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ABSTRACT 

 

The inner workings of cells can be understood as an interplay of 

interactions between biomolecules, forming a network known as the 

interactome. Drugs and diseases can be considered as 

perturbations in this network, modulating directly specific molecules, 

but indirectly communities of molecules whose interactions are 

affected by the perturbation. Network medicine seeks to accurately 

represent and analyze biological networks to understand diseases 

and find safer and more effective treatments. In this thesis, I present 

several in silico tools for network medicine, addressed to study the 

molecular mechanisms of diseases and drugs. These tools are used 

in a wide range of novel and diverse applications of network 

medicine, such as the study of comorbidities, endophenotypes, side 

effects, drug combinations and drug repurposing. 
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RESUM 

 

El funcionament intern de les cèl·lules pot entendre’s com un conjunt 

d’interaccions entre biomolècules, formant una xarxa que coneixem 

amb el nom d’interactoma. Els fàrmacs i malalties poden considerar-

se pertorbacions d’aquesta xarxa, modulant directament molècules 

específiques, però indirectament comunitats de molècules les 

interaccions de les quals es veuen afectades per la pertorbació. La 

medicina de xarxes busca representar i analitzar amb precisió les 

xarxes biològiques, per tal d’entendre millor les malalties i 

aconseguir tractaments més segurs i eficaços. En aquesta tesi, 

presento diverses eines in silico basades en la medicina de xarxes, 

pensades per estudiar els mecanismes moleculars de malalties i 

fàrmacs. Aquestes eines s’utilitzen en un ampli ventall d’aplicacions 

de la medicina de xarxes, com per exemple l’estudi de comorbiditats, 

endofenotips, efectes secundaris, reutilització i combinació de 

fàrmacs. 
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PREFACE 

 

It was the 1st of October of 2014 when I first heard about the words 

“network medicine”. Professor Enrique Querol, our teacher of omics-

sciences during my Bachelor’s in Biotechnology, recommended us 

to go to the talk that was opening the course 2014-15, which was 

given by one of his former students. As Enrique was one of my 

favorite teachers, I decided to follow his advice and attend to the talk. 

At this moment, I couldn’t imagine it, but this decision influenced a 

lot the shape that my career took until now.  

 

The talk, given by Dr. Patrick Aloy, introduced us the concept of 

network medicine. How this discipline allows us to organize and 

analyze the thousands of records of experimental data about 

molecules and interactions using networks. He also stressed the 

close relationship of this discipline with pharmacological and clinical 

data, aiding the understanding of diseases and guiding the drug 

development process. I suspect that it was many factors (maybe how 

organized are networks, or maybe how analyzing data can have an 

impact in medicine), but this talk clarified a lot my scientific itinerary.  

 

Two years later, I found in Professor Baldo Oliva’s lab, who is 

precisely one of Aloy’s mentors, the perfect environment to start my 

personal quest in network medicine. Baldo gave me the freedom to 

explore different projects which at the beginning seemed 

disconnected, but after some time working in them, I could 

appreciate how network medicine was linking them. This thesis is 

the result of my initial years exploring this young discipline, learning 

bit by bit from it. 
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 The human interactome 

 

1.1.1. Molecules conforming the human interactome 

 

The human organism is made of cells, which are the structural and 

functional units of life. Each cell type is different and carefully placed 

within organs and tissues to undergo a specific function. At 

molecular level, cells are made of a wide collection of different 

molecules that interact between themselves: deoxyribonucleic acid 

(DNA) and ribonucleic acid (RNA) molecules, genes, proteins, and 

metabolites, to name just a few.  

 

The instructions for each organism are encoded within the sequence 

of the DNA. The DNA is a double helical structure composed of 4 

types of nucleotides: adenine, guanine, cytosine and thymine (in 

eukaryotic organisms). These bases are organized precisely in a 

sequence that in human can be comprised of about 3 billion 

nucleotide bases (1). DNA molecules are organized in 

chromosomes, placed in the nuclei of cells, and are inherited from 

the parents after a molecular recombination of the parental 

chromosomes during the process of meiosis. A small fraction of the 

DNA is also located in the mitochondria, a small cellular organelle, 

and is inherited exclusively from the mother. The complete set of 

DNAs of an organism is called genome.  

 

About 1% of the genome is made of genes, the coding regions of the 

DNA. Genes are sequences of nucleotides with the capacity to 

encode the synthesis of proteins. This process is described by the 

central dogma of molecular biology: DNA is transcribed by another 
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type of sequence called messenger ribonucleic acid (mRNA) that in 

tun is translated into proteins. 

 

But what are proteins? Proteins are the brick and mortar of the cell, 

the structural molecules that are used to build the scaffold of cells. 

But they are also functional units, being involved in virtually all the 

processes occurring in and out of cells that ensure the correct 

functioning of our body. In order to carry out their functions, proteins 

interact with each other and with other biomolecules. At a global 

view, each cell in the human body can be seen as a complex network 

of proteins specifically interacting with other proteins to execute the 

functions of the cell. This is often referred as protein-protein 

interaction (PPI) network or as the human interactome.  

 

 

1.1.2. Omics sciences to study the human 

molecules 

 

The last couple of decades has witnessed a notable advance on the 

technological development that has ushered the so-called ‘omics 

technologies. Indeed, several branches of science have emerged 

with the purpose to identify and characterize all the biomolecules that 

explain the functioning of the human organism. These disciplines are 

known as “omics” because their names end with the suffix -omics, 

which is used to refer to high-throughput technologies (2). They 

usually employ experimental and computational techniques to 

compile largescale datasets of biomolecules and understand their 

role. Therefore, they are closely related with bioinformatics. Here, 
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we will focus on three omics: genomics, proteomics and 

interactomics: 

 

 Genomics: Genomics is a discipline that studies the 

structure, content, and evolution of the genome. It has the 

objective of elaborate genetic maps, detailed genomes, 

annotation of genes, identify the genome variability between 

different individuals, analyze the expression and function of 

genes. 

 

 Proteomics: Proteomics studies the proteome, which is the 

collection of proteins encoded by the genome. It has several 

sub-branches: (i) proteomics of expression, identifies and 

quantifies proteins and identifies their cellular location; (ii) 

functional proteomics, determines the function of proteins; 

(iii) structural proteomics, studies the tridimensional structure 

of proteins. 

 

 Interactomics: Interactomics is a sub-branch of proteomics 

that studies the interactions between proteins. As mentioned, 

proteins do not act alone, carry out their function through 

complex network of interactions known as the interactome. 

Interactomics identifies the interactions between proteins 

and characterizes their role and mechanism. 
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1.1.3. The underlying PPI network of a cell 

 

Recent advances in molecular biology offer us information on a wide 

range of cellular components as individuals. However, as we 

observed in the previous sections, to understand the complexity of 

the human organism, we need to represent the cell as a network of 

interacting components. These components (proteins, genes, 

metabolites…) interact with each other to exert the cellular functions 

(3). 

 

The underlying network of a cell, also known as interactome, is made 

by the interactions of all these cellular components. The interactome 

can be represented either as a multilayered network of different 

molecules interacting with each other, or as separated networks of 

the distinct types of interaction. Proteins are the key molecules of the 

interactome, as they act as both structural and functional elements 

of the cell. For this reason, among the different types of biological 

networks, the PPI network is especially important to understand the 

molecular mechanisms. The question is, how to detect reliable PPIs? 

How can we unveil the molecular details of the PPIs?  And how can 

we represent them as a complete network? 

 

 

1.1.4. Types of PPI detection methods 

 

The first step in the process of building a complete PPI network is to 

detect the PPIs, which are estimated to be approximately  650,000 

(4) from 10,000 different types (5). There is a wide diversity of 

methods to find and study PPIs (Table 1). These methods can be 
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classified in different ways depending on their nature, the scale of 

the experiment or the level of detail of the results (6). 

 

Table 1. Experimental PPI detection methods classified by scale and 

result resolution. 

 

Method Yield 

Result resolution 

Co-expression 
/ localization 

Complex 
Binary 

interaction 
Interface Structure 

Co-
localization 

High 
     

Protein 
microarrays 

High 
     

RNA-seq High 
     

Tandem 
Affinity 

Purification 
High 

     

Anti-tag 
coimmunop
recipitation 

High 
     

Yeast Two-
Hybrid 

High 
     

Nuclear 
Magnetic 

Resonance 
Low 

     

X-ray 
crystallo-
graphy 

Low 
     

Cryo-
electron 

microscopy 
Low 

     

Micro-
electron 

diffraction 
Low 
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Depending on the nature of the techniques used, PPI detection 

methods can be considered experimental or computational. 

Experimental methods are timely and economically expensive. 

They can either be in vivo (using a living organism) or in vitro (outside 

the normal biological context). In contrast, computational methods 

use as basis the knowledge generated by experimental methods to 

infer new predictions. Therefore, computational methods have 

smaller costs and can be used as a complement of the experimental 

methods. The predictions of computational methods must be 

validated with experimental methods. Thus, the quality of their 

predictions will rely on the quality of the experimental data used to 

infer and validate the predictions. 

 

Depending on the scale of the experiment, PPI detection methods 

can be classified as low-throughput when a small set of proteins is 

studied, or high-throughput when a large set of proteins is 

systematically studied. High-throughput methods can detect large 

datasets of PPIs, but they also tend to detect false positive 

interactions (7,8). Yet, there are also high-throughput methods such 

as yeast two-hybrid which, on the contrary, do not detect many false 

positives but tend to miss true positives. 

 

Finally, depending on the level of detail of the results, PPI detection 

methods can be classified in five groups (see Figure 1 for a 

schematic overview): 
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(1) Methods to detect co-expressed and co-localized 

proteins 

 

A clear sign of an interaction between two or more proteins 

is that they are found in the same place (co-localization) at 

the same time (co-expression). Although co-expression and 

co-localization are not sufficient to ensure that an interaction 

will exist, they have been used to predict functional 

relationships between proteins, validate experimental results 

or remove false interactions (9). Co-expression methods 

include techniques such as microarray or RNA-seq. Co-

localization methods are usually based on the fluorescent 

labelling of proteins (10). 

 

(2) Methods to detect proteins belonging to the same 

cellular complex 

 

Proteins belonging to the cellular complex are more likely to 

interact with each other. The methods that detect interactions 

between groups of proteins without pairwise determination 

are called co-complex methods. The most common co-

complex method is tandem affinity purification. Tandem 

affinity purification consists in tagging an individual protein 

(bait) and using it to catch a group of proteins (preys), which 

later are separated and identified. Co-complex methods are 

usually high-throughput techniques, which can make PPI 

detections at large scale. However, they do not necessarily 

detect physical interactions, as not all the proteins of the 

complex have to interact with each other, giving rise to a high 
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number of false positives in comparison with more specific 

methods (8,11). 

 

(3) Methods to detect binary PPIs 

 

These methods uncover physical, i.e., direct, interactions 

between pairs of proteins. They can either be low or high-

throughput methods, but generally they are designed to 

study smaller sets of proteins than co-complex methods, 

therefore being more precise in detecting physical 

interactions. The most extended group of methods to predict 

binary PPIs are Protein Complementation Assays. In this 

group of methods, the two proteins of interest (bait and prey) 

are covalently linked to incomplete fragments of a third 

protein (reporter). If the bait and prey proteins interact, the 

reporter proteins get close enough to become functional and 

detectable. Among Protein Complementation Assays, we 

find the Yeast Two-Hybrid method, which is one of the most 

popular PPI detection methods (6,8).  

 

There are also computational methods that have been 

developed to complement these experimental methods: 

genomic-based methods such as gene fusion, conservation 

of gene neighborhood or phylogenetic profiles; experimental 

knowledge-based methods such as interologs, domain 

profiles or sequence signatures; evolution-based methods 

such as correlated mutations or phylogenetic mirror trees 

(12). 
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(4) Methods to study the interface of PPIs 

 

In a PPI, the interface is the part of the proteins that is 

interacting. Defining the interface is essential to understand 

the molecular mechanism of the interaction (13). The most 

straightforward methods to define the interface of interaction 

between two proteins are the methods that determine the 

structure of the interaction. Apart of these methods (which 

are explained in more detail in the following point), there are 

experimental methods that determine the interface without 

providing atomic details. For example, detecting the domains 

involved in the interaction by removing domains (14) or 

looking for specific mutations that disrupt the interaction. 

Also, Yeast Two-Hybrid variations applied to identify 

interacting domains (15,16). 

 

There are also several computational methods to predict the 

interface of PPIs. These methods can either be focused on 

identifying binding sites of individual proteins, or on 

identifying pairs of interacting residues (6).  

 

(5) Methods to obtain atomic details of PPIs 

 

These methods focus on obtaining the structural details of 

the residues involved in the interaction. The traditional 

experimental methods to obtain precise structural 

information are Nuclear Magnetic Resonance (NMR) 

spectroscopy and X-ray crystallography. NMR consists in 

applying a magnetic field to the protein sample, producing an 

energy transfer emitting a signal that can be processed to 
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generate a spectrum. However, the signal generated by this 

method is small in comparison with other techniques (17). X-

ray crystallography is the most common method. It consists 

in making the protein sample form crystals that need to be 

suitable for X-ray radiation. The diffraction pattern of the X-

rays is collected and used to calculate the electron density of 

the sample in three dimensions. The main disadvantage in 

X-ray crystallography is to obtain crystals of sufficient quality 

for diffraction. In the recent years there has been a revolution 

due to the advancements in cryo-electron microscopy 

(cryoEM) and micro-electron diffraction (microED). CryoEM 

consists in freezing protein samples in a cryogen and 

observe them in the transmission electron microscope. 

Freezing the samples allows to examine them without 

additional staining that reduce the resolution. Also, it permits 

the samples to tolerate higher electron beam doses (18). 

CryoEM is generally easier use in large complexes, which is 

ideal to solve PPI structures. Another technique gaining more 

and more recognition recently is microED. In microED, 

electrons are accelerated to interact with protein 

nanocrystals and generate a diffraction pattern. The clear 

advantage over X-ray crystallography is that it is easier to 

generate crystals that are suitable for microED. 

 

There are also computational methods to predict the 

structure details of PPIs. The methods can either be based 

on comparative modelling (using as a modelling template the 

structures of two interacting homologs) or docking (sampling 

the possible orientations of the two unbound structures of the 

interacting proteins). 
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Figure 1. Scheme of the different types of experimental PPI detection 

methods classified by the level of detail of the results (from lower to 

higher). In each box, it is shown a schematic figure of the type of PPI 

detection method and a list of the most representative methods. 
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1.1.5. Structural characterization of protein folds 

and PPIs by computational methods 

 

The determination of both individual proteins and PPIs in atomic 

detail is key to understand the molecular mechanism of interactions. 

As seen previously, there are several experimental methods to 

unveil the structural details of PPIs (X-ray crystallography, nuclear 

magnetic resonance, cryoEM, microED). We also dispose of 

important repositories of protein and PPI structures such as the 

Protein Data Bank (PDB) (19) or 3did (20). Yet, the amount of 

experimentally determined 3D structures is limited. Structural 

models derived by computational methods can be used to close the 

gap between the number of known interactions and their structures. 

The process of computationally predict the 3D structure of a proteins 

or PPIs is comprised of two steps: modelling and scoring. In the 

following subsections we review the main strategies to 

computationally model protein folds, PPIs and score them (see 

Figure 2 for a schematic view). 

 

1.1.5.1. Modelling protein folds 

 

There are two types of methods to predict the 3D structure of protein 

folds (Figure 2) (21): 

 

(1) Template-based modelling 

 

This type of method uses a previously determined structure 

of a related protein as a template to model the unknown 

structure of the target protein. The basic steps in template-
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based modelling are: (i) select a closely-related structural 

template by using single-sequence search methods such as 

BLAST (22) to scan sequences from PDB database (19); (ii) 

align the sequence of the protein target with the sequence of 

the template; and (iii) use modelling tools such as Modeller 

(23) or SWISS-MODEL (24) to build models of the target 

protein by performing side-chain optimization of the residues 

that differ from the original template and rebuilding the 

backbone around the insertions and deletions (21). 

 

(2) Template-free modelling 

 

These methods are usually applied when the target protein 

is not similar to any of the known structures in PDB. The 

methods usually implement a conformational sampling 

strategy that generates multiple candidate models, and a 

scoring function that ranks the models by their quality. Briefly, 

the process usually starts with a multiple-sequence 

alignment of the target protein and related homolog 

sequences. The alignment is used to predict local structural 

features from the secondary structure, and non-local features 

such as residue-residue contacts or inter-residue distances. 

These features guide the process of building 3D models that 

are refined and ranked (21). 

 

Many new methods are starting to use approaches from both 

categories: there are template-based methods that employ energy-

guided model refinement, and template-free methods that exploit 

information from previously known structures applying machine 

learning approaches (21). 
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1.1.5.2. Modelling PPIs 

 

There are two main strategies to predict the 3D structure of PPIs 

(Figure 2): 

 

(1) Comparative modelling 

 

This strategy is used if the sequences of the two interacting 

proteins are known and the structure of the interaction 

between the two homologs in another organism (interologs) 

is available. In this case, we can use the structure of the 

interologs as a template to model the new structure (25). This 

method is based on the principle that the structure tends to 

be more conserved across species than the sequence. 

Therefore, the sequences of proteins that are enough similar 

(homologs) acquire a very similar structural conformation 

(26). In Appendix 6.5, we present MODPIN, a method that 

automatizes the whole comparative modelling process to 

obtain an ensemble of structural models of the PPI of 

interest. These models are clustered according to common 

structural elements in their interfaces and evaluated using 

scoring functions (27). 

 

(2) Docking 

 

This strategy is used if the structures of the two unbound 

interacting proteins are known. Docking methods use these 

structures to sample the possible orientations of the proteins, 

produce several predictions and rank them according to a 

scoring function. Docking methods can be classified in two 
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categories depending on their consideration of the 

conformational changes upon binding: (i) rigid-body docking 

algorithms ignore any conformational change occurring after 

the binding; (ii) flexible-body docking algorithms take into 

account this conformational change in several levels, for 

example by smoothing the protein surfaces, or by allowing 

sidechain and/or backbone flexibility, either during docking, 

or afterwards during a refinement step (28). There is a wide 

range of computational methods to predict PPIs through 

docking (29,30), among which we can find ZDOCK (31), V-

D2OCK (32), HADDOCK (33) or AutoDock (34). 

 

1.1.5.3. Scoring models of proteins and PPIs 

 

In the recent CASP and CAPRI competitions, we have observed a 

dramatic progress in the quality of the template-free models made 

by novel computational methods involving deep learning techniques 

(30,35,36).  However, these methods need to be complemented by 

evaluation methods to know the margins of accuracy when we study 

the role of structural models in a biological system. The evaluation 

methods score and rank the protein fold and PPI models obtained 

so that the best ones are selected.  

 

The evaluation methods applied to score protein folds and the ones 

applied to score PPIs are usually based on the same principles. The 

only difference is that the ones applied to protein folds evaluate the 

whole protein structure, whereas the ones applied to PPIs focus on 

the area of the interface (37). 
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Evaluation methods can be classified into two categories: single- and 

multiple-model methods. Single-model methods only require one 

model as input, whereas multiple-model methods require several. 

The latter ones take advantage of the similarity between the distinct 

models to evaluate them, but they are not based on the properties 

of the model itself. In contrast, single-model methods are often 

based on the geometric and energetic analysis of the model 

coordinates, although some of them may also use additional 

information (e.g. for evolutionary related proteins) (38,39).  

 

For single-model methods, the most common approach is to use 

knowledge-based potentials, i.e. scoring functions derived from the 

analysis of empirical data (40). The global minimum of these scoring 

functions corresponds to the native structure (41). Several 

computational methods have been implemented from knowledge-

based potentials (42–44).  

 

Many scoring functions have been proposed to assess the quality of 

protein fold models (42–49). However, very few can be easily 

accessed as web servers by the non-specialized user. In most 

cases, the web servers have a reduced input flexibility (i.e. only 

accept models in PDB format, require chain identifiers and protein 

sequences, or do not accept multiple structures) and a complicated 

visualization of the results (i.e. do not permit to download results or 

do not have 3D visualization capabilities). There is a need of 

accessible web servers that facilitate this type of analysis (Appendix 

6.7), or integrative platforms such as InteractoMIX (Appendix 6.4), 

which enable a combined, easy-use of different bioinformatics tools 

through the interface of Galaxy (50). 
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Figure 2. Scheme of the computational modelling of protein folds and 

PPIs. On the left box, the two traditional options to model protein folds: (1) 

template-free modelling, and (2) template-based modelling. On the right 

box, the traditional options to model PPIs: (1) docking, and (2) template-

based modelling. 
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1.1.6. Integration of PPIs 

 

The amount of PPI data has importantly increased over the past few 

years. However, we are still far from having a complete, reliable 

interactome made of physical PPIs. The main problems to overcome 

to achieve a complete interactome are the following: 

 

(1) PPI data is spread across multiple databases and 

publications: There are three different types of databases 

where PPI data can be collected. First, there are primary 

interaction databases, which annotate experimental 

interactions directly from the source publications (51–53). 

They provide services such as curating metadata or creating 

standards and ontologies. These databases are coordinating 

their efforts through the IMEx consortium (54). Second, there 

are databases of predicted interactions, where the data is 

provided by computational methods (55,56). Third, there are 

databases that integrate primary and/or predicted 

interactions into a unique database containing physical 

and/or functional interactions (57). 

 

(2) The nomenclature of the proteins is different: The protein 

identifiers of the different PPI databases are not unique. They 

are usually different from database to database. This 

complicates to have a uniform system to identify proteins. 

 

(3) There are different formats to store PPIs: There are still 

different types of formats to store PPIs, although standard file 
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formats such as PSI-MI and BIOPAX are improving the 

access to this type of data. 

 

(4) The reliability of the PPI data varies on each experiment: 

All the PPI detection methods are subjected to some degree 

of error. Some experiments will be more prone to induce 

errors than others. For example, high-throughput methods 

will be more likely to have false positives, whereas low-

throughput methods will have more false negatives. When 

integrating PPI data to create an interactome, the reliability 

of these methods has to be taken into account.   

 

(5) Tissue-specific interactions are not generally 

considered: Some PPIs are tissue-specific, because the 

proteins are expressed in specific tissues in given 

circumstances. Therefore, some PPIs that are reflected in 

generals PPI networks might not happen depending on the 

tissue. 

 

Several resources and databases have been developed during the 

recent years to integrate PPI data and other types of omics data 

(Table 2). These resources gather PPIs from different species by 

parsing multiple sources of data. The unification criteria of the 

proteins differs depending on the database: most of them unify 

proteins by Uniprot Accession ID (APID (58), ConsensusPathDB 

(59), InBioMap (60), IID (61)), whereas some others opt to use more 

complex unifications, such as BIANA (62), which gives the user 

flexibility to decide the criteria of unification.   
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The integration resources usually employ their own methods to 

assess the reliability of the interactions. For example, 

ConsensusPathDB (59) uses an algorithm called IntScore (63) 

based on the topology of the network. InBioMap (60) uses a score 

that combines network topology with the number of publications in 

which the PPI has been reported. In contrast, HIPPIE (64) assesses 

the interactions by combining multiple criteria such as number of 

publications, number and quality of experiments and number of 

interacting orthologs. 

 

Some of these resources have started to incorporate tissue-specific 

interactions by integrating data from RNA-seq datasets. It is the case 

HIPPIE (64), which was pioneer in incorporating tissue-specific 

information from 53 human tissues from GTEx (65). They considered 

that a gene is expressing a protein in a given tissue if the median 

expression over samples exceeds the RPKM (Reads Per Kilobase 

Million) threshold of 1 (66). 

 

Table 2. Resources and databases of PPI integration. 

 

Integration 
resource 

Sources Species Unification 
Assessment 
of reliability 

Tissue-
specificity 

APID (58) 
BioGRID, DIP, 
HPRD, IntAct, 
MINT, BioPlex 

All 
available 

Uniprot 
accession ID 

Based on the 
detection 
method, 

source, and 
publications 

No 

BIANA (46) 

Defined by the 
user. By default: 

BioGRID, 
InnateDB, IntAct 

All 
available 

Defined by 
the user. By 

default: 
Gene ID, or 

same 
sequence 
from same 

species 

Defined by the 
user 

Yes, based 
on GTEx 
RNA-seq 

data 
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Consensus 

PathDB (59) 

BIND, InnateDB, 
MatrixDB, 
PDZBase, 

PhosphoPOINT, 
PhosphoSitePlu

s, PINdb 

Human, 
yeast, 
mouse 

Uniprot 
accession ID 

IntScore: 
score based 
on network 
topology 

No 

HIPPIE (64) 
BIND, BioGRID, 

DIP, HPRD, 
IntAct, MIPS 

Human 

Gene 
symbol, or 

Entrez Gene 
ID, or 

Uniprot 
accession ID 

Score based 
on the number 
of publications, 

number and 
quality of 

experiments, 
and number of 

interacting 
orthologs  

Yes, based 
on GTEx 
RNA-seq 

data 

InBioMap 
(60) 

BIND, BioGRID, 
DIP, IntAct, 
MatrixDB 

Human 
Uniprot 

accession ID 

Score based 
on the number 
of publications 
and network 

topology 

No 

iRefIndex 
(67) 

BIND, BioGRID, 
CORUM, DIP, 

HPRD, 
InnateDB, 

IntAct, 
MatrixDB, 

MPact, MPIDB, 
MPPI, 

VirHostnet 

All 
available 

SEquence 
Global 
Unique 

IDentifiers 

Score based 
on the number 
of publications 

No 

IID (61) 

BioGRID, DIP, 
HPRD, I2D, 
InnateDB, 

IntAct, MINT 

Human, 
mouse, 

pig, 
rabbit, 

rat, 
sheep, 
turkey, 
worm, 
yeast 

Uniprot 
accession ID 

Filter 
interactions 
based on 
types of 

detection 
methods 

Yes, based 
on NCBI 

GEO 

STRING (57) 

BIND, BioGRID, 
DIP, HPRD, 
IntAct, MINT, 

PID 

All 
available 

Protein 
sequence 

Confidence 
score based 
on pathway 
knowledge 

and orthologs 
data 

No 
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 Network biology: Apply network science to 

study the interactome 

 

To fully understand the functioning of the human organism it is 

required a holistic and inclusive view that relies on a system-based 

approach studying the relationships between all the biomolecules. 

Given the interrelated nature of cellular processes, network analysis 

is particularly suited to study their molecular mechanisms. Applied to 

biological systems, the nodes of the network can represent proteins, 

genes or even diseases, while the edges are the relationships 

between these biological entities. There are different types of 

network representations that are used to study the human organism 

(Table 3): (i) protein interaction networks: where nodes are 

proteins and edges are physical interactions; (ii) metabolic 

networks: where nodes are metabolites and proteins, while edges 

are metabolic reactions; (iii) gene regulatory networks: where 

nodes are transcription factors and genes, while edges are 

regulatory interactions; and (iv) disease networks: where nodes are 

diseases, while edges represent different types of relationships such 

as shared genes (68). Network biology is the discipline that seeks 

to accurately represent biological networks and analyze them to 

understand the behavior of a biological system. In the following 

subsections, I will review the properties of networks and how they 

help us to better understand different biological systems. 
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Table 3. Properties of different types of biological networks. 

 

Network Type of nodes 
Type of 
edges 

Direction 

Protein 
interaction 

network 
Proteins 

Protein-
protein 

interactions 
No 

Metabolic 
network 

Metabolites, proteins 
Metabolic 
reactions 

Yes 

Gene 
regulatory 
network 

Transcription factors, 
genes 

Regulatory 
interactions 

Yes 

Disease 
network 

Diseases 

Disease-
disease pairs 

sharing a 
property 

No 

 

 

1.2.1. Definition of network 

 

Mathematically, a network or graph (𝐺) can be defined as a pair 𝐺 =

 (𝑉, 𝐸), where 𝑉 is a set of elements called nodes (or vertices), and 

𝐸 is a set of paired nodes, whose elements are called edges (or 

links). More informally, a network can be defined as a structure 

containing a set of elements in which some of them are related. The 

elements composing the network are the nodes, while the 

connections between related nodes are the edges. Applied to 

biological systems, the nodes can represent proteins, genes or even 

diseases, while edges are the relationships between these biological 

entities.  
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1.2.2. Types of networks depending on the 

properties of the edges 

 

Depending on the direction of the relationship that the edges 

represent, networks can be directed or undirected (see Figure 3). A 

network is directed when the interactions have a specific direction 

that goes from a source to a target and that is represented by an 

arrow. In contrast, a network is undirected when the interactions do 

not have a specific direction and are represented by lines. For 

example, PPI networks are mostly undirected, because their edges 

represent interactions between proteins, which generally do not 

follow a specific direction. In contrast, metabolic networks are 

directed, because the edges represent metabolic reactions that start 

with substrates and end with products. Gene regulatory networks are 

also directed, because they represent how the expression of genes 

regulates the expression of other genes. 

 

Networks can also be weighted or unweighted depending on 

whether the edges carry an additional weigh or not. Unweighted 

networks have edges that are placed if a certain threshold of 

evidence for the relationship is reached, whereas weighted 

networks have edges in which a specific property of the relationship 

is indicated by the weight. For example, gene co-expression 

networks are networks where the nodes are genes that are 

connected by the correlation of their expression. These networks can 

be weighted, thus showing the correlation between the expression 

of two genes in the edge weight; or unweighted, only showing the 

edges that meet a certain threshold of correlation. 
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1.2.3. Types of nodes depending on the degree 

 

The main property of a node is the degree (𝑘), which is the number 

of edges directly linked to that node. When the degree of a node 

exceeds the average, the node is considered a hub. In contrast, a 

node of degree 1 (with only one edge) is considered a leaf, and a 

node without edges is an isolated node. In directed networks, we 

can distinguish between in-degree (number of incoming edges to a 

node) and out-degree (number of outcoming edges from a node). 

Also in directed networks, a source node has an in-degree of zero 

(relations only come out from this node and not come in), whereas a 

sink node has an out-degree of zero (relations only come into this 

node and not come out). Examples of the different types of nodes 

are represented in Figure 3.  

 

The degree of a node in a biological network gives us highly valuable 

information about how this node behaves in the network. For 

example, in a PPI network context, the hubs tend to be involved in 

crucial functions for the survival of the cell. In the same way, less 

connected proteins tend to be less essential, and therefore more 

susceptible to changes through the evolution of the species (69,70). 
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Figure 3. Types of nodes depending on the degree associated to 

undirected (a) and directed (b) networks. (a) Undirected network, 

containing edges without specific direction represented by lines. I highlight 

5 hub nodes (in blue) which exceed the average degree, and 6 leave nodes 

(in green) with only one edge. As an example, I highlight one node of degree 

3. (b) Directed network, containing edges with specific direction 

represented by arrows. I highlight 3 source nodes (in red) with in-degree of 

0, and 3 sink nodes (in orange) with out-degree of 0. As an example, I 

highlight one node of in-degree 2 and out-degree 1. 
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1.2.4. Types of networks depending on the degree 

distribution 

 

The degree distribution is the frequencies of degree values of the 

nodes of a network. In other words, it is the probability that a 

randomly selected node has a specific degree value. The degree 

distribution is a very characteristic metric, which allows to distinguish 

different types of networks (71). For example, in random networks, 

the degrees of the nodes follow a Poisson distribution, meaning that 

most nodes have a similar number of edges, approximately the same 

as the network’s average degree (see Figure 4-a). In contrast, many 

biological networks have a degree distribution that follows a power 

law distribution: 

 

 𝑃(𝑘) ~ 𝑘−𝛾 Eq. 1 

 

where 𝑘 is the degree, γ is the degree exponent and ~ indicates 

“proportional to”. The value of γ is represented by many properties 

of the system. These types of networks are called scale-free 

networks and are characterized by not being uniform: most of their 

nodes have only a few edges, and very few nodes have a very large 

number of edges (hubs) (see Figure 4-b). Among the examples of 

scale-free biological networks, we find PPI networks, cellular 

networks, and genetic regulatory networks. 

 

From the degree distribution of the network, we can also obtain the 

average degree (〈𝑘〉), which is calculated in undirected networks as: 
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 〈𝑘〉 =  
2𝐸

𝑉
 Eq. 2 

 

where 𝑉 is the number of nodes and 𝐸 is the number of edges of the 

network. In directed networks, it is calculated using the same formula 

(Eq. 2) but without multiplying by 2. 

 

 
 

Figure 4. Examples of a random network (a) and a scale-free network 

(b) and their corresponding degree distributions. (a) Random network 

following a Poisson distribution, where the majority of nodes have a similar 

number of edges. The network has 25 nodes, 142 edges and an average 

degree of 11.36. (b) Scale-free network following a pawer law distribution, 

where the majority of nodes have few edges and very few nodes have a 

large number of edges (hubs). The network has 25 nodes, 24 edges and 

an average degree of 1.92. 
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1.2.5. Paths: distance between nodes 

 

A path within a network is a connection between two nodes that 

follows a certain number of edges. The length of the path is 

quantified by the number of edges involved in the path. 

Mathematically, we can define a path (𝑃) in an undirected graph as 

a sequence of nodes (𝑣):  

 

 𝑃 = (𝑣1, … , 𝑣𝑛) Eq. 3 

 

such that 𝑣𝑖 is adjacent to 𝑣𝑖+1 for 1 ≤ 𝑖 < 𝑛. The path 𝑃 is called a 

path of length 𝑛 − 1 from 𝑣1 to 𝑣𝑛. 

  

The shortest path between two nodes is the path that contains the 

minimum number of edges to connect them (see Figure 5 for an 

example). The mean shortest path length among all the nodes of the 

network is the characteristic path length. It can be calculated as: 

 

 𝑎 = ∑
𝑑(𝑠, 𝑡)

𝑛(𝑛 − 1)
𝑠,𝑡∈𝑉

 Eq. 4 

 

Where 𝑉 is the set of nodes in the whole network of number 𝑛, and 

𝑑(𝑠, 𝑡) is the shortest path from nodes 𝑠 and 𝑡. The network 

diameter (𝑑𝑚𝑎𝑥) is the longest shortest path between any pair of 

nodes of the network. If there is a path between every node in the 

network, the network is called connected. If not, we call the largest 

connected set of nodes as largest connected component. 

 



Introduction 
 

 33 

 

 

Figure 5. Examples of shortest path and shortest path distribution. (a) 

Example of network, where the shortest path between the dark red nodes 

involves the light red nodes and has a length of 4. (b) Shortest path 

distribution of the previous network, with a characteristic path length of 2.95. 
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The path is a key metric in network science, because it provides 

valuable information about the relationship between a given node 

and the rest of the nodes of the network. For this reason, there are 

many methods applied to the study of biological networks that are 

based on the calculation of shortest paths (72). In PPI networks, 

shortest path methods are used to assign directions to the edges 

(73,74). These methods focus on finding solutions that maximize the 

number of source-target pairs that admit a shortest path between 

them. Another common approach in PPI networks is to use methods 

based on the shortest path to find disease-associated proteins. This 

is because disease-associated proteins tend to cluster in the same 

neighborhoods of the network forming the so-called disease 

modules (75–77). Thus, the lower the shortest path is with known 

disease-associated proteins, the more likely it is of being associated 

with the disease. For example, some of the algorithms developed in 

GUILD software (78) employ shortest path methods to prioritize new 

disease-associated proteins. NetShort algorithm assigns higher 

scores to the proteins of the network if the shortest path between the 

protein and a disease-associated protein includes other disease-

associated proteins. NetScore algorithm scores proteins by 

calculating how fast a message travels from the protein to the 

disease-associated proteins through the multiple shortest paths. The 

shortest path is also used Menche et al. (77) as part of a network-

based metric to calculate the separation between the proteins 

associated with different diseases. The same measure was slightly 

modified in Guney et al. (79) to evaluate the proximity between the 

protein targets of a drug and the proteins associated with a disease. 
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1.2.6. Centrality measures 

 

Centrality measures give information about the importance of the 

nodes and edges by assigning them scores. In biological networks, 

centrality measures are used to identify the nodes with crucial roles 

in biological functions. There are different types of measures 

accounting for network centralities that give different types of 

importance to the highest scored nodes. However, different 

centrality measures tend to be correlated with each other, and hubs 

tend to have high centrality. The most important centrality measures 

are the following (see Figure 6 for an example): 

 

(1) Degree centrality: Refers to the number of connections of a 

node. It is defined as: 

 

 𝐶𝐷(𝑣) = deg (𝑣) Eq. 5 

 

Where deg (𝑣) is the degree of the node 𝑣. The degree 

centrality can be normalized by dividing the maximum 

possible degree in a graph 𝑛 − 1 where 𝑛 is the number of 

nodes in the network of interest. By definition, the nodes with 

higher degree centrality tend to be hubs, nodes with a 

number of edges that exceeds the average. As said before, 

hubs tend to be related with essential functions, which are 

less susceptible to changes through the evolution of the 

species (69,70). 
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(2) Closeness centrality: Refers to how close a node is to the 

rest of the nodes of the network by measuring the shortest-

path distance between them. It can be defined as: 

 

 𝐶(𝑢) =
𝑛 − 1

∑ 𝑑(𝑣, 𝑢)𝑛−1
𝑣=1

 Eq. 6 

 

Where 𝑑(𝑣, 𝑢) is the shortest-path distance between the 

nodes 𝑣 and 𝑢, and 𝑛 is the total number of nodes in the 

network. The nodes with larger closeness centrality have 

shorter average propagation length of information to the 

others. Therefore, closeness centrality shows how efficiently 

the nodes of the network transfer information with each other 

(72,80). For example, a study in an Escherichia coli 

metabolic network showed how 8 of the top 10 metabolites 

with higher closeness centrality are part of the glycolysis and 

citrate acid cycle pathway (the most central metabolic 

pathway) (81). 

 

(3) Betweenness centrality: Refers to how often the node is 

present within the group of shortest paths of the network. The 

betweenness centrality of a node 𝑣 can be calculated as: 

 

 𝑐𝐵(𝑣) = ∑
𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡

 Eq. 7 

 

Where 𝜎𝑠𝑡 is the total number of shortest paths from node 𝑠 

to node 𝑡 and 𝜎𝑠𝑡(𝑣) is the number of these shortest paths 

that passes through 𝑣. In other words, it measures the 
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number of times that the node of interest appears among the 

shortest paths between all pairs of nodes. Betweenness 

centrality can be very effective to predict “bridge” or “link” 

nodes that connect different neighborhoods or modules of a 

network (72,80). For example, a study in a Saccharomyces 

cerevisiae PPI network reported that proteins with high 

betweenness centrality and low degree are key for the 

modularization of the network (82). Also, in the study of 

Piñero et al. (83) it is reported how disease-associated 

proteins (especially if they are cancer related) have a higher 

betweenness centrality than the rest in PPI networks.  
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Figure 6. (a) Degree, (b) closeness and (c) betweenness centrality of 

the nodes of a scale-free network. The three centrality measures have 

been normalized to a scale from 1 (the highest) to 0 (the lowest). 
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1.2.7. Network modules and clustering measures 

 

In many types of biological networks, it is common that the nodes 

that have similar roles or functions interact with each other, forming 

clusters known as modules or communities. For example, in PPI 

networks, it is possible to identify modules of: 

 

(1) Proteins executing the same or similar functions (84,85). 

(2) Proteins forming complexes (85,86). 

(3) Proteins associated to the development of a disease (75–

77). 

 

Therefore, the identification modules in a network can be key to 

understand better the biological implications of the module 

members.  

 

There are several metrics and algorithms that tell us about the level 

of clustering of nodes. A clear example is the clustering coefficient, 

which describes the probability that two nodes that are connected to 

another node are directly connected between themselves (forming a 

triangle). The local clustering coefficient of a node measures the 

number of possible triangles present in its neighborhood (Figure 7), 

and can be calculated as: 

 

 𝐶𝑖(𝑣) =
2𝐿𝑖

𝑘𝑖(𝑘𝑖 − 1)
 Eq. 8 

 

Where 𝑖 is the node of degree 𝑘𝑖, and 𝐿𝑖 denotes the number of 

connections between the neighbors of node 𝑖. By calculating the 
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average local clustering coefficient of all the nodes of the network 

we obtain the average clustering coefficient of the network, which 

describes the degree of clustering of the network. 

 

 
 

Figure 7. Local clustering coefficient of the nodes of a scale-free 

network. The nodes that form a higher number of triangles with other nodes 

obtain a higher local clustering coefficient. The average clustering 

coefficient of the network is 0.11. 

 

There are also many different algorithms to directly identify modules 

in the network. These algorithms are usually classified into two 

different categories. The first category includes algorithms that use 

prior knowledge on nodes that have some kind of relationship which 

is common in certain modules of the network. These nodes are 

known as seeds. These algorithms identify the neighborhood of 

nodes that are topologically closer to the seeds. The second 
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category includes methods that identify the modules “ab initio”, using 

community structure detecting algorithms. These methods analyze 

the topology of the network and identify the neighborhoods with 

properties that are common in modules, such as high within-edge 

density of connections. Module identification algorithms are 

extensively used to identify disease modules, which are modules 

composed by proteins whose function is perturbated by the same 

disease and which tend to be in the same neighborhood of the 

interactome. These algorithms are explained in more detail in 

Chapter 1.3.1.2 “Identification of disease modules”. 

 

 

1.2.8. Network robustness 

 

Robustness (or resilience) is the ability of the network to respond to 

internal mechanistic failures or external conditions while maintaining 

a relatively normal behavior (71). Robustness depends on several 

factors such as the topology of the network and the functional and 

dynamic changes that the perturbations involve.  

 

The topology of the network is key to define the robustness that the 

network will have (71). Depending on the type of topology, the 

network will be more or less resilient to changes. The simplest 

definition of network robustness is to test the network topological 

changes by removing a proportion of nodes or edges. When the 

removal proportion exceeds a critical value, the network is 

disintegrated into smaller and disconnected components (72). For 

example, a random network is less robust, because if a critical 

number of nodes is removed, the network becomes a group of tiny, 
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isolated nodes. In contrast, scale-free networks are extremely 

resilient to changes: even if 80% of randomly selected nodes are 

removed, the remaining 20% still form a fully connected network with 

paths connecting any two nodes. This is explained by the degree 

distribution of these networks. Scale-free networks have a high 

number of nodes with a small degree, and a small number of nodes 

with high degree. Therefore, random removal of nodes will affect 

mainly nodes with a small degree, the absence which will not affect 

the integrity of the network. In contrast, in random networks, the 

majority of nodes have a similar number of edges. This property 

makes them much more vulnerable to the removal of nodes (71). 

 

In general, there are two types of network failures: random failures 

(e.g., random removal of nodes) and intentional attacks (e.g., 

removal of network hubs). Random networks are very vulnerable to 

both type of failures. In contrast, scale-free networks are robust 

against random failures but especially vulnerable to intentional 

attacks (87). 

 

Robustness is a common property in many complex systems, and 

biological systems are not the exception. This robustness is 

achieved through different mechanisms such as feedback (88), 

redundancy (89), or functional modularity (90). Robustness protects 

the biological system from failures such as gene mutations that affect 

protein–protein interactions (91,92) or removal of enzymes in 

metabolic networks (93). In the context of PPI networks, Guney et 

al. (94) studied the robustness associated to the disease modules of 

complex diseases. They showed that even when randomly removing 

interactions, some diseases conserved the interconnectivity of the 

core proteins associated with the diseases (see Figure 8 for a 
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graphic explanation). This is related with the high betweenness 

centrality of disease-associated genes of some disease classes 

(83,95). 

 

 

 

Figure 8. Impact of randomly removing edges of the interactome on 

the prediction of disease-associated genes. (a) Example of the removal 

of an edge in the protein interaction network. (b) Effect of the edge removal 

on the prediction of disease-associated genes (by the algorithms NetScore, 

NetZcore and NetShort) in the form of the Area Under the Receiver 

Operating Curve (AUROC). Surprisingly, the AUROC increases as the 

number of edges removed increases, which shows the ability of disease-

associated genes to preserve their connectivity despite losing interactions. 

This is aligned with the high betweenness centrality of disease-associated 

genes of some diseases (83,95). The figure is based on the study of Guney 

et al. (94) and Figure 1 from Aguirre-Plans et al. (96). 
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 Network medicine: towards a better 

understanding of human disease 

complexity 

 

At molecular level, the inner workings of cells can be understood as 

an interplay of interactions between biomolecules underpinned by 

interconnected networks, forming the interactome. Accordingly, 

diseases can be considered as perturbations in these networks, 

influenced by genetic and/or environmental factors that affect the 

normal functioning of the organism. Although our knowledge of 

human biological networks is still far from being complete, network-

based methods are valid approaches to explore the molecular 

mechanisms of diseases and comorbidities (i.e. two diseases or 

more that are more likely to co-occur in the same patient). Network 

medicine is the discipline of network biology that seeks to accurately 

represent biological networks and analyze them to understand 

diseases and find the right treatments. In the following subsections, 

I will review the advances of network medicine towards a better 

understanding of human disease complexity. 

 

1.3.1. Disease-gene associations 

 

1.3.1.1. The genetic basis of diseases 

 

The genome is the genetic material within the organism. It is 

comprised by genes, DNA regions that synthetize and regulate the 

proteins of the interactome. The genome is one of the main factors 
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that gives rise to the phenome, the observable structure, function, 

and behavior of an organism.  

 

The genetic information encoded in the genome does not remain 

unchanged in an organism. On the contrary, it is a constant target 

for new or inherited alterations in the sequence of the DNA that we 

call genetic variants. Depending on the frequency of occurrence of 

the genetic variants in the population, we can classify them as 

common, when the frequency is equal or higher than 1% in the 

population; or as rare, when the frequency is lower than 1%. Also, 

depending on the number of nucleotides involved in the alteration, 

they can be classified as single-nucleotide variants or 

polymorphisms, when only a single nucleotide is involved; or as 

structural variants, when involve a large number of nucleotides; there 

are also small-scale variants such as insertions or deletions, 

involving a few nucleotides (97,98). If the genetic variants are 

detectable within germ cells (and therefore they can be inherited), 

they are called germline variants, while if they occur in any cell other 

than a germ cell (therefore not being inherited), they are called 

somatic variants. Although some of these alterations might not 

produce an observable effect, some others might affect molecular 

functions which alter the phenotype and end up being beneficial or 

counterproductive for the organism. The variants that are 

counterproductive or deleterious to the organism are called 

pathogenic variants and they might be one of the factors or the main 

cause of a disease (68). 

 

Diseases are perturbations in the structural or functional parts of the 

body that alter homeostatic processes. They are characterized by 

specific signs, symptoms, and biochemical patterns, i.e., a specific 



Introduction 
 

 47 

phenotype. The diseases that are caused or influenced by genetic 

variants and are known as genetic diseases. Depending on the 

genetic architecture that is causing the phenotype of the disease, 

genetic diseases are classified in the following categories (68): 

 

 Single-gene disorders: Also called monogenic or 

Mendelian diseases, they are diseases caused by germline 

variants that only affect an individual gene. These diseases 

tend to be strongly linked to a genetic component rather than 

to other factors such as the environment.  

 

 Oligogenic disorders: They are diseases caused or 

influenced by variants in only a few genes. 

 

 Mitochondrial disorders: They are caused by alterations in 

the mitochondrial DNA or the nuclear DNA encoding 

mitochondrial proteins, provoking a dysfunction in the 

mitochondrial respiratory chain. As they affect the 

mitochondrial DNA, they have different patterns of 

inheritance to the rest of germline variants. 

 

 Chromosomal abnormalities: They are diseases caused 

by chromosomal abnormalities involving changes in 

chromosome number or large physical changes in 

chromosome structure.  

 

 Complex diseases: They are diseases caused by the 

interplay of multiple genetic variants in different genes with 

small additive effects, apart from the influence of other 

factors such as the environment or epigenetics. The results 
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of genomic studies and predictions from statistical models 

(99,100) indicate that the genetic architecture of complex 

diseases is composed by two types of genetic variants: (i) a 

large number of common variants of small effect distributed 

throughout the genome and (ii) a smaller contribution from 

rare variants with moderate effect in genes known to cause 

the familial form of the disease. 

 

 Cancer: Cancer is characterized by the interplay of multiple 

genetic variants that causes an uncontrolled growth of cells 

and tissues. While cancer usually arises due to the 

accumulation of variants in somatic cells, it is also influenced 

by germline variants that confer susceptibility to certain types 

of cancer. 

 

 

1.3.1.2. Disease-gene associations: Identification 

methods and databases 

 

The genes which, due to a genetic variant, are involved in a disease 

are known as disease-gene associations. There are several 

methods to identify disease-gene associations. Traditionally, genetic 

diseases were studied with a direct analysis of a candidate gene. In 

the 1980’s, genetic linkage maps, based on analyzing the 

frequencies of recombination between specific gene markers, were 

used to check if certain variants showed similar segregation to a 

particular disease (101). These methods were successful in 

identifying genetic variants associated with single-gene disorders, 

but insufficient in the case of complex diseases and cancer due to 
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their polygenic nature. In this context, the first Genome-Wide 

Association Studies (GWAS) emerged, based on performing tests 

for the association of single-nucleotide variants with diseases in 

large populations of individuals (102). These large-scale studies are 

possible thanks to the rapid advances in Next Generation 

Sequencing (NGS) technologies, which allow to sequence the 

exomes of hundreds and thousands of patients across the world, 

searching for disease-gene associations. 

 

Different resources and databases compile and curate the 

information on disease-gene associations that is spread in the 

scientific literature (Table 4). The most known and widely used 

resource is the Online Mendelian Inheritance in Man (OMIM) 

database (103), which was developed in 1966, and compiles 

associations between human genes and Mendelian diseases. Apart 

from OMIM, there are many other databases that compile and 

manually curate disease-gene associations from the scientific 

literature (104–109). Still, it is a tedious task to gather all the 

information spread over these resources, and this is why a database 

such as DisGeNET (110) emerges, integrating them in a unique 

repository. 
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Table 4. List of disease-gene association databases. 

 

Database Description 
Drug-target 
association 

sources 
URL 

Cancer Genome 
Interpreter (CGI) 

(104) 

Repository specialized on 
predicting and compiling 

cancer driver genes 
potentially causing 

oncogenic alterations 

Scientific literature 
(compilation of 

different datasets by 
manual curation) 

cancergenome 
interpreter.org 

The Clinical 
Genome 
Resource 

(ClinGen) (105) 

Repository that defines 
the clinical relevance of 
genes and variants for 

use in precision medicine 
and research  

Scientific literature 
(by manual 
curation) 

clinicalgenome.org 

Comparative 
Toxigenomics 

Database (CTD) 
(106) 

Database of associations 
between chemicals, 
genes and diseases 

across different species 

Scientific literature 
(by manual 
curation) 

ctdbase.org 

DisGeNET (110) 

Database that integrates 
disease-gene 

associations from expert 
curated repositories and 

text mining resources 

Other databases 
(CGI, ClinGen, 
CTD, Genomics 

England, Orphanet, 
PsyGeNET, 
UniProt); text 

mining (LHGDN, 
BeFree)  

disgenet.org 

Online Mendelian 
Inheritance in 
Man (OMIM) 

(103) 

Widely used database of 
disease-gene 

associations, reporting 
links between human 
genes and Mendelian 

disorders 

Scientific literature 
(by manual 
curation) 

omim.org 

Orphanet (107) 

The reference portal for 
information on rare 

diseases and orphan 
drugs 

Scientific literature 
(by manual 
curation) 

orpha.net 

PsyGeNET (108) 
Resource containing 
genes associated to 
psychiatric diseases 

Scientific literature 
(by text mining and 
manual curation) 

psygenet.org 

UniProt (109) 

Database of protein 
information from different 
species. It also includes 
knowledge on disease-

gene associations 

Scientific literature; 
other databases 

(OMIM)  
uniprot.org 

https://www.cancergenomeinterpreter.org/
https://www.cancergenomeinterpreter.org/
https://clinicalgenome.org/
http://ctdbase.org/
https://www.disgenet.org/
https://www.omim.org/
https://www.orpha.net/
http://www.psygenet.org/
https://www.uniprot.org/
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1.3.2. Identification of disease modules to explore 

disease mechanisms 

 

1.3.2.1. Definition of disease modules 

 

The distribution of nodes and edges in the human interactome is not 

homogeneous. There are regions where nodes are more densely 

connected, forming modular structures (111). As early as 1999, 

Hartwell already proposed that cellular functions could be 

accomplished by “modules” of different types of molecules (90). The 

modular organization of biological networks offers multiples 

advantages to the system in terms of adaptability: it can increase the 

robustness of the network, as it limits the number of components of 

the system affected by a perturbation, and it can be easily rewired to 

adapt to new conditions (112,113). 

 

The interest in network modules increased after several studies 

which showed that proteins associated with similar diseases tend to 

interact directly with each other (114,115) and cluster in the same 

neighborhoods (regions) of the interactome (75). In a pioneer work 

in 2007 (75), Goh and coworkers found that proteins encoded by 

genes associated with similar diseases are more likely to interact 

with each other, indicating the existence of specific functional 

modules within the interactome. Building on this observation, they 

created the first human disease network, called human diseasome, 

by connecting the diseases with shared genetic component, 

extracting the disease-gene associations from the Online Mendelian 

Inheritance in Man (OMIM) database (103). This concept was further 

extended to complex and environmental diseases (116) and by Park 
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et al. (117) with the objective of finding comorbidity patterns within 

the overlapping functional modules. They analyzed the US Medicare 

database to find co-occurring diseases. They found a high 

correlation between comorbidity and the number of shared genes 

from the diseasome.  

 

These studies led to the hypothesis of the existence of disease 

modules: genes involved in the same disease that cluster together 

in the interactome. This hypothesis was explained in detail in the 

review of Barabási et al. (76). They defined three types of modules 

within the interactome (Figure 9): (i) the topological module, a 

locally dense neighborhood which can be identified by clustering 

algorithms; (ii) the functional module, the neighborhood of nodes 

with similar or related function; and (iii) the disease module, the 

neighborhood of nodes that contribute to cellular functions whose 

disruption results in a particular disease. Disease modules are not 

expected to be identical to functional or topological modules, but 

rather to overlap to some extent with them. The identification of the 

so-called disease modules is key to achieve a comprehensive 

molecular understanding of diseases. 
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Figure 9. Schematic description of three types of modules that can be 

found in the interactome, which were defined in the review of Barabási 

et al. (76). (a) Topological module, containing proteins with a higher 

tendency to interact with each other rather than with proteins outside the 

module. (b) Functional module, containing a group of proteins with a higher 

tendency to develop similar or related biological functions. (c) Disease 

module, containing a group of proteins whose perturbation or disruption 

results in the development of a particular disease. Figure adapted from 

Figure 2 of Barabási et al. (76). 
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1.3.2.2. Identification of disease modules 

 

There is a wide range of approaches proposed to predict or identify 

disease modules that can be classified into two categories (118):  

 

(1) Identification based on prior knowledge: This category 

includes methods that use prior knowledge on disease-

associated genes (also known as seed genes). These 

methods identify the neighborhood of proteins that are 

topologically closer to the proteins encoded by the seed 

genes (78,119). We can classify these methods into three 

subcategories (Figure 10) (3,76): 

 

(a) Network neighbor methods: These methods (also 

called linkage methods) assume that the proteins that 

directly interact with other proteins associated with a 

certain disease are more prone to be associated with the 

same disease. For example, in Oti et al. (120), the 

authors find new disease-gene associations by 

identifying the neighbor proteins of disease-associated 

gene products and checking that the chromosomal 

location of their corresponding genes was falling within 

the loci of the same disease. This method was 10 times 

more likely to predict true disease-gene associations than 

using only genomic information.  

 

(b) Topological community finding methods: These 

methods (also known as graph partitioning methods) first 

identify if the seed proteins associated to the disease 

cluster together forming a subnetwork, and if the 
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subnetwork is statistically significant (i.e., it is less likely 

than random to find this given number of connected 

nodes). Then, topological community finding tools (121–

123) are applied to identify additional protein candidates 

that could be added in the subnetwork and that are 

topologically and functionally related with the rest of the 

module proteins. For example, DIAMOnD (119) employs 

an iterative algorithm to calculate the significance of the 

interactions of the proteins in the neighborhood of the 

seeds (i.e. if the number of interactions is higher than a 

random expectation). Another example is the Seed 

Connector Algorithm (124), which iteratively includes 

proteins to a pool of seeds associated with the disease if 

the size of their largest connected component is 

increased. This algorithm goes on until none of the 

neighbor proteins, when added, increases the coverage 

of seed proteins in the largest connected component of 

proteins associated with the disease. 

 

(c) Diffusion-based methods: These methods consist in 

releasing signals (known as “random walkers”) from the 

seed nodes to the rest of the nodes of the network. The 

nodes that are closer to the seeds are more visited by the 

signals and therefore are scored higher by these 

methods. For example, the algorithms from GUILD 

software (78) are message-passing algorithms that 

transmit a signal from the seeds to the rest of the network 

nodes and score them depending on how fast the 

message reaches them taking into account several 

network properties.  
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(2) “Ab-initio” identification: This category includes methods 

that identify the modules “ab initio”, using community 

structure detecting algorithms. These methods, based on the 

topology of the network, identify neighborhoods of proteins 

with high within-edge density of connections such as 

algorithms based on the maximal clique enumeration 

problem (118,125).  

 

Even though this is an active area of research, the identification of 

disease modules with high accuracy remains problematic. In a 

community effort to advance in this area, the Synapse platform 

launched in 2018 a DREAM challenge focused on the blind 

prediction of disease modules from different types of networks (126). 

In this challenge, different types of approaches were among the top 

performers (diffusion state distance, kernel clustering, modularity 

optimization, random-walk-based and local methods), suggesting 

that not a single approach was superior to the rest, including 

methods from both categories as described above. One of the top 

performers was diffusion state distance method, which is an 

improved measure of the network proximity between pairs of nodes 

and shows the importance of considering the full topology of the 

network instead of only local neighborhood (127,128). 
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Figure 10. Schematic description of three types of disease module 

identification methods based on prior knowledge. (a) Network neighbor 

methods, based on finding genes in the locus of the disease whose 

products interact with known disease-associated proteins. (b) Topological 

community finding methods, based on finding a subnetwork of disease-

associated proteins, and applying network-based algorithms to include new 

disease-associated proteins which are likely to be forming a disease 

module.  (c) Diffusion-based methods, which consist in applying message-

passing algorithms from the disease-associated proteins to the rest of the 

proteins of the network, simulating the perturbation caused by the disease. 

The proteins of the network are given a score based on how fast the signal 

reaches them. Figure adapted from Figure 4 of Barabási et al. (76). 

 

 

1.3.2.3. Cases of disease module identification that 

explain disease mechanisms 

 

The recent advances in network medicine are starting to offer 

enough coverage and accuracy to permit an exhaustive identification 

of disease modules for some complex diseases. Here, I review some 

case studies of diseases where the identification of disease modules 

helped to uncover the molecular mechanisms of disease causation 

and identify new disease genes, pathways and potential drug 

targets. 

 

 Cancer: Disease module identification methods have been 

extensively applied to study the molecular mechanisms of 

several types of cancer, including breast cancer (129–132), 

colon cancer (133), gastric cancer (134), prostate cancer 

(135) or acute myeloid leukemia (136). For example, Chang 
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et al. (134) searched for genes whose expression was 

different in metastatic types of breast cancer, and identified 

the subnetworks of their gene products in the human 

interactome. By analyzing the resulting subnetworks, they 

found genes whose products had a central role 

interconnecting other disease proteins that remained 

undetected by differential expression methods. Additionally, 

the accuracy of classifying different types of breast cancer as 

metastatic or non-metastatic increased when using the 

markers obtained from the subnetworks. In a different case 

study, Taylor et al. (132) identified disease modules 

associated to breast cancer, and investigated the role of the 

different hubs within these modules. The analysis of 

expression of the genes encoding these hubs was useful to 

find markers for predicting breast cancer outcome. 

 

 Asthma: The inflammatory disease of asthma has also been 

thoroughly characterized using network-based 

methodologies. Sharma et al. (137) defined the asthma 

disease module by applying clustering algorithms to asthma-

associated genes. The authors compiled 129 asthma-

associated genes that were represented in a human PPI 

network. 37 of these genes were highly interconnected, 

forming a cluster (called “proto-module”). The rest were 

spread through the interactome, either forming small clusters 

or disconnected from other asthma-associated genes. They 

expanded the proto-module by applying the DIAMOnD (119) 

topological community finding algorithm. DIAMOnD follows 

an iterative process to select the proteins that have a 

significant fraction of their interactions with asthma-
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associated genes, thus being more likely involved with the 

mechanism of the disease. The union of the proteins selected 

by DIAMOnD and the initial asthma-associated proteins 

conformed the “asthma disease module”. Within the asthma 

disease module, the authors found an inflammatory 

response signature that is shared with other auto-immune 

diseases (Crohn’s disease, multiple sclerosis, rheumatoid 

arthritis…). In contrast, another part of the disease module is 

specific for asthma. They investigated the asthma-specific 

region, identifying an enrichment in GAB1 expression. Their 

study emphasizes the importance of abnormal steroid 

response to asthma development and adds options for novel 

treatments. The study of Sharma et al. (137) was expanded 

recently by Maiorino et al. (138). In the new study, the 

authors applied a similar procedure to obtain the disease 

modules of Chronic Obstructive Pulmonary Disease (COPD) 

and asthma, and investigated the genes mediating the 

relationship between the two diseases. 

 

 Cardiovascular diseases: They are another clear example 

of complex diseases, where their development is influenced 

by the modulation of many genes. Wang et al. (124) applied 

a network-based algorithm called Seed Connector Algorithm 

to identify the disease module of coronary artery disease. 

The Seed Connector Algorithm is a topological community 

finding method which iteratively includes neighbor proteins to 

an initial pool of known disease-associated proteins if the 

size of the largest connected component made by disease-

associated proteins is increased. Without applying the 

algorithm, the 65 proteins associated with the disease were 
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already forming a subnetwork of 18 proteins and 15 

interactions, which is a significantly higher number than by 

chance. However, after applying the Seed Connector 

Algorithm, the authors identified a disease module of 88 

proteins and 111 interactions. They also identified novel drug 

targets such as neuropilin‐1 protein. 

 

 COVID-19: The previously mentioned case studies were 

applied to complex diseases with a strong background 

genetic component. However, methods to identify disease 

modules can also been applied to study viral infectious 

diseases with a much lower genetic component involved. 

This is explained because diseases associated with viral 

infections can be studied by looking at the interaction 

between viral and host proteins. As in other types of 

diseases, the infection of the virus can be understood as a 

perturbation in a specific neighborhood of the interactome, 

which is also a disease module. For example, this type of 

methodology has been recently employed to understand the 

infection mechanisms of SARS-CoV-2, the virus causing the 

pandemic disease COVID-19. Gysi et al. (139), in a recent 

publication, compiled a list of 332 human target proteins of 

SARS-CoV-2 (140). 208 of the 332 SARS-CoV-2 targets 

were connected in the PPI network forming a module. By 

analyzing this module, they found that most of their proteins 

were expressed in the lung, directly linking the infection with 

lung affection. They also proposed potential drug treatments 

based on their effect to the proteins of the disease module. 

In a similar case study that can be found in this thesis 

(Appendix 6.6), a network diffusion-based method was used 
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to identify the network modules associated to the infection of 

SARS-CoV-2, and to the severe effects produced by the 

infection (acute respiratory distress). The molecular 

information provided by this study helped to understand the 

effect of SARS-CoV-2 infection in severe cases and propose 

potential drug candidates. 

 

 

1.3.3. Identification of relationships between 

disease modules to explore comorbidity 

 

1.3.3.1. Definition of comorbidity  

 

Because of the interconnected nature of the biological systems, it 

has been proposed that many human diseases are not independent 

of each other. Thus, the perturbation of specific shared components 

on the system might be the underlying cause of certain comorbidities 

or multimorbidities. The term “comorbidity” was already defined in 

1970 by Feinstein as “any distinct clinical entity that has co-existed 

or that may occur during the clinical course of a patient who has the 

index disease under study” (141). Since then, the terms comorbidity 

and multimorbidity have been used in the relevant literature to refer 

to the presence of several disease conditions in a patient (142,143). 

While the term comorbidity is frequently used when there is a focus 

on a main, or index, disease and their associated conditions, the 

term multimorbidity is used when none of the diseases have higher 

importance over the rest. Although the meaning is very similar, in the 

case of comorbidity the therapeutic treatments or strategy are 
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centered in a primary disease, whereas in multimorbidity no disease 

is given a higher priority (144). 

 

 

1.3.3.2. Dynamic properties of the interactome that 

explain comorbidities 

 

Traditionally, the network models based on protein and genetic 

interactions were static visions of the system, created under a single 

condition. In reality, complex systems, including complex diseases 

and comorbidities, are dynamic. The systems change and evolve 

depending on the context and time; and thus, properties such as 

pleiotropy, robustness and rewiring must be considered when 

studying complex diseases and comorbidities (145): 

 

 Pleiotropy: Pleiotropy is the property of a given genetic 

locus to affect two or more phenotypic traits. It follows from 

this definition that genes are necessary multifunctional, 

encoding for proteins that can play multiple roles depending 

on the context. Pleiotropy and multifunctionality are closely 

related with comorbidity, as they explain why two genetically 

related phenotypes are more likely to co-occur. However, 

there are many ways in which a gene can lead to multiple 

functions. Hu et al. (145) unified the different theories into 5 

models (Figure 11): 

 

o Model 1: Genetic changes affect multiple genes. 

This is the case of large deletions or insertions 

affecting multiple genes. 



Introduction 
 

 

 64 

o Model 2: Alternative splicing as the source of 

functional diversity. 

o Model 3: Multidomain proteins including domains 

with different functions; or proteins having different 

functions depending on the tissue. 

o Model 4: Protein with a single function that affects 

multiple phenotypes, for example, by being present 

in multiple tissues. 

o Model 5: Physiological changes caused by one 

phenotype that lead to the appearance of another 

phenotype. 

 

 

 

Figure 11. Five models of pleiotropy and multifunctionality. Scheme of 

the 5 models of pleiotropy and multifunctionality, which describe how a 

given genotype can lead to multiple phenotypes. Model 1: Genetic 

mutations affect multiple genes, possibly due to insertions or deletions. 

Model 2: Alternative splicing causes a gene to have multiple functions and 

encode different gene products. Model 3: A protein carries out distinct 

functions depending on the domain or the tissue where it is located. Model 

4: The function of a protein is involved in multiple phenotypes. Model 5: The 

physiological changes caused by one phenotype lead to another 

phenotype. Figure adapted from Figure 3 of Hu et al. (145). 
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These models are useful to find etiological relationships in 

comorbidities. However, most comorbidities tend to be 

combinations of these models. 

 

 Robustness: Robustness is the property that allows a 

system to maintain its functions against internal and external 

perturbations (113). Depending on the robustness of a 

biological system, the system maintains its functionality, or it 

changes when exposed to perturbations. Hence, diseases 

can be considered perturbations in the interconnected 

networks of molecular interactions. If the biological system is 

not robust enough, the perturbation of the system may lead 

to the development of multiple diseases. But even if the 

system is sufficiently robust, the perturbation may cause a 

change in the internal state of the system (molecular 

interactions) that makes it more fragile towards other new 

perturbations (comorbidities) (145). Robustness is not a 

general feature but depends on the system of the individual. 

Therefore, among individuals there will be several degrees of 

robustness, where individuals with the less robust systems 

are more prone to develop comorbidities. 

 

 Rewiring: Rewiring is the restructuring of interactions 

between biological components due to conditional changes. 

In the context of graph theory, it would imply the destruction 

and creation of new interactions between the elements of the 

system. Rewiring has been measured with genetic 

interactions and protein-protein interactions, by mapping the 

changes across different conditions in differential networks 
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(146). However, differential networks are just the 

representation of the edge changes between static networks 

at different measures, and they do not necessarily reflect all 

the changes of a system. Rewiring is closely related to 

robustness: in response to a perturbation, the system rewires 

the interactions in order to maintain the equilibrium. But the 

rewiring of the system can also be caused by disease-

causing mutations, leading to a disease state. Therefore, 

analyzing the rewiring of the system is key to find disease-

associated genes and to understand the mechanism of 

complex diseases. The impact of rewiring depends on the 

position of the proteins in the network. Proteins with multiple 

interactions are likely to have multiple functions and change 

function and rewiring depending on the conditions (145,147). 

The relationship between robustness and rewiring of 

complex diseases was studied by Guney et al. (94), showing 

that even when randomly removing interactions, some 

diseases conserve the interconnectivity of the core proteins 

associated with the diseases (see Figure 8 in the previous 

chapter).  

 

 

1.3.3.3. Network separation between disease modules 

explains some comorbidities  

 

Network medicine approaches have been widely used to reveal 

genetic connections between diseases and predict comorbidities. In 

some cases, comorbidities can be explained by shared genetic 

components such as disease-associated genes or biological 

pathways (117,148,149). However, a disease pair sharing genes 
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does not necessarily mean that comorbidity exists (145,150,151), 

because the pleiotropy of genes can associate them with multiple 

pathophenotypes without necessarily give rise to a comorbidity. 

Likewise, comorbid diseases may not have a common genetic 

component; they can also arise due to shared pathways or the 

adverse effect of a clinical treatment (145). 

 

Menche et al. (77) went a step further by identifying disease modules 

and analyzing the distances between them, finding comorbid 

relationships between diseases. They first created a protein 

interaction network compiling 141,296 physical interactions between 

13,460 proteins. Then, they retrieved 299 diseases that were 

associated with at least 20 genes in OMIM and GWAS databases 

(103,152), obtaining 2,436 disease-gene associations. From each 

group of genes associated to a given disease, only the ones that 

were connected forming a subgraph were considered, ending up 

with 226 significant subgraphs that they considered disease 

modules. The underlying hypothesis was that the overlapping 

modules were more likely to disrupt pathways involved in the other 

disease module, resulting in shared clinical features. To answer this, 

they created a measure of topological distance between the disease 

modules. The measure, called “network-based separation” or sAB 

(Eq. 9), was defined as the difference between the mean shortest 

distance between the proteins within each disease module (dAA and 

dBB) and the mean shortest distance between the proteins of the 

disease pair (dAB).  

 

 𝑠𝐴𝐵 ≡ 〈𝑑𝐴𝐵〉 −
〈𝑑𝐴𝐴〉 − 〈𝑑𝐵𝐵〉

2
 Eq. 9 
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According to the authors, the disease modules topologically overlap 

when sAB < 0, and they are topologically separated when sAB > 0 

(Figure 12). They compared this measure with 4 measures of 

pathobiological similarity: (i) biological similarity; (ii) co-expression; 

(iii) disease symptoms similarity; and (iv) comorbidity, measuring the 

relative risk (i.e., the fraction of patients in the population affected by 

both diseases divided by the product of the prevalence of the 

diseases) from US Medicare data. The results showed concordance 

between sAB and the four measures, finding higher co-expression, 

comorbidity and biological and symptomatic similarity when the 

disease modules topologically overlap. This study showed that, 

despite the incompleteness of the interactome, it had reached 

enough coverage to allow a systematic investigation of disease 

mechanisms and helped to uncover some of the pathobiological 

relationships between diseases.  

 

 



Introduction 
 

 69 

 

 

Figure 12. Network separation between disease modules. Examples of 

separation between the overlapping modules of disease A and B in (a), and 

separated modules of disease A and C in (b). The plots below show the 

distribution of shortest distance values of the proteins of the disease 

modules alone (in red, yellow and blue), and the proteins of the different 

disease modules (in black). The distributions of distances between proteins 

of the same disease module is similar to the distribution of distances 

between proteins of different modules when the modules are overlapped 

(sAB < 0). In contrast, the distributions are different when the disease 

modules are separated (sAB > 0). Figure adapted from Figures 3B and 3C 

of Menche et al. (77). 
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1.3.3.4. Including functional information to network-

based methods improves the study of 

comorbidities 

 

As discussed in the previous section, some comorbidities can be 

explained by a shared genetic component. However, the existence 

of shared genes does not necessarily involve comorbidity (150,151) 

and vice versa, comorbid diseases do not always show a shared 

genetic component (145). As gene products rarely act in isolation, it 

is necessary to consider the interactions between the disease-

associated gene products to fully understand comorbidities. The 

work of Menche et al. (77) was especially relevant at this point, 

demonstrating that although the human interactome remains 

incomplete, the current view provides enough information to uncover 

the molecular mechanisms between disease relationships, including 

comorbidities.  

 

Nevertheless, a close view of the disease relationships of Menche 

et al. (77) shows that 59% of disease pairs do not share any genes, 

suggesting that their relationship cannot be uncovered solely based 

on the shared gene hypothesis. This fact raises some important 

questions: Is it possible to complete the knowledge on disease-

associated genes using the human interactome? Can we find 

molecular relationships for those comorbidities that are not 

apparently related by a genetic component, potentially due to such 

incompleteness?  

 

In a recent work by Rubio-Perez et al. (92), these problems were 

tackled by considering disease pathways as an interactome-based 
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extension of the known disease-genes and introducing measures of 

functional overlap. The approach consisted of: (i) integrating protein 

interaction data from several public resources using BIANA software 

(62) to derive one of the most up-to-date and comprehensive human 

protein interaction network; (ii) extending the incomplete current 

knowledge of disease-associated genes using the GUILD software 

(78), based on the topological closeness in the interactome to the 

initial disease-gene associations; and (iii) incorporating functional 

information that reveals comorbid links from shared disease-

pathways. This process is explained schematically in Figure 13. The 

functional information was incorporated by considering the Gene 

Ontology (GO) biological processes, GO molecular functions and 

Reactome pathways enriched in the extended number of genes of 

each disease. Finally, Rubio-Perez et al. defined a genetic measure 

based on the overlap of (extended) genes between two diseases, 

and two functional measures based on the overlap of functions 

between two diseases and the enriched biological functions of the 

common genes (see Figure 14 for a schematic representation). 

 

The approach revealed 206 significant links among 94 diseases on 

a highly clustered disease association network. Moreover, around 

95% of the links in the disease network, though not identified by 

genetic overlap, were discovered by functional overlap. Among the 

discovered connections, multiple sclerosis and rheumatoid arthritis 

were functionally linked through GO terms related to inflammation, 

consistent with previous findings (77,153). Similarly, the association 

between asthma and celiac disease was also identified using 

functional measures in agreement with the same previous studies 

(77,153). Some of the comorbidities uncovered by these studies are 

listed in Table 5. 
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Figure 13. Using functional information to uncover disease 

comorbidities. (a) Network containing the disease-associated genes for a 

potential comorbidity of two diseases (shown by nodes with different 

hatching). (b) Extending the number of disease-gene associations using 

network-based approaches. Still, the incompleteness of the PPI network 

may hamper to uncover some of the relationships; this (c) can be unveiled 

by calculating the common enriched biological functions. Figure retrieved 

from Figure 2 of Aguirre-Plans et al. (96). 
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Figure 14. Schematic representation of the genetic and functional 

measures of disease overlap defined by Rubio-Perez et al. (92). (a) 

Genetic measure of common genes, containing the shared genes between 

the disease modules of two diseases. (b) Functional measure of common 

genes, containing the significantly enriched biological functions associated 

to the common genes of the two diseases. (c) Functional measure of 

common functions, containing the significantly enriched biological functions 

associated to each disease that are shared by both diseases. Figure 

adapted from Figures 1C, 1D and 1E of Rubio-Perez et al. (92). 
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Table 5. List of comorbidities predicted by Menche et al. (77) with a 

negative sAB that are also uncovered by at least  one of the measures 

of Rubio-Perez et al (92). Table retrieved from Aguirre-Plans et al. (96). 

 

Disease 1 Disease 2 
Menche et 

al. (sAB) 
Rubio-Perez et 
al. (measures) 

Asthma 
Respiratory 
Hypersensitivity 

-1.95 FCG-GObp 

Hypersensitivity, 
Immediate 

Respiratory 
Hypersensitivity 

-1.80 
FCG-GObp 

FCG-RP 

Asthma 
Hypersensitivity, 
Immediate 

-1.75 FCF-GObp 

Retinal Degeneration Retinitis Pigmentosa -1.12 

FCF-GObp 
FCF-GOmf 
FCG-GObp 
FCG-GOmf 

Cardiomyopathy, 
Dilated 

Hypertrophic 
Cardiomyopathy 

-0.55 
FCG-GObp 
FCG-GOmf 

FCG-RP 

Colitis, Ulcerative Crohn Disease -0.52 FCF-GObp 

Leukemia Neoplasms -0.37 FCG-GObp 

Arthritis, Rheumatoid 
Systemic lupus 
erythematosus 

-0.26 FCF-GObp 

Celiac Disease Multiple Sclerosis -0.12 
CG 

FCG-GObp 
FCG-RP 

Lung Diseases 
Coronary 
Arteriosclerosis 

-0.08 
FCG-GObp 
FCG-GOmf 

FCG-RP 

Carcinoma Neoplasms -0.08 FCG-GObp 

Arthritis, Rheumatoid Celiac Disease -0.05 FCF-GObp 

Leukemia, B-cell, 
Chronic 

Leukemia, 
Myelocytic, Acute 

-0.04 FCF-GObp 

Arthritis, Rheumatoid Asthma -0.03 

FCF-GObp 
FCF-GOmf 

FCF-RP 
FCG-GObp 
FCG-GOmf 

FCG-RP 
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Arthritis, Rheumatoid 
Respiratory 
Hypersensitivity 

-0.03 

CG 
FCG-GObp 
FCG-GOmf 

FCG-RP 

 

A negative sAB means that genes of two diseases are significantly closer than genes 

associated with the same disease, which could indicate that the disease modules of both 

diseases are topologically overlapped. There are three types of measures from Rubio-Perez 

et al: Common Genes (CG), Functional measure of Common Genes (FCG), and Functional 

measure of Common Functions (FCF). For the two functional measures, the functional terms 

are defined using Gene Ontology (GO) biological processes (named FCG-GObp and FCF-

GObp measures), GO molecular functions (named FCG-GOmf and FCF-GOmf measures) 

and Reactome pathways (named FCG-RP and FCF-RP measures). 

 

An important aspect of the work by Rubio-Perez et al. (92) was that, 

by taking into account functional information, the effect of pleiotropy 

and the multifunctionality of genes was implicitly considered. This is 

important because pleiotropy is one of the causes that gives rise to 

different pathophenotypes. By combining topological information 

(using the network-based algorithm of GUILD), functional 

information (incorporating data from GO and Reactome) and 

disease information (extending disease-gene associations), the 

authors provide insights on the potential causes of comorbidities. 

Apart from its contribution in the study of comorbidities, the same 

approach has been recently applied to study novel disease 

treatments (53,54). 

 

 

1.3.3.5. Examples of comorbidities studied using 

network medicine 

 

Here I review several examples of comorbidities studied using 

different network medicine methods: 
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 Asthma and rheumatoid arthritis  

 

Rheumatoid arthritis and asthma have been related in 

multiple studies as a potential comorbidity. The link was 

already unveiled both in Hidalgo et al. (153) and Menche et 

al. (77). Several strategies proposed Tumor Necrosis Factor 

(TNF) as a therapeutic target for asthma (i.e., adalimumab, 

etanercep, infliximab) (155,156) and rheumatoid arthritis 

(i.e., in the DREAM Challenge 8.5 (157), in several cohorts 

with similar surveys (158–161)). However, the mechanisms 

underlying this association are still unclear (162). Rubio-

Perez et al. (92) reported asthma as the disease with a 

highest degree of connectivity in the diseasome (20 links), 

followed by rheumatoid arthritis (16 links). Both diseases 

were in the largest cluster of the diseasome, together with 

other diseases such as Crohn’s disease, chronic obstructive 

pulmonary disease, and respiratory hypersensitivity among 

others. Thus, according to that study, both diseases were 

prone to be associated with other diseases. The authors 

specifically explored the links underlying asthma and 

rheumatoid arthritis and found that both diseases were 

related with inflammatory processes. To further study the 

molecular mechanisms of the comorbidity, they focused on 

the link between the TNF, associated with rheumatoid 

arthritis, and its receptor in the superfamily 1B (TNFR1B), 

associated with both diseases. They highlighted one 

mutation in the interface of the interaction directly associated 

with rheumatoid arthritis. 
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In Article 3.1 of this thesis (154), we decided to further 

investigate the genetic and functional relationship between 

these two diseases. We used GUILDify v2.0 to identify two 

disease modules of 290 and 181 proteins in the protein 

interaction network related with rheumatoid arthritis and 

asthma respectively. There were 55 proteins in common in 

both neighborhoods, and 31 shared enriched functions, 

which show a significant overlap based on both genetic and 

functional relationships. Among the shared top-ranking 

genes, we found TNF, previously highlighted as a potential 

precursor of the comorbidity. We also found HLA-DRB1 and 

several interleukins (IL18, IL1B, IL3), taking part of the 

immune response, which is potentially involved in both 

diseases. Moreover, most of the shared enriched functions 

between both diseases are related with inflammatory 

processes such as: “inflammatory response”, “positive 

regulation of interferon-gamma production” and “positive 

regulation of T-helper 1 cell cytokine production”. 

 

 Asthma and Chronic Obstructive Pulmonary Disease 

(COPD) 

 

Asthma and COPD are two of the most common respiratory 

diseases, which cause approximately 3 million deaths 

worldwide (163). Both diseases share many similar 

phenotypes (such as airflow obstruction, inflammation, and 

shortness of breath), but still very little is known about the 

shared molecular mechanisms between these diseases. 

Maiorino et al. (138) constructed the disease modules of 

asthma and COPD and investigated the commonalities 
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between modules by applying a betweenness centrality-

based measure. The authors first compiled 35 asthma-

associated genes and 30 COPD-associated genes. Both 

sets of genes can be mapped in a PPI network of 16,656 

proteins and 243,592 interactions. They extended the 

incomplete knowledge on disease-gene associations by 

applying DIAMOnD (119), an algorithm that identifies the 

proteins that significantly interact with the disease genes, 

thus being more likely involved with the mechanism of the 

disease. Using DIAMOnD, the authors defined the disease 

modules of asthma (373 genes) and COPD (228 genes). 

They found 14 overlapping genes, mainly involved in the 

regulation of apoptosis, proliferation, inflammation, cellular 

remodeling, and differentiation. Although the biological 

processes identified play a main role in both diseases, they 

are very common in many other diseases, and the number of 

overlapped genes was not significant. 

 

The authors hypothesized that the perturbation in the 

interactome that leads asthma patients to develop COPD 

symptoms may not be carried exclusively by direct 

interactors of disease genes, but by mediating genes that are 

not specifically linked to a single disease. They defined these 

connecting genes as genes that participate in the majority of 

interactions between the two modules, becoming a 

“bottleneck” in the communication between them. To identify 

mediating genes, they introduced a measure called flow 

centrality, based on betweenness centrality. Flow centrality 

is a betweenness centrality measure with reduced coverage, 

which spans exclusively the shortest paths connecting the 
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two modules, instead of the whole network. A high flow 

centrality score indicates that a node is highly central with 

respect to the genes of the two modules. Unlike the genes 

identified by the overlap of disease modules, flow central 

genes showed high specificity and were not directly 

interacting with disease genes. Flow central genes also 

showed functional similarity and co-expression with the 

genes of the disease modules. 

 

 Asthma, rhinitis and atopic dermatitis 

 

In the last years, the multimorbidity between asthma, rhinitis 

and atopic dermatitis (so-called allergic diseases) has gained 

an increasing attention. The process known as atopic march 

(or, more recently, atopic multimorbidity) (164) recognizes 

the increased occurrence of asthma, allergic rhinitis, or both, 

after atopic dermatitis onset (165,166). 

 

The knowledge about the common mechanisms of allergic 

multimorbidity relies on a few candidate mechanisms, some 

are common to all allergic diseases (e.g., Type 2 immune-

related response) and some are more specific (167–169). 

GWAS studies have identified many genes that contribute to 

Type 2 immune responses as well as to asthma, eczema, 

rhinitis as individual conditions through a variety of 

mechanisms (168–170). However, despite these evidences, 

how these different mechanisms jointly contribute to the 

allergic multimorbidity is still unclear (164,170). 
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Recently, several computational analyses of the diseasome 

of asthma, dermatitis and rhinitis helped to better 

characterize the mechanisms of atopic multimorbidity 

(171,172). The authors identified a core mechanism linking 

the three diseases and allowing to weight the involvement of 

different cellular mechanisms in the multimorbidity. Despite 

the limitations of the analysis (e.g., networks represented a 

diseasome static in time, while atopic multimorbidity is a 

progressive condition), network analysis provided a 

framework to integrate the current knowledge of the 

diseases’ molecular mechanisms into a full picture of how the 

three diseases might be interconnected. 

 

 Alzheimer’s disease and cancer 

 

The comorbidity between Alzheimer’s disease and cancer 

has recently attracted the interest of the scientific community, 

although the mechanism is still poorly understood. Several 

studies suggested that for some cancer types, there is an 

inverse comorbidity (173,174), that is, a lower-than-expected 

probability of developing one of the diseases in individuals 

diagnosed with the other. In this case, patients with 

Alzheimer’s disease are less prone to develop cancer and 

vice versa. 

 

In Rubio-Perez et al. (92), Alzheimer’s disease was observed 

to have significant links with different types of neoplasms, 

giving rise to a disease cluster containing Alzheimer and 7 

neoplasms. Interestingly, the association between the two 

types of diseases was driven by common enriched biological 
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functions. The main functions pointed towards the induction 

of apoptosis through caspase activation by mitochondrial 

cytochrome C. This suggests that apoptosis triggered by 

neurodegeneration in Alzheimer’s disease may play a 

protective role in various cancer types by promoting 

programmed death of cancer cells. The authors further 

explored the role of the protein interactions in the 

comorbidity, finding 5 mutations potentially disrupting the 

interaction between the apoptosis regulator BAX and the 

BH3-interacting domain death agonist BID. The energy 

analysis and the predictions of hot spots of the interaction 

show that these mutations have a high potential to disrupt the 

BAX-BID interaction. The loss of the BAX-BID interaction 

could reduce apoptosis and its p53-dependent induction. 

Hypothetically, this could produce predisposition for cancer 

and inhibition of neurodegeneration, which may explain the 

inverse comorbidity between the two diseases. 

 

 

1.3.4. Identification of endophenotypes and their 

relevance in the mechanism of diseases 

 

Biological pathways tend to crosstalk. Their proteins are 

interconnected through the proteins of the interactome, influencing 

each other. Due to crosstalk, the pathways affected by a disease 

might as well influence other pathways, thus being relevant in 

modulating the pathophysiology of the disease (175). Crosstalk 

plays also an important role in some comorbid diseases, as they 

might be caused by the modulation of proteins belonging to common 



Introduction 
 

 

 82 

pathways (77,92,176). These crosstalking intermediate pathways 

shared among diseases are called endophenotypes (177), and 

they are key in the mechanism of many diseases and comorbidities. 

 

Endophenotypes are collections of biological pathways 

interconnected with each other that play an important role in the 

development of many diseases (Figure 15) (3). The best known 

endophenotypes, which are present in most complex diseases, are 

inflammation, thrombosis and fibrosis (178). These endophenotypes 

facilitate the organism’s adaptation to injury, with the goal of 

restoring the normal functioning of the organism. Ghiassian et al. 

(179) recently applied network medicine methods to study these 

endophenotypes, demonstrating their essential role in the 

progression of cardiovascular diseases. Specifically, they applied 

the topological community finding algorithm DIAMOnD (119) to 

identify the modules associated to the respective endophenotypes. 

They observed that the three modules have a large common core of 

proteins, meaning that they are endophenotypes closely related with 

each other. They analyzed the genes of the endophenotype 

modules, finding a high number of genes associated with 

cardiovascular risk factors. Additionally, they explored the 

topological properties of the endophenotype modules, showing high 

robustness, degree and betweenness centrality in proteins 

associated to inflammation and fibrosis. 

 

Ghiassian et al. (179) showed that the study of endophenotypes 

through the identification of their network module can be key to 

understand the mechanisms and commonalities of complex 

diseases. After this landmark, endophenotypes are emerging as an 

attractive pharmacological target, as they are the perfect targets to 
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treat comorbidities (180,181). In Article 3.2, we introduce a novel 

network medicine method to find drug candidates targeting 

endophenotypes, paving the way towards endopharmacology. 

 

 

 

 

Figure 15. Schematic representation of endophenotype as a set of 

pathways shared by two diseases. (a) Venn plot between the pathways 

of disease 1 and 2, where the overlapped pathways represent an 

endophenotype. (b) Network visualization of the pathways associated to 

diseases 1 and 2. 
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 Network medicine: towards finding better 

treatments 

 

Pharmacology is the branch of medicine that studies the mechanism 

of action of drugs. From a network medicine perspective, 

pharmacology can be understood as the study of the effect of drugs 

at the interactome level, resulting on therapeutic and/or side effects. 

For this purpose, it is critical to identify the target biomolecules 

affected by the drug and understand the effect of their perturbation 

to the rest of the network. In the following subsections, I will introduce 

the strategies of network medicine towards a better understanding 

of drugs, their targets, and finding more effective, safer and 

personalized treatments. 

 

1.4.1. From “one drug, one target, one disease” to 

network medicine 

 

Traditionally, the pipeline followed by pharmaceutical industry to 

discover new drugs was based on Ehrlich’s paradigm of ‘magic 

bullets’: a drug interacts with an individual protein (182). This 

approach has produced many successful drugs, as the industry 

focused on: first, finding unique genes or proteins responsible of 

producing a disease; then, employing high-throughput screening 

techniques to find drug candidates that specifically modulate the 

selected target. However, there are two important assumptions of 

this paradigm that lead to two important problems (183):  

 

(1) “One disease, one gene” assumption: Many diseases are 

not caused by a single gene or protein but by multiple ones. 
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If we focus on a unique target, there could be alternative 

signaling pathways or interactions, due to the robustness 

associated to the disease module of the network, that reduce 

the efficacy of the drug. 

  

(2) “One drug, one target” assumption: Most of the drugs, 

either target multiple proteins, or affect the neighborhood of 

proteins close to their targets. If the drug modulates multiple 

proteins, this could produce more side effects than the ones 

expected for only one target. 

 

Therefore, there are two important problems on assuming the ‘one 

drug, one target, one disease’ paradigm: a potential decrease of the 

efficacy and an increase in the toxicology of the drug candidates 

(182). These are the most important reasons why the attrition rates 

(compound failure) of the novel drugs are so high, which is one of 

the main concerns of pharmaceutical industry. From data of 2014, 

only the 10.4% of the novel compounds that started at phase 1 were 

launched to the market (184). The two main reasons of this failure 

were the lack of efficacy (in phase 2) and safety (in phase 3) of the 

new compounds (185).  

 

Network medicine, which understands the organism as a group of 

interconnected networks, could be the solution to the late-stage high 

attrition rates of novel compounds. Network medicine suggests that, 

instead of focusing on searching disease-causing genes, we identify 

the subnetwork of molecules in the interactome that is perturbated 

by the drug. By understanding the polypharmacology of drug, how 

it perturbates the disease module of the interactome on multiple 

targets and pathways, it is possible to understand better the 
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molecular effect of the drug in the organism and avoid novel drug 

failures. 

 

Moreover, network medicine permits to explore alternative options 

that are faster and cheaper than the traditional drug discovery 

pipeline. The first alternative is drug repurposing, which consists in 

finding new indications for approved or investigational drugs that are 

outside the scope of the original indication. The second alternative 

are drug combinations, which are combinations of more than one 

drug that can be more effective than the single drugs. In the following 

subsections, the use of network medicine to study drug-target 

associations and identify more effective and safer drugs is explained 

in detail. 

 

 

1.4.2. Drug-target associations: Identification 

methods and databases 

 

A drug target is a biomolecule whose activity is modified by the 

interaction with a drug, resulting in a specific effect that might be 

positive (therapeutic effect) or negative (side effect) for the patient 

(186). Drug targets are mainly proteins, but they also can be nucleic 

acids. Depending on the type of interaction of the drug with the 

molecules in our body, there are two main concepts that need to be 

introduced: (i) pharmacodynamics, which is the study of how the 

drugs affects the molecules in the organism; and (ii) 

pharmacokinetics, which is the study of how the organism 

metabolizes the drugs (187). During this thesis, when discussing 

about drug-target associations, I will refer specifically to 
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pharmacodynamical interactions, involving the biochemical and 

physiological effect of drugs to targets (mainly human proteins). 

 

 

1.4.2.1. Drug-target association identification methods  

 

The identification of drug targets is key to understand the mechanism 

of action of the drug: the effect of the drug in the organism. The 

traditional way to identify drug-target associations is via biological 

experiments. Experimental methods can either be genetic 

interaction methods, based on monitoring the gene expression after 

the application of the drugs, or direct biochemical methods, based 

on detecting the binding affinity between the target and the drug 

(188). Binding affinity provides information on the strength of the 

interaction between a drug-target pair and is measured with different 

metrics: inhibition constant (Ki), dissociation constant (Kd), half-

maximal inhibitory concentration (IC50) and half-maximal effective 

concentration (EC50) (189).  

 

Although experimental methods are essential to have reliable 

information about drug-target associations, they are also expensive 

and time-consuming. For this reason, computational inference 

methods have risen as a fast, low-cost alternative to predict drug-

target associations. According to the type of prediction, these 

methods can be divided into two categories: qualitative methods 

(which classify the drug-target pairs into association or non-

association) and quantitative methods (which determine a value that 

indicates the strength of the association). Depending on the 

computational approach followed, these methods can be divided in 

several categories (190):  



Introduction 
 

 89 

(1) Molecular docking-based methods: These methods can 

be used when the unbound three-dimensional structures of 

the target and drug are known. Docking methods use these 

structures to sample possible orientations of the bound drug-

target interaction structure and rank them according to 

scoring functions that can be correlated with binding affinities 

(190,191).  

 

(2) Pharmacophore-based methods: These methods are 

based on finding a pharmacophore model, which is the 

spatial arrangement of features that are necessary for a drug 

to interact with a specific target. The drug is screened for 

matching predefined protein-ligand structure-based 

pharmacophoric features (191,192). 

 

(3) Similarity-based methods: These methods are based on 

the hypothesis that similar drugs are associated with similar 

targets and vice versa (190). There are different types of 

similarity-based methods, such as two-dimensional 

(193,194) and three-dimensional (195) structure similarity, or 

side-effect similarity (196). 

 

(4) Machine learning-based: These methods apply machine 

learning algorithms to different types of biological data (e.g. 

drug chemical features, target protein sequences, known 

drug-target interactions, etc.) to predict drug-target 

associations (197). 

 

(5) Network-based methods: These methods apply network-

based algorithms usually based on topology similarity in 
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different types of biological networks (e.g. PPI networks or 

drug-target interaction networks) to predict new drug-target 

associations (190). 

 

 

1.4.2.2. Drug-target association databases 

 

The information on drug-target associations is spread over many 

different databases and repositories (197,198). This information can 

come from different types of sources: (i) from scientific literature, 

extracted via text-mining and/or manual curation; (ii) from other drug-

target association databases; and (iii) from computational methods, 

thus being predictions that are not as reliable as other types of 

associations. Table 6 provides information about the most important 

current drug-target association databases. 

 

One of the main problems when working with drug-target 

associations is that, although there are many resources, the overlap 

between them is very poor. One of the main causes is that the 

determination of drug-target associations can be based on multiple 

qualitative parameters (e.g. multiple binding affinity metrics from 

different biological experiments, gene expression values, etc.). 

Therefore, depending on the criteria, the associations determined by 

each resource may be different. For this reason, integrating drug-

target associations for an experiment is not a trivial problem. Here 

there are some examples of different efforts to integrate drug-target 

associations on specific experiments:  

 

 Piñero et al. (95) compiled drug-target associations to 

characterize their transcriptomics, genomics and network 
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features. The authors integrated data from DrugBank (199), 

DrugCentral (200), DGIdb (201) and ChEMBL (202). The 

associations from each database were filtered to select the 

associations from the most reliable sources: DrugCentral 

targets where only kept when belonging to the “Tclin” 

category (targets with comprehensive knowledge on their 

mechanism); DGIdb associations were selected when 

coming from ChEMBL, GuideToPharmacology, Tdg Clinical 

Trial, FDA, TEND and TTD; ChEMBL associations were only 

kept if the drugs could be mapped to DrugBank identifiers; 

and all the proteins reported as drug transporters, drug 

carriers or enzymes in DrugBank were excluded, therefore 

avoiding potential pharmacokinetic associations. 

 

 Cheng et al. (203,204) used drug-target associations to 

measure the network distance between drug targets and 

disease genes and find novel drug repurposing candidates 

and drug combinations. The authors compiled drug-target 

associations from DrugBank (199), TTD (205) and 

PharmGKB (206). They also collected binding affinity data 

from ChEMBL (202), BindingDB (207) and Guide to 

PHARMACOLOGY (208). They only kept the human protein 

targets that could be represented by a unique Uniprot 

accession number and marked as reviewed in the Uniprot 

database (109). Finally, they selected drug-target 

associations with binding affinities including Ki, Kd, IC50 or 

EC50 each equal or below 10 μM. 

 

 Yamanishi et al. (209) compiled a drug-target associations 

dataset as a gold standard to evaluate their performance 
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predicting drug-target association networks. Their dataset 

integrates drug-target associations from KEGG BRITE (210), 

BRENDA (211), SuperTarget (212) and DrugBank (199) 

databases. This dataset had the particularity that it could be 

divided into four groups according to the types of protein 

targets (enzymes, G-protein coupled receptors, ion channels 

and nuclear receptors). Their gold standard has been used 

widely in many other studies of drug-target association 

prediction. 

 

Table 6. List of drug-target association databases. 

 

Database Description 
Drug-target association 

sources 
URL 

BindingDB 
(207) 

Database of protein-
ligand binding 

affinities 

Scientific literature (by 
manual curation); other 
databases (PubChem, 

ChEMBL, PDSP Ki, 
CSAR) 

bindingdb.
org 

ChEMBL (202) 

Database of binding, 
functional and 

pharmacokinetic 
information for drugs 

Scientific literature (by 
manual curation); other 
databases (PubChem, 

BindingDB) 

ebi.ac.uk/ 
chembl 

DGIdb (201) 

Database of drug-
gene interactions 

from publications and 
other databases 

Scientific literature (by 
text mining and manual 

curation); other 
databases (ChEMBL, 

DrugBank, Drug Target 
Commons, PharmGKB, 

TTD…) 

dgidb.org 

DrugBank 
(199) 

Database of 
molecular information 

about drugs, their 
mechanisms, 

interactions and 
targets 

Scientific literature (by 
text mining and manual 

curation) 

go.drugban
k.com 

https://www.bindingdb.org/
https://www.bindingdb.org/
https://www.ebi.ac.uk/chembl/
https://www.ebi.ac.uk/chembl/
https://www.dgidb.org/
https://go.drugbank.com/
https://go.drugbank.com/
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DrugCentral 
(200) 

Database of drug 
information, including 
structure, bioactivity, 

regulatory and 
pharmacologic 

actions 

Scientific literature (by 
manual curation), other 
databases (ChEMBL, 

Guide to Pharmacology, 
DrugMatrix, WOMBAT-

PK, PDSP)  

drugcentral
.org 

Drug Target 
Commons 

(213) 

Database for 
community-driven 

drug bioactivity data 
integration 

Scientific literature (by 
manual curation), users 
(by manual curation), 

other databases 
(ChEMBL) 

drugtargetc
ommons.fi

mm.fi 

Guide to 
Pharmacology 

(208) 

Database of expert-
curated ligand-
activity-target 
relationships 

Scientific literature (by 
manual curation) 

guidetopha
rmacology.

org 

PharmGKB 
(206) 

Database of 
information about 

human genetic 
variation on drug 

responses 

Scientific literature (by 
manual curation) 

pharmgkb.
org 

PubChem 
(214) 

Database of chemical 
information (biological 

activities, safety, 
structure) 

Other databases 
(BindingDB, ChEMBL, 

DGIdb, DrugBank, CTD, 
PDB) 

pubchem.n
cbi.nlm.nih.

gov 

STITCH (215) 

Database of known 
and predicted 

chemical-protein 
interactions 

Scientific literature (by 
text mining); other 

databases (DrugBank, 
Matador, TTD, CTD, 

ChEMBL, PDSP, 
PDB…); structure-based 

prediction 

stitch.embl.
de 

SuperTarget 
(212) 

Database of drug 
information about 
indications, side 

effects, metabolism 
and pathways for 

target proteins 

Scientific literature (by 
text mining and manual 

curation); other 
databases (DrugBank, 

KEGG, PDB, 
SuperLigands, TTD) 

bioinformat
ics.charite.
de/supertar

get 

TTD (205) 

Database of 
therapeutic target 

information, targeted 
diseases, pathways 

and drugs associated 

Scientific literature (by 
text mining and manual 

curation) 

db.idrblab.
net/ttd 

 

https://drugcentral.org/
https://drugcentral.org/
https://drugtargetcommons.fimm.fi/
https://drugtargetcommons.fimm.fi/
https://drugtargetcommons.fimm.fi/
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
https://www.guidetopharmacology.org/
https://www.pharmgkb.org/
https://www.pharmgkb.org/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
https://pubchem.ncbi.nlm.nih.gov/
http://stitch.embl.de/
http://stitch.embl.de/
https://bioinformatics.charite.de/supertarget/
https://bioinformatics.charite.de/supertarget/
https://bioinformatics.charite.de/supertarget/
https://bioinformatics.charite.de/supertarget/
http://db.idrblab.net/ttd/
http://db.idrblab.net/ttd/
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1.4.3. Network medicine for drug repurposing 

 

1.4.3.1. Introduction to drug repurposing 

 

Drug repurposing (also known as drug repositioning, reprofiling or 

re-tasking) consists in finding new uses to approved or 

investigational drugs that already have a given indication (216). This 

strategy offers important advantages over the traditional procedure 

of developing a new drug (217): 

 

(1) The safety of the compound has already been tested: 

The drug has already been tested in preclinical models and 

humans (if early-stage trials have been completed). 

Therefore, it is less likely to fail due to safety reasons for the 

new indication. 

 

(2) The approval process is faster: As most of the preclinical 

and clinical testing have already been completed, the 

approval procedure of a drug repurposing candidate is much 

faster than for a new drug. 

 

(3) The investment needed is lower: As the approval process 

is shorter because there are phases that were previously 

completed for the original indication, the investment needed 

is lower. However, this can vary depending on the stage and 

process of development of the drug (218). The regulatory and 

phase III costs may remain similar as the ones of a new drug 

in the same indication. The most important savings would be 

in the costs of preclinical, phase I and II. Indeed, it was 
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estimated that taking a new drug to the market costs US$2-

3 billion on average, whereas a drug repurposing candidate 

costs $300 million on average (219). 

 

Historically, the first drug repurposing candidates were usually found 

by serendipity: if the drug showed an interesting off-target effect or a 

new on-target effect, it was considered for commercial exploitation. 

The most famous example is the case of sildenafil citrate (marketed 

as Viagra), originally indicated for hypertension, but repurposed by 

Pfizer for erectile dysfunction after clinical experience (216). 

 

The multiple successes of drug repurposing have encouraged the 

development of systematic approaches to identify drug repurposing 

candidates. There are many systematic methods to identify new 

indications in drugs, most of them computational-based (217). Some 

of them are based on the binding between the structures of the drug 

and the targets (molecular docking). Others are based on analyzing 

how the drug modulates the expression of some genes. There are 

methods based on the analysis of clinical data reports. However, the 

only type of methods that put the drug in the molecular context of the 

disease are the network-based methods. 

 

1.4.3.2. Network-based drug repurposing methods 

 

Network-based drug repurposing methods involve the analysis of 

biological networks to predict new indications for drugs. These 

methods can be classified in different categories depending on the 

type of biological networks employed, including PPI networks, gene-

regulatory networks or drug-target interaction networks (220): 

 



Introduction 
 

 

 96 

(1) Based on PPI networks: Drug repurposing methods using 

PPI networks are based on the idea of identifying drugs 

targeting the disease modules within the PPI network. Guney 

et al. (79) hypothesized that a drug was effective against a 

disease by targeting proteins within or in the immediate 

neighborhood of the corresponding disease module. Based 

on this assumption, the authors proposed a drug-disease 

proximity measure where they quantified the distance 

between the proteins in the disease module and the targets 

of the drug of interest (see Figure 16 for a schematic 

example). The measure, called “drug-disease proximity” or 

𝑑(𝑆, 𝑇) (Eq. 10), was defined as the shortest path lengths 

(𝑑(𝑠, 𝑡)) between targets (𝑡) of a drug (𝑇) and proteins (𝑠) 

associated with the disease module (𝑆).  

 

 𝑑 (𝑆, 𝑇) =
1

‖𝑇‖
∑ 𝑚𝑖𝑛𝑠∈𝑆𝑑(𝑠, 𝑡)

𝑡∈𝑇

 Eq. 10 

 

The implicit bias towards nodes with high degree when 

calculating the shortest path was addressed by calculating a 

z-score (𝑧 =
𝑑−𝜇

𝜎
). They used a reference distance 

distribution corresponding to the expected distance between 

two randomly selected groups of proteins of the same size 

and degree as the original disease proteins and drug targets. 

They repeated the procedure 1000 times, and the mean (𝜇) 

and standard distribution (𝜎) of the distance 𝑑(𝑆, 𝑇) were 

used to calculate the z-score. This proximity measure was 

validated using pharmacoepidemiologic records from 220 

million cardiovascular disease patients in a posterior study 

(203). Additionally, it was further used to propose drug 
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repurposing candidates against the SARS-CoV-2 virus 

during COVID-19 pandemic (139,221). 

 

(2) Based on drug-target interaction networks: These 

methods are based on the idea that proteins targeted by 

similar drugs are functionally related and close in the drug-

target interaction network. For example, Cheng et al. (222) 

proposed a network-based inference method that, using a 

drug as seed, scores the rest of elements of the drug-target 

interaction network employing a process analogous to mass 

diffusion. Other methods apply machine learning algorithms 

to predict new drug-target interactions based on the known 

interactions of the network (220).   

 

(3) Based on gene-regulatory networks: Gene expression 

patterns are known to change systematically in response to 

a drug or a disease. Thanks to gene expression detection 

technologies such as microarrays and RNA-seq, it is possible 

to monitor the gene expression changes and understand 

better the mechanism of action of drugs. For example, the 

Library of Integrated Network-Based Cellular Signatures 

(LINCS) (223,224) provides a large-scale gene expression 

catalog of perturbation-response signatures. The Drug 

Repurposing Hub (225) provides applications to analyze this 

type of data and identify drugs that produce a therapeutic 

response in cellular models and could be suitable 

repurposing candidates. Alternative methods, such as 

Greene et al. (226), construct a gene-regulatory network and 

identify disease modules from the analysis of genome-wide 

association studies to find potential new therapies. 
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Figure 16. Schematic description of the network-based drug-disease 

proximity defined in Guney et al. (79). Calculation of the distance (d) 

between the targets of the drug (T) and the disease genes (G), by averaging 

the shortest paths from the targets to the closest disease genes. To 

measure the relative proximity (z), the distance is compared with a 

distribution of distances between random sets of genes with same degrees. 

The relative proximity (z) indicates if the network-based distance (d) is 

smaller than what is expected by chance. Figure adapted from Figure 2 of 

Guney et al. (79). 
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1.4.4. Network medicine for drug combination 

discovery 

 

1.4.4.1. Introduction to drug combinations 

 

A drug combination is a medicine that includes two or more active 

ingredients combined in a single dosage form. Drug combinations 

often show important advantages when compared to individual 

drugs (227): 

 

(1) Drug combinations are able to simultaneously target multiple 

disease-related pathways in order to alleviate factors such as 

network robustness, redundancy or crosstalk, therefore 

increasing the efficacy of the treatments (228).  

 

(2) The interaction between two drugs can sometimes lead to 

synergistic effects where the combined effect is better than 

individual ones. This is particularly relevant in cases where 

side effects are important as synergistic drugs can be used 

at lower dosage (229). 

 

Drug combinations can be divided into two categories depending on 

the type of interaction between the drugs (227,230): 

pharmacodynamic, when the interaction between drugs directly 

influences their mechanism of action; or pharmacokinetic, when 

the interaction between drugs produces changes in the levels of 

absorption, distribution, metabolism or excretion of the drugs.  
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On the one side, pharmacodynamic drug combinations can be 

classified in three different groups depending on the effect that they 

produce:  

 

(1) Synergistic: When the effect of the combination is greater 

than the summed effects of the individual drugs. The 

mechanisms of action that provoke the synergy can be 

divided in three categories (227):  

 

(a) Anti-counteractive actions: The synergy arises 

because the anti-counteractive actions of the drugs 

reduce the counteractive activities in the network against 

the therapeutic effect of the drugs. 

(b) Complementary actions: The synergy is produced 

because the drugs positively regulate a target or multiple 

points of a pathway, or collectively modulate the 

expression and activity of a target. 

(c) Facilitating actions:  The synergy is caused because 

the drug-target interactions of one of the drugs produces 

an effect that facilitates the action of the other drug/s. 

 

(2) Additive: When the effect of the combination is equal to the 

summed effects of the individual drugs. The mechanisms of 

action that provoke the additive effect can be divided in two 

categories (227): 

 

(a) Overlapping or equivalent actions: The additive effect 

is caused because the drugs interact with the same 

targets, or with different targets of the same pathway that 

equivalently regulate the same target. 
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(b) Independent actions: The additive effect is caused 

because the drugs interact with different targets of 

unrelated pathways, or with different sites of the same 

target. 

 

(3) Antagonistic: When the effect of the combination is lower 

than the summed effects of the individual drugs. The 

antagonistic effect is always caused by counteractive or 

interfering actions between the drugs, but they can either be 

at the same target, or at different targets of related pathways. 

 

On the other side, pharmacokinetic drug combinations can be 

classified in two different groups depending on their effect (227): 

 

(1) Potentiative: When the therapeutic activity of one of the 

drugs is increased by the other drug/s due to a positive 

modulation of absorption, distribution, metabolism or 

excretion. 

 

(2) Reductive: When the therapeutic activity of one of the drugs 

is decreased by the other drug/s due to a negative 

modulation of absorption, distribution, metabolism or 

excretion. 

 

Finally, there is also another type of drug combination known as 

coalistic, in which the ingredients of the combination are individually 

inactive but active in combination (227). 
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1.4.4.2. Drug combination discovery methods based on 

network medicine 

 

Most drug combinations used in clinic have been found empirically, 

meaning that only a small fraction of the full drug combination 

spectrum has been effectively exploited. In consequence, there is a 

large therapeutic space of drug combinations to uncover. In this 

aspect, computational approaches can provide an avenue to explore 

and predict drug combinations for diseases of interest through 

network medicine. 

 

The field of computational prediction of drug combination is a fertile 

ground as proved by the number of methods available (231). Most 

of these methods (232–237) are focused on predicting the synergy 

of the compounds by using high-throughput screening assays from 

cancer cell lines (238,239). Although valuable, these type of 

prediction methods are very limited to very specific diseases and 

rarely delve into the actual molecular mechanism of the drug 

combination.  

 

In a recent work, Cheng et al. (204) approached the challenge of 

predicting combinations of drug pairs by measuring the distance 

between the proteins targeted by the two drugs (i.e. drug-target 

modules) and the neighborhood of the interactome affected by the 

disease (i.e. disease module). To measure the distance between two 

drug-target modules, the authors used the network-based 

separation metric defined by Menche et al. (77) (Eq. 9), whereas to 

measure the distance between a drug-target module and a disease 

module, they used the drug-disease proximity metric defined by 

Guney et al. (79) (Eq. 10). The authors defined 6 classes of drug 



Introduction 
 

 103 

combination pairs depending on how their drug-target modules were 

overlapping the disease module (Figure 17):  

 

(1) Overlapping exposure: Two overlapping drug-target 

modules are overlapping the disease module. 

 

(2) Complementary exposure: Two separated drug-target 

modules are overlapping individually with the disease 

module (in different areas). 

 

(3) Indirect exposure: One of the two overlapping drug-target 

modules overlaps with the disease module. 

 

(4) Single exposure: One drug-target module separated from 

the other drug-target module overlaps with the disease 

module. 

 

(5) Non-exposure: Two overlapping drug-target modules are 

topologically separated from the disease module. 

 

(6) Independent action: Each of the drug-target modules and 

the disease module are topologically separated. 

 

This study found that when looking for therapeutically effective drug 

combinations, the two drug-target modules, although separated in 

the interactome, were overlapping in the disease module. These 

findings were only applied for two complex diseases (hypertension 

and cancer) but can be generalized to other diseases, as they are 

proof that the understanding of the human interactome is key to 

predict drug combinations. 
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Figure 17. Schematic description of the six classes capturing the 

network-based relationship between two drug-target modules of a 

drug combination and one disease module, as defined by Cheng et al. 

(204). Figure adapted from Figure 2 of Cheng et al. (204). 
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1.4.5. Network medicine towards a more precise 

and personalized medicine 

 

The first step towards a rational drug design is to understand the 

perturbation in the system caused by the disease. Network medicine 

addresses this problem by providing tools to identify the disease 

module, the neighborhood of the interactome perturbated by the 

disease (76). Thus, the next step is to understand the mechanism of 

action of drugs. Getting to know how a drug perturbates the 

interactome, and more specifically the module of the disease of 

interest, is the key to find the right treatment for the disease. 

 

The most straightforward way to know how the drugs perturbate the 

interactome is to identify their drug targets. As seen in the previous 

section, there are plenty of varied computational methods to predict 

drug-target associations. Network medicine provides multiple 

approaches to identify unknown drug targets. They are usually 

based on the construction of either a drug-target network or a PPI 

network from the integration of public databases, and the exploitation 

of network-based algorithms (190). 

 

However, thanks to the rapid growth of omics datasets and detailed 

phenotyping, network medicine is moving from a drug-centered view 

(drug discovery) to a patient-centered view (personalized medicine) 

with the following objectives: discover new disease subgroups, 

enhance patient risk stratification and develop individualized 

treatment strategies (72,181,240). To achieve this, several 

approaches to integrate and exploit multi-omics datasets have been 

developed, which can be divided in 5 groups (241) (Figure 18): 
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Figure 18. Schematic representation of the feedback between -omics 

data and networks. -Omics data guides the construction of simple and 

multi-layered networks and the identification of modules inside the network. 

Networks provide the ideal context to analyze -omics data and make 

simulations and models. Figure adapted from Figure 12-1 of Ma et al. (241). 

 

(1) Multi-omics data-driven assembling of networks: It 

consists in the reconstruction of knowledge-based networks 

at the genome or cell scale by compiling information from 

different types of experiments and research articles. Typical 

examples of network reconstruction based on multi-omics 

data are genome-scale metabolic networks. Their 
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reconstruction requires compilation of chemical reactions, 

genome annotations and literature findings (242). 

 

(2) Multi-omics data-driven identification of network 

modules: It consists in the application of machine learning 

and statistical inference methods on multi-omics data to 

predict previously unknown network structures or identify 

functional network modules. For example, the application of 

biclustering (i.e. two-dimensional clustering of biomolecules 

and conditions) to infer functional modules (243). Another 

example would be the study of Oldham et al. (244), which 

applied network-based methods to analyze clinical data from 

patients with exercise intolerance and stratify the clinical risk. 

They assembled a network based on correlations between 

invasive cardiopulmonary exercise testing variables of 

patients. Using K-means analysis, they identified 4 distinct 

patient clusters. 

 

(3) Integration of multi-layered networks: It consists in the 

integration and exploitation of different types of omics data 

by organizing them in multi-layered (or multiplex) networks, 

where each type of network (e.g. PPI network, metabolic 

network, drug-target network, etc.) is a different layer (245). 

Each interaction is not a pair of nodes, but a tuple of node-

layers (246). The elements of the network can be analyzed 

at an intra-layer level (focusing on a single homogeneous 

network) or at an inter-layer level. By studying the 

connectivity of multi-layered networks, it is possible to identify 

certain areas that could provide biological insights. Still, such 

networks can also be more difficult to visualize or analyze, 
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requiring the use of fast-filtering or pattern-matching 

approaches based on machine learning (245). Multi-layer 

networks can be used in multiple applications, such as 

studying human diseases (247) or veterinary epidemiology 

(248). 

 

(4) Contextualization of multi-omics data using networks: 

Using established networks as contextual basis, there are 

methods that apply statistical analyses to high-throughput 

data types to reduce their dimensionality and provide a 

clearer interpretation of the results. For example, genome-

scale metabolic networks can be a useful framework for 

contextualizing disease-associated genes. It is the case of 

Lee et al. (249) study, where the authors mapped into a 

human metabolic network the disease-gene associations 

from OMIM (103). Using this network as basis, they created 

a new disease-disease network linking metabolic diseases if 

their associated genes catalyzed neighboring reactions in the 

metabolic network. The resulting network unveiled the 

metabolic mechanism of some comorbidities.  

 

Another example would be the study of Cheng et al. (250) 

where the authors integrated patients’ DNA and RNA 

sequencing profiles into the human PPI network. Specifically, 

they collected significantly mutated genes from large-scale 

genome datasets across 15 cancer types and mapped them 

to the PPI network. They found that the significantly mutated 

genes formed disease modules in the PPI network. Each 

disease module was expanded by applying a random walk 

network algorithm. Finally, they applied an arsenal of 
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different drug repurposing algorithms to prioritize several 

drugs as potential treatments of these diseases. 

 

(5) In-silico network simulations of multi-omics data: It 

consists in the integration of multi-omics data in established 

networks to predict the mechanism of cellular behavior. An 

example of this approach would be the Therapeutic 

Performance Mapping System (TPMS), a software to create 

models of all the possible mechanisms of actions that could 

exist between a drug and a disease or side effect (251,252). 

TPMS uses as basis a PPI network created from the 

integration of public repositories of PPIs. TPMS simulates the 

transmission of the perturbation of the drug through the PPI 

network from the stimulus (the drug targets) until the 

response (the disease-associated genes). The simulation of 

the perturbation is carried out mimicking the transmission of 

signal of a Multilayer Perceptron algorithm in a network. It 

takes as input signals the activation (+1) or inactivation (-1) 

of the drug targets, and as output the protein states of the 

disease. The models are trained by using restrictions (known 

activated or inactivated genes) retrieved from gene 

expression datasets for the particular disease. The models 

that best fit the conditions are considered the potential 

responses of the drug on patients with the studied disease 

(see Article 3.3 for more details). 
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1.4.6. Network medicine towards safer treatments 

 

One of the main reasons of failure when launching new drug 

candidates is the safety of the compounds (185). Such problems are 

caused by undesired side effects, which are toxic reactions caused 

by the interaction of the drug with other molecules in the organism. 

The prediction of side effects remains as one of the main challenges 

of the pharmaceutic industry in the last years. In this aspect, 

computational methods are key to systematically exploit the 

biological information known about the drug to predict potential side 

effects. 

 

Many computational methods focus on the prediction of drug-side 

effect associations, using biological features related with the drug. 

Among them, many methods are based on analyzing the chemical 

structure of the drug (253,254). Specifically, they identify 

commonalities between drug structures or specific chemical 

substructures that may arise such side effects. Others combine it 

with information such as the Anatomic Therapeutic Chemical (ATC) 

classification, literature mining or drug-target associations, using 

machine learning algorithms (255).  

 

In a pioneer study, Kuhn et al. (256) decided to focus on finding 

proteins elucidating side effects when perturbated by the drug. Their 

idea was to combine drug-side effect relationships obtained from the 

SIDER database (257) with drug-target associations from the 

STITCH database (215), and identify those target-side effect 

relationships that were significantly more common. To do so, they 

applied a Fisher’s exact test to determine the significance of these 

relationships.  
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Although many side effects can be explained by the proteins 

targeted by the drug, many of them originate from the perturbation 

of proteins and biological functions in the neighborhood of the targets 

(183). Network medicine can be the key to explore how the drugs 

perturbate the interactome and the side effects that arise from such 

perturbations. Guney (258) started the way, by proposing a network 

medicine approach to identify side effect modules in the interactome. 

The author applied the approach of Kuhn et al. (256) to identify 

protein targets significantly associated to side effects. The groups of 

proteins associated to a common side effect constituted the module 

of such side effect. Then, the author applied a battery of network 

topology-based methods to quantify the closeness of the side effect 

modules to the targets of drugs. Still, there is a lack of methods 

applying network medicine to elucidate side effects. 

 

More recently, the identification of gene expression patterns in 

genomics datasets using machine learning is becoming key for the 

prediction of toxic reactions in patients (259). This is possible due to 

the appearance of datasets such as LINCS (223,224), which 

provides a large-scale gene expression catalog of perturbation-

response signatures. Additionally, initiatives such as the 

International Conference on Critical Assessment of Massive Data 

Analysis (CAMDA) are facilitating to assess the value of genomics 

and the state-of-the-art machine learning methods on predicting 

drug adverse reactions (260–262). The combination of the fields of 

toxicogenomics, pharmacogenomics and network medicine is the 

future for an in silico, personalized and precise prediction of side 

effects (245).  
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The focus of the thesis is to develop in silico tools for network 

medicine that contribute to the research on diseases and the 

development of safer and more effective drugs.  

 

Network medicine is improving our knowledge on the molecular 

mechanisms of human diseases by providing resources to organize 

and analyze biological systems. The first objective of the thesis is: 

 

1. Develop an easy-to-use application to identify disease modules 

and analyze the protein interactions and biological functions 

perturbated, the relationship with other diseases and propose 

drug repurposing candidates. 

 

This objective involves the following sub-objectives: 

 

 Compile and integrate information on genes, proteins, drugs, 

diseases, PPIs, disease-gene associations and drug-target 

associations. Store this information in a database. 

 Derive PPI networks from the previously integrated 

information on PPIs. 

 Update the web server GUILDify, adding the following 

functionalities:  

o Calculate the biological functions enriched among the 

proteins of a disease module. 

o Explore the molecular mechanisms of comorbid 

disease pairs based on the previous work of Rubio-

Perez et al. (92). 

o Detect drug-target modules associated with drugs. 
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o Propose drug repurposing candidates based on the 

molecular and functional overlap of disease modules 

and drug-target modules. 

 

Network medicine is especially suited to find drug repurposing 

candidates by placing the drug information in the molecular context 

of the interactome. This permits to explore specifically which 

pathophenotypes are targeted by the drug. For instance, 

endophenotypes, intermediate pathophenotypes shared by different 

diseases. The second objective of my thesis is: 

 

2. Develop a method to repurpose drugs targeting 

endophenotypes. 

 

This objective involves the following sub-objectives: 

 

 Develop a method to rank drugs, based on the network-

based drug-disease proximity (79) of their targets to a list of 

pathways of interest (i.e., pathways belonging to an 

endophenotype). 

 Identify pathways proximal to disease genes across various 

autoimmune disorders using the previously developed 

method. 

 Investigate whether the drugs promiscuously used in 

autoimmune disorders target specifically the pathways 

associated with one disease or the pathways shared across 

the diseases. 

 Explore the potential endophenotypes shared by Type 2 

Diabetes and Alzheimer’s Disease using the previously 

developed method. 
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Network medicine is moving towards a more personalized medicine 

where the center is the patient. This means to understand the effect 

of diseases on different types of patients and find drugs that are 

more effective and produce less side effects. This includes the 

consideration of novel types of treatments, such as drug repurposing 

candidates or drug combinations. The third objective of my thesis 

is: 

 

3. Propose a network medicine method to identify the potential 

mechanisms of action of a drug for the treatment of a disease, 

stratifying different types of patients. 

 

This objective involves the following sub-objectives: 

 

 Use the program TPMS to investigate the potential 

mechanisms of action of the drug combination 

sacubitril/valsartan in heart failure, associating the different 

mechanisms of action to different prototype-patients. 

 Use the program TPMS to assess the potential mechanisms 

of action that could lead the drug combination 

sacubitril/valsartan to produce macular degeneration, 

associating these mechanisms of action to different 

prototype-patients. 

 Identify biomarker proteins whose modulation is key to 

differentiate between classes of prototype-patients. 

 Use GUILDify web server to explore the protein interactions 

and biological functions modulated by the drug combination 

sacubitril/valsartan in the disease modules of heart failure 

and macular degeneration. 
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Drug safety is one of the main problems of pharmaceutical industry 

and one of the main reasons of drug attrition during drug 

development. Network medicine could be key to understand the 

mechanism of action of drugs and predict side effects by integrating 

multi-omics data and applying machine learning techniques. The 

fourth objective of my thesis is: 

 

4. Implement a machine learning strategy to predict the drugs that 

cause drug-induced liver injury by analyzing multi-omics data. 

 

This objective involves the following sub-objectives: 

 

 Propose strategies to identify drug-induced liver injury gene 

signatures among L1000 datasets of CMap (224). 

 Develop a machine learning ensemble to combine the 

predicted gene signatures with other types of omics data to 

predict drugs causing drug-induced liver injury. 
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3.1. GUILDify v2.0: A tool to identify disease 

modules and their relationships with other 

diseases and their druggable targets 

 

In the first article of the thesis, I present GUILDify v2.0, a web server 

that applies the network diffusion method of GUILD (78) and the 

topological community finding method of DIAMOnD (119) to extend 

the information on disease-associated genes and identify disease 

modules. The work done to develop the update of the web server 

can be divided in 8 parts: 

 

(1) Proportionate 7 species-specific PPI networks and 22 human 

tissue-specific PPI networks from the integration of multiple 

sources of biological interactions. 

(2) Increase the quantity and quality of our dataset of disease-

gene associations by incorporating DisGeNET (110). 

(3) Integrate drug-target associations and incorporate the option 

to search by drug name, so that the user can extend the 

information on drug targets through the interactome and 

identify network modules affected by the drug. 

(4) Improve the network visualization results by the incorporation 

of cytoscape.js (263) to the web server. 

(5) Redefine the selection of proteins forming the disease 

module based on whether they have similar functional 

annotations as the disease-associated genes. 

(6) Measure the genetic and functional overlap between the 

disease modules of two diseases, aiding the molecular 

understanding of disease-disease relationships and 

comorbidities. 
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(7) Implement a drug repurposing strategy based on the genetic 

and functional overlap between the modules associated to a 

disease and a drug. 

(8) Develop an R package to facilitate the programmatic access 

to the web server. 

 

As snapshot of the time of use, from 14th June of 2019 until 4th of 

February of 2021, GUILDify v2.0 has been accessed 1,238 times by 

721 users. 
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Abstract 

 

The genetic basis of complex diseases involves alterations on 

multiple genes. Unraveling the interplay between these genetic 

factors is key to the discovery of new biomarkers and treatments. In 

2014, we introduced GUILDify, a web server that searches for genes 

associated to diseases, finds novel disease genes applying various 

network-based prioritization algorithms and proposes candidate 

drugs. Here, we present GUILDify v2.0, a major update and 

improvement of the original method, where we have included protein 

interaction data for seven species and 22 human tissues and 

incorporated the disease-gene associations from DisGeNET. To 

infer potential disease relationships associated with multi-

morbidities, we introduced a novel feature for estimating the genetic 

and functional overlap of two diseases using the top-ranking genes 

and the associated enrichment of biological functions and pathways 

(as defined by GO and Reactome). The analysis of this overlap helps 

to identify the mechanistic role of genes and protein-protein 

interactions in comorbidities. Finally, we provided an R package, 

guildifyR, to facilitate programmatic access to GUILDify v2.0 

(http://sbi.upf.edu/guildify2). 

 

Keywords: disease comorbidity; drug repurposing; network 

analysis; systems medicine; target prioritization. 
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Introduction 

 

Complex diseases such as cancer, diabetes, neurodegenerative 

disorders or cardiovascular diseases are rarely caused by a single 

genetic perturbation and usually involve polygenic modifications on 

the underlying interconnected cellular network. Understanding the 

genetic basis of diseases and the interactions of disease-associated 

proteins in the protein interaction network (PIN) is essential for the 

development of new rational therapeutic strategies. Despite recent 

large-scale genotyping efforts, information on disease-gene 

associations is still limited, often explaining a small percentage of the 

phenotypic variance observed among individuals (1). To address 

this limitation and infer novel disease-gene associations, various 

disease-gene prioritization methods have been suggested, 

exploiting the “guilt-by-association” principle over certain features of 

disease-genes such as similarity in sequence and functional 

annotations, clustering in the linkage interval, or proximity in the PIN 

(2). Indeed, albeit the PINs being incomplete (3), the proximity to 

disease-genes in the PIN has proven extremely useful in prioritizing 

disease-associated genes (4). Consequently, a number of tools and 

web servers has been developed to expand the number of disease-

associated genes using the interactome (5–9). 

 

Previously, we presented GUILDify, a web server that applies the 

prioritization algorithms developed in GUILD software to find novel 

disease-gene associations based on the connectedness of genes in 

the PIN (10,11). GUILDify searches for genes starting from user-

provided keywords such as the names of diseases or gene symbols 

in the BIANA knowledge database. It uses the genes associated to 

the keywords as seeds and the PIN for the selected organism to 
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apply graph theory algorithms to prioritize new disease genes. 

Recently, GUILDify has been applied to: (i) find comorbidities across 

genetic diseases (12); (ii) construct PINs specific to breast cancer 

metastasis to lung and brain (13); (iii) identify candidate genes for 

body size in sheep (14) and (iv) prioritize preeclampsia pathogenesis 

(15). 

 

Here, we present a comprehensive upgrade, GUILDify v2.0, where 

we updated the underlying biological databases in BIANA 

knowledge database (protein and drug-target interactions, functional 

and disease annotations) and: (i) facilitated the use of seven 

species-specific PINs and 22 human tissue-specific PINs; (ii) 

increased the quality and number of disease-gene associations by 

incorporating DisGeNET to our datasets; (iii) incorporated the option 

to search by drug name, allowing the prioritization of genes based 

on known drug targets to uncover the neighborhood of the PIN 

affected by the drug; (iv) improved the visualization of the results 

using cytoscape.js; (v) refined the definition of top-ranking genes 

based on whether they had similar functional annotations as the 

seeds,  thus providing the biologically most coherent subnetwork 

relevant to a given disease; (vi) introduced a feature to measure the 

genetic and functional overlap of the top-ranking genes of two 

different diseases, supporting the investigation of disease 

comorbidities; (vii) implemented a new drug repurposing 

functionality to propose novel indications for a given drug based on 

the genetic and functional overlap; and (viii) developed an R 

package to facilitate the programmatic access to the methods 

implemented in the web server. 
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Results and Discussion 

 

Advances 

 

Identifying genetic and functional similarities across diseases 

 

In recent works, we have shown that the genetic and functional 

similarities of diseases in the PIN can be used to characterize co- 

and multi-morbidities across diseases (12) and also to repurpose 

existing drugs targeting these diseases (16). Motivated by these 

findings and to provide systematic insights on disease-disease 

relationships, GUILDify v2.0 now allows users to identify the overlap 

between two previously submitted results, i.e. sets of genes linked 

to two different diseases. Accordingly, given two job IDs 

corresponding to the prioritization results of two different diseases, 

GUILDify v2.0 provides: (i) the overlap between the top-ranking 

genes of the two diseases; (ii) the overlap between the enriched 

functions among the top-ranking genes of the two diseases; (iii) the 

enriched functions among the common top-ranking genes; and (iv) 

a network visualization of the interactions between common top-

ranking genes. Moreover, GUILDify v2.0 also calculates the Fisher’s 

exact test to quantify the significance of the overlap between genes 

and functions and report one-sided P-value (see details in 

Supplementary Material). GUILDify v2.0 is the first server that 

permits the use of gene prioritization results to explore disease-

disease relationships with such simplicity and flexibility.  
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Prioritization of drug targets 

 

GUILDify v2.0 now allows to search by a drug in addition to a 

phenotype and returns a list of drug-target associations integrated 

from DrugBank (17), DGIdb (18), DrugCentral (19) and ChEMBL 

(20) (see details in Supplementary Material). This new functionality 

allows the characterization of the neighborhood of the drug in the 

PIN, i.e. neighboring proteins to those targeted by the drug, and thus 

providing insights on the potential mechanism of action of the drug. 

Moreover, the novel feature of assessing the overlap between two 

network expansion runs (i.e. two job IDs) can also be applied in 

multiple scenarios to: (i) identify the similarity between the 

neighborhood of two drugs in the PIN, which can be useful to identify 

drug interactions; (ii) compare the neighborhood of a disease with 

the neighborhood of a drug in the PIN, which can be applied to drug 

repurposing. Such novel features make GUILDify v2.0 one of the 

most easy-to-use and flexible web servers to inspect the effect of 

drugs in the PIN. 

 

Screening diseases to identify potential new indications of 

known drugs 

 

Building upon new technical developments mentioned above, 

GUILDify v2.0 now offers a novel drug repurposing functionality. 

Given a job ID associated with a drug (or a list of drug targets), this 

feature automatically calculates the overlap of genes (or functions) 

between the given drug and a set of pre-calculated diseases. Details 

on the method and validation of drug repurposing are described in 

detail at Supplementary Material. 
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Tissue and species-specific PINs 

 

The analysis of the protein interactions in a tissue-specific context is 

becoming increasingly relevant to understand genetic diseases and 

find improved treatments (21). We have included tissue-specific 

networks derived from 22 different human tissues (see 

Supplementary Table S1). To create these networks, we filtered 

the interactions in the global PIN using RNAseq data from GTEx 

(22), keeping only the interactions between proteins encoded by 

genes that are expressed in a given tissue (i.e. considering only 

transcripts with TPM (transcripts per kilobase million) expression 

values of 1 or higher (see details in Supplementary Material). We 

have also included 7 species-specific PINs derived from 

experimentally determined protein-protein interactions. Although the 

coverage of interactomic data for some species is low (e.g., 11,943 

interactions in rat vs 320,337 interactions in human), these PINs 

provide a reliable backbone for interactome-based analyses (e.g., in 

preclinical research) as opposed to PINs generated by predicted 

interactions based on homology information. 

 

Disease-gene information from DisGeNET 

 

We incorporated DisGeNET, one of the largest repositories of genes 

and variants associated to human diseases (23). DisGeNET relies 

on data from UniProt (24), CTD (25), CLINVAR (26), ORPHANET 

(27), GWAS Catalog (28), PsyGeNET (29) and HPO (30) and is 

integrated in BIANA (31). To investigate the increase in the number 

of disease-gene associations between versions 1 and 2 of GUILDify, 

we checked the number of associations for the lowest-level non-

obsolete diseases from Disease Ontology (32) that were available in 
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our repositories (2,190 terms). GUILDify v1 contains gene 

associations for 1,505 diseases and 4,171 genes (2.8 genes per 

disease), while updated GUILDify v2.0 has gene associations for 

2,064 diseases and 11,615 genes (5.6 genes per disease on 

average).  

 

Functional-coherency based selection of top-ranking genes 

 

One of the main issues when working with disease-gene 

prioritization is to select the most relevant (top ranked) genes 

associated with a given disease. The user can select top 1% or 2% 

highest scoring genes among all the proteins in the PIN as top 

ranked genes. In GUILDify v2.0, we also introduced a cutoff based 

on the functional validation approach described in Ghiassian et al. 

(5) and provided a new panel visualizing the significance of the 

functional enrichment (P-value) as a function of the number of top-

ranking genes included in the validation (implemented in Plotly). In 

brief, the highest-scoring non-seed proteins are iteratively included 

in the top-ranking set, provided that they maintain the functional 

coherency of the existing top-ranking set (see details in 

Supplementary Material). Note that this approach might be too 

restrictive for some complex diseases in which the information on 

known disease-gene associations is limited, failing to represent the 

functional diversity involved in the disease. 

 

Visualization of the top-ranking subnetwork 

 

GUILDify v2.0 uses the JavaScript-based network visualization 

library, Cytoscape.js (33), to show the subnetwork of the top-ranking 

proteins and the drugs targeting these proteins. The user can decide 
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the cutoff to define the top ranked proteins to be visualized (top 1%, 

top 2% or functionally-coherent as mentioned above). In addition to 

seeds (green hexagons), top-ranking proteins (yellow circles) and 

drugs (blue diamonds), the subnetwork includes the proteins that 

connect the seeds to the largest connected component induced by 

seeds (named “linkers” and shown as grey circles, see details in 

Supplementary Material).  

 

R package 

 

We have included an R package in order to provide programmatic 

access to GUILDify v2.0 through R statistical computing 

environment (https://www.r-project.org/). The package implements 

methods to query and retrieve results from the web server as an R 

data frame, allowing users to run multiple queries for more high-

throughput and/or systematic analyses. The package and 

documentation are available online at: http://sbi.upf.edu/guildify2. 

 

 

GUILDify v2.0 workflow 

 

Input 

 

The interface of GUILDify v2.0 is designed to be simple and intuitive. 

The input varies slightly depending on the desired task: (i) a new 

search; (ii) retrieving results from a previous run; and (iii) calculating 

genetic and functional overlap between two previous runs. For a new 

search, we require two steps: first the selection of seeds (genes 

associated with a phenotype or drug) and second the selection of 

parameters to run the prioritization algorithms. For the selection of 

http://sbi.upf.edu/guildify2
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seeds the user has to provide: (i) either keyword(s) describing the 

phenotype/drug of interest or a set of specific gene names separated 

by a semicolon; (ii) the species of interest (default value: Homo 

sapiens); (iii) the tissue of interest (default value: All); and (iv) the 

PIN source (default value: BIANA). If the user provides a keyword 

(or set of keywords) describing a phenotype or drug, the server 

searches genes containing the keyword in BIANA knowledge 

database (i.e. integrating information from many resources), 

otherwise it uses the list of provided gene names. The server shows 

the selected seeds, which can still be filtered and selected by the 

user. Then, for the prioritization parameters the user can select to 

run the “disease module detection algorithm” (DIAMOnD, 

downloaded from https://github.com/dinaghiassian/DIAMOnD) (5) or 

to use one of the several prioritization algorithms from the GUILD 

package (default value: NetScore with default parameters). Finally, 

to retrieve results, the required input is the job ID of a previous run, 

while for calculating genetic and functional overlap the inputs are two 

job IDs of previous runs. 

 

Output 

 

GUILDify v2.0 outputs the ranking of the nodes in the PIN and the 

visualization of the subnetwork involving the top-ranking genes in a 

cytoscape.js panel. In addition, the output page has: (i) a panel 

showing the P-values of functional enrichment of the ranked nodes; 

(ii) two panels with functions enriched among the top-ranking nodes 

and seeds, respectively; and (iii) one panel with the drugs that target 

the top-ranking proteins. 

 

https://github.com/dinaghiassian/DIAMOnD
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For the “Overlap between two results” option, the server provides: (i) 

the list of the common top-ranking genes and the significance of the 

overlap assessed by a Fisher’s exact test (see details in 

Supplementary Material); (ii) the network visualization of the 

common top-ranking genes including the “linkers” (see above); (iii) 

the list of enriched functions of the common genes; iv) the list of 

common enriched functions of both results and the significance of 

the overlap; and v) the drugs targeting the proteins of the common 

PIN. Using this functionality, the users can identify the overlap 

between any two queries such as between two diseases, two drugs 

or a disease and a drug. Although we do not provide the overlap 

between interactions of top-ranking proteins in a separate table, 

these interactions can be investigated in the network visualization 

panel.  

 

 

Case studies 

 

Exploring the mechanistic links between rheumatoid arthritis 

and asthma 

 

In multiple studies, rheumatoid arthritis and asthma are linked as a 

potential comorbidity, although the mechanisms underlying this 

association remain unclear (34). Using the new functionality of 

GUILDify v2.0, we can assess the overlap between diseases and 

thus propose a potential mechanism to explain the association 

between them. Querying for “rheumatoid arthritis” and “asthma” 

returns 156 and 96 seeds, respectively coming from DisGeNET, 

OMIM, and UniProt. There are already 12 seeds in common 

(Fisher’s exact test, one-sided P-value = 1.4·10-9) and 18 common 
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functions out of the total enriched functions of the seeds (P-value = 

9.3·10-23).   After running GUILDify v2.0, we select 290 and 181 top 

ranked genes using functional-coherency based cutoff for 

rheumatoid arthritis and asthma, respectively. We find that the 

number of common genes increases to 55 (yielding a P-value = 

5.9·10-48), while the number of common functions (biological 

processes) increases to 31 (P-value = 8.1·10-46). The link between 

these diseases is significant even when the seeds are removed from 

the top-ranking genes (see Supplementary Material). Among the 

shared top-ranking genes, we find Tumor Necrosis Factor (TNF), 

which has been proposed as a potential drug target for asthma and 

rheumatoid arthritis, and highlighted as a potential precursor of the 

comorbidity (12). We also find HLA-DRB1 and several interleukins 

(IL18, IL1B, IL3), taking part of the immune response potentially 

involved in both diseases. Furthermore, the most common enriched 

functions relate to inflammatory processes such as “inflammatory 

response”, “positive regulation of interferon-gamma production” and 

“positive regulation of T-helper 1 cell cytokine production”. These 

functions appear again if we check the functions enriched by the 

common genes, along with other functions such as “T-helper 1 type 

immune response” or “negative regulation of type 2 immune 

response”, highlighting the involvement of type 1 immune response 

in both diseases. As negative controls, we repeated the analysis 

using other disease pairs that are not likely to be comorbid such as 

“rheumatoid arthritis” - “breast cancer” and “asthma” - “breast 

cancer”, finding drastically reduced number of genes in the overlap 

between these disease pairs (see Supplementary Material). The 

results can be further explored in Figure 1 and in the pre-calculated 

examples section of the web. Additionally, we compared the 

functional relevance of the top-ranking genes identified by NetScore 
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with DIAMOnD, based on the analysis in Sharma et al. (35) (see 

Supplementary Material). We checked the enrichment of top-

ranking genes among the pathways containing the seed genes of 

asthma and rheumatoid arthritis, showing that both methods 

significantly recover the pathways in each disease. Furthermore, 

NetScore identified more genes that belonged to the pathways 

shared between asthma and rheumatoid arthritis compared to 

DIAMOnD. 

 

 

 

Figure 1. GUILDify v2.0 example study on the comorbidity between asthma 

and rheumatoid arthritis. First, we run the prioritizations of the two diseases 

by searching (1) and selecting (2) the genes. After obtaining the ranking of 

proteins from the prioritization (3), we use both job IDs to check their 

overlap (4) and inspect the genetic and functional relationships between 

them (see details at http://sbi.upf.edu/guildify2 in the pre-calculated 

examples section). 

 

 

 

http://sbi.upf.edu/guildify2
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Study of the mechanism of non-small cell lung carcinoma drugs 

 

Non-small cell lung cancer (NSCLC) is the most common type of 

lung cancer. Typically induced by exposure to toxic substances, the 

NSCLC pathology has been specially associated with a mutation in 

the Epidermal Growth Factor Receptor (EGFR) (36). In a recent 

study, 9 drugs were proposed to treat this disease (37), 6 of them 

having drug-target interactions reported: Afatinib, Ceritinib, 

Crizotinib, Erlotinib, Gefitinib and Palbociclib. Given that we can now 

identify potentially new relationships between drugs and diseases 

using drugs as queries, we investigate whether the neighborhood of 

the targets of these drugs in the PIN significantly overlaps with the 

neighborhood of the genes associated with NSCLC. We used 

GUILDify v2.0 to define this neighborhood. We observe that the  

genetic overlap is always significant, except for one of the drugs 

(Palbociclib, see Table 1).  

 

We confirm the significance by applying the same approach to breast 

cancer, showing that Ceritinib, Crizotinib and Palbociclib produce a 

significant genetic overlap, although the number of common genes 

in each case is substantially lower than it is in NSCLC (see Table 1). 

These results are consistent with the fact that Palbociclib is primarily 

indicated for breast cancer and it has been recently repurposed for 

NSCLC (38).  

 

The small but significant overlap of Ceritinib and Crizotinib suggests 

that these two drugs might also be considered as potential 

repurposing candidates. We note that using the top-ranking nodes 

increases the significance of the genetic overlap (with lower P-

values) compared to the overlap using only seeds (genes associated 
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with a pathophenotype and direct targets of drugs). The significant 

overlap between the top ranked genes identified using these drugs 

and the top ranked genes for NSCLC (but not for the top ranked 

genes for breast cancer) suggests that GUILDify v2.0 can help 

understanding how drugs exert their action on certain diseases. 

Indeed, the characterization of the neighborhood in the PIN that is 

affected by drugs opens a wide range of possibilities for drug 

repurposing research. 

 

Table 1. Results of the genetic and functional overlap between the 

subnetwork of genes associated with “non small cell lung carcinoma” and 

“breast cancer” (top ranking genes and seeds) and the subnetwork of genes 

associated with the targets of drugs Afatinib, Ceritinib, Crizotinib, Erlotinib, 

Gefitinib and Palbociclib (drug targets and top-ranking genes obtained with 

GUILDify v2.0). P-values shown have been corrected using the Benjamini-

Hochberg correction for multiple tests. Results with non-significant P-value 

are highlighted in red. 
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Methods 

 

Datasets 

 

GUILDify v2.0 uses BIANA (31) for the integration of biological 

interaction databases with information on drugs, genes, proteins, 

functions, pathways and diseases. To create the tissue-specific 

PINs, we use the RNAseq data from GTEx V7 (22). Phenotype-gene 

associations are extracted from DisGeNET, OMIM, Uniprot, and 

Gene Ontology. Drug-target associations are taken from DrugBank 

(17), DGIdb (18), DrugCentral (19) and ChEMBL (20). See 

Supplementary Material for details on the datasets.  

 

Prioritization algorithms 

 

GUILDify v2.0 uses four different network-based prioritization 

algorithms: NetShort, NetZcore, NetScore and DIAMOnD. For 

details on these algorithms see references (5,10,11) and the 

Supplementary Material.  

 

Overlap and functional enrichment analysis 

 

We use one-sided Fisher’s exact test to calculate the overlap 

between two sets of genes or functions and use Benjamini-Hochberg 

multiple hypothesis testing procedure (where applicable). The 

functions enriched among seeds and top-ranking nodes as well as 

common functions between two diseases are calculated as 

explained in a previous work (12) (see details in Supplementary 

Material).  
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Supplementary material 

 

1. Datasets 

 

1.1. Protein-protein interaction networks 

 

GUILDify v2.0 relies on a knowledge database called BIANA (1), 

which integrates biological interaction databases together with 

information on genes and proteins and its associated functions, 

diseases and phenotypes. Currently, we have up-to-date information 

of protein-protein interactions from IntAct (2), BioGRID (3) and DIP 

(4). As an additional option, we provide the user with 5 other PIN 

sources: HIPPIE (high confidence score threshold >= 0.7) (5), 

InBio_Map (score threshold >= 0.15) (6), ConsensusPathDB (7), I2D 

(8), and STRING (score >= 0.7) (9). 

 

1.2. Tissue-specific protein-protein interaction networks 

 

To create the tissue-specific PINs, we retrieved the RNA-sequencing 

gene TPMs from GTEx V7 (10). We use the samples from subjects 

for which the reason for death was traumatic injury (point 1 in Hardy 

Scale) and we discard the tissues with less than 5 samples (a total 

of 675 samples from 40 tissues). For each gene, we calculate the 

median expression of all samples of a tissue. We unify tissues into a 

unique “main” tissue (i.e. “Adipose – Subcutaneous” and “Adipose – 

Visceral Omentum” belong to the main tissue “Adipose”) by 

considering the highest median expression of all samples (11). We 
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note that using this approach, the final tissue profiles could be biased 

towards the subtypes of tissue that have a higher number of 

samples. This is a limitation, as there may be subtypes of tissue that 

are more represented than others in the final expression of the tissue 

(Supplementary Table S1). GUILDify v2.0 includes a total of 22 

tissues (see details in Supplementary Material). 

 

1.3. Phenotype-gene associations 

 

Phenotype-gene associations are extracted from DisGeNET, OMIM, 

Uniprot and Gene Ontology extracting information from relevant 

sections. In the case of DisGeNET, we parse disease-gene 

associations from curated sources: UniProt (12), CTD (13), 

ORPHANET (14), PsyGeNET (15) and HPO (16). In OMIM (17), we 

retrieve disease-gene associations from the OMIM’s Synopsis of the 

Human Gene Map. For Uniprot [30], we collect the protein 

information of the categories “Description”, “Function”, “Keyword” 

and “Disease”. Finally, in the case of the Gene Ontology (GO) 

(18,19), we parse the functional annotations of genes. 

 

1.4. Drug-target integration 

 

Drug-target interactions are retrieved from DrugBank (20), DGIdb 

(21), DrugCentral (22) and ChEMBL (23), and integrated following 

the procedure in Piñero et al. (24). In DrugBank, we only select the 

therapeutic targets (excluding enzymes, transporters and carriers). 

In the case of data from DrugCentral, we retrieve the targets in the 

“Tclin” category. From DGIdb we select the targets from “Chembl”, 

“GuideToPharmacology”, “Tdg Clinical Trial”, “FDA”, “TEND” and 
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“TTD”. Finally in ChEMBL, we collect targets with a DrugBank 

identifier cross-reference. 

 

2. Prioritisation algorithms 

 

GUILDify v2.0 uses four different network-based prioritisation 

algorithms: NetShort, NetZcore, NetScore and DIAMOnD. For 

details on these algorithms see references (25–27). In brief, 

NetShort (10-20 minutes of computation time) incorporates 

“phenotypic-relevance” of the path between a node and the nodes 

of a given phenotype by considering the number of edges to 

phenotype-associated nodes (seeds). NetZcore (5-10 minutes of 

computation time) iteratively assesses the relevance of a node for a 

given phenotype by averaging the normalised scores of the 

neighbours. NetScore (5-10 minutes of computation time) is based 

on the propagation of information through the nodes of the network 

by considering multiple shortest paths from the source of information 

to the target. NetCombo (10-20 minutes of computation time) 

combines NetScore, NetShort and NetZcore by calculating the mean 

of the normalised score of each prioritisation method. DIAMOnD (27) 

(5 minutes of computation time) determines the “connectivity 

significance” of all the proteins of the network, iteratively ranking and 

selecting the nodes with highest scores. 

 

3. Functional enrichment analysis 

 

We calculate the enriched functions of seeds and top-ranking nodes 

and calculate the significance of common functions between two 

diseases (or phenotypes) as in a previous work on comorbidities 

(28). Briefly, functions are defined by GO biological processes, GO 
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molecular functions and Reactome pathways. In the case of GO, we 

only use high confident annotations (codes of evidence EXP, IDA, 

IMP, IGI, IEP, ISS, ISA, ISM or ISO). We calculate the significance 

of the enrichment using a one-sided Fisher's exact test (the 

alternative hypothesis is that the overlap would be greater than 

observed overlap). Then, we correct the P-value by either applying 

the Benjamini-Hochberg correction for multiple tests and keeping the 

functions for which the adjusted P-value < 0.05. We also offer the 

user the possibility to use Bonferroni correction at the results page. 

 

4. Description of BIANA integration pipeline 

 

We used BIANA (1) to compile different types of biological data in an 

integrated database and to create the protein-protein interaction 

networks (PIN). The information in BIANA is updated annually to 

keep the resources underlying the web server up-to-date. The details 

of data retrieval, integration, unification and network generation 

pipeline are as follows: 

 

1. Download the data: 

We use five sources of protein-protein interaction data:  

o IntAct: retrieved from 

https://www.proteinatlas.org/download/normal_tissue.tsv.zip 

(Release of 22-Mar-2018).  

o BioGRID: downloaded from 

https://downloads.thebiogrid.org/BioGRID (Version 

3.4.159). 

o DIP: downloaded from http://dip.doe-

mbi.ucla.edu/dip/Download.cgi (Release of 05-Feb-2017). 

https://www.proteinatlas.org/download/normal_tissue.tsv.zip
https://downloads.thebiogrid.org/BioGRID
http://dip.doe-mbi.ucla.edu/dip/Download.cgi
http://dip.doe-mbi.ucla.edu/dip/Download.cgi
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o iRefIndex: downloaded from 

http://irefindex.org/download/irefindex/data/archive/release_

14.0/psi_mitab/MITAB2.6/  (Version 15.0). 

o HIPPIE: downloaded from http://cbdm-01.zdv.uni-

mainz.de/~mschaefer/hippie/download.php (Version 2.1). 

 

And we also incorporate additional databases to complement 

interactomics data: 

o UniProt swissprot: retrieved from 

ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/k

nowledgebase/complete/ (Release of 28-Mar-2018).  

o Taxonomy: downloaded from 

ftp://ftp.ncbi.nih.gov/pub/taxonomy (Release of 19-Apr-

2018). 

o Gene Ontology: downloaded from 

http://www.geneontology.org/ontology/ (Release of 19-Apr-

2018). 

o NCBI Gene: downloaded from 

ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2ensembl.gz 

(Release of 28-Nov-2017). 

o DisGeNET: downloaded from 

http://www.disgenet.org/web/DisGeNET/menu/downloads 

(Version 5.0). 

o DrugBank: downloaded from 

https://www.drugbank.ca/releases/latest (Version 5.1.0). 

o DrugCentral: downloaded from 

http://drugcentral.org/download  (Release of 29-Aug-2017). 

o DGIdb: downloaded from http://dgidb.org/downloads 

(Version 3.0.2). 

o ChEMBL: (Version ChEMBL_24) downloaded from:  

http://irefindex.org/download/irefindex/data/archive/release_14.0/psi_mitab/MITAB2.6/
http://irefindex.org/download/irefindex/data/archive/release_14.0/psi_mitab/MITAB2.6/
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php
http://cbdm-01.zdv.uni-mainz.de/~mschaefer/hippie/download.php
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
ftp://ftp.uniprot.org/pub/databases/uniprot/current_release/knowledgebase/complete/
ftp://ftp.ncbi.nih.gov/pub/taxonomy
http://www.geneontology.org/ontology/
ftp://ftp.ncbi.nlm.nih.gov/gene/DATA/gene2ensembl.gz
http://www.disgenet.org/web/DisGeNET/menu/downloads
https://www.drugbank.ca/releases/latest
http://drugcentral.org/download
http://dgidb.org/downloads
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o https://www.ebi.ac.uk/chembl/drug/targets > 

Downloads > Download all txt 

o https://www.ebi.ac.uk/chembl/drugstore > 

Downloads > Download all txt 

o https://www.ebi.ac.uk/chembl/drug/indications > 

Downloads > Download all txt 

o https://www.ebi.ac.uk/chembl/target/browser > 

Select All > Fetch selected targets > Please select… 

> Download All (tab-delimited) 

 

2. Parse and unify the data: 

We parse all the external databases according to the manual of 

BIANA (available at http://sbi.imim.es/web/BIANA.php). Once we 

have all the databases incorporated in BIANA knowledge database, 

we find the equivalent entries across databases to unify the data. 

This means that two entities coming from different databases (or in 

some cases from the same database) can be unified in a unique 

entity provided that they satisfy certain equivalence criteria. If they 

do so, they will be given the same unique ID called BIANA ID. The 

rules to unify data (equivalence criteria) are the following: 

o Same Entrez Gene ID (applied to all databases) 

o Same Taxonomy ID AND protein sequence (applied to all 

databases) 

o Same UniProt entry (only applied to ConsensusPathDB and 

Uniprot databases) 

o Same UniProt accession (applied to InBio_Map, I2D, 

HitPredict and Uniprot) 

o Same UniProt accession (applied to DrugBank, 

DrugCentral, ChEMBL and Uniprot databases, to unify the 

drug targets with the rest of proteins) 

https://www.ebi.ac.uk/chembl/drug/targets
https://www.ebi.ac.uk/chembl/drugstore
https://www.ebi.ac.uk/chembl/drug/indications
https://www.ebi.ac.uk/chembl/target/browser
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o Same DrugBank ID (applied to DrugBank, DCDB and 

DrugCentral to unify drugs) 

o Same PubChem Compound (applied to DrugBank and 

DCDB to unify drugs) 

o Same ChEMBL ID (applied to DrugBank, DGIdb and 

ChEMBL to unify drugs) 

 

3. Generate protein-protein interaction networks (PIN): 

To generate PINs, we retrieve the protein-protein interactions from 

BIANA knowledge database that have the same Taxonomy ID 

(reported in the same organism) for human, mouse, rat, yeast, worm, 

fly and plant. 

Once we have the PIN, we filter the interactions depending on the 

detection method used to characterise each interaction. Recent 

studies highlighted that several protein interaction detection 

techniques tended to provide a higher number of interactions for 

more studied proteins in the interactome (29,30). Thus, for human, 

we only include interactions coming from the following detection 

methods that we consider to be less biased:  

o Two hybrid (ID: 18). 

o Cross-linking study (ID: 30). 

o Protein array (ID: 89). 

o Two hybrid array (ID: 397). 

o Two hybrid pooling approach (ID: 398). 

o Biochemical (ID: 401). 

o Enzymatic study (ID: 415). 

o Two hybrid prey pooling approach (ID: 1112). 

o Proximity labelling technology (ID: 1313). 

o Validated two hybrid (ID: 1356). 
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For mouse, we included all the methods listed above and the 

following ones: 

o Affinity chromatography technology (ID: 4) 

o Anti tag coimmunoprecipitation (ID: 7) 

o Coimmunoprecipitation (ID: 19) 

o Cosedimentation in solution (ID: 28) 

o Pull down (ID: 96) 

o X-ray crystallography (ID: 375) 

o Chromatin immunoprecipitation assay (ID: 810) 

o Tandem affinity purification (ID: 676) 

 

5. Description of tissue-specific PIN generation pipeline 

 

1. Download the data: We used the RNA-Seq data from GTEx 

Portal version 7, downloaded from 

https://gtexportal.org/home/datasets.  

2. Process the data: 

o Process the subjects file 

(GTEx_v7_Annotations_SubjectPhenotypesDS.txt) and 

get the subjects with cause of death by traumatic injury 

(DTHHRDY=1). We end up with 29 subjects. 

o Process the samples file 

(GTEx_v7_Annotations_SampleAttributesDS.txt) and get 

the samples coming from the subjects filtered in the 

previous step. We end up with 699 samples. 

o Count the tissues present in the samples and the number 

of samples for each tissue. Remove the tissues that have 

less than 5 samples. We end up having 40 tissues and 

675 samples. 

https://gtexportal.org/home/datasets
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o Read the TPM file (GTEx_Analysis_2016-01-

15_v7_RNASeQCv1.1.8_gene_tpm.gct.gz) and get the 

TPM values of the 675 samples mentioned in the 

previous step. 

o For each gene in the TPM file, calculate the median of 

TPM values across all the samples in each tissue. 

o If several tissues belong to a more general tissue (i.e. 

“Adipose – Subcutaneous” and “Adipose – Visceral 

Omentum” belong to the main tissue “Adipose”), we unify 

them by considering the highest median expression value 

among these tissues. After unifying the tissues, we end 

up having 22 main tissues. The tissues unified are listed 

in Supplementary Table S1. 

 

3. Filter the PIN: The last step is to filter the interactions of the 

PIN based on the tissue annotation of the proteins. For each 

pair of interacting proteins, first, we check if we have 

information of the proteins in the GTEx file that we have 

processed. If so, we get the TPM values for the tissue of 

interest and the two proteins, and if in both cases the TPM 

values are higher or equal than 1, we maintain the interaction 

in the network. If not, we remove the interaction.  
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Supplementary Table S1. Tissues considered for the creation of tissue-

specific PIN. In the left we show the 40 initial tissues and in the right the 22 

final tissues after the unification of some of the tissues into a broader one. 

We included the number of samples considered for each tissue. 

 

GTEx tissues Unified tissues 

Name 
Num. 
samples 

Name 
Num. 
samples 

Adipose – 
Subcutaneous  

18 
Adipose 28 

Adipose – Visceral 
(Omentum) 

10 

Adrenal Gland 5 Adrenal Gland 5 

Artery – Aorta  16 

Artery 52 Artery – Coronary 9 

Artery – Tibial 27 

Brain – Amygdala  10 

Brain 144 

Brain – Anterior 
cingulate cortex 
(BA24)   

12 

Brain – Caudate (basal 
ganglia)  

13 

Brain – Cerebellar 
Hemisphere  

13 

Brain – Cerebellum  16 

Brain – Cortex  14 

Brain – Frontal Cortex 
(BA9) 

8 

Brain – Hippocampus  13 

Brain – Hypothalamus  11 

Brain – Nucleus 
accumbens (basal 
ganglia) 

12 

Brain – Putamen 
(basal ganglia) 

12 

Brain – Spinal cord 
(cervical c-1) 

10 

Breast – Mammary 
Tissue 

16 
Breast – 
Mammary Tissue 

16 
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Cells – Transformed 
fibroblasts 

20 
Cells – 
Transformed 
fibroblasts 

20 

Colon – Sigmoid  8 Colon – Sigmoid  8 

Esophagus – 
Gastroesophageal 
Junction 

8 

Esophagus 36 
Esophagus – Mucosa  15 

Esophagus – 
Muscularis  

13 

Heart – Atrial 
Appendage 

14 
Heart 39 

Heart – Left Ventricle 25 

Liver 11 Liver 11 

Lung 25 Lung 25 

Muscle – Skeletal  31 Muscle – Skeletal  31 

Nerve – Tibial  26 Nerve – Tibial  26 

Ovary 5 Ovary 5 

Pituitary 14 Pituitary 14 

Prostate 10 Prostate 10 

Skin – Not Sun 
Exposed (Suprapubic) 

16 
Skin 44 

Skin – Sun Exposed 
(Lower leg) 

28 

Testis 15 Testis 15 

Thyroid 25 Thyroid 25 

Uterus 5 Uterus 5 

Vagina 6 Vagina 6 

Whole Blood 110 Whole Blood 110 

 

6. Functional-based selection of top-ranking genes 

 

The functional-based selection of top-ranking genes is a procedure 

that we followed to identify if the set of ranking genes is functionally 

similar to the set of initial seed genes. The procedure was first 

implemented in Ghiassian et al. (27). 
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First, we find the enriched Gene Ontology (GO) terms in the seeds 

by calculating the functional enrichment following the procedure in 

Rubio-Perez, et al (28). We only use high confidence annotations 

from Biological Processes or Molecular Functions associated with 

the evidence codes EXP, IDA, IMP, IGI, IEP, ISS, ISA, ISM or ISO. 

From the enriched GO terms, we identify the ones that are 

significantly enriched using a one-sided Fisher's exact test of 

significance where the alternative hypothesis is that the overlap 

would be greater than observed overlap. We correct the significance 

applying either a Bonferroni or a Benjamini-Hochberg correction for 

multiple tests and selecting a P-value < 0.05 (the case studies use 

Benjamini-Hochberg). 

For each candidate gene in the top-ranking genes, we search if it is 

annotated within any of the significant GO terms of the seeds. The 

genes annotated are considered true positives. 

 

For each candidate gene in the ranking, we define a sliding window 

with a size corresponding to the number of seeds. For instance, if 

there are 66 seeds, the interval for top ranking node i will be [i-66/2, 

i+66/2]. We calculate the number of true positives among the 

proteins in the sliding window. We calculate the statistical 

significance in the sliding window by using a Fisher’s exact test.  

 

In the end, we obtain a plot that goes from the first position of the 

sliding window (ranking = # of seeds / 2 + 1) to the final position (500 

- # of seeds/2). In each position, we show the result of the Fisher’s 

test calculation for the positions of the sliding window. We consider 

as enriched positions all the positions until the last sliding window 

giving a P-value < 0.05.  



Results. Article 1 
 

 

 158 

 

Supplementary Figure S1. Functional-based selection plot in the case of 

the example GUILDify v2.0 run using 96 seeds for asthma keyword and the 

NetScore algorithm with default parameters. 

 

In the figure S1, we observe an example of the functional-based 

selection plot for asthma using 96 seeds. Therefore, the plot starts 

at position 49 and ends at position 452. The last sliding window with 

a P-value < 0.05 is at position 133, and ranges from position 85 to 

181. We consider as enriched positions all the top-ranking genes 

until the 181st position, including the 96 initial seeds and 85 additional 

non-seed genes. 

 

7. Significance of the overlap between genes/functions 

 

To calculate the significance of the overlap between top-ranking 

genes and their functions, we use a one-sided (the alternative 

hypothesis is that the odds ratio based on the overlap is greater than 

the observed odds ratio) Fisher’s exact test with the contingency 

table given in Supplementary Table S2. 
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Supplementary Table S2. Contingency table used to calculate the 

significance of the overlap  between top-ranking genes and their functions. 

 

 Top 2 Non-top 2 

Top 1 Nº common Nº top 1 – Nº common 

Non-top 
1 

Nº top 2 – Nº 
common 

Nº total – Nº top 1 – Nº top 2 – Nº 
common 

 

Supplementary Table S3 is an example of the contingency table for 

the genetic overlap between asthma and rheumatoid arthritis, where 

we obtain an Odds Ratio of 23.542 and a P-value of 5.9*10-48. 

 

Supplementary Table S3. Contingency table used in Fisher's exact text 

for the genetic overlap between asthma and rheumatoid arthritis. 

 

 Top genes 2 Non-top genes 2 

Top genes 1 55 290 – 55 = 235 

Non-top genes 1 181 – 55 = 126 13,090 – 181 – 290 + 55 = 12,674 

 

The contingency table for the functional overlap of the same 

example, where we obtain an Odds Ratio of 155.334 and a P-value 

of 1.3*10-58 is below (Supplementary Table S4). 

 

Supplementary Table S4. Contingency table used in Fisher's exact text 

for the functional overlap between asthma and rheumatoid arthritis 

 

 Top functions 2 Non-top functions 2 

Top functions 1 38 84 – 38 = 46 

Non-top 
functions 1 

94 – 38 = 56 10,670 – 94 – 84 + 38 = 10,530 
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Supplementary Table S5. Job IDs to access to the case studies in the web 

server and parameters used. 

 

Keyword Parameters Job ID 

asthma 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA 
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

asthma 

“rheumatoid 
arthritis” 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA 
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

rheumatoid_arthritis 

“non small cell 
lung carcinoma” 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

non_small_cell_lung_c
arcinoma 

“breast cancer” 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

breast_cancer 

“breast cancer” 

Seeds: DisGeNET and 
OMIM 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

breast_cancer_omim_d
isgenet 
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afatinib 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

afatinib 

ceritinib 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

afatinib 

crizotinib 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

crizotinib 

erlotinib 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

erlotinib 

gefitinib 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

gefitinib 

palbociclib 

Seeds: all genes 
Organism: Homo 
sapiens 
Tissue: All 
Network: BIANA  
Method: NetScore 
(nRepetition=3, 
nIteration=2) 

palbociclib 
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8. Results of the case study of asthma and arthritis 

rheumatoid and the negative controls with breast cancer 

 

We query “asthma” in GUILDify v2.0, obtaining 96 seeds. After the 

running GUILD and selecting the functionally-coherent top genes, 

we obtain 181 genes conforming the neighbourhood of asthma. We 

do the same for “rheumatoid arthritis”, retrieving 158 seeds and 

creating a neighbourhood of 290 functionally-coherent top genes. 

Between the top ranking genes of the two phenotypes there are 55 

common genes (Fisher’s exact test, one-sided P-value = 5.9·10-48) 

which is more significant than the 12 common genes between the 

seeds (P-value = 1.4·10-9). When removing the seeds from the top 

ranking genes of the two phenotypes, we find an overlap of 43 genes 

which is even more significant than before (P-value = 3.7·10-65). 

 

If we focus on the functional overlap, we find 38 common enriched 

functions from the top ranking genes (P-value = 1.3·10-58), 18 

common enriched functions from the seeds (P-value = 1.7·10-24), 

and 24 common functions removing the seed-functions from the top-

functions (P-value = 3.5·10-47). 

 

To have a negative control, we query “breast cancer” and retrieve 

119 seeds. We select the 182 functionally-coherent top genes and 

compare the neighbourhood with the phenotypes of asthma and 

rheumatoid arthritis. In the case of asthma and breast cancer, we 

observe a significant overlap between 8 genes (P-value = 3.8·10-3), 

but the functional overlap is not significant (only 1 common function). 

In the case of rheumatoid arthritis and breast cancer the overlap is 

not significant. It is important to remark that 101 of the 119 breast 

cancer seeds are from Uniprot and may not be as much reliable. We 
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repeated the same analysis selecting only 28 seeds from OMIM and 

DisGeNET, and in general the results of the overlap are not 

significant neither for asthma nor rheumatoid arthritis. The results 

can be explored with more detail in Supplementary Table S6. 

 

Supplementary Table S6. Results of the genetic and functional overlap 

between the subnetwork of genes associated to asthma and rheumatoid 

arthritis, asthma and breast cancer, and rheumatoid arthritis and breast 

cancer. Breast cancer has been calculated either using DisGeNET and 

OMIM seeds (D+O) or using all the seeds (all). P-values have been 

corrected using the Benjamini-Hochberg correction for multiple tests. 

Results with non-significant P-value are highlighted in red. 

 

 Genetic overlap Functional overlap 

 Top 
Top 

without 

seeds 

Seeds Top 
Top without 

seeds 
Seeds 

 Nº P-val. Nº 
P-

val. 
Nº P-val. Nº 

P-
value 

Nº 
P-

value 
Nº 

P-
value 

Asthma 
– 

Rheumatoid 
arthritis 

55 
2.90E

-47 
43 

1.80

E-64 
12 

7.00E

-09 
31 

4.00E

-45 
18 

5.50E

-34 
18 

4.60E

-22 

Asthma 

– 
Breast cancer 

(all) 

8 
9.50E

-03 
5 

1.30
E-04 

3 
9.50E

-02 
1 

2.10E
-01 

1 
1.40E

-02 
0 1 

Rheumatoid 
arthritis 

– 

Breast cancer 
(all) 

4 
7.20E

-01 
2 

2.30

E-01 
2 

5.20E

-01 
0 1 0 1 0 1 

Asthma 

– 
Breast cancer 

(D+O) 

2 
2.30E

-01 
0 1 2 

4.50E
-02 

0 1 0 1 0 1 

Rheumatoid 
arthritis 

– 

Breast cancer 
(D+O) 

0 1 0 1 0 1 0 1 0 1 1 1 
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9. Comparison of the case study results of asthma and 

rheumatoid arthritis with DIAMOnD 

 

We have compared the functional enrichment of top-ranking genes 

identified by NetScore and DIAMOnD in asthma and rheumatoid 

arthritis. We based the analysis in Sharma et al., where the authors 

present a comparison of DIAMOnD and several other prioritisation 

algorithms, showing that DIAMOnD outperforms existing algorithms 

in predicting asthma related genes (31). Following the procedure 

described in the original article, for each seed-gene, we determine 

the set of MSIgDB pathways (32) associated with the gene. For each 

pathway, we analyse its enrichment among the set of seed-genes 

using Fisher’s exact test. The p-values are corrected using the 

Benjamini-Hochberg correction procedure for multiple tests. We 

choose the pathways with a significance level of p-value<0.01 as 

being associated with the set of seed-genes (enriched pathways). 

We calculate a Fisher’s exact test between the top-ranking genes 

(based on functional-coherency) of the algorithm under analysis and 

the genes of the enriched pathways. The p-value of the Fisher’s 

exact test gives the enrichment of the top-ranking genes. The 

enrichment of the pathways using top-ranking genes from NetScore 

and DIAMOnD as well as using the original set of seed-genes are 

shown in Supplementary Figure S2. When measuring the overlap 

between the two diseases, NetScore outperforms DIAMOnD, finding 

more genes involved in the pathways enriched in both diseases. 
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Supplementary Figure S2. Bar plot showing the enrichment of the top-

ranking genes in terms of -log p-value. 

 

10. Screening diseases to identify potential new 

indications of known drugs 

 

GUILDify v2.0 introduces a “Drug Repurposing” functionality that can 

be accessed from the home page of the web server. This 

functionality takes a job ID as input, i.e. results for a drug (or a 

disease) and screens across a set of pre-calculated diseases (or 

drugs) for the significance of the overlap of genes and functions 

between the given job ID and the set of pre-calculated diseases (or 

drugs). The generation of the pre-calculated sets and the validation 

of the drug repurposing approach using these sets are explained 

below. 
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(1) Set of pre-calculated diseases: We created a list of 

diseases using the UMLS concept unique identifiers from 

DisGeNET. Specifically, we obtained all diseases with gene 

associations reported by curated sources (UniProt, 

ORPHANET, PsyGeNET and HPO). We did not include CTD 

because it provides several clinically ambiguous phenotypes 

such as “liver cirrhosis, experimental”. From this list, we 

selected those diseases associated to at least 10 gene from 

DisGeNET, obtaining a final list of 757 diseases. We ran the 

prioritisation using the guildifyR package and the default 

parameters (BIANA network, and NetScore algorithm). 

 

(2) Set of pre-calculated drugs: The list of drugs was obtained 

by retrieving all drugs with targets stored in BIANA 

knowledge database. Out of this list, we selected those drugs 

with at least 10 targets (retrieved from at least one of the 

following databases in BIANA: DrugBank, ChEMBL, DGIdb, 

DrugCentral), obtaining a final list of 362 drugs. We run the 

prioritisation using the R package and default parameters 

(BIANA network, NetScore algorithm). 

 

(3) Set of drug-disease indications: We tested the quality of 

the predictions of indications of drugs using as benchmark 

the indications of Hetionet (33). Accordingly, we used 161 

drugs and 64 diseases that appeared in both Hetionet and 

the lists of pre-calculated drugs and diseases, producing a 

final set of 329 drug-disease pairs with known indications. 

 

(4) Finding the indication among the top-ranked results: We 

plotted a histogram of the correct indications among the top 



Results. Article 1 
 

 167 

ranked (see Supplementary Figure S3). This showed that 

30% of the correct indications were already among the top 

10 indications selected (and 50% of correct indications 

appeared among the top 25 predicted indications). 

 
We calculated how many disease indications could be 

guessed depending on the number of top-ranked indications 

for a drug. We transformed this calculation in True Positive 

Rate (TPR) and False Positive Rate (FPR), calculated as: 

 

𝑇𝑃𝑅 =
# 𝑡𝑟𝑢𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
=

# 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠

# 𝑡𝑜𝑡𝑎𝑙 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

𝐹𝑃𝑅 =  
# 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

# 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
=

# 𝑛𝑜𝑛 − 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠 𝑖𝑛 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

# 𝑛𝑜𝑛 − 𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛𝑠
 

 

Using the TPR and FPR we plotted the Receiver Operating 

Characteristic (ROC) curve (see Supplementary Figure S3). 

Using the top-scoring 1% of genes and functions, we 

obtained an Area Under the Curve (AUC) of 0.59 for genetic 

overlap and 0.61 for functional overlap. 
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Supplementary Figure S3. Cumulative distribution of the ranking positions 

achieved by the indications using the drug repurposing feature of GUILDify 

v2.0. 

 

Supplementary Figure S4. Receiver Operating Characteristic (ROC) 

curve. The values of the Area Under the Curve (AUC) are indicated in the 

legend. 
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11. Visualization of the top-ranking subnetwork 

 

In the results page, we provide a visualization panel to inspect in 

detail the interactions between the top-ranking nodes. Initially, we 

provide the user with an image of the subnetwork created with 

Matplotlib Python library (34). The users have the option to click to 

“activate interactive visualization”, where the top-ranking nodes and 

interactions are displayed in a visualization panel using the 

JavaScript-based network visualization library, Cytoscape.js (35). In 

addition to seeds (green hexagons), top-ranking proteins (yellow 

circles) and drugs (blue diamonds), the subnetwork includes the 

proteins that connect the seeds to the largest connected component 

induced by seeds (named “linkers” and shown as grey circles). The 

procedure to get the linkers is the following: 

o Calculate the connected components of the top-ranking 

nodes. 

o Check the size of the connected components and get the 

largest connected component (LCC). If there are more than 

one, we get the component with the highest mean score 

among all the nodes of the component. 

 

We order the rest of the components by their size and we find the 

shortest paths between the LCC and the remaining components 

(starting from the component with the highest size) to connect them 

to the LCC. If there is more than one shortest path, we get the 

shortest path that contains the node with the maximum score. If they 

have the same maximum score, we get the shortest path with 

highest mean score between all the nodes. 
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3.2. PxEA: A tool to prioritize drug repurposing 

candidates targeting endophenotypes 

 

In the second article of the thesis, I present a method called Proximal 

pathway Enrichment Analysis (PxEA) to repurpose drugs specifically 

targeting the endophenotypes shared by different pathophenotypes. 

PxEA methodology consists in:  

 

(1) Calculate the network distance between a drug and the 

pathways of the interactome by measuring the network 

proximity metric defined in Guney et al. (79) between the 

drug targets and the pathway-associated genes. 

(2) Calculate a sum score based on Gene Set Enrichment 

Analysis (264) from which pathways are ranked by their 

proximity to the drug targets and a pathway set of interest 

(i.e., belonging to an endophenotype). 

 

We evaluated PxEA in two steps: 

 

(1) First, we investigated whether the drugs used in autoimmune 

disorders target specifically pathways associated with one 

disease or pathways shared across diseases. We found 

common pathways between almost all autoimmune 

disorders and drugs potentially targeting these common 

pathways. 

(2) Second, we explored the potential endophenotypes shared 

by Type 2 Diabetes and Alzheimer’s Disease, two diseases 

highly prevalent in our ageing society that are known to 

exhibit increased comorbidity. 
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PxEA paves the way for simultaneously targeting endophenotypes 

that manifest across various diseases, a concept which we refer to 

as endopharmacology. 
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Abstract 

 

The past decades have witnessed a paradigm shift from the 

traditional drug discovery shaped around the idea of “one target, one 

disease” to polypharmacology (multiple targets, one disease). Given 

the lack of clear-cut boundaries across disease (endo)phenotypes 

and genetic heterogeneity across patients, a natural extension to the 

current polypharmacology paradigm is to target common biological 

pathways involved in diseases via endopharmacology (multiple 

targets, multiple diseases). In this study, we present proximal 

pathway enrichment analysis (PxEA) for pinpointing drugs that target 

common disease pathways towards network endopharmacology. 

PxEA uses the topology information of the network of interactions 

between disease genes, pathway genes, drug targets and other 

proteins to rank drugs by their interactome-based proximity to 

pathways shared across multiple diseases, providing unprecedented 

drug repurposing opportunities. Using PxEA, we show that many 

drugs indicated for autoimmune disorders are not necessarily 

specific to the condition of interest, but rather target the common 

biological pathways across these diseases. Finally, we provide high 

scoring drug repurposing candidates that can target common 

mechanisms involved in type 2 diabetes and Alzheimer’s disease, 

two conditions that have recently gained attention due to the 

increased comorbidity among patients. 

 

Keywords: drug repurposing, proximal pathway enrichment 

analysis, network endopharmacology, systems medicine, 

comorbidity, autoimmune disorders, Alzheimer’s disease, type 2 

diabetes. 
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1. Introduction 

 

Following Paul Ehrlich’s more-than-a-century-old proposition on 

magic bullets (one drug, one target, one disease), the drug discovery 

pipeline traditionally pursues a handful of leads identified in vitro 

based on their potential to bind to target(s) known to modulate the 

disease (1). The success of the selected lead in the consequent 

clinical validation process relies on the prediction of a drug’s effect 

in vivo. Although it is often more desirable to tinker the cellular 

network by targeting multiple proteins (2), this is hard to achieve in 

practice due to the interactions of the compound and its targets with 

other proteins and metabolites. As a result, the characterization of 

drug effect has been a daunting task, yielding high pre-clinical 

attrition rates for novel compounds (3,4). 

 

The high attrition rates can be attributed to the immense response 

heterogeneity across patients, likely stemming from a polygenic 

nature of most complex diseases. Consequently, researchers have 

turned their attention to polypharmacology, where novel therapies 

aim to alter multiple targets involved in the pathway cross-talk 

pertinent to the disease pathology, rather than single proteins (5,6). 

This has given rise to network-based approaches that predict the 

effects of individual drugs (79) as well as drug combinations (8), 

allowing for the repositioning of compounds for novel indications. 

 

Over the past years, reusing existing drugs for conditions different 

from their intended indications has emerged as a cost effective 

alternative to traditional drug discovery. Various drug repurposing 

methods aim to mimic the most likely therapeutic and safety 

outcomes of candidate compounds based on similarities between 
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compounds and diseases characterized by high-throughput omics 

data (9–11). Most studies so far, however, have focused on 

repurposing drugs for a single condition of interest, failing to 

recognize the cellular, genetic and ontological complexity inherent to 

human diseases (12,13). In reality, pathway cross-talk plays an 

important role in modulating the pathophysiology of diseases (14) 

and most comorbid diseases are interconnected to each other in the 

interactome through proteins belonging to similar pathways (15–19). 

The pathway cross-talk is especially relevant for autoimmune 

disorders, which have been shown to share several biological 

functions involved in immune and inflammatory responses (20,21). 

Autoimmune disorders affect around 15% of the population in the 

USA (22) and co-occur in the same patient more often than expected 

(i.e., comorbid) (23). Recent evidence suggests that 

endophenotypes—shared intermediate pathophenotypes—(24), 

such as inflammasome, thrombosome, and fibrosome play essential 

roles in the progression of not only autoimmune disorders but also 

many other diseases (25). 

 

Here, we propose a novel drug repurposing approach, Proximal 

pathway Enrichment Analysis (PxEA), to specifically target 

intertangled biological pathways involved in the common pathology 

of complex diseases. We first identify pathways proximal to disease 

genes across various autoimmune disorders. Then we use PxEA to 

investigate whether the drugs promiscuously used in these disorders 

target specifically the pathways associated with one disease or the 

pathways shared across the diseases. We find several examples of 

anti-inflammatory drugs where the pathways proximal to the drug 

targets in the interactome correspond to the pathways shared 

between two autoimmune disorders. The observed lack of specificity 
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among these drugs points to the existence of immune system related 

endophenotypes, motivating us to explore shared disease 

mechanisms for repurposing drugs. We demonstrate that PxEA is a 

powerful computational strategy for targeting multiple pathologies 

involving common biological pathways, such as type 2 diabetes 

(T2D) and Alzheimer’s disease (AD). Based on these findings, we 

argue that PxEA paves the way for simultaneously targeting 

endophenotypes that manifest across various diseases, a concept 

which we refer to as endopharmacology. 

 

 

2. Results 

 

2.1. Pathway Proximity Captures the Similarities between 

Autoimmune Disorders 

 

Conventionally, functional enrichment analysis relies on the 

significance of the overlap between a set of genes belonging to a 

condition of interest and a list of genes involved in known biological 

processes (pathways). Using known pathway genes, one can 

identify pathways associated with the disease via a statistical test 

(e.g., Fisher’s exact test for the overlap between genes or z-score 

comparing the observed number of common genes to the number of 

genes one would have in common if genes were randomly sampled 

from the data set). We start with the observation that such an 

approach (hereafter referred as to conventional approach) often 

misses key biological processes involved in the disease due to the 

limited overlap between the disease and pathway genes. To show 

that this is the case, we focus on nine autoimmune disorders for 
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which we obtain genes associated with the disease in the literature 

and we calculate p-values based on the overlap between these 

genes and the pathway genes for each of the 674 pathways in the 

Reactome database (Fisher’s exact test, one-sided p ≤ 0.05). 

Intriguingly, Table 1 demonstrates that this conventional approach 

yields less than ten pathways that are significantly enriched in five 

out of nine diseases, potentially underestimating the molecular 

underpinning of these diseases. 

 

Table 1. Number of pathways enriched across nine autoimmune disorders 

based on the overlap between the pathway and disease genes (one-sided 

𝑝 < 0.05, assessed by a Fisher’s exact test) and the proximity of the 

pathway genes to the disease genes in the interactome (𝑧 ≤ −2, see 

Methods for details). 

 

Disease 
# of Pathways 

Overlap Proximity 

celiac disease  7 143 

Crohn’s disease 5 116 

diabetes mellitus, insulin-dependent 16 121 

Graves’ disease 3 92 

lupus erythematosus, systemic 17 98 

multiple sclerosis 12 138 

psoriasis 5 50 

rheumatoid arthritis 55 17 

ulcerative colitis 6 138 

 

Alternatively, the shortest distance between genes in the 

interactome can be used to find pathways closer than random 
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expectation to a given set of genes (7,26), augmenting substantially 

the number of pathways relevant to the disease pathology. Using 

network-based proximity (7), we define the pathway span of a 

disease as the set of pathways significantly proximal to the disease 

(z ≤ −2, see Methods). We show that the number of pathways 

involved in diseases increases substantially when proximity is used 

(Table 1). 

 

To show the biological relevance of the identified pathways using 

interactome-based proximity, we check how well these pathways 

can highlight genetic and phenotypic relationships between nine 

autoimmune disorders. First, to serve as a background model, we 

build a disease network for the autoimmune disorders (diseasome) 

using the genes and symptoms shared between these diseases as 

well as the comorbidity information extracted from medical insurance 

claim records (see Methods). The autoimmune diseasome (Figure 

1a) is extremely connected, covering 33 out of 36 potential links 

between nine diseases (with average degree  < k >  = 7.3 and 

clustering coefficient CC = 0.93). The three missing links are those 

between ulcerative colitis and rheumatoid arthritis, ulcerative colitis 

and Graves’ disease, and Graves’ disease and type 1 diabetes. On 

the other hand, several diseases such as celiac disease, Crohn’s 

disease, systemic lupus erythematosus, and multiple sclerosis are 

connected to each other with multiple evidence types in the 

autoimmune diseasome based on genetic (shared genes) and 

phenotypic (shared symptoms and comorbidity) similarities, 

emphasizing the shared pathological components underlying these 

diseases. 

 



Results. Article 2 
 

 

 184 

We compare the autoimmune diseasome generated using shared 

genes, common symptoms and comorbidity, to the disease network 

in which the disease-disease connections are identified using the 

pathways they share. We identify the pathways enriched in the 

diseases using both the conventional and proximity approaches 

mentioned above and check whether the number of common 

pathways between two diseases is significant (two-tailed Fisher’s 

exact test, p < 0.05). The disease network based on pathways 

shared across diseases using the overlap between the pathway and 

disease genes is markedly sparser than the original diseasome, 

containing 17 links (Figure 1b). None of the diseases share 

pathways with psoriasis and among the connections supported by 

multiple evidence in the original diseasome, the links between 

Crohn’s disease and celiac disease as well as Crohn’s disease and 

systemic lupus erythematosus are missing. On the contrary, the 

disease network based on shared pathways using proximity of the 

pathway genes to the disease genes consists of 34 links, where the 

only unconnected disease pairs are Crohn’s disease and Graves’ 

disease and type 1 diabetes and psoriasis, suggesting that it 

captures the connectedness of the original diseasome better than 

the conventional approach. 
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(a) 

 

(b) 

 

(c) 

 

 

Figure 1. Genetic, phenotypic and functional overlap across autoimmune 

disorders. Disease relationships (links) based on (a) shared genes (gray 

solid lines), shared symptoms (orange dashed lines) and comorbidity (blue 

sinusoidal lines); (b) shared pathways (gray solid lines) using common 

disease and pathway genes, (c) shared pathways (gray solid lines) using 

the proximity of the pathway genes to the diseases genes in the 

interactome. 

 

We next turn our attention to the shared pathways across diseases 

identified by both conventional and proximity based approaches and 

observe that most common pathways involve biological processes 

relevant to the immune system endophenotypes. In particular, we 
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see that inflammasome-related pathways, such as signaling of 

cytokines (interferon gamma, interleukins like IL6, IL7) and 

lymphocytes (ZAP70, PD1, TCR, among others) are 

overrepresented. While conventional enrichment finds that most of 

these pathways are shared among only 4–5 diseases, proximity 

based enrichment points to the commonality of these pathways 

among almost all the diseases. Furthermore, the proximity based 

enrichment uncovers the involvement of additional interleukin (IL2, 

IL3, IL5) and lymphocyte (BCR) molecules ubiquitously in 

autoimmune disorders. These findings suggest that proximity-based 

pathway enrichment identifies biological processes relevant to the 

diseases, highlighting the common etiology across autoimmune 

disorders. 

 

2.2. Diseases Targeted by the Same Drugs Exhibit 

Functional Similarities 

 

Having observed that pathway proximity to diseases in the 

interactome captures the underlying biological mechanisms across 

diseases, we seek to investigate the potential implications of the 

connections between diseases for drug discovery. We hypothesize 

that a drug indicated for several autoimmune disorders would exert 

its effect by targeting the shared biological pathways across these 

diseases. To test this, we use 25 drugs that are indicated for two or 

more of the autoimmune disorders in Hetionet (27) and split disease 

pairs into two groups: (i) diseases for which a common drug exists 

and (ii) diseases for which no drugs are shared. We then count the 

number of pathways in common between two diseases for each pair 

in the two groups using pathway enrichment based on both the gene 

overlap and proximity in the interactome. We find that the diseases 
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targeted by the same drugs tend to involve an elevated number of 

common pathways compared to the disease pairs that do not have 

any drug in common (Figure 2). The average number of pathways 

shared among diseases that are targeted by the same drug is 3.4 

and 38 using overlap and proximity based enrichment, respectively, 

whereas, the remaining disease pairs share 2 and 31 pathways on 

average using the two enrichment approaches. We note that due to 

the relatively small sample size and potentially incomplete drug 

indication information, we interpret the elevated number of pathways 

as a trend rather than a general rule across all diseases (p = 0.043 

and p = 0.066, assessed by one-tailed Mann-Whitney U test, for the 

overlap and proximity based approaches, respectively). 

Nevertheless, taken together with the high overall pathway level 

commonalities observed in the autoimmune disorders mentioned in 

the previous section, this result suggests that the drugs used for 

multiple indications are likely to target common pathways involved in 

these diseases. 

 

(a) 
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(b) 

 

 

Figure 2. Number of shared pathways across disease pairs that are 

targeted by the same drug compared to the rest of the pairs. The pathway 

enrichment is calculated using (a) gene overlap and (b) proximity of genes 

in the interactome. The number of disease pairs in each group is given in 

the parenthesis below the group label in the x-axis. 

 

2.3. Proximal Pathway Enrichment Analysis Reveals 

Drugs Targeting the Autoimmune Endophenotypes 

 

The results indicating that the drugs used for multiple autoimmune 

disorders potentially target common pathways raise the following 

question: “Can pathway level commonalities between diseases be 

leveraged to quantify the impact of a given drug on these diseases?” 

To this end, we propose PxEA, a novel method for Proximal 

pathway Enrichment Analysis that scores the likelihood of a set of 

pathways (e.g., targeted by a drug) to be represented among 

another set of pathways (e.g., disease pathways) based on the 
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proximity of the pathway genes in the interactome. As opposed to 

the Gene Set Enrichment Analysis (GSEA) (28) which uses gene 

sets and the ranking of genes based on differential expression, PxEA 

uses pathway sets and the ranking of pathways based on proximity 

in the interactome. PxEA scores a drug based on whether or not the 

pathways targeted by the drug are proximal to a pathway set of 

interest, such as pathways shared across different diseases. For a 

given drug and a pair of diseases, we first identify the pathways in 

the pathway span of both of the diseases, then we rank the pathways 

with respect to the proximity of the drug targets to the pathway genes 

and finally we calculate a running sum statistics corresponding to the 

enrichment score between the drug and the disease pair (Figure 3, 

see Methods for details). 

 

We employ PxEA to score 25 drugs indicated for at least two of the 

seven autoimmune disorders (there were no common drugs for 

celiac and Graves’ diseases). For each disease, we first run PxEA 

using the pathways proximal to the disease and the proximity of the 

drugs used for that disease to these pathways. We then run PxEA 

for each disease pair, using the pathways proximal to both of the 

diseases in the pair and the drugs commonly used for the two 

diseases. We notice that several drugs indicated for multiple 

conditions score higher using common pathways between two 

diseases than using the pathways of the disease they are indicated 

for (Figure 4). This is not surprising considering that many of the 

drugs used for autoimmune disorders target common immune and 

inflammatory processes. For instance, sildenafil, a drug used for the 

treatment of erectile dysfunction and to relieve the symptoms of 

pulmonary arterial hypertension, is reported by Hetionet to show 

palliative effect on type 1 diabetes and multiple sclerosis. Actually, 



Results. Article 2 
 

 

 190 

sildenafil is not specific to any of these two conditions and targets a 

number of the 57 pathways in common between type 1 diabetes and 

multiple sclerosis including but not limited to pathways mentioned 

in Table 2, such as “IL-3, 5 and GM CSF signaling” (z = −1.6), 

“regulation of signaling by CBL” (z = −1.1), “regulation of KIT 

signaling” (z = −1.0), “IL receptor SHC signaling” (z = −1.0), and 

“growth hormone receptor signaling” (z = −1.0). 

 

Similarly, prednisone, a synthetic anti-inflammatory glucocorticoid 

agent that is indicated for six of the autoimmune disorders, is 

assigned a higher PxEA score using the pathways shared by 

Crohn’s disease and systemic lupus erythematosus compared to 

using the pathways involved only in Crohn’s disease, systemic lupus 

erythematosus, multiple sclerosis, psoriasis, rheumatoid arthritis, or 

ulcerative colitis. Thus, prednisone does not specifically target any 

of the six autoimmune disorders but rather acts on the 

endophenotypes that manifest across these diseases. We observe 

a similar trend in meloxicam, an anti-inflammatory drug that shows 

analgesic and antipyretic effects by inhibiting prostaglandin 

synthesis. Consistent with its known mechanism of action, 

meloxicam is proximal to “cholesterol biosynthesis” (z = −3.5), “fatty 

acid, triacylglycerol, and ketone body metabolism” (z = −2.0), and 

“prostanoid ligand receptors” (z = −1.7) pathways in the interactome. 

While meloxicam is originally indicated for rheumatoid arthritis and 

systemic lupus erythematosus, the higher PxEA score when 

common arthritis and lupus pathways are used suggests that it 

targets common inflammatory processes in these two diseases. 
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Table 2. Pathways shared by autoimmune disorders based on the overlap 

and proximity of genes (only pathways that appear most commonly across 

diseases are shown). 

 

Pathway 
# of Shared Diseases 

Overlap Proximity 

interferon gamma signaling 5 8 

costimulation by the CD28 family 5 7 

cytokine signaling in immune system 5 7 

translocation of ZAP-70 to immunological 
synapse 

5 6 

phosphorylation of CD3 and TCR zeta chains 5 6 

PD1 signaling 5 4 

IL-6 signaling 4 8 

generation of second messenger molecules 4 6 

TCR signaling 4 6 

signaling by ILs 3 9 

immune system  3 7 

downstream TCR signaling 3 7 

interferon signaling 3 7 

adaptive immune system 3 3 

regulation of KIT signaling 2 7 

IL-7 signaling 2 6 

CTLA4 inhibitory signaling 2 5 

chemokine receptors bind chemokines 2 3 

extrinsic pathway for apoptosis 2 3 

MHC class II antigen presentation 2 2 

IL receptor SHC signaling - 9 

IL-3, 5 and GM CSF signaling - 9 
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signaling by the B cell receptor BCR - 8 

regulation of IFNG signaling - 8 

growth hormone receptor signaling - 8 

IL-2 signaling - 8 

regulation of signaling by CBL - 8 

 

 

 

 

Figure 3. Schematic overview of proximal pathway enrichment 

analysis (PxEA). PxEA scores a drug with respect to its potential to target 

the pathways shared between two diseases. For a given drug and two 

diseases of interest, PxEA first identifies the common pathways between 

the two disease and then uses the proximity-based ranking of the pathways 

(i.e., average distance in the interactome to the nearest pathway gene, 

normalized with respect to a background distribution of expected scores) to 

assign a score to the drug and the disease pair. 
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(a) 

 

(b) 

 

Figure 4. PxEA scores of drugs used in autoimmune disorders. (a) 

Disease-disease heatmap, in which for each disease pair, the common 

pathways proximal to the two diseases are used to run PxEA. Note that the 

diagonal contains the PxEA scores obtained when the proximal pathways 
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for only that disease are used. The hue of the color scales with the PxEA 

score. (b) Drug-disease heatmap, in which the PxEA is run using the 

pathways proximal to the pathways of the disease in the column for the 

drugs in the rows (25 drugs that are used at least in two diseases). The last 

two columns show the median and maximum values of the PxEA scores 

obtained for the drug among all disease pairs the drug is indicated for. 

 

2.4. Targeting the Common Pathology of Type 2 Diabetes 

and Alzheimer’s Disease 

 

T2D and AD, two diseases highly prevalent to an ageing society, are 

known to exhibit increased comorbidity (29,30). Recently, 

repurposing anti-diabetic agents to prevent insulin resistance in AD 

has gained substantial attention due to the therapeutic potential it 

offers (31). Indeed, the pathway spans of T2D and AD cover 170 and 

82 pathways, respectively, 35 of which are shared between two 

diseases, linking significantly the two diseases at the pathway level 

(Fisher’s exact test, two-sided p = 2.2 × 10−4). 

 

We use PxEA to score 1466 drugs from DrugBank using the 35 

pathways involved in the common pathology of T2D and AD. When 

we look at the drugs ranked on the top of the list (Table 3), we spot 

orlistat, a drug indicated for obesity and T2D in Hetionet. 

Interestingly, existing studies also suggest a role for this drug in the 

treatment of AD (32). Orlistat targets extracellular communication 

(Ras-Raf-MEK-ERK, NOTCH, and GM-CSF/IL-3/IL-5 signaling) and 

lipid metabolism pathways (Figure 5). Several of the proteins in the 

pathways pertinent to the common T2D-AD pathology, such as 

APOA1, PSEN2, PNLIP, LPL, and IGHG1 are either orlistat’s targets 

themselves or are in the close vicinity of the targets. The next top 
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scoring drugs are chenodeoxycholic and obeticholic acid, biliar acids 

that are in clinical trials for T2D (NCT01666223) and are argued to 

modulate cognitive changes in AD (33). 

 

Table 3. Top ten drug repurposing opportunities to target common T2D and 

AD pathology, where the drugs that target the same proteins according to 

DrugBank are grouped together in the same row and the Anatomical 

Therapeutic Chemical (ATC) classification and indication information within 

the same group is marked with the first letter of the drug in the parenthesis 

(if applicable). 

 

Drug ATC 
Hetionet 
Indication 

DrugBank 
Indication 

PxEA 
score 

Adjusted 
P-value 

orlistat A08 
obesity, type 2 
diabetes 

obesity 94.07 <0.001 

obeticholi
c acid, 
chenode
oxycholic 
acid 

A05 
primary biliary 
cirrhosis (C) 

liver disease (O), 
primary biliary 
cholangitis (O), 
gallbladders (C) 

74.06 <0.001 

esmolol, 
practolol 

C07 hypertension (E) 

atrial fibrillation (E), 
noncompensatory 
sinus tachycardia 
(E), cardiac 
arrhythmias (P) 

70.55 <0.001 

clenbuter
ol 

R03 - asthma 70.44 <0.001 

erythrityl 
tetranitrat
e 

C01 - angina 70.32 <0.001 

fenoterol, 
arbutami
ne, 
bupranol
ol 

R03 (F), 
G02 (F) 
C01 (A), 
C07 (B) 

- 

asthma (F); 
coronary artery 
disease (A); 
hypertension (B), 
tachycardia (B), 
glaucoma (B) 

68.97 <0.001 

dalfampri
dine 

N07 
multiple 
sclerosis 

multiple sclerosis 68.44 <0.001 

magnesiu
m sulfate 

D11, 
V04, 
A06, 

B05, A12 

- 

eclampsia, acute 
nephritis, acute 
hypomagnesemia, 
uterine tetany 

68.27 <0.001 

roflumilas
t, 
crisaborol
e 

R03 (R) 

chronic 
obstructive 
pulmonary 
disease (R) 

chronic obstructive 
pulmonary disease 
(R), dermatitis (C), 
psoriasis (C) 

66.33 <0.001 

https://clinicaltrials.gov/ct2/show/NCT01666223
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monteluk
ast 

R03 

chronic 
obstructive 
pulmonary 
disease, 
asthma, allergic 
rhinitis 

asthma 65.94 <0.001 

orlistat A08 
obesity, type 2 
diabetes 

obesity 94.07 <0.001 

obeticholi
c acid, 
chenode
oxycholic 
acid 

A05 
primary biliary 
cirrhosis (C) 

liver disease (O), 
primary biliary 
cholangitis (O), 
gallbladders (C) 

74.06 <0.001 

esmolol, 
practolol 

C07 hypertension (E) 

atrial fibrillation (E), 
noncompensatory 
sinus tachycardia 
(E), cardiac 
arrhythmias (P) 

70.55 <0.001 

clenbuter
ol 

R03 - asthma 70.44 <0.001 

erythrityl 
tetranitrat
e 

C01 - angina 70.32 <0.001 

fenoterol, 
arbutami
ne, 
bupranol
ol 

R03 (F), 
G02 (F) 
C01 (A), 
C07 (B) 

- 

asthma (F); 
coronary artery 
disease (A); 
hypertension (B), 
tachycardia (B), 
glaucoma (B) 

68.97 <0.001 

dalfampri
dine 

N07 
multiple 
sclerosis 

multiple sclerosis 68.44 <0.001 

magnesiu
m sulfate 

D11, 
V04, 
A06, 

B05, A12 

- 

eclampsia, acute 
nephritis, acute 
hypomagnesemia, 
uterine tetany 

68.27 <0.001 

roflumilas
t, 
crisaborol
e 

R03 (R) 

chronic 
obstructive 
pulmonary 
disease (R) 

chronic obstructive 
pulmonary disease 
(R), dermatitis (C), 
psoriasis (C) 

66.33 <0.001 

monteluk
ast 

R03 

chronic 
obstructive 
pulmonary 
disease, 
asthma, allergic 
rhinitis 

asthma 65.94 <0.001 
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Figure 5. Orlistat from PxEA perspective. The subnetwork shows how the 

targets of orlistat are connected to the nearest pathway protein for the 

pathways shared between T2D and AD. For clarity, only the pathways that 

are proximal to the drug are shown. Blue rectangles represent pathways, 

circles represent drug targets (orange) or proteins on the shortest path to 

the nearest pathway gene (gray). Blue dashed lines denote pathway 

membership, solid lines are protein interactions. The interactions between 

the drug and its targets are shown in dashed orange lines and the 

interactions between the drug targets and their neighbors are highlighted 

with solid orange lines. 

 

It is noteworthy that the top scoring drugs belong to a diverse set of 

Anatomical Therapeutic Chemical (ATC) classes, covering 

alimentary tract and metabolism drugs (A05, A06, A08, A12), blood 

substitutes (B05), dermatologicals (D11) as well as cardiovascular 

(C01, C07), genito-urinary (G02), nervous (N07), and respiratory 

(R03) system drugs. The diversity of the ATC classes of top scoring 

drugs indicates that PxEA is not biased towards any particular ATC 
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class. We also calculate the significance of the PxEA scores by 

permuting the ranking of the pathways. We find that the adjusted p-

values (corrected for multiple hypothesis testing using Benjamini–

Hochberg procedure) for the top candidates are all below 1 × 10−4, 

the minimum possible value (due to the 10,000 permutations used 

in the calculation). 

 

 

3. Discussion 

 

The past decades have witnessed a substantial increase in human 

life expectancy owing to major breakthroughs in translational 

medicine. Yet, the increase on average age and changes in life style, 

have given rise to a spectra of problems challenging human health 

like cancer, neurodegenerative disorders and diabetes. These 

diseases do not only limit the life expectancy but also induce a high 

burden on public healthcare costs. In the US alone, more than 20 

and 5 million people have been affected by T2D and AD, 

respectively, ranking these diseases among the most prevalent 

health problems (29). 

 

Mainly characterized by hyperglycemia due to resistance to insulin, 

the disease mechanism of T2D involves a combination of multiple 

genetic and dietary factors. On the other hand, AD is relatively less 

understood and several hypotheses have been proposed for its 

cause: reduced synthesis of neurotransmitter acetylcholine, 

accumulation of amyloid beta plaques and/or tau protein 

abnormalities, giving rise to neurofibrillary tangles. Accordingly, most 

available treatments in AD are palliative (treating symptoms rather 

than the cause). Given the comorbidity between T2D and AD (29,30) 
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several studies have recently suggested repurposing diabetes drugs 

for AD (31). However, to our knowledge, currently there is no 

systematic method that can pinpoint drugs that could be useful to 

target common disease pathology such as the one between T2D and 

AD. 

 

In this study, we first show that diseases that share drugs also tend 

to share biological pathways and hypothesize that these pathways 

can be targeted to exploit novel drug repurposing opportunities. We 

introduce PxEA, a method based on (i) pathways that are proximal 

to diseases and (ii) the ranking of the pathways targeted by a drug 

using the topology information encoded in the human interactome. 

We show that PxEA picks up whether drugs target specifically the 

pathways associated with a disease or common pathways shared 

across various conditions. We observe that many anti-inflammatory 

drugs are not specific to the condition they are used for and likely to 

target pathways involved in the autoimmune endophenotypes. 

 

To further explore shared disease mechanisms for repurposing 

drugs, we use PxEA and rank drugs for their therapeutic potential in 

targeting the common disease pathology between T2D and AD. We 

identify orlistat, a semisynthetic derivative of lipstatin that inhibits 

lipase—a pancreatic enzyme that breaks down fat—as the top 

repurposing candidate. Orlistat inhibits hydrolysis of triglycerides, 

which in turn, reduces the absorption of monoaclglycerides and free 

fatty acids (34). Recent evidence indicates that perturbations in 

unsaturated fatty acid metabolism are tightly coupled to neuritic 

plaque and neurofibrillary tangle formation in AD patients (35). Thus, 

orlistat might help slowing down the plaque and tangle formation due 

to its effect on the fatty acid metabolism. Targeting of fatty acid 
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metabolism for improving the cognitive performance presents a 

novel therapeutic approach and is further supported by experiments 

in mouse models (36). 

 

PxEA can suggest rather counter-intuitive repositioning 

opportunities such as the use of clenbuterol, an asthmatic drug, in 

the treatment of metabolic and neurodegenerative diseases such as 

T2D and AD. In fact, the potential use of clenbuterol in these 

diseases is not too far fetched: it enhances cognitive performance in 

aging rats and monkeys (37), improves memory deficit in mice (38), 

and reduces the insulin resistance in obese rats (39). On the flip side, 

while PxEA provides a cellular network based perspective to 

recommend drugs, it does not take into account dosage-related 

effects of drugs, potential adverse events, or the genetic background 

of the patients. For instance, practolol, a beta-adrenergic antagonist 

that stands out among the T2D-AD candidates, has been withdrawn 

from the market due to its high toxicity, limiting its potential 

therapeutic use in the clinical setting. Despite the limitations of PxEA, 

such as the incompleteness in the drug target, disease and pathway 

genes, lack of consideration of dosage-related effects or genetic 

heterogeneity, we believe PxEA is the first step towards achieving 

endopharmacology, that is, targeting endophenotypes involved 

across multiple diseases. 
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4. Material and Methods 

 

4.1. Protein Interaction Data and Interactome-Based 

Proximity 

 

To define a global map of interactions between human proteins, we 

obtained the physical protein interaction data from a previous study 

that integrated various publicly available resources (16). We 

downloaded the supplementary data accompanying the article to 

generate the human protein interaction network (interactome) 

containing data from MINT (40), BioGRID (41), HPRD (42), KEGG 

(43), BIGG (44), CORUM (45), and PhosphoSitePlus (46). We used 

the largest connected component of the interactome in our analyses, 

which covered 141,150 interactions between 13,329 proteins 

(represented by ENTREZ gene ids). 

 

Network-based proximity is a graph theoretic approach that 

incorporates the interactions of a set of genes (i.e., disease genes 

or drug targets) with other proteins in the human interactome and 

contextual information as to where the genes involved in pathways 

reside with respect to the original set of genes (7). To quantify 

interactome-based proximity between two gene sets (such as drug 

targets, pathway genes or disease genes), we used the average 

shortest path length from the first set to the nearest protein in the 

second set following the definition in the original study (7). 

Accordingly, the proximity from nodes 𝑆 to nodes 𝑇 in a network 

𝐺(𝑉, 𝐸), is defined as: 
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𝑑(𝑆, 𝑇) =
1

∥ 𝑆 ∥
∑ min

𝑣∈𝑇
𝑢∈𝑆

𝑑(𝑢, 𝑣) 

 

where 𝑑(𝑢, 𝑣) is the shortest path length between nodes 𝑢 and 𝑣 in 

𝐺. We then calculated a z-score based on the distribution of the 

average shortest path lengths across random gene sets 𝑆𝑟𝑎𝑛𝑑𝑜𝑚  and 

𝑇𝑟𝑎𝑛𝑑𝑜𝑚  (𝑑𝑟𝑎𝑛𝑑𝑜𝑚(𝑆, 𝑇) = 𝑑(𝑆𝑟𝑎𝑛𝑑𝑜𝑚 , 𝑇𝑟𝑎𝑛𝑑𝑜𝑚)) as follows: 

 

𝑧(𝑆, 𝑇) =
𝑑(𝑆, 𝑇) − 𝜇𝑑𝑟𝑎𝑛𝑑𝑜𝑚(𝑆,𝑇)

𝜎𝑑𝑟𝑎𝑛𝑑𝑜𝑚(𝑆,𝑇)
 

 

where 𝜇𝑑𝑟𝑎𝑛𝑑𝑜𝑚(𝑆,𝑇) and 𝜎𝑑𝑟𝑎𝑛𝑑𝑜𝑚(𝑇,𝑆) are the mean and the standard 

deviation of the 𝑑𝑟𝑎𝑛𝑑𝑜𝑚(𝑆, 𝑇), respectively obtained using 1,000 

realizations of random sampling of gene sets that match the original 

sets in size and degree. We refer to the pathways that are 

significantly proximal (𝑧 ≤ −2) to a disease as the pathway span of 

the disease throughout text. 

 

Note that, instead of average shortest path distances, one can also 

use random-walk based distances to calculate proximity between 

gene sets (26). However, random walks in the networks are 

inherently biased towards high-degree nodes (47,48) and require 

additional statistical adjustment (26,48). Sampling based on size and 

degree matched gene sets has been shown to be robust against 

data-incompleteness in the interactome and in the known pathway 

annotations (7,48). 

 

To investigate the effect of noise in the pathway data, following the 

procedure proposed in (49), we created a synthetic pathway data 

set, in which we defined pathways using a certain percentage k of 
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known disease genes in T2D and AD (k = 10, 25, 50, 75, 90). Hence, 

for each value of k, we created 10 groups of genes, containing a 

random sampling of k% of the T2D-associated genes. We repeated 

the procedure using the AD-associated genes, yielding 100 gold 

standard pathways (10 for each disease across 5 different values 

of k) that were subsets of the known disease genes. For each gold 

standard pathway, we then generated so called control pathway, that 

is, randomly selected group of genes in the interactome that match 

the size of the gold standard pathway under consideration. Next, we 

assessed the shortest path distance based proximity between the 

gold standard pathways and the disease genes (proximity of the gold 

standard T2D pathways to the T2D disease genes and of the gold 

standard AD pathways to the AD disease genes) and compared it to 

the proximity of the control pathways to the same disease genes. We 

also calculated the proximity using random walk scores as proposed 

in a previous study (50). We used the random walk implementation 

in GUILD software package (51) with the default parameters. As one 

would expect, the gold standard pathways were significantly more 

proximal (z ≤ −2) to the disease genes than the control pathways 

using both proximity calculation approaches (Figure 6). On the other 

hand, the shortest path distance based proximity distinguished 

better the overlap between the gold standard pathway genes and the 

disease genes by providing lower values than the random walk 

based proximity as the noise in the pathway information decreased 

(higher values of k in the gold pathways). 
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Figure 6. Effect of noise in the pathway data on the random walk and 

shortest path based proximity calculation. To assess the robustness of the 

interactome-based proximity in regards to noise in the pathway data, we 

generated synthetic gold standard pathways containing a certain proportion 

(k%) of the known disease genes in T2D and AD (see text for details). We 

compared the proximity between these gold standard pathways and the 

disease genes to the proximity between the control pathways (random 

groups of gene in the interactome) and the disease genes. The proximity 

values using random walk and the shortest path for increasing k values are 

shown for the control and gold standard pathways. 
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4.2. Disease-Gene, Drug and Pathway Information 

 

We compiled genes associated with nine autoimmune disorders 

listed in Table 4 using disease-gene annotations from DisGeNET 

(52). We downloaded curated disease-gene associations from 

DisGeNET that contained information from UniProt (53), ClinVar 

(54), Orphanet (55), GWAS Catalog (56) and CTD (57). To ensure 

that the disease-gene associations were of high confidence, we kept 

only the associations that were also provided in a previous large-

scale analysis of human diseases (16). 

 

We retrieved drug target information from DrugBank for 1489 drugs 

in the version 5.0.6 of the database (58), 1466 of which had at least 

a target in the interactome. UniProt ids from DrugBank were mapped 

to ENTREZ gene ids using UniProt id mapping file (retrieved on 

October 2017). We used drug indication information from Hetionet 

(compound treats or palliates disease edges) that compiled data 

from publicly available resources (27). We focused on 78 drugs that 

were indicated for nine autoimmune disorders above. We created a 

subset of drugs used for two or more of the autoimmune disorders, 

yielding 25 drugs across seven conditions (there were no indications 

for celiac disease, and the two drugs used for Graves’ disease were 

not used in any other disease). 

 

The ENTREZ gene ids of the proteins involved in biological 

pathways were taken from the version 5.0 of MSigDB curated gene 

sets (59). In our analysis, we used 674 Reactome (60) pathways and 

the genes associated with these pathways in the MSigDB. 
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Table 4. Disease-gene associations for the nine autoimmune disorders 

used in this study. 

 

Drug ATC Hetionet Indication 

celiac disease 11 
IL21 CCR4 HLA-DQA1 BACH2 
RUNX3 ICOSLG SH2B3 CTLA4 

MYO9B ZMIZ1 ETS1 

Crohn's disease 19 

DNMT3A IL12B IRGM IL10 CCL2 
FUT2 SMAD3 TYK2 ATG16L1 
BACH2 IL2RA NKX2-3 PTPN2 

NOD2 TAGAP MST1 DENND1B 
IL23R ERAP2 

diabetes mellitus, insulin-
dependent 

18 

IL10 GLIS3 HLA-DQA1 HLA-
DRB1 PTPN22 SLC29A3 INS 
BACH2 CLEC16A PAX4 HLA-

DQB1 IL2RA CD69 IL27 HNF1A 
CTSH SH2B3 C1QTNF6 

Graves' disease 4 RNASET2 CTLA4 FCRL3 TSHR 

lupus erythematosus, 
systemic 

29 

IKZF1 CFB RASGRP3 PDCD1 
RASGRP1 DNASE1 HLA-DRB1 
PTPN22 ETS1 TNIP1 FCGR2B 
TNFSF4 IRF5 C2 PRDM1 PXK 

TLR5 TREX1 TNFAIP3 SLC15A4 
PHRF1 HLA-DQA1 STAT4 ITGAX 

ITGAM BLK C4A BANK1 CR2 

multiple sclerosis 15 

CD58 CD6 IRF8 HLA-DQB1 CBLB 
HLA-DRA KIF1B IL2RA TNFSF14 

VCAM1 IL7R HLA-DRB1 CD24 
TNFRSF1A PTPRC 

psoriasis 15 

IL12B TNIP1 LCE3D IL13 IL23R 
TYK2 HLA-DQB1 HLA-C FBXL19 
ERAP1 TRAF3IP2 TNFAIP3 TNF 

REL NOS2 

rheumatoid arthritis 23 

MIF CD40 ANKRD55 HLA-DRB1 
PTPN22 RBPJ IL2RA AFF3 

CCL21 REL SLC22A4 CCR6 IRF5 
SPRED2 CTLA4 PADI4 TNFAIP3 
NFKBIL1 HLA-DQA2 STAT4 IL6 

BLK TRAF1 

ulcerative colitis 24 

IL12B JAK2 ICOSLG IL1R2 LSP1 
CXCR2 IL10 IL7R CXCR1 DAP 
NKX2-3 CARD9 GNA12 IRF5 

PRDM1 HNF4A CCNY SLC26A3 
FCGR2A IL23R IL17REL MST1 

TNFSF15 CDH3 
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4.3. Genetic, Phenotypic and Functional Relationships 

across Diseases 

 

To identify relationships across disease pairs (autoimmune 

diseasome), we used the similarities between diseases in terms of 

the genes and symptoms they share. We assessed the significance 

of the overlap between genes (or symptoms) associated with two 

diseases using Fisher’s exact test. An alpha value of 0.05 was set to 

deem the connections significant (two-sided test p ≤ 0.05). The 

disease symptom information was taken from a previous study 

based on text mining of PubMed abstracts (61). In this study, the 

number of times a symptom appears in a PubMed abstract was 

adjusted by the frequency of the symptom in the whole corpus using 

time frequency-inverse document frequency approach (TF-IDF). To 

ensure that the disease-symptom associations are of high quality, 

we considered associations with TF-IDF score higher than 3.5 as 

suggested in the original study. 

 

Comorbidity relationships across diseases were inferred using data 

from medical insurance claims, where we assessed whether two 

diseases occurred more often in the same patient compared to the 

rest using the relative risk score (62). Relative risk score relies on 

the relative occurrence frequencies of diseases across patients, 

adjusting for the prevalence of the diseases. We mapped the ICD9 

codes to MeSH identifiers using the annotations provided by Disease 

Ontology (63) and we considered the disease pairs with a relative 

risk score higher than 1 as potential comorbidity links. 

 

To identify pathways enriched in diseases, we used the significance 

(i) of the overlap between the pathway and disease genes assessed 



Results. Article 2 
 

 

 208 

by a one-tailed Fisher’s exact test and (ii) of the proximity between 

the pathway and disease genes in the interactome. We considered 

the pathways that had p ≤ 0.05 and z ≤ −2, respectively, as the 

pathways that were enriched in a given disease using the two 

approaches. The pathway information was taken from Reactome 

and the proximity was calculated as explained above. 

 

4.4. PxEA: Proximal Pathway Enrichment Analysis 

 

Toward the goal of pathway level characterization of the common 

pathology of diseases and to evaluate the therapeutic potential of 

drugs based on their impact on the common pathways, we 

developed Proximal pathway Enrichment Analysis (PxEA), a novel 

method that scores drugs based on the proximity of drug targets to 

pathway genes in the interactome. PxEA uses a GSEA-like running 

sum score (28), where the pathways are ranked with respect to the 

proximity of drug targets to the pathways and each pathway is 

evaluated to see whether or not it appears among the pathways of 

interest (e.g., common pathways between two diseases). Given D, 

the pathways ranked with respect to their proximity to drug 

targets, pi, the pathway in consideration within D, and C, the set of 

pathways of interest, the running score is defined as follows (64): 

 

𝐸𝑆(𝐷, 𝐶) = ∑ 𝑋𝑖

𝑝𝑖∈𝑃
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where, 

 

𝑋𝑖 = {

√
|𝐷| − |𝐶|

|𝐶|
, 𝑖𝑓 𝑝𝑖 ∈ 𝐶

 −√
|𝐶|

|𝐷| − |𝐶|
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

To calculate P-values for the case study, we repeat the procedure 

above 10,000 times, shuffling randomly 𝐷 to calculate the expected 

enrichment score 𝐸𝑆(𝐷𝑟𝑎𝑛𝑑𝑜𝑚 , 𝐶). We then calculate the P-value for 

the enrichment using 

 

𝑃 =
|𝐸𝑆(𝐷, 𝐶) < 𝐸𝑆(𝐷𝑟𝑎𝑛𝑑𝑜𝑚 , 𝐶)|

10,000
 

 

The P-values were corrected for multiple hypothesis testing using 

Benjamini-Hochberg procedure (65). 

 

4.5. Implementation Details and Code Availability 

 

We used the toolbox Python package for running PxEA, available at 

github.com/emreg00/toolbox. The proximity was calculated using 

networkx package that implements Dijkstra’s shortest path 

algorithm. The statistical tests were conducted in R (www.R-

project.org) and Python (www.python.org). The network 

visualizations were generated using Cytoscape (66) and the plots 

were drawn using either Seaborn python package (67) or ggplot2 R 

package (68). 

 

http://www.r-project.org/
http://www.r-project.org/
http://www.python.org/
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Abbreviations 

 

The following abbreviations are used in this manuscript: 

 

AD: Alzheimer’s disease 

ATC: Anatomical Therapeutic Chemical 

GSEA: Gene set enrichment analysis 

PxEA: Proximal pathway enrichment analysis 

T2D: Type 2 diabetes 

TF-IDF: Time frequency-inverse document frequency approach 
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3.3. Network medicine tools applied to 

modelling the response of a drug 

combination in prototype-patients 

 

In the third article of the thesis, I present a collaboration with 

Anaxomics Biotech S.L. where we apply the network medicine tools 

TPMS and GUILDify v2.0 to model the response of the drug 

combination sacubitril/valsartan towards the phenotypes of heart 

failure and macular degeneration using theoretical models called 

“prototype-patients”: 

 

(1) TPMS allows to model all the possible mechanisms of action 

between the targets of the drug and the proteins modulated 

by a disease or side effect. TPMS simulates the transmission 

of the perturbation of the drug through the PPI network from 

the stimulus (the drug targets) until the response (the 

disease-associated proteins). The simulation is carried out 

by a Multilayer Perceptron algorithm, and the models are 

trained using restrictions from gene expression datasets. 

(2) GUILDify v2.0 applies diffusion-based algorithms to identify 

the modules associated to a disease or side effect using a 

different network from TPMS, ideal to compare the results of 

both methods. 

 

I carried out this work together with Guillem Jorba, the other first co-

author of the publication. We employed TPMS to stratify different 

types of prototype-patients depending on how the intake of 

sacubitril/valsartan modulates the proteins associated to the 

phenotypes heart failure and macular degeneration. We identified 
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biomarker proteins that allowed to differentiate such prototype-

patients. We applied GUILDify v2.0 to identify the disease modules 

of heart failure and macular degeneration, assess how the target 

proteins of the drug combination were overlapping them and search 

the biomarker proteins identified by TPMS in this context. 
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Abstract 

 

Unveiling the mechanism of action of a drug is key to understand the 

benefits and adverse reactions of a medication in an organism. 

However, in complex diseases such as heart diseases there is not a 

unique mechanism of action but a wide range of different responses 

depending on the patient. Exploring this collection of mechanisms is 

one of the clues for a future personalized medicine. The Therapeutic 

Performance Mapping System (TPMS) is a Systems Biology 

approach that generates multiple models of the mechanism of action 

of a drug. Each molecular mechanism generated could be 

associated to particular individuals, here defined as prototype-

patients, hence the generation of models using TPMS technology 

may be used for detecting adverse effects to specific patients. TPMS 

operates by (1) modelling the responses in humans with an accurate 

description of a protein network and (2) applying a Multilayer 

Perceptron-like and sampling strategy to find all plausible solutions. 

In the present study, TPMS is applied to explore the diversity of 

mechanisms of action of the drug combination sacubitril/valsartan. 

We use TPMS to generate a wide range of models explaining the 

relationship between sacubitril/valsartan and heart failure (the 

indication), as well as evaluating their association with macular 

degeneration (a potential adverse effect). Among the models 

generated, we identify a set of mechanisms of action associated to 

a better response in terms of heart failure treatment, which could 

also be associated to macular degeneration development. Finally, a 

set of 30 potential biomarkers are proposed to identify mechanisms 

(or prototype-patients) more prone of suffering macular 

degeneration when presenting good heart failure response. All 

prototype-patients models generated are completely theoretical and 
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therefore they do not necessarily involve clinical effects in real 

patients. Data and accession to software are available 

at http://sbi.upf.edu/data/tpms/. 

 

 

Introduction 

 

Systems biology methods are an increasingly recurring strategy to 

understand the molecular effects of a drug in complex clinical 

settings (1). Some of these methods apply computer science 

techniques and mathematical approaches to simulate the responses 

of a drug. In 2005, the Virtual Physiological Human initiative was 

founded with the objective of developing computational models of 

patients (2). Later, they defined the concept of In Silico Clinical Trials 

as “the use of individualized computer simulation in the development 

or regulatory evaluation of a medicinal product, medical device, or 

medical intervention” (3). Since then, In Silico Clinical Trials have 

been adopted in several occasions in preclinical and clinical trials 

(1).   

 

However, current methodologies do not consider the inter-patient 

variability intrinsic to pharmacological treatments, missing relevant 

information that should be incorporated into the models. Indeed, 

there are many parameters influencing the Mechanisms of Action 

(MoA) in such therapies, including demographic data of the patient, 

co-treatments or clinical history. Thus, by modelling all molecular 

mechanisms affected by the drug, the diversity of responses 

observed in patients during or after the treatment could be explained. 

 

http://sbi.upf.edu/data/tpms/
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The Therapeutic Performance Mapping System (TPMS) (4) is a 

method used to elucidate all the possible MoAs that could exist 

between an input drug and a pathology or adverse effect. It is a 

systems biology approach based on the simulation of patient-

specific protein-protein interaction networks. TPMS incorporates 

data from different resources and uses the information from the 

drugs and diseases under study to generate multiple models of 

potential MoAs. In the last years, TPMS has been broadly used in 

different clinical areas and with different objectives (5–12), in some 

cases being validated in the posterior experiments (6,11,12). Our 

working hypothesis is that a set of MoAs can represent the different 

responses to a drug in cells and that a real population of patients is 

the result of a myriad of cell responses. Thus, we define a prototype-

patient as an abstract case with all cells responding to a single MoA.   

 

Here, we propose the application of TPMS and protein-network 

approaches in the specific case study of the drug combination 

sacubitril/valsartan, used for the treatment of Heart Failure (HF). HF 

is becoming a major health problem in the western world due to its 

increasing hospitalization rates (13), with a prevalence being 

influenced by many factors like age, nutritional habits, lifestyles or 

genetics. This complicates the development of treatments and the 

identification of universal biomarkers to stratify the population. To 

facilitate this segmentation, it is necessary to understand the 

molecular details of the treatment and the pathology. 

Sacubitril/valsartan (marketed by Novartis as Entresto®) is a drug 

combination that shows better results than conventional treatments 

by reducing cardiovascular deaths and heart failure (HF) 

readmissions (14). In pharmacological terms, it is an angiotensin 

receptor-neprilysin inhibitor. Consequently, it triggers the natriuretic 
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peptide system by inhibiting neprilysin (NEP) and inhibits renin-

angiotensin-aldosterone system by blocking the type-1 angiotensin 

II receptor (AT1R) (15). In a previous work, TPMS was already 

applied to unveil the MoA of sacubitril/valsartan synergy, revealing 

its effect against two molecular processes (9): the left ventricular 

extracellular matrix remodeling, mediated by proteins like gap 

junction alpha-1 protein or matrix metalloproteinase-9; and the 

cardiomyocyte apoptosis, through modulation of glycogen synthase 

kinase-3 beta. However, several publications warned about the 

potential long-term negative implications of using a neprilysin 

inhibitor like sacubitril (15–19). Neprilysin plays a critical role at 

maintaining the amyloid-β homeostasis in the brain, and the 

alteration of amyloid-β levels has been linked to a potential long-term 

development of Alzheimer’s disease or Macular Degeneration (MD) 

(15,17,19–21). During the clinical trials PARADIGM-HF and 

PARAGON-HF with sacubitril/valsartan no serious effects were 

detected (14,22). Still, their patient follow-up was relatively short and 

not specialized in finding neurodegenerative specific symptoms. For 

this reason, in a forthcoming PERSPECTIVE trial (NCT02884206) a 

battery of cognitive tests was taken (18). In line with this, the 

application of systems biology methods may shed light to the 

potential relationship between the treatment and the adverse effect. 

 

In this study, we used TPMS and GUILDify v2.0 to analyze the 

relationship between sacubitril/valsartan, HF and MD in entirely 

theoretical models, which could not necessarily involve clinical 

effects in real patients. We analyzed a population of MoAs that 

describe the possible protein links from a sacubitril/valsartan 

treatment to HF and MD phenotypes. We clustered the MoAs in 

groups according to their response intensity and labelled them as 
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high or low efficacy of treating HF and possibility of causing MD. We 

then compared these sets of MoAs and proposed a list of biomarkers 

to identify potential cases of MD when using sacubitril/valsartan. 

Simultaneously, we used GUILDify v2.0 web server (23) as an 

alternative approach to compare the biomarkers proposed by TPMS 

and reinforce the results. 

 

 

Materials and Methods 

 

1. Biological Effectors Database (BED) to molecularly 

describe specific clinical conditions 

 

Biological Effectors Database (BED) (5,24) describes more than 300 

clinical conditions as sets of genes and proteins (effectors) that can 

be “active”, “inactive” or “neutral”. For example, in a metabolic 

protein-like network, an enzyme will become “active” in the presence 

of a catalyst, or become inactivated when interacting with an inhibitor 

(see further details in supplementary material). 

 

2. TPMS modelling 

 

The Therapeutic Performance Mapping System (TPMS) is a tool that 

creates mathematical models of the protein pathways underlying a 

drug/pathology to explain a clinical outcome or phenotype (4–10). 

These models find MoAs that explain how a Stimulus (i.e. proteins 

activated or inhibited by a drug) produces a Response (i.e. proteins 

active or inhibited in a phenotype). In the present case study, we 

applied TPMS to the drug-indication pair sacubitril/valsartan and HF. 
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Regarding the drug, we retrieved the sacubitril/valsartan targets from 

DrugBank (25), PubChem (26), STITCH (27), SuperTarget (28) and 

hand curated literature revision. As for the indication, we retrieved 

the proteins associated with the phenotype from the BED (5,24).  

 

2.1. Building the Human protein network (HPN) 

 

To apply the TPMS approach and create the mathematical models 

of MoAs, a Human Protein Network (HPN) is needed beforehand. In 

this study, we used a protein-protein interactions network created 

from the integration of public and private databases: KEGG (29), 

BioGRID (30), IntAct (31), REACTOME (32), TRRUST (33), and 

HPRD (34). In addition, information extracted from scientific 

literature, which was manually curated, was also included and used 

for trimming the network. The resulting HPN considers interactions 

corresponding to different tissues to take into account the effect of 

the Stimulus in the whole body. 

 

2.2. Defining active/inactive nodes 

 

We define the state of human proteins as active or inactive for a 

particular phenotype, including its expression (as active) or 

repression (as inactive) extracted from the GSE57345 gene 

expression dataset (35) as in Iborra-Egea et al (9) (see further details 

in supplementary material). 

 

2.3. Description of the mathematical models 

 

The algorithm of TPMS takes as input signals the activation (+1) and 

inactivation (-1) of the drug target proteins, and as output the BED 
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protein states of the pathology. It then optimizes the paths between 

both protein sets and computes the activation and inactivation values 

of all proteins in the HPN. Each node of the protein network receives 

as input the output of the incoming connected nodes and every link 

is given a weight (𝜔𝑙). The sum of inputs is transformed by a 

hyperbolic tangent function that generates a score for every node, 

which becomes the “output signal” towards the outgoing connected 

nodes. The 𝜔𝑙 parameters are obtained by optimization, using a 

Stochastic Optimization Method based on Simulated Annealing (36). 

The models are then trained by using the general restrictions (i.e. 

defined as edges and nodes with the property of being active or 

inactive) and the specific conditions set by the user. Details of the 

approach are shown in Fig 1 and supplementary material. 
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Fig 1. Scheme of how to apply TPMS to find the Mechanisms of Action 

(MoA) of a drug. (a) Scheme of the method, transmitting information over 

the Human Protein Network (HPN) using a Multilayer Perceptron-like and 

sampling. (b) After a given number of iterations, we obtain a collection of 

Mechanisms of Actions (MoA). Rows represent the MoAs and columns the 

output signal values of the proteins (nodes of the network). The final column 

shows the accuracy of the model as a percentage of the number restrictions 

accomplished. (c) 200 MoAs are selected (coloured in the slide) and sorted 

by TSignal. The first quartile is defined as the Low-disease group, and the 

fourth quartile as High-disease group. The distribution of the output signals 

of the two groups of MoA are shown in (d) (High-disease in red and Low-

disease is in blue). 

 

3. Measures to compare sets of MoAs 

 

To understand the relationships between all potential mechanisms 

we defined some measures of comparison between different sets of 

solutions. We expect that a drug will revert the conditions of a 

disease phenotype; subsequently, a drug should inactivate the 

active protein effectors of a pathology-phenotype and activate the 

inactive ones. In this section we describe the measures used in the 

present study to analyze and compare sets of MoAs from different 

views (see further details in supplementary material). 

 

3.1. TSignal 

 

To quantify the intensity of the response of a MoA, we defined 

TSignal as the average signal arriving at the protein effectors 

(equation in supplementary material).  
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3.2. Distance between two sets of MoAs 

 

We used the modified Hausdorff distance (MHD) introduced by 

Dubuisson and Jain (37) as the distance between two or more sets 

of MoAs in order to determine their similarity. Details of the equations 

are explained in the supplementary material. 

 

3.3. Potential biomarkers extracted from MoAs 

 

In order to extract potential biomarkers when comparing sets of 

MoAs, we first defined the best-classifier proteins. These are 

proteins inside the HPN that allow to better classify between groups 

of models and are identified following a Data-Science strategy (see 

supplementary material). Best-classifier proteins are usually strongly 

related to the intensity of a response and are proteins with values 

differently distributed between the groups of MoAs analyzed. For this 

study, and for the sake of simplicity, we focused only on the 200 

proteins (or pair of proteins) showing the higher classification 

accuracy. Assuming the hypothesis that the selected MoAs are 

representative of individual prototype-patients, these proteins could 

be used as biomarkers to classify a cohort of patients.  

 

Then, we applied the Mann-Whitney U test to compare the 

distributions of the best-classifier proteins values between the 

groups and selected those proteins with significant difference (p-

value< 0.01). We also restricted the list to proteins having an 

average value with opposite sign among groups (i.e. positive vs. 

negative or vice versa) and named them as differential best-classifier 

proteins. By following this strategy, we can identify two groups of 

differential best-classifier proteins: those active in the first group 
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(positive output signal in average) and inactive in the other (negative 

output signal in average), and the opposite. 

 

 

Results and discussion 

 

We applied TPMS to the HPN using as input signals the drug targets 

of sacubitril/valsartan (NEP / AT1R) and as output signals the 

proteins associated with HF extracted from the BED. Out of all MoAs 

found by TPMS, we selected the 200 satisfying the largest number 

of restrictions (and at least 80% of them) to perform further analysis.  

 

Note that TPMS was only executed once, optimizing the results to 

satisfy the restrictions on HF data. The values of MD are obtained 

by measuring the signal arriving at the MD effectors, which are part 

of the HPN and also receive signal. This procedure was chosen 

because we defined HF as the indication of the drug 

(sacubitril/valsartan), while MD is a potential adverse effect.  

 

1. Stratification of MoAs 

 

In order to compare models related to a good or bad response to the 

treatment, or those more prone to lead towards potential MD adverse 

effect, we stratified the MoAs. For HF, or treatment response, MoAs 

were ranked by their TSignal and then split in four quartiles. The first 

quartile (top 25%) contains MoAs with higher intensity of the 

response, which in turn corresponds to lower values of the effectors 

associated with HF phenotype (we named them as “Low”-disease 

MoAs). On the contrary, the fourth quartile (bottom 25%) collects 
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MoAs with lower intensity of response (thus, we named as “High”-

disease MoAs) (Supplementary Fig 1a). On the other hand, for MD, 

the first quartile (top 25%) contains MoAs with higher intensity, which 

as an adverse event, correspond to models with high values of the 

effectors associated to MD (we named them as High-adverseEvent 

MoAs). The fourth quartile (bottom 25%) collects MoAs with lower 

intensity of response (thus, we named as Low- adverseEvent MoAs) 

(Supplementary Fig 1b). Note that, in the following steps and 

because HF and MD groups were extracted from the same 200 set 

of models, common MoAs between different HF and MD-defined 

sets could be expected. 

 

2. Comparison of MoAs with high/low TSignal associated 

to HF or MD 

 

We calculated the modified Hausdorff distance between the groups 

of MoAs (High-MD, Low-MD, High-HF and Low-HF) to elucidate their 

similarity values (Supplementary Table 5). In this sense, the higher 

the distance between the groups is, the more different they are. We 

used these distances to calculate a dendrogram tree (see 

Supplementary Fig 2) showing that MoAs associated with a bad 

response to sacubitril/valsartan for HF (high-HF) are more similar 

(i.e. closer) to MoAs linked to a stronger MD adverse effect (high-

MD). It is remarkable that the distances between Low- and High-HF 

and between Low- and High-MD are larger than the cross distances 

between HF and MD. However, by the definition of distance 

(equation 3 in supplementary material), it cannot account for the 

dispersion among the MoAs within and between each group. 

Therefore, for each set we calculated the mean Euclidean distance 

between all the points and its center, defined by the average of all 
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points (see Supplementary Table 6). As a result, all groups showed 

very similar dispersion values. 

 

In order to have a global and graphical view of the distance between 

the individual MoAs, we generated a multidimensional scaling (MDS) 

plot calculated using MATLAB (see Fig 2). MDS plots display the 

pairwise distances in two dimensions while preserving the clustering 

characteristics (i.e. close MoAs are also close in the 2D-plot and far 

MoAs are also far in 2D). Focusing on the Low-HF group depicted in 

blue circles, we observe that there is no clear tendency to cluster 

with any of the MD groups. There are few cases of Low-HF MoAs 

coinciding in the space with Low- or High-MD MoAs. This implies 

that a good response to sacubitril/valsartan of HF patients would not 

be usually linked to the development of MD. Moreover, no clear 

distinction is found when plotting only the MD MoAs within the Low-

HF group (see Supplementary Fig 3a). However, regarding the set 

of High-HF MoAs, we can differentiate two clusters of MoAs: one 

related to the High-MD group (green crosses); and the other close 

to MoAs of the Low-MD group (black crosses) (see Supplementary 

Fig 3b).   

 

Assuming the hypothesis that different MoAs correspond to distinct 

prototype-patients, we conclude that for the specific set of patients 

for which sacubitril/valsartan works best reducing HF, it would be 

more difficult to differentiate between those presenting MD and those 

who do not. Instead, for the High-HF group, patients having MD 

could indeed be easily distinguished from those not presenting MD 

as side effect. However, because Low-HF group has more relevance 

to the clinics, specific functional analyses were performed in this 

specific group, as seen in following sections. Finally, we highlight 
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that, as these distinct groups of prototype-patients are theoretical 

simulations, they may not be reflecting the clinical effects of the real 

patients. 

 

Fig 2. Multidimensional scaling plot of the distances between the 

Mechanisms of Action (MoA) of the four groups defined. Each point 

represents a MoA. Axes are defined by the most representative 

dimensions. 

 

3. Identification and functional analysis of potential 

biomarkers 

 

For this section, we identified the nodes (i.e. proteins) significantly 

differentiating two groups of models (using a Mann-Whitney U test) 

for which the average of output signals have opposite signs (see 

methods in 3.3). After that, the function of the identified proteins was 

extracted from Gene Ontology (GO). 
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3.1. Identification of best-classifier proteins differentiating HF 

responses 

 

After comparing High- vs Low- HF groups, we found a total of 45 

differential best-classifier proteins associated with the treatment 

response (6 Low-HF-active/High-HF-inactive and 39 Low-HF-

inactive/High-HF-active) (see Fig 3a and Supplementary Table 1). 

To pinpoint the biological role of these proteins, we first identified the 

GO enriched functions (see Supplementary Table 2) and then 

searched in the literature for evidences linking them with HF. As a 

result, we found that the differential best-classifier proteins Low-HF-

active/High-HF-inactive point towards an important role for actin 

nucleation and polymerization mechanisms in drug response 

(reflected by the functions regulation of actin nucleation, regulation 

of Arp2/3 complex-mediated actin nucleation, SCAR complex, 

filopodium tip, or dendrite extension). In fact, the alteration of actin 

nucleation and polymerization mechanisms has been reported in 

heart failure (38–40). Interestingly, a role for the activation of another 

differential best-classifier candidate, ATGR2, has been proposed to 

mediate some of the beneficial effects of angiotensin II receptor type 

1 antagonists, such as valsartan (41,42). On the other hand, the 

results of the differential best-classifier proteins Low-HF-

inactive/High-HF-active are linked to phosphatidylinositol kinase 

mediated pathways (phosphatidylinositol-3,4-bisphosphate 5-kinase 

activity) and MAP kinase mediated pathways (MAP kinase kinase 

activity, best classifier proteins MAPK1, MAPK3, MAPK11, MAPK12 

or MAPK13). In this case, both signaling pathways have been 

associated to cardiac hypertrophy and subsequent heart failure 

(43,44). These outcomes clearly lead towards the idea that High-HF 

models are a representation of prototype-patients with a worst 
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response to the treatment, while Low-HF models are related to more 

beneficial response to the medication. A more detailed explanation 

can be found in the supplementary material.  

 

 

Fig 3. Scatter plot of the mean signal values of Low and High-

“disease” Mechanisms of Action (MoA). Scatter plot of the mean signal 

values of Low-“disease” and High-“disease” MoAs for each protein using as 

disease Heart Failure (HF) in (a) and Macular Degeneration (MD) in (b). 

The average of the output signal of each protein in High-group is presented 

versus its value in Low-group. Differential signals (Diff., shown as triangles) 

are defined as those with opposite sign when comparing High versus Low 



Results. Article 3 
 

 

 238 

average, and a p-value < 0.01 when calculating the Mann-Whitney U test 

between the two distributions of signals. Best-classifier proteins (BCP) are 

colored in red, otherwise they are blue. Sizes of markers are proportional 

to p-values of the Mann-Whitney U test. 

 

3.2. Identification of best-classifier proteins differentiating MD 

responses 

 

We identified 57 differential best-classifier proteins of MD (28 Low-

MD-active/High-MD-inactive and 29 Low-MD-inactive/High-MD-

active) (see Fig 3b and Supplementary Table 3). Again, we 

searched for relationships between these proteins and MD by 

identifying the GO enriched functions (see Supplementary Table 4) 

and searching for links in the literature. Some of the proteins and 

functions highlighted in the current analysis had been related to MD 

in previous works. The presence of dendritic spine development and 

dorsal/ventral axon guidance related proteins emphasizes the role of 

sacubitril/valsartan in dendritic and synaptic plasticity mechanisms, 

which had been previously linked to MD (45). Furthermore, valsartan 

treatment has been reported to promote dendritic spine development 

in other related neurodegenerative diseases, such as Alzheimer’s 

disease (46). Other enriched functions are implicated in growth 

factor related pathways, which are known to be involved in wet MD 

pathogenesis (47). Moreover, neovascularization in the wet variant 

of MD has been linked to the signaling of some of the growth factors 

detected as sacubitril/valsartan-associated MD classifiers in this 

study, including FGF1 (47) and PDGF (48,49). A more detailed 

explanation can be found in the supplementary material.  
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3.3. Identification of potential biomarkers differentiating MD 

responses in Low-HF 

 

Because of its clinical relevance, we decided to focus on analyzing 

the special case of prototype-patients in which the treatment reduces 

HF (Low-HF) but produces MD adverse effect (High-HF). In order to 

find these prototype-patients, we: (i) identified 13 Low-HF  Low-MD 

MoAs and 12 Low-HF  High-MD MoAs; and (ii) compared the 

protein signal of the two groups and proposed 30 potential 

biomarkers (Table 1). Among the proposed biomarkers, we found 

16 proteins active in Low-HF  Low-MD MoAs but inactive in Low-

HF  High-MD (15 of them shared with MD best-classifier proteins). 

On the other hand, 14 proteins were identified as inactive in Low-HF 

 Low-MD and active in Low-HF  High-MD MoAs (12 of them were 

MD best-classifier proteins). We calculated the GO enriched 

functions of these two groups and observed that 

“phosphatidylinositol bisphosphate kinase activity” is enriched 

among proteins that are active in Low-HF  Low-MD MoAs. Instead, 

“fibrinolysis” was found to be enriched among proteins active in Low-

HF  High-MD MoAs (Table 2). With this, we conclude that among 

the group of prototype-patients for which sacubitril/valsartan 

improves HF treatment response, the modulation of fibrinolysis could 

play a role at inducing the MD adverse effect. Moreover, we propose 

12 best-classifier proteins that may be considered as biomarkers for 

good prognosis of the side effect. 

 

In fact, since neovascular MD development is characterized by 

subretinal extravasations of novel vessels derived from the choroid 

(CNV) and the subsequent hemorrhage into the photoreceptor cell 
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layer in the macula region (51), it might be reasonable to think that 

the modulation of fibrinolysis and blood coagulation pathways could 

play a role. The reported implication of some fibrinolysis related 

classifiers, such as FGB, SERPINE1 (PAI-1), and SERPING1, in 

neovascular MD development seems to support this hypothesis (52–

54). Besides, valsartan might be implicated in this mechanism, since 

it has been reported to modulate PAI-1 levels and promote 

fibrinolysis in different animal and human models (55,56). In addition, 

the presence of several other MD related classifiers in this list, such 

as IRS2 (57), PTGS2 (58), DCN (59) and FGF1 (60), further 

supports the interest of the classifiers as biomarkers of MD 

development in sacubitril/valsartan good responders.  Still, we would 

like to highlight that the biomarkers have been proposed using a 

theoretical approach, and that the clinical effects studied may not be 

present in real patients. 

 

Table 1. Potential biomarker proteins, with opposite signal in Low-HF 

 Low-MD and Low-HF  High-MD MoAs. 

 

 Uniprot ID 
Gene 

symbol 
Gene name 〈𝑳𝑴𝑫〉 〈𝑯𝑴𝑫〉 √|

𝑳𝑴𝑫𝒙
𝑯𝑴𝑫

| 
Adjusted 
P-value 

BCP 

1 P02675 FGB Fibrinogen beta chain -0.576 0.814 0.685 1.297E-03 MD 

2 O43639 NCK2 Cytoplasmic protein NCK2 0.620 -0.697 0.657 1.656E-04 MD 

3 P54762 EPHB1 Ephrin type-B receptor 1 0.317 -0.677 0.464 3.669E-04 
HF&
MD 

4 Q9Y4H2 IRS2 Insulin receptor substrate 2 0.417 -0.465 0.440 8.181E-04 MD 

5 O60674 JAK2 
Tyrosine-protein kinase 

JAK2 
-0.747 0.249 0.431 1.656E-04 MD 

6 P06241 FYN Tyrosine-protein kinase Fyn 0.591 -0.236 0.373 2.466E-04 
HF&
MD 

7 P30530 AXL 
Tyrosine-protein kinase 

receptor UFO 
0.392 -0.330 0.360 2.111E-04 MD 

8 Q02297 NRG1 
Pro-neuregulin-1, 

membrane-bound isoform 
0.672 -0.188 0.355 2.111E-04 MD 

9 P32004 L1CAM 
Neural cell adhesion 

molecule L1 
-0.373 0.309 0.339 1.297E-03 

HF&
MD 
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10 Q05586 GRIN1 
Glutamate receptor 
ionotropic, NMDA 1 

-0.174 0.620 0.329 1.955E-04 MD 

11 P05230 FGF1 Fibroblast growth factor 1 -0.152 0.688 0.323 8.181E-04 
HF&
MD 

12 P18084 ITGB5 Integrin beta-5 0.436 -0.236 0.321 2.111E-04 MD 

13 P01583 IL1A Interleukin-1 alpha 0.174 -0.472 0.287 1.955E-04 MD 

14 P10275 AR Androgen receptor 0.349 -0.201 0.265 8.008E-04 MD 

15 P15941 MUC1 Mucin-1 subunit alpha 0.099 -0.652 0.254 6.905E-04 
HF&
MD 

16 O14757 CHEK1 
Serine/threonine-protein 

kinase Chk1 
0.436 -0.142 0.248 1.549E-03 MD 

17 P15391 CD19 B-lymphocyte antigen CD19 -0.131 0.357 0.216 8.160E-03 MD 

18 P61981 YWHAG 
14-3-3 protein gamma, N-

terminally processed 
0.174 -0.236 0.203 2.783E-03 - 

19 Q9Y478 PRKAB1 
5'-AMP-activated protein 

kinase subunit beta-1 
0.261 -0.142 0.192 5.682E-03 MD 

20 P62158 
CALM1 ; 
CALM2 ; 
CALM3 

Calmodulin-1 
{ECO:0000312|HGNC:HGN

C:1442} 
-0.282 0.107 0.174 9.405E-03 MD 

21 P06748 NPM1 Nucleophosmin 0.261 -0.107 0.167 3.618E-03 MD 

22 O15357 INPPL1 
Phosphatidylinositol 3,4,5-

trisphosphate 5-
phosphatase 2 

-0.261 0.094 0.157 3.618E-03 MD 

23 P17081 RHOQ 
Rho-related GTP-binding 

protein RhoQ 
-0.218 0.094 0.143 9.794E-03 MD 

24 P35354 PTGS2 
Prostaglandin G/H synthase 

2 
0.044 -0.472 0.143 3.669E-04 MD 

25 P42684 ABL2 
Abelson tyrosine-protein 

kinase 2 
-0.218 0.094 0.143 9.794E-03 MD 

26 Q15109 AGER 
Advanced glycosylation 

end product-specific 
receptor 

-0.267 0.063 0.130 8.160E-03 - 

27 P07585 DCN Decorin -0.044 0.236 0.101 5.682E-03 MD 

28 P05155 
SERPING

1 
Plasma protease C1 

inhibitor 
-0.044 0.236 0.101 5.682E-03 MD 

29 P05121 
SERPINE

1 
Plasminogen activator 

inhibitor 1 
-0.044 0.236 0.101 5.682E-03 - 

30 P14770 GP9 Platelet glycoprotein IX 0.044 -0.236 0.101 5.682E-03 MD 

 

Highlighted cells correspond to proteins that are part of the Top-HF  Top-MD  Top-Drug 

set, the top-scoring proteins according to GUILDify. Columns show: the protein name (as 

UniprotID, gene-symbol and gene-name), the average of the signal in in Low-MD (<LMD>) 

and  High-MD (<HMD>) in the selected sets of MoAs and a measure of the strength of the 

signal in both distributions (calculated as √𝑳𝑴𝑫𝒙𝑯𝑴𝑫), the significance (adjusted P-value) 

ensuring that both distributions of signals are different, and whether the protein has been 

considered best-classifier in MD of HF (BCP). 
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Table 2. Top 10 gene Ontology functions enriched from proteins with 

opposite signal in Low-HF  Low-MD and Low-HF  High-MD MoAs. 

 

 Low-HF  LMD+ HMD- Low-HF  HMD+ LMD- Overlapped functions 

 GO name LOD P-val. GO name LOD P-val. GO name LOD P-val. 

1 
phosphatidylinositol-
4,5-bisphosphate 3-
kinase activity 

1.89 0.03600 fibrinolysis 2.51 0.00050 
response to 

stimulus 
1.19 <0.00050 

2 
cellular response to 
UV 

1.87 0.04200 

negative 

regulation 
of wound 
healing 

2.13 0.00050 
positive 
regulation of 
transport 

1.24 <0.00050 

3 
phosphatidylinositol 
bisphosphate 
kinase activity 

1.87 0.04200 

negative 
regulation 
of blood 

coagulation 

2.12 0.00850 

positive 
regulation of 
biological 

process 

1.13 0.00051 

4 

vascular endothelial 
growth factor 
receptor signaling 
pathway 

1.86 0.04200 

negative 
regulation 
of 
hemostasis 

2.12 0.00850 

positive 
regulation of 
developmental 
process 

1.18 <0.00050 

5 
positive regulation 
of protein kinase B 
signaling 

1.70 0.01050 

negative 

regulation 
of 
coagulation 

2.10 0.01050 

positive 

regulation of 
cellular 
process 

1.04 0.00294 

6 
negative regulation 
of apoptotic 
signaling pathway 

1.68 0.00050 

platelet 
alpha 
granule 
lumen 

1.96 0.02300 

positive 
regulation of 
response to 
stimulus 

1.04 0.00417 

7 
peptidyl-tyrosine 

phosphorylation 
1.63 0.01400 

regulation 
of epithelial 
cell 
apoptotic 
process 

1.96 0.02300 - - - 

8 
regulation of 
apoptotic signaling 
pathway 

1.63 <0.00050 
regulation 
of blood 
coagulation 

1.91 0.02800 - - - 

9 
peptidyl-tyrosine 
modification 

1.62 0.01400 
regulation 
of 
hemostasis 

1.91 0.02800 - - - 

10 
protein tyrosine 
kinase activity 

1.61 0.01850 
regulation 
of 
coagulation 

1.89 0.03450 - - - 

 

Functional enrichment analysis from FuncAssociate (50). 

 

4. Analysis of proposed biomarkers with GUILDify 

 

In the previous section, we proposed 30 proteins that could 

potentially help to identify HF patients at risk of developing MD. To 

corroborate these biomarkers, we tested how many of them are 

found using a different approach also based on the use of functional 

networks. For this purpose, we used GUILDify v2.0 (23), a web 

server that extends the information of disease-gene associations 
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through the protein-protein interactions network. GUILDify scores 

proteins according to their proximity with the genes associated with 

a disease (seeds). Using this web server, we identify a list of top-

scoring proteins that are critical on transmitting the perturbation of 

disease genes through the network. The network used by GUILDify 

is completely independent from the HPN used in the TPMS, 

becoming an ideal, independent context to test the potential 

biomarkers. 

 

Thus, we used GUILDify to indicate which of the potential biomarkers 

identified by TPMS may have a relevant role in the molecular 

mechanism of the drug. We ran GUILDify using the two targets of 

sacubitril/valsartan (NEP, AT1R) as seeds, and selected the top 2% 

scored nodes (defined as the “top-drug” set). We did the same with 

the phenotypes of HF and MD, using as seeds the 124 effectors of 

HF and 163 effectors of MD from the BED database. We merged the 

top scored sets of HF, MD and top-drug (“top-drug  top-HF  top-

MD”) and studied the overlap with the set of 30 biomarkers proposed 

in the previous section. 10 of the candidate biomarkers are found in 

the merged set “top-drug  top-HF  top-MD” and are consequently 

significant (see Supplementary Tables 10 and 11). 

 

Some of these candidates can be functionally linked to both diseases 

and the drug under study. For example, among these 10 classifiers, 

AGER has been implicated in both HF (61), through extracellular 

matrix remodeling, and MD development (62), through inflammation, 

oxidative stress, and basal laminar deposit formation between retinal 

pigment epithelium cells and the basal membrane; furthermore, this 

receptor is known to be modulated by AT1R (63), valsartan target. 

Similarly, FGF1 has been proposed to improve cardiac function after 
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HF (64), as well as to promote choroid neovascularization leading to 

MD (47). Moreover, FGF1 is regulated by angiotensin II through 

ATGR2 (65), another protein suggested as classifier in the current 

analysis that is known to mediate some of the effects of AT1R 

antagonists, such as valsartan (41,42). Another candidate, NRG1, 

has been linked to myocardial regeneration after HF (66) and is 

known to lessen the development of neurodegenerative diseases 

such as Alzheimer’s disease (67), which shares similar pathological 

features with MD (68). NRG1 is also linked to the expression of 

neprilysin (67), sacubitril target. ITGB5 has been identified as risk 

locus for HF (69) and its modulation has been linked to lipofucsin 

accumulation in MD (70). Interestingly, ATGR1 inhibitors have been 

reported to modulate ITGB5 expression in animal models (71). 

Finally, IL1A has been proposed as an essential mediator of HF 

pathogenesis (72,73) through inflammation modulations, and serum 

levels of this protein have been found increased in MD patients (74). 

In addition, as described in previous sections, classifiers FGB, 

SERPINE1, and SERPING1 have been linked to MD (52–54) and 

are also known to play a role in HF development (75–78). According 

to these findings, the 10 potential biomarkers proposed by TPMS 

and identified with GUILDify might be prioritized when studying good 

responder HF patients at risk of MD development. 

 

 

Limitations 

 

Although TPMS returns the amount of signal from the drug arriving 

to the rest of the proteins in the HPN, this signal is only a qualitative 

measure. We are not using data about the dosage of the drug or the 

quantity of expression of the proteins. However, we are already 
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working to make TPMS move towards the growing tendency of 

Quantitative Systems Pharmacology. The quantification of the 

availability of drugs in the target tissue for each patient opens the 

opportunity to have an accurate patient simulation to do in silico 

clinical trials. 

 

 

Conclusions 

 

It exists an increasing need for new tools to get closer to real life 

clinical problems and the Systems Biology-based computational 

methods could be the solution needed. The specific case of 

sacubitril/valsartan stands out because of the amount of resources 

invested in the safety of the drug and the concern on the possible 

risk of inducing amyloid accumulation-associated conditions, such 

as macular degeneration (MD), in the long term. In this study, we 

applied TPMS technology to uncover different Mechanisms of Action 

(MoAs) of sacubitril/valsartan over heart failure (HF) and reveal its 

molecular relationship with MD. For this approach, we hypothesize 

that each MoA would correspond to a prototype-patient. The method 

is then used to generate a wide battery of MoAs by performing an in 

silico trial of the drug and pathology under study. TPMS computes 

the models by using a hand curated Human Protein Network and 

applying a Multilayer Perceptron-like and sampling method strategy 

to find all plausible solutions. After analyzing the models generated, 

we found different sets of proteins able to classify the models 

according to HF treatment efficacy or MD treatment relationship. The 

sets include functions such as PI3K and MAPK kinase signaling 

pathways, involved in HF-related cardiac hypertrophy, or fibrinolysis 

and coagulation processes (e.g. FGB, SERPINE1 or SERPING1) 
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and growth factors (e.g. FGF1 or PDGF) related to MD induction. 

Furthermore, we propose 30 biomarker candidates to identify 

patients potentially developing MD under a successful treatment with 

sacubitril/valsartan. Out of this 30, 10 biomarkers were also found in 

the alternative, independent molecular context proposed by 

GUILDify, including some HF and MD effectors such as AGER, 

NRG1, ITGB5 or IL1A. Further studies might prospectively validate 

the herein raised hypothesis.  

 

We would like to highlight that the models generated with TPMS are 

completely theoretical and thus, they do not necessarily reflect the 

real clinical effects. Consequently, the biomarkers proposed on the 

basis of these models are also theoretical and would require an 

experimental validation. Still, TPMS represents a huge improvement 

for studying the hypothetical relationship between a drug and an 

adverse effect. Until now, there were not enough tools that allow to 

perform an exhaustive study on the MoAs of an adverse effect. Now, 

with the MoAs and biomarkers proposed by TPMS, we provide a 

starting point in this type of research.    
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Supplementary material 

 

Extended version of materials and methods 

 

1. Biological Effectors Database (BED) to molecularly describe 

specific clinical conditions 

 

Patient-like characteristics are modelled using clinical data and/or 

experimental molecular data. There are many databases providing 

clinical data of patients, adverse drug reactions, diseases or 

indications (e.g. ClinicalTrials.gov, SIDER, ChEMBL, PubChem, 

DrugBank…). Many other databases provide molecular data 

defining the existing human genes and/or proteins and describing 
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the relationships between them (IntAct, BioGRID, REACTOME…). 

Combining both, clinical and molecular information available, the 

BED describes more than 300 clinical phenotypes as sets of genes 

and proteins (effectors) that can be “active”, “inactive” or “neutral” 

(1,2). For example, in a metabolic protein-like network, an enzyme 

will become “active” in the presence of a catalyst, or become 

inactivated when interacting with an inhibitor. Alternatively, in a 

genetic network, genes are active when they are expressed 

(experimentally detected as over-expression) and inactive when 

they are repressed (experimentally detected as under-expression). 

Additionally, in protein-protein interaction (PPI) networks, some 

proteins carry out their interactions only when they are 

phosphorylated, thus becoming active, and vice versa by 

dephosphorylation. By default, neutral proteins remain unaffected, 

neither active nor inactive, for a particular phenotype. 

 

The methodology used for assigning the protein effectors to each 

pathology starts by defining the pathophysiological processes 

(functions) according to the general definitions used by the scientists 

studying the disease. Then, a review of the most recent, relevant and 

accepted information in the field is performed through PubMed 

queries, starting from general pathophysiology reviews. An 

expansion of the effector candidate’s identification is done through 

reading the relevant original papers from the references or adding 

searches of important concepts that are not covered enough 

(molecularly wise) within the reviews read. The final goal of the 

characterization is to select proteins with an accepted functional role 

within the disease, and specifically within the functions that define 

the disease to center the analysis. 
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1.1. HF effectors 

 

Regarding the molecular basis of HF BED proteins, they were 

characterized as described above and in Iborra-Egea et al. (2017) 

(3). The definition used of heart failure in the current study has been 

performed according to the indication of Entresto and to the EMA 

Assessment report (4). Thus, it is centered in processes associated 

to long term changes related to cardiac remodeling (as discussed in 

the paper were the models were initially presented (3)), that can be 

cause and consequence of heart failure, not necessarily caused by 

ischemic causes. The identified functions are detailed in 

Supplementary Table 12. 

 

1.2. MD effectors 

 

MD pathophysiology is tightly related to protein accumulation (5–7). 

However, the characterization used for the current study not only 

included this function, but also other processes associated to MD 

pathophysiology, including neovascularization, characteristics of wet 

Age-Related MD and changes associated to geographic atrophy 

(late stage dry Age-Related MD) (8). The functions are detailed in 

Supplementary Table 13.  

 

2. TPMS modelling 

 

The Therapeutic Performance Mapping System (TPMS) is a tool that 

creates mathematical models of a drug/pathology protein pathways 

to explain a clinical outcome or phenotype (2,3,9–13). These models 

find MoAs that explain how a Stimulus (i.e. proteins activated or 

inhibited by a drug) produces a Response (i.e. proteins active or 
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inhibited in a phenotype). As an example of usage, here we applied 

TPMS to the drug-indication pair sacubitril/valsartan and HF. 

Regarding the drug, we retrieved the sacubitril/valsartan targets from 

DrugBank (14), PubChem (15), STITCH (16), SuperTarget (17) and 

hand curated literature revision. As for the indication, we retrieved 

the proteins whose modulations had been associated with HF from 

the BED (1,2). Finally, after applying the TPMS methodology, we 

obtained a set of connected proteins (subnetworks) with associated 

activities, each subnetwork with a potential explanation of the 

molecular mechanism of the drug in agreement with what had been 

previously described (i.e. a potential MoA). 

 

2.1. Building the Human protein network (HPN) 

 

To apply the TPMS approach and create the mathematical models 

of MoAs, an HPN is needed beforehand. In this study, we used a 

PPI network created from the integration of public and private 

databases: KEGG (18), BioGRID (19), IntAct (20), REACTOME (21), 

TRRUST (22), and HPRD (23). In addition, information extracted 

from scientific literature, which was manually curated, was also 

included and used for trimming the network. The resulting HPN 

considers interactions corresponding to different tissues to take into 

account the effect of the Stimulus in the whole body. 

 

2.2. Defining model restrictions  

 

A collection of restrictions, defined as the true set of edges and 

nodes with the property of being active or inactive, are used for 

validating the models obtained with TPMS. We define two types of 

restrictions depending on its specificity. The general or global 
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restrictions are those used in all approaches and describe a wide 

expanse of knowledge about protein interactions and relations. This 

information is obtained from HPRD (23), DIP (24), TRRUST (22), 

INTACT (20), REACTOME (21), BIOGRID (19), SIDER (25) and 

DrugBank (14). These set of restrictions help indicate what proteins 

are active or inactive, and their interactions, in a general human 

being. Additionally, specific restrictions regarding the phenotype 

under study can also be used, usually derived from high throughput 

data or additional protein knowledge.  

 

For this study, we added specific information to our models 

concerning the changes of gene expression induced by 

sacubitril/valsartan on HF patients. Specifically, we used the 

GSE57345 gene expression dataset (26), extracted from GEO 

database, as in Iborra-Egea et al. (2017) (3). We calculated the 

expression fold change of genes associated with the HPN and 

mapped them as activated or inhibited proteins (active if they 

corresponded to over-expressed genes and inactive -inhibited- for 

under-expressed). 

 

2.3. Description of the mathematical models 

 

The algorithm of TPMS for generating the models is similar to a 

Multilayer Perceptron of an Artificial Neural Network over the HPN 

(where neurons are the proteins and the edges of the network are 

used to transfer the information). It takes as input signals the 

activation (+1) and inactivation (-1) of the drug target proteins and 

as output the BED protein states of the pathology phenotype. The 

network is limited to only interactions that connect the drug targets 

with any other protein in the HPN in a maximum of three steps to 
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avoid signal noisiness. Once set, the algorithm optimizes the paths 

between both input and output protein sets and computes the 

activation and inactivation values of the all proteins in the HPN. The 

parameters to solve are the weights associated to the links between 

every node pair (𝜔𝑙). Each node of the protein network receives as 

input the output of the incoming connected nodes, which are 

weighted by each link weight. The sum of inputs is transformed by a 

hyperbolic tangent function to generate the score of the node 

(neuron), which become the “output signal” of the current node 

towards outgoing nodes. Details of the approach are shown in Fig 

1a, where 𝑛5 is linked to 𝑛1 and 𝑛2. The output signal of 𝑛5 is 𝑛5 =

tanh(𝑛1 · 𝜔1−5  + 𝑛2 · 𝜔2−5). The 𝜔𝑙 parameters are obtained by 

optimization, using a Stochastic Optimization Method based on 

Simulated Annealing (27), such that the values of the effector nodes 

are the closest to their expected values, and always adjusting to the 

maximum of the restrictions mentioned above. The iterative process 

of optimization usually requires between 106 and 109 iterations, until 

satisfying at least the 80% of the restrictions and the values of the 

effectors. However, the number of 𝜔𝑙 parameters can be very high 

(between 100,000 and 400,000 depending on the size of the 

subnetwork) and the size of the collection of restrictions 

(approximately 107) is usually not enough to find a unique solution. 

For that, many final models can be obtained and manual curation 

can be applied to select and modify the network and reduce the 

space of exploration.  

 

3. Measures to compare sets of MoAs 

 

TPMS returns a set of MoAs describing potential relationships 

between the targets of a drug and the biological protein effectors of 
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a disease. We hypothesize that TPMS solutions represent MoAs in 

different prototype-patients. Therefore, we needed to define some 

comparison measures in order to understand the relationships 

between all potential mechanisms and compare sets of MoAs from 

different views.  

 

3.1. Intensity of the response  

 

We defined the “intensity” of the response as a pair: 1) the number 

of protein effectors (#) achieving an expected signal sign; and 2) a 

measure of the strength of the output signal of the effectors (i.e. a 

global measure of the output signal, named TSignal). For the present 

study, however, only the TSignal was used.  

 

Assuming 𝑦𝑖 as the value achieved by a protein effector “i”, while 𝑣𝑖 

is the effector sign according to the BED (active or inactive) and 𝑛 is 

the total number of effectors described for a phenotype, we define: 

 Number of effectors achieving the expected sign: We 

expect that a drug will revert the conditions of a disease 

phenotype, while it may reach the effectors of an adverse 

event. Consequently, a drug should inactivate the active 

protein effectors of a pathology-phenotype and activate the 

inactive ones, but it could activate/inhibit other adverse event 

effectors with the same sign as described in the BED. Using 

Dirac’s (i.e.  and zero otherwise), for drug indications 

the formula is defined as following: 

 

#𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛  =  ∑ 𝛿 (𝑣𝑖 +
𝑦𝑖

|𝑦𝑖|
)𝑛

𝑖=1    [Equation 1a] 
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Therefore, in the case of the disease effectors we only count 

the effectors with a BED value of opposite sign to the signal 

arriving from the drug.  

However, for adverse events, the formula changes because 

we count the effectors that are affected by the drug, such that 

the signal arriving from the drug has the same sign as in the 

BED: 

 

#𝑎𝑑𝑣𝑒𝑟𝑠𝑒 𝑒𝑣𝑒𝑛𝑡  =  ∑ 𝛿 (𝑣𝑖 −
𝑦𝑖

|𝑦𝑖|
)𝑛

𝑖=1    [Equation 1b] 

 

 TSignal: The average of the output values of the protein 

effectors such that the proteins with correct sign are 

considered as positive signal, and the ones with the incorrect 

sign considered as negative signal. For a drug affecting the 

phenotype of a disease, this implies that 𝑣𝑖 and 𝑦𝑖 have 

opposite sign and we need to change the sign:  

 

𝑇𝑆𝑖𝑔𝑛𝑎𝑙𝑖𝑛𝑑𝑖𝑐𝑎𝑡𝑖𝑜𝑛 =  −
1

𝑛
∑ 𝑣𝑖𝑦𝑖

𝑛
𝑖=1   [Equation 2a] 

 

On the contrary, to test if a drug induces an adverse event, 

we check if the output signal has the same sign as the 

effectors of the desired phenotype, and therefore TSignal is 

defined as: 

 

𝑇𝑆𝑖𝑔𝑛𝑎𝑙𝑎𝑑𝑣𝑒𝑟𝑠𝑒 𝑒𝑣𝑒𝑛𝑡 =  
1

𝑛
∑ 𝑣𝑖𝑦𝑖

𝑛
𝑖=1   [Equation 2b] 
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3.2. Distance between two sets of MoAs 

 

We used the modified Hausdorff distance (MHD) introduced by 

Dubuisson and Jain (28) as the distance between two or more sets 

of MoAs in order to determine their similarity. We used the distance 

measures between two (finite) point sets A and B as following: 

 

For 𝑎 ∈ 𝐴, 𝑑(𝑎, 𝐵) ≔  min
𝑏∈𝐵

𝑑(𝑎, 𝑏), 

and                  𝑑𝐴(𝐵) ≔  
1

|𝐴|
∑ 𝑑(𝑎, 𝐵)

𝑎∈𝐴

, 

 

Where |A| is the number of elements in A, d(∙,∙) is the Euclidean 

distance and “a” and “b” are n-tuples of the activities (output signals) 

of the nodes of two MoAs (a in A and b in B). Then, we defined the 

MHD as: 

 

𝑑MHD(𝐴, 𝐵) ≔ max ( 𝑑𝐴(𝐵), 𝑑𝐵(𝐴) )   [Equation 3] 

 

Note that the MHD is a semimetric and not a metric, since the 

triangular inequality does not hold.  

 

3.3. Potential biomarkers extracted from MoAs 

 

3.3.1. Identification of Best-Classifier Proteins 

 

In order to extract potential biomarkers from comparing sets of 

MoAs, we first defined the best-classifier proteins, specific proteins 

helping us to infer biological associations and distinguish the 

responses of drugs on a population (i.e. potential biomarkers). Best-
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classifier proteins (single or pairs) are the proteins inside the HPN 

that allow to better classify samples between groups of MoAs. These 

classifiers are determined by a Data-Science strategy, which is 

based on a set of Feature Selection algorithms combined with 

several Base Classifiers. The feature selection used for single 

proteins was brute force (29), so analyzing one feature or protein at 

a time, while for protein pairs the following selection methods were 

used: elastic net (30); entropy and correlation (31); LASSO (32); 

random forest (33); GLM random sets (34); ReliefF (35); Ridge 

regression (36); simple regression (37); Wilcoxon test (38); and 

Wilcoxon test with correlation (38). Several base classifiers were 

applied to distinguish the two groups using the selected features: 

optimal threshold; linear regression (37); Multilayer Perceptron 

Network (39); Generalized Linear Model (34); elastic net (40); and 

optimal quadratic threshold (41). Finally, after a k-fold cross-

validation (k=10) (42) was applied, the proteins were sorted by the 

balanced accuracy (43) of the classification. For this study, only the 

200 proteins (or pair of proteins) with highest balanced accuracy 

were selected as best-classifier proteins. Assuming the hypothesis 

that the selected MoAs are representative of individual prototype-

patients, these proteins could then be used as biomarkers to classify 

a cohort of patients by the activity or absence of activity of the 

proteins.  

 

3.3.2. Identification of differential Best-Classifier Proteins 

 

Each best-classifier protein has a specific distribution of signal 

values corresponding to each group of MoAs. We applied the Mann-

Whitney U test to compare the two distributions and selected those 

proteins having a significantly different distribution (p-value< 0.01). 
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We also restricted the list to proteins having an average value with 

opposite sign among groups (i.e. positive vs. negative or vice versa), 

and named them as differential best-classifier proteins. By following 

this strategy, we can identify two groups of differential best-classifier 

proteins: those active in the first group (positive output signal in 

average) and inactive in the other (negative output signal in 

average), and the opposite. 

 

3.3.3. Types of proteins not considered  

 

- Non-differential Best-Classifier Proteins: Those are proteins in 

which, even if the mean signal in both groups is very similar, the 

machine learning algorithms are still able to differentiate High- and 

Low- MoAs based on their distribution values. For example, in the 

upper right corner of Figure 2a we find the protein P29353, the 181st 

best protein to classify High- and Low- HF models (cross-validation 

AUC = 0.67, P-value = 1.12·10-4). P29353 has a Low-HF mean 

signal of 0.99999999948 and a High-HF mean signal of 

0.9999999985. As showed in Supplementary Fig 4a, the High- and 

Low- HF signals values are both very close to each other. However, 

if we explore the distribution of signals considering all the decimals 

given by TPMS (Supplementary Fig 4b), we can observe a slight 

difference between the two distributions. This fact allowed the 

machine learning algorithms to include the protein as a best-

classifier protein, but was then rejected as a differential best-

classifier protein after applying the Mann-Whitney U test. 

 

- Differential non-Best-Classifier Proteins: Those are proteins 

that, when comparing the signals between groups, they have 

significantly opposite sign. However, they are not considered Best-
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Classifier Proteins because they are not among the top 200 proteins 

selected by the machine learning algorithms. For example, the 

protein P40763 is the 241st best feature on distinguishing High- and 

Low- Heart Failure Mechanisms of Action (cross-validation AUC = 

0.66, P-value = 1.22·10-3). The distribution of High- and Low signals 

are represented in Supplementary Fig 5. In the figure we can 

appreciate how the distributions of High- and Low- signals are 

overlapped, complicating their differentiation. Still, the p-value of the 

cross-validation is below 0.05, reflecting the potential of this feature 

to differentiate the distinct types of Mechanisms of Action. 

 

 

Extended version of results and discussion 

 

We applied TPMS to the HPN using as input signals the drug targets 

of sacubitril/valsartan (NEP / AT1R) and as output signals the 

proteins associated with HF extracted from the BED. Out of all MoAs 

found by TPMS, we selected the 200 satisfying the largest number 

of restrictions (and at least 80% of them) to perform further analysis.  

 

Note that TPMS was only executed once, optimizing the results to 

satisfy the restrictions on HF data. The values of MD are obtained 

by measuring the signal arriving at the MD effectors, which are part 

of the HPN and also receive signal. This procedure was chosen 

because we defined HF as the indication of the drug 

(sacubitril/valsartan), while MD is a potential adverse effect.  
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1. Stratification of MoAs 

 

In order to compare models related to a good or bad response to the 

treatment, or those more prone to lead towards potential MD adverse 

effect, we stratified the MoAs. For HF, or treatment response, MoAs 

were ranked by their TSignal and then split in four quartiles. The first 

quartile (top 25%) contains MoAs with higher intensity of the 

response, which in turn corresponds to lower values of the effectors 

associated with HF phenotype (we named them as “Low”-disease 

MoAs). On the contrary, the fourth quartile (bottom 25%) collects 

MoAs with lower intensity of response (thus, we named as “High”-

disease MoAs) (Supplementary Fig 1a). On the other hand, for MD, 

the first quartile (top 25%) contains MoAs with higher intensity, which 

as an adverse event, correspond to models with high values of the 

effectors associated to MD (we named them as High-adverseEvent 

MoAs). The fourth quartile (bottom 25%) collects MoAs with lower 

intensity of response (thus, we named as Low- adverseEvent MoAs) 

(Supplementary Fig 1b). Note that, in the following steps and 

because HF and MD groups were extracted from the same 200 set 

of models, common MoAs between different HF and MD-defined 

sets could be expected. 

 

2. Comparison of MoAs with high/low TSignal associated to HF 

or MD 

 

We calculated the modified Hausdorff distance between the groups 

of MoAs (High-MD, Low-MD, High-HF and Low-HF) to elucidate their 

similarity values (Supplementary Table 5). In this sense, the higher 

distance between the groups, the more different they are. We used 

these distances to calculate a dendrogram tree (see 
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Supplementary Fig 2) showing that MoAs associated with a bad 

response to sacubitril/valsartan for HF (high-HF) are more similar 

(i.e. closer) to MoAs linked to a stronger MD adverse effect (high-

MD). It is remarkable that the distances between Low-HF and High-

HF and between Low-MD and High-MD are larger than the cross 

distances between HF and MD. However, by the definition of 

distance (equation 3 in supplementary material), we cannot account 

for the dispersion among the MoAs within and between each group. 

Therefore, for each set we calculated the mean Euclidean distance 

between all the points and its center, defined by the average of all 

points (see Supplementary Table 6). As a result, all groups showed 

very similar dispersion values. 

 

In order to have a global and graphical view of the distance between 

the individual MoAs, we generated a multidimensional scaling (MDS) 

plot calculated using MATLAB (see Fig 2). MDS plots display the 

pairwise distances in two dimensions while preserving the clustering 

characteristics (i.e. close MoAs are also close in the 2D-plot and far 

MoAs are also far in 2D). Focusing on the Low-HF group depicted in 

blue circles, we observe that there is no clear tendency to cluster 

with any of the MD groups. There are few cases of Low-HF MoAs 

coinciding in the space with Low- or High-MD MoAs. This implies 

that a good response to sacubitril/valsartan of HF patients would not 

be usually linked to the development of MD. Moreover, no clear 

distinction is found when plotting only the MD MoAs within the Low-

HF group (see Supplementary Fig 3a). However, regarding the set 

of High-HF MoAs, we can differentiate two clusters of MoAs: one 

related to the High-MD group (green crosses); and the other close 

to MoAs of the Low-MD group (black crosses) (see Supplementary 

Fig 3b).  
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Assuming the hypothesis that different MoAs correspond to distinct 

prototype-patients, we conclude that for the specific set of patients 

for which sacubitril/valsartan works best reducing HF, it would be 

more difficult to differentiate between those presenting MD and those 

who do not. Instead, for the High-HF group, patients having MD 

could indeed be easily distinguished from those not presenting MD 

as side effect. However, because Low-HF group has more relevance 

to the clinics, specific functional analyses were performed in this 

specific group, as seen in following sections. 

 

3. Identification and functional analysis of potential biomarkers 

 

For this section, we identified the nodes (i.e. proteins) significantly 

differentiating two groups of models (using a Mann-Whitney U test) 

for which the average of output signals have opposite signs (see 

methods in 3.3). After that, the function of the identified proteins was 

extracted from Gene Ontology (GO). 

 

3.1. Identification of best-classifier proteins differentiating HF 

responses 

 

After the model stratification regarding the HF groups, we selected 

the 200 best-classifier proteins to differentiate the two groups of 

MoAs. Among these proteins, we identified the differential best-

classifier proteins as explained in the methodology, and ended up 

with two groups: those active in Low-HF (the average of output 

signals in Low-HF MoAs is positive) and inactive in High-HF (the 

average of output signals in High-HF MoAs is negative); and those 

active in High-HF but inactive in Low-HF. Out of the starting 200 

best-classifier proteins, we found a total of 45 differential best-
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classifier proteins associated with the treatment response (6 in the 

first group and 39 in the second) (see Supplementary Table 1). Fig 

3a displays all the proteins average signal values for the MoAs of 

Low-HF vs High-HF. Most of the proteins with opposite signs 

between the two cohorts were also selected as differential best-

classifier proteins. 

 

To pinpoint the biological role of these proteins, we first identified the 

GO enriched functions (see Supplementary Table 2) and then 

searched in the literature for evidences linking them with HF.  The 

enrichment used for this proceeding was calculated using the 

software FuncAssociate (44). Among the enriched functions, we 

found processes associated with the SCAR complex, the positive 

regulation of actin nucleation, the regulation of neurotrophin TRK 

receptor and dendrite extension. We used the same procedure to 

extract the GO functions associated to the differential best-classifier 

proteins that are inactive in Low-HF but active in High-HF. We 

detected functions such as phosphatidylinositol kinase activity, MAP 

kinase activity, DNA damage induced protein phosphorylation and 

superoxide anion generation. Although some enriched functions are 

shared by both sets, such as Fc gamma receptor signaling, the 

majority of functions identified are different (see Supplementary 

Table 2). 

 

Some of the proteins and functions highlighted in the current analysis 

have been related to myocardial function. On the one hand, our 

findings show that differential best-classifier proteins Low-HF-

active/High-HF-inactive point towards an important role for actin 

nucleation and polymerization mechanisms in drug response 

(reflected by the functions regulation of actin nucleation, regulation 
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of Arp2/3 complex-mediated actin nucleation, SCAR complex, 

filopodium tip, or dendrite extension). In fact, the alteration of actin 

nucleation and polymerization mechanisms has been reported in 

heart failure (45–47). Interestingly, a role for the activation of another 

differential best-classifier candidate, ATGR2, has been proposed to 

mediate some of the beneficial effects of angiotensin II receptor type 

1 antagonists, such as valsartan (48,49). 

 

On the other hand, the results of the differential best-classifier 

proteins Low-HF-inactive/High-HF-active are linked to 

phosphatidylinositol kinase mediated pathways 

(phosphatidylinositol-3,4-bisphosphate 5-kinase activity) and MAP 

kinase mediated pathways (MAP kinase kinase activity, best 

classifier proteins MAPK1, MAPK3, MAPK11, MAPK12 or MAPK13). 

In this case, both signaling pathways have been associated to 

cardiac hypertrophy and subsequent heart failure (50,51). These 

outcomes clearly leads towards the idea that High-HF models are a 

representation of prototype-patients with a worst response to the 

treatment, while Low-HF models are related to more beneficial 

response to the medication. 

 

3.2. Identification of best-classifier proteins differentiating MD 

responses 

 

We similarly classified MoAs in High-MD and Low-MD identified the 

differential best-classifier proteins active in Low-MD but inactive in 

High-MD, and vice versa. As before, we compared the distributions 

of Low-MD and High-MD output signals of the best-classifier proteins 

and calculate the average of the signal in all MoAs in Low- and High- 

MD. Out of 200 best-classifier proteins, we identified 28 Low-MD-
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active/High-MD-inactive and 29 Low-MD-inactive/High-MD-active 

(see Supplementary Table 3). Fig 3b shows the plot for all proteins 

classified by their average output signal in Low-MD and High-MD 

models. 

 

Again, we calculated the GO enriched functions for these groups of 

proteins (see Supplementary Table 4). For the first group (Low-MD-

active/High-MD-inactive) we obtained unique functions such as 

dendritic spine development, positive regulation of vascular 

endothelial growth factor production and phosphotyrosine binding. 

For the second group (Low-MD-inactive/High-MD-active), we found 

functions such as dorsal/ventral axon guidance, fibroblast growth 

factor receptor binding and response to toxic substance. However, 

phosphatidylinositol bisphosphate kinase activity showed up as 

enriched function in both groups. 

 

Some of the proteins and functions underlined in the current analysis 

had previously been related to MD. The presence of dendritic spine 

development and dorsal/ventral axon guidance related proteins 

among the differential best-classifiers points towards a role for 

sacubitril/valsartan-associated MD in dendritic and synaptic 

plasticity mechanisms, which had been previously linked to the 

condition (52). Furthermore, valsartan treatment has been reported 

to promote dendritic spine development in other related 

neurodegenerative diseases, such as Alzheimer’s disease (53). 

Other functions enriched within the differential best-classifier 

proteins (Low-MD-inactive/High-MD-active) are implicated in growth 

factor related pathways, which are known to be involved in wet MD 

pathogenesis (54). Moreover, neovascularization in the wet variant 

of MD has been linked to the signaling of some of the growth factors 
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detected as sacubitril/valsartan-associated MD classifiers in this 

study, including FGF1 (54)  and PDGF (55,56). 

 

3.3. Identification of potential biomarkers differentiating MD 

responses in Low-HF 

 

We previously mentioned that some MoAs could be shared between 

the different groups of HF and MD (Supplementary Table 7). 

Knowing that, we focused on the shared MoAs between Low-HF and 

High-MD to analyze the special case comprising prototype-patients 

in which the treatment best reduces HF disease but increases MD 

adverse effect. In order to identify these patients, we compared the 

Low-HF  Low-MD with Low-HF  High-MD MoAs; Table 1 shows 

the 30 biomarkers identified. On the one hand, we found 16 proteins 

active in Low-HF  Low-MD MoAs but inactive in Low-HF  High-

MD (15 of them shared with MD best-classifier proteins). On the 

other hand, 14 proteins were identified as inactive in Low-HF  Low-

MD and active in Low-HF  High-MD MoAs (12 of them were MD 

best-classifier proteins). We calculated the GO enriched functions of 

these two groups and observed that “phosphatidylinositol 

bisphosphate kinase activity” is enriched among proteins that are 

active in Low-HF  Low-MD MoAs. Instead, “fibrinolysis” was found 

to be enriched among proteins active in Low-HF  High-MD MoAs 

(Table 2). With this, we conclude that among the group of prototype-

patients for which sacubitril/valsartan improves HF treatment 

response, the modulation of fibrinolysis could play a role at inducing 

the MD adverse effect. Moreover, we propose 12 best-classifier 

proteins that may be considered as biomarkers for good prognosis 

of the side effect. 
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In fact, since neovascular MD development is characterized by 

subretinal extravasations of novel vessels derived from the choroid 

(CNV) and the subsequent hemorrhage into the photoreceptor cell 

layer in the macula region (8), it might be reasonable to think that the 

modulation of fibrinolysis and blood coagulation pathways could play 

a role. The reported implication of some fibrinolysis related 

classifiers, such as FGB, SERPINE1 (PAI-1), and SERPING1, in 

neovascular MD development seems to support this hypothesis (57–

59). Besides, valsartan might be implicated in this mechanism, since 

it has been reported to modulate PAI-1 levels and promote 

fibrinolysis in different animal and human models (60,61).  

 

In addition, the presence of several other MD related classifiers in 

this list, such as IRS2 (62), PTGS2 (63), DCN (64) and FGF1 (65), 

further supports the interest of the classifiers as biomarkers of MD 

development in sacubitril/valsartan good responders.  

 

4. Analysis of proposed biomarkers with GUILDify 

 

In the previous section, we proposed 30 proteins that could 

potentially help to identify HF patients at risk of developing MD. To 

corroborate these biomarkers, we tested how many of them are 

found using a different approach also based on the use of functional 

networks. For this purpose, we used GUILDify v2.0 (66), a web 

server that extends the information of disease-gene associations 

through the protein-protein interactions network. GUILDify scores 

proteins according to their proximity with the genes associated with 

a disease (seeds). Using this web server, we identify a list of top-

scoring proteins that are critical on transmitting the perturbation of 

disease genes through the network. The network used by GUILDify 
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is completely independent from the HPN used in the TPMS, 

becoming an ideal, independent context to test the potential 

biomarkers. 

 

Thus, we used GUILDify to indicate which of the potential biomarkers 

identified by TPMS may have a relevant role in the molecular 

mechanism of the drug. We ran GUILDify using the two targets of 

sacubitril/valsartan (NEP, AT1R) as seeds, and selected the top 2% 

scored nodes (defined as the “top-drug” set). We did the same with 

the phenotypes of HF and MD, using as seeds the 124 effectors of 

HF and 163 effectors of MD from the BED database. We merged the 

top scored sets of HF, MD and top-drug (“top-drug  top-HF  top-

MD”) and studied the overlap with the set of differential best-

classifier proteins associated with MD and HF. Supplementary 

Table 8 shows the result of this analysis, with a significant 

representation of best-classifier proteins in most of the sets, 

especially on MD best-classifier proteins. Supplementary Table 9 

shows the list of 13 proteins involved in this overlap. We have also 

checked the overlap with the 30 biomarkers proposed in the previous 

section, of which 10 are found in the merged set “top-drug  top-HF 

 top-MD” and are consequently significant (see Supplementary 

Tables 10 and 11). 

 

Some of these candidates can be functionally linked to both diseases 

and the drug under study. For example, among these 10 classifiers, 

AGER has been implicated in both HF (67), through extracellular 

matrix remodeling, and MD development (68), through inflammation, 

oxidative stress, and basal laminar deposit formation between retinal 

pigment epithelium cells and the basal membrane; furthermore, this 

receptor is known to be modulated by AT1R (69), valsartan target. 
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Similarly, FGF1 has been proposed to improve cardiac function after 

HF (70), as well as to promote choroid neovascularization leading to 

MD (54). Moreover, FGF1 is regulated by angiotensin II through 

ATGR2 (71), another protein suggested as classifier in the current 

analysis that is known to mediate some of the effects of AT1R 

antagonists, such as valsartan (48,49). Another candidate, NRG1, 

has been linked to myocardial regeneration after HF (72) and is 

known to lessen the development of neurodegenerative diseases 

such as Alzheimer’s disease (73), which shares similar pathological 

features with MD (74). NRG1 is also linked to the expression of 

neprilysin (73), sacubitril target. ITGB5 has been identified as risk 

locus for HF (75) and its modulation has been linked to lipofucsin 

accumulation in MD (76). Interestingly, ATGR1 inhibitors have been 

reported to modulate ITGB5 expression in animal models (77). 

Finally, IL1A has been proposed as an essential mediator of HF 

pathogenesis (78,79) through inflammation modulations, and serum 

levels of this protein have been found increased in MD patients (80). 

In addition, as described in previous sections, classifiers FGB, 

SERPINE1, and SERPING1 have been linked to MD (57–59) and 

are also known to play a role in HF development (81–84). According 

to these findings, the 10 potential biomarkers proposed by TPMS 

and identified with GUILDify might be prioritized when studying good 

responder HF patients at risk of MD development. 
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Supplementary Figures 

 

      (a)                                                  (b) 

 

Supplementary Fig 1: Histogram of the number of models belonging to 

High- and Low- (HF in (a) and MD in (b)) in a range of TSignal values. The 

models are divided in four quartiles, the 1st and 4th corresponding to the 

Low- and High- groups for HF and vice versa for MD. 

 

 

Supplementary Fig 2: Dendrogram plot of the pairwise modified Hausdorff 

distance (MHD) between the four groups of mechanisms of action (MoAs): 

LowHF, HighHF, LowMD, HighMD. 
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         (a)                                          (b)  

      

 

Supplementary Fig 3: Multidimensional scaling plot of the distances 

between the Mechanisms of Action of Low/High-Macular 

Degeneration (MD) and Heart Failure (HF). In (a) we find the models of 

both MD groups and Low-HF, whereas in (b) the models are for both MD 

groups and High-HF. 

 

   (a)                                                 (b) 

     

 

Supplementary Fig 4: Histogram of the signal of protein P29353 (non-

differential Best-Classifier Protein) in the Mechanisms of Action belonging 

to High-HF and Low-HF. In (a) a general vision of the signal, in (b) a detailed 

vision of the signal.         
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Supplementary Fig 5: Histogram of the signal of protein P40763 

(differential non-Best-Classifier Protein) in the Mechanisms of Action 

belonging to High-HF and Low-HF. 

 

 

Supplementary Tables 

 

Supplementary Table 1: Differential best-classifier proteins with opposite 

signal in Low-HF (LHF) and High-HF (HHF). “+” stands for active, while “-” 

stands for inactive. Highlighted cells correspond to proteins that are part of 

the Top-HF  Top-MD  Top-Drug set, the top-scoring proteins according 

to GUILDify. 

 

 
Uniprot 

ID 
Gene 

symbol 
Gene name 〈𝑳𝑯𝑭〉 〈𝑯𝑯𝑭〉 √|

𝑳𝑴𝑫𝒙
𝑯𝑴𝑫

| 
Adjusted 
P-value 

LHF
+ 

HHF
- 

Q96F07 CYFIP2 
Cytoplasmic FMR1-
interacting protein 2 

0.11
0 

-
0.27

8 
0.175 6.388E-07 

P55160 
NCKAP1

L 
Nck-associated protein 
1-like {ECO:0000305} 

0.11
0 

-
0.27

8 
0.175 6.388E-07 

Q7L576 CYFIP1 
Cytoplasmic FMR1-
interacting protein 1 

0.11
0 

-
0.27

8 
0.175 6.388E-07 
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Q9NYB9 ABI2 Abl interactor 2 
0.11

0 

-
0.27

8 
0.175 6.388E-07 

Q9Y2A7 NCKAP1 
Nck-associated protein 

1 
0.11

0 

-
0.27

8 
0.175 6.388E-07 

P50052 AGTR2 
Type-2 angiotensin II 

receptor 
0.20

5 

-
0.01

3 
0.051 1.852E-05 

LHF
- 

HHF
+ 

P28482 MAPK1 
Mitogen-activated 
protein kinase 1 

-
0.71

0 

0.47
9 

0.584 1.854E-14 

P27361 MAPK3 
Mitogen-activated 
protein kinase 3 

-
0.31

3 

0.96
2 

0.549 6.366E-15 

P47900 P2RY1 P2Y purinoceptor 1 
-

0.32
2 

0.60
5 

0.441 9.855E-10 

Q92558 WASF1 
Wiskott-Aldrich 

syndrome protein 
family member 1 

-
0.58

0 

0.30
9 

0.424 8.494E-13 

Q9Y6W5 WASF2 
Wiskott-Aldrich 

syndrome protein 
family member 2 

-
0.58

0 

0.30
9 

0.424 8.494E-13 

O00401 WASL 
Neural Wiskott-Aldrich 

syndrome protein 

-
0.58

0 

0.30
9 

0.424 8.494E-13 

P02751 FN1 Fibronectin 
-

0.47
6 

0.22
4 

0.327 2.152E-09 

O60229 KALRN 
Kalirin 

{ECO:0000250|UniProt
KB:P97924} 

-
0.52

9 

0.18
5 

0.313 3.239E-05 

Q8TEW0 PARD3 
Partitioning defective 3 

homolog 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

P41743 PRKCI 
Protein kinase C iota 

type 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

Q13576 IQGAP2 
Ras GTPase-

activating-like protein 
IQGAP2 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

O75914 PAK3 
Serine/threonine-

protein kinase PAK 3 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

Q9P286 PAK5 
Serine/threonine-

protein kinase PAK 5 
{ECO:0000305} 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

O96013 PAK4 
Serine/threonine-

protein kinase PAK 4 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

Q86VI3 IQGAP3 
Ras GTPase-

activating-like protein 
IQGAP3 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

Q9NPB6 PARD6A 
Partitioning defective 6 

homolog alpha 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

Q16584 
MAP3K1

1 

Mitogen-activated 
protein kinase kinase 

kinase 11 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

Q9NQU5 
BUB1B-
PAK6; 
PAK6 

Serine/threonine-
protein kinase PAK 6 

-
0.27

9 

0.25
5 

0.267 3.577E-09 
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Q9BYG5 PARD6B 
Partitioning defective 6 

homolog beta 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

Q9BYG4 PARD6G 
Partitioning defective 6 

homolog gamma 

-
0.27

9 

0.25
5 

0.267 3.577E-09 

P84095 RHOG 
Rho-related GTP-

binding protein RhoG 

-
0.44

9 

0.15
6 

0.265 1.935E-09 

Q96PN6 ADCY10 
Adenylate cyclase type 

10 

-
0.48

8 

0.14
4 

0.265 2.421E-09 

Q96JJ3 ELMO2 
Engulfment and cell 

motility protein 2 

-
0.39

6 

0.13
7 

0.233 1.935E-09 

Q15759 MAPK11 
Mitogen-activated 
protein kinase 11 

-
0.88

3 

0.05
6 

0.223 6.366E-15 

O15264 MAPK13 
Mitogen-activated 
protein kinase 13 

-
0.88

4 

0.04
5 

0.198 6.366E-15 

P53778 MAPK12 
Mitogen-activated 
protein kinase 12 

-
0.88

4 

0.04
5 

0.198 6.366E-15 

P54764 EPHA4 
Ephrin type-A receptor 

4 

-
0.13

9 

0.23
3 

0.180 6.388E-07 

Q99755 PIP5K1A 
Phosphatidylinositol 4-

phosphate 5-kinase 
type-1 alpha 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

Q9UQB8 BAIAP2 
Brain-specific 

angiogenesis inhibitor 
1-associated protein 2 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

O14986 PIP5K1B 
Phosphatidylinositol 4-

phosphate 5-kinase 
type-1 beta 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

Q9Y5S8 NOX1 NADPH oxidase 1 
-

0.11
0 

0.27
8 

0.175 6.388E-07 

P46734 MAP2K3 
Dual specificity 

mitogen-activated 
protein kinase kinase 3 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

Q15080 NCF4 
Neutrophil cytosol 

factor 4 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

Q9HBY0 NOX3 NADPH oxidase 3 
-

0.11
0 

0.27
8 

0.175 6.388E-07 

Q9UPY6 WASF3 
Wiskott-Aldrich 

syndrome protein 
family member 3 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

P52564 MAP2K6 
Dual specificity 

mitogen-activated 
protein kinase kinase 6 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

O14733 MAP2K7 
Dual specificity 

mitogen-activated 
protein kinase kinase 7 

-
0.11

0 

0.27
8 

0.175 6.388E-07 

Q9Y4K3 TRAF6 
TNF receptor-

associated factor 6 

-
0.09

7 

0.28
5 

0.166 1.917E-06 

P19878 NCF2 
Neutrophil cytosol 

factor 2 

-
0.04

2 

0.27
8 

0.108 3.050E-05 
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Supplementary Table 2: Top 10 gene Ontology functions enriched from 

best-classifier proteins with opposite signal in Heart Failure (HF) MoAs. 

Functional enrichment analysis from FuncAssociate. 

 

 Low-HF active / High-HF inactive Low-HF inactive / High-HF active Overlapped functions 

 GO name LOD P-val. GO name LOD P-val. GO name LOD P-val. 

1 
SCAR 

complex 
3.89 <0.00050 

1-
phosphatidylinositol-

3-phosphate 5-

kinase activity 

3.41 0.01700 
Rac protein 

signal 
transduction 

2.54 <0.00050 

2 

positive 
regulation of 

Arp2/3 
complex-

mediated actin 
nucleation 

3.64 <0.00050 

1-

phosphatidylinositol-
5-kinase activity 

3.41 0.01700 

vascular 
endothelial 

growth factor 
receptor 
signaling 
pathway 

2.31 <0.00050 

3 

positive 
regulation of 

neurotrophin 
TRK receptor 

signaling 
pathway 

3.49 0.00150 
phosphatidylinositol-
3,4-bisphosphate 5-

kinase activity 
2.94 0.04000 

immune 
response-
regulating 

cell surface 
receptor 
signaling 
pathway 

involved in 
phagocytosis 

1.95 <0.00050 

4 

regulation of 

neurotrophin 
TRK receptor 

signaling 
pathway 

3.36 <0.00050 
proteolysis in other 

organism 
2.73 0.00250 

Fc-gamma 
receptor 
signaling 
pathway 

involved in 

phagocytosis 

1.95 <0.00050 

5 

positive 
regulation of 

actin 
nucleation 

3.27 <0.00050 
MAP kinase kinase 

activity 
2.60 <0.00050 

Fc receptor 
mediated 

stimulatory 
signaling 
pathway 

1.95 <0.00050 

6 

regulation of 

Arp2/3 
complex-

mediated actin 
nucleation 

3.23 <0.00050 
NADPH oxidase 

complex 
2.58 <0.00050 

Fc-gamma 
receptor 
signaling 
pathway 

1.94 <0.00050 

7 
dendrite 

extension 
3.16 0.00350 

DNA damage 
induced protein 
phosphorylation 

2.53 0.00450 
Fc receptor 
signaling 
pathway 

1.74 <0.00050 

8 
regulation of 

actin 
nucleation 

2.96 <0.00050 MAP kinase activity 2.52 <0.00050 
Ras protein 

signal 
transduction 

1.79 <0.00050 

9 filopodium tip 2.84 0.01200 
superoxide-

generating NADPH 
oxidase activity 

2.34 0.00600 

regulation of 
actin 

cytoskeleton 
organization 

1.62 0.00072 

10 
developmental 

cell growth 
2.42 0.00150 

superoxide anion 
generation 

2.25 0.00850 lamellipodium 1.71 0.00086 
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Supplementary Table 3: Differential best-classifier proteins with opposite 

signal in Low-MD (LMD) and High-MD (HMD). “+” stands for active, while 

“-” stands for inactive. Highlighted cells correspond to proteins that are part 

of the Top-HF  Top-MD  Top-Drug set, the top-scoring proteins 

according to GUILDify. 

 

 

 
Uniprot 

ID 
Gene 

symbol 
Gene name 〈𝑳𝑴𝑫〉 〈𝑯𝑴𝑫〉 √|

𝑳𝑴𝑫𝒙
𝑯𝑴𝑫

| 
Adjusted 
P-value 

LMD+ 
HMD- 

Q9Y4H2 IRS2 Insulin receptor substrate 2 0.583 -0.414 0.491 
1.297E-

13 

O43639 NCK2 Cytoplasmic protein NCK2 0.623 -0.355 0.471 
5.744E-

11 

Q13153 PAK1 
Serine/threonine-protein kinase 

PAK 1 
{ECO:0000303|PubMed:8805275} 

0.233 -0.817 0.437 
2.266E-

12 

P30530 AXL 
Tyrosine-protein kinase receptor 

UFO 
0.476 -0.362 0.415 

5.509E-

16 

P42081 CD86 
T-lymphocyte activation antigen 

CD86 
0.428 -0.356 0.391 

2.073E-
08 

P18825 ADRA2C Alpha-2C adrenergic receptor 0.226 -0.568 0.358 
2.079E-

10 

Q13177 PAK2 
Serine/threonine-protein kinase 

PAK 2 
0.249 -0.439 0.330 

3.753E-
09 

P54762 EPHB1 Ephrin type-B receptor 1 0.144 -0.685 0.314 
2.916E-

14 

P15498 VAV1 Proto-oncogene vav 0.392 -0.192 0.274 
8.020E-

05 

P06241 FYN Tyrosine-protein kinase Fyn 0.589 -0.127 0.274 
7.322E-

15 

O75787 ATP6AP2 V-ATPase M8.9 subunit 0.407 -0.160 0.255 
2.741E-

08 

P01583 IL1A Interleukin-1 alpha 0.125 -0.396 0.222 
2.087E-

12 

P06748 NPM1 Nucleophosmin 0.374 -0.116 0.208 
2.266E-

12 

Q02297 NRG1 
Pro-neuregulin-1, membrane-

bound isoform 
0.670 -0.064 0.207 

5.208E-
14 

P15941 MUC1 Mucin-1 subunit alpha 0.085 -0.479 0.202 
1.676E-

11 

P18084 ITGB5 Integrin beta-5 0.498 -0.079 0.199 
1.214E-

15 

P03372 ESR1 Estrogen receptor 0.096 -0.294 0.169 
6.103E-

08 

P01138 NGF Beta-nerve growth factor 0.211 -0.124 0.162 
6.954E-

07 

P43405 SYK Tyrosine-protein kinase SYK 0.075 -0.310 0.152 
1.618E-

07 

Q08722 CD47 Leukocyte surface antigen CD47 0.082 -0.277 0.151 
8.239E-

07 

P54764 EPHA4 Ephrin type-A receptor 4 0.336 -0.065 0.148 
4.859E-

08 

Q9BYF1 ACE2 
Processed angiotensin-converting 

enzyme 2 
0.565 -0.039 0.148 

7.333E-
15 

P10275 AR Androgen receptor 0.438 -0.045 0.141 
1.014E-

11 

P38398 BRCA1 
Breast cancer type 1 susceptibility 

protein 
0.043 -0.365 0.125 

9.363E-
08 

P35354 PTGS2 Prostaglandin G/H synthase 2 0.034 -0.396 0.116 
2.482E-

12 

Q9Y478 PRKAB1 
5'-AMP-activated protein kinase 

subunit beta-1 
0.374 -0.034 0.113 

5.744E-
11 

P14770 GP9 Platelet glycoprotein IX 0.034 -0.306 0.102 
1.190E-

08 

P14138 EDN3 Endothelin-3 0.023 -0.239 0.074 
3.509E-

06 
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LMD- 
HMD+ 

P02675 FGB Fibrinogen beta chain -0.778 0.654 0.713 
3.040E-

14 

O60674 JAK2 Tyrosine-protein kinase JAK2 -0.811 0.279 0.476 
2.749E-

16 

P04085 PDGFA 
Platelet-derived growth factor 

subunit A 
-0.359 0.622 0.473 

1.263E-
07 

Q05586 GRIN1 
Glutamate receptor ionotropic, 

NMDA 1 
-0.381 0.565 0.464 

1.049E-
15 

P05230 FGF1 Fibroblast growth factor 1 -0.219 0.734 0.401 
1.528E-

14 

Q15768 EFNB3 Ephrin-B3 -0.149 0.835 0.353 
8.307E-

13 

Q14451 GRB7 
Growth factor receptor-bound 

protein 7 
-0.181 0.679 0.351 

5.106E-

13 

P08581 MET Hepatocyte growth factor receptor -0.124 0.828 0.321 
2.615E-

13 

Q08289 CACNB2 
Voltage-dependent L-type calcium 

channel subunit beta-2 
-0.351 0.238 0.289 

5.549E-
09 

P63244 RACK1 
Receptor of activated protein C 

kinase 1, N-terminally processed 
-0.395 0.206 0.285 

4.410E-
08 

Q00987 MDM2 E3 ubiquitin-protein ligase Mdm2 -0.458 0.166 0.275 
2.789E-

08 

P32004 L1CAM Neural cell adhesion molecule L1 -0.466 0.118 0.235 
2.519E-

12 

P15391 CD19 B-lymphocyte antigen CD19 -0.272 0.171 0.216 
4.123E-

08 

P07948 LYN Tyrosine-protein kinase Lyn -0.109 0.408 0.211 
3.099E-

04 

O14745 SLC9A3R1 
Na(+)/H(+) exchange regulatory 

cofactor NHE-RF1 
-0.172 0.224 0.196 

4.627E-
07 

O43559 FRS3 
Fibroblast growth factor receptor 

substrate 3 
-0.091 0.317 0.170 

3.717E-
08 

P43146 DCC Netrin receptor DCC -0.392 0.070 0.165 
5.835E-

04 

P62158 
CALM1 ; 
CALM2 ; 
CALM3 

Calmodulin-1 
{ECO:0000312|HGNC:HGNC:1442} 

-0.455 0.054 0.156 
1.670E-

10 

P42574 CASP3 Caspase-3 subunit p12 -0.034 0.656 0.149 
8.050E-

08 

P42684 ABL2 Abelson tyrosine-protein kinase 2 -0.362 0.045 0.128 
1.676E-

11 

P17081 RHOQ 
Rho-related GTP-binding protein 

RhoQ 
-0.362 0.045 0.128 

1.676E-
11 

Q13905 RAPGEF1 
Rap guanine nucleotide exchange 

factor 1 
-0.187 0.080 0.122 

2.094E-
04 

P05155 SERPING1 Plasma protease C1 inhibitor -0.023 0.362 0.091 
1.014E-

11 

Q92793 CREBBP CREB-binding protein -0.506 0.015 0.089 
4.511E-

11 

P07585 DCN Decorin -0.023 0.351 0.089 
2.430E-

11 

P12830 CDH1 Cadherin-1 -0.503 0.011 0.076 
1.487E-

14 

Q07157 TJP1 Tight junction protein ZO-1 -0.407 0.011 0.068 
2.640E-

12 

Q92990 GLMN Glomulin -0.294 0.011 0.058 
2.056E-

07 

P55075 FGF8 Fibroblast growth factor 8 -0.011 0.238 0.052 
1.884E-

05 
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Supplementary Table 4: Top 10 gene Ontology functions enriched from 

best-classifier proteins with opposite signal in Macular Degeneration (MD) 

MoAs. Functional enrichment analysis from FuncAssociate. 

 

 Low-MD active / High-MD inactive 
Low-MD inactive / High-MD 

active 
Overlapped functions 

 GO name LOD 
P-

val. 
GO name LOD 

P-
val. 

GO name LOD 
P-

val. 

1 
dendritic spine 
development 

2.41 
0.001

50 

dorsal/ventral 
axon 

guidance 
3.07 

0.019
50 

phosphatidylin
ositol-4,5-

bisphosphate 
3-kinase 
activity 

1.89 
<0.0
0050 

2 

positive regulation of 
vascular endothelial 

growth factor 
production 

2.04 
0.030

00 

fibroblast 
growth factor 

receptor 
binding 

2.06 
0.020

00 

phosphatidylin
ositol 

bisphosphate 
kinase activity 

1.87 
<0.0

0050 

3 

regulation of 
intracellular 

estrogen receptor 
signaling pathway 

2.00 
0.001

50 

platelet-
derived 

growth factor 
receptor 
signaling 

pathway 

1.95 
0.033

50 

phosphatidylin
ositol 3-kinase 

activity 
1.84 

<0.0
0050 

4 
regulation of 

systemic arterial 
blood pressure 

1.97 
0.033

00 

non-
membrane 
spanning 
protein 
tyrosine 

kinase activity 

1.88 
0.040

00 

phosphatidylin
ositol 

phosphorylatio
n 

1.72 
<0.0
0050 

5 

regulation of 
vascular endothelial 

growth factor 
production 

1.96 
0.044

50 

growth factor 
receptor 
binding 

1.85 
<0.0
0050 

single-
organism 
cellular 
process 

1.53 
<0.0
0050 

6 
peptide hormone 

processing 
1.96 

0.044
50 

regulation of 
blood 

coagulation 
1.68 

0.010
50 

lipid 
phosphorylatio

n 
1.67 

<0.0
0050 

7 
phosphotyrosine 

binding 
1.91 

0.049
00 

regulation of 
hemostasis 

1.68 
0.010

50 

positive 
regulation of 

protein kinase 
B signaling 

1.60 
<0.0
0050 

8 
neutrophil 

chemotaxis 
1.90 

0.050

00 

regulation of 

coagulation 
1.66 

0.010

50 

biological 

regulation 
1.42 

<0.0

0050 

9 
regulation of 

vasoconstriction 
1.89 

0.001
50 

regulation of 
phosphatidyli

nositol 3-
kinase 

signaling 

1.58 
0.023

50 
protein binding 1.41 

<0.0
0050 

10 

vascular endothelial 
growth factor 

receptor signaling 
pathway 

1.83 
<0.0
0050 

response to 
toxic 

substance 
1.53 

0.003
50 

regulation of 
response to 

stimulus 
1.24 

<0.0
0050 
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Supplementary Table 5: Modified Hausdorff distance between the 4 

groups of MoAs defined. 

 

 LowMD HighMD HighHF LowHF 

LowMD 0 4.00226983 2.7537393 2.6068664 

HighMD 4.00226983 0 2.1150102 2.55445687 

HighHF 2.7537393 2.1150102 0 4.01919608 

LowHF 2.6068664 2.55445687 4.01919608 0 

 

Supplementary Table 6: Mean Euclidean distance between each one of 

the points of every group of MoAs and its centre. 

 

 Mean distance from center 

LowMD 3.137818031 

HighMD 3.171767895 

HighHF 3.298746704 

LowHF 3.523965485 

 

Supplementary Table 7: Number of common MoAs between the 4 groups 

of MoAs defined. 

 

 LowMD HighMD HighHF LowHF 

LowMD 50 0 9 13 

HighMD 0 50 17 12 

HighHF 9 17 50 0 

LowHF 13 12 0 50 
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Supplementary Table 8: Intersection of several set of proteins defined with 

GUILDify with the best-classifier proteins (BCP) obtained from the TPMS 

analysis. The p-values are calculated using a Fisher’s exact test. The p-

values above 0.05 are remarked in red. 

 

Sets of 
proteins 

# LHF+ 
HHF- 

P-value 
# 

LHF- 
HHF+ 

P-value 
# LMD+ 
HMD- 

P-value 
# LMD- 
HMD+ 

P-value 

Drug 
seeds 

0 1.00E+00 0 1.00E+00 0 1.00E+00 0 1.00E+00 

Top-Drug 0 1.00E+00 0 1.00E+00 2 1.11E-01 0 1.00E+00 

HF seeds 0 1.00E+00 3 6.32E-03 1 2.32E-01 1 2.39E-01 

Top-HF 0 1.00E+00 3 4.34E-02 2 1.02E-01 1 4.35E-01 

MD 
seeds 

0 1.00E+00 1 4.02E-01 2 4.81E-02 5 2.76E-05 

Top-MD 0 1.00E+00 1 5.60E-01 3 1.81E-02 5 2.51E-04 

Top-

HFTop-

MDTop-
Drug 

0 1.00E+00 3 3.70E-01 5 1.53E-02 5 1.77E-02 

 

Supplementary Table 9: Best-classifier proteins found in the Top-HF  

Top-MD  Top-Drug set. 

 

 Uniprot ID Gene symbol Gene name 

LHF- 
HHF+ 

P28482 MAPK1 Mitogen-activated protein kinase 1 

P27361 MAPK3 Mitogen-activated protein kinase 3 

P02751 FN1 Fibronectin 

LMD+ 
HMD- 

P18084 ITGB5 Integrin beta-5 

O75787 ATP6AP2 V-ATPase M8.9 subunit 

Q02297 NRG1 
Pro-neuregulin-1, membrane-bound 

isoform 

P06748 NPM1 Nucleophosmin 

P01583 IL1A Interleukin-1 alpha 

LMD- HMD+ 

P04085 PDGFA Platelet-derived growth factor subunit A 

P02675 FGB Fibrinogen beta chain 
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P05155 SERPING1 Plasma protease C1 inhibitor 

P05230 FGF1 Fibroblast growth factor 1 

P42574 CASP3 Caspase-3 subunit p12 

 

Supplementary Table 10: Intersection of several set of proteins defined 

with GUILDify with the biomarkers obtained from the TPMS analysis. The 

p-values are calculated using a Fisher’s exact test. The p-values above 

0.05 are remarked in red. 

 

Sets of proteins 
LHF  
LMD+ 
HMD- 

P-value 
LHF  
LMD- 
HMD+ 

P-value 

Drug seeds 0 1.00E+00 0 1.00E+00 

Top-Drug 1 2.90E-01 0 1.00E+00 

HF seeds 1 1.45E-01 1 1.28E-01 

Top-HF 2 4.03E-02 1 2.48E-01 

MD seeds 2 1.80E-02 4 2.54E-05 

Top-MD 4 2.75E-04 4 1.56E-04 

Top-HFTop-

MDTop-Drug 
5 1.37E-03 5 6.89E-04 

 

Supplementary Table 11: Biomarkers from the TPMS analysis found in 

the Top-HF  Top-MD  Top-Drug set. 

 

 Uniprot ID Gene symbol Gene name 

LHF  
LMD+ 
HMD- 

Q02297 NRG1 
Pro-neuregulin-1, membrane-bound 

isoform 

P06748 NPM1 Nucleophosmin 

P01583 IL1A Interleukin-1 alpha 

P61981 YWHAG 
14-3-3 protein gamma, N-terminally 

processed 

P18084 ITGB5 Integrin beta-5 

LHF  
LMD- 
HMD+ 

P05121 SERPINE1 Plasminogen activator inhibitor 1 

P02675 FGB Fibrinogen beta chain 
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P05230 FGF1 Fibroblast growth factor 1 

Q15109 AGER 
Advanced glycosylation end 

product-specific receptor 

P05155 SERPING1 Plasma protease C1 inhibitor 

 

Supplementary Table 12: Pathophysiological processes present in Heart 

Failure characterization used in the study. 

 

Pathophysiological processes # proteins 

1-      Cardiomyocyte cell death (including apoptosis and 
necrosis) 

46 

2-      Left ventricle extracellular matrix remodelling 37 

3-      Impaired myocyte contractility 35 

4-      Hypertrophy  33 

 

Supplementary Table 13: Pathophysiological processes present in 

Macular Degeneration characterization used in the study. 

 

Pathophysiological processes # proteins 

1- Light and oxidative stress: lipid oxidation, lipofuscin, 
advanced glycation end products (AGEs) 

46 

2- Debris accumulation: Drusen and protein aggregation 37 

3- Disturbance of lysosomal clearance 35 

4- Autophagy dysregulation 33 

5- Immunological processes: chronic inflammation 46 

6- Mitochondrial defects 37 

7- Extracellular matrix remodelling and Bruch's membrane 
thickening 

35 

8- Lipoprotein/lipid metabolism 33 

9- Retinal cell death 35 

10- Choroidal neovascularization (wet Age-Related MD) 33 
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3.4. Modelling of drug-induced liver injury 

based on multi-omics integration and 

machine learning prediction 

 

In the fourth article of the thesis, I present the participation of our 

laboratory in collaboration with several members of the TransQST 

project in the Connectivity Map (CMap) Drug Safety Challenge of the 

International Conference on Critical Assessment of Massive Data 

Analysis (CAMDA) of 2019. The aim of the challenge was to make 

in silico methods to predict Drug-Induced Liver Injury (DILI), an 

adverse reaction caused by the intake of drugs that produces liver 

damage. In special, the organizers propose the use of CMap gene 

expression data in combination with other sources of data such as 

chemical structures and cellular images to predict the adverse 

reaction. 

 

Our group employed several network medicine methods to guide the 

identification of DILI gene signatures, which are used as features to 

train a machine learning algorithm. We described and assessed the 

usage of different types of biological data as features separately and 

in combination, and compared them with the state-of-the-art results 

from previous editions.  
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Abstract 

 

Background: Drug-induced liver injury (DILI) is an adverse reaction 

caused by the intake of drugs of common use that produces liver 

damage. The impact of DILI is estimated to affect around 20 in 

100,000 inhabitants worldwide each year. Despite being one of the 

main causes of liver failure, the pathophysiology and mechanisms of 
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DILI are poorly understood. In the present study, we developed an 

ensemble learning approach based on different features (CMap 

gene expression, chemical structures, drug targets) to predict drugs 

that might cause DILI and gain a better understanding of the 

mechanisms linked to the adverse reaction. 

 

Results: We searched for gene signatures in CMap gene 

expression data by using two approaches: phenotype-gene 

associations data from DisGeNET, and a non-parametric test 

comparing gene expression of DILI-Concern and No-DILI-Concern 

drugs (as per DILIrank definitions). The average accuracy of the 

classifiers in both approaches was 69%. We used chemical 

structures as features, obtaining an accuracy of 65%. The 

combination of both types of features produced an accuracy around 

63%, but improved the independent hold-out test up to 67%. The use 

of drug-target associations as feature obtained the best accuracy 

(70%) in the independent hold-out test. 

 

Conclusions: When using CMap gene expression data, searching 

for a specific gene signature among the landmark genes improves 

the quality of the classifiers, but it is still limited by the intrinsic noise 

of the dataset. When using chemical structures as a feature, the 

structural diversity of the known DILI-causing drugs hampers the 

prediction, which is a similar problem as for the use of gene 

expression information. The combination of both features did not 

improve the quality of the classifiers but increased the robustness as 

shown on independent hold-out tests. The use of drug-target 

associations as feature improved the prediction, specially the 

specificity, and the results were comparable to previous research 

studies. 
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Keywords: CAMDA; Cmap; Drug safety; Drug structure; Drug-

induced liver injury; Hepatotoxicity; Machine learning; Systems 

biology. 

 

 

Background 

 

Drug safety is one of the main reasons of drug attrition during 

development (1,2). Although the causes of drug failure due to lack 

of safety are several, hepatic adverse reactions are among the most 

important, particularly at late drug development stages (3,4). Drug-

induced liver injury (also named DILI) is an adverse reaction caused 

by the intake of drugs of common use that produces liver damage. 

DILI has a relatively high incidence rate, estimated to affect around 

20 in 100,000 inhabitants worldwide each year (5). Many drugs 

ranging from pain killers to anti-tuberculous treatments can cause 

DILI (6). Despite DILI being one of the leading causes of acute liver 

failure, the pathophysiology and etiology of DILI is poorly understood 

and pinpointing the toxicity of compounds in human liver remains a 

non-trivial task (7).  

 

Several in-silico methods have been proposed to predict 

hepatotoxicity of drugs. Among these, machine learning models 

trained using drug structural features have shown a good accuracy 

(8–10). Furthermore, incorporating gene- and pathway-level 

signatures from transcriptomics data has shown a high predictive 

accuracy using Deep Neural Networks (11). With the recent 

increased interest on machine learning methods to predict drug-

induced toxicity, the International Conference on Critical 

Assessment of Massive Data Analysis (CAMDA) has been 
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organizing the Connectivity Map (CMap) Drug Safety Challenge 

since 2018. The aim of the challenge was to assess the state-of-the-

art on DILI prediction methods using different sources of data such 

as transcriptomics data, chemical structures, and cellular images. In 

the first edition (CAMDA 2018), the two published studies applied 

various machine learning methods for DILI prediction on the CMap 

gene expression data provided (in MCF7 and PH3 cell lines), 

obtaining poor predictive results (12,13). Sumsion et al. (12) 

evaluated 7 different classification algorithms and built a soft-voting 

classifier that combined all classifiers. Still, the accuracy results of 

the best performing classifiers (random forest and soft-voting) were 

around 70%, obtaining high sensitivity (77%) but low specificity (13-

19%). They also explored different strategies to improve the results, 

such as normalizing gene expression data across samples, feature 

selection methods, adjusting class imbalance or improving the 

voting-based classifier. Still, the improvement of the results with 

each of these solutions was limited. Chierici et al. (13) used three 

deep learning classifiers and compared them with random forest and 

multi-layer perceptron classifiers. They also tested several strategies 

for balancing data and alternative train/test splits. However, the 

different strategies gave an overall poor performance, in which the 

Matthews correlation coefficient (MCC) values ranged from −0.04 to 

0.21 in cross-validation and −0.16 to 0.11 in the independent hold-

out test set. In both Sumsion et al. (12) and Chierici et al. (13), the 

limited results were attributed to having a small and highly 

imbalanced gold standard of 190 drugs for training (160 DILI-

causing) and 86 drugs for an independent hold-out test. This 

problem is still present in the current edition of CAMDA (2019), as 

the size of the gold standard is still limited. The organizers provided 

a gold standard (from DILIrank dataset (14)) composed of 175 drugs 
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for training and 55 for an independent hold-out test. They also 

provided a dataset of CMap L1000  gene expression responses for 

1,314 compounds (15) (including the 230 drugs of the gold 

standard), the chemical structures (SMILES codes) of the drugs and 

annotated images from cell perturbation assays for a subset of 826 

compounds (156 from DILIrank) (16). 

 

In this study, we implemented an ensemble learning approach to 

predict drugs that can cause DILI in human liver. We experimented 

the inclusion in the classifiers of several features derived from 

transcriptomics, drug-target associations and structural data either 

separately or combined (Table 1). We investigated whether it was 

feasible to find a DILI gene signature using phenotype-gene 

associations, protein-protein interactions and gene expression data. 

We observed that finding a meaningful gene signature can improve 

the quality of the classifier instead of using all landmark genes 

defined in the CMap platform (i.e. the subset of 978 genes whose 

gene expression has been determined as informative enough to 

characterize the whole transcriptome (15)). We also analyzed the 

accuracy of the prediction when using chemical structures, drug-

target information, and the combination of these together with 

transcriptomics data. We compared the quality of the classifiers 

made from these features in a robust machine learning pipeline and 

presented a list of conclusions that might serve as starting points for 

further studies. 
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Table 1. Summary of the features used in the classification task. 

 

Type of feature Name Description 

Gene expression 
features 

Landmark genes 
978 genes directly 
measured from the 
L1000 datasets  

DisGeNET DILI genes  

Curated genes 
associated to 9 
phenotypes related 
with DILI from 
DisGeNET database 

GUILDify DILI genes 

Genes associated 
through the protein 
interactions network 
to 6 phenotypes 
related with DILI using 
GUILDify 

DILI landmark genes   

66 landmark genes 
selected using non-
parametric test for 
each gene across all 
samples of 
Most/Less- vs. No-
DILI-Concern drugs 
(P-value<0.05) 

Structural features SMILES 

Line notation 
describing the 
chemical structure of 
drugs 

Drug target genes Set of targets 
1,664 drug targets 
retrieved from DGIdb, 
HitPick and SEA 
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Methods 

 

1. Gold standard data on drugs causing DILI 

 

The CAMDA challenge provided the DILIrank dataset (14) as the 

gold standard data of known DILI compounds. DILIrank is a dataset 

that classifies the drugs in three levels of DILI severity: “Most-DILI-

Concern” when the drug was withdrawn for DILI-related causes or 

labelled with severe DILI indication; “Less-DILI-Concern” when the 

drug was labelled with mild DILI indication or adverse reactions; and 

“No-DILI-Concern” when no DILI was indicated in any of the labelling 

sections. Moreover, these levels of severity were verified using the 

standardized clinical causality assessment system, and the drugs 

that were not meeting the expected severity were reclassified as 

“Ambiguous-DILI-Concern”. Among all the drugs categorized in 

DILIrank, the CAMDA challenge provided data for 230 drugs: 37 

Most-DILI-Concern, 87 Less-DILI-Concern, 51 No-DILI-Concern and 

55 Ambiguous-DILI-Concern. Additionally, the US Food and Drug 

Administration classified the remaining 55 Ambiguous-DILI-Concern 

drugs as DILI or No-DILI-Concern. These 55 drugs served as a 

dataset for an independent hold-out test, because the actual severity 

category of the drug remained hidden. 

 

2. Data collection 

 

CMap gene expression 

 

The gene expression data used in this study was gathered from the 

CMap L1000 Assay Platform (15). The L1000 Assay Platform 
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provides more than one million gene expression profiles from a wide 

range of cell lines treated with different drugs at different doses and 

treatment durations. Assuming that gene expression is highly 

correlated, the Platform features a subset of approximately 1000 

landmark genes to derive profiles that serve to infer the expression 

of the rest of genes. We used CMAP L1000 level 5 data which 

contained z-score values corresponding to the normalized 

differential expression between the drug treatment and control 

across different conditions. 

 

Genes associated to DILI related phenotypes 

 

We manually curated a list of phenotypes closely related with DILI 

and identified the genes associated with these phenotypes using the 

DisGeNET database v6.0 (17) (Table 2). We restricted disease-

gene associations solely to expertly curated repositories: UniProt 

(18), the Comparative Toxicogenomics Database (CTD) (19), 

ORPHANET (20), the Clinical Genome Resource (CLINGEN) (21), 

the Genomics England PanelApp (22) and the Cancer Genome 

Interpreter (CGI) (23). We kept only the phenotypes with at least 10 

curated gene associations. The full list of associations between DILI 

phenotypes and genes can be found at Supplementary Table 1. 
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Table 2. List of manually selected phenotypes related with DILI. The 

selected phenotypes were required to have 10 gene associations or more. 

The genetically redundant phenotypes have been merged in the same term. 

The empty cells correspond to phenotypes for which the expansion through 

the network using GUILDify was not functionally coherent. 

 

DILI Phenotypes UMLS 

Number of 

genes 
associated in 

DisGeNET 

Number of 

genes 
associated in 

GUILDify 

Biliary cirrhosis C0023892 33 86 

Hepatitis, Drug-Induced;  

Drug-Induced Liver Disease;  
Drug-Induced Acute Liver Injury 

C1262760;  

C0860207;  
C3658290 

315  

Hyperammonemia C0220994 104 148 

Liver Cirrhosis;  

Fibrosis, Liver 

C0023890;  

C0239946 
97 145 

Liver Cirrhosis, Alcoholic C0023891 30  

Liver Dysfunction;  
Liver diseases 

C0086565;  
C0023895 

67  

Liver Failure, Acute C0162557 22 118 

Nonalcoholic Steatohepatitis;  

Non-alcoholic Fatty Liver 
Disease 

C3241937;  
C0400966 

42 67 

Steatohepatitis;  
Fatty Liver 

C2711227;  
C0015695 

86 167 

Number of different genes associated to DILI 
phenotypes 

641 805 

 

Drug chemical structure 

 

The chemical structures of the drugs considered in the study were 

provided by the CAMDA challenge in the form of Simplified 

molecular-input line-entry system (SMILES) string. In order to use 
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this type of data, we calculated the similarity between all compounds, 

creating a matrix of chemical similarity. Specifically, we used the R 

package RxnSim (24) to calculate the similarity matrix using the 

Tanimoto distance (25). We used the function 

ms.compute.sim.matrix (default parameters), which identifies the 

fingerprints of the SMILES and computes the fingerprint similarity 

between pairs of SMILES. The full list of SMILES is provided in 

Supplementary Table 2, and the matrix of Tanimoto similarity 

between SMILES in Supplementary Table 3. 

 

Drug-target association 

 

The targets of the compounds considered in the study were retrieved 

from three different databases: DGIdb (26), HitPick (27) and SEA 

(28). DGIdb gathers validated drug targets, whereas HitPick and 

SEA additionally provide predicted targets based on chemical 

similarity. We used the names of the drugs to retrieve the drug-

protein associations from DGIdb, whereas the SMILES strings were 

used in the case of HitPick and SEA web servers. Any drug-protein 

pair that had been provided either by the database or predicted to 

interact by the web servers were included among the drug-target 

associations. This implies that there are no differences between 

validated and predicted targets. However, this allowed us to increase 

the number of input drugs and extended the potential recall of our 

method. After collecting all targets, a matrix was created with all the 

drugs in rows and all the target proteins in columns. The cells of the 

matrix had values 1 (if the drug targeted the protein) and 0 

(otherwise). There are three drugs from the DILIrank dataset 

(alaproclate, fluvastatin and tenofovir) and two drugs from the 

independent hold-out test dataset (entecavir and vinorelbine) without 
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any targets in these databases. These drugs have not been used 

neither for training nor for testing when using drug targets as 

features. The full list of drug-target associations is provided in 

Supplementary Table 4. 

 

3. Prediction pipeline 

 

We created a supervised machine learning pipeline 

(Supplementary Figure 1) to generate predictions using the 

features described in Table 1. The pipeline was implemented using 

the R package caret (29). Briefly, we used two classifiers: the 

random forest classifier and the gradient boosting machine. We 

limited the number of classifiers because CAMDA had a limited 

number of independent hold-out test trials, and we tested many 

different features. Thus, we focused on two tree-based ensemble 

methods that have been widely employed in previous research (30–

32).  

 

We created a balanced dataset containing the 30% of the data for 

testing and the rest for training. The original dataset is comprised of 

124 drugs labelled as DILI (37 as Most-DILI-Concern and 87 as 

Less-DILI-Concern) and 51 labelled as no DILI. To create a balanced 

testing dataset, as there were less drugs labelled as no DILI, we 

randomly picked the 30% of the 51 no DILI drugs (15 drugs), and the 

same number of DILI drugs, maintaining the ratio of Most-DILI-

Concern (29.8%) and Less-DILI-Concern (70.2%):  4 Most-DILI-

Concern drugs (the 29.8% of 15) and 11 Less-DILI-Concern drugs 

(the 70.2% of 15). The rest of the drugs (109 DILI drugs and 36 no 

DILI drugs) were used for creating multiple training datasets. In order 

to have balanced training datasets, while at the same time, to cover 
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as many DILI drugs as possible, we created 10 different training 

datasets. All of them have the same 36 no DILI drugs (corresponding 

to the 70% of the initial 51 drugs), but each of the training dataset 

has a different subset of DILI drugs. Accordingly, among the 109 DILI 

drugs, we picked randomly 11 Most-DILI-Concern drugs (29.8% of 

36) and 25 Less-DILI-Concern (70.2% of 36) (see Supplementary 

Figure 1 for a schematic representation of the procedure, and 

Supplementary Table 5 for a detailed list of the number of drugs 

used in each step).  

 

The 10 training datasets were used to train 10 different models. For 

each model, the hyperparameters of the machine learning classifier 

were tuned using the functions trainControl and train from the R 

package caret (29). Specifically, we used a 10-fold cross-validation 

approach, allowing resampling of the training set to avoid overfitting. 

The train function automatically tests different models using several 

combinations of hyperparameters and selects the model with higher 

accuracy. The 10 fitted models were evaluated using the testing 

dataset, obtaining a series of measures (accuracy, precision, 

sensitivity, specificity, F1-score, MCC) that indicate the quality of the 

model. Lastly, the testing set predictions of the 10 models were used 

as features to train a random forest classifier that combined them 

into a final model. The final model was used to classify the drugs of 

the independent hold-out test dataset into DILI drugs and non-DILI 

drugs. 
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Results 

 

1. L1000 Connectivity Map data hints at transcriptomic 

heterogeneity of DILI compounds 

 

CMap collects gene expression signatures obtained from cell lines 

upon treatments with different drug concentrations and durations. 

The treatment dose ranges from the drug’s reported effective 

concentration, if known, to a relatively high concentration of 10 μM 

or more, often adopted in high-throughput cell based screens (33). 

In order to include perturbations possibly leading to adversities or 

able to challenge cells adaptive mechanisms, we decided to focus 

on drugs tested at the highest concentration and for the longest 

treatment duration (i.e. high coverage, high dose, and long 

treatments). Therefore, we focused only on the samples treated at 

10 μM dose and at least for 24 hours. Furthermore, as DILI 

phenotypes are mainly originated and affecting the liver, we decided 

to study only those sets collected from the cell line “Primary Human 

Hepatocytes” (PHH), as to date, it is the most specific in vitro cellular 

model for liver. This produced a final set of samples with a single 

dose-time point from 51, 87, and 37 drugs annotated as No-DILI-

Concern, Less-DILI-Concern, and Most-DILI-Concern, respectively.  

 

As an initial exploratory analysis of the training data set, we analyzed 

the transcriptional response of the different drugs using k-nearest 

neighbor clustering algorithm (k=3,4,5) (Supplementary Figure 2). 

In the plot, we cannot distinguish the different groups of drugs based 

uniquely on gene expression and thus a more specific gene 

signature is needed. Indeed, we applied the landmark genes 
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signature as a feature for a machine learning algorithm (as described 

in the Methods section) obtaining a mean accuracy of 52% in the 

testing set and 43% in the independent hold-out test set (Figure 1). 

Perhaps more relevant are the low values of MCC (0.04 in the testing 

set and -0.09 in the independent hold-out test set), which indicates 

that the level of expression of landmark genes (978) from CMap is 

not a predictor of DILI. In view of these results, we decided to look 

for alternative chemical structure, gene and phenotype based 

signatures. In the following sections, we explain the different 

strategies we developed to characterize DILI (Figure 2). 
 

 

Fig. 1 Results of the Classifiers in the testing set and the independent hold-

out test set. The machine learning algorithm used was a Random Forest. 

The features that were used in the models of DisGeNET, GUILDify, 

DisGeNET+SMILES and GUILDify+SMILES are only from the phenotype 

“Biliary cirrhosis” (C0023892). The results of using different phenotypes are 

given in the Fig. 3. The results for gradient boosting machine classifier are 

given in the Supplementary Fig. 8. 
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Fig. 2 General scheme of the processing of the different features. 

 

2. Using phenotype-gene associations highlights potential 

connections between DILI, cirrhosis and drug induced 

hepatitis 

 

To characterize genes involved in DILI that could be used as a gene 

signature in the classifier, we searched for specific genes associated 

with DILI looking into phenotype-genotype data. These data contain 

genes that have been described as associated to the 

pathophysiology or etiology of DILI, and therefore represent a 

suitable source to develop a list of genes representative of DILI. We 

manually curated a list of phenotypes closely related with DILI and 

identified the genes associated with these phenotypes using the 

DisGeNET database v6.0 (17) (Table 2, Supplementary Table 1). 

Although we might expect them to be genetically similar, the overlap 
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of genes between the different DILI phenotypes is very small 

(Supplementary Figure 3). This fact reflects the diversity of the 

phenotypes considered and the challenge associated to predict DILI 

based solely on gene expression.  

Once defined the set of genes for the different DILI-related 

phenotypes as annotated in DisGeNET, we retrieved their gene 

expression data from the CMap L1000 Assay Platform. For each 

DILI-related phenotype, we trained an independent machine 

learning model using the expression levels of their genes as 

features. The average accuracy obtained for the models of all DILI-

related phenotypes is 57% in the testing set. This means that for 

some specific phenotypes the accuracy was higher than 57%. 

Therefore, we inspected the results for all phenotypes separately, 

observing those with higher accuracy than others (Figure 3). The 

phenotypes “Biliary cirrhosis”, “Hepatitis, Drug-Induced” and “Liver 

cirrhosis” stand out for having an accuracy between 64% and 69% 

and values of precision, sensitivity and specificity above 50%, and 

MCC above 0.3. It is worth noting that “Biliary cirrhosis” is the 

phenotype less genetically similar to the rest, i.e. the lowest number 

of shared genes (Supplementary Figure 3) yielding the best results 

of prediction. Among the genes associated with these phenotypes, 

some of them have been associated to hepatotoxicity by a previous 

study of Peng et al. (2019) (34), where 145 hepatotoxicity-related 

genes were identified. “Biliary cirrhosis” contains 5 hepatotoxicity-

associated genes, “Hepatitis, Drug-Induced” has 27 and “Liver 

cirrhosis” 25 (Supplementary Table 6). 
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Fig. 3 Results of the classifier based on gene sets from DisGeNET DILI 

phenotypes in the testing set. The machine learning algorithm used was 

Random Forest. Each row corresponds to the mean performance of 10 

models trained using the PHH gene expression of the genes associated to 

each DILI phenotype. The “Mean” row corresponds to the average 

performance of each metric for all the phenotypes. 

 

3. Incorporating protein-protein interactions to find a DILI 

signature does not improve the results of phenotype-gene 

associations  

 

Our current knowledge of genotype-phenotype associations is still 

incomplete and therefore we might miss relevant genes associated 

to DILI.  It has been demonstrated that the products of disease-

associated genes tend to be highly connected in the protein-protein 

interaction network, forming the so-called disease modules (35,36). 

Based on this fact, network-based prioritization methods exploiting 

the topology of the protein-protein interactions network have been 
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successfully applied to discover and prioritize novel disease-gene 

associations (37).  

Using the network-based prioritization web server GUILDify (38), we 

extended the current knowledge of disease-associated genes 

obtained from DisGeNET (see above in the previous section). 

GUILDify uses the genes associated with DILI-related phenotypes 

as seeds for an algorithm that scores the proteins of the protein-

protein interaction network based on their topological closeness with 

the seeds. Then, it selects the top-ranking genes using a functional-

coherency-based cut-off: non-seed genes are iteratively included in 

the top-ranking set provided that they maintain the functional 

coherency of the seed genes (they are involved in similar biological 

functions). The numbers of the new associations with the DILI-

related phenotypes are listed in Table 2.  

 

After obtaining the new list of phenotype-gene associations, we 

retrieved their gene expression data from the CMap L1000 Assay 

Platform as shown before (i.e. PHH cell line with 10 μM dose and 

treatment duration of 24 hours) and used the expression level of 

these genes as input feature to the machine learning classifier. As 

shown in Figure 1 the predictive capacity of the classifiers in the 

training set dropped with regards to the approach described in 

Section 2, obtaining similar values to that of when using the 978 

landmark genes albeit with a slightly higher specificity (see results 

by phenotype at Supplementary Figure 4).  
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4. Differential comparison of gene expression does not 

produce a robust DILI signature 

 

To investigate the extend the transcriptomics data on drugs with 

known DILI status could be used to extract a DILI gene signature, 

we retrieved the normalized differential expression data of the genes 

in PHH cell line (10 μM dose and treatment duration of 24 hours). 

For each gene, we checked whether the expression values were 

significantly different between DILI and No-DILI-Concern drugs. 

Therefore, for each landmark gene, we applied a two-sided Wilcoxon 

test, a non-parametric test comparing the expression of the gene in 

the samples of DILI-Concern drugs and No-DILI-Concern drugs. We 

selected the genes with a P-value lower than 0.05, obtaining a gene 

signature composed of 66 genes (referred from now on as DILI 

landmark gene signature) (see Supplementary Table 7). We chose 

to use marginal P-values, focusing on the ranking of genes and 

aiming to capture the broad transcriptomic DILI signal. 

 

Consistent with the known heterogeneity of transcriptomics 

response in hepatotoxicity, the genes in the identified signature were 

typically perturbed only in a small subset of the samples, failing to 

represent a common response that could be explained by gene 

expression changes (Figure 4). However, while the gene expression 

of the 1000 landmark genes yielded an accuracy of 52% (43% in the 

independent hold-out test set), using only the 66 selected genes 

increased the accuracy to a 69% (55% in the independent hold-out 

test set). The discrepancy between the testing and independent 

hold-out test sets can be attributed to the gene expression signature 

likely fitting to the underlying biology of the training set compounds 

rather than representing a generalization across all potential DILI 
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compounds. We performed a functional enrichment analysis (39) 

using Gene Ontology to further investigate the biological processes 

of these genes.  

 

 

Fig. 4 Transcriptomics signatures of the DILI landmark genes. Gene 

expression (as Moderated Z score) of the DILI landmark genes (selected 

using a two-sided Wilcoxon rank sum test, P < 0.05) in PHH cells, for Most-

DILI-Concern and No-DILI-Concern drugs. The gene expression lower than 

|1.5| is colored white. 

 

The functional enrichment analysis of the 66 genes did not yield 

specific functions significantly associated with the genes. This 

indicates that, even though the selected genes improve the capacity 

of the classifiers to predict DILI-causing drugs in comparison with 

using all the landmark genes, they are not related with specific 
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biological processes. Additionally, we compared these 66 genes to 

the 145 identified by Peng et al. (2019) (34) as associated to 

hepatotoxicity (Supplementary Table 6). Only 4 genes were 

highlighted as hepatotoxic in Peng et al’s study. Therefore, although 

the approach succeeded at improving the predictive capacity of the 

classifiers, the results could lead to overfitting by the available data, 

as the gene signature is not related to any specific biological 

function.  

 

5. The use of chemical structure and drug-target 

associations increases the prediction accuracy 

 

Besides using gene expression data, we investigated the 

incorporation of orthogonal information derived from chemical 

structure of the drug and its targets. The chemical structure and the 

molecular descriptors of the drugs have already been used in 

machine learning models, showing a fair predictive capacity (10). 

Here, we used the Tanimoto similarity between the molecular 

fingerprints of all the drugs in the dataset. First, we plotted the 

similarity between Most-DILI-Concern and No-DILI-Concern drugs in 

the dataset in a histogram (Supplementary Figure 5). We observed 

that drugs of the same group did not have higher similarity among 

them than with other groups. Furthermore, No-DILI-Concern drugs 

have higher similarity between themselves (mean 0.24) than Most-

DILI-Concern drugs (mean 0.18). This indicates that there is a 

considerable structure heterogeneity within the Most-DILI-Concern 

group of drugs, which complicates the prediction using chemical 

structure. But this also suggests that probably, when combining this 

feature with other types of features (i.e. transcriptomics), the 

prediction may improve.  
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Eventually, we obtained a higher prediction accuracy when 

combining chemical structure and CMap than when applying them 

separately (Figure 1). When using solely chemical structure as 

feature for the machine learning classifiers the average accuracy 

was 65% (MCC of 0.31) in the test set and 55% (MCC of 0.17) in the 

independent hold-out test set. In contrast, when combining chemical 

structure with transcriptomics data, the prediction of the classifier in 

the independent dataset improved. This is remarkable when 

combining it with the DILI landmark gene signature derived from the 

nonparametric test: the average accuracy is maintained at 63% 

(MCC of 0.26) in the test set and increases to 67% (MCC of 0.40) in 

the independent hold-out test set (Figure 1). 

 

Next, we explored the use of drug-target associations as a feature 

to predict DILI. We considered any drug-protein pair that had been 

reported in DGIdb (26) or predicted to interact by HitPick (27) or SEA 

(28). We integrated targets from these databases, creating a matrix 

containing drugs and target proteins (see Methods). We analyzed 

the percentage of DILI drugs, no-DILI drugs and drugs from the 

independent dataset associated to the targets in the matrix (see 

Supplementary Table 8 and Supplementary Figure 6). We 

observed that some proteins are mostly targeted by one type of drug, 

hypothetically facilitating the classification of drugs. For instance, 

proteins such as CYP2C9 and CYP1A2, that are associated with a 

higher proportion of DILI drugs than to no-DILI drugs, have been 

previously associated to hepatotoxic effects (40,41). Thus, we used 

the matrix as a feature for the machine learning classifiers, obtaining 

an accuracy of 57% (MCC of 0.15) in the testing set and 70% (MCC 

of 0.35) in the independent hold-out test set (Figure 1). The increase 

of accuracy in the independent dataset is explained by the high 
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specificity (i.e. no-DILI drugs are predicted correctly) in contrast with 

the low sensitivity (i.e. DILI drugs are not predicted correctly). 

 

6. Hepatocyte cell lines provide a better context for DILI 

prediction than using combined expression from different 

cell lines 

 

In the previous sections, when using CMap gene expression data, 

we selected only the samples from the PHH cell line with 10 μM dose 

and treatment duration of 24 hours. We focused on the drug 

response in liver cells. However, the data of CMap tends to have a 

high variation of expression between samples even for the same 

gene. Therefore, to avoid biases caused by the use of unrelated 

samples, we experimented using only the top correlated samples for 

each drug. This consists in computing the correlation between all the 

samples exposed to a drug (even if they are from different cell lines, 

doses and treatment durations) and selecting the ones that are more 

correlated between themselves. We selected the pairs of samples 

from different cell lines that have a Pearson correlation above 0.5, or 

otherwise we kept the pair that was more correlated. To use a 

correlation threshold of 0.5 guarantees that the expression of the 

samples selected is consistent enough across several cell lines. 

Once the correlated samples are selected, we use the median gene 

expression as feature. Although the approach was theoretically 

promising, the prediction accuracies with the use of correlated 

samples are generally worse than using specific conditions, 

obtaining MCC values ranging from -0.12 to 0.21 (see 

Supplementary Figure 7). This indicates that we are still getting 

noise from correlated samples and that, even if there are some 
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samples that could be less reliable, the use of specific liver 

conditions in gene expression seems to be the best approach for the 

prediction of DILI-Concern drugs. 

 

 

Discussion 

 

In this work, we aim to predict DILI applying machine learning 

algorithms using a range of orthogonal types of data as input 

features. Indeed, we explored the use of gene expression data from 

different sets of selected genes (i.e. landmark, DisGeNET and 

GUILDify sets) alone and in combination with drug-centric 

information in the form of structural similarity (Tanimoto scores) and 

protein targets (see Table 1 for a brief description of the features). 

Furthermore, we observed that the DILI landmark gene signature 

identified by a non-parametric test (Wilcoxon test) of differential 

expression between DILI and no-DILI samples from PHH cell line 

constituted a better feature set than the whole landmark genes in 

CMap.  

 

The genes in the identified DILI landmark gene signature were 

typically perturbed only in a small subset of the samples, failing to 

represent a response that could solely be explained by gene 

expression changes (Figure 4). This finding is consistent with the 

known heterogeneity of transcriptomics response in hepatotoxicity 

(42). Also, it could be related with the diversity of outcomes of the 

different compounds (i.e. acute, chronic or idiosyncratic reactions). 

Nevertheless, as we were using data from the training set to obtain 

the signature, the results could lead to overfitting, which would 

explain why the accuracy of the prediction in the independent hold-
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out test worsened. Moreover, the drugs of the independent hold-out 

test set were originally flagged as ambiguous and for this reason are 

probably a more challenging set to classify. Also, the independent 

hold-out test could be unbalanced, worsening the results despite the 

classifier being trained on a balanced dataset.   

 

We also took advantage of functional information of the genes 

involved in drug response, and evaluated gene expression related 

to liver phenotypes involved in drug response using DisGeNET 

resource (17). In the same way as before, limiting the number of 

genes to a specific signature (the genes associated to a DisGeNET 

phenotype) also constituted a better feature set than the whole 

landmark genes in CMap, but still failed to represent the whole 

response. The best accuracy was achieved by the phenotype “Biliary 

Cirrhosis”, which is one of the final stages of DILI. Since we used the 

data from the highest dose and time point, it makes sense that 

extreme phenotypes related with liver cirrhosis are better predictors. 

Perhaps, the biliary component is also important for the predictor. 

For further studies, it would be interesting to focus on lower doses in 

order to capture earlier events and not the final extreme phenotype. 

It is also important to remark that the gene expression signatures 

come from an in vitro model (primary cells, but still with the limitations 

of 2D, dedifferentiation, etc.). As we applied gene signatures derived 

from human data, this could have affected the results. 

 

Additionally, we expanded the phenotype-gene associations 

retrieved from DisGeNET incorporating protein-protein interactions 

data from GUILDify. By applying GUILDify we could expand the 

number of genes associated with DILI-related phenotypes by 

incorporating those connected by the underlying protein 
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interactome. Surprisingly, the quality of the prediction when adding 

protein interactions decreased with respect to using solely 

phenotype-gene associations. Our hypothesis is that when 

expanding the number of genes using GUILDify, (i.e. obtaining larger 

gene signatures), the intrinsic data noise from the CMap dataset is 

increased as well, hence hampering the prediction. Still, we think that 

using protein-protein interactions to extend our information on DILI 

targets and hepatotoxicity-associated genes without using gene 

expression data could be an interesting feature to explore in the 

future. 

 

After working with transcriptomics data from CMap, we observed 

variability of the results depending on the pre-processing of the 

samples. We tried two different strategies that led to different results: 

(i) focusing on samples from a unique cell line and dose-time point 

for each drug, and (ii) selecting the most correlated samples for each 

drug. This is by no means comprehensive and various possible 

strategies such as using other cell lines and dose-time points, or 

discarding the samples with low correlation between replicas 

(‘distil_cc_q75’ < 0.2) and selecting the sample with highest 

transcriptional activity score (43) could be investigated further.  

When focusing on samples from a unique cell line and dose-time 

point, we decided to use the highest concentration and the longest 

treatment duration. In this way, we were including perturbations 

possibly leading to adversities for the adaptive mechanisms of the 

cells. We acknowledge that focusing on increased exposure of the 

drug to characterize DILI is a relatively strong assumption as there 

could be certain compensatory mechanisms kicking in after a while 

depending on the specific compound and cell line. Nevertheless, we 

think that employing the highest dose at the longest time of exposure 
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is likely to be a fair representation of the effect of DILI in the cells 

after the administration of the drug. 

 

Apart from the limitations inherent in the CMap dataset, we detected: 

(i) an important genetic diversity between the diverse DILI-related 

phenotypes from DisGeNET (Supplementary Figure 3), and (ii) a 

great structural diversity between the drugs reported as DILI-

Concern (Supplementary Figure 5). Both aspects hamper the 

prediction of DILI-Concern drugs when using transcriptomics or 

structural features separately and encouraged us to use and 

combine other sources of information. 

 

When considering both transcriptomics and structural features 

together, we observed a similar predictive power of the classifiers, 

but a general increase when validating the classifiers with an 

independent dataset (Figure 1). The most accurate classifier was 

generated by the Random Forest algorithm using a combination of 

features that included the chemical similarity of drugs (Tanimoto 

coefficient calculated using SMILES) and gene expression from the 

landmark genes selected with a non-parametric test (DILI Landmark 

+ SMILES). Under a benchmark scenario, the classifier was able to 

separate DILI-Concern drugs better than No-DILI-Concern drugs 

(accuracy 63%, sensitivity 54% and specificity 72%). Furthermore, 

on the independent dataset of ambiguous-DILI drugs re-labelled by 

the FDA, it reached an accuracy of 67%, the second highest among 

the different classifiers. In the future, it would be interesting to use 

the drug structures directly as features (without using their 

similarities) and to combine them with the other types of features, as 

there might be critical information within the actual molecular details 

of the drugs. 
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Lastly, we explored if the use of drug-target associations could be 

useful to predict DILI-causing drugs. The results showed that the 

targets of most DILI drugs were related with hepatoxicity 

(Supplementary Figure 6). The use of drug-target associations as 

a feature produced an accuracy of 57% in the testing set and 70% 

in the independent dataset. The observed accuracy on the 

independent dataset is in line with 72.5% sensitivity and 72.7% 

specificity of the computational model developed by Zhang et al. as 

well as with the 70.9% accuracy obtained by Hong et al. on the 

bootstrapped data set, highlighting the current limitations in 

predicting drug induced injury (8,9). 

 

When comparing the results with the publications of the previous 

CAMDA 2018 edition (12,13), we still do not observe a clear 

improvement on the prediction of DILI. Although the data provided is 

much more extensive, including gene expression data from more cell 

lines, the gold standard is still very reduced and unbalanced. The 

results in terms of accuracy in the training set are very similar to the 

ones obtained by Sumsion et al. (12), but worse when looking at the 

independent hold-out test. This is probably due to the fact that the 

current independent dataset is based on “Ambiguous-DILI” drugs, 

making the task more challenging. In terms of MCC values, our 

results (ranging from −0.05 to 0.39 in cross-validation and −0.09 to 

0.40 in independent hold-out test) are slightly better than the ones 

reported in Chierici et al. (13) (ranging from −0.04 to 0.21 in cross-

validation and −0.16 to 0.11 in the independent hold-out test set). 

Still, while the two published approaches of the previous edition were 

more focused on testing and optimizing different types of machine 

learning classifiers, our study focused on evaluating different types 

of features and searching a specific DILI gene signature. Therefore, 
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the point of view of our work has been very different and complement 

previous approaches.  

 

Overall, our results pointed to a mild variation on the accuracies 

depending on the samples included in the training data as well as 

the feature set used in building the classifiers, which we attribute to 

various factors. First, the training data is limited to dozens of 

compounds with known hepatotoxicity annotation, and these are too 

few to get a robust classifier. Second, most compounds show a toxic 

effect based on the dosage (and are otherwise no-DILI), thus a 

global predictor categorizing drugs as simply DILI vs no-DILI might 

not be realistic. And, third, there is substantial heterogeneity in the 

transcriptomics data from CMap. There is also variation between the 

results of the testing set and the independent hold-out test set, that 

could be caused by the latter being unbalanced (as the labels remain 

hidden). Still, the variation between the machine learning algorithms 

(random forest vs gradient boosting machine) is not appreciable in 

most cases (see results for gradient boosting machine in 

Supplementary Figures 8-9). This indicates that even though the 

classifiers are different, the results are consistent because they 

depend on the data rather than on the algorithms. Still, future work 

would be required to experimentally validate the predictions of these 

models. 
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Conclusions 

 

In this study, we developed an ensemble learning approach to 

investigate the mechanism of the drugs that cause DILI. We 

experimented with gene expression data from the CMap L1000 

dataset both alone and in combination with other types of feature 

(chemical structure, drug targets). We observed that selecting a 

specific gene signature either using phenotype-gene associations 

data (DisGeNET) or a non-parametric test (Wilcoxon test) of 

differential expression between DILI and no-DILI samples 

constituted a better feature than the whole landmark genes in CMap. 

However, the accuracy of the best performing classifier is around the 

70% mark (minimum 63%, maximum 76%), stating the limitations of 

predicting DILI. The results are very similar to previous publications 

(8–10,12). Additionally, we used the comparison of chemical 

structures as a feature to predict DILI-causing drugs, though this did 

not improve the accuracy substantially. When comparing the 

chemical structures of the drugs with the same DILI-Concern 

classification, we observed a large structural diversity among the 

DILI-Concern groups, reflected in their dissimilarity of structure. This 

may explain the limited accuracy prediction based on chemical 

structure. Combining transcriptomics data and chemical structure 

did not improve the accuracy of the prediction in the testing set, 

although this was improved in the independent hold-out test set. 

Specifically, the combination of using a DILI associated gene 

signature and chemical structures produced results of accuracy 

around or less than 70%, but more robust when they were validated 

with the independent hold-out test set. We also used drug-target 

associations as feature, obtaining 57% of accuracy in the testing set 

that improved to a 70% in the independent hold-out test set. 
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Summarizing, the overarching goal of this work was to evaluate a 

range of descriptors to predict DILI employing two commonly used 

classifiers to predict DILI. We have shown the limitations and 

advantages of different sets of data paving the way for future 

research in this field. 

 

 

List of abbreviations 

 

DILI: Drug-induced liver injury. 

CAMDA: Critical Assessment of Massive Data Analysis. 

CMap: Connectivity Map. 

SMILES: Simplified molecular-input line-entry system. 

PHH: Primary Human Hepatocytes. 

RF: Random Forest. 
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Supplementary Figure 1 

 

Supplementary Figure 1. Scheme of the machine learning pipeline. The 

DILIrank dataset is comprised of 124 drugs labelled as DILI (37 as Most-DILI-

Concern and 87 as Less-DILI-Concern) and 51 labelled as no DILI. The dataset is 

randomly split into a balanced testing dataset made of 15 No-DILI-Concern drugs 

(30% of 51 drugs), and the same number of DILI drugs maintaining the ratio of Most-

DILI-Concern (29.8%) and Less-DILI-Concern (70.2%):  4 Most-DILI-Concern drugs 

(the 29.8% of 15) and 11 Less-DILI-Concern drugs (the 70.2% of 15). The rest of 

the drugs (109 DILI-Concern drugs and 36 No-DILI-Concern drugs) is used to create 

10 different balanced training datasets. For the 10 training datasets, we select the 

same 36 No-DILI-Concern drugs, but we pick randomly 36 drugs from the 109 DILI-

Concern drugs: 11 Most-DILI-Concern drugs (29.8% of 36) and 25 Less-DILI-

Concern (70.2% of 36). Using the 10 training datasets, we build 10 different models 

that are evaluated using the same testing dataset. The predictions of the 10 models 

are combined into a final model using a random forest algorithm. The final model is 

evaluated using the independent hold-out test dataset, comprising 55 drugs with 

hidden labels. 
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Supplementary Figure 2 

 

 

Supplementary Figure 2. Low dimensional representation of the gene 

expression of the training set compounds based on their 

transcriptomics profiles across samples of primary human 

hepatocyte (PHH) cell line and their DILI category. 
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Supplementary Figure 3 

 

 

Supplementary Figure 3. Number of common genes between the 

Drug-Induced Liver Injury (DILI) phenotypes retrieved from DisGeNET. 
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Supplementary Figure 4 

 

 

Supplementary Figure 4. Result of the classifiers based on gene sets 

from GUILDify DILI phenotypes in the testing set. The machine learning 

algorithms used are either Random Forest (RF) or Gradient Boosting 

Machine (GBM). Each row corresponds to the mean performance of 10 

models trained using the PHH gene expression of the genes associated to 

each DILI phenotype. The “Mean” row corresponds to the average 

performance of each metric for all the phenotypes. 
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Supplementary Figure 5 

 

 

Supplementary Figure 5. Tanimoto similarity between the drugs in the 

DILI severity categories “Most-DILI-Concern” (Most-) and “No-DILI-

Concern” (No-). 
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Supplementary Figure 6 

 

 

Supplementary Figure 6. Percentage of drugs in each DILIrank 

category that interact with a selection of 20 target proteins 

(Supplementary Table 8). Proteins in Supplementary Table 8 were 

selected as those targeted by the largest number of drugs in the 

independent hold-out test dataset. 
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Supplementary Figure 7 

 

 

Supplementary Figure 7. Results of the Classifiers in the testing set 

when using transcriptomics features from the most correlated 

samples of each drug. The machine learning algorithms used are either 

Random Forest (RF) or Gradient Boosting Machine (GBM). Results of 

DisGeNET, GUILDify, DisGeNET+SMILES and GUILDify+SMILES are the 

mean of all the phenotypes’ results. 
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Supplementary Figure 8 

 

 

Supplementary Figure 8. Results of the classifiers in the testing set 

and the independent hold-out test set. The machine learning algorithms 

used are either Random Forest (RF) or Gradient Boosting Machine (GBM). 

Results of DisGeNET, GUILDify, DisGeNET+SMILES and 

GUILDify+SMILES are from the phenotype “Biliary cirrhosis” (C0023892). 
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Supplementary Figure 9 

 

 

Supplementary Figure 9. Result of the classifiers based on gene sets 

from DisGeNET DILI phenotypes in the testing set. The machine 

learning algorithms used are either Random Forest (RF) or Gradient 

Boosting Machine (GBM). Each row corresponds to the mean performance 

of 10 models trained using the PHH gene expression of the genes 

associated to each DILI phenotype. The “Mean” row corresponds to the 

average performance of each metric for all the phenotypes. 
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Supplementary Table 1 

 

Supplementary Table 1: List of associations between DILI phenotypes 

and genes from DisGeNET and GUILDify. The number “1” in the columns 

DisGeNET or GUILDify indicates that the phenotype-gene association 

comes from this source, and the number “0” indicates the opposite. 

The table is provided online at: 

https://github.com/structuralbioinformatics/CAMDA2019-

DILI/blob/master/outputs/tables/SupplementaryTable1.tsv  

 

 

Supplementary Table 2 

 

Supplementary Table 2: List of SMILES from the drugs of the analysis.  

The table is provided online at: 

https://github.com/structuralbioinformatics/CAMDA2019-

DILI/blob/master/outputs/tables/SupplementaryTable2.tsv  

 

 

Supplementary Table 3 

 

Supplementary Table 3: Tanimoto distance matrix between the drugs 

of the analysis.  

The table is provided online at: 

https://github.com/structuralbioinformatics/CAMDA2019-

DILI/blob/master/outputs/tables/SupplementaryTable3.tsv  
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Supplementary Table 4 

 

Supplementary Table 4: List of drug-target associations used in the 

analysis. The drug-target associations are retrieved from DGIdb, HitPick 

and SEA. The number “1” indicates a drug-target association, and the 

number “0” indicates the opposite. 

The table is provided online at:  

https://github.com/structuralbioinformatics/CAMDA2019-

DILI/blob/master/outputs/tables/SupplementaryTable4.tsv  

 

 

Supplementary Table 5 

 

Supplementary Table 5: Number of the drugs used in each step of the 

machine learning process. In parenthesis, the number of drugs when 

using “Targets” feature. 

 

Type of drug 

Number of drugs 

Complete 
dataset 

Training Testing 

DILIrank drugs 175 (172) 72 30 

DILI-Concern drugs 124 (121) 36 15 

Most-DILI-Concern drugs 37 (36) 11 4 

Less-DILI-Concern drugs 87 (85) 25 11 

No-DILI-Concern drugs 51 (51) 36 15 

Independent hold-out test 
dataset drugs 

55 (53)   
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Supplementary Table 6 

 

Supplementary Table 6: List of hepatotoxic genes from the study of 

Peng et al. (2019) and their overlap with the datasets of the article.  

The table is provided online at: 

https://github.com/structuralbioinformatics/CAMDA2019-

DILI/blob/master/outputs/tables/SupplementaryTable6.tsv  

 

 

Supplementary Table 7 

 

Supplementary Table 7: List of genes from the DILI Landmark gene 

signature (obtained from a non-parametric Wilcoxon test).  

The table is provided online at: 

https://github.com/structuralbioinformatics/CAMDA2019-

DILI/blob/master/outputs/tables/SupplementaryTable7.txt  
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Supplementary Table 8 

 

Supplementary Table 8: List of 20 target proteins that are targeted by 

the largest number of drugs from the independent hold-out dataset 

(Ambiguous-DILI drugs). In the table, we provide the number and 

percentage of interacting drugs from the independent hold-out dataset, and 

the number and percentage of interacting in total (from the 230 drugs of the 

dataset).  

 

Target 
name 

Num. drugs 
interacting 

(Ambiguous-DILI) 

% drugs 
interacting 

(Ambiguous-DILI) 

Num. drugs 
interacting 

(Total) 

% drugs 
interacting 

(Total) 

CYP2D6 18 32.7 92 40.0 

CYP3A4 17 30.9 100 43.5 

ABCB1 17 30.9 84 36.5 

CYP2C9 11 20.0 74 32.2 

CYP1A2 11 20.0 59 25.7 

DRD2 10 18.2 42 18.3 

HTR2A 9 16.4 45 19.6 

CYP3A5 8 14.5 46 20.0 

ADRA2B 8 14.5 41 17.8 

DRD1 8 14.5 34 14.8 

ADRA2C 8 14.5 34 14.8 

HTR1A 8 14.5 31 13.5 

SLC22A1 8 14.5 25 10.9 

ESR1 7 12.7 22 9.6 

CA1 7 12.7 15 6.5 

HTR2C 7 12.7 40 17.4 

ADRA2A 7 12.7 37 16.1 

HRH1 7 12.7 30 13.0 

ADRB1 7 12.7 24 10.4 

CYP2C19 6 10.9 40 17.4 
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The inner workings of a human organism are mediated by different 

interconnected biomolecules that interact between themselves to 

carry out their functions. In the era of big data, we have millions of 

records of biological information about these interactions available 

in public databases, but this information is spread and unorganized, 

making it impossible to comprehend. Here it is where network 

medicine emerges, providing tools to organize the biological 

information in networks, as well as algorithms to analyze it and 

understand better the molecular mechanisms of the human 

organism.  

 

My thesis has focused on developing network medicine tools and 

approaches for a better understanding of diseases and 

polypharmacology. From this point forward, I will proceed with the 

discussion of this thesis by explaining the contribution of my 

research to the field, its limitations and consider future 

developments. 

 

 

4.1. The identification of disease modules and 

their associated functions is key for the 

understanding of disease complexity 

 

Understanding the molecular complexity of human disease is one of 

the main objectives of this thesis. For this purpose, we developed 

GUILDify v2.0 (Article 3.1), a method to identify the modules 

associated to diseases in the PPI network and understand their 

molecular mechanisms and relationships. For the identification of 

disease modules, GUILDify uses a network-based diffusion 
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algorithm that extends the knowledge on disease-gene associations 

to calculate the impact of a disease through the PPI network. In this 

way, when assessing the molecular mechanism of a disease, the 

focus is not limited to the disease-gene associations (which are 

incomplete), but the effect to their interactions is also considered.  

 

Still, our knowledge on PPIs is incomplete: many interactions 

between proteins are yet to be discovered (4). For this reason, the 

use of network-based algorithms to assess the impact of a disease 

in the interactome might as well be inaccurate. To solve this problem, 

the new version of GUILDify also considers how the disease module 

perturbates some biological functions and pathways. Thanks to this 

addition, the information predicted by GUILDify is not limited to PPIs 

but extended to a functional level. 

 

Apart from inspecting the molecular mechanisms of diseases, the 

versatility of the algorithms of GUILDify make them useful for 

different applications. GUILDify has been previously applied to (i) 

find comorbidities across genetic diseases (92), (ii) construct PPI 

networks specific to breast cancer metastasis to the lung and brain 

(265), (iii) identify candidate genes for body size in sheep (266) and 

(iv) prioritize preeclampsia pathogenesis (267). Precisely, the 

methodology applied in Rubio et al. (92) has been implemented 

inside the new version of GUILDify web server to facilitate the study 

of comorbidities.  

 

Moreover, GUILDify has also been applied in other publications of 

this thesis, becoming a useful tool in a wide range of molecular 

contexts. In Appendix 6.3, GUILDify was used as a support tool to 

investigate the effect of Δ9-tetrahydrocannabinol in the mouse brain. 
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The GUILDify diffusion algorithms were used to identify proteins and 

pathways in the mouse interactome with the greatest association to 

proteins modulated by an amnesic dose Δ9-tetrahydrocannabinol. 

The analysis indicated a significant alteration of the proteasome 

function, since top scoring proteins were related to the proteasome 

system, a protein complex involved in ATP-dependent protein 

degradation. In Article 3.3 and Appendix 6.6, GUILDify was used 

as an alternative method to corroborate the mechanisms of action of 

drugs predicted by TPMS for specific diseases. In Article 3.3, 

GUILDify was used to identify the network modules associated to the 

diseases heart failure, macular degeneration, and the drug 

combination sacubitril/valsartan. 10 of the 30 proteins proposed by 

TPMS to identify heart failure patients at risk of developing macular 

degeneration were found among the union between the three 

network modules, corroborating the molecular context predicted by 

TPMS. In Appendix 6.6, GUILDify was used to calculate the network 

modules associated to the mechanisms by which SARS-CoV-2 

enters an organism and produces the infection (entry points), the 

effects produced by SARS-CoV-2 infection (acute respiratory 

distress), and their overlap with the proteins affected by the 

combination of the drugs melatonin and pirfenidone. We confirmed 

the effect of the combination in the entry points of the SARS-CoV-2 

infection, specifically the neighbors of furin and GRP-78, and some 

proteins associated with acute respiratory distress. In Article 3.4, 

GUILDify was used as a support tool to identify gene expression 

signatures associated to Drug-Induced Liver Injury (DILI) (see 

Chapter 4.5 for a more detailed discussion). Finally, in Appendix 

6.4, GUILDify was integrated as part of the InteractoMIX Galaxy 

platform, as part of different pipelines to facilitate the study of the 

interactome.   
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4.2. Endopharmacology: a promising field to 

repurpose drugs targeting shared pathways 

 

Network medicine not only focuses on improving our molecular 

knowledge on diseases but also on proposing specific treatments for 

them. In a work by Guney et al. (79), it was proposed that a drug was 

more prone to be effective against a disease if it was targeting the 

proteins within or in the immediate neighborhood of the 

corresponding disease module. The authors proposed a network-

based drug-disease proximity measure where they quantified the 

distance between the proteins in the disease module and the targets 

of the drug of interest, as described in Chapter 1.4.3.2. In Article 

3.2, we showed that using the proximity measure, we were able to 

uncover a higher number of pathways involved in autoimmune 

diseases than using conventional approaches such as gene or 

pathway overlap. The measure was also useful to reveal the 

relationships between these diseases.  

 

As the proximity measure proposed by Guney et al. (79) targets 

specific disease modules, in Article 3.2 we investigated if the 

approach could also be applied to target specific pathways shared 

by several disease modules. Biological pathways tend to crosstalk, 

i.e., they interact or influence each other. Therefore, pathway 

crosstalk plays an important role in modulating the pathophysiology 

of diseases (175) and many comorbid diseases are connected to 

each other in the interactome through proteins belonging to related 

pathways  (77,92,176). These intermediate pathways shared among 

diseases (e.g., on comorbid diseases) are called endophenotypes 

(177). 
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Endophenotypes have recently emerged as an attractive way to 

study the shared mechanisms between several diseases. Ghiassian 

et al. (179) addressed the endophenotypes of the inflammasome, 

thrombosome, and fibrosome, and described their roles in the 

progression of cardiovascular diseases. The characteristics of 

endophenotypes also make them the target options to treat 

comorbidities, but their role in pharmacology has not been properly 

investigated yet. 

 

Inspired by the study of Guney et al. (79), but targeting specifically 

the endophenotypes shared by disease modules, we have proposed 

a new drug repurposing approach called PxEA (Article 3.2). PxEA 

scores drugs based on the network-based proximity of their targets 

to the proteins of the pathways of interest (i.e., the common 

pathways of two diseases). The approach was first applied to identify 

drug repurposing candidates for autoimmune disorders. We 

investigated whether the drugs promiscuously used in these 

disorders target specifically the pathways associated with one 

disease or the pathways shared across the diseases. Using PxEA, 

we found common pathways between almost all autoimmune 

disorders and drugs potentially targeting these common pathways. 

Second, we also explored the potential endophenotypes shared by 

type 2 diabetes and Alzheimer’s disease, two diseases highly 

prevalent in our ageing society that are known to exhibit increased 

comorbidity (268,269). Among the top scoring drugs proposed by 

PxEA, we found orlistat, a drug indicated by type 2 diabetes which 

has been suggested for the treatment of Alzheimer’s disease (270). 

 

The role of endophenotypes in different diseases has been 

previously studied using a network medicine vision (179), but this is 
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the first study proposing actual therapeutic options to target 

endophenotypes. Thus, with PxEA we are paving the way towards 

endopharmacology, a new field inside network medicine focused on 

understanding the molecular mechanisms of endophenotypes and 

proposing drug candidates that target them. 

 

 

4.3. Limitations of network medicine tools when 

representing a perturbation in the network 

 

The main limitation in the previous approaches is to omit that, in 

some cases, the PPI network has an inherent directionality. Although 

the model of PPI network considered in most of network medicine 

studies is undirected, in reality there is a direction in some 

interactions of the network (271). For example, the perturbation of 

the elements of the network caused by internal or external factors 

(e.g., the perturbation of proteins caused by a disease or the 

interactions of target proteins with a drug) can provoke their 

activation or inhibition, consequently causing a signal that may affect 

the other elements of the network. These perturbations can be 

mimicked by diffusion, clustering or proximity algorithms, but usually 

these algorithms do not take into account which elements are 

activated and which ones are inhibited, failing to represent the type 

of perturbation of these elements. Guney et al. (79) already 

discussed about this limitation, stating that the network proximity 

algorithm does not imply that a proximal drug will improve the 

corresponding disease. The drug could even induce the disease 

state instead of inhibiting it.  
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The same limitation applies to the Articles 3.1 and 3.2 of this thesis. 

In the case of PxEA (Article 3.2), the identification of drugs that are 

close to endophenotypes does not imply that the drugs will be 

effective to treat the diseases associated to the endophenotypes. It 

implies that the drugs will be more likely to perturbate the crosstalk 

between pathways in the endophenotypes, but not the way in which 

this perturbation may affect a disease. In the case of GUILDify 

(Article 3.1), the limitation is similar: the diffusion algorithms of 

GUILDify can simulate a perturbation that starts from the disease-

associated genes, but it is not possible to know the type of 

perturbation in each protein, and therefore the transmission of the 

perturbation may not be correct.  

 

To overcome this limitation, we can use other types of data that 

guide the effect of the perturbation in the network. Gene expression 

data from perturbation samples may be a useful resource to evaluate 

the impact of a drug in a set of genes. Projects such as the L1000 

platform of CMap (224) facilitate this task, providing an extensive 

dataset of perturbation cell line samples from thousands of 

compounds. Do Valle et al. (272) have started incorporating gene 

expression data from CMap to validate network proximity predictions 

between polyphenol targets and disease modules. In their study, the 

authors used an enrichment score to measure the 

overrepresentation of disease genes among the most perturbated 

genes by polyphenols according to gene expression samples. They 

observed that the diseases that are more proximal to polyphenol 

targets show higher perturbation values in gene expression samples 

than distal diseases. Still, they only use gene expression data as a 

validation of the proximity measure, but they do not check if the 

expression of the polyphenols counteracts the expression of the 
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disease-associated proteins. This is still very limited by the quantity 

and quality of gene expression data available on disease and drug 

perturbations. 

 

 

4.4. Modelling perturbations with TPMS: 

transmitting a signal of activation or 

inactivation through the network 

 

One of the solutions to this limitation is given in Article 3.3 by the 

approach of TPMS. TPMS simulates how a stimulus (i.e., proteins 

activated or inhibited by a drug) produces a response (i.e., 

counteraction of proteins induced or inhibited by a disease) in the 

PPI network. The data from the drug is retrieved from drug target 

databases such as DrugBank (199), PubChem (214), STITCH (215) 

and SuperTarget (212), whereas the data for the phenotype is 

retrieved from the private repository Biological Effectors Database 

(BED) (273,274). The algorithm transmits the perturbation from the 

drug targets to the disease proteins by mimicking a neural network 

(where the proteins are the neurons, and the edges of the network 

are used to transfer the signal). Therefore, it assigns a signal value 

between -1 (inhibition) and +1 (activation) to all the proteins in 

between the input and output signals. These values are optimized 

following an iterative process, obtaining in the end a final set of 

potential solutions. By defining a set of restrictions that come both 

from the topology of the network and from gene expression datasets, 

these solutions are evaluated and ranked. Using this approach, we 

are able to simulate the mechanism of action of a drug taking into 
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account the type of perturbations provoked by the drug, and how 

they modulate and counteract the disease-associated proteins.  

 

TPMS not only simulates the signal, by considering the activation or 

inactivation of proteins by the drug, but also predicts all possible 

mechanisms of action according to the restrictions. Therefore, TPMS 

is simulating all the possible responses of a drug that we could find 

in real life without using data from patients. The main limitation, 

though, is that we are not able to know if these mechanisms of action 

are happening or not in real patients. It could be the case that some 

of these mechanisms of action are never represented, whereas 

others are more common. But this is impossible to know without 

using data from real patients. Another limitation of TPMS is that the 

signal transmitted through the network is not a real measure. It is just 

a qualitative measure to predict which proteins could be activated or 

inactivated after the intake of the drug. It would be interesting for the 

future to incorporate real quantitative measures such as the dosage 

of the drug or the quantity of expression of proteins in the models. 

 

 

4.5. Using network medicine as a support tool 

to identify gene signatures and model drug 

adverse reactions 

 

As seen during the thesis, network medicine can create reliable 

models of the molecular mechanisms of diseases or drugs. In a 

similar way, it can also be a tool to understand better drug-adverse 

reactions. In Article 3.4, we developed a machine learning approach 

to predict Drug-Induced Liver Injury (DILI) using an ensemble of 
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different types of data (gene expression, structural features, drug-

target associations). We leveraged gene expression data from 

CMap to find a specific DILI gene signature that could be used as a 

feature to predict the drugs producing the adverse reaction. Here, 

network medicine was not directly applied to model the drug adverse 

reaction, but it was used as a tool to identify a specific DILI gene 

signature. Specifically, we applied GUILDify to extend the current 

knowledge of DILI-associated genes obtained from DisGeNET. 

 

The results of the majority of approaches tested were comparable 

with the ones from previous publications (260,261). However, the 

accuracy of the best performing classifier was around the 70% mark, 

stating the limitations of predicting DILI. This may be explained by 

different factors: 

 

(1) The inherent variability and noise of the gene expression 

dataset: CMap collects gene expression signatures obtained 

from cell lines upon treatments with different drug 

concentrations and durations. We decided to focus on the 

drugs tested at the highest concentration (10 μM) and for the 

longest treatment duration (24 h) in the “Primary Human 

Hepatocytes” cell line. Still, the heterogeneity of 

transcriptomics response in DILI is very high, hindering the 

predictions solely based on gene expression.  

 

(2) The reduced size and imbalance of the gold standard: 

The gold standard is comprised of 124 drugs labelled as DILI 

(37 as Most-DILI-Concern and 87 as Less-DILI-Concern) 

and 51 labelled as no DILI. The reduced size of the training 
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and testing datasets, and the imbalance between different 

DILI labels makes the prediction more challenging. 

 

(3) The important genetic diversity between the different 

DILI-related phenotypes: We manually identified a list of 9 

phenotypes closely related with DILI. When comparing their 

phenotype-gene associations, we observe a very small 

overlap of genes between them, reflecting the diversity of 

phenotypes considered inside the DILI term, and the 

challenge associated to predict DILI based solely on gene 

expression. 

 

(4) The great structural diversity between the drugs 

reported as DILI-Concern: When plotting the drug-drug 

structural similarity between the drugs of the gold standard, 

we observe that drugs of the same group did not have higher 

similarity among them than with other groups. This indicates 

that there is a considerable structure heterogeneity within the 

Most-DILI-Concern group of drugs, which complicates the 

prediction using chemical structure. 

 

In the case of the gene signature obtained through network medicine 

(by means of the GUILDify web server), the quality of the prediction 

decreased with respect to using solely phenotype-gene 

associations. This is possibly because when expanding the number 

of genes in the signature using GUILDify, the intrinsic noise in the 

gene expression dataset increases as well, complicating the 

prediction. 
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Still, here we show how network medicine applications can be used 

to support other approaches, as they improve the understanding of 

the molecular context. Moreover, we think that the modelling and 

prediction of the DILI could be improved in the future if instead of 

focusing on gene expression signatures, we apply network medicine 

approaches such as the detection of disease modules or proximity 

measure between the adverse drug reaction and the drug targets. 

 

 

4.6. The integration of molecular interactions is 

the basis of network medicine research 

 

Network medicine applications usually rely in a model of the 

interactome (usually a PPI network) as the basis from which the 

analyses are performed and conclusions are extracted (see Articles 

3.1 to 3.4). The incompleteness of the PPI network is yet one of the 

main limitations in network medicine studies (76). The more 

complete the model of the interactome is, the more accurate the 

predictions associated with the model will be. Therefore, the first step 

in network medicine research is to accurately model the PPI network 

of the species of interest. To do so, it is necessary to integrate PPI 

data by taking into account the five main challenges explained in 

Chapter 1.1.6: (1) PPI data is spread across multiple repositories 

(e.g. databases and publications); (2) the nomenclature of the 

proteins is different; (3) there are different formats to store PPIs; (4) 

the reliability of the PPI data varies on each experiment; and (5) 

tissue-specific interactions are not generally considered. 
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To study these challenges, we used the software BIANA (62), which 

gives flexibility to integrate biological molecules and interactions 

from different databases and derive networks. BIANA has been 

updated three times during the thesis period (June of 2017, May of 

2018 and April of 2020). The updates included the parsing of the 

following types of biological data: 

 

 Protein information (including gene and protein names, 

identifiers, sequence, structure, family, species, pathways) 

from Uniprot (109), NCBI Gene (275), HGNC (276), Gene 

Ontology (277) and Reactome (278). 

 Protein-protein interactions from IntAct (51), BioGRID 

(52), HIPPIE (64), ConsensusPathDB (59), I2D (61) and 

InnateDB (279). 

 Drug information (including drug name, indication, drug-

target associations, drug-drug associations, ATC) from 

DrugBank (199), DrugCentral (200), DGIdb (201), ChEMBL 

(202) and TTD (205). 

 Disease-gene associations from DisGeNET (110).  

 

BIANA allowed the creation of the biological networks that served as 

basis of the research projects presented during this thesis. 

 

 

4.7. Studying the interactome with atomistic 

and structural level of detail  

 

For an accurate representation of the interactome, it is key to provide 

tools to study the proteins and their interactions in a structural level 
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of detail. The structures of proteins and PPIs permit a more precise 

understanding of their functioning. During this thesis, I had the 

opportunity to contribute to several side-projects related with the 

identification and evaluation of the structure of proteins and PPIs. 

These projects nurtured my knowledge on proteomics and 

interactomics, which are closely related with network medicine. 

 

First, I contributed to the publication of the stand-alone program 

MODPIN (Appendix 6.5) for the prediction of PPI structures based 

on comparative modelling. MODPIN uses comparative modelling to 

obtain an ensemble of structural models of the PPI. These models 

are clustered according to common structural elements in their 

interfaces and evaluated using scoring functions.  

 

I also participated in the publication of BADock (Appendix 6.1), a 

tool to predict the binding affinity of PPIs without requering the 

structure of the complex. Normally, most of the methods to predict 

the binding affinity of a PPI require the structure of the complex. 

BADock only requires as input the unbound structure of the proteins 

involved in the interaction. BADock uses docking techniques to 

explore all the potential conformations of the interaction and employs 

a regression-based classifier to infer the binding affinity of the protein 

complex. 

 

Additionally, I was the first author in the publication of the SPServer 

(Appendix 6.7), a web server to evaluate the quality of protein folds 

and PPI structures based on knowledge-based potentials (see 

Chapter 1.1.5.3 for a more detailed explanation). The innovative 

point in SPServer is its accessibility: an easy-to-use interface 

designed to facilitate its use and interpretation of the results. The 
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resulting scores are displayed as interactive graphics that permit the 

user to compare the quality of multiple structures at the same time. 

 

Finally, I also contributed to the construction of InteractoMIX 

(Appendix 6.4), a Galaxy-based platform for the study of PPI data. 

In InteractoMIX, we integrated several bioinformatics tools such as 

GUILDify, BIANA, MODPIN or BADock, and designed several 

pipelines to facilitate and communicate their use on the study of the 

interactome.   

 

 

4.8. Facilitate the access to network medicine 

tools is one of the keys of this thesis  

 

One of the main problems of bioinformatics in general and network 

medicine in particular is that their methods are not user-friendly. 

Most of the approaches are theoretical approximations or 

standalone programs, developed by specialists whose use is not 

trivial to non-expert users.  

 

To solve this demand, GUILDify (Article 3.1)  emerges as an easy-

to-use network medicine web server, permitting an accessible 

identification of disease modules, disease-disease relationships and 

drug repurposing. The interface of GUILDify is designed to be simple 

and intuitive. For a new search, the user only has to introduce a 

disease or drug name in a Google-like search bar, and the web 

server directly provides the user with disease-associated genes or 

drug targets associated with the input. Then, the user needs to select 

the genes of interest and continue, and the web server calculates 
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the module associated to the disease or drug and provides an 

intuitive results page. The results page includes a network 

visualization powered by cytoscape.js (263), and detailed tables of 

the top-scoring proteins conforming the network module and the 

enriched biological functions and pathways. Thus, the web allows to 

perform a complex network medicine analysis in a few easy steps 

without complications. 

 

Following the same concept of user-friendliness as GUILDify, we 

also designed the SPServer (Appendix 6.7) as an easy-to-use web 

server to evaluate models of protein folds and PPIs. Many scientists 

in the field of proteomics and interactomics need to deal with 

structural models of proteins and complexes, and there are very few 

web servers offering an easy, interactive evaluation of models. With 

this idea in mind, we developed SPServer, so that a non-specialized 

user can perform an evaluation of models in few steps and obtain 

interactive graphics that facilitate the interpretation and comparison 

of results.  

 

Finally, some of these tools have been integrated in the Galaxy-

based platform InteractoMIX (Appendix 6.4), for an easier 

integration. Galaxy is a web-based platform to integrate 

bioinformatics tools and analyze large biomedical datasets (50). 

During the last few years, Galaxy is becoming the reference platform 

for accessibility and reproducibility of bioinformatics tools. Therefore, 

the inclusion of network medicine tools such as GUILDify or BIANA, 

and other structural bioinformatics tools such as MODPIN or BADock 

in a Galaxy platform is key for its accessibility to a wider and non-

specialized audience. 
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4.9. Future perspectives in the field of network 

medicine  

 

Network medicine emerges as the field that organizes the biological 

interactions of the organism in networks, with the objective of 

understanding the molecular complexity of diseases and find better 

treatments. Since the birth of the field, in 2007 (280), network 

medicine has evolved rapidly. It is merging with multiple other fields 

such as machine learning, network pharmacology or 

pharmacogenomics, and giving place to important consortiums such 

as the International Network Medicine Consortium (181). However, 

network medicine is still a very young field that needs to address 

some limitations to mature and expand. For the sake of examples, 

we may consider: (1) how to integrate different types of data to 

represent an interactome as complete as possible; (2) how to 

represent the signal of the network perturbations provoked by drugs 

and diseases; and (3) how to personalize the models for specific 

patients. Finally, novel approaches, such as the construction of 

multi-layered networks or the analysis of multi-omics datasets are 

leading the expansion of network medicine towards more precise 

and personalized models. 
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In this thesis, we have developed a series of network medicine in 

silico tools and studies with the aim to understand better the 

molecular mechanisms of diseases and polypharmacology. We 

have reached the following conclusions: 

 

 The incorporation of biological functions and pathways as an 

extension of the analysis of the molecular interactions 

perturbated by drugs and diseases improves the 

understanding of their molecular mechanisms and 

relationships. 

 

 GUILDify v2.0 pioneers in being one of the most user-friendly 

network medicine tools, allowing complex network medicine 

analyses such as the identification of disease modules, 

disease-disease relationships and drug repurposing in a few 

steps.  

 

 The arsenal of functionalities provided by the update of 

GUILDify has been proofed useful in a wide range of 

applications: 

 
o Identify proteins and pathways in the mouse 

interactome with the greatest association to proteins 

modulated by an amnesic dose Δ9-

tetrahydrocannabinol (Appendix 6.3). 

 

o Contextualize the predictions of mechanisms of 

action of the drug made by alternative network 

medicine tools (Article 3.3 and Appendix 6.6). 
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o Guide the prediction of gene signatures associated to 

DILI (Article 3.4). 

 

 PxEA permits to repurpose drugs targeting endophenotypes. 

We demonstrated its application in two different scenarios: 

 
o Identifying the common pathways shared by almost 

all autoimmune diseases and proposing drug 

candidates targeting them. 

 

o Exploring the pathways shared by type 2 diabetes 

and Alzheimer’s disease, and finding orlistat among 

the top scoring drugs, which is a drug indicated by 

type 2 diabetes that has been suggested by the 

treatment of Alzheimer’s disease. 

 

 In co-authorship with Guillem Jorba from Anaxomics Biotech 

S.L., we used TPMS to identify a list of mechanisms of action 

of the drug combination sacubitril/valsartan to treat heart 

failure and/or produce macular degeneration.  

 

 We developed a methodology to associate the mechanisms 

of action identified by TPMS to different classes of prototype-

patients and identify biomarker proteins that allow the 

differentiation of prototype-patients. 

 

 We integrated different types of omics data (gene 

expression, structural features, drug-target associations) as 

features for a machine learning ensemble and assessed their 

accuracy in predicting DILI. 
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In this section, I include other publications where I contributed during 

my thesis.   

 

 

6.1. On the mechanisms of protein interactions: 

predicting their affinity from unbound 

tertiary structures 

 

Most of the computational methods to predict the binding affinity of 

PPIs require the structure of the protein complex, which in many 

cases is difficult to obtain. In Marín-López et al., we presented a 

novel method called BADock to predict the binding affinity of PPIs 

only based on the structure of the unbound protein structures, thus 

overcoming this limitation.  

 

In this article, I contributed to the assessment of the method using 

different benchmarks, and also in the preparation of a web that 

permits to use BADock in an intuitive way. 

 

 

 

 

Marín-López MA, Planas-Iglesias J, Aguirre-Plans J, Bonet J, 

Garcia-Garcia J, Fernandez-Fuentes N, Oliva B. On the 

mechanisms of protein interactions: predicting their affinity from 

unbound tertiary structures. Bioinformatics. 2018; 34(4):592-

598. DOI: 10.1093/bioinformatics/btx616 

 

https://doi.org/10.1093/bioinformatics/btx616
https://doi.org/10.1093/bioinformatics/btx616
https://doi.org/10.1093/bioinformatics/btx616
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6.2. Network, Transcriptomic and Genomic 

Features Differentiate Genes Relevant for 

Drug Response 

 

In Piñero et al., we compiled drug-target associations to characterize 

their transcriptomics, genomics and network features. We classified 

the drug-target associations in three classes: (i) TARGET, if they 

mediated the therapeutic effects of drugs; (ii) METAB, if they acted 

as drug transporters, carriers, or enzymes, involved in the drug 

absorption, distribution and metabolism; and (iii) TOXPROT, if they 

were associated to side effects or toxicity phenotypes of drugs. We 

explored the properties of these proteins within different global or 

organ-specific interactomes using multi-scale network features.  

 

I compilated and integrated data to create several of the global and 

organ-specific interactomes, and participated in the review and 

discussion of the results. 

 

 

 

 

 

  

Piñero J, Gonzalez-Perez A, Guney E, Aguirre-Plans J, Sanz F, 

Oliva B, Furlong LI. Network, Transcriptomic and Genomic 

Features Differentiate Genes Relevant for Drug Response. Front 

Genet. 2018; 9:412. DOI: 10.3389/fgene.2018.00412 

 

https://doi.org/10.3389/fgene.2018.00412
https://doi.org/10.3389/fgene.2018.00412
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6.3. Δ9-tetrahydrocannabinol modulates the 

proteasome system in the brain 

 

In Salgado-Mendialdúa et al., we analyzed, through a proteomic 

screening of hippocampal synaptosomal fractions, those proteins 

and pathways modulated 3 hours after a single administration of an 

amnesic dose of Δ9-tetrahydrocannabinol 

 

I contributed to the article by applying GUILDify v2.0 to identify the 

proteins and pathways in the mouse interactome with the greatest 

association to the proteins modulated by the amnesic dose of Δ9-

tetrahydrocannabinol. A functional enrichment analysis of the top-

scoring proteins by the GUILDify algorithm showed a significant 

over-representation of metabolic processes involving mitochondrial 

physiology and cellular respiration, as well as cytoskeletal 

reorganization pathways. It also pinpointed the proteasome complex 

among the pathways enriched in down-regulated proteins. 

 

 

 

 

Salgado-Mendialdúa V, Aguirre-Plans J, Guney E, Reig-Viader 

R, Maldonado R, Bayés À, Oliva B, Ozaita A. Δ9-

tetrahydrocannabinol modulates the proteasome system in the 

brain. Biochem Pharmacol. 2018; 157:159-168. DOI: 

10.1016/j.bcp.2018.08.026 

 

https://doi.org/10.1016/j.bcp.2018.08.026
https://doi.org/10.1016/j.bcp.2018.08.026
https://doi.org/10.1016/j.bcp.2018.08.026
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6.4. Galaxy InteractoMIX: An Integrated 

Computational Platform for the Study of 

Protein-Protein Interaction Data 

 

Mirela-Bota et al. describes InteractoMIX, a Galaxy-based platform 

for the study of PPI data. In InteractoMIX, we integrated several 

genomics, proteomics and interactomics tools and designed several 

pipelines to facilitate and communicate their use on the study of the 

interactome. 

 

This study was made in collaboration with the current and former 

methods of the Bioinsilico (UVic) and Structural Bioinformatics (UPF) 

groups. My contribution was to allow the use of the network medicine 

tools BIANA and GUILDify through the platform. I also participated 

in the preparation of the manuscript. 

 

  

Mirela-Bota P, Aguirre-Plans J, Meseguer A, Galletti C, Segura 

J, Planas-Iglesias J, Garcia-Garcia J, Guney E, Oliva B, 

Fernandez-Fuentes N.  Galaxy InteractoMIX: An Integrated 

Computational Platform for the Study of Protein-Protein 

Interaction Data. J Mol Biol. 2020; 166656. DOI: 

10.1016/j.jmb.2020.09.015 

 

https://doi.org/10.1016/j.jmb.2020.09.015
https://doi.org/10.1016/j.jmb.2020.09.015
https://doi.org/10.1016/j.jmb.2020.09.015
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6.5. Using collections of structural models to 

predict changes of binding affinity caused 

by mutations in protein–protein 

interactions 

 

Meseguer et al. describes MODPIN, a tool to model the atomic 

structure of PPI complexes through comparative modelling. 

MODPIN automatizes the comparative modelling process to obtain 

an ensemble of structural models of the PPI of interest. These 

models are clustered according to common structural elements in 

their interfaces and evaluated using different scoring functions. 

MODPIN has been applied to predict changes of binding affinity 

caused by mutations affecting PPIs. 

 

I contributed to the study by compiling one of the datasets used for 

the testing of the method, and I also discussed and reviewed the 

results of the different analyses.   

 

 

 

 

Meseguer A, Dominguez L, Bota PM, Aguirre-Plans J, Bonet J, 

Fernandez-Fuentes N, Oliva B. Using collections of structural 

models to predict changes of binding affinity caused by mutations 

in protein–protein interactions. Protein Sci. 2020; 29(10):2112-

2130. DOI: 10.1002/pro.3930 

 

https://doi.org/10.1002/pro.3930
https://doi.org/10.1002/pro.3930
https://doi.org/10.1002/pro.3930
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6.6. In-silico drug repurposing study predicts 

the combination of pirfenidone and 

melatonin as a promising candidate therapy 

to reduce SARS-CoV-2 infection 

progression and respiratory distress 

caused by cytokine storm 

 

In Artigas et al., we described the use of the network medicine tools 

TPMS and GUILDify to predict drug repurposing candidates for the 

treatment of COVID-19. TPMS was used to unveil the mechanisms 

of action of different drugs on proteins associated to different 

mechanisms by which SARS-CoV-2 enters an organism, produces 

the infection and the adverse reactions associated. We identified the 

drug combination of melatonin and pirfenidone as a promising 

candidate because of its potential to reduce the infection of the virus 

and its good safety profile. 

 

I contributed to the study by applying GUILDify to identify the disease 

modules associated to the infection of SARS-CoV-2 (entry points), 

the effect of the infection (acute respiratory distress) and their 

overlap with the proteins targeted by the drugs melatonin and 

pirfenidone. The network medicine study confirmed a potential effect 

of the combination of pirfenidone and melatonin in the entry points 

of the SARS-CoV-2 infection, specifically the neighbors of furin and 

GRP-78, and some proteins associated with ARD. I also participated 

actively in the writing and reviewing of the manuscript and the 

analysis of results. 
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Artigas L, Coma M, Matos-Filipe P, Aguirre-Plans J, Farrés J, 

Valls R, Fernandez-Fuentes N, de la Haba-Rodriguez J, Olvera 

A, Barbera J, Morales R, Oliva B, Mas JM.  In-silico drug 

repurposing study predicts the combination of pirfenidone and 

melatonin as a promising candidate therapy to reduce SARS-

CoV-2 infection progression and respiratory distress caused by 

cytokine storm. PLoS One. 2020; 15(10):e0240149. DOI: 

10.1371/journal.pone.0240149 

 

https://doi.org/10.1371/journal.pone.0240149
https://doi.org/10.1371/journal.pone.0240149
https://doi.org/10.1371/journal.pone.0240149
https://doi.org/10.1371/journal.pone.0240149
https://doi.org/10.1371/journal.pone.0240149
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6.7. SPServer: split-statistical potentials for the 

analysis of protein structures and protein-

protein interactions 

 

This article describes the SPServer, a web server that applies 

knowledge-based potentials to score and analyze the structure of 

protein folds and PPIs. SPServer integrates the analysis of protein 

folds and PPIs in a unique, easy-to-use web. 

 

As a first author of this publication, I have contributed to the 

development of the web server, testing of the method, analysis of 

results and writing of the manuscript. As this publication is closer to 

a structural bioinformatics perspective and more distant from the 

network medicine field, I decided to include this publication here in 

the appendix of the thesis rather than in the main results. 

 

 

 

 

 

Aguirre-Plans J, Meseguer A, Molina-Fernandez R, Marín-

López MA, Jumde G, Casanova K, Bonet J, Fornes O, 

Fernandez-Fuentes N, Oliva B. SPServer: split-statistical 

potentials for the analysis of protein structures and protein-

protein interactions. BMC Bioinformatics. 2021; 22(1):4. DOI: 

10.1186/s12859-020-03770-5 

 

https://doi.org/10.1186/s12859-020-03770-5
https://doi.org/10.1186/s12859-020-03770-5
https://doi.org/10.1186/s12859-020-03770-5
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