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i. Abstract 

Over the past decade, microfluidic technology has proven its capabilities to start bringing 

detection and quantification capacities to novel miniaturized devices. The current generation of 

microfluidic platforms provide great precision in detection and quantification. At the same time, they have 

started to evolve towards self-sufficient (stand-alone) setups. These platforms are relying less and less on 

external power sources and they use built-in detection and quantification methods to be flexible and 

mobile. Among the various Lab on a Chip (LOC) applications, micro–Total Analysis Systems (µTAS) and 

Point of Care Tests (POCT) are the pinnacles of microfluidic platforms. They are accurate, rapid, cost-

effective, and user-friendly. They can monitor and measure compounds that were, previously, only 

detectable in state-of-the-art laboratories. This characteristic is quite important and vital, especially when 

it comes to human health status monitoring. Therefore, developing POCs and µTASs has been the center 

of attention for researchers in recent years. 

To reduce the reliance of microfluidic platforms on external power sources and measuring 

instruments.  There is the need to improve and enhance the microfluidic platforms, not only from the 

performance point-of-view but also from their manufacturability, to be able to batch produce them at 

lower costs.  

Most microfluidic circuits detect or measure a compound and in the first step, they need to 

label/enhance a reaction, in other words, mix two or more components and then analyze the results based 

on the readout. This thesis proposes an enhancement of the performance of a key element in most µTAS 

and POC devices such as the micromixer, with the introduction of a geometrical expansion that increases 

the diffusion path without increasing the pressure loss. Afterwards, its performance is validated and the 

design has been used to quantify for the first time on a microfluidic platform the ionic strength of buffered 

and non-buffered solutions. Finally, and to avoid the need for syringe pumps, in the same quantification 

strategy, we have introduced paper as a substrate material and optimized the inlet geometry to enhance 

the performance of the novel microfluidic paper-diffusion-based sensor for ionic strength quantification. 

The proposed sensor was able to quantify the ionic strength of buffered and non-buffered solutions down 

to 0.1 M concentrations using Whatman 5 paper substrate. 

Keywords: Microfluidics; Microfabrication; Soft-lithography; 3D-printing; Micromixer; Diffusion assay; 

colorimetric detection; µTAS; µPAD; ionic strength measurement; pH measurement.
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ii. Abbreviations 
 

LOC Lab on a Chip  HIV Human Immunodeficiency Virus 

µTAS microfluidic Total Analysis Systems  hCG Human Chorionic Gonadotropin 

POCT Point of Care Testing  HPV human papillomavirus 

µPAD 
microfluidic Paper-based Analytical 
Devices 

 ABS Acrylonitrile butadiene styrene 

Re Reynolds number  PLA Polylactic acid 

Pe Peclet number  FDM Fused deposition modeling 

PDMS Polydimethylsiloxane    

St Strouhal number    

SL Stereolithography    

2PP Two-photon polymerization    

DLP Digital Light Projection    

SAR Split and Recombine    

LOD Limit of Detection    

EHD Electro Hydrodynamic    

EKI Electro Kinetic Instability    

AC Alternate current    

DC Direct current    

FEM Finite Element Method    

FVM Finite Volume Method    

RBC Red Blood Cell    
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iii. Figures captions 
 

Figure 1.1 The prediction of microfluidic products market size. 

 

9 

Figure 1.2 Different types of passive micromixers. a) T-mixer [26], b) Y-mixer with enhances 

inlets’ intersection [30], c), d) and e) baffled channel micromixers [31–34], f) Tesla 

micromixer [35], g) Split and Recombine micromixer (SAR) [36], h) Divergence-convergence 

based serpentine micromixer [37], and i) curved channel micromixer [38]. All figures are 

reproduced with permission from [39,40]. 

13 

Figure 1.3 Different types of active micromixers. a) Pressure-driven micromixer [1], b) 

Acoustic field driven micromixer [2], c) magnetic field driven micromixer [3], and d) electric 

field driven micromixer [4]. All figures are reproduced with permission from [5,6]. 

17 

Figure 1.4 A schematic view of the conceptualized microfluidic sensor. 
 

21 

Figure 1.5 An illustration of different molding fabrication methods used for microfluidics [7]. 
Figure is reproduced with permission from [8]. 
 

23 

Figure 1.6 Examples of microfluidic devices fabricated through different methods. 
 

26 

Figure 2.1 The geometry of a one loop spiral micromixer. 
 

28 

Figure 2.2 The geometry of a two loops micromixer. The 180° arcs around center points A 
and B are illustrated with red and green dashed lines, respectively. The equations for 
calculating the radius of inner and outer walls are also displayed in the figure. 

29 

Figure 2.3 The modified geometry of the spiral micromixers are illustrated. a) Shows the 
placement of maximum channel width on the geometry. b) Demonstrates the differences 
between the original spiral geometry and the modified geometry. 

30 

Figure 2.4 The designed and studied spiral micromixers. 
 

31 

Figure 2.5 a) A schematic view of the proposed pH and ionic strength sensor. Zones i and ii 
indicate the ionic strength and pH evaluation zones, respectively. b) The 3D printed sensor. 
The geometry of the one loop with 5% expansion parts is visible inside the device. 

34 

Figure 2.6 a) The studied geometries of the proposed µPAD. b) Geometrical features of the 
proposed µPADs. c) Displays the inlets orientation, measurement line and the added 
semicircular part. 

36 
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Figure 2.7 a) A schematic view of the proposed 3D printed support. b) The 3D printed 
support and the proposed under study µPAD. 
 

38 

Figure 4.1 A schematic view of the flow and flux in a rectangular channel. 
 

47 

Figure 6.1 Schematic view of the micromixer assay (one loop with 10% expansion and 
contraction parts. The solutions are entered through the inlets via syringe pumps and 
pictures are taken at the mixing evaluation zone. 

60 

Figure 6.2 Schematic view of the 3D printed pH and ionic strength sensor. a) The developed 
sensor under study. 

61 

Figure 6.3 An illustration of the understudy µPAD assay, proposed geometries and the laser 
cut paper-based microfluidic strips in the Whatman 5 paper. 

62 
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1. Introduction 

1.1. The origins, importance and influence of microfluidics on human health 

Since the dawn of civilization, humanity has always put effort to improve its welfare, security, and 

prosperity. But the humans comprehended that achieving sustained growth would be farfetched, without 

considering the importance of health and hygiene among citizens. There is no doubt that each society 

needs balance and harmony to function properly. However, if the citizens are harmed by poor health 

standards, it would be highly unlikely for the people to participate in activities that keep the society in 

harmony. Poor health and hygiene standards have never helped civilizations to achieve prosperity and 

glory. This fact was well realized by our ancestors. Numerous historical sites around the world support 

this idea. From the Roman aqueducts to Ottoman hammams (public baths) and Iranian subterranean 

channels. From ancient traditions in India of not polluting certain rivers to the well-established and 

regarded knowledge of medicinal plants in China. All of these show that not only the civilization, but the 

members of society have understood the importance of this fact and they have tried to respect health 

and hygiene. 

Albeit, there are numerous examples of empires, civilizations, and even continents that have 

crumbled to dust, because of unforeseen health-related problems. The pandemic outbreak of bubonic 

plague, also known as the “Black-Death”, crippled the world and the European continent in particular. 

“Black Death” was so devastating that it took the life of one in every three Europeans and it took decades 

for them to recover from the consequences of the impact. Another example would be the Aztec empire, 

which turned into ashes because of the widespread outbreak of smallpox in the so-called “New World” 

by the conquistadors. Despite the impressive advancements in biological and technological fields, humans 

have shown vulnerability to diseases. The outbreak of the “Spanish Flu” in 1918, rang that alarm for the 

scholars and researchers. Further advances in biological and pharmaceutical studies, besides the spread 

of modern medicine in the non/less developed countries, improved the global health standards 

remarkably, but at the same time created an illusion of invincibility of the diseases for humans. The 

outspread of SARS (severe acute respiratory syndrome) in 2002, MERS (Middle East Respiratory 

Syndrome) in 2012, and the Ebola outbreak in West Africa in 2014 could be considered as a warning to 

the governments and health systems to review their policies and upgrade their facilities. However, the 

pandemic of COVID-19 caught the world off guard and resulted in a situation that was never seen before 
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in at least a century. The late pandemic resulted in tens of thousands of fatalities and it is believed to lead 

to a drastic economic recession. COVID-19 showed the importance of early disease diagnosis and how it 

can affect the treatment and the subsequent management of the pandemic and economy. Precise early 

diagnosis not only provides higher chances of survival for the patients, but helps the authorities to monitor 

the contaminated areas better and enforce confinements, lockdowns, or limiting of transportation more 

effectively. 

Microfluidics technology is one of the novel tools that now we have available to overcome these 

threads and improve our wellbeing. 

 This technology has been commonly used in the biological, biomedical, chemical, biochemical 

and pharmaceutical fields. Yet, over the past decade researchers have focused on developing accurate, 

rapid, small reagent use, and cost-efficient microfluidic total analysis systems (µTAS) and point of care 

test (POCT) devices that can be used in a wide range of applications: from food quality control to drug 

development, from soil pH monitoring to disease diagnosis and health monitoring. Although both µTAS 

and POCT devices have shown remarkable performance, the POCTs have received additional support due 

to their role in improving the treatment procedure and providing early diagnosis. POCTs are laboratories 

on microfluidic chips that can examine bodily fluids and present accurate results in a short time. They can 

provide bedside diagnosis, which results in accelerating the treatment procedure, lowering the diagnosis 

costs, and reducing the workload of the hospital laboratories. Furthermore, they can be used by the 

patients in order to monitor their health status at home continuously and diminish their need of 

hospitalization for routine tests. 

Other than the microfluidics capabilities and the importance of health related investigations (in 

general), microfluidics has gathered the attention of entrepreneurs. Microfluidic products have obtained 

an eye-catching market size and it is believed that its market continue to grow by about 50% until 2025 

(see Figure 1.1) [Yole development SA*]. Hence, focusing on microfluidic studies is not only influential on 

the general health status, but it is fruitful from the economic point of view. 

 

 

 

 

* http://www.yole.fr/Status_Of_The_Microfluidics_Industry_Market_Update.aspx 
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Figure 1.1 The prediction of microfluidic products market size [Yole Development SA]. 

It is worthy to mention that although all the advancement there has been counted commercial 

successes due to the complexity and interdisciplinarity of these devices, which is not only a challenge at 

the research level but it also becomes complex to overcome when there is a need to manufacture them 

in big batches. It is complex to find a scalable manufacturing process which is compatible with all the 

sensors or device parts. This issue can be addressed not only by taking advantage of miniaturization but 

also by introducing porous media features (such as Lab on Paper). This substrate material is often cost-

efficient, omnipresent, does not require pumps and is biocompatible, which lead to the introduction of 

microfluidic Paper-based Analytical Devices (µPAD). These devices offer in situ analysis without requiring 

sophisticated detection instruments. As a result, they are often affordable, user-friendly, and more 

appropriate for being used in less developed regions. However, in most cases, they are only capable of 

providing yes or no type of results. One of the most well-known examples of µPAD is the pregnancy tests 

(hCG test). 
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1.2. Micro Total Analysis systems (µTAS) and Point-of-Care 

testing devices (POCTs) 

Micro Total Analysis Systems or µTAS emerged from the integration of various microfluidic and 

sensing parts into a single setup. Today, the developed platforms are enjoying some remarkable features 

such as: low reagent requirement, precise detection and quantification, fast responsiveness, reliability 

and reproducibility of results, portability, and applicability to numerous fields of research. 

Generally, µTASs consist of three main parts: separator, micromixer (also known as microreactor, 

synthesis chamber and so on), and the sensing part. 

A separator is used in solutions where there is the need to remove unwanted compounds from 

the sample. The elimination of such compounds might be very crucial in some cases. For instance, one of 

the most important bodily fluids is blood. In this case, the presence of red blood cells (RBCs) restricts the 

utilization of optical sensing methods. Other than purification, the separation is also of interest, especially 

for biological and biomedical fields. Therefore, the purification/separation should be carefully studied in 

order to be applied to microfluidic assays [9]. 

The micromixer/microreactor/synthesis chamber is where the reagents interact with the 

detector/labeling solution. In case of the biomedical and biological applications, it is common to mix the 

solution of interest with another solution (biomarker, normally labelled) and track the variations. The 

preparation method is not limited only to the mixing of two or more solutions. It is possible to use 

nanoparticles (or often labels) and introduce them to the solution of interest and later monitor the 

nanoparticles/labels instead of the solution. In the case of the chemical and biochemical fields, the 

explanation is more straightforward and the term “micromixer/microreactor” is self-explanatory. 

The purified and prepared solution should then be delivered to the sensing part and based on the 

properties of interest, appropriate strategies for the detection and quantification can be adopted. 

As described earlier, microfluidic devices have a wide range of applications in multiple fields. For 

instance, crystallization [10], extraction process [11], polymerization, and organic synthesis applications 

are some examples of the chemical applications of microfluidic devices and µTASs. 
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Besides the chemical and biochemical applications, microfluidic platforms have been used 

extensively in biological and biomedical fields; varying from drug screening and discovery [12] to nucleic 

acid [13–15], protein [16] and enzyme analysis [17]. 

After developing and defining the µTAS devices, researchers started to benefit from the µTAS 

advantages in favor of disease and health state diagnosis. They noticed that the proposed device should 

be affordable, portable, stand-alone, accurate and user-friendly. Defining the characteristics of such 

microfluidic devices led to the introduction of Point of Care Testing systems (POCTs). In other words, 

POCTs are basically µTASs focused on health diagnosis or diagnosis in general. 

One of the first commercial successes of the POCT device is the glucometer, which helps the 

patients with diabetes to monitor their glucose level in blood. 

The integration of new detection methods with POCTs has dramatically expanded the application 

field of the POCTs. They are now being used for the diagnosis of many diseases. For instance, Malaria [18–

20], HIV [21,22], HPV [23–25], Dengue and Ebola virus [26,27], Mycobacterium tuberculosis [28], Zika virus 

[29] and antibodies of certain other illnesses [30–33]. 

1.3. Micromixers 

One of the key elements in POCT or μTAS system is the mixer. This section will introduce the 

distinct types of micromixers, the different methods of fabrication and several examples of applications. 

1.3.1. Micromixer types 

1.3.1.1. Passive micromixers 

Passive micromixers do not rely on external energy sources for disturbing the flow in order to 

achieve a uniform mixture of fluids. These micromixers mainly rely on molecular diffusion or chaotic 

advection for the species dispersion. Achieving a decent mixing would only be possible by enhancing the 

contact surface between the solutions and taking advantage of geometrical features in the design. 

1.3.1.1.1. Lamination based micromixers 

In these micromixers, solutions enter through the inlets and flow parallel to each other in the main 

channel achieving mixing through diffusion mainly, therefore they are called Lamination based. The most 

common lamination-based micromixers are T (Figure 1.2 a) and Y (Figure 1.2 b) mixers, which have two 

inlets and the inlets merge to each other to create a single channel. Although these micromixers are easy 
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to fabricate and use, they require a significant mixing length to perform well. There have been trials to 

reduce the mixing length by causing secondary flows or vortices within the channel. For instance, Wang 

et al. [34] modified the T-mixer by placing a diamond-shaped step at the meeting point of inlets. The 

proposed step caused a disturbance to the flow at a Reynolds regime of 400 to 500 and improved the 

mixing efficiency. In another study, Hsieh et al. [35] investigated the effect of the inlet angle in Y-mixers 

on the fluids mixing and showed that if the inlets are positioned at 60° (with respect to the main channel), 

the mixing length could be reduced significantly. Hong et al. [36] induced chaotic advection in the flow by 

benefitting from a two-dimensional Tesla configuration (a modification in the main channel that separates 

a layer of fluid and reintroduces it further back to the flow), and Yang et al. [37], took the Tesla 

configuration (see Figure 1.2 f) to the third dimension and reported reasonable mixing efficiency for 0.1 < 

Re < 100 regimes.  

The aforementioned micromixers are clever approaches to address the low mixing efficiencies in 

T/Y mixers. But it should be noted that vortices and secondary flows do not usually occur at Reynolds 

regimes smaller than 60. Therefore, using such mixers (especially in biological and biochemical fields) is 

extremely limited, due to high shear stresses that generated between fluid layers, which could fatally 

damage cells or even rapture them. 

One of the main advantages of T/Y mixers is their two-dimensional geometry and the possibility 

of fabricating them via conventional soft-lithography methods. Using three-dimensional features 

eliminates this advantage and complicates the fabrication of the proposed micromixer. 

Additionally, it is worth mentioning that all the other passive micromixer types are derivations of 

the lamination method. However, the continuous progress of the derivative methods (which are described 

in the following sections) has developed them to a level that they have branched from the lamination 

method and established their category. 
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Figure 1.2 Different types of passive micromixers. a) T-mixer [34], b) Y-mixer with enhances inlets’ intersection [38], c), d) and e) 

baffled channel micromixers [39–42], f) Tesla micromixer [43], g) Split and Recombine micromixer (SAR) [44], h) Divergence-

convergence based serpentine micromixer [45], and i) curved channel micromixer [46]. All figures are reproduced with permission 

from [5,6]. 

1.3.1.1.2. Obstacle based micromixers 

This type of micromixers uses obstacles along the flow path rather than modifying the general 

shape of the main channel to enhance the flow disturbance and generate vortices. The obstacles are either 
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placed on the walls to affect the boundary layer and redirect the flow, or in the middle of the channel to 

disturb the flow in the main channel. Karthikeyan et al. [41] studied a T-mixer with rectangular obstacles 

on the walls and optimized the shape of the obstacles to study the influence on the mixing phenomenon. 

Milotin et al. [47] studied a micromixer with four inlets and a tube as the main channel. The inlets were 

oriented in a manner that the fluids would create a swirl as they entered the main channel. The mixing in 

the channel was enhanced by adding semicircular shaped obstacles. The study showed that the proposed 

micromixer could achieve 100% of efficiency at Reynolds 91 regime. In the case of the obstacles inside the 

channel, Wang et al. [39] studied the flow behavior in a T-mixer with different layouts of obstacles and 

reported that flow enters the turbulence state at only high Reynolds numbers. Alam et al. [40] developed 

a micromixer with reasonable performance at 0.1 < Re < 60, which had cylindrical obstacles inside the 

channel.  

In summary, most of the mentioned micromixers, such as split and recombine (SAR) (Figure 1.2 

g)), split-joint, or even Tesla, are the T-micromixer with obstacles in their path. Sometimes these mixers 

adopt the divergence-convergence (Figure 1.2 h)) characteristic to increase their efficiency, but the 

foundation of their geometry is based on lamination and channel with obstacle methods [5]. 

Overall, the aforementioned micromixers are enhanced versions of the lamination method, but 

still, they rely on relatively high Reynolds numbers to perform at their full capacity. On the other hand, 

the introduction of obstacles increases the pressure drops and limits the applicability of these types of 

micromixers. Finally, the fabrication of such micromixers is not simple and requires sophisticated 

techniques. As a result, most of them are using 2D structures. 

1.3.1.1.3. Divergence-convergence based micromixers 

The main mixing parameter in these micromixers relies on expansion vortices, especially when 

the cross-section area increases dramatically. This method is generally combined with previous 

approaches. For instance, Mondal et al. [48] adopted an expansion and contraction strategy to a T-mixer 

and proposed a micromixer with wavy/sinusoidal walls (similar to Figure 1.2 h). They showed that the 

mixer provided improved results compared to the conventional T-mixer. Afzal and Kim [49] studied the 

mixing phenomenon in a T-mixer with expansion and contraction parts and a circular obstacle in the 

middle of the modified sections. They showed that, at 10 < Re < 70 flow regime, the mixing quality highly 

depends on the contraction part and the smallest cross-section of the channel rather than other 

parameters. Expansion vortices grew significantly when flow velocity was high and channel width was 

narrow. 
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Similar to previous micromixer models, this method requires a precise fabrication process. 

Moreover, the generation of expansion vortices requires flows at high Reynolds regimes, which is not 

compatible with most of the biological applications.  

1.3.1.1.4. Curved channel micromixers 

The main drawback of the T and Y mixers is their requirement of significant mixing length, 

especially at lower Reynolds number regimes (0.5 < Re < 10). Such a requirement leads to an increase in 

the size of the microfluidic device, which conflicts with the fundamental idea of miniaturization in 

microfluidic devices. This method optimizes the ratio of channel length to the occupied space by applying 

the spiral or sinusoidal architecture to the micromixer. Scherr et al. [46] designed and evaluated a spiral 

micromixer with logarithmic curvatures. They showed that the mixer was able to generate “Dean” vortices 

at Re 67 regime and to provide mixing efficiency of 86%. Sheu et al. [50] investigated a micromixer with 

three-consecutive quarter circle parts, which almost mimicked a split and recombine micromixer. They 

showed that the mixer could achieve reasonable efficiencies at high Reynolds number regimes (50 < Re) 

thanks to secondary flows. The fabrication of these micromixers is not as simple as the T/Y mixers. But at 

the same time, it is more facile than the baffled or divergence-convergence micromixers. Moreover, the 

pressure drop of these designs is only slightly higher than the T/Y mixers, since there are no obstacles on 

the flow path. However, careful efforts should be made to make sure that the pressure drop is not 

sacrificed for the performance. Table 1.1 presents a brief overview of the studied passive micromixers 

with respect to the working range (Re), Peclet number and provided mixing efficiency. 

Table 1.1 Passive mixers Mixing Efficiency and Flow Regime 

Characteristics Re Pe 
Mixing 

efficiency 
Material 

T-mixer (blue dye and colorless liquid) [34] 500 7e5 83% 
Silicon/pyrex 

glass 

Split-join/fluorescein dissolved into two different buffers [51] 0.05 50 97% Mylar 

H-shape/colored water solutions [52] 0.08-4.16 n/r 98% Plexiglass 

Reverse-staggered herringbone in channel [53] 0.01-100 34.4-34400 n/r PDMS 

Sinusoidal side walls [54] 0.2-75 n/r 90% Plexiglass 

Unbalanced SAR [55] 
Re ≥ 20 

Re ≥ 50 
n/r 

86% 

95% 
PDMS 

Two layers of spiral channels overlapped together [56] 8-40 n/r 90% Glass 
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It should be noted that most of the micromixers introduced in Table 1.1 either rely on Reynolds 

number higher than 50 or on sophisticated geometries/fabrication techniques to provide homogeneous 

mixtures. 

1.3.1.2. Active micromixers 

These micromixers mainly rely on external energy sources for reinforcing the mixing in the 

microchannels (Figure 1.3). The use of external sources not only improves the mixing efficiency, but also 

decreases the mixing length, remarkably [5]. However, employing such methods with the microfluidic 

platforms increases the complexity of the device and in some cases, for instance when using 

electromagnetic driven flows, it could be incompatible with certain biological fluids. Thus, careful 

considerations should be taken to make sure that choosing such active micromixers does not jeopardize 

the analysis. 

1.3.1.2.1. Pressure driven micromixers 

This type of micromixer depends on velocity fluctuations for enhancing the mixing phenomenon. 

Unlike the passive micromixers, the flow velocity and profile are in transient regime and the contact 

surface and consequently the mixing process are influenced by the fluctuations. The flow velocity (in other 

words; the discharge) can experience a sinusoidal trend in its magnitude. Also, the fluid might experience 

a stop and go (step) function, which creates a pulsatile flow. Therefore, in both cases, the diffusion is 

accompanied by occasional vortices and results in an improved mixing. For instance, Wu et al. [57] 

designed a micromixer with a circular mixing chamber and an oscillator. They investigated the effect of 

pulsatile flow on the mixing quality. They showed that by taking advantage of four mixing chambers and 

an oscillator, the mixing efficiency could reach up to 97%. In another study, Li and Kim [58] introduced a 

micromixer that took advantage of water head pressure to create a pulsatile flow. They demonstrated 

that the micromixer could provide up to 90% of efficiency for flow-rates up to 20 µl/min. 
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Figure 1.3 Different types of active micromixers. a) Pressure-driven micromixer [1], b) Acoustic field driven micromixer [2], c) 
magnetic field driven micromixer [3], and d) electric field driven micromixer [4]. All figures are reproduced with permission from 
[5,6]. 

 

1.3.1.2.2. Acoustic field-driven micromixer 

The mixing phenomenon in some micromixers relies on the vibration of bubbles or fluid 

molecules. The bubbles might have been inserted into the microfluidic system intentionally or might have 

been caused by the excitation of the fluid molecules. Regardless of the origin of the bubbles, their 

vibration enhances the fluid dispersion in the channel. However, studies have shown that exceeding the 

50 Hz frequency limit increases the fluid temperature and can result in creating an undesirable 

environment for biological applications [59,60]. Ahmed et al. [61] managed to generate an air bubble in a 

micromixer with a horseshoe pattern. Besides generating the air bubble, the proposed micromixer could 

produce high-quality mixtures in a laminar flow, thanks to the vibrations of the air bubble. Wang et al. 

[62] investigated the effect of the frequency range on the mixing efficiency. The study demonstrated that 

if the bubbles were generated within the 1-5 kHz frequency range, they could effectively improve the 

mixing efficiency. 

The acoustic field-driven micromixers have been created using ultrasonic transducers [60,63], 

thin-film piezoelectric [64,65] and surface acoustic wave [66,67] transducers, as well. For instance, Yang 

et al. [60] benefitted from an ultrasonic transducer and developed a micromixer that could deliver 
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mixtures of high homogeneity. On the other hand, Luong et al. [68] developed a micromixer with 

reasonable performance based on a surface acoustic wave method. 

In all the above-mentioned mixers, the mixing phenomenon depends on the perturbation of fluid 

due to the presence of an acoustic field. It should be noted that the applied shear stress on compounds 

within the fluids is also highly affected by the vibration. Considering both the thermal and shear stress 

limits, this method should be cautiously evaluated for the biological and biomedical fields. 

1.3.1.2.3. Magnetic field driven micromixers 

In this type of micromixers, the perturbation of fluid is usually caused by the effect of an induced 

magnetic field on certain magnetic particles. The magnetic field can be caused by permanent magnets 

[69–74], electromagnets [75–79], microstirrers [80–83] and/or integrated electrodes [84,85]. Ballard et 

al. [69] developed a micromixer based on the use of permanent magnets and rotating magnetic 

microbeads inside the channel. Fu et al. [75] investigated the mixing process of water and a ferrofluid by 

using an electromagnetic field (DC current), numerically and experimentally. Boroun and Larachi [78] 

studied the mixing efficiency under static, oscillating and rotating magnetic fields for magnetic and 

nanomagnetic fluids (water and iron nanoparticles- Fe+2 and Fe+3) and demonstrated that the mixing 

efficiency was directly influenced by the intensity of the magnetic field. 

Despite showing remarkable performance, it should be noted that some biological compounds 

(such as red blood cells) are sensitive to magnetic fields. Thus, utilizing such forces might compromise the 

assay. 

1.3.1.2.4. Electric field driven micromixers 

This type of micromixers is among the most well-studied and well-developed micromixers, due to 

their controllability, efficiency and, fast-responsiveness. Electric field driven micromixers can be 

categorized into two groups; Electro hydrodynamic (EHD) disturbance-based micromixers and 

Electrokinetic instability (EKI) based micromixers [5,86,87]. 

In the EHD micromixers, the mixing phenomena is carried out thanks to the different conductivity 

and permittivity of fluids. When the fluids are exposed to direct current (DC) or alternative current (AC) 

electric fields, the interface between the fluids is disturbed and as a result the mixing is enhanced [1,4,88]. 

El Moctar et al. [89] investigated the effect of applying DC and AC electric fields to a T-mixer and 

demonstrated that their proposed EHD micromixer can achieve a mixing quality of 80% in a fraction of a 

seconds (0.1 s). Nonetheless, it should be noted that this method requires fluids with equivalent density 
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and viscosity, but different electrical properties. This requirement limits the versatility of the EHD 

micromixers to many applications. 

On the other hand, the mixing phenomena in the EKI micromixers is based upon the movement 

of fluid ions or particles toward a charged surface [90–95]. EKI mixing can be divided into electroosmosis 

[95–100], electrophoresis [101,102] and dielectrophoresis [103] categories. Usefian and Bayareh [104] 

took advantage of the electroosmosis method and proposed a mixer that could work either with AC or DC 

current. They showed that the DC current was more efficient in generating vortices than the AC current. 

Daghighi and Li [101] developed an electrophoresis micromixer by connecting a cylindrical chamber to 

straight channels. A conductive particle (disk) was placed in the middle of the channel. The induction of 

the electric field resulted in the creation of vortices around the disk and in an enhancement of the mixing 

performance. Deval et al. [105] studied the possibility to use non-conductive particles in the generation 

of chaotic vortices and showed that their proposed mixer was able to reduce the mixing time significantly.  

In spite of remarkable mixing performance, the electric field driven micromixers are facing some 

serious limitations. First, the need for a power source might compromise the portability of the system. 

Second, the introduction of particles (conductive or nonconductive) might cause unwanted changes to 

the solutions. Finally, the induction of electric, magnetic or electromagnetic fields to the solution and the 

possibility of influencing the compounds within the solutions seriously limits the applicability of this 

method to biological, biochemical and chemical assays. Some examples of the developed active 

micromixers with respect to working range and provided mixing efficiency is demonstrated in Table 1.2. 

Heretofore, the literature review showed that the passive micromixers does not require extensive 

external energy sources, but they lack the ideal performance, especially in biological ranges (0.1<1 Re 

<10). The passive micromixers that could provide significant mixing, either are performing at relatively 

high Reynolds number or are relying on sophisticated geometry, which would make their fabrication 

extremely challenging and also exceeds the biological limits on the applied shear stress (50 dynes/cm2) 

and pressure drop [106]. On the other hand, the active micromixers are quite capable of providing 

homogeneous mixtures, but they rely on external energy sources that limits their “out of laboratory” 

applications. Also, active micromixers (depending on the type) are not always compatible with all the 

biological compounds and careful consideration (in choosing the type of active micromixer) should be 

taken. 
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Table 1.2 A summary of performance and working conditions of active micromixers. 

Characteristics Re 

Frequency [kHz]/ 

Magnetic field 

strength [G] 

Mixing 

efficiency 
Material 

Time-pulsed flow [107] 0.002-0.01 0-1 e-3 kHz 53%-82% PDMS 

Multi-bubbled based [108] 0..01 1-5 kHz 93% PDMS 

Surface acoustic wave driven [68] ≈ 0 220-260 kHz 45% n/r 

Permanent parallel magnet [72] n/r 1750-2500 GHz 88% PDMS 

EHD perpendicular electrode array [89] 0.0174 0.05-100 e-3 kHz 81% Lexan 

Array of rotating magnetic microbeads [83] n/r n/r 72% NiFe 

Turbulence mimicking electroosmotic mixer [99] Re ≤ 1 0.001 – 10 kHz n/r 
Transparent 

acrylic 

 

With respect to the aforementioned points, in this thesis, we focus on developing a micromixer 

that is specifically designed to work in physiological range (0.1<1 Re <10) and generate the minimum 

amount of pressure drop. Also, the micromixer should be versatile towards various fabrication methods 

and also be adaptable in different POCT, µTAS and LOC platforms (please see Figure 1.4). Computational 

Fluid Dynamics simulation models will be developed to understand the fluid flow and mixing phenomena 

and how the geometry and materials enhance this process. These models will be used to optimize the 

micromixer’s performance in biological applications. Finally, the portability and functionality of 

microfluidic platforms based on the developed methodologies will be studied after optimization, and 

different fabrication methods will be evaluated to enhance the performance of the proposed platforms. 
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Figure 1.4 A schematic view of the conceptualized microfluidic sensor. 

 

1.4. Conventional fabrication methods 

This section introduces current routine technologies available to manufacture microfluidic chips. 

Special emphasis will be given to those methodologies that can be rapidly adopted for commercial 

manufacturing of the proposed designs.  

1.4.1. Laminates 

The need of a low cost method to build the microfluidic devices at an industrial level has further 

developed the use of adhesive layers as building materials. The cost efficiency and low-demanding nature 

of this process has gathered the attention of researchers and now is widely known as Laminates. In this 

method, a microfluidic platform is divided into separate layers. Each layer represents a specific part of the 

microfluidic device. For instance, the simplest microfluidic platform consists of three layers; a bottom part 

or support, a channel part, and a ceiling part or cover. Basically, the channel’s pattern is cut in the channel 

layer (middle layer) and later the support and cover layers are stacked and bonded, creating a microfluidic 

device [8]. 
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The laminates fabrication process and its precision heavily depends on the selection of the material, the 

cutting process of the pattern (in each layer if there is multilevel microfluidic platform) and the bonding 

process of the layers. 

There is a broad range of materials with great optical features that can be used as layers. Adhesive transfer 

tapes [109], polymer layers (PMMA and COC) [110], and glass slides are examples of the previously used 

materials in this method. The main advantage is that there is no necessity to make sure that all the layers 

are of the same material. In other words, this method offers a wide configuration range of materials to 

the researchers, so the devices can be developed based on the requirements. 

The pattern can be cut in layers by either a knife plotter or a laser cutter (usually CO2 laser) [111]. Although 

the quality of the cut depends on the material and the cutting instrument. Several reports claim that laser 

cutting is more precise [112]. Besides precision, laser cutting is versatile towards a wide range of materials; 

Adhesive tapes [111], paper sheets (such as Whatman chromatography paper) [112], polymer layers and 

glass layers [8]. 

Similar to the cutting process, the bonding step depends on the selected materials, as well. 

Nevertheless, two bonding methods have been used commonly for all the materials; adhesives and 

thermal bonding. Adhesives bonding is achieved by using a double-sided tape as either the channel layer 

or as an excessive layer that holds two successive layers together. On the other hand, in thermal bonding, 

the temperature of each layer is increased to its glass transition temperature. Then the layers are 

overlapped and pressure is applied. By letting the parts cool down, the layers merge where contacted and 

form an individual block [110,113]. 

This method is quite straightforward and cost-efficient. But since most of the steps (specially bonding) are 

handled manually, this method suffers from high human errors and is time consuming. Errors such as 

bubble entrapment, poor alignment of layers, poor bonding, and deformation (especially in the thermal 

bonding) are common in this method. 

1.4.2. Mold manufacturing for soft-lithography or hot embossing techniques 

Several micro-manufacturing methods require a first step, which is the creation of a pattern or 

mold. This pattern of the microfluidic device is created on a solid substrate (usually a glass slide or a silicon 

or glass wafer). Afterwards, a photoresin (usually SU8) is hardened according to the mask pattern using 

UV light. The fabricated mold is later used to cast a polymer – usually PDMS: Polydimethylsiloxane- (soft-
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lithography) or to stamp the pattern (hot embossing) for creating the microchannels. This method is more 

accurate compared to laminates, but on the other hand it is more laborious. Moreover, fabricating 

channels with three dimensional features is quite complex in this method [114]. 

 

Figure 1.5 An illustration of different molding fabrication methods used for microfluidics [7]. Figure is reproduced with 
permission from [8]. 

 

1.4.2.1. Soft-lithography 

Soft-lithography is one of the most well established and developed fabrication processes and it is 

considered as the backbone of microfabrication. The current format of soft-lithography was first 

introduced by Whitesides [115] in 2007 and requires a first step, which is the creation of a pattern or 

mold. This pattern of the microfluidic device is created on a solid substrate (usually a glass slide or a silicon 

or glass wafer). Afterwards, a photoresin (usually SU-8) is hardened according to the mask that has the 

pattern using UV light. The fabricated mold is later used to cast a silicone (generally PMDS). The casted 

PDMS is then removed from the mold and is treated with oxygen-plasma (see Figure 1.6 B). Treating the 
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surface of the PDMS (via oxygen plasma method) activates the hydroxyl (OH-) groups on the surface and 

results in a strong (Si-O-Si) covalent bond between the silicon atoms of the PDMS and the glass [115,116]. 

Although this method offers repeatability and precision in microfabrication, it is laborious and 

therefore more expensive than the Laminates method. Moreover, creating microchannels with 3D 

features is extremely challenging via this method and therefore, mostly 2D structures are fabricated 

through soft-lithography [114]. This is why soft-lithography is normally used in research labs but it is not 

well accepted for commercialization of the micro devices. 

1.4.2.2. Hot Embossing 

Even though it requires the manufacturing of a mold as in soft-lithography, this sub-method uses 

thermoplastics as building material. Therefore, since thermoplastics are commonly used in conventional 

plastic injection parts, this procedure is normally selected to bring the products to the market.  

In this method the mold is heated and a layer of thermoplastic is compressed to the hot mold. As 

a result, the thermoplastic is melted and adopts the geometrical features of the mold. Finally, the modified 

part is bonded to a featureless substrate to form the microfluidic device. The common thermoplastics 

used in this method are polycarbonate, polymethylmethacrylate, cyclic olefin copolymer, and 

polyethylene terephthalate [117]. If the mold is done using lithographic techniques, an acceptable 

resolution can be achieved but the durability of the mold is limited. If the mold is micromachined it 

increases its durability but its dimensional range increases considerably (minimum features around to 500 

um and higher). 

1.4.2.2. Injection Molding 

There are some attempts to create parts by conventional injection molding. However, the mold 

manufacturing process suffers from the same limitations as previously mentioned in hot embossing. 

Certain attempts have been made to micromachine molds [118], but assembling the parts still needs a 

further bonding step. 

Briefly in this method, the thermoplastic is melted and conserved in a compressible chamber. 

Then, the two halves of the mold are joined to create a cavity. Later, the melted thermoplastic is injected 

into the cavity. Overtime, the thermoplastic cools down and solidifies. Finally, the casts are removed and 

the plastic part is formed by the microchannel pattern. This part is later bonded to a featureless substrate 

to create the microfluidic platform. 
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1.4.3. 3D printing 

Compared to other methods, 3D printing is the newest one. This method can be categorized into 

different techniques. Each technique offers a unique precision, wide range of materials to be used and a 

special flexibility and capability in creating 3D features in microchannels. These are the leading advantages 

of this method, however this method is more limited in creating the feature size in state of the art 

patterns. Current patterns usually benefit from features in the range of 100 µm to 500 µm. 

1.4.3.1. Fused Deposition modeling 

Fused deposition modeling or FDM is an extrusion-based printing technique. In this method each 

layer is printed on top of the previous layer by a nozzle. The nozzle melts the printing material and 

extrudes it on the printing zone with respect to the introduced model and the previous layer. As the 

melted materials are printed, it is fused into the previous layer and over time it is solidified. The common 

materials used in this technique are acrylonitrile butadiene styrene (ABS), PLA, polycarbonate, polyamide, 

and polystyrene [119,120]. Initial attempts have been done to use this technique in microfluidics, but the 

resolution is too low to achieve successful devices. 

1.4.3.2. Stereolithography (SL) 

This method relies on the polymerization of resin due to being exposed to UV light. The exposure 

of UV can be a focused beam of LED laser (SLA method) or can be the emission of the whole pattern on 

the surface (DLP – digital light projection). Unlike the SLA method, where the printing is carried out spot 

by spot, the DLP prints the pattern layer by layer. With respect to the described points, this method 

requires photosensitive polymerizable resin as the printing material, but the resolution is improved and 

several devices have been successfully built using this technology (see Figure 1.6 A) [8]. 

1.4.3.3. Multi jet modeling 

This method benefits from the same strategy as the stereolithography for printing the structures. 

However, instead of coating the surface with resin, the inkjet printhead injects a small volume of the resin 

onto the surface. The UV light source is mounted on the printhead and beams at the zone of interest to 

create the whole pattern [121,122]. 

1.4.3.4. Two-photon polymerization (2PP) 

This method is the most precise, yet the most expensive printing method. The material used in 

photon polymerization requires the absorption of a certain wavelength of photon to be polymerized. In 

the 2PP method, the material requires the simultaneous absorption of two photons. Meaning that it 
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would be possible to print structures and patterns within an object, if the light is exposed from two 

perpendicular planes [123]. 

 

Figure 1.6 Examples of microfluidic devices fabricated through different methods. A) 3D printed microfluidic platform versus 
b) soft-lithography fabricated micromixer. 

1.5. Objectives 

According to the limitations of the current state of art microfluidic platforms, especially with 

embedded micromixers and diffusion based-sensors, where there is a lack of easy to manufacture 

micromixers, operating at low Reynolds numbers (Re 0.1 to 10.0) without external energy sources to 

develop efficient diffusion-based sensors. This thesis focuses on answering the following questions: 

1. Is it possible to introduce a 2D micromixer with optimal performance at biological 

ranges (Re 0.1 to 10.0), with minimal reliance on external energy sources and with low/minimized 

pressure drop? 

2. Is the micromixer flexible in its fabrication method? 

3. Is it possible to use the micromixer as a sensor to detect and quantify the ionic 

strength and pH of buffered or non-buffered solutions? 

4. Is the established detection and quantification method applicable to paper-based 

microfluidics? 

5. Is it possible to use fluids with different properties in a single porous media and 

achieve an adequate accuracy to develop sensors for biological/agri-food applications? 

6. Is it possible to develop a computational fluid dynamic (CFD) model capable to 

reproduce diffusion phenomenon in porous media and use it for enhancing the performance of 

the micromixer/sensor, just by modifying the geometry? 
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2. Introducing the geometries and fabrication methods 

This chapter initially presents the geometries of the developed microfluidic platforms. Later, it 

focuses on the utilized fabrication methods; Soft lithography, 3D-printing and laser cutting. 

2.1. Introducing the geometries 

2.1.1. Micromixer geometry  

The proposed new design of mixer structure should be simple without separation and 

recombination or obstacles in the flow path and at the same time should not rely on external energy 

sources to achieve mixing, such as induced vibration or fluctuated flow, to facilitate the manufacturability 

and its versatility. A three inlet geometry is chosen for future implementation of a self-referencing sensor. 

To meet these requirements, the chosen design incorporated a cross-shaped inlet with a spiral 

architecture channel, to take advantage of two diffusion surfaces instead of one in the same real-estate 

area (please see Figure 2.1). Cross-shaped inlets (or having three inlets in total) is more efficient compared 

to two inlet geometries, since cross-shaped inlets take advantage of diffusion into two diffusion areas. 

Besides, this characteristic allows the implementation of self-referencing sensors based on this geometry: 

on one side the diffusion of the known substance can be measured and compared to the other side. In 

such systems the reagent that is injected through the middle inlet can either have lower or higher 

concentration of species than the surrounding reagents. Therefore, it would experience the diffusion 

twice the conventional T or Y mixers. 
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Figure 2.1 The geometry of a one loop spiral micromixer. 

The micromixer also benefited from spiral architecture, which provides the minimum real-estate 

area for the maximum length of diffusion. For achieving this, it was first decided to presume a guiding line 

(hereinafter; “centerline”) right after the inlets’ intersection, see Figure 2.1. This line exactly began at the 

middle of the intersection and continued in the same direction as the middle inlet for 1 mm. In the 

meantime, two points of A and B were defined in the same path as the centerline. The distance between 

these points is constant and equal to 1 mm. However, the position of these points relied on the number 

of loops that were going to be assigned to the micromixer (Please see Table 2.1). For instance, for the 1 

loop micromixer, point A and B were located at 1.6 and 2.6 mm of the drawn centerline. Whereas, in the 

three loops micromixer these points were positioned at 3.6 and 4.6 mm of the initial centerline. After 

defining the points, the centerline entered an arc of 180° around the point A. After completing the arc, 

centerline entered another arc of 180° around the point B. By following this procedure, the arc’s radius 

decreased up to a point that it ended at the exact midpoint between points A and B. After that, the arc’s 

radius increased. This process was halted when the arc’s radius reached the same value as the first arc. 

Then the centerline exited the loop and continued towards the outlet. The channel width was defined to 

be 200 µm for manufacturability reasons. 
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Figure 2.2 The geometry of a two loops micromixer. The 180° arcs around center points A and B are illustrated with red and 
green dashed lines, respectively. The equations for calculating the radius of inner and outer walls are also displayed in the 
figure. 

 

A key feature in a diffusion-based mixer is the diffusion length or the line across which the 

diffusion is produced, see Figure 2.2. To enhance this diffusion length using the same real-estate a 

successive expansion and contraction part was added and therefore the mixing is enhanced while 

decreasing the difficulties in manufacturing the device since the channel itself became wider. Figure 2.3 

shows the minimum width of the channel (200 um) at 0, π/2, π and 3π/2 positions. 
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Figure 2.3 The modified geometry of the spiral micromixers are illustrated. a) Shows the placement of maximum channel width 
on the geometry. b) Demonstrates the differences between the original spiral geometry and the modified geometry. 

 

At the π/4, 3π/4, 5π/4 and 7π/4 positions the outer radius was calculated according to Eq. 2.1 and 

the inner radius according to Eq. 2.2. The increase of curvature is called expansion and contraction and 

 

a) 

b) 
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we proposed at two levels: 5% and 10%. Equations 2.3 and 2.4 incorporate the expansion and contraction 

ratio (E), that affect the width of the channel. 

𝑅𝑜𝑢𝑡𝑒𝑟 = 𝑅𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 + 
𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2
 Eq. 2.1 

𝑅𝑖𝑛𝑛𝑒𝑟 = 𝑅𝑐𝑒𝑛𝑡𝑒𝑟𝑙𝑖𝑛𝑒 − 
𝑊𝑖𝑑𝑡ℎ 𝑜𝑓 𝑡ℎ𝑒 𝑐ℎ𝑎𝑛𝑛𝑒𝑙

2
 Eq. 2.2 

𝑅1 = 𝑅𝑜𝑢𝑡𝑒𝑟 + 𝐸 ∗ 𝑅𝑜𝑢𝑡𝑒𝑟 Eq. 2.3 

𝑅2 = 𝑅𝑖𝑛𝑛𝑒𝑟 − 𝐸 ∗ 𝑅𝑖𝑛𝑛𝑒𝑟 Eq. 2.4 

   

Following this approach, 3 types of micromixer classes were defined. Namely; one loop, two loops 

and three loops micromixers. Then, three modifications of 0%, 5% and 10% of expansion and contraction 

were applied to each class of micromixers. Resulting in having nine micromixers in total. 

 

Figure 2.4 The designed and studied spiral micromixers. 

 

The geometrical details of the designs are mentioned in Table 2.1. 
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Table 2.1 Maximum channel width and the position of Center points A and B with respect to the model. 

Micromixer type 

Distance from the center 

point A to the inlets’ 

intersection [mm] 

Distance from the 

center point B to 

the inlets’ 

intersection [mm] 

Maximum 

channel width 

[mm] 

 0% 1.6 2.6 0.2 

One loop 5% 1.6 2.6 0.35 

 10% 1.6 2.6 0.5 

 0% 2.6 3.6 0.2 

Two loops 5% 2.6 3.6 0.45 

 10% 2.6 3.6 0.7 

 0% 3.6 4.6 0.2 

Three loops 5% 3.6 4.6 0.55 

 10% 3.6 4.6 0.9 

2.1.1.1. Fabrication of the novel micromixer 

This method had been considered as the standard procedure for the fabrication of microfluidic 

platforms from the dawn of microfluidic technology. There are numerous resources that have described 

this method and its different variations in details [115]. Briefly in this thesis, a negative film of the 

geometry of the desired microfluidic platform was prepared. Then, a microscopic glass was coated with 

photoresist SU-8 GM1060 (thickness of 5-27 µm, bought from @GERSTELTEC SARL). The glass was then 

spun at a 1080 rpm for 40 seconds to make sure that the SU-8 height is 25 µm, according to the 

manufacturer’s instruction. Later, it was exposed to UV light. Exposure to the UV light plus sinking the 

microscopic slide in the SU-8 developer (PGMEA- Propylene glycol methyl ether acetate-, bought from 

@GERSTELTEC SARL) produced a coated SU-8 pattern within the microfluidic design’s geometry. 

Therefore, when the microscopic slide was washed with isopropanol the microfluidic pattern remained 

on the slide and the unexposed areas were removed. Resulting in a mold of the pattern with a height of 

25 µm. 

After preparing the mold it was time to prepare the microfluidic device. For this purpose, a 10:1 

mixture of silicon elastomer of SYLGARD 184 (bought from @Dow corning) and its curing agent was 

prepared. The microscopic slide was put in a curing box, which fitted the slide perfectly, and the mixture 

was added to the box. Then, the box was heated to make sure that the mixture was cured. After removing 
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the cured PDMS from the mold and the connections were created. Finally, the cured PDMS block was 

bonded (via O2 plasma treatment) to a blank microscopic slide. 

Soft lithography has proved its capabilities in fabricating high resolution microfluidic geometries. 

However, the complicated and laborious procedure and the emergence of new technologies, such as 3D 

printing, have reduced the reliance on this technique. 

2.1.2. The geometry of the 3D-printed pH and ionic strength sensor and its fabrication 

method  

The proposed geometry was validated as a pH and ion strength diffusion-based sensor, please 

refer to Paper B [124]. The manufacturability of the proposed pH and ionic strength microfluidic sensor 

was evaluated, besides investigating the applications of the studied platform. The sensor, which initially 

was manufactured by soft-lithography, was also manufactured by DLP 3D printing techniques which are 

more time and cost efficient. 

2.1.2.1. Fabrication process of the 3D-printed pH and ionic strength sensor 

The 3D printing method can be categorized into numerous techniques. However, the Digital Light 

Projection technique (DLP) has shown impressive performance regarding the fabrication of the 

microfluidic devices [125,126]. In the DLP method, the model is sliced up to numerous layers. The printer 

exposes the layers to the UV beam, successively. Therefore, the resin (or any other appropriate material) 

is hardened where exposed and remains unchanged in the other areas. Fabrication process began by 

creating a 3D model of the desired platform in the Solidworks software. Then, the produced model was 

exported in the .STL format and uploaded to the 3D printer’s (Miicraft plus) software. The uploaded file 

was sliced to 50 µm layers by the built-in Miislicer software. Due to the dependency of the printing setup 

on the complexity of geometry and the utilized resin (Miicraft BV-007 (clear)), there is not a universal 

protocol for the printing devices. In this project the UV exposure time and the rest time between the 

exposures were set to 4.2 and 1.8 seconds, respectively. 
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Figure 2.5 a) A schematic view of the proposed pH and ionic strength sensor. Zones i and ii indicate the ionic strength and pH 
evaluation zones, respectively. b) The 3D printed sensor. The geometry of the one loop with 5% expansion parts is visible inside 
the device. 

 

Previous trials had shown that the utilized resin is not the best “see through” candidate. 

Transparency was needed to optically evaluate the performance of the mixture efficiently. Therefore, we 
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halted the printing process, when the channel structure was completed and remove the uncured resin 

from the printed platform by rinsing it into isopropanol. The device was then dried and the top of the 

device, except for the channel part, was covered with resin manually. Then a microscopic glass was placed 

on top of the printed part and acted as the ceiling of the channel. Exposure to strong UV light for 8 

seconds, cured the resin and bonded the printed part to the glass. Then, the connections were installed 

and sealed with NOA 63, bought from Norland products. As the final step, the whole setup was exposed 

to gentle UV light for 1800 seconds in order to make sure that the curation has taken place completely 

and the device is ready to use. 

Despite the claim of the 3D printer’s producer, we found out that a minimum channel width of 

400 µm was required to print a micromixer with BV-007 resin. Therefore, the spiral geometry of the one 

loop 10% micromixer, which was introduced in section “2.1.1”, was 2.5 times scaled up. Meaning that the 

minimum channel width was increased to 500 µm. Moreover, the trials showed that exposing the freshly 

printed part to strong UV light causes the model to deform and bend. Therefore, a foundation of 500 µm 

was considered for the microfluidic platform to address the aforementioned issue, see Figure 2.5. 

2.1.3. Inlet geometry analysis in µPAD applications 

The cross-shaped inlet geometry had the advantage of double diffusion area in the same real-

estate and allowed us to implement self-referencing sensors. Previous authors in [127], reported that the 

inlet’s orientation influences the ratio of diffusion versus convection and therefore the performance of 

the micromixer. Therefore, we analyzed the effect of the angle-inlet orientation in a porous based-flow 

to avoid the use of external energy sources. In order to make sure that the inlets orientation does not 

compromise the key characteristics of the paper strips that influence the characteristics of the flow (such 

as channel width or distance from the inlet to the encounter zone), it was decided to add a semicircular 

part to the beginning of the main channel. Even though paper substrate has the advantage of capillary 

action to move the fluid, the manufacturing processes are limited and with lower resolution. Therefore, 

the proposed shape for the inlets is shown in FIgure 2.6 where a semicircular part of 10.5 mm in diameter 

is exactly located at the median point of the main channel width. The inlets were adjusted with respect to 

the semicircular’s center and as a result the width of the main channel and the length of the inlets 

branches were always the same. The details of the geometrical features are summarized in Table 2.2. 
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Figure 2.6 a) The studied geometries of the proposed µPAD. b) Geometrical features of the proposed µPADs. c) Displays the 
inlets orientation, measurement line and the added semicircular part. 

 

 Four models with inlets’ angles of 90°, 60°, 45° and 30° were designed. Hereinafter, the models 

are referred to as the 90-degree, 60-degree, 45-degree and 30-degree models.  

Table 2.2 Dimensions of the designed paper substrates as illustrated in Figure 2.3 b). 

Property Value 

Length of the substrate (L) 30 mm 

Substrate main channel width (Wch) 10.5 mm 

Substrate inlet channel width (wi) 2 mm 

Substrate inlet channel length (li) 15 mm 
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2.1.3.1. Fabrication procedures of the µPAD assay 

2.1.3.1.1. Preparing the paper strips 

One of the limitations of the diffusion-based microfluidic sensors is the need for external energy 

sources. Therefore, we introduced a diffusion-based sensor, which could rely on the flow generated by 

capillarity. The proposed µPAD can function flawlessly with conventional and omnipresent materials. For 

the proof of concept, the Whatman grade 5 paper was introduced as substrate material to create a new 

diffusion paper-based sensor. The designs (please refer to “2.1.3.” section) were reproduced in the 

AutoCAD software. Later by using the NEJE7000mW laser, the patterns were cut in the Whatman grade 5 

papers. Paper C [128] showed that characteristics such as channel width, inlet branches length and the 

paper strips length, were vital and therefore equal in all the developed models. 

2.1.3.1.2. Manufacturing a 3D-printed support 

In order to make sure that the inlets of the paper substrate contact the reservoirs simultaneously, 

a 3D printed holder was introduced. The described structure was 3D printed to guarantee a synchronized 

fluid flow in the µPADs. The aforementioned 3D printed support consisted of 5 main parts. As illustrated 

in Figure 2.7 the parts were: chassis, reservoirs (which were adjusted to conform to the prepared paper 

strips of different inlets’ angles), vertically adjustable arm, paper holder and a screw, which holds the 

chassis and the adjustable arm together. To ensure that the provided reagent volume to the inlets was 

repeatable and always the same, the vertically adjustable arm allowed a more reliable, accurate and 

concurrent contact between the substrate’s inlets and the fluid samples. Hence, the use of this 3D printed 

support minimized the human error factor (synchronization errors) and guaranteed the repeatability.  
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Figure 2.7 a) A schematic view of the proposed 3D printed support. b) The 3D printed support and the proposed under study 
µPAD. 
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3. Materials 

This section is dedicated to the presentation of the materials and solutions that were used in the 

assays. 

3.1. Micromixer assay 

In Paper A [129], distilled water and food color E133 were used as the working reagents of the 

assay. The assays were conducted at room temperature. The physical properties are described in Table 

3.1. 

Table 3.1 Physical properties of water and Food color. 

Materials Density [kg/(m3)] Viscosity [kg/(m.s)] Diffusivity in water [m2/s] 

Water 997 0.001 - 

Food color E133 ≈ 997 ≈ 0.001 5.5e-10 [130] 

 

3.2. pH and ionic strength measurement assay 

3.2.1. Non-buffered solutions 

In Paper B [124], conventional white wine (pH 3.25) was used for playing the role of the solution 

with unknown ionic strength. The pH of the wine was adjusted by adding limited amounts of NaOH 

(sodium hydroxide) solutions. For setting the pH of wine to 3.52, 3.5 ml of 0.1 M NaOH solution was added 

to 30 ml of wine. Achieving the pH 3.74 wine sample required the addition of 0.35 ml of 1.0 M NaOH to 

40 ml of wine. All the pH measurements were conducted at room temperature. 

To expand the detection range, three concentrations of 0.1, 0.5, and 1.0 M tartaric acid (2,3-

Dihydroxybutanedioic acid – molecular mass of 150.087 g/mol), purchased from @Merck Schuchardt, 

were prepared. 

Due to the pH range of the solutions (lower than pH 3.74), Methyl orange (Sodium 4-{[4-

(dimethylamino)phenyl]diazenyl}benzene-1-sulfonate) was chosen as the pH identifier. Methyl orange 

reflects a yellow color in its neutral form, but when it captures hydronium (H3O+) it transforms, and its 

color shifts to red. 
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3.2.2. Buffered solutions 

In Paper B [124], HEPES (4-(2-HydroxyEthyl)-1-pi-PerazineEthaneSulfonic acid), acquired from 

@Sigma Aldrich, was chosen to be used as a buffer due to its wide utilization in biological and biomedical 

researches. Three concentrations of 0.1, 0.5, and 1.0 M of HEPES solutions were prepared. Additionally, 

by following the protocols provided by the HEPES manufacturer, tiny amounts of 1.0 M NaOH were added 

to each concentration of HEPES solution in order to achieve solutions of pH 6.0, 7.0, and 8.0. Meaning 

that a total number of 9 solutions were prepared. 

Concerning the working solutions and their pH range, it was decided to use Bromocresol purple 

(5′,5″-diBromo-o-CresolsulfoPhthalein, also known as BCP), bought from @Sigma Aldrich. This pH 

indicator has a transition range of pH 5.2 up to 6.8. In acidic environments, it reflects a dark yellow color. 

However, by introducing hydroxide (OH-) to it the color changes to dark blue/purple. 

3.3. µPAD assay 

In the µPAD development study (Paper C [128]) a similar strategy to the previous assay for 

detection and quantification of ionic concentration was taken. The used reagents and materials are 

described as follows. 

3.3.1. Reagents 

Conventional white wine was used as the unknown ionic concentration solutions. Three 

concentrations of 0.1, 0.5 and 1.0 M of tartaric acid, bought from @Merck Schuchardt OHG, were 

prepared. With respect to the pH range of the reagents, Methyl orange was used as the pH indicator. 

3.3.2. Porous medium 

The substrate to achieve capillarity was chosen to be Whatman grade 5 paper, bought from 

@Fisher scientific. Porous characteristics of Whatman grade 5 are indicated in the “4.4.” section. Some 

physical characteristics of the Whatman 5 paper is displayed in Table 3.2. 
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Table 3.2 Physical properties of cellulose fiber and the Whatman5 paper substrate 

Property Value 

Density of Cellulose (ρcellulose) 1.5 gr/cm3 [131] 

Density of Whatman grade 5 paper (ρW5) 0.53 gr/cm3 [131] 

Pore shape factor (𝜑) 140 [131] 

Diameter of the cellulose fiber (d) 19.6 µm [131] 

Average length of the cellulose fiber (L) 830 µm 

Length of the substrate (Le) 30 mm 
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4. Physics and chemistry behind the assays 

4.1. Physics: Fluid flow mechanics 

Without any doubt, a thorough understanding of the flow behavior and its governing equations 

provide an accurate perspective of the question at hand. Although the mathematical description of the 

fluid flow is one of the most challenging subjects in mechanical engineering, Navier-Stokes equations can 

be used for determining the flow behavior. Navier-Stokes equations are a set of partial equations that 

govern the conservation of momentum, energy, and the continuity equilibrium in a control volume. 

One of the universal ways to describe the momentum equation in fluids is by describing it through 

Newton's second law. Considering the 𝜌, �⃗� , 𝛻𝑃 and 𝜇 are the density, velocity vector, pressure drop and 

viscosity of the flow, the following equation can be written. 

𝜌 
𝜕�⃗� 

𝜕𝑡
+  𝜌 �⃗�  . 𝛻�⃗� =  −𝛻𝑃 +  𝜇 𝛻2 �⃗� + 𝑓  Eq. 4.1 

 

Where the left-hand side (𝜌 
𝜕�⃗⃗� 

𝜕𝑡
+  𝜌 �⃗�  . 𝛻�⃗� ) of the equation represents the momentum term, 

−𝛻𝑃 indicates the pressure drop term, 𝜇 𝛻2 �⃗�  illustrates the viscous term and 𝑓  shows the body force 

term (any induced force: gravity and electric/magnetic field). 

The previous equation can be nondimensionalized by introducing certain replacements. 

The length scales can be described as: 

𝑥∗ =  
𝑥

𝐿
 

 

Eq. 4.2 

 

𝑦∗ =  
𝑦

𝐿
 

 

Eq. 4.3 

 

𝑧∗ =  
𝑧

𝐿
 

 

Eq. 4.4 

 

Where L is the characteristic length of our microfluidic system for instance its height. 

The equations 4.2, 4.3 and 4.4 can be applied to the divergence operator (𝛻). Therefore, it can be 

expressed as: 
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𝛻∗ =  𝐿 𝛻 Eq. 4.5 

𝛻∗2 = 𝐿2 𝛻2 Eq. 4.6 

Nondimensionalization should be carried out for the velocity (Eq. 4.7), time (Eq. 4.8) and pressure 

scales and in microfluidic systems. We can assume that pressure drop is dominated by viscous forces, 

therefore pressure nondimensionalization is done according to (Eq. 4.9): 

�⃗� ∗ =  
 �⃗�  

𝑈
 

 

Eq. 4.7 

𝑡∗ =  
𝑡

𝑡𝑟𝑒𝑓
 Eq. 4.8 

Whereas U is the characteristic velocity and that can be obtained from the boundary conditions, 

such as the inlet velocity. 𝑡𝑟𝑒𝑓 is the fastest time scale in the problem and can be obtained from the 

boundary conditions, such as 
𝐿

𝑈
 , and for the nondimensionalized pressure: 

∆𝑃 ~ 𝜇∆2�⃗�  
 

 

𝑑𝑃

𝑑𝑥
 ~ 𝜇

𝑑2𝑢

𝑑𝑦2
 

 

 

𝑃∗

𝐿
=  𝜇

𝑈

𝐿2
 

 

 

𝑃∗ =  
𝑃

𝜇
𝑈
𝐿

 Eq. 4.9 

 

By replacing the nondimensionalized forms of the variables in the original equation (Eq. 4.1) we 

can obtain the following equation. 

 
𝜌𝑈

𝑡𝑟𝑒𝑓
 
𝜕�⃗� ∗

𝜕𝑡∗
+ 

𝜌𝑈

𝐿
�⃗� ∗. 𝛻∗�⃗� ∗ = −

𝜇𝑈

𝐿2
𝛻∗𝑃∗ +

𝜇𝑈

𝐿2
 𝛻∗2�⃗� ∗ Eq. 4.10 

 

Which can also be written as: 

𝜌
𝑈𝐿

𝜇
 

𝐿

𝑈𝑡𝑟𝑒𝑓
 
𝜕�⃗� ∗

𝜕𝑡∗
+  𝜌 

𝑈𝐿

𝜇
�⃗� ∗. 𝛻∗�⃗� ∗ = −𝛻∗𝑃∗ + 𝛻∗2�⃗� ∗ Eq. 4.11 

Once dimensionalized, the derivative nondimensionalized terms should be of the order 1. 

Meaning that the magnitude of these terms is affected by the pre-multiplying factor rather than the 

derivatives themselves. 
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By defining the Reynolds number and the Strouhal number as Equations 4.12 and 4.13: 

𝑅𝑒 =  𝜌
𝑈𝐿

𝜇
 Eq. 4.12 

𝑆𝑡 =  
𝑈𝑡𝑟𝑒𝑓

𝐿
 Eq. 4.13 

The Equation 4.11 can be written as: 

 
𝑅𝑒

𝑆𝑡
 
𝜕�⃗� ∗

𝜕𝑡∗
+  𝑅𝑒 . �⃗� ∗. 𝛻∗�⃗� ∗ = −𝛻∗𝑃∗ + 𝛻∗2�⃗� ∗ 

Eq. 4.14 

In the microfluidics the Reynolds number and changes in the velocity are quite small, therefore 

the left-hand side of the equation can be neglected and the equation can be rewritten as: 

𝛻∗𝑃∗ =  𝛻∗2�⃗� ∗ Eq. 4.15 

And by reversing the nondimensionalization process, we can obtain: 

𝛻𝑃 =  𝜇𝛻2�⃗�  Eq. 4.16 

Which is the Stokes equation in low Reynolds numbers and describes the conservation of 

momentum. 

Another important aspect of the Navier-Stokes equations is the continuity, which implies that the 

total input and output flux of control volume should be equal. This statement can be mathematically 

expressed as:  

𝜕𝜌

𝜕𝑡
+ 

𝜕 (𝜌𝑢)

𝜕𝑥
+ 

𝜕 (𝜌𝑣)

𝜕𝑦
+ 

𝜕 (𝜌𝑤)

𝜕𝑧
=   0 Eq. 4.17 

Let u, v and w be the magnitude of velocity in the x, y and z directions. 

By considering the incompressible and steady state flow, the continuity equation can be 

summarized to: 

𝛻 . �⃗� =   0 Eq. 4.18 

There is another equation that describes the conservation of energy in fluid flows. However, due 

to the absence of heat exchange and low fluctuations in the velocity (especially in the applications 

foreseen in this thesis), the energy equation can be neglected. 

The equations 4.16 and 4.18 in complex geometries can be solved by adopting the finite element 

(FEM) or finite volume (FVM) methods. In these methods, the solving domain is discretized into smaller 

domains and the aforementioned equations are solved in each cell, with respect to boundary conditions 
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and the neighboring cells. If the difference of the results in successive iterations does not exceed a certain 

value (residuals) the last result is considered as the flow condition in that certain cell. 

4.2. Physical: Transport of species 

As it was mentioned in the previous section, flows in the microfluidic systems are usually laminar. 

Therefore, the transport phenomenon mainly relies on diffusion. The diffusion phenomenon follows the 

Fick’s first law which is described as: 

𝐽 =  −𝐷𝛻𝐶 Eq. 4.19 

Let J be the mass flux of species, D be the diffusion coefficient and C be the concentration of 

species. It is worthy to note that the flux of species is from the richer regions towards the regions with 

less concentration. So, if a rich and a poor fluid layer are flowing in parallel, the flux of species would be 

perpendicular to the general direction of flow. By assuming that the material of interest is conserved, then 

Eq. 4.19 can be derived into: 

𝜕𝐶

𝜕𝑡
=  𝛻. 𝐽  Eq. 4.20 

By combining Eq. 4.20 and the momentum equation (Eq. 4.16), the seconds Fick’s law can be 

described as: 

𝜕𝐶

𝜕𝑡
=  𝐷(

𝜕2𝐶

𝜕𝑥2
+ 

𝜕2𝐶

𝜕𝑦2
+ 

𝜕2𝐶

𝜕𝑧2
) Eq. 4.21 

Which implies that the rate of concentration depletion/accumulation is proportional to the 

gradient of concentration distribution.  

In addition to molecular diffusion, there is another important transport mechanism in the 

microfluidics and laminar flow in general, which is called advection. This mechanism is responsible for 

transporting the species as a bulk and is usually in the direction of the flow. Since the bulk movement 

depends on the flow velocity, it is expressed as: 

𝐽 =  �⃗�  . 𝐶 Eq. 4.22 

Where �⃗�   is the velocity along the direction of flow and 𝐶 is the concentration of species.  

Combining equations 4.21 and 4.22 the mass transport equation can be described as: 

𝜕𝐶

𝜕𝑡
+ 𝑢

𝜕𝐶

𝜕𝑥
+ 𝑣

𝜕𝐶

𝜕𝑦
+ 𝑤

𝜕𝐶

𝜕𝑧
=  𝐷𝛻2𝐶 Eq. 4.23 
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In the above equation, u, v and w represent the velocity vector in the x, y and z directions, 

respectively. 

Therefore, the general advection diffusion equation for a 3D problem can be expressed as: 

𝜕𝐶

𝜕𝑡
+ 𝛻 ⋅ (�⃗� ⋅ 𝐶) = 𝛻 ⋅ (𝐷𝛻𝐶) Eq. 4.24 

Whereas, 
𝜕𝐶

𝜕𝑡
  is the transient term, 𝛻 ⋅ (�⃗� ⋅ 𝐶) is the convective flux, 𝛻 ⋅ (𝐷𝛻𝐶) is the diffusive flux. 

 

Figure 4.1 A schematic view of the flow and flux in a rectangular channel. 

 By expanding the Eq. 4.22, the following equation can be written: 

𝜕𝐶

𝜕𝑡
+

𝜕

𝜕𝑥
(𝑢 ⋅ 𝐶) +

𝜕

𝜕𝑦
(𝑣 ⋅ 𝐶) +

𝜕

𝜕𝑧
(𝑤 ⋅ 𝐶) = 𝐷 [

𝜕2𝐶

𝜕𝑥2
+

𝜕2𝐶

𝜕𝑦2
+

𝜕2𝐶

𝜕𝑧2
] Eq. 4.25 

 

If the channel height (h) is much smaller than the channel width (w) (-h2/D <<w2/D), then time 

scale in the Z is smaller than diffusion in W and viscous effects are only dominant on the wall, the velocity 

is almost uniform in the middle of the channel �⃗⃗�  ≈  �⃗� 𝑥 and the velocity at the wall is 0. Therefore, 

assuming this, and looking for a steady-state situation, the equation can be simplified to: 

𝑢
𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑦2
 Eq. 4.26 

Being u the characteristic velocity in the X direction. 
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A dimensionless number (Peclet number) is defined to illustrate the ratio of advective transport 

to diffusive transport rates. Peclet number is expressed as: 

𝑃𝑒 =  
𝐿𝑢

𝐷
=

𝐴𝑑𝑣𝑒𝑐𝑡𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑒

𝐷𝑖𝑓𝑓𝑢𝑠𝑖𝑣𝑒 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑟𝑡 𝑟𝑎𝑡𝑒
 Eq. 4.27 

Let L, u and D be the characteristic length, velocity, and diffusion coefficient, respectively. 

4.3. Porous medium characteristics 

Porous mediums are matrices of particles and fibers that are packed together. Between the 

particles and fibers there are some voids (or pores) which liquid can flow through them. Although the size 

and shape of these pores play a significant role in determining the flow behavior within the porous 

medium, the governing equations are similar to the Navier-stokes equations. As it was expressed earlier, 

by assuming the Newtonian, incompressible and steady state flow, the continuity, and momentum 

conservation equations can be expressed as: 

𝛻 . �⃗� = 0, Eq. 4.28 

𝜌 (�⃗�  . 𝛻�⃗� ) =  −𝛻𝑃 +  𝜇𝛻2�⃗�  Eq. 4.29 

Where �⃗� , 𝜌, 𝛻𝑃 and 𝜇 are the velocity vector, density, pressure gradient and viscosity of fluid, 

respectively. 

When the density (𝜌) and viscosity (𝜇) of the working fluid is known, the superficial velocity (�⃗⃗� ) 

for a given pressure gradient (𝛻𝑃) can be obtained through: 

�⃗⃗� =  
1

𝑉𝑇
 ∫ �⃗� 

𝑉𝑓

 𝑑𝑣 =  𝜀 .  u̅  Eq. 4.30 

𝜀 =  
𝑉𝑓

𝑉𝑇
  , Eq. 4.31 

Where 𝑉𝑓 , 𝑉𝑇  and 𝜀 represent the void volume, body volume and porosity of the porous medium 

and u̅ is the average velocity of the flow within the porous medium. 

On the other hand, the Darcy equation implies that the superficial velocity is proportional to the 

pressure gradient. 

�⃗⃗� =  −
𝛼

𝜇
 𝛻𝑃 Eq. 4.32 

Let 𝛼 be the permeability of the porous medium. 
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At the same time, the velocity can be expressed in term of hydraulic diameter (𝐷ℎ) via the 

Poiseuille law as: 

�⃗� =  −
𝐷ℎ

2

32𝜇
. 𝛻𝑃 Eq. 4.33 

Whereas, the Carmen-Kozeny model describes the hydraulic diameter as: 

𝐷ℎ = 
4 𝜀 𝑉

𝑆𝑣
 Eq. 4.34 

Where, the 𝑆𝑣 represents the total wetted surface and V is the channel’s volume. Since the 

cellulose fibers in the Whatman 5 paper can be presumed as cylinders, the 𝑆𝑣 can be calculated through: 

𝑆𝑣 = 
(1 −  𝜀)𝑉

𝑑
 Eq. 4.35 

Let d be the diameter of the cylinder (fiber). Therefore, the hydraulic diameter can be described as: 

𝐷ℎ = 
𝜀 𝑑

(1 −  𝜀)
 Eq. 4.36 

Now by combining equations 4.28 and 4.30 the following equation can be obtained [132]: 

𝛼

𝑑2
= 

𝜀3

𝛹𝑐𝑘  (1 −  𝜀)2
 Eq. 4.37 

Whereas, 𝛹𝑐𝑘 represents the Carmen-Kozeny factor and it can be expressed in terms of its 

components; namely the pore shape factor (𝜑) and tortuosity (
𝐿𝑒

𝐿
). 

𝛹𝑐𝑘 =  𝜑 (
𝐿𝑒

𝐿
)2 Eq. 4.38 

Let 𝐿𝑒 and 𝐿 be average effective streamline length and system length, respectively. Therefore, 

by knowing the physical properties of the porous media, the porosity and permeability of the substrate 

can be determined. 

4.4. Chemical: pH and ionic strength in buffer and non-buffer solutions 

In order to evaluate the mixing performance of the developed mixer: the samples will be mixed 

with different pH indicators and its pH and Ionic Strength will be evaluated. pH measurement is considered 

as one of the key elements in evaluation of biological and chemical reactions. The acidity or alkalinity can 

be defined through the presence of hydronium [H3O+] or hydroxide [OH-] ions in the solutions. If a 

substance readily donates protons in the aqueous media, it is considered an acid and when a substance 

willingly accepts protons, it is considered a base (Please see reaction 1). Most of the acids and bases are 

considered weak acids and bases. Meaning that not all the hydronium or hydroxide ions are dissociated 
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from their parent molecule. Acids and bases have different abilities in releasing the mentioned ions and 

this ability is quantified in acid ionization constant (Ka), see Eq. 4.39. According to Eq. 4.39, the greater 

the Ka the more dissociated protons in the solution. 

𝐻𝐴 + 𝐻2𝑂 ⇄ 𝐴− + 𝐻3𝑂
+ (1) 

𝑝𝐾𝑎 = − 𝑙𝑜𝑔 𝑙𝑜𝑔 [𝐾𝑎]  
Eq. 4.39 

Being HA an arbitrary acid and A- and H3O+ denote the conjugate base and the released proton 

after the reaction. 

In most of the biological applications, maintaining pH in a specific and usually narrow range is of 

high interest. The buffer solution should be capable of resisting pH alterations, even when strong acids or 

bases are added to the solution. Buffers can be used to address this requirement. They consist of a weak 

acid and its conjugate base. When small amounts of acids are added to the buffer, the conjugate base 

present in the solution captures the hydronium and does not allow the pH to increase. Similarly, when 

base is added to the buffer, acid donates a proton to the hydroxide group and converts it to water and 

the acid itself turns to conjugate base [133] (See reactions (1), (2) and (3)).  

 This reaction is described by Henderson-Hasselbalch Eq. 4.40, used to measure the pH of the 

buffers after adding acids or bases in the solution.  

𝐴− + 𝐻3𝑂
+ → 𝐻𝐴 + 𝐻2𝑂 (2) 

𝐻𝐴 +  𝑂𝐻− → 𝐴− + 𝐻2𝑂 (3) 

𝑝𝐻 = 𝑝𝐾𝑎 + 𝑙𝑜𝑔
[𝐴−]

[𝐻𝐴]
 Eq. 4.40 

Where HA and A- are an arbitrary acid and its base conjugate, respectively. [HA] and [A-] are 

denoting their concentrations in the solution. 

According to reactions (1,2 and 3), there is a balance between the concentration of the acid [HA] 

and the concentration of the conjugate base [A-] and the ratio of this concentration modifies the pH. 

Buffer capacity, or in another word the ability of accepting different concentrations of acid or alkaline, 

directly depends on the molarity (concentration) of the buffer. The greater the molarity, the higher the 

capacity to capture the released ions in the solutions.  

An effective buffer has a symmetrical range of pH, which is about ±1 units of the pKa of the 

founding weak acid. Due to the logarithm of acid and free conjugate base concentration (See Eq. 4.40), 

buffers act as shock absorbers and do not let the pH to escalate or drop dramatically. However, depending 
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on the initial concentration of the HA and the balance between the acid and the conjugate base, almost 

any pH can be achieved in a solution.  

One of the most accurate methods to determine the capacity of the buffers, through which they 

can stabilize pH alterations, is by measuring their ionic strength. This measurement reveals the amount 

of conjugate acid/base ions in the solution. As a result, a solution with higher concentration of conjugate 

acid/base would show higher tolerance against pH changes. 

4.4.1. Limit of detection 

Limit of detection (LOD) expresses the minimum amount of a compound that can be detected in 

comparison to its absence. One of the most conventional methods for determining the LOD in 

experimental methods is by considering the generated standard deviation. In most of the assays the 

distribution of results can be illustrated by a regression line, expressed as: 

𝑦 =  𝑚𝑥 + 𝑏 Eq. 4.40 

Where m is the slope of the regression line and b is the intersection point of the line with the y-axis. 

By determining the regression line formula and obtaining the standard deviation (S) of the assays, 

the limit of detection can be found through: 

𝐿𝑂𝐷 =  3.3 ×  
𝑆

𝑚
 Eq. 4.41 
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5. Numerical Models 

Equations described in Section 4 can be solved by applying the numerical calculation methods, 

which is called Computational Fluid Dynamics (as known as CFD). The basis of CFD is founded on dividing 

the problem domain into smaller sections or cells. The discretized equations are selected and assigned to 

the equation. Later, with respect to the given information (also known as initial conditions and boundary 

conditions) and the neighboring cells the equations are solved in every cell, respectively. This process shall 

continue for the whole problem domain, until to the point that the difference between the answers of 

two consecutive iterations in every cell is smaller than an acceptable value (also known as Residual). The 

discretized equations are dependent on the problem and certain simplifications (symmetrical domain) can 

be assumed to minimize the calculation cost of the problem. CFD has been proven to be a powerful tool 

in predicting and interpreting the fluid motion and can be considered a legitimate and necessary step in 

developing the devices that work with fluids. In this work, the finite volume CFD software ANSYS FLUENT 

was used to carry out the numerical simulation. 

5.1. Governing equations in Fluid Dynamics 

From the governing equations, the continuity and momentum equations are described in previous 

chapter (4. Physics and chemistry behind the assays- Eq. 4.16 and Eq. 4.29). Aside from the mentioned 

equations, there is another equation that registers the energy conservation in the control volume. The 

energy equation is described as: 

𝜕(𝜌𝐻)

𝜕𝑡
+

𝜕𝜌

𝜕𝑡
𝛻 . (𝜌�⃗� 𝐻) =  𝛻 . (𝑘𝛻𝑇) + �⃗�  . 𝛻𝑝 Eq. 5.1 

Where H is the convective heat transfer coefficient, k is the conductive heat transfer coefficient 

and T is the absolute temperature. It should be noted that, since the assays are performed at the same 

temperature and the velocity fluctuations are minimal and the natural convection is negligible, the energy 

equation (Eq. 5.1) is neglected during the numerical simulations. 

5.2. The Diffusion phenomenon 

One of the important features of the ANSYS Fluent software is the capability of coupling various 

aspects of the fluid (in this work mixing in the form of diffusion) to the Navier-Stokes equations. In other 

words, it is possible for the software to solve the continuity and the momentum equations at the same 
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time as the advection-diffusion equation. Therefore, the results of concentration distribution are coupled 

with the velocity profile. 

In order to achieve this goal, an arbitrary user-defined scalar should be defined. Based on the 

input information of scalar, The ANSYS software solves the following equation to determine the source 

term (𝑆𝜑𝑘
): 

𝜕𝜌𝜑𝑘

𝜕𝑡
+ 

𝜕

𝜕𝑥𝑖
 ( 𝜌𝑢𝑖𝜑𝑘 − 𝛤𝑘

𝜕𝜑𝑘

𝜕𝑥𝑖
) =  𝑆𝜑𝑘

 Eq. 5.2 

 

Where k depends on the number of introduced scalars. 𝛤𝑘 is the defined diffusion coefficient for 

the ith scalar. 𝜌 and 𝑢𝑖 are the fluid density and flow velocity vector. 

In the above-mentioned equation, first part of the left-hand side equation (
𝜕𝜌𝜑𝑘

𝜕𝑡
) illustrates the 

unsteady term. While the second (
𝜕𝐹𝑖𝜑𝑘

𝜕𝑥𝑖
) and third parts (𝛻 . 𝛤𝑘𝜑𝑘) represent the convective and diffusive 

terms, respectively. 

By assuming a steady-state problem, the Eq. 5.2 can be summarized as: 

− 
𝜕

𝜕𝑥𝑖
 (  𝛤𝑘

𝜕𝜑𝑘

𝜕𝑥𝑖
) =  𝑆𝜑𝑘

 Eq. 5.3 

 

5.2.1. Measuring the mixing efficiency 

The mixer efficiency is experimentally measured by a normalized ratio (𝜎). This normalized ratio 

is the difference of the concentration of species at a given point and the ideal concentration to the 

difference of the maximum concentration and the ideal concentration. The ratio is expressed as: 

𝜎 =  
𝐶𝑖 − 𝐶̅

𝐶𝑚𝑎𝑥 − 𝐶̅ 
 Eq. 5.4 

Where, 𝐶𝑖 represents the concentration of species at a given pixel (position across the outlet of 

the channel), �̅� denotes the ideal concentration (which can be translated into the median value between 

the minimum and maximum concentration within the channel) and notably, 𝐶𝑚𝑎𝑥 illustrates the 

maximum concentration of species inside the micromixer. 
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When the normalized ratio (𝜎) is calculated for all the pixels (or nodes in the numerical simulation 

language) over the outlet, the mixing efficiency (M.Q) can be calculated through: 

𝑀.𝑄 = 1 − √
1

𝑁
 × ∑𝜎2

𝑁

1

 
Eq. 5.5 

In the above equation, N represents the number of pixels (or nodes) over the outlet and M.Q is 

the mixing quality of the investigated device. 

5.3 Numerical simulation of porous media 

Porous media can be modeled by adding a momentum source term (Si) to the standard fluid flow 

equations. The source term consists of two losses in the porous media. Namely; the viscous loss term and 

inertial loss term. 

𝑆𝑖 = − (∑ 𝐷𝑖𝑗 𝜇 𝑣𝑗

3

𝑗 = 1

+ ∑ 𝐶𝑖𝑗  
1

2
 𝜌 |𝑣| 𝑣𝑗

3

𝑗 = 1

) Eq. 5.6 

Whereas, 𝜇, 𝜌 and |𝑣|represent the viscosity, density, and velocity magnitude (in the x, y, and z 

directions), respectively. Meanwhile, 𝑆𝑖, D and C are the momentum loss and prescribed matrices in the 

ith direction (x, y, z). In the above equation the 𝐷𝑖𝑗 matrix is responsible for the viscous losses and 𝐶𝑖𝑗 is 

responsible for the inertial losses. By assuming a simple homogeneous porous media, the momentum loss 

term can be expressed as: 

𝑆𝑖 = − (
𝜇

𝛼
 𝑣𝑖 + 𝐶2  

1

2
 𝜌 |𝑣| 𝑣𝑖) Eq. 5.7 

Let 𝛼 and 𝐶2 be the permeability and inertial resistance factor. 

In the laminar flows within porous media, the viscous loss term dominates the inertial loss term. 

Therefore, the Darcy law would be sufficient to describe the porous media as: 

𝛻𝑝 =  − 
𝜇

𝛼
 �̅� Eq. 5.8 

Subsequently, the pressure drop in different directions would be expressed as: 

∆𝑝𝑥 = ∑
𝜇

𝛼𝑥𝑗
 𝑣𝑗 ∆𝑛𝑥

3

𝑗=1

 Eq. 5.9 

∆𝑝𝑦 = ∑
𝜇

𝛼𝑦𝑗
 𝑣𝑗 ∆𝑛𝑦

3

𝑗=1

 Eq. 5.10 
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∆𝑝𝑧 = ∑
𝜇

𝛼𝑧𝑗
 𝑣𝑗 ∆𝑛𝑧

3

𝑗=1

 Eq. 5.11 

Whereas, 
1

𝛼𝑖𝑗
 is the defined permeability in a specific direction, 𝑣𝑗 is the velocity components in 

the x, y, and z directions and ∆𝑛𝑥, ∆𝑛𝑦 and ∆𝑛𝑧 are the thickness of the porous media in the x, y and z 

directions, respectively. 

It is worthy to note that the permeability can be calculated via different empirical and theoretical 

methods. In this thesis, we used a theoretical approach (described in section “4.3”) to estimate the 

permeability of the porous substrate. 

5.4. Numerical error sources 

Simulations mimic real world problems in a mathematical manner and predict the outcome with 

respect to the initial information. There is no need to mention that this method is prone to several errors, 

which can drastically affect the results of the simulation. If it is decided to conduct numerical simulation, 

one should make sure that the mathematical model is as close as possible to the real-world case and the 

influence of error generating factors are diminished as possible. After taking such care, the researcher can 

claim that the simulation’s results have an acceptable precision. Regarding the abovementioned points, 

the errors can be divided into 3 categories.  

5.4.1. Errors of modeling 

These errors are rooted in carelessly setting up the initial and boundary conditions or poorly 

simplifying the problem. It is obvious that the answer of the numerical simulation would be questionable, 

if the initial and boundary conditions are set inaccurately. 

5.4.2. Errors of discretization 

These errors arise when the results of the governing equations are still grid-dependent. Meaning 

that the size of each cell and the mesh density can affect the results of the whole simulation. This error 

might seem small and negligible for every individual cell, but the accumulative error can significantly avert 

the answer from the correct value. Therefore, careful efforts should be taken to make sure that the 

simulation is mesh-independent and the produced results are reliable regardless of mesh type or size. 

Several methods have been introduced on how to determine a suitable mesh density. Richardson’s 

extrapolation is one of the most common methods in determining the proper grid and mesh density. 

According to this method, if the error reduction in at least three consecutive grid sizes is known and the 
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errors of the two finest grids are in an acceptable range, then the simulation can be considered grid-

independent. It should be noticed that this method can be quite expensive from the calculation point of 

view. Hence, a wise decision should be made in order to make a compromise between the accuracy and 

the required calculation time and capacity. 

5.4.3. Errors of iteration 

These errors are rooted in the difference of the iterative results of cells and the results in the real-

world problems. In Computational Fluid Dynamics (CFD) the governing equations are solved in every cell 

from inlet/inlets to outlet/outlets with respect to the initial conditions and neighboring cells. In the 

following iterations, the governing equations results should be corrected with the help of a correction 

formulae. But if the difference in the results of two consecutive iterations is smaller than a defined value, 

the simulation concludes that the governing equations have been converged and moves to the next cell. 

Like the discretization error, this error can be negligible for the cells close to the inlet and the boundaries, 

but by resuming the calculations the accumulative error can be serious. One of the most conventional 

ways to address this issue is by defining a proper value for residual. If a suitable value is set for it, it can 

reflect an appropriate influence on consecutive iterations and results in producing answers with minimum 

errors. 
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6. Detection and quantification methods and 

experimental setups 

This section presents an overview on the methods that are used for detecting certain compounds 

or evaluating the performance of developed devices. Moreover, the experimental setup of the assay is 

presented as well. 

6.1. Micromixer assay 

6.1.1. Evaluation of the numerical simulation results 

In Paper A [129], nine micromixers of one loop, two loops and three loops with expansion and 

contraction parts of 0%, 5% and 10% were modelled. Each model was studied under the Re 0.1, 1.0 and 

10 regimes. The distribution of species over the outlet was gathered and analyzed. The mixing quality of 

the described models was investigated by the method that is explained in section “5.2.1. Measuring the 

mixing efficiency.” 

6.1.2. Experimental setup of the micromixer assay 

The micromixers have three inlets. The food color (E133) was injected through the lateral channel, 

and water was injected via the middle inlet. The total discharge of the lateral channels was equal to the 

flowrate of the middle inlet. The cumulative flow from the inlets were set to 0.4 ml/h to satisfy the Re 1.0 

regime requirement. The lateral inlets were connected to the Graseby 3200 syringe pump and the middle 

inlet was connected to kdScientific 410-CE syringe pump.  

Pictures were taken at the outlet of the micromixer by a Leica microscope (LEICA EZ4D) at 30X 

magnification. The microscope has the capability of beaming light from the bottom, the sides, and the top 

on the object of interest. In order to eliminate the effect of ambient and background lights, a microscopic 

slide with a circle (500 µm of diameter) engraved on it was fixed in the microscope. Careful efforts were 

made to make sure that the outlet of the micromixers was located in the center of the circle. Then, the 

grey profile of the mixture at the outlet was extracted by ImageJ software. The grey values were processed 

with the method described in section “5.2.1.” to determine the performance of the device under study. 

Figure 6.1 presents a brief representation of the micromixer assay. 
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Figure 6.1 Schematic view of the micromixer assay (one loop with 10% expansion and contraction parts. The solutions are 
entered through the inlets via syringe pumps and pictures are taken at the mixing evaluation zone. 

 

6.2. pH and ionic strength sensor 

6.2.1. Buffered solutions assay 

In Paper B [124], in order to inject the solutions two syringe pumps of Graseby 3200 and 

kdScientific were used. The flowrate of the pH indicator (methyl orange) was set to 0.7 ml/h. On the other 

hand, the flowrate of the wine and/tartaric acid solutions were set to 1.4, 1.7 and 2.1 ml/h, based upon 

the requirement of the test. Diffusion width investigation was carried out at the intersection of the inlet. 

Pictures were captured by a Dino-Lite MS325B microscope and were later analyzed by ImageJ software. 

Color spectrum of the solutions restricted the colorimetric measurements to green profile analysis. The 

diffusion width was measured based on the drop in the green color indices. pH measurement was carried 

out after the inlets’ intersection to make sure that the diffusion width does not affect the color transform 

of the pH indicator. Other than measuring the nadir in the green color profiles, Origin software was used 

to analyze the respective graphs of each solution and to calculate the surface area under the graph in the 

reaction zones. Please see Figure 6.2. 
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Figure 6.2 Schematic view of the 3D printed pH and ionic strength sensor. a) The developed sensor under study. 

 

6.2.2. Non-buffered solutions assay 

This experiment (in Paper B [124]) benefitted from the same arrangements and instruments as 

the buffered solutions assay (please refer to Figure 6.2). pH indicator was injected through the middle 

inlet and the buffer solutions (different concentrations of HEPES) were injected through the lateral inlets. 

The accumulative discharge of lateral inlets is equal to the flowrate of the middle inlet. The total flow rate 

was set to apply Re 1.0 regime to the flow. Ionic concentration of buffers is/was investigated by measuring 

the corresponding diffusion widths in the inlets’ intersection. The diffusion width was measured by 

analyzing the blue color profile and studying the drop in it. On the other hand, the pH measurement was 

carried out at the outlet. The decision was due to the nature of buffers and their resistance against pH 

alterations. In order to make sure that the buffer solutions and pH indicator are acceptably mixed, the 

pictures were taken at the outlet of the micromixer. Blue color profiles were then extracted and the mean 

drops in the blue color profiles in different solutions were compared. 
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6.3. µPAD assay 

6.3.1. Analyzing the numerical simulation results 

In the numerical simulation section of Paper C [128], the distribution of scalars at the outlet was 

measured for studying the effect of inlets’ angle on the diffusion. The analysis was carried out by relying 

on the described method in section “5.2.1.” 

6.3.2. Experimental setup of the µPAD assay 

Due to the uneven capillary motion of fluids in different models, it was decided to establish a 

reference point for comparing different models (in Paper C [128]), as it is demonstrated in Figure 6.3. It 

was determined to monitor the green profile of the reaction zone and look for any signs of drop in the 

green color indices. It is worth remembering that the methyl orange is yellow in its neutral form, but 

methyl orange transforms and its color changes to red as it captures hydronium (H3O+). The color shift can 

be traced via green color index analysis, since the yellow color has a higher green color index. By following 

the described procedure for all the models, the “Time zero” benchmark was established. Several trials 

were conducted to verify its legitimacy and integrity. After defining the benchmark time, several pictures 

were captured by Dino-lite MS325S microscope of the paper strip at 60, 90, 120, 180 and 240 seconds 

after the “Time zero”. Then, the green profile of the diffusion zone was extracted by the ImageJ software. 

The diffusion widths were calculated by investigating the drop in the green color indices compared to 

neutral zones. 

 

Figure 6.3 An illustration of the understudy µPAD assay, proposed geometries and the laser cut paper-based microfluidic strips 
in the Whatman 5 paper. 
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6.4. Data curation and error sources 

The errors might have occurred during numerical simulations or experimental sections. The errors 

regarding numerical study are described in section “5.3 Numerical error sources''. In the experimental 

part, the errors might have been rooted in mistakes done by staff or devices. In order to minimize these 

errors, every assay was repeated several times to check the repeatability and eliminate any chance of 

malfunction. Furthermore, careful efforts were made to make sure that all the assays were carried out in 

similar temperature, ambient light and magnification rate. Finally, the outliers of all the results were 

detected at a 0.05 significance level by applying the Grubb’s test to minimize the influence of the 

abovementioned errors. 
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7. Conclusion 

This thesis aimed to design a micromixer with significant performance in physiological ranges and 

capable of being integrated in a conceptualized POCT device without an increase of pressure loss that 

stops the flow and disables the analysis. The novel design should be adaptable to different 

microfabrication methods, while maintaining its functionality and performance.  

The results presented in “paper A” [129] propose a variable radius spiral micromixer that performs 

in the flow regime range of Reynolds number 0.1 to 10.0. The proposed spiral architecture with modified 

expansion and contraction parts optimizes the surface area occupation and minimizes the pressure drop. 

The numerical models have been used to analyze its performance and the models have been validated 

experimentally at Re 0.1. Experimental results showed an acceptable convergence to numerical analysis. 

According to the results, the number of mixer loops increases the homogeneity of the mixture at 

the outlet. A uniform spiral micromixer (micromixer with 0% expansion and contraction part) at Re 1.0 

showed poor mixing performance, even when the number of loops was increased. Although it should be 

noted that the decrease in the performance at the Re 1.0 regime flow was inevitable. 

Therefore, the proposed modified variable radius spiral micromixer, regardless of the number of 

loops, and at every given inlet flow, provides an improved performance. Combining a two loop or three 

loop micromixer with expansion and contraction parts achieves mixing efficiencies higher than 90% at low 

Re Regimes.  The proposed micromixer demonstrated mixing efficiencies between 77.6% and 98.5%.  

In addition, the proposed expansion and contraction parts decrease the pressure drop by more 

than 60% compared to spiral micromixer without expansion and contraction parts. Finally, the design is 

fully compatible with current manufacturing methods, employing a two loop or three loop micromixer 

with expansion parts is a reliable choice in situations where it is required to ease the fabrication, provide 

a homogenous outcome, use the surface area efficiently and have a low pressure drop. 

In “paper B” [124], we investigated the flexibility of the design to perform in different 

manufacturing methods. The variable radius micromixer design was manufactured both via soft-

lithography and also through the DLP 3D-printing method. Due to the resolution limit of the printer, the 

dimensions of the micromixer were scaled 2.5 times. Even though we knew that these dimensions would 

decrease the mixing efficiency, we tested if the diffusion would take place visually fast enough to 

implement a diffusion-based sensor.  
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The results achieved in “paper B” demonstrate that we can use 3D printed microfluidics to 

manufacture a portable pH and ionic strength sensor and we could characterize buffered and non-

buffered solutions. The results showed that by comparing the diffusion width of the wine (as a sample) 

and tartaric acid solutions (as reference solutions), it is possible to estimate the total acid concentration 

in an unknown solution.  

Using colorimetric analysis, we built a calibration plot that correlated the diffusion width of 

different tartaric acids to their known molarity.  The results also illustrated that the sensor was able to 

detect a broad range of molarities, from 1.0 M to 0.1 M and lower. The proposed design was also capable 

of measuring the ionic strength of wine solutions, based on monitoring the diffusion width and comparing 

it to the tartaric acid diffusion widths and the pH by monitoring the mean green intensity profile of the 

reaction between the pH indicator and the sample at a given flowrate. 

Other than the non-buffered solutions, this assay was repeated for the buffered solutions as well. 

Similar test configurations were adopted for evaluating the buffering capacity of HEPES solutions. The 

assay showed that the proposed µTAS setup was also able to determine the pH of the solutions as well as 

their buffering capacity. 

“Paper A” and specially “Paper B” had proven the possibility to use diffusion-based sensors to 

evaluate the concentration of species using a cross-inlet configuration and a diffusive channel (variable 

radius spiral). However, in both papers a precise control of flow rates was needed to achieve the 

appropriate Reynolds regime to ensure maximum efficiency and this was achieved thanks to the use of 

syringe pumps, which limited the portability of the device. Introducing paper as a substrate, would 

eliminate the need of this equipment but introduces the uncertainty on the flow control.  

In “Paper C” [128], we propose to take advantage of 3D printing technologies to gain control on 

the fluid flow and synchronize the contact time of the paper substrate and the understudy solutions. Also, 

we use CFD analysis of the flow generated in the porous media for a better understanding of the effects 

of the inlet geometry on the generated flow.  

A CFD model, which was based on the Whatman 5 characteristics, was developed and validated 

as a useful tool for the design of paper diffusion-based sensors. The model was used to evaluate the effect 

of the substrate geometry on the flow within the porous medium and to develop a sensor setup that could 

compare the ionic concentration of an unknown solution to a known solution, quantitatively. 
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According to the numerical models, decreasing the angles between the inlets resulted in smaller 

dead zones in the main channel and consequently, providing a wider diffusion width. Whereas, the 30-

degree model provided a 14.6% wider diffusion width compared to the 90-degree model. 

Other than the diffusion width, the experimental assays also showed that less time was required 

to develop the diffusion zone measurable with colorimetric analysis if the inlets’ angles were smaller. For 

instance, the 30-degree model required 57% less time to develop a diffusion zone compared to the 90-

degree model. Moreover, models with inlet angles larger than 30◦ were unable to detect concentrations 

below 0.5 M. These models were validated experimentally and the experimental results validated the 

proposed model. 

Therefore, the 30-degree model was implemented in Whatman 5 paper and used as a paper 

diffusion-based sensor to evaluate the ionic strength of wines (as the sample) by comparison to different 

tartaric acid solutions (as reference solutions). This novel sensor presents a limit of detection of 6.2 

Tartaric Acid g/L and it is capable of evaluating the ionic concentration of commercial wines in 120 s 

without the need of any external equipment or trained personnel.  
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 8. Future investigations 

As it was mentioned in the previous sections, we managed to address the objectives such as, 

introducing a new micromixer with minimum reliance on external energy sources, probing the appropriate 

fabrication methods, introducing an ionic strength and pH sensor based on the capabilities of the 

developed microfluidic platform and extending the flow control experience to the paper-based analytical 

devices. However, the potential of these studies is not limited to the aforementioned projects.  

 The model developed in “Paper C” can be modified to analyze the effect of different substrates 

(i.e. other paper characteristics such as different fiber length, diameter or porosity) to further optimize 

the turnaround time of the results and increase the sensitivity of the sensor.  

The strategy developed in “Paper B” and “Paper C” can be applied to detect other species, maybe 

in smaller sizes. The results of using the same model but applied to different paper substrates can help us 

to tune the generated capillary flow and therefore enhance the accuracy and the results turnaround time. 

The strategy developed in “Paper C” proposed for wines and in a certain range of acidity levels 

can be extended to other acidity ranges by enhancing the mixing process or lowering the resolution of the 

channels and splitting the sample to more detection areas. 

The geometry proposed in “Paper A” has shown to be compatible with different manufacturing 

methods. The proposed geometry was printed using DLP technology, with 3D features only in the XY 

plane. Exploring the possibility of introducing a third-dimension expansion (Z direction) and fabricating 

via improved resolution 3D-printers, can enhance even further the mixing efficiency or allow a more 

compact design with less loops and same efficiency. 

The proposed geometry has only been investigated as a sensor, but the need of mixing is not 

limited to the ionic strength measurements or pH measurements. For instance, in the field of drug 

delivery, the use of hydrogels that change their viscosity depending on their pH environment that they 

are growing in. These hydrogels are usually injected at high pH, at which they are liquid, and lowering the 

pH to human body level (pH 7), solidifies the liquid hydrogel. The micromixers combined with micro 

particle image velocimetry are two techniques or tools that can help in study of the time evolution of this 

process and how to improve this discipline. 
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Similarly, in wearables discipline, nowadays there is the trend to use sweat as a body fluid to 

analyze different analytes, but some are in huge concentrations in sweat (i.e lactate) and the current 

blood sensors are out of range. Using compact and efficient mixers to bring the measurement levels close 

to blood levels will speed up the development of wearable technology. 
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Abstract: A novel type of spiral micromixer with expansion and contraction parts is presented in
order to enhance the mixing quality in the low Reynolds number regimes for point-of-care tests
(POCT). Three classes of micromixers with different numbers of loops and modified geometries were
studied. Numerical simulation was performed to study the flow behavior and mixing performance
solving the steady-state Navier–Stokes and the convection-diffusion equations in the Reynolds range
of 0.1–10.0. Comparisons between the mixers with and without expansion parts were made to
illustrate the effect of disturbing the streamlines on the mixing performance. Image analysis of the
mixing results from fabricated micromixers was used to verify the results of the simulations. Since the
proposed mixer provides up to 92% of homogeneity at Re 1.0, generating 442 Pa of pressure drop,
this mixer makes a suitable candidate for research in the POCT field.

Keywords: point-of-care; passive mixer; micromixer; spiral micromixer; mixing

1. Introduction

Microfluidics has opened new horizons in the biological fields [1], such as single cell study [2,3],
drug discovery [4], lab-on-a-chip (LOC) and especially in point-of-care testing devices (POCT)
development [4–6]. Microfluidics capabilities in flow cytometry has led researchers to conduct assays
on evaluating the deformability of cells and permeability of drugs through certain membranes [7,8].
Besides, the controlled nature of the microfluidics has provided the possibility of sorting and
sequencing of cells [9,10]. In recent years, development of point-of-care testing devices (POCT) by
deployment of lab-on-a-chip (LOC) technology has been found to be noteworthy by the researchers [11].
Reducing the laboratory works and costs, rapid and accurate respond, providing bedside analysis and
being user-friendly have been the most well-known characteristics of these devices [11,12]. Micromixers
are one of the most important components of such devices. They have proved their efficiency in
achieving objectives such as sample preparation, glucose concentration detection, blood plasma
mixing, particle concentration detection etc. [13,14].

At high Reynolds number flows, mixing can be enhanced through secondary flows, chaotic
advection and Dean vortices, but in microfluidics (laminar flows), mixing relies on diffusion. Therefore,
according to the method used to maximize the mixing, micromixers can be classified as active or
passive. Active micromixers require an external energy source to stimulate the perturbations in the
flow, such as vibrations, and acoustic and electromagnetic stimulations. Passive micromixers do not
require an external energy source and hinge on geometrical features of the design for providing a
well-mixed mixture [13,14].

A lot of research has been conducted on optimizing the mixing phenomena in micromixers. Some
researchers have engaged the features of both types of micromixers in one device. Afzal et al. [15]
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investigated the effect of combining pulsatile flow and a bulb-shape geometry on the efficiency of
the mixer. In a similar approach, Silva et al. [16] carried out an investigation on a hybrid generation
of micromixers, where variable inlet widths were coupled with the pulsed flow. Other researchers
focused on the advantage of chaotic advection. For instance, Hermann et al. [17] studied the mixing in
three types of split-and-recombine (SAR) micromixers. In the proposed mixers, the 3D structure of the
micromixer provided the chance for the flow to split and twist and recombine with the initial flow from
another side. Raza et al. [18] showed that a split-and-recombine micromixer with a 3D structure was
able to provide high-quality mixtures at Reynolds numbers higher than 30. Chen et al. [19] compared
a 3D split-and-recombine micromixer with an in-plane T-mixer and showed the improvement of this
method against the simple in-plane mixer. Although hybrid and 3D generation of the mixers are able
to provide mixtures with promising homogeneity, the complexity of fabrication and the increased
pressure loss practically restricts the applicability of such devices in the development of lab-on-a-chip
(LOC) devices and point-of-care tests (POCT).

In planar mixers, researchers mainly follow the increasing contact surface (for low Reynolds
number regimes) or induce chaotic advection (for high Reynolds number regimes) to improve the
mixing. Julios et al. [20] studied a planar mixer with perpendicular rectangular grooves on the
straight microchannel. Alam et al. [21] also performed a similar investigation on the effects of adding
rectangular grooves on a curved microchannel. Both studies provided acceptable results, especially
on Reynolds number regimes higher than 60. Li et al. [22] studied the impact of putting obstacles on
the path of the flow and showed that the placement, size and the angle of the obstacles can determine
the performance of mixers in the range of 1 ≤ Re ≤ 10, but in higher flow rates the configuration of
the obstacles does not play such an important role. Chen et al. [23] included a pattern of pillars in
the flow path of the micromixer. The study clarified the relation between the Peclet number and the
mixing efficiency. The microchannel with obstacles (higher Peclet number) translated into a higher
efficiency mixer. Rahman Nezhad et al. [24] showed that deflecting flow with baffles could be a simple
answer for acquiring relatively homogeneous mixtures, when the facilities are not advanced enough to
fabricate sophisticated geometries. A study on the combination of gaps and baffles were conducted by
Xia et al. [25]. The results showed that the micromixer was able to provide mixtures with significant
uniformity at very low Reynolds number (Re < 1) and also at high Reynolds numbers (Re ≥ 40).

An alternative approach analyzed the effect of the geometry and working condition on the flow
behavior. Hossain et al. [26] evaluated the mixing phenomena in three planar micromixers in a wide
range of Reynolds numbers (0.267–250). This study showed that even though at the Reynolds numbers
range of 20–100 the square wave channel provided the highest quality mixture compared to zig-zag
and curved channels, at higher Reynolds numbers, the performance of the three mixers was almost
identical. Khosravi Parsa et al. [27] investigated the mixing efficiency in a sinusoidal micromixer with
respect to the ratio of amplitude to wavelength. The study concluded that at high Reynolds numbers,
the geometry of the mixers with higher amplitude and smaller wavelength allowed the Dean vortices
to develop in the peak zones. This was later translated into better mixing compared to the other
models. Vatankhah [28] evaluated the effect of the channel’s cross-section dimensions on the velocity
profiles in the channel. An accordion shape micromixer, which is an amended derivation of a zig-zag
microchannel, was studied by Cosentino et al. [29]. Their study evaluated the characteristics of the
proposed device, with respect to the biological applications and limits. The study indicated that not
all the current mixers are suitable for biological and biomedical research, since they cannot provide
sufficient mixing and support vital living conditions for cells. Researchers have addressed the problem
of providing high quality mixtures at very high or very low Reynolds numbers. The low Reynolds
number range (0.1 ≤ Re ≤ 10.0) is the Achilles ankle of micromixers and in all the references the lowest
quality is reported in this domain. Moreover, the pressure drop has always been sacrificed in order to
achieve a high quality mixture. However, an increased pressure drop might mean increased surface
tension, which could damage or modify living cells.
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The purpose of this paper is to introduce a micromixer suitable to be mounted on POCTs and
LOCs. Since in these applications the Reynolds number is low, diffusion is considered as the main
mixing mechanism, and the proposed design enhances the contact surface with a reduced pressure
drop to provide tolerable conditions for living cells. The approach used in this study aims to enhance
the residence time by enhancing the mixing phenomena using a novel planar spiral shape micromixer
with expansion and contraction parts. The purpose of these expansions/contractions is to enhance
the diffusion length and modify the velocity profile. Nine different mixers (one-loop, two-loop and
three-loops without expansion, with 5% expansion and 10% expansion) have been used in this study
to predict an improved performance in the critical working range of Reynolds numbers 0.1 to 10.0.

2. Mixer Design and Numerical Analysis

2.1. Target Models and the Novel Modification

Three different classes of mixers will be studied based on a single loop, two loops and three loops.
The successive arc-shaped mixing units are created from two different centers: A and B, see Figure 1a.

 

 

 

 

 

 

Figure 1. (a) Conceptual diagram of the proposed one loop class micromixer, where Rinner and Router
represent the radius of inner and outer walls of the basic design of the spiral mixer. (b) Schematic view
of the three loops mixer with 5% expansion. The width of the channel at the cross-sections a, b, c and d
is 250, 350, 450 and 550 µm, respectively.

Expansions will be added to all three mixer classes from the simple spiral design, see Figure 1a
(dash line). The initial type is the simple spiral micromixer without expansion (0%). Two more types of
expansion/contraction mixers will be studied (5% and 10%). To build this geometry, the outer/inner
wall of the microchannel is increased/decreased following a different circle path. These circles have a
radius of 5% or 10% (based on the type of the mixer) difference from the original radius. The expansion
parts are assumed to reach to maximum values at each arc at the π/4 and 3π/4 or 5π/4 and 7π/4
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(depending on where the curvature is located). In all cases, a minimum width of 200 µm is achieved at
nπ/2 points (Venturi point, see Figure 1b).

Shortly after the cross-shaped inlet, the centerline of the microchannel enters in an arc with an
angle of 180◦ around the center point A. Then it continues its path with the same angle, but this
time around center point B. This process continues until the arc reaches the exact midpoint between
the centerlines A and B. After that, the radius of the arc increases, as the end of the arc recedes
from the other center point. This process will go on until the outgoing curvature, which ends at the
outlet, reaches the same value of the radius as the ingoing curvature. Table 1 summarizes the overall
dimensions of the studied model and the total mixing length.

Table 1. Overall dimensions of the studied models. The height of the channel at all sections is constant
and set to 20 µm.

Name of the Device Device’s Length
(mm)

Device’s Width
(mm)

Minimum Mixing
Length (mm)

One loop
0% of expansion 5.7 3.2 14
5% of expansion 5.7 3.23 14
10% of expansion 5.7 3.26 14

Two loops
0% of expansion 7.7 5.2 29.7
5% of expansion 7.7 5.22 29.7
10% of expansion 7.7 5.3 29.7

Three loops
0% of expansion 9.7 7.2 51.7
5% of expansion 9.7 7.24 51.7
10% of expansion 9.7 9.36 51.7

The proposed mixer, shown in Figure 1, minimizes the space consumption and does not increase
the pressure drop as much as some types of micromixers such as split and recombine mixers and
mixers with obstacles on the path of the fluid [17,18,22,23].

Instead of adding commonly used T or Y inlets, a cross-shaped inlet is used in the proposed
mixer design. Therefore, a double interfacial area, as depicted in Figure 1b, is achieved by injecting the
solvent symmetrically from two sides. The width of the channel in the inlet part is kept constant at
200 µm. The successive arrangement of arc-shape mixing units causes continuous acceleration and
deceleration of the fluid flow, i.e., disturbing streamlines and enhancing diffusion.

2.2. Numerical Simulation, Governing Equations and Dimensionless Numbers

Fluid flow in micromixers is generally isothermal, incompressible, Newtonian and laminar.
Therefore, it is governed by the continuity equation (Equation (1)), and Momentum (Navier–Stokes)
equation (Equation (2)). Convection-Diffusion equation (Equation (3)) is the main physical
phenomenon governing the mixing in such systems. In order to calculate the mixing, Equation (3)
should be solved together with Equations (1) and (2), so the spreading concentration and the velocity
field are coupled. These equations can be expressed, respectively, as:

∇
→
U = 0 , (1)

ρ
→
U · ∇

→
U = −∇P + µ∇2

→
U , (2)

ρ
→
U · ∇ϕ = D∇2 ϕ . (3)

In the above equations,
→
U is the velocity vector, ρ is the density, P is the pressure, µ is the

dynamic viscosity, D is the diffusion coefficient and the ϕ is the concentration of the species inside
the micromixer.
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Numerous investigations have established the working conditions of micromixers according to
the Reynolds number. This dimensionless number expresses the ratio of the magnitude of the inertial
term to the viscous term in the channel.

Re =
ρ
→
UDh
µ

, (4)

where ρ,
→
U, and µ are density, velocity vector and the dynamic viscosity of the fluid, respectively, and

the Dh is the hydraulic diameter of the channel, for which a rectangular duct can be represented as:

Dh =
4 × Ac

Pw
, (5)

where Ac is the surface area of the channel’s cross-section, and Pw is the wetted perimeter.
Since the fluid flow in POCT micromixers is within the laminar range, the mixing can therefore

be carried out via diffusion and/or advection. Depending on the operating Reynolds number, one of
the above-mentioned effects is most likely to be overcome as the leading mixing factor in the device
(except for the Re = 1, where neither diffusion nor advection has dominance over the other). Peclet
number (Pe) denotes the ratio of the advective transport rate to the diffusive transport rate.

Pe =
L ×

→
U

D
, (6)

where L is the characteristic length.
In order to verify the validity of proposed design, the normalized ratio (σ) of the differences of

the mixture and the mixing species to the ideal concentration is measured by analyzing the species
distribution along the cross-section at the outlet of the mixer.

σ =
Ci − C

Cmax − C
, (7)

In the above equation, Ci stands for the concentration at each pixel (position on the cross-section of
the outlet) and Cmax is the highest value of concentration in the mixer. Notably, C (ideal concentration)
represents the median value between the maximum amount and minimum amount of concentration
in the mixer, which in this study is set to 0.025 mol/m3.

M × Q = 1−

√√√√ 1
N
×

N

∑
1
(σ2) , (8)

Mixing quality (M.Q) can be obtained through the abovementioned equation, where N is the
number of calculating points (evaluating points) over the outlet.

The mixing process is simulated by a commercial CFD-code software, ANSYS FLUENT 15.0
(ANSYS, Inc., Canonsburg, PA, USA), which analyzes the flow and the diffusion in the device.
Benefiting from Finite Volume approach, this solver solves the continuity and the momentum equations,
at steady-state case, at each control volume with respect to the physical properties of the introduced
fluids (such as density, viscosity and diffusivity), initial settings (pressure-induced or given velocity)
and boundary conditions (see Table 2 for details about the physical properties). The solver is set to the
SIMPLE scheme for Pressure-Velocity coupling. The configuration of the software for solving pressure
and momentum modules is set to the second order method and for the scalar to the power law method.
The software is capable of introducing scalars as non-reacting agents that do not change the density or
the viscosity of the working fluid. The only distinguishing factor of the scalars from the dominant fluid
is the different diffusion coefficient, which can be set in the software. The flow is assumed to be in the
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laminar range (Re smaller than 50) and therefore, Dean vortices are unlikely to take place. The middle
inlet is dedicated to water and the diffusive agents are considered to be injected from the side inlets.
The accumulative discharge of the side inlets is considered to be the same as the middle inlet.

Table 2. Physical properties of water and diluted ink.

Material Density (kg/m3) Viscosity (kg/(m·s)) Diffusivity in Water (m2/s)

Water 997 0.001 -
Diluted ink ≈997 ≈0.001 5.5 × 10−10 [30]

The 2D geometry is meshed in GAMBIT 2.4.6 software (ANSYS, Inc.) (the device’s dimensions
are mentioned in Table 1). Therefore, a quadratic mesh scheme followed by a more detailed mesh
distribution on the walls and critical points (Venturi points) is adopted. A grid independency analysis
is done, based on six different mesh densities and setting the residuals to 10−6. Based on the meshing
categories, the number of grid cells varied from 40,000 cells as the low-quality scheme for the one loop
model without expansion parts to more than 3.1 million cells as the ultra-fine scheme for the three
loops mixer with 10% expansion parts. However, by adopting the fine scheme, these ranges were
limited to 289,000 and 1.7 million grid cells. The mean interval size of each cell varied from 10 µm to
2.75 µm (see Table 3). Among those, the meshing configuration that provided 3.75 µm of the mean
interval size of each cell resulted in an acceptable answer accuracy (see Figure 2). According to grid
independency analysis results, the mesh with cells smaller than 2.75 µm showed no significant change
on the results but the required calculation time increased exponentially, see Figure 2.

Table 3. Meshing details of one loop micromixer with 0% of expansion.

Mesh Design Interval Size of
the Mesh

Minimum
Orthogonal Quality

Maximum
Aspect Ratio

Number of
the Cells

Low 10 0.87 2.19 40,223
Medium 7.5 0.872 2.24 71,597

High 5 0.848 2.45 161,473
Fine 3.75 0.818 2.36 289,093
Ultra 3.25 0.83 2.51 383,679

Ultra-fine 2.75 0.839 2.38 537,233
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loop spiral micro mixer obtained from different meshes.
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3. Experimental Section and Fabrication Process

3.1. Fabrication of the Micromixer

Microfluidic mixers can be manufactured following different processes, varying from CO2 laser
ablation to 3D printing techniques. The present investigation uses the soft lithography technique [31].
In this method, a cover glass slide is coated with photo-resist SU-8 (thickness 5-27 µm @GERSTELTEC
SARL, Pully, Switzerland) to create a mold with the height of 25 µm. By placing a negative film of
the micromixer and beaming UV light on it, the geometry of the device is defined in SU8. The mold
fabrication process finishes with sinking the defined pattern in the SU8 developer (PGMEA—Propylene
glycol methyl ether acetate @GERSTELTEC SARL, Pully, Switzerland) and cleaning it with propanol.
Then, a 10:1 mixture of Silicone Elastomer SYLGARD 184 (@Dow corning, Midland, MI, USA) and
its curing agent are poured on the mold, which previously is coated with chlorotrimethylsilane
vapor. After baking the polydimethylsiloxane (PDMS) and removing the PDMS from the mold, the
connections are created. O2 Plasma (@Gambetti Vacuum Technology, Binasco (Milan), Italy) is used to
bond the hardened PDMS and a cover glass slide. Further precise measurements showed that in some
mixers a maximum fabrication error of 2 µm in the width of the channel and 1.5 µm in the height of
the channel was occurred.

3.2. Experimental Setup

To generate the flow, two syringe pumps (Graseby 3200- @Smiths, Watford, Hertfordshire, UK-
and kdScientific 410-CE- @kdScientific, Holliston, MA, USA) were used. Deionized water and food
colorant (a solute of deionized water and food coloring -E133- with the ratio of 2:1) were used as the
working fluids. According to the analysis, actual differences of the density and viscosity of the working
fluids were negligible. The syringe pumps’ calibration was verified by filling a 5-mL container in a
determined time, where the container’s volume was graded by 0.1-mL lines.

The images of the unmixed and mixed fluids were captured using a Leica microscope (LEICA
EZ4D- @Leica, Wetzlar, Germany), with 30× magnification. The microscope was equipped with lights
that are able to beam on the top, side and the bottom of the device. The software of the microscope
renders the image, varying from black and white view (0% of color saturation), normal view (100% of
saturation) and exaggerated view (200% of saturation).

3.3. Image Analysis

Analysis based on images has been widely used in science. It is one of the most common methods
to visually illustrate the results of the study. This method has a wide application varying from particle
locating and tracking [32], to showing the lysis of cells and to the evaluation of the mixture quality [5].

In this study, pictures obtained of the mixing process are evaluated using ImageJ 1.51k software
(National Institutes of Health (NIH), Bethesda, MD, USA). This software analyzes the features of a
specified zone or line. In the evaluation process, the pictures are converted to grey scale (through
RGB (Red, Green and Blue lights) analysis) and each pixel intensity is evaluated between 0 and 255.
To reduce the noise influence, multiple analyses of the same zone from different pictures are carried
out, and an average value is obtained as the foundation of the results. Notably, the standard deviation
of the analysis is considered as the error range at each pixel.

Furthermore, experimental uncertainty in this work is highly influenced by the image processing
section rather than gripping to the established boundary conditions. The results of image analysis
showed that the intensity of light in the background varies from center to the corners and in the places
where the light intensity was relatively lower compare to the center, higher noise was recorded in the
RGB analysis. Background noise due to polarization and light breakdown, when it passed through
the cover glass, PDMS layer and microscope lens, was obvious. For tackling this problem, it was
decided to manually define a circular zone in the center of the photo capturing area in order to make
sure that the minimum and maximum values of grey scale index are the same in the circle for all the
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experiments (Dettmer et al. [33] followed a similar process with software for reducing the background
noise). This procedure proved to be useful as the reported noise dropped significantly.

4. Results and Discussion

4.1. Simulation Results Based on the Number of Loops

To investigate the influence of expansion in the mixing behavior, a basic spiral mixer was
chosen to compare with mixers with different expansion rates up to 10% expansion. Numerical
simulations were performed in a range of Reynolds numbers relevant to point-of-care microfluidic
devices (0.1 ≤ Re ≤ 10.0). In the range of Re ≤ 0.9, molecular diffusion is the main mixing factor as
discussed in methodology Section 2.2. The other two Reynolds regimes (Re ≈ 1 and Re ≤ 10) capture
the balance between inertial and viscous terms when they are identical (Re = 1) and when the inertial
term is dominating the mixing phenomena (Re = 10).

Table 4 displays the general efficiency of the mixers calculated according to (Equation (8)), under
Reynolds of 0.1, 1.0 and 10.0. The results show that the mixers can provide a mixture with a minimum
quality of 62% and a maximum quality of 99.8%. Notably, the minimum quality of the final mixture is
reported at the range of Re 1.0.

Figure 3 illustrates that by utilizing expansion and contraction, the spiral mixer will increase
the mixing length (or in another word the diffusion surface, see Figure 1b dashed line) along the
channel. The numerical simulation (Figure 3) shows that since the flow is laminar, the flow lines
expand following the profile, and therefore the diffusion surface increases. Therefore, the channel
walls’ curvature affects the neighboring flow streams. Owing to the tiny scale of the micromixer, any
changes in the flow stream’s direction and magnitude should not be neglected. As it is illustrated
in Table 4, the mixing length of the devices increases by adding expansion parts compared to the
basic mixers. The calculated mixing lengths of the studied models increase by a minimum of 27.18%,
17.25% and 9.31% compared to their basic designs. This increased mixing length will improve the
performance of the modified spirals compared to simple spiral micromixers, but this will not be the
only determining factor in evaluating the mixers’ performance.
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Figure 3. Simulation of the mixing of dyed water injected from inlet 1 and 2 and deionized water
from inlet 3 at the Reynolds number of 1.0 (a) in one loop mixer without expansion and (b) one loop
mixer with 10% expansion. The scalar concentration is defined as 0.05 mol for fluid 1 and 0 for fluid 2.
The perfect mixing would give a scalar concentration value of 0.025.
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Table 4. The efficiency of the mixers calculated according to Equation (8). The Reynolds numbers are
based on the accumulative discharge of the inlets at the smallest cross-section of the channel.

Mixer Type Re = 0.1 Re = 1.0 Re = 10.0

One loop
0% expansion 82.8% 62% 66%
5% expansion 90.25% 77.6% 81.1%
10% expansion 93.3% 85% 88.8%

Two loops
0% expansion 90.3% 61.2% 63.3%
5% expansion 98.3% 96% 96.3%
10% expansion 98.6% 96.9% 97.7%

Three loops
0% expansion 96% 67% 64.9%
5% expansion 98.9% 97.9% 98.1%
10% expansion 99.2% 98.5% 98.9%

In order to analyze the effect of increasing the number of loops and the added expansion parts
on the mixing efficiency, the models are tested under similar initial conditions. Figure 4 displays
the concentration of species along the cross-section line of the outlet (200 µm). At each graph, the
expansion rate and the initial velocity are kept constant. According to the graphs, in the ranges of
(Re < 0.5) where the viscous term is stronger than the inertial term, the mixing is improved by adding
loops. This can be translated into the fact that the species have more time to get diffused inside the
channel and that the centrifugal forces are negligible. For the range of (Re = 1.0), neither the viscous
term nor the inertial term are dominating the flow. Therefore, although adding loops increases the
length of the channel, the reinforced inertia of the flow does not allow the components to disperse into
its surroundings, and even the added length is not sufficient to provide a significant improvement. This
subject is repeated for the cases without expansion parts at (Re = 10.0) with a difference. Even though
the inertial term is 10 times stronger than the viscous term, it is not enough to cause secondary flows
and Dean vortices, which are considered as the main mixing factors in a laminar regime that usually
takes place at (Re > 40.0) [23].

Table 4 shows that the performance of the mixers at Reynolds 10.0 improves compared to Reynolds
1.0 range; however, this change is not appreciable in Figure 4. Regarding the simulation results (see
Table 4), the performance of the simple spiral mixers (without expansion parts) is highly sensitive to
the operating conditions. For instance, the efficiency of the mixers may vary from 96% (for 3 loops
mixer without expansion parts at Re 0.1) to 62% (one loop mixer without expansion parts at Re 1.0).
This sensitivity is reduced dramatically by adding expansion parts, and a more uniform distribution
of the solute can be achieved at the outlet of the mixer in any operation range. In the spiral mixers
without expansion parts, the mean difference between the highest quality and the lowest quality is
around 20%, while in the one loop mixer with expansion parts, 12% difference is reported between the
best and worst performance of the mixer. The difference is minor and around 2% or 1% for two loops
and three loops mixers with expansion parts, respectively.

Besides the analysis on the Peclet number at the widest section of the mixers, where the channel
reaches its maximum width, it was showed that the increase of the channel width the Peclet number
decreases. Due to the definition of the Peclet number, this reduction can be translated into the fact
that the diffusive term has been reinforced. In calculation of the Peclet number at the cross section,
the characteristic length changes into hydraulic diameter. Due to the fact that the applied modifications
on the geometry were in the XY plane and the flow rate was constant, the increase in the hydraulic
diameter and the reduction in the flow velocity are not proportional. This description has been well
illustrated in Table 5, where by adding 10% expansion parts the advective term has reduced 57% and
76% in one loop mixer and three loop mixers, respectively.
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Table 5. Peclet number at the widest cross section of the channel (Re 1.0).

Mixer Class 0% Expansion 5% Expansion 10% Expansion

One loop 1836 1092 777
Two loops 1836 859 561

Three loops 1836 708 439

In the methodology, we already described that the initial velocities are set to generate specific
Reynolds number regimes based on the minimum cross-section of the channel (Venturi Point).
In the expansion and contraction mixers, the flow is driven into sections with larger cross-sections.
Nonetheless, the regional Reynolds number reduces according to the definitions of Equations (4) and
(5) in these areas. On the other hand, the architecture of the design and the existence of the Venturi
points provide a continuous disturbance in the velocity profile. All these factors together will result in
an enhanced and improved mixer that can operate in a wide range of Reynolds numbers regimes.

 
Figure 4. Species concentration at the outlet of the mixer. At each row, mixer types with similar
expansion rates are compared with respect to the operating conditions, which are Re 0.1, Re 1.0 and Re
10.0. Regarding the definition of mixing, a straight horizontal line on the level of 0.025 (mol) represents
an ideal prepared mixture at the outlet of the device.

4.2. Simulation Results Based on the Expansion Rate

The mixer’s performance can be characterized from the expansion rate point of view. According
to Figure 5, the one loop class of mixers with 5% and 10% expansion parts prepare the final solute
with better quality. Although, regarding the analysis on the effect of the number of loops on the
mixer’s efficiency, the performance of the different classes decreases in the Re 1.0 and Re 10.0 regimes.
However, the mixer types with 5% and 10% expansion parts show significant improvement toward
mixing efficiency. As displayed in all the graphs of Figure 5, the iconic revision in the design of the
mixer damps the destructive effect of the inertial term in the mixing and reinforces the diffusion inside
the device. Meanwhile, the quality of the one loop mixer without expansion parts is reported as 62%
and 66% on Re 1.0 and Re 10.0 regimes, respectively. The performance of the one loop mixers with 5%
and 10% expansion parts for the aforementioned regimes are reported as 85% and 88.8%. Moreover,
the comparison between the mixer types in the two loops and three loops classes implies that adopting
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expansion and contraction features in the architecture of the mixer improve their efficiency by more
than 30%.

 
Figure 5. Species concentration along the outlet’s cross section. At each row, a specific class of the
mixers is represented and at each column the concentration distribution of species at the outlets,
regarding the operating conditions.

4.3. Effect of the Expansion on the Diffusion

Adding loops to create as well as to add expansion parts to disturb the flow streams, increases
the total mixing length. Both of these factors are key parameters in the Peclet number. Peclet number
(Equation (6)) relies heavily on the mixing length and velocity vector; see Equation (6). Figure 6 shows
the velocity contours of the one loop mixer without expansion parts and with 10% expansion parts.
The distinguishing factor in the efficiency of the above mixers is the velocity profile and the extended
mixing length. The combination of these parameters supports the mixing phenomena. The velocity is
decreased and the mixing length is increased.
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The global mixing efficiency at (Re = 10.0) is improved toward mixers at (Re = 1.0), but this trend
changes completely in the mixers with expansion parts. According to the results, as Figure 5 illustrates,
adding loops is an effective strategy for prompting the mixing length in the device. Although the
device’s efficiency reduces at (Re = 1.0) compared to other lower and higher initial velocities, the effect
of the inertial term and the viscous term being in the same order has been weakened by adopting
the expansion and contraction design. Due to the variable width of the channel and the changes in
the flow direction at each segment, this geometrical feature causes a disturbance in flow stream and
velocity profile continuously.

With respect to the continuity and momentum equations, the velocity at the Venturi points reaches
the maximum value, and at the middle of each quarter arc, reduces to the minimum. This fluctuation
can be repeated 8 to 16 times, depending on the type of mixer.

On the other hand, the simulation results indicate that the flow lines follow the curvature of the
nearest wall, see Figure 6.

This means that the flow should cover more distance in the mixers with expansion parts compared
to the models without expansion; see Table 6. Therefore, designs with expansion take advantage of an
extended diffusion surface and longer diffusion time. Table 4 and Figure 5 clearly show that adding
loops generates better mixing performance at all the mixing ranges.

Table 6. Effect of adding expansion parts on the increase of mixing length in comparison to the mixers
without expansion parts.

Mixer Type ∆L (mm)

One loop
0% expansion -
5% expansion 1.71
10% expansion 1.73

Two loops
0% expansion -
5% expansion 2.30
10% expansion 2.35

Three loops
0% expansion -
5% expansion 4.50
10% expansion 4.63

According to the results (see Table 4, Figures 4 and 5), the quality of the final mixture that is
prepared in a one loop micromixer with 5% expansion parts is improved by 33.71% compared to the
one loop mixer without expansion parts. These improvements are reported as 88.89% and 94.3% for
two loops and three loops mixers with 5% expansion parts, respectively, toward their simple models.
Moreover, for devices with 10% expansion parts, these improvements advance further and peak at
52.25%, 93.6% and 96.9% for one loop, two loops and three loops mixers, respectively.

On the other hand, there is another important factor that plays a key role in the practicality and
the efficiency of the proposed mixer. A numerous number of mixers are suffering from the considerable
amounts of pressure drops in their designs. This feature causes the constant need for an external
pump to overcome the pressure drop and keep the flow in a desired Reynolds number range. Besides
increasing the chances of structural failure in the device, requiring an external energy source is always
a drawback in the Point-of-Care research field. The investigations on the proposed micromixer show
that adopting the expansion and contraction parts in the architecture of the design not only improves
the mixing quality but reduces the pressure drop in the system. According to Table 7, the pressure loss
at each class of the micromixers decreases by adding expansion parts. While the pressure drop for
the one loop mixer without expansion parts is reported as 640.85 Pascal, that amount is reported as
442.48 Pa for three loops mixer with 10% expansion part (at Re = 10.0). This can be translated into
the fact that using the mixers with expansion parts can provide a higher mixing quality with a lower
pressure drop.
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Table 7. Pressure drop amongst various types of mixers. All the values are in Pascal.

Mixer Type ∆P at Re 0.1 ∆P at Re 1.0 ∆P at Re 10.0

One loop
0% expansion 6.17 61.97 640.85
5% expansion 3.26 32.78 352.9
10% expansion 2.44 24.58 275.18

Two loops
0% expansion 12.6 126.23 1284.21
5% expansion 4.78 47.96 506.84
10% expansion 3.24 32.59 359.29

Three loops
0%expansion 21.61 216.3 2181.24
5% expansion 6.03 63.48 664.153
10% expansion 4.03 40.48 442.48

4.4. Validating the Numerical Results Based on Real Case Experimental Models

Since the validity of the suggested idea should be verified, a series of experiments are designed
and conducted to test the performance of the mixer. The devices from Table 8 (one loop without
expansion parts, one loop with 10% expansion parts, three loops without expansion parts and three
loops with 10% expansion parts) were fabricated and tested according to the simulated boundary
and initial conditions. The constant flow rate of 0.2 mL/h was set for the main channel (water) and
0.1 mL/h was allocated to the side inlets (ink). Since the microscope beams the light from below
and the dimensions of the channel are small, determining the borders of the channel is challenging.
For a better contrast of the channel walls, the ink is injected from the lateral inlets. This allows a
better identification of the channel walls and more accurate analysis of the device. Moreover, since the
weakest performance of the micromixer was predicted to be in the Re 1.0 regime, the flow rate of the
inlets was set to a value that mimics this regime.

Figure 7 shows the image of the one loop mixer without expansion parts, which achieved a 58.28%
mixing quality.
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simulation of the species concentration.

Table 8 summarizes the comparison between simulation and experimental results. Several tests
(at least three tests of each device and multiple pictures were captured during each test) provided the
average standard deviation of the results, which can be translated into the error margin between the
experimental and numerical results. The standard deviation increases in sample devices with larger
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geometries. This is due to the fact that to evaluate the mixture, the captured image should contain the
inlets and the outlet. Therefore, the magnification, which is suitable for one loop mixer, is not adequate
for the three loops class of spiral mixers. All in all, the average reported homogeneity of the fabricated
mixers, obtained from pixel to pixel analysis, remains in a maximum 7% difference from the predicted
numerical results. Thus, the numerical simulation and experimental results are in good agreement
with experimental results. Figure 8 shows a comparison of the species concentration at the outlet (see
evaluation zone in Figure 7). In this figure, the mean value of the greyscale at each pixel (analysis of
multiple pictures of the evaluation zone) is considered as the result of the experimental evaluation
and the error bars for each segment are determined through calculating the standard deviation of
the analysis of the pictures in the related pixel. Due to the presence of noise in all the images, the
calculations are carried out for the same spot from different pictures.

Table 8. Comparison of numerical and experimental mixer’s efficiency at Re 1.

Mixer Type Simulation Results (Re 1.0) Experimental Results

One loop 0% expansion 62% 58.2% ± 8.57%
10% expansion 85% 78.9% ± 9.13%

Three loops 0% expansion 68% 66.3% ± 13.11%
10% expansion 98.5% 91.8% ± 14.74%

 
Figure 8. Concentration of the species at the cross-section of the outlet. (a) The graph represents the
distribution of species at the outlet of the three loops mixer with 10% expansion. (b) Species distribution
at the outlet of the one loop mixer without the expansion part.

According to the results (Figure 8), not only is the global efficiency of the fabricated models in a
reasonable range, but it also proves that the predictions about the concentration distribution, which
were made by the software, are correct.

5. Conclusions

The purpose of this study was to design an improved micromixer for low Reynolds regimes
useful for LOCs and POCTs devices with high efficiency and low pressure drop. The results of this
paper propose a variable radius spiral micromixer as an excellent candidate. This paper studies
the performance of the proposed designs in the flow regime range of Reynolds number 0.1 to 10.0.
The numerical analysis was validated experimentally at Re 0.1.

Therefore, according to the results, the homogeneity of the mixture at the outlet is improved
by adding loops to the mixer at low Reynolds numbers. By increasing the Reynolds number to 1.0,
the efficiency of the micromixers without modified geometry dramatically drops, while in the variable
radius micromixers, the decrease in performance at this flow regime is negligible. Both designs
improved their performance at Reynolds 10.
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This work demonstrates that regardless of the number of loops, and at every given inlet flow,
the performance of the variable radius micromixers improves by increasing the expansion rate.
Combining a two loop or three loop micromixer with expansion and contraction parts achieves
mixing efficiencies higher than 90%.

In addition, the proposed expansion and contraction parts decrease the pressure drop by more
than 60%. This means that employing a two loop or three loop micromixer with expansion parts
is a reliable choice in situations where it is required to ease the fabrication, provide a homogenous
outcome, use the surface area efficiently and have a low pressure drop.
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A B S T R A C T   

A miniaturized 3D-printed device has been designed, manufactured and validated to perform as a low-cost sensor 
for compositional analysis of buffered and non-buffered solutions in industrial or remote areas. 

The proposed sensor takes advantage of the transport phenomenon and colorimetric measurements. The novel 
design can simultaneously detect the ionic strength of the solution by measuring the diffusion width of the ions 
and the pH by image analysis of the pH indicator color change. The results showed that it can detect pH vari-
ations of 0.25 and ionic measure difference of 0.1 M in non-buffer solutions. In addition, the design showed its 
adaptability to be used as a self-referencing sensor. 

The 3D-printed sensor presented here is not only successful in the evaluation of some important chemical 
characteristics but also brings flexibility, cost-effectiveness, swiftness and user-friendliness.   

1. Introduction 

Historically, the agri-food industry, the processing of agricultural 
raw materials or their preprocessing for future use in food preparation, 
has been the sustaining industry for humanity. Among various pro-
ceedings, grape processing is an ancient activity. Viticulture has been an 
old, but thriving tradition in Spain and has an appreciable economic 
impact. Wine’s importance for Spanish culture, economy, and industry 
is undeniable. As far as, January 2020, Spain was the third producer of 
wine worldwide and hosted about 13% of worldwide vineyards. Spanish 
wine-making tradition has followed strict standards to always maintain 
its unique wine quality and taste. Sustaining these qualities would not 
have been possible without an important effort of innovation. 

Must extracted from the grapes is mostly composed of tartaric, malic 
and citric acids (Prenesti et al., 2004, 2012), which can slightly change 
during the ripening and depends on the species of the grapes as well. 
Besides, the climate of the vineyard can influence the composition of the 
must too. During the ripening and fermentation process, different acids 
are formed and the identification of such characteristics is extremely 
relevant for an enologist (Angelkov & Martinovska, 2018; Sanz, 2014). 
Enologists not only monitor the pH, but also track the titratable acidity 
due to the necessity of controlling the wine stability, in accordance with 
the regulations and producing the unique features of each wine. 

Disclosing the precise composition of unknown solutions or finding 
the concentration of a specific substance has always been an interesting 
topic for the researchers and industry, especially for the industries that 
are attending to humans’ health and sustenance. Numerous physical and 
chemical methods are used for quantitation of solutions (Fukuhara, 
2020). The most common laboratory techniques include electrophoresis 
(Fuguet et al., 2009), titration (Honorato et al., 1999) or enzyme-linked 
immunosorbent assay (ELISA) (Grigore et al., 2018). The standardiza-
tion of the production of agri-food products has introduced analytical 
complex technologies. The most common procedures utilized to study 
the composition and the chemical structure of the solutions are High- 
Performance Liquid Chromatography (HPLC) (Boukhobza & Crans, 
2020; Sahu et al., 2018), Fourier-Transform InfraRed (FTIR) (Versari 
et al., 2014) and Nuclear Magnetic Resonance(NMR) spectroscopy 
(Sobolev et al., 2019). However, all these analytical techniques have 
large turnaround times and require trained staff and equipment. 

Recently, the possibility to miniaturize these processes using mi-
croelectronics and microfabrication, has enabled the use of multiple gas 
and odor sensors in the so-called e-nose biomimetic approach to obtain 
special characteristics of each desired wine, but not the exact compo-
sition (Matthews et al., 1990; Preedy, 2016; Rodríguez-Méndez et al., 
2016; Wilson, 2013). This is an important step towards miniaturization 
and it definitely reduces the required time for the analysis. However, e- 
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noses require functionalized surfaces to detect compounds and they are 
normally single-use or have a short life-cycle. E-noses are consisted of a 
series of sensors to detect different gases or components of wines, which 
provides a large array of data but on the other hand, increases the 
complexity. 

Two of the essential characteristics of wines in the winemaking 
process are pH and ionic strength (acid concentration). Therefore, a 
portable device that provides both in short time and near the product is 
of huge interest. There is a reasonable amount of approaches to measure 
pH with short turnaround time that are miniaturized i.e. electrochemical 
or optical approaches with novel materials as coatings or paper in-
dicators (Ghoneim et al., 2019; Rodríguez-Méndez et al., 2016), which 
have a broad range of price and accuracy. However, there are few 
methods to measure the ionic strength of solutions, either buffered or 
non-buffered ones, in a cost-effective and fast approach. 

Microfluidics uses minimum amounts of fluids, which provides spe-
cific characteristics to the ionic transport in the microfluidic flow. The 
surface to volume ratio is important at micron-scale and we can take 
advantage of laminar flow or fast diffusion of molecules at this scale. 
Previous researchers have started to take advantage of such possibilities, 
while some others have regulated the usage of microfluidics in chem-
istry (Persat et al., 2009). Dzebic et al. proposed a microfluidic design 
that was able to determine the unknown concentration of an analyte 

(titration) on a chip, using microliters instead of milliliters (Dzebic et al., 
2017). Other researchers have focused on the use of microfluidics to take 
advantage of the fast diffusion of protons. For instance, there are reports 
that study the stomach mucus barrier function (Li et al., 2012) or 
determine the pKa through capillary electrophoresis (Cabot et al., 2015). 
Specially, Yager research group pioneered the use of T-sensors for pH 
determination (Osborn et al., 2011). 

In this paper, we present for the first time a microfluidic 3D-printed 
design capable of measuring ionic-strength and pH near the product, by 
taking advantage of fast diffusion and mixing in the design. The design 
has been validated in buffer solutions (by using HEPES) and non- 
buffered solutions (white wine). The accuracy, fast responsiveness, 
minimum analyte requirement and user-friendliness are the noteworthy 
characteristics of the proposed device and makes it an ideal choice for 
laboratory and industrial approaches. 

2. Methodology 

2.1. Proposed geometry 

*Fig. 1 presents a schematic implementation of the proposed device 
to evaluate the pH and ionic strength of a non-buffered solution such as 
wine in a remote environment such as a winery. The proposed geometry 

Fig. 1. a) Vision of sensor implementation for wine evaluation (pH and ionic strength). i) Ionic strength evaluation zone and ii) pH evaluation zone. b) The diffusion 
phenomenon is illustrated here. Wine sample (pH 3.52) is injected through the upper inlet and the 1.0 M tartaric acid solution is injected through the bottom inlet. 
The flowrate of the both lateral inlets is identical and equal to 2.1 ml/h. Yellow arrows represent the diffusion flux in the reaction zone. c) Picture of the diffusion 
phenomena at the intersection of the inlets. Evaluation line: where the buffer diffusion is measured over. d) Picture of the 3D printed manufactured device. 
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takes advantage of laminar flow established at the microscale. Hence, 
the diffusion is enhanced within the channel and enables the estab-
lishment of the relation between the diffusion and the ionic strength of 
the species in both buffered and non-buffered solutions. 

Diffusion is best traceable when the solutions are first met. There-
fore, the diffusion is evaluated at the intersection of the inlets, see Fig. 1- 
a point i. A diffusion zone will be created because of the encounter and 
the analysis of the diffusion zone can reveal the ionic strength of the 
solutions (Fig. 1 – c). On the other hand, the pH analysis is performed at 
the outlet of the device, at this point the pH indicator and the solutions 
are uniformly mixed, see Fig. 1-a point ii. However, for the experiments 
that are susceptible to crystallization, the pH can be evaluated right after 
the intersection to avoid the interference of the crystals on the image 
processing. 

2.2. 3D printing fabrication 

The manufacturing process uses Digital Light Projection Technique 
(DLP) (Gong et al., 2015). Briefly, a 3D model of the geometry, previ-
ously designed in our research group (Mehrdel et al., 2018), is modeled 
using @Solidworks software and exported to *.stl format to be intro-
duced to the @MiiCraft Plus printer. The built-in @MiiSlicer software of 
the 3D printer later slices up the 3D model. After adjusting the settings, 
such as UV light exposure time (4.2 s) and the rest time between ex-
posures (at least 1.8 s), the model is printed. The layers of photosensitive 
resin are successively exposed to UV light to define the pattern. In this 
process, every layer is hardened where exposed and deposited on the top 
of the previously printed layer. 

Once the channel structure is printed, the process is halted and the 
excess resin is removed via gentle air blow in order to guarantee that no 
resin has remained inside the channel. The channel can be either 
covered by further printing on the top or by attaching it to a glass slide. 
In any case, a UV light exposure of 1800 s is needed for a perfect cure. 
Finally, the connectors are installed and fixed in the inlets and outlet by 
a photocurable resin @NOA 63. Please see Fig. 1 – d. 

The width of the channel in the narrowest section is set to 500 µm. 
The channel’s height is 500 µm and as mentioned before, it is sealed 
either by printing a top layer with a thickness of 300 µm or attaching a 
microscope glass slide to facilitate the analysis of the images. The ma-
terial used in the printing procedure is @MiiCraft BV-007 (Clear) – 
MiiCraft. 

2.3. Materials and the experimental setup 

2.3.1. Non-buffered solutions 
Conventional white table wine was used. NaOH (sodium hydroxide) 

was purchased from @PanReac AppliChem and it was used to prepare 
two different concentrations of NaOH solution (1 M and 0.1 M). The pH 
of wine was adjusted to pH 3.52 by adding 3.5 ml NaOH [0.1 M] to 30 ml 
of wine and 0.35 ml of NaOH [1 M] to 40 ml of wine to achieve pH 3.74. 
All pH measurements were performed at room temperature- Tª (20 ◦C). 

Tartaric acid (2,3-Dihydroxybutanedioic acid) was purchased from 
@Merck Schuchardt OHG. Three tartaric acid concentration were pre-
pared (0.1 M, 0.5 M and 1 M). 

Methyl orange (Sodium 4-{[4-(dimethylamino)phenyl]diazenyl} 
benzene-1-sulfonate) was selected as the pH indicator. Methyl orange 
has a transition range of pH 3.0 up to pH 4.0 (Ethier & Simmons, 2007) 
being red at pH 3.0 or inferior values and remaining yellow at pH 4.0 or 
higher. Therefore, it is suitable for the expected pH values in white 
wines. 

2.3.2. Buffered solutions 
4-(2-HydroxyEthyl)-1-pi-PerazineEthaneSulfonic acid, HEPES was 

purchased from @Sigma Aldrich was selected as an example of buffer 
due to its wide used in the biomedical and biomechanical studies (Chen 
et al., 2019). 

Bromocresol purple (5′,5′′-diBromo-o-CresolsulfoPhthalein, BCP) 
was acquired from @sigma Aldrich, and used as the pH indicator for the 
buffer solutions. This indicator has a transition range from pH 5.2 to pH 
6.8 (Kim et al., 2012), suitable for HEPES solutions. 

Three different concentrations of HEPES buffer were prepared (0.1 
M, 0.5 M, and 1 M). The pH of the solution was adjusted by adding small 
volumes of 1 M NaOH according to the protocol provided by the HEPES 
manufacturer and pH was validated in the laboratory at room 
temperature. 

2.4. Diffusion phenomenon 

Diffusion is considered as the most influential transport factor of 
species in laminar flows. This phenomenon, which is expressed in Eq.1, 
is described by Fick’s law (Ethier & Simmons, 2007). 

J = − D
dφ
dx

(1)  

where J denotes the diffusion flux and D represents the diffusion coef-
ficient of species. In the above equation, φ shows the concentration of 
the desired species at a given point. 

Focusing on equation (1), this study aims at monitoring the con-
centration of the solutions based on their diffusion. The main difference 
among the solutions is their ionic concentration or in other words the 
number of H3O+ (Hydronium) ions. Although the diffusion can be 
modified by other properties, it should be noticed that all the analytes 
are at the same temperature and the differences in the dynamic viscos-
ities of the solutions are negligible compared to their ionic concentration 
differences. According to equation (1), the species (in this case hydro-
nium) diffuse from the rich region to the poor region, see *Fig. 1 – b. 
When hydronium ions diffuse into the pH indicator region, the pH in-
dicator captures the hydronium, transforms and changes the color. The 
amount of advance of the species from one region to the other is directly 
proportional to the concentration of species, and the color itself can be 
correlated to the pH. 

2.5. Evaluation techniques and instruments 

Tartaric acid is one of the key components of white wine and has a 
determining role in the wine’s savior and odor (Oliveira et al., 2010). 
Therefore, it can be considered as a legitimate candidate to compare the 
behavior of wine to it. For the non-buffered solutions, the diffusion 
width of tartaric acid was compared to the diffusion width of the wine 
sample with unknown concentration. This comparison was later used as 
the foundation of ionic strength measurement. 

Two syringe pumps were used to settle the flow rates (Graseby 3200- 
@Smiths, Watford, Hertfordshire(UK) and kdScientific 410-CE- 
@kdScientific, Holliston (US)). Depending on the evaluation, different 
flow rates were used i.e. methyl orange in the middle inlet at a flowrate 
of 0.7 ml/h and wine in lateral inlets at different flow rates (2.1–1.7 and 
1.4 ml/h) to evaluate the most suitable flow rate to achieve accurate 
results. Nevertheless, the assay showed the flexibility of altering the 
arrangement of the inlets, for instance by injecting the pH indicator from 
the lateral channels, please see Fig. 2 – a and c. Choosing the proper 
arrangement of the inlets depends on the feature or substance that is 
under evaluation. For pH, it is recommended to inject the pH indicator 
from the lateral inlets. However, measuring the ionic strength requires 
two symmetrical inlets for the tartaric acid (or calibrated sample) and 
the wine sample and leaves only one inlet for the pH indicator. 

Fig. 2 – a and c, show the diffusion width when the pH indicator and 
the solution (or solutions) are first met at the intersection of the inlets. 
The diffusion width depends on the concentration of hydronium ions 
and their interaction with the pH indicator’s molecules. The higher the 
concentration of hydronium ions, the wider the diffusion width and in 
other words the stronger ionic strength. Therefore, the measurement of 
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the molarity/concentration/ionic strength is carried out at the inter-
section to avoid possible interaction with the salt precipitates in non- 
buffered solutions. (See Fig. 2 – c). 

The diffusion width is measured and correlated to pH and ionic 
strength, by taking advantage of the RGB profile of the pictures captured 
using a Dino-Lite MS325B and analyzed by Image-J software. 

For the buffered solutions, measuring pH is as important as 
measuring the ionic strength. Determination of the HEPES pH level 
depends on the homogeneity of the indicator and solution mixture, 
therefore the pH measurement is done at the outlet of the mixer, see 
Fig. 1 – a) ii. 

In all the experimental evaluations and especially in optical mea-
surements, there will always be errors introduced by the light reflections 
due to the poor surface finishing of the device or light refraction because 
of the different layers of material. To minimize the impact of these errors 
during the data analysis, the Grubbs’ test was applied to detect outliers 
at a 0.05 significance level. Therefore, experimental errors were calcu-
lated as mean and standard deviation in agreement with the respective 
standards. 

3. Results and discussion 

3.1. Evaluating the characteristics of the Non-buffered solutions 

Non-buffered solutions such as wine are a mixture of different sub-
stances where the ionic concentration and pH are essential to define its 
taste, state and chemical characterization in general. 

3.1.1. Optimization of flow rate ratio between samples and indicators 
In this work, the transport of species is a balance between the 

convective and the diffusive term. The convective transport, caused by 
the syringe pump, is responsible for moving the bulk of species along the 
channel. Whereas, the diffusive term tries to uniform the concentration 
of species across the channel. Hence, a proper balance between the 
convective and diffusive term can enhance the accuracy of the sensor. 
Therefore, the effect of the flow rate ratio between the middle inlet and 
the lateral inlets is analyzed. To achieve this purpose, pH indicator 
(methyl orange) was injected through the lateral inlets at 0.7 ml/h, kept 

constant and the wine samples were injected through the middle inlet at 
different flow rates: 1.4, 1.7 and 2.1 ml/h. 

Investigation showed that (please see supplementary materials 
Fig. 1), as expected, when the flow rate ratio between lateral inlet/ 
middle inlet was increased the diffusion effect decreased. When the ratio 
was increased, not only the hydronium ions had less time to diffuse 
across the channel width, but they also needed to overcome a stronger 
bulk inertia in the direction of the flow. In other words, the increased 
flow rate occupied more space in the center of the channel and pushed 
the pH indicator more to the sides. Consequently, as the inertial term 
grew the diffusive term shrank. 

It should be mention that, although the blue intensity profile is ideal 
for analyzing the bright and dark regions, the experiments showed that 
the blue intensity profile is not the best choice for analyzing the re-
actions or analytes with warm colors. Therefore, the green intensity 
profile was used in these cases, in order to cover both sides of the color 
spectrum. 

Furthermore, the results indicated that increasing the flowrate of the 
wine to 2.1 ml/h reduces the chance of precipitation in the measurement 
zone, but at the same time drastically influences the reaction zones and 
pushes them to the walls of the channel. On the other hand, setting the 
flowrate to 1.4 ml/h provided the opportunity of capturing images of 
wider diffusion zones and improved the accuracy and resolution of the 
measurements, but at the same time increased the chances of 
precipitation. 

Choosing the optimum flowrate depends on the aim of the study and 
the precipitation rate during the assay. In this study for ionic strength 
measurements, the lateral inlets to middle inlet flowrate ratio was set to 
3. 

In the case of pH measurement, the analysis was performed on the 
intensity of the reaction between the pH indicator and the solution (the 
color change of the pH probe). Fig. 3 – a shows that, even though the 
flow ratio between inlets was varying in the assay, the intensity of the 
mean green value remained constant. Therefore, it was concluded that 
the optimum flow rate ratio for ionic strength evaluation is also 
compatible with an accurate measurement of the pH. 

Fig. 2. Schematics of the experimental setup: pH indicator injected through both lateral channels. Dimensions are not to scale. a) 0.5 M tartaric acid solution injected 
from the bottom inlet and the wine sample at pH 3.52 injected through the upper inlet. The diffusion width is pointed by the black arrows. This arrangement is ideal 
for comparing the diffusion width of different solutions. b) Real picture of the experimental setup. c) pH 3.74 wine sample is injected through the middle inlet. An 
ideal arrangement for pH measurement, even in the presence of precipitated salts. 
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3.1.2. Non-buffered solutions ionic strength measurements 
For the non-buffered solutions, the pH indicator (Methyl orange) is 

injected through the middle inlet at 0.7 ml/h. The upper inlet is dedi-
cated to the wine solution (pH 3.25, pH 3.52 and pH 3.74) and it is 
injected at 2.1 ml/h. Three different concentrations of tartaric acid (0.1 
M, 0.5 M and 1.0 M) are injected through the bottom inlet at the same 
flowrate as the wine sample. Please see Fig. 2 – a and Fig. 3 – b. 

Initial results showed that the setup is vulnerable to crystallization 
inside the channel; therefore, the measurements were performed at the 
intersection after the stabilization of the flow. 

According to the results, the evaluation of the diffusion width using 
the green intensity profile of the experimental assays (see Fig. 3 – c) is 
correlated to the concentration of tartaric acid. Furthermore, a linear 
relationship between diffusion width and ionic strength/molarity of 
tartaric acid was observed during the assays (Please see supplementary 
materials Fig. 2.). 

Due to the fact that the ionic concentration of healthy wine is mostly 
due to tartaric acid (Prenesti et al., 2004, 2012), tartaric acid was used as 
the calibration standard for the wine samples. 

The three different wine samples, which their pH had been adjusted 
by adding NaOH solution, were tested following the abovementioned 
procedure. The addition of NaOH (strong base) decreased the total 
amount of free H3O+ ions. The results, see Table 1 in the supplementary 
materials, showed that increasing the pH eventuated in a decrease in the 
diffusion width. 

The reported results can be justified by the analytical chemistry and 
acid-base equilibria. Wines are a mixture of different acids and there is 
an abundance of hydronium in them. When a limited amount of base is 
added to the acid solution, the hydronium ions (H3O+) attach to the 
hydroxide ions (OH–) and form a water molecule. The conjugate base 
and the conjugate acids present in the medium also react with each other 
and form a salt. The described process is also illustrated in Eq.2 to Eq.4. 

Fig. 3. a) Mean green intensity profile of the same wine sample (pH 3.25) at different flowrates. Flowrate a) 1.4 ml/h, b) 1.7 ml/h and c) 2.1 ml/h. b) Picture of the 
molarity measurement line. c) Colorimetric green intensity value analysis of the wine sample (pH 3.74) and the tartaric acid solutions. The difference between the 
diffusion width of tartaric acid and different solutions are illustrated. i) Wine sample (pH 3.25) and 1.0 M tartaric acid and ii) wine sample (pH 3.25) and 0.1 M 
tartaric acid. 
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HA ̅̅→
H2O H3O+ +A− (2)  

BOH ̅̅→
H2O OH− +B+ (3)  

H3O+ +A− +OH− +B+→H2O+BA (4)  

where HA and BOH are arbitrary acid and base. While A- and B+

represent the conjugated base and conjugated acid, respectively. 
Therefore, by adding the NaOH to the wine, not only some of the 

hydronium ions are removed from the solution, but they are also used to 
form water molecules. Therefore, the ratio of hydrogen ions to the total 
volume of the sample decreases. This phenomenon decreases the hy-
dronium concentration in wine and it consequently reduces the ionic 
strength of the solution. 

Tartaric acid solutions only vary in concentration (and hence the 
ionic strength). Fig. 3 – c (i) and (ii) clearly show a different diffusion 
width for 0.1 M and 1 M solutions. The dashed line, see Fig. 3 – c can be 
used as the calibration plot for the evaluation of wine’s ionic strength, 
since it shows the reaction width of the tartaric acid (0.1 M). The 
diffusion width of the three different concentrations of tartaric acid 
samples is summarized in supplementary materials (please see Table 2). 
Notice that when the ionic strength of tartaric acid increases the 
measured width increases as well. 

The calibration plot can be used to estimate the ionic strength adding 
the value of diffusion width on the plot, (see supplementary materials 
Fig. 2 - orange dots). The wine’s (pH 3.25) diffusion width is in the same 
range as the results of 0.1 M tartaric acid and it can be concluded that the 
concentration of ions in both solutions are in the similar order. The rest 
of the samples (different pH of wine), according to equation (4), had 
narrower diffusion width and therefore less ionic concentration (see 
supplementary materials Fig. 2). 

During the winemaking process, the same approach can be used with 
a benchmark wine to monitor the fermentation or the characteristics 
(overall molarity (ionic strength) and pH), to make sure that the pre-
paring wine qualities are equivalent to the benchmark wine’s standard. 

3.1.3. Non-buffered solutions pH measurements 
As mentioned earlier, pH variations can reveal whether if a product is 

still safe to consume or not. In the case of wines, fermentation contin-
uously modifies the pH and the amount of alcohol in the solution. This 
value can be considered as a borderline between a consumable wine or 
vinegar. 

For the pH measurement, the same sensor setup arrangement was 
respected except for the dedication of the inlets. Where the pH indicator 
reagent was injected from the lateral inlets and the wine sample was 
injected through the middle inlet. The flowrate of the pH indicator was 
constant and set to 0.7 ml/h. Meanwhile, the wine samples were injected 
at 1.4 ml/h. 

Analysis shows a decrease in the mean green color value in wine 
samples as the pH increases (plese refer to the Table 3 in the supple-
mentary materials). The value is achieved by comparing the minimum 
point in the reaction region to the maximum points surrounding the 
reaction region. Please see the dashed line and points i, ii and iii in Fig. 4. 
Whereas, the arrows i, ii and iii represent the differences in wine samples 
with pH values of 3.25, 3.52 and 3.74, respectively. 

However, as mentioned in subsection 3.1.1, the best contrast (for pH 
evaluation) was achieved when the flowrate ratio was set to 2. None-
theless, if the flow rate ratio had to be increased due to the presence of 
precipitates, the method was responsive to pH variations even at the 
highest flow rate ratio (2.1/0.7 ml/h). Since the methyl orange pH in-
dicator produces a red color for pH 3 or lower and yellow color for pH 4 
or higher, Fig. 4 - a-b-c show the color evolution from red at pH 3.25 to 
light orange at pH 3.74. Hence, an increase in the pH turns in a higher 
mean green intensity value (or higher nadir, see point (iii) in Fig. 4 and a 
decrease in the pH turns in a lower mean green intensity value (or a 
deeper nadir, see point (i) Fig. 4). Further studies, please see Appendix 
A, were implemented to correlate the surface area of different wine 
samples to the pH. 

3.2. Buffered-solutions analysis 

3.2.1. Buffer ionic strength analysis 
Nine different HEPES solutions with known pH and molarities were 

prepared. The lateral channels were dedicated to HEPES and the middle 
inlet to the pH indicator to evaluate the diffusion width between BCP 
and the different buffer molarities, see Fig. 5. Fig. 5 – a shows the 

Fig. 4. Mean green intensity value of different pH wine solutions (flow rate ratio between the inlets of 2). The drop in the reaction region i, ii and iii, correlate to the 
change of intensity due to pH 3.25, pH 3.52 and 3.74, respectively. The reaction between the mentioned samples and the pH identifier is illustrated in Images a), b) 
and c). 
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Fig. 5. a) Colorimetric analysis of the diffusion of a 
HEPES buffer solution of pH 6.0. Pictures (i), (ii) and 
(iii) depict the diffusion width of three different 
solutions of 0.1, 0.5 and 1.0 M of HEPES molarities, 
respectively. b) Colorimetric analysis of the diffu-
sion of a HEPES buffer solution (pH 7.0). Pictures 
(i), (ii) and (iii) depict the diffusion width of three 
different HEPES solutions: 0.1, 0.5 and 1.0 M. The 
color change at this pH level is detectable to naked 
eye. c) Colorimetric analysis of the diffusion of 
HEPES buffer solutions (pH 8.0). This level is 
beyond BCP’s capacity to demonstrate the alkalinity 
of buffers and the color change and diffusion widths 
are at their maximum. Reactions of BCP and buffer 
solutions with 0.1, 0.5 and 1.0 M of HEPES are 
shown in pictures (i), (ii) and (iii), respectively.   
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colorimetric analysis of buffer solutions at pH 6.0 with different HEPES 
molarity. The evaluation line was drawn from the intersection of the 
main channel and the lateral channel up deep into the lateral channel, 
until no reaction was visible (please check Fig. 1 – c)). The results 
showed that at the same pH, the interaction length (in other words the 
diffusion width) was highly dependent on the HEPES molarity. While 

the changes in mean blue intensity value were negligible, the reaction 
advanced further into the lateral channel as the HEPES molarity was 
increasing. According to results (please see Table 4 in the supplementary 
materials), the mean diffusion width of the buffer solution (pH 6.0, 
HEPES 0.1 M) was reported to be 172.56 µm, whereas the same mea-
surement marked 355.42 and 471.43 µm for the analytes with 0.5 M and 

Fig. 6. a) Colorimetric analysis of the mixture of the BCP and the buffer solutions at the outlet. The transition of color in the range of pH 6.0 to 7.0 is quite obvious, 
but for the range of pH 7.0 to 8.0 further investigation and accurate measurements are necessary. Pictures (i), (ii) and (iii) show the final mixture of the BCP and 
buffer solutions with 0.5 M of HEPES at pH 6.0, 7.0 and 8.0, respectively. b) shows the reaction of BCP and buffers with different pH levels at the intersection of the 
inlets. The upper inlet was dedicated to the buffers with pH 8.0 and through the bottom inlet, the buffer with pH 6.0 was injected. Pictures (i), (ii) and (iii) show the 
reaction of buffers with 0.1, 0.5 and 1.0 M of HEPES, respectively. 
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1.0 M of HEPES, respectively. 
The same procedure was carried out for the buffer solutions at pH 7.0 

level. Predictably, the assay provided similar results to the previous test. 
Since the resulted color change from the reaction of BCP and HEPES 
solution at pH 7.0 is more vivid as the pH rises, it was less complicated to 
track the reaction inside the lateral channel. This claim is also supported 
by the calculated standard deviations. The reported errors were showing 
a meaningful retrenchment as the pH was increasing. With respect to 
Fig. 5 – b, higher molarities resulted in an increase in the diffusion 
width. Furthermore, the results showed that the mean diffusion width 
for the buffer with 0.1 M of HEPES remained at 172.566 µm. On the 
other hand, the mean diffusion width for the other buffer solutions (0.5 
and 1.0 M of HEPES) incremented to 427.71 and 633.33 µm. According 
to the results, the diffusion width of the 0.1 M HEPES solution didn’t 
experience a change during the assay. This can be interpreted into the 
fact that solution with 0.1 M of HEPES has a limited amount of free 
conjugate ions and they are already saturated at pH 6.0 level, even 
though the reaction is more detectable at pH 7.0 rather than pH 6.0. 
With the same interpretation, the cause of increase in the diffusion width 
of the other solutions can be inferenced. In other words, buffer solutions 
(with 0.5 and 1.0 M of HEPES) have not yet reached to their capacity 
limits and due to their higher molarities, they can intensify the diffusion 
inside the channel. As a result, the indicator molecules can diffuse 
deeper inside the lateral channel. The results are also indicating that the 
capacity of 0.1 M buffer solution is limited for tests at pH levels lower 
than 6.0, since tracking the color change would be quite challenging in 
those ranges and also the solution’s pH would be very close to the BCP’s 
lower transition range and this can considerably affect the errors (see 
Table 4 in the supplementary materials). 

The procedure was repeated for the buffer solutions at pH 8.0 level. 
The mentioned pH level is beyond the BCP’s upper transition range and 
this maximizes the blue color intensity of the reaction. As it is displayed 
in Fig. 5 – c, by increasing the HEPES molarity, the mean diffusion width 
increased in the buffers with 0.5 and 1.0 M of HEPES. However, the 
reported increase for the 0.5 M HEPES buffer solution was quite limited 
(439.76 µm at pH 8.0 in comparison to the 427.71 µm at pH 7.0). 
Warning that the buffer is on the verge of being saturated. On the other 
hand, for the solution with 1.0 M of HEPES the mean diffusion width was 
increased to 700 µm, showing a 10% growth in the diffusion. The mean 
diffusion width for the buffer solution with 0.1 M of HEPES was in 
agreement with the reported values for the lower pH levels, supporting 
the previously provided justifications. 

3.2.2. pH buffer analysis 
The buffer solutions’ pH was evaluated at the outlet of the spiral 

mixer. As it had been previously reported (Mehrdel et al., 2018), the 
spiral micromixer can provide mixtures with high homogeneity at 
Reynolds number range of 0.1 to 10.0. Since the pH indicator’s color 
change needs to be done at the point where the solutions and the BCP are 
acceptably mixed. Thus, the mixture was analyzed at the outlet of the 
mixer. According to Fig. 6 – a, solutions with the same pH level retained 
to the same domain of mean blue color intensity, regardless of their 
HEPES molarity. It should be mentioned that, increasing the HEPES 
molarity resulted in a slight rise in the mean blue color intensity. 
However, those rises were negligible compare to the jumps in the color 
intensity due to the pH increase. At pH 6.0, the mixtures’ mean blue 
color intensity stood at 135.681, while for the solutions with 0.1 M of 
HEPES the reported value was 131.32 and for the buffer with 1.0 M of 
HEPES the mentioned value was 140.078. Meaning that a difference of 
± 4.4 units (of mean blue color intensity) was observed in analyzing the 
solutions with different HEPES molarities at the same pH. But when the 
pH was increased to 7.0, the mean blue color intensity dramatically 
increased to 165.144. Whereas, the maximum and the minimum re-
ported values were 162.28 and 167.532 for the buffer solutions with 0.1 
and 1.0 M HEPES, respectively. Subsequently, by increasing the pH to 
8.0, the mixtures showed the highest blue color intensity. The average 

value for the mixtures’ mean blue intensity color incremented to 
183.612, while the solutions with 0.1 and 1.0 M of HEPES showed 
178.13 and 187.725 units, respectively. The trend of increase in the 
mean blue color intensity does not show a linear growth. This behavior 
can be explained by the fact that the maximum pH level of the BCP’s 
transition range is lower than 8.0 and the mixture cannot illustrate 
higher pH levels by changing color. 

3.2.3. Self-referencing sensor assay 
Heretofore, the assay showed that the device is sensitive to changes 

in HEPES molarity and pH levels. Due to the known behavior of the 
buffers and also the symmetrical nature of the micromixer, this device is 
able to be utilized as a self-referencing sensor. In other words, even by 
visual checking of the BCP and buffers reaction at the evaluation zone 
(intersection of the inlets) the relative comparison of the buffers can be 
carried out. The HEPES molarity can be compared via measuring the 
diffusion width inside channels. Deeper diffusion inside the lateral 
channels can be translated into higher HEPES concentration or molarity. 

If instead of comparing diffusion width, the mean blue color intensity 
of the peak was compared, the pH of the buffers can be obtained. Ac-
cording to the previous results, as the pH rose up, the mean blue color 
intensity would be more intense, meaning that it can be utilized for 
determining which channel is containing a more alkaline buffer (Check 
Fig. 6 – b). Both of these comparisons can be carried out at the same time 
and in the same evaluation zone. This technique provides a simple 
environment to compare buffer concentration and the pH level of two 
unknown solutions. 

4. Conclusion 

The use of 3D printed microfluidics provides portability to pH and 
ionic strength measurements and also the opportunity to control the 
buffer capacity by evaluating its molarity/concentration. 

The results showed that by comparing the diffusion width of the wine 
(sample) and tartaric acid solutions, it is possible to estimate the total 
acid concentration in an unknown solution. Whereas the diffusion width 
of the 1.0 M tartaric acid was reported to be 416.34 µm and for the 0.1 M 
tartaric acid, the mentioned value was 134.6 µm, while the diffusion 
width for the pH 3.25 wine sample was 142.54 µm. Indicating that the 
total acid concentration of the untreated wine (pH 3.25) is close to 0.1 
M. The results also illustrated that, the sensor was able to detect a broad 
range of molarities, from 1.0 M to 0.1 M and lower. Whereas, the re-
ported detection error never went beyond 20 µm. A value that could 
comfortably fit within the diffusion width of conventional wines. 

The proposed design was also capable of measuring the pH of wine 
solutions, based on monitoring of the mean green intensity profile of the 
reaction between the pH indicator and the sample. The results showed 
that even slight changes in the pH value could be interpreted by moni-
toring the color change of the pH indicator at a given flowrate. Ac-
cording to the investigations, the mean green value difference was 
reported as 51.01 for wine samples at pH 3.25. Whereas, that value was 
reported as 36.26 for the wine solutions at pH 3.74. The standard de-
viation for pH measurement never went beyond 1.84, meaning that the 
setup could easily detect the pH variations of 0.25 units. 

The same approach was applied to study buffered solutions. The 
proposed methodology was successful in measuring buffer capacities 
from 0.1 M to 1 M. At the lowest resolution, the sensor was able to detect 
the 471.43 µm of diffusion width for the 1.0 M buffer solution at pH 6.0 
and displayed a maximum detection error of 39.38 µm. Increasing the 
pH and as a result, intensifying the color change of the pH probe, 
enhanced the resolution and lowered the detection error to 11.50 µm 
(172.56 µm for the 0.1 M buffer solution at pH 8.0). Besides, pH eval-
uation was conducted as well at the outlet of the mixer. This study 
showed that the 3D printed device could be successfully employed in 
order to detect buffers in the pH range of 6.0 up to 8.0, as the investi-
gation showed a 21.7% mean blue color difference between buffer 
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solutions with pH 6.0 and 7.0. All in all, the investigation showed that 
the proposed sensor opens the opportunity to measure some key 
chemical characteristics, such as ionic strength, pH and buffering ca-
pacity, with minimum requirement of samples and equipment in in-
dustrial or production sites. 
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Abstract: Microfluidic paper-based analytical devices (µPADs) are a promising technology to enable
accurate and quantitative in situ assays. Paper’s inherent hydrophilicity drives the fluids without
the need for external pressure sources. However, controlling the flow in the porous medium has
remained a challenge. This study addresses this problem from the nature of the paper substrate and its
design. A computational fluid dynamic model has been developed, which couples the characteristics
of the porous media (fiber length, fiber diameter and porosity) to the fluidic performance of the
diffusion-based µPAD sensor. The numerical results showed that for a given porous membrane, the
diffusion, and therefore the sensor performance is affected not only by the substrate nature but also
by the inlets’ orientation. Given a porous substrate, the optimum performance is achieved by the
lowest inlets’ angle. A diffusion-based self-referencing colorimetric sensor was built and validated
according to the design. The device is able to quantify the hydronium concentration in wines by
comparison to 0.1–1.0 M tartaric acid solutions with a 41.3 mM limit of detection. This research
showed that by proper adjustments even the simplest µPADs can be used in quantitative assays for
agri-food applications.

Keywords: microfluidic paper-based analytical devices; colorimetric detection; quantitative assay;
numerical simulation; computational fluid dynamics; ionic strength; diffusion assay

1. Introduction

In the past decades, microfluidic technology has proven its capabilities to be used in
the chemical, biochemical, food, agri-food, pharmaceutical and medical fields [1–4]. Their
fast-responsiveness, low reagent requirement, accuracy and user-friendliness persuade
both the researchers and entrepreneurs to focus more on this technology and expand its
applicability to new fields and, specifically into the field of Micro Total Analysis Systems
(µTAS) [5–8]. Although the microfluidic platforms are extremely efficient, they mostly
rely on the utilization of external energy sources to control the flow, and they require the
incorporation of sophisticated detection techniques. Therefore, in situ measurements or the
use in less developed regions is seriously limited. Researchers have tried to address this
last issue by taking advantage of the generated capillary flow in the porous media, which
introduced the microfluidic paper-based analytical devices (µPAD) [9–12]. However, the
capillary flow is linked to its complex control, which is related to the paper characteristics.
This fact restricts the µPADs applications mainly to qualitative detection if they are not
supported by sophisticated detection techniques.

Porous media are tangled matrices of fibers (normally cellulosic) that provide an
ideal environment for functionalization. However, their intrinsic variability is a challenge
for microfluidic designers, and most current successful devices are qualitative or yes/no

Sensors 2021, 21, 3328. https://doi.org/10.3390/s21103328 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3496-2833
https://orcid.org/0000-0002-6701-4285
https://orcid.org/0000-0002-0082-9770
https://orcid.org/0000-0002-1368-3950
https://www.mdpi.com/article/10.3390/s21103328?type=check_update&version=1
https://doi.org/10.3390/s21103328
https://doi.org/10.3390/s21103328
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21103328
https://www.mdpi.com/journal/sensors


Sensors 2021, 21, 3328 2 of 23

assays. Some researchers have taken advantage of the fiber matrix to trap nanoparticles
and enhance the surface-to-volume ratio [13–16]. This fact has increased its reliability
and repeatability. However, the use of µPADs (by non-trained personnel) as quantitative
assays is still in development. For instance, the most conventional and well-known µPADs
applications are paper-based pH indicators and pregnancy tests (hCG; human Chorionic
Gonadotropin hormone test) [9]. Both use markers (either pH indicator or antibody)
immobilized within the porous media. The interaction within the understudy solution
and the coated marker causes the expected color change. Nevertheless, there are reports
of developed paper-based sensors that can be used in diverse applications by taking
advantage of interdisciplinary methods. Examples of such application are reported in the
literature, for instance in electrochemical (EC) [17,18], chemiluminescence (CL) [14,18,19]
and electrochemiluminescence (ECL) [18,20] methods to quantify different compounds.
These quantification methods increase the assays’ accuracy and widen the applicability
horizon. However, the use of the aforementioned methods does not help to simplify the
tests and conflicts with the idea of using µPADs in less developed regions.

Even though, there are numerous reports of developed quantitative µPAD platforms
based on laborious detection techniques. There are also remarkable µPADs that provide
quantitative or semi-quantitative measurements without the need to use such complex
methods. For instance, Kim et al. [21] developed a quantitative colorimetric assay for the
detection of Tropinin I, which enhanced the results due to the use of gold nanoparticles.
A similar approach was used by Parolo et al. [22] that took advantage of Lateral Flow
Immunoassay (LFIA) and used gold nanoparticles to capture human IgG and presented the
results through colorimetric techniques. Walczak et al. (2009) [23] proposed a colorimetric
assay capable of quantifying down to 5 ng/mL of cocaine in the samples. Gerold et al. [24]
managed to distinguish 1.0–2.5 mM of potassium ion on a paper-based microfluidic device
by taking advantage of the selective distance-based quantification method. Additionally,
there have been reports about the simultaneous detection of several compounds [25,26]
or employing smart-phones for the evaluation of the assays [27,28]. However, in most of
the aforementioned studies, the research relied on the attachment of the analyte to the
pre-treated particles/detectors/substrates, and the effects of the substrate on the devices
themselves were not considered.

Other than the requirement of pre-treated substrates or particles, certain assays, such
as enzyme-linked immunosorbent assay or ELISA, require a sequential flow of the reagents
to the detection zone. Since the fluid movement is not controllable in a porous media,
careful strategies should be considered to achieve the sequential arrival of the reagents to
the reaction zones. The strategies to control the flow can be categorized into three types:
geometrical-based, chemical-based and mechanical-based [29,30]. The geometrical-based
methods rely on the change of the channel length, the channel width and any obstruction
of the flow path that can delay the fluid arrival to the detection zone. Apilux et al. [31] man-
aged to perform an automatic ELISA for hCG (human Chorionic Gonadotropin hormone)
determination by using a baffled paper-based microfluidic channel. Another geometrical-
based flow control method is based on the successive placement of fluid sources on the
channel to create a paper network. The fluid from the closest source arrives faster than
the other sources, and this enables a programmed delivery of reagents to the detection
zone. Fu et al. [32] took advantage of this method and introduced a µPAD, which detected
malaria proteins in a sandwich immunoassay. Geometrical-based flow control can also be
achieved by using shunts. As the fluid is absorbed by a fluid shunt, the flow is slowed
down. Once the shunt is filled, the flow gains its initial velocity [29]. Chemical-based flow
control relies on altering the porous characteristics of the substrate when compounds are
deposited in the voids (pores). For instance, Lutz et al. [33] deposited different amounts of
dissolvable sugar to the paper substrate and showed that the fluid flow could be delayed
significantly. The mechanical-based flow control is extremely useful for three-dimensional
µPADs. This method enables the possibility to place mechanical valves, which create
connections between paper-substrates at different levels. In summary, the abovementioned
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strategies are ideal for sequential flow assays. However, they do not focus on applications,
where co-laminar flows are required, and they do not study the effect of porous media
characteristics and geometry on the fluids’ interaction.

In one of the well-studied but rare researches, Osborn et al. [34] investigated the
effect of the source position in a T-mixer and its influence on the flows within the porous
medium. The study displayed that if one of the sources (in the inlets) is placed closer to the
inlets’ intersection, the respective flow would become dominant in the main channel and
overcome the flow from the other inlet. The study pointed out the complexity of controlling
the flow in porous media. However, the need for manual positioning and therefore the
flow synchronization would decrease the accuracy of this type of device if used in assays.

This study aims to investigate the influence of paper properties and geometry on the
flow characteristics. Specifically, the influence on the diffusion in paper-based microfluidic
platforms. First, we have modeled the flow behavior in a given porous media, by taking
into account the porous media characteristics (fiber length, fiber diameter, porosity) and
also the geometry of the porous media microfluidic circuit. Later, based on the outcome, we
have conceptualized a self-referencing sensor with a straightforward 3D-printed structure
to guarantee the simultaneous contact between the reagents and paper strip that could be
utilized everywhere and characterized its accuracy and sensitivity.

The novel proposed sensor can measure the sample’s unknown ionic concentration
(wine) by comparing its diffusion width to the diffusion width of a solution with a known
ionic concentration (tartaric acid). The diffusion width is measured using colorimetric
analysis. The optimization of the porous media substrate avoids the use of pre-treated
substrates/particles and more sophisticated detection techniques and brings quantification
capacity to a paper-based sensor.

2. Methodology

In this section, we present an overview of the governing equations of the flow in
porous media. We describe the model of the different studied geometries as well as the
materials and experimental approach.

2.1. Sensor Description

The colorimetric sensor measures the diffusion width of hydronium ions [H3O+]. The
main goal is to monitor the diffusion width through the color change across the measurement
line and compare it to the diffusion width of a known sample (self-referencing approach).

The use of the proposed sensor as a threshold sensor or a comparative sensor to a
given known ionic strength solution, brought the need to use three inlets: one for the
unknown solution, one for the known ionic strength solution and a third solution as a
mediator or label (in this study pH indicator). The pH indicator transforms the ionic
concentration into a colorimetric signal and enables a simultaneous comparison between
the diffusion widths of both solutions (with known and unknown ionic strengths).

With respect to the abovementioned points, the proposed sensor has three inlets: the
left one for the sample of interest, the middle one for indicator and the right one for the
reference sample. In order to achieve a proper performance of the sensor, the device uses a
3D-printed support, see Figure 1. This support and inlets’ geometry have been designed to
guarantee that the inlets of the paper substrate contact the fluid reservoirs at the same time
and the fluids flow within the porous medium, simultaneously. Therefore, the solutions
encounter at the main channel (meeting zone) when required, and the chemical reaction
can be monitored. When the H3O+ ions of the solution diffuse into the pH indicator, they
show a certain color change. If the ionic strength is higher, there will be more ions and
therefore more diffusion. If the ionic concentration of the reference solution is known, then
the ionic concentration of the solution of interest can be found by comparing its diffusion
width to the reference one, as it is shown in Figure 1.
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2.2. Principles of Numerical Simulation
2.2.1. Fluid Flow and Mixing Phenomena

Computational fluid dynamics (CFD) is a derivation of the finite volume method that
discretizes the solving domain into smaller cells and solves the Navier—Stokes equations
in each cell. Ansys Fluent CFD software is chosen for solving the equations of the fluid
flow through the porous media substrate. We assumed that the fluid is incompressible,
Newtonian and the process is isothermal.

For solving the Navier—Stokes equation, a coupled scheme is chosen for the pressure-
velocity coupling. Due to the dimensions, laminar flow is the governing regime and the
energy and thermal sources are negligible, the continuity (1) and momentum (2) equations
solved at each cell are:

∇
→
U = 0, (1)

ρ
→
U·∇

→
U = −∇P + µ∇2C (2)

In the above equations
→
U is the velocity vector, ρ is the density of the working fluid,

∇P is the pressure gradient and C is the species concentration within the solving domain.
A user defined scalar is introduced to model the diffusion of species in the control

volume.
The assumption of laminar flow implies that the convection-diffusion Equation (3)

describes the transport phenomena in the domain of interest. The convection-diffusion
equation is defined as:

ρ
→
U·∇C = D∇2C, (3)

Let the D be the diffusion coefficient of the species.
In order to simulate the diffusion in the problem, the Equation (3) is solved simultane-

ously with continuity and momentum Equations (1) and (2) at each iteration.

2.2.2. Numerical Modelling of the Paper Substrate

The substrate is defined as a porous medium and the geometry is segregated into
three zones. Two zones are the lateral inlet branches and the other zone contains the middle
inlet and main channel. The porous medium is defined in Fluent by its porosity and the
viscous resistance values (1/permeability (α)), which are identical for all the zones. The
only difference is in their magnitude of the X and Y vectors. These values are calculated
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based upon the inlets’ angle and defined in the opposite direction of the flow to define the
resistance against the fluid movement.

It is worthy to mention that the inertial resistance is neglected in the model, since
it is completely overshadowed by the viscous resistance. Calculations showed that the
viscous resistance is greater than the inertial resistance by approximately 1× 103 magnitude
of order. Also, it should be noted that the authors are aware of the fact that the wetting
phenomenon swells the fibers. But since the material of the paper-substrate is the same in all
the cases and the same reagents are used, the authors have presumed that the permeability
and the viscous resistance has remained unchanged for the sake of simplification.

2.2.3. Porous Medium

Whatman grade 5 paper, bought from @Fisher Scientific, is used as the assay substrate.
Porous media are tortuous matrices of fibers that are packed together creating some

voids (or in other words; pores) [35]. The fluid flows within the pores and is affected by
the size of the pores and their distribution. One of the most important characteristics of the
porous medium is its porosity (ε) that can be calculated through:

ε =
Vv

VO
(4)

where, Vv and VO are representing the void volume and the body volume of the under-
study medium.

The total volume of the paper consists of the voids volume plus the fibers (or particles)
volume. Therefore, the porosity of the medium can be correlated with the density of the
whole porous medium (ρ0) and the density of its constituent fibers/particles (ρp). As a
result, the porosity can be calculated as:

ε = 1−
ρp

ρ0
(5)

The permeability (α) of the porous medium, according to Yazdchi et al. [36], can be
obtained from the physical and geometrical properties of the substrate, rather than the
pressure drop and flow velocity within the porous medium. The equation is described as:

α

d2 =
ε3

ϕ
(

Le
L f

)2
(1− ε)2

(6)

where, L f , L, d and ϕ are fiber’s length, substrate’s total length, fiber’s diameter and the
pore shape factor, respectively.

Table 1 summarizes the geometrical and physical properties of cellulose fibers, present
in Whatman 5 paper. Therefore, from Equation (5), the Whatman 5 paper porosity can be ob-
tained (0.6467). The permeability (α) is calculated from equation 6, being 4.551 × 10−15 m2,
which was then used in the definition of porous zone in the Fluent Model.

Table 1. Paper substrate and cellulose fiber characteristics.

Property Value

Density of Cellulose (ρ cellulose) 1.5 gr/cm3 [35]
Diameter of the cellulose fiber (d) 19.6 µm [35]

Average length of the cellulose fiber (L f ) 830 µm [35]
Density of Whatman grade 5 paper (ρ W5) 0.53 gr/cm3 [35]

Pore shape factor (ϕ) 140 [36]
Length of the substrate (L) 30 mm

Substrate main channel width (Wch) 10.5 mm
Substrate inlet channel width (wi) 2 mm
Substrate inlet channel length (li) 15 mm
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Porous medium also affects the effective diffusion coefficient. The geometry of the
substrate will be optimized based on the comparison of the diffusion of the user-defined
scalar in the numerical models. According to Giri [37], the diffusion coefficient of a dye
molecule (mathematically defined as the scalar) is reported to be 2 × 10−10 m2/s. Ansys
Fluent software requires the diffusion coefficient (D) to be in [kg/m.s] unit. Therefore, D
is multiplied by the fluid density before using it in computations. Furthermore, to model
the porous zone in the Fluent Model, the effective diffusion coefficient (Deff) is calculated
through [38]:

De f f = (D·ρ)·ε (7)

Therefore, according to Equation (7) the effective diffusion coefficient in the Fluent
model is set to 1.29 × 10−7 kg/m·s.

2.2.4. Boundary Conditions

The initial scalar’s concentration is assumed to be 0.05 M in lateral channels. Besides,
the working fluid is assumed to be liquid water at RT (25 ◦C) and 50% (HR), see Table 1.
The initial flow velocity at the inlets is set to 1.39 × 10−4 m/s (value estimated from initial
measurements of the time required to fill the inlet branches). The convergence residuals are
set to 1 × 10−10 for all the criteria. Other properties, such as the pressure outlet condition,
the density of fluid, the diffusivity of the scalar, the porosity and the viscous resistance
(1/permeability) are summarized in Table 2.

Table 2. Physical properties of fluids and physical characteristics of paper substrate.

Property Value

Water density (at 25 ◦C) 998.2 kg/m3

Water viscosity (at 25 ◦C) 0.001003 kg/m·s
Diffusion coefficient of dye (D) 2 × 10−10 m2/s [37]

Porosity of the Whatman 5 porous media 0.6467
Viscous permeability 4.551 × 10−15 m2

2.2.5. Grid Independency

A grid independency analysis is done to make sure that the size of the discretized cells
does not affect the final results. Six mesh densities of the 90-degree model (see Figure 2)
are compared.
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The boundary conditions and the solving methods are identical in all the cases.
The minimum element size of the mesh schemes varies from 500 µm in the “Low”

mesh density to 25 µm in the “Ultra-fine” mesh density (detailed description of the mesh
schemes is presented in the Appendix A). Due to the porous nature of the control sur-
face, the differences in the velocity profiles are quite insignificant. As a result, the scalar
distribution in the different mesh designs is set as a reference for comparison.

2.2.6. Diffusion Evaluation Methods

One of the most common methods to evaluate the distribution of species is the
comparison of the scalar concentrations at each cell to the median value [39]. This method
uses the following dimensionless and normalized ratio: (σ).

σ =

(
Ci − C

)(
Cmax − C

) (8)

where Ci is the calculated concentration at the ith cell. C denotes the median concentration
in the solving domain and Cmax is the highest concentration of species. By obtaining the
normalized ratio σ, the mixing quality (M.Q) is calculated in each mesh scheme.

M.Q = 1−

√√√√ 1
N
×

N

∑
1
(σ2) (9)

where N is the number of discretized cells in each mesh density and it depends on the
minimum element size. The larger the minimum element size, the smaller the number
of cells.

2.3. Geometry

Figure 2a shows the four different models created to study the effect of the inlets’
orientation on the diffusion width. The angle between the middle inlet and the lateral
inlets varies from 90◦, 60◦, 45◦ and 30◦ degrees. Hereinafter, the introduced geometries are
referred to as 90-degree, 60-degree, 45-degree and 30-degree models.

For a proper comparison, all the models share the same total length of the paper
strip, the required fluid volume to fill the inlet’s branch and the distance from the fluid
source to the center of the main channel. Therefore, the total length (L), inlets’ width (w)
and the channel width (Wch) are set to 30 mm, 2 mm and 10.5 mm, respectively. (Please
see Figure 2b)

The top of the main channel starts with a semi-circular shape, see Figure 2c. This
decision is made in order to make sure that the change in inlets’ angle does not affect other
characteristics of the design. The semi-circular part has a 10.5-mm diameter and its center is
exactly located at the middle of the main channel. Figures 1 and 2c show that the addition
of this part not only guarantees the equal geometrical preconditions for all the models, but
also brings flexibility in designing different models.

The length of the inlets’ branches (lc = li −Wch/2) from the fluid source up to the edge
of the semi-circular part is kept constant due to the presence of this circular beginning of
the main channel. Therefore, lc is 9.75 mm in all the models, regardless of the inlets’ angle.

The measurement line, as shown in Figure 2c, is set at the intersection of the main
channel and the semi-circular’s part.

2.4. Experimental Setup

In order to verify the numerical simulation results and to evaluate the proposed sensor
performance, several experimental assays are designed. The studied geometries (30-degree,
45-degree and 90-degree models) are laser cut (using NEJE7000mW laser) in Whatman
grade 5 paper.
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A 3D-printed support is developed to keep the paper substrate fixed. This printed sup-
port facilitates a simultaneous contact of the three inlets of the paper strip to the reagents.

To evaluate the results, pictures are taken at different time intervals and the diffusion
widths are studied over the measurement line. It should be noted that to avoid viscosity
variations all the experiments are conducted at the room temperature (RT, 25 ◦C).

2.4.1. Reagents

Conventional white table wine (pH 3.25 at RT) is supplied locally. Tartaric acid (2,3-
Dihydroxybutanedioic acid), is bought from @Merck Schuchardt OHG. Tartaric acid is one
of the main components of wines. Three concentrations of 0.1, 0.5 and 1.0 M of tartaric acid
are prepared. Measurements at the RT shows that the prepared tartaric acid solution had a
pH of 2.9, 2.08 and 1.68, respectively.

Due to the pH range of wines and tartaric acid solutions (generally at or lower
than pH 3.7), Methyl orange (Sodium 4-{[4-(dimethylamino)phenyl]diazenyl}benzene-1-
sulfonate) is selected as the pH indicator (its pH transition range is between 3 and 4). To
prepare the methyl orange indicator, 0.1 g of methyl orange is dissolved in 80 mL of water.
Then, ethanol (95%) is added to reach a total volume of 100 mL. The physical Physical
properties of the used reagents are presented in Table 3.

Table 3. Physical properties of white wine and tartaric acid at room temperature (25 ◦C).

Property Value

White wine density 1080 kg/m3

White wine viscosity 0.00148 kg/m.s [40]
Tartaric acid molar mass 150.078 g/mol

Tartaric acid viscosity 0.00121 kg/m.s (from producer’s catalogue)

2.4.2. 3D Printed Support

One of the challenges of the paper-based microfluidics diffusion-based sensors is
achieving a concurrent contact between the inlets’ samples and the indicator. Therefore, a
3D-printed support has been designed to avoid the human error factor in substrate posi-
tioning and to achieve simultaneous flow between inlets. The 3D structure, as illustrated in
Figure 3a,b, consists of 5 parts: the chassis, the reservoirs, the vertically adjustable arm, the
paper holder and a screw.
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The chassis (number 1 in Figure 3b) is a horizontal plate that stabilizes and bears the
whole setup. The chassis has an internal thread (for the screw to enter in) and a section to
hold and fix the reservoir.

To evaluate the effect of the inlets’ angle on the diffusion, three reservoir models are de-
veloped to fit the 30-degree, 45-degree and 90-degree paper strips (number 2 in Figure 3b).
This part has three cylindrical containers, which are filled with 60 µl of the solution.

The other part is the vertically adjustable arm (number 3 in Figure 3b). This part is
connected to the chassis using only the screw (number 5 in Figure 3b) and it enables the
simultaneous contact between the reagents and the inlets of the paper strip. The paper
holder (number 4 in Figure 3b) is fabricated to make sure that the paper is fixed and does
not move during the tests.

The abovementioned parts are designed with CATIA V5 software and the resulting
“.STL” files are printed by a ZORTRAX M200 3D -printer. The material used for fabricating
the parts is Z-ULTRAT (ABS- Acrylonitrile Butadiene Styrene).

2.4.3. Measurement Configuration

Since the diffusion width evolves while there is a species gradient (see Equation (3)),
there is the need to establish a benchmark time to produce repeatable and accurate results.
Once the diffusion width is established, this is measured through the RGB profile analysis
of the reaction between the reagents and the pH identifier in the meeting zone. The
measurement evaluates the intensity change in the green color channel. Initially, methyl
orange has a solid yellow (light orange) color in its neutral form. When hydronium (H3O+)
from the sample of interest (acids pH < 4) diffuse into methyl orange, the pH indicator
experiences structural changes and reflects a red color. The beginning of the reaction
causes a drop in the intensity of the green channel, since the yellow color shifts to red and
subsequently the constituent green color index decreases.

To determine the measurement time, the moment when the intensity of the green
channel starts to drop is set as the “Time zero” and the pictures for analysis are taken at
certain intervals (60, 90, 120, 180 and 240 s) after the “Time zero”. Numerous trials showed
that this strategy is legit, repeatable and can be applied to all the cases. The pictures
of the measurement line (as shown in Figure 2c) are captured by the Dino-Lite MS325B
microscope. The ambient and the projected light are the same in all the assays and the
pictures are later analyzed by the ImageJ software.

Finally, the limit of detection value (LOD) is calculated through the following formula:
(detailed description of the LOD is presented in the Appendix B.

LOD = 3.3× S
m

(10)

where S is the standard deviation between the actual values and the predicted values by
the calibration plot and m is the slope of the regression line.

2.4.4. Errors and Data Curing

There are two main sources of error in this work: numerical simulation errors and the
empirical test errors. Careful efforts are made to guarantee that the mathematical model is
in agreement with the true flow. The effect of discretization is considered and the cells’ sizes
are chosen accurately to not influence the final results. Also, the residuals of the results
between consecutive iterations are properly chosen to not produce a false convergence.

In the experimental section, the errors might have been caused by the staff and/or by
the devices. Numerous experiments (at least 5 tests for every configuration of solutions
on each model) are conducted in order to minimize these effects. Moreover each group of
dataset is analyzed and the standard deviation (S.D) is calculated through:

S.D =

√
∑N

i
(
Ci − C

)2

N
(11)
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Let Ci, C, i and N be the value of interest at the ith pixel, mean value of interest in the
population, arbitrary variable and the total number of population in the analysis, respectively.

In order to avoid the picture capturing errors (such as light reflection and the ambient
light) the microscope is positioned in a manner to receive the minimum reflection and its
position is kept still during the assays. Besides, the magnification rate is constant for all the
models. Also, the ambient light is measured and the background light is adjusted to be
uniform in all the tests.

Eventually, the Grubb’s test is applied to all the obtained results to detect the outliers
at a 0.05 significance level to minimize the effect of the abovementioned errors.

3. Results and Discussion
3.1. Numerical Simulation

A detailed report on the mesh refinement is presented in Appendix A: Grid study.
The mixing quality is studied to see the effect of the mesh scheme on the produced result.
Figure 4 shows a comparison of the different meshes. “Fine”, “Ultra” and “Ultra-fine”
meshes provide similar results. For instance, the species distribution of the “Fine” mesh
scheme only showed a 0.9% deviation from the “Ultra-fine” mesh design. Therefore, the
“Fine” mesh distribution is selected to perform the study.
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Numerical Analysis of Inlets’ Angle Effect on the Species Diffusion in the Porous Medium

Previous conventional microfluidics studies reported an enhancement of diffusion
velocity, depending on the inlets’ angle [41]. Thus, four different substrate geometries with
inlets’ angle of 30, 45, 60 and 90 degrees are modeled and simulated to study if the same
effect is relevant in porous substrates.

Figure 5 shows the numerical simulation results of the diffusion width at the measure-
ment line for the different models. According to the results, there is a reinforcing effect due
to the inlets’ angle. When the lateral inlets are closer to the middle inlet (smaller angle),
the diffusion width becomes wider. The reported diffusion width for the 90-degree model
is 480 µm, while the species diffusion width is 550 µm in the 30-degree model. Figure 6
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plots the flow lines for each model. In the case of the 90-degree model, the flow lines
from lateral inlets enter the main channel perpendicular to the general direction of the
flow. Since there is only one outlet in the design, the flow needs time and space to change
direction. According to the results, this required time affects the diffusion. For instance,
when the inlets’ angle reduces, the deviation from the general direction of the flow in the
main channel decreases, and as a result, the species have more time and space to diffuse.
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Figure 6 depicts the presence of regions (dead zones) between the inlets, where the
flow velocity is at its minimum value. The comparison between the different models shows
that these minimum velocity regions shrink by decreasing the inlets’ angle. Figure 6a,b
shows that as the distance between the inlets increases, the developed dead zone becomes
larger. The effect of these dead-zone areas on the diffusion width can be seen in Figure 6c,d.
As shown in Figure 6, the diffusion width begins to grow in Figure 6c, where the angle is
smaller compared to Figure 6d, which has a larger inlets’ angle.

Dead zones show an opposite relation with the diffusion width, a larger dead zone
causes a narrower diffusion width at the measurement line. Therefore, the size and the
location of the dead zones with diffusion contour can explain the differences of species
distribution in different models.

3.2. Experimental Results

Several paper substrate geometries of the 30-degree, 45-degree and 90-degree models
are prepared and tested to validate the numerical simulations results. To enhance accuracy,
an appropriate substrate support is used for each model, and all the reservoirs are filled
with 60 µL of solution.
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3.2.1. Relation between Inlets’ Angle and the Required Time for Measuring the Diffusion

The time required to develop a 1.5 mm of diffusion width in all the cases is analyzed
to establish an accurate protocol to be measured with repeatability by ImageJ software. The
evaluation of the diffusion width is conducted on the measurement line.
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Figure 7 demonstrates that the required time is related to the inlets’ angle and increases
from 274.5 s (±68.02 s) in the 30-degree model to 637 s (±113.3 s) in the 90-degree model.
This is in agreement with previous numerical results.
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Figure 7. Experimental value of the required time to develop a 1.5 mm diffusion width at the
measurement line. The reported values are the median time for each model by considering all the
working reagents. The units are in seconds.

Figure 8 compares the interaction between the pH indicator (middle inlet) and the
reagents (0.1 M tartaric acid and wine) over the time, in the three different models (30-
degree, 45-degree and 90-degree). In the measurements done at 120 s after the “Time zero”,
the diffusion width increases considerably in the 30-degree and the 45-degree models.
Moreover, in the 30-degree model, the shift of the pH indicator color is visible with the
naked eye. Meanwhile, in the 90-degree model, the color change on the tartaric acid side is
barely visually distinguishable.
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Previous numerical results have shown that the dead zones appear in certain regions of
the porous medium, and they modify the diffusion width at the steady-state. In agreement
with the numerical results, the experimental outcomes reveal that the dead zones do also
play a role during the transient flow. Therefore, the change in the inlets’ angle creates a
different dead-zone area, which modifies the time taken for the flow to achieve a stable
laminar flow.

3.2.2. Effect of the Inlets’ Angle on the Diffusion Width

In order to define a protocol that produces repeatable and accurate results, the selected
time to analyze the intensity of the green channel of the pictures is set to 240 s after the
“Time zero”.

Figure 9 depicts the intensity of the green channel of the 30-degree and 45-degree
models. In agreement with the numerical results, the diffusion width changes with the
inlets’ angle. In both models, the same reagents (0.1 M tartaric acid from left and 1.0 M
tartaric acid from right inlet) are introduced. The arrows A and C in Figure 9 show that
both models (the 30 and 45-degree models) are able to reflect the presence of hydronium
in the 0.1 M tartaric acid. As is expected, the 30-degree model is more sensitive than the
45-degree model, since the diffusion width is 1.89 mm for the same ionic strength compared
to 1.825 mm (arrow C compared to arrow A).
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Figure 9. Intensity of the green color channel at the measurement line of different models at 240 s after the “Time zero”. In
all the models, 0.1 and 1.0 M tartaric acid solutions were entered through the left and right inlets, respectively.

In the same Figure, the arrows B and D show that both models can also reflect the
presence of hydronium in the 1.0 M tartaric acid side (right side of the graph). Since
the 1.0 M tartaric acid has a higher hydronium concentration compared to the 0.1 M
tartaric acid, the intensity of the green channel analysis shows a wider diffusion width
on the right side of the graph. The measured diffusion width for the 45-degree model
is 2.164 mm (arrow B). While the diffusion width for the 30-degree model increases to
2.594 mm (arrow D). The mentioned results are not only in agreement with the provided
justifications, but also, they show that the 30-degree model has higher sensitivity to the
hydronium concentration.

Figure 10 plots a visual comparison of the diffusion development in the different
models. In all the pictures in Figure 10a, the 0.1 M tartaric acid enters through the left inlet,
and the 1.0 M tartaric acid is introduced via the right inlet. According to the pictures i
and ii, the 30-degree and 45-degree models show a measurable response to the introduced
reagents. On the other hand, in the pictures of Figure 10b, wine enters through the left
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inlet, and the 0.1 M tartaric acid is introduced via the right inlet. The comparison shows
that only the 30-degree model (picture iv) displays a measurable response to the ionic
strength of the wine. The 45-degree model requires further in-depth analysis. Meanwhile,
the 90-degree model (iii and vi) is struggling to reflect the ionic strength even for the
highest concentrations.
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According to the results, if the ionic concentration decreases, the diffusion phe-
nomenon would be more dependent on the geometrical characteristics of the substrate.
Therefore, the most accurate geometry would be the 30-degree model. As predicted in the
numerical models, the inlets’ angle modifies the way the solutions enter the main channel.
Subsequently, the encounter of the reagents is affected. By taking into account the results
and the provided justifications, it can be concluded that choosing a lower angle for the
inlets facilitates the interactions between the fluids of different angles and improves the
performance of paper diffusion-based sensors.

The results pointed out by the numerical model were validated experimentally. (Please
see Figure 11A). According to the numerical results, the 30-degree model could provide a
2.15 mm of diffusion width. Meanwhile, the 45 and 90-degree models only provide 1.85
and 1.45 mm of diffusion width for the same ionic strength of the solution, respectively. On
the other hand, regarding the experimental results, the diffusion width for the 30, 45 and
90-degree models were 1.865, 1.798 and 1.281 mm, respectively (detailed description of the
reported diffusion widths of the experimental assays in mentioned in the next paragraph).
By comparing the numerical and experimental results, it can be claimed once again that the
experimental results support the numerical studies, and the numerical model has simulated
the µPAD with acceptable accuracy.
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Figure 11B displays the average reported diffusion widths in all the proposed models
for the measured green color profile of the reagents (0.1, 0.5 and 1M tartaric acid). The
X-axis is the concentration based on (g/L) unit, which was converted from the molar
(M) unit (with respect to the molar mass of tartaric acid) and the Y-axis is the measured
diffusion width based on the meter (m) unit, which was converted from the millimeter
(mm) unit. Figure 11B clearly shows that the 30-degree model has a steeper regression
line, and therefore, it is more sensitive to capture the differences between tartaric acid
solutions. Meanwhile, the regression lines in the 45-degree and 90-degree are more grad-
ual and demonstrate poor sensitivity. For instance, the 30-degree model displayed a
1.865 ± 0.28 mm and 2.478 ± 0.18 mm of diffusion width for the 0.1 M and 1.0 M tartaric
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acid reagents, respectively. However, the aforementioned values for the 45-degree model
were 1.798 ± 0.28 mm and 2.085 ± 0.11 mm, showing only a 200 µm margin between
different solutions. The reported margin for the 90-degree model was even worse, when
the reported measurements dropped to 1.281 ± 0.22 mm and 1.429 ± 0.21 mm for 0.1 M
and 1.0 M tartaric acid solutions, respectively. Moreover, based on the calculated regression
line, the 30-degree model displayed a 13.9 g/L limit of detection, whereas the same value
for the 90-degree model was reported as 34.6 g/L.

The results showed that, by choosing the inlets’ angle properly, even the lowest ionic
concentration can be measured with the simplest detection techniques.

3.2.3. Response Time Optimization for the 30-Degree Model

One of the major advantages of the µPADs is the possibility to provide results in a
short turnaround time. Heretofore, the results showed that choosing a small angle can
magnify the diffusion and shorten its required time. In order to optimize the proposed
setup, the diffusion was analyzed at the inlets’ intersection of the 30-degree model. The
new measurement line was chosen: first, to have the same evaluation position for all the
cases, and second, to reduce the required time to evaluate the diffusion zone on the new
measurement line (see Figure 12). The test configuration was similar to previous tests,
except for the picture capturing time. Pictures were taken at 120, 180 and 240 s after the
“Time zero”.
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Figure 12. Intensity of the green channel of the diffusion on the measurement line at 120, 180 and 240 s after the time zero.
Wine is injected through the left inlet and 0.1 M tartaric acid solution is entered via the right inlet. Red line shows the new
measurement line at the neck of the 30-degree model. The dimensions are also illustrated in the pictures.

Figure 12 displays the overlap of the intensity of the green channels of the 30-degree
model at 120, 180 and 240 s after the “Time zero”. In these experiments, the wine is soaked
through the left inlet, and the 0.1M tartaric acid solution is entered via the right inlet. The
red line plotted in Figure 12 shows the new measurement line at the neck of the 30-degree
model. The arrows A and B show the diffusion width, and the arrows i–iv show the drop
in the intensity of the green color channels.

As expected, in all the tests, the measured diffusion width (arrow A) remained constant
and only showed insignificant changes over time. The measured diffusion width for the
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wine was 938.66 µm ± 14.05 µm, and apparently it was independent of time. For instance,
the intensity of the green channel drop is 23.2 units for the wine 120 s after the “Time zero”
(arrow i). While the same measurements at 180/240 s after the “Time zero” (arrow ii) only
shows a drop of 25 units.

The evolution of the intensity of the green channel of the 0.1 M tartaric acid solution
(arrow B) is also measured, being 975.33 µm ± 56.41 µm. However, the intensity of the
green channel drop in the tartaric acid side seems to be more affected by the time compared
to the wine samples. The drop in the intensity of the green channel is 32.48 units at 180 and
240 s (arrow iii) after the “Time zero”, while it is 23.16 units at 120 s. This means that the
color change is intensified over time. Therefore, for pH measurements, longer times would
be required to achieve accurate measurements in this type of sensor.

To measure the diffusion width, which is the physical value that correlates to the
ionic strength, the evaluation at the new measurement line (neck of the 30-degree model)
provides reliable results in 120 s and running the test for a longer time period does not alter
the diffusion width, as it is plotted in Figure 12 (please see arrows A and B).

The obtained outcomes can be explained by the diffusion flux and the definition of
porous medium. As it has been stated before, the smallest dead zones are reported in the
30-degree model. This can be translated into the fact that when the solutions from different
inlets enter the main channel, they encounter each other, and they begin to interact (or
diffuse) imminently. The existing hydronium from the wine and the tartaric acid solution
diffuses into the pH indicator region. Since the hydronium concentration is limited, the
resulting diffusion flow would be affected, and the diffusion width growth would be
decelerated. Hence, it means that the hydronium ions diffuse further as the time passes,
although at a lower rate. Meanwhile, it should be noted that the diffusion is occurring
within a porous medium, which generates a flow perpendicular to the diffusion flow. While
in the porous media there is a continuous flow from the inlet/s towards the outlet. It is true
that the diffusion width increases over time, but there is also a bulk movement from the
inlet to outlet. The diffusion is happening inside the porous medium and the hydronium
advances further over time, but at the same time, the diffusion zone is moving towards
the outlet due to the bulk movement. So, if the evaluation is carried out at a certain line,
the measured diffusion width would be independent of the time, and it only relies on the
initial flux, while the diffusion flow is affected by the hydronium concentration and time.
Therefore, measuring the diffusion width over a line not only eliminates the time factor in
the diffusion, but also provides the capability to compare the concentration of species in
two solutions. Therefore, the proposed design is suitable for ionic strength measurements.

On the other hand, the drop in the intensity of the green channel is influenced by
time. Especially, as the concentration of hydronium increases. The drop in the intensity of
the green channel is due to the pH indicator’s color shift, and the color shift is caused by
the transformation of the methyl orange molecule from the Azo structure to the Quinoid
structure. The transform rate is highly affected by the amount of hydronium in the solution
and results in the sedimentation of methyl orange salts. At lower hydronium concentra-
tions the sedimentation is limited, but as the concentration increases the sedimentation is
augmented dramatically and the salts even form fibers. As a result, the salts and fibers are
stranded in the pores, and as the time passes, they accumulate and reflect a more intense
color shift.

To validate the performance of the sensor, the diffusion width of the different solutions
is measured. The wine shows an average diffusion width of 938.66 ± 14.05 µm, whereas
the 0.1, 0.5 and 1.0 M tartaric acid solutions demonstrate an average diffusion width of
975.33 ± 56.41 µm, 1314.08 ± 69.06 µm and 1651.03 ± 34.84 µm, respectively. Figure 13
plots the calibration line obtained from the diffusion width at the inlets’ neck for different
tartaric acid solutions.
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Based on the obtained calibration plot, the proposed sensor predicts 7.6 g/L of total
acid concentration for the wine sample. Alternatively, the literature HPLC measurements
showed that the total acid concentration of white wines varies from 5.64 to 10.7 g/L [42].
The average acid concentration of the white wine, according to the literature, is 7.91 g/L,
which is significantly in agreement with the predicted concentration of the wine under
study by the sensor.

The limit of detection for the 30-degree model (at the inlets’ neck), according to the
results, is equal to 6.2 g/L or 41.3 mM, which is an improvement compared to previous
µPAD measurements. On the other hand, the obtained LOD legitimized the utilization of
the proposed µPAD for ionic strength determination in wines, and once again showed that
the diffusion widths of wine and 0.1M tartaric acid are in the same order and outcomes are
in agreement with previous studies [43]. Although the reported LOD is not as remarkable
as other techniques which require bulky measuring equipment, it should be noted that the
proposed self-referencing sensor is designed and validated to be used in remote areas with
minimum reliance on sophisticated and laborious detection and quantification techniques.
Therefore, even being able to conduct quantitative measurements in less-developed regions
can be considered as a great step forward.

On the other hand, the numerical and experimental results also revealed that the
orientation of inlets is mainly affecting the neighboring inlets and the flow velocity. This
can be translated into the fact that choosing appropriate inlets’ angle and type of substrate
can expand the variety of tests to be performed. Therefore, the outcomes of this assay can
be extrapolated to other studies and improve the µPADs’ designs.

Finally, it should be noted that in the experimental section of this assay, we used wine
as a sample under analysis. Because in the wine production process, knowing the wine’s
ionic strength can be later related to the capacity of the wine to be stored for longer periods.
We selected the tartaric acid as a reference solution, since according to [42], the tartaric acid
is the most abundant acid in wines. However, there are numerous other reagents that can
be used for determining the ionic strength (for instance, 0.05M KCl and 0.25M NaOH (1%)
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solutions). Therefore, by choosing a different ionic strength reference, this sensor can be
applied to numerous other applications.

4. Conclusions

This study proposes a diffusion paper-based sensor to take advantage of microfluidics,
3D fabrication methods and simple detection techniques to widen the capabilities of lab-
on-paper platforms. Since the uncontrollable flow is the major drawback of the µPADs, a
3D-printed support was developed to guarantee the flow synchronization in the porous
medium, and the flow was analyzed using CFD models.

A CFD model which took as reference the paper characteristics was developed and
validated as a useful tool for the design of paper diffusion-based sensors. The model was
used to evaluate the effect of the substrate geometry on the flow within the porous medium
and to develop a sensor setup that could compare the ionic concentration of an unknown
solution to a known solution quantitatively.

The experimental tests were in agreement with the numerical models and validated
that less time was required to develop the diffusion zone if the inlets’ angles were smaller.
For instance, the 30-degree model required 57% less time to develop a diffusion zone
compared to the 90-degree model. Moreover, models with inlet angles bigger than 30◦

were unable to detect concentrations below 0.5 M.
Therefore, the 30-degree model was used to implement a paper diffusion-based sensor

to evaluate the ionic strength of wines by comparison to different tartaric acid solutions.
This novel sensor presents a limit of detection of 6.2 g/L and it is capable of evaluating
the ionic concentration of commercial wines in 120 s without the need of any external
equipment or trained personnel. Different substrates can be evaluated to further optimize
the turnaround time of the results. This sensor strategy can be applied to other species and
using the same model of different paper substrates can be evaluated to tune the generated
capillary flow. As a result, the accuracy and the results turnaround time can be enhanced.
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Appendix A. Grid Study

A mesh independency analysis ensures that the mesh density and distribution are not
affecting the final results. We chose the 90-degree model as the basis for mesh refinement
and the scalar diffusion as the variable of interest. Since the fluid was flowing through a
porous medium, the flow velocity would be relatively small, and the viscous resistance
would be considerably large. As a result, the mesh refinement did not have a significant
effect on the velocity profile. Thus, we decided to monitor the scalar diffusion. Mesh
refinement consisted of six grid groups. The minimum element size varied from 0.5 mm to
25 µm. The details of the studied grids are mentioned in Table 1.
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Table 1. The details of the studied mesh distributions.

Grid 1 × 10−4 Element Size (m) 1 × 10−5 Minimum
Surface Area (m2)

Minimum Orthogonal
Quality Number of Iterations

Low 5.0 25.1 0.833 88
Medium 2.5 11.68 0.787 110

High 1.25 6.01 0.661 165
Fine 0.5 1.93 0.69 317
Ultra 0.375 1.75 0.533 358

Ultra-fine 0.25 0.798 0.301 552

In all the cases, it was presumed that the flow velocity is 1.39 × 10−4 m/s. The fluid
density and viscosity were set to 998.2 kg/m3 and 0.001 kg/(m.s), respectively. For mim-
icking the diffusion (species transport), a User-defined scalar was defined and dedicated
to the main channel. The scalar’s concentration was set to 0.05 M and its diffusivity was
calculated to be 1.29 × 10−7 kg/m.s (Please refer to Section 2.2.3 in this article).

Mixing quality investigations showed that the reported mixing qualities in the “Fine”,
“Ultra” and “Ultra-fine” mesh refinements were quite similar. Whilst the “Low” mesh
distribution showed a mixing quality of 17.3%, the reported mixing quality of the “Ultra-
fine” scheme was 6.12%. Comparison between the mixing qualities of the “Fine” and
“Ultra-fine” mesh designs only showed a 0.9% of difference. (Please see Figure 3 in
the manuscript)

Moreover, according to the results (Figure A1), the “Fine”, “Ultra” and “Ultra-fine”
mesh schemes provide the most similar results. Point to point comparisons showed that
the “Low” mesh scheme has 58.6% of similarity to “Ultra-fine” mesh design. Meanwhile,
the results of the “Fine” mesh distribution presented a 96.2% of similarity to the “Ultra-fine”
mesh scheme.
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Despite producing the most similar results, the number of required iterations for the
results to converge was a determining parameter. Analysis revealed that the number of
required iterations for the “Fine” mesh scheme was 42.6% less than the same value for the
“Ultra-fine” mesh design and therefore, it was more efficient from the calculation-cost point
of view. Considering all the aforementioned points, we decided to use the “Fine” mesh
distribution for the numerical analysis.
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Appendix B. Limit of Detection

Limit of detection (LOD) expresses the minimum amount of a compound that can
be detected in comparison to its absence. One of the most conventional methods for
determining the LOD in experimental methods is by considering the generated standard
deviation. In most of the assays the distribution of results can be illustrated by a regression
line, expressed as:

y = mx + b (A1)

where m is the slope of the regression line and b is the interception point of the line with
the y-axis.

By determining the regression line formula and obtaining the standard deviation (S)
of the assays, the limit of detection can be found through:

LOD = 3.3× S
m

(A2)
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