate their F-statistic

exactly. Column (2) shows that the coefficients continue to be insignificant at the 5%

level even when extending the dataset to 2015. Finally, columns (3) and (4) show that our

result from Section 2.3 continues to hold in this specification: High-frequency market-based

surprises were significantly predictable by the Federal Reserve staff before the mid-2000s

(the F-test rejects at 5% level), but that the predictability disappeared in the most recent

period (the F-test does not reject at 5% level).

Table B.4: Projection on Fed information (all horizons)

Feb 1990 - Dec 2009 Feb 1990 - Dec 2015 Feb 1990 - Jul 2003 Aug 2003 - Dec 2015

F 1.651 1.598 2.170 1.575
p 0.039 0.046 0.004 0.070
N 186 234 127 107

Notes: The table shows F-tests, p-values and number of observations from regressing the FF4 surprises on all the forecasts
and at all horizons. F-statistics and p-values are based on heteroskedasticity-robust standard errors. Note that column (1) is
the original sample of Miranda-Agrippino and Ricco (2020).
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C Additional SVAR evidence

We assess the robustness of our SVAR conclusions in Section 2.4 by carrying out two

additional exercises.

Figure C.11 compares impulse responses obtained using the information-robust instrument

(SMPI
t ) to the associated information component (SMPI

t ) for the two sub-samples

considered in Section 2.4. Our conclusion that information effects were important

historically, but much less important in the most recent sample period is robust to this

change: In the earlier sub-sample, the two sets of impulse responses have the opposite

sign for real activity variables, and their differences are even more pronounced. In contrast,

in the later sub-sample, both impulse responses become indistinguishable. In addition, the

information component shows large estimation uncertainty in the later part of the sample.

This is consistent with the result established in Section 2.3 that the information associated

with the economic outlook of the Federal Reserve becomes less relevant in the most recent

period.

Figure C.12 addresses potential misspecification concerns by repeating the analysis using

a local projection approach rather than a BVAR. As the figure shows, our conclusion from

Section 2.4 continues to hold, even though the confidence bands obtained from the local

projections are much larger than the BVAR credible intervals.

D Additional evidence on the impact of information effects on
forecasters’ expectations

We explore the robustness of our findings in Section 2.5 to including unscheduled FOMC

meetings. The latter are more likely to be associated with the release of central bank’s

information as they often take place as a reaction to important economic events.

Tables D.6 and D.6 report the results. Consistent with the findings in Paul (2020), the

inclusion of unscheduled meetings leads to a larger number of statistically significant

coefficients compared those based on scheduled meetings. Importantly, Table D.6 shows

that most of the significance disappears in the second sub-sample. Overall, the coefficient

estimates are similar to those based on scheduled FOMC meetings.
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Figure C.11: Responses to a monetary shock: Decomposition

Notes: Impulse responses from Bayesian SVAR with standard macroeconomic priors and external instrument identification.
VAR sample: January 1979 - December 2019. Instrument samples: February 1990 - July 2003 (left panel) and August 2003
- December 2015 (right panel). Shaded areas correspond to 90 percent credible intervals.
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Figure C.12: Responses to a monetary shock: Local projection

Notes: Impulse responses from local projections (LP) with external instrument identification. LP sample: January 1979
- December 2019. Instrument samples: February 1990 - July 2003 (left panel) and August 2003 - December 2015 (right
panel). Shaded areas correspond to 90 percent confidence intervals.
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Table D.5: Forecasters’ response - Full sample, all meetings

Horizon FF4 MPI CBINFO MP1

GDP Growth

Nowcast 1.20** 0.39 2.74*** 1.57**
(0.60) (0.57) (0.89) (0.67)

1 q ahead 0.66 0.14 1.26** 0.89***
(0.40) (0.44) (0.63) (0.33)

Avg. 2-4 q ahead -0.12 -0.17 -0.07 -0.02
(0.18) (0.20) (0.58) (0.13)

GDP Deflator Inflation

Nowcast 0.15 -0.19 0.81** 0.10
(0.23) (0.19) (0.38) (0.13)

1 q ahead 0.12 -0.12 0.57*** 0.11
(0.14) (0.14) (0.17) (0.10)

Avg. 2-4 q ahead -0.04 -0.15 0.27* 0.02
(0.09) (0.10) (0.15) (0.07)

Unemployment Rate

Nowcast -0.20 -0.05 -0.47 -0.22
(0.12) (0.13) (0.16) (0.09)

1 q ahead -0.22 0.04 -0.78 -0.24
(0.15) (0.16) (0.21) (0.14)

Avg. 2-4 q ahead -0.15 0.02 -0.66 -0.31
(0.20) (0.18) (0.39) (0.19)

Interest Rate

Nowcast 1.08*** 0.74** 1.57*** 0.98***
(0.31) (0.34) (0.41) (0.19)

1 q ahead 1.32*** 0.84* 2.06*** 1.15***
(0.37) (0.43) (0.44) (0.24)

Avg. 2-4 q ahead 0.99** 0.78* 1.40*** 1.01***
(0.40) (0.44) (0.51) (0.27)

Notes: The results are based on all (scheduled and unscheduled) FOMC meetings that do not fall into the BCEI survey period
(first week of the month). Robust standard errors in parentheses.
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Table D.6: Forecasters’ response - Sub-samples, all meetings

Feb 1990 - July 2003 Aug 2003 - Dec 2015

Horizon FF4 MPI CBINFO FF4 MPI CBINFO

GDP Growth

Nowcast 1.26* 0.54 2.62*** 1.13 -0.09 4.58**
(0.65) (0.61) (0.91) (1.31) (1.28) (1.93)

1 q ahead 0.65** 0.08 1.26* 0.97 0.23 3.11*
(0.32) (0.35) (0.66) (1.09) (1.17) (1.83)

Avg. 2-4 q ahead -0.11 -0.18 -0.02 0.07 -0.19 1.59
(0.19) (0.24) (0.67) (0.40) (0.31) (1.41)

GDP Deflator Inflation

Nowcast 0.06 -0.08 0.32 0.36 -0.52 2.85***
(0.23) (0.22) (0.37) (0.56) (0.43) (0.88)

1 q ahead 0.13 -0.09 0.52*** 0.05 -0.20 0.77*
(0.16) (0.16) (0.20) (0.28) (0.33) (0.44)

Avg. 2-4 q ahead -0.06 -0.15 0.13 -0.05 -0.16 0.58
(0.11) (0.12) (0.16) (0.13) (0.16) (0.57)

Unemployment Rate

Nowcast -0.22 -0.06 -0.55 -0.18 -0.02 -0.62
(0.10) (0.11) (0.12) (0.33) (0.35) (0.53)

1 q ahead -0.21 0.07 -0.84 -0.24 -0.02 -0.84
(0.12) (0.13) (0.18) (0.44) (0.45) (0.70)

Avg. 2-4 q ahead -0.21 -0.00 -0.80 -0.03 0.10 -0.80
(0.12) (0.11) (0.26) (0.68) (0.57) (1.93)

Interest Rate

Nowcast 1.14*** 0.72*** 1.76*** 0.93 0.78 1.37
(0.26) (0.21) (0.48) (0.92) (1.11) (0.84)

1 q ahead 1.30*** 0.69*** 2.26*** 1.41 1.22 1.97*
(0.31) (0.25) (0.51) (1.11) (1.35) (1.01)

Avg. 2-4 q ahead 0.90*** 0.66** 1.39*** 1.29 1.07 2.60
(0.26) (0.28) (0.49) (1.31) (1.32) (2.29)

Notes: The results are based on all (scheduled and unscheduled) FOMC meetings that do not fall into the BCEI survey period
(first week of the month). Robust standard errors in parentheses.
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Chapter 3
Robust Inference in Structural VAR
Models Identified by Non-Gaussianity

This paper is co-authored with Adam Lee and Geert Mesters.

3.1 Introduction

In this paper, we develop robust inference methods for structural vector autoregressive

(SVAR) models that are identified using non-Gaussian error distributions. To outline our

contribution, consider the K-dimensional SVAR model

Yt = c+B1Yt−1 + · · ·+BpYt−p +A−1εt (3.1)

where Yt is a K × 1 vector of macroeconomic variables, c is an intercept, B1, . . . , Bp are

the (K ×K) autoregressive matrices, A is the (K ×K) invertible contemporaneous effect

matrix and εt is the K × 1 vector of independent structural shocks, whose components are

assumed to have mean zero and unit variance.

It is well known that, without further restrictions, the first and second moments of the

process {Yt} are insufficient to identify all parameters of the SVAR (e.g. Sims, 1980).

Interestingly, however, when at least K − 1 components of εt admit a non-Gaussian

distribution, all parameters of the SVAR can be recovered up to sign and permutation

of the columns of A−1, see e.g. Comon (1994) and the discussion in Gouriéroux et al.

(2017). Several recent papers have exploited such a non-Gaussian identification strategy to

conduct inference in SVAR models (e.g. Lanne and Lütkepohl, 2010; Moneta et al., 2013;

Lanne et al., 2017; Maxand, 2018; Lanne and Luoto, 2019; Gouriéroux et al., 2017, 2019;

Tank et al., 2019; Herwartz, 2019; Bekaert et al., 2019, 2020; Fiorentini and Sentana, 2020;

Velasco, 2020; Guay, 2020; Braun, 2021; Sims, 2021).
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Unfortunately, as we show in this paper, existing inference methods in non-Gaussian SVARs

are not robust to situations in which the densities of the structural errors that generated

the data are “close” to a Gaussian distribution. Intuitively, what matters for correctly

sized inference is not non-Gaussianity per se, but a sufficient distance from the Gaussian

distribution. When the true distributions of the structural errors are close to the Gaussian

distribution, local identification deteriorates and coverage distortions occur.1 The problem is

somewhat analogue to the weak instruments problem where it is well known that a non-zero

correlation between the instrument and the endogenous variable is not sufficient to conduct

standard inference, but that the correlation must be sufficiently large in order to yield

strong identification. Similarly, in our setting, non-Gaussianity alone is not sufficient for

standard MLE or GMM methods to yield correct inference, if the distance to the Gaussian

distribution is not sufficiently large.

In this paper, we propose a solution to this problem by combining insights from the

econometric literature on weak identification robust hypothesis testing as well as the

statistical literature on semi-parametric inference approaches. Specifically, we treat the

SVAR model as a semi-parametric model where the densities of the structural errors

form the non-parametric part. We use a semi-parametric equivalent of the Neyman-Rao

score statistic in order to conduct inference on the possibly weakly identified (or not

identified) parameters of the SVAR. More precisely, the semi-parametric score statistic that

we employ is based on the quadratic form of the efficient score function, which projects

out the infinite dimensional nuisance parameters (i.e. the densities of the structural errors)

from the conventional score function. Similar as for the parametric score test, being

able to fix the weakly identified parameters under the null hypothesis, circumvents the

identification problem (e.g. Andrews and Mikusheva, 2016) and we show that the semi-

parametric score test has a standard χ2 limit under the null hypothesis. Additionally, if

the normalizing matrix, i.e. the efficient information matrix, is non-singular, the test is

asymptotically uniformly most powerful within the class of invariant tests (e.g. Choi et al.,

1996). Implementing the score test is computationally easy as it only requires estimating

the log density scores of the structural errors. For this, we use a B-spline methodology

that was developed in Jin (1992) and also considered in Chen and Bickel (2006) for

independent component analysis. This approach allows us to consider a wide variety of

possible distributions for the structural errors without committing to a specific distribution.

The efficient score test allows us to construct confidence regions for the possibly weakly

identified (or not identified) parameters of the SVAR. These regions can then be used to

construct bands for the structural impulse responses while exploiting efficient estimates for

the well identified parameters (e.g. van der Vaart, 2002, Chapter 7).

We assess the finite-sample performance of our method in a large simulation study and find

that the empirical rejection frequencies of the semi-parametric score test are always close
1Simulation studies in, among others, Gouriéroux et al. (2017, 2019) and Lanne and Luoto (2019) have
previously highlighted such coverage distortions in the case of “weakly” non-Gaussian distributions.
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to the nominal size, regardless of the true distribution of the errors. This is in contrast

to existing methods that are not robust to weak non-Gaussianity, which show substantial

size distortions for some of the non-Gaussian distributions considered. We also analyze

power of the proposed procedure and find that the power of the semi-parametric score test

comes close to the power of an “oracle”-approach where the test is conducted based on a

parametric score statistic using the true densities of the structural errors (which are unknown

in practice).

Finally, we employ the proposed approach in an empirical study that revisits identification

of supply and demand elasticities in the U.S. labor market based on the model of Baumeister

and Hamilton (2015), but using a frequentist procedure. This model was recently studied by

Lanne and Luoto (2019) using a non-Gaussian identification strategy. They find evidence

to reject some of the restrictions imposed in Baumeister and Hamilton (2015). Using our

semi-parametric approach, we construct confidence regions for the labor supply and labor

demand elasticities and show that the labor demand elasticity is only very weakly identified

by non-Gaussianity of the structural shocks. In fact, our confidence regions for the demand

and supply elasticities are consistent with the posterior distributions reported by Baumeister

and Hamilton (2015). We also construct identification-robust confidence bands for the

impulse responses for labor demand and labor supply shocks based on our semi-parametric

approach. We find that a non-Gaussianity identification strategy is not sufficient to identify

the dynamic response of the economy.

The remainder of this paper is organized as follows. Continuing the introduction, we briefly

discuss the related literature. In Section 3.2, we illustrate how non-Gaussian distributions

can help with identification and how the weak identification problem arises. Section 3.3

casts the SVAR model as a semi-parametric model and establishes a number of preliminary

results. The semi-parametric score testing approach is derived in Section 3.4. Section 3.5

evaluates the finite-sample performance of the proposed method. Section 3.6 presents the

empirical study. Finally, Section 3.7 concludes.

Related literature

This paper relates to three strands of the existing literature: (i) identification robust testing,

(ii) semi-parametric modeling and (iii) structural VAR models.

First, the econometric literature has developed a great number of methods and approaches

for conducting inference on parameters that are weakly identified or not identified. Both

general approaches (e.g. Kleibergen, 2005; Andrews and Cheng, 2012) and model specific

solutions have been developed, see for instance the solutions to the weak instruments

problem in the linear IV model summarized in Andrews et al. (2019). The crucial difference

in our setting is that the nuisance parameters are infinite dimensional. In fact, in our case,

the distance between the distributions of the structural shocks and the Gaussian distribution

determines the strength of identification. Despite this difference, conceptually our approach
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is similar to the score testing approach developed for parametric models in Andrews and

Mikusheva (2016).

Second, we consider the SVAR model as a semi-parametric model and we build on the

general statistical theory discussed in Bickel et al. (1998) and van der Vaart (2002). While

the majority of the statistical literature focuses on efficient estimation in semi-parametric

models, a few papers have contributed to testing in well identified models (e.g. Choi et al.,

1996; Bickel et al., 2006). The difference to our paper is that in our setting, a subset of the

parameters of interest is possibly not identified.

Third, the SVAR literature has produced numerous identification strategies including

imposing short run, long run or sign restrictions, relying on external instruments and

exploiting statistical features such as heteroskedasticity and non-Gaussianity (see Ramey

(2016) for a recent review). The last category is potentially attractive as it does not require

taking a stand on any economic mechanism, nor does it rely on the availability of strong

instruments. The non-Gaussian approach has been considered in an increasing number of

papers mentioned in the introduction above. For this approach, an important contribution

is Guay (2020) who provides a pre-test that is useful to determine whether identification

is sufficiently strong. Our paper removes the need for such pre-tests, as it provides an

efficient inference procedure that does not assume that the structural errors are sufficiently

non-Gaussian.

Last, but not least, this paper builds on Lee and Mesters (2021) who consider a similar

score testing approach. The crucial difference is that Lee and Mesters (2021) require that

the observations are independent across time. Allowing for dependence is non-trivial in

the semi-parametric setting as the majority of the theory is developed for random samples

(e.g. Bickel et al., 1998; van der Vaart, 2002). For instance, here we rely on LAN results

developed in Hallin and Saidi (2007), but numerous other differences in the approach exist.

3.2 Illustration of non-Gaussianity identification

In this section, we illustrate briefly how non-Gaussian distributions of the structural errors

can help to identify the parameters of the SVAR model. Furthermore, we provide an

intuitive explanation of the weak identification problem that is the main problem of interest

in this paper.

For illustration, consider a bivariate SVAR model as defined in eq. (3.1) in the introduction

to this paper, but assume for simplicity that (i) the number of lags is zero (p = 0) and (ii)

that the contemporaneous effect matrix A is orthonormal.2 Under these assumptions, the

(2×2) matrixA can be parameterized by a scalar parameter α and the model can be written

2Note, that the assumption of an orthonormal A matrix can be asymptotically justified if the data Yt is jointly
re-scaled to have mean zero and identity variance matrix (pre-whitening). For details, see Gouriéroux et al.
(2017).
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as follows:

Yt = A−1εt where A−1 =

[
cosα − sinα

sinα cosα

]
In this model, the coefficient of interest is the scalar α that determines the angle of the

rotation matrix A. If, for example, α = 0, A equals the identity matrix and each of

the structural shocks only impacts its respective component in Yt. For 0 < α < π, or

integer multiples thereof, the off-diagonal elements are non-zero so that the shocks affect

all variables, with signs depending on the value of α.

To illustrate how non-Gaussian distributions for εt may help to identify α, we study the

log-likelihood of Yt in the model above using different choices for the distributions of the

structural shocks εk,t. Figure 3.1 shows contour plots of the log-likelihood of the bivariate

SVAR(0) model for four choices for the distributions of the structural shocks: A Gaussian

distribution, a student-t distribution with 5 degrees of freedom, a skewed distribution and a

bimodal distribution.3 In addition to the likelihood contours, each of the plots also shows a

red and a blue line. These indicate the vector Yt (i.e. a linear combination of the structural

errors εt), corresponding to two different choices for α.

Focus first on the Gaussian case (top-left panel). When the structural errors have an

exact Gaussian distribution, the value of the log-likelihood is identical for all choices of

α and the red and blue vectors reach the same level curve of the likelihood. Therefore,

α cannot be identified from the likelihood of the model. This illustration reflects the

standard identification problem of an SVAR model where, without additional identification

restrictions, the impact effects of the structural shocks are not identifiable.

In contrast, consider next the cases where the structural errors follow non-Gaussian

distributions. These cases are depicted in the remaining panels of the figure. Notice that in

each of the non-Gaussian cases, the blue and red vectors end on different contour lines. This

means that different choices of α lead to different values of the log-likelihood and hence,

α is identifiable. More precisely, when we change the value of α i.e. rotate the red and

blue vectors, the only values that end up on the same contour lines are those values of α

that lead to the same elements of A, up to permutation and sign changes of the columns

(i.e. exchanging the four quadrants of each plot). These examples illustrate, how non-

Gaussianity of the structural errors can help to identify parameters up to permutation and

sign changes of the columns.

Finally, we turn to the problem of weak non-Gaussianity identification which arises, when

the distance from the Gaussian distribution is not very large. In such scenarios, changes in

α only imply minor changes in the level of the likelihood, so that the likelihood ends up

being rather flat in the direction of α. Compare for instance, the panels corresponding to

the t(5) distribution and the bimodal distribution. In the case of the bimodal density, the

3For simplicity, both structural errors are assumed to have identical distributions.
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Figure 3.1: Identification with non-Gaussian distributions
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Notes: The figure shows the log-likelihood contours of Yt in the SVAR(0) model with scalar parameter α for different
distributions of the structural shocks, εk,t. The red and blue lines in each plot denote the vector Yt corresponding to two
different choices for α.

red and blue vectors end on clearly distinguishable contour lines of the log-likelihood. In

contrast, for the student-t density, the level difference is small and the red and blue vectors

almost reach the same contour line. In the extreme case of weak identification, we end up

in the Gaussian case (upper-left panel of Figure 3.1) where α is completely unidentified.

More importantly, however, there are many empirically relevant scenarios, including the

t(5) density, where α always remains weakly identified.4

4In fact, the theoretical likelihood plots shown in Figure 3.1 correspond quite closely to the power results
obtained in our simulation study below; see Figure 3.2 in Section 3.5.
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3.3 Semi-parametric SVAR model

In this section, we cast the SVAR model as a semi-parametric model and state the

hypotheses of interest. For convenience, we adopt the following notation

Yt = c+BXt +A(α, σ)−1εt , t = 1, . . . , n , (3.2)

where Xt := (Y ′t−1, . . . , Y
′
t−p)

′ and B := (B1, . . . , Bp). The contemporaneous effect

matrix A(α, σ) is parameterized by the vectors α and σ, where we adopt the convention

that α cannot be recovered from the second moments of {Yt} but σ can. We provide some

examples below. Further, we let η = (η1, . . . , ηK) correspond to the density functions of

εt = (ε1,t, . . . , εK,t)
′ and summarize the parameters in

θ = (γ, η) , γ = (α, β) , β = (σ, c, b) , (3.3)

where b = vec(B). Let Y n = (Y1, . . . , Yn)′ and let Pnθ denote the distribution of Y n

conditional on the initial values (Y1−p, . . . , Y0). The semi-parametric SVAR model is

defined by

PnΘ = {Pnθ : θ ∈ Θ} Θ = A× B︸ ︷︷ ︸
Γ

×H , (3.4)

where Γ ⊂ Rγ andH =
∏K
k=1 H with

H :=

{
g ∈ L1(λ) ∩ C1(λ) : g(z) ≥ 0,

∫
g(z) dz = 1,

∫
zg(z)dz = 0,

∫
κ(z)g(z) dz = 0

}
,

where λ denotes Lebesgue measure on R, C1(λ) is the class of real functions on R which are

continuously differentiable λ-a.e. and κ(z) = z2− 1. The parameter space for the densities

ηk is restricted such that that εk,t has mean zero and variance one. Further restrictions,

required to estimate certain quantities consistently, will be placed on the parameter spaces

below.

To allow for different parameterizations of the SVAR, we refrain from imposing additional

structure on A(α, σ). The following examples illustrate various options.

EXAMPLE 3.3.1: Consider A(α, σ)−1 = Σ1/2(σ)R(α) where Σ1/2(σ) is lower triangular

with nonzero entries determined by σ and R(α) is a rotation matrix parameterized by

α. Different choices for α → R(α) are possible including the Cayley and trigonometric

transformations. We note that σ is identified by the second moments of {Yt} and the

identification problem is isolated in the rotation matrix R as in Section 3.2.

115



EXAMPLE 3.3.2: Consider a bivariate SVAR(p) model for Zt = (Z1,t, Z2,t)
′ which defines

a demand and supply equation[
−αd 1

−αs 1

]
Zt =

p∑
i=1

ΦiZt−i + εt

where εt = (εdt , ε
s
t )
′ contains a demand shock and a supply shock with standard deviations

σd and σs, respectively. αs captures a supply elasticity and αd a demand elasticity. Let

σ = (σd, σs) and α = (βd, βs). Then A−1(α, σ) can be parameterized as

A−1(α, σ) =

[
σd

αs−αd − σs
αs−αd

σdα
s

αs−αd − σsαd

αs−αd

]

The standard deviations of the supply and demand shocks σ can be identified by the second

moments of {Zt} and the identification problem consists in determining the demand and

supply elasticities contained in α.

3.3.1 Assumptions

Before discussing the testing methodology, we discuss our assumptions. Broadly speaking,

we have two types of assumptions: (i) the main assumptions that are required for deriving

and estimating the efficient score function and (ii) an additional assumption that imposes

that the density scores can be consistently estimated. We separate the two as different

density score estimators can be considered which then only need to satisfy the second

assumption. In the Appendix, we show that the density score estimator that we adopt in

this paper satisfies this assumption under mild conditions on the densities, ηk. Our main

assumption is stated as follows.

ASSUMPTION 3.3.1: For model (3.2), we assume that

1. |IK −
∑p

j=1Bjz
j | 6= 0 for all |z| ≤ 1 with z ∈ C

2. εt = (ε1,t, . . . , εK,t)
′ is independently and identically distributed across t, with

independent components εk,t that have a nowhere vanishing density ηk with respect

to the Lebesgue measure on R. The densities ηk are continuously differentiable with

log density scores denoted by φk(z) := ∂ log ηk(z)/∂z, and for all k = 1, . . . ,K

(a) Eεk,t = 0, Eε2k,t = 1, Eε4+δ
k,t < ∞, E(ε4k,t) − 1 > E(ε3k,t)

2, and Eφ4+δ
k (εk,t) <

∞ (for some δ > 0);

(b) Eφk(εk,t) = 0, Eφ2
k(εk,t) > 0, Eφk(εk,t)εk,t = −1, Eφk(εk,t)ε2k,t = 0 and

Eφk(εk,t)ε3k,t = −3;

Part 1 imposes that the SVAR is stationary and causal. Part 2 imposes that the densities of
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the errors are continuously differentiable and certain moment conditions hold. Specifically,

part (a) normalizes the errors to have mean zero, variance one and finite four+δ moments.5

Additionally, we require the log density scores φk(x) = ∂ log ηk(x)/∂x evaluated at the

errors to have finite four+δ moments. Part (b) simplifies the construction of the efficient

score functions. Whilst this may at first glance appear a strong condition, Lemma S8 in Lee

and Mesters (2021) shows that if the first part holds, then a simple sufficient condition is

that the tails of the densities ηk converge to zero at a polynomial rate. We define H0 as the

subset of H that satisfies Assumption 3.3.1 part 2. Similarly, B0 ⊂ B satisfies Assumption

3.3.1 part 1.

Together, these assumptions ensure that (i) the LAN result of Hallin and Saidi (2007)

holds (see Theorem 2.1 in their paper) and (ii) the efficient score function can be derived

analytically.

Next, we assume that the density scores can be consistently estimated

ASSUMPTION 3.3.2: Let βn be a deterministic sequence with
√
n(βn − β) = O(1) and let

θn = (α0, βn, η) for some (β, η) ∈ B0 × H0 and suppose we have an array of estimates
{φ̂k,n(An,k•(Yt − cn − BnXt))}n≥1,t≤n for k = 1, . . . ,K where An = A(α0, σn) such
that for each k 6= j:

1

n

n∑
t=1

[
φ̂k,n(An,k•(Yt − cn −BnXt))− φk(An,k•(Yt − cn −BnXt))

]
Wt,n = oPθn (n−1/2),

(3.5)
and for νn = ν2

n,p with p := min{1 + δ/4, 2} and νn,p = n(1−p)/p if p ∈ (1, 2) or
νn,p = n−1/2 log(n)1/2+ρ, for some ρ > 0, if p = 2, we have

1

n

n∑
t=1

([
φ̂k,n(An,k•(Yt − cn −BnXt))− φk(An,k•(Yt − cn −BnXt))

]
Wt,n

)2
= oPθn (νn).

(3.6)

where Wt,n is some arbitrary random variable that is independent from An,k•(Yt − cn −
BnXt) and such that 1

n

∑n
t=1W

2
t,n

Pθn→ EθnW 2
t,n <∞.

The assumption imposes that certain functions of the log density scores can be estimated

sufficiently well. The assumption is stated for deterministic sequences βn which simplifies

verification for specific choices of φ̂k,n.6 In the Appendix, we show that the B-spline based

estimator of Jin (1992) and Chen and Bickel (2006) satisfies this assumption under mild

regularity conditions on the densities ηk.
5E(ε4k,t) − 1 ≥ E(ε3k,t)

2 always holds; this is known as Pearson’s inequality. See e.g. Result 1 in Sen (2012).
Assuming that E(ε4k,t) − 1 > E(ε3k,t)

2 rules out (only) cases where 1, εk,t and ε2k,t are linearly dependent
when considered as elements of L2. See e.g. Theorem 7.2.10 in Horn and Johnson (2013).

6More specifically, it implies that under Pθn we have that An,k•(Yt− cn−BnXt) h εk,t and terms involving
εk,t are easy to handle using Assumption 3.3.1
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3.3.2 Efficient score function

One of the key ingredients in our framework is the efficient score function for γ = (α, β)

with respect to η. Loosely speaking, the efficient score function is defined as the projection

of the scores for γ on the space orthogonal to the tangent space of η (e.g. Definition 2.15 in

van der Vaart, 2002).

When η is finite dimensional, the tangent space is merely the linear span of the scores of

η, but when η is infinite dimensional, constructing the tangent space and the subsequent

projection requires more care. A formal derivation is provided in Lee and Mesters (2021);

here we merely state our main result.

LEMMA 3.3.1: Given Assumption 3.3.1 we have that the efficient score function for γ in
the semi-parametric SVAR model PnΘ at any θ = (γ, η) with γ = (α, β), α ∈ A0,
β = (σ, b, c) ∈ B0 and η ∈ H0 is given by ˜̀

n,θ(y
n) =

∑n
t=1

˜̀
θ(yt, xt), where

˜̀
θ(yt, xt) =

((
˜̀
θ,αl(yt, xt)

)Kα
l=1

,
(

˜̀
θ,σl(yt, xt)

)Kσ
l=1

,
(

˜̀
θ,cl(yt, xt)

)Kc
l=1

,
(

˜̀
θ,bl(yt, xt)

)Kb
l=1

)
with components

˜̀
θ,αl(yt, xt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(Ak•vt)Aj•vt +
K∑
k=1

ζαl,k,k [τk,1Ak•vt + τk,2κ(Ak•vt)]

˜̀
θ,σl(yt, xt) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφk(Ak•vt)Aj•vt +
K∑
k=1

ζσl,k,k [τk,1Ak•vt + τk,2κ(Ak•vt)]

˜̀
θ,cl(yt, xt) =

K∑
k=1

φk(Ak•vt)× [−Ak•Dcl ]

˜̀
θ,bl(yt, xt) =

K∑
k=1

φk(Ak•vt)× [−Ak•Dbl(xt − (ιp ⊗ µ))]

where vt = yt − c − Bxt, ζαl,k,j := [Dαl(α, σ)]k•A
−1
•j with Dαl(α, σ) = ∂A(α, σ)/∂αl,

ζσl,k,j := [Dσl(α, σ)]k•A
−1
•j with Dσl(α, σ) = ∂A(α, σ)/∂σl, Dcl = ∂c/∂cl, Dbl =

∂B/∂bl, µ = (I −B1 − . . .−Bp)−1c and τk := (τ1,k, τ2,k)
′ is defined as

τk := M−1
k

(
0

−2

)
, where Mk :=

(
1 Eθ(Ak•vt)3

Eθ(Ak•vt)3 Eθ(Ak•vt)4 − 1

)
.

The derivation of the efficient scores follows by combining results from Amari and

Cardoso (1997) and Bickel et al. (1998). For future reference, we partition ˜̀
θ(yt, xt) =

(˜̀
θ,α(yt, xt), ˜̀

θ,β(yt, xt)) where ˜̀
θ,α(yt, xt) = (˜̀

θ,αl(yt, xt))
Kα
l=1 and also we have

˜̀
θ,β(yt, xt) =

(
(˜̀
θ,σl(yt, xt))

Kσ
l=1, (

˜̀
θ,cl(yt, xt))

Kc
l=1, (

˜̀
θ,bl(yt, xt))

Kb
l=1

)
.
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Based on the efficient scores, we define the efficient information matrix for γ by

Ĩθ := E ˜̀
θ
˜̀′
θ with partitioning Ĩθ =

(
Ĩθ,αα Ĩθ,αβ

Ĩθ,βα Ĩθ,ββ

)
. (3.7)

With Lemma 3.3.1 and the efficient information matrix in place, we can define the efficient

score function for α with respect to β and η. In particular, from Bickel et al. (1998), it

follows that this score can be computed by the second projection

κ̃θ(yt, xt) := ˜̀
θ,α(yt, xt)− Ĩθ,αβ Ĩ−1

θ,ββ
˜̀
θ,β(yt, xt) . (3.8)

The efficient score κ̃θ can be easily computed once the efficient scores for γ (i.e. Lemma

3.3.1) are estimated. The corresponding efficient information matrix is given by

Ĩθ := Ĩθ,αα − Ĩθ,αβ Ĩ−1
θ,ββ Ĩθ,βα . (3.9)

Building tests or estimators based on the efficient score function κ̃θ is attractive as efficiency

results are well established, see Choi et al. (1996), Bickel et al. (1998) and van der Vaart

(2002). A crucial difference in our setting is that the efficient information matrix might

be singular. For instance, if more than one component of εt follows an exact Gaussian

distribution, Ĩθ is singular, see Lee and Mesters (2021). The singularity plays an important

role in the construction of the test statistic below.

3.4 Hypothesis testing in the semi-parametric SVAR

To conduct inference on αwithout a priori assuming that α is identified, i.e. assuming that at

most one component of εt has a non-Gaussian distribution, we consider testing hypotheses

of the following form.

H0 : α = α0 , β ∈ B , η ∈ H against H1 : α 6= α0 , β ∈ B , η ∈ H . (3.10)

The main idea is to consider test statistics whose computation does not require evaluation

under the alternative H1, thus avoiding the need to estimate α. Clearly, based on the

trinity of classical tests, the score test is the only viable candidate and we will proceed by

constructing score tests in the spirit of Neyman-Rao, but adapted for the semi-parametric

setting (e.g. Choi et al., 1996). Such test statistics can then be inverted to yield confidence

intervals for α with correct coverage. In our setting, we rely on the efficient score functions

for the SVAR model to construct test statistics.

Using Assumption 3.3.2, which implies the existence of a suitable density score estimator,
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we can estimate the efficient scores for γ, as defined in Lemma 3.3.1, by

ˆ̀
θ(Yt) =

((
ˆ̀
θ,αl(Yt)

)Kα
l=1

,
(

ˆ̀
θ,σl(Yt)

)Kσ
l=1

,
(

ˆ̀
θ,cl(Yt)

)Kc
l=1

,
(

ˆ̀
θ,bl(Yt)

)Kb
l=1

)
with components

ˆ̀
θ,αl(Yt) =

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφ̂k(Ak•vt)Aj•Vt +

K∑
k=1

ζαl,k,k [τ̂k,1Ak•Vt + τ̂k,2κ(Ak•Vt)]

ˆ̀
θ,σl(Yt) =

K∑
k=1

K∑
j=1,j 6=k

ζσl,k,jφ̂k(Ak•Vt)Aj•Vt +
K∑
k=1

ζσl,k,k [τ̂k,1Ak•Vt + τ̂k,2κ(Ak•Vt)]

ˆ̀
θ,cl(Yt) =

K∑
k=1

φ̂k(Ak•Vt)× [−Ak•Dc,l]

ˆ̀
θ,bl(Yt) =

K∑
k=1

φ̂k(Ak•Vt)× [−Ak•Db,l(Xt − X̄n)]

where Vt = Yt − c − BXt and X̄n = 1
n

∑n
t=1Xt. The estimates for the τk’s are obtained

by replacing the population moments by their sample counterparts in the definition of τk:

τ̂k := M̂−1k

(
0

−2

)
, where M̂k :=

(
1 1

n

∑n
t=1(Ak•Vt)

3

1
n

∑n
t=1(Ak•Vt)

3 1
n

∑n
t=1(Ak•Vt)

4 − 1

)
. (3.11)

We obtain the estimates for the efficient scores and information

ˆ̀
n,θ(Y

n) =

n∑
t=1

ˆ̀
θ(Yt, Xt) and Îθ =

1

n

n∑
t=1

ˆ̀
θ(Yt, Xt)ˆ̀′

θ(Yt, Xt) . (3.12)

With the estimates for the efficient scores for γ, we can estimate the efficient score and

information for α. We have that

κ̂θ(Yt, Xt) = ˆ̀
θ,α(Yt, Xt)− Îθ,αβ Î−1

θ,ββ
ˆ̀
θ,β(Yt, Xt) (3.13)

and

Îθ = Îθ,αα − Îθ,αβ Î−1
θ,ββ Îθ,βα . (3.14)

Since the information matrix estimate may be singular, we need to make an adjustment.

Specifically, given the truncation rate νn defined in Assumption 3.3.2, we define a truncated

eigenvalue version of the information matrix estimate as

Îtθ = ÛnΛ̂n(νn)Û ′n , (3.15)

where Λ̂n(νn) is a diagonal matrix with the νn-truncated eigenvalues of Îθ on the main

diagonal and Ûn is the matrix of corresponding orthonormal eigenvectors. To be specific, let

{λ̂n,i}Li=1 denote the non-increasing eigenvalues of Îθ, then the (i, i)th element of Λ̂n(νn)
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is given by λ̂n,i1(λ̂n,i > νn).

Based on this, we define the singularity and identification robust score statistic as follows.

ŜSRθ :=

(
1√
n

n∑
t=1

κ̂θ(Yt, Xt)

)′
Ît,†θ

(
1√
n

n∑
t=1

κ̂θ(Yt, Xt)

)
, (3.16)

where Ît,†θ is the Moore-Penrose pseudo-inverse of Îtθ. The limiting distribution of ŜSRθ is

characterized in the following theorem, which implies that we can use the estimated rank of

Îtθ to compute the critical value for ŜSRθ .

THEOREM 3.4.1: Let β̂n be a
√
n−consistent estimator of β and let Sn = n−1/2C ZL2

for some C > 0 and let β̄n be a discretized version of β̂n which replaces its value with

the closest point in Sn. Define θ̄n = (α0, β̄n, η), suppose that Assumptions 3.3.1 and

3.3.2 hold, that Ĩθ0,ββ is nonsingular and the maps (α, σ) → [Dal(α, σ)]k•A(α, σ)−1
•j and

(α, σ) → [Dσl(α, σ)]k•A(α, σ)−1
•j are Lipschitz continuous. Let rn = rank(Ît

θ̄n
) and

denote by cn the 1− a quantile of the χ2
rn distribution, for any a ∈ (0, 1). Then, under H0

lim
n→∞

Pθ0(ŜSR
θ̄n

> cn) ≤ a,

with inequality only if rank(Ĩθ0) = 0.

Note the following comments on this theorem.

First, the theorem imposes that β is well identified as Ĩθ0,ββ is required to be nonsingular.

We do not impose which estimator β̂n should be adopted as the theorem holds for any
√
n-

consistent estimator. However, given that the efficient scores of γ need to be computed

anyway, it is attractive to rely on one-step efficient estimates for β as discussed in van der

Vaart (1998), as this improves the power of the test.

Second, the score statistic is evaluated at the discretized estimator β̄n. This is merely a

technical device due to Le Cam that simplifies the proof, see Le Cam and Yang (2000, p.

125) or van der Vaart (1998, p. 72-73) for more discussion. Since the discretization can be

arbitrarily fine, this has no practical implications.

Third, the eigenvalue truncation rate has little effect on the results and can be viewed as a

technical device as well. In practice, we always truncate at machine precision which implies

that Ît,†θ is similar to Î†θ , the generalized inverse of Îθ. Experimenting with different, but

small, truncation rates shows that the differences matter little in practice.

Fourth, if Ĩθ0 has full rank, the singularity adjusted score statistic is asymptotically

equivalent to its non-singular version that is computed with Î−1
θ̄n

instead of Ît,†
θ̄n

, see Lee

and Mesters (2021) for a proof. Given this equivalence, it follows from Choi et al. (1996)

that non-singularity tests based on ŜSR
θ̄n

are asymptotically uniformly most powerful within
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the class of rotation invariant tests (when L = 1, the rotational invariance can be dropped

for one-sided tests and replaced with unbiasedness for two-sided tests). This implies that

asymptotically when testing the hypothesis (3.10), the power of the test is the greatest

possible in the class of rotationally invariant tests. This makes tests based on Ŝθ̄n attractive

for scenarios where there is no explicit direction in which one wants to maximize power.

When such directions are given, alternative test statistics, also based on the efficient score

function, can be considered (e.g. Bickel et al., 2006).

3.5 Finite sample performance

This section presents a collection of simulation studies to evaluate the size and power of the

proposed hypothesis testing procedure. We also compare the performance of our method to

existing approaches available in the literature.

3.5.1 Size

We start by evaluating the finite sample size of the proposed hypothesis test in the semi-

parametric SVAR model. We consider SVAR(p) specifications with p = 1, 2, 4, 8, 12 lags,

K = 2, 3 variables and T = 200, 500, 1000. We simulate the SVAR(p) model for ten

different choices of the distributions of the structural errors εk,t with k = 1, . . . ,K. The

density function of each distribution and their abbreviated names are reported in Appendix

D of the paper. For the size simulations, we assume that all components of the error term

are distributed identically.

We parameterize the contemporaneous effect matrix as in Example 3.3.1, choosing A−1 =

Σ1/2(σ)R(α) where Σ1/2 is lower triangular and the rotation matrix R(α) is parameterized

using a trigonometric transform. In the bivariate case, Kα = 1 and we choose α0 = π/5

for the data-generating process. In the trivariate SVAR, Kα = 3 and we use α0 =

(3π/5, 2π/5,−π/5)′. Furthermore, we choose Σ such that the diagonal elements are equal

to one, σii = 1 for i = 1, . . . ,K, and we set the off-diagonal elements to σij = 0.2 for

i 6= j. The SVAR coefficient matrices, A1, . . . , Ap are generated as diagonal matrices with

diagonal elements drawn from a N (0, 1) distribution.7 Importantly, even though the data-

generating process assumes diagonal coefficient matrices, the test is carried out treating the

coefficient matrices as full K × K matrices. We use 250 burn-in periods to simulate the

SVAR(p) model and useM = 5, 000 Monte Carlo replications to compute the finite-sample

rejection rates of the test procedure.

Tables 3.1-3.2 report the empirical rejection frequencies of the semi-parametric score test

defined in Section 3.4 for testing the hypothesis H0 : α = α0 vs. H1 : α 6= α0. In order

to estimate the log density scores, we use the B-spline methodology based on four cubic

B-splines. Table 3.1 reports results when estimating the nuisance parameters β using OLS
7To ensure stationarity of the SVAR(p) model, the coefficient matrices are sampled until inspection of the roots
of the corresponding SVAR(1) companion matrix indicates that the SVAR passes the stationarity condition.
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while Table 3.2 reports results from using the one-step efficient estimates for β which update

the OLS estimates using one Gauss-Newton iteration. All tests are conducted assuming 5%

nominal size.

Table 3.1 shows the empirical rejection frequencies of the proposed testing procedure when

using OLS estimates for the nuisance parameters. Focus first on the case of a small sample

(T = 200) reported in the first panel of the table. For the SVAR(p) with K = 2 variables,

the size of the test is very close to the nominal size of 5%. Importantly, this holds regardless

of the distribution of the structural errors – even when the shocks are normally distributed

and hence α is not identified, the test is correctly sized. As the number of parameters

in the SVAR increases with the lag size p or the number of variables K, the rejection

rates increase and the test starts to over-reject in small samples. For an increase in the

number of lags, rejection rates only increase slightly, but when the number of variables

increases, the number of parameters grows quadratically and hence rejection rates show

a more substantial increase. For the trivariate SVAR with twelve lags, the test shows

pronounced over-rejections in small samples. However, importantly, as a comparison with

the panels reporting rejection rates for a medium sample size (T = 500) and large sample

size (T = 1, 000) shows, size distortions quickly disappear as the sample grows and the

rejection frequencies converge to the nominal size of the test. Thus, even in the case of an

SVAR with a larger lag length, the testing procedure gives correct inference, as long as the

sample is not too small.

Table 3.2 reports the empirical rejection frequencies for the same simulations when one-step

efficient estimates are used for the nuisance parameters. The one-step efficient estimates

of β are obtained by updating the OLS estimates of the nuisance parameters β towards

the efficient estimates by one Gauss-Newton iteration. The procedure is computationally

efficient as it does not require full numerical optimization routines to obtain estimates of

the nuisance parameters. Comparing the rejection rates in Table 3.2 with those reported in

the case of OLS estimates of the nuisance parameters in Table 3.1, shows that using the

one-step estimates yields substantial improvements in the size of the test in small samples,

especially when the number of lags is large. For example, for the case of an SVAR with

three variables and 12 lags, the size of the rejection rates are very close to the nominal

size of 5%. As the sample size grows, the difference between the two approaches becomes

less pronounced and the procedures yield comparable rejection rates. For medium and

large samples, either of the procedures can result in rejection rates closer to the nominal

size, depending on the number of lags, the number of variables and the distribution of the

structural errors that generated the data.
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Table 3.1: Empirical rejection frequencies using OLS estimates

K p N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

T = 200

2 1 0.049 0.055 0.048 0.045 0.043 0.041 0.046 0.045 0.039 0.042
2 2 0.055 0.051 0.049 0.049 0.044 0.037 0.048 0.047 0.045 0.050
2 4 0.057 0.059 0.056 0.052 0.046 0.029 0.052 0.056 0.050 0.047
2 8 0.086 0.069 0.066 0.060 0.060 0.039 0.065 0.074 0.062 0.062
2 12 0.086 0.081 0.074 0.075 0.071 0.041 0.082 0.092 0.073 0.084

3 1 0.072 0.066 0.071 0.085 0.057 0.048 0.047 0.052 0.060 0.045
3 2 0.074 0.084 0.079 0.082 0.061 0.042 0.049 0.055 0.059 0.047
3 4 0.100 0.102 0.091 0.109 0.080 0.039 0.069 0.080 0.081 0.064
3 8 0.166 0.151 0.145 0.135 0.122 0.060 0.135 0.151 0.132 0.124
3 12 0.228 0.225 0.216 0.188 0.178 0.092 0.232 0.249 0.179 0.218

T = 500

2 1 0.052 0.046 0.043 0.040 0.036 0.035 0.042 0.043 0.042 0.041
2 2 0.046 0.049 0.047 0.045 0.037 0.035 0.039 0.040 0.041 0.043
2 4 0.045 0.044 0.047 0.044 0.039 0.031 0.042 0.044 0.043 0.046
2 8 0.055 0.053 0.046 0.043 0.041 0.029 0.049 0.052 0.047 0.049
2 12 0.061 0.059 0.054 0.044 0.046 0.031 0.055 0.060 0.051 0.056

3 1 0.046 0.052 0.049 0.055 0.039 0.043 0.044 0.038 0.041 0.037
3 2 0.053 0.055 0.048 0.056 0.040 0.039 0.046 0.043 0.045 0.042
3 4 0.065 0.058 0.061 0.054 0.048 0.031 0.043 0.049 0.046 0.043
3 8 0.080 0.078 0.073 0.071 0.055 0.032 0.061 0.069 0.063 0.055
3 12 0.106 0.097 0.098 0.087 0.070 0.028 0.081 0.100 0.077 0.067

T = 1, 000

2 1 0.045 0.040 0.035 0.030 0.039 0.032 0.042 0.042 0.039 0.037
2 2 0.048 0.040 0.037 0.035 0.038 0.037 0.043 0.044 0.040 0.037
2 4 0.042 0.042 0.045 0.036 0.038 0.030 0.045 0.047 0.043 0.047
2 8 0.048 0.053 0.045 0.037 0.042 0.030 0.049 0.048 0.042 0.042
2 12 0.048 0.049 0.048 0.037 0.040 0.025 0.050 0.051 0.044 0.046

3 1 0.046 0.043 0.038 0.039 0.036 0.036 0.037 0.037 0.039 0.041
3 2 0.045 0.042 0.042 0.043 0.036 0.034 0.036 0.039 0.038 0.042
3 4 0.051 0.048 0.049 0.042 0.038 0.034 0.042 0.040 0.039 0.043
3 8 0.059 0.050 0.056 0.046 0.044 0.029 0.048 0.050 0.047 0.044
3 12 0.060 0.058 0.064 0.059 0.039 0.027 0.050 0.052 0.053 0.048

Notes: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis H0 : α =
α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameters β are estimated by
OLS. The columns correspond to different choices for the distributions of the structural shocks, εk,t for k = 1, . . . ,K. The
distributions are reported in Appendix D. Rejection rates are computed based on M = 5, 000 Monte Carlo replications.
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Table 3.2: Empirical rejection frequencies using one-step efficient estimates

K p N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

T = 200

2 1 0.071 0.074 0.066 0.059 0.064 0.051 0.052 0.053 0.048 0.051
2 2 0.068 0.067 0.058 0.052 0.060 0.055 0.050 0.050 0.051 0.056
2 4 0.066 0.062 0.058 0.058 0.061 0.053 0.047 0.049 0.053 0.048
2 8 0.057 0.057 0.055 0.050 0.062 0.044 0.045 0.048 0.052 0.047
2 12 0.058 0.054 0.059 0.066 0.083 0.050 0.052 0.051 0.055 0.049

3 1 0.095 0.096 0.099 0.089 0.081 0.062 0.059 0.063 0.078 0.059
3 2 0.093 0.097 0.100 0.092 0.080 0.079 0.057 0.067 0.069 0.055
3 4 0.091 0.099 0.102 0.117 0.091 0.072 0.057 0.069 0.078 0.048
3 8 0.057 0.055 0.063 0.073 0.057 0.055 0.031 0.032 0.051 0.028
3 12 0.043 0.042 0.043 0.059 0.049 0.042 0.038 0.040 0.042 0.039

T = 500

2 1 0.068 0.069 0.061 0.058 0.057 0.051 0.050 0.055 0.052 0.051
2 2 0.065 0.063 0.065 0.055 0.059 0.047 0.047 0.047 0.052 0.049
2 4 0.060 0.061 0.058 0.051 0.054 0.049 0.045 0.046 0.052 0.050
2 8 0.062 0.060 0.054 0.050 0.057 0.047 0.047 0.046 0.049 0.049
2 12 0.065 0.062 0.056 0.052 0.061 0.044 0.050 0.055 0.052 0.052

3 1 0.085 0.081 0.082 0.071 0.069 0.067 0.057 0.055 0.061 0.053
3 2 0.092 0.085 0.074 0.072 0.065 0.066 0.053 0.057 0.062 0.060
3 4 0.093 0.087 0.084 0.074 0.072 0.060 0.058 0.066 0.065 0.054
3 8 0.093 0.095 0.094 0.085 0.069 0.062 0.053 0.059 0.072 0.052
3 12 0.100 0.094 0.086 0.092 0.087 0.060 0.051 0.057 0.077 0.044

T = 1, 000

2 1 0.064 0.056 0.057 0.050 0.063 0.048 0.050 0.052 0.051 0.044
2 2 0.068 0.058 0.053 0.052 0.059 0.052 0.051 0.055 0.052 0.047
2 4 0.063 0.058 0.062 0.053 0.057 0.044 0.051 0.052 0.055 0.055
2 8 0.062 0.068 0.061 0.049 0.059 0.048 0.051 0.052 0.049 0.048
2 12 0.060 0.063 0.061 0.051 0.057 0.041 0.049 0.049 0.055 0.054

3 1 0.078 0.076 0.067 0.058 0.064 0.053 0.051 0.058 0.055 0.055
3 2 0.078 0.076 0.068 0.064 0.065 0.051 0.055 0.058 0.057 0.057
3 4 0.089 0.079 0.077 0.063 0.060 0.053 0.049 0.053 0.055 0.057
3 8 0.086 0.076 0.078 0.068 0.070 0.061 0.058 0.064 0.062 0.053
3 12 0.091 0.084 0.088 0.074 0.067 0.063 0.060 0.061 0.069 0.051

Notes: The table reports empirical rejection frequencies for the semi-parametric score test of the hypothesis H0 : α =
α0 vs. H1 : α 6= α0 in the K-variable SVAR(p) model with nominal size 5%. The nuisance parameters β are estimated by
the one-step efficient procedure. The columns correspond to different choices for the distributions of the structural shocks,
εk,t for k = 1, . . . ,K. The distributions are reported in Appendix D. Rejection rates are computed based on M = 5, 000
Monte Carlo replications.
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3.5.2 Comparison to alternative approaches

Next, we compare the size of the proposed testing procedure to a variety of different

approaches based on (pseudo-) maximum likelihood and the generalized method of

moments. In particular, we consider standard maximum likelihood Lagrange-Multiplier

(LM ) and Likelihood Ratio (LR) tests based on a standardized student-t density for εk8.

Note that when the structural errors that generated the data are distributed according

to a t-distribution, these tests correspond to exact maximum likelihood tests. For all

remaining distributions, the standard maximum likelihood tests are misspecified. In addition

to the parametric MLE tests, we consider the pseudo-maximum-likelihood procedure of

Gouriéroux et al. (2017) and the GMM-based approach of Lanne and Luoto (2020). These

procedures have been employed in various empirical studies to test hypotheses in non-

Gaussian SVAR models. Our aim in this section is to study how such methods perform in the

case of “strong” and “weak” non-Gaussian distributions and to compare their finite-sample

size to that of our proposed method. It is important to note that, unlike our approach, none

of the alternative methods listed above are designed to be robust against cases where the

true densities are “close” to Gaussian. In fact, previous simulation studies have documented

size distortions in those cases (see e.g. Gouriéroux et al., 2017; Lanne and Luoto, 2020).

To evaluate the finite-sample performance, we focus on an SVAR(1) model with K = 2

variables and a sample size of T = 500. We use the same parameterization and parameter

values as described in the previous subsection to generate the data. However, different to

the previous simulation study evaluating the size of the score test, we report results both

for the case where the structural errors ε1,t, ε2,t are identically distributed, but also for the

case where the first error is fixed to have a Gaussian distribution while the distribution of

the second structural error varies. Note that in the latter case, theoretically non-Gaussianity

can still be used to identify the parameters of the SVAR if the second structural error does

not follow a Gaussian distribution. However, we suspect identification to be weaker in this

case.

We implement the tests as follows. For the semi-parametric score test, we use one-step

estimates of the nuisance parameters, as in Table 3.2. The density scores are approximated

using the same procedure described in the previous subsection. For the alternative methods,

we do not estimate the nuisance parameters, but rather use the true nuisance parameter

values that were used to generate the data. We do so to have a strong benchmark against

which we evaluate the performance of our method and to ensure that any differences

in the finite-sample performance of the tests does not originate in the procedure that is

used to estimate the nuisance parameters. Importantly, note that since the true nuisance

parameters are always unknown in practice and hence need to be estimated, this constitutes

an “oracle” benchmark which is expected to perform better than when nuisance parameters
8Note that the standardized student-t density requires the degrees of freedom parameter, ν, to be larger than 4
as otherwise the density has infinite kurtosis.
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are estimated.9

Since the nuisance parameters are fixed at their true values, implementation of the

maximum-likelihood LM test amounts to estimating the restricted model where α is

fixed under the null hypothesis and only requires estimating the degrees of freedom of

the standardized student-t distributions, ν1, ν2. To compute the LR test, we also need to

estimate the unrestricted model in which α is an additional parameter to be estimated. For

the numerical optimization, we use a Quasi-Newton algorithm with initial values of ṽ = 8

and α̃ = π/4.

To implement the procedure of Gouriéroux et al. (2017), we first obtain standardized

residuals of the reduced form VAR errors using the true values for the nuisance parameters.

We then compute the pseudo maximum likelihood LR test using a standardized student-t

distribution with 5 degrees of freedom. For the unrestricted model, we estimate α using a

Quasi-Newton optimization algorithm with initial value of α̃ = π/4.

Finally, to implement the GMM approach of Lanne and Luoto (2020), we use the two-step

GMM estimator based on the following moment conditions: (i) E[εt ⊗ xt−1] = 0 where

xt−1 ≡ (1, Y ′t−1)′, (ii) E[ε2k,t] = 1 for k = 1, 2, (iii) E[ε1,tε2,t] = 0 and (iv) the asymmetric

co-kurtosis condition E[ε31,tε2,t] = 0. The same set of moment conditions was used in

Lanne and Luoto (2019). In our SVAR(1) model, this yields ten moment conditions which

just-identify the ten parameters of the SVAR model.10

Table 3.3 reports the results of the simulation study and compares the size of the alternative

testing procedures to the size of the score test (Ŝ). The first panel reports the case where the

two structural errors, ε1,t, ε2,t are drawn from the same (non-Gaussian) distribution while

the second panel reports the results where ε1,t is fixed to have a Gaussian distribution. First,

note that the rejection rates for the score test (Ŝ) in the case of identically distributed shocks

are the same rejection rates reported in Table 3.2 and are close to the nominal size of 5%,

regardless of the distribution of the structural shocks. Inspecting the second panel of the

table, we note that the performance of the score test does not deteriorate when the first

structural error is Gaussian; the rejection rates continue to be close to the nominal size of

5% regardless of the distribution of the second error.

Second, we inspect the performance of the parametric maximum-likelihood tests (LM

and LR). We find that the tests perform well, as long as the densities are not “heavily”

misspecified. In particular, for the student-t densities and the unimodal densities, either

the LR or the LM test have a size close to the nominal level. This makes sense as the

parameter α is fixed under the null and thus no identification problem arises. However,

when the density is strongly misspecified (e.g. bimodal, separated bimodal or trimodal), the
9In a simulation not reported in this paper, we verify that this is indeed the case and that performance of the
alternative procedures deteriorates when estimating nuisance parameters e.g. by OLS.

10We also ran simulations using an additional over-identifying symmetric co-kurtosis condition; however this
gave worse finite-sample performance than the just-identified case.
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Table 3.3: Empirical rejection frequencies for alternative tests

Test N(0,1) t(15) t(10) t(5) SKU KU BM SPB SKB TRI

ε1,t, ε2,t identically distributed

Ŝ 0.068 0.069 0.061 0.058 0.057 0.051 0.050 0.055 0.052 0.051
LM 0.166 0.117 0.100 0.088 0.078 0.083 0.239 0.261 0.115 0.209
LR 0.054 0.082 0.069 0.053 0.064 0.001 0.000 0.000 0.083 0.000
LRGM 0.590 0.282 0.166 0.057 0.147 0.007 1.000 1.000 0.388 1.000
LRLL 0.115 0.123 0.126 0.174 0.126 0.101 0.056 0.062 0.123 0.062

ε1,t Gaussian

Ŝ 0.068 0.067 0.068 0.059 0.063 0.048 0.049 0.052 0.054 0.052
LM 0.166 0.132 0.117 0.103 0.103 0.083 0.254 0.233 0.143 0.276
LR 0.054 0.078 0.075 0.042 0.073 0.003 0.018 0.018 0.077 0.012
LRGM 0.590 0.408 0.325 0.142 0.291 0.061 0.999 0.990 0.497 0.999
LRLL 0.115 0.110 0.100 0.092 0.101 0.092 0.081 0.088 0.119 0.071

Notes: The table reports empirical rejection frequencies for tests of the hypothesis H0 : α = α0 vs. H1 : α 6= α0 with 5%
nominal size for the SVAR(1) model with K = 2 and T = 500. Ŝ denotes the semi-parametric score test using one-step
efficient estimates for β, LM denotes the parametric score test based on a standardized student-t density, LR denotes the
associated parametric likelihood-ratio test, LRGM denotes the pseudo maximum-likelihood-ratio test of Gouriéroux et al.
(2017) and LRLL denotes the GMM-based test of Lanne and Luoto (2020). The columns correspond to different choices
for the distributions of the structural shocks, εk,t for k = 1, . . . ,K. The distributions are reported in Appendix D. Rejection
rates are computed based on M = 5, 000 Monte Carlo replications.

LM test substantially over-rejects and the LR test is strongly conservative. Further, when

we move to the case where the first shock is Gaussian, most rejection rates of the LM and

LR tests increase further.

Next, we inspect the performance of the pseudo maximum likelihood approach of

Gouriéroux et al. (2017) (LRGM ). We find that the test shows substantial over-rejections,

unless the distribution is close to the pseudo distribution. In fact, only in the case of the t(5)

distribution, where the approach is an exact maximum likelihood test, does the test yield a

rejection rate close to the nominal level. Interestingly, for the kurtotic unimodal distribution

(KU), the test is strongly conservative. Further, when we move to the case where the first

component is fixed at a Gaussian distribution, the performance of the test significantly

deteriorates for most of the densities. Finally, we evaluate the GMM-based approach of

Lanne and Luoto (2020). Compared to the pseudo-maximum likelihood procedure, the

GMM approach performs much better and yields rejection rates closer to the nominal level.

Compared to the maximum likelihood tests, the procedure yields more accurate inference

for the bimodal or trimodal densities, but leads to over-rejections for the other distributions.

To summarize, most of the alternative procedures lead to incorrect inference if the

distribution of the structural shocks is not “sufficiently” non-Gaussian. Furthermore, the

identity of the best-performing alternative procedure crucially depends on which non-

Gaussian distribution generated the data. In contrast, the semi-parametric score test

proposed in this paper gives correct inference regardless of the distribution of the structural
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errors and whether one or both errors are non-Gaussian.

3.5.3 Power

Finally, we study the power of the proposed procedure and compare it to the power of the

parametric maximum likelihood LM test described in the previous subsection. The LM

test is the natural counterpart for the first four densities considered in the simulations and,

together with the LR test, is the only procedure that controlled size comparably in some of

the size simulations reported in the previous subsection.

To evaluate the finite-sample power of the tests, we focus on an SVAR(1) model withK = 2

variables and a sample size of T = 500. We use the same parameterization and parameter

values as used in the other simulations to generate the data. As in the size simulations for the

score test, we report results for the case where the structural errors ε1,t, ε2,t are identically

distributed. We compare three tests of the hypothesis H0 : α = α0 vs. H1 : α 6= α0 with

5% nominal size: (i) the semi-parametric score test using OLS estimates for the nuisance

parameters, (ii) the semi-parametric score test using one-step efficient estimates for the

nuisance parameters and (iii) the parametric maximum-likelihood LM test. All tests are

implemented as described in the previous simulation studies.

Figure 3.2 reports the raw (i.e not size-adjusted) power for the semi-parametric score test

using one-step nuisance parameter estimates (black solid line), the semi-parametric score

test using OLS nuisance parameter estimates (dot dashed blue line) and the parametric

maximum-likelihood LM test (green dashed line). Each panel of the figure corresponds to a

different choice for the distributions of the structural shocks. We use the same distributions

as in the simulation studies described earlier. The x-axis of each plot corresponds to

different alternatives for α around α0 = π/5 that were used to generate the data. Each

point on the curve is based on M = 2, 500 simulations. We first inspect the power of the

semi-parametric score tests. Comparing the power curves for the different distributions of

the structural shocks, we find that power of the test substantially increases with the distance

to the Gaussian distribution. In particular, for the kurtotic unimodal density, the bimodal

density or the trimodal density, the rejection rates quickly increase with α departing from

its value under the null hypothesis. For the densities which are very similar to a Gaussian

distribution (t(15) and t(10)), power is much smaller, but still non-negligible. Comparing

the two variants of the semi-parametric score test, we note that using the one-step efficient

estimates yields generally larger power than using the OLS nuisance parameter estimates.

Finally, comparing the power of the semi-parametric test to the parametric LM test, we note

that for the distributions where the tests are similarly sized, the power of the parametric test

is larger when the density is correctly specified (t(15), t(10) and t(5)). For all other density

choices, the semi-parametric test convincingly outperforms its parametric counterpart or the

parametric test shows substantial size distortions so that a comparison is infeasible. Finally,

it is important to note that even under non-Gaussianity, α is only identified up to scale and
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Figure 3.2: Power in the SVAR(1) model
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Notes: The figure reports unadjusted empirical power curves for tests of the hypothesis H0 : α = α0 vs. H1 : α 6= α0

with 5% nominal size for the SVAR(1) model with K = 2 and T = 500. The x-axis corresponds to different alternatives
for α around α0 = π/5. The solid black line reports the empirical rejection frequencies for the semi-parametric score test
using one-step nuisance parameter estimates, the blue dot dashed line corresponds to the semi-parametric score test using
OLS nuisance parameter estimates and the green dashed line denotes the parametric LM test based on standardized student-t
densities. Rejection frequencies are computed using M = 2, 500 Monte Carlo replications.

permutation of the columns. Hence for α ∈ [0, 2π], there are multiple optimal points. This

is the reason why the figures show a decrease in power for alternatives that are far away from

α0, but close to the next value of α under which the null hypothesis holds. In summary, we

conclude that the semi-parametric score test has adequate power even when compared to

correctly specified parametric tests.
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3.6 Application

In this section, we revisit identification of labor supply and labor demand elasticities in a

frequentist version of the model of the U.S. labor market from Baumeister and Hamilton

(2015). We employ our semi-parametric approach for SVAR inference to construct

identified regions for the labor supply and labor demand elasticities. We also construct

identification-robust confidence bands for the impulse responses based on our inference

approach.

Baumeister and Hamilton (2015) study a simple bivariate SVAR model of the U.S. labor

market using a Bayesian approach that includes carefully motivated priors on the short-

run labor supply and demand elasticities based on estimates in the micro-econometric and

macroeconomic literature. In addition, they impose a long-run restriction on the effect of

labor demand shocks on employment. Their posterior densities provide evidence in favor

of a negative demand elasticity and favor estimates of the short-run supply elasticity that

fall into the lower range of the micro-econometric literature (below 0.5) rather than values

around or above 1 that are often used in macroeconomic studies. Recently, Lanne and

Luoto (2019) revisited this specification and criticized the use of the long-run restriction.

Instead, they proposed to exploit non-Gaussianity of the data to identify the labor supply

and demand elasticities by means of the GMM approach of Lanne and Luoto (2020) which

relies on moment conditions that are informative under non-Gaussian structural errors.

Using non-Gaussianity identification, they find a significant and persistent effect of the

labor demand shock on employment and reject the long-run restriction of Baumeister and

Hamilton (2015).

Similar to Lanne and Luoto (2019), in this section, we revisit the bivariate SVAR relaxing

the prior specifications in Baumeister and Hamilton (2015) through the use of non-

Gaussianity identification. However, we use the semi-parametric approach proposed in

this paper which is robust to weak non-Gaussianity. This is particularly important, since

both our and Lanne and Luoto (2020)’s simulation studies show that the adopted GMM

approach can lead to invalid inference when the structural shocks only have weak non-

Gaussian distributions.

The specification of Baumeister and Hamilton (2015) is a bi-variate SVAR(p) model of the

U.S. labor market for Yt = (∆wt,∆ηt)
′, where ∆wt is the growth rate of real compensation

per hour and ∆ηt is the growth rate of total U.S. employment:

B0Yt = µ+ Φ1Yt−1 + · · ·+ ΦpYt−p +D1/2εt, B0 ≡

[
−βd 1

−βs 1

]
, D ≡

[
σ2

1 0

0 σ2
2

]

In the model, βd is the short-run wage elasticity of demand, and βS is the short-run wage

elasticity of supply. The number of lags used in the SVAR is p = 8 and sign restrictions

imposed on the supply and demand elasticities require that βs > 0 and βd < 0.
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Rewriting their model using our notation, we get

Yt = c+B1Yt−1 + · · ·+BpYt−p +A−1(α, σ) εt, A−1 ≡

[
σ1

βs−βd
σ2

βs−βd
σ1βs

βs−βd
σ2βd

βs−βd

]
,

where the structural shocks, ε1,t, ε2,t are independent and have unit variance. Note that the

impact multiplier matrix, A−1 depends on four parameters: The standard deviations of the

structural shocks, σ = (σ1, σ2)′ with σk > 0, that can be identified from second moments

of {Yt}, and the elasticity parameters α = (βs, βd)′ that are only identified if the demand

and supply shocks are (sufficiently) non-Gaussian.

3.6.1 Confidence regions for labor demand and supply elasticities

We start our analysis by constructing confidence regions for the implied elasticity

parameters of the model. Our approach relies on Theorem 3.4.1 as it effectively computes

the bands for each vector α0 that is (i) not rejected by the score test and (ii) satisfies the

sign restrictions that pin down the permutation and sign of A. Specifically, we construct a

grid of parameter values that satisfy the sign restrictions βd < 0 and βs > 0 and record the

region of parameter values (βd, βs) that satisfies ŜSRθ > cn where cn is the critical value

for the χ2
rn distribution associated with the desired significance level. To construct the grid,

we use 1,000,000 equally spaced combinations of (βs, βd) in the interval (0, 2]× [−2, 0).

Figure 3.3 reports the joint confidence regions for the labor demand (βd) and labor

supply (βs) parameters of the model for a 95% significance level (light gray) and a 67%

significance level (dark gray). The red circle indicates the values associated with the

minimum score statistic while the blue diamond marks the estimates of labor demand and

supply elasticities reported in Lanne and Luoto (2019). As the figure shows, the short-

run supply elasticity is reasonably well identified from non-Gaussianity: The hypothesis

βs = 0 can be rejected at the 95% level and the 67% confidence region contains elasticities

βS ∈ (.1, .8), depending on the value of βd. Furthermore, for sufficiently negative demand

elasticities, the supply elasticity is precisely identified and falls into the range supported

by the posterior densities in Baumeister and Hamilton (2015). In contrast, the demand

elasticity is poorly identified by non-Gaussianity: The confidence region is wide in the

direction of βd and spans almost all values in the inspected grid.

Our results differ significantly from Lanne and Luoto (2019). While the labor demand

elasticity implied by the minimum score statistic is reasonably close to their estimate, the

corresponding labor supply elasticity is much smaller. In addition, they report substantially

narrower confidence intervals for the elasticity parameters. In fact, our identification-robust

confidence regions are consistent with the posterior distributions reported in Baumeister

and Hamilton (2015) which place most posterior weight on a supply parameter between

zero and 0.5, while supporting a large range of negative demand elasticities.

132



Figure 3.3: Confidence regions for labor demand and supply elasticities
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Notes: Confidence regions for labor demand and supply elasticities (95% in light gray, 67% in dark gray) obtained using
1,000,000 equally-spaced grid points for (βs, βd) ∈ (0, 2]× [−2, 0). The red circle denotes the elasticities associated with
the min. score statistic, the blue diamond denotes the estimates of Lanne and Luoto (2019).

3.6.2 Impulse responses for labor demand and supply shocks

After having established that non-Gaussianity is not sufficient to precisely identify both

labor supply and demand elasticities, we turn to evaluating the consequences for identifying

the impulse responses associated with labor demand and supply shocks.

The semi-parametric inference approach proposed in this paper can be used to construct

identification-robust confidence bands for the structural impulse responses of the SVAR.

Similar to our approach to constructing confidence regions discussed in the previous

subsection, we rely on Theorem 3.4.1 to compute the bands for each vector α0 that is (i) not

rejected by the score test for a given significance level and (ii) satisfies the sign restrictions

that pin down the permutation and sign ofA. For each vector α0 satisfying these conditions,

we then compute and store the upper and lower pointwise asymptotic confidence intervals

of the impulse responses based on the one-step efficient estimate for the nuisance parameter

of the test, β. The final confidence bands are then simply taken as the widest intervals within

the set of admissible bands for any level of confidence. Appendix C provides details on the

algorithm that is used to compute confidence bands for the impulse responses and reports

the necessary formulae to implement the method. We use the approach to construct robust

confidence intervals for the impulse responses for labor supply and labor demand shocks.

As in the previous subsection, we construct a grid of 1,000,000 equally spaced grid points
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Figure 3.4: IRF confidence bands for labor demand and supply shocks
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Notes: Impulse responses for labor supply and labor demand shocks with 67% identification-robust confidence bands based
on 1,000,000 grid points for (βs, βd, ) ∈ (0, 2]× [−2, 0).

(βs, βd) in the interval (0, 2]× [−2, 0).

Figure 3.4 shows the 67% confidence intervals (gray shaded area) for the impulse responses

together with the impulse response associated with the minimum score statistic (red solid

line). Comparing the impulse response implied by the minimum score statistic to the IRF

estimated by Lanne and Luoto (2019), we note that the impulse responses are overall very

similar and show long and persistent responses to the supply and demand shocks; only

the response of employment to a demand shock has a more pronounced hump shape in

Lanne and Luoto (2019) than what is implied by the minimum score IRF estimate. Further,

focusing on the impact effect, at a 67% level, a demand shock has significant and positive

effects on both real wages and employment, while a supply shock has a significant negative

effect on the wage and a significantly positive effect on employment. These results are in

accordance with the posterior distributions reported by Baumeister and Hamilton (2015)

and are similar to the ones reported by Lanne and Luoto (2019). However, inspecting the

dynamic responses to the labor supply and demand shocks, there are substantial differences

to the results of Lanne and Luoto (2019). Specifically, they find a strong and significant

dynamic response of both the real wage and employment to the labor demand shock,

inconsistent with Baumeister and Hamilton (2015)’s prior on the restriction that the long-

run labor demand elasticity is zero. In contrast to their findings, our confidence intervals,

using an approach robust to weak non-Gaussianity, show that the data cannot rule out that

the long-run response of either variable to the demand shock is zero and hence imply that
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the long-run restriction cannot be rejected solely on the basis of non-Gaussianity.

3.7 Conclusion

This paper develops robust inference methods for structural vector autoregressive (SVAR)

models that are identified using non-Gaussian error distributions. We treat the SVAR

model as a semi-parametric model where the densities of the structural errors form the

non-parametric part and use hypothesis testing to conduct inference on the possibly weakly

identified or non identified parameters of the SVAR, using a semi-parametric equivalent of

the Neyman-Rao score statistic. We assess the finite-sample performance of our method

in a large simulation study and find that the empirical rejection frequencies of the semi-

parametric score test are always close to the nominal size, regardless of the true distribution

of the errors. For the power of the score test, we find that it comes close to the power

of a correctly specified maximum likelihood test using the true (unknown) distributions of

the structural errors. Finally, we employ the proposed approach in an empirical study that

revisits the identification of supply and demand elasticities in the U.S. labor market as in

Baumeister and Hamilton (2015), but using a frequentist procedure. We show how our

approach can be used to construct confidence regions for the labor supply and demand

elasticities as well as identification-robust confidence bands for the impulse responses.

Our confidence regions for the demand and supply elasticities are consistent with the

posterior distributions reported in Baumeister and Hamilton (2015). Further, we find that

a non-Gaussianity identification strategy is insufficient to precisely identify the economy’s

response to labor supply and labor demand shocks.
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Appendices

A Proofs

The proof of Theorem 3.4.1 is structured as follows. We first state an intermediate lemma

with convergence results based on which the theorem can be proven. The proof for the

lemma is included below.

LEMMA A.1: Let γ0 = (α0, β) and θ0 = (α0, β, η) for any (β, η) ∈ B × H. Additionally,

let γn = {(α0, βn)}n∈N be a deterministic sequence such that
√
n(γn − γ0) = O(1) and

define θn = (γn, η) for each n ∈ N. Then, under the conditions of Theorem 3.4.1, we have

that

1. 1√
n

∑n
t=1

˜̀
θ0(Yt, Xt) Z ∼ N (0, Ĩθ0) under Pθ0

2. We have that

1

n

n∑
t=1

(
ˆ̀
θn(Yt, Xt)− ˜̀

θn(Yt, Xt)
)

= oPθn (n−1/2)

3. Pθn
(
‖Îθn − Ĩθ0‖2 < νn

)
→ 1 where νn is defined in Assumption 3.3.2 .

4. We have that ∫ ∥∥∥˜̀
θndP

1/2
θn
− ˜̀

θ0dP
1/2
θ0

∥∥∥2
dµ→ 0.

Note: The following proof of Theorem 3.4.1 uses the parameterization A−1 = Σ1/2R(α)

(see Example 3.3.1) and assumes that Lemma 7.3 of van der Vaart (2002) holds, given

Lemma A.1 part 4.

Proof of Theorem 3.4.1. We break the proof into steps. First, we show that under Lemma

A.1 we have
1√
n

n∑
t=1

κ̃θn(Yt, Xt) Z ∼ N (0, Ĩθ0) (17)

under P0 ≡ Pθ0 , where θn is defined in Lemma A.1, and

√
nPn

[
ˆ̀
θn − ˜̀

θn

]
P0−→ 0 and P0

(∥∥∥Îθn − Ĩθ0∥∥∥ < νn

)
→ 1. (18)

Define hn :=
√
n(β̄n − β) and let (nm)m≥1 be an arbitrary subsequence of (n)n≥1. It

is sufficient for equations (17) and (18) that we can demonstrate that there is a further

subsequence (nm(k))k≥1 along which the claimed convergence holds. There exists a sub-
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subsequence such that hnm(k)
→ h for some h ∈ RKβ .11 Taking such a subsequence will

suffice since as we will now demonstrate, the claimed convergence holds for an arbitrary

convergent sequence hn → h.

Let Qnn denote the law of Y n corresponding to θn and Pn0 that corresponding to θ0. Let

Λn,θn/θ0(Y n) be the corresponding log-likelihood ratio. Given Assumption 3.3.1 we have

that Theorem A.1 implies that

Λn,θn/θ0(Y n) =
√
nPnh′n ˙̀

θn,β −
1

2
h′nİθ0,ββhn +Rn,

where Rn → 0 in probability under Pn0 , İθ0,ββ = Var( ˙̀
θ0), and

Λn,θn/θ0(Y n) N
(
−1

2
h′İθ0,ββh, h

′İθ0,ββh

)
,

under Pn0 , from which we can conclude that Pn0 / . Qnn (e.g. van der Vaart and Wellner,

1996, example 3.10.6). This mutual contiguity and Le Cam’s first lemma (e.g. van der

Vaart, 1998, Lemma 6.4) ensure that (18) holds. Next, by Lemma 7.3 in van der Vaart

(2002) we have that
√
nPn

[
˜̀
θn − ˜̀

θ0

]
+ Ĩθ0(0, b′)′

P0−→ 0, (19)

It follows that

1√
n

n∑
t=1

κ̃θn(Yt, Xt)− κ̃θ0(Yt, Xt) = [I − Ĩθ0,αβ Ĩ−1θ0,ββ ]
1√
n

n∑
t=1

(˜̀
θn(Yt, Xt)− ˜̀

θ0(Yt, Xt))

= −[I − Ĩθ0,αβ Ĩ−1θ0,ββ ]

[
Ĩθ0,αα Ĩθ0,αβ

Ĩθ0,βα Ĩθ0,ββ

][
0

h

]
+ oP0(1)

as well as

1√
n

n∑
t=1

κ̃θn(Yt, Xt) =
1√
n

n∑
t=1

κ̃θ0(Yt, Xt) +
1√
n

n∑
t=1

[κ̃θn(Yt, Xt)− κ̃θ0(Yt, Xt)]

=
1√
n

n∑
t=1

κ̃θ0(Yt, Xt) + oP0(1) N (0, Iθ0),

under P0 by Lemma A.1-part 1, establishing (17).

Next we show that (17) and (18) continue to hold if θn is replaced by θ̄n as defined in the

theorem. We will start with the first expression in (18).12 Since β̄n remains
√
n-consistent

there is anM > 0 such that P0

(√
n‖β̄n − β0‖ > M

)
< ε. If

√
n‖β̄n−β0‖ ≤M then βn is

equal to one of the values in the finite set Scn = {β ∈ n−1/2C ZL2 : ‖β−β0‖ ≤ n−1/2M}.
11Such a subsequence and h exist by the Bolzano-Weierstrass theorem.
12The proof that (18) continues to hold is adapted from the proof of Theorem 5.48 in van der Vaart (1998).
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For each M this set has finite number of elements bounded independently of n, call this

upper bound B. Let

Rn(β) :=
√
nPn

[
ˆ̀
θ − ˜̀

θ

]
where θ = (α0, β, η). We have that for any υ > 0

P0

(
‖Rn(β̄n)‖ > υ

)
≤ ε+

∑
βn∈Scn

P0

(
‖Rn(βn)‖ > υ ∧ β̄n = βn

)
≤ ε+

∑
βn∈Scn

P0 (‖Rn(βn)‖ > υ)

≤ ε+BP0(‖Rn(β∗n)‖ > υ),

where β∗n is chosen from Sn to maximize P0 (‖Rn(βn)‖ > υ). Since the sequence (β∗n)n≥1

is a deterministic
√
n-consistent sequence for βn we have that P0(‖Rn(β∗n)‖ > υ)→ 0 by

equation (18).

The second term in (18) follows from the same set-up. But we now let

Rn(β) :=
{∥∥∥Îθ − Ĩθ0∥∥∥ < νn

}
, with θ = (α0, β, η0).

We have

P0

(
Rn(β̄n)

)
≤ ε+

∑
βn∈Scn

P0

(
Rn(βn) ∧ β̄n = βn

)
≤ ε+

∑
βn∈Scn

P0 (Rn(βn))

≤ ε+BP0(Rn(β∗n)),

where β∗n is chosen from Scn to maximize P0(Rn(βn)). Since the sequence (β∗n)n≥1 is a

deterministic
√
n-consistent sequence for βn we have that P0(Rn(β∗n)) → 0 by equation

(18).

Also, for (17) we can argue somewhat similarly. For any β let Zn(β) :=
√
nPnκθn where

θn := (α0, β, η) and let Z ∼ N (0, Iθ0). Let f be an arbitrary bounded continuous function:

|f | ≤ F , say, and fix ε > 0. Since
√
n‖β̄n − β‖ = OP0(1) there is a M > 0 such that

√
n‖β̄n − β‖ ≤ M with probability at least 1 − ε/(4F ) for all sufficiently large n ∈ N.

Note that by the construction of Scn (a) P0(β̄n /∈ Scn) ≤ ε/(4F ) for all sufficiently large

n ∈ N and (b) as previously mentioned Scn is finite and the number of elements it contains,

B, is bounded independently of n.

For each n, we can partition the sample spaceWn as follows:

Wn =
{
β̄n /∈ Scn

}
∪
⋃

βn∈Scn

{
β̄n = βn

}
.
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Therefore, we can write

|P0f(Zn(β̄n))− P0f(Z)| ≤ P0

∣∣f (Zn(β̄n)
)
− f(Z)

∣∣1{β̄n /∈ Scn}
+
∑
βn∈Sn

P0

∣∣f (Zn(β̄n)
)
− f(Z)

∣∣1{β̄n = βn
}

≤ ε/2 +
∑
βn∈Scn

P0 |f (Zn(βn))− f(Z)|1
{
β̄n = βn

}
≤ ε/2 +

∑
βn∈Scn

P0 |f (Zn(βn))− f(Z)|

≤ ε/2 +BP0 |f (Zn(β∗n))− f(Z)| ,

where each β∗n ∈ Scn is chosen to maximize P0 |f (Zn(β))− f(Z)|. The corresponding

sequence (β∗n)n∈N is
√
n-consistent by construction and deterministic. Therefore, for the

sequence (θ∗n)n∈N with θ∗n = (α0, β
∗
n, η), by (17) we have Z∗n := Zn(β∗n)  Z under P0.

By Skorohod’s representation theorem there is a probability space (Ω̃, F̃ , P̃) on which we

can define random vectors (X∗n)n≥1 and X such that the law of each X∗n is the law of Z∗n
and the law of X is the law of Z and X∗n(ω) → X(ω) for each ω ∈ Ω̃.13 Then, since f is

bounded, the sequence (f(X∗n))n≥1 is uniformly integrable and so by e.g. the Corollary to

Theorem 16.14 of Billingsley (1995, pp. 217 – 218) we have that

P0 |f(Z∗n)− f(Z)| = P̃ |f(X∗n)− f(X)| → 0 as n→∞.

By combining the last two displays we have that for sufficiently large n ∈ N,

|P0f(Zn(β̄n))− P0f(Z)| ≤ ε.

We conclude that P0f(Zn(β̄n)) → P0f(Z). Since f was an arbitrary bounded continuous

function, we have that Zn(β̄n) Z under P0 as required.

Next, let Zn := 1√
n

∑n
i=1 κ̂θn(Yi) and re-write it as

Zn =
1√
n

n∑
i=1

κ̃θ̄n(Yi) +
1√
n

n∑
i=1

(κ̂θn(Yi)− κ̃θ̄n(Yi)),

to conclude that Zn  Z ∼ N(0, Ĩθ0). We have∥∥∥Îθ0 − Ĩθ0∥∥∥
2
≤
∥∥∥Îθ̄n,αα − Ĩθ0,αα∥∥∥2

+
∥∥∥Îθ̄n,αβ Î−1

θ̄n,ββ
Îθ̄n,βα − Ĩθ0,αβ Ĩ

−1
θ0,ββ

Ĩθ0,βα

∥∥∥
2
.

By repeated addition and subtraction along with the observations that any submatrix has a

smaller operator norm than the original matrix we obtain and the matrix inverse is Lipschitz
13See e.g. Billingsley, 1999, Theorem 6.7.
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continuous at a non-singular matrix we obtain∥∥∥Îθ0 − Ĩθ0∥∥∥
2
.
∥∥∥Îθ̄n − Ĩθ0∥∥∥2

.

Hence by equation (18) with θ̄n replacing θn we have P0

(∥∥∥Îθ0 − Ĩθ0∥∥∥
2
< ν̌n

)
→ 1 where

ν̌n = Cνn for some positive constant C ≥ 1.

Now to complete the proof we first consider the case where rank(Ĩθ0) = r > 0. We first

show that Îtθ0
P0→ Ĩθ0 and the rank estimate rn = rank(Îtθ0) satisfies P0({rn = r})→ 1.

Let λl denote the lth largest eigenvalue of Ĩθ0 , similarly define λ̂l,n for Îθ0 and λ̂tl,n
for Îtθ0 . Define the set Rn := {rn = r}, let ν := λr/2 > 0 and note that —

P (‖Îθ0 − Ĩθ0‖2 < ν̌n)→ 1 — implies that ‖Îθ0 − Ĩθ0‖2 = oP0(1).

By Weyl’s perturbation theorem14 we have maxl=1,...,L |λ̂l,n−λl| ≤ ‖Îθ0−Ĩθ0‖2 = oP0(1).

Hence, if we define En := {λ̂r,n ≥ ν̌n}, for n large enough such that ν̌n < ν, we have

P (En) = P
(
λ̂r,n ≥ ν̌n

)
≥ P

(
λ̂r,n ≥ ν

)
≥ P

(
|λ̂r,n − λr| < ν

)
→ 1.

If r = L we have that Rn ⊃ En and therefore P (Rn) → 1. Additionally, if λ̂L,n ≥ νn

then λ̂tl,n = λ̂l,n for each l ∈ [L] and hence Îtθ0 = Îθ0 . Thus, En ∩ {‖Îθ0 − Ĩθ0‖ ≤ υ} ⊂

{‖Îθ0 − Ĩθ0‖ ≤ υ}, from which it follows that Îtθ0
P0−→ Ĩθ0 .

Now suppose instead that r < L and define Fn := {λ̂r+1,n < νn}. It follows by Weyl’s

perturbation theorem and the fact that λl = 0 for l > r that as n→∞

P (Fn) = P (λ̂r+1,n < ν̌n) ≥ P (‖Îθ0 − Ĩθ0‖2 < ν̌n)→ 1.

Since Rn ⊃ En ∩ Fn, this implies that P (Rn)→ 1 as n→∞. Additionally, if λ̂r,n ≥ νn,

λ̂r+1,n < νn and ‖Îθ0 − Ĩθ0‖2 ≤ υ, we have that λ̂tk,n = λ̂k,n for k ≤ r and λ̂tl,n = 0 = λl

for l > r and so

‖Λ̂n(νn)−Λ‖2 = max
l=1,...,r

|λ̂tl,n−λl| = max
l=1,...,r

|λ̂l,n−λl| ≤ ‖Λ̂n−Λ‖2 ≤ ‖Îθ0−Ĩθ0‖2 ≤ υ,

and hence {‖Λ̂n(νn)−Λ‖2 ≤ υ}∩En ∩Fn ⊂ {‖Îθ0 − Ĩθ0‖2 ≤ υ}, from which it follows

that Λ̂n(νn)
P0−→ Λ.

To complete this part of the proof, suppose that (λ1, . . . , λr) consists of s distinct

eigenvalues with values λ1 > λ2 > · · · > λs and multiplicities m1, . . . ,ms (each at

least one), where the superscripts on the λs are indices, not exponents. λs+1 = 0 is an

eigenvalue with multiplicity ms+1 = L− r. Let lki for k = 1, . . . , s+ 1 and i = 1, . . . ,mk

14E.g. Corollary III.2.6 in Bhatia (1997).
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denote the column indices of the eigenvectors in U corresponding to each λk. For each λk,

the total eigenprojection is Πk :=
∑mk

i=1 ulki
u′
lki

.15 Total eigenprojections are continuous.16

Therefore, if we construct Π̂k,n in in an analogous fashion to Πk but replace columns of

U with columns of Ûn, we have Π̂k,n
P−→ Πk for each k ∈ [s + 1] since Îθ0,n

P−→ Ĩθ0 .

Spectrally decompose Ĩθ0 as Ĩθ0 =
∑s

k=1 λ
kΠk, where the sum runs to s rather than s+ 1

since λs+1 = 0. Then,

Îtθ0 =
s+1∑
k=1

mk∑
i=1

λ̂t
lki ,n

ûlki ,n
û′
lki ,n

=
s+1∑
k=1

mk∑
i=1

(λ̂t
lki ,n
− λk)ûlki ,nû

′
lki ,n

+
s∑

k=1

λkΠ̂k,n,

and so

‖Îtθ0 − Ĩθ0‖2 ≤
s+1∑
k=1

mk∑
i=1

|λ̂t
lki ,n
− λk|‖ûlki ,nû

′
lki ,n
‖2 +

s∑
k=1

|λk|‖Π̂k,n −Πk‖2
P0−→ 0,

by Π̂k,n
P−→ Πk, Λ̂n(νn)

P0−→ Λ and since we have ‖ulki ,nu
′
lki ,n
‖2 = 1 for any i, k, n.

Hence, we have that Îtθ0
P0→ Ĩθ0 and P0({rn = r}) → 1. This implies that Ît,†θ0

P0→ Ĩ†θ0
where Ĩ†θ0 is the Moore-Penrose inverse of Ĩθ0 .17

Now consider the score statistic ŜSR
θ̄n

, by Slutsky’s lemma and the continuous mapping

theorem we have that

ŜSR
θ̄n

= Z ′nÎ
t,†
θ0
Zn  Z ′Ĩ†θ0Z ∼ χ

2
r

where the distributional result X := Z ′Ĩ†θ0Z ∼ χ
2
r , follows from e.g. Theorem 9.2.2 in Rao

and Mitra (1971).

Finally, recall that Rn = {rn = r}. On these sets cn is the 1 − a quantile of the χ2
r

distribution, which we will call c. Hence, we have cn
P0−→ c as P0(Rn) → 1. As a result,

we obtain ŜSR
θ̄n
− cn  X − c where X ∼ χ2

r . Since the χ2
r distribution is continuous, we

have by the Portmanteau theorem

P0

(
ŜSR
θ̄n

> cn

)
= 1− P0

(
ŜSR
θ̄n
− cn ≤ 0

)
→ 1− P0 (X − c ≤ 0) = 1− P0 (X ≤ c)

= 1− (1− a) = a ,

which completes the proof in the case that r > 0.

It remains to handle the case with r = 0. We first note that Zn  Z ∼ N (0, Ĩθ0) continues

to hold by our assumptions, though in this case Ĩθ0 is the zero matrix and hence the limiting

distribution is degenerate: Z = 0. Let En = {rn = 0}. Part 3 of Lemma A.1 and Weyl’s

15See e.g Chapter 8.8 of Magnus and Neudecker (2019).
16E.g. Theorem 8.7 of Magnus and Neudecker (2019).
17A necessary and sufficient condition for (M + En)† → M† as En → 0 is that for all sufficiently large n,

rank(M + En) = rank(M); see, for example, chapter 6.6 of Ben-Israel and Greville (2003).
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perturbation theorem imply that

P0(En) = P0 (rn = 0) = P0

(
max
l=1,...,L

|λ̂n,l| < ν̌n

)
≥ P0

(
‖Îθ0 − Ĩθ0‖2 < ν̌n

)
→ 1.

On the sets En we have that Îtθ0 is the zero matrix, whose Moore-Penrose inverse is also

the zero matrix. Hence on the sets En we have ŜSR
θ̄n

= 0 and cn = 0 and therefore do not

reject, implying

P (ŜSR
θ̄n

> cn) ≤ 1− P0(En)→ 0.

It follows that P (ŜSR
θ̄n

> cn)→ 0.

Auxiliary results

THEOREM A.1: Suppose that Assumption 3.3.1 is satisfied. Let β ∈ B0 and βn =

β + n−1/2hn, β̃n = β + n−1/2h̃n such that ‖hn‖ and ‖h̃n‖ remain bounded as n → ∞.

Define θn = (α0, βn, η), θ̃n = (α0, β̃n, η), θ0 = (α0, β, η) for any α0 ∈ A0 and η ∈ H0

and

Λn,θ̃n/θn(Y n) := log

(
dPn

θ̃n

dPnθn

)
=

n∑
t=1

log

(
|Ãn|

K∏
k=1

ηk(ε̃k,t,n)/|An|
K∏
k=1

ηk(εk,t,n)

)
(20)

where Ãn = A(α0, σ̃n), An = A(α0, σn), ε̃k,t,n = Ãn,k•(Yt − c̃n − B̃nXt) and

εk,t,n = An,k•(Yt − cn −BnXt). Then, we have that

Λn,θ̃n/θn(Y n) = h̃′n
√
n¯̀

n,θn,β −
1

2
h̃′nİθ0,ββh̃n + oP (1) (21)

under Pnθn as n→∞, where

¯̀
n,θn,β :=

1

n

n∑
t=1

˙̀
θn,β(Yt, Xt) with ˙̀

θn,β(Yt, Xt) =
d log pθn

dβ
(Yt, Xt) (22)

and

İθ0,ββ := E ˙̀
θn,β

˙̀′
θn,β . (23)

Moreover, we have that
√
n¯̀

n,θn,β  N(0, İθ0,ββ) , (24)

under Pnθn as n→∞.

Proof. See Hallin & Saidi Theorem 2.1.

Proof of Lemma A.1. For part 1 we note that Lemma 3.1 implies that under Pθ0 we have

that ˜̀
n,θ0(Y n) =

∑n
t=1

˜̀
n,θ0(Yt, Xt) is the sum of n independent components as Ak•(Yt −
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c−BXt) = εk,t and εt = (ε1,t, . . . , εK,t)
′ is independent across t by Assumption 3.3.1 part

2. Further, the efficient score lies in L2(P0) by construction, hence the convergence follows

from the CLT.

Next, let θn = (α0, βn, η) and note that under Pθn , eachAn,k(Yt−cn−BnXt) h εk,t ∼ ηk.

Hence we can compute certain properties of the efficient score using the equality in

distribution:

˜̀
θ,αl(Yt, Xt) h

K∑
k=1

K∑
j=1,j 6=k

ζαl,k,jφk(εk,t)εj,t +
K∑
k=1

ζαn,l,k,k [τk,1εk,t + τk,2κ(εk,t)] (25)

˜̀
θ,σl(Yt, Xt) =

K∑
k=1

K∑
j=1,j 6=k

ζσn,l,k,jφk(εk,t)εj,t +
K∑
k=1

ζσl,k,k [τk,1εk,t + τk,2κ(εk,t)] (26)

˜̀
θ,cl(Yt, Xt) =

K∑
k=1

φk(εk,t)× [−Ak•Dc,l] (27)

˜̀
θ,bl(Yt, Xt) =

K∑
k=1

φk(εk,t)× [−Ak•Db,l(Xt − EXt)] (28)

where we note that the same observation implies that τk,n = τk for each n.18 By

our assumptions on the map (α, σ) 7→ A(α, σ), we have ζαn,l,k,j → ζα∞,l,k,j :=

[Dαl(α0, σ)]k•A(α0, σ)−1
•j and ζσn,l,k,j → ζσ∞,l,k,j := [Dσl(α0, σ)]k•A(α0, σ)−1

•j . Note that

the entries of Dc,l and Db,l are all zero except for entry l (corresponding to cl or bl) which

is equal to one.

We verify part 2 for each component of the efficient score (25)-(28). Components (25) and

(26) follows similarly and we focus on (25). We define

ϕ1,n(yt, xt) :=

K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφk(An,k•vt,n)An,j•vt,n ,

and

ϕ̂1,n(yt, xt) :=
K∑
k=1

K∑
j=1,j 6=k

ζl,k,j,nφ̂k,n(An,k•vt,n)An,j•vt,n ,

with vt,n = yt− cn−Bnxt, and let ζn := maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,n| which converges to

ζ := maxl∈[L],j∈[K],k∈[K] |ζαl,j,k,∞| <∞. We have that

√
nPn(ϕ̂1,n − ϕ1,n) ≤

√
n

K∑
k=1

K∑
j=1,j 6=k

ζn

∣∣∣∣∣ 1n
n∑
i=1

φ̂k,n(An,k•Vt,n)An,j•Vt,n − φk(An,k•Vt,n)An,j•Vt,n

∣∣∣∣∣ ,
18In the preceding display we have written ζαn,l,k,k and ζσn,l,k,k rather than ζαl,k,k and ζσl,k,k to indicate their

dependence on βn. E.g. ζα∞,l,k,j corresponds to evaluation at the point (α0, β).
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with Vt,n = Yt − cn −BnXt. Since each∣∣∣∣∣ 1n
n∑
t=1

φ̂k,n(An,k•Vt,n)An,j•Vt,n − φk(An,k•Vt,n)An,j•Vt,n

∣∣∣∣∣ = oPθn (n−1/2)

by applying Assumption 3.3.2 with Wt,n = An,j•Vt,n (noting that under Pθn , An,k•Vt,n '
εk,t and An,j•Vt,n ' εj,t are independent with Eθn(An,j•Vt,n)2 = 1 by Assumption

3.3.1-part 2, hence the LLN implies the required convergence under Pθn) and the outside

summations are finite, it follows that

√
nPn(ϕ̂1,n − ϕ1,n) = oPθn (1) . (29)

Next, we show that τ̂k,n − τk → 0 in Pθn-probability where τ̂k,n is defined in (3.11). First,

note An,k•Vt,n h εk,t ∼ ηk under Pθn and the sequences ((εk,t)
3)t≥1 and ((εk,t)

4)t≥1 are

i.i.d. and have finite mean by Assumption 3.3.1. Hence by the law of large numbers we

have that M̂k −Mk
Pθn−−→ 0. Since Mk is nonsingular by Assumption 3.3.1, the continuous

mapping theorem then yields τ̂k,n
Pθn−−→ τk.

Now, consider ϕ2,τ,n(yt, xt) defined by

ϕ2,τ,n(yt, xt) :=
K∑
k=1

ζαn,l,k,k [τk,1An,k•vt,n + τk,2κ(An,k•vt,n)] .

Since sum is finite and each |ζαn,l,k,k| → |ζα∞,l,k,k| < ∞ it is sufficient to consider the

convergence of the summands. In particular we have that

1√
n

n∑
t=1

[τ̂k,n,1 − τk,1]An,k•Vt,n = [τ̂k,n,1 − τk,1]
1√
n

n∑
i=1

An,k•Vt,n

= oPθn (1)×OPθn (1)

= oPθn (1),

1√
n

n∑
t=1

[τ̂k,n,2 − τk,2]κ(An,k•Vt,n) = [τ̂k,n,2 − τk,2]
1√
n

n∑
i=1

κ(An,k•Vt,n)

= oPθn (1)×OPθn (1)

= oPθn (1).

since An,k•Vt,n h εk,t ∼ ηk under Pθn and (εk,t)t≥1 and (κ(εk,t))t≥1 are i.i.d. mean-zero

sequences with finite second moments such that the CLT holds.

Together these yield that

√
nPn(ϕ2,τ̂n,n − ϕ2,τ,n) = oPθn (1). (30)
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Putting (29) and (30) together yields the required convergence for components of the type

(25) which follows identically), since ˜̀
θn,αl = ϕ1,n + ϕ2,τ,n and ˆ̀

θn,αl = ϕ̂1,n + ϕ2,τ̂n,n.

We note that convergence for components of type (26) follows using identical steps.

Next, we consider components (27).

√
nPn(ˆ̀

θn,cl − ˜̀
θn,cl) ≤

√
n

K∑
k=1

∣∣∣∣∣ 1n
n∑
t=1

φ̂k,n(An,k•Vt,n)An,k•Dc,l − φk(An,k•Vt,n)An,k•Dc,l

∣∣∣∣∣ = oPθn (1) .

Since each
∣∣∣ 1
n

∑n
t=1 φ̂k,n(An,k•Vt,n)An,k•Dc,l − φk(An,k•Vt,n)An,k•Dc,l

∣∣∣ = oPθn (n−1/2)

by applying Assumption 3.3.2 with the constantAn,k•Dc,l and we note that the outside sum

is finite.

For components (28) let µn = (I−Bn,1− . . .−Bn,p)−1cn and note that EθnXt = ιp⊗µn.

We have that

√
nPn(ˆ̀

θn,bl − ˜̀
θn,bl) ≤

√
n

K∑
k=1

∣∣∣∣ 1n
n∑
t=1

φ̂k,n(An,k•Vt,n)An,k•Db,l(Xt − EθnXt)

− φk,n(An,k•Vt,n)An,k•Db,l(Xt − EθnXt)

∣∣∣∣
= oPθn (1)

since each∣∣∣∣ 1n
n∑
t=1

φ̂k,n(An,k•Vt,n)An,k•Db,l(Xt − EθnXt)− φk,n(An,k•Vt,n)An,k•Db,l(Xt − EθnXt)

∣∣∣∣
= oPθn (n−1/2)

by Assumption 3.3.2 applied with Wt,n = An,k•Db,l(Xt − EθnXt), noting that Xt −
EθnXt = ((Yt−1 − µn)′, . . . , (Yt−p − µn)′)′ which is independent of An,k•Vt,n ' εk,t

under Pθn by Assumption 3.3.1. Further note that, Xt is stationary-ergodic by Assumption

3.3.1 and Eθn(Xt − EθnXt)(Xt − EθnXt)
′ is finite, hence the required convergence of

1
n

∑n
t=1W

2
t,n = 1

n

∑n
t=1An,k•Db,l(Xt−EθnXt)(Xt−EθnXt)

′D′b,lA
′
n,k• follows from the

ergodic theorem and the continuous mapping theorem.

To verify part 3 we will show that∥∥∥Îθn − Ĩθ0∥∥∥
2
≤
∥∥∥Îθn − Ĩθn∥∥∥

2
+
∥∥∥Ĩθn − Ĩθ0∥∥∥

2
= oPθn (ν1/2

n ). (31)

where Ĩθn := 1
n

∑n
t=1

˜̀
θn(Yt, Xt)˜̀

θn(Yt, Xt)
′. To obtain the rates we start with ‖Ĩθn −

Ĩθ0‖2, for which we show that each component satisfies the required rate. To set this

up, let Qr,sl,m,t,n = ˜̀
θn,rl(Yt, Xt)˜̀

θn,sm(Yt, Xt) − ˜̀
θ0,rl(Yt, Xt)˜̀

θ0,sm(Yt, Xt), where r, s ∈
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{α, σ, c, b} and l,m denote the indices of the components of the efficient scores. Fix any

r, s and l,m and note that under Pθn we have An,k(Yt − cn − BnXt) h εk,t ∼ ηk and

therefore to show [Ĩθn − Ĩθ0 ]l,m = oPθn (ν
1/2
n ) it suffices to show

1

n

n∑
t=1

Qr,sl,m,t,n −GQ
r,s
l,m,t,n +

1

n

n∑
t=1

G[Qr,sl,m,t,n −Q
r,s
l,m,t,∞] = oG(ν1/2

n ),

where G denotes the law corresponding to η and each Qr,sl,m,t,n is shown to satisfy

‖Qr,sl,m,t,n‖G,p < ∞ in Lemma A.4 given below. The convergence of the second term

follows from the assumed Lipschitz continuity of the map defining the ζ’s and the
√
n-

consistency of βn for β, since n−1/2 = o(ν
1/2
n ). For the first term, if p = 2 in Lemma A.4

and Theorem 2.5.11 in Durrett (2019), we have that for all ι > 0

1

n

n∑
i=1

Qr,sl,m,i,n −GQ
r,s
l,m,i,n = oG

(
n−1/2 log(n)1/2+ι

)
.

It follows that

‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn − Ĩθ0‖F = oPθn

(
n−1/2 log(n)1/2+ι

)
.

If, instead, p = 1 + ν/4 < 2 in Lemma A.4, then by the Marcinkiewicz & Zygmund SLLN

(e.g. Theorem 2.5.12 in Durrett, 2019)

1

n

n∑
i=1

Qr,sl,m,i,n −GQ
r,s
l,m,i,n = oG

(
n

1−p
p

)
,

and similarly

‖Ĩθn − Ĩθ0‖2 ≤ ‖Ĩθn,n − Ĩθ0‖F = oPθn

(
n

1−p
p

)
.

That is, for any p ∈ (1, 2] we have ‖Ĩθn − Ĩθ0‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ).

For the other component of the sum, let r ∈ {α, σ, c, b} and let l denote an index, we

write Ûn,t,rl := ˆ̀
θn,rl(Yt, Xt), Ũt,rl := ˜̀

θn,rl(Yt, Xt) and Dn,t,rl := ˆ̀
θn,rl(Yt, Xt) −

˜̀
θn,rl(Yt, Xt).

Since it is the absolute value of the (r, l)− (s,m) component of Îθn,n− Ĩθ0,n, it is sufficient

to show that
∣∣∣ 1
n

∑n
t=1 Ûn,t,rlDn,t,sm + 1

n

∑n
t=1Dn,t,rlŨt,sm

∣∣∣ = oPθn (ν
1/2
n ) as n → ∞ for

any r, s ∈ {α, σ, c, b} and l,m. By Cauchy-Schwarz and Lemma A.6∣∣∣∣∣ 1n
n∑
t=1

Dn,t,rlŨt,sm

∣∣∣∣∣ ≤
(

1

n

n∑
t=1

Ũ2
t,sm

)1/2(
1

n

n∑
t=1

D2
n,t,rl

)1/2

= OPθn (1)× oPθn (ν1/2
n ) = oPθn (ν1/2

n ),
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∣∣∣∣∣ 1n
n∑
t=1

Ûn,t,rlDn,t,sm

∣∣∣∣∣ ≤
(

1

n

n∑
t=1

Û2
n,t,rl

)1/2(
1

n

n∑
t=1

D2
n,t,sm

)1/2

= OPθn (1)× oPθn (ν1/2
n ) = oPθn (ν1/2

n ),

for any (r, l)− (s,m). It follows that[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm +Dn,t,rlŨt,sm

]2

≤ 2

[
1

n

n∑
t=1

Ûn,t,rlDn,t,sm

]2

+ 2

[
1

n

n∑
t=1

Dn,t,rlŨt,sm

]2

= oPθn (νn)

and hence ‖Îθn,n− Ĩθ0,n‖2 ≤ ‖Îθn,n− Ĩθ0,n‖F = oPθn (ν
1/2
n ). We can combine these results

to obtain:

‖Îθn,n−Ĩθ0‖2 ≤ ‖Îθn,n−Ĩθn,n‖2+‖Ĩθn,n−Ĩθ0‖2 = oPθn (ν1/2
n )+oPθn (ν1/2

n ) = oPθn (ν1/2
n ).

It remains to show that part 4 holds. Recall that the dominating measure here is λ and

re-write the integral in question as

∫ ∥∥∥˜̀
θnp

1/2
θn
− ˜̀

θ0p
1/2
θ0

∥∥∥2
dλ =

dim(˜̀
θn )∑

l=1

∫ [
˜̀
θn,lp

1/2
θn
− ˜̀

θ0,lp
1/2
θ0

]2
dλ. (32)

It is evidently sufficient to show that each of the integrals in the sum on the rhs converges
to zero. To this end, let fr,n := ˜̀

θn,rlp
1/2
θn

and fr := ˜̀
θ0,rlp

1/2
θ0

for r ∈ {α, σ, c, b}
corresponding to (25)-(28) for some arbitrary l. By the expressions for ˜̀

θ0,rl given in
Lemma 3.3.1 along with the continuity of A, Dσl , Dαl , Dcl , Dbl and each ηk and φk (each
of which follows from our assumptions), we have that fr,n → fr λ-a.e. for all r. Moreover,
using the representation in (25) we have

∫
f2α,n dλ =

∫  K∑
k=1

ζαl,k,k,n [τk,1εk,t + τk,2κ(εk,t)] +

K∑
j=1,j 6=k

ζl,k,j,nφk(εk,t)εj,t

2

dG

=

K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζαl,k,j,nζ
α
l,b,m,n

∫
φk(εk,t)εj,tφb(εb,t)εm,t dG

+

K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζαl,k,j,nζ
α
l,b,b,n

∫
φk(εk,t)εj,i [τb,1εb,t + τb,2κ(εb,t)] dG

+

K∑
k=1

K∑
b=1

ζαl,k,k,nζ
α
l,b,b,n

∫
[τb,1εb,t + τb,2κ(εb,t)] [τk,1εk,t + τk,2κ(εk,t)] dG

where G is the law of ε and each of the integrals are finite by Assumption 3.3.1. By the
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continuity of A and Dαl , this converges to

∫
f2(α,β1)

dλ =

∫  K∑
k=1

ζαl,k,k,∞ [τk,1εk,t + τk,2κ(εk,t)] +

K∑
j=1,j 6=k

ζαl,k,j,∞φk(εk,t)εj,t

2

dG

=

K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

K∑
m=1,m 6=b

ζαl,k,j,∞ζ
α
l,b,m,∞

∫
φk(εk,t)εj,tφb(εb,t)εm,t dG

+

K∑
k=1

K∑
j=1,j 6=k

K∑
b=1

ζαl,k,j,∞ζ
α
l,b,b,∞

∫
φk(εk,t)εj,t [τb,1εb,t + τb,2κ(εb,t)] dG

+

K∑
k=1

K∑
b=1

ζl,k,k,∞ζl,b,b,∞

∫
[τb,1εb,t + τb,2κ(εb,t)] [τk,1εk,t + τk,2κ(εk,t)] dG,

which is finite by Assumption 3.3.1. By Proposition 2.29 in van der Vaart (1998) we

conclude that
∫

(fα,n− fα)2 dλ→ 0. Exactly, the same arguments holds for r = σ, c, b and

we omit the details. The convergence of each
∫

(fr,n − fr)2 dλ → 0 in conjunction with

equation (32) is sufficient for part 4.

LEMMA A.2: Suppose that Assumption 3.3.1 holds and let k, j, s, b ∈ [K] with j 6= k and

s 6= b. Then, for any p ∈ [1, 2] we have that

(i) ‖φk(εk)εjφs(εs)εb‖G,p <∞,

(ii) ‖φk(εk)εjεs‖G,p <∞,

(iii) ‖εkεs‖G,p <∞.

Proof. By Cauchy-Schwarz, independence and our moment conditions we have

‖φk(εk)εjφs(εs)εb‖G,p ≤
[
G[φk(εk)]

2pG[εj ]
2pG[φs(εs)]

2pG[εb]
2p
] 1

2p <∞,

‖φk(εk)εjεs‖G,p ≤
[
G[φk(εk)]

2pG[εj ]
2pG[εs]

2p
]1/(2p)

<∞,

‖εkεs‖G,p = ‖(εk)p(εs)p‖
1/p
G,1 ≤ ‖(εk)

p‖1/pG,2‖(εs)
p‖1/pG,2 <∞.

LEMMA A.3: Suppose that Assumption 3.3.1 holds and let k, j, s ∈ [K] with j 6= k. Then,

for 1 ≤ p ≤ min(1 + δ/4, 2), we have

(i) ‖φk(εk)εjκ(εs)‖G,p <∞,

(ii) ‖εkκ(AsY )‖G,p <∞,

(iii) ‖κ(εk)κ(AsY )‖G,p <∞.
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Proof. By Cauchy-Schwarz, independence and our assumed moment conditions we have

‖φk(εk)εjκ(εs)‖G,p ≤
[[
G[φk(εk)]

2pG[εs]
4p
]1/(2p)

+ ‖φk(εk)‖G,p
]
‖εj‖G,p <∞,

‖εkκ(AsY )‖G,p ≤ ‖(εk)p‖
1/p
G,2‖(εs)

2p‖1/pG,2 + ‖εk‖G,p <∞,

‖κ(εk)κ(AsY )‖G,p ≤ ‖(εk)2p‖1/pG,2‖(εs)
2p‖1/pG,2 + ‖(εk)2‖G,p + ‖(εs)2‖G,p + 1 <∞.

LEMMA A.4: Define

qαl,t,n :=
K∑
k=1

K∑
j=1,j 6=k

ζαn,l,k,jφk(εk,t)εj,t +
K∑
k=1

ζαn,l,k,k [τk,1εk,t + τk,2κ(εk,t)]

qσl,t,n :=
K∑
k=1

K∑
j=1,j 6=k

ζσn,l,k,jφk(εk,t)εj,t +
K∑
k=1

ζσn,l,k,k [τk,1εk,t + τk,2κ(εk,t)]

qcl,t,n := −
K∑
k=1

φk(εk,t)An,k•Dc,l

qbl,t,n := −
K∑
k=1

φk(εk,t)An,k•Db,l(Xt − EθnXt)

where the dependence of e.g. ζn,l,k,j on n is as in Footnote 18. Let Qr,sl,m,t,n := qrl,t,nq
s
m,t,n.

Suppose that Assumption 3.3.1 holds. Then, for 1 ≤ p ≤ min(1 + δ/4, 2) we have

‖Qr,sl,m,t,n‖G,p <∞.
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Proof. We only consider r, s ∈ {α, c, b} as σ and α are interchangeable. By definition we

have

Qα,αl,m,t,n =
K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

K∑
b=1,b 6=s

ζαl,k,j,nζ
α
m,s,b,nφk(εk,t)εj,tφs(εs,t)εb,t

+
K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

ζαl,k,j,nζ
α
m,s,s,nφk(εk,t)εj,t[τs,1εs,t + τs,2κ(εs,t)]

+

K∑
s=1

K∑
b=1,j 6=s

K∑
k=1

ζαl,s,b,nζ
α
m,k,k,nφs(εs,t)εb,t[τk,1εk,t + τk,2κ(εk,t)]

+
K∑
k=1

K∑
s=1

ζαl,k,k,nζ
α
m,s,s,n[τk,1εk,t + τk,2κ(εk,t)][τs,1εs,t + τs,2κ(εs,t)].

Qα,cl,m,t,n = −
K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

ζαl,k,j,nφk(εk,t)φs(εs,t)εj,tAn,s•Dc,m

−
K∑
k=1

K∑
s=1

ζαl,k,k,n [τk,1εk,t + τk,2κ(εk,t)]φs(εs,t)An,s•Dc,m

Qα,bl,m,t,n = −
K∑
k=1

K∑
j=1,j 6=k

K∑
s=1

ζαl,k,j,nφk(εk,t)φs(εs,t)εj,tAn,s•Db,m(Xt − EθnXt)

−
K∑
k=1

K∑
s=1

ζαl,k,k,n [τk,1εk,t + τk,2κ(εk,t)]φs(εs,t)An,s•Db,m(Xt − EθnXt)

Qc,cl,m,t,n =

K∑
k=1

K∑
s=1

φk(εk,t)φs(εs,t)An,k•Dc,lAn,s•Dc,m

Qc,bl,m,t,n =
K∑
k=1

K∑
s=1

φk(εk,t)φs(εs,t)An,k•Dc,lAn,s•Db,m(Xt − EθnXt)

Qb,bl,m,t,n =

K∑
k=1

K∑
s=1

φk(εk,t)φs(εs,t)An,k•Db,l(Xt − EθnXt)An,s•Db,m(Xt − EθnXt)

Hence, by Minkowski’s inequality, the independence of Xi (with finite second moments)

and Lemmas A.2 & A.3, ‖Qr,sl,m,i,n‖G,p <∞.

LEMMA A.5: If Assumption 3.3.1 holds, then ‖τ̂k,n − τk,n‖2 = oPθn (νn,p) = oPθn (ν
1/2
n ),

where θn is as in Lemma A.1.

Proof. Under Pθn , An,k(Yt − cn − BnXt) h εk,t ∼ ηk, hence the claim will follow if we

show that τ̌k,n − τ̆k = oG(ν
1/2
n ), where

τ̌k,n := M̌−1
k,n

(
0

−2

)
, where M̌k,n :=

(
1 1

n

∑n
t=1(εk,t)

3

1
n

∑n
t=1(εk,t)

3 1
n

∑n
t=1(εk,t)

4 − 1

)
,
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and

τ̆k,n := M̆−1
k,n

(
0

−2

)
, where M̆k,n :=

(
1 G(εk,i)

3

G(εk,i)
3 G(εk,i)

4 − 1

)
.

Let w := (0,−2)′. By the preceding definitions and the fact that the map M 7→ M−1 is

Lipschitz at a positive definite matrix M0 we have that for a positive constant C then for

large enough n, with probability approaching one

‖τ̌k,n − τ̆k,n‖2 = ‖(M̌−1
k,n − M̆

−1
k )w‖2 ≤ 2‖M̌−1

k,n − M̆
−1
k ‖2 ≤ 2C‖M̌k,n − M̆k‖2. (33)

If υ := δ/4 ≥ 4, we have that by Theorem 2.5.11 in Durrett (2019)

1

n

n∑
t=1

[(εk,t)
3 −G(εk,t)

3] = oG

(
n−1/2 log(n)1/2+ι

)
1

n

n∑
t=1

[(εk,t)
4 −G(εk,t)

4] = oG

(
n−1/2 log(n)1/2+ι

)
for ι > 0, which implies that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oG

(
n−1/2 log(n)1/2+ι

)
.

If 0 < υ < 4, we have by Theorems 2.5.11 & 2.5.12 in Durrett (2019) that for ι > 0,

1

n

n∑
t=1

[(εk,t)
3 −G(εk,t)

3] =

oG
(
n−1/2 log(n)1/2+ι

)
if υ ∈ [2, 4)

oG

(
n

1−p
p

)
if υ ∈ (0, 2)

,

1

n

n∑
t=1

[(εk,t)
4 −G(εk,t)

4] = oG

(
n

1−p
p

)
.

which together imply that

‖M̌k,n − M̆k‖2 ≤ ‖M̌k,n − M̆k‖F = oG

(
n

1−p
p

)
.

Combining these convergence rates with equation (33) yields the result in light of the

observations made at the beginning of the proof.

LEMMA A.6: Suppose Assumptions 3.3.1 and 3.3.2 hold and θn = (α0, βn, η) where
√
n(βn − β) = O(1) is a deterministic sequence. Then for each r ∈ {α, σ, c, b} and

l
1

n

n∑
t=1

(
ˆ̀
θn,rl(Yt, Xt)− ˜̀

θn,rl(Yt, Xt)
)2

= oPθn (νn).

Proof. We start by considering elements in 1
n

∑n
t=1

(
ˆ̀
θn,αl(Yt, Xt)− ˜̀

θn,αl(Yt, Xt)
)2

. We

define τ̃k,n,q := τ̂k,n,q − τk,q and Vt,n = Yt− cn−BnXt. Since each |ζαn,l,k,j | <∞ and the
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sums over k, j are finite, it is sufficient to demonstrate that for every k, j,m, s ∈ [K], with

k 6= j and s 6= m,

1

n

n∑
t=1

[
φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)

] [
φ̂s,n(An,s•Vt,n)− φs(An,s•Vt,n)

]
×An,j•Vt,nAn,m•Vt,n = oPθn (νn),

(34)

1

n

n∑
t=1

[
φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)

]
An,j•Vt,n

× [τ̃s,n,1An,s•Vt,n + τ̃s,n,2κ(An,s•Vt,n)] = oPθn (νn),

(35)

1

n

n∑
t=1

[τ̃s,n,1An,s•Vt,n + τ̃s,n,2κ(An,s•Vt,n)] [τ̃k,n,1An,k•Vt,n + τ̃k,n,2κ(An,k•Vt,n)]

= oPθn (νn).

(36)

For (36), let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 4 parts, each of

which has the following form for some q, w ∈ {1, 2}

1

n

n∑
t=1

τ̃s,n,q τ̃k,n,wξq(An,s•Vt,n)ξw(An,k•Vt,n)

= τ̃s,n,q τ̃k,n,w
1

n

n∑
t=1

ξq(An,s•Vt,n)ξw(An,k•Vt,n)

= oPθn (νn),

since we have that each τ̃s,n,q τ̃k,n,w = oPθn (νn) by Lemma A.5.19 For (35) we can argue

similarly. Again let ξ1(x) = x and ξ2(x) = κ(x). Then, we can split the sum into 2 parts,

each of which has the following form for some q ∈ {1, 2}

1

n

n∑
t=1

[
φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)

]
An,j•Vt,nτ̃s,n,qξq(An,s•Vt,n)

≤ τ̃s,n,q

(
1

n

n∑
t=1

[
φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)

]2
(An,j•Vt,n)2

)1/2

×

(
1

n

n∑
t=1

ξq(An,s•Vt,n)2

)1/2

= oPθn (1).

19The fact that 1
n

∑n
t=1 ξq(An,s•Vt,n)ξw(An,k•Vt,n) = OPθn (1) can be seen to hold using the moment and

i.i.d. assumptions from Assumption 3.3.1 and Markov’s inequality, noting once more that An,k•Vt,n ' εk,t
under Pθn .
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by Assumption 3.3.2 applied with Wt,n = An,j•Vt,n and τ̃s,n,q = oPθn (ν
1/2
n ).20 For (34)

use Cauchy-Schwarz with Assumption 3.3.2:

1

n

n∑
t=1

[
φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)

] [
φ̂s,n(An,s•Vt,n)− φs(An,s•Vt,n)

]
×An,j•Vt,nAn,m•Vt,n

≤

(
1

n

n∑
t=1

[
φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)

]2
(An,j•Vt,n)2

)1/2

×

(
1

n

n∑
t=1

[
φ̂s,n(An,s•Vt,n)− φs(An,s•Vt,n)

]2
(An,m•Vt,n)2

)1/2

= oPθn (νn).

This completes the proof for the components corresponding to αl. We note that the

components corresponding to σl follow identically.

Next, we consider the elements in 1
n

∑n
i=1

(
ˆ̀
θn,cl(Yt, Xt)− ˜̀

θn,cl(Yt, Xt)
)2

. By Cauchy-
Schwarz with Assumption 3.3.2 we have that for any k, s ∈ [K]

1

n

n∑
t=1

[φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)][φ̂s,n(An,s•Vt,n)− φs(An,s•Vt,n)]An,k•Dc,lAn,s•Dc,l(
1

n

n∑
t=1

[φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)]2(An,k•Dc,l)
2

)1/2

×

(
1

n

n∑
t=1

[φ̂s,n(An,s•Vt,n)− φs(An,s•Vt,n)]2(An,s•Dc,l)
2

)1/2

= oPθn (νn)

Finally, we consider the elements in 1
n

∑n
t=1

(
ˆ̀
θn,bl(Yt, Xt)− ˜̀

θn,bl(Yt, Xt)
)2

, where we
note that

ˆ̀
θn,bl(Yt, Xt)− ˜̀

θn,bl(Yt, Xt) =

K∑
k=1

φ̂k,n(An,k•Vt,n)An,k•Db,l(Xt − EθnXt)

− φk(An,k•Vt,n)An,k•Db,l(Xt − EθnXt)

=

K∑
k=1

[φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)]An,k•Db,l(Xt − EθnXt)

20See Footnote 19.
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By Cauchy-Schwarz with Assumption 3.3.2 we have for any k, s ∈ [K]

1

n

n∑
t=1

[φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)][φ̂s,n(An,s•Vt,n)− φs(An,s•Vt,n)]

×An,k•Db,l(Xt − EθnXt)An,s•Db,l(Xt − EθnXt)

≤

(
1

n

n∑
t=1

[φ̂k,n(An,k•Vt,n)− φk(An,k•Vt,n)]2(An,k•Db,l(Xt − EθnXt))
2

)1/2

×

(
1

n

n∑
t=1

[φ̂s,n(An,s•Vt,n)− φs(An,s•Vt,n)]2(An,s•Db,l(Xt − EθnXt))
2

)1/2

= oPθn (νn)

B Density score estimation

In this section, we discuss the estimation of the log density scores using the B-spline

methodology developed in Jin (1992) and Chen and Bickel (2006). We first discuss the

estimator and then show that this estimate satisfies Assumption 3.3.2 under mild additional

assumptions on the densities ηk.

B-spline estimator

Let ξ1 < · · · < ξN be a knot sequence, the first order B-splines are defined according

to b(1)
i (x) := 1[ξi,ξi+1)(x). Subsequent order B-splines can be computed according to the

recurrence relation

b
(κ)
i (x) =

x− ξi
ξi+κ−1 − ξi

b
(κ−1)
i (x) +

ξi+κ − x
ξi+κ − ξi+1

b
(κ−1)
i+1 (x), (37)

for κ > 1 and i = 1, . . . , N − κ. A κ-th order B-spline is κ − 2 times differentiable in x

with first derivative

c
(κ)
i (x) =

κ− 1

ξi+κ−1 − ξi
b
(κ−1)
i (x)− κ− 1

ξi+κ − ξi+1
b
(κ−1)
i+1 (x). (38)

See de Boor (2001) for more details on B-splines.

Let bk,n = (bk,n,1, . . . , bk,n,Bk,n)′ be a collection of Bk,n cubic B-splines and let ck,n =

(ck,n,1, . . . , ck,n,Bk,n)′ be their derivatives: ck,n,i(x) :=
dbk,n,i(x)

dx for each i ∈ [Bk,n].

Let γk ∈ RBk,n . The knots of the splines, ξk,n = (ξk,n,i)
Kk,n
i=1 are equally spaced in

[ΞLk,n,Ξ
U
k,n] with δk,n := ξk,n,i+1 − ξk,n,i > 0.21 For each (k, n) pair, the relationship

between the number of knots (Kk,n), the number of spline functions (Bk,n) and δk,n are

21For each k ∈ [K] the sequences (ΞLk,n)n∈N, (ΞUk,n)n∈N, (Bk,n)n∈N and (δk,n)n∈N are deterministic.
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given by Bk,n = Kk,n − 4 and Kk,n = 1 + (ΞUk,n − ΞLk,n)/δk,n.22

Since the B-splines vanish at infinity for any n ∈ N, integration by parts gives that∫
(φk(z)− γ′kbk,n(z))2ηk(z) dz =

∫
φ2
k dGk +

∫
(γ′kbk,n)2 dGk

+ 2

∫
γ′kck,n(z)ηk(z) dz

= Gkφ
2
k + γ′kGk[bk,nb

′
k,n]γk + 2γ′kGkck,n.

(39)

The solution to minimizing this mean-squared error is given by:23

γk,n = −Gk[bk,nb′k,n]−1Gkck,n. (40)

Replacing the population expectations with sample counterparts we arrive at our estimate

of γk

γ̂k,n := −

[
1

n

n∑
t=1

bk,n(εk,t)bk,n(εk,t)
′

]−1
1

n

n∑
t=1

ck,n(εk,t), (41)

where εk,t is set equal toAn,k•(Yt−cn−BnXt), which under Pθn has the same distribution.

Our estimate for φk is given by

φ̂k,n(z) := γ̂′k,nbk,n(z) . (42)

We note that computing (42) effective only requires computing the B-spline regression

coefficients γ̂k,n in (41). To implement the score test we need to estimate K density scores,

hence the computational costs is quite modest.

Theoretical results

In this section we demonstrate that the log density score estimate (42) satisfies Assumption

3.3.2 under Assumption 3.3.1 if the following conditions hold. The proof for the following

lemma is given in Lee and Mesters (2021), see their Appendix B.

LEMMA B.1: Let φk,n := φk1[ΞLk,n,Ξ
U
k,n] and ∆k,n := ΞUk,n − ΞLk,n and suppose that for νn

as in Assumption 3.3.2, [ΞLk,n,Ξ
U
k,n] ↑ Ξ̃ ⊃ supp(ηk) and δk,n ↓ 0 such that

(i) Gk(εk /∈ [ΞLk,n,Ξ
U
k,n]) = o(ν2

n);

(ii) For some ι > 0, n−1∆2+2ι
k,n δ

−(8+2ι)
k,n = o(νn);

(iii) ηk is bounded (‖ηk‖∞ <∞) and differentiable, with a bounded derivative: ‖η′k‖∞ <

∞;
22Implicitly we choose Kk,n and the endpoints and δk,n adjusts such that these formulae hold; this way we do

not need to adjust anything to ensure these are integers.
23This differs from the expression in Chen and Bickel (2006) by a factor of −1 as they estimate −φk.
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(iv) For each n, φk,n is three-times continuously differentiable on [ΞLk,n,Ξ
U
k,n] and

‖φ(3)
k,n‖

2
∞δ

6
k,n = o(νn);24

(v) There are c > 0 and N ∈ N such that for n ≥ N we have inft∈[ΞLk,n,Ξ
U
k,n] |ηk(t)| ≥

cδk,n.

Then, under Assumption 3.3.1, the estimates φ̂k,n satisfy Assumption 3.3.2.

C Algorithm to compute IRF confidence bands

This appendix provides details on the algorithm that is used to compute the identification-

robust confidence-bands for the impulse responses using the semi-parametric inference

approach.

Recall the definition of the SVAR model from Section 3.3:

Yt = c+B(b)Xt +A(α, σ)−1 εt

where the parameter vectors are defined as γ = (α, β) and β = (σ, c, b).

Let δ := (σ, b), then for a fixed value α = α0, the (K2 × 1) vector function collecting all

impulse responses at horizon h is defined as a function of δ:

∂Yt+h
∂εt

:= gh(δ) ≡ vec

(
JB(b)hJ ′A−1(α0, σ)

)
(43)

where J :=
[
IK , 0K×K(p−1)

]
and B is the companion matrix:

B ≡



B1 B2 . . . Bp−1 Bp

IK 0 . . . 0 0

0 IK . . . 0 0
...

...
. . .

...
...

0 0 . . . IK 0


(44)

Define the gradient of gh(δ) as the (K2 × (Kσ +Kb)) matrix

∇gh(δ) :=
(
∂gh(δ)/∂σ′, ∂gh(δ)/∂b′

)
(45)

The formulae to compute the elements of the gradient matrix are reported at the end of this

section.
24The differentiability and continuity requirements at the end-points are one-sided.
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Algorithm

For a set of sign restrictions fixing the column permutation and signs of the elements in

A−1(σ, α), the algorithm to compute the (1 − ζ)-level confidence interval for the impulse

responses to each of the structural shocks, εt, is as follows.

1. Define a Kα-dimensional grid of permissible values for α and discretize it into Gα
gridpoints, αg1, . . . , α

g
Gα

. If possible, construct the grid so that all grid points satisfy

the sign restrictions on A−1(α, σ) that are required in Step 4.

2. For a given gridpoint, αgj , estimate the nuisance parameter vector β = (σ, c, b) by the

one-step efficient estimate which updates the OLS estimate of β using one Gauss-

Newton iteration based on the efficient information matrix, evaluated at the OLS

estimates.

3. Using the nuisance parameter estimates β̂, conduct the semi-parametric score test for

H0 : α = αgj vs. HA : α 6= αgj defined in Section 3.4. If the test for αgj rejects, repeat

Step 2 with the next gridpoint, otherwise continue with Step 4.

4. If the test for αgj does not reject (and A−1(αgj , σ̂) satisfies the sign restrictions), carry

out the following steps for each h = 0, 1, 2, . . . ,H .

(a) Compute the vector of impulse responses gh(δ) using the one-step estimates of

δ (which is a subvector of β) and α = αgj .

(b) Compute and store the (K2×1) vectors of upper and lower (1−ζ/2) pointwise

asymptotic confidence intervals obtained as

vec(gh(δ̂))± zζ/2 σ̂vec(gh) h = 0, 1, 2, . . . ,H

where

σ̂vec(gh) :=

√
diag

(
∇gh(δ̂) Σδ̂∇ gh(δ̂)′

)
/T

and zζ/2 denotes the ζ/2 quantile point of the standard normal distribution.

Note that Σδ̂ can be computed as the inverse of the efficient information matrix

evaluated at the one-step efficient estimates of δ. The formulae to compute

∇gh(δ̂) are reported in the section below.

5. Repeat steps 2-4 for every of the Gα gridpoints.

6. Compute the (1 − ζ) IRF confidence interval as the infimum and supremum of the

stored upper and lower bounds in Step 4.

157



Formulae to compute IRF gradient matrix

Recall the definition of the impulse response function at horizon h in eq. (43) above. To

derive the expressions for the components of ∇gh(δ), defined in eq. (45), recall that for

matrices A,B,C of dimensions (k× l), (l×m), (m×n), the following vectorization rules

hold:

vec(ABC) = (C ′ ⊗A) vec(B) vec(ABC) = (In ⊗AB) vec(C)

Using the first vectorization rule to compute the gradient of the impulse response function

with respect to b, we get:

∂gh(δ)

∂b′
≡
[
(A(α0, σ)−1)′ ⊗ IK

] ∂ vec(JBhJ ′)

∂b′

=
[
(A(α0, σ)−1)′ ⊗ IK

] { h−1∑
j=0

[
J(B′)h−1−j ⊗ (JBjJ ′)

]} (46)

Similarly, using the second vectorization rule to compute the gradient of the impulse

response function with respect to σ, we get:

∂gh(δ)

∂σ′
≡
[
IK ⊗ JBhJ ′

] ∂ vec(A(α0, σ)−1)

∂σ′
(47)

Note that the expression for (∂ vec(A(α0, σ)−1))/(∂σ′) depends on the specific

parameterization that is chosen for A−1(α, σ). For instance, using the parameterization

defined in example 3.3.1 that A−1(α, σ) = Σ1/2R(α), we get

∂ vec(A(α0, σ)−1)

∂σ′
=

[
∇σlΣ

1/2 R(α0)

]
l=1,...,Kσ

(48)

158



D Non-Gaussian distributions

This section reports the non-Gaussian distributions that are used to simulate the structural

errors in the simulation studies in Section 3.5. Apart from the standard Gaussian and

student-t distributions, these distributions are taken from Marron and Wand (1992). For

convenience, they are reproduced in Table D.4 below together with their respective

abbreviations that are used in the column headers of the tables in Section 3.5. Note that

the table reports the unstandardized densities. When we simulate from these distributions,

we standardize the random variates by subtracting the theoretical mean and dividing by the

respective theoretical standard deviation of the respective distribution.

Table D.4: Non-Gaussian distributions

Abbreviation Name Definition

SKU Skewed Unimodal 1
5N
(
0, 1
)

+ 1
5N
(

1
2 , (

2
3)2
)

+ 3
5N
(

13
12 , (

5
9)2
)

KU Kurtotic Unimodal 2
3N
(
0, 1
)

+ 1
3N
(
0, ( 1

10)2
)

BM Bimodal 1
2N
(
− 1, (2

3)2
)

+ 1
2N
(
1, (2

3)2
)

SPB Separated Bimodal 1
2N
(
− 3

2 , (
1
2)2
)

+ 1
2N
(

3
2 , (

1
2)2
)

SKB Skewed Bimodal 3
4N
(
0, 1
)

+ 1
4N
(

3
2 , (

1
3)2
)

TRI Trimodal 9
20N

(
− 6

5 , (
3
5)2
)

+ 9
20N

(
6
5 , (

3
5)2
)

+ 1
10N

(
0, (1

4)2
)

Notes: The table reports the (unstandardized) distributions that are used in the simulation studies in Section 3.5 to draw the
structural errors. The distributions are taken from Marron and Wand (1992) and reproduced here for convenience, see their
Table 1.
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