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Abstract 
 
Assessing the hydrological response and suspended sediment transport in rivers is 
fundamental to improve the knowledge and management of water resources, floods, 
droughts, transmission of pollutants and soil erosion at catchment scale. The 
Mediterranean regions received special attention due to the seasonality of their 
climate, which promotes large differences in water resources availability between 
years and seasons. Furthermore, the land cover of most Mediterranean catchments 
have been strongly modified by humans over millennia creating a complex 
landscape causing a significant influence on the hydrosedimentary behaviour of 
fluvial systems.  

This thesis aims to determine the effects of basin lithology, land uses and temporal 
scales on runoff generation and suspended sediment transport dynamics in 
representative Mediterranean catchments. Continuous measurements in 
hydrometric stations were used over a five-year period at: 

a) Small Mediterranean catchments (i.e. < 10 km2) characterised by contrasting 
land uses and lithology, where rainfall-runoff relationships were carried out at 
multiple temporal scales to achieve a better understanding of the hydrological 
response.  

b) A representative small mid-mountainous Mediterranean catchment (i.e. Es 
Fangar, 3.4 km2), where the role of soil moisture in water and suspended 
sediment fluxes were investigated during five hydrological years.  

c) Two medium size Mediterranean catchments (i.e. Búger in Mallorca, 68.2 km2; 
Carapelle, in Southern Italy, 506 km2) selected to analyse the most relevant 
driven factors affecting the flow regime and to quantify the runoff and 
suspended sediment yields at different temporal scales. 

In the small Mediterranean catchments, the assessment of the hydrological 
response at multiple temporal scales depicted how non-linearity increased from 
annual to event scale in the rainfall-runoff relationships according to basin lithology. 
At the annual scale, the rainfall-runoff relationship in impervious catchments 
showed a significant linearity, whereas pervious lithology increased substantially 
the non-linearity of this relationship. A large intra-annual variability was observed 
in the seasonal runoff contribution according to the dynamics of rainfall and 
evapotranspiration throughout the year that leads to a succession of wet (winter), 
dry (summer) and transition periods (last autumn and early spring). Such periods 
generated different seasonal catchment moisture conditions for runoff generation 
at the event scale, being a breakdown point for the non-linearity of the rainfall-
runoff relationship. As a result, at the event scale the non-linearity of the seasonal 
rainfall-runoff relationship increased from spring and winter to summer. 
Furthermore, differences in runoff amount and rainfall-runoff linearity were 
observed in relation to lithology and land use characteristics. The event scale 
rainfall-runoff relationships showed that floods occurred in catchments with 
impervious lithology had stronger linearity and larger runoff values than 
catchments with pervious lithology. In addition, the assessment of rainfall-runoff 
relationships according to land uses showed how agriculture promoted the highest 
correlations attributable to lower vegetation cover.  
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In the small mid-mountainous Es Fangar catchment and also in the medium size 
Búger and Carapelle catchments, the spatial distribution of physical driving factors 
(lithology and land cover) and human structures (terraces and check dams) 
influenced the annual sediment yields. In Es Fangar and Búger catchments, the 
afforested headwaters characterised by carbonate materials promoted low runoff 
and suspended sediment response. Lowland areas were characterised by higher 
suspended sediment availability than headwaters due to higher coupling with the 
main channel system in areas with deeper soil profiles over softer marl soils 
predominantly covered by rainfed herbaceous crops. However, in these areas soil 
conservation structures avoided rill erosion, laminated runoff and retained soil. In 
Carapelle catchment, median annual sediment yield were two orders of magnitude 
higher (i.e. 267.8 t km2 yr-1) than in Es Fangar (i.e. 4.5 t km2 yr-1) and Búger (i.e. 1.4 
t km2 yr-1) catchments because agricultural areas with seasonal vegetation cover 
and less pervious materials were the driving factor of suspended sediment 
transport. Additionally, collapsed check dams in Carapelle promoted riverbed 
erosion increasing the sediment supply. A large inter- and intra-annual variability 
of the sediment load was also observed. As a result, the seasonal assessment in Es 
Fangar and Búger catchments showed that >80% of sediment was generated during 
autumn and winter. At the event scale, soil moisture and rainfall depth accumulated 
during one day before the event strongly correlated with the runoff response in Es 
Fangar and Búger catchments because limestone lithology promoted a high 
threshold for runoff generation. This process was observed mainly during wet 
periods, when the highest values of runoff, peak discharge and sediment load were 
recorded. In Es Fangar catchment, runoff and peak discharge showed the closest 
correlations with sediment load, being most significant in autumn and winter. In the 
Carapelle catchment, the largest sediment contributions were controlled by rainfall 
amount and intensities and largest runoff events, suggesting that the larger area 
covered by agriculture controlled the hydrological response and suspended 
sediment transport. In Es Fangar and Búger catchments, the highest frequency of 
clockwise discharge-suspended sediment concentration hysteresis revealed that 
most of the sediment was generated from nearby sources, illustrating the strong 
influence of the spatial distribution of basin lithology, land use and terraces on the 
suspended sediment transport. Thus, in Es Fangar catchment the soil moisture-
discharge hysteresis illustrated how high moisture content during the wet period 
enabled the increase of flow and sediment conveyance by activating less available 
sediment sources as counter-clockwise discharge-suspended sediment 
concentration hysteresis occurred. In the Carapelle catchment, the highest 
frequency of counter-clockwise discharge-suspended sediment concentration 
hysteresis confirmed that the larger area of agricultural land promoted the sediment 
availability from the whole catchment. 

The results of this thesis confirmed that physical driving factors (lithology and land 
cover) and the conservation state of human structures (terraces and check dams) 
exerts a strong control in the hydrological response and suspended sediment 
transport. The spatial distribution, patchiness and interaction between these 
driving factors explained water and sediment yields of the study catchments. The 
analysis of the runoff response and suspended sediment transport from the annual 
to the event scale allowed to identify the hydro-meteorological driving factors and 
how these are related to the physical and human features of the catchments. The 
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characterization of catchment features from a evidence-based approach has 
demonstrated to be essential for understanding the hydrosedimentary response to 
move towards an integrated management catchment process useful to simulate 
multiple future scenarios of land use and climate change. 

 

Keywords: Mediterranean catchments, runoff generation, suspended sediment 

transport, physical drivers, antecedent conditions, soil conservation structures  
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Resum 
 
Avaluar la resposta hidrològica i el transport de sediment en suspensió a escala de 
conca de drenatge és fonamental per millor el coneixement i la gestió dels recursos 
hídrics, inundacions, sequeres, transmissió de contaminats i l’erosió del sòl. La regió 
mediterrània ha rebut una atenció especial ja que l’estacionalitat del seu clima 
promou grans diferències en la disponibilitat dels recursos hídrics entre anys i 
estacions. A més, els usos del sòl de la majoria de les conques mediterrànies han 
estat modificats per l’home durant segles creant -amb la interacció de la litologia- 
un paisatge complex, el qual influencia la resposta hidrològica i el transport de 
sediment.  

Aquesta tesi té com a objectiu determinar els patrons d’escolament i  les dinàmiques 
del transport de sediment en suspensió en conques mediterrànies representatives, 
avaluant com aquests patrons canvien al llarg del temps a causa de la variabilitat 
inter- i intra-anual. La monitorització contínua del cabal i la concentració del 
sediment en suspensió a partir de xarxes hidromètriques s’ha analitzat durant un 
període de cinc anys a: 

a) Petites conques de drenatge mediterrànies (i.e. < 10 km2) caracteritzades per 
usos del sòl i litologies, on la relació precipitació-escolament a múltiples 
escales temporals  es va dur a terme per comprendre millor la seva resposta 
hidrològica.  

b) Una petita conca mediterrània representativa de mitja muntanya (Es Fangar; 
3,4 km2), on el paper de la humitat del sòl en els fluxos d’aigua i sediment en 
suspensió s’analitzaren durant cinc anys hidrològics.  

c) Dues conques mediterrànies (Búger 68,2 km2 i Carapelle 506 km2) foren 
seleccionades per tal d’identificar els factors principals que influeixen en el 
règim hidrològic i quantificar la generació d’escolament i el transport de 
sediment en suspensió a diverses escales temporals. 

A les conques mediterrànies petites,  l’avaluació a múltiples escales temporals de la 
resposta hidrològica mostrà com la no linealitat de la relació precipitació-
escolament incrementà de l’escala anual a l’escala d’episodi. A escala anual, la relació 
precipitació-escolament mostrà una linealitat significativa en conques de litologia 
impermeable, mentre que la no linealitat incrementà en conques de litologia 
permeable. Una gran variabilitat intra-anual s’observà a la contribució estacional de 
l’escolament en concordança a les dinàmiques de precipitació i l’evapotranspiració 
al llarg de l’any, els quals van generar una successió de períodes humits (hivern), 
secs (estiu) i de transició (final de tardor i principi de primavera). Aquests períodes 
generaren diferents condicions estacionals de la humitat del sòl a la conca per a la 
generació d’escolament a escala d’episodi, sent-ne el punt clau de partida per a la no 
linealitat en la relació precipitació-escolament. Com a resultat, a escala d’episodi la 
no linealitat estacional de la relació precipitació-escolament incrementà des de 
l’hivern i la primavera fins a l’estiu. A més, s’observaren diferències en el volum 
d’escolament i la linealitat de la precipitació-escolament segons la litologia i els usos 
del sòl. En concordança amb els resultats obtinguts a escala anual, els episodis en 
conques de litologia impermeable tingueren una major linealitat i  un major volum 
d’escolament que els episodis de les conques amb litologia impermeable. Endemés, 
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la relació precipitació-escolament establerta sota diferents usos del sòl mostrà com 
els usos agrícoles obtingueren la correlació més alta a causa d’una menor cobertura 
vegetal.  

A les conques des Fangar, Búger i Carapelle els valors anuals d’exportació de 
sediment obtinguts estan influenciats per la distribució espacial dels factors físics 
(litologia i usos del sòl) i les estructures antròpiques (marjades, parats i preses de 
laminació). A les conques des Fangar i Búger, les capçaleres aforestades 
caracteritzades per materials carbonatats varen promoure una resposta baixa en la 
generació d’escolament i en el transport de sediment. Les zones baixes de la conca 
es caracteritzen per una major disponibilitat de sediment que les capçaleres per mor 
d’una major connectivitat amb el canal principal en àrees amb major 
desenvolupament edàfic en zones agrícoles margoses. No obstant això, en aquestes 
zones les estructures de conservació del sòl eviten l’erosió, laminen l’escolament i 
retenen el sòl. A la conca de Carapelle, els valors mitjans de taxa anual de producció 
de sediment (i.e. 267,8 t km2 a-1) foren majors que a les conques des Fangar (i.e. 4,5 
t km2 a-1) i Búger (1,4 t km2 a-1) perquè les zones agrícoles amb cobertura vegetal 
estacional i els materials menys permeables foren els factors físics impulsors del 
transport de sediment, generant així les majors contribucions de sediment. Per 
afegitó, a la conca de Carapelle el col·lapse de preses de laminació afavorí l’erosió 
del llit del riu incrementat el volum de sediment. No obstant això, s’observà una gran 
variabilitat inter- i intra-anual de l’exportació de sediment. Així doncs, l’anàlisi 
realitzada a les conques des Fangar i Búger demostrà que el 80% del sediment es 
generà durant la tardor i l’hivern. En aquest sentit, a escala d’episodi la humitat del 
sòl i la precipitació antecedent un dia abans de l’episodi afectaren significativament 
la resposta de l’escolament de les conques des Fangar i Búger, respectivament. 
Aquest fet va ocórrer principalment durant períodes humits quan s’observaren els 
valors majors en escolament, pic de cabal i exportació de sediment. A més, a la conca 
des Fangar la correlació de l’escolament i el pic de cabal foren significatives amb 
l’exportació de sediment, incrementant aquesta significança durant la tardor i 
l’hivern. A la conca de Carapelle, les majors contribucions de sediment foren 
controlades pel volum i intensitat de la precipitació i els valors més grans 
d’escolament, els quals suggereixen que la gran extensió agrícola controla la 
resposta hidrològica i el transport de sediment en suspensió. A les conques des 
Fangar i Búger, la major freqüència de les histèresis horàries entre cabal i 
concentració de sediment en suspensió indicaren que la major part del sediment fou 
generat d’àrees pròximes a la sortida de la conca, confirmant la forta influència de 
la distribució espacial de la litologia, usos del sòl i marjades sobre el transport de 
sediment en suspensió. De fet, a la conca des Fangar les histèresis entre humitat del 
sòl i cabal mostraren com les situacions d’elevada humitat del sòl durant períodes 
humits incrementaren l’eficiència en els fluxos d’aigua i sediment connectant 
aquelles zones de sediment menys disponibles ja que la histèresi cabal-concentració 
de sediment en suspensió fou de gir antihorari. A la conca de Carapelle, la major 
freqüència de les histèresis antihoràries de cabal-concentració de sediment en 
suspensió confirmà que les àrees agrícoles estenen les fonts de sediment 
disponibles a gran part de la superfície de la conca. 

Els resultats d’aquesta tesi confirmen que els factors físics (litologia i usos del sòl) i 
l’estat de preservació de les estructures de conservació del sòl (marjades, parats i 
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preses de laminació) exerceixen un control fort sobre la resposta hidrològica i el 
transport de sediment en suspensió. La distribució espacial, l’heterogeneïtat i la 
interacció entre aquests factors explicaren els volums d’aigua i de sediment de les 
conques seleccionades. L’anàlisi de la resposta hidrològica i del transport de 
sediment en suspensió ha permès identificar els factors hidrometeorològics més 
importants i com aquests estan relacionats amb les característiques físiques i 
humanes de les conques. Per tant, caracteritzar les conques des d’aquest punt de 
vista científic ha demostrat ser fonamental per comprendre la generació 
d’escolament i el transport de sediment per tal d’avançar cap a un procés de gestió 
de conques que ha de permetre simular múltiples escenaris futurs front al canvi 
d’usos del sòl i canvi climàtic.  

 Paraules clau: conques mediterrànies, generació d’escolament, transport de 
sediment en suspensió, factors físics, condicions antecedent, estructures de 
conservació del sòl. 
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Resumen 
 
Evaluar la respuesta hidrológica y el transporte en suspensión a escala de cuenca de 
drenaje es fundamental para mejorar el conocimiento y la gestión de los recursos 
hídricos, inundaciones, sequías, transmisión de contaminantes y la erosión del 
suelo. La región mediterránea ha recibido una especial atención debido a que la 
estacionalidad de su clima genera importantes diferencias inter- e intra-anuales en 
la disponibilidad de los recursos hídricos. Además, los usos del suelo de la mayoría 
las cuencas mediterráneas han sido ampliamente modificados durante siglos 
creando -juntamente con la interacción de la litología- un paisaje complejo, 
influenciando la respuesta hidrológica y del transporte de sedimento.   

Esta tesis tiene como objetivo determinar los patrones de escorrentía y las 
dinámicas del transporte de sedimento en suspensión en cuencas mediterráneas 
representativas. La monitorización continua del caudal y la concentración del 
sedimento en suspensión mediante redes hidrométricas se analizó durante un 
periodo de cinco años en:   

a) Pequeñas cuencas de drenaje mediterráneas (i.e. < 10 km2) caracterizadas 
por usos del suelo y litologías distintas, donde se analizó la relación 
precipitación-escorrentía a múltiples escalas temporales para comprender 
mejor su respuesta hidrológica.   

b) Una pequeña cuenca mediterránea representativa de ambientes de media 
montaña (Es Fangar; 3,4 km2), donde la humedad del suelo interviene 
notablemente en los flujos de agua y sedimento, analizándose estas variables 
durante cinco años hidrológicos.  

c) Dos cuencas mediterráneas (Búger 68,2 km2 y Carapelle 506 km2) se 
seleccionaron para identificar los factores principales que influyen en el 
régimen hidrológico, la generación de escorrentía y el transporte de 
sedimento en suspensión en multitud de escalas temporales.  

En pequeñas cuencas mediterráneas, la evaluación a múltiples escalas temporales 
de la respuesta hidrológica reflejó como la no linealidad de la relación precipitación-
escorrentía se incrementó de escala anual a escala evento. A escala anual, la relación 
precipitación-escorrentía tuvo una linealidad significativa en cuencas con litología 
impermeable, mientras que la no linealidad fue mayor en cuencas con litología 
permeable. Una gran variabilidad intra-anual se observó en la contribución 
estacional de la escorrentía de acuerdo con la alternancia de dinámicas de 
precipitación y evapotranspiración a lo largo del año, generando la sucesión de 
periodos húmedos (invierno), secos (verano) y de transición (finales de otoño e 
inicio de primavera). Estos periodos impusieron distintas condiciones estacionales 
de humedad del suelo en la cuenca para la generación de la escorrentía a escala 
evento, siendo un elemento clave de partida para la no linealidad en la relación 
precipitación-escorrentía. Como resultado, a escala evento la no linealidad 
estacional de la relación precipitación-escorrentía fue incrementándose de invierno 
y primavera a verano. Además, se observaron diferencias en el volumen de 
escorrentía y la linealidad precipitación-escorrentía según litología y usos del suelo. 
De acuerdo con los resultados obtenidos a escala anual, los eventos en cuencas con 
litología impermeable obtuvieron una mayor linealidad y un mayor volumen de 
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escorrentía que los eventos en cuencas con litología permeable. Además, la relación 
precipitación-escorrentía establecida según usos del suelo demostró como los usos 
agrícolas tuvieron mayor correlación atribuible a una menor cobertura vegetal. 

En las cuencas de Es Fangar, Búger y Carapelle los valores anuales de exportación 
de sedimento obtenidos están influenciados por la distribución espacial de los 
factores (litología y usos del suelo) y las estructuras antrópicas (terrazas y presas 
de laminación). En las cuencas de Es Fangar y Búger, las cabeceras forestadas 
caracterizadas por materiales carbonatados promovieron una respuesta baja de la 
generación de escorrentía y del transporte de sedimento. Las zonas bajas de las 
cuencas, se caracterizan por una mayor disponibilidad de sedimento que las 
cabeceras ya que tienen una mayor conectividad con el canal en áreas con mayor 
desarrollo edáfico en zonas agrícolas margosas. No obstante, en estas zonas las 
estructuras de conservación del suelo evitan la erosión, laminan la escorrentía y 
retienen el suelo. En la cuenca de Carapelle, la mediana de los valores de la tasa anual 
de producción de sedimento (i.e. 267,8 t km2 a-1) fue mayor que en las cuencas de 
Es Fangar (i.e. 4,5 t km2 a-1) y Búger (1,4 t km2 a-1) debido a que las zonas agrícolas 
con cobertura vegetal estacional y materiales menos permeables fueron aquellos 
factores físicos que promovieron el transporte de sedimento, generando así una 
mayor contribución de sedimento. Además, en la cuenca de Carapelle, el colapso de 
las presas de laminación favoreció una mayor aportación de sedimento al 
incrementar la erosión del cauce. Sin embargo, se observó una gran variabilidad 
inter- e intra-anual de la exportación de sedimento. De hecho, el análisis en las 
cuencas de Es Fangar y Búger demostró que el 80% del sedimento se generó durante 
otoño e invierno. De este modo, a escala de evento la humedad del suelo y la 
precipitación antecedente un día antes del evento influenciaron de forma 
significativa la generación de escorrentía en las cuencas de Es Fangar y Búger, 
respectivamente. Este proceso tuvo lugar principalmente durante periodos 
húmedos en los que se registraron los mayores valores de escorrentía, pico de 
caudal y exportación de sedimento. Además, en la cuenca de Es Fangar la correlación 
de la escorrentía y pico de caudal fue significativa con la exportación de sedimento, 
siendo mayor esta significancia en otoño e invierno. En la cuenca de Carapelle, las 
mayores contribuciones de sedimento se generaron debido al volumen e intensidad 
de la precipitación y los valores mayores de escorrentía, los cuales sugieren que la 
gran extensión agrícola controla la respuesta hidrológica y el transporte de 
sedimento en suspensión. En las cuencas de Es Fangar y Búger, la mayor frecuencia 
de histéresis horarias entre caudal y concentración de sedimento en suspensión 
indicaron que la mayor parte del sedimento fue generado en áreas cercanas a la 
salida de la cuenca, confirmando la fuerte influencia de la distribución espacial de la 
litología, usos del suelo y terrazas en el transporte de sedimento en suspensión. Así, 
en la cuenca de Es Fangar las histéresis entre humedad del suelo y caudal reflejaron 
como en situaciones de máxima humedad del suelo se incrementó la eficiencia en 
los flujos de agua y sedimento conectando zonas de sedimento menos disponibles 
ya que las histéresis caudal-concentración de sedimento en suspensión fueron de 
giro antihorario. En la cuenca de Carapelle, la mayor frecuencia de las histéresis 
antihorarias de caudal-concentración de sedimento en suspensión confirmó que las 
áreas agrícolas extienden las fuentes de sedimento disponibles a la mayoría de la 
superficie de la cuenca.  
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Los resultados de esta tesis confirman que los factores físicos (litología y usos del 
suelo) y el estado de preservación de las estructuras de conservación del suelo 
(terrazas y presas de laminación) ejercen un fuerte control sobre la respuesta 
hidrológica y el transporte de sedimento en suspensión. La distribución espacial, la 
heterogeneidad y la interacción entre estos factores explican los volúmenes de agua 
y sedimento de las cuencas seleccionadas. El análisis de la respuesta hidrológica y 
del transporte de sedimento en suspensión ha permitido identificar los factores 
hidrometeorológicos más relevantes y cómo estos interaccionan con las 
características físicas y humanas de las cuencas. Por lo tanto, caracterizar las 
cuencas desde este punto de vista científico ha demostrado ser fundamental para 
comprender la generación de escorrentía y el transporte de sedimento y así avanzar 
hacia un proceso de gestión de cuencas que debería permitir simular múltiples 
escenarios futuros de cambio en los usos del suelo y del cambio climático. 

 

Palabras clave: cuencas mediterráneas, generación de escorrentía, transporte de 
sedimento en suspensión, factores físicos, condiciones antecedentes, estructuras de 
conservación del suelo. 
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1. Introduction: hydrosedimentary response of 

Mediterranean fluvial systems   

Freshwater resources represents 3.5% of the water on the Earth, being the river 

discharge only the 0.0002% (Gleick, 1993). Consequently, freshwater as resource is 

scarce and its demand will increase due to the global population grow (Oki and 

Kanae, 2006). The importance of water as a resource is one of the main reasons for 

its study, as the understanding of hydrological processes is for example essential to 

improve the knowledge on water resources management, floods, droughts and 

transmission of pollutants (Lloyd-Hughes and Saunders. 2002; López-Moreno et al., 

2004). Hence, it is necessary to understand the Earth as large and complex system, 

whose component parts (i.e. atmosphere, lithosphere, hydrosphere, and biosphere) 

operate on time scales from seconds to millions of years. Thus, within the Earth 

system, water and sediment fluxes move at multiple spatial and temporal scales 

through the hydrologic cycle and sediment cycle (Vörösmarty et al., 2004).  

The hydrological cycle in Mediterranean catchments is strongly influenced by their 

climate, as the marked dynamics of rainfall and evapotranspiration throughout the 

year strongly determine water available for the hydrological response. Such 

seasonality linked to tectonic, lithological, and physiographic characteristics 

promote a wide variety of non-perennial flow regimes called temporary rivers, 

which are characterised by a cease of flow at some point in time or space (Busch et 

al., 2020).  

The sediment cycle begins with the sediment origin from mechanical and 

biogeochemical disintegration of rocks by tectonic stress and weathering in a source 

area (Hinderer, 2012). Then, sediment is transported and deposited in a sink region 

by fluid-driven erosion agents (i.e. rivers, wind, ocean currents and glaciers). 

Therefore, the generation and movement of water and sediment fluxes, understood 

as runoff generation processes and suspended sediment transport, are assessed at 

the catchment scale as a useful functional unit to study the hydrological and 

sediment cycles (Ambroise 1994; cited in Latron, 2003). Hydrometric networks 

allow the water and sediment fluxes monitoring through gauging stations to 
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characterize hydrological and suspended sediment dynamics at catchment scale 

(Mishra and Coulibaly, 2009). Nonetheless, these dynamics operate at different 

temporal and spatial scales often requiring their assessment through a nested 

approach; i.e. more than one gauging station (Ferreira et al., 2008). 

Furthermore, hydrometric networks are fundamental for the management of water 

resources in fluvial systems, which necessarily implies their assessment, 

characterization and accurate quantification. The studies carried out must be valued 

from an environmental and socio economic point of view. However, in 1950 the 

runoff amount over half of the word was unknown, therefore hydrological sciences 

had to be promoted to optimise the water resources on Earth (Keller, 1976). 

Consequently, the International Association for Hydrological Sciences (IAHS) in the 

International Union of Geodesy and Geophysics (IUGG) encouraged to the UNESCO 

for organizing the International Hydrological Decade 1965-1974 (IHD), a research 

program on water problems that began on January in 1965. The most important 

activities of the International Hydrological Decade were the study of water balance, 

hydrological mapping of surface waters (i.e. general problems, runoff regimes) and 

the influence of man on hydrological processes. Specifically, the Water Resources 

Law approved in 1963 in the United Kingdom was one of the most important driver 

for the development of hydrological studies, especially in the Anglo-Saxon world 

(Ward, 1967). This law was a breakpoint as the following studies established the 

scientific basis of data collection, water balances, research systems and a 

methodology to classify representative and experimental catchments. These studies 

pointed out the need to design and develop hydrometric networks for the study of 

the different water cycle components as precipitation, evaporation, surface water 

and groundwater (Gregory, 1964). Initial studies used simple instruments to 

measure the water depth by means of a conventional float type that recorded the 

oscillations of water stage depth. However, technological advances allowed 

continuous monitoring with high temporal resolution (i.e., minute scale), 

monitoring of more than one variable, improvement of gauging techniques, 

automation of recording systems and collection of data in real time. This led to 

higher volume and better quality of the hydrological information collected, that also 

helped accurate forecasts of flood events (Le Coz, 2008; Volkman et al. 2010).  
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Different types of hydrometric networks exist depending on the variables to record 

or the specific objectives to achieve (i.e. monitoring of surface water, groundwater, 

water quality and/or sediment transport). The overall general objective of these 

networks is to study water resources, and how they may be affected by global 

change (i.e. combination of climate change and land uses change). The 

implementation of a hydrometric network seeks to know and monitor the main 

hydrological processes at catchment scale to use this knowledge in flood risk 

planning, the water resources management and for carrying out ecohydrological 

assessments. Ideally, networks must have an optimal density (i.e. number of 

stations, temporal scale, measurement and time interval and spatial scale of the 

network) to include the diverse climatic, geological, water use and land uses 

characteristics of the fluvial systems (Mishra and Coulibaly, 2009).  

Furthermore, obtaining representative hydrometric values is fundamental to detect 

erroneous data, to characterize extreme events, hydrological dynamics and their 

possible changes. It is necessary to consider that few data at temporal scale can lead 

to unrepresentative values, especially in the calculation of the average discharge in 

ephemeral and intermittent hydrological regimes (Westberg et al., 2011). The 

International Hydrological Decade established a minimum period of ten years of data 

collection (Ward, 1967). Authors such as Boudevillain et al. (2011) coincide in a 

monitoring superior than ten years to obtain representative results. Nonetheless, 

authors such as Sene and Farquharson (1998) recommend a period between 15 and 

20 years for data collection. Boudevillain et al. (2011) claim that a triple strategy 

must be followed: current studies, study of extreme events and historical data.  

 

1.1. Hydrology of Mediterranean catchments 

The first hydrological studies were carried out in representative catchments, which 

integrated the physiographic characteristics of the region to analyse. Thus, the study 

of the hydrological response in representative catchments improved the 

understanding of the runoff generation processes and main controlling factors 

(Hewlett et al., 1969). Besides, small experimental and representative catchments 
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can be considered as outdoor laboratories useful to observe the hydrological 

response under different or specific land use, lithology and human effect 

characteristics (Latron and Lana-Renault, 2018). At the beginning of the 20th 

century, an experimental catchment was installed in the Swiss Alps to assess flood 

events related to deforestation (Engler, 1919). Close to this period, the theory of 

runoff generation due to precipitation exceeding the infiltration capacity of the soil 

was proposed (Horton, 1933). Later on other studies proposed that groundwater 

contribution was a larger component than surface flow (Linsley et al., 1949) in 

runoff generation. The Horton theory was the simplistic one in terms of runoff 

processes explanation. In the 1960s, further research was developed leading to new 

concepts such as the subsurface flow (Freeze, 1972; Hewlett and Hibbert, 1966) or 

runoff generation due to saturation excess (Cappus, 1960; cited in Latron, 2003), 

which were strongly related to physical soil characteristics (Kirkby and Chorley, 

1967).  

Most of the hydrological studies carried out until the end of the 20th century were 

focused in catchments under temperate climate (Dunne et al., 1975). During this 

period, primary studies about surface hydrology in Mediterranean catchments 

(Gallart et al., 1994; Latron and Gallart, 1995; Piñol et al., 1991) started to bridge the 

knowledge gap between humid-temperate and Mediterranean catchments. 

However, the knowledge obtained from humid-temperate environments cannot be 

directly transferred to the Mediterranean catchments because their hydrological 

response is highly marked by seasonality (Llorens, 1991).  

Mediterranean catchments are subject to high inter- and intra-annual variability of 

the precipitation, which generates wet and dry periods along a hydrological year 

(García-Ruiz et al., 2011). Thus, the hydrological response of these catchments is 

conditioned by the huge inter- and intra-annual variability of the precipitation. At 

the annual scale, mean annual precipitation of the hydrological boundary of the 

Mediterranean Sea basin ranges from 5 to 2975 mm (Allam et al., 2020), with 

globally a general increase in annual runoff as annual rainfall increase (Merheb et 

al., 2016). 
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Seasonality is one of the most significant issues in Mediterranean areas fluvial 

systems due to an alternation of some periods with large rainfall and other with high 

evapotranspiration throughout the year leading to wet ( mostly winter), dry 

(summer) and transition periods (late autumn and early spring)(Gallart et al., 

2002). Such periods play a key role in the runoff generation processes, promoting 

the non-linearity of the rainfall-runoff relationship at the event scale (Ceballos and 

Schnabel, 1998; López-Tarazón et al., 2010). In winter and early spring, saturation 

processes are dominant, due to large water reserves triggering runoff generation 

(Latron et al., 2008). The same authors observed that high rainfall intensities during 

late spring, summer and early autumn can also generate runoff under Hortonian 

conditions. Thus, seasonal assessment of runoff generation showed how different 

runoff mechanisms can co-exist within a catchment (Manus et al., 2009), although 

generally, flood events under wet antecedent conditions enable a larger 

hydrological response (Efstratiadis et al., 2014; Estrany et al., 2010a; Lana-Renault 

et al., 2007). 

 

1.1.1. Geographical features influencing the Mediterranean hydrological 

response  

The lithology of the Mediterranean Sea Region is a significant factor influencing the 

runoff response of the fluvial systems as the proportion of carbonate rocks and karst 

features are significantly higher than in other landscapes (Woodward, 2009). 

Carbonate rocks develop zones of high permeability promoting infiltration and 

percolation (Legrand and Stringfield, 1973). Karst areas offer freshwater from 

aquifers for agricultural irrigation, human consumption and groundwater-

dependent ecosystems (Bakalowicz, 2005), being 9.2% of the global population 

supplied by freshwater from karst (Stevanović, 2019). Karst regions cover 7-12% of 

the Earth’s continental area (Ford and Williams, 2013). In the Mediterranean, 33% 

of the area is covered by carbonate sedimentary rocks, allowing a large development 

of karst areas (Allam et al., 2020). However, the spatial distribution of lithology in 

Mediterranean catchments is non-uniform, promoting a complex mosaic for runoff 
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generation with non- and contribution runoff areas also depending on soil deep 

and/or soil moisture content (Yair, 1983).  

The spatial pattern of soil moisture depends on the spatial distribution of soil 

physical and hydraulic properties, subsequently conditioning the runoff response 

(Zucco et al., 2014). Hydrologic response units are unique combinations of land use, 

soil and slope within subbasin. These units have different thresholds for runoff 

generation according their physical characteristics (Flügel, 1995), although runoff 

generation can occur under dry or wet states. Moreover, runoff may occur from all 

lithological units under soil saturated conditions and above the critical wetness 

threshold (Yair, 1992; cited in Fitzjohn et al. 1998). Nevertheless, soil infiltration 

and percolation rates in limestone areas are great, promoting a higher runoff 

generation threshold (Calvo-Cases et al., 2003). Under dry conditions, isolated and 

unconnected areas may act as sinks for runoff whereas under wet conditions 

hydrological pathways may be more active (Fitzjohn et al., 1998). Therefore, initial 

conditions play a key role for runoff generation and also spatial linkages within a 

catchment (Sharma et al., 1987). Low runoff is generally produced in catchments 

with unconnected source areas (i.e. spatially isolated) and discontinuous 

hydrological pathways. However, runoff contributing areas can be connected (at 

least temporarily) when the effective catchment area increases triggering the 

activation of hydrological pathways and larger runoff. These relations are more 

complex in larger catchments due to nested effects of mosaic patterns, which 

alternate a great number of isolated and interactive areas. At the whole catchment 

scale, variable active areas are responsible for runoff generation but conveyance 

losses may avoid the downstream water transfer to the catchment outlet. 

Meanwhile, contributing areas are active areas which runoff is transferred to the 

catchment outlet (Ambroise, 2004). In this way, both Hortonian and saturation 

mechanisms have been identified in Mediterranean catchments according to the 

degree of soil development, lithology, land use and topography (Gallart et al., 1997; 

Martínez‐Mena et al., 1998).  

Assessing the hydrological response at event scale is complex given the 

spatiotemporal variability of precipitation, soil moisture and infiltration as an 

interaction of multiple drivers in the rainfall-runoff relationship. Besides, catchment 
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response during flood events is strongly related to the spatiotemporal 

characteristics of the storm over a catchment (Woods and Sivapalan, 1999). 

Specially, the spatial rainfall distribution is important when the mass centre of 

precipitation is located over the impervious catchment areas, enabling larger runoff 

responses (Mejía and Moglen, 2010). However, karst areas difficult the hydrological 

assessment due to their non-linear behaviour within the runoff response as high 

infiltration and percolation rates and also interbasin groundwater flow, causing a 

large variability of the initial catchment conditions (Le Mesnil et al., 2020). 

The catchment hydrological response assessment linking the soil moisture 

variability and the lithology may help to understand their hydrological connectivity. 

This useful concept helps to better understand the hydrological functioning through 

the different compartments or landforms within a catchment (e.g. hillslopes, 

floodplains, channels). The water transfer and the connection of these different 

compartment depends on the landscape elements and their longitudinal, lateral and 

vertical interaction over time (Ward, 1989; Ward et al., 2002). Accordingly, the 

spatial distribution of the landscape elements and its relation to each other is 

essential in influencing transfer pathways (Bull et al., 2003). Consequently, 

catchment compartments may be connected or disconnected according to buffers, 

barriers and blankets features and the magnitude of the event timescale (Fryirs et 

al., 2007). Hydrological connectivity has been mainly classified as structural and 

functional. Structural connectivity refers to the spatial distribution of the landscape 

(i.e. physical characteristics) whereas functional connectivity refers to the 

interaction of these spatial patterns with catchment processes (i.e. runoff 

generation) (Turnbull et al., 2008). A holistic understanding of the catchment is 

needed to assess the complexity of the hydrological connectivity (i.e. rainfall, soil 

moisture, infiltration, soil type, vegetation cover, slope, runoff, management 

decisions), field knowledge is an approach that may lead to a better understanding 

of hydrological connectivity (Lexartza-Artza and Wainwright, 2009). Given the 

relevance of soil moisture in the hydrological response, connectivity indices 

incorporated soil moisture or saturation within the parameterization (Kalantari et 

al., 2019; Nunes et al., 2009). After evaluating the response in terms of connectivity 

of five surface runoff and erosion models to landscape connectivity features in a 



Chapter 1. Introduction: hydrosedimentary response of Mediterranean fluvial 
systems 

8 
 

small agricultural catchment, Baartman et al. (2020) suggested that soil moisture 

approaches should be generalized to other models. Furthermore, these authors 

pointed out that (1) research should be developed in catchments with important 

structural connectivity features (i.e. mountain landscape) as well as important land 

use changes (i.e. afforestation, wildfires, urbanisation); and (2) the sharing of 

spatially distributed data of water and sediment fluxes should be increased to better 

understand how fluxes are moving between the different compartments in a 

landscape. 

Mediterranean Region is composed by catchments with important structural 

connectivity features and land use changes described by Baartman et al. (2020), as 

they have been modified during millennia (i.e. deforestation, terracing and 

irrigation schemes) and severely in recent decades (i.e. urban development, dam 

construction, channelling of water, land abandonment, afforestation, reforestation) 

(Hooke, 2006). The current landscape in the Mediterranean region is a complex 

mosaic with dichotomous patterns as a result of socioeconomic changes. On the one 

hand, gradual abandonment of farmland in marginal areas led to afforestation since 

mid-20th century (García-Ruiz et al., 2020). On the other hand, this abandonment 

was promoted by the rural exodus from mountain areas to the coast where 

population density and urbanisation increased. Consequently, in mountain areas 

traditional agricultural practices were abandoned reducing the maintenance of 

water and soil conservation structures; i.e. terraces and check dam terraces, etc. 

Such structures were built to control overland flow and prevent erosion (Tarolli et 

al., 2014). However, their abandonment and degradation may increase the transfer 

of water and sediment (Calsamiglia et al., 2018), generating feedback processes 

between structural and functional hydrological connectivity (Calsamiglia et al., 

2020). Land use changes have implications over the hydrological cycle such as the 

increase of rainfall interception and evapotranspiration (Cosandey et al., 2005), the 

decrease of the annual water yield in fluvial systems (Buendia et al., 2016a) and the 

reduction of the runoff coefficient and peak flow at the event scale (Lana-Renault et 

al., 2018).  

Finally, the Mediterranean region is one of the main hotspots of the global change 

(land use and climate change; Paeth et al., 2017; Schröter et al., 2005). Climate 
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change projections in southern Europe predict an increase of temperatures and a 

decrease in precipitation, especially during the warm season (Giorgi and Lionello, 

2008). In agreement, trends in streamflow will decrease due to afforestation 

processes (Buendia et al., 2016b) and climate change (Blöschl et al., 2019; Masseroni 

et al., 2020). Consequently, long-term data in experimental and representative 

catchments are needed for example to observe and predict trends of floods and 

mitigate their effects (Tetzlaff et al., 2017).  

 

1.2. Suspended sediment transport of Mediterranean rivers 

Catchments are affected by soil erosion, which transfer water and sediment from 

headwaters to coastal areas within the cycle of sediment (Jones et al., 2012). 

However, accelerated erosion leads to the decline of agricultural productivity, 

increase dam siltation, pollution of water bodies, eutrophication problems and 

damage ecological habitats (Gamvroudis et al., 2015). Accordingly, the knowledge 

of transported particle size characteristics is fundamental to understand the 

sediment transport and sediment-associated contaminants because particle size 

characteristics exert a fundamental control on transport, settling velocity and 

deposition (Walling, 1996; cited in Walling et al., 2000). The mobilization and 

transport of fine sediment is particle size selective and the preferential deposition 

of the coarser size fractions may result in downstream fining of the suspended 

sediment load. As a result, the 70% of the total sediment load in rivers correspond 

to the suspended sediment fraction (<63 μm; Morgan, 2009). Consequently, particle 

size composition reflects the important links between sediment source(s), sediment 

conveyance and deposition, being a key feature of the sediment delivery dynamics 

(Stone and Walling, 1997). The 95% of the sediment transfer from land to the ocean 

is transported by rivers, corresponding the largest proportion of the sediment flux 

to the suspended sediment (i.e. 64%) (Syvitski et al., 2003). Sediment transport by 

rivers is a key component of the global denudation system, being an important 

measure of land degradation associated to soil as resource (Walling and Fang, 

2003). Therefore, sediment delivery dynamics can be globally assessed at 

catchment scale by a continuous monitoring of water and sediment fluxes. Long-
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term monitoring programs allow the assessment of the non-stationary behaviour of 

sediment load due to water and sediment fluxes change in response to natural and 

human perturbations (Walling, 2006). 

The assessment of this hydrosedimentary processes within a catchment can be used 

as desertification indicator in a context of landscape management (Vanmaercke et 

al., 2011). Sediment yield (t km-2) is the integrated result of all erosion and sediment 

transporting processes operating in a catchment and is therefore of high value for 

environmental studies (Poff et al., 1997; Prat et al., 2014). However, sediment yield 

does not accurately represent the spatio-temporal variability of erosion processes 

that occur within a catchment (Walling, 1983) because the amount of sediment 

reaching the channel and outlet depends on the catchment connectivity. 

Traditionally, sediment transfer in catchments has been explained through the 

simile of the conveyor belt sediment transfer, which was divided in sediment 

generation zone (headwaters), transfer zone (transition zone) and deposition zone 

(estuaries, deltas) (Schumm, 1977). Under this context, sediment yield has been 

assumed to decreases with larger drainage areas. However, de Vente et al. (2007) 

developed a scientific literature review of the relation between catchment area and 

sediment yield revealed a large regional variation, caused by a combination of land 

use, climate, lithology and topography. Negative relations (i.e. decreasing sediment 

yield) between area and sediment yield are mainly found in catchments with 

intensive agricultural areas with an important contribution of hillslope erosion 

processes to sediment yield (Dedkov and Moszherin, 1992). Positive relations (i.e. 

increasing sediment yield) between area and sediment yield were observed in 

catchments with large vegetation cover, limited human disturbance and a 

dominance of channel erosion (Dedkov, 2004). Hence, the variable area is a poor 

predictor of the sediment transfer processes as it only explains a small part of its 

variation. Indeed, area-sediment yield relation can be disturbed by the spatial 

differences in rainfall characteristics, topography, soil erodibility and land use, 

which may act as sediment sources or sinkholes (de Vente et al., 2007). After the  

basic conceptualization of sediment transfer by Schumm (1977), concepts such as 

river sensitivity or coupling enabled a better understanding of the driving factors in 

catchment sediment generation (Brunsden and Thornes, 1979; Harvey, 2002; 
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Phillips, 1992). Later, the non-linear relation of the sediment transport was assessed 

by defining sediment coupling (Fryirs et al., 2007), sediment cascades (Fryirs et al., 

2013) and sediment connectivity (Bracken et al., 2015). These concepts were mainly 

based on the idea that sediment transfer depends on the relation between structural 

(i.e. morphology, source, sink) and functional components (flow of energy) (Bracken 

et al., 2015; Wainwright et al., 2011). Understanding hydrosedimentary response in 

catchments is challenging because of the patchy nature of physical and hydrological 

soil data. Accordingly, hydro-sedimentological monitoring in river gauging stations 

may provide a validation for similar areas in Mediterranean ecosystems, and 

beyond, those temporary rivers hindered by water shortage. Therefore, on-site 

agricultural and forest soil-water management will certainly have off-site impacts 

(at the catchment scale). Long-term catchment datasets are here fundamental to 

assess on-site and off-site effects in catchments. Thus, the hydro-sedimentological 

monitoring can shed light on the magnitude of water and sediment fluxes providing 

a measure of land degradation and the associated reduction in the global soil 

resource. In this way, there is a strong emphasis in fluvial geomorphology on the 

analysis of the yield or 'output' of sediment from catchments (Walling 1983; Phillips 

1986; Serrat, 1999).  

 

1.2.1. Spatio-temporal driving factors of suspended sediment transport  

Differences in specific suspended sediment yields between regions have been 

observed, being the Mediterranean and mountainous regions generally those with 

highest suspended sediment yield. Sediment yield in catchments from these regions 

were characterized by 85% of the suspended sediment yield > 40 tkm−2 yr−1 and 

more than 50% of the suspended sediment yield >200 tkm−2 yr−1 (Vanmaercke et 

al., 2011). Such differences were related to a combination of factors (i.e. climate, 

topography, lithology and land use), even if the identification of the individual 

importance of the various controlling factors of sediment yield at spatial and 

temporal scales (Phillips, 2016; Vercruysse et al., 2017) still remains difficult.  
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The distribution of climatic, geological, topographical and land cover features 

determines the spatial sediment generation, sediment transfer and sediment 

transport within a catchment (Walling, 1983). The sediment load measured in a 

river gauging station is strongly influenced by the sediment availability within the 

catchment according to these driving factors. Geology and lithology are conditioning 

the soil erodibility. Schists and marls materials promote larger runoff and 

suspended sediment than limestone due to high infiltration rates of the carbonate 

materials and to their own hardness (Cantón et al., 2011). Land use changes were 

also identified as driver of suspended sediment, showing an increase of sediment 

load when forests are replaced by agriculture uses (García-Ruiz, 2010). Forest areas 

promote less suspended sediment in rivers because increase rainfall interception 

and modify soil structure promoting higher infiltration rates (Cosandey et al., 2005; 

García-Ruiz et al., 2015). Topography also exerts a control over runoff and erosion 

as large contributions of sediment yield were identified in catchments with a mean 

slope >40% (Pepin et al., 2010). Furthermore, anthropogenic structures can limit 

the suspended sediment availability through check dams and terraces to laminate 

runoff, avoid rill erosion and retain soil (Arnáez et al., 2015; Tarolli et al., 2014; 

Estrany et al., 2010b). The wide range of factors within a catchment and their 

possible spatial distribution leads therefore to a complex landscape, which may be 

delimitated in different catchment compartments. The spatial distribution of soil 

moisture should be also taken into account because soil moisture patterns vary 

according to lithology, land uses, topography and  landscape position (Jancewicz et 

al., 2019; Liang and Chan, 2017; Meles et al., 2020).  

A key issue is the temporal scale selected to analyse the dynamic of the suspended 

sediment transport, as geomorphic changes are strongly influenced by different 

timescales due to the frequency-magnitude distribution of sediment detachment 

(Wolman and Miller, 1960) and the degree of connectivity of the river system 

(Harvey, 2002). Many studies are focused mainly at a specific temporal scale 

assessing trends at decadal-annual (Major, 2004; Shi, 2016) or flood scales (De 

Girolamo et al., 2015; Rovira and Batalla, 2006). Therefore, assessing the relevance 

of the different timescales is fundamental to a better comprehension of process 

interactions and feedbacks between different drivers across timescales (López-



Chapter 1. Introduction: hydrosedimentary response of Mediterranean fluvial 
systems 

13 
 

Tarazón et al., 2009; Sun et al., 2016). At long timescale (i.e. > 10 yr), sediment load 

dynamics may indicate general trends of sediment transport within a catchment. 

Potential changes in the general trend may be associated to breakpoints (i.e. dam 

construction, wildfires, land use change) related with the drivers that affect the 

sediment transport, therefore providing information related to the impacts of 

climatic changes and human interventions on water and sediment yields (Stone et 

al., 2015; Wohl, 2015). At the long timescale (i.e. > 10 years), rainfall and discharge 

(Bussi et al., 2014), land cover changes (Buendia et al., 2016b) and dam construction 

(Rovira et al., 2015) have been identified as major drivers of suspended sediment. 

Medium term (i.e. 5-10 years) studies allow to understand inter-annual suspended 

sediment variability according to representative years (i.e. dry, average and wet 

years) of rainfall and runoff (Esteves et al., 2019). At seasonal scale, the intra-annual 

variability allows a better understanding of the storage-release phases of sediment 

due to seasonal variations in hydro-meteorological conditions and sediment 

availability (Vercruysse et al., 2017). A large variability of sediment load is related 

to the intra-annual distribution patterns of rainfall, soil moisture, vegetation, 

snowmelt and storm events, generating different sediment load amounts (Dominic 

et al., 2015; Knapen et al., 2007; Lana-Renault et al., 2011; Latron and Gallart, 2007; 

Regüés and Gallart, 2004; Taguas et al., 2013). Among these factors, antecedent soil 

moisture has been identified as key factor in runoff and sediment load dynamics in 

temperate, arctic, tropical, alpine and Mediterranean catchments (Favaro and 

Lamoureux, 2014; Palleiro et al., 2014; Penna et al., 2011; Rodríguez-Blanco et al., 

2019; Seeger et al., 2004).   

The sediment regime of a river is characterised by discontinuous sediment supply. 

At the short time scale, the event scale allows to analyse the large spatio-temporal 

variability of the suspended sediment transport to quantify when major sediment 

load occurs. Thus, few events are responsible for the main loads transported during 

short periods of time (Estrany et al., 2009; Zabaleta et al., 2007). The 

characterisation of these events shows that high discharge flow with a low 

exceedance frequency is the most important driver for suspended sediment 

concentration in Mediterranean catchments (De Girolamo et al., 2018). Additionally, 

a wide number of hydro-meteorological factors also explain the suspended 
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sediment transport variability at the event scale. Variables are separated according 

to forcing variables or pre-event conditions (i.e. antecedent rainfall, antecedent soil 

moisture, duration of the rainfall event, rainfall depth, average and maximum 

rainfall intensity) and response variables or event conditions (i.e. duration of the 

flood event, runoff, runoff coefficient, peak discharge, average and maximum 

suspended sediment concentration and sediment load) (Estrany et al., 2007; García-

Ruiz et al., 2008; Lana-Renault et al., 2007; Latron et al., 2008; López-Tarazón and 

Estrany, 2017; Penna et al., 2011; Sala and Farguell, 2002; Seeger et al., 2004; 

Zabaleta et al., 2007).  

Furthermore, the frequency and magnitude of the events and also the time between 

events (release and storage periods) exerts a control over the sediment transport. 

Wolman and Miller (1960) highlighted that it cannot be assumed that highest or less 

frequent events explain simply the larger proportion of sediment transport. 

Moderate magnitude events rework the sediment for the following events. 

Consecutive events in a short time do not promote large suspended sediment 

amount as sediment supply tends to exhaust due to the wash of the first event. 

Events of high frequency and small magnitude will provide sediments from hillslope 

or channel bank. Storage of sediment increase with the time between two events as 

sediments available for transport are accumulating. Furthermore, in-channel 

sediment storage is favoured in temporary rivers because precipitation is often 

insufficient to produce uninterrupted flow into the entire length of the river (García-

Comendador et al., 2017). Thus, sediment is stored in channel until the succession 

of a high magnitude event, which energy input to the system causes the sediment 

(re)mobilization (Bracken et al., 2015). 

Other factors involved in sediment transport are lithology and vegetation cover in 

karst and non-karst areas, playing a key role in runoff generation and soil erosion. 

Accordingly, lower runoff coefficients and soil loss were observed in vegetated karst 

areas than in non-vegetated karst areas (Peng and Wang, 2012). These authors 

associated the low water and sediment yields to the epikarst zone (i.e. subcutaneous 

zone) of carbonate materials, because of their high porosity and permeability, 

storage of  water, causing a delay of the rainfall impact and redistributing the 

precipitation (Williams, 2008). The low rates of sediment yield observed in karst 
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areas are related with the poor soil formation over limestones, with a soil loss 

tolerance ranging from 0.2 and 55 t km2 yr-1 in continuous pure limestone and 

dolomites areas (Cao et al., 2020; Li et al., 2017, 2006). Sediment yield overcoming 

the soil loss tolerance promotes rocky desertification, modifying vegetation cover 

and soil in karst landscapes into exposed basement rocks (Zhang et al., 2011). 

Furthermore, two types of soil losses may occur in karst environments: ground and 

underground soil losses. Ground soil loss is due to surface water erosion and 

underground soil loss to underground piping. The underground piping occurs 

because carbonate rocks are highly soluble with developed fissures and pores. Thus, 

voids generated from bedrock dissolution are filled up with soil in solution grooves, 

channels and depressions, increasing rocky desertification (Zhang et al., 2011). As a 

result of all these factors, soil cover is scarce and soil layers are thin due to the low 

soil formation rate of carbonate (i.e. < 50 t km2 yr-1), especially in steep areas (Jiang 

et al., 2014).  Because of thin soil profiles, the C-horizon (which is an important layer 

that keeps the soil attached to the bedrock) is missing making also topsoil 

susceptible to soil erosion. 

Sediment transfer through river systems is mainly understood in terms of the 

(dis)connections between the components of the drainage basin (i.e. hillslopes, 

channels, floodplains) (Poeppl et al., 2020). Sediment (dis)connectivity in 

catchments is caused by the spatial distribution of sediment sources, sinks and 

transfer pathways (i.e. structural component) as well as the interactions between 

landscape compartments and the frequency-magnitude relationships of the 

geomorphic processes (i.e. the functional component) (Bracken et al., 2015; 

Wainwright et al., 2011). Therefore, the sediment (dis)connectivity and the 

frequency-magnitude relationships are needed to improve the understanding of 

spatiotemporal distribution of sediment sources and catchment management 

(Fryirs, 2015; Fuller and Death, 2018; Poeppl et al., 2019). Nonetheless, the large 

spatiotemporal variability of suspended sediment transport difficult the 

quantification of suspended sediment concentration and the identification of 

sediment sources over multiple timescales (Vercruysse et al., 2017). Besides, 

sediment sources may change in a short and long term due to seasonal vegetation, 

exhaustion in sediment supply, mass movements, land use change or dam 
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construction (De Girolamo et al., 2015; Rovira et al., 2015; Rovira and Batalla, 2006; 

Sun et al., 2016). To assess the spatiotemporal variability between discharge and 

suspended sediment concentration hysteresis patterns should be analysed to 

deduce information about processes controlling suspended sediment availability, 

transport and sources (Aich et al., 2014; Fang et al., 2015; López-Tarazón and 

Estrany, 2017; Williams, 1989). Furthermore, initials conditions of catchment soil 

moisture investigated through soil moisture-discharge hysteresis (Penna et al., 

2011), may provide useful information to link hydrological and sediment 

connectivity (Keesstra et al., 2019). Therefore, the assessment of the runoff 

response and suspended sediment transport at multiple time scales provides an 

integrated framework to analyse the catchment response according to the different 

moisture conditions and drivers, enabling a better understanding of the 

hydrosedimentary response variability.  

 

1.3. Aim, hypothesis and objectives 

This thesis aims to better understand the runoff generation and suspended 

sediment transport in representative Mediterranean catchments at different 

temporal scales (annual, season and event scale). The working hypotheses are: 

 
 

H1: The temporal dynamics of runoff generation in Mediterranean catchments are 

promoted by combination of rainfall intensities and soil saturation. 

H2: Seasonal changes of soil moisture are a driving factor for suspended sediment 

transport in Mediterranean catchments.  

H3: Spatial distribution of lithology and land uses strongly influences the runoff 

generation and suspended sediment transport. 

 

According to these hypotheses the two general objectives are: 
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GO1: To identify the main drivers and determine patterns of runoff generation and 

suspended sediment transport in representative Mediterranean catchments 

GO2: To assess patterns of runoff generation and suspended sediment transport 

variations over the time as a result of inter- and intra-annual variability in 

Mediterranean catchments. 

 

The general objectives are developed in three chapters through the following 

specific objectives: 

SO1: To identify the main drivers of runoff generation in small representative 

Mediterranean catchments (< 10 km2) at different temporal scales (i.e. annual to event 

scale). 

SO2: To assess the role of soil moisture in sediment load and its intra- and inter-annual 

variability in a small Mid-mountain Mediterranean catchment. 

SO3: To investigate the relationship between flow and sediment regime in two 

Mediterranean catchments under contrasted lithology and land uses. 

 

1.4. Structure of the thesis 

This thesis is composed as a paper compendium and has been dived in 7 chapters. 

Three of the chapters (Chapter 4, 5 and 6) correspond to manuscripts published in 

scientific journals (Table 1.1). 

Chapter 1 introduces the state of the art related to the influence of antecedent 

conditions and physical and human catchment characteristics on the hydrological 

response and suspended sediment transport, specifically in Mediterranean 

catchments.   

Chapter 2 presents the selected study areas used in this thesis. 

Chapter 3 details the methods (i.e. sampling, monitoring, laboratory and data 

computation) used in this thesis. 
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Chapter 4 (related to SO.1) assesses the rainfall-runoff relationships in small 

Mediterranean catchments at annual and event scale. A detailed analysis of this 

relationship is Es Fangar Creek allows the downscaling comprehension of this 

relation at annual, seasonal and event scale.  

Chapter 5 (SO.2) analyses the key role of soil moisture as driving factor in 

suspended sediment transport of a small mid-mountain Mediterranean catchment.  

Chapter 6 (SO.3) compares the hydrological and suspended sediment dynamics of 

two Mediterranean catchments under contrasted lithological and land uses 

characteristics.  

Chapter 7 discuss and extract the main conclusions of the previous results.  

 

 

Table 1.1. Title, keywords, journal and status of the research articles of the thesis. 

          

Chapter Title Keywords Journal Status 

Chapter 4 

Multiple temporal scales 
assessment in the hydrological 
response of small Mediterranean 
catchments  

rainfall-runoff, multiple 
temporal scales, non-
linearity, small catchments, 
Mediterranean 

Water Published 

Chapter 5 

Runoff and soil moisture as 
driving factors in suspended 
sediment transport of a small mid-
mountain Mediterranean 
catchment 

suspended sediment 
transport, soil moisture 
conditions, hysteretic 
patterns, Mediterranean 
catchment 

Geomorphology Published 

Chapter 6 
Analysing hydrological and 
sediment transport regime in two 
Mediterranean intermittent rivers   

Mediterranean catchments, 
intermittent rivers, 
hydrological regime, 
suspended sediment 
transport  

Catena Published 
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2. Study areas  

This thesis is assessing the runoff generation and suspended sediment transport in 

45 Mediterranean catchments. The area of the catchments ranged from 0.05 to 506 

km2. The studied catchments are grouped in three study areas sections according to 

their geographical location: (1) worldwide small Mediterranean catchments (i.e. < 

10 km2), (2) catchments in Mallorca Island (i.e. Sant Miquel River basin) and (3) 

Apulia region (i.e. Carapelle River basin). The small Mediterranean catchments (i.e. 

<10 km2) are representative of the different Mediterranean climate areas in the 

world, with a wide range of annual rainfall amount, lithology and land uses. The Sant 

Miquel River basin is a representative mountainous catchment highly shaped for the 

human activity (i.e. agriculture, terracing, check dams, channelization) and land 

abandonment (i.e. afforestation processes). The Carapelle River basin is a 

representative agricultural Mediterranean catchment were crop rotation, 

fertilization and tillage are applied. 

 
 
2.1. Geography of the Mediterranean catchments 

The Mediterranean climate lies between 32° and 40° N and S of the Equator and is 

characterized by a wet and mild winter, a warm and dry summer and a high inter- 

and intra-annual variability in rainfall patterns. Mediterranean climate regions (Csa 

and Csb) comprise the Mediterranean Sea Region, the coast of California, Central 

Chile, the Cape region of South Africa and the south-western and southern parts of 

Australia (Kottek et al., 2006). Focusing on the geography of the Mediterranean Sea 

region, several boundaries have been performed (Figure 2.1) according to 

administrative, hydrographic, olive cultivation and climatic limits (Allam et al., 

2019). Furthermore, the Mediterranean Sea region is characterised by a sensitive 

ecosystem compared to the other Mediterranean climate regions, the islands. More 

than 5,000 islands are spread over the Mediterranean Sea Region hosting a large 

number of biota and cultural elements. At the same time these islands are subjected 

to the most intense environmental and socio-economic pressures (Vogiatzakis et al., 

2008).  



Chapter  2. Study areas 

39 
 

 

Figure 2.1. Four Mediterranean region boundaries from Allam et al. (2019) based on 

administrative, hydrological (Milano et al., 2013), olive cultivation (Moreno, 2014) and 

climatic (Peel et al., 2007) boundaries. 

The mean annual precipitation of the hydrological boundary of the Mediterranean 

Sea basin ranges from 5 to 2975 mm (Allam et al., 2020), generally increasing annual 

runoff as rising the annual rainfall (Merheb et al., 2016). However, the irregular 

distribution of precipitation, the catchment geology and the long history of 

vegetation, hillslope and floodplain modification by human activity in small 

mountainous headwaters catchments generate that the large area draining to the 

Mediterranean Sea is complex and non-uniform in terms of the key controls on 

catchment hydrology (Thornes et al., 2009). These characteristics make that there 

is not, in hydrological terms, a strict single Mediterranean river type. Therefore, 

seasonal distribution of river flow is controlled mainly by the seasonal distribution 

of rainfall, promoting a cease of flow in temporary rivers at some point in time or 

space. Besides, in temporary rivers and streams many local names can be found such 

as winterbournes, torrent, wadis, barranco, oued, arroyos, fiumara and ramblas 

among others (Steward et al., 2012).  
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Figure 2.2. Mean annual precipitation of the Mediterranean region within the hydrological 

boundary from Allam et al. (2019). Data obtained from Fick and Hijmans (2017).   

 

2.2. Small Mediterranean catchments 

A total of 43 small catchments (i.e. <10 km2) of the Mediterranean climate regions 

(Figure 2.3) were selected to analyse the hydrological response. The geographical 

distribution of the catchments was grouped into the main climate regions, as 

follows: (1) Western coast of USA, (2) Western Mediterranean Sea Region (from 

Spain to Italy), (3) Eastern Mediterranean Sea Region (Israel) and (4) South Africa. 

The area of the catchments ranged from 0.05 to 9.61 km2, being 1.03 km2 and 2.6 

km2 the median value and the standard deviation, respectively. The mean annual 

rainfall ranged from 367 to 1794 mm y−1, with a median value of 833 mm y−1 ± 334 

mm y−1. The mean annual temperature ranged from 6.6 to 17.2 °C with a median 

value of 13.9 °C ± 3 °C. The predominant lithology was pervious in 12 catchments 

and impervious in the other 31. Within the 43 catchments, the study of 12 of them 

also contained information related to the main land uses, which was used for 
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assessing their hydrological response at the event scale. The main land uses were 

agriculture (3 catchments), agroforestry (3), forestry (1) and shrub (5). 

 

Figure 2.3. Location map by countries of the selected small Mediterranean catchments for 

assessing the rainfall-runoff relationship at the annual and event scale.  

 

2.3. Mallorca Island  

Located in the western Mediterranean Sea, the island of Mallorca covers an area of 

3,640 km2 (Figure 2.4a). Mallorca is the emerged part of the Balearic promontory, a 

continuation of the Betic Ranges generated during the Alpine orogeny (30 M.A.). It 

is characterised by a basin-and-range topographical configuration mainly 

constituted by limestone geology (Jenkins et al. 1990). This structure is composed 

by a horst-graben system, which generates the three main ranges oriented from NE 

to SO: Tramuntana Ranges, Central Ranges and Llevant Ranges (Figure 2.4b). 

Between the different horsts, grabens or catchments were filled with sediments 

from upper Miocene to Quaternary (Figure 2.4c). Tramuntana Range is mainly 

composed by dolomites from Jurassic and Triassic. Central Ranges contains silt, clay, 

conglomerates and sandstone from Miocene and limestone from Lower Jurassic. 

Llevant Ranges are composed by dolomites from Lower Jurassic and Upper Triassic 

and also limestone from Upper Miocene. Carbonate rocks only represents a 12% in 

Earth, whilst in the Mediterranean Sea Basin a higher surface cover is attributed to 
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the regional fall in base level associated with the Messinian Salinity Crisis. Carbonate 

rocks frequently activate the formation of very deep multiphase karst systems in the 

Mediterranean basin (Lewin and Woodward, 2009). Accordingly, the 53% of the 

island of Mallorca contains limestone or dolomite materials as main lithology. 

Consequently, karst features play a key role in the groundwater because influence 

the hydrological regime, the morphology and sedimentology of the channels, water 

quality and ecology (Estrany et al., 2009; Sear et al. 1999). However, impervious 

materials that reduce infiltration are also present through marls from Triassic 

(Keuper) and Cretaceous (Ginés and Ginés, 2011). 
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Figure 2.4. (a) Location of Mallorca Island in the Western Mediterranean Sea basin. Maps 

showing physical characteristics of Mallorca Island: (b) elevation, catchments boundaries and 

fluvial network, (c) lithology and (d) rainfall distribution. Map (b) is also showing the location 

of the Sant Miquel River catchment. 

According to the Emberger classification, the climate in Mallorca is classified as 

Mediterranean (Guijarro, 1986). Nonetheless, different subtypes of Mediterranean 

climate are located in the island, ranging from wet (i.e. central part of Tramuntana 

Range) to semiarid (i.e. south Mallorca). The different subtypes establish a threshold 

for the annual rainfall (Figure 2.4d), which ranges from 400 mm to more than 1.200 

mm from south to central Tramuntana Range. In the northeast of Llevant Ranges, 

rainfall is 700 mm being < 600 mm in the Central Ranges. Rainfall amount in 24 h 

for a 25 years of return period is 110 mm in Tramuntana Range (increasing until 

250 mm in the central part), between 110 and 150 mm in the northeast of Llevant 

Ranges and 80-90 mm in the south of the island (Grimalt, 1989a). Mean annual 

temperature is 16.5ºC with a gradient temperature from north to south due to 

topographic effects as occur with the rainfall amounts. 

Geological structure and climate shape surface and groundwater hydrology. The 

fluvial network of Mallorca is divided in five main hydrographic hillslopes 

(northeast, Palma, Alcúdia, Campos and southeast) and two secondary (Andratx and 

Pollença) (Grimalt, 1989b). Fluvial systems are mainly under ephemeral 

hydrological regime, resulting from the combination of geology and Mediterranean 

climate. The hydrological regime is characterized by an intra- and inter-annual 

variability as well as high recurrence of severe flash-flood events (Estrany and 

Grimalt 2014). The hydrographic network is formed by small catchments; only 7 

exceed 100 km2 and the largest, Muro, reaches a surface area of 456 km2. In 

mountainous areas, streams are short and very steep in headwaters; catchments are 

small and receive a medium-high annual precipitation (i.e. 700-1,200 mm; Pardo 

and Olsen 2004). These mountainous streams represent 20% of the hydrographic 

network total length. In lowland areas, where annual precipitation is lower (400-

600 mm), streams have gentler slopes with lengths representing 63% of the 

hydrographic network. The remaining 17% of the river streams are located on 
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impervious materials allowing different degrees of intermittency and even 

punctually perennial hydrological regimes. 

Land uses percentage distribution are rainfed tree crops (40.8%), rainfed 

herbaceous crops (16.9%), forests (16.8%), shrub (15.9%), urban (5.5%), irrigated 

crops (3.5%) and wetlands (0.6%) (CLC, 2012). Nevertheless, land uses have been 

deeply changed since 1950s due to socio-economic changes, where marginal 

agricultural areas from Tramuntana and Llevant Ranges were abandoned due to 

rural exodus, starting afforestation processes. As a result, forest surface increase 

from 176,590 (1971) to 220,785 (2010) hectares, increasing their surface a 79% 

(IFN1, IFN3). Since 1960s, rural exodus was accelerated due to a large proportion of 

the population changed agricultural activities for services activities. This population 

movement generated an increase of the urban surface firstly at the coast and 

secondly to residential rural areas (Grimalt et al., 2002). Accordingly, Pons (2011) 

quantified the increase of urban areas, being the 1.1% in 1956 and the 6.2% in 2006. 

The rural exodus of marginal agricultural areas that caused the land use change 

previously explained, caused an abandonment of the traditional human activities 

(i.e. terraces, lime kilns, huts and charcoal furnaces, ice houses, rural farms) and also 

a mismanagement of the territory. This process has specially impacted the 

Tramuntana Range, where the development of these traditional activities had been 

intense during the Early modern period. As a result, UNESCO recognised the human 

shape in the Tramuntana Range as World Heritage Site in the category of cultural 

landscape by UNESCO in 2011. The landscape of Tramuntana Range exemplifies the 

interchange between the Muslim and Christian cultures, which is representative of 

the Mediterranean area, combining the Arabic water harvesting and management 

technology with the agricultural know-how and the territorial control system 

introduced by the Christian. As a result of this cultural interaction, a terraced 

agricultural landscape was created, featured by an articulated waterworks network, 

orchards, vegetable gardens and olive groves, which were earlier organised around 

small farm holdings, and later in large estates (i.e. possessions) and which nowadays 

make up the physical and functional features of the Tramuntana Range (UNESCO, 

2011).  



Chapter  2. Study areas 

46 
 

The exploitation of water, a scarce and highly prized resource, has given rise to the 

construction of a complex traditional water engineering system. The farmed 

landscape combines an interconnected and highly specialised system of waterworks 

for collecting and storing water, featuring qanats (i.e. underground channels to 

harvest and transport water), channels, ditches, storage basins, with a system of 

terraces supported by dry-stone walls so as to make possible the cultivation of 

vegetables, fruit and olive trees in the terraced plots and including a drainage 

system to avoid soil erosion. Given the relevance of terraces 20,000 kilometres of 

dry-stone wall were built in Tramuntana Range (GMM, 2017). 

 

2.1.2. Sant Miquel River 

Sant Miquel River is a mesoscale mountainous catchment (145 km2) which collects 

water from the south-eastern parts of Tramuntana Range (Mallorca, Spain; Figure 

2.5). The main tributaries are the Búger River (68.2 km2) and the homonymous Sant 

Miquel River (52 km2). Altitude ranges from 7 to 1,366 m.a.s.l. In the catchment 

headwaters (800 – 1,300 m.a.s.l; Figure 2.5) the average gradient of the channels is 

>20%, which are mainly covered by dense forests. The lowest part of the catchment 

(i.e. 7%) is occupied by the most important irrigated area on the island, providing 

concern for the deterioration of the Sant Miquel fluvial system and the s'Albufera 

(1,708 ha), a wetland situated at the outlet of the catchment and protected by the 

RAMSAR list of wetlands of international importance. Sant Miquel has an 

intermittent hydrological regime due to the predominance of karstic processes, 

despite receiving the highest mean annual precipitation of the island (i.e. 1,262 mm; 

1993-2011, Lluc AEMET station, see location in Figure 2.5).  
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Figure 2.5. Map showing Es Fangar Creek and Búger River catchments within Sant Miquel 

River catchment and fluvial network, gauging stations and rainfall stations. 

Climate is classified on the Emberger scale as Mediterranean temperate sub-humid 

in lowlands and cool-humid in headwaters, reaching the cool-superhumid in the 

highest part of the catchment (Guijarro, 1986). Mean annual rainfall in lowland 

areas is 645 mm (1970-2000, Sa Pobla AEMET station) and at the headwaters is 

1,262 mm (1993-2011, Lluc AEMET station). Rainstorms with a recurrence period 

of 2 years (headwaters) and 10 years (lowlands) may generate 100 mm of rainfall 

in 24 h (YACU, 2002).  

Sant Miquel River catchment is a flood prone area as the downstream area is a 

geomorphic unit composed by an alluvial plain (Sastre, 2015), which receives 

discharge from the rainiest area of Mallorca. Fifty storms with rainfall amounts >100 

mm in 24 h were recorded between 1981 and 1990 at Son Torrella AEMET station 

(see location in Figure 2.5). This station is located in the same major rainfall area 

than Sant Miquel River headwaters, as Sumner et al. (1993) established for the 

whole island of Mallorca, with a maximum of 536.5 mm the 22nd October in 1959 

(Grimalt, 2001). During three centuries, between 1691 and 1991, 27 severe floods 
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affected Sa Pobla village or their surroundings (Canyelles et al. 2003). For this 

reason, the main headwater subcatchments located in the Tramuntana Range were 

regulated by 8 check-dams constructed in the 1980s, in addition to traditional 

terracing and check-dam terraces.  

The groundwater bodies in the relief areas are characterised by free intermediate 

aquifer (piezometric levels between 20 and 50 m). The lithology is mainly composed 

by limestone and dolomites (Rhaetian-Lias). The aquifers contain good water 

quality, being the annual average extraction of the biggest aquifer 0.47 hm3 yr-1 

(PHIB, 2011). The most important drainage of these aquifers is the spring called 

“Fonts Ufanes de Gabellí”. The recharge capacity of this spring is the percolation of 

37% of the annual rainfall (i.e. 1,000 mm yr-1) over 43 km2 of limestone materials 

(Périz et al. 1995). The annual water volume of this spring is between 10 and 12 hm3 

yr-1 directly released to the Sant Miquel River (Mateos et al. 2006).  

In lowland areas, surface aquifers (piezometric levels between 0 and 20 m) are 

semiconfined, characterised by limestone, dolomites, conglomerates, silts and clays 

materials. The annual average extraction is 21.9 hm3 yr-1, mainly used for 

agricultural purposes. As a result of the agricultural activity and use of fertilisers, 

high concentrations of nitrate (i.e. 300 mg l-1) and chloride are found in these 

aquifers (PHIB, 2011).   

Since 1950, important socio-economic changes have caused a gradual abandonment 

of farmland in marginal areas, leading to afforestation. Forest cover in 1956 was 

22% of the catchment area and currently forest cover represents the 36% of the 

area. Most of this increase is located in areas with elevations > 200 m.a.s.l. In these 

areas, since 1956 to 2012, forest area increased from 22.3 to 43.8 km2, which 

correspond an increase of the forest cover from 13% to 26%. 
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2.1.2.1. Es Fangar Creek  

Es Fangar Creek catchment (i.e. 3.4 km2) is a headwater tributary of the Sant Miquel 

River located in the north-eastern part of Mallorca Island (Figure 2.6), being 

representative of Mediterranean mid-mountainous catchments.  

Altitudes range from 72 m.a.s.l. to 404 m.a.s.l. (Figure 2.6a). The mean slope of the 

catchment is 26% and the length of the main channel 3.1 km (average slope of 22%). 

The lithology is mainly composed by marl and marl-limestone formations from the 

Medium–Upper Jurassic and Cretaceous period in the valley bottoms (Figure 2.6b). 

In the headwaters, massive calcareous and dolomite materials from the Lower 

Jurassic period and dolomite and marl formations from the Triassic period 

(Rhaetian) are dominant.  

 

Figure 2.6. (a) Map of the Sant Miquel River catchment with the location of rainfall stations. 

(b) Geological and (c) land uses maps of the Es Fangar Creek catchment, showing the fluvial 

network, the location of soil conservation structures and of the gauging station. 
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The climate of the area is classified on the Emberger scale as Mediterranean 

temperate sub-humid (Guijarro, 1986). The mean annual rainfall (1965–2016, 

Biniatró AEMET station) is 927 mm y−1 with a variation coefficient of 23%, and the 

mean annual temperature is 15.7°C. A rainfall amount of 180 mm in 24 h is 

estimated to have a recurrence period of 25 years (YACU, 2002). The Es Fangar 

streamflow regime can be classified according to Oueslati et al. (2015) as 

intermittent flashy (49% zero-flow days), with an annual variability from 

intermittent (35% zero-flow days) to harsh intermittent (62% zero-flow days). 

The drainage network is natural in the headwater parts. In the bottom valley, flow 

lamination is applied, with check-dam terraces and also the straightening and 

diverting of the main stream, with the banks fixed with dry-stone walls for flood 

control and erosion prevention (Figure 2.6c). In addition, subsurface tile drains are 

also installed to facilitate drainage due to the impervious materials which would 

impede agricultural activity during wet periods. As a result, 16% of the surface 

catchment is occupied by soil and water conservation structures (i.e. 32.4 km of dry-

stone walls). Since 1950, important socio-economic changes have caused a gradual 

abandonment of farmland in marginal areas, leading to afforestation. The land uses 

in 1956 were rainfed herbaceous crops (54%), forest (31%) and scrubland (15%). 

Nowadays, the main land uses (Figure 2.6c) are forest (63%), rainfed herbaceous 

crops (32%) and scrubland (5%). In addition, 54% of terraced land is currently 

covered by forests (Figure 2.6c), demonstrating the consolidation of the forest 

transition.  

 

2.1.2.2. Búger River 

The Búger River is the western tributary of Sant Miquel River catchment, which 

drains a catchment area of 68.2 km2 (Figure 2.7a). Altitudes range from 55 to 1,360 

m.a.s.l. with an average catchment slope of 31% (Figure 2.7a). The River is 21.6 km 

long with an average channel slope of 5% (13% in the first 7 km and 1% 

downstream). The catchment headwaters are characterized by massive limestone, 
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marls and breccia. The lithology in lowland areas is alluvial Quaternary, with clays 

and gravels (Figure 2.7b).  

 

 

Figure 2.7.  (a) Map of the Sant Miquel River catchment with the location of Búger catchment. 

(b) Geological and (c) land uses maps of the Búger catchment, showing the fluvial network, 

the location of soil conservation structures, the gauging station and water treatment plants. 

The climate of the area is classified on the Emberger scale as Mediterranea 

temperate sub-humid in lowlands and cool-humid in headwaters, reaching the cool-

superhumid in the highest part of the catchment (Guijarro, 1986). Mean annual 

rainfall in lowland areas is 760 mm (1985-2006, Selva-Moscari AEMET station) and 

at the headwaters is 1,262 mm (1993-2011, Lluc AEMET station). Rainstorms with 

a recurrence period of 2 years (headwaters) and 10 years (lowlands) may generate 

100 mm of rainfall in 24 h (YACU, 2002).  

Agriculture is the main land use of the catchment: this is, mainly located in lowlands, 

while forest mostly covers mountain areas (Figure 2.7c). Percentage land uses 

distribution are agricultural (43.7%), forest (34.9%), sparsely vegetated areas 
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(9.5%), olive groves (9%), natural grasslands (1.3%), urban (1.3%) and land 

principally occupied by agriculture with significant areas of natural vegetation 

(0.4%). The main headwater tributaries are regulated by check-dams constructed 

in the 1980s as a result of the development of basin -scale erosion- control schemes 

by the Spanish Forest Administration. Traditional farm terraces occupy 20% of the 

catchment (i.e. 485 km of dry-stone walls). Furthermore, two water treatment 

plants at the villages of Selva (4,014 inhabitants; INE, 2019) and Mancor de la Vall 

(1,509 inhabitants; INE, 2019), located 6 and 10 km upstream of the hydrometric 

station (Figure 2.7c), spilled into the main channel during the period 2013-2017 an 

average monthly wastewater volume of 12,727 m3 and 4,267 m3, respectively (GOIB, 

2020).  

 

2.4. Apulia region: Carapelle River catchment  

Apulia Region is located in the south-eastern part of the Italian Peninsula (Figure 

2.8a) and covers a surface area of 19,500 km2. The region is divided in five 

physiographic units: (1) Daunian Sub-Apennine, (2) Tavoliere delle Puglie (Apulian 

tableland) and (3) Gargano promontory situated in the province of Foggia from 

northwest to northeast, respectively. (4) Le Murge hill covers predominantly the 

Central part of the region (Province of Bari) and the (5) Peninsula of Salento located 

in the South in the provinces of Brindisi, Lecce and Taranto. Most of the region is flat 

to slightly sloping land except for the Mount Gargano area situated in the North-

East, and the Sub-Apennine part located mainly in the North-West of the region. The 

dominant soils are Cambisols, Luvisols and Vertisols, characterized by cretaceous 

limestone, marl and clayey to sandy deposits (Figure 2.8c). 
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Figure 2.8. (a)Location of Italy and Apulia region in the Mediterranean Sea. Maps showing 

physical characteristics of Apulia region: (b) elevation, (c) lithology and (d) rainfall 

distribution. 

The climate is classified as Mediterranean hot-summer (Csa), except in the northern 

province (Foggia) where the climate is classified as warm temperate humid (Cfa) 

and arid (Bsk) (Kottek et al. 2006). The highest mean annual rainfall (900 mm yr-1) 

is in the Gargano area (NE). The lowest values of mean annual rainfall (400 mm yr-

1) are in the area of Tavoliere, in the province of Foggia (NW). However, in the 

greatest part of the region mean annual rainfall range between 450 and 550 mm yr-

1 (Ladisa et al. 2012) (Figure 2.8d). Agriculture is the main land use (81.4%) while 

forest and semi-natural areas cover the 13.3% of the region (Corine, 2000).  

The Carapelle catchment is located in northern Apulia (SE Italy; Figure 2.8a and 

2.8b), which drains a catchment area of 506 km2 with a main channel length of 52.2 

km that flows with an average channel slope of 1.8%. Altitude ranges between 120 

and 1,089 m.a.s.l and the average catchment slope is 16%. The headwaters are in 

the neighbouring Campanian Apennine region, and most of the upper watercourse 

crosses the orographic system of the Daunia Hills. The channel is confined to the 

hilly part of the basin and assumes a meandering form in the alluvial plain, where 

the coarser material is deposited. 

In the mountainous part of the catchment, the lithology is mainly characterized by 

clayey-limestone and limestone-marly units which make up the flyschoid unit, while 

on the plain the main lithological classes are sands and conglomerates, clays and 

alluvial terraces (Figure 2.9c).  
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Figure 2.9. Maps showing (a) the location of Italy in the Mediterranean Sea and (b) the 

location of the Carapelle catchment in the Southern Italy. (c) Geological and (d) land uses 

maps of the Carapelle catchment, showing the fluvial network, check dams and the gauging 

station. 

The climate classification (Kottek et al., 2006) is Mediterranean, varying between 

warm (Cfa) at the headwaters and arid (Bsk) at the basin outlet. The mean annual 

rainfall at the headwaters is 778.9 mm (1921-2012, Bisaccia, Department of Civil 

Protection station) and 531.4 mm in lowlands (1921-2012, Castelluccio dei Sauri, 

Department of Civil Protection station). The maximum 24 h rainfall, with a 

recurrence period of 25 years is 110 mm. The rainiest months are March and 

November, being August the driest month. The hydrological regime is characterized 

by high variability during a year, with extremely low flow conditions during the 

summer months (June to September) and high flow conditions recorded in winter 

and early spring. 

The Carapelle catchment is characterised by a strong presence of agricultural 

activities, occupying 79.5% of the catchment, mainly winter wheat (Figure 2.8d). 

Forest and pastures are located in the mountainous areas. Traditionally, a 4-year 
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crop rotation is adopted with mineral fertilizer applications in December and 

February. Besides, farmers usually practice the conventional tillage over the area, 

which consist of ploughing up and down slopes (25–40 cm depth). In the 

mountainous areas of the North-Western part of the catchment, many check-dams 

were built in the period 1960-1980. Sheet wash and concentrated water erosion are 

the main active erosion processes in the area, with no noticeable form of gully 

erosion. Bank erosion is also an active process, especially in the upstream river 

reaches. 

There are four water treatment plants in the basin (17,302 inhabitants), which 

contribute with an average monthly wastewater volume of 105,180 m3. 
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3. Materials and methods 

This chapter describes the fieldwork and laboratory methods undertaken for this 

thesis. Section 3.1. addresses the hydrology and suspended sediment monitoring 

network and gauging stations. Section 3.2. illustrates the laboratory methods. 

3.1 Monitoring and data acquisition 

3.1.1. Small Mediterranean catchments 

To analyse the hydrological response of 43 small catchments (i.e., <10 km2), data of 

annual rainfall, runoff, temperature (Cº) and catchment area (km2) were collected 

from 22 published studies. When temperature information was not available, it was 

obtained according to Fick and Hijmans (2017). Besides, information related soil, 

lithology and land uses were collected to assess the rainfall-runoff relationship 

under different lithology and land uses. Soil information was the scarcest data of the 

different studies found in the literature due to the contrasted aims of these studies. 

For this reason, catchments were classified as pervious or impervious by using the 

information regarding the catchments’ characteristics (e.g. soil type, soil texture or 

lithology materials) extracted from research papers. The predominant lithology was 

pervious in 12 catchments and impervious in the other 31. Within the 43 

catchments, the studies of 12 of them also contained information related to the main 

land uses, which was used in this paper for assessing their hydrological response at 

the event scale. The main land uses were agriculture (3 catchments), agroforestry 

(3), forestry (1) and shrub (5). 

 

3.1.2. Sant Miquel River catchment 

In 2012, the Sant Miquel hydrometric network was created to investigate the 

changing patterns of hydrological and sediment connectivity induced by the global 

change in Mediterranean catchments (Figure 3.1) through the project “CGL2012-

32446 Assessing hydrological and sediment connectivity in contrasting 

Mediterranean catchments. Impacts of Global Change. MEDhyCON -1”, funded by the 
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Spanish Ministry of Economy and Competitiveness. This catchment was 

instrumented following a nested approach with catchment sizes from 3.4 to 145 

km2. Six gauging stations are continuously monitoring water stage and dissolved 

and suspended sediment concentrations, with readings in a sample interval of 1 min 

and a log interval of 15 min. Devices are linked to data loggers powered by a 12 V 

batteries connected to solar panels. Besides, two rainfall stations were built at 

headwater catchment (see Figure 3.1). During flood events and baseflow conditions, 

water stages are measured to calibrate water level probes, whilst flow velocity 

measurements were carried out to develop stage-discharge rating curves and water 

and sediment samples collected to calibrate the turbidimeter. Every two or three 

months the data was downloaded during fieldwork.  

 

Figure 3.1. Sant Miquel hydrometric network. Map showing fluvial network, gauging stations, 

rainfall stations and pictures of catchment locations. 
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3.1.2.1. Es Fangar Creek catchment 

The gauging station of Es Fangar Creek was constructed in July 2012. The cross 

section has a rectangular broad-crested weir for low water stages to better measure 

low flows (cross section 2.2 m wide x 1.7 m height; see Figure 3.2). A Campbell 

Scientific CR200X data logger continuously measures the water stage by using a 

Campbell CS451 pressure sensor, as well as the turbidity by an OBS-3+ turbidimeter 

with a double measurement range of 0–1,000/1,000–4,000 Nephelometric 

Turbidity Units (hereinafter NTU). In October 2014, a Water Content Reflectometer 

(Campbell Scientific CS625) was installed in a rainfed herbaceous crop, 3 m away 

from the gauge station, provide continuous soil moisture information at 0-30 cm 

depth. The soil moisture measurements are assumed to be representative of that of 

the valley bottom (i.e., 32% of the catchment area). The datalogger takes readings 

every minute and records average readings every 15 minutes. Between 2012 and 

2017, 17 direct flow velocity measurements were performed during baseflow 

conditions and flood events with a Q range between 0.004 and 2.166 m3 s-1 by using 

an OTT MF Pro electromagnetic water flow meter. These flow velocity 

measurements were used to establish the stage-discharge relationship (R2=0.98). In 

addition, samples were collected with a rising-stage sampler modified from Schick 

(1967) and manually during storm events and baseflow periods.  
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Figure 3.2. Upstream view of Es Fangar cross section and gauge station. 

The rainfall data were obtained between 2012 and 2014 from the B696 Biniatró 

AEMET station (Figure 3.1). In October 2014, a rainfall gauge station (Míner Gran) 

was installed less than 2.5 km away from the catchment, in a representative location 

of the headwaters. The rainfall gauge is installed 1 m above the ground and 

connected to a HOBO Pendant® G Data Logger - UA-004-64 that records 

precipitation at 0.2 mm resolution. A linear regression was established (n = 978; R2: 

0.88) for daily rainfall (2014–2017) between the Biniatró and Míner Gran stations 

to reconstruct rainfall data series from 2012 to 2014 for the Míner Gran station. Due 

to the lack of temperature data available in the studied catchment, the data of 

neighbouring AEMET weather stations (i.e., less than 8 km away from the 

catchment) were used to estimate the catchment’s temperature by using the block 
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kriging technique. With this information, the monthly evapotranspiration (i.e., ETo) 

was estimated using the equation from Hargreaves and Samani (1985). 

 

3.1.2.2. Búger River catchment 

The Búger River gauging station was also built in July 2012 (cross section 11.3 m 

wide x 1.6 m height; see Figure 3.3). Water stage is continuously measured using a 

pressure sensor (Campbell CS451) and turbidity was recorded by a turbidimeter 

(OBS-3+ turbidimeter with a double measurement range of 0–1.000/1.000–4.000 

NTU) connected to a Campbell Scientific CR200X data logger, which performs a 1 

min reading and records an average value every 15 min. Between 2012 and 2017, 

12 direct flow velocity measurements were performed during baseflow conditions 

and flood events with a Q range between 0.108 and 6.725 m3 s-1 by using an OTT MF 

Pro electromagnetic water flow meter. These flow velocity measurements were 

used to establish the stage-discharge relationship (R2=0.97). A rising-stage sampler 

modified from Schick (1967) was installed to provide more information on SSC. 

Besides, SSC samples were collected manually during storm events and baseflow 

periods. The rainfall data since 2012 were obtained from AEMET-the Spanish 

Meteorological Agency (6 rainfall stations) and the MEDhyCON research group (2 

rainfall stations). 

 

http://medhycon.uib.cat/
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Figure 3.3. Downstream view of Búger River cross section and gauge station during the flood 

event occurred 20th January 2017. 

 

3.1.3. Carapelle River catchment 

Daily and sub-daily (30-min) rainfall data from 8 rainfall stations were obtained 

from the Department of Civil Protection between 2007 and 2011. In the Carapelle 

gauging station water stage was measured using an electromechanical and 

ultrasound stage meter (see Figure 3.4). Turbidity was measured with an infrared 

optical probe (Hach‐Lange Solitax) with a range of 0.001-4000 NTU (0-150 g l-1). 

The probe was housed in a protection case to avoid the impact of flowing coarse 

material. The monitoring was controlled by a data acquisition set and a telemetry 

system for remote measurements was also provided. Both systems recorded data 

every 30 minutes.  

 

Figure 3.4. Upstream view of Carapelle cross section, gauge station and probe housing device. 
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3.2. Laboratory analysis 

In Es Fangar and Búger, the water and suspended sediment samples (250 ml) 

collected by the rising stage, during baseflow and flood events were filtered with 

0.45 μm filters, which were subsequently dried at room temperature and weighed 

on high-precision scales (i.e., 0.0001 g) to determine suspended sediment 

concentrations. Finally, these suspended sediment concentrations values were used 

to calibrate the turbidity probes through a SSC – NTU relationship (Table 3.1). 

Table 3.1 Number of samples collected for the turbidimeter calibration, range of suspended 

sediment concentration (SSC) and R2 obtained. 

        

Catchment 
Number of 

samples 
SSC range 

(g l-1) 
R2 turbidimeter 

calibration 

Es Fangar 38  < 0.1 - 0.9 0.81 

Búger  18  < 0.1 - 2.3 0.91 

Carapelle 65 0.1 - 21 0.95 

 

In the Carapelle, the turbidimeter was calibrated firstly in the laboratory with 

material collected from the riverbed of the Carapelle. In this stage, 31 suspensions 

having fixed granulometric mixtures and 36 suspensions with varying ratios 

between sandy and fine fractions were used. A second calibration was done using 

65 samples collected during flood events (Gentile et al. 2010). 

 

3.3. Analysing hydrological response and suspended sediment transport 

To assess the hydrological response and suspended sediment transport of 

Mediterranean catchments, a relationship assessment encompassing rainfall, soil 

moisture, discharge and suspended sediment was carried out at different temporal 

scales (annual, seasonal, monthly and event scale). In the small Mediterranean 

catchments, rainfall and runoff at the annual and event scale were used to carry out 

bivariate relationships. In Es Fangar, rainfall, runoff, and suspended sediment load 

were calculated at annual, seasonal, and event scales. Additionally, a water balance 
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was computed at the monthly scale and at the event scale the soil moisture was 

included into the analysis. At the event scale, for each runoff event (i.e., when the 

water stage exceeds the low-flows channel; i.e., 0.036 m3 s−1), a simple hydrograph 

separation between quickflow and baseflow components was performed through a 

visual technique based on the breakpoints detected on the logarithmic falling limb 

of the hydrograph (Maidment, 1985). In Búger and Carapelle, the flow regime was 

classified in relation to the degree of intermittence. Rainfall, runoff and sediment 

load were calculated at annual, monthly and event scale. Figure 3.5 summarizes the 

methodological workflow for the analysis of the hydrological response and 

suspended sediment transport.  

 

 
Figure 3.5. Hypothesis, specific objectives and methodological workflow for the analysis of the 

hydrological response and suspended sediment transport in the small Mediterranean 

catchments, Es Fangar, Búger and Carapelle catchments. 

The hydrological regime was characterized by means of a set of hydrological 

indicators (HIs; Richter et al., 1996) and the degree of intermittence (Gallart et al., 

2012). The selected HIs, computed on measured daily Q, proved to be relevant in 

temporary rivers as pointed out by Oueslati et al. (2015) and by D’Ambrosio et al. 

(2017). To characterize the time during which a specified flow or suspended 

sediment yield was exceeded, flow and sediment duration curves were computed 

(hereinafter FDC and SDC respectively). To assess the inter- and intra-annual 
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variability, rainfall, runoff and sediment load amounts were computed at annual, 

seasonal and monthly scale. 

At the event scale, several variables were computed from rainfall, soil moisture, 

discharge and suspended sediment. To assess the relationship of these variables 

bivariate and multiple correlations were carried out to identify the main drivers of 

the hydrological response and sediment transport. The non-linearity of the rainfall-

runoff relationship was analysed using rainfall events with a similar rainfall amount 

but a different runoff response occurred with different antecedent conditions or 

rainfall dynamics. Non-parametric statistics were applied to check if significant 

differences (i.e., p < 0.01) existed between groups of events. 

The spatiotemporal relationship between soil moisture, discharge and suspended 

sediment concentrations were analysed by a double hysteresis analysis. The first 

one was focused on the relationship between Q and SSC using the hysteresis 

classification reported by Williams (1989). The second hysteretic analysis was 

carried out to assess the antecedent condition of the R event generation. An analysis 

of soil moisture - discharge hysteretic loops following the method by Penna et al. 

(2011) was used to identify dry or wet antecedent conditions.  
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7. Discussion and conclusions  

7.1. Discussion 

7.1.1. Hydrology of Mediterranean catchments 

7.1.1.1. Hydrological regimes in Mediterranean catchments 

Temporary rivers is a broad term used to define waterways that cease flow during 

some time of the year (Busch et al., 2020). These rivers account over 50% of the 

global fluvial network present in all continent and climates (Acuña et al., 2014) and 

are expected to increase with climate change and anthropogenic activities (Costigan 

et al., 2017; Sauquet et al., 2020). Hydrological regimes are influenced by 

fluctuations in the groundwater table and the nature of the flow pathways into and 

out of the river channel (Sear et al., 1999). Thus, the relevance of temporary rivers 

in how and where groundwater recharge occur is a key issue for water resources 

management, making essential the understanding of the transition from dry to 

flowing state (Gutiérrez-Jurado et al., 2019).  

Under this framework, soil permeability, lithology and geological features have been 

found to be the most relevant factors affecting the flow regime and the intermittence 

of the Búger and Carapelle catchments. The lithological features in catchments 

promoted a huge difference in the duration of no-flow conditions which is a good 

variable to describe temporary rivers (Oueslati et al., 2015). Consequently, an 

Intermittent-Dry and Intermittent-Pool regimes were estimated for Búger and 

Carapelle rivers, respectively. Zero-flow day is one of the most important 

hydrological metrics in temporary rivers because it has major ecological 

implications for aquatic and terrestrial biota and ecosystem processes (Datry et al., 

2017; von Schiller et al., 2017). Thus, karst areas of Búger catchment headwaters 

and sand and coarse sediments composing alluvial deposits in downstream areas 

promoted high transmission losses causing a high threshold for runoff generation 

(Estrany et al., 2010a). Accordingly, a large mean number of zero-flow day was 

observed (i.e. 237 ± 50). In Carapelle, although the median annual rainfall (546 mm) 

was lower than Búger (868 mm), a lower mean number of zero-flow day was 
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observed (i.e. 2.5 ± 26). Furthermore, land use also exerts a control over runoff 

generation. In the Carapelle catchment, 80% of its surface is covered by seasonal 

crops. Conversely, forests in Búger cover the 35% of the catchment,  mainly located 

in steepest headwaters, promoting a higher rainfall interception than the arable 

land of the Carapelle catchment (Cosandey et al., 2005). As a result, flow 

permanence observed was 26% and 99% in Búger and Carapelle catchments, 

respectively. Similarly to the Búger catchment, karst areas in Es Fangar catchment 

also promoted a large mean number of zero-flow day (i.e. 178 ± 38). Búger and Es 

Fangar values can be classified in the range of high number of zero-flow day if 

compared with the 40 temporary rivers in Europe under different climate and 

lithology (Table 7.1). The classification of the 40 temporary rivers by non- Csa 

climate and non- calcareous lithology depicted how catchments under Csa climate 

and/or calcareous lithology had the largest values of zero-flow day (Table 7.1). 

Although temporary rivers are not only present in arid and Mediterranean areas, a 

weak tendency was observed in the zero-flow day increasing as mean annual 

temperature increase and as mean annual rainfall decrease (Sauquet et al., 2020).  

Table 7.1. Compiled data of mean zero-flow day and standard deviation of 40 temporary rivers 

from Sauquet et al. (2020). 

     

  
Mean Zero-

flow day 
Standard 
deviation 

All catchments 74 87 

Catchments with Csa climate 134 99 

Catchments without Csa climate 29 36 

Catchments with calcareous lithology 141 109 

Catchments without calcareous lithology 38 42 

Catchments with Csa climate and calcareous lithology 183 103 

 

Geological characteristics promote a high spatial variability of intermittency 

controlling the hydrological regime (Borg Galea et al., 2019; Gutiérrez-Jurado et al., 

2019; Shanafield et al., 2020).  As a result catchments with calcareous lithology 

showed the highest standard deviation of zero-flow day due to the presence of karst 

sources with an irregular and flashy behaviour highly dependent on rainfall 

amounts and spatial distribution, that increased or decreased the zero-flow day 
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observations. For example in the Spanish Pyrenees, a gauging station located at the 

outlet of a karstic system (1.4 km2) maintained a near-permanent regime, whereas 

in a downstream station of the same catchment (35 km2) the flow regime was 

ephemeral (Gallart et al., 2012). Likewise, transmission losses in a small catchment 

were observed from headwaters (1.1 km2) to the outlet (4.8 km2) where flow 

duration decreased from 32% to 13% of the time, respectively (García-Comendador 

et al., 2017). Contrarily, streams under chalk material increased flow permanence 

downstream due to hydrological regime was dominated by groundwater 

contributions (Sefton et al., 2019). Understanding the expansion and contraction of 

the wet and dry stream length by applying techniques such spatiotemporal 

monitoring using flow intermittency sensors (Assendelft and van Meerveld, 2019; 

Jensen et al., 2019) will finally improve the comprehension of the spatiotemporal 

distribution of flow states and runoff generation processes and therefore the 

hydrological functioning of temporary rivers. 

 

7.1.1.2. Hydrological response in Mediterranean catchments 

Mediterranean catchments are within the most complex environments due to the 

seasonality of their climate, the catchment geology and the long history of landscape 

modification by human activity, which strongly influenced their hydrological 

response (Thornes et al., 2009). These characteristics make this region sensitive to 

the global change (i.e. land uses and climate changes) and therefore subject to 

changes that will affect the sustainability, quantity, quality and management of 

water resources (García-Ruiz et al., 2011). Thus, assessing the relevance of the 

hydrological response at different timescales is fundamental for a better 

comprehension of process interactions and feedbacks between different drivers 

across timescales (Sun et al., 2016) 

 
7.1.1.2.1. Annual scale 

Hydrological response in Mediterranean catchments showed a significant annual 

rainfall-runoff correlation, depicting the importance of the annual rainfall amount 
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(Merheb et al., 2016). Such result is in agreement with the conceptual model 

developed by Borg Galea et al. (2019) were climate is the main exogenous driver of 

the rainfall-runoff relationship at catchment scale in Mediterranean environments. 

However, rainfall-runoff is also influenced by endogenous variable (i.e. catchment 

geology), promoting non-linearity in this relationship. Accordingly, this non-

linearity was observed in the rainfall-runoff relationship the small Mediterranean 

catchments where catchments with pervious and impervious lithology showed 

linear correlations of R2 = 0.47 and R2 = 0.82, respectively. Highest values of annual 

runoff were observed in catchments characterised by impervious materials or with 

karst sources, while low annual runoff were observed in catchments characterised 

by deep percolation or transmission losses. Similarly, the annual runoff coefficient 

showed a higher median value in the non-karst catchment (i.e. Carapelle, 16.5%) 

than in karst areas (i.e. 8.7 for Es Fangar 8.7% and 3% for Búger catchments). The 

median runoff coefficient of the Carapelle catchment is comparable with the values 

of runoff coefficient reported in catchments of the Eastern Mediterranean region 

with a median value and interquartile range of 17% and 6-57%, respectively 

(Merheb et al., 2016). The median runoff coefficient of Es Fangar and Búger 

catchments is similar to the values of runoff coefficient reported in catchments of 

the Southern Mediterranean region with a median value and interquartile range of 

8% and 5-14%, respectively. However, the median annual rainfall (376 mm yr-1) and 

interquartile range (327-433 mm yr-1) of the Southern Mediterranean region are 

lower than the median values of Es Fangar (874 mm yr-1) and Búger (868 mm yr-1) 

catchments, where in spite of larger annual rainfall limestone lithology led to a 

decrease of the runoff coefficient values (Ries et al., 2017). Annual runoff coefficients 

are also subject to a large inter-annual variability and ranged between 3-14%, 2-

10% and 14-35% in Es Fangar, Búger and Carapelle catchments, respectively.  

The spatial distribution of lithology and land use in Es Fangar, Búger and Carapelle 

catchments allows a better understanding of runoff generation patterns. The spatial 

distribution of land uses in Es Fangar and Búger catchments follow a common 

landscape pattern in Mediterranean regions; i.e., forests at headwaters and 

agriculture in the valley bottom. This land use distribution promoted a reduction 

effect in runoff response, as the steepest parts of the catchments are covered by 
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natural vegetation. Accordingly, runoff response becomes governed by areas 

differing in land use (i.e. patches) and their interaction according to the spatial 

distribution within a catchment (Fiener et al., 2011). Runoff response increased 

where larger patches are connected to the drainage pathway instead of being 

randomly distributed (Western et al., 2001). Furthermore, it is essential to analyse 

the linear structures and the density of patches for assessing the effects of human-

made patchiness on runoff response (Fiener et al., 2011). Linear structures may 

increase (i.e. forest roads) or decrease (i.e. terraces and drainage systems) 

hydrological connectivity at the catchment scale (Calsamiglia et al., 2018; López-

Vicente et al., 2017). Terraces reduce the slope length and gradient, increasing water 

infiltration and soil retention (Tarolli et al., 2014). However, the collapse of these 

structures may promote an increase of runoff generation as in Mediterranean areas 

runoff coefficient on abandoned terraces ranged from 20% to 40%, depending on 

the percentage of plant cover (Arnáez et al., 2015). The annual runoff coefficient 

values in Es Fangar and Búger catchments may indicate that terraces were still 

working well during the study period, reducing runoff generation. Additionally, 

subsurface tile drains in flat areas facilitated drainage during wet and dry periods 

by reducing soil saturation and increasing infiltration, respectively (Estrany et al. 

2010b; Moussa et al., 2002). Furthermore, in Es Fangar catchment, hydrological 

connectivity is modified through a check-dam system in the bottom valley 

(disconnecting slope and channel) where the natural stream is diverted to a margin 

of the floodplain, providing further fertile agricultural land and avoiding erosion. 

Besides, two roads following the bottom valley direction reduce hillslope-floodplain 

lateral connectivity. In Es Fangar and Búger catchments some of the soil 

conservation structures were abandoned since the middle of the twentieth century 

due to rural exodus. Accordingly, afforestation processes increased forest coverto 

54% and 37% of the terraced areas in Es Fangar and Búger, respectively. 

Additionally, land use change has been identified as a main factor controlling 

hydrological connectivity, promoting low and more stable values of connectivity 

when afforestation processes occur (López-Vicente et al., 2017) resulting in a 

potential reduction of the sediment cascade. However, when minor changes in 

vegetation occur the changes in linear structures play a key role in hydrological 

pathways. As a result, the degree of maintenance or abandonment of terraces and 
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their current land use determine the (dis)connectivity between compartments 

according to preferential pathways promoted by a cascade effect of collapse within 

the terraced areas (Calsamiglia et al., 2018). In the Carapelle catchment, check dams 

characterised by a low Leaf Area Index values and scarce vegetation were eroded or 

destroyed, therefore increasing in-channel connectivity (Ricci et al., 2019). 

However, check dams with high Leaf Area Index showed positive effects on riparian 

vegetation promoting riverbed stability.  

 

7.1.1.2.2. Seasonal scale 

Mediterranean climate is characterised by a wet and mild winter, a warm and dry 

summer and a high inter- and intra-annual variability in rainfall patterns. Rainfall is 

not equally distributed between seasons as 65% and often 80% or more of the rain 

falls in winter, with most of the precipitation falling during few major events (Gasith 

and Resh, 1999). Therefore, seasonal rainfall patterns and evapotranspiration 

generate wet (winter) and dry (summer) periods alternated throughout the year, 

separated by transition periods (last autumn and early spring).  These periods cause 

different initial conditions for runoff generation, which generally follows the rainfall 

pattern. According to the seasonal dynamics of rainfall the highest runoff 

contributions in Mediterranean catchments were in winter (i.e. wet period), 

followed by autumn and spring (i.e. transition periods) (Peña-Angulo et al., 2020a). 

The observed seasonality depicted how large amounts of runoff occurred during 

wet periods when catchments reserves enable the runoff generation (Latron et al., 

2008). Accordingly, in Es Fangar and Búger catchments, seasonality and antecedent 

soil moisture conditions played a key role in runoff generation (Lana-Renault et al., 

2007). The alternation of the wet, dry and transition periods is reflected in the 

seasonal runoff coefficients. Thus, winter was the season with the highest runoff 

coefficient in Es Fangar (17%), Búger (9%) and Carapelle (36%) catchments as a 

result of the rainfall accumulated during autumn -and maintained in winter- and low 

evapotranspiration demand (Estrany et al., 2010b). During autumn and spring, 

similar runoff coefficients in Es Fangar (9.1% and 5.1%), Búger (2.6% and 1.4%) 

and Carapelle (15.6% and 18.1%) catchments were observed as autumn and spring 
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encompass the wetting-up and the drying-down period, respectively (Gallart et al., 

2002). The beginning and the end of these seasons triggered quite different values 

of runoff as depicted the monthly runoff contributions of Es Fangar, Búger and 

Carapelle catchments, increasing from October to December and decreasing runoff 

from from April to June. The lowest runoff coefficient in the three catchments was 

observed in summer (1.4%, 0.4% and 11.8% in Es Fangar, Búger and Carapelle 

catchments). Similar results of summer runoff coefficients (< 10%) were obtained 

in Mediterranean catchments as the driest period of the year limited the 

hydrological response (Estrany et al., 2010b; Lana-Renault et al., 2007; Serrano-

Muela, 2012). 

These seasonal differences in runoff generation were observed in Es Fangar, Búger 

and Carapelle catchments. However, differences in the duration of the wet and dry 

period were observed in Es Fangar and Búger compared to Carapelle catchment. In 

Es Fangar and Búger catchments the months with highest rainfall and runoff 

amounts were from November to January and from November to April, respectively. 

Runoff started to decrease in mid-spring (i.e. transition period) as reference 

evapotranspiration increase and water reserves decreases. From mid-spring until 

summer, dry conditions for runoff generation were established and the catchments 

had a null or limited response until the wetting-up period, when succession of 

rainfall events filled again the water reserves, similarly to findings reported by 

Latron et al. (2008) in the Vallcebre research catchments. Although the Carapelle 

catchment had lower rainfall amount than Es Fangar and Búger catchments, rainfall 

amounts were homogeneously distributed throughout the year enlarging the 

duration of the wet period from October to June. Despite the duration of wet and dry 

period were different between catchments, the date of maximum and minimum flow 

coincide in the wet and dry period, respectively.  

Seasonality plays a key role in runoff generation processes increasing their non-

linearity due to the temporal patterns in rainfall and catchment moisture conditions 

(Gómez et al., 2014). Thus, runoff mechanisms can co-exist within a catchment even 

if during the wet period saturation processes likely are dominant whereas during 

dry period Hortonian processes may control most of the runoff generation (Manus 

et al., 2009; Merheb et al., 2016).  
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7.1.1.2.3. Event scale 

The temporal distribution of the analysed events in the small Mediterranean 

catchments, Es Fangar, Búger and Carapelle fits with the temporal pattern observed 

in the eastern and southern Mediterranean Sea Basin as half of the events occurred 

between November and February (Merheb et al., 2016), the period with the largest 

rainfall events in the Mediterranean Sea Basin.  

In Es Fangar catchment, runoff response was assessed using soil moisture variables 

(normalised soil moisture lag time and soil moisture average) instead of antecedent 

rainfall, which is an indirect measure of soil moisture that does not take into account 

the spatial and temporal variability of multiple factors related to soil moisture (i.e. 

soil texture, topography, vegetation; Brocca et al., 2010; Zucco et al., 2014). Results 

showed how major runoff contributions were generated under situations of wet soil 

moisture conditions characterised by a shorter lag time between the beginning of 

the rainfall event and moisture peak. Besides, soil moisture-discharge hysteresis in 

Es Fangar catchment revealed that 76% of the events were generated under wet 

antecedent conditions (Penna et al., 2011). Thus, in wet conditions the expansion of 

the stream length promotes in temporary rivers a higher hydrological connectivity 

enlarging the hydrological response if compared to events under dry conditions 

(Marchamalo et al., 2016). On the other hand, in the Carapelle catchment, drivers of 

runoff generation were related to the amount and intensities of the rainfall event, 

showing how different catchments characteristics (i.e. lithology and land use) may 

influence runoff generation. In this way, small Mediterranean catchments under 

impervious lithology showed larger runoff values and larger rainfall-runoff 

correlation than catchments under pervious lithology due to transmission losses 

(Tzoraki and Nikolaidis, 2007). Accordingly, soils characteristics are less pervious 

in the Carapelle than in Es Fangar and Búger, therefore infiltration excess processes 

could be more dominant in response to the rainfall (Latron et al., 2008). 

Furthermore, as 80% of the catchment in Carapelle acts as main driver for runoff 

generation as arable land has been demonstrated to be a driver for runoff 

generation (Cerdan et al., 2004). Similarly, rainfall-runoff of the small 

Mediterranean catchments under agricultural land use promoted larger runoff 

values than forest, agroforest and shrub land uses. Accordingly, low mean runoff (i.e. 
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< 6 mm) and coefficients (i.e. < 16 %) during events were observed in Es Fangar and 

Búger catchments as headwaters of both catchments were forested increasing 

rainfall interception (Cosandey et al., 2005). Hence, agricultural land use or 

impervious lithology are favourable for runoff generation during events due to low 

rainfall interception and low infiltration capacity. However, seasonality played also 

an important role as highest runoff contributions were obtained in winter 

independently of the land use and lithology. Accordingly, runoff coefficients in Es 

Fangar and Búger showed a large variability caused by seasonality. In these 

catchments, runoff coefficient ranged from 1% to 80% (12% median value) and 

from 0.1% to 42% (2.3% median value), respectively. The median values of runoff 

coefficient obtained are closer to the Eastern Mediterranean region (12%) than to 

the North-Western (40%) or Southern Mediterranean region (36%) (Merheb et al., 

2016). However, in both catchments runoff coefficients > 10% only occurred 

between November and March as water reserves in winter were higher than 

autumn and spring (Lana-Renault, 2007). Indeed, in Es Fangar catchment these 

events were characterised by a baseflow at the beginning of the flood above 0.04 m3 

s-1, confirming that they occurred under favourable water reserves conditions 

enabling larger runoff generation and higher discharge peaks than in other seasons 

(Tuset et al., 2016). Therefore, the largest hydrological responses in Es Fangar and 

Búger was due to the events occurred during winter season with wet antecedent 

conditions (antecedent baseflow and antecedent precipitation one day before) that 

promoted the largest values of runoff, runoff coefficient and discharge peak (Estrany 

et al., 2010b; Zocctaelli et al., 2019). In the Carapelle catchment, runoff coefficients 

ranged from 16% to 100% with a median value of 80%, being higher than the 

median values reported in the three Mediterranean subregions (Merheb et al., 

2016). The high median runoff coefficient in the Carapelle catchment is explained 

due to antecedent baseflow during small rainfall events (i.e < 5mm).   

 

7.1.2. Suspended sediment transport in Mediterranean catchments 

The distribution of the climatic, geological, topographical and land cover features 

determines the spatial sediment generation, sediment transfer and sediment 
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transport within a catchment (Walling, 1983). In Mediterranean catchments, these 

characteristics are based mainly in the inter- and intra-annual variability of the 

rainfall, non-uniform spatial distribution of lithology and highly modified land uses, 

generating a global change hotspot and multiples future scenarios for erosion trends 

(García-Ruiz and Lana-Renault, 2011; Yair, 1983; Zdruli, 2014). Assessing the 

suspended sediment transport under global change at different time scales allows a 

better understanding of when major loads take place and which factors are involved, 

which is crucial to elaborate suitable adaptive management strategies for soil 

resource (Lagacherie et al., 2018).  

 

7.1.2.1. Annual scale 

European catchments located in the Mediterranean climatic zone had the highest 

sediment yield (Vanmaercke et al., 2011). The median of sediment yield obtained in 

Es Fangar (4.5 t km2 yr-1), Búger (1.5 t km2 yr-1) and Carapelle (267.8 t km2 yr-1) 

catchments showed large differences between them. Es Fangar and Búger values 

can be classified in the European catchment group with the lowest sediment yield 

(i.e., < 40 t km2 yr-1) whereas Carapelle catchment can be classified in the group with 

the highest sediment yield (i.e., > 200 t km2 yr-1) (Vanmaercke et al., 2011). Although 

Mediterranean catchments had the highest sediment yield, they also had the highest 

standard deviation due to differences in climate, topography, land use and lithology. 

The land use distribution in Es Fangar and Búger catchments is characterised by a 

more complex pattern than in the Carapelle catchment due to a larger patchiness 

between forest, shrub and agricultural land uses. Furthermore, forest land use in Es 

Fangar and Búger headwaters promoted low sediment yield values as the natural 

vegetation protects the steepest slope. Thus, land use and vegetation coverage are a 

key factor for sediment yield as larger values of sediment yield are obtained under 

bare soil, agricultural land and badlands than forest and scrubland (García-Ruiz et 

al., 2013). Accordingly, the 80% of the Carapelle catchment is covered by seasonal 

crops being arable land the driver for the suspended sediment transport. 

Additionally, the contrasted lithology between catchments also promoted 

differences in sediment yield values. Es Fangar and Búger headwaters are 
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characterised by limestone materials, which trigger high transmission losses and 

low soil loss rates (Cantón et al., 2011). Furthermore, another factor to consider is 

the soil aggregation as it determines the pore structure and dispersion resistance of 

soil. Calcareous soils tend to have a great aggregate stability as calcium ions 

promotes aggregation (USDA, 2008). A well-structured soil can be promoted by a 

minimal tillage that may reduce aggregate destruction because they are not 

physically or mechanically broken; adding organic matter to enhances aggregate 

strength and stability; the application of organic fertilizer and agricultural 

abandonment (Liu et al., 2020a, 2020b). Soils with high aggregate stability are less 

susceptible to erosion as aggregated soils enhanced water infiltration reducing 

runoff and erosion. Hence, the concept of soil loss tolerance (T-value) was suggested 

to express the maximum acceptable soil loss from an area (Stamey and Smith, 1964). 

However, limestone materials are characterised by low rates of soil formation that 

promote low values of soil loss tolerance, which ranges from 0.2 to 55 t km2 yr-1 with 

an average of 4.3 t km2 yr-1 in continuous pure limestone and dolomites areas (Cao 

et al., 2020; Li et al., 2017, 2006). Nonetheless, these rates were calculated in the 

karst plateau in southwest China, an area characterised with a subtropical humid 

monsoon climate, mean annual temperature and rainfall of 14.3º C and 1338 mm, 

respectively. Thus, 80% of the rainfall occur when temperature is high promoting 

the soil formation. Soil formation and soil loss tolerance in Mediterranean karst 

areas may likely be lower than on the karst plateau as the rainiest period (i.e. 

autumn and winter) do not coincide with the warmest period (i.e. summer) when 

the formation factors can be more active. Contrarily in the Carapelle catchment, 

pervious lithology is composed of sandstone with clays or marls and occupying a 

lower extension (3.6%) than in Es Fangar (44%) or Búger (28%) catchments. 

Therefore, the interaction between land use and lithology play a key role in soil 

erosion, especially in karst areas where catchments with vegetation cover close to 

50-60% showed a limited sediment transport (Gao et al., 2018). Additionally, the 

different conservation state of the soil conservation structures in Es Fangar and 

Búger catchments (mainly maintained) than Carapelle catchment (some of them 

destroyed) may act differently decreasing (in the first case) or increasing (in the 

second case) the sediment transfer (Calsamiglia et al., 2018).   
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7.1.2.2. Seasonal scale 

Seasonal sediment yield variability can be seen better when major suspended 

sediment transport takes place as large events are known to strongly control annual 

sediment yield values (Gonzalez-Hidalgo et al., 2010; Li et al., 2020). A marked 

seasonality was observed in the sediment yield contributions in Es Fangar, Búger 

and Carapelle catchments as major sediment yield contributions occurred in 

autumn and winter, although at the beginning or end of summer relevant 

contributions may occur. Despite runoff and sediment yield contributions showed 

the same seasonality, the time compression (i.e. short periods where major soil 

losses take place) of the sediment yield was larger for runoff values. Accordingly, 

this seasonal pattern was observed in Mediterranean-climate catchments if 

compared to Mediterranean-oceanic climate catchments (Smetanová et al., 2018). 

Furthermore, compiled data from Mediterranean studies at plot (17) and catchment 

(29) scale showed that highest sediment yield contributions were generally 

observed in autumn, followed by spring, winter, and summer. However, a huge 

sediment yield variability was observed for all seasons, being only significant the 

difference in sediment yield between summer and autumn (Peña-Angulo et al., 

2020a). Additionally, these authors linked the highest rainfall, runoff and sediment 

yield contribution to the weather types, showing that westerly and easterly weather 

types promoted the highest rainfall, runoff and sediment yield contribution in 

autumn-winter and spring-summer, respectively. Accordingly, Es Fangar location in 

the northernmost part of Mallorca and the SW-NE orientation of the reliefs 

promoted that the northern flow and convergence highly influence the 

hydrosedimentary response. North and north-east weather types generated 57% of 

the flood events and the 63% of the sediment yield (Peña-Angulo et al., 2020b). 

Finally, sediment yield in Mediterranean catchments showed a higher intra-annual 

variability than runoff suggesting more complex and local process associated with 

sediment dynamics, also dependent on relief, connectivity, land cover and land 

management practices (Keesstra et al., 2018) .   
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7.1.2.3. Event scale 

Large floods are responsible for most of the sediment transport in catchments as 

few events are able to transport more than the 80% of the SS load during less than 

the 10% of the time (Estrany et al., 2009; Rovira and Batalla, 2006). Accordingly, the 

91%, 86% and 80% of SL was transported in 5%, 0.5% and 1% of the time in Es 

Fangar, Búger and Carapelle catchments, respectively. The identification of the 

sediment load driving factors allows to understand how this suspended sediment 

transport takes place. Es Fangar and Búger catchments had the same drivers of 

suspended sediment transport as total precipitation and maximum 30’ rainfall 

intensity do not showed correlation with sediment load and maximum suspended 

sediment concentration. Largest sediment load  contributions were related to 

highest values of runoff and maximum peak discharge, and similar to the 

hydrological response, the events that promoted the highest values of sediment load  

were related to wet antecedent conditions (antecedent precipitation one and three 

days before, antecedent baseflow and normalised soil moisture lag time) (Seeger et 

al., 2004). Accordingly, in Es Fangar catchment correlations of total precipitation, 

runoff, maximum peak discharge and soil moisture average with sediment load 

increased in autumn and winter, depicting how during the wet period high sediment 

yield values were obtained. The role played by wet conditions was demonstrated by 

the events characterised with normalised soil moisture lag time < Q50, which had 

highest runoff, maximum peak discharge and sediment load values. Large sediment 

load contributions occurred during situations of high catchment connectivity as wet 

conditions triggered shorter travel time and lag time between the beginning of the 

rainfall event and the water table peak than events under dry conditions due to the 

expansion of the wet stream length (Jensen et al., 2019; van Meerveld et al., 2019). 

Accordingly, soil moisture-discharge revealed that 76% of the events were 

generated under counter-clockwise hysteresis (i.e. wet antecedent conditions), 

which generated 99% of sediment load in the 28 events analysed using soil moisture 

(as in Penna et al., 2011). Thus, in Es Fangar and Búger catchments, when soil was 

wet or saturated higher sediment load contributions were observed, suggesting the 

saturation processes may be the dominant process for runoff generation and 

sediment transport. Sediment load contributions related to high rainfall intensities 
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only occurred at the beginning or end of summer (i.e. dry period) as this type of 

event was infrequent, occurring under cyclonic weather type (Peña-Angulo et al. 

2020b). These type of events were characterised by high maximum suspended 

sediment concentration values as infiltration excess processes were dominant due 

to high rainfall intensities (Nadal-Romero et al., 2016). Indeed, in Es Fangar and 

Búger catchments, largest maximum suspended sediment concentration were 

observed in summer followed by winter. In both catchments highest maximum 

suspended sediment concentration in summer were related to rainfall intensities (> 

20 mm h-1) whereas maximum suspended sediment concentration in winter were 

related to the highest events in runoff and discharge peak promoted by favourable 

moisture conditions (Seeger et al., 2004). Nonetheless, suspended sediment 

availability of the limestone material was low as the maximum suspended sediment 

concentration ranged from < 0.1 to 2.6 g l-1 and 93% and 72% of the maximum 

suspended sediment concentration were < 0.5 g l-1 in Es Fangar and Búger 

catchments, respectively.  

 Contrarily, in the Carapelle catchment, total precipitation and maximum 30' rainfall 

intensity instead of antecedent conditions were the driving factors for sediment 

yield. The same variables also controlled the runoff response and maximum peak 

discharge, which had the highest correlations with sediment yield. Thus, infiltration 

excess may be the dominant processes in runoff generation and suspended 

sediment transport an rainfall intensities controlled both runoff and sediment yield 

amounts (Nadal-Romero et al., 2008). Maximum suspended sediment concentration 

had a large influence on sediment load as large values of the maximum suspended 

sediment concentration were obtained, ranging from 3 to 63 g l-1 and 52% of the the 

maximum suspended sediment concentration was > 20 g l-1. However, large 

differences between seasons did not exist as seasonal average values decreased 

from autumn (25.2 g l-1) to summer (15.2 g l-1). 

Furthermore, although hydrosedimentary drivers controlled the runoff response 

and suspended sediment transport the spatial distribution of the physical driving 

factors and humans structures influenced their response and suspended sediment 

availability (Bywater-Reyes et al., 2017; Gellis, 2013). Accordingly, Es Fangar and 

Búger headwaters were characterised by forest land use and limestone lithology. 
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Forest cover decrease sediment detachment (Cosandey et al., 2005) whereas 

limestone lithology promotes deep percolation and low soil formation rates (Peng 

and Wang, 2012). Consequently, these headwater catchments are characterised by 

low suspended sediment availability (promoting low sediment yield values) 

compared to agricultural land use and more erodible materials (Haddadchi and 

Hicks, 2019). The role played by lithology and landscape variables suggested that 

karst coverage and patchiness characteristics exerted substantial influence on 

reducing sediment yield (Li et al., 2019). Thus, in Es Fangar and Búger catchments, 

the areas of highest suspended sediment availability correspond to lowland areas 

characterised by agricultural or bare lands with deeper soil profiles and marl and 

clay materials. However, in these areas terraces structures help to conserve 

agricultural soils controlling floods, preventing erosion and decoupling catchment 

compartments (Calsamiglia et al., 2018). In Es Fangar and Búger catchments, 

according to the spatial distribution of the human structures (terraces) and physical 

driving factors (lithology and land cover) clockwise hysteresis were the more 

frequent type and those that promoted the highest SL contributions, suggesting that 

the main sediment sources are close to the outlet catchment (Regüés and Gallart, 

2004). A deeper hysteretic analysis in Es Fangar catchment showed that clockwise 

hysteresis was the common pattern in the wet season and that counter-clockwise 

and figure eight hysteresis occurred during the late autumn and early spring when 

water reserves were high. Hence, the low frequency of counter-clockwise (18%) and 

figure-eight (9%) hysteresis and their seasonality indicated that antecedent wet 

conditions in some flood events activated hydrological pathways and consequently 

new sediment-contributing areas (Seeger et al., 2004). Accordingly, fingerprinting 

analysis in Es Fangar catchment demonstrated that most of the suspended sediment 

was generated from sources that are relatively close to the main channel system; i.e., 

agricultural fields over marl materials with high suspended sediment availability 

(García-Comendador et al., in preparation). 

Contrarily, in the Carapelle catchment, counter-clockwise loops were more frequent 

due to catchment size, spatio-temporal distribution of rainfall and land use. Thus, in 

smaller catchments like Es Fangar and Búger clockwise loops may prevail because 

flowpaths from the source areas of the sediment are short, decreasing the lag 
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between discharge and suspended sediment concentration (Aich et al., 2014).  In 

addition, the elongated shape of Carapelle catchment increased the lag between 

discharge and suspended sediment concentration peak when rainfall events occur 

far from the outlet (García-Rama et al., 2016). Furthermore, the large presence of 

agricultural fields (80% of the catchment) that generate a low patchiness land use, 

the conventional practices ploughing up and down the slopes and the fine 

composition of the soils led to sediment generation from source areas all over the 

study site (Ricci et al., 2020). Additionally, the low conservation state of check dams 

promoted streambed erosion increasing sediment supply (Ricci et al., 2019). 

Counter-clockwise pattern similar to those of the Carapelle catchment have been 

observed in Mediterranean catchments when rainfall occur in headwater 

catchments (López-Tarazón et al., 2009) or in catchments with highly erodible 

materials (Nadal-Romero et al., 2008). 

 

7.2. Conclusions 

This thesis intended to improve the understanding of the hydrological response and 

suspended sediment transport in Mediterranean catchments through the 

assessment of hydrological and sediment transport dynamics using medium term 

datasets (i.e. 5 hydrological years). The analysis of this dataset helped to 

characterise the inter- and intra-annual variability of the water and sediment yield 

contributions. Analysis of these dynamics at multiple temporal scales (i.e. annual, 

seasonal and event) allowed to identify drivers and patterns of runoff generation 

and suspended sediment transport, as well as to stress the role played by physical 

and human catchments characteristics over the hydrological response and sediment 

transport. The main conclusions of the thesis can be summarised as follow: 

 The rainfall-runoff relationships at the annual scale in small Mediterranean 

catchments showed a significant linearity where the increase in annual 

runoff follows the increase of annual rainfali evidencing the importance of 

the annual rainfall amount. However, lithology effects introduce some scatter 

in this global rainfall-runoff relationship. Larger runoff contributions and 
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stronger linearity was observed in catchments with impervious materials 

compared to pervious ones. These lithology effects were observed 

comparing Búger and Carapelle catchments. Although Búger had larger 

annual rainfall than Carapelle the large proportion of limestone in Búger 

headwaters triggered lower annual runoff amounts and runoff coefficient 

values than Carapelle due to transmission losses. Limestone lithology also 

exerted a large influence over hydrological regime increasing the mean zero-

flow day value in Es Fangar and Búger compared with Carapelle catchments 

or other catchments without Csa climate and/or limestone lithology. Thus, 

pervious materials promote intermittent and ephemeral hydrological 

regimes.  

 

 Seasonality of the Mediterranean climate strongly influences seasonal runoff 

generation due to the combined dynamics of rainfall and evapotranspiration 

throughout the year that leads to a succession of wet (winter), dry (summer) 

and transition periods (last autumn and early spring). Highest seasonal 

runoff contributions and runoff coefficients were obtained in winter, 

autumn, spring and summer, respectively in Es Fangar, Búger and Carapelle 

catchments. Seasonality generates different catchment moisture conditions 

for runoff generation at the event scale, being a starting point for a lack of 

clear relation in rainfall-runoff relationship. Hence, the scattering of the 

rainfall-runoff relationship at the event scale increased from spring and 

winter to summer. The rainfall-runoff according to pervious or impervious 

lithology confirmed the results carried out at the annual scale, and events 

occurring in catchments with impervious lithology showed a higher linearity 

and runoff values than catchments with pervious lithology. The rainfall-

runoff relationship under different land uses showed that agricultural land 

uses promoted the highest correlation in the rainfall-runoff relationships due 

to lower vegetation cover. The comparison between Búger and Carapelle 

catchments demonstrated the importance of the joint role between lithology 

and land uses for runoff generation as Búger headwaters, characterised by 

forest cover and limestone lithology, presented a higher threshold for runoff 
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generation than the large agricultural Carapelle catchment. In addition, 

lithology and land use influence the dominant runoff generation mechanism 

with saturation processes dominating in Es Fangar, and Búger catchment and 

iniltration excess processes dominating in the Carapelle catchment. 

 

 Annual sediment yield in Es Fangar, Búger and Carapelle catchments can be 

attributed to the spatial distribution of the physical driving factors (lithology 

and land cover) and human structures (terraces, check dams). In Es Fangar 

and Búger catchments, forest land cover and carbonate materials at 

headwaters led to low runoff and suspended sediment response due to high 

infiltration rates and low suspended sediment availability. Besides, forest 

cover increased interception and sediment retention in these areas. Soil 

conservation structures, mainly located in lowland agricultural areas, 

laminated runoff and retained soil from these areas with higher suspended 

sediment availability. In the Carapelle catchment, large agricultural areas led 

to sediment generation from sources all over the catchment. Degraded soil 

conservation structures promoted and increase sediment pathways also 

increasing riverbed erosion. Therefore, catchments characterised by 

agricultural land use land and low patchiness landscape may promote a 

higher connectivity between catchments compartments and higher values of 

sediment yield. However, despite catchments with limestone materials 

triggered low sediment yield values, these ones should be compared with the 

soil tolerance loss of carbonate materials, which are characterised by a low 

soil formation rates and even lower under Mediterranean climate conditions.  

 

 The analysis of the driving factors in the suspended sediment transport in Es 

Fangar, Búger and Carapelle catchments at the event scale showed that 

different drivers exists in Mediterranean catchments. In Es Fangar and Búger 

catchment, wet antecedent conditions and large runoff contributions, 

especially in winter, were the situations were largest amount of sediment 
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load were obtained. The soil moisture analysis in Es Fangar catchment 

showed that situations of high catchment connectivity generated large runoff 

amounts and large sediment load contributions due to wet or saturated soils. 

During such situation, counter-clockwise hysteresis occurred due to a high 

catchment connectivity that activated less available sediment sources. In the 

Carapelle catchment, largest sediment load amounts were obtained due to 

the combination of rainfall amount and intensity. The large extension of 

agricultural areas made sediment available from the whole catchment, but 

the elongated shape of the catchment increased the lag between discharge 

and suspended sediment concentrations peak when rainfall events occur far 

from the outlet promoting counter-clockwise hysteresis. Runoff and 

sediment was both generated in remote areas of the catchment. This same 

origin promoted the lag between discharge and sediment peaks because 

water was displaced by a kinematic wave whilst sediment by a mass water 

flow. Additionally, the elongated shape of the catchment further increased 

this lag time 

 
The thesis carried out elucidated how the complexity of the Mediterranean 

landscape exerts a strong influence over the hydrological response and suspended 

sediment transport at different temporal scales (i.e. annual, seasonal and event) 

through the interaction of the physical (lithology and land use) and human (i.e. 

terraces) factors. The analysis of these dynamics through representative 

catchments are useful to observe the hydrological response and sediment transport 

under different or specific land use, lithology and human effect characteristics with 

the current climatic conditions. The maintenance and continuation of these records 

will generate long-term data sets that will be provide robust data for modelling 

global change scenarios.  

 

7.3. Limitations of the thesis and future works 

The limitations of the analysis presented in this thesis are classified by chapters, as 

well as proposals derived for future works: 
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In Chapter 4, the assessment of multiple temporal scales in contrasting small 

Mediterranean catchments has improved the understanding of the role played by 

lithology and land use in the hydrological response from annual to event scale. 

However, at the event scale a large database should further be constructed including 

a larger number of catchments and variables. To improve the understanding of the 

annual rainfall-runoff, catchments should be also classified by land use type. For a 

better assessment of runoff generation at the event scale under different lithologies 

and land uses, variables as antecedent precipitation, rainfall intensity and discharge 

peak should also be included. Thus, future works to do using for example the current 

hydrometric network of Mallorca Island (i.e. 32 gauging stations) could be: (1) to 

assess the effects of catchment characteristics on runoff response at the event scale 

and (2) to focus on the analysis of the hydrological response of extreme rainfall 

events linked to the contrasting land use, seasonality and lithology of the 

catchments.  

In Chapter 5, the analysis of soil moisture, runoff and sediment load dynamics at 

different temporal scales improved the comprehension of erosion processes in a 

mid-mountain small Mediterranean catchment. However, the assessment of the soil 

moisture was limited at the temporal (i.e. a short monitoring period) and spatial (i.e. 

one monitoring site) scales. With these limitations, results showed that wet 

moisture conditions promoted the largest runoff response and sediment transport. 

However, given the potentially large spatio-temporal variability of soil moisture 

under different land use and lithology, an upscaling soil moisture monitoring using 

remote sensing should be explored to evaluate the runoff response and suspended 

sediment transport. Future works should oriented towards (3) an upscaling 

spatiotemporal soil moisture conditions monitoring to assess the runoff generation 

and suspended sediment transport dynamics through a nested approach in the Sant 

Miquel catchment, quantifying discharge-suspended sediment and soil moisture-

discharge hysteresis. Special attention should be paid to identify moisture 

conditions according to lithology and land use.  

In Chapter 6, lithology and land use characteristics were found to be the main 

drivers controlling the hydrological regime, river type classification and water and 

sediment yields from annual to event scale. Furthermore, these physical 
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characteristics of the catchments influenced the hysteretic loop type. Besides, soil 

conservation structures played a key role in runoff generation and sediment 

transport. Nevertheless, given the influence of lithology on the hydrological regime 

future work should (4) assess the hydrological regime focusing on the karst and 

forest covered area of the 32 catchments monitored by the hydrometric network of 

Mallorca Island. Nonetheless, a gauging station cannot achieve alone a holistic 

spatiotemporal variability of the flow permanence. Therefore, future work should 

also be done in Búger catchment (5) to analyse the spatiotemporal variability of 

stream length intermittency. As lithology and soil conservation structures exerts a 

high control over runoff response and suspended sediment transport, future work 

in Sant Miquel catchment should also focus on the (6) comprehension of the spatial 

location of terraces and check-dam terraces according to elevation, slope, lithology, 

type of terraces, distance between dry stone walls and hillslope-floodplain location. 

Besides, the spatio-temporal abandonment processes of these structures should be 

analysed. In addition, (7) the effects of check dam in peak discharge, peak lag time 

and reduction in suspended sediment concentrations should be assessed through a 

nested approach.  
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