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Summary 

 

Modern agriculture relies heavily on sophisticated computational tools that involve genomics and 

phenomics data at a large scale. As for genomics, over the past few decades, plant and animal breeders have 

taken advantage of genomic selection (GS), which is the breeding strategy that consists of predicting 

complex traits using genomic wide genetic markers. GS has two main advantages over traditional 

approaches: increasing genetic gain and reducing the amount of data to be tested in the field. In parallel, 

the implementation of electronic, sensors, digital cameras, unmanned aerial vehicles, mass spectrometry, 

among others, have opened a window of opportunities in the ‘phenomics’ area, rapidly increasing the 

amount of available data. Phenotyping does not end here, as ‘omics’ technologies also provide a new source 

of information, allowing not only the characterization of the organism itself but also of its metagenome. 

The current challenge is to transform and combine all these heterogeneous data into valuable information 

that helps the breeder to make better and more effective decisions.  

 

The present work deals with a variety of genomic prediction and phenomics problems, all with the shared 

objective of exploring the strengths and weaknesses of ML techniques in agriculture. The first two 

contributions deal with genomic prediction issues while the following two chapters are concerned with 

phenomics, followed by the last research on data integration. 

  

In chapter 3, we develop a versatile forward simulation tool, called polyploid Sequence-Based Virtual 

Breeding (pSBVB) to evaluate genomic selection strategies in polyploids. pSBVB is an efficient gene 

dropping software that can simulate any number of complex phenotypes and can address many genomic 

selection strategies in polyploids. We use pSBVB to evaluate the potential advantage of using GP in two 

important polyploid species, auto-tetraploid potato, and allo-octoploid strawberry. Overall, we show that, 

while genomic selection is a promising breeding strategy for polyploids, the actual advantage critically 

depends on the underlying genetic architecture. 

 

In Chapter 4, we compare the application of deep neural networks and traditional linear models on genomic 

prediction problems, using data from two important polyploid species: strawberry and blueberry. Regarding 

deep learning, we focus on two well-known architectures: The Multi-layer Perceptron (MLP) and 

Convolutional Neural Networks (CNN). Our main results indicate that there is no clear advantage of neural 

networks over linear methods, except when the epistasis component is important. However, using a 

parameterization capable of accounting for these nonlinear effects, Bayesian linear models can match or 

exceed the predictive accuracy of neural networks. Furthermore, we have shown that the predictive ability 

of neural networks is critically affected by the combination of hyperparameters, so finding the best neural 

network is not a trivial task and is computationally expensive. 

 

In chapter 5, we evaluate fruit morphology by automatic analysis of digital images. We present a data 

analysis pipeline that segments, classifies and labels the images, extracts conformation features, including 

linear (area, perimeter, height, width, circularity, shape descriptor, the ratio between height and width) and 

multivariate statistics (Fourier Elliptical components and Generalized Procrustes). Internal color patterns 

are obtained using an autoencoder to smooth out the image. Besides, we develop a variational autoencoder 

to automatically detect the most likely number of underlying shapes in the database. We also resort to 

Bayesian modeling to estimate additive and dominance effects for all recorded traits. The research shows 

that fruit shape and color can be quickly and automatically evaluated and are moderately heritable.  
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In chapter 6, we revisit the problem of automatically evaluate morphological traits, focusing this time on 

the dairy industry. Assessing conformational cows' features accurately and rapidly is a challenge, mainly due 

to the difficulty of removing the background when evaluating field images. While recent developments in 

computer vision have greatly improved automated background removal, these methods have not been fully 

translated to biological studies. The work presents a composite method (DeepAPS) that combines two 

readily available algorithms to create a precise mask for an animal image. This method performs accurately 

when compared with manual classification of the proportion of coat color with an adjusted R2 = 0.926. 

Using the output mask, we can automatically extract useful phenotypic information for fourteen additional 

morphological features. Using pedigree and image information from a web catalog (www.semex.com), we 

estimated high heritability, indicating that meaningful biological information has been extracted 

automatically from imaging data. This method can be applied to other datasets and requires only a minimal 

number of image annotations (~50) to train this partially supervised machine-learning approach. DeepAPS 

allows for the rapid and accurate quantification of multiple phenotypic measurements while minimizing 

study cost.  

 

In Chapter 7, we address the problem of data integration. The decreasing cost of "omics" technologies 

facilitates the simultaneous study of gene expression, proteins, metagenomics and metabolites, and the 

investigation of their relationship with complex traits. However, the integration of heterogeneous data is 

not trivial. Here, we have developed Link-HD, an R package for integrating multiple datasets based on 

STATIS-ACT ('Structuration des Tableaux A Trois Indices de la Statistique -Analyse Conjointe de 

Tableaux'), a family of methods designed to integrate information from diverse subspaces. Our software 

extends the classical approach by incorporating distance matrices for numerical, categorical and 

compositional data, a variable selection method, a differential abundance test and a hypergeometric taxon 

enrichment analysis (HyTE) to analyze whether there is an enrichment of genera (families) in the selected 

taxa. We illustrated the methodology by integrating microbial communities (Bacteria, Archaea and 

Protozoa) from 65 Holstein cows from which methane (CH4y) production was measured individually, In 

the problem addressed, we found a common subspace composed of a mixture of the three communities, 

reflecting the existence of three "ruminotypes" as previously described in the literature. Additionally, the 

HyTe test allowed us to identify several families of bacteria and archaea associated with CH4y emission. 

 

The results obtained here show how machine learning (ML) techniques can empower modern agriculture 

in multiple avenues. However, much work remains to be done and specific ML developments are required 

to enhance genetic gain in breeding programs. 
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Resumen  

 

La agricultura moderna depende ampliamente del uso de sofisticadas herramientas informáticas para 

analizar datos masivos, tanto genotípicos como fenotípicos. La selección genómica (SG), que consiste en 

predecir rasgos complejos utilizando marcadores genéticos de amplio espectro, ha sido aprovechada por 

los mejoradores de plantas y animales a lo largo de las últimas décadas, para producir un considerable 

aumento de la ganancia genética, reduciendo el número de muestras a testear en el campo. Paralelamente, 

la implantación de la electrónica, los sensores, las cámaras digitales, los vehículos aéreos no tripulados y la 

espectrometría de masas, entre otros, han abierto una ventana de oportunidades en el ámbito de la 

"fenómica", aumentando rápidamente la cantidad de datos disponibles. Todas las tecnologías 'ómicas' 

también proporcionan nuevas fuentes de información, permitiendo no sólo la caracterización del propio 

organismo, sino también de su metagenoma. Por lo tanto, uno de los mayores desafíos actuales es combinar 

todos estos datos heterogéneos para transformarlos en información valiosa que ayude a los mejoradores a 

tomar decisiones eficaces. 

 

El presente trabajo aborda una variedad de problemas de predicción genómica y fenómica, todos ellos con 

el objetivo común de explorar ventajas y desventajas del uso de ML en agricultura. Las dos primeras 

contribuciones tratan de problemas de predicción genómica, mientras que los dos capítulos siguientes se 

ocupan de la fenómica, y la última investigación trata de la integración de datos. 

 

En el capítulo 3, desarrollamos una herramienta de simulación llamada Polyploid Sequence-Based Virtual 

Breeding (pSBVB) que se puede utilizar para la evaluación de diferentes estrategias de selección genómica 

en especies poliploides. Utilizando esta herramienta de simulación avanzada, valoramos la potencial ventaja 

del uso de predicción genómica en dos importantes especies poliploides, la patata auto-tetraploide y la fresa 

alo-octoploide. Nuestros resultados indican que, aunque la selección genómica es una estrategia de mejora 

prometedora para los poliploides, la ventaja real depende críticamente de la arquitectura genética 

subyacente. 

 

En el capítulo 4, comparamos la aplicación de las redes neuronales profundas y los modelos lineales 

tradicionales sobre problemas de predicción genómica, utilizando datos de dos importantes especies 

poliploides: la fresa y el arándano. En cuanto al aprendizaje profundo, nos centramos en dos arquitecturas 

bien conocidas: El Perceptrón Multi-capa y las Redes Neuronales Convolucionales. Nuestros principales 

resultados indican que no existe una ventaja clara de las redes neuronales sobre los métodos lineales, 

excepto cuando el componente de epistasis es importante. Sin embargo, utilizando una parametrización 

capaz de tener en cuenta estos efectos no lineales, los modelos lineales bayesianos pueden igualar o superar 

la precisión predictiva de las redes neuronales. Además, hemos demostrado que la capacidad predictiva de 

las redes neuronales se ve críticamente afectada por la combinación de hiperparámetros, por lo que 

encontrar la mejor red neuronal no es una tarea trivial y es costosa desde el punto de vista computacional.  

 

En el capítulo 5, presentamos un trabajo que evalúa la morfología de la fruta mediante el análisis automático 

de imágenes digitales. Nuestro método segmenta, clasifica y etiqueta las imágenes, extrae características de 

conformación, tanto lineales (área, perímetro, altura, anchura, circularidad, descriptor de forma, la relación 

entre la altura y la anchura), como multivariadas (componentes elípticos de Fourier y Procrustes 

Generalizado). También recurrimos a técnicas de aprendizaje profundo, específicamente los 

autocodificadores (del inglés, autoencoders) para suavizar la imagen y estimar los patrones de color interno 

del fruto y para determinar automáticamente el número más probable de formas subyacentes en la base de 

datos. Es importante resaltar que, estos métodos, permiten también la generación automática de formas.  

Finalmente, estimamos los parámetros genéticos de todos los rasgos identificados. La investigación 
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demuestra que la forma y el color de diversas frutas pueden evaluarse de forma rápida y automática y son 

moderadamente heredables. 

 

En el capítulo 6, retomamos el problema de la evaluación automática de los rasgos morfológicos, 

centrándonos en la industria del vacuno lechero. La evaluación automática de rasgos morfológicos de 

vacunos a través de imágenes digitales es un desafío, dado que las imágenes tomadas en el campo tienen 

fondos complejos. Aunque los recientes desarrollos en visión por ordenador han mejorado enormemente 

la eliminación automática del fondo, su aplicación en estudios biológicos es todavía escasa. Este trabajo 

presenta un método (DeepAPS) que combina dos algoritmos para crear una máscara precisa de la imagen 

del animal y remover automáticamente el fondo. Hemos estimado la configuración del color del ganado 

automática y manualmente, alcanzando una correlación de R2 = 0,926 entre ambos enfoques. Además, 

hemos extraído catorce características morfológicas adicionales. Utilizando la información de pedigrí e 

imágenes de un catálogo web (www.semex.com), estimamos los parámetros genéticos de cada uno de los 

rasgos de conformación y color.  Este método puede aplicarse a otros conjuntos de datos y sólo requiere 

un número mínimo de imágenes anotadas en el entrenamiento (~50), lo que lo convierte en una herramienta 

interesante para cuantificar rápida y precisamente múltiples mediciones fenotípicas a bajo coste.  

 

En el capítulo 7, abordamos el problema de la integración de datos. El descenso del coste de las tecnologías 

"ómicas" facilita el estudio simultáneo de la expresión génica, de las proteínas, la metagenómica y los 

metabolitos, y de la investigación de su relación con rasgos complejos. Sin embargo, la integración de datos 

heterogéneos no es trivial. Aquí, hemos desarrollado Link-HD, un paquete de R para integrar múltiples 

conjuntos de datos basado en STATIS-ACT ('Structuration des Tableaux A Trois Indices de la Statistique 

-Analyse Conjointe de Tableaux'), una familia de métodos diseñados para integrar información de diversos 

sub-espacios. Nuestro software amplía el enfoque clásico incorporando matrices de distancia para datos 

numéricos, categóricos y composicionales, un método de selección de variables, una prueba de abundancia 

diferencial y un análisis de enriquecimiento hipergeométrico de taxones (HyTE) para analizar si existe un 

enriquecimiento de géneros (familias) en los taxones seleccionados. Hemos ilustrado la metodología 

integrando comunidades microbianas (Bacterias, Arqueas y Protozoos) de 65 vacas Holstein de las que se 

midió individualmente la producción de metano (CH4y), En el problema abordado, encontramos un sub-

espacio común compuesto por una mezcla de las tres comunidades, que refleja la existencia de tres 

“ruminotipos” como se ha descrito previamente en la literatura. Adicionalmente, la prueba HyTe nos 

permitió identificar varias familias de bacterias y arqueas asociadas a la emisión de CH4y. 

 

Los resultados obtenidos aquí muestran cómo las técnicas de aprendizaje automático (ML) pueden 

potenciar la agricultura moderna en múltiples vías. Sin embargo, queda mucho trabajo por hacer y se 

requieren desarrollos específicos de ML para potenciar la ganancia genética en los programas de mejora. 
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Resum 

 

L'agricultura moderna depèn àmpliament de l'ús de sofisticades eines informàtiques per analitzar dades 

massives, tant genotípiques com fenotípiques. La selecció genòmica (SG), que consisteix en predir 

característiques complexes utilitzant marcadors genètics d'ampli espectre, ha estat aprofitada pels 

milloradors de plantes i animals, al llarg de les últimes dècades, per produir un considerable augment del 

guany genètic, reduint el nombre de mostres a testar al camp. Paral·lelament, la implantació de l'electrònica, 

els sensors, les càmeres digitals, els vehicles aeris no tripulats i l'espectrometria de masses, entre d’altres, 

han obert una finestra d'oportunitats en l'àmbit de la "fenómica", augmentant ràpidament la quantitat de 

dades disponibles. Totes les tecnologies 'òmiques' també proporcionen noves fonts d'informació, 

permetent no només la caracterització del mateix organisme, sinó també seva del seu metagenoma. Per tant, 

un dels majors reptes actuals és combinar totes aquestes dades heterogènies per transformar-les en 

informació valuosa que ajudi els milloradors a prendre decisions eficaces. 

 

El present treball aborda una varietat de problemes de predicció genòmica i fenómica, tots ells amb 
l'objectiu comú d'explorar avantatges i desavantatges de l'ús de ML en agricultura. Les dues primeres 
contribucions tracten de problemes de predicció genòmica, mentre que els dos capítols següents s'ocupen 
de la fenómica, i l'última investigació tracta de la integració de dades. 
  

En el capítol 3, desenvolupem una eina de simulació anomenada Polyploid Sequence-Based Virtual 

Breeding (pSBVB) que es pot utilitzar per a l'avaluació de diferentes estratègies de selecció genòmica en 

espècies poliploids. Utilitzant aquesta eina de simulació avançada, valorem la potencial avantatge de l'ús de 

predicció genòmica en dos importants espècies poliploides, la patata auto-tetraploide i la maduixa alo-

octoploide. Els nostres resultats indiquen que, tot i que la selecció genòmica és una estratègia de millora 

prometedora per als poliploides, l'avantatge real depèn críticament de l'arquitectura genètica subjacent. 

 

En el capítol 4, comparem l'aplicació de les xarxes neuronals profundes i els models lineals tradicionals 

sobre problemes de predicció genòmica, utilitzant dades de dos importants especies poliploids: la maduixa 

i el nabiu. Pel que fa a l'aprenentatge profund, ens centrem en dos arquitectures ben conegudes: El 

Perceptrón Multi-capa i les Xarxes Neuronals convolucionals. Els nostres principals resultats indiquen que 

no hi ha un avantatge clar de les xarxes neuronals sobre els mètodes lineals, excepte quan el component de 

epístasi és important. No obstant això, utilitzant una parametrització capaç de tenir en compte aquests 

efectes no lineals, els models lineals bayesians poden igualar o superar la precisió predictiva de les xarxes 

neuronals. A més, hem demostrat que la capacitat predictiva de les xarxes neuronals es veu críticament 

afectada per la combinació de hiperparàmetres, de manera que trobar la millor xarxa neuronal no és una 

tasca trivial i és costosa des del punt de vista computacional. 

 

En el capítol 5, vam presentar un treball que avalua la morfologia de la fruita mitjançant l'anàlisi automàtic 

d'imatges digitals. El nostre mètode segmenta, classifica i etiqueta les imatges, extreu característiques de 

conformació, tant lineals (àrea, perímetre, alçada, amplada, circularitat, descriptor de forma, la relació entre 

l'altura i l'amplada), com multivariades (components el·líptics de Fourier i Procrustes Generalitzat). També 

vam recórrer a tècniques d'aprenentatge profund, específicament els autocodificadors (de l'anglès, 

autoencoders) per suavitzar la imatge i estimar els patrons de color intern del fruit i per determinar 

automàticament el nombre més probable de formes subjacents a la base de dades. És important ressaltar 

que aquests mètodes permeten també la generació automàtica de formes. Finalment, estimem els 

paràmetres genètics de tots els caracters identificats. La investigació demostra que la forma i el color de 

diverses fruites poden ser avaluades de forma ràpida i automàtica i són moderadament heretables. 
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En el capítol 6, revisitem el problema de l'avaluació automàtica dels trets morfològics, centrant-nos en la 

indústria del boví lleter. L'avaluació automàtica de trets morfològics de bovins a través d'imatges digitals és 

un desafiament, donat que les imatges preses en el camp tenen fons complexos. Tot i que els recents 

desenvolupaments en visió per ordinador han millorat enormement l'eliminació automàtica del fons, la seva 

aplicació en estudis biològics és encara escassa. Aquest treball presenta un mètode (DeepAPS) que combina 

dos algoritmes per a crear una màscara precisa de la imatge de l'animal i remoure automàticament el fons. 

Hem estimat la configuració del color de la ramaderia automàtica i manualment, aconseguint una correlació 

de R2 =0,926 entre tots dos enfocaments. A més, hem extret catorze característiques morfològiques 

addicionals. Utilitzant la informació de pedigrí i imatges d'un catàleg web (www.semex.com), estimem els 

paràmetres genètics de cada un dels trets de conformació i color. Aquest mètode pot aplicar-se a altres 

conjunts de dades i només requereix un nombre mínim d'imatges anotades en l'entrenament (~ 50), el que 

el converteix en una eina interessant per quantificar ràpida i precisament múltiples mesures fenotípiques a 

baix cost. 

 

En el capítol 7, abordem el problema de la integració de dades, focalitzant-nos en l'anàlisi de múltiples fonts 

de dades del microbioma del bestiar boví. El descens de el cost de les tecnologies "òmiques" facilita l'estudi 

simultani de l'expressió gènica, de les proteïnes, la metagenòmica i els metabòlits, i de la investigació de la 

seva relació amb caràcters complexes. No obstant això, la integració de dades heterogenis no és trivial. 

Aquí, hem desenvolupat Link-HD, un paquet de R per integrar múltiples conjunts de dades basat en 

STATIS-ACT ( 'Structuration des Tableaux A Trois Índexs de la Statistique -Analyse Conjointe de 

Tableaux'), una família de mètodes dissenyats per integrar informació de diversos sub-espais. El nostre 

programari amplia l'enfocament clàssic incorporant matrius de distància per dades numèriques, 

categòriques i composicionals, un mètode de selecció de variables, una prova d'abundància diferencial i una 

anàlisi d'enriquiment hipergeomètric de tàxons (HyTE) per analitzar si hi ha un enriquiment de gèneres ( 

famílies) en els taxons seleccionats. Tot i que hem il·lustrat la metodologia integrant de comunitats 

microbianes (bacteris, arqueobacteris i Protozous) de 65 vaques Holstein de les que es va mesurar 

individualment la producció de metà (CH4y), aquesta es pot aplicar a problemes més generals. En el 

problema abordat, trobem un sub-espai comú compost per una barreja de les tres comunitats, que reflecteix 

l'existència de tres "ruminotipos" com s'ha descrit prèviament a la literatura. Addicionalment, la prova HyTe 

ens va permetre identificar diverses famílies de bacteris i arqueees associades a l'emissió de CH4y. 

 

Els resultats obtinguts aquí mostren com les tècniques d'aprenentatge automàtic (ML) poden potenciar 
l'agricultura moderna en múltiples vies. No obstant això, queda molta feina per fer i es requereixen 
desenvolupaments específics de ML per potenciar el guany genètic en els programes de millora. 
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Chapter 1  
 

General Introduction 

 

This thesis focuses on advancing machine learning techniques for a smarter agri-food system. 

Agriculture, sometimes dubbed as the ‘Neolithic Revolution’, is one of the most important human 

activities and has been the predominant way of food production up to the present day.  

 

Over the last century, our farming capacity has grown exponentially, bringing with it some 

undesirable effects. Currently, farmers face challenges ranging from climate change to 

demographic pressure. The former is perhaps the utmost threat to the planet and is increasing the 

drought areas, causing extreme weather conditions and the extinction of species, among others.  

While the latter means that food production will have to increase significantly in the coming years. 

These major concerns could be addressed, at least in part, by taking advantage of the enormous 

amount of genomic and phenomics data available and advances in data analysis techniques. 

 

The present chapter introduces the main topics of this thesis. Section 1.1 traces from 

domestication to current plant and animal breeding challenges and, Section 1.2 explains the main 

differences between plant and animal breeding. Sections 1.3 provides an overview of Statistical 

Inference vs. Prediction and section 1.4 discusses the use of Bayesian or Machine Learning 

methods for genomic prediction. Section 1.5 introduces the key concepts of Bayesian Learning 

and section 1.6 deals with Deep Learning modeling used in this thesis. Section 1.7 addresses 

generative models; Section 1.8 is concerned with Image processing and Computer Vision in 

agriculture and section 1.9 outlines statistical shape analysis. Section 1.10 introduces data 

integration techniques in biology. We finally close this chapter with the discussion about the 

importance of using simulations in genomic problems in section 1.11.  

 

1.1 Plant and Animal Breeding: from phenotype to genotype and from 

genome to phenome 

 

Agriculture cannot be conceived without the concept of domestication, which is probably the most 

important event in the last 13000 years of mankind history. There is no consensus on the meaning 

of domestication, but it implies a relationship between humans and the target organism, either 

plant or animal [1]. The anthropocentric view, especially influenced by the practices of European 

animal breeders during the 19th century, emphasizes the role of humans over the reproduction, 

movement, distribution, and protection of domesticates [2].   

 

In a broad sense, breeding can be defined as the alteration caused in plants and animals due to 

human intervention, regardless of whether they were intentional or accidental. The primary goal 

of breeding is to improve organisms for human welfare; but there are many secondary aims and, 

above all, breeding tools and strategies that have shifted over the time, e.g., in the last 100 years 
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breeders first used the phenotypic selection, later included information on relatives, and finally 

resorted to molecular tools, from marker selection to the implementation of whole-genome 

information [3].  

 

Phenotypic selection relies on the breeder's ability to visually identify favorable effects on a target 

trait, which are transmitted to the progeny either for crossing or generation advancement. This 

approach, besides being imprecise and time-consuming, is quite inefficient, especially in low 

heritable or polygenic traits [4]. So, it is not surprising that breeders were concerned about finding 

the best methods. Since the late 1970s, the availability of cost-effective and flexible molecular 

markers, coupled with the new statistical and software, has enabled the implementation of Marker 

Assisted Selection (MAS) in many programs.  

 

The impact of MAS has been less than initially envisaged, which is related to the fact that it chooses 

individuals that have a desirable allelic effect on the target trait, assuming that the causal mutations 

can be well localized. If this assumption is not met, it may work even worse than traditional 

phenotypic selection [4–7].   

 

Many traits are controlled by ‘small-effects’ genes. At first glance this may appear to be a problem, 

but it has a simple solution. If a dense marker map is available, multi-locus linkage disequilibrium 

(LD) between Quantitative Trait Loci (QTLs) and the genome markers (e.g., Single Nucleotide 

Polymorphism, SNPs) can be exploited. This idea, which has revolutionized breeding, is better 

known and Genome-enabled Selection or Genomic Selection (GS) and was formalized by 

Meuwissen et al. [8]. While MAS only uses the markers with significant associations, GS includes 

all available markers, irrespective of their effect on the trait and, it is currently the standard tool in 

many plant and animal breeding programs [5,9–12]. GS has generated a significant improvement, 

nearly doubling the genetic gain in many programs and considerably reducing the amount of data 

to be tested on the field [11,13]. Alas, GS seems to reach a plateau; neither increasing the number 

of molecular markers [14] nor resorting to new analysis techniques [15,16] are contributing to 

improving their predictive ability.    

 

Breeding programs do not only depend on whole-genome data, but also on large-scale 

phenotyping and, despite the recent genomic advances, more breakthroughs are needed in their 

phenomics counterpart. Breeder strategies need to shift the effort from genomic to the 

development of high throughput phenotyping platforms, able to screening hundreds of 

phenotyping data in a low cost, non-invasive and fast way [17,18]. The technology is ready, which 

is confirmed by the available devices, including digital cameras, hyperspectral cameras, unmanned 

aerial vehicles, mass spectrometry, many sensor technologies, robots, among others. However, 

there are still many factors that cause a bottleneck in the progress of phenomics:  1) the cost of 

phenomics platforms is still prohibitive for many breeders; 2) Unlike the genome, the phenome is 

not stable, changing throughout the life of the individual, so the development of specific analysis 

methods that include the temporal component is a priority; 3) The phenome also has many levels 

of complexity, from specific molecules to dynamic metabolic networks, and can interact with 

pathogens or competing organisms;  4) The huge amount of data being generated requires effort 

in applying the FAIR (findable, accessible, interoperable and reusable) principles [19], which serve 

for tracing data, protocols, methods, and workflows and; 5) As phenome includes a lot of source 



   13 
 

of information, ranging from image to multi-omics, the development of specific data - integration 

methodologies is urgent.   

 

Two natural questions arise: How can high throughput-phenotyping be used to improve plant and 

animal breeding? and, should plant and animal breeding schemes be modified to incorporate the 

new strategies? Anticipate the answer to these questions is not easy. Although the phenome is 

being used in many programs, it is still in its infancy. In our opinion, the challenge lies not only in 

designing analysis methodologies and data sharing protocols but, above all, to review the breeding 

equation [20] and study how it can be improved through this new paradigm. 

 

1.2 It's not all about kinship: the differences between plant and animal 

breeding 

 

Plant and animal breeding main objectives consist in the genetic improvement of complex traits 

by maximizing the selection gain per unit of resource spent. Although plant and animal breeding 

disciplines have the same theoretical principles, based on Mendel's law and Charles Darwin's 

postulates, the breeding methods and the underlying models have diverged [21]. While animal 

breeding depends on sexual reproduction, the picture is quite different in plants, where breeding 

has an extended tradition of outcrosses, even in self-pollinating species, and sexual mechanisms 

have only been used in the last 250 years [20].  

 

The discovery of Mendel’s laws in the middle of the 19th Century motivated plant breeders to 

adopt new strategies consisting of self-pollination or vegetative propagation. In turn, animal 

breeding adopted a ‘biometric approach’, combining the concept of ‘heritability’ coined by Galton 

in 1880 and Fisher’s discoveries, which have made it possible to exploit the information of relatives 

[20,21].  

 

The estimation of breeding values varies between animal and plant breeding. Most plant species 

can produce genetically identical individuals or reproducible cultivars, so plant breeders can 

accurately measure phenotypic values through well-designed experiments, accounting for location 

and years, i.e., the GxE interaction. The situation is markedly different in animal breeding, where 

statistical methods and tools had to be developed to deal with large-scale unbalanced data directly 

collected from the production farm [20,21]. Moreover, animal breeders have to incorporate 

information from relatives because some traits cannot be measured in the candidates themselves 

(e.g., milk yield in bulls) or may only be measured late in the breeding process.  

 

These conceptual differences have led to a distinction in the meaning of heritability, i.e., the 

partition of the variance of a given phenotype. In animal genetics,  heritability is computed as 

VA/VP, i.e., the ratio between the additive and phenotypic variance [6]. This value expressed the 

extent to which the phenotype is determined by the genes transmitted from parents to the 

offspring in a given population. In animal breeding, genotypes and individuals are indissociable, 

i.e., each genotype corresponds to a single individual; but in plant breeding, many individuals share 

the same genotype because most plants are clones, inbred lines, or hybrid. As a consequence, 

‘heritability’ is interpreted as the measure of the precision of a given trial. The genotypes are tested 
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through different environments/years and generally, the multiple observations of the same cultivar 

are aggregated and computed as genotype-mean [22].  

 

In addition, the role of the individual mutations with moderate to large effects in some traits; the 

use of biotechnological industry, including transgenics [20]; and the characterization of hundreds 

of traits benefiting from high-throughput phenotyping platforms [23,24] have a fairly important 

tradition in plant breeding but have been used much less in animal schemes. 

 

Another point of divergence is the ploidy level. While most animals are diploids, meaning that they 

have two sets of chromosomes, several plants are polyploids. The term describes the process by 

which some species have an extra set of chromosomes. Many crops of important commercial value 

are polyploids, e.g., potato, wheat, blueberry, strawberry, sugar cane, coffee, cotton, tobacco, etc. 

[25–27].  

 

Polyploid species are classified into auto-polyploids, caused by one or more genome duplication 

events in a single species, and allopolyploids, which are the result of hybridization between closely 

related species. The main difference between auto and allopolyploids lies in the process of meiosis. 

In the first case, it is mainly described by forming either random bivalents or multivalent during 

the division, while in the last, the pairing is mainly preferential, exhibiting a diploid-like (or disomic) 

segregation [27].  

 

Polyploidy can induce extreme phenotypes, increasing their vigor and adaptation. Most of the 

polyploid “phenotypes” are larger compared to their diploid ancestors. The size of the root, fruits, 

flowers, etc. increases with the level of ploidy, a phenomenon known as the ‘gigas’ effects [28]. 

Besides, the polyploidy induces a ‘buffering’ effect that protects against a single-locus deleterious 

mutation in inbreeding depression; and also stimulates heterozygosity, which appears to enhance 

vigor in some plant species, such as potato, wheat, and alfalfa [28]. Because of these potential 

rewards, breeders devised protocols for polyploidy induction. But it is not all advantages, as the 

molecular mechanisms in polyploids are quite complex and more source of variation exists, i.e., 

the allelic dosage of the individual locus is larger than in diploids organisms [29,30], which may 

introduce higher degrees of complete and partial intra-locus interactions than diploids [31,32].  

 

Overall, the ‘genomics and phenomics’ era offers a great opportunity to close the gap between the 

theoretical bases and methods of plant and animal breeding and, while the Genomic Selection 

(GS) can be widely used in more plant breeding programs; animal breeding schemes can harness 

the biotechnological progress, the ideas behind the high-throughput phenotypic platforms and 

data integration.  

 

1.3 The trade-off between statistical inference and prediction machines 

 

 Since its emergence, the concept of GS has shifted the way in animal breeding programs and - 

albeit to a lesser extent - in plant breeding [10,33,34].  In addition, the advent of high-throughput 

phenotyping platforms that can screen a large number of genotypes at relatively low cost in a non-

destructive manner is driving a revolution specially in plant breeding [23,24]. All of these methods 
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are built upon statistical and ML concepts so, before proceeding further, we should discuss some 

of these key points.   

 

Inference and prediction not only are at the core of statistical and machine learning but are key 

concepts in genetics. Both methods are supervised tasks where the objective is to find a function 

describing the relationships between two sets of variables, i.e., 𝑦 = 𝑓(𝑋), being y the outcome 

and X the set of independent variables [35–38]. In a broad sense, we could think that f  is a black 

box.  However, beyond the common goal, predicting and explaining (i.e., inferring) have two 

different meanings, the former is a statement about the way things will happen in the future, while 

the last attempts to explain how the inputs determine the output [39]. One of the terms often used 

to differentiate them is interpretability. This assumption is built on the idea that inference 

models are interpretable, while predictive models are not (or not necessarily so). But what does 

it mean exactly?   

 

In Tim Miller's words[35], interpretability is ‘the degree to which a human can understand the 

cause of a decision’. A model is more interpretable than another if a human can better understand 

the decisions it has made. Mind you, although all inference models are interpretable, not all 

interpretable models do inference. Statistical inference tests some scientific hypotheses and 

measures the uncertainty of the estimates; its ultimate goal is to understand the population under 

study. The best example in the genetic context is the Genome-Wide Association Studies (GWAS), 

which aim to identify genetic variants affecting phenotypes.  

Indeed, in a broad sense, inference attempts to measure causality, however, the models most 

commonly used in practice are association-based and rely on the idea of statistical regression 

[40,41]. Inference is founded on strong statistical assumptions (just remember the old phrase with 

which many theorems and papers begin “assume that the data were generated by the following 

model”) and if they are not met, we are in trouble.  

 

Let us explain it for the GWAS case. It tests a single association at time and is not only powerless 

to capture any interaction between variants, but it also needs to resort to methods that control 

false discoveries. The genetic individual variables identified to be associated with a given 

phenotype are not enough to explain all of its variance, a phenomenon known as ‘missing 

heritability’. GWAS can and, in fact, leads to many false discoveries, even if the family-wise error 

or false discovery rate are applied [42] (some funny descriptions about this can be found in 

https://twitter.com/SbotGwa).  

 

While statistical modeling relies on stochastic models that mainly perform inference, machine 

learning is more associated with predictions and is often treated as a real “black box”[38,39]. 

Prediction can be defined as the process to apply any statistical or machine learning model with 

the purpose of forecast new, unobserved data. A good example of prediction in genomics is 

Genomic Selection (GS), based on predicting future performance using molecular information 

from the whole genome.  

 

In his famous article, Leo Breiman [39] suggests that the divergence between inference and 

prediction is associated with two Data Analysis cultures. The data modeling culture aims to 

https://twitter.com/SbotGwa
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estimate the parameters of the following stochastic model, 𝑦 =

𝑓(𝑋, 𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒, 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠).  The algorithmic modeling culture assumes no thought 

about the process that generates the data, and its only goal is to find a function able to predict 

unobserved y values as accurate as possible. While in the inference modeling the goal is to find f 

that can be assumed as a “path”, i.e., the data X and y are used to find the best function (f) which, 

in turn, is used to test statistical hypothesis; even when X, y and f are in the heart of a predictive 

machine, the focus is completely different, as the three are tools to generate new accurate values 

of unobserved y [38].  

 

The distinction aforementioned is not only theoretical and has certain practical implications. In 

our opinion, the most important one is that for prediction purposes the “wrong” model may still 

be the best: predictive modeling is pragmatic and may sacrifice theoretical accuracy to improve 

empirical precision. [38].  Table 1.1 contains a comparison between prediction and inference.  

 

 
TABLE 1.1. main differences between Prediction and Inference process.  

Prediction Inference 

The goal is to select the model that obtains the best 

predictive accuracy, even if the bias is higher.  

The goal is to select the model that minimizes bias. 

It is focused on predicting new outcomes. It is focused on explaining the process that 

generates y through X.  

The decisions are based on a loss function, i.e., it 

empirically minimizes the loss in a test set.  

Decisions are made according to Goodness-of-fit 

criteria.  

Lack of interpretability  It has strong interpretability. 

Data Modeling Culture Data Algorithmic Culture 

 

 

The lessons we have learned from the emergency of the “Big Data”, the new algorithms and 

computing capabilities in recent decades, can be represented using three terms, according to 

Breiman [39]:  Rashomon, Occam, and Bellman. Rashomon is the name of a Japanese movie that 

tells the story of four people who are witnesses of an incident where a person dies, and another is 

supposedly raped. Although the four witnesses tell the same fact in court, their stories are different. 

The Rashomon metaphor is used to exemplify that there are many models, not just one, that might 

be the best to describe the relationships between two sets of variables. 

  

The second term makes refers to Occam’s razor or parsimonious principle, which owes its name 

to the philosopher William of Ockham. It stated pluralitas non est ponenda sine necessitate, i.e., “entities 

are not to be multiplied beyond necessity”. However, accuracy and simplicity might conflict as not 

always the simplest model would be the best one. While it is true that the increase in data 

dimensionality may affect inference modeling, e.g., linear regression or logistic regression; other 

models more linkage to the Algorithmic culture (e.g., Support Vector Machine (SVM), neural 

networks) can enhance their predictive ability exploiting the data dimensionality.  

 

Those who defend the principle of parsimony claim that it is better to have interpretable models 

than black boxes, but do they question the potential dangers of a bad "interpretable" model? A 

misleading model leads to wrong conclusions. The higher the predictive accuracy (based on cross-

validation technique), the better the model describes the underlying relationship between variables, 
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and we believe it is this fact that gives the predictive model an advantage over inference. A data 

analyst should first try to obtain high predictive performance and then look for the answer to the 

question Why? The third term deserves a special chapter and will be dealt with in the following 

subsection. 

 

1.3.1 Is dimensionality a curse or a blessing? 

 

Imagine you have a set of 1000 observations uniformly distributed in two dimensions, which 

represent any two genetical variants: the data would look exactly like Figure 1 a. But now imagine 

that, instead of two, you have 5 or 10 genetical variants, then the first two dimensions (out of 

5/10) would look like Figure 1 b and c, respectively. The filled ball gradually transforms into a 

kind of a ring. In these three cases, n (the number of individuals) is still lesser than p (the number 

of variables). Figure 1 d,e,f represent the two first dimensions when you have 100, 1000, and 10000 

variables uniformly distributed in p-dimensional space.  Note that although only in the last case 

(Figure 1 f) p>>n, increasing the number of variables has a clear effect on the data distribution.  

 

Figure 1.1 heuristically shows that high dimensional data become more and more sparse, increasing 

the distance between any two points and dropping their correlation [42]. This again has many 

practical implications, one of the most obvious being the question of what is an outlier? Owing to 

the data sparsity, the fraction of point between standard deviation (𝜎) from mean will decrease 

with increasing p. Another major implication lies in the fact that when p>n, the variables span a 

lower-dimensional subspace, being some dimensions redundant in the sense they can be expressed 

in terms of the others. It might not be a problem for agnostic models that only look for good 

prediction, however it would be impossible to measure the contribution of each variable in a target 

trait.  Overall, almost all statistical theory we have learned will fail.  

 

 

 
Figure 1.1: Representation of n=1000 data points uniformly distributed in a) Two dimensions, b) Five dimensions, c) Ten 

dimensions, d) One-hundred dimensions, e) One-thousand dimensions, f) Ten-thousand dimensions.  
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The issue we are discussing is called “the curse of dimensionality” and was coined by Richard 

Bellman [39,42–44]. The naïve intuition that stated “the more data, the better” sometimes seems 

to fail, or at least it can be questioned. Most of the classical statistical methods, like linear regression 

or logistic regression, were thought to work with more individuals than variables and they could 

be strongly affected by this phenomenon.  However, for prediction proposes, the dimensionality 

could be, in fact, a blessing: we have already pointed out that the Genomic Selection (GS), a 

method entirely based on prediction, has taken advantage of the huge amount of genetic data 

available to accelerate genetic gain in many plant and animal breeding programs.   

 

As Leo Breiman said, “the trick to being a scientist is to be open to using a wide variety of tools” 

and a “big data” problem requires that data scientists focused on solving problems instead of 

asking what model they can crate. The best solution might be a combination of the two cultures, 

striking a balance between prediction and inference. In this way, it may be possible to transform 

the curse into a blessing. There are still some practical recommendations among which we can 

mention the use of Bayesian models, thanks to the priors that essentially provide regularization 

and reduce the overfitting risk and the new methods based on Neural Networks, which are adapted 

to deal with high dimensional data and are better able to take into account more complex 

relationships between variables (e.g., epistasis).  

 

1.4 On the prediction way: Bayesian and deep learning 

 

Alan Turing predicted in the early 1950 that machines were going to compete with men in any 

knowledge area [45], and certainly, agriculture is not an exception. In a broad sense, Artificial 

Intelligence (AI) refers to machines able to mimic human abilities.  The term is often used 

interchangeably with Machine Learning (ML); however, they are not the same thing. ML is a 

subfield of AI that needs access to a large amount of data to learn on its own, combining computer 

science and statistics tools [46]. Thus, it is not surprising that the development of ML tools for 

agriculture is a hot topic, given the enormous amount of data being generated.    

 

Current AI is powered by ML. ML involves many concepts, including linear algebra, programming, 

calculus, numerical computation, information theory, and statistical skills and harnesses the 

computer power to learn and perform tasks without being programmed for every decision-rule. 

In the widest sense, we could say that ML is a Predictive Machine, intrinsically related to the 

Algorithmic Modeling Culture we have discussed before. Deep Learning (DL), a subfield of ML, 

dates from the 1940s and it only appears to be new because it was relatively unpopular for several 

years [47]. DL is sometimes named as Deep Artificial Neural Network since some of the earliest 

learning algorithms were intended to be computational models of biological learning, inspired by 

the workings of the brain.  The modern term “deep learning” is not associated with neuroscience 

but is rather derived from the principle of learning multiple levels of composition. 

 

Note ML can also be interpreted using Bayesian Learning (BL), a particular set of approaches to 

probabilistic ML. BL is based on Bayes’ Theorem, which was first published in a post-mortem 

paper written by the Reverend Thomas Bayes in 1763. Although Bayes’ interests were theological, 

he is remembered today because he proved that the probability of a cause can be deduced from 
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an effect[41]. BL treats the parameters of a model as random variables to be estimated from the 

observed data.  The most important thing in BL is the need for a prior and likelihood before you 

can learn, i.e., you can only learn from the data based on what you already know.   

 

Returning to the subject in hand, we are interested in Genomic Prediction (GP), i.e., those methods 

designed to obtain accurate predictions of genetic values of genotypes whose phenotypes are yet 

to be observed [8,48,49]. Here, we have used two main perspectives to handle this problem: 

Bayesian and Deep Learning.    

 

1.5 Bayesian Learning for Genomic Prediction 

 

In parametric models for GS, the phenotypes (y) are regressed on marker covariates using a linear 

model of  the form (Eq. 1.1): 

  

𝑦 = 𝜇 +  𝑔 + 𝜀, [Eq. 1.1] 

 

where 𝑔 = 𝑋𝛽, 𝜇  is the general intercept, X is the genotypes’ matrix and 𝛽 is a vector of  marker 

effects and 𝜀 is the error term, which is assumed as 𝜀~𝑁(0, 𝜎2𝐼) . Given that the number of  

molecular markers (p) is usually higher than the number of  observations (n), the traditional linear 

regression based on ordinary least squares (OLS) is not feasible and a penalization method must 

be used. But any statistical problem can be treated from a Bayesian perspective, where two 

components are needed: the likelihood and the prior density, which leads, in turn, to different 

models like Bayesian Lasso, Bayesian Ridge Regression, BayesC, etc. [10,50]. The general structure 

for GS is (Eq. 1.2): 

 

 

𝑝(𝜇, 𝛽, 𝜎2|𝑦, 𝜔) 

∝ 𝑝(𝑦|𝜇, 𝛽, 𝜎2)𝑝(𝜇, 𝛽, 𝜎2|𝜔) [Eq. 1.2] 

                                       ∝ ∏ 𝑁(𝑦|𝜇 + ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 , 𝜎2) ∏ 𝑝(𝛽𝑗|𝜔)

𝑝

𝑗=1

𝑝(𝜎2)

𝑛

𝑖=1

 

 

Where 𝑝(𝜇, 𝛽, 𝜎2|𝑦, 𝜔) is the posterior density of  the model unknowns 𝜇, 𝛽, 𝜎2 given the data 

(y) and the hyperparameters (𝜔), 𝑝(𝑦|𝜇, 𝛽, 𝜎2) = ∏ 𝑁(𝑦|𝜇 + ∑ 𝑥𝑖𝑗𝛽𝑗
𝑝
𝑗=1 , 𝜎2)𝑛

𝑖=1  is the 

conditional density of  the data given the parameters, with mean  𝛽0  +   ∑ 𝛽𝑗𝑥𝑖𝑗
𝑝
𝑗=1  and variance 

𝜎2 and 𝑝(𝜇, 𝛽, 𝜎2|𝜔) ∝ ∏ 𝑝(𝛽𝑗|𝜔)
𝑝
𝑗=1 𝑝(𝜎2) is the join prior density of  the model unknowns, 

which includes the intercept (𝜇), to which a flat prior is generally assigned, the markers effect (𝛽𝑗), 

to which independent and identically distributed (IID) informative priors are generally assigned 

and the residual (𝜎2), to which a scaled-inverse chi-square prior with d.f. degree of  freedom and 

scale parameter S is commonly assigned. 

 

The key aspect in the Bayesian Framework is the choice of  the prior density of  the markers effects, 

which may be uninformative or informative. The informative priors define whether the model 
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induces shrinkage, variable selection, or both. The Gaussian shrinks the coefficients in the same 

way as Ridge Regression (RR), i.e., all of  the markers are shrinking to a similar extent. The scaled-

t (referred to as BayesA) and double exponential (DE) (Bayes Lasso) densities induce a type of  

shrinkage named “Thick tail”, i.e., they have a higher mass at zero and thicker tails than the normal 

density. The argument behind these priors is that markers can contribute differentially to genetic 

variance [51].  Finally, among priors that induce both, shrinkage and variable selection, the most 

popular are BayesC and BayesB. The former is a mixture of  a point of  mass at zero and a Gaussian 

slab, while the latter is a mixture of  a point of  mass at zero and a scaled-t slab. See [10,51,52] for 

a more detailed discussion of  Genome-Wide Bayesian methods.  

 

Bayesian methods allow us to obtain the full posterior distribution of  parameters, although they 

require priors’ specification. In contrast, methods developed for the sole purpose of  prediction 

such as DL can be less restrictive because its only aim is to predict new data as accurate as possible. 

Among the most prominent advantage of  DL for genomic prediction is their ability to learn 

without model assumptions. This is relevant as there is no need to specify, e.g., whether the 

phenotype shows dominance or epistasis. Moreover, DL can model non-linear relationships since 

DL admits numerous non-linear activation functions. Provided enough data are available, it should 

be possible to find the best DL architecture, that able to learn by itself  irrespective of  the 

underlying genetic architecture. 

1.6 Deep Learning Principles 

A generic DL architecture is made up of a combination of several layers of ‘neurons’.  The neural 

network concept, which is the core of DL, was proposed already in the 1950s. The well-known 

Rosenblatt ‘perceptron’, inspired by brain function [53]. The DL revival during the last decade was 

due to the discovery of efficient algorithms that can estimate parameters in complex networks 

made up of several neuron layers (e.g., backpropagation [54]), and to the fact that these methods 

outperformed current algorithms in several automatic recognition tasks such as in image analysis 

[55].  

1.6.1 Main Deep Learning Architectures for GP  

Although all DL methods share the common principle of using stacked layers of neurons, they 

comprise a wide variety of architectures. The most popular ones are the Multilayer Perceptron 

(MLP), Convolutional Neural Networks (CNN), Recurrent Neural Network (RNN), and 

Generative Adversarial Networks (GANs). We now describe those used in genomic prediction, 

although the reader should be aware that many more options are available [47].   

 

Multilayer Perceptron Network (MLP) is one of the most popular DL architectures, which 

consists of a series of fully connected layers, called input, hidden and output layers, respectively 

(Figure 1.2). In the context of genomic prediction, the first layer receives the SNP genotypes (x) 

as input and the first layer output is a weighted non-linear function of each input plus the ‘bias’ 

(i.e., a constant) (Eq. 1.3).   
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𝑧
(1)

= 𝑏(0) + ∑ 𝑤(0)𝑓(0)(𝑥𝑖)

𝑛𝑠𝑛𝑝

𝑖=1

[𝐸𝑞. 1.3] 

 

where xi contains the i-th SNP genotypes of each individual, b is called the ‘bias’ and is estimated 

together with the rest of weights w. In successive layers, the same expression as above is used 

except that neuron inputs of a given layer (𝑎𝑙
(𝑘)

) are the outputs from the previous layer (𝑧𝑙
(𝑘)

) 

(Eq. 1.4):  

  

 

𝑧𝑙
(𝑘)

= 𝑏(𝑘−1) + ∑ 𝑤𝑙𝑗
(𝑘−1)

𝑎𝑗
(𝑘−1)

𝑛𝑘−1

𝑗=1

[𝐸𝑞. 1.4] 

                                                𝑎𝑙
(𝑘)

= 𝑓(𝑘)(𝑧𝑙
(𝑘)

)   

 

 

The final layer produces a vector of numbers if the target is a real-valued phenotype or an array 

with probabilities for each level is the target is a class (i.e., a classification problem). Although 

MLPs represent a powerful technique to deal with classification or regression problems, they are 

not the best option to manage spatial or temporal datasets. To face these constraints, other DL 

techniques such as Convolutional Neural Networks, Recurrent Neural Networks, or Deep 

Generative Networks have been proposed in recent years.  

 

Figure 1.2. (a) Fully connected Neural network (MLP) diagram with four hidden layers and a collection of SNPs as input. (b) 

illustrates a basic ‘neuron’ with n inputs. One neuron is the result of applying the nonlinear transformations of linear combinations 

(xi, wi, and biases b). These figures were redrawn from tikz code in http://www.texample.net/tikz/examples/neural-network. (Figure 

from Pérez-Enciso and Zingaretti[56]) 

http://www.texample.net/tikz/examples/neural-network
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Convolutional Neural Networks (CNNs) were proposed to accommodate situations where 

input variables are distributed along a spatial pattern, say one-dimension (e.g., SNPs or text), two- 

or three-dimensions (e.g., images). CNNs are a special case of Neural Networks which use 

convolution instead of full matrix multiplication in the hidden layers [47]. A typical CNN is made 

up of dense, fully connected layers and ‘convolutional layers’ (Figure 1.3b). In each convolutional 

layer, a convolution operation is performed along the input of predefined width and strides. Each 

of these convolutional operations is called a ‘kernel’ or a ‘filter’ and is somewhat equivalent to a 

‘neuron’ in an MLP. An activation function is applied after each convolution to produce the 

output. Finally, an operation called ‘pooling’ is usually applied to smooth out the result. It consists 

of merging the kernel outputs of different successive positions by taking the mean, maximum, or 

minimum of all values of those positions. One of the main advantages of convolution networks is 

their capability to reduce the number of parameters to be estimated. These networks also have 

sparse interactions and are equivariant to translations. An illustration of a 1D convolution with a 

3-K kernel size is depicted in Figure 1.3a. Figure 1.3b shows the steps involved in a convolution 

network.  

 

Figure 1.3. (a) Simple scheme of a 1D convolution operation. (b) Full representation of a 1D Convolutional Neural 

Network for an SNP-matrix. The convolution outputs are represented in yellow. Pooling layers after convolution 

operations combining the output of the previous layer at certain locations into a single neuron and are represented in 

green. The final output is a standard MLP. (Figure from Pérez-Enciso and Zingaretti [56]) 
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1.6.2 Algorithms and Optimization Issues 

Irrespective of the architecture chosen, all DL algorithms are based on a few principles that are 

used to minimize the cost function and, hopefully, maximize predictive ability. Here we describe 

the main concepts. 

  

Backpropagation and Stochastic Gradient Descent are behind the modern revival of neuron-

associated methods. Backpropagation [57] is a clever method that propagates the error backward 

at the output layer level. Then, the gradient of previous layers can be computed easily using the 

chain rule for derivatives, which greatly simplifies optimization in complex models. The basis of 

gradient descent [58] is also simple. The algorithm requires a set of initial solutions and a loss 

function, which usually has good mathematical behavior, i.e., it is convex or at least quasi-convex 

(metaphorically, this means reaching the lowest elevation point simply going downhill).  

 

Stochastic Gradient Descent (SGD, Algorithm 1) is one of the most widely used optimizers in 

DL. SGD, and a plethora of related methods, randomly partition the whole dataset into subsets 

called ‘batches’ or ‘minibatches’ and updates the gradient using only that subset. The next batch is 

used in the next iteration. This intelligent strategy allows us not only to manipulate datasets of any 

arbitrary large size but also introduces stochastic noise that reduces the risk of converging at the 

local maxima. An ‘epoch’ is the set of iterations that comprises all samples in the dataset. For the 

next epoch, a different data partition is used in each batch. In addition to batch size, SGD requires 

initial values for all parameters and specifying the ‘learning rate’, i.e., the value that controls the 

update of the gradient (Algorithm 1). 

 
 

Note that Algorithm 1 incorporates a regularization term, Ω. Regularization consists of adding a 

‘penalty’ or ‘constraints’ to the model parameters, incorporating a restriction over the weight (w) 

estimations in the loss function. The two most frequent regularizations are the L1 and L2 norms, 
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which set restrictions on the sum of absolute values of w (L1) or of the square values (L2). There 

are three main variants of the GD algorithm: Batch gradient descent, stochastic gradient descent 

(SGD), and minibatch gradient descent. These are the most popular optimizers used nowadays. A 

description of all the keras implementation to DL optimization can be found in 

https://github.com/miguelperezenciso/DLpipeline#Optimizers. 

 

Initial weight values are an additional factor that needs to be considered seriously and has 

deserved numerous contributions. In the words of Goodfellow and collaborators[47]: ‘Our 

understanding of how the initial points affect generalization is especially primitive, offering little 

to no guidance for how to select the initial point’ (p. 293). This is because DL algorithms are 

iterative and the function to minimize cost is too complex. Therefore, initial values may affect 

whether convergence is attained or not. In our experience, it is critical to compare prediction 

performance with a few different training runs with the same hyperparameter values, using either 

random uniform or normal values. This should indicate how reliable the initialization strategy is. 

 

The activation function is the mathematical function that transforms the linear input of the 

neuron into its output (Figure 2.1). The most popular activation function in the past was the 

logistic (sigmoid) function. This function often results in numbers that are either 0’s or 1’s and is 

not flexible enough for most applications. Therefore, other functions are currently more popular, 

including ‘relu’ or ‘selu’. Plots and descriptions of the most popular functions can be found (e.g., 

in https://en.wikipedia.org/wiki/Activation_function) and are not further described here. We 

recommend that the activation function should be considered as a hyperparameter to be optimized 

among two to four possible values, e.g., ‘tanh’, ‘relu’, ‘selu’, etc. In general, hidden units may need 

different activation functions from those of input or output layers. For instance, for classification 

problems, a 'softmax' activation function in the output layer is frequently used. The Table in the 

accompanying GitHub (https://github.com/miguelperezenciso/DLpipeline#loss) shows the 

most common combinations of Loss Function and Last Layer Activation for different problems. 

 

In a genomic prediction context for a quantitative trait, the simplest activation function is ‘linear’, 

and it only can model additive effects since it sums up through the allelic frequency of the SNP 

(0,1,2 in a diploid organism). SNPs are not numerical, but categorical data, though DL techniques 

only accept numerical input. A set of encoding methods were developed to overcome these 

constraints [59]. One hot encoding, which is simply recoding the three SNP genotypes as three 

0/1 dummy variables, is the most popular approach for genomic prediction purposes. Using this 

approach, non-linear relationships can be modeled by using non-linear activation functions at the 

first layer [60].  

 

1.6.3 Avoiding Overfit 

 

A model overfits when it cannot separate noise from the signal. An overfitted model results from 

a poor fit on the validation set, i.e., prediction of unobserved data is very poor. This is one of the 

most, if not the most critical problem in DL applications. Most of the time in DL optimization 

will be spent avoiding an overfit of the data, to improve the predictive abilities of the algorithm. 

Given the unknown behavior of various algorithms, no general guidance can be given, and trial-

and-error is needed. Success here is very much dependent on the specific problem. There are 

https://github.com/miguelperezenciso/DLpipeline#Optimizers
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broadly three non-mutually exclusive techniques to minimize the risk of overfitting: early stopping, 

regularization, and dropout. 

 

Early stopping is the simplest and sometimes also the most effective strategy since an excessive 

number of epochs tend to result in overfitting. Conversely, the number of epochs should be 

sufficient as too few iterations result in underfitting. As with any hyperparameter optimization, the 

optimum number of epochs should be chosen using only the training set. This training subset is 

normally partitioned in a proper training dataset and a test subset which is used for internal cross-

validation.  

 

Regularization, as mentioned, is the procedure whereby constraints are imposed upon the 

weights’ estimates, which are incorporated in the general loss function (see SGD Algorithm 1). 

Regularization is a key parameter to avoid overfitting and should be very carefully optimized in 

your own data, perhaps using a grid or random search. In our experience with a large human 

dataset, the optimum regularization was surprisingly small [15]. This is likely a consequence of the 

algorithm failing in finding the ‘regularities’ in the data, which is needed for an optimum prediction 

of new data. 

 

Dropout is another clever strategy that is specific to neural networks. Given an initial, completely 

connected network, dropout consists of setting to zero the output of a random subset of neurons. 

This strategy is equivalent to ‘bagging’ (i.e., sampling) sub-networks to produce an ensemble (i.e., 

joint) estimator. The usual recommended dropout rate, i.e., percentage of inactivated neurons, is 

20 - 50% [55]. However, in our experience with the UK Biobank human dataset, the optimized 

dropout rate was very small (<0.05). Again, the optimum rate is problem-specific and should be 

optimized with the data at hand. In practice, it is probably unnecessary to combine regularization, 

either L1 or L2, and dropout, whereas early stopping is always a good practice. 

 

1.7 Generative Models 

 

Some ML models belong to either the discriminative or generative categories. But what does 

this mean? Suppose you have an image database containing two classes of fruits: strawberries and 

blueberries. Imagine that you need to build a model to differentiate them and then you decide to 

hire two data analysts (A and B) to perform the task. After a few days, the analysts have delivered 

two algorithms. So, it's time to see how they work by providing a new observation for classifying 

(e.g., a strawberry). Model A) just outputs "it's a strawberry" relying on the properties it has already 

learned. Model B) makes new images of the dataset and decides that it is a strawberry based on 

the degree of agreement between this observation and the images it has produced. Both models 

were successful, but they did not do the same. Model A) is an example of discriminative modeling, 

which models the decision boundary between the classes, whereas model B) is a generative 

modeling case, which models the actual distribution of each class [61] (Figure 1.4).   

 

Although both models have the same goal, i.e., to estimate  𝑝(𝑓𝑟𝑢𝑖𝑡|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), the probabilities 

they learn are different. A discriminative model learns the conditional probability 

𝑝(𝑓𝑟𝑢𝑖𝑡|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠), estimating the parameters from the training data. A generative model instead 
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uses the training data to derive parameters of 𝑝(𝑓𝑟𝑢𝑖𝑡), and 𝑝(𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠|𝑓𝑟𝑢𝑖𝑡𝑠). The final 

output 𝑝(𝑓𝑟𝑢𝑖𝑡|𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠) can only be derived indirectly from the Bayes’ rule.   

 

 
Figure 1.4. (a) Representation of a discriminative model, which learns 𝑝(𝑦|𝑥)  and (b) a generative model, which learns 𝑝(𝑦, 𝑥).  

 

Discriminative models are computationally cheap compared to generative models and have 

achieved astounding successes [47,62,63]. The ML literature is plenty of examples of successful 

application of the discriminative model to learn classes from high-dimensional datasets, e.g., 

Support Vector Machine (SVM), Logistic Regression, K-Nearest Neighbors (KNN), Random 

Forest, Decision Trees, Artificial Neural Networks (ANN). On the other hand, Naïve Bayes, 

Mixture of Gaussians, Bayesian Networks, Boltzmann Machines, etc. are examples of classical 

generative models[61]. 

 

1.7.1 Generative adversarial Networks 

 

Until the emergence of the Goodfellow et al. [62], Rezende et al.[64] and Kingma and Welling [65]  

papers, most of the Deep Generative Models were based on intractable likelihood functions that 

therefore require numerous approximations to their gradient; the most famous of all is Boltzmann 

Machines (BM) proposed in 1983 by Hinton and Sejnowski [66]. Deep Generative Networks are 

particularly striking because they can deal with unsupervised problems, so the developments in the 

field and the attempts to make them simpler, are not surprising. In 2014 emerged the Generative 

Stochastic Networks (GSN): inspired in the idea behind the Denoising Autoencoders, these 

networks can be trained with simple backpropagation by transforming an unsupervised task (to 

estimate 𝑝(𝑥)) into a supervised learning framework, consisting in parametrizing the transition 

operator of a Markov Chain [63].  

 

Generative Adversarial Networks (GANs) (Figure 1.5) [62] extend GSN but do not need to use 

Markov chains. They are based on a simple but powerful idea: train two networks simultaneously, 

the Generator (G), which defines a probability distribution based on the information from the 

samples, and the Discriminator (D), which distinguishes data produced by G from the real ones. 

These networks contain two key ideas. The first one assumes that the data we are trying to generate 

can be well described using a probability function, i.e., if you aim to generate strawberries, you are 

supposing that there is an underlying probability distribution of strawberries. Once trained, a 

generative network uses the inverse transform method to take points from a simple distribution 

(e.g., uniform) and outputs points from the target distribution (e.g., strawberries distribution).  
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The trick relies on the adversarial notion (the second key point). When training a generative 

network, the target (e.g., strawberries samples) and the generated distribution (from random noise) 

are used to train a discriminative network, whose purpose is the same as any discriminative model: 

to classify the samples as accurate as possible.  However, the goal of the generator is to learn to 

mimic the target distribution to fool the discriminator and it does this better and better with 

successive training steps. The scheme can be formalized as a minimax game theory, where the 

process ends when the discriminator is unable to distinguish true from fake observations.   

 

 

Figure 1.5. Scheme of Generative Adversarial Networks (GANs): The Generator (G), defines a probability 

distribution based on the information from the samples, whereas the Discriminator (D) distinguishes data produced 

by G from the real data. The figure was redrawn using code from  http://www.texample.net/tikz/examples/neural-

network. 

 

1.7.2 Variational Autoencoders  

 

Although perhaps the most popular, GANs are not the only models capable to generate new 

observations simply. Variational Autoencoder (VAE) [64,65] is a model that can be trained with 

gradient-based methods. First, we will briefly explain what a vanilla autoencoder is because we 

need to get an idea about that to understand VAE. A vanilla autoencoder (AE) is a non-linear 

generalization of Principal Component Analysis (PCA)[54]. PCA can be thought of as an 

optimization problem aiming to derive the best linear approximation in terms of𝐿2 norm (Eq. 1.5) 

in the subspace where q<p: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝐴 ∈ 𝑅𝑝×𝑞 , 𝐴′𝐴 = 𝐼𝑞
∑‖𝑥𝑖 − 𝑨𝑨′𝑥𝑖‖2

2

𝑛

𝑖=1

[𝐸𝑞. 1.5] 

 

  By analogy, a single layer autoencoder solves the following optimization problem: 

 

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒

𝑊 ∈ 𝑅𝑝×𝑞
∑‖𝑥𝑖 − 𝑾′𝑔(𝑾𝑥𝑖)‖2

2

𝑛

𝑖=1

[𝐸𝑞. 1.6] 

 

For some non-linear 𝑔. Eq. 1.6 shows the problem behind an autoencoder with one hidden layer, 

but it is not difficult to extend it to deeper hidden layers. While AE learns a compressed 

representation of the original data, VAE learns a probability distribution representing the data (x), 
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which makes them suitable to generate new unseen observations. In the encoder step, VAE 

realizes what are the vector containing 𝜇 and 𝜎, the parameters of a normal distribution, i.e., it 

learns 𝑝(𝑧|𝑥) . The big idea is that the decoder learns that in the latent space, there is a set of 

points (a continuum) that refers to a given data point, allowing smooth interpolation and the 

construction of new samples. The decoder step (or input reconstruction), 𝑑(𝑧) is obtained after 

sampling 𝑧~𝑝(𝑧|𝑥) from the latent representation. But how does VAE do it?  

 

The answer lies in the loss function. VAE loss function includes a “reconstruction” and a 

“regularization” term. VAE is trained by maximizing the variational lower bound (ℒ) associated 

with the data point (𝑥𝑖), which is expressed in Eq. 1.7.  

 

 

ℒ(𝑞) = 𝔼𝑧~𝑞𝜃(𝑧|𝑥𝑖)[𝑙𝑜𝑔𝑝𝜙(𝑥𝑖|𝑧)] − 𝐷𝑘𝐿(𝑞𝜃(𝑧|𝑥𝑖)||𝑝(𝑧)) [𝐸𝑞. 1.7] 

 

 

As ℒ(𝑞) ≤ log (𝑝(𝑥𝑖)) (Eq. 1.7), maximizing ℒ(𝑞), maximizes the logarithm of our data by 

proxy, transforming a typically intractable likelihood in a simple problem. The first term of the Eq. 

7 is the same as in a classical AE, representing the log-likelihood of the reconstructed data output 

at the decoder. The second term of Eq 7., i.e., “the regularized” is the entropy corresponding to 

the Kulback-Leibler (K-L) divergence [47] between the latent distribution 𝑁(𝜇𝑥, 𝜎𝑥) and the 

standard normal distribution 𝑁(0,1). This term forces the latent distribution to be close to the 

standard normal, generating a continuous low variance space centered at the origin, suitable for 

clustering and data generation. 

 

In other words, the core idea here is the simplification of the problem by using the evidence lower 

bound (ELBO), ℒ(𝑞) which is nothing but a combination of the cross-entropy (the reconstruction 

term) and the K-L divergence (the regularization term), a measure of the dissimilarity between the 

approximate and the real posterior distribution, representing the information difference between 

both distributions.  

 

1.8 Image Processing and Computer vision in agriculture 

 

First, let us define and differentiate the two key concepts of this section: Image Processing and 

Computer Vision. Both go hand in hand, they share many techniques and the line of differentiation 

between them is blurred, yet they are not the same.   

 

Image processing comprises all the models and algorithms for manipulating images, including 

digitization, histogram manipulation, sharpening, blurring, smoothing, stretching, edge detection, 

morphological operation, segmentation, etc. Computer vision, in turn, involves all the ML 

algorithms that enable computers to process and understand images or videos as humans would. 

Image processing techniques may be used without computer vision, but not the opposite since 

image processing is a previous step to apply any Computer Vision algorithm. 
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There are many automatic computer vision machines capable of performing numerous tasks. It is 

a hot topic of research in medical image analysis, satellite image analysis, self-driving vehicles, 

financial industry, inventory management, etc. [67]. It is also revolutionizing agriculture in multiple 

avenues, such as disease detection in plants, crop monitoring using an autonomous flying object 

(e.g., drones), the automatic phenotyping of many plants and animals, the application of precision 

agriculture, the harvesting of fruit, etc. For example, semantic segmentation algorithms allow the 

identification of animals in livestock production, discriminate and classify good crops from bad 

ones (determining product quality and shipping options), automatically picks rock, and monitor 

soil moisture [68–72].  

 

Overall, image processing and computer vision in agriculture enable accurate monitoring of plants 

and animals on a large scale. The goal of plant/animal imaging is to measure physiological, growth, 

development, shape among other phenotypes. These measurements can be made for different 

purposes (not just breeding), in different environments, and using a wide variety of devices (digital 

camera, tomography, magnetic resonance, fluorescence, etc.)[67,73–75]. There are still several 

challenges that are preventing computer vision in agriculture from reaching its maximum potential. 

Most of the Computer Vision problems can only be tackled using supervised learning, which 

requires a large number of annotated images. Also, people often assign ML too difficult tasks, but 

machines are not as wise as we think they are only smart at solving very simple tasks [46].  

 

Here, we will mainly focus on morphological traits phenotyping, which are known to exhibit high 

heritabilities and therefore respond quickly to selection. It is not surprising that the origin of many 

breeds is associated with mutations affecting general appearances such as coat color, where 

humans could rapidly reproduce animals or plants with a novel and attractive phenotype. Even 

today, animal breeders’ associations can spend much time defining the ‘racial standard’.  

Ornamental plants are appreciated by tolerance to biotic and abiotic stress, development 

potentialities, and aesthetical factors [76], consumer preferences of fruit and vegetables are 

determined by their apparency [77]. Morphological traits are not only aesthetic features but convey 

essential information on animal welfare and fruit quality. 

 

1.8.1 Image segmentation  

 

Before defining image segmentation, we must briefly explain what a digital image is. A grayscale 

digital image is a two-dimensional function 𝑓(𝑥, 𝑦) where 𝑥 and 𝑦 are the spatial coordinates, and 

the amplitude of 𝑓(𝑥, 𝑦) at any pair of coordinates is the pixel intensity. It is simply an array of 

dimensions 𝑛 × 𝑚, indicating the number of rows and columns, respectively. The pixels intensities 

vary in the interval [0,255]. A pixel with an intensity of 0 is black, whreas a pixel with an intensity 

of 255 is white.  

 

On the other hand, an RGB color digital image is composed of three channels, representing the 

degree of the red, green, and blue color of each pixel, i.e., for each spatial coordinate in an RGB 

image 𝑓(𝑥, 𝑦) = (𝑟, 𝑔, 𝑏), i.e., the output is a vector of size 3, that indicates the intensity of red, 

green, and blue, respectively. Note that an RGB image is an array of 𝑛 × 𝑚 × 3 dimensions. 
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Although there are more ways to represent color images, they are all based on the same principles 

and there is no need to go into further details. 

 

Recognizing and differentiating objects in an image is quite easy for humans, but not trivial for 

machines. Image segmentation is the image processing task that breaking down the image into 

multiple segments, which are easier for machines to understand. It is a preliminary step to obtain 

different measurements of the objects in an image. and can be broadly divided into two categories: 

semantic segmentation and instance segmentation [78].  

 

Semantic segmentation classifies the pixel belonging to a particular label without differentiating 

objects from the same category, e.g., if there are 5 strawberries in the image, it gives the same label 

to all of them. Instance segmentation gives a unique label to every instance of a particular object 

into the image. In the case of the 5 strawberries, an instance segmentation algorithm can 

individualize each of them. Note that, since instance segmentation is challenging compared to 

semantic segmentation, it needs to appeal to supervised deep convolutional neural networks [78]. 

The algorithms described below belong to the Semantic segmentation approach, which has a long 

tradition and is not only based on complex neural networks but can also be carried out using 

simple image processing techniques.   

 

The simplest way to identify different objects in an image is threshold segmentation. It is 

founded on the idea that the background and foreground pixels have different properties (Figure 

1.6), so they can be easily split using a simple threshold value, which classifies the pixels as 

belonging to one out of two categories. The algorithm may also be used for classifying more than 

two categories by defining multiple local thresholding. One of the most popular thresholding 

algorithms is Otsu’s, a method that automatically chooses the threshold by maximizing the 

variance between the two groups (foreground and background) [79]. 

 

  
Figure 1.6. The right-side shows the histogram of pixel intensities of the left image. Note that the threshold segmentation of 

this image is straightforward, as background and foreground pixels are well differentiated. 

 

The edge-based segmentation procedures rely on the rapid change of intensity value in an image. 

These techniques are founded on the differences between neighboring pixels (i.e., the 

derivatives).  Sobel, Gaussian, and Canny are among the most popular. Sobel edge detector 

computes the gradient by using the discrete differences between rows and columns of a 

3 × 3 neighborhood, weighting by 2 the central pixel of each window. 
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The Gaussian (also named the Laplacian of Gaussian) uses a gaussian function (𝐺(𝑥, 𝑦) = 𝑒
−

𝑥2+𝑦2

2𝜎2  

), being 𝜎 the standard deviation determined by the degree of blurring. The method convolves the 

image using the Laplacian of 𝐺(𝑥, 𝑦), i.e., ∇2𝐺(𝑥, 𝑦) = [
𝑥2+𝑦2−2𝜎2

𝜎4 ] 𝑒
−

𝑥2+𝑦2

2𝜎2 . Applying this 

filtering has two effects: smooth the image and yields a double edge image.  

 

The Canny Detector is the most powerful of these filters and involves a series of steps. The first 

one consists of finding the edges by looking for the local maxima of the gradient of the function, 

which is computed using after smoothing out the image using gaussian filtering. Then, after 

computing the local gradient, an edge point is defined as a point whose strength is locally maximum 

in the direction of the gradient. Finally, the algorithm can discriminate between strong, weak, and 

non-relevant edges, by applying a double threshold. Threshold and edge-based segmentation are 

one channel-based segmentation, i.e., you must convert the color image to grayscale before 

applying the algorithms or you can use one of the color channels instead.   

 

The clustering-based treated the thresholding problem as a general classification problem, either 

hierarchical or partitional. These techniques find clusters of pixels where each pixel is represented 

as a point in space, whose axes can be color components, local texture or gradient, etc. Hierarchical 

clustering is “heuristic” and “agnostic”, i.e., does not need to make assumptions about the data 

distribution and it classifies the pixels based on the distance among them.  Partitional clustering, 

e.g., k-means assumes that a mean value (or median for the k-medoids approach) is a proper 

descriptor for a given class. It is an iterative process, which starts by selecting a set of k seeds and 

assigning each observation to the nearest seed. The initial seeds are then replaced by the cluster 

means (median) and the points are reassigned according to the distance to the new centers. The 

process continues until no further changes occur in the clusters. Mean-shift clustering [80] is 

essentially the same as k-means but does not require specifying the cluster number initially.  

 

Simple Linear Iterative Clustering (SLIC) is an iterative process [81] that is built on ‘superpixels’, 

a set of pixels sharing perceptual and semantic, and proximity information. It generally works with 

the CIELAB color space, starting with k centers regularly spaced. The algorithm moves the k 

clusters to seed locations corresponding to the lowest position of the gradient in a 3 × 3 

neighborhood, assigning each pixel to the nearest cluster center whose search area overlaps this 

pixel. The centers are then recalculated by averaging all pixels belonging to that superpixel. 

  

The power of deep learning can be also used to enhance image segmentation and the literature 

is plenty of papers where deep learning has been applied with astonishing results [78,82–85]. DL 

powered image segmentation taking advantage of the Convolutional Operations (see section 

1.4.2.1), which can produce accurate feature maps of the image, extracting all the meaningful 

information, i.e., it can identify the feature maps that make an object unique, in a similar way that 

we humans do. However, the main shortcoming of deep learning-based segmentation is that most 

of them are supervised and require a large number of annotated images, an expensive and time-

consuming process. Table 1.2 summarizes the pros and cons of each of these approaches.  
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TABLE 1.2 Pros and Cons of the four image segmentation approaches. 

Approach Pros Cons 

Threshold-based -Simplicity 

-Speed  

-It works almost perfectly if the 

background is homogeneous, and 

objects and background have a high 

contrast  

-It is not suitable if the objects and the 

background do not have a high contrast 

(i.e., if the histogram doesn’t have 

noticeable peaks).   

Edge Detection- based -Based on the recognition of 

discontinuity 

-Find the correct places of edges 

-Works pretty well if the objects have 

high contrast and the difference 

between regions is thin.   

 

-Sometimes are complex, time-

consuming.  

-These methods don’t work well if 

images have many edges or are not well 

defined.  

-Sensible to noise.  

Clustering-based -Are based on the shape and spatial 

information.  

- Can use several channels of a given 

image.  

-Time-consuming  

- The choice of the number of clusters.  

Deep Learning -These methods are accurate and work 

very well, any with complex images.  

-Images have to be annotated 

-Require a large training dataset 

 

 

1.9 Statistical shape analysis: a general overview 

 

The analysis of shapes has a long history in Evolution, which has fostered most of the analysis 

tools available today [86–88]. Traditional morphometrics is based on the analysis of summary 

statistics such as length, width, ratios, and areas [73]. However, the shape is highly dimensional, 

and we restrict the list of potential candidate genes by focusing on single univariate statistics. Also, 

these summary statistics do not allow reconstructing the original shape.  

 

One of the problems addressed by the statistical analysis of shape is the extraction of meaningful 

information from the (segmented) objects into an image [89]. A shape includes all the geometrical 

information that remains invariant in a given object after removal of location, scale, and rotation 

effects [90]. In other words, a shape is invariant to Euclidean transformations. Hence, it can be 

well described by locating a finite number of points on the outline, a concept better known as 

‘landmarks’ [87]. A landmark is an anatomical position that can be identified in all samples, e.g., 

the tip of the nose in cattle; while the "pseudo-marks" are points sampled along the contour of all 

samples with only geometrical meaning. In landmark-based geometric morphometrics, the spatial 

information is contained in the data, which are precisely landmark coordinates. Shapes can be 

compared once a common reference scale is found; this can be done via Generalized ‘Procrustes’ 

Analysis (GPA) [91], which consists of finding an optimal superimposition of several shapes such 

that distances between them are minimized. 

 

GPA is a generalization of the Procrustes transformation for two configurations (i.e., two shapes). 

Suppose that 𝑋1and 𝑋2 are the two centered configurations, Procrustes involves the least-squares 

matching of them, which can be expressed as in Eq. 1.8:  
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𝐷𝑃
2(𝑋1, 𝑋2) = ‖𝑋2 − 𝛽𝑋1Γ − 1𝑘𝛾𝑇‖2[Eq. 1.8] 

 

 

where 𝛽 𝑎𝑛𝑑 Γ are the scale parameter and the rotation matrix, respectively, and 𝛾 is the location 

vector. The problem has an analytic solution [90], where 𝛾̂ = 0, Γ̂ = 𝑈𝑉𝑇, being 𝑈 and 𝑉 the 

eigenvectors matrix of 𝑋2
𝑇𝑋1𝑋1

𝑇𝑋2,  𝑋1
𝑇𝑋2𝑋2

𝑇𝑋1 and  𝛽̂ =
𝑡𝑟𝑎𝑐𝑒(𝑋2

𝑇𝑋1Γ̂)

𝑡𝑟𝑎𝑐𝑒(𝑋1
𝑇𝑋1)

.  

 

GPA is the generalization of Procrustes for 𝑋1, 𝑋2, … , 𝑋𝑛 configurations, which involves 

translating, rescaling, and rotating the configurations relative to each other, considering the 

pairwise differences: 

  

𝐺(𝑋1, 𝑋2, … , 𝑋𝑛) =
1

𝑛
∑ ∑ ‖(𝛽𝑖𝑋𝑖 Γi + 1𝑘𝛾𝑖

𝑇) − (𝛽𝑗𝑋𝑗 Γj + 1𝑘𝛾𝑗
𝑇)‖

2𝑛
𝑗=1+𝑖

𝑛
𝑖=1  [Eq. 1.9], 

 

Subject to the constraint of the constraint on the size of the average, i.e., 𝑆(𝑋̅) = 1 (the centroid 

of the average configuration, which is simply the mean of all the configurations in Eq. 1.9). 

Although the GPA has not an analytical solution, the algorithm to approximate it is quite 

straightforward and can be summarized in the following 4 steps: 

 

1. Translations, consisting in center the configurations to remove locations. Initially, 𝑋𝑖
𝑃 =

𝑋𝑖 , 𝑖 = 1, … , 𝑛.  

2. Rotations. For the 𝑖𝑡ℎ configuration let 𝑋̅(𝑖) =
1

𝑛−1
∑ 𝑋𝑗

𝑃
𝑗≠𝑖 . The new 𝑋𝑖

𝑃 is the Procrustes 

superimposition (Eq. 7) between  𝑋̅(𝑖) and the old 𝑋𝑖
𝑃.  The 𝑛 configurations are rotated 

until the Procrustes sum of squares of Eq. 9 cannot be reduced further. 

3. Scaling. Let Φ the 𝑛 × 𝑛 correlation matrix of the 𝑣𝑒𝑐(𝑋𝑖
𝑃) with eigenvector Φ =

(Φ1, Φ2, … , Φ𝑛)𝑇 corresponding to the largest eigenvalue, for all 𝑖 take 𝛽̂𝑖 =

(
∑ ‖𝑋𝑘

𝑃‖
2𝑛

𝑘=1

‖𝑋𝑖
𝑃‖

2 )

1/2

Φ𝑖.  

4. 2 and 3 are repeated until convergence criteria (Eq.1.9 cannot be reduced further).  

 

Figure 1.7 shows an example of Procrustes superimposition on strawberries landmarks.  
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Figure 1.7: Generalized Procrustes Superimposition on strawberries landmarks. 

 

The overall consensus configuration (Black points in Fig. 1.7) is perfectly symmetrical allowing to 

measure the symmetry/asymmetry of any individual configuration. Besides, principal component 

analysis (PCA) on the overlapping points permits obtaining latent features that are good 

descriptors of regions of highest shape variation. The main feature of the global shape analysis is 

that it allows for simple statistical modeling, providing more information than some linear 

descriptors that compare, for example, only the ratio between height and width. 

 
1.10 Methods for exploration and integration of heterogeneous biological 

data: a multi-way view 
 
Recent advances in next-generation technologies have revolutionized biological research providing 

enormous amounts of heterogeneous data. High-throughput sequencing technologies enable 

quantitative analysis of multiple-omics data, facilitating the study of gene expression, proteins, 

metagenomics, and metabolites, and the assessment of their relationship with complex traits. The 

omics era has directly changed the paradigm of studying the organism from a single data type to 

an integrated systems biology approach [92]. Although several statistical methods have been 

developed [93–95], the integration of these heterogeneous datasets remains a challenge.   

 

There are different ways to integrate biological data. One of the most popular and widely used is 

Gene Set Enrichment Analysis, which combines gene expression with biological information [96–

98].  An alternative method is the use of co-expression networks, which estimate similarities 

between different structures, associating gene expression with functional annotation or identifying 

transcription factors [99–101]. A third approach is relying on multivariate statistical 

methodologies. Partial Least Squares (PLS) have been successfully applied to integrate the 

information from two datasets [102], while a multiway extension of Factor Analysis, termed 

Multiple Factor Analysis (MFA) and the Multiple Co-inertia (MCOA) have been used to integrate 

information from several omics data [95,103,104]. The main drawback of these approaches is that 

most of them are only suitable for continuous data.  We strongly believe that more efforts are 

needed to deliver multivariate approaches capable of integrating different data sources and 

supporting different types of data as input. 
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STATIS-ACT [105,106] belongs to the family of methods to address the problem of analyzing 

multiple datasets. It is a multiway extension of PCA that can deal with multiple datasets of variables 

collected on the same individuals or multiple individuals collected on the same variables [106]. 

Suppose you wish to analyze 𝑋1, 𝑋2, … , 𝑋𝑘 microbial communities’ or microarray matrices, all of 

them measured on the same samples, i.e., their sizes are 𝑛 × 𝑝1, 𝑛 × 𝑝2, … , 𝑛 × 𝑝𝑘 . The 𝑘 arrays 

are transformed into cross-product (i.e., for all 𝑗 = 1. . 𝑘, 𝑊𝑗 = 𝑋[𝑗]𝑀𝑋[𝑗]
𝑇 , being 𝑀 a diagonal 

matrix with weights for each variable in 𝑋[𝑗]). The method consists of applying the following three 

steps: 

 

 Inter-structure: It measures the similarity between all the 𝑊𝑗 computing the normalized version 

of the Hilbert-Smith product (〈𝑊[𝑗], 𝑊[𝑙]〉 = 𝑡𝑟(𝐷𝑊[𝑗]𝐷𝑊[𝑙]) if 𝑗 ≠ 𝑙 and 〈𝑊[𝑗], 𝑊[𝑗]〉 = ‖𝑊𝑗‖
2
). 

Note that 𝑡𝑟(. ) indicates the trace operator, ‖. ‖2 is the 𝐿2 norm and 𝐷 is a matrix of weights for 

the observations in each configuration. This step computes the correlation vectorial coefficient 

(RV) for each pair of tables, which is nothing but 𝜌𝑗𝑙 =
〈𝑊[𝑗],𝑊[𝑙]〉

〈𝑊[𝑗],𝑊[𝑗]〉〈𝑊[𝑙],𝑊[𝑙]〉
. Ρ = {𝜌𝑖𝑗} is the 

similarities matrix between all the configurations and is therefore generally referred to as a 

generalization of the correlation coefficient for arrays.  

 

Compromise: This step consists of finding the optimal weights (𝛼𝑖) for building the consensus 

configuration (𝑾 = ∑ 𝛼𝑖𝑊𝑖
𝐾
𝑖=1 ). This is nothing but an optimization problem, which can be 

viewed either as a minimization problem or as its dual. The former refers to minimize the distance  

𝐷 = ∑ ‖𝑊[𝑖] − 𝛼𝑖𝑊‖,𝐾
𝑖=1  being  𝛼′𝛼 = 1. With a little of algebra, the equation can be developed 

and simplified as follows: 𝐷 = ∑ ‖𝑊𝑘‖2𝑘
𝑖=1 − 𝛼𝑇Ρ𝛼 , which yields the results that  𝛼 is the first 

eigenvector of Ρ matrix, given that 𝐷 will be minimal when 𝛼𝑇Ρ𝛼 is maximum. The problem can 

be alternatively defined as a maximization of the vectorial correlation between the 𝑾 and each 

𝑊[𝑖], i.e., 𝐶 = ∑ 〈𝑊[𝑖], 𝑾〉𝑘
𝑖=1

2
. Both approaches lead to the same solution, since it can be shown 

that  𝐶 = 𝛼𝑇Ρ2𝛼, which, as already mentioned is maximum when 𝛼 is the first eigenvector of Ρ.  

 

Intra-structure: This step consists of applying a PCA analysis to the common configuration 𝑾.  

 

STATIS has some shortcomings, as it can only be used for continuous data. An additional 

drawback is that the subspace generated by STATIS only allows ascertaining relationships between 

common elements in all datasets, i.e., observations (samples) or variables 

(genes/transcripts/proteins/microbial communities). It is also not possible to establish 

relationships between observations and variables, nor does it provide a variable selection strategy.  

 

In the last chapter of this thesis, we show how we have enhanced the original methodology by 

generalizing a multidimensional scaling approach that allows for many types of data, from 

continuous to compositional. Exploiting the old idea of the regression biplot, we have developed 

a way to project variables into the common configuration [107]. Finally, based on the Set Enriched 

Analysis we have developed hypergeometrical taxa set enrichment approach that can integrate and 

analyze multiple microbial data to a different level of resolution.  
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1.11 Genomic Prediction in animal and plant breeding schemes: Why is 
simulation worthwhile?   

 

Modern genetic evaluation methods are sometimes too complex to be evaluated analytically. 

Further, although the forces that govern changes in patterns of variability in genomes are known 

(e.g., mutation, drift, selection, etc.), their joint action is also difficult to predict. For these reasons, 

geneticists and breeders, in particular, have heavily employed computer simulation tools 

throughout the years. Today, computer simulation is critical for optimizing breeding schemes and 

evaluating the robustness of genomic prediction strategies in the face of uncertainty regarding the 

genetic architecture of complex traits. 

 

For the non-expert, the fact that computers can reproduce stochasticity may seem a contradiction 

in terms. The mystery is solved, of course, once we learn that there exist algorithms capable of 

generating lists of numbers that are uncorrelated between them. Numeric transformations can 

then be applied so that random values sampled from any distribution can be mimicked. 

 

 
Figure 1.8. (a) Illustration of a coalescent process. It shows a simplified scheme of DNA evolution. Each row is a single 

generation, and the circles denote a DNA sequence. (b) An illustration of a forward-in-time process. This simplified scheme 

illustrates an F2 population.  

 

Mutation, drift, meiosis, mating, or even selection are stochastic processes that can be reproduced 

with specialized software. Two broad approaches exist: forward and backward (i.e., coalescence) 

simulations. The forward simulation consists of generating offspring from parent genomes (Fig. 

1.8b). Phenotypes are then simulated conditional on individuals’ genotypes and predetermined 

genetic architecture. Forward simulation is the standard approach in breeding and is the one 

utilized in pSBVB (Chapter 3). 

 

Coalescence simulations follow the opposite path (Fig 1.8a). Given current genotypes, ancestors 

are backward simulated up to the ‘most recent common ancestor’, i.e., the hypothetical founder 

of all observed genomes in our sample. Coalescence simulations have been especially popular to 

model DNA variability patterns in population genetics, but not so much in breeding. The reason 

is that modeling artificial selection in the coalescence framework is not easily tractable. Forward 

simulation, in turn, is much more computationally demanding than the coalescence. Some authors 
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have then proposed mixed approaches whereby the coalescence is used for generating the base 

population and forward simulation for the selection process [14]. Figure 1.8 illustrates both 

approaches.  
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Chapter 2  
 
2.1 Objectives 
 
The generic aim of this thesis is to develop statistical and machine learning solutions that address 

some of the new agricultural challenges. Hopefully, some of these tools will contribute to optimize 

resources and increase Agriculture sustainability. 

 

The specific objectives are: 

 

- To evaluate the impact of different genetic architectures and selection strategies on 

genomic selection in clonally propagated species. 

 

- To evaluate the impact of the diverse modeling approaches in genomic prediction in 

polyploids.  

 
- To develop pipelines for automatic phenotyping from digital images suitable for the 

analysis of plant and animal data. This includes automatic shape evaluation in animals and 

plants.   

 

- To provide an integrative data analysis workflow capable of dealing with heterogeneous 

phenotypic data sources. 
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Abstract 

 

Genomic Selection (GS) is the procedure whereby molecular information is used to predict 

complex phenotypes and it is standard in many animal and plant breeding schemes. However, only 

a small number of studies have been reported in horticultural crops, and in polyploid species in 

particular. In this paper, we have developed a versatile forward simulation tool, called polyploid 

Sequence Based Virtual Breeding (pSBVB), to evaluate GS strategies in polyploids; pSBVB is an 

efficient gene dropping software that can simulate any number of complex phenotypes, allowing 

a very flexible modeling of phenotypes suited to polyploids. As input, it takes genotype data from 

the founder population, which can vary from single nucleotide polymorphisms (SNP) chips up to 

sequence, a list of causal variants for every trait and their heritabilities, and the pedigree. 

Recombination rates between homoeologous chromosomes can be specified so that both allo- 

and autopolyploid species can be considered. The program outputs phenotype and genotype data 

for all individuals in the pedigree. Optionally, it can produce several genomic relationship matrices 

that consider exact or approximate genotype values. pSBVB can therefore be used to evaluate GS 

strategies in polyploid species (say varying SNP density, genetic architecture, or population size, 

among other factors), or to optimize experimental designs for association studies. We illustrate 

pSBVB with SNP data from tetraploid potato and partial sequence data from octoploid strawberry, 

and we show that GS is a promising breeding strategy for polyploid species but that the actual 

advantage critically depends on the underlying genetic architecture. Source code, examples, and a 

complete manual are freely available in GitHub https://github.com/lauzingaretti/pSBVB. 

 

3.1 Introduction 

 

Genomic selection (GS) [1] is the breeding strategy consisting of predicting future performance 

using DNA information from the whole genome, typically SNPs (single nucleotide 

polymorphisms). It relies on genome-wide linkage disequilibrium (LD) between markers and the 

causal mutations, without the need to identify them. Due to dramatic reduction in genotyping 

costs, GS is becoming standard in many animal and plant breeding schemes, replacing or 

complementing traditional methods based solely on pedigree information. So far, GS has been 

mainly applied to diploid species. Although polyploidy is a very common phenomenon in 

evolution and includes numerous species of interest (e.g., strawberry, potato, wheat), the impact 

of GS on polyploid breeding remains largely unexplored. Traditionally, polyploid species have 

been classified into autopolyploids, caused by one or more genome duplication events in a single 

species, and allopolyploids, the result of hybridization between closely related species [2]. 

 

In principle, the application of GS in polyploid species can have a positive impact on the rates of 

genetic gain through improved accuracy of predicted breeding values and/or reduction of 

generation intervals [3–7]. However, the complex genetic structure of polyploids has delayed the 

availability of genome-wide genotyping SNP arrays that are needed for GS. Polyploid SNP 

detection can be challenging due to the high similarity between homologous and homoeologous 

sequences, which generates complications to differentiate true SNPs from nuisance paralogous 

variants [4,8]. 

https://github.com/lauzingaretti/pSBVB
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Further, accurate genotyping is also important but becomes more complex as the ploidy level 

increases. Several tools to perform genotype estimation from SNP array platforms are already 

available [9–12]. However, the arising of Next Generation Sequencing technologies requires new 

tools adapted for this type of data, which are also being developed [13–15].  

 

Computer simulation is a fundamental tool to evaluate alternative breeding schemes since it allows 

the exploration of a wide range of hypotheses at no cost and can help to interpret the outcome of 

selection in complex situations. In this regard, numerous simulation tools have been developed 

such as easyPOP [16], simuPOP [17,18], forqS [19] Slim [20], PedigreeSim [21] among others. 

However, simulation approaches may not be straightforward to interpret owing to unknowns on 

the genetic architecture, among other factors. These problems are exacerbated in polyploid species 

and, to the best of our knowledge, only simuPOP and PedigreeSim allow polyploids organisms. 

simuPOP is not developed to compare breeding schemes, whereas PedigreeSim does not directly 

generate phenotypes nor produce genomic relationship matrices.  

 

Here we present a flexible simulation tool for complex phenotypes adapted to polyploids and we 

propose several approaches to compute the molecular relationship matrix in polyploids. The 

software is an extension of Sequence-Based Virtual Breeding (SBVB,  [22]), called pSBVB. This 

tool employs complete or partial genome data as input and simulates new genomes by gene 

dropping. We illustrate the software with data from two economically important polyploid species: 

potato, an autopolyploid, and strawberry, an allopolyploid.  

 

3.2 Methods  

 

3.2.1 Polyploid sequence based virtual breeding (pSBVB) 
 

pSBVB is a modification of SBVB software [22] that allows simulating genotypes and phenotypes 

of an arbitrary genetic complexity in polyploids. Compared to SBVB designed for diploid 

organisms only, pSBVB enables simulating meiosis in autopolyploid or allopolyploid species (see 

below). It takes ploidy into account to generate the phenotypes and incorporates several options 

to compute the molecular relationship matrix that are pertinent to polyploids, as described below.  

 

The source codes and the documented functions are distributed from GitHub: 

https://GitHub.com/lauzingaretti/pSBVB. The manual includes a full tutorial of all functions at 

the program and a user guide with the installation guidelines and examples to simulate polyploid 

organisms. The software is accompanied by R scripts [23] to generate a pedigree file, compute the 

numerator relationship matrix, perform GBLUP [24] or assess predictive ability (PA). Examples 

showing the software capabilities with alternative parameter options are also available. 

 

3.2.2 Software algorithm 

 

As input, pSBVB needs genotypes in vcf format (https://samtools.GitHub.io) or a text file with 

genotypes coded to 0 up to h (where h is the ploidy level). For diploids, the vcf genotype format is 

of the kind 0/0, 0/1, and 1/1 for the three possible genotypes in a biallelic SNP. The polyploid 
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vcf format is an extension of the type 0/0/0/0, 0/0/0/1, and so on in the case of unphased 

tetraploid genotypes. Phased genotypes are represented by vertical bars, (e.g., genotype 0|0|0|1 

is different from 1|0|0|0) . No missing values are allowed. Phased genotypes are needed in 

pSBVB to identify which chromosomes are passed to offspring. A number of accurate phasing 

algorithms for diploids are available such as beagle [25] or minimac [26]. For polyploids, several 

approaches are also developed [27,28], but their accuracy has not been completely validated and 

seems critically dependent on ploidy level. If the phase is unknown, pSBVB randomly generates a 

phase configuration. Further, linkage disequilibrium can be obtained by generating an individual 

genome out of a random pedigree starting with the founders’ genotypes. To do that, pSBVB 

incorporates the option ‘EXPAND_ BASEPOP’, which generates additional founders’ by 

randomly crossing the available ones and random breeding for a pre-specified number of 

generations (see SBVB manual, https://lauzingaretti.GitHub.io/pSBVB/). A list with QTNs 

(Quantitative Traits Nucleotides) positions, a list of SNP positions to be used for GS, a pedigree 

file, and a parameter file are also necessary. The pedigree file is used to perform the gene dropping 

simulation, i.e., genotypes’ of the descendants along the pedigree are generated following 

Mendelian rules and a pre-specified pairing rate between homologous and homoelogous pairs; for 

autopolyploids, pairing is at random. While performing gene dropping, pSBVB stores only the 

recombination breakpoints, which results in an efficient algorithm to recover marker genotypes 

and phenotypes. 

 

 pSBVB is very flexible in terms of genetic architectures; it can simulate any number of traits with 

their specific QTNs and allelic effects. QTNs effects can be specified in a file or sampled from 

gamma, normal, or uniform distributions. In contrast to SBVB, though, pSBVB does not allow 

for epistasis. Figure 3.2 shows a general representation of the pSBVB software, as well as 

screenshots.  

 

As output, pSBVB produces phenotype and marker data of the individuals obtained from the 

pedigree-based gene-dropping procedure. In addition, pSBVB can also compute molecular 

relationship matrices G using predefined marker subsets (e.g., a genotyping array) or the whole 

sequence. By default, G is computed from:  

 

 [Eq. 3.1] 

 

where M is a n × m matrix with elements containing the number of copies of the alternative allele 

for i th individual (i = 1..n) and j th SNP (j = 1..m), and p is a m-dimension vector with marker allele 

frequencies. Note that Eq. 3.1 reduces to the standard formula in the case of diploidy (h = 2) [24].  

 

Assessing the genotype for polyploids can be inferred from fluorescence intensity in SNP arrays 

or from read count in sequence data [13] but may not be as accurate as in diploid organisms, 

especially at high ploidy levels. If genotyping is not accurate, a simple alternative is to assume that 

only one full homozygous can be distinguished for the rest of genotypes, i.e., that a given marker 

allele behaves as fully dominant. To accommodate this possibility, pSBVB allows computing a 

modified G* where element mij is coded as 0 if all alleles are 0 and 1 otherwise. This is specified 

( )( )
(1 )

T

T

h h

h

− −
=

−

M p M p
G

p p

https://lauzingaretti.github.io/pSBVB/
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with the MIMIC_HAPLOID statement in the parameter file. The software also incorporates a 

‘MIMIC_DIPLOID’ option, which assumes that only the presence or absence of the alternative 

allele can be ascertained for genotype values higher than 2. In summary, the software is able to 

generate three G matrices:  

 

• Default option: The true genotype, i.e., number of copies of the alternative allele, is 

known without error (GT). In this approach, M (Eq. 3.1) has elements varying between 0 to h. 

 

• MIMIC_DIPLOID: Only 0, 1 and 2 or more copies of a given allele can be distinguished. 

In this case, all genotypes with values larger than 2 are assigned a value ‘2’, thus M (Eq. 3.1) has 

elements ranging between 0 and 2, and ploidy (h) is set to 2.  

 

• MIMIC_HAPLOID: It considers that only one full homozygous can be distinguished 

for the rest of genotypes, then M (Eq. 3.1) has elements ranging between 0 and 1, and ploidy is set 

to 1. 

 

3.2.3 Modeling meiosis in polyploids 

 

Autopolyploid species have polysomic inheritance where homologous and homoeologous 

chromosomes are randomly paired during meiosis. In contrast, most allopolyploids have a disomic 

inheritance, resulting from a preferential pairing between homologous chromosomes. However, 

there is a continuum between both extreme meiotic behaviors that can be modeled by the 

preferential pairing factor ( ), which represents the deviations from random paring [29]. In a 

generic case with  sub-genomes, where  is the ploidy level, there are  

 possible paring combinations between homologous and 

homoeologous chromosomes. The deviation from the random pairing scenario can be modeled 

as:  

 [Eq. 3.2] 

 

where  and    indicate whether recombination occurs between homologous or 

homoelogous pairs, respectively. If the recombination occurs only between homologous 

chromosomes then,   and , whereas means that the probability of 

recombination is the same between all chromosomes. pSBVB allows modeling meiotic pairing via 

a recombination matrix containing the c elements in (Eq. 3.2) between all chromosome pairs. In a 

generic case for a tetraploid, the matrix needed by pSBVB is  
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 [Eq.3.3] 

 

where  (Eq. 3.3) is the pairing probability between i and j homologous/homoelogous 

chromosomes. Note that, the chromosomes have to be sorted, rows and columns have to sum 1, 

i.e., to a i-- row,  and diagonal elements always are set to 0. 

For example, the matrix for a strict auto-tetraploid is:  

 

 [Eq.3.4] 

 

And for a strict allopolyploid would be 

 

  [Eq. 3.5] 

 

3.2.4 Phenotype simulation 

 

In a diploid organism, the phenotype for i-th individual can be simulated from (Eq. 3.6). 

 

 [Eq. 3.6]  

 

where   is the general mean, is the additive effect of j-th locus, that is, half the expected 

difference between homozygous genotypes, and it takes values -1, 0, and 1 for homozygous, 

heterozygous, and alternative homozygous genotypes, respectively, is the dominance effect of 

1
12 13 1

2 12 23 2

13 23 33

1 1 1
0 ...

1 1 1

1 1 1
0 ...

1 1 1

1 1 1
0 ...

1 1 1
. ... ... ... ... ...
. 1

1

1 2 3 h

h

h

h

h

                  r                 r                  r           ...          r

r

h h h

r
h h h

R  
r

h h h

r h

  

  

  



+ + +
− − −

+ + +
− − −

=
+ + +

− − −

+
−

1 2 3

1 1
.... 0

1 1
h h h

h h
 

 
 
 
 
 
 
 
 
 
 
 

+ + 
 − − 

ijr

1
0

j h

ijj


=

=
=

1

2

3

4

0 1 / 3 1 / 3 1 / 3

1 / 3 0 1 / 3 1 / 3

1 / 3 1 / 3 0 1 / 3

1 / 3 1 / 3 1 / 3 0

1 2 3 4              r        r        r        r

r

r
R

r

r

 
 
 =
 
 
 

1

2

3

4

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1 2 3 4
   r     r    r           r

r

r
R

r

r

 
 
 =
 
 
 

1 1

,
Q Q

i ij j ij j i

j j

y a d   
= =

= + + + 

 ja

jd



   52 

j-th locus and takes value 1 if the genotype is heterozygous, 0 otherwise, and  is a normal residual 

of the i- observation. For polyploids, the equivalent equation can be expressed as in the Eq. 3.7. 

 

 [Eq. 3.7] 

 

where is the number of copies of the alternative allele (coded say as 1) minus half the ploidy 

(h/2) for j-th locus and i-th individual, and  is, therefore, the expected change in phenotype per 

copy of allele ‘1’ in the j-th locus. In polyploids, as many dominance coefficients as ploidy level (h) 

minus two can technically be defined. However, this results in an over-parameterized model that 

is of no practical use. Here instead we define the  parameter as the minimum number of copies 

of allele 1 such that the expected phenotype is . In our modeling, all genotypes with a number 

of copies over  have the same phenotype. See Figure 3.1 for a graphical representation of this 

modeling approach. By default, pSBVB takes  . 

  
Figure. 3.1. Additive and dominance modeling in polyploids used by pSBVB. The figure represents three possible genic actions in 

an octoploid. Under a strict additive action (○), the phenotype is expected to increase in an ‘a’ unit per copy of the alternative allele 

(note that a can be negative or positive). Under dominance action and  = 1 (Dom 1, see Eq. 3.5), the phenotype is expected to be 

the same for any heterozygous genotype (+). With dominance and  = 3 (Dom 3), the genotype is expected to be the same for all 

heterozygous genotypes containing more than 3 copies of the alternative allele (◊).  

 

3.2.5 Statistical Model for Genomic Prediction  

 

There are currently numerous statistical methods that address the large p small n problem and use 

genome-wide markers to predict breeding values (eg., [30,31]). pSBVB does not compute genomic 

breeding values but can produce genomic relationship matrices suitable to obtain GBLUP [24], as 

detailed above. Otherwise, pSBVB outputs genotypes of all or a subset of markers, and any desired 

GS algorithm can be applied. R scripts are provided in GitHub that performs GBLUP. 

 

i

1 1

,
Q Q

i ij j ij j i

j j

y a d   
= =

= + + + 

ij

ja

ij

d

ij

1ij =



   53 

3.3 Results 

 

In order to illustrate the software capabilities, we have used a dataset from two polyploids species: 

autopolyploid potato (Solanum tuberosum, 2n=4x=48) and allopolyploid strawberry (Fragaria x 

ananassa 2n=8x=56).   

 

3.3.1 Potato genotypes 

 

The availability of an 8,300 SNP array has allowed the development of GS studies in potato, one 

of the most important crops worldwide (e.g., [5,7]). To illustrate our tool, here we used a subset 

of 407 SNPs and 150 individuals from Enciso-Rodriguez et al. [7]. SNP positions were obtained 

from Rosyara et al. [32]. We used these genotypes to generate a vcf file where genotypes were 

coded between 0 and 4 (the potato ploidy level), phases were randomly generated.  

 

Next, to generate linkage disequilibrium in the randomly phased dataset, we included additional 

dummy founders using the ‘EXPAND_BASEPOP’ statement in the parameter file (see reference 

manual, HTTPS://lauzingaretti.GitHub.io/pSBVB/). With this option, new base population 

individuals are obtained via randomly generated pedigrees. A new base population with 100 

founders was obtained. The total pedigree size was 700, including 250 founders (150 initial 

individuals and 100 new base population individuals) and four generations with 100, 100, 100, and 

150 individuals, respectively. 

 

Phenotypes were simulated using 140 randomly chosen QTNs and heritability (h2) was set to 0.5. 

As numerous studies suggest that allele distribution is highly leptokurtic [33,34] with many near-

zero effects and a few large effects, we used a gamma  Γ ( α = 0.2, β = 5 )  distribution to simulate 

additive effects as in  [35]. G matrix was computed assuming that all markers are known without 

error since the potato chip ensures that the true genotype can be obtained. Finally, to illustrate GS 

performance, we predicted breeding values using GBLUP and quantified the predictive ability 

(PA), which was assessed by removing the 150 individuals from the last generation and computing 

the correlation between predicted and observed phenotypes of these 150 individuals. Figure 3.3 

plots the observed vs. predicted phenotypes in training (400 individuals) and test (150 individuals) 

population. In this example, PA was reasonably high (  = 0.52), and illustrates that reasonable 

accuracies can be obtained even with small population sizes provided linkage disequilibrium and 

h2 are relatively high. 

 

The pedigree and the numerator relationship matrix files were generated using the pedigree.R and 

RelationshipMatrix.R functions, respectively; breeding values were predicted with GBLUP using 

GBlupFunction.R script. The whole source code and scripts to run this example are available at 

the GitHub site. 
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Figure 3.3 Predicted breeding values from the GS model in the simulated potato dataset. Correlations between observed and 

predicted values from training and testing populations were 0.91 and 0.52, respectively. 

 

3.3.2 Application to strawberry GBS data 

 

We also applied our program to octoploid strawberry F. x ananassa. In the absence of a reasonable 

number of strawberry sequenced genomes, we used unpublished data obtained with GBS 

(Genotyping by Sequencing) from 47 strawberry cultivars. Genotype-by-Sequencing libraries were 

prepared by Heartland Plant Innovations (http://www.heartlandinnovations.com/). Samples 

were multiplexed and sequenced 92 cycles on the Illumina MiSeq at the Oklahoma Medical 

Research Foundation. Data quality was checked by FASTQC 

(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/). To obtain reasonably realistic 

genotypes based on these data, we applied the following pipeline. GBS reads were aligned against 

F. vesca (diploid strawberry) reference genome (F. vesca-genome.v2.0.a1), bam files were filtered 

setting minimum base and mapping qualities to 37 and 20, respectively, and parsed with snape 

(https://github.com/EmanueleRaineri/snape-pooled, [36]), an SNP caller developed for pools. 

 

This software requires as input the number of diploid individuals in the pool, which was set to 

four. Polymorphic positions with fewer than 20 high-quality reads were removed, as well as those 

where more than 60% of the cultivars were not covered. Logically, only genotype values 0, 1, to 8 

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
https://github.com/EmanueleRaineri/snape-pooled
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are allowed in an octoploid genome SNP, whereas the number of reads per position follows a 

quasi-continuous distribution. To convert the number of reads to genotype score, we computed 

the fraction of alternative allele reads divided by the total number of reads (f) and inferred its 

genotype from the nearest possible integer to f × 8. This was done for each SNP and cultivar. 

Missing genotypes were sampled according to the genotype frequency in the non-missing positions 

for that SNP. We assumed independence to perform the assignations. A total of 50,609 variant 

positions were obtained (5779, 7985, 7328, 6362, 8282, 9012, 5862 in linkage groups GL1, GL2, 

GL3, GL4, GL5, GL6, and GL7, respectively). These markers were used as genetic file input for 

the program. Among those SNPs, ∼ 36%, 37%, 14% and 13% variants were classified as 

segregating in 1, 2, 3 or all sub-genomes: 2x, 4x, 6x and 8x, respectively.  

 

Strawberry breeding programs are based on evaluating crosses between elite lines. Traditional crop 

breeding is expensive and time-consuming, and GS can accelerate strawberry improvement if only 

a subset of these crosses were fully tested in the field. To mimic this scenario, we generated a 

pedigree file with five generations of intercrossing starting with the 53 base population lines. Each 

generation was made up of 100 lines. In the last generation, 1000 crosses with unknown phenotype 

were generated from the 100 current parental lines. As a measure of predictive accuracy, we 

computed the correlation between observed and predicted phenotypes of the 1000 crosses, when 

the phenotypes from these 1000 crosses were removed. One hundred replicates were run per case. 

 

To simulate the phenotypes, we considered a range of genetic architectures with a focus on sugar 

content:  

 

• Random QTNs in sugar-associated pathways (RQP): 100 SNPs were randomly chosen as 

causal among the SNPs in the sugar pathway associated genes ± 10 kb. 

 

• Diploid QTNs in sugar-associated pathways (DQP): 100 SNPs were randomly chosen as 

causal among the diploid SNPs in the sugar pathway-associated genes ± 10 kb. 

 

• Random QTNs genome-wide chosen (RQG): 100 SNPs were randomly chosen as causal 

among all detected SNPs. 

In the first two architectures, we aimed at mimicking a trait of economic interest such as sucrose 

content. The gene information was obtained from FragariaCyc 

(http://pathways.cgrb.oregonstate.edu, [37]). In total, there were 159 genes containing 499 SNPs 

associated with these pathways. Within each of the three architectures, phenotypes were simulated 

according to two extreme gene actions: fully additive and complete dominance (Φ = 1, Figure 

3.1). Heritability was set to 0.5. 

For each architecture, phenotypes were simulated according to two extreme gene actions: fully 

additive and complete dominance. In the dominant approach, we set (Figure 

3.1). Each phenotype was generated from its genotypic value adding an environmental effect, 

where was adjusted such that heritability was . 

 

Simulated PAs are in Figure 3.4. We estimated the PA using the following matrices:  

( )0.2, 5 = =G

2 0.5h =
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• GT: The true genotype, i.e., number of copies of the alternative allele, was known without 

error and all SNPs were used. In this approach, M (Eq. 3.2) has elements varying between 

0 and 8.   

 

• G2: Only diploid SNPs were used, and genotypes were known without error. M (Eq. 3.2) 

has elements ranging between 0 and 2. 

 
 

• G2*: All SNPs were employed but only genotypes of diploid SNPs were known without 

error, whereas for the remaining, although the organism was polyploid, the Genomic 

matrix is computed mimic diploid . M (Eq. 3.2) has elements ranging between 0 and 2. 

 

• Numerator Relationship Matrix (P-BLUP): The breeding values were predicted using 

the pedigree relationship matrix.  

Figure 3.4 shows the obtained accuracies across genetic architectures and for each evaluation 

method. Overall, these results indicate that the performance of GS in polyploids may critically 

depend on the underlying genetic architecture. Unsurprisingly, accuracy also drops when 

dominance exists compared to the additive scenarios. Several additional observations of interest 

can be drawn from Figure 3.4. First, there were no differences in the ranking of methods 

irrespective of whether QTN were scattered throughout the genome (RQG) or localized in given 

segments (RQP). This was observed for both additive and dominant architectures. Second, using 

the true genotype values to build G (GT) did not always outperform the rest of GBLUP methods 

considered. In fact, this was observed only when the architecture was fully additive and the QTNs 

were segregating in more than one homeolog group. In these cases, GT-BLUP was ∼ 4 - 8% 

better than G2-BLUP or G2*-BLUP. G2, which employs only diploid SNPs, should be preferred 

to GT-BLUP only if QTNs are exclusively diploid. A relevant result is that G2* -BLUP, which 

treats markers as dominant, was a quite robust strategy, in particular with complete dominance 

and with the exception of DQP scenario (i.e., when all QTNs were diploid).  

 

Finally, note that the advantage of GBLUP over P-BLUP is not always guaranteed. At least in the 

breeding scenario analyzed here, G2-BLUP might actually perform worse than P-BLUP when 

QTNs segregate randomly (RQP and RQG) and genic action is additive. If true SNP genotypes 

could be known without error (GT), the increase in accuracy compared to P-BLUP would vary 

between ∼ 7% and 18%. As for using G2* -BLUP, the increase in accuracy was between ∼ 3% 

and ∼ 16% across all cases examined here. The advantage, though, would diminish if genic action 

were additive and QTN would segregate in all homologous.  

 

The genetic file used as input includes 1500 SNPs from the whole vcf file. More examples 

combining a set of different parameters (additive and dominance effects, Genetic Matrix 

calculation, pedigree, and Genomic Relationship Generation, among others) are available on 

GitHub. 
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Figure 3.4: Predictive Ability  of GBPLUP and P-BLUP models for each of the three genetic architectures 

considered in the strawberry dataset: random QTNs in sugar associated pathways (RQP), diploid QTNs in sugar associated 

pathways (DQP), and genome-wide chosen (RQG), and each of the three GBLUP models. Three GBLUP models were 

compared: In GT, genetic matrix G was computed assuming SNP allele frequencies were known without error; in G2, only 

diploid SNPs were used, and genotypes were known without error; and in G2*, G Genomic relationship matrix is computed 

assuming than only presence or absence of the alternative allele could be known for the remaining, i.e., although the organism 

was polyploid, Genomic relationship matrix is computed assuming than only presence or absence of the alternative allele can 

be ascertained. (a) additive architecture; (b) dominant architecture. 
 

3.4 Discussion 

 

Certainly, polyploid sequence data will be increasingly available, which will be used to achieve a 

better understanding of complex trait genetics and to optimize GS strategies. To help in the latter 

task, here we have developed an extension of SBVB software (pSBVB) that feeds from real 

sequence data of polyploid organisms. It uses efficient forward algorithms and allows simulating 

meiosis in polyploid species, suited for both auto and allopolyploid organisms. Further, pSBVB 

generalizes genetic modeling in polyploids to generate phenotypes and incorporates several 

options to compute predefined molecular relationship matrices that are specific to polyploid 

organisms. Note though that, since pSBVB can print the whole SNP dataset, any custom-made G 

can be computed and any alternative GS method can be evaluated. There are some limitations 

though. An important one is that epistasis cannot be modeled in pSBVB - in contrast to the diploid 

version (SBVB) - but this limitation stems from the lack of realistic modeling on epistasis for 

polyploids rather than out of computational constraints. 

 

To the best of our knowledge, there are no simulation tools that allow estimate genetic matrix in 

polyploid organisms with a range of options like the one described here. Among the available 

forward-time simulation tools, only simuPOP [17,18] and PedigreeSim [21] consider polyploids. 

ˆ( , )cor y y
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Compared to simuPOP, pSBVB allows simulating both auto and allo-polyploid organisms, 

accepting as input a recombination matrix between homeolog groups. PedigreeSim is not 

specifically designed for GS and is not able to simulate complex genetic architectures and compute 

relationship matrices as pSBVB. A further outcome of our work is the proposal of several G 

matrices that are robust to genotype misspecification, an important problem in polyploids [13]. 

 

To conclude, we have developed a flexible GS simulation tool capable of using real sequence data 

from polyploids. We show the tool capabilities using potato and strawberry real datasets. With 

potato genotypes, we illustrate how new base population individuals can be generated and show 

that accuracy can be relatively high even with modest population sizes. Among the molecular 

relationship matrices proposed, assuming that only diploid genotypes can be identified seems 

overall a good compromise in terms of performance, at least in strawberry data. Our study suggests 

that GS may increase response to selection compared to P-BLUP, but this will depend on the 

true genetic architecture of the trait, as also shown by Gezan et al. [6] with real strawberry data. We 

urge advancing on the quantitative and molecular dissection of complex traits in polyploids, which 

should provide important parameters such as prevalent genic action or number of segregating 

homeolog groups, in order to design optimum GS breeding schemes for these species. 
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Abstract 

 
Genomic Prediction (GP) is the procedure whereby the genetic merits of  untested candidates are 

predicted using genome wide marker information. Although numerous examples of  GP exist in 

plants and animals, applications to polyploid organisms are still scarce, partly due to limited 

genome resources and the complexity of  this system. Deep Learning (DL) techniques comprise a 

heterogeneous collection of  Machine Learning algorithms that have excelled at many prediction 

tasks. A potential advantage of  DL for GP over standard linear model methods is that DL can 

potentially take into account all genetic interactions, including dominance and epistasis, which are 

expected to be of  special relevance in most polyploids. In this study, we evaluated the predictive 

accuracy of  linear and DL techniques in two important small fruits or berries: strawberry and 

blueberry. The two datasets contained a total of  1,358 allopolyploid strawberry (2n=8x=112) and 

1,802 autopolyploid blueberry (2n=4x=48) individuals, genotyped for 9,908 and 73,045 SNP 

markers, respectively, and phenotyped for five agronomic traits each. DL depends on numerous 

parameters that influence performance and optimizing hyperparameter values can be a critical step. 

Here we show that interactions between hyperparameter combinations should be expected and 

that the number of  convolutional filters and regularization in the first layers can have an important 

effect on model performance. In terms of  genomic prediction, we did not find an advantage of  

DL over linear model methods, except when the epistasis component was important. Linear 

Bayesian models were better than Convolutional Neural Networks for the full additive architecture, 

whereas the opposite was observed under strong epistasis. However, by using a parameterization 

capable of  taking into account these non-linear effects, Bayesian linear models can match or exceed 

the predictive accuracy of  DL. A semiautomatic implementation of  the DL pipeline is available at 

https://github.com/lauzingaretti/deepGP/. 

4.1 Introduction  
 
Deep Learning (DL) techniques comprise a heterogeneous collection of  Machine Learning 

algorithms which have excelled at many prediction tasks, and this is a very active area of  research 

[1–3]. All DL algorithms employ multiple neuron layers and numerous architectures have been 

proposed: Multiple Layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), 

Convolutional Neural Networks (CNNs) [4] and others. DL is relatively straightforward to 

implement (https://keras.io/why-use-keras/) but optimum performance depends on an adequate 

hyperparameter choice, which is not trivial and requires considerable computational resources 

[5,6]. Although previous, limited evidence does not show a consistent advantage of  DL over 

penalized linear methods for Genomic Prediction (GP) purposes [7–12], more efforts are needed 

to fully understand the behavior and potential constraints and capabilities of  DL in GP scenarios.  

 

Genomic Selection (GS) is the breeding strategy consisting in predicting complex traits using 

genomic-wide genetic markers. The idea was developed to overcome the limitations of  Marker-

Assisted Selection (MAS) and was formalized by Meuwissen et al. [13]. While MAS establishes a 

model with only the markers with significant associations, genomic selection includes all, or most 

available markers, for genomic prediction (GP), irrespective of  their effect and its significance. 

Due to the decrease in genotyping costs, genomic selection is becoming the standard tool in many 

https://github.com/lauzingaretti/deepGP/
https://keras.io/why-use-keras/
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plant and animal breeding programs [14–18]. There are an increasing number of  successful 

applications of  genomic selection in diploid and polyploid organisms where its use has generated 

important genetic gains by improving the accuracy of  breeding value prediction and dramatically 

reducing generation intervals [19–23]. 

 

In any scenario, GP poses statistical challenges since the number of  markers is usually much larger 

than the number of  individuals, i.e., the so-called large p (number of  features) small n (sample size) 

paradigm [24,25]. In this context, statistical methods require either shrinkage, variable selection or 

a combination of  both [26]. Most GP methods are based on linear models, such as Genomic Best 

Linear Unbiased Prediction (GBLUP) [27], the Bayesian GP family [13,25] or LASSO [26]. In 

GBLUP, all marker effects are assumed to be normally distributed with equal variance and a 

homogeneous shrinkage is induced, whereas Bayesian models are more flexible and differential 

shrinkages and/or variable selection can be applied to distinct marker subsets. Note that these 

methods are linear and, in contrast to DL, have not been designed to model non-additive genetic 

effects (such as dominance or epistasis); however, these effects can be incorporated in the model 

with appropriate parameterizations. 

 

One potential advantage of  DL for GP over standard methods is that the whole genetic merit, 

including all non-additive effects, can potentially be predicted without the need to partition all 

effects. This is an interesting property for clonally propagated outcrossing species, because 

genomes can be asexually reproduced from single plants once the desirable individual is found. It 

should also be a promising strategy in polyploids, although their complex genetic structure has 

delayed the availability of  whole genome markers and of  specific analytic tools for, e.g. SNP calling 

[28–30]. A few studies have demonstrated the potential advantages of  GS in allo and 

autopolyploids [29,31–35], although its implementation is still in its infancy. 

 

When non-additive effects are investigated, there are two important points that need to be 

considered for higher ploidy levels: i) there is a portion of  the intra-locus allele interaction (i.e., 

dominance) that is passed to the progeny (particularly full-sibs), and ii) the definition of  non-

additive effects is more complex than in diploids as higher order interaction exist [36]. Thus, 

methodologies that could model the whole genetic merit without restrictive assumptions could 

facilitate and improve the prediction for polyploid species, making DL an attractive choice for 

genomic prediction. In practice, DL aims at predicting the whole genetic merit, including 

interactions irrespective of  their origin.  

 

Among the polyploid species, strawberries (Fragaria x ananassa) and blueberries (Vaccinium 

corymbosum) are considered two of  the most important soft fruit commodities. Considered a rich 

source of  vitamins and minerals, fruit markets for both species have experienced a global increase 

in production and consumption over the past decade 

(https://www.nass.usda.gov/Publications/Todays_Reports/reports/ncit0619.pdf). To ensure 

that production and fruit quality meet the global demand, genetic improvement, and particularly 

GP, has a role to play in maximizing the utility, diversity and yield of  resources. In this sense, 

previous experimental assessments performed in blueberry [32,35] and strawberry [29] have 

proven the feasibility of  incorporating genomic selection to either accelerate the pace or improve 

the efficiency of  breeding programs. From a genetic standpoint, one important difference between 

https://www.nass.usda.gov/Publications/Todays_Reports/reports/ncit0619.pdf
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both species is its inheritance pattern. Cultivated strawberry (Fragaria x ananassa) is an allo-

octoploid hybrid plant originated by cross between two wild octoploid species F. chiloensis and 

F.virginiana [37] both descendants of  Fragaria diploid species; referred as allopolyploids, meiosis is 

mainly dictated by preferential pairing, exhibiting a diploid-like (or disomic) segregation. In 

contrast, blueberry is a tetraploid organism originated from genome duplication within the same 

species. In autopolyploids, the meiotic pairing is mainly described by forming either random 

bivalents or multivalent during the division. Since the molecular mechanisms in auto and 

allopolyploids are quite complex, comparing new algorithms is a relevant issue to the prospect of  

GP in these and other polyploid species.  

 

In this study, we evaluated the performance of  deep learning for genomic prediction in two 

important horticultural species: allo-octoploid strawberry and auto-tetraploid blueberry. We 

complement the empirical study with simulations to understand better the impact of  genetic 

architecture on DL performance. Given the complexity of  implementing DL, we also provide a 

guideline on best practices for hyperparameter tuning and evaluate its importance in terms of  

predictive ability. To facilitate reproducibility of  these methods, a python-based package for 

semiautomatic DL implementation, including auto and allopolyploid organisms have been made 

available at https://github.com/lauzingaretti/deepGS/. 

 

4.2 Materials and methods 

 
4.2.1 Plant Material and Genotypes 

 

Predictive performances were compared in two polyploid species (blueberry and strawberry), for 

a series of  traits with presumably contrasting genetic architecture. A summary of  both 

experimental data sets is presented in the Table 4.1. 

 
Table 4.1: Summary of blueberry and strawberry experimental data sets used in this paper.  

 Strawberry (allopolyploid) Blueberry (autopolyploid) 

Ploidy 2n = 8x = 112  2n = 4x = 48  

No. observations  1,358 (1,233 unique genotypes) 1,802 

No. SNPs 9,908 73,045 

Traits analyzed • Soluble solid content (brix) 

• Average fruit weight (AveWtT) 

• Total marketable weight (MktWtT) 

• Early marketable yield (MktWtE) 

• Percentage of  culled fruit 

(CullsTPer). 

• Firmness 

• Fruit Size 

• Weight 

• Yield 

• Scar 

Main reference Gezan et al. (2017) Amadeu et al. (2019) and Oliveira et al. 

(2019) 

 

 

Regarding strawberry, we used 1,233 unique genotypes which correspond to five advanced 

selection trials (T2, T4, T6, T8 and T10) from the strawberry breeding program at the University 

of  Florida, Institute of  Food and Agricultural Sciences (USA). These advanced trials were planted 

in five consecutive seasons and were given an even code starting with season 2013-2014 as T2 and 

ending with season 2018-2019 as T10. The number of  lines in each trial was 217, 240, 236, 272 

and 393 for T2, T4, T6, T8 and T10, respectively. Some of  the genotypes in the last trial T10 were 

https://github.com/lauzingaretti/deepGS/
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already tested in earlier trials, making the total number of  observations sum up to 1358 (instead 

of  1,233). Plants were genotyped with the Axiom IStraw90 SNP array [38]. After quality control, 

in which those markers with minor allele frequencies (MAF) < 5% and with missing marker data > 

5% were eliminated, 9,908 polymorphic SNP markers were available. A total of  five yield and fruit 

quality traits were evaluated in each trial: soluble solid content (brix), average fruit weight 

(AveWtT), total marketable yield (MktWtT), early marketable yield (MktWtE) and percentage of  

culled (unmarketable) fruit (CullsTPer). Additional details for T2 and T4 can be found in Gezan 

et al. [29].  

 

The blueberry population used in this study encompasses one cycle of  the University of  Florida 

blueberry breeding program’s recurrent selection and comprised 1,802 lines from 117 full-sib 

families. The population was originated from 146 parents that presented superior phenotypic 

performance (cultivars and advanced stage of  breeding). Individuals were evaluated for five yield 

and fruit quality-related traits: Firmness, Fruit Size, Weight, Yield, and Picking Scar, which were 

collected during two production seasons. Phenotypes were pre-corrected for fixed year effects, as 

detailed in [32,35]. A total of  73,045 SNPs was obtained using sequence capture by Rapid 

Genomics (Gainesville, FL), after aligning the reads against the high-quality “Draper” genome 

assembly [39] as described in Benevenuto et al. [40]. Marker filtering followed these criteria: 

biallelic, mean coverage > 40, minimum allele frequency > 0.01; maximum missing data = 0.5%; 

minimum quality = 20. Also, individuals with more than 50% missing data were removed, missing 

genotypes were simply imputed with the mean. Tetraploid genotypes were called and the allele 

dosages were inferred with the updog R package [41]. Standard genotype calling with updog allows 

inferring genotypes according to the number of  allele copies, and genotypes can be coded say 

0,1,2,3,4. In addition, as in [32], here we considered a set of  ‘diploidized’ genotypes that were 

obtained pooling all heterozygous genotypes in a single class, i.e., genotypes above 0,1,2,3,4 can 

be recoded as 0,1,1,1,2.  The rationale is that there can be incertitude on the exact number of  allele 

copies in heterozygous genotypes.  

 

The GP methods evaluated in this study were assessed by true validation, which was obtained by 

splitting data into a training and a validation dataset. In the strawberry dataset, we considered that 

predicting performance of  the last stage lines (T10) is the most interest application for the industry 

and therefore the population was divided between training (T2, T4, T6 and T8 trials) and validation 

(T10) subsets with 965 and 393 lines, respectively. In the case of  blueberry data, all samples were 

equally important and 30% of  randomly sampled genotypes were assigned to the validation set. 

Predictive ability (PA) was defined as the correlation between observed and predicted phenotypes 

in the validation set; prediction was computed from parameters estimated in the training dataset 

only. 

 

4.2.2 Genetic structure and heritability inference 

 

Potential genetic structure was assessed by Principal Component Analysis (PCA) using all 

genotypes. Since genetic architecture may have an impact on GP performance and on the optimum 

GP model [42], additive and non-additive genetic features were assessed by computing variance 

components from the model:  
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𝒚 = 𝝁𝟏 + 𝒂 + 𝒅 + 𝒆 + 𝜺, [Eq. 4.1] 

 

where the vector y represents the adjusted phenotype, 𝝁𝟏 is the intercept, 𝒂 ∼ 𝑁(𝟎, 𝑨𝜎𝑎
2), 𝒅 ∼

𝑁(𝟎, 𝐃𝝈𝑑
2 ), and 𝒆 ∼ 𝑁(𝟎, 𝐄𝜎𝑒

2) are the additive, dominant and epistatic effects, respectively, and 

𝜺 ∼ 𝑁(𝟎, 𝐈𝜎𝜀
2) is the residual component. Matrices A and D were obtained using AGHmatrix 

package [43] for both strawberry (as diploid) and blueberry (autotetraploid) species. For diploids, 

A and D were computed using [27] and [44] methods, respectively. In fact, 𝐀 =
𝐙𝐙′

2 ∑ 𝑝𝑗𝑗 (1−𝑝𝑗)
, where 

Z is the matrix that contains the centered individual genotype values and 𝐃 =
𝐌𝐌′

4 ∑ [𝑝𝑗(1−𝑝𝑗)]
2

𝑗

 is the 

dominance matrix, where the  M elements are −2𝑝𝑗
2, 2𝑝𝑗(1 − 𝑝𝑗), −2(1 − 𝑝𝑗)

2
 for genotypes 

0, 1 and 2, respectively. In the case of  ploidy = 4,  D was obtained as in [28]. The additive x additive 

epistatic matrix (E) considered is the Hadamard product of  additive effects, i.e. 𝐀 ⊙ 𝐀 [45]. 

Posterior distributions of  genetic parameters were obtained using Reproducing Kernel Hilbert 

Spaces (RKHS) regression with BGLR package [25]. The additive, dominance and epistatic ratios 

were estimated as: ℎ̂𝑎
2 = 𝑠𝑎

2 (𝑠𝑎
2 + 𝑠𝑑

2 + 𝑠𝑒
2 + 𝑠𝜀

2)⁄ ,  ℎ̂𝑑
2 = 𝑠𝑑

2 (𝑠𝑎
2 + 𝑠𝑑

2 + 𝑠𝑒
2 + 𝑠𝜀

2)⁄  and ℎ̂𝑒
2 =

𝑠𝑒
2 (𝑠𝑎

2 + 𝑠𝑑
2 + 𝑠𝑒

2 + 𝑠𝜀
2)⁄ ; where 𝑠𝑖

2 the ith mean posterior estimates of  𝜎2 as in Eq. 4.1. We used 

both training and validation datasets combined in this stage, since this is purely a descriptive 

analysis and the values obtained are not employed in the later prediction stages. 

 

 

4.2.3 Penalized Linear Methods 

 

We compared the prediction performance of  DL models with two well-established linear methods: 

Bayesian Lasso (BL, [13] and Bayesian Ridge Regression (BRR, [46]. In these models, the trait can 

be expressed as: 

  

𝒚 = 𝝁𝟏 + 𝒈 + 𝜺, [Eq. 4.2] 

 

where 𝝁𝟏 is the overall mean, 𝒈 = 𝑿𝜷, X is the genotypes’ matrix and 𝜷 is a vector of  marker 

effects. In BRR, prior distributions of  marker effects 𝜷 are 𝑁(𝟎, 𝑰𝜎𝛽
2), whereas the prior 

distributions for 𝜷 in BL have a Laplace distribution, i.e., 𝑝(𝜷| 𝜆, 𝜎𝜀
2) =

𝜆

2𝜎𝜀
2 exp (−|𝜷|

𝜆

𝜎𝜀
2). Note 

that the Laplace distribution does not remove markers so, contrary to its frequentist counterpart, 

BL is not a variable selection approach. Each model was fitted by using only phenotypes from the 

training subset. The models were run using the BGLR package [25] with a Gibbs sampler 

algorithm for a total of  6,000 cycles, discarding the first 1,000 samples for burn-in.  

 

The above parameterization assumes additivity of  effects, although linear models can address non-

linear relationships if  properly parameterized. Non-linear interactions can be modeled by 

expressing g (Eq. 4.2) in a general way, i.e., 𝒈 = 𝛀𝝎 where 𝛀 (centered and scaled) is a matrix of 

dummy variables  that indicates the number of  copies of  the reference allele ranging from 0 to the 

ploidy level [28,31]. This model is, in principle, a good parameterization to account for non-linear 
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interactions and we will refer to it as BRR general model (BRR-GM), since Bayes ridge regression 

was used. For more details, see [31,47]. 

 

Non-linearity can also be managed by means of  RKHS regression [48] as an alternative to a linear 

regression for capturing complex interactions. This model considers g in Eq. 4.2 as 𝑁(𝟎, 𝑲𝜎𝑔
2) 

with 𝐾(𝑥𝑖 , 𝑥𝑖´) = exp (−
ℎ‖𝑥𝑖−𝑥𝑖´‖

2

𝑝
), a kernel function where h is de bandwidth parameter 

controlling how fast the covariance function drops with the distance between pairs of  markers and 

‖𝑥𝑖 − 𝑥𝑖´‖
2 is the Euclidean distance between any two pairs of  genotypes. This parameterization 

induces a general matrix of  genetic covariance between markers. The key point here is that the 

kernel can model non-linear relationships because it is a non-linear transformation of  the distances 

between the input variables. Empirical evidence confirms that it is an accurate approach to predict 

phenotypes of  complex traits [49–51]. BRR-GM and RKHS were only implemented for 

strawberry and simulated scenarios, since it was in strawberry where we found the trait with the 

largest epistasis component, as described below. 

   

4.2.4 Deep Learning (Convolutional Neural Networks) 

 

Deep Learning (DL) has been described as a universal learning approach able to solve supervised, 

semi-supervised and unsupervised problems. Several DL architectures have been proposed, such 

as Multiple Layer Perceptrons (MLPs), Recurrent Neural Networks (RNNs), Convolutional Neural 

Networks (CNNs), Generative Adversarial Networks (GANs) and Reinforcement Learning (RL). 

The Figure 4.1 shows a generic pipeline to evaluate DL in a GP context. 

 

 
Figure 4.1. A generic Deep Learning (DL) pipeline for Genomic Prediction (GP) purposes. The general process includes the 

training and validation steps. In the training step, data are split into training and testing, DL hyperparameters are optimized by 

internal cross-validation with the test set and the model with the best Predictive Ability (PA) is chosen. In the validation step, 

the model PA is evaluated using a new set of  data. 
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In our previous experiment ([52]), CNNs were the best performing methods and therefore are the 

only ones discussed here. The advantage of  CNNs in a GP context is that they can model the 

correlation between adjacent input variables, that is, linkage disequilibrium between nearby SNPs. 

This is done via a mathematical operation called convolution [53]. A typical CNN is made up of  

‘convolutional layers’, ‘pooling’, ‘flatten’ and ‘dense’ fully connected layers (Figure 4.2). In the 

‘convolutional layer’, an operation called convolution is performed along the input of  predefined 

width and strides, which are known as ‘kernel’ and ‘filter’ in the DL jargon, respectively. From a 

mathematical view, a convolution s(t) is a function that can be defined as an ‘integral transform’ 

[54]:  

 

𝑠(𝑡) = (𝑓 ∗ 𝑘)(𝑡) = ∫ 𝑘(𝑡 − 𝑥)𝑓(𝑥)𝑑𝑥  [Eq. 4.3] 

 

where one of the functions (𝑘 or f) in (Eq. 4.3) must be a kernel. Assuming that the kernel is 

represented by k, the convolution is the transformation of f (input data in the DL context) into 

s(t). The operation is just the weighted sum of an infinite number of copies f shifting over the 

kernel. The discrete version of Eq. 4.3 follows naturally as: 

  

𝑠(𝑡) = (𝑓 ∗ 𝑘)(𝑡) = ∑ 𝑘(𝑡 − 𝑥)𝑓(𝑥)𝑥                [Eq. 4.4] 

 

One of the main advantages of convolution networks is their capability to reduce the number of 

operations, i.e., the hyperparameters to be estimated. As usual, an activation function (generally 

non-linear) is applied after each convolution to produce the output layer. Finally, ‘pooling’ layers 

reduces dimension and achieves a smoother representation, summarizing adjacent neurons by 

computing their maximum or mean.  

 

 
Figure 4.2 General CNN architecture employed in our workflow. The input layer is a SNP matrix of  size n x p, where 

n is the number of  training set and p, the number of  SNPs. The convolutional layer consists on a nfilters convolution 

followed by a max-pooling layer with poolsize = 3 and an optional dropout. The outputs of  max-pooling layer are 

joined together into one vector by flattening. All the neurons in the flatten layer are fully connected to the first dense 

layer. We tune the network using i dense layers with a variable number of  hidden neurons in the respective hidden 

layers. The output of  these dense layers is the prediction layer that uses linear function as activation. The neurons in 

convolutional and dense layers use relu, tanh or linear function as activations. 
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4.2.5 Hyperparameter optimization 

 

Since DL depends on numerous parameters that influence performance, optimizing 

hyperparameter can be a critical unresolved step, which relies heavily on heuristics. Hence, it is 

surprising that many DL applications in GP have not paid enough attention to this problem 

[9][11,55,56]. Several approaches have been proposed for hyperparameter tuning [7,57–60].  Here, 

DL architectures were optimized using Talos (Autonomia Talos, 2019), which works combining 

all parameters in a grid. Talos can choose the best model either maximizing the predictive accuracy 

or minimizing the error; the former criterion was employed here. Since the approach can be 

expensive as the number of hyperparameters increases, a random search is the best strategy in 

practice[53][53][53][53][53][53][53][53][53]. This rule evolves a list of CNN models for each 

phenotypic trait. We optimized the following hyperparameters (values considered within 

parentheses): activation function (relu, tanh, linear), number of filters (16, 32, 64, 128), 

regularization (i.e., weight decay in DL terminology, 0, 0.1, 0.01, 0.001), learning rate (0.1, 0.01, 

0.001, 0.0025), number of neurons in fully connected layer (4, 8, 12, 16), number of hidden layers 

(1,5,10), and dropout (0, 0.01, 0.1, 0.2).  

 

Talos output is the accuracy for each hyperparameter combination; we then used hyperparameter 

values as independent variables and accuracy as target variable to run a random forest algorithm, 

which allowed us to compute the hyperparameter value importance, measured as the decrease in 

Gini’s coefficient when adding the given hyperparameter. This hyperparameter importance can be 

then used as guide to improve interpretability. The R package randomForest [61] was employed 

for this analysis. 

 

The DL algorithms used in this study were implemented in Keras [62] and Tensorflow [63] and 

run on a GPU equipped Linux workstation. A generic script is publicly available at 

https://github.com/lauzingaretti/deepGS/. 

 

4.2.6 Simulation 

 

We studied the impact of genetic architecture on prediction performance by simulation using the 

actual observed strawberry genotypes, assessing predictive performance with the same T10 

strawberry genotypes (and genotypic data) as in the real experiment, except that phenotypic 

responses were simulated. Three contrasting genetic architectures were considered: 

 

1- Additive: 200 randomly chosen SNPs were considered as causal loci. No dominance was 

simulated. Total individual genetic value was the sum of effects across loci. 

2- Epistatic: 100 epistatic pairs of SNPs were randomly sampled. Epistasis was multiplicative 

by pairs, i.e., the genotype was the product of individual genotypes in each pair. Total 

genetic value was the sum of effects across pairs of loci. 

https://github.com/lauzingaretti/deepGS/
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3- Mixed: 80 individual additive SNPs and 60 epistatic SNP pairs were randomly chosen. 

Total genetic value was the sum of effects across pairs of loci and individual additive loci. 

 

Allele substitution effects were sampled from a gamma distribution Γ(𝛼 = 1, 𝛽 = 0.2) The trait 

was obtained adding the genetic value to an environmental normal residual. Environmental 

variance was chosen such that broad-sense heritability was set to 0.50. For each genetic 

architecture, five replicates were run. We compared BRR, BRR-GM, RKHS and DL. DL 

architectures were specifically optimized to each phenotypic trait, since no universal architecture 

is able to make accurate predictions for all cases.  

 

4.3 Results 

 

4.3.1 Population structure and genetic parameters 

 

No clear population structure was observed, neither in the strawberry nor in the blueberry datasets 

(Figure S1). Note that genetic relationships between trials in strawberry data are rather uniform, 

irrespective of whether they are successive seasons or not. This, together with the fact that little 

genotype by environment (or year) interaction was observed [29], suggests a favorable scenario for 

GP. 

 

Heritability estimates in strawberry are slightly different from those obtained in the same material 

by [29] since here we used additional data and we removed genotypes tested since here we used 

additional material and we removed genotypes tested more than once on different seasons. 

Nevertheless, in agreement with previous results [29,32] narrow-sense heritabilities were moderate, 

ranging from 0.25 to 0.35 for most strawberry (Figure 4.3) and blueberry (Figure 4.4) traits, except 

for strawberry average fruit weight (ℎ𝑎
2 = 0.58). The degree of dominance found was quite low in 

general, especially in strawberry. An exception was blueberry yield, where dominant and epistatic 

variances were similar to the additive variance (Figure 4.4e). A remarkable case is percentage of 

culled fruit (CulsTPer) in strawberry, where the epistatic ratio (18%) was only slightly smaller than 

the additive one (25%, Figure 4.3e). 

 

 

 
Figure 4.3 Posterior distributions of additive (blue), dominant (red), epistasis (green) fractions of variance in octoploid 

strawberry: (a) soluble solid content (brix); (b) early marketable yield (MktWtE); (c) total marketable yield (MktWtT); (d) average 

fruit weight (AveWtT); and (e) percentage of culled fruit (CullsTPer). Note the scale may vary along traits. 
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Figure 4.4 Posterior distributions of additive (blue), dominant (red), epistasis (green) fractions of variance in blueberry obtained 

with the tetraploid genotypes: (a) Firmness; (b) Scar; (c) Size; (d) Fruit Weight and (e) Yield. Note the scale may vary along traits. 

 

4.3.2 Hyperparameter Importance 

 

CNN hyperparameters were optimized for each strawberry trait separately. Figure 4.5a shows the 

importance of each hyperparameter obtained from random forest by regressing the model 

predictive accuracies (obtained by an inner cross-validation) on all hyperparameter values 

combinations. Interestingly, the number of filters was overall the most relevant factor, whereas 

other factors such as learning rate, whose importance has been claimed in the literature as critically 

important [64–66], played only a minor role. We also observed that the effect of each 

hyperparameter depends on the layer, e.g., regularization or dropout were more important in first 

than in deep layers. 

 

In Figure 4.5a, the ‘trait’ effect was excluded since it cannot be controlled by the experimenter, 

although it was by far the most influential variable. This is illustrated in Figure 4.5b, which shows 

the distribution of accuracies for each trait studied. Not only maximum accuracies varied across 

trait, the profiles were also extremely different, usually multimodal. This suggests interactions 

between hyperparameter combinations, and it also indicates that trait–specific optimization should 

be performed whenever possible.  

 

Figure 4.5 illustrates the kind of complex interactions that we observed in hyperparameter 

optimization. For instance, Figures 4.5c,e show the distinct influence of activation functions in 

percentage of culled fruit (Figure 4.5c) and brix (Figure 4.5e). Although ‘relu’ activation function 

has been suggested as the activation of choice in recent DL literature [65,67], here we observed 

that linear or even sigmoid-like hyperbolic tangent (tanh) seemed to be a safer choice overall. It is 

relevant to note that interactions were clearly observed for some hyperparameters, such as the 

number of filters. For CulsTPer, either 16 or 128 filters resulted in optimum accuracies, although 

they were also associated with the worst hyperparameter combinations. In contrast, either 32 or 

64 filters are to be preferred for average weight in strawberry (Figure 4.5f).  
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Figure 4.5 Hyperparameter influence on predictive accuracy in strawberry. Accuracy is defined as correlation between 

observed and predicted phenotypes by internal cross-validation. a) Hyperparameter importance obtained from a random 

forest algorithm. nFilter: number of filters in the convolutional layer, activation_2, activation function in layer 2; reg_i, 

regularization in i-th layer; dropout_i, dropout rate in i-th layer; lr, learning rate; hidden_neurons, number of neurons in 

inter-mediate layers; hidden_layers, number of intermediate layers. b) Distribution of accuracies along hyperparameter 

combinations for each phenotype. c) Accuracies as a function of activation function for percentage of culls. d) Accuracies 

as a function of number of filters for percentage of culls. e) Distribution of accuracies as a function of activation for brix. 

f) Distribution of accuracies as a function of number of filters for average fruit weight (AveWtT). 
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The final sets of hyperparameters for strawberry and blueberry phenotypes are indicated in Tables 

S1 and S2, respectively. Overall, our study shows that shallow architectures are more competitive 

than deep architectures in terms of PA, since the majority of models only included one CNN layer. 

The number of filters -in combination with dropout- has a large effect in the PA but is highly 

dependent of the trait. For instance, all optimal architectures for strawberry contain 128 

convolutions but this is much more variable in the case of blueberry, with a range between 16 and 

128 convolutional operations. As for the fully connected layers, the situation is less clear, and no 

obvious pattern is observed. We can highlight some characteristics though, for example, the 

number of hidden fully connected layers is quite variable but only a few neurons (4, 8, 12) are 

preferable in most of the architectures. As also reported in [68], combining weight decay and 

dropout regularization is an efficient option to increase PA. Finally, the best overlapping stride 

was 1 and optimum window size was 3 in the convolutional layer, confirming Bellot et al. [7] results. 

 

4.3.3 Comparing Deep Learning with Bayesian Penalized Linear Models 

 

Figure 4.6a shows observed predictive abilities for each of  the five GP methods compared: BL, 

BRR, BRR-GM, RKHS, and CNNs in strawberry. When averaged over traits in the strawberry 

species, PAs were 0.43, 0.43, 0.44, 0.44 and 0.44 for each of  the five methods, respectively. By trait, 

the BRR-GM was best in AveWtT prediction, BL, BRR and RKHS for MktWtE, RKHS and BRR-

GM for MkWtT, whereas CNN performed best in brix and percentage of  culled fruit. In all, 

nevertheless, there were no important differences between methods except in percentage of  culled 

fruit. For this trait, CNN was ~20% better than any linear model method. Interestingly, this trait 

was also the one with the largest epistatic component and exhibited a modest additive component 

(Figure 4.3e). 

 

As for the blueberry phenotypic traits, we found no differences between GP methods BL and 

BRR (average PA = 0.42), whereas CNNs were somewhat underperforming (average PA = 0.40). 

The most remarkable result in blueberry is that CNN performance was barely affected by the 

ploidy level employed to build the genetic relationship matrix. In fact, the ‘diploid’ option seemed 

more robust than the tetraploid one, except in fruit yield, the only trait that was measured using a 

rating scale.   
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Figure 4.6 Predictive ability (PA) measured as correlation between observed and predicted phenotypes in the validation dataset 

in strawberry (a) and blueberry (b). Bayesian linear models (lasso and BRR) PAs in blueberry were computed with tetraploid 

genotypes, but were almost identical to those obtained with the diploidized ones. 

 

 

4.3.4 Simulation study 

 

Table 4.2 presents the main simulation results and Table S3, the CNN architectures used for 

computing the PA in each replicate. Some interesting remarks can be made from these simulations. 

First, although biased, the variance component estimates do detect whether epistasis is important: 

ℎ𝑒
2 estimates are larger than the narrow-sense heritability in the presence of  complete epistasis. 

Results are far less clear when only a fraction of  loci show epistasis. But the most relevant result 

is that, as we hypothesized, predictive accuracies of  CNN and additive penalized methods were 

affected by genetic architecture. BRR and RKHS were better than CNNs for the pure additive 

architecture, whereas the opposite was observed with pure epistasis. However, BRR-GM, which 

accounts for non-linear relationships, was better than either CNNs or pure additive linear models 

in most of  the studied cases. 
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Table 4.2: Posterior distribution means of  variance component estimates (ℎ̂2) and predictive ability (in simulated data using Bayes 

Ridge Regression (BRR), general model BRR (BRR-GM), Reproducing Kernel Hilbert Space regression (RKHS) and Convolutional 

Neural Networks (CNN). 

  Genetic parameter estimates Predictive ability (PA) 

Replicate Architecture ℎ̂𝑎
2

 ℎ̂𝑑
2

 ℎ̂𝑒
2

 BRR BRR-GM RKHS CNN 

1 Additive 0.29 0.16 0.06 0.57 0.60 0.57 0.59 

2 Additive 0.16 0.21 0.06 0.35 0.43 0.35 0.32 

3 Additive 0.26 0.25 0.05 0.52 0.58 0.51 0.51 

4 Additive 0.24 0.23 0.06 0.42 0.52 0.43 0.40 

5 Additive 0.35 0.11 0.05 0.42 0.47 0.43 0.38 

6 Mixed 0.17 0.19 0.06 0.33 0.44 0.33 0.30 

7 Mixed 0.10 0.11 0.08 0.24 0.26 0.22 0.24 

8 Mixed 0.16 0.10 0.08 0.29 0.33 0.31 0.28 

9 Mixed 0.13 0.16 0.06 0.26 0.30 0.26 0.25 

10 Mixed 0.22 0.07 0.07 0.40 0.42 0.40 0.43 

11 Epistatic 0.11 0.11 0.21 0.23 0.29 0.24 0.25 

12 Epistatic 0.11 0.11 0.33 0.31 0.37 0.32 0.34 

13 Epistatic 0.12 0.09 0.23 0.34 0.38 0.35 0.32 

14 Epistatic 0.05 0.13 0.21 0.21 0.34 0.23 0.28 

15 Epistatic 0.10 0.11 0.15 0.21 0.31 0.23 0.21 

 

4.4 Discussion 

 

Supervised DL methods are examples of  predictive modelling, consisting of  approximating a 

mapping function (f) from input (X) to output (y) variables [69]. These problems include 

classification or regression tasks, to use the Machine Learning jargon. Numerous successful 

applications of  DL in classification contexts have been published, e.g. pattern recognition [70–73] 

and Natural Language Processing (NLP) [74]. The DL implementation in regression tasks is less 

abundant and the benefit of  using these methods remains uncertain [7,12,75]. Most Genomic 

Prediction (GP) problems fall into the regression task due to the complex nature of  quantitative 

traits [76]. So far, GP problems have been mainly addressed using penalized linear models [20,77]. 

More recently, the prediction of  complex traits from genetic data is receiving attention from DL 

users [9,12,55]. The present work aim was to study the strengths and weaknesses of  applying 

Convolutional Neural Networks (CNN) to GP problems in polyploid species. CNN networks are 

attractive for addressing these problems, as they can accommodate situations where input variables 

are distributed along a space pattern, as with the case of  SNPs.  

 

Implementing GS in polyploids is challenging. In allopolyploids, genetic analyses have been 

traditionally implemented assuming diploidy, taking advantage of  the fact that systems present 

disomic inheritance. High predictive performances have been observed in a variety of  
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allopolyploid species (e.g. cotton, strawberry, wheat)  and traits ([22,29,78]. Recently, the 

importance of  accounting for the contribution of  subgenomes – potentially expressing epistatic 

effects – was considered in wheat, which shed light on the importance of  accounting for this 

source of  variation within the GP models [79]. However, the scenario is even more complex in 

autopolyploid species. Even with the recent advances in genotyping and sequencing technologies, 

the amount of  genomic information, and understanding, in most autopolyploid species is still 

limited when compared to allopolyploid crops. One of  the challenges is resolving the allelic dosage 

of  individual locus [80,81]. From a quantitative genetics standpoint, we emphasize that polyploid 

species might present higher degrees of  complete and partial intra-locus interactions than diploids 

[82,83]. Here, the interest of  investigating DL methods in polyploids is to take advantage of  its 

non-linearity and less restrictive assumptions for GP in comparison to the traditional linear model-

based methods.  

 

Previous studies [7,9,12,55] have not shown clear advantages of  DL over linear model GP, as 

conventional models were competitive in terms of  prediction accuracy (PA), with their added 

benefit of  being faster and with more biological interpretability. However, DL could be better 

suited to explore non-linear components than linear models, especially when genotypes can be 

transmitted integrally, as occurs with asexual propagation. Certainly, the weak performance of  

classical additive models in the presence of  non-additive variance (e.g. Figure 4.6 for percentage 

of  culled fruit) confirms the relevance of  developing methodologies that can incorporate non-

linearity [29,84]. This purpose can be attained by different approaches. The simplest one is to 

incorporate a general matrix into the linear models made up of  dummy variables. This model 

contains as many degrees of  freedom as ploidy level per locus and allowing for any interaction 

structure between alleles [31,35]. RKHS models [48,50,51] are also able to capture complex 

interaction patterns in a relatively straightforward manner. Alternatively, a CNN can be 

implemented using simply the raw data. Our analyses suggest that DL can perform better than 

additive and RKHS models for traits where the epistatic component is important and where 

narrow-sense heritability is low (e.g. percentage of  culled fruit, Figure 4.6). The simulation study 

performed in this work (Table 2) suggested that BRR including additivity, dominance and the 

general dummy matrix described above can improve upon CNNs when the non-additive 

component is important, although CNNs were better than strict additive linear models. Additional 

analyses with a wider range of  phenotypic traits, genetic structures and in larger datasets are needed 

to validate our results. 

 

An underlying goal of  our work was to investigate the effect of  accounting for allele dosage in a 

GP context. Owing to the complex nature of  polyploids, genotype calling can be a challenge and 

‘diploidization’, i.e., considering a polyploid genome as diploid is usual [30]. Some studies have 

recently investigated the effect of  accounting the ploidy level in prediction accuracy in polyploids 

[33–35,85,86]. As in these previous results [32,34], here we found that ‘diploidization’, in which all 

heterozygous genotypes are pooled, is as efficient and accurate as polyploid genotyping for 

prediction purposes, albeit it is trait dependent. Therefore, we conjecture that genomic selection, 

particularly for low levels of  ploidy, can pay off  in polyploids even with simplified genotyping 

strategies. We need to be careful though as this approach may not be equally appropriate for all 

levels of  ploidy and heterozygosity. For instance, this might be an issue with sugarcane (with ploidy 

starting from 2n=20) as most individuals will be heterozygous. 
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It is traditionally thought that DL requires extremely large datasets to be trained effectively 

[71,87,88]. However, this and related works [7,9,12,55] have shown that DL performance in GP is 

comparable to those of  linear methods. Furthermore, the largest dataset analyzed so far with DL 

for prediction (~100k individuals) did not show a consistent advantage of  DL [7]. Therefore, it 

seems that is the trait what really influences the success of  DL and it appears not so critical the 

size of  the dataset. This does not preclude, of  course, that a large N is needed to advance in our 

knowledge on best GP strategies. In fact, a larger N can be especially recommended in clonally 

propagated species. It is well known that an efficient breeding program tests a low number of  

crosses with a high number of  genotypes in each of  them. A cross would need to be tested if  not 

much information is available though. Numerous clonally propagated species of  agricultural 

interest are polyploids, leading to high heterozygosity, non-linear interactions and scarce prior 

knowledge about the crosses. In this scenario, as many cross-combinations as feasible should be 

produced to ensure the discovery and evaluation of  the best genotypes [89]. The actual balance 

will depend on the level of  epistasis and dominance. If  dominance is large, then the best clone 

would be within families with good performance; if  dominance is low, this is not necessarily so. 

 

A drawback of  DL models is that they lack biological or process interpretability and neither feature 

selection nor feature importance are obvious. In our opinion, GP algorithms are not too useful 

for providing biological insight into the genetic basis of  phenotypes; genome wide association 

studies should be more appropriate. In all, our results suggest that DL performance improve as 

non-additive variance increases, a situation is usually encountered in fitness related traits.  

 

DL hyperparameter tuning is critical and difficult, especially in terms of  computational resources. 

Our analysis allows us to provide some generic recommendations though. First, we and others 

[7,12,55] concluded that the predictive accuracy is mainly dependent of  the trait, i.e., the 

architecture needs to be tuned for each trait individually. Second, here we show that the popular 

relu activation function is not necessarily a universally valid activation function, that interactions 

between hyperparameter combinations should be expected and that the number of  convolutional 

filters and regularization in the first layers can have an important effect into the model performance 

(Figure 4.5). In general, we and other  authors [52,90] have reported that a shallow network is the 

best scenario in most cases. Nevertheless, DL can still be attractive because it does not require 

feature engineering, a critical step in most Machine Learning methods. A further strength of  DL 

is its flexibility, e.g., it allows to define latent variables by using autoencoder or embedding as a 

generative latent variable model. In addition, networks, even if  shallow, can model complex 

relationships employing any non-linear activation function. 

 

Overall, there is no evidence that applying DL in GP applications necessarily improves the 

prediction accuracy upon that of  classical linear model methods. PA depends on the trait and is 

affected by many factors; no one algorithm is uniformly better for all species and traits [91,92]. PA 

usually decays if  heritability is low or in the presence of  high epistatic effects. Even under these 

conditions though, Bayesian models were better than CNNs in almost all cases (Table S1, S2, Table 

2). Even if  performance of  DL for GP is not outstanding, we cannot ignore that plant breeding 

is based on both genotyping and phenotyping, and that high throughput phenotyping is critical 

for genomic dissection of  complex traits [93]. Imaging and computer vision can be employed to 
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measure the physiological, growth, development, and other phenotypic properties of  plants with 

the advantage of  being fast, non-invasive and a low-cost strategy [94], hyperspectral imaging is 

useful to measure plant traits under say disease progression [95], infrared thermography is able to 

scan temperature and transpiration; NMR (nuclear magnetic resonance spectroscopy) and mass 

spectrometry (MS) are applied in plants metabolite evaluation [96]. These examples should be an 

ideal scenario to Neural Networks as they involve imaging at high scale, complex and 

heterogeneous datasets with multiple variables and outcome. In summary, we believe that the 

enormous amount of  data that can be automatically recorded revolutionizing plant breeding and 

the flexible nature of  Neural Networks makes them promising for meeting this future challenge. 
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Abstract 

 
Automatizing phenotype measurement will decisively contribute to increase plant breeding 

efficiency. Among phenotypes, morphological traits are relevant in many fruit breeding programs, 

as appearance influences consumer preference. Often, these traits are manually or semi-

automatically obtained. Yet, fruit morphology evaluation can be enhanced using fully automatized 

procedures and digital images provide a cost- effective opportunity for this purpose. Here, we 

present an automatized pipeline for comprehensive phenomic and genetic analysis of morphology 

traits extracted from internal and external strawberry (Fragaria x ananassa) images. The pipeline 

segments, classifies and labels the images, extracts conformation features, including linear (area, 

perimeter, height, width, circularity, shape descriptor, ratio between height and width) and 

multivariate (Fourier Elliptical components and Generalized Procrustes) statistics. Internal color 

patterns are obtained using an autoencoder to smooth out the image. In addition, we develop a 

variational autoencoder to automatically detect the most likely number of underlying shapes. 

Bayesian modeling is employed to estimate both additive and dominance effects for all traits. As 

expected, conformational traits are clearly heritable. Interestingly, dominance variance is higher 

than the additive component for most of the traits. Overall, we show that fruit shape and color 

can be quickly and automatically evaluated and are moderately heritable. Although we study 

strawberry images, the algorithm can be applied to other fruits, as shown in the GitHub repository 

https://github.com/lauzingaretti/DeepAFS.  

 

5.1 Introduction 
 
 

Demographic pressure and climate change are two of the major challenges of the 21st century. 

The worldwide population continues growing exponentially and it is expected to reach ~9.8 x 109 

in 2050 [1]. Climate change generated by greenhouse gas emissions is possibly the greatest threat, 

as it is leading to extreme weather conditions, increasing areas of drought, and species extinction, 

among others [2–4]. In this adverse context, food production needs to be increased significantly. 

Increasing food production is not enough though. Breeding programs should also consider food 

safety and environmental care among their objectives [5,6]. 

 

Artificial breeding is a main responsible for the dramatic rise in food production we have witnessed 

for over a century. The main goal of plant and animal breeding is to utilize genetic variability of 

complex traits to increase performance and optimize use of resources. A current bottleneck in 

plant breeding programs is the evaluation of hundreds of lines under different environmental 

conditions [7,8]. Plant breeding involves both genomics and phenomics, i.e., the expression of a 

genome in given environments.  While available technologies can routinely and inexpensively scan 

the genome, high-throughput phenotypic characterization remains a difficult task [9,10]. 

Automatizing phenotype measurement is then needed to increase the pace of artificial selection 

and is, unsurprisingly, one of the main targets of ‘Precision Agriculture’ [11,12]. 

https://github.com/lauzingaretti/DeepAFS
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The term ‘phenomics’ or ‘phenometrics’ was coined by Schork [13] as an attempt to understand 

events happening in between full genome and clinical endpoints phenotypes in complex human 

diseases. The expression quickly spread to animal and plant breeding research as a concept that 

bridges the gap between genotypes and the ‘end-phenotypes’. Although the term phenomics was 

devised in line with ‘genomics’, that is, to describe the whole phenome of any organism, note the 

phenome varies over time and between cells or tissues, and can never be fully portrayed [14].   

 

Although electronics applied to agriculture has a long history, a window of opportunities has 

emerged in the phenomics field with recent improvements in robotics, electronics, and computer 

science. The subjective, time- consuming and often destructive human data collection is being 

replaced by miniaturized, cheap sensors, digital cameras, cell phones, unmanned aerial vehicles, 

mass spectrometry, among others, that allow collecting hundreds of phenotype data objectively 

and inexpensively [9,15–17]. The challenge now is to develop new and improved analytical tools, 

capable of transforming this wealth of data into valuable knowledge [15]. This is a rapidly evolving 

field, and numerous software and pipelines to automatize phenotype collection are already 

available [18–22]. Many of these tools focus on the analysis of root images and, as far as we know, 

require more user intervention than we propose, making it impractical to analyze hundreds of 

images. 

 

Digital images are among the cheapest and most widely available type of data. Imaging allows 

assessing morphological traits, which are highly relevant in numerous plant breeding schemes, 

since they can critically affect consumer acceptance especially in fruits [23–25]. Nevertheless, 

consumer preferences on appearance traits differ around the world and between communities. 

Like most traits, fruit shape is determined by genetic and environmental factors such as flower 

morphology or insect- mediated pollination [26,27]. In all, morphological traits are among those 

with the highest heritability, which has allowed breeders to rapidly modify shape, size, and color 

patterns of agricultural products [20,28–30].  

 

Although numerous works have been developed in the area of fruit morphology, most of them 

have focused in the inheritance of linear measures, e.g., diameter, perimeter, circularity [20,31–33]. 

By definition, however, morphological traits are highly dimensional. Computing only linear, 

univariate phenotype leads to a loss of information by extremely simplifying the features of a shape 

[28,34]. The use of geometric-morphometric approaches for shape analysis is warranted [35].  

Further, fruit shape has been traditionally evaluated subjectively [36], but can be enhanced by 

resorting to automatized procedures. For instance, hundreds of fruit pictures can be routinely and 

inexpensively collected, even in the field, with a cell phone camera. Automatized image processing 

and analysis can then dramatically change the way shape and color traits are collected and 

characterized.  

 

Here, we present a comprehensive phenomic and genetic analysis pipeline for fruit morphology 

automatic analysis. Two main issues are addressed: 1) converting the raw data (fruit images) into a 

processed curated database, and 2) designing an efficient analysis workflow to analyze the fruit 

shape and color phenome. Finally, genetic parameters are automatically inferred from pedigree 

information. We apply the pipeline to images of cultivated strawberry (Fragaria x ananassa) fruits. 



   93 

In addition to previous similar works in strawberry, e.g., Feldman et al. [18], we provide a wholly 

automatized pipeline and new tools to analyze shape and color patterns. 

 

5.2 Materials and Methods 

 

5.2.1 Plant material and imaging acquisition  
 

Lines employed are part of the strawberry breeding program of PLANASA company 

(https://planasa.com/en/) and are routinely used to develop new elite genotypes. The experiment 

consisted of 24 crosses between 30 parental lines of F. x ananassa. We evaluated 20 randomly 

chosen lines per cross for all but 2 crosses,  for which we chose 19 lines at random. A total of 478 

seedlings and 30 parentals genotypes were evaluated (Supp. Table 1). Shape varied between the 

cultivars studied, e.g., circular, ellipsoid or rhomboid and color ranged from white to dark red.  

 

Strawberries were grown in plastic semi-tunnel using standard cultivation practices in South West 

Spain (Huelva, 37° 16' 59'' N, 7° 9' 18'' W). Fruits were collected from two individual plants of 

each line at the end of April 2018 in only one harvest event. Fruits from both plants were pooled 

in the photographs. We took images of 1 to 7 sliced fruits per genotype using a Nikon D80 digital 

camera.  Samples were laid on a black surface, with the camera positioned at 35 cm height. The 

focal length was 18 mm, the manual aperture was f/8, and the exposure time was 1/8 second. 

Illumination consisted of two white light sources at both sides of the camera. In total, we took 508 

images of 3872 × 2592 pixels that contained all external and internal side of fruits and the label for 

each genotype in the same image.  

 

 

5.2.2 Preprocessing and segmentation 
 

The first step in the pipeline is to segment and recognize the objects, since each raw image contains 

internal and external fruits, a rule, a coin and a printed genotype (the strawberry line) label. Image 

segmentation is needed for obtaining meaningful morphometric and color information. However, 

most of available technologies to determine the boundaries of the objects at the pixel level are 

usually semi-automatic and time-consuming [37–40]. Our fully automatic python-based pipeline 

takes the images of each strawberry line and outputs a curated database of square images (1000 

px) and reads the genotype label (Fig. 5.1).  The 

https://github.com/lauzingaretti/DeepAFS/blob/main/main.ipynb explains how to apply the 

most expensive part of this workflow to alternative experiments.  Note that after creating a curated 

database, standard multivariate analysis can be easily run using R/Python tools to shapes 

evaluation.  

 

For segmentation, the three-channel digital signals (RGB/BGR) are converted into grayscale and 

blurred using Gaussian filtering of size 5, to remove undesirable noise. The histogram information 

is used for image binarization, i.e., splitting the background and foreground. Here, we binarized 

the image using simply the mean value of the pixel as a threshold. The pipeline also allows Otsu 

thresholding [41], which is designed to automatically define the threshold by minimizing the 

“overlap” between two classes. After binarization, we performed erosion and dilation, the former 

https://planasa.com/en/
https://github.com/lauzingaretti/DeepAFS/blob/main/main.ipynb
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shrinks the edges and the latter makes the image region grow. Finally, the algorithm extracts the 

Regions of Interests (ROI) and determines whether it is a strawberry or an image label. The color 

pattern analysis allows us to classify the internal or external part if a fruit image. We here apply a 

k-means clustering based on the information about the color mean, color standard deviation and 

the ration between them for all the fruits, i.e. we compute these 3 features for all the fruits and 

then we classify these observations into 2 clusters to split the internal and external part of the 

fruits.  For the labels, the Optical Character Recognition (OCR) algorithm from PyTesseract library 

(https://pypi.org/ project/pytesseract/) is used to read the genotype name and automatically label 

the image into the database. As a result, the algorithm delivers a curated database of 508 folders 

labeled with the name of each genotype, and subfolders containing either the internal or external 

strawberry pictures (Fig. 5.1, Algorithm 1 in Suppl. Info). All fruits are stored in square images 

(1000 px size or user-defined), with the fruits placed in the center and filled with black pixels. 

 
Figure 5.1. Workflow for automatic segmentation and label recognition from strawberry images.  (a) Feature 

extraction. (b) Feature preprocessing and database generation.  

 

5.2.3 Automatic fruit phenotyping 

 

Once masks for either internal or external fruit images are obtained, an automatic phenotyping 

procedure is run for inside or outside parts separately (Fig. 5.2). Classical linear descriptors, 

multivariate and deep learning techniques are combined from a novel perspective to dissect a 

variety shape and color patterns. If pedigree or marker information is available, a genetic analysis 

can be employed to estimate variance components for each of the fruit phenotypes. In the 

following, we describe the main methods implemented in the pipeline of Fig. 5.2. 
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Figure 5.2. Data analysis workflow. The input is the segmented internal and external fruit images from workflow in Fig. 1. 

External images are used for linear and multi-dimensional shape analysis through different standard and machine learning 

approaches, including deep learning. Internal images are used to estimate the color pattern of the internal fruit section. Additive 

and dominance genetic components of each of the extracted morphometric and color phenotypes are estimated using Bayesian 

Linear Modeling using either pedigree or DNA marker information. Code available at 

https://github.com/lauzingaretti/DeepAFS  

  

5.2.4 Autoencoder and k-means to infer internal color patterns 

 

We used an ‘autoencoder’ (AE) network to perform an unsupervised clustering of the internal 

images. An autoencoder (Fig. 5.3a) is an unsupervised machine learning technique that applies 

backpropagation to train a neural network where the outputs are the same values as the inputs 

[42]. The AE gives new insight into image analysis by learning the structure about the data, i.e., it 

is not designed to copy an exact replicate of the input but instead to learn the repeatable and most 

useful properties.  

 

We used a convolutional AE, as convolutional operations are especially suited for image analysis 

[42,43]. These layers create a feature map from the input image, preserving the relationships 

between pixels in the original space (Fig. 5.3a). Each convolution outputs a scored- filtered image, 

where a high score means a perfect match between the original and filtered image. The output 

layer is obtained by applying the Rectified Linear Unit (ReLU) activation function. Finally, as usual 

in any convolutional architecture, a max- pooling layer shrinks the output size and achieves a 

smoother representation, summarizing adjacent neuron outputs by computing their maximum (see 

accompanying GitHub). 

 

The decoded images from an AE architecture are less noisy than the original ones, making it easier 

to detect repeatable/consistent color patterns. Our approach consists in taking five colors as 

reference: a class for the background (black) and four classes for the internal fruit color patterns, 

https://github.com/lauzingaretti/DeepAFS
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including calyx. The four ‘reference classes’ were: “orange-like” (198, 99, 35, in RGB coordinates), 

“quasi-red” (184, 46, 8), “pale” (194, 144, 78), and “green” (76, 75, 20) for sepals. We then perform 

a k-means clustering with k=4 after removing the background and we assigned each cluster to the 

nearest reference color using the Euclidean distance between the average color of each cluster in 

the sample and the reference coordinates. As a result of this step, the surface of each of 1900 

strawberry images is split into four categories of colors.  

 

5.2.5 Superpixel algorithm to remove the calyx  

 

Some of the fruit pictures contains sepals that interfere with fruit shape quantification and need 

to be removed prior to estimating shape parameters. For that purpose, we applied the Simple 

Linear Interactive Clustering (SLIC) algorithm [44] from the Python skimage library. SLIC is based 

on the ‘superpixel’ concept. Basically, a superpixel is a group of pixels sharing perceptual and 

semantic information, e.g., the pixels in a superpixel are grouped together because of their color 

or texture features. The iterative algorithm starts with regularly spaced K-centers at a given 

distance, user defined as S, which are then relocated in the direction of the lowest gradient in a 

3x3 neighborhood window to avoid being at the edges of the image. Further, a pixel is assigned to 

a given cluster if its distance to the cluster’s center is smaller than the distance to the other centers 

in the search area, as determined by S. Finally, the centers are recalculated by averaging all the 

pixels belonging to the superpixel. The iterative process ends when the residual error (distance 

between previous centers and recomputed ones) does not exceed a fixed threshold. SLIC outputs 

a set of meaningful clusters, splitting the background, the calyx and the fruit. Knowing that all our 

fruits are centered in the image (the segmentation procedure outlined in Fig. 5.1 ensured that every 

image was centered), the superpixel containing the central pixel matches with the fruit.  

 

5.2.6 Univariate phenotypes: linear descriptors  

 

Numerous object shape descriptors exist in the literature. Particularly for fruits, a controlled 

vocabulary was established in Brewer et al. [20]. Here, we implement a custom script to compute 

some standard linear measures: circularity, solidity, shape aspect [32], ellipse ratio [20], fruit 

perimeter and area, fruit width at 25% height, fruit width at 75% height, fruit width at 50% of 

height,  total height and maximum width. Circularity is a measure of the degree of roundness of a 

given object, defined as the ratio between the area of a given object and the area of a circle with 

the same convex perimeter, i.e., a value near one means a “globe” o “circular” shape.  Solidity is 

the ratio between the area of the object and the area of the convex hull of a given shape. Most of 

the linear descriptors used here are standard in fruit shape analyses [18,20,32,39,45].  

 

The external fruits color was measured using the CIELAB space, where L indicates the luminosity, 

and a and b are the chromatic coordinates. The variation on the index a indicates the transition 

between green to red, where a higher value means a redder object. Variations in b reflect the change 

between yellow and blue color, i.e., a higher b value refers to a ‘bluer’ object 

 

 

 

 



   97 

5.2.7 Generalized Procrustes Analysis (GPA) 

 

Shape is usually defined as all the geometric information that remains unchanged after filtering out 

the location, scale and rotation effects of a given object [28]. The above shape linear descriptors 

are standard in the literature but do not provide a whole shape portrayal. Alternatively to linear 

descriptors, shape variations can be described using ‘pseudo-landmarks’ [35], which identify points 

around the outline of the object. Here 50 pseudo-landmarks were defined as the intersection 

between 50 equally spaced conceptual lines starting from the centroid and the fruit contour (Fig. 

5.4a). Next we performed a Procrustes analysis [46]. The Procrustes analysis aims at finding the 

transformation 𝑇 such that given two matrices 𝑋1, 𝑋2, the product 𝑋2𝑇 best matches 𝑋1. The 

Generalized Procrustes Analysis (GPA) is an extension of the method devised to align many 

matrices simultaneously [46]. In morphometric analysis, this is done by averaging the distance 

between all the landmarks on a target shape and the corresponding points on a reference. The 

pseudo-landmarks of the samples can then be analyzed as a multivariate object using, for instance, 

a principal component analysis (PCA). In addition, the pseudo-landmark variability gives insight 

on the most important regions that determine the differences between shapes. We used the 

Momocs [47] and geomorph [48] R packages to run these analyses.  

 

5.2.8 Elliptical Fourier Descriptors 

 

An alternative approach to morphometric analysis is Elliptical Fourier transformation [49]. This 

method describes a closed curve as a sum of sine and cosine functions of growing frequencies.  As 

its name suggests, Fourier harmonics are ellipses, and a larger number of harmonic means that 

more ellipses are fitted to a given contour. The second-order harmonic is simply one ellipse with 

the values of sine and cosine components for the x and y-axis, respectively. As the strawberry fruit 

is a relatively simple shape, four harmonics were enough to describe all the shapes in the database, 

giving a total of 16 coefficients. A PCA of the Fourier components can also be employed to 

quantify morphometric variability, as in procrustes analysis. Geomorph [48] R package was 

employed for this purpose. 

 

5.2.9 Conditional Variational Autoencoders (VAE) to cluster shapes 

 

Fruit shape can also be addressed from a completely different angle, such as obtaining clusters of 

shapes to objectively classify fruits in groups of similar morphology [18]. A standard approach 

consists of flattening the image and grouping the raw data, treating each pixel as a feature. 

Unfortunately, clustering algorithms are not exempt from the “curse of the dimensionality” 

problem [50] and they perform poorly as the number of analyzed dimensions increases, especially 

if noise is high.  

 

A natural way to solve the aforementioned issue is to apply a dimension reduction technique before 

clustering. Although the classical autoencoders seem to be a good option, as shown above, AEs 

were conceived to perform a non-linear and not isometric dimensionality reduction, and thus they 

do not preserve the geometrical properties of the original space [51]. Unlike traditional 

autoencoders, variational autoencoders (VAEs) [52–54] preserve distances and, importantly, are 

generative models (Fig. 5.3b). The main difference between AE and VAE is that the latter encodes 
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the input as a distribution over a latent space. Basically, given an input x, VAE creates a latent 

distribution 𝑝(𝑧|𝑥) and the input reconstruction 𝑑(𝑧) is obtained after sampling z from the latent 

representation 𝑧~𝑝(𝑧|𝑥). The VAE does not only force the latent space to be continuous, it can 

also generate meaningful information, even with images that it has never been seen before.    

 

The key aspect in VAE training lies in the loss function, which includes a “reconstruction” and a 

“regularization” term. The former is the usual loss or the joint log-likelihood between the true and 

the VAE output, whereas the second is the entropy corresponding to the Kulback-Leibler 

divergence [42] between the latent distribution 𝑁(𝜇𝑥, 𝜎𝑥) and the standard normal distribution 

𝑁(0,1).  Without incorporating a regularization, the VAE behaves as AE, where the latent space 

is neither complete nor continuous. Regularization forces the latent distribution to be close to the 

normal standard, generating a continuous space of low variance centered in the origin, which is 

suitable for data clustering and generation [42]. 

 

Here, we run standard k-means clustering of the latent space, with k varying between 2 and 9 

groups. We chose a maximum k=9 given that up to nine strawberry shapes have been proposed 

in the literature, in particular in the Japanese market [55]. We assessed the cluster robustness using 

the silhouette index [56]. This index determines how well each object fits into its cluster, taking 

into account intra and between classes variations. The index ranges between -1 and 1, and a value 

close 1 means that the cluster is compact and homogeneous. Importantly, the combination of 

VAE and clustering also allows us to use conditional VAE to generate the expected fruit pertaining 

to a specific group.  

 

 
Figure 5.3. Autoencoder architectures. (a.) Architecture of convolutional autoencoder applied to the internal fruit images. 

(b) Architecture of convolutional variational autoencoder applied to external fruit. Unlike classical autoencoders, variational 

autoencoders are generative process as they learn the parameters of a distribution, instead of the feature representation. The 

last network was trained using image of size 64x64, the encoder step consisted on 4 convolutional layers with kernel size equal 

to 3 and the linear rectified ‘relu’ as activation function to perform feature extraction, see details in github account. Finally, the 

convolution output is flattened, and the mean and sigma parameters are extracted from a dense layer. In the last network, the 

decoder step starts with a vector sampled from the latent distribution as input and reconstructs the input by performing 

deconvolution operations. The last deconvolution uses the sigmoid as activation function. The loss function is the Kulback-

Leibler (KL) divergence, which consists of both, a ‘reconstruction’ and a ‘regularization’ term. The first network is a classical 

autoencoder, which uses the classical Mean Squared Error (MSE) as loss function.  
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5.2.10 Genetic parameter inference 

 

Genetic parameters determine how successful will be artificial selection and are therefore a critical 

parameter of any plant breeding scheme. Heritability (h2) is the proportion of phenotypic variance 

explained by the genetic variation [57]. To estimate h2, the degree of resemblance between relatives 

using the pedigree was used (see Supp. Table 2). Take linear model  

 

𝒚 = 𝜇 + 𝒂 + 𝒅 + 𝜺, [Eq. 5.1] 

 

where y represents the phenotypes vector, averaged for each genotype, 𝜇 is the intercept, 𝒂 ∼

𝑁(𝟎, 𝐀𝝈𝑎
2), 𝒅 ∼ 𝑁(𝟎, 𝐃𝝈𝑑

2 ), and 𝒆 ∼ 𝑁(𝟎, 𝐄𝝈𝑒
2) are the additive, dominance effects, and 𝜺 ∼

𝑁(𝟎, 𝐈𝜎𝜀
2) is the residual component, respectively; A = {aij} and D = {dij} are the additive and 

dominance covariance matrices, respectively.  Both A and D can be computed recursively from the 

pedigree [58]. In the presence of  marker information, A and D can be computed as specified in 

[59,60], and implemented in [61] but statistical inference is otherwise identical. Posterior 

distributions of  the genetic parameters were obtained using Reproducing Kernel Hilbert Spaces 

(RKHS) regression with the BGLR package [62]. The additive and dominance variance fraction 

were estimated as ℎ̂𝑎
2 = 𝑠𝑎

2 (𝑠𝑎
2 + 𝑠𝑑

2 + 𝑠𝜀
2)⁄  and  ℎ̂𝑑

2 = 𝑠𝑑
2 (𝑠𝑎

2 + 𝑠𝑑
2 + 𝑠𝜀

2)⁄ , where 𝑠𝑖
2 is the 

mean posterior estimate of  𝜎𝑖
2.  

 

5.3 Results  

 

5.3.1 Shape descriptors 

 

Shape linear descriptors, color in CIELAB scale, pseudo-landmarks and Elliptical Fourier 
transforms for fruit shape were computed for the 1920 external images output from pipeline in 
Fig. 5.1 and Algorithm S1. Fig. 5.4d shows the minimum and maximum consensus for shape 
superimposition, suggesting that shapes vary between a “globose-like” to an “elongated-like” form 
in these samples. The standard deviation of the first PCA from GPA coordinates (Supp. Fig. 1) of 
tip, neck and both sides around the neck are above the mean (Fig. 5.4c). This suggests that these 
regions are responsible for the main shape variations in strawberry, in agreement with Feldmann 
et al. [18]. Supp. Fig. 1 shows the fruit shape variations from the Procrustes Principal Component 
Analysis (Proc-PCA). The first principal component describes the variations between ‘elongated’ 
to ‘globose’ like. Observations with a negative score on that component correspond to elongated 
fruits, while those who have positive scores are ‘globose’-like fruits. A permutation-based 
Procrustes analysis of variance to assess the effect of the crosses on the fruit shape. The p-value 
obtained after 100 permutations shows a significant effect of the lines, i.e., genotypes, in the fruit 
shape (p<0.01), suggesting that the shape is heritable (Supp. Table 3). 
 

We also set a fourth order elliptical Fourier to describe the main strawberry shape variations (see 

Supp. Figs. 2 and 3). As in the Procrustes Analysis, variations in the first principal component of 

the elliptical analysis show that the strawberry shapes vary between “globose-like” to “elongated-

like” (See a few examples in Supp. Fig. 7). Similarly, the first component from Elliptical -PCA 

analysis can also be used as a “morphological” descriptor. A k- means clustering using the two first 
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PCA components of Fourier transform similarly detects the two previously defined groups of 

shapes when setting k=2 (Supp. Fig. 5). 

 

Alternatively, one can directly identify the number of different shapes from a collection of images. 

We used a VAE (Fig. 5.3b) to automatically discover the optimal number of shapes in our database, 

which again was k=2 (Supp. Fig. 5,6). About 35% of the strawberries belong to the ‘globose-like’ 

shape, whereas the remaining fruits were classified as ‘elongated-like’ (Fig. 5.5a,b).  

 

Fig. 5.4d shows a PCA on the linear descriptors, where the color of each sample is proportional 

to the predicted cluster probability. A dark color corresponds to a fully elongated shape and a light 

blue, to a fully round fruit. Note that shape gradient is mainly observed along the second principal 

component. Interestingly, the most influential variables in this component are the fruit ratio 

between main and minor ellipse axis, the circularity and solidity coefficients (Fig. 5.4f). All of these 

are shape related variables. It is not surprising that solidity and circularity are highly correlated, 

since the convex hull area increases when a shape digresses from a circle (circularity), and solidity 

approaches zero. The area, perimeter and height are quasi-independent of the aforementioned 

descriptors and are not related with the shape clusters.  

 

5.3.2 Color descriptors  

 

For the external side color in our dataset, L channel ranged between 7.01 and 118.30, mean of 

75.54, b channel ranged between 127.9 and 184.8, mean value of 167.1, and a channel had a mean 

of 175.4, ranging between 128.8 and 192.6.    

 

Estimating the color of the internal fruit is more challenging than that of external parts, as it 

fluctuates in a wider range of patterns. Fig. 5.6 shows the estimated percentages of each reference 

color for four chosen strawberries. Note the percentage of “quasi-red” is zero and most of the 

fruit is computed as “pale” (~95%) for the first two, whitish fruits. Two colors, “quasi-red” and 

“orange-like”, predominate in the third fruit. Finally, the last fruit is almost red, as can be verified 

from the estimated quasi-red value (99%).   
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Figure 5.4. Summary of main analyses performed. (a) Generalized Procrustes Analysis output: landmarking superimposition for all external fruit shapes. (b) Standard deviation of each of 

the 50 landmarks, the dotted line parallel to x-axis corresponds to the average standard regression coefficient. Landmarks with a coefficient above the average are the most variable regions. 

(c) The most variable regions, which determine fruit shape, are the tip, the neck and both sides around the neck. (d) Two extreme Procrustes analysis plots: minimum and maximum consensus 

for the fruit shape. (e) PCA of all linear shape descriptors, each dot represents a different sample and the color is proportional to the predicted proportion of fruit to each category from the 

clusters obtained by Variational Autoencoder.  (f) Relationship between the linear shape variables from the PCA analysis.    
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Figure 5.5. Images generated using the variational autoencoder combined with k-means in the latent space with k=2. (a) Images from the “elongated-like” cluster (b) Images from “globose-

like” cluster.  
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Figure 5.6. Estimated percentage of each of the three reference colors in four picked strawberries.  

 

5.3.3 Genetic parameter estimation 

 

Figure 5.7 shows the Bayesian estimates of heritability for all automatically extracted traits. We 

used the pedigree information to compute the additive and dominance relationship matrices, since 

we did not have genotypes. Like many polyploid species, strawberry is clonally propagated [63]. 

Inferring the dominance component in these cases is critical, as clonal propagation allows a 

straightforward utilization of gene interaction [64]. Interestingly, we found that dominance 

variance was higher than the additive component for most of the traits. The sum of both 

components ℎ̂𝑎
2 + ℎ̂𝑑

2  ranged between 0.4 to 0.6, indicating than the traits are clearly heritable.  

The ellipse ratio, and the ratio between height and width were the most heritable characters, 

exhibiting an important additive component. Elliptical Fourier components, as well the percentage 

of fruits of each of both categories obtained from VAE also have a high heritability, for both 

additive and dominance components.  Regarding the internal color, we find that the pale color has 

an important dominance component.   
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Figure 5.7. Estimation of additive (h2a) and dominance (h2d) variance fractions for measured traits.   

 

5.4 Discussion 

 

Over the last decades, plant and animal breeding programs have benefited from the development 
and cost reduction on genomic technologies [65,66]. Breeding nevertheless depends of both 
genotype and phenotype, and our ability of characterizing the latter is much more limited 
compared to the former [10,67]. In fact, one of the biggest challenges of ‘Precision Agriculture’ is 
to transform large-scale datasets collected with sensors into phenotypic measurements that can be 
used for genetic improvement. 
 
Consumer attitudes are increasingly shaping agricultural practices. In the case of fruits, consumer 
preferences are based primarily on fruit appearance. However, measuring this trait is not 
straightforward, as it is a complex mixture of shape and color patterns. A crucial aspect for 
improving appearance is then to characterize the color and shape of the fruits in an inexpensive 
and fast way. In this paper, we deliver a fully automatized pipeline that analyzes fruit appearance 
as complex multivariate data. While this is not the first study characterizing fruit shape variations, 
our procedure is quite more automatized than their predecessors as requires minimal human 
intervention [18,20,40]. It also incorporates new features such as the use of variational 
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autoencoders (VAE) to automatically detect the most likely number of underlying shapes or to 
clustering the internal color. 
 
The pipeline presented here or previous efforts to automatize fruit morphology measurement by 
Feldman et al. [18] are important steps to increase agriculture efficiency. They are by no means 
sufficient, and additional developments are warranted. A first limitation is that algorithms need to 
be trained in the specific dataset that will be used in production and can sometimes be difficult to 
generalize to different scenarios. A second limitation concerns the phenotypes measured. For 
instance, uniformity of shape and lack of blemishes (like depressions or creases) significantly 
impact the value of the product but were not studied here. Uniformity of fruits can be easily 
quantified, e.g., measuring the dispersion along landmarks (Fig. 5.4a) whereas irregularities in color 
that may mean fruit damage can be more challenging. In the lab, as done here, perhaps a suitable 
color clustering to associate color patterns with fruit damages could be envisaged. To be really 
useful, however, fruit damages should be evaluated once the product has been packaged, prior or 
after distribution, which would need distinct code from that employed here. The number of seeds 
is also important economically, but we found very high resolution is needed to quantify them. 
Finally, 3D approaches have also been evaluated in fruits, including strawberry [68,69]. 3D imaging 
is far more demanding in terms of sample collection and computationally than 2D[70,71]. This 
hamper using 3D technologies as massively as 2D, although 3D has a number of advantages, 
mainly a far more realistic and comprehensive fruit representation. For instance, Li et al. [72] utilize 
3D imaging to assess fruit uniformity and show it can be characterized by combining up to six 
linear parameters.  
 
Our algorithm requires images being taken on a homogeneous black or white surface and field 
images are not allowed. To compare the shapes and colors, all shots must be taken in the same 
conditions, using the same digital camera placed at the same height and setting the same 
parameters: focal length, manual aperture, exposure time and lighting. Scanned images are also 
allowed but the same scanning conditions must be followed in all images.  
 
Although two-D digital images are among the easiest phenotypes to collect, analyzing them can 
be challenging, partly because objects boundaries must be determined, a process known as feature 
extraction. Numerous classical [41,44,73] and deep learning approaches [74,75] have been 
developed in computer vision and image processing to meet this objective. Here, we combined 
some of these methods to automatically segment fruit snapshots and read the fruit label. The main 
approach we used is not new, as it is based in an algorithm developed in the late seventies [41]. 
However, we resort to novel techniques in order to remove undesirable image noise [76], and we 
characterize color pattern or classify fruits through a variational autoencoder (Fig. 5.3)  [42].  
 
In this work, we characterize shape and color variations using several complementary methods, 
from naïve linear descriptors to multivariate and deep learning techniques. It is important to point 
out that results from all approaches are consistent, and suggest that the fruits in our database can 
be classified in two groups, “globose-like” and “elongated-like” (Supp. Figs. 5,6). We determine 
that the most variable regions are the neck, neck-sides and the tip of the fruit (Fig. 5.4b,c). The 
“shape” linear descriptor, i.e., the ratio between fruit shape and height, is a good morphological 
descriptor (Fig. 5.4e,f) and is as discriminative as more complex multivariate characterizations. An 
ANOVA on the Procrustes coordinates shows that genotype is significant (p-value<0.01, Supp 
Tab. 2), another indirect indication that shape is heritable.  
 
Shapes can be classified using standard clustering techniques with the number of clusters k 
previously specified, as shown by Feldmann et al. in strawberry [18]. Our results are in agreement 
with these authors’ in that we also find that shape is heritable and that a few components may be 
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needed to classify shapes (Fig. 5.4f). In addition to that approach, here we propose a completely 
unsupervised manner based on variational autoencoders (Fig. 5.3). The advantage of this analysis 
is that shape discovery can be automatized, but also that is capable of generating shapes not seen 
before. Predicting shapes and appearance of new genotypes can be a powerful tool to design new 
crosses, as the breeder can evaluate the average shape but also their variability in morphology. To 
our knowledge, VAEs have not been utilized for these purposes yet.   
 
Describing internal color patterns is challenging, mainly because color is a quantitative multi-
channel character. We addressed this problem by defining three reference colors named as “quasi-
red”, “orange-like” and “pale”. We then automatically determined the percentage of color 
corresponding to each of these reference colors for each fruit using an autoencoder for fruit 
denoising and a k-means for segmentation. The algorithm calculates the Euclidean distance 
between the three RGB coordinates obtained by means of clustering to the target color coordinates 
and classifies the cluster as belonging to one of the three targets whose distance is minimal. The 
colors patterns are satisfactorily dissected, as can be seen in some picked images from the database 
(Fig. 5.6). 
 
The phenotype results from a complex interaction between the genotype and environmental 
factors. Portraying the phenotypes would not be worthwhile for breeding if the desirable 
characters could not be transmitted to the progeny. Thus, quantifying the heritability of all of these 
traits is crucial. Typically, genetic variance is decomposed in additive and non- additive effects [77]. 
Clonally propagated species like strawberry allows direct utilization of dominance and epistatic 
interaction. We used Bayesian modeling to estimate both additive and dominance effects. As can 
be observed in Fig. 5.7 and Supp. Table 4, most traits are moderately heritable, and a high degree 
of variance is explained by the dominance component. In this scenario, prediction accuracy in 
genomic selection could possibly increase by including dominance in the model [63].   
 
Nevertheless, data are from a single sampling season, making it not possible to estimate the 
variance caused by genotype x environment (GxE). Therefore, heritabilities reported are likely 
overestimates. Further, the pedigree utilized considered only parents and offspring, while parents 
themselves are related, which was ignored except in a subset of parents. The effect in this case 
should be smaller than that of GxE and should affect the variance of the estimates rather than 
bias, since relationships decrease quadratically with generation, and most information is contained 
in closest relatives [78].  
  
We estimated heritabilities using pedigree information, but a similar study could be carried out if 
genetic markers were available. This would have the extra benefit of allowing to perform Genome 
Wide Association studies (GWAS) and to implement genomic selection [63,77]. It is 
straightforward to implement these features in our pipeline. Association studies in humans, apple 
or tomato have revealed genes or markers associated with human craniofacial shape [34,79,80], 
leaf variation [81] and tomato morphology [29]. To the best of our knowledge, there is not a similar 
study in strawberry and there is still a long way to go to fully unravel the genetic basis of strawberry 
shape [82]. 

 
5.5 Conclusion 

 

There is a need to develop analysis pipelines for plant high-throughput phenotyping, suitable to 

automate processes that are often subjective and time consuming. Our workflow establishes a 

proof of concept in strawberry morphometrics, which can be transferred to other visual 

phenotypes and fruits with relatively minor modifications. We developed a python-based pipeline 
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(https://github.com/lauzingaretti/DeepAFS/blob/main/main.ipynb) that shows how to apply 

our methodology to other fruits like apple, tomatoes, citrus and prunus. This code is able to 

automatically read the fruit image, to segment it and to compute some linear and color descriptors. 

This code also allows to save the segmented images into a pre-defined folder, as well as the fruit 

outline reference points used for posterior multivariate comparison.  Overall, our results show 

that, although fruit shape is made up of a complex set of traits, it can be quickly and automatically 

evaluated and is moderately heritable (Figs. 5.1,5.2,5.7). Future improvements are still needed as, 

e.g., image segmentation is not always simple in field conditions and many additional phenotypes 

are of commercial interest (e.g., uniformity, blemishes, among others). Future improvements 

should also address additional technological developments such as spectral and MIR images [17] 

and 3D imaging [72]. Finally, a word of caution: the user should be aware that artificial intelligence 

tools need through training in the specific conditions on which they are going to be employed and 

that optimizing algorithms may not be that simple.  
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Abstract 

 

Assessing conformation features in an accurate and rapid manner remains a challenge in the dairy 

industry. While recent developments in computer vision have greatly improved automated 

background removal, these methods have not been fully translated to biological studies. Here, we 

present a composite method (DeepAPS) that combines two readily available algorithms in order 

to create a precise mask for an animal image. This method performs accurately when compared 

with manual classification of proportion of coat color with an adjusted R2 = 0.926. Using the 

output mask, we are able to automatically extract useful phenotypic information for fourteen 

additional morphological features. Using pedigree and image information from a web catalog 

(www.semex.com), we estimated high heritabilities (ranging from h2 = 0.18 – 0.82), indicating that 

meaningful biological information has been extracted automatically from imaging data. This 

method can be applied to other datasets and requires only a minimal number of image annotations 

(~50) to train this partially supervised machine-learning approach. DeepAPS allows for the rapid 

and accurate quantification of multiple phenotypic measurements while minimizing study cost. 

The pipeline is available at https://github.com/lauzingaretti/deepaps. 

  

6.1 Introduction 

 

Breeding programs depend on large-scale, accurate phenotyping, which is also critical for genomic 

dissection of complex traits. While the genome of an organism can be characterized, e.g., with high 

density genotyping arrays, the ‘phenome’ is much more complex and can never be fully described, 

as it varies over time and changes with the environment [1]. The cost of genotyping continues to 

drop, but there is still a need for improvements in obtaining high-performance phenotypes at a 

lower cost [2].  In cattle, the number of phenotypes recorded in traditional breeding schemes is 

relatively small, because its recording is expensive. For instance, yearly milk yield is usually inferred 

by extrapolation using a few lactation measurements, whereas actual milk production can now be 

measured individually and daily using automated milking robots. 

 

In addition to milk yield, dairy cattle breeders are interested in conformational traits. These metrics 

are not only relevant aesthetically but can also have an important influence on an animal’s breeding 

value. Body conformation is associated with dairy performance [3] and longevity, which strongly 

contributes to lifetime milk production [4]. Milk production is positively correlated with udder size 

[5]. The highest negative economic impact for dairy farmers is caused by lameness either due to 

leg malformations or injury [6,7]. Extracting the detailed conformational phenotypes which may 

impact progeny success are likewise time consuming and costly to collect, and in the absence of 

quantitative tools, farmers often evaluate morphometric measurements qualitatively. 

 

The emergence of modern sensor technologies, such as Unmanned Aerial Vehicles (UAV) 

combined with simple digital cameras [8], mass spectroscopy, robotics, and hyper-spectral images 

[9], among others, have revolutionized breeding programs, mainly in plants, allowing for non-

invasive evaluation of multiple complex traits. Although in animal breeding their application is 

http://www.semex.com/
https://github.com/lauzingaretti/pSBVB
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more scarce, modern livestock farming is beginning to benefit from access to these inexpensive 

sensor tools.  Now, it is possible to remotely monitor behavior [10–12] and animal welfare [13], 

assess movement [14], measure body confirmation [15,16], quantify individual food intake  

[12,13,17], maintain an optimum environment [18], or decrease instances of stillbirths [19,20]. 

These automated measurements rely on temperature [18–20], pressure [13,17], movement [14], 

and visual sensors [10–12,15,16]. 

 

As several remote monitoring schemes are based on digital images or video, automated image 

analysis techniques are urgently needed to quantify traits of interest [21]. Applying image analysis 

to breeding programs is not new, however many of these methods largely depend on time 

consuming image-by-image processing facilitated by the researcher (as in  [22–24]). The few 

automated resources currently implemented for cattle analyses require complicated set-ups and 

costly equipment [14,16]. This is not surprising as accurately quantifying phenotypic information 

is one of the most challenging aspects in biology [25–27]. 

 

The availability of new algorithms based on machine learning has revolutionized computer vision, 

impacting a wide range of fields that rely on computers to analyze images, with the potential to 

optimize herd care and improve animal and plant breeding program outcomes [11,12,16]. These 

recent advances have led to precise object detection and semantic segmentation in complex images 

[28–30].  

 

Here we show how automatically parsed web-based catalog datasets can be converted into useful 

information by automatically inferring genetic parameters of several morphological measurements 

in dairy cattle. We combined web scraping, deep learning, and statistical techniques in order to 

achieve our objective. The proposed methodology is a mixture between a supervised deep learning 

approach, Mask R-CNN [31] and an unsupervised algorithm  [32] which can achieve highly precise 

automatic image segmentation. After removing the background, phenotypic information, 

including coat color and body conformational traits can be easily quantified. Lastly, we 

demonstrate the potential applications of this method in other datasets. We assert that our work 

could constitute a good proxy for using inexpensive and non-invasive computer vision techniques 

into the dairy cattle breeding programs. 

 

6.2 Materials and Methods 

 

6.2.1 Image Collection 

 

Images of bulls were collected through web-scraping using the python library Beautiful Soup 

[33].Images from sire catalogs of six Artificial Insemination companies were collected. We 

additionally automatically collected bull images from one semen provider (www.semex.com) and 

those of identified familial relationships (daughters, dams, granddams, and great granddams) where 

possible. We downloaded a total of 1,819 images. These images ranged in size between 339 to 879 

pixels and 257 to 672 pixels for width and height, respectively. The animals are Holstein with 

patched black and white bodies, but some images are red Holstein. Individuals ranged in color 

from all white, all black, all brown, to a mixture of the colors. The images were flipped so that all 

http://www.semex.com/
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animals faced the right side of the image using ImageMagick version 7.0.9-0 convert -flop function. 

The animals are standing in front of dynamic backgrounds including forest, field, snow, water, and 

straw. All images contained only one animal, and sometimes contained a person or an arm. 

 

6.2.2 Automated Segmentation 

 

One of the most challenging tasks in computer vision is instance segmentation, i.e., the 

identification of boundaries of objects at the pixel level [32], whereas object classification, i.e., to 

determine if an object belongs to certain class is relatively simpler. R-CNN [28], a deep learning 

approach, as well as Fast R-CNN [34], Faster R-CNN [35] or Mask R-CNN [36] are widely used 

to solve this task. Although these methods are efficient, they are not accurate enough for some 

purposes since the obtained segmentation often removes parts of the object of interest or contains 

parts of the background. 

 

We applied a two-step procedure to automatically segment the animal’s profile as accurately as 

possible. The composite method begins by using Mask R-CNN [36], which has three outputs for 

each candidate object in an input image (Figure 6.1A): a class label (say ‘cow’), bounding box offset 

or region of interest (RoI), and the object mask consisting of an approximate layout of a spatial 

object. As in the original Mask R-CNN, we used the annotated image database common objects 

in context (COCO, http://cocodataset.org; [37]) to train the algorithm, and select the class codes 

for cow. In short, Mask R-CNN is a deep learning algorithm that consists of two steps: first, it 

proposes regions within the image that may contain objects of interest and, second, generates a 

mask for every detected object. The latter step consists of a binary classification of pixels, either a 

pixel belongs to the object or to the background. For more details about this method readers can 

consult, e.g., https://towardsdatascience.com/computer-vision-instance-segmentation-with-

mask-r-cnn-7983502fcad1, https://engineering.matterport.com/splash-of-color-instance-

segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46 or should refer to [36]. Figure 6.1B 

shows the applied mask predicted by Mask R-CNN, this mask removes the majority of the 

background, but also removes parts of the cow’s body making it necessary for the development 

of our two-step composite method. We used the implementation of Mask R-CNN in 

https://github.com/matterport/Mask_RCNN. 

After the RoI and class labels are extracted, we select only the RoI for our desired object (i.e., the 

bull or cow). This allows us to remove some of the background and obtain a smaller, less noisy 

image. As explained above, the Mask R-CNN segmentation was not accurate enough for our 

purposes (Figure 6.1B). Therefore, we passed the RoI and predicted mask to a modified version 

of the unsupervised image segmentation algorithm from [32]. We used the code available at 

https://github.com/kanezaki/pytorch-unsupervised-segmentation. The original algorithm relies 

on separating pixels from each other and grouping them into distinct clusters based on color and 

texture. The underlying assumptions of this model are that: 1) pixels of similar features should be 

clustered together, 2) spatially continuous pixels should be clustered together, and 3) the number 

of clusters should be large. This is achieved by applying a linear classifier which groups pixels into 

different clusters based on their features. The difference between the original algorithm and ours 

is we do not try to maximize the total number of clusters, but instead we merely improve upon 

the mask generated by Mask R-CNN based on pixel identity. This makes more effective the 

algorithm to run, since the algorithm applied to the whole original image was not completely 

http://cocodataset.org/
https://towardsdatascience.com/computer-vision-instance-segmentation-with-mask-r-cnn-7983502fcad1
https://towardsdatascience.com/computer-vision-instance-segmentation-with-mask-r-cnn-7983502fcad1
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
https://engineering.matterport.com/splash-of-color-instance-segmentation-with-mask-r-cnn-and-tensorflow-7c761e238b46
https://github.com/matterport/Mask_RCNN
https://github.com/kanezaki/pytorch-unsupervised-segmentation
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satisfactory. This proceeds by self-training the network through back propagation, by alternating 

between two stages: 1) forward super pixel refinement, and 2) backward gradient descent. Much 

like any supervised approach this is achieved by calculating the cross-entropy loss between network 

and cluster labels, then back propagating the error rates used to update the convolutional filter 

parameters. Backpropagation is a popular and clever method used in deep learning. It allows 

computing the gradient of the loss function very efficiently by using the chain rule for derivatives, 

which greatly simplifies optimization in complex models. 

 

After refinement through the unsupervised algorithm, we obtained a relatively precise mask for 

our input image (Figure 6.1C). However, the unsupervised clustering still can confound the 

foreground and the background. We then apply an additional filter to the mask, median blur 

function from OpenCV [38], removing small islands that have been mislabeled during the 

clustering step (Figure 6.1D). We lastly apply the mask by coloring all pixels predicted to be in the 

background by a solid color (Figure 6.1E). 

 

To extract the proportion of and average color(s) from each cluster, we apply k-means using the 

scikit-learn library [39].To measure anatomical features, we extract only the outline of the desired 

object from the mask (Figure 6.1F) using the edge detection algorithm developed by Canny [40] 

and implemented in OpenCV  [38]. After extracting the edge, we apply one more filter to remove 

any islands that may remain using the remove_small_objects function from the morphology 

package available from scikit-learn [39]. Now that the input image has been reduced down to just 

the object outline, we can take advantage of common conformational features of the underlying 

data, and extract pixel coordinates. For example, we extracted the coordinate of the pixel closest 

to the bottom left corner which corresponds to the back foot of the cow. We proceeded in this 

way to extract 13 coordinates from each animal (Figure 6.1G). We then calculate the distance in 

pixels between various points, effectively extracting body confirmations automatically. The 
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fourteen conformational traits are described in Supplementary Figure 1. Code for the whole 

pipeline is available at https://github.com/lauzingaretti/deepaps. 

 

 
Figure 6.1. Example input and outputs. A: Original input image. B: Mask R-CNN applied mask. C: DeepAPS raw output. D: 

Final output of DeepAPS after all applied filters. E: Final DeepAPS mask applied to input image. F: Outline extraction of 

original input image. G: Extracted landmark coordinates. H: Manual color segmentation. Image from Semex. 

 

 

6.2.3 Manual Segmentation 

 

To check how accurate the automated segmentation was, we manually segmented N = 481 images 

that were not of Semex origin. We used Kanezaki’s demo.py program [32] in python3.6 [41] using 

default parameters. The output images were opened in the image processing software GIMP 

(https://www.gimp.org/), and the background was manually changed from the colored cluster to 

white (Figure 6.1H). To extract the color clusters, we calculated the proportion of color clusters 

https://github.com/lauzingaretti/pSBVB
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in each image by using k-means as above, and manually matched each color cluster to the original 

picture and removed the proportion of background. 

 

 
 

Figure 6.2. Example input and outputs. A: Original input image. B: Mask R-CNN applied mask. C: DeepAPS raw output. D: 

Final output of DeepAPS after all applied filters. E: Final DeepAPS mask applied to input image. F: Outline extraction of 

original input image. G: Extracted landmark coordinates. H: Manual color segmentation. Image from Semex. 

 

 

6.2.4 Genetic parameters 

 

To calculate heritabilities for the measured phenotypes, we extracted pedigree information and 

constructed a relationship matrix for each bull whenever possible. This was done by automatic 

web scraping in the sire catalog website, where we identified bull id, any relative type (i.e., daughter, 

dam, granddam, and great granddam), and their images. From the list of bull and relatives’ ids, we 

computed the standard numerator relationship matrix, which contains the genetic relationships 
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assuming an infinitesimal model. Bayesian estimates of heritability were calculated with the R 3.5.2. 

[42] package BGLR [43] using default priors. One thousand Gibbs iterations were performed. Our 

sample sizes were N = 1,338 for proportion of white and N = 1,062 for morphological 

characteristics. The difference in sample size is due to removing any image with a missing 

coordinate. 

 

6.2.5 Application to other datasets 

 

To assess the applicability to other datasets, we chose two other objects that had been annotated 

in the COCO database [37], horse and giraffe, as well as two objects that had not been annotated, 

butterfly and duck. We downloaded 50 images from the internet that had the license set to ‘labeled 

for noncommercial reuse’ for horse and giraffe and 100 images for butterfly and duck. For the 

unannotated objects we annotated 50 of the images using VGG Image Annotator (VIA; [44]). 

These annotations were used to train a model in Mask R-CNN using the starting weights of the 

COCO database [37].The model was trained for 20 epochs and default parameters. Using either 

the COCO or custom model, DeepAPS was applied, and the composite mask was visually assessed 

for accuracy. 

 

6.3 Results 

 

We first visually compared the masks generated by the three methods that were applied to our 

entire dataset of 1,819 images (Figure 6.2A). When we used the supervised algorithm Mask R-

CNN and applied the mask to the input images (Figure 6.2B), we observed in all cases parts of the 

cow body were removed along with the background (i.e., tail, nose, ear, and hoof). These masks 

are not satisfactorily precise to extract morphological measurements. The unsupervised 

segmentation by back propagation (Figure 6.2C) often separates the precise border between cow 

and background, but that this method on its own is not automated. Each output image would still 

need to be processed separately in order to match which body parts were grouped into each color 

cluster. DeepAPS (Figure 6.2D) across our input dataset produces a more accurate mask than 

Mask R-CNN and a fully automated mask, which the unsupervised approach fails to do.  

 

In order to assess how accurately we were able to extract the true coat color percentage from each 

image, we compared manual and automated color segmentation. Our test set consists of 481 

manually annotated images. After removing the background, we clustered each bull into one- or 

two-color components and extracted the percentage of dark and light colors in the coats. The 

automated method reports a highly accurate color segmentation with an adjusted R2 = 0.926 

(Figure 6.3A) when compared to manual segmentation (Figure 6.3B-D). The images that fall out 

as outliers belong to one of two groups, the majority of the outliers have small image sizes (less 

than 400 x 400 pixels), and therefore the quality was not sufficient to accurately separate the body 

into two color classes, the second group were bulls with a two-toned body color, in which the legs 
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were of a different color than the body. In these cases, the algorithm has difficulty in separating 

the dark-colored legs from the dark background. 

 
Figure 6.3. A: Correlation (adjusted R2 = 0.926) between manual and automated color segmentation of 481 images. B: Example 

input image. C: Applied DeepAPS output mask. D: Manual color segmentation. Image from Semex. 

 

 

 

Because the mask recovered after using this composite method is so precise, we could extract 

coordinates of 13 points located around the outline of the cow body (Figure 6.1G and 

Supplementary Figure 1) which allowed for measurements of 14 body conformation distances (see 

Supplementary Figure 2 for phenotypic distributions). Next, we estimated heritability using 1,338 

images of related animals, in which we had partial information about great granddam, granddam, 

dam, bull, and daughter relationships. Our relationship matrix consists of 689 families, with an 

average of 2.6 individuals per family. Figure 6.4 shows the 15 posterior distributions of the 

heritability calculations and lists average values.  Coat color proportion has the highest calculated 

heritability h2 = 0.82, followed by body area (triangle) h2 = 0.43, body area (polygon) h2 = 0.38, 

and cow body length h2 = 0.34. These values are similar to previously published results [22,45]. 
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These high heritability measurements indicate foremost that the meaningful genetic information 

can be quickly and easily extracted from imaging and pedigree data available online. 

 
Figure 6.4. Posterior distributions of calculated heritabilities for all 15 measured phenotypes (N = 1,338 for proportion of 

white and N = 1,062 for morphological features). See supplementary Figure 1 for morphological measures used. 

 

 

To assess whether this method is robust to the type and quality of the underlying data, we 

downloaded images from the internet of horse, giraffe, butterfly, and duck. These images were 

randomly collected, and we had no control over quality, size, lighting, or background. We also 

wanted to test how many input annotations are required to produce a robust mask using DeepAPS. 

Because the two-step method uses back propagation in order to refine the predicted mask 

generated from the machine learning algorithm, we hypothesized that fewer annotations would be 

needed. Therefore, we annotated 50 images for the butterfly and duck datasets, as they were not 

pre-annotated in the COCO database. We found that overall, our composite method preforms 

accurately (Figure 6.5). The masks generated from the thousands of annotations from the COCO 

dataset were precise (Figure 6.5A and 6.5B), while those based on only fifty annotations were still 

far more accurate than using any currently available method (Figure 6.5C and 6.5D). These results 
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together indicate this method is robust to input data and can still preform reliably despite being 

trained by few instances, making it a promising tool for automatic morphological analyses. 

 

 
Figure 6.5. Application of DeepAPS method to four additional datasets. A: Horses and B: Giraffes trained using the COCO 

database. C: Butterflies and D: Ducks trained using 50 custom annotations. 

 

 

6.4 Discussion 

 

In recent decades, there have been vast improvements in molecular and statistical methods applied 

to animal and plant breeding. While modern livestock studies typically involve the analysis of entire 

genomes and/or vast number of polymorphic sites [46], high throughput phenotyping is lagging, 

especially in animal breeding. Often, phenotypic variation is explored today in the same manner 

as it was done decades ago, using simple quantifications such as length, number, categorical 

classifications, etc. [1,25,47]. Phenomics is extremely important in breeding programs in particular, 

as the desired outcome is a change in a phenotype. As phenotypes are formed by a complex process 

involving multiple genes, is dependent on the environment, and dynamic overtime, collecting 
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multiple descriptive statistics can make relating genotype to phenotype more feasible and, 

importantly, more meaningful. 

 

Images are among the easiest to collect data and are underutilized. Here we combine two of the 

state-of-the-art image analysis tools, the supervised Mask R-CNN [36] and unsupervised 

segmentation [32] in order to automatically extract phenotypic measurements accurately. Not only 

can we create a precision mask but can cluster and segment the underlying colors and automatically 

measure body confirmation. Accurate image segmentation remains the most challenging part of 

computer vision. The ability of DeepAPS to separate the animal from multiple background types 

at the pixel level out preforms, for our purposes, the available algorithms currently published 

[32,36]. 

 

The validity and speed of this method allows for multiple quantitative morphological traits to be 

implemented in breeding programs. Despite the success of ongoing dairy breeding programs [48], 

including more and accurately quantified measurements has the potential to result in further 

improvements [49,50]. Furthermore, this method uses standard side-view stud images which are 

inexpensive to generate and store. Our presented method eliminates the high cost of phenotype 

collection while maintaining quality and can contribute to lowering the cost of conformational 

measurement collections. 

 

Our analyses were performed on images scrubbed from the internet. As such, we had no control 

over backgrounds, lighting, image size, or quality. Despite the dynamic input data on which we 

tested DeepAPS, we were able to produce high quality masks and phenotypic measurements in 

most cases (Figure 6.4). Furthermore, the heritability rates we calculated from over 1,000 images 

of related individuals broadly agree with published results, indicating that our method accurately 

captures underlying information. Hayes et al. [22] estimated heritability of coat color percentage by 

manual quantification and reported a heritability of h2 = 0.74 in N=327 bulls; remarkably, we 

found similar estimates (h2 = 0.81), even if our pedigree information was quite incomplete. The 

reported heritability of back leg height is nearly identical to previous reports (h2 = 0.22 vs. 0.21; 

[45]). Nevertheless, estimates of two other reported conformational heritabilities were somewhat 

lower: chest depth h2 = 0.28 vs. 0.37 and height h2 = 0.27 vs 0.42 [45]; perhaps because actual 

metrics analyzed here are not exactly those used in previous studies and because we cannot obtain 

absolute values (e.g., height in meters), since there is not a common scale across images. In all, this 

proof of concept shows how genetic parameters could be estimated using solely data that are 

already available on the web. For practical applications, more accurate estimates suitable for 

breeding programs could be obtained, e.g., combining SNP genotyping data with automatic image 

analyses from larger datasets.   

 

While imaging data is fast and simple to collect as well as inexpensive to store, the most 

burdensome stage of image analysis is the generation of image annotations. We found that this 

method is able to leverage the publicly available COCO database and apply it to new and different 
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problem sets. Allowing for the creation of an accurate object mask based only on a training set of 

50 instances (Figure 6.5), which is remarkably low for any machine learning approach.  

 

This method has the potential to allow for imaging data to be easily and quickly applied to high-

throughput studies, which can be highly useful and improve extant breeding programs. We provide 

a combined deep learning algorithm that results in highly accurate segmentation of animal profiles, 

which is necessary for further processing in applications related to conformational measurements. 

Nevertheless, we are well aware that much work remains to be done in the area. For instance, 

software to accurately quantify a number of additional conformational features, such as udder 

metrics or movement, using different angle pictures or videos should be developed. Software 

should also be optimized for speed and be able to analyze high-resolution pictures.  
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Abstract 

 

Motivation: We present Link-HD, an approach to integrate multiple datasets. Link-HD is a 

generalization of STATIS-ACT (‘Structuration des Tableaux A Trois Indices de la Statistique –

Analyse Conjointe de Tableaux’), a family of methods designed to integrate information from 

heterogeneous data. Here, we extend the classical approach to deal with broader datasets (e.g., 

compositional data), methods for variable selection, and taxon-set enrichment analysis.  

 

Results: The methodology is demonstrated by integrating rumen microbial communities from 

cows for which methane yield (𝐶𝐻4𝑦 ) was individually measured. Our approach reproduces the 

significant link between rumen microbiota structure and CH4 emission. When analyzing the 

TARA’s ocean data, Link-HD replicates published results, highlighting the relevance of 

temperature with members of phyla Proteobacteria on the structure and functionality of this 

ecosystem.    

Availability: The source code, examples, and a complete manual are freely available in GitHub 
https://github.com/lauzingaretti/LinkHD. 
 

7.1  Introduction 

 
The reduction of ‘omics’ technology cost now enables collection of data from multiple sources. 

This allows researchers to simultaneously study several datasets and investigate their relationship 

with complex traits. The integration of these heterogeneous datasets is not trivial and several 

statistical methods have been developed to address this challenge [1–4]. In particular, the 

amalgamation of multiple microbial ecosystems poses unique challenges as these are compositional 

and sparse data. MixKernel [5] is a well-known tool designed to integrate heterogeneous datasets 

including microbial communities, but no method to perform a taxonomic enrichment analysis is 

available. Another popular integrative approach is MOFA [1], however, it is unable to deal with 

compositional data.  

 

Here, we present Link-HD, a tool to integrate and explore multiple microbial communities based 

on STATIS [6], a family of multivariate methods to integrate multiple datasets. Link-HD 

generalizes STATIS with Regression Biplot [7], clustering, differential abundance, enrichment 

taxonomic analysis, and visualization tools. Link-HD analyzes distance tables computed from 

numerical, categorical, or compositional data as a generalization of multidimensional scaling [8]. 

Furthermore, Link-HD performs variable selection and can link the obtained common sub-space 

with phenotype information.  

 

 

 

https://github.com/lauzingaretti/LinkHD
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7.2 Methods  

 

 

Like STATIS, Link-HD aims to compare and analyze the relationships between datasets with a 

shared set of observations or variables. However, our package was specifically designed to integrate 

microbial communities and incorporate distances and transformations to deal with compositional 

data [9]. The method is implemented in three main phases (Figure 7.1). 

 

1. Inter-structure step:  The algorithm first assesses the similarity between transformed 

distance tables using the vector correlation coefficient (Rv)  [10], which can be interpreted 

as a general “vector covariance” between matrices, i.e., this step evaluates similarity 

between the disparate datasets. 

 
2. Compromise step: Next, the ‘compromise’ matrix is calculated, which is a weighted sum 

of each cross-product matrix. This step involves an optimization problem since the 

weights are chosen to maximize the correlation between the compromise matrix and each 

individual component.  

 

3. Intra-structure step: Finally, the compromise matrix is evaluated through a Principal 

Component Analysis. The coordinates of the common elements are projected into a low 

rank space, where the relationships between them can be easily interpreted. 

 

Variable selection is tackled by two alternative approaches: 1) by projecting all the input variables 

into the compromise through a general Biplot formulation [7]; and 2) by computing the differential 

abundance of features between clusters of samples. A novelty of Link-HD is its ability to aggregate 

the selected variables at several taxonomic levels and to establish whether that level is enriched 

using a cumulative hypergeometric distribution. This function also allows users to add a custom 

OTUs list. Finally, the SPIEC-EASI [11] tool can be used to visualize variable interactions. 
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Figure 7.1. Link-HD Workflow. In the Inter-structure step, raw data are transformed using cumulative sum scaling (CSS) 

or centered log ratio (CLR), and the correlation coefficient (Rv) is computed. The second step is the compromise (W) and, 

finally, the intra-structure step involves the eigen-decomposition of W. Observations can be clustered and methods for 

selecting variables and association with phenotypes are available. 

 

 

7.3 Case studies  

 

We illustrate our approach with rumen microbial [12], TARA’s Ocean expedition [13], and 

transcriptome NCI-60 cell line datasets [14].  

 

In the rumen study, we integrated Bacteria, Archaea, and Protozoa from 65 Holstein cows. Link-

HD was able to reproduce previous results  [12,15,16], showing a link between the structure of the 

rumen microbiota and CH4 emission. We also identify microbial markers associated to CH4. In the 

TARA’s example, Link-HD replicates the relevant role of temperature and Proteobacteria phyla 

on the structure of this ecosystem, as described in [5]. Finally, we show the potential  of  
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Link-HD to integrate other omics layers by using transcriptome NCI-60 cell lines. Link-HD 

recapitulates the reported data structure [17] and ontology analysis reveals several cancer-related 

pathways. 

 

In all, our results demonstrate that Link-HD is robust in combining several heterogeneous data 

types. A detailed description of these case studies and the theory behind Link-HD is available at 

https://lauzingaretti.github.io/LinkHD/. Of note, Link-HD is ~4 times more computationally 

efficient than mixKernel in a 3.3 GHz Intel Core i7 CPU with 8 GB of RAM. 

 

7.4 Conclusions 

 

We have developed an R package to integrate multiple microbial communities and other ‘omics’ 

layers combining a plethora of statistical methods in a fast, simple, and flexible way. 
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Chapter 8  

 

General Discussion 

 

The main motivation behind this research was to show the rewards of using Machine Learning 

(ML) techniques for the new breeding challenges in the plant and animal industry. We have 

followed an extensive roadmap, covering many topics and going through an important collection 

of agronomic problems. The application of ML to questions in breeding is not only promising but 

has already enhanced a broad range of problems[1–4]. Despite all the progress made, there are still 

gaps to be filled and issues that deserve more attention. For example, the application of Genomic 

Selection (GS) (a method using prediction machines) in plant breeding and, in particular, in 

polyploid species, i.e., in numerous plant breeding programs, is still immature.  High-throughput 

phenotyping is another factor compromising genetic progress in breeding programs. It requires 

the development of specific software and data management tools, which of course rely on ML 

technologies. It has a more or less extensive track record in plants [5] but its application in animal 

breeding has been scarce.   

 

 
Fig. 8.1. Overview of the contribution of genomic selection and phenomics to the components of the breeding equation.  

Machine learning-based analysis techniques are central to analyze the huge amount of heterogeneous data being generated. 

Technological advances are enabling the massive collection of genomics and phenomics data at low cost, so the development 

of analysis methods and publicly accessible resources are key to the next generation of agriculture. 

 

The breeding equation (i.e., how to enhance the genetic gain) is at the heart of any breeding 

program [6]. In this equation, the change in trait mean per year (𝑅) is expressed as  𝑅 =
𝑖×𝑑𝑔×𝑟

𝐿
, 
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where 𝑑𝑔 is the amount of genetic variation, 𝑖 is the intensity of selection, 𝑟 is the accuracy of 

selection and 𝐿 is the generation interval. It provides a quantitative framework for the identification 

of bottlenecks in breeding programs, as well as for the development of strategies to cope with 

these shortcomings, and its optimization requires the use of both, genetic and phenomics tools 

(Fig. 8.1).   

 

Enhancing breeding involves enhancing the breeding equation. The contribution of GS programs 

to all of the components is fairly clear but massive phenotyping also plays a strategic role. (see Fig. 

8.1). Breeders had been making selections based on phenotypes for a long time when molecular 

markers were discovered. The genetic gain is now dependent on the rapid evolution of phenomics, 

which particularly implies technological and techniques advances. GS and high-throughput 

phenotyping share their strong dependence on the innovations in data processing and robotics, 

making fundamental the contribution of disciplines such as computer science, machine learning, 

and statistics [7–10]. Let us explain the impact of GS and phenomics on each component of the 

breeding equation in further detail below. 

 

Selection intensity (𝑖) is determined by selection rate, which is the proportion of the population to 

be selected, so increasing the population size, automatically increases this value. Since genotyping 

selection is faster and cheaper than phenotyping selection, GS strategies can be used to increase 𝑖 

[11]. There is one important detail to keep in mind: increasing population size automatically 

requires selecting large populations efficiently, so high-throughput phenotyping becomes crucial 

[7]. 

 

It is well known that genetic variation (𝑑𝑔) may be affected by GS since increasing selection 

pressure leads to a loss in variability [11]. To cope with this issue, breeders usually introduce 

external germplasm, especially in plants, but high-throughput phenotyping is also decisive for the 

efficient selection of new genetic variation that can be incorporated into breeding programs for 

the long-term sustained genetic benefit [7,8]. The continuous inflow of new variation created by 

mutation cannot be neglected either, as shown by long-term selection experiments[12,13]. 

 

The accuracy in the estimation of the breeding values is another factor that can be enhanced by 

both GS and automatic phenotyping. The Genomic Estimated Breeding Values (GEBV) can be 

more accurate than those estimated with pedigree information [11], but there is always room for 

improvement as most of the routinely collected traits depend on manual measurements, which are 

subjective, prone to human error, and lack repeatability. The high-throughput phenotyping offers 

the opportunity to obtain accurate and cost-effective measurements, which combined with 

massive genotyping can maximize the genetic signal, improving the effectivity of GS [7].  

 

GS accelerates the breeding cycle and is perhaps the factor that contributes most to genetic gain 

because it allows the generation interval (L) to be greatly shortened. Phenomics may not provide 

a direct contribution in this respect but it is clear that, indirectly, it may benefit from having more 

(secondary) traits to analyze and from the reduction of variability in the field. 
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Overall, breeders are facing new challenges and they are moving from field phenotyping to 

phenomics, multiple- omics, and automatic, non-destructive screening of agronomic traits. Our 

work has addressed some bottlenecks in new breeding targets by leveraging ML and programming.  

The rationale behind all our papers is that ML (comprising Bayesian Learning, Deep Learning, 

Integrative approaches, computer vision techniques) can empower breeding. Not only phenomics 

but any omics (like metabolomics, epigenomics, transcriptomics, and microbiomes) have become 

standard [14]. However, the development of methods to integrate all these heterogeneous data 

sources has lagged behind. Therefore, in this thesis, we have proposed a method for the integration 

of multiple microbiome data and their association with a target trait. Although our example only 

addresses the integration of the microbiome, this approach could be used with alternative data, 

including massive field phenotypes.   

 

In addition to addressing the problem of data integration, we focused on the application of GS in 

polyploid species, which has a much less extensive tradition than in diploid organisms or animals, 

and in the development of tools for automatic recording and evaluation of shape and color traits 

in fruits and livestock. We have covered both plant and animal breeding, as we strongly believe 

that, despite the differences, breeding has the same ultimate goal in common (i.e., to increase the 

genetic gain) and ML techniques offer the opportunity to treat them from a unified framework.   

 

8.1  Machine Learning in plant and animal breeding 
 

The enormous amount of data available today in any area of knowledge is making ML the hot 

topic behind countless scientific projects. The success of ML techniques is grounded on two main 

pillars: 1) ML comprises not just one, but a wide variety of data analysis methods, ranging from 

unsupervised (pattern recognition) to supervised (feature predictions) tasks, and 2) ML can analyze 

heterogeneous datasets, which can be very valuable in combining multiple data sources (SNP, gene 

annotation, metabolic pathways, expression data, microbiome data, etc.) [15,16].  

 

The power of ML lies in the fact that be used to obtain the best predictive performance but also 

for unsupervised learning, which can deliver a comprehensive insight into the data structure.  ML 

are the natural tools to confront the ‘large p small n’ problem caused by the high-throughput data 

collection era.  As stated above, in this research work the classical methods used in Genomic 

Selection in animal breeding (the Bayes- alphabet like methods, [17] ) are considered under the ML 

umbrella as they are predictive machines, while their inferential outcomes may be misleading due 

to the curse of the dimensionality [17].   

 

The new explosion of data is forcing us to rethink data analysis strategies in breeding, as well as 

breeding objectives. MLs can drive breeding in many ways, as they are very flexible; but building 

an ML system is challenging, involving several steps and requiring specific expertise. Sometimes, 

its success critically depends on the availability of enough data, model training can be difficult and 

computationally expensive, while optimization is not trivial [18].  One of the main disadvantages 

of ML relies on the lack of interpretability, i.e., while ML are powerful predictors, their biological 

interpretation is quite difficult as they do not naturally provide a way to perform inference [16,19]. 

Another challenge facing ML is the development of tools capable of modeling genotype-
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environment interactions and providing alternative ways that allow complex traits to be measured 

secondarily, for example inferring crop yield using images [16]. 

 

MLs open a window of opportunity for "data-driven decision agriculture":  the data from 

electronic devices and the internet revolution in agriculture are enabling the implementation of 

precision farming or precision agriculture. Precision livestock farming can help in livestock 

management, health surveillance, production, welfare, and environmental footprint reduction. In 

plant breeding, meanwhile, precision farming is making it possible to detect pests, diseases, and 

weeds before outbreaks, is enabling effective site management of plant diseases, and customization 

of fertilizer, herbicide, and irrigation application in response to special pattern variability [20]. 

Although we have tried here to address some of the issues where ML can improve new breeding 

objectives, there is still much work to be done and more research in this area is urgently needed. 

 

8.2  Handling the breeding equation in polyploids 

 

GS assumes that a dense enough marker map can be used to select the favorable allele at each 

QTL without actually identifying them [21]. GS is a mature technology and is standard in many 

breeding programs [22–27]. Despite the outstanding success, there is still a gap in the literature 

regarding modeling strategies for polyploid organisms[28], including accounting for allelic dosage, 

for non-additive effects (i.e., dominance or epistasis), and the variance partition[29]. 

 

Polyploid organisms, i.e., those with a high level of gene redundancy, are usually classified into two 

categories: allo-polyploids and auto-polyploids. While the genomes of the former are well-

differentiated, the latter have identical or closely related genomes [30]. This difference has practical 

consequences since allopolyploids can be treated as diploids, i.e., the different pairs of genomes 

have a strong pairing barrier, deriving bivalent formation [31]. In autotetraploid, in turn, the 

chromosomes are all homologous, making it possible a multivalent formation (i.e., the pairing of 

more than two chromosomes), which could lead to a phenomenon known as double reduction 

(i.e., sister chromatids segregating in the same gamete)[30,32].  

 

GS has been applied to allopolyploids, taking advantage of their disomic inheritance, which allows 

them to be treated as diploids [33,34]. However, the differentiation between allo and auto-

polyploids is sometimes blurred and mixed behavior between the two phenomena remains 

possible ( i.e., ‘mixosomic’ inheritance, [35]) [36].  Therefore, the development of specific 

methodologies and analysis tools for polyploids is not only interesting from a theoretical point of 

view but could also bring a genetic gain in breeding.  Here, we have contributed to this topic by 

addressing these three interrelated issues: is genomic prediction affected by the underlying genetic 

architecture? Is it possible to account for the effect of allelic dose on genomic prediction? how 

could non-linear interactions induce by polyploidy be modeled?  

 

The first and second questions were approached harnessing the benefits of simulations to tackle 

complex genomic problems. We have evaluated different underlying genetic architectures for the 

`sugar content` trait in allopolyploid strawberry as follows: by taking 100 QTNs randomly chosen 

from any of the sugar-pathways SNPs (i.e., segregating in more than one homeologous group) or 
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by considering 100 QTNs only in those that behave as ‘diploid’ SNPs (i.e., we simulated the trait 

considering that it has a disomic inheritance). We also simulated a trait with QTNs randomly 

chosen throughout the genome. We envisaged two extreme gene- actions (fully additive and 

complete dominance) for each trait, while the genomic relationships matrices were computed using 

the three options available in pSBVB software (i.e., considering the full allele dosage varying 

between 0 and 8, using only the “diploids-like” SNPs and through the Haploid-like option, where 

only one full homozygous can be distinguished from the remaining genotypes). We also compared 

the predictive ability of genomic information with that based only on pedigree. Our simulation 

indicated that the predictive accuracy of GS in polyploids may critically depend on the genetic 

architecture, but not so much on how we compute the genomic relationship matrices.  

 

We are not the only ones who have addressed GS-related issues in polyploids. For instance, the 

calculation of an additive genomic relationship matrix accounting for the allele dosage has been 

advanced in several studies [37–39]. In AGHmatrix [39], the authors provide a way for estimating 

the autotetraploid’ double reduction coefficient when the relationship matrix is computed from 

the pedigree information following the theory developed by Kerr et al. [40]. Although these 

approaches are indeed interesting, they focus only on autotetraploid. Our software is more 

comprehensive, as the genomic relationship matrices can be computed using three different 

methods and take into account any ploidy level. It is a simulation tool, not just a relationship matrix 

generator, that can simulate preferential or not preferential pairing, making it suitable for both, 

auto and allopolyploids. Yet, our tool has some limitations: it can neither simulate epistasis nor 

compute the genomic relationship matrix to account for epistatic interactions, as provided in other 

studies [37,38].  

 

The discussion of whether it is worth paying more for sequencing to obtain true allelic dosage 

rather than "diploidization" deserves special attention. It has been shown that polyploidy can 

create phenotypic variation through the allele dosage [41], so it is not surprising that taking it into 

account may influence predictive accuracy in GS. In our study, we found no difference in 

predictive ability when taking into account allelic dose could be influenced by the technology used 

as we will explain below. We used data from Genotyping-by-Sequencing (GBS), a method that 

pools many samples into a single library for sequencing: it has the advantage of being cheaper than 

other tools (e.g., SNP arrays), but its accuracy may be compromised if the depth of reads is poor. 

This issue has been addressed in the literature [38,42,43] concluding that there is an interaction 

between the allele dosage and the trait, i.e. observing an advantage -in terms of predictive accuracy- 

for certain traits and a disadvantage for others.  

 

The third question we sought to discuss is how to model the complex relationships induced by 

polyploids and whether they can have an effect on prediction accuracy. We decided to apply deep 

learning machines since DL and, in particular convolutional neural networks (CNNs), are 

promising strategies to account for nonlinearity. We approach the problem by comparing DL with 

Bayesian machine learning (BL). The potential advantage of nonlinear BL over DL lies in the fact 

that it can shed light on the genetic architecture of the trait, allowing the estimation of their 

variance components, albeit they are not orthogonal and may be inflated. Our findings show that 

BL accounting for nonlinearity performs almost as complex DL techniques.  
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In line with previous studies [42,44,45], we found that models accounting for nonadditive effects 

do not show a marked improvement –in terms of predictive accuracy- over the simpler ones 

(Bayesian Lasso, Bayesian Ridge Regression), which only take into account additive effects. These 

findings provide a valuable practical conclusion from the point of view of the breeder since it 

would be enough to use simple frameworks, which not only are easier to understand but are less 

computationally demanding.  

 

GS programs in polyploids could be implemented by assembling a training population of potential 

parents, as the use of family information has been shown to improve predictive accuracy [46]. 

Simulation tools such as pSBVB are crucial in this regard, as can be used for in silico evaluation of 

the next breeding population. Although further research is still needed, the findings during the last 

years show that GS is promising for polyploids and may be implemented similarly to diploids. 

 

8.3  Towards digital image-based phenotyping  

 

As discussed, GS represents only one side of the coin in breeding. We cannot forget that breeding 

is based on genomics and phenomics and that is precisely the reason why we have also studied the 

application of automatic image analysis, which allows high throughput phenotyping at a low cost. 

 

Many devices can be used to image plants and animals for different purposes. For instance, thermal 

infrared cameras (TIR) quantify the leaf temperature using a technology that detects long-wave 

infrared radiation emitted, they can monitor plant disease [47] and, are also used in animal breeding 

for reproduction, thermoregulation, animal welfare, or milking process [48]. NIR (near-infrared 

wavelengths) cameras can measure leaf thickness or water content and can predict developmental, 

tolerance, and productivity traits [49]. Hyperspectral cameras can measure hundreds of spectral 

bands between 350 and 2500 nm and can measure drought tolerance and yield  [50–52], animal 

color vision [53], among others. Fluorescence cameras measure chlorophyll contents, making them 

suitable for massive phenotyping of dynamic photosynthesis and photoprotection processes in 

leaves [54] or early detection of infections [55]. Finally, visible-spectrum (RGB) cameras (i.e., the 

conventional camera that everyone has on their cell phones) are the most basic tool for high-

throughput phenotyping systems that use images of plants or animals to capture information 

because they are inexpensive and easily accessible. These devices are used to measure color, 

morphology, and geometrical aspects [5] in fruit, roots, leaves, conformational traits in animals, 

etc.    

 

It is easy to see that the assortment of tools available can lead to the creation of diverse high-

throughput phenotyping platforms. Each type of sensor has its own characteristics, making it 

difficult to construct a common analysis process.  In this research work, we have only focused on 

the analysis of images obtained by visible spectrum cameras, suitable for the fast and accurate 

acquisition of morphological analysis. In livestock, appearance, and shape-related phenotypes are 

particularly important in dairy cattle breeding [56]. It is also a global highly interconnected activity 

and one of the largest livestock industries. On the other hand, shape and color are important traits 

in plant breeding, especially those that produce fruits, as they are closely related to quality and 

product value [57]. The linear descriptors (e.g., fruit height, width) may be deficient to measure a 
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complex and multidimensional trait such as fruit anatomy, where the underlying issue is to 

elucidate all the genetic and non-genetic aspects responsible for its variations. However, in many 

programs, shape evaluation is still a manual task, which is not only time-consuming but also 

inaccurate.  

 

Analyzing shape variations has many corners and we have attempted to address of them. Images 

are cheap and easy to obtain but analyzing them may be a challenge since  the first essential and 

important step of low-level vision is segmentation (i.e., the process of partitioning the image into 

some non-intersecting regions).  Segmentation transforms the image into meaningful information 

(i.e., containing the boundaries of the objects) but is a difficult task, especially when the image 

background is non-homogeneous.  There are many successful tools based on Deep Learning 

analysis that can segment automatically image with any degree of complexity (i.e., a complex 

background) [58–61], but most of them are supervised algorithms requiring a lot of annotated 

images.  The problem is also not so simple if the image were taken under controlled conditions 

(i.e., a homogeneous background), because while segmentation is much simpler, it is also not 

obvious how to automate the analysis of hundreds of images simultaneously.  In this regard, there 

are many examples in the literature to analyze fruit and leaves shape or plant roots [57,62–68], 

however, they are at best based on specialized software macros, which are only useful for 

segmenting the database images under consideration or can only analyze one image at a time, 

which is impractical if the task comprises hundreds of snapshots.   

 

A secondary aspect we considered is how to quantify shape variations.  Many morphological traits 

can be quantified by single measurements (length of the fruit, number of petals in a flower, etc.), 

but more complex ones require more complex measurements, such as proportions and relative 

positions of parts. On the other hand, geometric morphometrics [69,70] is a discipline that analyzes 

shape variation and its covariation, which can detect and visualize shape differences more clearly 

than classical (linear) approaches by taking advantage of multivariate statistical methods for super-

imposing landmark configurations of all samples in a common coordinate system.   

 

We approached these questions in two different ways. The first one consisted of the analysis of 

fruit shape and color variations, which was exemplified using images of strawberries but can be 

used for other fruits and vegetables. In this research work, we developed an analysis workflow and 

a software pipeline to automatically segment and create a curated fruit database and we also take 

advantage of multivariate analysis and deep learning techniques for a full analysis of morphologic 

variations.  The second work analyzed cow images where the bottleneck lies in the segmentation 

of complex images with non-homogeneous backgrounds. Most of the literature addressed this 

problem with relatively high success using Deep Supervised Learning, an expensive process 

requiring a large number of (annotated) training samples. Our novel purpose solves this problem 

using a two-step methodology: 1) We remove most of the background, obtaining the Region of 

Interest (ROI) of the cows' images through Mask R-CNN [61], a well- tested classification tool 

trained with the COCO database[71], which contains 123,287 training and validation images with 

886,284 instances from 91 different categories, including cows and 2) We segmented the ROI 

using an unsupervised learning algorithm.  
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These studies have both strengths and weaknesses. Among the former, we can highlight the fact 

that the segmentation algorithms are based on unsupervised or semi-supervised learning, making 

these tools more accessible to other researchers and breeders, both methods are relatively fast and 

easy to use and can be applied to hundreds of images simultaneously, providing several 

morphological measurements. We are aware that our works are incomplete. There are many more 

morphological traits (e.g., leg and foot angles in cows, more relative measurements in fruits, 

specific measurement of internal fruit anatomy) that should be considered further. The genetical 

analysis to estimate the heritability of the shape variations could be more precise using molecular 

marker information rather than the pedigree of one or two generations. The problems of fruit 

shape classification and color characterization remain open.  The work analyzing fruit shape is not 

suitable for images of fruits taken in the field and it is an issue that disserves more attention, as it 

could be important for automated fruit picking or fruit discarding, as well as for early disease 

detection. The algorithms are far from being perfect and there is significant room for further 

improvement of the techniques. 

 

Most of the current research focused on morphological and structural phenotypes. However, the 

phenome is dynamic, varying throughout the time-life of the organisms, thus timing determination 

(germination, the emergence of leaves, flowers, and fruit, growth traits in animals) can provide 

crucial information and is an open issue. Phenomics prediction is another open issue, at least in 

plant breeding, where spectral images can be used to predict yield, or for predicting the biomass 

of the fully grown plant from early developmental stage plants [51,72]. It could complement or be 

an alternative to GS. It becomes a substitute in the absence of genotypic information that is more 

expensive than the obtention of hyperspectral images and complements GS through cost-effective 

screening (and filtering) of clones, allowing the application of GS only on a limited number of 

candidates. [49].  

 

8.4  The future of data integration in plant and animal breeding 
 

The advent of Next Generation Sequence (NGS) has changed the way scientific studies are carried 

out, enabling the collection of an enormous volume of molecular data cheaply. These techniques 

allow breeders to study various sources of biological information from a given organism, including 

the collection of genome sequencing, RNA-seq (i.e., transcriptomic), metabolite, protein, and 

microbiome information, among others [73,74]. NGS replaced ‘old’ microarrays for ‘modern’ 

RNA-seq in transcriptomic analysis, while microbiome studies shifted away from the detection of 

species through microarrays to the sequencing of small-subunit (16S) ribosomal RNA gene-

sequence-based surveys of bacterial communities that reside in the animals’ stomach, gut, etc.,  in 

the rhizosphere, endosphere, phyllosphere for plants or to the direct sequencing of microbiome 

metagenome DNA [75]. 

 

We have referred to phenomics throughout the manuscript, arguing that the breeding equation 

and the new agricultural challenges do not lie only on genotypes but also in the ‘phenome’, which 

is nothing but the sum of all organism phenotypes [76], i.e. a combination of multiple layers of 

information. Although the "phenome" cannot be reduced only to the ‘omics’ obtained by NGS 

technologies, as it also comprises morphology and behavioral traits, all the ‘omics’ are a part of the 

whole phenome.  
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The ultimate goal of data integration is to combine multiple sources of information to gain insight 

into the biological system. For example, ML-based data integration tools have been successfully 

used to predict gene function in animal breeding and to forecast 2D and 3D structure in proteome 

annotation and protein-protein interaction in plants and animals [18]. It is well known that the 

variation of complex traits may be subject to the interplay between many ‘omics’ layers. That is, 

‘omics’ are promising for next-generation GS, as they may be better at predicting phenotype than 

SNPs alone [14].  

 

The omics-data integration methods comprise a wide variety of tools that usually focus on two 

main inter-related issues. The first one is the classification of samples (plants or animals) in 

different subtypes based on the multi-omics profile (note that it is only a reduced view as it could 

also include behavioral or morphological information), while the second issue is the prediction of 

biomarkers related with the underlying discovered structure. Most of the tools available to integrate 

multiple omics data [77–79] were designed to deal with continuous microarrays chips; however, 

the next-generation sequence technologies pose analytical and computational challenges. Albeit 

the differences between the platforms and source of information, all the data generated by NGS 

rely on the same principle consisting in the estimation of the abundances of unique sequences, 

which are constrained by the library size. That is, the NGS data are compositional and the library 

size limiting abundances are uninformative because they contain no population information [80–

82]. Unlike microarrays, NGS data are discrete and the number of zero counts can be large, 

especially in the case of the microbiome.  

 

All microorganisms (bacterial, archaea, fungi, etc.) living in a given host ecosystem constitute their 

microbiota, while the genes they encode are the associated microbiome, which is currently one of 

the most popular NGS layers being studied [83,84].  Several studies have shown that the 

rhizosphere microbiome composition affects plant health [85,86] or that the microbiota has a key 

role in health status and growth characters in pigs [87,88]. The study of the microbiota in ruminants 

is of special interest, as shown by the innumerable works on the subject, which highlight the 

relationship between methane production and the host-microbiota [89–93]. Elucidating 

biomarkers associated with methane production may contribute to the development of new 

‘micro-driven’ breeding programs capable of providing a sustainable solution to increase efficiency 

and reduce emissions from ruminant livestock.  

 

Here we have developed a multi-omics data integration tool suitable for compositional and sparse 

data. Our research work was intended solely for the analysis of multiple-microbiome data and 

therefore incorporates ideas well suited for this context, such as differential abundances or 

hypergeometric tests to elucidate enriched family (genus) among the selected variables. However, 

the generic nature of the tool makes it easily extensible to combine not only the microbiome but 

also other ‘omics’ layers, as it can integrate multiple dissimilarity (distance) matrices into a common 

subspace.  Our method could even be used for forecasting, i.e., the matrix generated by combining 

the various ‘omics’ layers could predict a trait of interest.  

 

The success of any integrative approach depends heavily on good data processing, including the 

normalization of data filtering and elimination of batch effect, among others. We have made an 
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important contribution in this regard because we have fine-tuned the methods for NGS. The 

variable selection provided by our tool also has a major impact since it helps to refine biological 

hypotheses (e.g., the presence of genera/families associated with higher methane emission levels). 

Our proposal is not exempt from the limitations provided for their linear nature (i.e., is just a linear 

combination of several matrices) and the fact that can only integrate structured data (i.e., matrices 

generated from the same individuals). We believe that new developments enabling the 

combination of structured and unstructured data could contribute to gain biological insights. 

Finally, deep learning-based methods deserve more attention in the general problem of integrating 

various subspaces, as they are suitable for exploring their underlying nonlinear relationships. 

 

The main message derived from this and related research is that new technologies are shifting the 

course of breeding strategies. The ‘big data’ paradigm is held by two major pillars: the huge amount 

of data being generated today and their heterogeneous nature [94]. Breeders need to adapt to this 

digital revolution and harness technological advances. Additional efforts are needed in the 

development of data analysis tools but also in the collection and management of data. Hence, 

agriculture is and will be sustained by ML workflows capable of performing data-driven decision 

approaches, i.e., methods that allow breeders efficient utilization of highly heterogeneous and 

complex data. We should not lose sight of the fact that the knowledge generated only has value 

for breeding if it can be translated into practice, i.e., transformed into genetic gain under the 

paradigm of sustainable Agriculture [7,14]. 
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Chapter 9  
 

General Conclusions  

 

- Performance of Genomic Selection (GS) in polyploids critically depends on the underlying 

genetic architecture of the trait. In turn, how the genomic relationship matrix is computed 

(i.e., accounting for the full level of ploidy or not) does not affect the accuracy of Genomic 

Prediction (GP). ‘Diploidization’, where all heterozygous genotypes are pooled, is as 

efficient and accurate as polyploid genotyping for prediction purposes. 

 

- A Bayesian model capable of accounting for nonlinearity behaves in much the same way 

as complex deep learning techniques for predicting complex traits in polyploids with the 

advantage of providing an estimate (although not orthogonal) of the different sources of 

variation. 

 

- The performance of deep learning modeling is highly dependent on the hyperparameter 

tuning and must be adjusted for each trait individually. In most cases, shallow networks 

are the best architecture. 

 

- Shape-related phenotypes in fruits and animals can be automatically retrieved through 

automatic analysis of digital images. A major advantage is that the provided methods only 

used unsupervised or semi-supervised segmentation for feature extraction. We show 

shape-related phenotypes are moderately heritable. 

 

- Deep generative networks are promising tools to generate synthetic fruit images, which 

could have important implications for breeding, as it is an easy way to synthetically produce 

the appearance of a given organism (e.g., fruit, animal) conditioned to a genotype.   

 

- We provide a tool to integrate the microbiome and other omics layers, taking into account 

the sparse and non-continuous nature of sequence data, which was able to identify 

microbial signatures related to methane emission in cows. We propose a test to carry out 

‘taxa set enrichment analysis’, which facilitates the biological interpretation of the 

“microbial signatures”.   
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Annexes  

 

Supplementary Material Chapter 5 

 

Algorithm Sup 1:  
 
This is the pseudo-code used for automatic morphology analysis for strawberry images. The code 
can analyze any fruit shape in similar conditions (homogeneous background) and it can be easily 
extended for custom purposes.  
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Algorithm 1: Create a segmented fruit database from raw data 
n: number of images to process.  
for i=1 to n do:  

1. Read image  
2. Convert RGB/BGR image into a grayscale image.  
3. Smooth image using Gaussian filtering  
4. Binarize image using mean based adaptative thresholding methodology 
5. Apply erosion + dilation (Opening operation) 
6. To obtain image contours  
sh=[] (empty list) 
for c in contours do:  

1. Obtain h, w (contour height and width) 
2. Obtain x, y (contour position in the main image)  
3. If 1.1<(h/w)<3 (What is the expected aspect  for fruits?) :  
            sh+=c      
            Analyze sh color pattern (to determine whether it is the inside or outside of the  fruits) (Skip this step if your fruits 
are all inner (outer)) 
4. Get the ROI (Region of interest) from the RGB/BGR image. 
5. Create an equal size image for each contour 

7. Use OCR (Optical character recognition) to read the image label  
8. Output a folder named by (7) containing the sample images (it splits inner/outer if necessary) 

 
Algorithm available at https://github.com/lauzingaretti/DeepAFS 
 

https://github.com/lauzingaretti
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Cross 
number 

Male Female 
Number of 
seedlings  

1 P-01 P-06 20 

2 P-27 P-06 20 

3 P-16 P-06 20 

4 P-15 P-06 20 

5 P-13 P-11 20 

6 P-25 P-11 20 

7 P-31 P-11 20 

8 P-11 P-19 20 

9 P-22 P-16 20 

10 P-17 P-16 20 

11 P-28 P-23 20 

12 P-16 P-23 20 

13 P-03 P-07 20 

14 P-24 P-07 20 

15 P-08 P-07 20 

16 P-12 P-02 20 

17 P-04 P-09 20 

18 P-23 P-09 20 

19 P-20 P-10 20 

20 P-30 P-10 20 

21 P-18 P-10 19 

22 P-21 P-10 19 

23 P-14 P-05 20 

24 P-18 P-29 20 

Total number of seedlings 478 

Total number of parentals 30 

Total number of individuals 508 
 
Supp Table 1. Scheme of the crosses used in the experiment. This consisted of 24 crosses among 
30 parentals, with 20 individuals for all the crosses, except for 2 that only contained 19 
individuals. 
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Male Female Seedling 

P-23 P-24 P-01 

P-08 P-03 P-02 

P-32 P-39 P-03 

unknown unknown P-04 

unknown unknown P-05 

P-33 P-40 P-06 

P-34 P-43 P-07 

P-35 P-44 P-08 

unknown unknown P-09 

P-21 P-41 P-10 

P-45 P-42 P-11 

P-36 P-41 P-12 

unknown unknown P-13 

P-37 P-12 P-14 

unknown unknown P-15 

P-24 P-48 P-16 

P-38 P-08 P-17 

P-08 P-46 P-18 

P-03 P-12 P-19 

unknown unknown P-20 

P-33 P-42 P-21 

unknown unknown P-22 

P-33 P-32 P-23 

unknown unknown P-24 

P-24 P-42 P-25 

unknown unknown P-27 

P-03 P-46 P-28 

P-36 P-47 P-29 

unknown unknown P-30 

unknown unknown P-31 
 
Supp Table 2. Scheme of the pedigree used in the analysis.  
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Procrustes PCA: Procrustes Principal Component analysis (Proc-PCA) on fruit shape. We 
evaluated the effect of the crosses on the fruit shape through a Procrustes analysis of variance 
using residual randomization permutation procedure with 101 permutations.  
 
 
 

 
 

Supp Fig. 1 Output plot from Procrustes Principal Component Analysis (Proc-PCA). The 
analysis shows a variation between ‘elongated’ and ‘globose’-like shape.  

 

 
 
 
 

            Df     SS        MS     Rsq      F      Z.        Pr(>F) 

crosses        24 0.5388 0.0224483 0.05525 4.5615 7.4238      0.009901 ** 

Residuals 1872 9.2126 0.0049213 0.94475               

Total     1896 9.7514                                 

--- 

Signif. codes:   

0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 

 

Supp Table 3. Output from Procrustes ANOVA, which evaluates the effect of the crosses on 
fruit shape.   
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Fourier Analysis 
 

 
 

Supp Fig. 2. Output from elliptical Fourier analysis.  
 

 

 
 

Supp Fig. 3.  Shape variation derived from PCA on Elliptical Fourier Analysis.  
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Supp Fig. 4.  Clustering on the Elliptical Fourier components characterizing fruit shapes. 
When cluster number is set to two, the two characteristics shape are ‘elongated’ and 
‘globose’ like, as shown by the black contours.   
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Variational Autoencoder to describe shape categories:  We discovered shape categories from 
the latent space generated by a variational autoencoder deep neural network. The details are in 
the main manuscript. Here, we present the silhouette score of the clusters on the latent space 
varying between 2 to 9, the k-means clustering and two representative fruits of each cluster. 
 

 
Supp Fig. 5 Silhouette analysis for number of clusters on shape latent space from Variational 
autoencoders output. The index is the mean silhouette score through all the clusters.  The 
optimal number of clusters is 2, i.e. there are two main shapes for strawberries in this database. 

 
 
 
 

 
Supp Fig. 6 Left: silhouette plot for each cluster (0 and 1). Right: visualization of the clustered 
data in the latent space.  
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Supp Fig. 7 The upper panel shows two examples of fruit belonging to the cluster 0, i.e. these 
are ‘elongated’ fruits. The lower panel show two examples of fruit on the cluster 1, these fruits 
have a ‘globose’ appearance.    
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Heritability evaluation  
 

Trait h2a h2a_sd h2d h2d_sd 

Like- red 0.21 0.08 0.23 0.09 

Pale 0.30 0.10 0.24 0.10 

Like orange 0.18 0.07 0.20 0.07 

Shape cluster 0.21 0.07 0.25 0.09 

A_channel 0.20 0.07 0.20 0.08 

B_channel 0.20 0.08 0.22 0.08 

L_channel 0.20 0.07 0.26 0.09 

Fruit height 0.22 0.08 0.23 0.09 

Fruit width  0.16 0.06 0.24 0.10 

Widht_at_75 height 0.18 0.06 0.25 0.10 

Widht_at_25 height 0.16 0.05 0.21 0.10 

widht_at_half_height 0.16 0.06 0.23 0.09 

Area 0.16 0.06 0.25 0.10 

Perimeter 0.21 0.07 0.20 0.08 

Solidity 0.20 0.08 0.20 0.08 

circularity 0.25 0.09 0.20 0.08 

EllipseRatio 0.28 0.11 0.19 0.07 

Hight/ width  0.28 0.10 0.22 0.09 

Tip 0.21 0.08 0.24 0.09 

Neck 0.21 0.08 0.20 0.07 

Left side 0.21 0.08 0.22 0.08 

Right side 0.21 0.08 0.26 0.10 

Elliptical Fourier 
PC1 

0.25 0.09 0.20 0.08 

Elliptical Fourier 
PC2 

0.25 0.09 0.27 0.10 

Suppl. Table 4 Heritability values for all the shape and color related 

traits, the additive and dominant components were evaluated.  
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