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Abstract

Despite decades of scientific effort, cancer remains a major cause of death worldwide.
Through the accumulation of genome alterations, tumor populations evolve the capacity
to circumvent the selective barriers of tissue homeostasis, eventually adapting to resist
therapeutic stress. Furthermore, extensive Darwinian evolution is accompanied by an
ecological engineering of the surrounding tissue micro-environment together with the al-
teration of cellular maturation hierarchies. To understand cancer complexity, therefore,
we need a picture that spans through the domains of ecology, evolution and development.
In an effort to gain understanding of the underlying patterns of treatment resistance, we
introduce a mathematical approach to cancer complexity that takes into account its dy-
namical nature across these three axes. The resulting modeling endeavor is focused on
two major fields of current research: immunotherapy and cancer epigenetics and differ-
entiation, with the aim of providing both insight in treatment design rationale and a com-
prehensive perspective able to merge cancer ecological, evolutionary and developmental
complexity.

Resum

Malgrat decades d’esforcos cientifics, el cancer continua sent una de les principals causes
de mort arreu del mén. Mitjancant 1’acumulacié d’alteracions del genoma, les pobla-
cions tumorals evolucionen la capacitat d’eludir les barreres selectives de ’homeostasi del
teixit, fins al punt d’adaptar-se per resistir 1’estres terapeutic. A més, I’extensa evolucio
darwiniana s’acompanya d’una enginyeria ecologica del teixit circumdant, juntament amb
I’alteracio de les jerarquies de maduracio cel-lular. Per entendre la complexitat del cancer,
per tant, necessitem una imatge que abasti els dominis de I’ecologia, 1’evolucié i el de-
senvolupament. En un esfor¢ per comprendre els patrons subjacents de resistencia al
tractament, introduim un enfocament matematic de la complexitat del cancer que té en
compte la seva naturalesa dinamica en els tres eixos. L’esfor¢ de modelitzacié resultant
se centra en dos grans camps de la investigaci6 actual: la immunoterapia i I’epigenetica i
la diferenciacié del cancer, amb 1’objectiu de proporcionar una visié fonamental del dis-
seny del tractament i una perspectiva integral capa¢ de combinar la complexitat ecologica,
evolutiva i del desenvolupament del cancer.
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1 Introduction

1.1 Cancer as a complex disease

Cancer is a major cause of death worldwide. By 2018, it was estimated that about 9%
of females and 13% of males will die from any invasive form of the disease [Bray et al.,
2018], making it one of the main causes of human death, to be only surpassed by heart
disease [Jemal et al., 2011]. Furthermore, the overall number of cancer-related deaths is
still increasing, mostly in relation to lifestyle changes [Jemal et al., 2011]. In this context,
the most important risk factor for developing cancer is age itself [Coleman and Tsongalis,
2009], further increased by tobacco use or other habits or environmental factors. Eradica-
tion of other fatal diseases, such as smallpox [Riedel, 2005], has led to a general increase
in age expectancy, with a consequent increment in the incidence of cancer around us. Has
our understanding of the disease, and the consequent availability of efficient treatments,
followed this trend?

Cancer has existed for all of human history and was considered, for centuries, an
incurable disease [Mukherjee, 2010]. It was not until the 19th century that surgery became
a first line treatment, but was later proven to be efficient only for small solid tumors
with well-defined borders. For more advanced and spreading cancers the story takes a
dramatic shift. Two thousand years ago, the Roman physician Celsus already observed
that cancers would return even after excision [Hajdu, 2011], an evidence later followed by
similar observations of tumor relapse and spreading across different treatment scenarios
[Sudhakar, 2009]. This meant that, through some complex and unknown mechanism,
cancers were able to survive medical attack.

Following scientific and economic efforts of the so-called War on Cancer [Rettig,
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2005], the last fifty years have seen an improvement in both the understanding of oncoge-
nesis and the available therapeutic protocols in place. Despite treatment for some cancers
has seen significant progress, such as for some childhood leukemias [Kersey, 1997], prog-
nosis after the diagnosis of other tumor types remains very poor after more than 40 years
of intensive research. Thus, the search for a magic bullet, a single drug that finally eradi-
cates the disease, is nowadays known to be, if anything, a rewardless endeavor [Strebhardt
and Ullrich, 2008]. The overall trend for those cancers that are not cured remains in place:
initial therapy succeeds in reaching disease regression, even to the point of no detectable
tumors after initial interventions. Most advanced cancers, however, return after a given
period of time, and often in the form of a more aggressive, rapidly spreading disease
[Dagogo-Jack and Shaw, 2018].

So, what is cancer really, and why is it so difficult to find efficient treatment options to
cure it? Cancer is a disease of abnormal growth of our own cells and tissues. Accumulated
genetic alterations in otherwise-normal cells enable the acquisition of novel, hallmark
capabilities [Hanahan and Weinberg, 2011] such as the evasion of growth-suppressing
signals, activation of replicative immortality or the formation of novel blood vessels — an-
giogenesis (Fig. 1a). The activation and accumulation of these, together with other tissue-
specific transformations, induces a single cell to escape multicellular control, forming a
population of undifferentiated, minimal replicators [Sole et al., 2014], a tumor, that will
invade surrounding tissues and organs, eventually killing the host if unstopped.

Sustaining Evading
a proliferative growth b
signaling suppressors 3

Resisting
cell

Enabling
replicative

death immortality
Genome Tumor
instability & ) promotmg
mutation inflammation
Inducing Activating
angiogenesis invasion &
metastasis

Figure 1: The hallmarks of cancer and Darwinian speciation. Presented in 2011 by Hanahan
and Weinberg [Hanahan and Weinberg, 2011], the Hallmarks of cancer (a) comprise a set of ten
universal characteristics shared across cancer types, thus providing a comprehensive picture of
what tumors are. These characteristics consist of minimal replicator properties of single cells
(sustaining proliferative signaling, enabling replicative immortality,...) and alterations at the tissue
level (inducing angiogenesis, tumor-promoting inflammation,...) all enabled by the accumulation
of DNA defects leading to unstable genomes. Evidence accumulated during the last decades
indicates that cancer, and the corresponding acquisition of Hallmarks, is a disease of Darwinian
evolution and speciation [Darwin, 1859, Greaves and Maley, 2012] (b) .



In an effort to stop tumor progression by inhibiting the hallmark capabilities, clinicians
deal with a very large landscape of possible cancer therapies, that target anything from cell
death [McComb et al., 2016] and DNA stability pathways [Chabner and Roberts, 2005] to
inhibition of signaling cascades [Shawver et al., 2002], activation of immune surveillance
[Yang et al., 2015] or the differentiation process of cancer cells [de Thé et al., 2018],
among many others discussed elsewhere. Most of these therapeutic schemes do function,
meaning that they effectively kill rogue cells or inhibit the expected targeted pathways of
malignancy, and even more specific and precise drugs are expected to arise from future
research.

It is not drug failure, then, what drives tumor relapse, or at least, not exactly. Evidence
for most therapeutic schemes indicates that a first drug hit is often followed by a period
of apparent lack of disease [Aguirre-Ghiso, 2007], that will eventually be disrupted by
the cancer coming back, in an altered, more aggressive form. Understanding the major
processes underlying tumor relapse remains a major element of cancer research. As a
starting point, two main options here include the possibility that cancer cells become
resistant in the presence of the drug [Misale et al., 2012], or else that, similar to resistance
in pest management [Gatenby and Brown, 2018] or bacterial drug tolerance [Balaban
et al., 2004], subpopulations of resistant cells were already present in the tumor prior to
therapy [Dagogo-Jack and Shaw, 2018].

By the 1940s, long before the evolutionary basis of cancer started to be understood,
Max Delbriick and Salvador Luria designed an experimental setting to understand the
basis of Darwinian selection in bacterial resistance to stress [Luria and Delbriick, 1943].
What they were testing, in fact, was the same questions oncologists faced decades later:
do single-cell agents resist drugs due to randomly accumulated preexisting mutations,
or do they evolve a drug-tolerant phenotype in the presence of the toxic substance? For
Luria and Delbriick, the answer indicated that resistance mutations existed previous to the
drug, clearly proving the notion of Darwinian selection acting on randomly distributed,
preexisting genome heterogeneity.

We know nowadays that the mechanisms for drug resistance in cancer are rooted
in similar principles [Dagogo-Jack and Shaw, 2018]. However, as discussed along the
present thesis, the vast and open possibilities of cancer adaptation underline a much more
complex scenario, where many layers intervene, so that resistance can be the result of
an adaptive process, of neutral stochasticity or an ecological or developmental cue. The
present thesis focuses on gaining insight into these mechanisms with the aim of designing
successful treatment approaches.

To understand the complexity of cancer drug resistance, we need to understand what is
really happening during the process of oncogenesis. To accomplish that, we must consider
a multi-layer picture of cancer, where the single-cell molecular perspective is broadened
by considering cancer complexity at the genome and tissue levels. At the DNA level,
tumorigenesis results from the following process: As tumors grow, accumulation of DNA
damage and alterations result in cancers harboring a very large array of cells with different
genomes [Marusyk et al., 2012]. As discussed below, the footprints of genome instabil-
ity pervade the whole packaging structure of the cellular DNA content, with evidence
of single-nucleotide variations, altered chromatin configurations and whole chromosome
rearrangements making each cancer cell eminently unique.

This extremely diverse tumor, however, does not live in isolation. Organ multicellular-



ity, maintained by the precise fine-tuning of tissue homeostasis, implies that cancer grows
in a complex ecosystem [Horning, 2017]. In it, coexistence with other cellular compo-
nents such as the immune system, or multiple spatial and nutrient availability constraints,
build up an array of selective pressures, different for each body site, that constantly drive
cancer cells towards the limits of viability. At this point, we can descry a very hetero-
geneous disease, built upon multiple genomes that code for different phenotypic subpop-
ulations, constantly facing the selective pressures induced by a complex and dynamical
environment. As for the Darwinian origin of species, that results from a process of varia-
tion and selection [Darwin, 1859] (Fig. 1b), cancer is, briefly put, a disease of evolution
[Greaves and Maley, 2012].

Even so, ecological interactions and Darwinian selection do not explain all processes
seen across cancer types [Sell, 2004]. As a landmark example, over the last decades
increasing evidence points to the existence of cellular hierarchies in tumors. In healthy
tissue development, only a subset of stem cells differentiate into a wide array of different
phenotypes [van der Kooy and Weiss, 2000]. Similar stem-driven architectures have been
observed in tumors, resulting in the Cancer Stem Cell model of oncogenesis, with deep
implications in therapy design [Clarke and Hass, 2006]. On top of that, recent evidence
indicates that epigenetic changes in chromatin permissiveness enable extensive pheno-
typic plasticity, resulting in an additional layer of cancer evolvability [Flavahan et al.,
2017].

In the light of this, cancer has to be understood as an ecological, evolutionary and
developmental problem. To capture it, we need to harness previous knowledge from these
areas of science. In all of them, mathematical modeling of complex systems has been a
key framework to understand the fundamental laws governing their dynamics and struc-
ture. Examples of this are ecological networks to capture ecosystem architecture and
stability [Sole and Montoya, 2001], the Quasispecies theory for the evolution of unstable
replicators [Eigen and Schuster, 1977] or the Waddington landscape of cellular differen-
tiation and epigenetic development [Waddington, 1957]. How does our understanding of
cancer change when seen through the lens of complex systems? And, more importantly,
can these mathematical models help us envisage novel therapeutic schemes that overcome
cancer resistance?



1.2 Darwinian evolution in cancer

Everything: the minutely detailed history of the future, the archangels’ au-
tobiographies, the faithful catalogues of the Library, thousands and thou-
sands of false catalogues, the demonstration of the fallacy of those catalogues,
the demonstration of the fallacy of the true catalogue, the Gnostic gospel of
Basilides [...]

The Library of Babel, J.L.. Borges (1941)

In 1941, Jorge Luis Borges captured in a beautiful short story the conflicting similarity
between the incomprehensibly vast and the infinite. In his short story The Library of
Babel [Borges, 1941], Borges envisions a continuous, almost periodic library (Fig. 2a)
that contains all possible books of 410 pages. In these precise books, each page has 3200
symbols, and there are 25 possible options for each (22 letters, the dot, the comma and
the space). Simply put, the Library, which others call the Universe, contains

N = 25410><3200 — 1’ 956 x 101834097 (1)

different books. How large is the space that contains them, and how vast the landscape of
possible stories within their pages?

1.2.1 Complexity in the human genome

If cancer is a complex disease that takes advantage of genome modifications to explore
adaptive opportunities, one may ask, as for books in the Library of Babel, what is the
combinatorial potential of the human genome. The combinatorial landscape here entails
a code of 4 symbols (the nucleotides) made of about

|G| ~ 3 x 10° bp. ()

In Borges’ books, if each page has again 3200 symbols, the human genome would be
93750 pages long, and there would be

N ~ 4‘3><108 (3)

different genomes, a number far beyond any library catalogue. A similar statement can
be made about the genetic content that explicitly codes for proteins through an optimal
genetic code [Adami, 2004] (Fig. 2b). Consider there are about

N, =2 x 10* “4)
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genes in the human genome [Ezkurdia et al., 2014], which can be differentially ex-
pressed through specific chromatin configurations. Furthermore, genes interact epistat-
ically within complex Gene Regulatory Networks [Kauffman, 1969]. In a simplifying
picture, where genes are on-off switches of a Boolean network, the number of attrac-
tors, or possible stable states of protein expression, grows strikingly fast with system size
[Samuelsson and Troein, 2003], i.e.

4
Natt ~ 2Ng — 22><10

: ®)

making for a vast library of possible cellular phenotypes arising from each genetic con-
figuration [Wagner and Zhang, 2011].

Figure 2: The Library of Babel and genome complexity. If all possible DNA (or corresponding
messenger RNA) nucleotide genome configurations should be stored in a Borgesian library (as en-
visioned by Erik Desmaziéres [Desmazieres, 1998] (a)), this would contain N ~ 43* 10°% different
books, each of 93750 pages. In them, seemingly-infinite mRNA nucleotide configurations would
encode proteins through a non-trivial dictionary (b), and protein expression would in turn alter the
state of other book sections, all regulated by chromatin configuration and chromosome copy num-
bers. The possible genetic makeups that result from genome aberrations are almost uncountable.
How do cancer cells explore the confines of this complex landscape?

The architecture of the human genome, however, is build upon many layers of com-
plexity far beyond genome sequences (Figure 3). The spatial 3-dimensional packaging of
the genome within the cellular nucleus is known to play a non-trivial role in the overall
coding of the phenotype, with chromosome configuration or chromatin folding altering
the result of a given genetic makeup [Rowley and Corces, 2018, Zheng and Xie, 2019]. If
the Library of Babel was strikingly large, how large would it become if not only symbols,
but also the number of pages and their folding changed?

For human cells, this means that genome alterations could unleash an incomprehen-
sibly vast landscape of possible expression patterns and, eventually, cellular phenotypes.
Are there patterns in the seemingly random universe of carcinogenesis?
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1.2.2 Universal footprints in cancer genome instability

Genes

The standard view of cancer is that it arises after the accumulation of genetic abnormali-
ties in a single cell [ Vogelstein and Kinzler, 2004]. This notion has shaped our perception
of what cancer is and is not, up to the point of labeling cancer as a disease of the genes
[Vogelstein and Kinzler, 2004]. Twenty years later, this picture has become too narrow,
and many other aspects beyond genetic abnormalities are needed to understand the disease
[Huang et al., 2009, Marusyk et al., 2012]. Mutations on specific genes remain, however,
the enabling event of tumorigenesis [Vogelstein and Kinzler, 1993].

Three main gene families participate in tumorigenesis, namely oncogenes, tumor sup-
pressors and DNA stability genes. Briefly put, mutations in these genes result in hallmark
capacities of increased cellular division rate, lack of overall cell state control and loss of
DNA repair machinery, respectively. Despite the apparent simplicity of this picture, and
unlike diseases arising from a single genetic event such as cystic fibrosis [Zielenski and
Tsui, 1995], cancer is not the result of a uniform pattern of genetic mutations. Even the
most common tumor suppresor gene, TP53, the so-called ”guardian of the genome* [Read
and Strachan, 1999], is mutated in only about 39% of all cancers [Bielski et al., 2018].

In this heterogeneous landscape of possible single-nucleotide alterations, gene-specific
mutations become less important when trying to look for patterns that are universal across
cancer types. In turn, what becomes relevant here is the structural constraints of the muta-
tional process itself. Evidence indicates that some cancers commonly evolve a so-called
mutator phenotype, where defects in Mismatch Repair genes induce an incredibly high
error rate that can be tens of thousands of times higher than that of healthy cells [Loeb,
2001]. A relevant question here concerns the possibility that cancer might approach evo-
lutionary limits to mutation rates. This brought up the possibility that cancer cells could
be somehow compared to viral quasispecies [Solé and Deisboeck, 2004]. In the Quasis-
pecies Theory, evolutionary dynamics elicit the existence of a limit to the rate of genome
errors per division, beyond which species fail at maintaining adaptive identity [Eigen and
Schuster, 1977]. Experimental setups have proven that viruses, simple and highly muta-
tional entities, live close to this critical region, where they are able to optimize genome
variability without undergoing an identity meltdown [Solé and Elena, 2018].

Do microsatellite-unstable cancers, as viruses, live close to a critical mutational catas-
trophe? This is, still today, a partially unresolved question. Mathematical modeling in-
dicates the existence of a well-defined error rate for cancer cells [Solé and Deisboeck,
2004], beyond which cell viability would be hampered due to excessive genetic muta-
tions (Fig. 3 bottom). This has key implications on therapeutic strategies, since widely
available mutagenic agents, if delivered correctly, could induce tumor arrest by overcom-
ing this critical transition, thus pushing cells towards unviable overmutated phenotypes
[Solé and Deisboeck, 2004, Fox and Loeb, 2010].

In the lack of recombination events, cancer cells accumulate DNA damage likely re-
sulting in an increasingly unstable genome. If there are, indeed, catastrophic thresholds
to genetic instability, how does cancer progress without trespassing them? A possibility
here is that, as for other phenotypic characteristics such as cellular metabolism [Gillies
et al., 2008] or perception of density constraints [Gerlee and Anderson, 2015], evolution-
ary dynamics govern genetic instability as an evolving trait itself. In this context, tumor
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Figure 3: Cancer instability across genome complexity layers. Cancers explore the landscape
of possible phenotypes through the accumulation of alterations across the different layers of the
genome. Experimental evidence indicates the presence of instability footprints across (bottom-up)
DNA sequences, chromatin configuration and chromosomes. Mathematical models can capture
both the universal patterns and limits underlying these unstable dynamics. However, as in all com-
plex systems, the dynamical motifs arising at each scale are usually not explainable by lower-scale
models, so that each layer requires an approach of its own [Adami, 2002]. Single-nucleotide in-
stability implies the evolution of so-called mutator phenotypes with error rates close to the error
catastrophe [Solé and Deisboeck, 2004, Aguadé-Gorgorié and Solé, 2018]. Permissive chromatin
states allow phenotypic switching as an alternative evolutionary mode [Aguadé-Gorgori et al.,
2020]. At the chromosome level, chromosome missegregation ensures stable copy-number dis-
tributions [Gusev et al., 2000]. The overall accumulation of genome alterations directly affects
dynamics at the ecosystem level (here, neoantigen-producing mutations alter the cancer-immune
interaction [Aguadé-Gorgorié and Solé, 2019]) and at the whole-organism level (chromatin plas-
ticity facilitating epithelial-mesenchymal transitions precludes metastatic spreading [Gupta and
Massagué, 2006]).



populations could optimize their mutation rate, while adapting to a given landscape, to
maximize exploration while still maintaining genome identity in place. In the Results
section, a possible modification to the Adaptive Dynamics framework [Diekmann, 2002]
is presented, able to account for the evolution of unstable cancer populations by consid-
ering cellular mutation rates to be stochastic, evolving parameters [Aguadé-Gorgori6é and
Solé, 2018].

Chromosomes

At the other side of the packaging structure of the genome, opposite to nucleotides as
the minimal coding element, lie chromosomes (Fig. 3 middle). More than a century
ago, observation of chromosomes during cellular development and division in sea urchins
led German zoologist Theodor Boveri to the notion that chromosomes where, in fact,
the vectors of Mendelian heredity [Maderspacher, 2008]. Furthermore, Boveri showed
that aneuploidy, the abnormal configuration of the karyotype, had a detrimental effect on
organism physiology. In an astonishing scientific leap ahead of its time, Boveri also pro-
posed that such abnormal chromosome configuration could be at the basis of oncogenesis
[Holland and Cleveland, 2009]. A century later, evidence confirms that aneuploidy is,
in fact, a very common feature in the aberrant genome of solid tumors [Sansregret and
Swanton, 2017] (Fig. 4). However, it remains unclear whether aneuploidy is a cause or a
consequence of the underlying processes of unstable tumor formation [Duesberg, 2007].

Once again, the Library of Babel provides a useful metaphor here. Imagine that can-
cer cells could not only alter nucleotide symbols and positions, but could also reshuffle or
copy partial or complete chromosome sections. A Library with books that can also mod-
ulate page size and number would expand far beyond what is envisionable. The library,
once more, would not be strictly infinite, as cells cannot harbor an unlimited load of DNA
material. Together with that, most chromosomal translocations involving gene fusions
would lead to novel genes unable to correctly code for proper proteins. Nevertheless,
the evolutionary potential of aneuploidy as a means to both move through and expand
an adaptive landscape is immense [Sansregret and Swanton, 2017]. Interestingly, as with
the error catastrophe of single-nucleotide mutations, clinical and experimental evidence
indicates that there might be a limit as well to chromosomal instability (CIN) that cancer
cells, or the tumor as a quasispecies, cannot sustain [Sole et al., 2014].

Two landmark examples of CIN in cancer are Chronic Myelogeneous Leukemia (CML)
and colorectal cancer subtypes with CIN. CML was, in fact, the first cancer to be linked
to a specifically clear genetic abnormality. It is characterized by the translocations of
chromosomes 9th and 22nd, resulting in a novel fusion gene, BCR-ABL, that encodes an
“always-on* cell division signaling cascade [Kurzrock et al., 1988]. In such genetically-
simple cancers, targeted agents that specifically inhibit gene activity —such as imatinib
for BCR-ABL— can induce complete disease remission, resulting in a crucial step in the
search for a cancer magic bullet [Quintas-Cardama et al., 2009]. However, the nature
of aneuploidy is usually far more complex across cancer types. As an example, a large
amount of colorectal cancers are known to evolve from premalignant adenomas through
the so called Chromosomal Instability pathway. These CIN subtypes, however, encom-
pass a large amount of different phenotypes characterized by a varying level of adaptation
and resistance to therapy [Guinney et al., 2015]. Once again, pervasive inter-tumor vari-
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ability recalls the need to find universal patterns that can explain the nature of aneuploidy
in cancer.

These universal patterns can be found when comparing the average number of chro-
mosome copies, ploidy, across different cancer types. The results are strikingly uni-
form. Despite variability in organ, cell of origin or patient characteristics, all cancers
group around either a ploidy of 2 (no chromosomal instability) or ~3.3 [Dewhurst et al.,
2014, Bielski et al., 2018]. Does the pervasiveness of this ploidy of 3.3 indicate the
presence of some attractor state? Mathematical models have proven that even neutral dy-
namics, where chromosome genetic content is not accounted for, could capture this stable
ploidy value as an equilibrium between chromosome missegregation and the replicative
cost of a large karyotype [Gusev et al., 2000]. However, results strongly depend on the
heuristic definition of this trade-off, and the adaptive meaning of the average aneuploid
attractor remains largely unknown.

Other open questions, regarding universal patterns of karyotype dynamics in cancer,
remain open. Among them, a current evolutionary debate in oncology focuses in the
prevalence of Whole Genome Doubling (WGD) in cancer cells [Dewhurst et al., 2014,
Bielski et al., 2018]. About 30% of all cancers seem to undergo, early in the process of
tumorigenesis, the duplication of their whole karyotype, making it for the second most
common genome instability event after P53 mutations [Bielski et al., 2018]. Current
research proposes that WGD could prevail as a buffer to the accumulation of deleterious
mutations in recessive genes [Lopez et al., 2020].

A more striking pattern arises with the prevalence of microsatellite (MSI) and chromo-
somal instability (CIN) across cancer subtypes. Current sequencing of cancer genomes
uncovers that cancer cells either evolve through point mutations in their genes or alter-
ations in their chromosome setup, but not both [Guinney et al., 2015, Bielski et al., 2018].
Is there some higher order constraint in evolution able to explain why apparently con-
nected instability pathways seem to exclude each other?

The meaning of universal ploidy motifs, the pervasiveness of WGD events or the
fact that MSI and CIN appear as mutually-exclusive events have been central areas of
study along the present thesis. However, consistent results have not been reached by
the time of the thesis presentation, so that no specific publication is presented regarding
chromosome patterns in cancer. In spite of this, the overall role of CIN in cancer evolution
is nevertheless discussed here, as a necessary consideration when trying to gain insight
into the adaptive complexity of cancer (Fig. 3).

Chromatin and epigenetics

Only a mere 2% of the human genome is composed of genes that encode proteins, while
98% of the DNA content, previously considered junk [Doolittle, 2013], is now known
to harbor elements that regulate context-specific gene activity [Van Holde, 2012]. All
this DNA is wrapped around millions of nucleosomes, resulting in a massive molecular
complex termed chromatin (Fig. 3, second from bottom, [Van Holde, 2012]). In between
genes and chromosomes, chromatin is the genome architecture layer where transcription
factors and signaling pathways alter gene activity. It is thanks to chromatin-based reg-
ulation that hundreds of different cell types in the human body can result from a single
genome [Margueron and Reinberg, 2010].
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Figure 4: Cancer aneuploidy. More than a century ago, after observations of aberrant karyotypes
in sea urchins, Theodor Boveri proposed that oncogenesis could result from chromosome mis-
segregation. Still today, and despite evidence of pervasive aneuploidy in cancer genomes (In the
image, karyotypes of a healthy cell and a bladder carcinoma cell, from [Duesberg, 2007]), the
precise role of chromosomal instability in cancer evolution is not totally understood.
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As for genes or chromosomes, the alteration of chromatin configurations is nowadays
known to be a pathway for phenotypic variation in cancer [Flavahan et al., 2017], making
epigenetic plasticity a novel layer of instability in tumorigenesis (Fig. 3, second from
bottom). Some pediatric tumors, such as ependymoma (a tumor of the central nervous
system) are a relevant example here. As discussed in the introductory section, cancer
is mostly a disease related to age, as the probability of accumulating oncogenic muta-
tions increases with number of cellular divisions and loss of DNA resilience [Bailar and
Gornik, 1997]. This does not explain, however, the existence and prevalence of cancers
in children of very young age, and even less for solid cancers with much more complex
genomes than those of single chromosome-translocation leukemias. The stable genome
of ependymomas, with no prevalence of somatic mutations or karyotypic variation, is
nowadays known to be pervaded by epigenetic alterations in chromatin structure [Mack
et al., 2014, Bayliss et al., 2016].

Briefly put, chromatin configuration acts on gene expression by adopting active or
repressive states, dynamically helping or hiding genes from participating in the GRN in
place [Margueron and Reinberg, 2010]. In cancer, genetic, environmental or metabolic
signaling can dismantle the machinery regulating chromatin, resulting in overly permis-
sive or restrictive sates [Flavahan et al., 2017]. This, in turn, can result in new oncogenic
phenotypes, by either restricting healthy differentiation pathways (and thus leaving the
cancer cell immature) or else allowing the overexpression of previously-silenced genes
with cancerous potential [Flavahan et al., 2017].

Repressive states, most often characterized by DNA hypermethylation that blocks cor-
rect gene expression, resemble somehow the inactivation of gene function of single-gene
copy errors [Baylin and Herman, 2000]. They are, however, much more plastic alter-
ations, in that the nucleotide sequences are not changed and genes could, if reactivated,
eventually recover their function [Baylin et al., 2001].

Permissive chromatin configurations represent, on the other hand, a whole new dy-
namical pathway to genome variation. Loss of chromatin repression not only allows for
expression of previously silenced oncogenes, but may, by increasing the dimensionality
and the number of attractors of the corresponding GRN [Huang et al., 2009], unleash
high levels of plasticity between alternative phenotypes [Flavahan et al., 2017]. In this
scenario, epigenetic alterations in cancer do not relate to the activation of specific phe-
notypes, as a single oncogenic mutation or chromosomal translocation does, but may
directly increase the adaptive potential of cancer cells by changing the topology of the
underlying phenotypic space.

What are the consequences of chromatin plasticity for tumor progression? Could a
mathematical framework elucidate if there exist limits to epigenetic instability, as for
genes or chromosomes? A key aspect here, discussed in 1.4 A caricature of tissue de-
velopment, is that tumors can, through epigenetic alterations, take evolutionary advantage
from undifferentiated stem cell properties and tissue maturation hierarchies. As presented
in the Results, mathematical models designed to understand the role of epigenetic al-
terations in aberrant hierarchies [Solé and Aguadé-Gorgorid, 2021] and plastic tumor
structures [Aguadé-Gorgorio et al., 2020] reveal specific conditions for treatment success,
different to those imposed by the accumulation of genetic or chromosomal alterations.
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1.2.3 Evolutionary dynamics and therapy resistance

Heterogeneity

Cancer cells accumulate alterations across each structural layer of the genome. Similar
to the experiments of Luria and Delbriick, instability footprints are mostly acquired in a
random stochastic manner, often precluded by the loss of DNA machinery responsible for
either correct DNA replication [Loeb, 2001], reliable chromosome segregation [Sansre-
gret and Swanton, 2017] or homeostatic chromatin configuration [Flavahan et al., 2017]
(Fig. 3). In other specific settings, mutational events can appear as a result of intense
selective pressures, such as for the case of acquired adaptive resistance to immune or
therapeutic attack [Sharma et al., 2017].

The first and foremost consequence of genome instability —and its multiple pathways—
in cancer is the extensive heterogeneity of cellular genotypes found in a single tumor
[Marusyk et al., 2012]. Furthermore, as for Darwin’s speciation process, cells are grouped
in subclones, behaving as cancer species each harboring a similar genetic makeup. Mu-
tations shared across different subclones indicate an early appearance, thus providing a
valuable backwards picture of the evolutionary process similar to that of to the Big Bang
model in cosmology (Fig. 5) [Sottoriva et al., 2015].
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Figure 5: The Big Bang model of tumor genome heterogeneity. In a landmark paper by Sot-
toriva and colleagues [Sottoriva et al., 2015], the accumulation of mutations during cancer growth
is seen as a Big Bag expansion (a) of shared (early) mutations and subclonal (late) mutations,
from where a phylogenetic history of the tumor can be estimated. Mutation prevalence is often
more related to when (and not where) the mutation occurred, owing to subclonal mixing in the
primordial tumor (b). In general, intra-tumor heterogeneity in cancer is likely to be subestimated
in clinical settings, owing to DNA sequencing being limited to specific regions of a tumor (c¢). In
the light of this, the extent of heterogeneity can be better estimated with mathematical models of
mutation and selection.

In specific settings, instability loads can be as high as to ensure that every single DNA
locus can be found mutated in a given cancer [Loeb et al., 2019], precluding the notion
that cancers harbor cellular subclones possibly prone to resist any single therapy [Diaz Jr
et al.,, 2012]. This results in what is probably the most relevant aspect of a tumor: as
compared to most human diseases, cancer is not a single entity, but a vast ensemble of
different cellular populations that differ not only for each patient, but for each biopsy at
each tumor site [Lawrence et al., 2013] (Fig. 5c). In this context, the likelihood that a
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subclone will resist treatment rapidly increases as a tumor progresses, consistent with the
decay in life expectancy of many advanced cancers [Dagogo-Jack and Shaw, 2018].

What is the nature and implications of the vast diversity found within a single tumor?
The notion that evolution both results from and shapes tumor composition has led to a
dramatic step forward in our understanding of cancer [Greaves and Maley, 2012], open-
ing the door towards the possibility that cancer therapy and resistance could, as well, be
understood from the perspective of Darwin’s theory [Darwin, 1859] and its modern exten-
sions [Huxley et al., 1942]. As for the evolution of ecosystem architecture [ Valverde et al.,
2018] or the fossil record [Eldredge, 2014], several (sometimes opposed) frameworks ex-
ist to describe the underlying evolutionary dynamics of intra-tumor heterogeneity (ITH),
each solving specific aspects of malignant transformation. Their validity is often restricted
to specific cancer types or tumor growth stages, thus asking for further research to fully
understand the underlying adaptive dynamics of tumor progression.

The clonal selection model

In ecological settings, diversity precludes Darwinian selection by eliciting the survival of
those individuals that are, within a given ecological setting, more prone to reproduction
[Darwin, 1859]. Evidence of tumors harboring populations with different phenotypes led
Peter Nowell to establish the theory of clonal evolution in cancer [Nowell, 1976]. In his
paradigm-changing view, cancer was seen as the result of an evolutionary process where
accumulation of genetic diversity was followed by selection and expansion of the fittest
cancer clones, i.e ensembles of cells with the same genome or phenotype behaving as
ecological species. Present day biology and genomics have proven that cancer is, indeed,
a complex, Darwinian system [Merlo et al., 2006, Pepper et al., 2009].

The consequences that emerge from understanding cancer as a process of clonal evo-
lution are many, with selection dynamics explaining some of the complex processes of
oncogenesis, from the timescale of a disease that can take decades to develop to the
acquisition of all the hallmark capabilities common across cancer types [Hanahan and
Weinberg, 2011, Greaves and Maley, 2012] (Fig. 1). Within the evolutionary picture,
our understanding of cancer therapeutic resistance has also taken a massive step forward.
We now know that, as for other ecosystems, introducing a foreign substance that disrupts
cellular viability also creates a selective pressure for the expansion of drug-tolerant phe-
notypes [Gatenby and Brown, 2018]. Cancer relapse after therapy is, therefore, a result
of evolution.

In this scenario, there is an increasing interest in therapeutic approaches that take
into account the evolution of resistant tumor subclones [Gatenby and Brown, 2018]. A
promising example here is that of so-called Adaptive Therapy (AT) [Gatenby et al., 2009],
a treatment rationale that aims at avoiding competitive release, the commonly observed
growth of a resistant subclone after the sensitive population has been killed by therapy. By
modulating drug dosing and scheduling with mathematical principles [West et al., 2020],
AT aims at controlling tumor size by maintaining competition between drug-tolerant and
sensitive subclones.

Similar to AT, many questions in cancer treatment resistance are grounded in the dy-
namical aspects of the clonal selection model. In particular, several considerations regard-
ing the adaptive nature of the cancer-immune interaction need to be approached as a Dar-
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winian process. Within this perspective, two mathematical frameworks able to account for
the evolution of cancer subclones in the presence of a selective pressure (here induced by
lymphocytic recognition and attack) are presented here (See Results, [Aguadé-Gorgorid
and Solé, 2019, Aguadé-Gorgori6 and Solé, 2020]). As for AT, the same dynamics that
entail treatment resistance by selecting for drug-tolerant subclones can possibly be used
to design efficient combination immunotherapy approaches [Aguadé-Gorgori6 and Solé,
2020]. Besides clonal selection, the nature of these treatment approaches is also based
on the underlying cell-cell ecological interactions involved [Strobl et al., 2021], discussed
below in 1.3 The cancer ecosystem.

Neutral evolution

There remain, however, several relevant aspects to cancer resistance that are not totally
explained by the theory of clonal selection. As a landmark example, pervasive muta-
tional signatures abound across apparently healthy genomes [Martincorena and Campbell,
2015]. In this context, it is unsure if selection alone can account for the abundance and di-
versity of mutations in sequencing efforts [Marusyk et al., 2012, Burrell et al., 2013], nor
if all this genetic heterogeneity is functional to cancer adaptation. If it were not, neutral
evolution [Kimura, 1983], and not stringent selection, would be the dynamical framework
to understand tumor progression. Inspired by early models of population genetics [Ohta
and Gillespie, 1996] and self-organized criticality [Bak et al., 1987], a simple mathe-
matical model of neutral tumor growth has been able to consistently discover patterns of
genetic drift in cancer sequencing data [Williams et al., 2016] (Fig. 6).
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Figure 6: Footprints of neutral evolution in cancer. A minimal mathematical model [Williams
et al., 2016] is able to elucidate that, if mutations are not selected for, their allelic frequency f
must be proportional to the inverse of the population at the time they appeared, f ~ N(t)~ 1.
The number accumulated mutations M is, therefore, inversely proportional to f in the lack of
evolutionary pressure (a). Williams and colleagues found that the 1/ f marker of neutral evolution
was strikingly common across gastric cancer genomes (b) as well as in other cancer types.

As found in [Williams et al., 2016], many tumors accumulate mutations in a random
and uniform manner, and only key driver mutations arising in founder cells are, therefore,
shared across tumor lineages [Sottoriva et al., 2015] (Figs. 5,6). This is a key result
when targeting tumor phenotypes with therapy: tumors that have not undergone purifying
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selection harbor mutational heterogeneity to the point where most, if not all, necessary
mutations for therapy resistance are probably present at the time of the first drug hit [Loeb
et al., 2019]. Going back to the experiments of Luria and Delbriick, this means that, for
any single therapy, at least one test tube in their experiment would always be populated
by resistant bacteria [Luria and Delbriick, 1943]. In the light of this, mathematical efforts
have elucidated combination treatments —the sequential use of different drugs— possibly
able to overcome resistance by diminishing the probability that a single clone harbors
multiple resistance mutations [Bozic et al., 2013].

Neutral evolutionary dynamics are likely to play an important role in one of the main
subjects of study of the present work, namely the cancer-immune interaction. As dis-
cussed below, cancer cells often evolve the hallmark capacity of avoiding immune de-
tection and attack [Hanahan and Weinberg, 2011, Sharma et al., 2017]. In this context
of immune silence, mutations producing so-called cancer neoantigens' would no longer
be deleterious [Lakatos et al., 2020]. Therefore, it is likely that neoantigen distributions
evolve neutrally during tumor growth [Aguadé-Gorgorié and Solé, 2020]. Knowing that
highly diverse neoantigen landscapes are likely to confound a sustained immune response
[McGranahan et al., 2016], mathematical models of neutral evolution able to characterize
the extent of neoantigen heterogeneity provide a powerful tool to predict immunotherapy
prognosis (see Results, [Aguadé-Gorgori6 and Solé, 2020]).

Once the immune system is back in place, the selective pressure to silence neoanti-
genic mutations is reactivated [Aguadé-Gorgorié and Solé, 2020]. Prior to that, however,
mathematical models can capture how the dynamics of neutral (neoantigen) evolution are
disrupted by using targeted agents affecting other cell characteristics [Aguadé-Gorgorid
and Solé, 2020]. Interestingly, this puts up several opportunities regarding the use of com-
bination immunotherapy to modulate, or even change, the dynamics of cancer evolution
in favour of treatment success [Aguadé-Gorgorié and Solé, 2020].

Phenotypic plasticity

There exist several key phenomena in cancer adaptation that cannot be explained by clonal
or neutral evolution theories. Two major examples here concern the existence of tissue
hierarchies and phenotypic plasticity in tumors, reviewed thoroughly below (see 1.4 A
caricature of tissue development). Evidence for the first arose after cells with stem-like
characteristics where found in cancers, indicating that tumor populations where separated
into cells with and without tumorigenic potential among other phenotypic differences
[Reya et al., 2001]. This means that heterogeneity, which we now know to preclude treat-
ment resistance [Dagogo-Jack and Shaw, 2018], can be fueled by a (partially predictable)
tissue-like maturation hierarchy [Marusyk et al., 2012], as opposed to the stochastic mech-
anisms of mutation-selection dynamics [Greaves and Maley, 2012]. The evolutionary
consequences of the Cancer Stem Cell model, therefore, request a whole novel dynamical
approach to treatment design [Meacham and Morrison, 2013].

Beyond cancer stem cells and hardwired maturation hierarchies, further evidence
indicates that cells can activate phenotypic transdifferentiation pathways through non-
mutational footprints [Marusyk et al., 2012]. Within this context, studies on drug resis-

'Mutational signatures in the surface of cancer cells that the immune system can recognize as nonself
(see below, 1.3.2 Cancer and the immune system) [Schumacher and Schreiber, 2015]
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tance in cancer led to the notion that tumors were sometimes composed of plastic cellular
states, able to switch to a drug tolerant phenotype in the presence of stress [Sharma et al.,
2010]. As previously observed for bacterial populations [Balaban et al., 2004], evidence
indicates that cancer could evolve phenotypic switching architectures able to maintain
multiple states in place [Pisco et al., 2013, Neftel et al., 2019].

As discussed in sections /.2.2 and 1.4, instability at the chromatin level enables over-
all phenotypic plasticity, moving forward the possibility that cancer can evolve beyond the
mutation-selection framework by taking advantage of aberrant cell developmental hierar-
chies and the vast possibilities of cell specialization and development [Huang and Ingber,
2007]. This represents a novel layer of disease complexity, where Darwinian dynam-
ics are possibly overtaken by faster adaptive schemes. As for the previous evolutionary
mechanisms, mathematical modeling provides again a relevant tool to capture the under-
lying roles of phenotypic plasticity in cancer resistance. In particular, we here present
two alternative frameworks to elucidate how heterogeneity —and subsequent treatment
resistance— can be a result of cancer stem cell hierarchies [Solé and Aguadé-Gorgorid,
2021] or phenotypic switching [Aguadé-Gorgorio et al., 2020] in given tumor types (see
Results). As expected, models within each adaptive scenario indicate the presence of dif-
ferent threshold conditions for tumor success, highlighting how alternative evolutionary
pathways entail different drug resistance processes.

Beyond developing novel drugs, overcoming therapy resistance is nowadays a main
objective in cancer research. As briefly described, drug resistance is a multi-faceted mech-
anism, where evolution, mutational heterogeneity and phenotypic plasticity orchestrate a
complex adaptive response. Two points arise from this conceptualization. First, we need
to profoundly understand the complex evolutionary dynamics of cancer, their constraints
and the interplay of several temporal and spatial domains in adaptation. Second, we need
to design therapeutic interventions that consistently take this evolutionary framework into
account in order to avoid cancer resistance. The specific shape of these therapeutic in-
terventions, however, must follow from the selective pressures at play. These, in turn,
strongly depend on the ecological interactions between cancer cells, surrounding tissue
and the treatment in play. Evolutionary therapies for cancer need first to consider the
complexity of the cancer ecosystem.
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1.3 The cancer ecosystem

It is interesting to contemplate an entangled bank, clothed with many plants
of many kinds, with birds singing on the bushes, with various insects flitting
about, and with worms crawling through the damp earth, and to reflect that
these elaborately constructed forms, so different from each other, and depen-
dent on each other in so complex a manner, have all been produced by laws
acting around us.

On the Origin of Species, C. Darwin (1859)

Evolutionary dynamics govern cancer formation and progression. However, for the ac-
cumulation of heterogeneity in genome alterations to become a tumor, there has to be an
ecological background of selective pressures and constraints that allow fittest phenotypes
to progress [Greaves and Maley, 2012]. These barriers are, for the most part, a result of
cancer cells facing the tightly organized architectures of organ homeostasis, that correctly
maintains cellular growth and function in otherwise healthy tissue. In this picture, each of
the the hallmark characteristics of the cancer cell [Hanahan and Weinberg, 2011] can be
understood as an evolved mechanism to evade, suppress or overcome multicellular control
[Sole et al., 2014].

As for most complex ecosystems, the interactions of heterogeneous cancer popula-
tions with surrounding cells, signaling molecules, soluble factors, the extracellular matrix
or even mechanical cues are many and of variable sign [Balkwill et al., 2012]. Scientific
progress in recent decades has helped us in understanding that there is much beyond a
cancer vs host picture [Swartz et al., 2012]. In this context, interactions in the so-called
Tumor Microenvironment (TME), as in Darwin’s entangled bank [Darwin, 1859], are not
restricted to cellular competition for space or resources [Tilman, 1982], but also include
predator-prey dynamics [Barbosa and Castellanos, 2005], mutualism [Boucher, 1985],
ecosystem engineering [Myers et al., 2020] or facilitation [Bruno et al., 2003].

The complexity of the cancer ecosystem can be visualized as a dynamical ecological
network, where nodes represent cell types and oncogenic factors. The size and architec-
ture of this network remains unknown, and is possibly built upon several heterogeneous
layers [Pilosof et al., 2017] (Fig. 7). In this context, the outcomes that result from node
removal or treatment that alters network topology are expected to be highly non-trivial,
pointing towards the need of a methodical approach to the cancer ecosytem.

In this introductory section we present a brief outline of the specific ecological inter-
actions of the cancer ecosystem that have been studied within the context of the present
PhD thesis. This are, in general terms, the role of space and niches, the cancer-immune
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interactions and the ecology of metastatic spreading, all discussed with special emphasis
on the potential treatment opportunities involved.

1.3.1 Space and resources in tumor growth

Despite the complex molecular background underlying tumor growth, the observed ki-
netics, i.e the experimental shape of a tumor’s growth curve, can be surprisingly simple
[Benzekry et al., 2014] and where the first field of oncogenesis where mathematical mod-
eling brought up novel insight [Steel, 1977]. Besides the predictive potential of growth
equations, the fact that chemotherapy primarily acts on rapidly dividing cells implies
that models capturing effective growth can be a very simple and preliminary predictor of
prognosis [Swan, 1990]. In terms of differential equations, population growth in a cancer
subclone ¢; can be summed up to a minimal replicator model with birth b; and death d;
rates

% = bz‘Ci — dici7 Cl(t) = Ci(O)e(bi_di)t. (6)
However, a common and early finding in the dynamics of tumor size is that relative growth
rates slow down with time [Collins, 1956]. In terms of differential equations, this means
that there has to be an additional dynamical factor modulating birth b [Gerlee, 2013].
A basic and widely used approach here is the logistic or Levins growth model [Levins,
1969], characterized by introducing minimal modification to birth rates b that accounts
for how subclone 1 is affected by the overall tumor metapopulation ¢ = ) | e

di - Cj

This change alone accounts for an illuminating example of the role of basic ecological
principles in cancer. Here K represents the carrying capacity of the system, a maximal
population level beyond which the effective growth of the population becomes negative,
thus setting an equilibrium total number of cells of ¢* = K(1 — d/b). Despite more
advanced models, such as the Gompertzian equation [Norton, 1988], offer an improved
fit of growth curves, the fact that cancers progress under a carrying capacity-like limitation
indicates that tumor populations are self-limited [Gatenby, 1991]. In ecology, this is often
the result of spatial constraints or limited resource availability.

Spatial constraints participate in several ecological aspects of cancer growth (Fig. 8).
As for many ecological settings [Hanski et al., 1999], three-dimensional spatial configu-
ration of subclones has been proven to enhance diversity [Gonzdlez-Garcia et al., 2002]
(Fig. 8a) by deviating metapopulation dynamics from the simple survival of the fittest
scenario [Sterelny and Turney, 2007]. As discussed along section /.2, this heterogene-
ity is a major factor of cancer resistance to treatment. Besides maintaining diversity, in
such space-limited tumors cancer cells are also prone to escape density-dependent growth
limitations by ignoring specific signaling pathways [Gatenby and Vincent, 2003]. Math-
ematical models here are able to capture the evolution of tumors with increased K -values
and effective growth rates [Gerlee and Anderson, 2015] (Fig. 8b).

A further relevant aspect regarding cancer growth as an habitat-based problem con-
cerns the existence of niches. As discussed below, evidence that cancer stem cells at the
top of cancer differentiation hierarchies (see 1.4 A caricature of tissue development) live
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Figure 7: Complexity in the cancer ecosystem. As in many complex ecosystems, the dynamical
interactions of cancer cells with the TME build up a complex network (a). However, accurately
describing the number of involved nodes (cell types) and their degree (number of interactions) and
sign (interaction type) remains an elusive endeavor [Balkwill et al., 2012]. Within the ecosystem’s
building blocks, the cancer-immune landscape represents a landmark example of the non-trivial
nature of the TME (b,d). Minimal predator-prey models have been able to describe basic aspects
of the dynamics between cancer and T cells [Kuznetsov et al., 1994] and the intrinsic role played
by neoantigens [Aguadé-Gorgorié and Solé, 2019] (b). However, evidence of macrophage po-
larization indicates that, beyond immune-based predation, education of immune components by
cancer cells can result in mutualistic cooperation [Myers et al., 2020] (d). Beyond strictly cell-cell
interactions, spatial niches play important roles in cancer, such as for the Cancer Stem Cell niche
in tumor hierarchies [Solé and Aguadé-Gorgorid, 2021] (¢). Metastatic spreading is another sce-
nario where multiple ecological cues, such as invasion or colonization, underline a key aspect of
cancer malignancy [Massagué and Obenauf, 2016] (e).
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in separated habitats [Borovski et al., 2011] implies that they follow a possibly alternative
growth pattern to that of the principal tumor population (Figs. 7c, 8c). In the Results
chapter, we propose a theoretical approach to the spatial constraints of differentiation
therapy (DTH) [Solé and Aguadé-Gorgorid, 2021], built on early ecological models of
habitat loss and fragmentation [Huxel and Hastings, 1999] (Fig. 8d). Interestingly, the
model is able to highlight how the presence of a cancer stem cell compartment (and the
underlying ecological niche) might render tumors resilient to differentiating compounds
[Solé and Aguadé-Gorgorid, 2021].

Beyond space, another relevant aspect in cancer ecology regards the dynamical ef-
fects resulting from resource limitations. Cellular proliferation demands an increased
import of nutrients from the immediate environment, mainly oxygen, glucose and glu-
tamine [Pavlova and Thompson, 2016]. Within this context, tumorigenesis implies that a
newly growing tumor is able to obtain enough energy blocks for uncontrolled replication,
in an environment where resources are not infinite. In this context, cancer cells compete
with surrounding cells, both healthy and cancerous, for nutrient uptake [Gatenby, 1991],
creating an evolutionary pressure that selects for arising phenotypes that can overcome
glucose limitations.

Two major cancer hallmarks arise as tumors grow and food becomes scarce [Hanahan
and Weinberg, 2011]. When tumors grow beyond a size of about one cubic millimeter,
the normal architecture of tissue blood vessels becomes insufficient for their supply [Mc-
Dougall et al., 2006]. In this scenario, mutated cells actively secreting angiogenic growth
factors such as VEGF [Carmeliet, 2005] are able attract novel capillaries, thus being se-
lected by Darwinian dynamics against their starving competitors. The pervasiveness of
this angiogenic switch across cancer types [Bergers and Benjamin, 2003] prompted the
development of anti-angiogenic therapies, that have showed a marked benefit in sensi-
tizing tumors to chemotherapy and controlling the extent of metastatic spreading [Jain,
2005].

A further oncogenic transformation in the absence of sufficient resources for uncon-
trolled proliferation is the reprogramming of the cellular metabolism [Hanahan and Wein-
berg, 2011]. Firstly observed almost a century ago by Otto Warburg [Warburg et al.,
1931], it is nowadays clear that cancer cells can reprogram their glucose metabolism by
limiting it solely to glycolysis, even in the presence of oxygen. This counterintuitive pro-
cess (as glycolytic metabolism is an inefficient process in the presence of oxygen [Gillies
et al., 2008]) could be a complex expression of facilitation dynamics, where glycolytic
cells producing lactic acid maintain the energetic demand of a secondary subpopulation
of acid-consuming cancer cells [Kennedy and Dewhirst, 2010].

Allin all, evidence indicates that even the simplest demands of cancer cells as minimal
replicators [Sole et al., 2014], i.e food and space for growing, are pervaded by ecological
cues that influence malignant transformation. However, the previously discussed (Section
1.2.3) extent of intra-tumor heterogeneity (ITH) might not be explainable by considering
intra-tumor competition alone. There are several possible —non-exclusive— explanations to
ITH [Merlo et al., 2006]. Mutations could be evolutionary neutral [Williams et al., 2016],
or else fitness gained from these mutations plateau as the cancer clone grows [Darch
et al., 2012]. Other explanations raise that clones could evolve to occupy a specific niche
[Pienta et al., 2008], either biological or geographical, thus alleviating direct competition,
or that the surrounding environment, that shapes evolutionary pressures, is heterogeneous
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in space or time [Marusyk et al., 2012].

CSC niche

Figure 8: Spatial constraints in cancer ecology. Mathematical approaches have been successful
in capturing several ecological cues of spatial limitations in cancer. Examples of these are three-
dimensional simulations of tumor diversity in metapopulation models [Gonzélez-Garcia et al.,
2002] (a), adaptive dynamics modulating carrying capacities in tumor clones [Gerlee and Ander-
son, 2015] (b) and the interplay between the cancer stem cell niche (c¢) and habitat fragmentation
models (d) [Solé and Aguadé-Gorgorid, 2021].

What other ecological dynamics exist beyond competition in the cancer metapopula-
tion itself? As for many ecosystems, where biodiversity needs laws other than conflict
to remain stable [Duffy et al., 2007], the presence of several non-cancer populations in
a tumor indicates that these play non-trivial (and not always competitive) roles in tu-
morigenesis. Among the myriad ecological actors of the cancer environment, reviewed
elsewhere [Mbeunkui and Johann, 2009], we consider here two main areas with specific
—and crucial- ecological roles in cancer: the immune system — as a promising therapeutic
opportunity— and metastatic spreading —as the key element of cancer aggressiveness (Fig.
3).
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1.3.2 Cancer and the immune system

The immune system (IS) encompasses a giant collection of cells and chemical compounds
that interact in a multi-layered complex network to provide us with a defense against
external pathogens [Delves and Roitt, 2000, Subramanian et al., 2015] (Fig. 9a). As
with the nervous system, the IS performs complex pattern recognition tasks and records a
memory of previously encountered pathogens [Perelson and Weisbuch, 1997] (Fig. 9b),
thus orchestrating the accurate responses characteristic of a liquid brain® [Solé et al.,
2019, Pinero and Solé, 2019]. One of these cognition-based processes is the hallmark
capacity of the IS to recognize external agents (the non-self) via identification of foreign
antigens, and differentiate these from the myriad elements natural to the human body (the
self) that need not be harmed [Medzhitov and Janeway, 2002] (Fig. 9c). Failure of correct
discrimination is related to many immune-mediated diseases, with lack of self tolerance
resulting in often serious autoimmune disorders [Sinha et al., 1990].

After correct self-nonself discrimination, the adaptive compartment of the immune
system orchestrates a response to target and kill the external invader (Fig. 9b). But, if
(human) cancer cells belong to the self, can a similar process take place in tumors? Back
in 1893, William Coley discovered that bacterial infections could correlate with obser-
vations of remission in certain sarcomas [Coley, 1893], providing a first glance towards
the possibility that the immune system, activated by an external pathogen, could target
and kill cancer cells. Despite several decades-old theories establishing the basis of to-
day’s immunotherapy [Ehrlich, 1909, Burnet, 1957, Thomas and Lawrence, 1959], the
underlying complexity of so-called immune surveillance (Fig. 9d) left immunotherapy
somehow dormant for more than 100 years.

Modern evidence confirms that, indeed, immune effector cells, mostly T-cells and
Natural Killer (NK) cells can recognize and kill malignant cells in our body [Miller and
Sadelain, 2015] (Fig. 9d). A prominent discovery has been understanding how the muta-
tional background of cancer cells generates a pool of so-called neoantigens, cell-surface
peptides that fall in the non-self category and are eventually recognizable by immune cells
[Schumacher and Schreiber, 2015]. Upon presentation of a given neoantigen by Antigen
Presenting Cells (APCs) (Fig. 9c), helper T cells with the matching T Cell Receptor
(TCR) release cytokines that generate a cytotoxic clone of effector T cells able to recog-
nize and attack a tumor [Starr et al., 2003]. The possibility that the IS can be harnessed to
target cancer has prompted an enormous endeavor towards disentangling the complexity
of immune surveillance of tumors.

Early experimental and mathematical models described cancer-immune interactions
as a predator-prey ecological system, with lymphocyte clones (the predator, 1") grow by
feeding on cancer cells with the corresponding antigens (the prey, c). Here the simple
mean-field approach adds an equation for T cells:

de c
d_t:b<1—?>c—5cT—dc (8)
dT

2 As opposed to standard solid brains, where a static set of networks interact in persistent architecture,
liquid brains comprise a variety of cognitive systems with a dynamical network of interacting moving
agents. Ant and termite colonies, the immune system or microbiome communities are examples of such
liquid cognitive networks [Solé et al., 2019].
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with § introducing immune-mediated killing, m the steady immune migration to the tumor
site and f(p, c) the rate at which T cells recognize cancer cells and start a growth cascade
[Kuznetsov et al., 1994]. This system captured the dynamical background of cancer dor-
mancy and remission (Fig. 3, 7b), confirming the hypothesis that these where immune-
related phenomena [Hellstrom and Hellstrom, 1969, Kuznetsov et al., 1994]. In the light
of cancer pervasiveness, it appears clear that the IS does not always maintain tumors
at bay. In many cases, cancer cells seem to escape immune surveillance and inevitably
progress into carcinomas. Immune escape is a hallmark example of how evolution, here
selecting for preys able to elude their predators by altering either 0 or f(p, ¢), drives onco-
genic transformation [Hanahan and Weinberg, 2011, Sharma et al., 2017]. In one of the
possible mechanisms to immune escape, cancer cells activate immune checkpoints (such
as CTLA-4 or PD-L1, Fig. 9d), molecular regulators of immune attack originally evolved
to avoid collateral tissue damage in pathogenic infections [Topalian et al., 2015], thus dis-
mantling the predator-prey system by setting 6 ~ 0. The discovery of drugs inhibiting the
action of these pathways led to a dramatic revolution in the field of cancer immunotherapy
[Hodi et al., 2010].
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Figure 9: The immune system and cancer surveillance. The many layers of immune system
complexity, involving the idiotypic network, multiple cellular populations or the specific epitope
and surface receptor agents, provide the IS with liguid brain-type cognitive capacities [Pinero and
Solé, 2019] (a). Among these, a major task is the elimination of foreign pathogens (b) after recog-
nition of nonself antigens (c¢). In cancer, immune surveillance is built upon a complex network
of molecular and cellular components (d), where not only neoantigens, but immune checkpoints
or protumorigenic immune cell types participate in the cancer-immune ecology [Sharma et al.,
2017].

However, not all tumors remit after T cells are summoned by anti-PD-L1 or anti-
CTLA-4 checkpoint inhibitors [Sharma and Allison, 2015]. Because T cells recognize
mutated antigens, cancer types characterized by low somatic mutation burden are likely
to remain silent to immune surveillance [Sharma et al., 2017]. This includes a wide vari-
ety of malignancies where adaptation follows from chromosomal or epigenetic instability
(Fig. 3), posing a keystone limitation to immunotherapy efficiency. One of the primary
endeavors of the present thesis has been the study of how do predator-prey models change
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under an increment in neoantigen load resulting from induced mutagenesis. The crucible
of the problem here is that genetic instability both activates cancer adaptation and im-
mune recognition of neoantigens, thus establishing an evolutionary trade-off modulating
the outcomes of system (8)-(9). In the Results chapter we propose a mathematical frame-
work able to capture this trade-off [Aguadé-Gorgori6 and Solé, 2019]. Interestingly, the
model indicates specific therapy conditions for tumor clearence, where mutagenic or im-
munotherapy approaches alone are unlikely to success. Instead, results entail a possible
a combination therapy approach able to success in complete tumor remission [Aguadé-
Gorgori6 and Solé, 2019].

In given settings, clinical evidence indicates that even cancers with high mutational
burden might not elicit proper immune responses [McGranahan et al., 2016]. The under-
lying mechanism here might result from the complex laws of the TCR repertoire [Perel-
son and Weisbuch, 1997], implying that heterogeneity of tumor neoantigens is likely
to exceed the capacity of the T cell clonal selection process to generate a correspond-
ingly diverse pool of TCRs [Perelson and Oster, 1979]. Can we capture the nature of
this heterogeneity limit? Continuing with research on the instability-surveillance inter-
play [Aguadé-Gorgori6 and Solé, 2019] and inspired in previous models of HIV diversity
[Nowak and May, 1991], we present below an additional model that captures the critical
nature of neoantigen diversity limits (see Results, [Aguadé-Gorgorié and Solé, 2020]).
The model is grounded on a multiscale approach to the heterogeneity-surveillance trade-
off, where cancer cell death results from the immunogenic capacity of presented antigens
and their intrinsic accumulation and distribution across the tumor, implying a background
evolutionary layer. The model provides both a diversity biomarker able to predict im-
munotherapy outcome in melanoma patients, as well as an open possibility for reducing
neoantigen heterogeneity prior to immune attack through a combination treatment ap-
proach [Aguadé-Gorgorié and Solé, 2020].

Deciphering the interplay between cancer and effector cells has been a major land-
mark of modern cancer research —the fact that T cells can target cancer cells makes our
immune system one of the most advanced (if not the most) treatments available. How-
ever, evidence indicates that the cancer-immune interactions (Fig. 3) embody a much
more complex network. One of the first observations of this was the fact that inflam-
mation correlated with increased cancer incidence [Coussens and Werb, 2002]. In the
scenario of a wounding injury, immune inflammation orchestrates a regenerative environ-
ment promoting cell proliferation and angiogenesis. This growth factor-rich ecosystem
becomes a tasty site for malignant cell progression, making tumors act as wounds that do
not to heal [Dvorak, 1986]. Innate immunity can be, therefore, a protumorigenic agent as
a result of indirect facilitation dynamics [Bruno et al., 2003, Lin et al., 2007].

Cancer as a result of previously existing inflammation is only at the tip of the pro-
tumorigenic roles of the immune system. An example of further complexity can be
found in the confusing role of macrophages in tumor progression. Macrophages, mostly
characterized by their phagocytosis activity, can be roughly categorized into two sub-
types, namely M1 and M2 [Mosser and Edwards, 2008]. M1s are mostly killer, pro-
inflammatory macrophages, responsible for pathogen phagocytosis. M2s, in turn, are
termed repair macrophages, and often act after M1s in complex anti-inflammatory and
tissue-repairing cytokine networks inhibiting harmful immune attack [Mosser and Ed-
wards, 2008]. Briefly put, Mls are anti-cancerous, while M2s favor a protumorigenic
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environment. Current experimental observations indicate that, even in the absence of
previous inflammation, cancer cells can, by secreting the necessary factors, attract and
polarize macrophages into an M2 phenotype [Sica et al., 2008]. Since both cancer cells
facilitate M2 reproduction, and M2s engineer a protumorigenic response, the tumor here
behaves as an indirect mutualistic system, creating an ecosystem coengineering network
that might be targeted by therapy (Fig. 7d, [Myers et al., 2020]).

All in all, the complex nature of cancer and immune populations underline a con-
stant eco-evolutionary process, where cancer cells can evolve the capacities to escape
immune predation, while clonal selection of matching TCRs constantly pursues mutated
cancer antigens. On top of that, evolution of protumor immune populations indicates
that the cancer-immune network is, itself, pervaded by multiple and diverse ecological
interactions. To efficiently explore immunotherapy opportunities, oncology needs the
theoretical background able to capture the ecological complexity at play and the resulting
evolutionary directions that tumors are likely to take after treatment. Despite overwhelm-
ingly complex, the dynamical and cognitive nature of the immune system as a liquid brain
provides us with the hope of having found one of the few agents that could match cancer
in terms of adaptive potential.

1.3.3 The ecology of metastatic spreading

About 90% of cancer-related deaths do not result from the growth of the primary tumor,
but from the dispersal of cancer cells that eventually colonize distant host organs [Gupta
and Massagué, 2006]. The so-called metastatic cascade involves a complex multi-step
process where a single cancer cell looses cellular adhesion, increases motility and inva-
siveness, penetrates and survives in the circulation to eventually exit and colonize a distant
site [Fidler, 2003] (Fig. 3 top, 10a). Several, if not all, of these processes are very un-
likely in terms of the probability of both the genetic events and cellular survival involved.
However, the ecological constraints of the primary site, where cancer outgrowth reduces
resource availability, are likely to select for invasive phenotypes, similar to the evolution
of foraging strategies in moving animals [Schoener, 1987], in cooperation with angio-
genic phenotypes that create the necessary blood vessels for departure (Fig. 7e, [Weidner
et al., 1991]).

Besides the genetic and molecular alterations characteristic of the metastatic cascade,
the seed and soil hypothesis proposed by Stephen Paget in 1889 remains the benchmark
of metastatic ecology thinking [Paget, 1889]. Paget’s proposal was that the non-random
dispersal of metastases® was comparable to the affinity of certain seeds (here, cancer cells)
to the specific milieu of given soil types (here, organs or tissues). This ecological idea,
deemed inconcievable for decades, started to be accepted in experimental terms by the
1970s [Weiss, 2000].

Once a single tumor has spread to distant organs with diverse ecological pressures,
a main barrier to the treatment of metastatic disease is the underlying heterogeneity of
each metastasis [Fidler, 2003]. In this scenario, surgery is not a feasible option, and sys-
temic treatment usually fails due to the diversity of cancer cells at alternative sites, further

3Metastatic distribution across organs does not happen at random nor uniformly, but specific cancers
seem to have preferred metastatic sites. A well-known example here is the common metastases of breast
cancer towards the bones and lungs [Nguyen et al., 2009].
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enhanced by the possible microenvironmental differences between tissues [Fidler, 2003]
(Fig. 3). The context here is comparable to that of invasion ecology of islands [Lockwood
et al., 2009, Lloyd et al., 2017], that establishes a framework to answer questions regard-
ing how original biodiversity (ITH) is transfered to invaded ecosystems (organs). Here
again, mathematical models have obtained key results that unravel a consecutive seeding
scenario, where not a single, but many primary tumor cells eventually reach and trans-
fer genetic information to distant metastases [Heyde et al., 2019]. Further evidence also
indicates that seeding between the primary tumor and distant metastatic sites is actually
bidirectional [Comen et al., 2011] (Fig. 10a). In this context, the seed and soil hypothesis
expands to a much more complex scenario where tumors and their metastases coevolve
by exchanging genetic information in a recombination-like fashion.

Another aspect of metastatic spreading governed by ecological interactions is con-
comitant resistance [Prehn, 1993]. Concomitant resistance (CR) is the paradoxical ob-
servation, first discussed by Paul Ehrlich [Ehrlich, 1909], that an inoculated secondary
tumor will fail at colonizing the host if a large tumor is already present within the same
organism [Chiarella et al., 2012]. This apparently distant—competition process governs the
more important phenomenom of sudden metastatic expansion after primary tumor surgery
[Coffey et al., 2003]. A relevant example here is that of advanced breast cancers, where
late but successful surgery of the primary tumor is often followed by the sudden growth
of aggressive metastatic disease [Retsky et al., 2010], indicating that the presence of the
primary tumor was somehow maintaining secondary tumors under dormancy. Despite
mathematical efforts, explicit derivations of the type of ecological interactions that could
result in CR remain elusive, and direct or indirect competition [Benzekry et al., 2017],
concomitant immunity [Gorelik et al., 1981] or angiogenic inhibition [O’Reilly et al.,
1999] do not totally explain systemic CR dynamics. Can we envisage a metapopulation
model (Fig. 10b) that explains which molecular and ecological cues induce concomitant
resistance?
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primary tumor metastasis

Figure 10: Ecological cues in metastatic spreading. Metastatic spreading involves a complex
process of cellular transformation built upon several steps, from the EMT transition to an invasive
mesenchymal phenotype, the navigation across populated blood vessels to the colonization of a
distant organ (a). Furthermore, evidence indicates the presence of non-trivial dynamics, such as
metastases-tumor reseeding (implying the sharing of heterogeneity) or distant tumor inhibition
(concomitant resistance). Ecological multi-species models (b) are needed in order to capture the
possible critical thresholds limiting metastatic invasion.
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1.4 A caricature of tissue development

Back in 1829, before most of the biological and molecular knowledge of cancer was estab-
lished, one of the first observations of tumors under the microscope was their resemblance
to embryonic tissue [Recamier, 1829]. Decades later, these observations developed into
the theory of embryonal rest, by which adult tissues contain embryonic remnants that
could be activated from dormant states into cancer, in part due to their inherent capacity
for proliferation [Cohnheim, 1914]. By 1941, studies on teratomas (germ cell tumors
made up of several well-differentiated tissues, such as hair, muscle or teeth) led to the
evidence that tumors could in fact contain both differentiated and undifferentiated cells
[Jackson and Brues, 1941].

During the same period, evolution of our knowledge on tissue development and regen-
eration led to the discovery of Stem Cells, undifferentiated cells with unlimited capacity to
either proliferate or differentiate into various cell types [van der Kooy and Weiss, 2000].
These were first defined as such by Theodor Boveri in the late 19th century [Ramalho-
Santos and Willenbring, 2007], at the same years he developed a theory for the chro-
mosomal origin of cancer (Section 1.2.1). By the 1960s, discovery of blood-forming
(hematopoietic) stem cells (HSC) moved to the front page the relevance and key proper-
ties of stem cells [Becker et al., 1963]. Furthermore, the existence of stem cells uncovered
the underlying cellular lineages, fine-tuned hierarchies of cells of diverse differentiation
degree that maintain stable tissue architecture [Visvader and Clevers, 2016].

Could tumors arise from these embryonic cells? Would heterogeneity then be a result
of an aberrant hierarchy, instead of a process of the somatic accumulation of mutations?
The discovery that some cancers can arise from specific cells with tumorigenic potential,
as if tumors followed from a process of aberrant development, led to the establishment of
the Cancer Stem Cell (CSC) model [Reya et al., 2001]. If tumors are indeed caricatures
of normal tissue development [Pierce and Speers, 1988], and not the simple Big Bang ex-
pansion of a given cell of origin [Sottoriva et al., 2015], our understanding of oncogenesis,
cellular heterogeneity and consequent therapeutic resistance needs to be revisited.

1.4.1 Cell fate and the Waddington landscape

The human body is made of about 200 different cell types [Alberts, 2008], organized
in complex multicellular patterns to maintain body function. All these different cells,
however, share the same DNA sequence and originate from a single embryonic stem cell
[Carroll et al., 2013], meaning that a single genome can encode many different pheno-
types. The underlying processes governing how cells develop into alternative phenotypes
with specific functions is the key area of study of developmental biology. During em-
bryogenesis, undifferentiated stem cells replicate and specialize into different cell types
by receiving molecular signals from their surroundings [Carroll et al., 2013]. A similar
process can be observed later on in adult organs, where tissue stem cells maintain and
regenerate specialized cellular populations when needed [Wagers and Weissman, 2004].
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A relevant example here is that of hematopoiesis, the formation of all blood cells from
HSCs and subsequent myeloid and lymphoid progenitors (see [Morrison et al., 1995] for
an extensive description).

The findings of developmental biology have been of utmost importance to our under-
standing of classical Darwinian evolution, as genes appear no longer to be the only agents
of phenotypic expression nor heritability [Goldberg et al., 2007]. This was first proposed
by Conrad Waddington in 1942 [Waddington, 1942], who coined the term epigenetics to
include all non-genetic mechanisms of heritable information [Goldberg et al., 2007]. To
understand how single DNA sequences develop into multiple (and stable) cellular types,
he proposed a visual landscape, now known as the Waddington landscape [Waddington,
1957], where cell fate is visualized as a downhill descent from less differentiated states
into canals representing possible cell fates (Fig. 11a).

At the top of the landscape, an initial totipotent stem cell*, precludes tissue devel-
opment, with differentiation (here downhill pathways) governed by external signaling
cascades affecting gene expression patterns [Huang, 2012]. Once the embryo becomes
an adult individual, hierarchies of cells at different landscape heights choosing between
self-replication or differentiation maintains a fine-tuned equilibrium between phenotypic
populations that ensures correct organ function [Lehrer et al., 1998, Derényi and Szoll6si,
2017] (Fig. 11b).

What are the epigenetic programs determining the topology of such landscape? A
relevant framework here is provided by Gene Regulatory Networks (GRNs) [Davidson
and Levin, 2005]. As discussed along Section 1.2.1, genes interact between one another,
so that the product or expression level of a gene is a function of the expression of N
other genes, and so on, creating a network of epistatic interactions [Wolf et al., 2000].
In an enlightening work, Stuart Kauffamn proposed GRNs could be modeled as Boolean
networks [Kauffman, 1969], where each gene state is a logic function of other NV states.
Interestingly, such network has a set of S stable states, or attractors, towards which the
system evolves [Kauffman, 1969], that map the possible cell types that arise from the
original DNA sequence depending on gene expression patterns. Surprisingly, even very
large random networks entail a much smaller and limited number of attractor states, con-
sistent with the divergence between the number of DNA components and resulting cell
types [Solé and Goodwin, 2000].

As a corollary and more realistic version of random Kauffman networks, network
models where node states are continuous and stochastic provide a first mathematical
tool that maps genome expression to the topology of the Waddington landscape [Huang,
2012]. Chromatin, previously studied in /.2, is the key epigenetic element regulating gene
expression in the GRN [Flavahan et al., 2017]. Alterations in gene expression or chro-
matin configuration, therefore, could induce changes in the topology of walls separating
attractor states, thus allowing the developmental process to access previously forbidden
phenotypes [Huang, 2012]. The Waddington landscape is, therefore, a source for cellular
heterogeneity at two characteristic levels. On the one hand, the existence of developmen-
tal hierarchies provides a stable mechanism for tissue plasticity. On the other, epigenetic
changes alter the topology of accessible phenotypes, eliciting the creation of novel devel-
opmental paths. Can cancer take advantage of this two adaptive opportunities? And, if

“Not all stem cells have the same capacity —or potency- to differentiate into alternative cell types. Totipo-
tent stem cells, at the top of the hierarchy, are the initial cells in the embryo such as zygotes [Gardner, 2002].
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Figure 11: Developmental complexity and tissue hierarchies. Cell development as captured by
the Waddington landscape (a), where cell fate is visualized as a downhill roll from less differen-
tiated states (high regions) towards one or another attractor state, representing alternative cellular
phenotypes. In adult organs, the Waddington landscape sustains cellular hierarchies maintaining
tissue homeostasis (b). In some cancers, aberrant cells often take advantage of phenotypic hetero-
geneity by exploring the phenotypic heterogeneity of these stable hierarchies, with Cancer Stem
Cells at the top of the process being the agent responsible for tumor proliferation and resilience.

so, what are the necessary tools to understand tumor progression under both scenarios?

1.4.2 Cancer Stem Cells

The proliferative and adaptive potential of healthy stem cells should already remind us
of cancer cells themselves. The possibility that cancer was a disease related to stem cell
transformation gained attention in the 1990s, when Acute Myeloid Leukemia (AML) was
discovered to follow a hierarchical structure as that of blood lineages, thus originating
from a single HSC compartment with unique tumorigenic capacity [Bonnet and Dick,
1997] that maintained a heterogeneous population of more differentiated leukemia cells.
Evidence for AML, breast cancer and many other tumor types indicated that only a small
set of particular cell types within each tumor where potential candidates for tumorigenesis
after transplantation, making these the stem-like architects of oncogenic growth [Al-Hajj
et al., 2003]. The existence of so-called cancer stem cells, consistent with observations of
the embryonic appearance of tumors, was followed by the notion that loss of multicellular
traits could be accompanied by a backwards differentiation process [Sole et al., 2014], or
else that tumors could online arise from mutations in healthy stem cells [Sell, 2004].
In any case, this precluded the possibility that cancers progress imitating healthy tissue
development [Pierce and Speers, 1988].

Discovery of hierarchies with different tumorigenic potential across tumor types (see
[Nassar and Blanpain, 2016] for a comprehensive review) has led to the establishment of
the so-called cancer stem cell model [Batlle and Clevers, 2017], that can be summarized
into four premises. First, extensive ITH in tumors follows from its hierarchical organiza-
tion (Fig. 11b), eventually resembling that of the tissue of origin. Second, these hierar-
chies contain rare self-renewing CSCs that maintain a larger tumor population with only
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transient capacity for proliferation. Third, such tumor hierarchical structure is consid-
ered stable, following from the overall lack of tumorigenic potential of non-CSCs. And
fourth, common relapse after treatment can be explained by CSC tolerance to standard
chemotherapy and radiation therapies, mostly as a result from their typically quiescent
state [Batlle and Clevers, 2017]. The CSC model is able to accurately explain clinical
observations, such as tumor dormancy, the epithelial-mesenchymal transition precluding
metastases or overall therapy resistance [Batlle and Clevers, 2017]. As so, it provides
a conceptual framework to understand cancer progression without the need to explicitly
account for Darwinian dynamics.

At first view, the possibility that cancer is organized as a hardwired hierarchy appar-
ently contradicts the clonal evolution model (Section 1.2.3, [Greaves and Maley, 2012]).
Here, cellular properties are no longer randomly distributed across clones, as expected
from the Luria-Delbriick approach to neutral mutation accumulation [Luria and Delbrtick,
1943, Williams et al., 2016] (Figs. 5,6), meaning that the adaptive capacity of cancers
should be understood as a remnant of stem cell plasticity instead of a result of the Dar-
winian selection of ecologically beneficial phenotypes [Shackleton et al., 2009]. How-
ever, current state of the art acknowledges that not all cancers follow a well-defined CSC
model, and it is necessary to mention that CSCs themselves are sometimes ill-defined and
context-dependent [Shackleton et al., 2009]. Furthermore, the clonal and CSC models
of tumor progression have been found to be non-exclusive, and well established tissue
hierarchies (Fig. 11b) can in turn accumulate mutations and undergo Darwinian selection
at each level of the hierarchy [Fulawka et al., 2014].

For those tumors that do progress under a CSC model, treatment design must take into
account several potential barriers. CSCs are characterized by the capacity to adopt quies-
cent states with slow proliferative cycling [Li and Bhatia, 2011]. Given that chemother-
apy and radiation —the most widely used cancer therapeutics— both target DNA damage in
rapidly dividing cells, CSC quiescence ensures that the stem cell compartment persists af-
ter therapy, steadily repopulating the tumor after drug release [Batlle and Clevers, 2017].
As a proof of concept, mathematical models of multi-layered cellular compartments (Fig.
11b) predict that therapy targeting a very large fraction of the tumor is likely to fail if
a CSC population persists, and only therapy targeting this compartment can effectively
achieve tumor remission [Dingli and Michor, 2006]. Treatment design, therefore, should
focus on therapies directly targeting CSCs.

A prominent example here is that of differentiation therapy (DTH). As a promising
alternative to convential cytotoxic approaches, DTH involves the use of molecular agents
able to induce cellular maturation, thus targeting loss of differentiation and moving cells
away from the proliferative compartment and downhill into Waddington canals (Fig. 11,
[Sell, 2004, de Thé et al., 2018]). DTH attention was fueled by its use in Acute Promyelo-
cytic Leukemia (APL), a subtype of AML characterized by the proliferation of immature
granulocytes. APL is a cancer driven by a particularly simple genomic event, a chro-
mosomal translocation resulting in the fusion of the retinoic acid receptor-alpha gene on
chromosome 17 (RARA) with the promyelocytic leukemia gene (PML) on chromosome
15 [de Thé et al., 2018]. All-trans retinoic acid was discovered to induce differentia-
tion of the immature cells in APL without directly killing them. In turn, a combination
of standard chemotherapy and all-trans retinoic acid increased the likelihood of disease
remission up to 90% [Meng-Er et al., 1988], an astonishing improvement for a disease
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previously considered a hyperacute fatal illness, with a median survival time of less than
a week in the 1950s [Coombs et al., 2015].

In many other cancers, however, the search for a DTH approach has not granted suc-
cessful results [de Thé et al., 2018]. The more complex genome alterations of solid
tumors, that also generate non-trivial differentiation hierarchies [Nassar and Blanpain,
2016], have hampered the extension of DTH to solid cancers in particular. pointing to-
wards several potential spatial limitations to effective differentiation. In particular, the
fact that CSCs could live in alternative niches with specific differentiation signaling might
confer an additional layer of resistance to DTH (Fig. 8c). In the present thesis we present
a mathematical approach to the role of space in DTH design, by considering how the dif-
ferentiated, unproliferative compartment alters cancer growth (Eq. 7) through occupying
invadable habitat [Solé and Aguadé-Gorgorid, 2021]. This modifies the original Levins
model to account for a minimal hierarchy
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where v f (¢, D) captures the signaling cascade by which the amount of neighbouring pro-
genitor (¢) and differentiated (D) cells affect the basal differentiation rate of progenitor
cells v [Solé and Aguadé-Gorgorio, 2021]. The key element here is observing how D
produces an indirect spatial competition by introducing an habitat-loss term in the cancer
birth rate b. Interestingly, this minimal system is able to capture the failure of differenti-
ating agents alone, consistent with observations on APL. For tumors with more complex
architectures, the same modeling approach is able to capture how does the minimal system
change when a CSC population —living in an independent compartment— survives habitat
loss, pointing towards the CSC niche [Plaks et al., 2015] as a buffer against maturation-
inducing compounds (See Results, [Solé and Aguadé-Gorgorio, 2021].

1.4.3 Phenotypic plasticity in cancer

Our understanding of cellular differentiation programs changed around 2006, with the dis-
covery that only a few transcription factors, the so-called Yamanaka Factors, could induce
dedifferentiation of otherwise mature cells [Takahashi and Yamanaka, 2006]. By 2011,
evidence of spontaneous dedifferentiation of mammary basal-like human cells [Chaffer
et al., 2011] ignited the possibility that cellular hierarchies are not as hardwired as previ-
ously expected [Poulsom et al., 2002]. Nowadays, a large body of evidence confirms that
committed cells are capable of moving up and down differentiation hierarchies under a
wide array of molecular or environmental signals [Batlle and Clevers, 2017]. On top of
that, transcriptional noise might put a further layer of stochasticity in the (already com-
plex) genotype-to-phenotype map [Marusyk et al., 2012], further deforming the structure
of tissue hierarchies.

In cancer, phenotypic plasticity —the ability of cells to move around the Waddington
landscape (Fig. 11a)— opens a totally new scenario in cancer adaptation [Flavahan et al.,
2017]. A prominent example here was the discovery that breast cancer cell lines could
consistently display well-defined stem-, basal- and luminal-like phenotypes on top of a
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much more noisy heterogeneous genetic background [Gupta et al., 2011]. Interestingly, a
tumor grown out of any single cell in the hierarchy recapitulated the original distribution,
indicating that heterogeneity between cellular states could not result from random accu-
mulation of mutations. With a simple computational model of a Markov process, Gupta
and colleagues where able to show that these cellular states coexisted under a phenotypic
switching (PHS) strategy [Gupta et al., 2011].

a
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Figure 12: Phenotypic plasticity in cancer. Genetic and epigenetic cues build up the underlying
topology of the Waddington landscape (a) (redrawn from [Ollé-Vila et al., 2016]). Evidence for
PHS strategies in cancer indicates that tumors could take advantage from modifications on this
landscape (in (b), a schematic representation of four well-defined PHS phenotypes in Glioblas-
toma, redrawn from [Neftel et al., 2019]), namely related to changes in chromatin configuration
facilitating the accessibility of alternative phenotypic states [Flavahan et al., 2017] (¢). Mathe-
matical models of PHS architectures allow for the dynamical description of possible thresholds to
treatment efficiency (d) [Aguadé-Gorgori6 et al., 2020].

Phenotypic plasticity between cellular phenotyes has been shown to govern cancer
adaptation in a wide array of settings [Flavahan et al., 2017], such as in epithelial-
mesenchymal heterogeneity®, the appearance of transient drug-tolerant states during ther-
apy [Sharma et al., 2010] or lineage plasticity® as response to therapeutic intervention

3The epithelial-mesenchymal transition (EMT) encodes the phenotypic change between epithelial cells
that loose adhesion properties and embark into a mesenchymal stem cell phenotype with migratory potential
[Kalluri et al., 2009]. The EMT is, therefore, a key event in the formation of metastatic disease.

®Lineage plasticity (LP) refers to the recent observation that, upon targeted treatment, cell lines in adeno-

33



[Quintanal-Villalonga et al., 2020]. More complex PHS architectures, with more than
two phenotypes involved, have been shown to boost cancer heterogeneity and adapta-
tion. A recent illuminating discovery is that of Glioblastoma (GBM), an aggressive form
of brain cancer, that has been shown to develop PHS between four well-defined genetic
meta-modules, resembling originary cell lines in brain development (Fig. 12b, [Neftel
et al., 2019]). This finding has major implications for GBM treatment design.

The Waddington landscape is again a useful tool to visualize the epigenetic laws be-
hing PHS [Waddington, 1957] (Fig. 12a). Configuration of the valleys and walls of
the developmental landscape follows from the architectural topology of a GRN [Huang,
2012]. On the one hand, gene expression patterns define the possible attractor states
[Marusyk et al., 2012]. Extensive genome alterations in malignant cells can therefore in-
duce the creation of novel valleys of variable proliferative potential, the so-called cancer
attractors [Huang et al., 2009]. On the other hand, the effect of chromatin configura-
tion in DNA folding alters the height of walls separating these valleys [Marusyk et al.,
2012] (Fig. 12c). Restrictive chromatin states ensure that wells separating the canals are
high enough so that transcriptional noise does not induce excessive cellular transforma-
tion [Flavahan et al., 2017] (Fig. 12c left). In cancer, epigenetic alterations of chromatin
configuration often induce permissive chromatin states, that translate into the Waddington
landscape as a decrease of the landscape ruggedness (Fig. 12c right) allowing for more
probable stochastic transitions between cellular phenotypes [Flavahan et al., 2017].

Mathematical modeling coherent with experimental observations has been able to
demonstrate that phenotypic switching dynamics can be captured by simple stochastic
models inspired in bacterial persistence, the ability of bacterial communities to main-
tain a small drug-tolerant population in place [Balaban et al., 2004]. The crucible of the
problem here is solved by introducing positive switching rates w;; between phenotypes
[Aguadé-Gorgorio et al., 2020] (Fig. 12d). The equation for each subclone under PHS

here writes

dCi

= (rz(c) ;wlk> ¢+ kz#iwmck (12)
so that population growth now includes those cells that switch into the ¢; phenotype minus
those that leave into alternative ones. Interestingly, these minimal set of replicator equa-
tions completely transforms the landscape of system attractors [Aguadé-Gorgorio et al.,
2020], by allowing softer conditions for multicellular coexistence than those characteris-
tic of replicators in the clonal model (Eq. (7)). In this scenario, one particular difficulty
of therapy targeting tumors with PHS strategies is the resilience of heterogeneity, since
targeted phenotypes can be held in place by the rest of the system [Aguadé-Gorgorid
et al., 2020] (see Results). Can we design alternative therapies that take into account the
dynamical resilience of PHS?

carcinomas loose dependency upon initial oncogenic drivers and transform into aggressive neuroendocrine
derivatives. Lung and prostate cancers are so far the most studied adenocarcinomas showing LP [Quintanal-
Villalonga et al., 2020].
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2 Objectives

The complexity of cancer — and the search to find successful therapeutic approaches —
spans across the fields of ecology, evolution and development. For each of these, a large
body of different questions arise, many of which are possibly answered by using theoreti-
cal biology and mathematical models. The initial objective of the present thesis, therefore,
was to identify relevant questions within oncology that should be approached through the
lenses of complexity theory, and a large part of the research time has been involved in
properly defining a concise question for each specific aspect in place. Some of the ques-
tions that have been targeted, with different rate of success, during the time of my PhD
have been the following:

Evolution

o If there are viability limits to genetic instability [Solé and Deisboeck, 2004], how
can cancer cells survive them? In this context, what is the dynamical nature under-
lying mutation rate evolution? Do cancer cells live at the critical mutation rate, as
viruses do [Solé and Elena, 2018]? If so, can lethal mutagenesis be applied as a
therapeutic approach to unstable tumors?

* How does chromosomal instability (CIN) modulate the adaptive landscape of cancer
cells? Why do many cancers organize around an average ploidy of ~3.3? Is this an
optimal evolutionary value, or a physiological constraint? Are there error thresholds
to chromosomal instability?

* What is the relation of Whole Genome Doubling (WGD) with the previous ques-
tion? Why is WGD such a common event in cancer, despite being apparently detri-
mental to fast cellular proliferation?

* Why do CIN and micro-satellite instability pathways appear as mutually-exclusive
evolutionary mechanisms in cancer [Guinney et al., 2015]?
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Ecology

* What is the role of genetic instability in the cancer-immune (predator-prey) inter-
action? If T cells recognize cancer neoantigens, and these result from accumulated
mutations, is there a trade-off balancing cancer evolution and immune recognition?
Can mutagenic therapies be combined to checkpoint blockade inhibitors to enhance
immune surveillance? (an Eco-Evo question)

How does heterogeneity in neoantigen landscapes affect the previous question? Can
a mathematical model capture why (and how) increased neoantigen diversity corre-
lates with immunotherapy failure? Are there specific limits to neoantigen hetero-
geneity, and can therapy take advantage of them? (another Eco-Evo question)

Is the Warburg effect (the use of inefficient glycolytic metabolism even in the pres-
ence of oxygen) an example of a critical transition with hysteresis?

* Can mathematical modeling help us understand the ecosystem coengineering nature
of cancer and type-2 macrophages [Myers et al., 2020]? Provided that M1-M2
equilibria can be restored by therapy, can we predict the conditions under which the
immune system will transit from a pro-tumor to an anti-tumor response?

What is the ecological nature of Concomitant Resistance? Why do tumors appar-
ently secrete molecular compounds that do not allow secondary tumors to grow?
Can a mathematical model capture this apparently indirect competition process? If
surgery is successful for small tumors, but awakens large metastatic burdens in large
tumor excisions, can we predict the presence of a threshold tumor size with potential
therapeutic value?

Development

* What is the dynamical nature of Differentiation Therapy (DTH) in solid tumors,
and why does it usually fail? What role does the CSC niche play here? Can we use
spatial ecological models to understand why DTH affects differently each cellular
compartment in a hierarchy? (an Eco-Devo question)

If tumors adapt through stochastic phenotypic switching (PHS) instead of somatic
mutation accumulation, what is the nature of therapeutic resistance? Can a simple
analytical framework inform about the adaptive potential of PHS versus the clonal
evolution model? Would it provide clues for the treatment of multi-phenotype struc-
tures such as those of Glioblastomas? (another Eco-Devo question)

* [s it possible to develop a mathematical framework that unites Waddington’s land-
scape and Kauffman’s cancer attractors to capture the dynamical limits of epigenetic
plasticity? Can it account for why (and how) PHS strategies evolve in the first place?
Can we understand if PHS architectures have evolved de novo or from an aberrant
—but already existing— tissue hierarchy?
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A range of mathematical tools have been considered to approach these questions, most
often those of population ecology, such as ordinary differential equations to study popula-
tion dynamics, diversity models or habitat loss and fragmentation in ecology [Bascompte
and Solé, 1996]. We have also used adaptive dynamics as a framework to study stochastic
trait evolution [Diekmann, 2002]. When needed, we have taken advantage of computa-
tional simulations to reproduce in silico experiments.

The main overall goal of the research process has been to obtain, for each question,
a minimal model both able to provide a basic understanding of the system and a concise
result with specific implications on cancer treatment. Experimental and clinical data from
other research teams and publications has been used, when possible, to assess the validity
of the models’ results.

Interestingly enough, few of the questions for each specific field have yielded answers
constrained to that field, meaning that ecological questions have been target by using
evolutionary or developmental models, and viceversa. By the end of the PhD thesis, the
interaction between ecology, evolution and development in cancer has yielded another
open question:

* Is it possible to build a conceptual framework to understand how ecology, evolution
and development are intertwined in cancer? Can we map how different cancers
explore complexity along each of these axes? Does this provide a cartography of
alternative tumorigenic pathways?
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3 Results

The present chapter contains the following research articles, published within the scope
of the thesis:

* Aguadé-Gorgorid, G., & Solé, R. (2018). Adaptive dynamics of unstable cancer
populations: The canonical equation. Evolutionary applications, 11(8), 1283-1292.

* Aguadé-Gorgorio, G., & Solé, R. (2019). Genetic instability as a driver for immune
surveillance. Journal for immunotherapy of cancer, 7(1), 1-13.

* Aguadé-Gorgorid, G., & Solé, R. (2020). Tumour neoantigen heterogeneity thresh-
olds provide a time window for combination immunotherapy. Journal of the Royal
Society Interface, 17(171), 20200736.

* Solé, R., & Aguadé-Gorgorid, G. (2021). The ecology of cancer differentiation
therapy. Journal of Theoretical Biology, 511, 110552.

Another article presented below was under revision for publication at the time of the thesis
deposit (May 2021):

* Aguadé-Gorgorio, G., Kauffman, S., & Solé, R. (2021). Transition therapy: tackling
the ecology of tumour phenotypic plasticity.

(Preprints: https://www.preprints.org/manuscript/202007.0547/v1)
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Abstract

In most instances of tumour development, genetic instability plays a role in allowing
cancer cell populations to respond to selection barriers, such as physical constraints
or immune responses, and rapidly adapt to an always changing environment.
Modelling instability is a nontrivial task, since by definition evolving instability leads
to changes in the underlying landscape. In this article, we explore mathematically a
simple version of unstable tumour progression using the formalism of adaptive dy-
namics (AD) where selection and mutation are explicitly coupled. Using a set of basic
fitness landscapes, the so-called canonical equation for the evolution of genetic in-
stability on a minimal scenario associated with a population of unstable cells is de-
rived. We obtain explicit expressions for the evolution of mutation probabilities, and
the implications of the model on further experimental studies and potential muta-

genic therapies are discussed.

Social Fund; Santa Fe Institute

KEYWORDS

1 | INTRODUCTION

Cancer can be understood as the failure of those regulatory mech-
anisms that guarantee the maintenance of tissue and organ ho-
moeostasis. Cooperative interactions along with extensive feedback
signalling loops and replication checkpoints provide multiple paths
to avoid the emergence of undesirable mutations or chromosomal
abnormalities that can allow rogue cells to start proliferative growth.
In dynamical terms, what has to be avoided within multicellular or-
ganisms is any kind of individual cell Darwinian evolution (Gatenby &
Brown, 2017; Greaves & Maley, 2012; Nowell, 1976).

It is generally acknowledged that genetic instability plays a
key role in tumour progression and carcinogenesis (Hanahan &
Weinberg, 2011). Unstable genomes result from the failure of mo-
lecular mechanisms responsible for the maintenance of genome in-
tegrity (Negrini, Gorgoulis, & Halazonetis, 2010). That cancer cells

are unstable is fairly well illustrated by the observation of their

cancer adaptation, critical points, genome instability, Moran process, unstable dynamics

karyotypes: in sharp contrast with healthy cells, cancer chromo-
somal arrangements reveal a wide degree of aneuploidy (Lengauer,
Kinzler, & Vogelstein, 1998). Such high levels of mutational load de-
ploy the potential to overcome selection barriers, as well as involve
a rather uncommon process from multicellularity to reduced cellu-
lar complexity (Solé et al., 2014), giving place to a highly adaptive
and heterogeneous population. Genetic instability acts as a driver
as well as the search engine for disease progression. An important
(and not always appreciated) consequence of instability is that, once
unleashed, it can easily grow as the lack of proper repair can damage
other components of the check-and-repair cellular network.
Despite increasing knowledge of the molecular basis of un-
stable tumorigenesis, there is still the need for understanding the
role of instability on cancer evolution, namely discerning if it is a
cause or a consequence of carcinogenesis, how does it evolve along
tumour development, and what are the treatment strategies that

arise from answering such questions. Many mathematical models
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have provided interesting points into this topic, with the introduc-
tion of relevant ideas such as the mutator phenotype (Loeb, 2001)
and several multi-step models of mutation acquisition (see e.g.,
Komarova et al., 2002; Nowak et al., 2002) that have investigated
the possible scenarios of correlation between instability and cancer
progression.

The fact that genetic instability itself changes over cancer evolu-
tion makes it difficult to properly model its behaviour. Particular ef-
forts, such as the computational models of Komarova, Sadovsky, &
Wan, 2008 and Datta et al., 2013; have given interesting insight into
understanding how a changing instability level affects, by means
of modifying the probability of mutations, all kinds of replication
and control mechanisms within the vast pathways towards cancer
malignancy. Within this picture, instability cannot be taken as a pa-
rameter, but rather as an evolving phenotypic trait affected by the
selective pressures of the tumour microenvironment. In this scope,
the recent work by Asatryan and Komarova represents a further
step for its proposal of an analytical approach where both instability
and heterogeneity of cancer populations can be traced along time
(Asatryan & Komarova, 2016). As a complementary point of view,
we consider the need to include stochasticity in the process of ac-
quiring either advantageous or deleterious mutations, together with
considering instability as a trait evolving through changes within
each single cell, compared to the idea of measuring it by following
the competition dynamics between subpopulations with fixed mu-
tation probabilities.

Here, we propose that the mean evolutionary paths of such sto-
chastic process followed by unstable populations are describable by
means of the framework of adaptive dynamics (AD) (Champagnat,
Ferriere, & Ben Arous, 2001; Dieckmann & Law, 1996), which has
been used in the study of cancer when focusing on niche construc-
tion (Gerlee & Anderson, 2015). AD models provide a powerful
alternative to previous formal approaches by explicitly including
replication, mutation and selection in a consistent way, allowing an
exploration of the evolutionary dynamics of adaptive traits, while
at the same time keeping a minimal, treatable model able to pro-
duce explicit expressions for trait evolution depending on a few
parameters.

A central object in the AD framework is the so-called canonical
equation. For a given quantitative phenotypic trait s, this equation

describes the evolutionary trajectory for the mean trait value as

d s
% - %H((s))oz((s))”«S» <%>s’=<5> N

where p({s)) is the probability under which mutant individuals are
generated, o2 is the variance of the mutant distribution s’ derived
from an individual with trait s, n the stationary population size and
the last term in the right-hand side stands for the fitness gradient
associated with the specific landscape at work. The standard formu-
lation involves some strong assumptions on the mutation-selection

process, and we will therefore review the mathematical process in

order to understand up to which point the framework is suitable for
our problem.

In the AD models, and in the work presented here, evolution
takes place within a constant population context, where mutants
appear and invade in a stepwise process, leading to a formalism
for evaluating the trajectories of evolving trait values. This picture
of cancer dynamics stems from classic work on ecological com-
petition (Gatenby, 1995) where tumour cells act as invaders that
cause the disruption of the local (tissue) ecology. These simplified
models reveal how a proper formulation of competition can yield
useful predictions (Gatenby, 1991). In this context, although the
constant population falls short to describe the behaviour of some
tumour growth processes, it is a much needed first approxima-
tion. Moreover, it can also be appropriate when dealing with some
in vitro experiments involving long-term evolution of unstable
cancer cell populations. We will go back to this at the end of the
paper.

Understanding how instability becomes a driver of evolvability
can give further insight about its role as a cancer hallmark, and might
as well produce relevant steps towards contemplating genetic insta-
bility as potential target for treatment. Is it possible to formulate a
canonical equation describing the time evolution of instability? The

answer is affirmative and here we show how it can be obtained.

2 | POPULATION DYNAMICS

With the aim of obtaining a clear understanding of the questions pro-
posed above, we look for a minimal model to implement the unstable
evolutionary dynamics. Our goal is to consider the process of can-
cer progression, which involves a heterogeneous population of cells
(Figure 1a). In this population, cells are only characterized by their
particular replication rate r, and mutation probability p, However,
and in the eyes of the AD approach, this preliminary model uses a
constant population approximation where mutation probabilities are
small enough so that the dynamics remain in equilibrium in-between
invasions. This approach, whose limitations will be later thoroughly
discussed, is best described by means of a so-called Moran process
(Moran, 1958).

A particularity of the Moran process—here coarse-grained into
a continuous process, keeping in mind the long-term evolution of
tumour progression—is that cells of type c; give birth by means of
occupying other, randomly chosen cell sites at rate r;, so that the
birth-death process is coupled into a single event (Figure 1c) that
will eventually lead to selection towards cells with higher r;, thus
producing a minimal environment where selection can take place.
Furthermore, mutation is introduced by considering that cells can
give birth to mutant offspring at probability p;.

Mutations, however, do not occur as in quasispecies or replicator-
mutator models, where genomes mutate from one to another. In our
model, a newly born mutant cell will have a modified mutation prob-

ability p’ =p;+ Ap, where Ap is taken from a continuous distribution
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FIGURE 1 The Moran process rules associated with the model of a population of unstable cells competing for resources. We consider
an idealized model of a heterogeneous cancer cell population (a) described by a well-mixed (mean field) model (b). Here cells occupy a given
domain that is not explicit and each cell has a distinct phenotype described in particular by its intrinsic instability p,. In the Moran process,
when a cell replicates it occupies another cell’s niche and produces an identical daughter (c) or a slightly different one due to a mutation
event proportional to p;, which can lead to an increase Ay; of the instability levels (d)

that we discuss later on. With this, we emphasize the wide levels
of heterogeneity and genomic configurations found within tumours
by means of giving a different phenotype to each cell rather than
grouping populations into a countable, finite set of possible genome
configurations.

Within this minimal model, we aim at understanding how selec-
tion and mutation are coupled when instability, and thus the individ-
ual mutation probability p;, can itself change and affect the rate of
cell replication r,, and what the evolutionary consequences of this

coupling are.

3 | SELECTION ON INSTABILITY

As discussed above, a most common event during the process of
tumorigenesis are mutations in oncogenes that usually result in
increased levels of replication (Vogelstein & Kinzler, 2002), thus
giving to instability a role in activating the paths towards higher
replicative capacity. On the other hand, the same elevated lev-
els of instability can trigger deleterious mutations in genes that
are vital for correct cellular metabolism and functioning, even-
tually leading to reduced cell viability or death. This apparent
trade-off supposes the existence of a clear coupling between
replicative capacity, cell viability and mutation probability that
sits at the basis of tumour replication, evolvability and adapta-
tion. We hereby propose a minimal adaptive landscape that
translates such coupling into replication rates being a function of

instability, r(p).

3.1 | Adaptive landscape

Within our scope of producing a minimal model we expect
to describe evolutionary dynamics on an adaptive landscape

containing a reduced, treatable set of components. Taking

into account the previously mentioned trade-off, these follow
from considering the effect of mutations enhancing malignant
cell replication, provided that such mutations have not dam-
aged any of the necessary machinery for cell viability. We start
by considering that mutations on oncogenes can translate into
a linear increase in replication rate, such that r(p)=ry+Ngdzp
, with ry being the basal replication rate of normal cells, N,
the number of oncogenes responsible for increased replica-
tion and 8z the mean effect on replication rate when mutating
one of such genes. Following a linear approximation, we do
not include a saturation term for the number of nonmutated
oncogenes. This is actually consistent with early stages of tu-
mour evolution, where only a small fraction of oncogenes has
been affected and so N, can be kept as a constant. In this pic-
ture, we need as well to take into account the minimal genetic
material needed for a cell to keep its basic functions. If we
group such material into a number of house-keeping genes,
N

(1—p)Nu<. Grouping both considerations together we obtain an

wk» the probability that none of them has been mutated is
analytical description of the coupling between replication and

instability
r() = (rg + Ngdgp)(1 — )N (2)

(Solé et al., 2014). This adaptive landscape is of course of qualitative
nature, and realistic fitness landscapes for unstable tumour environ-
ments are still far from our knowledge. However, certain points can
be made if we give values within realistic parameter ranges to our
function. The number of both oncogenes and house-keeping genes
have been widely assessed, and we take them to be about Ny ~ 140
(Vogelstein etal., 2013) and N, ~3804 (Eisenberg & Levanon,
2013), respectively. Interestingly enough, considering small replica-
tion effects for &g, such experimental values produce an adaptive

landscape (Figure 2) that has a positive gradient within the region of
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ne[10-7,1074], so that our evolutionary trajectories will be bounded
within a region of instability levels in accordance with those exper-
imentally measured for tumour cells (Tomlinson, Novelli, & Bodmer,
1996).

3.2 | Distribution of new mutations

We have assessed so far what is the effect of instability in prolif-
eration, thus coupling mutation and selection for mutation level.
Up next, we need to evaluate how does instability change during
reproduction, so that we can finally compute the effects on repli-
cative capacity of a mutated cell. As previously discussed, a broad
range of mechanisms relates to variations in DNA replication fidelity.
Such variations, however, are hardly in the direction of increasing
DNA stability, and in general account for an increase in the mutation
probability of cancer cells due to accumulation of further tumour-
suppressor or care-taker gene mutations (Vogelstein & Kinzler,
2002).

This trend of generating more unstable offspring is translated
into a positively skewed distribution of mutants M(p,Ap). To keep the
mathematical background of our model treatable, a Rayleigh distri-
bution peaked at Ap=0 has been chosen! . Under this scheme, insta-
bility of a daughter cell is likely to be similar or slightly higher from its
parent, controlled by a scale parameter cﬁ depicting the general size

of mutational increases.

IThe Rayleigh distribution is an asymmetric probability distribution defined for positive
random variables (Forbes et al., 2010). We displaced so that its mode is zero, with shape

Ap+o —(Ap+o,)?
M(Ap;62) = - pexp< o ,
" 62 205

n
accounting for asymmetric probabilities of possible mutation levels, with small forward
mutations being the most common.

4 | ADAPTIVE DYNAMICS

Adaptive dynamics is a set of techniques or a mathematical frame-
work that models long-term phenotypic evolution of populations.
Several works by different authors cover a broad scope of possi-
ble applications, and we hereby focus on the work of Dieckmann
and Law and others (Champagnat et al., 2001; Dieckmann & Law,
1996) and adapt it to our particular system. The main biological
background behind the maths sits in considering the evolutionary
step as a mutant appearing and invading in a population in ecological
or dynamical equilibrium (Dieckmann & Law, 1996). Under this pic-
ture, the ecological and evolutionary time scales are considered to
be uncoupled, so that the process of the mutant competing against
the resident population, and eventually fixating in it, is considered
instantaneous in the evolutionary process.

General AD literature (see e.g., Champagnat etal., 2001;
Dieckmann & Law, 1996; Geritz et al., 1998) follows the evolution
of a quantitative phenotypic trait or set of traits, s, that can change
through mutations. In these studies, the probability p at which mu-
tations appear is considered a possible function of the trait s, but
afterwards and further on in the AD literature is usually left as a
constant of each model. In the light of what we have discussed in the
previous section, however, instability itself is a quantitative trait if
computed as a mutation probability, and so the coupling of mutation
and selection results in s = p being the studied trait value.

The starting point of the AD modelling is to consider the evo-
lutionary process, where the population’s mutation probability
changes as mutants appear and fixate, as a Markov chain for the

probability of finding the population at time t having trait value p

dP(p,t)
dt

=j (Wil )P )~ wip! [P di 3)
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The transition probabilities w(p’|p) describe the evolutionary step
and contain the probability of the mutant with trait p’ appearing (A)
and fixating (p) in the population, so that w(p’|p) =A(u,p")p(p,p’). The
probability that a mutant appears is A(p,p’') = Nr(p)pM(p,p') , the size
of the population at equilibrium N, the probability of birth and muta-
tion r(p)p and the probability that the mutant has mutation probabil-
ity p’ provided the parent cell had probability p.

The probability p(p,p’) that a mutant with fitness advantage
r(w')/r(p) fixates in a population of N individuals has an analytical ex-
pression for the Moran model (Ewens, 2004)

_ =) /r(p)

P )= 0

(4)

A common procedure of the AD framework is to expand p for
small variations of the trait value under the assumption of large
populations, assumptions that are not a restriction for our problem.
Under this view, the probability that the p' mutant fixates is zero for
r(p') <r(p) and

n_ W =p [ or
plpp) = ) (a—p,>pl:p+0(Au2), (5)

for r(p') > r(u). Once a complete expression for the transition proba-
bilities is build, we only need to recall how the evolution of the mean

mutation probability can be written as
d d
d—t<u>(t)—j Pt ®)

so that, using the original master equation, we obtain

<t =J [ (1 — W 110P ) = Ca (1), @)

where one recalls that a,(p) = [ (W — p)*w(p’ [p)dy’ is the k-th jump mo-
ment. If the first jump moment were a linear function of p, then
(ai(n)y=a,((p)) and the previous expression becomes directly
treatable.?

The evolutionary trajectory for the mean path (we cease denot-
ing it by angle brackets) will therefore follow

d%u(t)=Nuaa—; J (0 —p)2M(pp')dp’ (8)

2|t is interesting to understand the implications of such condition and how do they relate
to the assumptions of the AD method and the limitations of our model. Between many
approaches (see e.g., van Kampen, 1981; Kubo, Matsuo, & Kitahara, 1973), and without
pretending to expose here a deep discussion on this aspect, one might consider extracting
a Fokker-Planck equation from the Markov chain (6). By means of computing the evolution
of the mean value (JL) for that equation, it can be seen that the dynamics of (JL) are only
equivalent in both frameworks if either the selection gradient ar/ ap does not depend on
u (a linear adaptive landscape), or the population is strictly monomorphic on the trait p. A
detailed explanation of this considerations can be found in the Appendix section.
These conditions will impose a strong constraint when considering a realistic tumour en-
vironment, so that it will become necessary along our computational experiments and the
discussion to assess the regions of validity of our model.

T\ || £y

At this point, we recall that only fitter mutants can invade and
so may eventually contribute to the exploration of the adaptive
landscape. This translates onto the domain of the integration being
restricted to p’ >p , and so we integrate the positive part of our cﬁ
skewed mutant distribution.

These considerations of selection on instability and nonsymmet-
rical mutations result in our first-order approximation of the evolu-

tion of instability for a minimal cancer cell population:

dl«l 2 < ar>
- =N p | — 9
dt o /s,

where

-3 Zerfc L
= V2 V2 (10)

is simply a positive constant that results from integrating the asym-
metric Rayleigh mutations distribution. Equation 9 defines the canon-
ical equation for unstable cancer dynamics, describing the evolution
of the mean mutation probability depending on population size, prob-
ability and effect of mutations and the steepness of the adaptive land-
scape defined by the effects of instability on cellular replication and
viability.

5 | EVOLUTION OF INSTABILITY

The canonical Equation 9 describes the evolution of instability in our
model population depending on the population size N, the distribu-
tion of mutation jumps cﬁ and the product of the mutation probabil-
ity and the gradient of the adaptive landscape po,r. For our model
landscape (Equation 5), this turns out to be

%: yNGﬁp(NRSR(l - p)NHK

11
—Nyi(ro + Ngdp) (1 — p)Nuc=1) (12)

Complicated analytical solutions for this equation might not
give best insight of the underlying dynamics. However, as a first
test of our model we compare its numerical solution to averaged
Moran Process simulations (Figure 3). It is both relevant and useful
to understand the factors that cause deviations between computer
experiments and our analytical approach, in order to further com-
prehend the approximations on which AD is build.

In terms of parameter range, these are mostly translated
into the population being large enough, and mutation proba-
bilities being proportionally small. The second is easily met for
both healthy and cancerous human cells, but simulating full-size
clinically detectable tumours (more than 108 cells (Bozic et al.,

2013)) is of large computational cost, and keeping our model and
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exercise minimal, we have used smaller populations, modelling
smaller subclones or spatially segregated populations where drift
comes into play. Such drift produces a nonmonomorphic popula-
tion where evolution deviates from the gradient trajectory and so
proceeds slightly slower than our estimate. As previously stated
and discussed along with the Appendix, the high nonlinearity of
our landscape ensures that (a;(p)) =a, ((n)) will be only valid up to
a certain degree of approximation. It can be seen from Figure 3
that, still within this restricted range of validity, the canonical
equation can capture the dynamics of instability up to a reason-
able point.

A better understanding of the underlying dynamics can result
from dividing the exploration of the landscape in well-behaved re-
gions where simpler equations will arise.

On the one hand, in an initial phase of malignancy exploration
for small values of p, the shape of the adaptive landscape is domi-
nated by the linear increase of mutated oncogenes, r(p) =ry+ Ngdgp .

Within this region, dynamics of instability follow

d
d_Ltl =YNUﬁuNR6R (12)

and the mean evolutionary trajectory is

(t) = !N (13)

It is remarkable to understand how, even in a linear adap-
tive landscape, the coupling between mutation and selection
on unstable cells introduces a further nonlinearity that will ac-
count for exponential exploration of the space of instability and
the consequent exponential increases in replication capacity.
Such results can be again compared to computer simulations of
mutator-replicator cells (Figure 4). The smaller nonlinearity also
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FIGURE 3 Evolutionary trajectories of the simulated Moran
process (grey lines) and numerical solution of the predicted

AD result (black curve), (population [N] = 2,000, distribution
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FIGURE 4 Exponential evolution of the mean mutation
probability on a linear landscape: Moran process simulations (grey
lines) of populations of 2,000 cells and the AD approximation (black
curve), (o = 0.01, py = 5 x 1079

ensures that AD remains a good approximation despite stochastic
deviation.

Another interesting point is to understand the behaviour of the
mean instability levels as the population approaches the landscape
peak. This kind of behaviour is easily studied if one considers a sim-
ple landscape containing a peak, such as r(j) =ro +8gNgpt — Sy Ny 2
, where the role of house-keeping genes is not considered totally
deleterious but just reducing fitness quadratically with the mutation
probability. This landscape has an optimal value at p* =83 Ng /28, Nk
, and this peak is explored through

d
d—;l =YN(5§P(NR6R_26HKNHKP)- (14)

By means of rewriting this trajectory as dp/dt=Apu(B—Cp), with
A:chﬁ ,B=Ngdg and C=28,;x N,k , its solution simplifies to

BeB(At+c1)

pt)= Gt 1’

(15)

where c, ensures that p(0)=,, the normal mutational probability of
healthy cells. This trajectory saturates for long times at the expected
result A/B=p* and can be again compared to computational experi-
ments of replicating cells (Figure 5).

The same deviation between simulations and the numerical fit is
found in this case, with evolution proceeding slower than our estimate.
However, this minimal landscape approximation is able to capture the
dynamical behaviour of our gene-related landscape model, mainly with
an initial exponential growth followed by saturation around the peak,
which can be proven to be an evolutionary stable strategy (Geritz et al.,
1998).

Provided that the canonical equation has a nontrivial, singular
point, as we found for p* =83 Ng /28, Ny« , one can study the evolu-

tionary stability of a quantitative trait. We can easily compute if this
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singular mutation probability will be an evolutionary trap, that is, a

strategy that no further mutants can invade, if

2
a—g <0 (16)
0P s

which holds for our strategy: 0,,,r(jt) = =28, Ny <O .

6 | DISCUSSION

In the present work, we have discussed the implications of the
coupling between selection and instability for a minimal model of
a population of mutating cells. We have shown how to determine
the evolutionary trajectory for the mean instability levels in a basic
landscape of cancer-related genes. Our AD model, as defined by our
canonical equation (and consistently with simulated trajectories),
describes the tempo and mode at which mutation probabilities in-
crease and saturate around fitness peaks. For a simple but sensible
fitness landscape, a general canonical equation has been derived
from the Moran process scenario. Several approximations have also
been considered.

A first relevant result of our model arises from evaluating
the canonical equation for unstable cells in a linear landscape,
to be associated with a premalignant stage. The nonlinearity
resulting from the coupling of mutation and selection predicts
an exponential increase of instability levels, whereas a trait dif-
ferent from instability would only increase linearly within such
landscape. This result is presented as a mathematical description
of genomic instability being an enabling characteristic of cancer,
by means of generating fast exploration of the space of possible
mutations towards malignancy. Similarly, we obtained consistent
matchings between simulated and average predicted instability

values for the near-optimum state. In this scenario, our model

T\ || £y

predicts an exponential increase followed by saturation around
a critical mutational load, where, at least for this initial model of
a nongrowing population, tumour cells are robust to further mu-
tations. Considering that the distribution of mutational effects
of cancer cells is hard to describe, it is important to understand
that these results are qualitatively independent of the Rayleigh
distribution, which we have only chosen in search for an asym-
metric and analytically treatable function to work with. Other
distributions would account for the same dynamics of explora-
tion and saturation at different evolutionary paces. All in all, the
possible applications of such minimal evolutionary descriptions
of tumour instability follow from our set of examples and com-
puter simulations.

Mounting evidence indicates that a successful approach to
cancer therapy requires an explicit evolutionary perspective
(Gatenby et al., 2009). One possible instance of this is provided
by mutagenic therapies that have produced key results in the field
of virology (Loeb et al., 1999). Would they be effective for can-
cer? Given some key analogies between RNA virus populations and
unstable tumours (Solé & Deisboeck, 2004), this is an appealing
possibility, although drug design or resistance mechanisms have
yet to be assessed (Fox & Loeb, 2010). Prior to that, conceptual
questions arise, such as do cancer cells live near critical instability
levels, beyond which viability is no longer possible? is there a sharp
error threshold for the mutation probability? what evolutionary
outcomes should we expect when inducing variations on the mu-
tational load of cancer cells, and how can these shed new light on
mutagenic therapy?

Regarding the later, our model allows to bring instability as the
evolving trait, while providing potential insights, particularly be-
fore and beyond the optimal instability levels. The exponentially
fast increase of small mutational loads indicates that reducing in-
stability levels in hope for progression delay might result in rapid
re-exploration of the mutator phenotype. On the other hand, push-
ing instability beyond optimal levels, even if a critical point is not
trespassed (Solé & Deisboeck, 2004), might render tumour cells too
unstable, and there exist relevant efforts towards using DNA re-
pair inhibitors to produce critical instability levels (Helleday et al.,
2008).

Our model differs from previous work in its simple analytical
formulation, which do not depend on chosen parameter ranges,
such as those of Datta et al., 2013 and Asatryan & Komarova, 2016;
and they are thus qualitatively robust. On the one hand, this means
that we are able to obtain analytical expressions for the exponential
evolution and saturation of the mutation probability, which could
eventually be used when studying in vitro long-term evolutionary
experiments with cancer populations, using serial transfer meth-
ods similar to those performed on viruses (see e.g., Drake, 1993;
Sanjuan et al., 2010; Solé et al., 1999) or bacterial populations (see
e.g., Moxon et al., 1994; Sniegowski, Gerrish, & Lenski, 1997; Barrick
et al.,, 2009 for experiments and Taddei et al.,, 1997 for an early
model for mutator alleles). Given the remarkable similarities found

between microbial communities found both in the ecological and
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evolutionary time scales (Lambert et al., 2011), it would be worth ex-
ploring the evolution of instability of cancer cell cultures over many
transfer generations (Langdon, 2004).

It remains an open question to analyse if any sort of saturating
dynamics occur for both the fitness or the mutation probability when
these experiments are performed on malignant cells. Furthermore,
interesting theoretical approaches have been performed to infer
the underlying adaptive landscape from the observable evolution of
traits (Kryazhimskiy, Tkacik, & Plotkin, 2009). This seems a plausible
point regarding how our model directly relates dynamics and land-
scape gradient and could therefore shed light onto understanding
the evolutionary pressures underlying genetic instability at each
stage of tumour progression.

On the other hand, while trying to produce a model that can be
treated without the use of complex mathematical tools, we have
been constrained to leaving aside many relevant considerations, the
one we are most concerned with is the lack of growing population
dynamics. This leaves our model interesting for the previously dis-
cussed specific confined experiments, while not yet complete when
trying to study three-dimensional growing tumours. While studying
modifications to our formalism, following the work of evolution-
ary game theory on growing populations (see e.g., Li etal., 2015;
Melbinger, Cremer, & Frey, 2010), we have decided to present this
basic model as it remains a first step into a comprehensible and qual-
itative insight for the dynamics of populations able to evolve their

mutation probability.
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APPENDIX

LINEARITY OF (a,(p))

As discussed when introducing the AD approach, we have consid-
ered that the first jump moment is linear in p to obtain the canonical
equation. Understanding the mathematical basis behind such condi-
tion can give further insight into the assumptions our model sits on.
Let us start again from a Master equation that describes the evolu-
tionary biased random walk: the trait substitution sequence that we

use to model evolution. This is

dP(ut)
dt

j (Wil )P~ Wi [P(ut)) di’ 17)

We knew that w(y, p'), the transition probability, was the probabil-
ity of a mutant appearing times the probability of a mutant surviving.
If we consider the mentioned Moran process as a good evolutionary
constant population model, the transition probabilities are those of

our previous AD model

w(p, Ap) =N r(p)pMlp,Ap) % 2—; (18)

and, supposing for simplicity that M is a symmetric distribution, we

can obtain a Fokker-Planck transport equation of the form

op(,t)
ot

1 2 0 or
=—2No? = (pLp(u t
>Noy ap(“ o Pt) (19)

The question is now: Under which assumptions the equation of
the first moment of this distribution gives rise to the Canonical
equation? Understanding these assumptions can give better in-

sight into what are we actually doing with the canonical equation.
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We can compute the dynamics of the first moment of the Fokker-
Planck equation by means of multiplying by p and integrating over

the phase space, obtaining

d(u) _ 1 2 or
prail A bu>’ (20)

which will only produce the Canonical equation if either the land-
scape is linear (and so <pr'> o k() or the population is Dirac-
distributed (monomorphic), and so

ory [ orge. _,0r
<”a_p>_J”au6(“ 2 1)

This can serve as a basic mathematical description of why do
populations have to be monomorphic in the AD framework for
the canonical equation to arise, and why simulations with highly
nonlinear landscapes deviate from our model approximation.
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Abstract

therapies where genetic instability might play a key role.

Background Genetic instability is known to relate with carcinogenesis by providing tumors with a mechanism for
fast adaptation. However, mounting evidence also indicates causal relation between genetic instability and improved
cancer prognosis resulting from efficient immune response. Highly unstable tumors seem to accumulate mutational
burdens that result in dynamical landscapes of neoantigen production, eventually inducing acute immune
recognition. How are tumor instability and enhanced immune response related? An important step towards future
developments involving combined therapies would benefit from unraveling this connection.

Methods In this paper we present a minimal mathematical model to describe the ecological interactions that couple
tumor adaptation and immune recognition while making use of available experimental estimates of relevant
parameters. The possible evolutionary trade-offs associated to both cancer replication and T cell response are
analysed, and the roles of mutational load and immune activation in governing prognosis are studied.

Results Modeling and available data indicate that cancer-clearance states become attainable when both mutational
load and immune migration are enhanced. Furthermore, the model predicts the presence of well-defined transitions
towards tumor control and eradication after increases in genetic instability numerically consistent with recent
experiments of tumor control after Mismatch Repair knockout in mice.

Conclusions These two main results indicate a potential role of genetic instability as a driver of transitions towards
immune control of tumors, as well as the effectiveness of increasing mutational loads prior to adoptive cell therapies.
This mathematical framework is therefore a quantitative step towards predicting the outcomes of combined

Keywords: Genetic instability, Neoantigen load, Mismatch repair, Immune surveillance, Combination therapies

Background

Cancer is a disease resulting from Darwinian evolution
in cellular tissues[1]. Following depletion of a vast set
of genetic insults altering normal multicellularity pheno-
types, rogue cells are able to adapt and evade selection
barriers leading to uncontrolled proliferation. In this con-
text, genomic instability plays a key role as a driver of
the genetic novelties required for tumor progression and
rapidly adapting phenotypes [2, 3]. High levels of evolving
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instability sustain a very diverse population [4], and intra-
tumor heterogeneity lies at the very core of why cancer is
still difficult to define, characterize and cure [5].

In this paper we aim at understanding an impor-
tant relationship between the effectiveness of cancer
immunotherapy and genetic instability. The relevance of
such link needs to be found in the challenges faced by
immunotherapies based on immune checkpoint inhibi-
tion or adoptive cell transfer [6], where mutational burden
seems to play a key role. Due to the underlying complexity
of cancer immunology, interdisciplinary efforts towards
novel immunotherapies are much required [7-9]. As dis-
cussed below, the crucible of the problem might be to
the nonlinear dynamics associated to cancer neoantigen
production and the consequent enhancement of immune
surveillance.
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A key point in cancer immunotherapy lies on the
mechanisms by which T cells actually recognize cancer-
ous from healthy tissue [10] and eventually attack tumor
cells expressing tumor-specific antigens [11]. On a general
basis, such antigens can be common proteins for which
T cell acceptance is incomplete, or more importantly,
novel peptides [10, 12]. Except for specific tumor types
of viral etiology, these so-called neoantigens arise after
DNA damage resulting in the production of novel pro-
teins. Recent advances highlight the importance of under-
standing neoantigen generation as a consequence of the
tumor mutational load and dissecting specific neoantigen
immunogeneicity [10, 11, 13]. Furthermore, direct corre-
lations have been suggested between neoantigen produc-
tion at high microsatellite instability, eventual immune
surveillance and clinical response to immunotherapies
[14-16].

Several experimental and clinical sources are point-
ing towards a causal relation, including tumor growth
impairment after inactivation of MLH1 [17], or the posi-
tive response to PD-1 blockade across different mismatch
repair (MMR) defficient cancer types [18]. The inacti-
vation of MMR results in increased mutational burden
of cancer cells, promoting the generation of neoanti-
gens which improve immune surveillance and eventual
tumor arrest. These obxservations suggest a novel view
on immunotherapy, where targeting mutagenic pathways
can result in an alternative mechanism to unleash immune
responses [9, 19].

All in all, genetic instability seems to play a conflictive
role in cancer evolution and proliferation. It appears that
the same genome alterations that activate cancer progres-
sion can trigger T cell recognition and immune attack.
The extent of such trade-off and its application to ther-
apy, however, is not clear. On the one hand, mutagenic
therapies coexist with an intrisic risk, as increased genetic
instability on heterogeneous populations might activate
oncogenic outgrowth in previously stable cells. Moreover,
a reactive immune system might pose a selective pres-
sure for immune editing, leading to selection for T cell
evading tumor subclones. How do these two components
-instability and immune response- interact and what are
the consequences? Is it possible to provide useful insight
from mathematical models without a detailed picture of
the immune landscape of cancer?.

Nonlinear responses associated to cancer-immune sys-
tem interactions have been known from the early days
of cancer modelling, from more classical approaches
[20] to recent perspectives based on neoantigen recog-
nition fitness [21]. These studies have revealed a num-
ber of interesting properties exhibited by toy models,
including in particular the existence of shifts and break-
points separating cancer progression from its extinc-
tion (see [22] and references therein). Such shifts are
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of exceptional importance in our context: they indicate
the existence of well defined conditions (and perhaps
therapeutic strategies) allowing an all-or-none response.
However, a mathematical description of the specific role
of genetic instability in cancer immunology has not yet
been developed. Below we provide a first approach to such
goal, based on considering both cancer adaptation and
immune surveillance as influenced by mutational burden,
and we analyze how genetic instability can account for
transitions towards states of cancer control and elimina-
tion. The implications of these transitions on combination
therapies are discussed, pointing towards possible cross-
therapies activating neoantigen production and immune
stimulation.

Methods

Population dynamics of the tumor-immune interaction
The ecology of the cancer-immune system interac-
tion pervades several complexity levels, from a vast
antigenome [23] to multilayer cellular competition
dynamics [24], and a first step towards modeling such
ecology lies in dissecting which specific ingredients are
key drivers in the phenomena we aim to understand.

Recent research points out that there might be up to
28 immune cell types with both antitumor and immuno-
supressive roles infiltrated within a tumor [25]. Focusing
on the immuno-surveillance mechanism of tumor growth
inhibition following immune system recognition (early
introduced in [26]), a minimal modelling approach recalls
at least considering a population of tumor cells growing in
competition with immune cells. It is commonly accepted
that the immune response to cancer is mostly driven by an
adaptive cohort of cytotoxic immune cells, such as CD8"
T cells, together with a cellular compartment of the innate
immune system such as NK cells [27, 28]. Despite this
work focuses on the adaptive response to neoantigen pre-
sentation, including an innate effector response will allow
for understanding relevant non-antigenic immune effects.

Even if further models have been useful at depicting
very advanced properties of the immune system [29],
we have chosen to keep a minimal scenario able to
describe the competition dynamics at play. We apply a
well characterised model (see e.g. [30]) that has been used
to account for experimental results in cancer immunol-
ogy such as tumor-immune equilibrium [31]. This model
has been studied using parameter ranges measured from
experimental setups consistent with several tumor types
(Table 1, see [20, 32]).

The cellular interactions considered here involve a com-
monly used well-mixed (mean-field) model [20, 22] where
the population of cancer cells ¢ follows a logistic growth
(at effective replication rate r = b — d and carry-
ing capacity K) and immune-cell mediated death (at
rate §;). This saturating growth model captures several
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Table 1 Parameter values for the cancer-immune ecology
model, estimated from experimental data of BCL; lymphoma in
the spleen of chimeric mice (see [20])

Parameter Meaning Kuznetsov et al. (1994)
estimate

r Cancer cell replication rate 0.18day~!

K Tumor carrying capacity 2 x 10%cells

8¢ Immune-mediated cancer 1101 x 10~day~'cells™!
cell death rate

8¢ Cancer-mediated immune 3422 x 10~ '%day~"cells™!
cell death rate

m Rate of T cell migration 13 x 10*cells day™"
towards tumor site

g Tumor size limit for 2019 x 107 cells
effective T cell infiltration

o Rate of cancer cell 0.1245day™!
recognition by the
immune system

d Intrinsic T cell death rate 0.0412day™!

tumor microenviroment effects of malignant cell compe-
tition and death, such as spatial constraints or nutrient
availability [33].

% =rc (1 — Ii() — 8.cE. (1)

The effector immune population includes both NK and
T cell compartments. Despite further modeling has been
able to capture specific dynamics of T cell activation by
cancer-NK cell encounter [27], activation of both cell
types by malignancy can be described in a similar form
[22], here described by

E ot ( ¢ \E—spcE—dE ©)
—=m —— )| E — 8gcE — dE,
dt P g+tec £

In this framework, the innate and adaptive immune
populations are encapsulated into a single Effector com-
partment that grows due to a constant migration of cells
and a predation term p that is commonly acknowledged
to obey a Michaelis-Menten-like saturation due to limi-
tations in immune cell circulation through the tissue [20]
and penetration within the solid tumor [32, 34]. The pecu-
liarity of the model lies in considering this predation term
different for both NK and T cells. As discussed below, p is
split into a constant rate refering to innate NK predation
(see [27] and references therein) together with a variable
part that will relate to antigen recognition by T cells, so
that p = pni + pr. Effector cells also have a natural decay
rate, d, and die when competing with tumor cells at a rate
—3&gc. The complete set of interactions described by (1)
and (2) is schematically shown in Fig. 1.
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Ecological trade-offs in genetic instability

As discussed above, genetic instability plays a key role in
tumor evolution, acting as the driving mechanism towards
phenotypic variation and adaptation. Within our model,
this can be translated as the replication rate being a func-
tion of its level of genetic instability ;. On the other hand
pr, the rate of cancer cell recognition by T cells, is also p-
dependent because of neoantigen production. Below we
propose a minimal characterization of r and p able to
describe how genetic instability modulates such trade-off.

Cancer adaptation as a function of genetic instability
Cancer adaptation, here summarized to modulations in
its replication rate, stems from the phenotypic plasticity
resulting from mutations and copy-number alterations.
On a general basis, enhanced tumor replication fol-
lows from mutations affecting oncogenic pathways, which
poses a trade-off on genetic instability as it can, as well,
damage any of the necessary machinery for cell viability.

Following previous research [35, 36], an adaptive land-
scape is build on several assumptions based on the proba-
bilities of mutating oncogenic and house-keeping genes.

Genetic instability has a twofold impact on cell fitness.
Specifically, replication rate r will be considered a func-
tion of mutation probability u. A landscape r(u) is now
in place [35, 37], and follows from considering that muta-
tions on oncogenes can translate into a linear increase in
replication rate. This follows from assuming that repro-
ductive effects of oncogenes, as for advantageous muta-
tions on many systems, are exponentially distributed [38],
so that their sum is gamma distributed with average
increasing with the number of mutated oncogenes. This
will be expressed as Ry () = ro + Npérp with ry being
the basal replication rate of normal cells, Ng the number
of oncogenes responsible for increased replication and 8z
the mean effect on replication rate when mutating one of
such genes.

To account for cell viability, the number of house-
keeping genes Ny is taken into account so that mutations
affecting them result in null replication [39]. This intro-
duces the constraint of not having any of them mutated,
Ry(n) = (1 — w)NHK, Grouping both considerations
together we obtain an analytical description of the cou-
pling between replication rate and mutation probability
r(u) = Ry ()Ry () which reads:

(i) = (ro + Nrdpp) (1 — p)NHK 3)

This adaptive landscape is of course of qualitative
nature, and realistic fitness landscapes for unstable tumor
environments are still far from our knowledge. However,
certain points can be made if we give values within realis-
tic parameter ranges to our function. The number of both



Aguadé-Gorgori6 and Solé Journal for InmunoTherapy of Cancer

(2019) 7:345

Page 4 of 13

o
& (o]
& Ao le)
1 A
& ~
s 2/@
o’ -
d

process, respectively

Fig. 1 A schematic summary of the basic cancer-immune cell-cell interactions. The two key components are (a) a tumor population driven by
genetic instability and (b-c) interactions associated to tumor cell recognition and attack by T and NK cells. The strength T cell attack depends on the
number of surface neocantigens (c), while NK killing is constant [27]. In (d) the population-level interaction diagram is displayed based on the model
in [20]. Here c and £ indicate the number of cancer and T and NK cells, respectively. Cancer cells grow at a rate r (and have a limited carrying
capacity) while immune cells enter the system at a constant production rate m and react at malignant cells at a rate p that will be different for NK
cells and instability-dependent T cell recognition. A constant average death rate d is associated with their removal. Two constant cross-interactions
rates are also indicated as 7 and 8. associated to the removal efficiency of cancer cells and the death of immune cells resulting from the same

oncogenes and house-keeping genes have been widely
assessed, and we take them to be about Np ~ 140 [40]
and Nyx ~ 3804 [39] respectively. Interestingly, consid-
ering small replication effects for &g, such experimental
values produce an adaptive landscape that has an optimal
region for tumor replication at about u ~ 107> — 1074,
which is in accordance with the point-mutation proba-
bility levels experimentally measured for unstable tumor
cells [41].

Immune recognition of malignancy as a function of genetic
instability

Building a mathematical description of how the immune
system reacts at the mutational burden of cancer cells is
not straightforward. This stems from the fact that such
behavior is yet starting to be understood at the molecular
level and it probably builds upon many layers of com-
plexity [10]. In our minimal mathematical approach, the

first step is describing immune reactivity as proportional
to the adaptive compartment of cancer cell recognition
pr, a rate that itself depends on the dynamics of neoanti-
gen expression. Under our assumptions, since adaptive
immune response follows from neoantigen detection we
expect pr being a function of the overall mutational land-
scape of a tumor, ut, which is eventually responsible for
such neoantigen dynamics. Following recognition proba-
bility distributions from [21], we expect the average dom-
inance to initially increase with mutations as more and
more neoantigens are generated and eventually saturate as
very dominant neoantigens are rare.

The mathematical shape of this dependency pr(ut)
could stem from purely stochastic dynamics, but recent
research gives better insight into the shape of this cor-
relation. Rooney and colleagues provided an enlighting
perspective in this direction by comparing a measure of
immune response from the transcript levels of two key
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cytolytic effectors with the total mutation count for eight
tumor types [42].

Cytolytic response strengths in [42] seem to indicate a
dependency on tissue and tumor microenviroment, which
we have not included in our study since our model is not
tumor type-specific. For each tumor type, a least-squares
linear regression is used (Melanoma in Fig. 2). When
comparing across tumor types the shape of the immune
response seems to obey a common pattern across many
cancers, once cytolytic response values are normalized
(Table 2). A linear relation can be found for which nor-
malized cytolytic activity scales with mutational load as
CYT~ 4.35 x 10~*ut when averaged across the range of
tumor types explored here. However, we expect a func-
tion depending only on mutation probability. The variable
¢ in this expression refers to the evolutionary life history
of mutations accumulation of the tumor. This time scale is
much larger than the faster ecological dynamics that gov-
ern the cancer-immune system interactions, so that we
can consider it an average measure of tumor age at the
time of detection, and consider it constant when intro-
ducing p in the ecological dynamics. From these facts,
the only variable governing immune recognition at the
cancer-immune competition level is the point mutation
probability p.

A very rough estimate for ¢ could be either inferred from
average cell replication data or from the fact that values
for the mean mutation rate and the absolute mutational
load are known for many tumors [43]. For example, we
can use the notion that mutator tumors have mutation
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rates of about 10~> mutations per gene per cell division
[44], which account for the accumulation of about 103
somatic mutations per tumor life [42], so that average
tumor divisions lies at about ¢ ~ 10”. Using this approx-
imation we obtain our preliminar expression for how the
immune reactivity rate depends on the mutation levels,
or(w) = 4.35 x 103u.

In this first correlation measure from [42], however,
immune recognition grows constantly with mutational
load. This growth should not be indefinite, and many fac-
tors counteract the cytolytic effect of antigen-producing
mutations. As an example, increases in genetic instability
can also account for antigen silencing and immune edit-
ing, which itself would reduce cytolytic activity [45]. All
in all, it seems plausible to consider that antigenic and
immune-suppressing mutations could balance beyond
certain mutational threshold. Following data from [42] it
seems that the tumor-immune cytolytic interaction is far
from saturation, with an estimated saturation behavior
to happen beyond 1 ~ 107%, a mutational level higher
than those of most tumors measured by recent method-
ologies (see e.g. [42]). This saturating function follows
the same trend of the data-based linear relationship and
reads

2 5

— 3 ~S—_— — —
pr(n) =4.35 x 10°u 121 o8007 g

, (4)

and can be compared with tumor adaptability r(u) (Fig. 3)
to obtain a full mutational landscape for tumor progres-
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Fig. 2 Measuring immune reactivity as a function of the mutational load. Melanoma is plotted as an example, where a linear regression (black line,
scale=3.36E-4) between total mutation count and relative cytolytic activity is evaluated. Results for 12 cancer types in Table 2. Data is obtained from
[42]. As in the original work, the correlation spans the 5th to 95th percentile of the mutation count variable
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Table 2 Linear regressions for p(ut) across 12 cancer types,
resulting in p(ut) = 435 x 104t

Cancer Type Gradient of p(ut)
GBM 138x107%
LUAD 473x1074
LUSC 6.98x 1074
BRCA 217x1073
UCEC 230x1074
CRC 2.88x 1074
STAD 3.29% 1074
HNSC 837x1074
SKCM 3.36x 1074
CESC 9.25x 1074
BLCA 3.98x 1074
LGG 298%1073

Data is obtained from [42] with linear regressions performed as in Fig. 2

sion in the presence of T cells. Assumptions on immune
response saturation at high genetic instabilities do not
affect the outcome of the model. Finally, the death rate of
cancer cells increases as they become immunogenic and
detectable by T cells [10, 46]. This is translated in the
model as cancer cells dying at rate §, = (onx + p1(1))3,
the rate of immune detection (p) times the rate of T cell
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killing (8). Since saturating dynamics are already present
in the mathematical shape of p7, this last rate § is con-
sidered constant, which is consistent with other recent
modeling efforts [46].

Cancer-Immune system attractor states

Once the proper role of genetic instability on cancer adap-
tation and immune response is defined, the original model
is reinterpreted as a pair of coupled populations with
instability-dependent rates, i.e.

d
= =rwe (1= <) = 8o + pr(u)eE (5)

dE _ (pNk + p1())
dt g+c
A global picture for the behavior of the system is
obtained by studying its possible attractor states tak-
ing into account the variability of the mutational load.
Together with the cancer free attractor (¢*,E*) =
(0,m/d), other attractors can be inferred from the inter-
sections between nullclines

¢E 4+ m — 8gcE — dE (6)

r(u) c
Ei(e) = — W (1 _ ¢
1 8(pnk + pT(1)) ( 1()
Es(c) e 7)
2 =
(BEc +d-— W)
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Fig. 3 Functional forms for cancer replication r(u) and the adaptive compartment of immune recognition pr (i) related to neoantigen
presentation. The first (black curve) provides a representation of the cancer instability landscape, as predicted from our theoretical approach (see
Methods section) and calibrated by available data. It reveals a very slow increase (in this log-linear diagram) at low instability levels followed by an
increase associated to favourable mutations allowing for faster replication and a marked decay at high instabilities due to mutations on viability
genes. The immune reactivity to genetic instability function p(w) (in red, obtained from [42]) rises from zero to saturation beyond p ~ 10~%. The
relevant domain of common cancer instability levels is highlighted. The innate response, pnk, is not depicted as is not a function of genetic
instability and lies in a smaller order of magnitude of around pyx = 2.5 x 1072 [27]
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Nullcline 1 is a simple line with a negative slope con-
trolled by the inverse of the carrying capacity of cancer
cells. On the other hand, nullcline 2 is a peaked curve,
with a height controlled by immune cell migration and a
denominator that might eventually produce divergences.
Through their crossings we will find which steady states
coexist under which parameter domains (See Results
section and Fig. 4).

Along with genetic instability, another parameter is key
to the dynamics of the system. Regarding the second null-
cline, we can see its size is linearly affected by the influx
m of immune cells arriving at the tumor site. It is there-
fore interesting to understand how p and m are related to
cancer-immune scenarios, since this will open the door to
further discussion on mutagenic and immune activation
therapies.

By solving Ej(c) = Ez(c), we can understand how the
values of m and p affect the nature and number of possible
solutions of the system. We here write (onx + p7(1)) =
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p for simplicity. The previous identity leads to a cubic
expression of the form Ac® + Bc? 4+ Cc + D = 0, with

A= _ Ser(u)b
3p
_or(w
B= —V(b(d — o) + 8p(bg — 1)) N
C= r;/;)(d+g55—p—bgd) —m
_ rwed g

3p

The sign of the discrimant A = 18ABCD — 4B3D +
B?C? — 4AC3 —27A%D? will define of which combinations
of m and p belong to which scenarios of Fig. 4. Knowing
that three real roots exists for A > 0 and only one for
A < 0, the transitions between attractor scenarios happen
to occur at A = 0. This condition can be used to easily
describe the whole bifurcation space as seen in the results
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and Fig. 4e and f, showing how mutation frequencies and
immune stimulation affect the possible outcomes of the
system.

Results

Minimal mutation rate for an efficientimmune response
Before engaging into a full analysis of the complete model,
we can study the behavior of the system for initial phases
of progression. This corresponds to a small tumor of size
¢ << K = 2 x 10° cells. Under this assumption, the
population dynamics of ¢(¢) simplifies to

d
= = o(rw — (o + pr()E — de) ©)

where we have now included a natural death rate —d, that
accounts for growth barriers of initial malignant cells if
away from the microenviroment carrying capacity [33].
From (9) we can isolate a condition for tumor control, i.e.:

dc 0

— <

dt
which leads to a crude estimate of the amount of effector
immune cells required to counterbalance tumor growth,
namely

(10)

r(p) —d.

E _—
W) > 5 ok + o1

(11)

The inequality consistently shows that E(u) will be pro-
portional to the instability landscape of cancer growth
rate divided by both NK and immune-mediated death.
This acknowledges that both NK or T cells can play cru-
cial roles in cancer surveillance. To understand the role
of the adaptive compartment and genetic instability in
controling a growing cancer population, we use validated
data from [20] (Table 1) and consider a healthy adaptive
immune population of T ~ 107 cells ([29] and follow-
ing sections), to obtain that the immune control condition
is fulfilled for 4 > 5.75 x 107> mutations per gene
and replication. This can be understood as the minimal
mutation rate required to generate a critical neoantigen
load for T-cell immune attack, not considering here NK
or other innate components away from the scope of the
work. The estimated value is consistend within the range
of genetic instability levels associated to MMR knockout
[47], indicating a connection between mutagenic thera-
pies enhancing genetic instability and a threshold level to
activate the immune response.

Transitions to tumor control and eradication at genetic
instabilities within the mMR-knockout range

For well-formed tumors, no similar approach can be per-
formed, but we can study the effects of changes in genetic
instability in the sytem defined by equations (4) and (5) by
picturing the intersections between nullclines described
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in the Methods section. As we are interested in the specific
role of genetic instability and neoantigen presentation, we
will focus here on the adaptive part of immune recogni-
tion, p(w). It is straightforward to see how several tran-
sitions regarding creation and anihilation of steady states
are governed by mutational probability u (Fig. 4a-d).

As expected from [30] and previous discussions, we
know that the cancer-free attractor will always be present,
but local stability will be ensured if r(1t) /(onK + p7(10)) <
mé/d (depicted in Fig. 4f). Without an innate component,
the condition is only fulfilled at very high instability levels
above 10~* mutations per gene per division. This implies
that no complete tumor clearance solely by neoantigen
recognition seems possible at realistic mutation rates for
fixed m, meaning that an innate response might also play
a role in complete respondant patients, as many therapies
do elicit total tumor eradication [45]. Additionally, we can
see that a large-tumor solution ¢z, is also present at low
instabilities (Fig. 4a), and it is globally asymptotically sta-
ble. Interestingly, a transition seems to occur as the value
for « becomes larger: before E(c) diverges, a smaller sta-
ble attractor cs is created together with its unstable twin
(Fig. 4b), which is often described as a microtumor con-
trolled by the immune system. Furthermore, nullcline 2
diverges at u ~ 1.75 x 107> (Fig. 4c), and, as the two
values for divergence of E;(c) grow further appart, the
large cancer attractor disappears and only the controlled
microtumor coexists with the cancer free attractor and is
globally asymptotically stable (Fig. 4d). These results are
consistent with those of [30], where such solution is con-
sidered a microtumor controlled by the immune system.
However, both transitions of microtumor creation and
large tumor elimination being a function of the mutational
levels of the tumor population are new to the present
work.

At this point it is clear that understanding at what
instability levels these transitions happen is key to the pos-
sible outcomes of the tumor-immune interaction. For the
given parameter region and in the absence of a strong
innate response, a basic computational approach lets us
see that the first transition happens around © ~ 1.65 x
10> (Fig. 4b), whereas another transition where the large
tumor attractor disappears happens at higher u values of
about u ~ 4 x 10~ (Fig. 4d).

Following extensive data, unleashed genetic instabil-
ity after Mlh1 knockout in mice accounts for increasing
mutation frequencies ranging from 107® ~ 107> up to
10~* mutations per gene per division (values assessed
for transgenic mice containing supFG1 or cll from [47]).
Interestingly, instability levels before MMR knockout put
our system within a region where the large cancer attrac-
tor is stable and no controlled microtumor exists. How-
ever, the increase after Mlh1 knockout might be pushing
cancer cells to a region beyond pj, where the stable
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microtumor attractor appears, or even uj, where the
stable large cancer attractor has disappeared (Fig. 4e).

The resemblance between the model and experiments
linking genetic instability to adaptive immune surveil-
lance seems intuitive enough. Following [17], we think
that there is a connection between the observed phe-
nomenon of immune reactivity and tumor collapse after
Mismatch Repair knockout and the qualitative behavior
of our model, which depicts a transition of this kind at
high p values. Furthermore, we have taken advantage of
recent research in order to use quantitative data to build
our model. The fact that our model predicts the range
for which immune surveillance reacts at increased can-
cer instability levels emphasizes the possible existence of
transitions like the ones studied here.

Assessing if these two transitions are in fact well defined
in vitro or if genetic instability can modulate tumor evo-
lution towards controlled states can shed new light into
the precise nature of mutagenic therapy as a mechanism
towards increasing tumor immunogeneicity. Such thera-
pies have produced key results in the field of virology [48],
but, within the context of cancer, recent insight seems to
indicate that increasing the immunogeneicity of a tumor
preludes evolution of subclonal neoantigen heterogeneity
[49-51].

Implications on immune surveillance: the role of tumor size
Besides the possible implications for mutagenic therapy
as a facilitator of immunotherapy effectiveness, the fact
that genetic instability shapes the landscape of the cancer-
immune interaction has further implications on the fate of
tumor growth. Tumor size has been shown to be associ-
ated with response to immunotherapies [52], but several
scenarios, from surveillance to evasion, are known to
occur [31, 53, 54]. Is genetic instability related to the
polymorphic nature of immunotherapy prognosis?

From Fig. 4a we know that, in conditions of low
genetic instability, the large tumor equilibrium is globally
asymptotically stable (GAS), and insufficient presenta-
tion of antigens implies that even small tumors can evade
immune surveillance in the absence of a strong innate
response through NK cells or macrophages. This could
be the case of both initial microsatellite-stable malignan-
cies or clones that have evolved low antigenicity through
genome editing [45].

Increases in genetic instability result in a phase transi-
tion that creates a micro-tumor attractor (Fig. 4b-c). This
state has been previously related to dormancy, where the
adaptive immune system is able to control cancer growth
[31]. However, the large cancer attractor is still present,
and local asymptotic stability ensures that tumor sizes
within its basin of attraction will stil grow towards it.
The implications are revelant to therapy: small tumors of
medium antigenicity can be controled, but large tumors
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will still grow towards larger disease. This result is consis-
tent with the notion that therapy reducing tumor mass is
often effective prior to immunotherapy [20, 55].

The second transition, consistent with experiments
of immune surveillance after Mismatch-Repair Knock-
out [17], indicates the disappearance of the large cancer
attractor (Fig. 4d). This implies that highly immunogenic
tumors will always elicit a sufficiently effective immune
response that will drive them towards microtumor con-
trol [31], no matter their initial size. However, the fact
that there is no complete remission implies that evolu-
tionary pressures still act on the remaining rogue popu-
lation, and the small clone can eventually evolve immune
evasion [45].

Mutagenic therapy remains a relevant actor on the
cancer-immune ecology. However, without the coopera-
tive effects of an innate response, through the constant
recognition rate pnx, or the buffering of immune migra-
tion m, the cancer-free equilibrium is only stable at very
high genetic instability levels that do not seem attain-
able through mutagenic agents. What are the cooperative
dynamics of genetic instability with these immune agents?

Effects of modulating immune migration and the innate
response

Beyond the relevance of genetic instability as a driver of
tumor antigenicity, the fact that the cancer free attractor
becomes stable at very high mutational levels above 10~*
mutations per gene and division (at least for the data on
adaptive immunity from [20]) implies that further consid-
erations on therapy need to be taken into account. The
overall condition for total disease eradication is

r(u) mé
_ —_— 12
PNK + o1 (1) =4 (12)

If genetic instability alone does not suffice to fulfill this
condition, what other therapeutic schemes are of rele-
vance to our model? A first notion lies on understanding
how does  alter the minimal innate recognition pxx nec-
essary for complete disease remission, as defined by the
condition

« _ rwd
Pk > ——— — p(p)

=y (13)

For microsatellite stable tumors with 4 << 1072,
the necessary recruitment rate of NK cells is within the
10~ 'day—1 range, an order of magnitude larger than that
measured in [27]. However, increasing genetic instability
decreases py; in a quasi-linear way, so that after a possi-
ble MMR knockout, a recruitment rate within 10~2day !
would suffice for cancer clearance, indicating the possibil-
ity of a combination therapy enhancing both mutagenesis
and NK cell activation [28].
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Together with the role of innate immunity, another key
observation is considering the rate of immune migration
(m) as a measure of immune activation. The necessary
flow of immune cells to the tumor to achieve complete
remission is

« qmr
m >

— (14)
3(pnk + pr())

Interestingly enough, the migration rate necessary for
cancer clearance does not decay linearly with genome
instability, as for ,0]’\‘”(, but in an exponential way,
meaning that increases in genetic instability within the
MMR knockout range rapidly decrease the condition
for immune migration rate (Fig. 4f). This indicates a
strong synergy between mutagenesis and immune acti-
vation therapies such as Adoptive Cell Therapy (ACT)
[56], consistent with recent discussion on combination
therapies [7, 19].

Moreover, by picturing the bifurcation diagram in stan-
dard p and m regions as described in the Methods section
(Fig. 4e), it is interesting to see how the first transition
towards microtumor creation, 117, has a weak dependency
on m, since the appearance of the intermediate attrac-
tors depends mostly on the denominator of nullcline 2
becoming null, so that Ez(c) diverges at

8ec+d — ((onk + pr(n))e/(@+¢) =0, (15)

which is not a function of m. On the other hand, the tran-
sition to disappearance of the large-cancer attractor does
depend on m, since m affects the width of Ey(c), so that for
higher m values E;(c) will go faster towards infinity and
not cross Ej(c). However, it seems intuitive from Fig. 4f
that the role of genetic instability in increasing neoantigen
production might be crucial even in the presence of high
immune activation.

Mathematical work previous to our instability-driven
model developed interesting considerations on derivation
of cancer vaccines (see e.g. [57]), and introduced time
dependent treatments [58] or time-delays in the immune
response [59] based on the immune migration parameter,
despite mathematical considerations remained somehow
distant from clinical immunology and not many of the
described behaviors after mathematically designed thera-
pies have been observed in vivo [22].

Recent research has highlighted the importance of
genetic instability as a marker for good prognosis in
immune checkpoint inhibition therapies [14—16]. Its role
in neoantigen production is acknowledged as crucial
[10]. Our results describing p as another driver towards
surveillance complementing m and pyx reinforce the
relevance of genetic instability in the tumor-immune
dynamics, further supporting the possibility of increas-
ing tumor immunogeneicity by promoting T cell antigen
presentation [7, 9].
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Discussion

In the present work we have studied a minimal math-
ematical scenario describing how genetic instability,
by means of enhancing tumor adaptation along with
neoantigen production and immune recognition, can
trigger sharp transitions towards tumor control and
eradication.

Starting from basic considerations, we have asked our-
selves about the ecological interactions between malig-
nant cells and, in particular, effector immune cells able
to respond after neoantigen recognition. Specifically,
we consider how genetic instability, here as a muta-
tion probability, shapes tumor adaptability and immune
response.

Interestingly, genetic instability governs the possible
outcomes of the system. Increasing mutational levels drive
the system across two phase transitions. In the first one,
two attractors are created involving smaller tumors coex-
isting with a larger population of T cells. This state
has been characterized as a controlled, but not totally
eliminated microtumor [30, 31]. The second transition
accounts for the disappearence of the cancer-wins sce-
nario, so that only solutions of immune control are present
at large genetic instability levels.

Recent advances in the field of cancer immunology
have proven that genetic instability is a key ingredient
of the immune response [14—16], and particular research
claims immune surveillance after MMR knockout fol-
lows from this causal relation between high mutational
loads and neoepitope production [17]. In the context
of this research, our model provides a conceptual and
numerical description for how a transition between can-
cer growth and arrest can follow only from damaging
DNA repair mechanisms. More generally, the fact that
microsatellite instability levels govern transitions sepa-
rating cancer growth from immune surveillance might
be indicative of why highly unstable tumors are better
respondants to immunotherapy [10]. Furthermore, we
have used available data to calibrate the model parameters
and to construct the immune recognition function. Using
this information, we consistently explain phase transi-
tions happening at microsatellite instability levels that
resemble those of MMR knockout. However, even if these
transitions could exist in the laboratory, we have dis-
cussed further aspects that need to be accounted when
dealing with increasing tumor immunogeneicity through
mutagenesis [49, 50].

We have also studied the roles of pyk, the recruit-
ment of NK cells, and m, a parameter refering to
immune migration or an eventual immune therapy. The
model indicates a cooperative effect between thera-
pies affecting mutagenesis together with NK or migra-
tion buffering. The strength of this cooperative effect
is linear for genetic instability and innate immune cell
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recruitment, but the model also predicts that, when
an innate response and T cell recognition alone can-
not control tumor growth, cross-therapies modulating
both m and p might be exponentially effective in driv-
ing the tumor-immune interaction into a state of total
disease eradication, thus indicating a mathematical vali-
dation for recent insight into combined immunotherapies
[7]. We further suggest that the relevance of m in pro-
ducing transitions to tumor arrest is low, while minor
increases in genetic instability seem much more effective
against large tumors. This indicates that cross therapies
inducing DNA damage prior to immunotherapy might
drive tumors to neoantigen-rich states [18, 19] before
immune editing processes enter at play [45, 60]. We
therefore postulate a possible mathematical description of
recent discussions for novel perspectives on combination
immunotherapy [7].

All the previous conclusions stem from a very mini-
mal mathematical model, whereas the immune system is
known to be complex [45, 61] Additionally, other inter-
actions between immunotherapies and conventional ther-
apies need to be taken into account [19]. In particular,
several cooperative mechanisms between immune popu-
lations might play a role in non-antigenic T cell activation
[27]. Further research should consider the possible non-
linear dynamics stemming from T cell sensitization after
cancer-NK cellular interactions.

Finally, as a result from the lack of heterogeneity, our
model does not yet capture immune editing, a phe-
nomenom at the core of immunotherapy failure, in which
the tumor might develope immune resistance by means of
either buffering the growth of immunosilent cells or edit-
ing its genome to express fewer neoantigens [60]. Within
this view, current research claims that tumor mutational
burden might not be a sufficient biomarker [46, 50].
In the presence of an effective immune response, anti-
genic subclones can be negatively selected, giving rise
to immuno-silent tumors despite its possibly high muta-
tional load. Together with immune editing, recent studies
highlight heterogeneity itself as a source for failure of
the immune response [49, 51] as it directly affects the
spatial and clonal distribution of neoantigens. Further
modeling of the tumor-immune ecology could benefit
from considering heterogeneous populations where anti-
gen frecuencies are taken into account. Despite these
considerations, our results on the cooperative roles of
m and p indicate that damage on DNA repair mecha-
nisms prior to checkpoint blockade could render tumors
immunogenic before a reactivated immune system pres-
sures towards editing. Using an evolutionary framework
such as adaptive dynamics [37], future work might help to
characterize in which regimes do cancer subclones evade
immune surveillance through evolving their neoantigen
landscape [62].
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Conclusions

This work provides a first effort towards modeling the
double-edged effect of genetic instability in both can-
cer adaptation and immune surveillance with the goal of
understanding the specific role of mutational load as a
driver of immune attack. Two main results stem from
the model. First, transitions towards tumor control follow
from increases in mutational levels similar to those after
MMR knockout. Second, genetic instability and immune
activation have a cooperative effect in driving tumor elim-
ination, indicating that combination therapies enhancing
both might be key in the future.
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Following the advent of cancer immunotherapy, increasing insight has been
gained on the role of mutational load and neoantigens as key ingredients
in T cell recognition of malignancies. However, not all highly mutational
tumours react to immune therapies, and initial success is often followed
by eventual relapse. Heterogeneity in the neoantigen landscape of a
tumour might be key in the failure of immune surveillance. In this work,
we present a mathematical framework to describe how neoantigen distri-
butions shape the immune response. The model predicts the existence of
an antigen diversity threshold level beyond which T cells fail at controlling
heterogeneous tumours. Incorporating this diversity marker adds predictive
value to antigen load for two cohorts of anti-CTLA-4 treated melanoma
patients. Furthermore, our analytical approach indicates rapid increases in
epitope heterogeneity in early malignancy growth following immune
escape. We propose a combination therapy scheme that takes advantage of
preexisting resistance to a targeted agent. The model indicates that the selec-
tive sweep for a resistant subclone reduces neoantigen heterogeneity, and we
postulate the existence of a time window before tumour relapse where
checkpoint blockade immunotherapy can become more effective.

1. Introduction

The mechanisms that make cancer a major cause of human death are deeply
rooted in the principles of evolution [1]. Through depletion of early mutations
affecting mostly multicellular regulation and tissue homeostasis, cancer cells
can overcome multiple selection barriers, making the human genome a pool
for the evolution of a myriad possible phenotypes [2]. Highly diverse rogue
populations within a tumour include cells that resist or evolve resistance to a
vast array of therapy schemes [3,4].

Among other selection barriers, cancer cells often evolve the ability to evade
immune surveillance [5] required to prevent the outgrowth of transformed
cells [6] (figure 1a). Recent decades have seen a rapidly growing insight into
the molecular details of immune silencing and tolerance [7], leading to the
advent of checkpoint inhibition therapies able to target specific immune-
evasion mechanisms in malignancies [8]. Once the immune system is back in
place, the role of neoantigens, i.e. mutated surface proteins that elicit T cell
recognition, has proven to be crucial, making genetic instability and mutational
load valuable markers of eventual prognosis [9-13]. However, recent research
highlights that not only the amount of neoantigens, but also their heterogeneity
and distribution across the tumour determines the eventual fate of immune
therapies [14,15]. In particular, it has been found that a high mutational
burden might not be enough for immune recognition, as only clonal antigens
elicit sufficient lymphocyte response [14].

Recent modelling efforts have explicitly introduced cancer neoantigens as
key ingredients in the interaction between cancer and the immune system

© 2020 The Author(s) Published by the Royal Society. All rights reserved.
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Figure 1. Mathematical framework for the cancer-immune ecology in heterogeneous antigen landscapes. T cell recognition of antigens g; (a) induces a selective
pressure towards immune evasion. In the lack of surveillance, neoantigens proliferate and evolve neutrally (b). After checkpoint blockade immunotherapy, subclonal

death in our model is a function of neoantigen load ;.

[16,17]. However, the exact role of neoantigen heterogeneity
on the tempo and mode of the immune response is not fully
understood. In this paper, we seek to understand, using theor-
etical models, how neoantigen heterogeneity evolves during
immune evasion, and its effects on T cell recognition when
lymphocyte function is back in place.

In this work, we introduce a mathematical framework (§2)
that captures the effects of both neoantigen load and hetero-
geneity on immune surveillance. To this goal, two scenarios
are considered, namely neutral antigen evolution in cancers
that have evaded the immune system (figure 1b) and T cell rec-
ognition of heterogeneous tumours after immune reactivation
(figure 1a). The model brings together knowledge from search
processes in the immune response [18] and measures of epi-
tope immunogenicity [17] to obtain a novel description of T
cell reaction to heterogeneity. As shown below (§3), we predict
that neoantigen diversity shapes an all-or-none transition sep-
arating growing from immune-controlled tumours. Moreover,
to understand how diversity arises during malignancy pro-
gression, we infer the evolutionary pace of average antigen
clonality in a growing tumour along with the evolution of
the antigen-cold and -hot fractions of the malignancy.

Beyond heterogeneity, several evolutionary mechanisms
are known to drive resistance to immunotherapy [19] provid-
ing novel opportunities for combination approaches to render
immunotherapy more effective [20]. This includes the study of
the possible timings of combining targeted agents with check-
point blockade [21,22]. In this context, our model presents a
qualitative scheduling approach that takes into account the
evolutionary dynamics of neoantigen distributions when
combination therapy is at work.

2. Mathematical framework

2.1. Neoantigen heterogeneity and the cancer-immune
ecology

Here, we develop our approach to the ecology of tumour sub-
clonal dynamics where each subclone comprises those cells
harbouring the same epitope composition (figure 1b). Our
toy model seeks to capture the minimal ecological dynamics
of cancer subclones under immune surveillance, where each
clone has a particular neoantigen set-up {a;} (figure 1b).
Although several cell types participate in the immune

response [23], the model focuses on those that react to antigen
composition in order to capture the specific effect of neoanti-
gen heterogeneity. Subclonal dynamics will be described by a
set of coupled differential equations, namely

dc; Ci
T 1- b;(jj - (kDiEi> m 2.1

The first term on the right-hand side is the logistic growth
of each subclone ¢; growing at rate r; and with b indicating the
inverse carrying capacity [24]. Malignant cells die at a rate
(second term on the right-hand side) depending on their sub-
clonal antigen composition, which implicitly introduces the
adaptive immune system dynamics [16,17]. Here, k is the
rate of killing by T cells once a target cell is recognized
[25]. Subclonal death rate depends upon the dominance D;
of the immunogenic antigen in the subclone [26,27] and the
efficiency E; of the immune system to detect the antigen
depending on its frequency. The most relevant novelty of
model (1) is that it explicitly captures the effects of subclonal
neoantigen composition by obtaining mathematical
expressions for both D and E.

The model is built by considering several experimental
sources. The first is that there is a causal correlation between
tumour antigen load and immune response [12]. We know
from studies on non-self antigens that only a few elicit
immunological response [26]. Recent evidence on the overall
lack of negative selection in tumours further supports that
most antigens are not activating an immune attack [28]. We
postulate that a higher antigen load increases the probability
of presenting more immunogenic epitopes, thus increasing
subclonal dominance D. Additionally, it has been shown
that even highly recognizable antigens fail at inducing a T
cell response if they are not present in a sufficient fraction
of the tumour [14,15]. Following research on immune
search mechanisms [18,29,30], we hypothesize that increased
epitope heterogeneity leading to more private antigens will
result in a loss of T cell efficiency E.

Finally, reduced T cell circulation [31], penetration into the
solid tumour [32,33] and increased immunosuppressive
factor production [34] are known to relate tumour size with
reduced immune effectivity. A Michaelis-Menten saturation
term (last term in equation (2.1)) is introduced following
standard models of cancer-immune system dynamics [31].
The value of the Michaelis constant g indicates the cancer
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Figure 2. Correlation between subclonal neoantigen load ¢; and dominance D. (a) Simulations show a linear increase D; = pcy;, as neoantigens are drawn and more
dominant ones presented. Here, p ~ 0.06 from our simulations on random neoantigen presentation. (b) Data from [17] also indicate a (weak) linear trend, with

considerable data scattering.

population at which death is half of what it would be without
size-related effects.

Finding the neoantigen composition {a;} in each subclone
and estimating its immunogenicity and frequency relies on
bulk data processing with sampling biases due to localized
biopsies [35] and imperfect antigen prediction [36]. Mathemat-
ical techniques can bring up a simpler description to better
understand how neoantigen landscapes affect prognosis by
studying the underlying dynamics relating D and E to antigen
composition. Below, we explain how the nature of these two
key components of equation (2.1) can be determined.

2.1.1. Neoantigen dominance D

We aim at understanding the possible correlation between
the immunogenicity of a subclone D; and its antigen load o;.
Recent computational methods have been able to estimate
the immunogenic capacity of cancer neoantigens [17]. The
associated distribution is highly skewed: only a small subset
of cancer epitopes elicits a T cell response. This result is con-
sistent with the concept of immunodominance [26,27] and the
overall lack of negative selection in the cancer genome [28].
Here, we assume that neoantigen load correlates with
immune attack because a higher antigen burden increases
the overall likelihood that a dominant one is presented.
A novel and parameter-free stochastic framework is built to
assess the hypothesis. In it, we measure the most dominant
antigen of a cancer population as new mutations accumulate
(see electronic supplementary material).

Simulations indicate that recognition potential of the most
dominant antigen increases linearly with the total neo-
antigens of subclone ¢; (figure 2a). This result is consistent
with the notion that there is no known mechanism by
which the probability of finding a more immunogenic anti-
gen increases as more antigens are being found [12]. Since
antigens are produced randomly, the probability that the
next one is dominant remains stable, resulting in a linear
relation D; ~ ¢;. For larger antigen loads, maximum immuno-
genicity saturates as the specific epitope database is finite.
This might be only due to limitations in sequencing depth
[36,37]. In figure 2b, our simulation results can be compared
with existing data on subclonal antigen burden and recog-
nition potential from [17]. A similar trend can be obtained,

although considerable scattering of the available data is at
work (see electronic supplementary material for detailed
descriptions of simulations and data analysis)

The previous results thus suggest approximating sub-
clonal immunogenicity as a linear function of the antigen
burden, namely

D; = pa;. 2.2)

Current research points to evidence for underestimation of
mutational loads during next-generation sequencing [37,38],
resulting in detection errors for antigens present in less
than 5% of the tumour. This would imply a decrease in the
steepness p in figure 2b (more mutations are actually accumu-
lating to find the given antigens), but not a change in the
linearity of the neutral accumulation dynamics, which actually
governs the qualitative results of the present work.

2.1.2. Immune search efficiency £

The second part of our model definition requires a mechanistic
description of the search efficiency term E in (1). The mechan-
ism of T cell clonal selection is another key component in the
immune response to cancers. Upon presentation of a given
antigen by dendritic cells, helper T cells with the matching
TCR replicate and release cytokines that eventually result in
the expansion of a cytotoxic T cell clone [39]. This ensures effi-
cient surveillance and further memory of previous antigenic
encounters. Several search and migration processes underlie
an efficient cascade [18].

The complete process is initiated by dendritic cells that
recognize tumour antigens and present them to naive T cells
in the lymph node [18]. Consequently, T cells become activated
and migrate to the tumour site where they search for cancer
cells expressing the same antigens [18]. We hypothesize here
that there is a relation between neoantigen concentration in a
tumour and the efficiency of the immune search processes
involved. This might be key in the observed role of antigen
heterogeneity in immunotherapy prognosis [14,15].

In order to make these relations explicit, we study a
spatial simulation framework of a tumour surface built
upon previous research [30] that minimizes the estimated
parameters at play (see electronic supplementary material).
In it, dendritic and T cell agents search for cancer antigens
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Figure 3. Modelling the effect of neoantigen frequency on immune search efficiency. (a) Neoantigens are distributed randomly on a two-dimensional grid according

to their frequency. We sum the average times for a migrating dendritic

cell and its activated T cell counterpart to find their cognate antigen distributed with

density . (b) The efficiency of the immune search process scales linearly with antigen frequency y; for low antigen concentrations (c) as those in [17]. Following
migration data from [29], simulations of Lévy-migrating T cells are presented for comparison, consistent with results indicating that Lévy strategies are more efficient
than Brownian search [40]. The overall linear trend £ ~ ¥ is maintained across search strategies.

distributed according to their frequency y (figure 3a). We
explicitly compute the dependencies of search time and
efficiency E (the inverse of search time) on neoantigen
frequency (see electronic supplementary material).

This novel approach separates those steps that participate
in the activation-and-killing process from the two searches
directly related to neoantigen concentrations on the tumour
surface: the motion of dendritic cells to find tumour antigens
and the search of effector T cells that have migrated to the
tumour site once activated.

The complete immune response process builds upon
many layers of complexity. However, even for clonal antigens,
the timescale of the search processes involved seems to be
longer than those of immune cell activation or cancer
cell removal (see electronic supplementary material), supporting
the notion that the frequency-dependent processes play a
determining role in the average speed of the immune response.

Efficiency diverges in the simulations when an antigen is
found in most of the cells of the tumour surface. However,
clinical antigen frequencies are much smaller, and a linear
trend can be found for small y levels similar to those found
in tumours (figure 3¢, [17]). This translates into immune
efficiency E being a linear function of the frequency of
the dominant antigen in the subclone, E;=sy;. Here, s is the
slope of the linear correlation, related to other molecular or
non-antigenic processes that affect the timing of the search,
such as immune cell activation or cancer cell removal [18],
which we find to be rate-limited by the timescale of the
antigen-search processes at play (see electronic supple-
mentary material). By rewriting equation (2.1), we now
map subclonal death rate with antigen load ¢; and dominant
epitope concentration y;

dC,‘
—; = TG

a (2.3)

Ci
1-b § | = k(pajsy;) ——=———.
j Cj (P%S%)g Z]‘Cj

In model (2.3), subclones will die at rates corresponding
to their number of antigens (as more antigens increase the
probability of presenting a dominant one). The frequency of
their most dominant antigen will also increase the efficiency
of dendritic search and T cell surveillance. Is it possible
to gain insight from (2.3) into how T cells react at neoantigen
distributions? Are there common patterns separating respond-
ing from non-responding patients, and what can we learn
from them? In the Results section, we study the relation
between this model and the experimentally observed corre-
lation between neoantigen heterogeneity and poor prognosis.

2.2. Neutral evolution of neoantigen distributions

So far our mathematical framework introduces cancer cell
death under a correctly functioning T cell cohort. However,
the evolution of mechanisms to avoid T and B lymphocyte
attack is recognized as a hallmark of cancer cells [6] and
needs to be introduced too. The lack of an efficient immune
response ensures that neoantigens are no longer negatively
selected [28,41], making for tumours where neoantigen load
and heterogeneity respond to neutral evolutionary dynamics
[42]. What epitope landscape {a;, 7;} will T cells find when
they are activated and equation (2.3) is back in place?

The role played by neutral evolution in cancer has seen
increasing attention [28,37,42]. In a recent work, Lakatos
and colleagues developed a computational approach for the
evolutionary dynamics of neoantigens, and indicators of
effectively neutral evolution are found in colorectal cancer
exome sequencing data [16] consistent with the overall lack
of negative selection across the cancer genome [28]. We pre-
sent a coherent analytical approach to understand how
neoantigen load and concentration evolve in the absence of
T cell surveillance. Further analytical methods are provided
to estimate the fraction of antigen-cold cells in a given
tumour. Stochastic simulations of neoantigen evolution in
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growing tumours are built to verify our analytical estimates
(see electronic supplementary material for the mathematical
and computational methods).

2.3. The effect of combination therapy on neoantigen
landscapes

The evolution and composition of the neoantigen landscape is
key to model and understand the interaction between cancer
and the immune system and needs to be taken into account
within our modelling approach. Recent research is focusing on
the use of combination therapy to render checkpoint blockade
more effective [20-22]. We here study the effects of combination
therapy on neoantigen heterogeneity and propose a novel thera-
peutic approach able to modulate antigen landscapes.

Interdisciplinary approaches have already considered
taking advantage of evolution to explore novel therapeutic
designs. Mathematical models have studied the use of drug
sequencing to avoid the evolution of cross-resistance [43] or
the notion of an evolutionary double bind [44] to take advan-
tage of its metabolic cost [45]. In this context, experimental
evidence indicates that alkylating agents causing DNA
damage can increase subclonal neoantigen burdens [14,46].
This results in a more heterogeneous neoantigen landscape.
On the other hand, immunotherapy often results in selective
pressures towards immune evasion through silencing of
clonal antigens [19,47]. We here study other therapeutic com-
binations that do not increase neoantigen heterogeneity or
reduce epitope presentation.

In particular, molecular-targeted therapies such as BRAF
and MEK inhibitors for melanoma are being combined with
immune checkpoint blockade in the search for optimal drug
sequencing [20-22]. Knowing that resistance to targeted
therapies mediated by preexisting or acquired mutations is
common [48,49], we study the therapeutic designs that could
take advantage of it. The stochastic simulations previously
described are modified to include a generalistic targeted
therapy and mutations driving resistance to it (see electronic
supplementary material). We follow the dynamics of neoanti-
gen distributions to understand the effects of drug resistance
on tumour and epitope heterogeneity, and study which
scenarios are better suited for checkpoint blockade efficiency.

3. Results
3.1. Before checkpoint blockade immunotherapy

The amount and distribution of neoantigens is key to predict
the response of tumours to immunotherapy. However, early
selective pressure following T cell recognition is known
to drive immune evasion [41]. Until checkpoint blockade
immunotherapy reactivates lymphocyte attack, neoantigen
distributions evolve neutrally [28,42].

To address this problem, we use our model to study the
evolution of average antigen load and clonality in growing
tumours. Tumour growth and neoantigen production are
known to slow down along progression. We can characterize
the fastest neoantigen dynamics by studying the exponential
phases of tumour growth. This will also useful for the pro-
posed combination therapy design that takes into account
small tumours and distant metastases.

In particular (see the electronic supplementary material
for details), we find that the amount of antigenic mutations
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Figure 4. Evolution of antigen frequency during tumour growth. The analyti-
al result (3.3) is compared with simulations of exponential growth, logistic
growth under extreme spatial constraints (K = 10 and increased cell death
(d/b=0.1).

in the tumour, M, will follow (see [42])

Mu(D) = 2up,, coe® Pt —1). 3.1)

b—d
where the tumour grows at an average rate r =b —d, u stands
for the overall mutational probability and p,~0.13 is the
approximate portion of mutations predicted to bind MHC1
indicating possible immunogenicity [32]. The two factor
stems from the fact that both daughter cells can undergo
errors at birth at rate bup,. The result is consistent with logis-
tically growing tumours, where slowing down of neoantigen
production is only significative for very small carrying
capacities (see electronic supplementary material). Moreover,
another key element in therapy prognosis is the existence of
cells that do not harbour antigens. It can be shown (see
electronic supplementary material) that analytical results
and simulations predict an exponential decay of the
antigen-cold fraction of the tumour

Co-(F) = 721t (3.2)

This result is indicative of the rapid dynamics at which
microsatellite-unstable tumours become populated by
antigen-hot cells, consistent with experimental insight [13].
The model seems to support the idea that, provided sufficient
mutational load [37,46], it could be the excess of heterogen-
eity and not the lack of antigens that drives checkpoint
blockade therapy failure [14,15].

We also study the dynamics of average neoantigen
clonality as tumours grow (see electronic supplementary
material). We find that the average clonality decays in time as

() = m[w@’(eew*d” +D -0+ 1] (33)
(e —

where 6 =2up, b co/(b —d) and @ is the digamma function
[50]. This result can be compared to simulations (figure 4a)
and is a first analytical measure of how heterogeneity
increases in the neoantigen landscape.

The predicted antigen clonality decay results from expo-
nential growth in early tumours or small metastatic
burdens, interesting for the therapeutic scheme proposed
later on. However, tumour growth is known to slow down
at later stages. Simulations indicate that logistic growth has
a small effect on heterogeneity dynamics (figure 4), even
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for very small carrying capacities of K =10* This is because
initial exponential growth ensures a very fast decay of
average clonality (equation (3.3)) that remains low on later
tumour growth phases. Increased cancer death (figure 4) or
finite epitope landscape scenarios (see electronic supplemen-
tary material) are also consistent with the analytical estimate.

Neoantigen heterogeneity increases rapidly in growing
tumours. This could be indicative of a decay in the efficiency
of T cell surveillance, giving an explanation for the role of epi-
tope clonality observed in immunotherapy prognosis [14,15].
Can our mathematical framework capture this effect?

3.2. After checkpoint blockade immunotherapy

These results predict the evolution of the neoantigen landscapes
during immune evasion. After checkpoint blockade immu-
notherapy, T cell attack is back in place and equation (2.3)
holds. The model is solvable for specific subclones. However,
we aim to understand whole-tumour dynamics when immu-
notherapy is administered, so that several approximations are
introduced to reduce the set of parameters at play.

On the one hand, neoantigen presentation does not affect
the rate of cell division r; [17]. Therefore, subclones charac-
terized by any neoantigen composition are considered to
replicate at an average rate (r). The final result stems from
whole-tumour dynamics, depending only on (r) which can
be measured from patient data [17].

Another similar assumption regarding antigen neutrality
can be performed. Provided that neoantigens were isolated
from immune attack prior to therapy [41], dominant antigens
at the time of therapy are not negatively selected [28] and, on
average, are as common as the rest. This allows us to write
i~y

Inspired in the analysis of antigenic diversity thresholds
in the evolution of HIV [51], we want to understand the con-
ditions under which all subclonal growth is controlled by the
immune surveillance mechanisms. This will occur provided
that the following inequality:

dCi

— < .
T 0 3.4)
holds for all i=1, ..., S. A necessary condition for this to be
true is that the sum of subclonal dynamics (2.3) over all S

clones is negative

(3.5

Even if (3.5) is not a sufficient condition (since a single clone
could grow despite overall negative replication) it is required for
immune surveillance to succeed: if the overall sum of growth
rates is not negative, at least one of the clones will outgrow
immune barriers. Since all clone populations c; are either zero
or positive, the sum of terms inside parentheses must be negative.

The number of elements in the sum S accounts for the
number of subclones harbouring identical epitope confi-
gurations (figure 1b). Summing over (3.5 we find the
following inequality:

S S s
l% 1-bY ) {8+> g <<v>¥. (3.6)
i i

This result indicates the possibility of a threshold condition
separating tumour growth from immune surveillance provided
that tumour size _,¢; can be estimated. The left-hand side
is the replication/predation ratio, that has to be larger than the
tumour immunogenicity term of the right-hand side.
Furthermore, the product of the logistic and Michaelis—
Menten terms on the left-hand side defines to which extent the
spatial constraints affect more tumour growth or else immune
circulation. It can be seen that the (1 — b Z]S g+ Z]S cj) term
can become large only for large carrying capacities and
tumour sizes (see electronic supplementary material).

We are also interested in understanding (3.5) in the
particular scenario of small tumours. On the one hand, we
want to study the effects of a targeted therapy reducing
tumour bulk prior to immunotherapy, so that the immune
system will most probably face a small resistant subclone or
distant metastases. On the other hand, because of the
competitive release of resistant cells after therapy [45], we
are looking at modelling a time window of fastest antigen
production when tumour growth is unbounded, which hap-
pens when 3, ¢; is away from its carrying capacity and the
growth dynamics are exponential. In this scenario, the non-
linear effects of large tumour masses can be neglected.
Similar models considering unbounded growth in subclones
are already in place [43], acknowledging that the effects of
extracellular matrix barriers [33] or immunosuppressive
factor production [34] are reduced. Now the threshold con-
dition contains exclusively tumour-averaged parameters:
average antigen frequency and average subclonal neoantigen
load should outgrow the growth/recognition ratio

Yiai_(ng
(7 5 >k7PS' 3.7)

The existence a catastrophic shift separating tumour
growth from extinction as a function of the average neoanti-
gen clonality resembles recent clinical studies [14,15]. The
parameters on the right-hand side of equation (3.7) are
dependent on tumour type and microenvironment specifici-
ties. Producing a quantitative prediction for given cancer
types and measures is away from the scope of the article.
However, the threshold depends on a tumour immunogeni-
city value that we can study using existing data. To which
extent does the immunogenicity marker of equations (3.6)
and (3.7) correlate with patient prognosis after checkpoint
blockade immunotherapy?

Using available neoantigen estimates from the database in
[17] (see electronic supplementary material), we can study the
correlation between our result and months of survival in anti-
PD-1-treated patients with lung cancer [9] and anti-CTLA-4
treated patients with melanoma [10,11]. Without accessible
data on tumour size ) i Cir Kaplan-Meier curves and cumulat-
ive hazard ratios of overall survival of anti-CTLA-4 treated
melanoma patients from [10,11] seem to indicate that our
measure extracted from equation (3.7) could be a better bio-
marker for immunotherapy prognosis than total neoantigen
load (figure 5), consistent with experimental results [14].

Modelling, simulations and data seem to consistently
indicate that neoantigen heterogeneity might shape a threshold
condition separating tumour growth from cure. Average
antigen frequency decays rapidly as tumours grow, and
advanced malignancies will probably be highly heterogeneous
and hard to target by immune activation. Could we design a
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Figure 5. Correlation of patient biomarkers with months of survival after checkpoint inhibition therapy. The Kaplan—Meier curves for decay of survival probability are
depicted, with 166 anti-CTLA-4 treated melanoma patients from [10,11] separated in two groups by the median of either neoantigen load (a, log-rank test p-value
0.0179) and our threshold value y >~ /S (b, log-rank test p-value 0.0002). Cumulative hazard ratios (cd) also support that induding average neoantigen clonality
adds predictive capacity to the well-accepted neoantigen load marker. This suggests v > a/$ as a possible complementary biomarker for immunotherapy prognosis
in melanoma. Including a cohort of 30 anti-PDL-1 treated lung cancer patients from [9] does not improve results (see electronic supplementary material, figure S6).

therapeutic scheme able to steer tumour evolution towards a
more homogeneous neoantigen landscape?

3.3. Combination therapy could reduce neoantigen
heterogeneity

The mathematical model predicts an heterogeneity threshold
beyond which lymphocytes fail to reduce tumour growth,
consistent with recent research [14,15]. Results also indicate
that neoantigen frequency decreases rapidly during growth,
meaning that therapy reactivating the immune system will
not necessarily succeed. Now we study the (simulated)
effect of administering a molecular-targeted therapy in the
case that resistance is already present, following existing
experimental efforts [20,22].

As therapy is administered, the death rate of sensitive cells
increases, leading to a general decay in tumour cell number
(figure 6a) that is commonly seen in combination approaches
targeting tumour burden [20]. This decrease in cell size comes
with a halt in the production of novel antigens, while total
present antigens are reduced as some may go extinct (figure 6b).

When therapy is administered, the overall reduction of
cell number produces a rapid increase in average antigen fre-
quency. Knowing that resistance mutations are usually in

place [37,49], can it be used in our favour? In spite of many
antigens going extinct, those that belong to a surviving line-
age (of cells that are resistant to therapy) increase their overall
frequency (figure 6c).

Based on our in silico models, we postulate that resistance
to therapy produces a selective sweep to a more homo-
geneous epitope landscape, which is easier to target by a
reactivated immune system. Furthermore, previous results
indicated that, along the growth process of the tumour, the
fraction of antigen-cold cells decays rapidly. This is not
altered by the targeted agent provided it has no alkylating
effect, so that antigen accumulation continues until check-
point blockade is administered. Until the resistant clone has
grown into a full-size tumour, we observe a time window
during which the average frequency of neoantigens is
higher than when the cancer was of detectable size (figure
6c). This represents a first qualitative effort to understand
combination therapy scheduling [20] when resistance
mutations are in place.

4. Discussion

Immunological approaches to cancer therapy have seen
remarkable advances in recent years [5,8,13]. However, not all
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Figure 6. Evolutionary dynamics of neoantigens during therapy. (a) Cell number decreases after therapy until a resistant subclone repopulates the tumour.
(b) Production of novel antigens slows down after therapy (black line) while total present antigens are reduced (dashed line). (c) Tumour size decay produces
an increase in clonality of remaining antigens. Before complete relapse, increased average clonality creates a time window where the tumour is more neoantigen-
homogeneous and T cells increase their efficiency (timescale in days). (d) A scheme of the population dynamics shows subclonal outgrowth after maximum tolerated
dose (MTD) targeted treatment. We postulate that these processes elicit homogenization of the neoantigen landscape where checkpoint blockade immunotherapy

(CBIT) can be more effective.

underlying mechanisms of immune surveillance and resistance
are understood, and relapse is a common outcome [5,19].
A critical aspect of immune efficiency lies in the incidence
of high neoantigen heterogeneity in poor therapy response
[14-17]. To address some of these problems, in this paper, we
have built a minimal model of heterogeneous cancer popu-
lations explicitly introducing their antigenic composition. In
particular, neoantigen-related subclonal death takes into
account antigen load and frequency across the tumour while
keeping the number of model parameters small. Our frame-
work contemplates computational methods and data in both
epitope immunogenicity [17] and immune search efficiency
[18,29,30] to translate previous evidence into a mathematical
model able to produce insight into the underlying subclonal
dynamics. Analytical results of the new model indicate that
a heterogeneity threshold separates cancer growth from
immune control, so that highly heterogeneous neoantigen
landscapes might impair immune efficiency.

By incorporating our results into survival studies, predic-
tive power could be added to immunotherapy prognosis in

melanoma patients, providing a novel therapy biomarker
consistent with experimental results [14,15]. To understand
why tumours have heterogeneous neoantigen landscapes,
the model studies the evolutionary dynamics of antigenic
mutations. As shown by the model, the antigen-cold fraction
of the tumour becomes rapidly smaller, meaning that the
growing tumour is rapidly populated by antigens. However,
analytical estimates and simulations indicate a fast decay of
average antigen clonality during immune evasion phases of
tumour growth. This is consistent with the correlation
between increased antigen heterogeneity and poor response
to checkpoint blockade immunotherapy.

Further layers of tumour complexity that do not depend on
neoantigen composition have been taken out of the system to
produce a treatable model, particularly in the immune search
modelling. With this, we can compare the qualitative results
of our approach with experimental evidence while keeping
only with a minimal set of measurable parameters. Further-
more, we have studied specific scenarios where the model
simplifies, such as immune activity in small tumours and
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metastases, where nonlinear effects of tumour size can be neg-
lected as in other therapeutic designs [43]. This also allows the
use of existing data on neoantigen distributions where popu-

lation counts are not available. Further non-antigenic events
in the search and cytotoxic processes could be introduced to
obtain a more quantitative approach, together with including
extrinsic noise in the cancer-immune system interaction [52].
Mathematical approaches have shown how evolutionary
dynamics can be used to obtain novel insight into the sequen-
cing [43] or timing [45] of combination therapies. Ongoing
research is currently exploring the possibility of combining
targeted therapy with checkpoint blockade [21,22]. Our
model highlights how evolutionary dynamics underlying
resistance to a targeted agent can increase neoantigen
homogenization. Although a refractory drug is not of interest
in principle, resistance is so common that we propose a
combination approach that takes advantage of it.
Simulations indicate that positive selection fora drug-resist-
ant clone results in increased antigen clonality. Before complete
relapse, a second hit with immunotherapy could be more

effective as reactivated lymphocytes face a more homogeneous
tumour. Continuation of immune attack after checkpoint block-
ade is known to drive selective pressure towards epigenetic
silencing of targeted neoantigens [47]. Further analysis could
result in more complex combination schemes that enhance
neoantigen generation after prolonged T cell attack.
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I. MATHEMATICAL FRAMEWORK
A. Evolution of Neoantigen Distributions

We here study the evolution of average antigen load and clonality in growing tumors. Due to the scenarios of interest
for the original manuscript, exponential growth is taken into account, so that the cancer subclone has dynamics
c(t) = coexp((b — d)t). We know that neoantigen load will obey (see [1])

dM,,
dt

= 2upabe(t) (1)

where M, is the amount of antigenic mutations in the tumor, p stands for the overall mutational probability and p, ~
0.13 stands for the approximate portion of mutations predicted to bind MHCI1 indicating possible immunogeneicity
[2]. The 2 factor stems from the fact that both daughter cells can undergo errors at birth at rate bup,. Introducing
population dynamics we obtain an analytical expression consistent with simulations (Fig. S1). Comparison with
logistic growth under even very small carrying capacities demonstrates the validity of the exponential assumption
in the given setup, consistent with antigen load data from [3] were tumors are estimated to harbor around 10-1000
immunogenic epitopes. Further single-cell cloning analysis is likely to result in larger results for mutational burden

[4].

Mo (t) = 2upa

o (e(b_d)t — 1) . (2)

Average mutation probability p is known to evolve in time as further mutations affect DNA repair mechanisms [5].
This would speed up the rate at which neoantigens are produced, inducing a further nonlinearity in M(t), resulting
in faster frequency decays. A lower bound can still be found, and a finite genomic pool [6] and the difficulty of
finding novel highly dominant epitopes [3] indicate that immune killing might plateau as D(a(u)) saturates at high p
values. In the absence of cell death, the frequency of a given antigen is related to the population size at presentation,
v(a;) = 1/¢(e;) and remains constant [1].

Recent experimental evidence [6] indicates that mutational rates might be so high that the infinite-sites assumption
from [1] might underestimate tumor mutational burden, meaning that a given loci will be mutated in more than one
cell. This could imply that a given neoantigen can be produced in more than one cell independently increasing its
overall frequency. The effect of this in our calculations will be later shown to be very small (Fig. S2). Together
with this, cell death adds further deviation from ~(«;) = 1/¢(a;): when cells die out, this frequency can increase for
antigens with surviving lineages [7] up to

b—d

\_ 1= (d/p)®
1) = T =0 ®)

which is a relevant bias from 1/¢(t) when birth and death rates are similar. Thus, in order to infer the frequency
of each of the M, antigens, we need to know the tumor population when they were presented, and so their time of
appearance. Each antigen appears when M, =i is a positive integer, which happens for
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t(a;) = 5 ! 7l log ( (b= d)i + 1) (4)

( - QFLpaCOb
from where we infer that the population present when the i-th antigen is presented is

N bd)i(ar) . (b= d)i

c(t(a;)) = coe co + Supab (5)

Both analytical estimates are consistent with simulations of exponentially growing tumors with random mutations

(Fig. S1). However, an analytical sum of each antigen frequency (Eq. 9) using the population at appearance (Eq. 11)

is not feasible. We still can, in the early tumor growth scenario, consider a low death-to-birth ratio and approximate

the frequency of a mutation appearing at time ¢; by 1/c(¢;) [1]. The deviation from the analytical estimate under this

assumption is small (see Fig. 4 in the main text). The average antigen clonality results from adding the inverse of

each population at antigen appearance (Eq. 11) for all present antigens at time ¢. This results in a decaying average
antigen frequency

M (t)
1 1 1
1)) = _ © (geb=Dt £ 1) — © (g + 1 6
S TGP S rn =iy vy [0 (=" 4 1) 5@ 6.4 1) (©)

where 0 = 2upabeo/(b — d) and () is the digamma function [8]. This result can be compared to simulations of
several growth dynamics (Fig. 4 in the main text) and is a first analytical measure of the evolutionary increases
of heterogeneity in the neoantigen landscape. The role of evolving instability levels u is again constrained as (y(t))
saturates rapidly for high values of p observed experimentally [6]. A larger u will ensure that antigens appear more
frequently, producing early antigens that will be present across a larger tumor fraction, consistent with evidence on
the role of mutational load in immune prognosis [9-12]. Together with this, an increase in the rate of mutation will
also increase the elements in the sum of Eq. (9) each one smaller than the earlier. Together with dominance saturating
at high neoantigen production, it appears that highly mutational tumors might initially be easier to target by the
immune system, but eventual saturating effects indicate that further increases in p will not be likely to enhance the
immune response.

Another key element in therapy prognosis is the fraction of the tumor populated by cells that do not present
antigens. To study how this fraction evolves as tumors grow, we model the dynamics of antigen-cold cells (cq-).
These cells replicate correctly at rate r(1 — up,), with r = b — d, and any mutation presenting antigens can happen
at rate rup,. The mean field dynamics are simply

dcg,-
o = "= wpa)ca- —rHpaca- (7)
with solution
Car (1) = o (0)el7 172000, (®)

The fraction of antigen-cold cells in the tumor is therefore

Car(t) _ ca (002000 L, o)
c(t) coelb=dt

This result is consistent with simulations (Fig. S3) and indicates that the relevance of neoantigen-cold cells in
unstable tumors decays fastly. This is a mathematical support for the notion that it is excessive neoantigen hetero-
geneity and not lack of neoantigen presentation what could drive checkpoint blockade immunotherapy failure. This
result is independent of other therapeutic drugs such as several targeted agents that are neutral to antigen load. Even
in the combination therapy design of the original article, the fraction of antigen-hot cells in the tumor will increase

exponentially until immunotherapy is administered.

B. Tumor size in the neoantigen diversity threshold

Summing the equations for all the subclonal populations in the tumor results in a condition for tumor control,
Namely the following inequality:

5. de; 5 5 kpa;s
i i J Jj I



A minimal condition necessary to fullfil growth control is that the sum of replication terms is negative
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which results in the threshold condition as stated in the main text
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The left hand side is the replication/predation ratio, that has to be larger than the tumor immunogeneicity term of
the right hand side. Furthermore, the product of the logistic and Michaelis-Menten terms in the lhs defines to which
extent the spatial constraints affect more tumor growth or else immune circulation.

Even if we are interested in the specific scenario of a small growing tumor, where spatial constraints can be neglected,
we can discuss the overall role of non-linear spatial interactions in the threshold condition. The carrying capacity of
a tumor is largely dependent on specific conditions and general conclusions cannot be taken for several tumor types
or patient characteristics. It can be seen (Fig. S1) that, for tumors where carrying capacity is large, there will be
a region where tumor growth exceeds immune predation. However, this happens for tumor sizes beyond the small
populations under study in the main text. Furthermore, the article focuses on the rhs of equation 12 as a possible
immunotherapy prognosis marker, leaving aside for the moment the exact computation of the parameters in the lhs
that should incorporate many layers of quantiative estimates.

Il. COMPUTER SIMULATIONS
A. Antigen dominance as a function of neoantigen load

Each neoantigen has a different capacity to elicit an immune response. To asses how the amount of neoantigens
correlates with subclonal immunogeneicity, we build a minimal stochastic simulation based on an existing database.
From [3] we obtain the repertoire of all detected neoantigens of three databases [9-11] and their estimated immuno-
geneicity, which is found to be very skewed, consistent with the concept of immunodominance: most analyzed antigens
are of very low immunogeneicity while only a few elicit a considerable immune response (data not shown).

During immune evasion, tumor mutations that produce antigens evolve neutrally as no there is no lymphocyte
attack. We build a computational framework in ¢ to simulate the production of the antigens obtained from the
Luksza et al. database. In the simulations, a single agent representing a cellular metapopulation acquires random
mutations that select, one by one, random antigens from the database. At each mutation, we update the recognition
capacity to that of the novel epitope if it is the most dominant antigen at place. This approach generates a first
approximation of how average maximum dominance D increases as more neoantigens are being produced.

Many neoantigens have to be produced in order to find, on average, highly immunogenic ones. Simulations indicate
that, for common subclones with about 1 to 200 antigens [3], recognition potential of the most dominant antigen scales
linearly with the total neoantigens of the subclone, here termed «; (Fig. 2a in the main text). For larger antigen
loads maximum immunogeneicity in simulations saturates, as the given epitope database is finite and no novel surface
proteins can be presented. This might be only due to limitations in sequencing depth [13,14], and it is probable that
a complete repertoire is so large that saturation happens at even higher neoantigen loads.

B. Immune search efficiency as a function of neoantigen clonality

We also present a computational approach to explicitly determine the dependency of immune search efficiency on
antigen clonality. The model is based on the fact that, even if the immune response has many layers of complexity,
only two search processes are directly related with the amount and distribution of neoantigens on the tumor surface:
the motion of dendritic cells to find tumor antigens and the search of effector T cells that have migrated to the tumor
site once activated.

The computational framework in python includes a two-dimensional grid where antigens are distributed, represent-
ing an immunogenic tumor surface similar to that of CITE Macfarlane, but where specific collision between cellular
agents are here modeled as searches of non-moving antigens. Antigens are therefore characterized by the fraction of



the cells they are present in, 7; (Figure 3a in the main text). The immune response is simulated by dendritic cells that
search for antigens following Lévy migration statistics. The length [ of the Lévy flight with parameter p is generated
from [15] as

L sin ((u— 1)X) (cos (2 - M)X))(Q“)/(“l) )

a (COSX)l/(Mfl) Y

where X is a uniform random variable on [—7/2,7/2] and Y has a unit exponential distribution computed as ¥ =
—1In Z, with Z being a uniform random variable on [0, 1].

Activated T cells undergo Brownian searches to find the same specific antigen at the tumor site [18]. With this,
our minimal approach minimizes the number of parameters playing a role on final results to only antigen frequency
~ and the Lévy exponent of inactive immune cells g = 2.15, that encapsulates the underlying effect of chemokine
distributions on immune cell walks [15]. As originaly stated in [15], larger Lévy parameter values could result in less
efficient search dynamics. Consistently, we find that larger values for p result in longer search times, that result in
a change of s, the steepness of the £ ~ sv relation, but maintain the qualitative linear shape resulting from our
approach (Fig. S4)

Both search processes happen in a lattice of 10pum squares with timesteps of §¢ = 1min, according to the estimated
speed of immune cell movement (10+£5um min~! [16]. We map the efficiency of the search (the inverse of average
time until the T-a; encounter) as a function of the antigen density ~; (Figure 3b,c in the main text).

We assume that molecular processes that happen in the lymph node, as well as activation or removal rates, are
not a direct function of antigen concentration [17]. They will not explicitly affect the neoantigen-response dynamics
that our model aims at capturing and will only add up to a constant rate. In the model this can be encapsulated
in the search constant s, which is not a function of antigen frequency ~;. Several rates for these processes have been
estimated in previous research, such as dendritic cell activation by antigens (0.07 cells min~—! [18]), Dendritic-T cell
antigen presentation (0.12 cells min~! [19]) or cancer cell apoptosis activation by T cells (0.038 cells min~! [20]). All
the molecular dynamics involved in these processes have a timescale of about 10° ~ 10'min. The timescale of our
modeled search process is of up to 10>min for subclonal antigens of small concentration (Fig. SX!!!), corresponding
with the notion that it might be a rate-limiting step in the overall immune response.

Furthermore, a rough estimate for the characteristic timescale of antigen emergence results in

T = ppanr ~ 2210~% antigens cell day ™ (14)

where up,(~ 1076 is the rate of antigenic mutations per gene per division (4 ~ 10~° for mutator phenotype cancers
[4,6]), n ~ 2x10~% the number of genes in the genome and r ~ 10~2 the replication rate per day. Therefore, even
for highly mutable cells, the rate of antigen presentation is of a much slower timescale compared to the rest of the
process, so that we consider antigens to be static during the immune search process. Long-term evolutionary dynamics
of immune evasion or epigenetic silencing are discussed in the main text and not yet incuded in this work.

C. Evolution of Neoantigen Distributions and Combination Therapy

Computer simulations are built to understand how neoantigen load and heterogeneity evolve in the scenarios
of tumor growth and cytotoxic therapy. The model consists in a birth-death Gillespie python simulation for the
exponential growth of cancer cells, that replicate at rate b and die at rate d, with » = b — d = 0.3day~!. At each
replication event, both daughter cells can gain a set of mutations taken from a Poisson distribution with parameter
1 = 1. We here consider that further mutations in DNA repair mechanisms that alter either p or the shape of the
Poisson distribution would speed up the overall neoantigen production process, which eventually results in a faster
pace of increased immunogeneicity. Specific dynamics for the evolution of mutational rates as in [21] have not yet been
included. From the set of all mutations, p, = 0.13 are considered to produce a neoantigen [22]. In our simulations,
each antigen is associated to the mutated cell and labeled with a natural number a1, as, as, ay, ... as in figure 1b. We
record the number of generated and present antigens and the frequency of each in the tumor by using the Counter
tool from the collections python module. This last measure can be used to obtain the evolution of average antigen
frequency along cancer growth.

To understand the effect of a generalistic targeted therapy, such as BRAF or MEK inhibitors in neoantigen distri-
butions, we introduce a drug-resistance mutation acquired with a smaller probability pr = 1074, This probability
might be much smaller for given molecular domains, but we use a value large enough to see the appearance of a
resistant subclone in a computable timespan. Once therapy is administered, sensitive cells die at rate dg = 0.9day !,
while resistant cells die at rate dgp = 0.01day~!, much smaller. This values only aim at generating a qualitative
image of the selective sweep for the resistant subclone. The introduction of these dynamics results in the reduction of



tumor size followed by the growth of a resistant subclone. Drug resistance is often present before targeted therapy is
administered [23], together with experimental evidence for neoantigen evolution continuing after therapy [24]. This
results in changes in the heterogeneity of the epitope landscape [24,25]. We follow the dynamics of neoantigens during
therapy to understand the effects of resistance on tumor and epitope heterogeneity.

Due to the computational cost of simulating a tumor population of realistic size, the simulations study a toy model of
a small tumor growth, where growth and probability of resistance mutations are scaled to the novel size. As previously
discussed, the first stages of tumor growth are those where neoantigens accumulate faster and heterogeneity increases
the most. We study the dynamics of these in the event of therapy resistance.

11l. DATA ANALYSIS
A. Measures of subclonal neoantigen dominance

To understand the effect of neoantigen load on subclonal immunogeneicity, we designed a minimal stochastic model
that indicated the possible existence of a linear trend D ~ «a; (Suppl. IL.A, Fig. 2a in the main text). We use the
data from [3] to study the consistency of this result.

Data from [3] contains the list and predicted immunogeneicity of the antigenic mutations of each subclone in a
dataset of 198 patients from 3 different publications. For each subclone we store the number of antigens («;) and
the estimated dominance of the subclone (D;), that authors find it corresponds the immunogeneicity of the most
dominant antigen. We plot both values for all subclones in all patients to study if there is a correlation. In particular,
a linear trend can be obtained by studying the data from [3] (Fig. 2b in the main text), but results are very scattered
and further experimental data should be collected to asses the confidence of our modeling approach of D(«;).

B. Survival ratios for different biomarkers

Data from [3] contains an organized neoantigen phylogeny for each tumor in anti-CTLA-4 treated melanoma [10,11]
and anti-PDL-1 treated lung cancer [9] datasets. This subclonal phylogeny makes it straightforward to compute, for
each patient, the number of identified subclones S and the total neoantigens of that tumor, ). ;. Furthermore, since
neoantigens are labeled, we study the presence of a given neoantigen across subclones, because not all neoantigens are
totally public or private and some are shared among specific subclones. The size of each subclone is also available in
the original dataset. This allows us to compute ~; and (v), the frequency of each antigen and the average neoantigen
frequency for each tumor.

For each patient, we add to the survival data from [3], both the load ), v; and the threshold () ). o;/S biomarkers.
This allows for a study of how these markers predict therapy prognosis (Figures 5 in the main text and S6). Survival
curves are obtained with KaplanMeierFitter from the lifelines python module. Log-rank tests are performed
with logrank test from the lifelines.statistics python module. Cumulative hazar ratios are computed with
NelsonAalenFitter from the lifelines python module.

References

1. Williams MJ, Werner B, Barnes CP, Graham TA, Sottoriva A. Identification of neutral tumor evolution across cancer types. Nat
Gen 2016;48:238-44.

2. Matzavinos A, Chaplain MA, Kuznetsov VA. Mathematical modelling of the spatiodtemporal response of cytotoxic Talymphocytes
to a solid tumour. Mathematical Medicine and Biology 2004, 21(1), 1-34.

3. Luksza M, Riaz N, Makarov V, Balachandran VP, Hellmann MD, Solovyov A, et al. A neoantigen fitness model predicts tumour
response to checkpoint blockade immunotherapy. Nature 2017;551:517-20.

4. Campbell BB, Light N, Fabrizio D, Zatzman M, Fuligni F, de Borja R., et al. Comprehensive analysis of hypermutation in human
cancer. Cell 2017, 171(5), 1042-1056.

5. Negrini S, Gorgoulis VG, Halazonetis TD. Genomic instability—an evolving hallmark of cancer. Nat Rev Mol Cell Biol 2010;11:220-8.

6. Loeb, LA, Kohrn BF, Loubet-Senear KJ, Dunn YJ, Ahn EH, OaSullivan JN, et al. Extensive subclonal mutational diversity in
human colorectal cancer and its significance. Proceedings of the National Academy of Sciences 2019, 116(52), 26863—-26872.

7. Bozic I, Gerold JM, Nowak MA. Quantifying Clonal and Subclonal Passenger Mutations in Cancer Evolution. PLOS Comp Biol
2016;12(2):1-19.

8. Abramowitz M, Stegun IA (eds). ”6.3 psi (Digamma) Function.” Handbook of Mathematical Functions with Formulas, Graphs,
and Mathematical Tables. New York: Dover 1972:258-9.



10.

11.

12.
13.

14.

15.

16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

. Rizvi NA, Hellmann MD, Snyder A, Kvistborg P, Makarov V, Havel JJ, et al. Mutational landscape determines sensitivity to PD-1
blockade in nonasmall cell lung cancer. Science 2015;348:124-8.

Snyder A, Makarov V, Merghoub T, Yuan J, Zaretsky JM, Desrichard A, et al. Genetic basis for clinical response to CTLA-4
blockade in melanoma. N Engl J Med 2014;371:2189-99.

Van Allen EM, Miao D, Schilling B, Shukla SA, Blank C, Zimmer L, et al. Genomic correlates of response to CTLA4 blockade in
metastatic melanoma. Science 2015;aad0095.

Schumacher TN, Schreiber RD. Neoantigens in cancer immunotherapy. Science 2015;348:69-74.

Stead LF, Sutton KM, Taylor GR, Quirke P, Rabitts P. Accurately Identifying LowaAllelic Fraction Variants in Single Samples
with NextaGeneration Sequencing: Applications in Tumor Subclone Resolution. Hum Mutat 2013;34:1432-8.

Yadav M, Jhunjhunwala S, Phung QT, Lupardus P, Tanguay J, Bumbaca S, Franci C, et al. Predicting immunogenic tumour
mutations by combining mass spectrometry and exome sequencing. Nature 2014;515:572-6.

Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED, Norose K, et al. Generalized Lévy walks and the role of
chemokines in migration of effector CD8+ T cells. Nature 2012; 486(7404):545-48.

Boissonnas A, Fetler L, Zeelenberg IS, Hugues S, Amigorena S. In vivo imaging of cytotoxic T cell infiltration and elimination of a
solid tumor. The Journal of experimental medicine 2007, 204(2), 345-356.

Krummel MF, Bartumeus F, Gérard A. T cell migration, search strategies and mechanisms. Nat Rev Immunol 2016, 16(3), 193.

Bianca C, Chiacchio F, Pappalardo F, Pennisi M. Mathematical modeling of the immune system recognition to mammary carcinoma
antigen. In BMC bioinformatics 2012. (Vol. 13, No. S17, p. S21). BioMed Central.

Engelhardt JJ, Boldajipour B, Beemiller P, Pandurangi P, Sorensen C, Werb Z, Egeblad M, Krummel MF (2012) Marginating
dendritic cells of the tumor microenvironment cross-present tumor antigens and stably engage tumor-specific T cells. Cancer Cell
21(3):4025417

Christophe C, MAiller S, Rodrigues M, Petit AE, Cattiaux P, DuprA@© L, Gadat S, Valitutti S (2015) A biased competition theory
of cytotoxic T lymphocyte interaction with tumor nodules. PLoS ONE 10(3):0120,053

Aguadé-Gorgorié G, Solé R. 2018 Adaptive dynamics of unstable cancer populations: The canonical equation. Evolutionary
applications, 11(8), 1283-1292.

Efremova M, Finotello F, Rieder D, Trajanoski Z. (2017). Neoantigens generated by individual mutations and their role in cancer
immunity and immunotherapy. Frontiers in immunology, 8, 1679.

Diaz Jr LA, Williams RT, Wu J, Kinde I, Hecht JR, Berlin J, et al. The molecular evolution of acquired resistance to targeted
EGFR blockade in colorectal cancers. Nature 2012, 486(7404), 537-540.

Anagnostou V, Smith KN, Forde PM, Niknafs N, Bhattacharya R, White J, et al. Evolution of neoantigen landscape during immune
checkpoint blockade in nonésmall cell lung cancer. Cancer discovery 2017, 7(3), 264—276.

Sharma P, Hu-Lieskovan S, Wargo JA, Ribas A. Primary, adaptive, and acquired resistance to cancer immunotherapy. Cell
2017;168:707—-23.

Kuznetsov VA, Makalkin IA, Taylor MA, Perelson AS. Nonlinear dynamics of immunogenic tumors: parameter estimation and
global bifurcation analysis. Bulletin of mathematical biology 1994, 56(2), 295-321.

Aguadé-Gorgorié G, Solé R. Genetic instability as a driver for immune surveillance. Journal for ImmunoTherapy of Cancer 2019,
7(1), 1-13.

Gerlee P, Anderson AR. The evolution of carrying capacity in constrained and expanding tumour cell populations. Physical biology
2015, 12(5), 056001.



4x107

"g=2*107, b=10%
g=2*107, b=2*10"%
35x107 F g=2*107, b=5*10"%
3x107 | 1
T 2.5x107 | g
=
=
2
- 2x107 E
o
g
L
£ 15x107 -
1x107 | E
5x10° - (1 —-b E ci) (g+ E c@) .
1 i
1 1 L . 1 1 L L

1x107 2x107 3x107 4x107 5x107 6x107 7x107 8xl07 9x107 1x10%
Tumor size

FIG. S1. The role of spatial constraints on the growth/predation ratio of the neoantigen threshold. A value for g is
estimated in [26]. However, we know that carrying capacities depend on tumor type and microenvironment constraints, and
also evolve in time [28]. In cancers where the carrying capacity is large enough (green and purple curves), the increase in
tumor size results in a region where growth exceeds immune predation.
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FIG. S2. Simulations and analytical estimates for the accumulation of antigens in exponentially and logistically growing
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FIG. S7 Correlation of patient biomarkers with months of survival after checkpoint inhibition therapy. The Kaplan-Meier

curves for decay of survival probability are depicted, with 30 anti-PDL-1treated Lung cancer patients from [9] separated in
two groups by the median of either neoantigen load (a, log-rank test P value 0.0123) and our threshold value v> /S (b,

log-rank test P value 0.1414). Cumulative hazard ratios (e,f) also support that including average neoantigen clonality does

not add predictive capacity to the well-accepted neoantigen load marker. This suggests 7> /S might be only a

complementary biomarker for immunotherapy prognosis in Melanoma (see main text results). Including the cohort of 30

anti-PDL-1 treated Lung cancer patients from [9] does not improve overall results (c,d,g,h). This might be also because of

the limited size of the lung cancer cohort.



Journal of Theoretical Biology 511 (2021) 110552

Contents lists available at ScienceDirget & Journal of
Tlllsqoi‘etical
. g 10l0gy
Journal of Theoretical Biology 5
journal homepage: www.elsevier.com/locate/yjtbi
The ecology of cancer differentiation therapy N

Ricard Solé >, Guim Aguadé-Gorgori6 *"

Check for
updates

2 ICREA-Complex Systems Lab, Universitat Pompeu Fabra, 08003 Barcelona, Catalonia, Spain
b [nstitut de Biologia Evolutiva (CSIC-UPF), Psg Maritim Barceloneta, 37, 08003 Barcelona, Catalonia, Spain
€Santa Fe Institute, 1399 Hyde Park Road, Santa Fe NM 87501, USA

ARTICLE INFO

Article history:

Received 31 January 2020

Revised 21 October 2020

Accepted 17 November 2020
Available online 10 December 2020

Keywords:

Cancer

Evolution

Ecology

Differentiation therapy
Habitat loss
Metapopulations
Cancer stem cells

ABSTRACT

A promising, yet still under development approach to cancer treatment is based on the idea of differen-
tiation therapy (DTH). Most tumours are characterized by poorly differentiated cell populations exhibit-
ing a marked loss of traits associated to communication and tissue homeostasis. DTH has been suggested
as an alternative (or complement) to cytotoxic-based approaches, and has proven successful in some
specific types of cancer such as acute promyelocytic leukemia (APL). While novel drugs favouring the
activation of differentiation therapies are being tested, several open problems emerge in relation to its
effectiveness on solid tumors. Here we present a mathematical framework to DTH based on a well-
known ecological model used to describe habitat loss. The models presented here account for some of
the observed clinical and in vitro outcomes of DTH, providing relevant insight into potential therapy
design. Furthermore, the same ecological approach is tested in a hierarchical model that accounts for can-
cer stem cells, highlighting the role of niche specificity in CSC therapy resistance. We show that the les-
sons learnt from metapopulation ecology can help guide future developments and potential difficulties of
DTH.

© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Cancer is a set of complex diseases, and the success of tumor
progression (and the eventual death of its recipient organism)
requires a number of changes to make cells capable of overcoming
selection barriers. These changes provide the source of prolifera-
tive power that makes tumors able to expand and evolve
(Weinberg, 2014). One particularly remarkable feature of cancer
cells is the loss of molecular markers associated to the differenti-
ated state. As the tumor evolves, some cancer cells appear to be
in a de-differentiated state closer to early developmental stages,
similar to that of normal stem cells, with increased potential for
self-renewal and plasticity (Magee et al., 2012). To some extent,
cancer is a disease of multicellularity: the cooperative order
required to maintain organism’s coherence is broken in favor of
unicellular-like traits (Aktipis et al, 2015; Davies and
Lineweaver, 2011).

The standard treatment of tumors has been grounded in the use
of either specific cytotoxic drugs or radiotherapy, or a combination
of both. The success of this approach has been discussed and even
questioned over the last decades (Gatenby, 2009). Treatments
involving a general mechanism of cell damage associated to toxic-
ity are often inefficient and can trigger evolutionary pressures that

https://doi.org/10.1016/j.jtbi.2020.110552
0022-5193/© 2020 Elsevier Ltd. All rights reserved.

select aggressive and resistant clones (Pepper et al., 2009). As a
consequence, cytotoxic therapies can create undesirable side
effects such as the development of metastasis. To a large extent,
despite the undeniable success in our increasing understanding
of the underlying molecular basis, cancer remains incurable.
Because of these limitations, novel approximations have been pro-
posed mainly from evolutionary and mathematical biology. They
are based on the view of cancer as an ecological and evolutionary
problem (Merlo et al., 2006; Korolev et al., 2014). In particular, eco-
logical principles can guide alternative insights to cancer develop-
ment and treatment (Basanta and Anderson, 2013).

One specially promising alternative to conventional cytotoxic
agents is the use of so called differentiation therapy. Here the
approach, early suggested more than 50 years ago (Pierce and
Wallace, 1971; Pierce, 1983) is inspired in the observation that
one hallmark of cancer is the loss or blocking of differentiation that
leads to cells with increased potential for self-renewal and plastic-
ity. Differentiation therapy (DTH) involves the use of diverse
molecular agents able to induce differentiation in cancer cells.
Since differentiated cell types are a terminal branch of develop-
ment, the goal is to facilitate this process and remove cancer cells
from the proliferative compartment. A growing family of DTH
agents include neural growth factors, all trans retinoic acid, arsenic
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trioxide, butyric acid or cAMP, which have been shown some
degree of differentiation-inducing capability both in vitro and/or
in vivo (de Thé, 2018). The success of DTH is well illustrated by
the best known case study, namely its use in Acute Promyelocytic
Leukemia (APL) by means of a combined cytotoxic therapy with
all-trans retinoic acid (RA) (Huang et al., 1988).

A few numbers reveal some features of the impact of DTH.
Again within the context of APL, before the use of DTH,
cytotoxic-based therapies increased the likelihood of remission
from 50 to 80% but with only a third of long-term survival. The
combination with RA changed drastically the situation, with 90%
remission and a 75% cure (see Cruz and Matushansky, 2012 and
references therein). Interestingly, when DTH alone is used, despite
cell differentiation perfectly well identified (it can actually be mas-
sive) only combination with standard cytotoxic agents seems to
account for long-term disease remission (de Thé, 2018).

Over the last years, DTH agents have been also used for treating
solid tumors. In contrast with the APL case study, the therapeutic
effect of the differentiation-inducing agents on solid tumors is
not strong when compared with that of conventional chemothera-
peutic agents. However, because most of the differentiation-
inducing agents can potentiate the effect of conventional
chemotherapy or radiation therapy, combination therapy might
be used as a second- or third-line therapy in patients with
advanced cancer. Are the solid nature of the tumors, their genetic
complexity or their hierarchical architecture leading factors for
this limited success? Here too, a theoretical model can be helpful
in interpreting the role of spatial competition effects and niche
specificity in understanding the possibilities of DTH. The analysis
of how differentiation therapy modulates the cancer habitat is
based in an ecological approach to tumor dynamics inspired in
well-established results from habitat loss and fragmentation in
metapopulations (Moilanen and Hanski, 1998; Hanski, 1999).

2. Metapopulation model of tumor differentiation therapy

The simplest mathematical approach taken here is based on the
assumption that two different therapies act together on the growth
of a cancer cell population. As a first dynamical description able to
characterize a wide set of disease types we use a generic logistic
growth model (Gatenby and Gillies, 2008), where cellular replica-
tion saturates as the tumor population approaches the carrying
capacity K of the micro-environment. Sigmoidal growth has been
proven to capture the tumor microenvironment effects of spatial
constraints, resource limitations or intercellular growth inhibition
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in a wide range of malignancies such as breast cancer (Norton,
1988), colorectal cancer (Misale et al., 2015) or chronic lympho-
cytic leukemia (Gruber et al., 2019) The cancer cell population is
also inhibited in two different ways. The first corresponds to stan-
dard therapies, based on cancer-targeted cytotoxic drugs. In this
first scenario, a population of cancer cells C follows:

%:rC(l—%)—éC (1)
where for simplicity the carrying capacity will be normalized to one
(K = 1) and thus C can be understood in terms of the fraction of host
tissue occupied by the tumor. The last term in the rhs indicates the
linear decay caused following from cellular death rate ¢ that can be
increased under chemotherapy. This is equivalent to the well-
known Levins model, where growth and decay would be related
to colonization and extinction (Levins, 1969). The analysis of this
system reveals that two equilibrium states C* are possible: extinc-
tion C* =0 and C; =1 — §/r. Tumor growth will occur when r > 4,
i. e. if growth overcomes the negative impact of treatment.

How can differentiation treatment be introduced in this
approach? The impact of DTH is dynamically very different. Previ-
ous research has studied mathematical modeling of tissue hierar-
chies by introducing differentiation as a rate at which progenitor
cells transition into non-cycling phenotypes (Dingli and Michor,
2006; Werner et al., 2016). However, before getting into this
multi-layer approach (Fig. 1b), we aim at understanding a specific
effect of DTH that has not been included in previous models: what
is the effect of non-cycling, differentiated cells as they occupy the
habitat that the tumor needs for expansion? (Fig. 1b, dashed box).
Lessons from habitat fragmentation have shown that these effects
might be potentially key in extinction of colonizing species
(Moilanen and Hanski, 1998; Hanski, 1999). In this context, the
DTH scenario discussed below is inspired in the nonlinear behavior
how fragmented landscapes (fig. 1c). Reductions of habitat size,
along with stochastic death, define viability thresholds that we will
connect with tumor extinction dynamics. In particular, these mod-
els reveal a somewhat counterintuitive feature that is relevant to
our paper: a reduction of habitat does not simply imply a similar
population reduction. Instead ad, extinction can occur despite the
existence of a remaining habitat.

As a fraction of cancer cells gets differentiated, they have an
impact in population dynamics as they contribute to the overall
population and thus limit the potential carrying capacity of the
system. Studies on control networks indicate that not only spatial
or resource constraints but also cellular signaling contributes to

Fig. 1. A metapopulation model of tumor differentiation therapy. In tackling alternative treatments to cancer progression, DTH exploits the potential of blocking tumor
growth by activating differentiation pathways. A combination of cytotoxic therapy (CTH) and differentiation therapy (DTH) as shown in (a) can successfully kill the tumor
when Both separately cannot. In (b), both the complete model including the dynamics of the differentiated compartment and the minimal habitat-loss approach (dashed box)
is shown. The DTH + CTH model is inspired in studies of habitat fragmentation (c), where habitat reduction, along with stochastic mortality, can trigger species extinction

(image courtesy of Mark Moffett). Drawings were made with Biorender.
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these dynamics (Vainstein et al., 2012; Yang et al, 2017; Komarova
and van den Driessche, 2018). If D weights the effectiveness of the
DTH the simplest extension of the previous model incorporates the
amount of

ac
e
The ecological equivalent here is the extended Levins model incor-
porating habitat loss (Bascompte and Solé, 1996, Fig. 1b, red box). In
habitat loss models, the D term is associated to the amount of habi-
tat that has been degraded thus being unavailable to colonization.
The interpretation within the context of DTH is easy: the fraction
of cancer cells that have become differentiated introduce a shift
1 — 1 — D in the maximum available habitat.. The non-trivial fixed
point is now:

rC(1-D—C)—oC )

Cj(D,é):l—D—? 3)

In this case, cancer decay will be expected provided that the frac-
tion of differentiated habitat (and thus the efficiency of DTH) is lar-
ger than a critical value:

D>DC:1—§ (4)

One particularly relevant and non-obvious result is that even if
there’s apparently room for further growth, the dynamics of the
system reveal a transition from cancer growth to cancer decay.
Once the critical point D. is reached, tumor dynamics faces
extinction.

In Fig. 2a we show a diagram for D against § where the critical
line D = D, has been used to separate the two phases associated to
cancer progression and cancer decay. The lower axis indicates the
efficiency of single cytotoxic therapy in the absence of DTH. A
threshold is found for §¢c = r as defined from model (1). By adding
the second axis (differentiation) we can see that lower levels of
chemotherapy are required to achieve tumor decay. This is at the
core of our explanation for the success of DTH: the combination
of both treatments can successfully achieve remission when the
right combination of chemotherapy and differentiation is used.
Since toxicity can be reduced provided that D is large enough,
the diagram supports the observed success and long-term remis-
sion in APL. On the other hand, the levels of differentiation that
are required for small 6 can be very large (perhaps unrealistically
large). An important point needs to be made here: could DTH only
also achieve remission? The model in this case reads:

ac
T
which can be shown to behave always in the same way: a logistic
growth towards an intermediate level C* = 1 — D with no threshold
value. This implies, and seems consistent with clinical evidence,
that DTH alone will fail to succeed given the lack of a remission
threshold.

We have used a specific functional form for population growth,
and the previous analysis deals with steady states involving large
populations. However, our results are robust, as shown by looking
at early tumor growth in a differentiated environment, where
C <« 1 - D, provides interesting differences between the dynamical
impacts of cytotoxic therapy and the possibilities of modifying
environmental carrying capacity through DTH. The model
described by Eq. (2) now reads

dc X
(E) . ~ [r(1-D)—-4]C (6)

rC(1-D - () (5)

with exponential growth solution, i. e. starting from an initial pop-
ulation C(0),
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Fig. 2. Phase space of cytotoxic-differentiation combination therapies. In (a), the
use of DTH can induce cancer remission even for death rates smaller than the tumor
cells replication rate. In (b), the nonlinear effect of DTH is pictured. For C < 1 - D,
the replication rate necessary for cancer outgrowth r, grows linearly with 6 (dashed
line), while increasing D imposes a stronger condition (curved black line).

C(t) ~ C(0)el-D-ok (7)

which gives cancer expansion only if the growth rate of the cancer
cells is larger than a threshold value r., namely

0
r>re=q1—p (8)
We can appreciate here the difference between the impact of cyto-
toxic therapy (acting linearly) and DTH (acting in a nonlinear fash-
ion). In Fig. 2b we summarize these results by displaying cancer
growth rates against the efficiency of DTH. In the absence of DTH,
the tumor will grow if r > ¢, but increasing habitat differentiation
results in a nonlinear increase of the proliferation rate that tumor
cells need to survive. A quick comparison with standard epidemiol-
ogy models shows that this corresponds to epidemics suppression
through vaccination: as more individuals are vaccinated and thus
moved out from the pool of potentially infected individuals, the
pathogen requires an increase in infectivity that might not be
achievable.
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How robust are the previous results? The model described
above lacks an obvious dynamical layer: the amount of differenti-
ated habitat follows in fact from cancer cells that have become dif-
ferentiated. This can be clearly described by introducing an
explicit, dynamical compartment of differentiated cells:

4 —rc(1-D~-C)—6C—7yCeh(C,D)

@ —yCp(C,D) - pD

where y is now the rate at which cancer cells differentiate, and
¢(C, D) describes the possible control network relating differentia-
tion to the amount of populations at play (Vainstein et al., 2012;
Yang et al, 2017; Komarova and van den Driessche, 2018). Further-
more, differentiated cells appear as they are produced by C, and dis-
appear at rate p due to cellular death and removal (efferocytosis).

Cellular fate decisions, and differentiation in particular, are
known to be controlled by regulatory signals related to different
cell populations (Yang et al, 2017). However, the exact control net-
works governing differentiation processes are widely unknown.
Knowing the clinical particularities of differentiation therapy,
namely its major failure when administered as a single anticancer
drug, can we infer possible expressions for ¢(C,D)?

Among the possible functional forms for differentiation control
¢(C,D), we expect a minimal function that is, at least, f(C). If not,
stability of the (0,0) attractor would follow from

s (G) =r-9-v0=0 (10

In this case, DTH alone would be able to eradicate tumor growth
without chemotherapy (6 = 0), provided that
r
> — 11

77 50=0) )
which contradicts, as discussed above, clinical observations (de Thé,
2018). Our minimal assumption, consistent with computational
results in (Vainstein et al., 2012) is that regulation of differentiation
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is orchestrated by the amount of surrounding C cells, not consider-
ing secondary regulation effects by D cells:

& — rC(1-D—C) — oC —yC*
(12)
@ =9C*—pD

namely, differentiation increases due to cell-cell interactions, as
introduced by the term yC%. This self-regulation term, similar to
the one captured by a cellular automata in (Vainstein et al., 2012),
is needed to capture that a larger differentiation rate alone will
not be able to stop tumor progression (Fig. 3a). This assumption
relies on a phenomenological approach to modeling, as the precise
regulatory mechanisms of cellular fate remain largely unknown
(Yang et al, 2017).

In this model, stability of the cancer-free state is only controlled
by chemotherapy, provided that § > r. What is the role of DTH
here? This can be seen by obtaining the attractor states as a func-
tion of y:

cp -T2 (13)
D) = gz | -0+ (407~ ar2(r - 7) | (14)
with

) = —2rir—) - p T (15)

b

Here, modifying y alone cannot modify the existence of at least one
attractor state that is real and positive (see Fig. 3a). However,
because of the combined effect of differentiation in both y and
tumor growth constraints r(1 — D), agents incrementing y will
reduce overall tumor size, thus reducing the time and dose of a sec-
ondary cytotoxic agent needed to completely erase the tumor
(Fig. 3b).

Several interesting points arise from describing cancer differen-
tiation under the perspective of habitat-loss ecological models.
First of all, the minimal model of DTH as habitat loss captures
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Fig. 3. DTH and chemotherapy in the C,D model. In a, increasing levels of 7 do not totally eradicate the tumor, but reduce the overall C (dark line) D (red line) populations,
as it can be seen by computing the analytical attractor states (see SM). The green line indicates how the equilibrium C population would evolve in the absence of habitat-loss
effects, indicating the relevance of considering the ecological dynamics of DTH. This is indicative of the possibilities of DTH when administered with cytotoxic therapies. In b,
three different values of increasing y show that a tumor targeted by CHT needs shorter chemotherapy interventions as DTH increases. (For interpretation of the references to

color in this figure legend, the reader is referred to the web version of this article.)
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the existence of a differentiation threshold for tumor arrest. This
highlights the role of habitat in tumor growth, with differentiation
therapy driving an all-or-none response similar to that seen in APL
treatment outcomes (Huang et al., 1988). When introducing the
cellular dynamics of the differentiated compartment D, the sharp
threshold gets diluted, but the model still shows the opportunities
of DTH provided it is not delivered as a single agent.

Both model versions indicate that DTH is only effective when
combined with cytotoxic therapies directly targeting the cellular
death rate 6 (Fig. 1). This could explain why arsenic, that triggers
p53-driven senescence apart from differentiation (Ablain et al.,
2014), is functional as a single-agent therapy, while retinoic acid
and other differentiation drugs that do not target cell death specif-
ically require combined cytotoxic therapy to success (Dos Santos
et al., 2013). The study of differentiation and tumor habitats
becomes even more relevant in the context of Cancer Stem Cells
(Meacham and Morrison, 2013). How do results change when a
tumor seeding population resides in a different habitat?

3. Differentiation therapy in hierarchical tissues

A broad range of cancer types are hierarchically organized, with
a population of cancer stem cells (CSC) driving tumor growth and
plasticity (Meacham and Morrison, 2013). Besides the relevance
of this in radio- and chemotherapy resistance (see e.g. Dean
et al., 2005), we are interested in understanding if the hierarchical
architecture specific to a stem cell compartment is related with the
fact that most solid and genetically complex tumors do not show
valuable responses to differentiation therapy (Cruz and
Matushansky, 2012; de Thé, 2018).

A wide range of mathematical models have been powerful in
highlighting the sometimes undercover role of cancer stem cells
(see e.g. Michor et al., 2005; Michor, 2008 and references therein).
We here consider a minimal view of the accepted modeling of tis-
sue architecture as a set of hierarchically organized cancer subpop-
ulations (Michor et al., 2005; Dingli and Michor, 2006, Solé et al.,
2008, Fig. 4). Following the previous approximations, we here
add a seeding CSC compartment, S:

& — 1,S¢(S,C,D) — 755> — 85C
€ — C(1 =D — C) +75S* — 6C — yC? (16)
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Fig. 4. Tissue architecture and the ecology of tumor differentiation therapy. The
minimal hierarchical model involves a cancer stem cell compartment S that
replicates under the constraints of a well-separated niche, dies under cytotoxic
therapy with diminished effectivity (s < 6) and seeds a progenitor cancer
population C..
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Here C indicates the progenitor compartment, that differentiates
following self-regulated mechanisms and feels the crowding (spa-
tial) effects of these terminal cells D. This population, in turn, is
seeded by a particular CSC compartment S, that replicates at rate
rs. The effect of chemotherapy is captured by Js, which is in gener-
ally much smaller than that of non-stem cancer cells due to plastic-
ity or quiescence potential of CSC. Differentiation rate into the
general progenitor compartment is captured by y and in a first
approximation is believed to follow autocontrol regulation as in
(Vainstein et al., 2012). Replication is again constrained by how
populations occupy space, here ¢(S,C,D). Stem cells (and CSCs in
particular) are known to inhabit in a well-differentiated spatial
niche (Plaks et al., 2015; Voog and Jones, 2010), such as the bone
marrow for hematopoietic stem cells (Adams and Scaden, 2006).
This indicates that, most often, CSC replication -in contrast with dif-
ferentiation- might not be regulated by the density of the tumor
populations. Here we have ¢(S,C,D) = ¢(S).

Furthermore, crowding effects observed in the bone marrow,
together with niche and carrying capacity modulation (Dingli and
Michor, 2006; Gerlee and Anderson, 2015), indicate that a logistic
growth model with absolute saturation (r(C = K) = 0) might not be
accurate to describe CSC plasticity. A more general saturating func-
tion ¢ considers an adimensional CSC sensitivity to crowding 0
(see Dingli and Michor, 2006). In our case, the model is written as

8 = 1Sl — 758 — 8sC
€ — rC(1 — D — C) +78” — 6C — yC* (17)

®=7C~pD

with the particularity that CSC replication does not totally stop,
rather it slows down as the CSC niche becomes populated. This
crowding effect cannot be correctly captured by cellular automata
models studying DTH (such as Vainstein et al., 2012), as the number
of neighbouring cells is considered constant. What is, once again,
the effect of space in DTH? Could this CSC niche-specificity explain
why some cancers are resistant to differentiating agents?

It can be seen how DTH, even if considered in a totally symmet-
ric fashion where yg = 7, does not have the same effect in a hierar-
chical tumor if CSCs inhabit a different niche (Fig. 3a). In particular,
the model shows that, for low differentiation rates, the general
cancer population needs a similar time until eradication as with
the logistic growth model (Fig. 5a, red curves). However, as y
increases, not only CSCs residing in a different niche, but also the
rest of the tumor becomes harder to eradicate (black curves). The
model therefore captures how stem cell resistance to differentia-
tion approaches not only follows from resides in cellular plasticity
(Foo et al., 2009; Meacham and Morrison, 2013), but also from the
role of habitat ecology in niche construction and independence
(Adams and Scaden, 2006).

Along with CSCs death and differentiation, sensitivity to CSC
density 0 also plays a role in tumor extinction. Increasing 0 results
in a linear decrease in the time of tumor eradication under
chemotherapy (Fig. 5b). This result, together with the overall indi-
cations of this work regarding the role of spatial effects of DTH,
supports the application of niche therapy for CSCs (Plaks et al.
2015). Previous efforts had already considered the possibility of
disrupting the CSC niche, such as through VEGF inhibition reducing
blood vessel production (Calabrese et al., 2007). Together with this,
our results propose that CSCs become weaker to DTH when
increasing their sensitivity to the rest of tumor populations by
physical disruption of their niche.
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4. Discussion

In this paper we have shown how ecological models of habitat
loss can shed light into several aspects of differentiation therapy
in cancer. This is done by using habitat loss as a surrogate of differ-
entiated patches, while an independent extinction term is matched
by the effects of cytotoxic therapy. Early models of ecological
decline due to habitat loss show that a well-defined threshold
exist: once a given critical loss is present, no viable populations
are allowed, despite that some amount of habitat is still present
(Levins, 1969; Bascompte and Solé, 1996). Within the cancer con-
text, when a critical amount of cancer cells have been differenti-
ated, remission results in a similar fashion, provided that
standard cytotoxic therapy is also present as seen in the clinics
of APL (de Thé, 2018). However, the dynamical nature of differen-
tiation implies that not a sharp threshold, but rather a progression
towards cancer eradication result from DTH. In order to test the
generality of the approximation, both an homogeneous metapopu-
lation model and an extension considering the specificity of a can-
cer stem cell compartment and its niche have been explored. The
models consistently explain several qualitative observations con-
cerning the impact of DTH.

On the one hand, approaching differentiation as an ecological
process for a simple population and its terminally differentiated sur-
rogate can predict interesting dynamics in genetically simple can-
cers such as APL where DTH has been successful. Our model
predicts a well defined threshold for the amount of differentiated
habitat, beyond which a malignant population is not able to pro-
gress. The fact that eradication with differentiating agents is totally
dependent on cytotoxic therapy is consistent with studies on DTH
for leukemia, where arsenic, that triggers p-53 driven senescence
as well as differentiation, is effective as a single-agent therapy, while
other agents might require combined cytotoxicity. Further learning
from the single population model indicate that DTH becomes much
more effective than chemotherapy for small, growing tumors away
from the carrying capacity of their tissue. This result opens novel
questions on the role of DTH as an early therapeutic scheme.

An extension of the ecological model introduces a minimal
architecture to understand the possible role of a cancer stem cell
niche in sensitivity to DTH. In particular, we aim at understanding
how niche specificity in CSCs might be playing a role in resistance

to DTH agents for certain tumor types. The model indicates how a
hierarchical tumor seeded by a CSC population inhabiting a sepa-
rated niche might be much more difficult to eradicate through
DTH than in well-mixed approaches. This indicates that not only
the cellular characteristics of cancer stem cells, but also the ecolog-
ical interactions building their niche (namely, crowding and spatial
competition) might be key in understanding their resistance to this
kind of therapeutic approaches.

A large body of literature concerning mathematical modeling of
cancer tissue hierarchies has grown in the course of recent years
(Foley and Mackey, 2009), from the understanding of cell fate deci-
sions (Sun et al., 2015), the molecular basis of cytokine and division
dynamics (Stiehl and Marciniak-Czochra, 2012; Stiehl et al., 2015)
or the study of control networks regulating CSC differentiation
(Yang et al, 2017; Komarova and van den Driessche, 2018), among
many others. Despite using a similar fundamental background, our
approach using the learning of habitat ecology is able to mathe-
matically describe the phenomenological role of spatial interac-
tions and how these, and the anatomical niches, might result in
success or failure of DTH combined with other agents. Further-
more, the role of spatial distribution of CSC-niche interactions,
and the possibility of disrupting the barriers of this distribution,
appears as a possible improvement to the cytotoxic + DTH combi-
nation approach when cancer stem cells are in place.

Several shortcomings, potential extensions and implications of
this work can be outlined. First of all, the model involves the most
minimal set of rules and assumptions, sacrificing the details of the
population description in favor of an ecological picture that can be
intuitively interpreted. Real tumours include several layers of com-
plexity, such as cell-cell interactions or micro-environmental cues
that we have captured through phenomenological modeling alone.
Moreover, models of habitat loss including noise reveal the impor-
tance of considering several sources of disturbance, from demo-
graphic stochasticity to large catastrophes (Casagrandi and Gatto,
2002).

Further exploration would require considering, for example, the
heterogeneous spatial organization and its Impact on tumor
growth (Sottoriva et al., 2013). However, the need for a more real-
istic model does not invalidate the key findings of our study. In
fact, a similar criticism could be raised in relation to the simplicity
of habitat loss models derived from Levins equation. Despite their
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minimalism, the simplest models (also ignoring the details of
species-specific metabolic or physiologic features) have been
extremely valuable in understanding the problem as well as how
to prevent its consequences (Lande, 1988; Hanski, 1999).
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Phenotypic switching in cancer cells has been found to be present across tumor types. Recent
studies on Glioblastoma report a remarkably common architecture of four well-defined pheno-
types coexisting within high levels of intra-tumour genetic heterogeneity. Similar dynamics have
been shown to occur in breast cancer and melanoma, and are likely to be found across cancer
types. Given the adaptive potential of phenotypic switching (PHS) strategies, understanding how
it drives tumor evolution and therapy resistance is a major priority. Here we present a mathemat-
ical framework uncovering the ecological dynamics behind PHS. The model is able to reproduce
experimental results, and mathematical conditions for cancer progression reveal PHS-specific fea-
tures of tumors with direct consequences on therapy resistance. In particular, our model reveals
a threshold for the resistant-to-sensitive phenotype transition rate, below which any cytotoxic or
switch-inhibition therapy is likely to fail. The model is able to capture therapeutic success thresh-
olds for cancers where larger PHS architectures are in play, such as glioblastoma or melanoma.
This results in a set of conditions for combination therapies targeting replication and phenotypic
transitions at once. Following our results we discuss transition therapy as a novel scheme to target
not only combined cytotoxicity but also the rates of phenotypic switching.

Keywords: Cancer ecology, phenotypic switching, epigenetic plasticity, combination therapies, transition therapy.

I. INTRODUCTION

Phenotypic plasticity is a widespread phenomenon
across the tree of life. From bacteria to multicellular de-
velopment, epigenetic pathways generate a population of
diverse phenotypes from homogeneous, stable genomes
[1-4]. Phenotypic switching (PHS) is a stochastic phe-
nomenon known to maintain population diversity in uni-
cellular organisms as a means to survive in fluctuating
environments [5,6]. This mechanism can also be found
to boost non-genetic heterogeneity in a special multicel-
lular context: cancer cell populations [7]. In this context,
tumors can take advantage of already existing differen-
tiation hierarchies to promote unlimited self-renewal or
senescence and drug resistance with no need of selecting
somatic mutations [8,9].

Phenotypic switching is a source for non-genetic het-
erogeneity in cancer beyond Cancer Stem Cells hierar-
chies [7,10,11]. The most recent example comes from
Glioblastomas, where tumor cells are found to orga-
nize around four well-defined meta-modules resembling
-though aberrant- healthy brain cell lines [12]. This ar-
rangement is highly robust: tumors initiated by single
cells from a biopsy evolve towards the previous pheno-
typic composition, regardless of the specific phenotype of
the original cell, showing that stochastic transitions hap-
pen between all of the four phenotypes. Similar dynamics
have been described in breast cancer [13], as well as in
melanoma [14,15] and prostate cancer [16], and are nowa-
days considered key in the observation of non-Darwinian
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evolution of adaptive resistance across cancer types [17-
19].

The existence of phenotypic plasticity in tumors has
important consequences for therapy. Tumor relapse af-
ter therapy is usually acknowledged to be a consequence
of pre-existing or acquired resistance mutations, present
in a given subclone that survives and repopulates the tu-
mor (see e.g [20]). This image is often correct, yet further
mechanisms in many therapeutic settings, from stem cell
senescence [21] to immunological editing [22] prove that a
wider scope is key when trying to understand therapeutic
failure. The stochastic nature of switching between rogue
cellular phenotypes allows robust and plastic tissue archi-
tectures, resulting in an adaptive mechanism that might
be even harder to target [17]. How does this affect ther-
apeutic strategies? Models of phenotypic switching have
helped to explore cancer invasion [23-25] or the possi-
ble role of plasticity in maintaining one or more resistant
phenotypes in place [19,26].

Here we present a toy model to study the character-
istics of phenotypic plasticity in cancer by exploring the
population dynamics of competing replicators exhibiting
transitions among them (Fig. 1). The model allows in
particular to analyze the rise of the switching populations
and the equilibrium conditions for stable heterogeneity,
as well as the requirements to tumor extinction with im-
plications on novel therapeutic approaches when more
than two phenotypes are in place.

Il. PHENOTYPIC SWITCHING DYNAMICS

In this section we explore several features exhibited
by different versions of a toy model of cancer cell pop-
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FIG. 1 Phenotypic switching in cancer. Genetic analysis
reveals four transitioning phenotypes in Glioblastoma (a) and
thus a set of cancer cell populations (b, after Neftell et al.,
2019). Different transitions occur, linking phenotypes Cj by
means of a matrix of transition rates, as sketched in (c).

ulations exhibiting PHS. Our goal is to provide some
basic bounds to the response of these systems to cyto-
toxic or targeted agents acting on the switching dynam-
ics. Ecological models of heterogeneous cancer popula-
tions can be represented by means of a set of replicator
equations [27]. Counsider a set of N phenotypes, where
C = (C4,...,Cn). The i-th cancer cell type population
will change in time following:

dc}
dt

=Ti(C)Ci + Y wkiCr — Y _wixCs — C;p(C) (1)
kot kot

with (i,k = 1,...,N). Here I';(C) indicates the func-
tional form of the replication rate associated with the
i—th clone, which in general will be a nonlinear func-
tion of clone or tumor size [28]. The three last terms
in the rhs correspond to (1) the phenotypic transitions
from other phenotypes to phenotype C; (i. e. Cx — C})
(2) the complementary transitions from C; to the rest (i.
e. C; = C) and (3) an outflow term that allows intro-
ducing competition and resource limitation effects. The
previous set of equations can be re-written as follows:

extinction phase

phenotypic switching phase

Wa; w21

FIG. 2 Bifurcation diagram for the reduced N = 2 PHS
model with two strains, as defined by equation (5) where the
C; population is analyzed under CPC. This diagram repre-
sents the fixed points C7 against the transition rate wa1. A
critical switching threshold is defined here for a given ws;
separating a heterogeneous phase (gray) from a homogeneous
one. Here 11 = 1,72 = 3/2 and wi2 = 1/2, which gives a
critical value wa1 = 1.0 (equation 8).

dc;
el Fi(C)waik C’i+ZWMCk*C¢¢(C) (2)
ki k#i

By aggregating those terms affecting C; we can appreci-
ate the fact that the effective growth rate of C; involves a
trade-off between intrinsic replication and the likelihood
that it shifts to a different cell type. However, a negative
balance can be counterbalanced by the net inflow from
the rest of the phenotypes holding C; in place. As a first
approximation, a constant replication rate is associated
to each phenotype (i. e. I';(C) = ry).

What is the impact of PHS on potential therapeutic
approximations? Are there novel attractors or alterna-
tive pathways to avoid targeted death? Relevant insight
can be obtained by considering a minimal system, where
a finite set of cancer clones replicate at rate r;, defined as
the effective difference r; = b; — d; between birth b; and
death d; rates, and that can be negative when cytotoxic
therapy is effective (increasing death beyond birth, see
Fig. 3a). In this section we consider the simplest models
of PHS in cancer populations.

A. Predictable heterogeneity in PHS tumors

Experimental evidence in cancer populations exhibit-
ing PHS shows that a secondary tumor evolves to the
original phenotypic distribution of the primary malig-
nancy, regardless of the initiating cell type [12,13]. This
is an interesting outcome of PHS: the system has the po-
tential to reliably restore population diversity in a pre-



dictable fashion. Instead of the often unpredictable het-
erogeneity driven by somatic mutations, we have here
a surrogate of developmental dynamics driven by epige-

netic changes. A first mathematical approach and its
consequences are easily derived considering a popula-
tion of two switchers (N = 2) under a constant pop-
ulation constraint (CPC) [6]. Such CPC constraint al-
lows for direct analysis of population fractions or densi-
ties ¢; = C;/ Zu C,,, and writes

dc

dit1 = (r1 —wi2)c1 + warcz — c19(C) (3)
dc
cTt2 = (r2 — wa1)e2 + wizer + —c14(C) (4)

This equation reduces to a simple competition model
when w;; = 0. Darwinian selection would then be de-
cided by the highest r;, eliminating the possibility for

heterogeneity.
Assuming constant population, the competition term
reads ¢(C) = ric; + roco and counsidering that ¢; are

here densities and ¢; + ¢o = 1, this is in fact the average
replication rate, i.e. ¢(C) = (r). Using this result, it is
possible to reduce the system to a one-dimensional ordi-
nary differential equation for the fraction of one of the
populations, say c¢;i:

—_— = ’701(1 — Cl) — Wi12C1 (5)

with v = (r; — 79 — wey). This model displays two fixed
points, namely ¢} = 0 (extinction) and the heterogeneous
point (where both populations persist) given by

cg=1—-—7=

1 5 (6)
Interestingly, the presence of an heterogeneous attractor
that is not dependent on initial phenotypic composition
can be compared to experimental evidence of cell growth
recapitulating original clonal distributions [12,13]. In
particular, it can be seen that the attractor for popula-
tion distributions, ¢} /¢35, is consistent with the long-term
stable distribution in the absence of intrinsic competi-
tion, lim; o, C1(t)/Ca(t), because the CPC assumption
is equivalent to formulating the model in terms of popu-
lation concentrations (see SM). This result is consistent
both analytically and through computer simulations, so
that the minimal model is able to generate the basic in
vitro properties of phenotypic switching. This, in turn,
indicates that experimental observations of phenotypic
distributions can be used to estimate the switching pa-
rameters that hold the heterogeneous cellular architec-
ture, as previously seen in [13,19,29].

Under which conditions is the system able to maintain
heterogeneity beyond the pressure of strictly-competitive
Darwinian selection? The stability analysis of this sys-
tem shows that heterogeneity will persist (i.e. ¢f,c3 > 0)
and any initial condition will recapitulate the whole at-
tractor distribution provided that

W21 — Wi > T2 —T1. (7)

This inequality has an interesting, intuitive interpreta-
tion: ¢; will be positive, even if r9 > r{, provided that
the difference between transition rates is larger than the
difference between growth rates, highlighting the ability
of PHS to maintain tumor heterogeneity (Fig. 2). This
allows defining a threshold value: heterogeneity will be
observed when

why = wig + (12 — 1) (8)

which determines the threshold condition for the switch-
ing rate woy required to sustain C7, being other param-
eters fixed. The basic bifurcation diagram associated to
this model is shown on figure 2. Two phases are in-
dicated. The first is associated to the diverse switch-
ing phenotypes (for we; > w§;, gray area). Here a sin-
gle attractor exists, which can be reached from any ini-
tial condition. Another, homogeneous phase occurs for
we1 < w§; where only the fastest replicating population
persists.

The transition defines a tipping point that is deter-
mined (with other parameters fixed) by the rate of re-
covery provided by the PHS mechanism. The diagram is
obtained under unfavorable replication: we use r; < 79
which, in the absence of PHS, would inevitably lead to
the extinction of Cy. The presence of a heterogeneous
phase indicates that phenotypic populations can persist
even in unfavorable competition scenarios. How does the
system evolve when these populations are targeted by
therapy?

B. PHS in the Sensitive-Resistant scenario

A first instance of PHS in cancer is observed in tu-
mors deploying temporary resistant cell subpopulations
[17]. In certain settings, such drug-tolerant phenotypes
can arise in the absence of resistance-conferring alter-
ations [30,31], indicating the role of non-Darwinian epi-
genetic plasticity in generating and maintaing tolerant
phenotypes in place [29]. Modeling PHS can uncover the
underlying dynamics of sensitive-resistant populations,
proposing specific therapeutic outlines.

In order to formulate this model, we remove the com-
petition term ¢;¢(C) in the previous equations (3-4) and
consider phenotypic populations away from their carry-
ing capacity. Now C; are not densities, but actual popu-
lation counts. We study the following linear system

dCy

W = (Tl — w12)01 + wgng (9)
dcC
dilfQ = w12C1 + (7"2 — ’u)gl)CQ (10)

The unbounded system does not admit a single-
population solution: the tumor either gets extinct or
both C;(t) and Cy(¢) undergo exponential growth. As
previously discussed, long-term phenotypic composition
C1/C4 is still predictable and independent from initial
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FIG. 3 Transition therapy. Targeting proliferation of a single phenotype in a switching tumor (A). In the presence of PHS
strategies, the resistant population r1 is able to maintain tumor growth. Targeting sensitive cell death (d2, B) or inhibiting
transitions towards resistance (ws1, C) is likely to fail provided resistant cells replicate faster than they transition into the
sensitive phenotype (r1 > wi2). PHS modeling indicates that only therapies draining c¢; into c2 are effective across parameter

settings (C).

conditions (see SM), as observed in experimental setups
[12,13]. We know that the (0,0) attractor is stable if both
effective growth rates are negative. Since r; = b; — d;,
this can be true if death rates for both cell types are
increased beyond their birth rates by means of two dif-
ferent drugs. However, provided C is a drug-tolerant
state [17], chemotherapy will only increase death rates of
the Cs population.

Let us introduce a nomenclature for cytotoxic-sensitive
and -resistant phenotypes. Assume that cell type C; has
a positive replication rate r; > 0 under chemotherapy. In
this setting, the drug-resistant phenotype will be labeled
Cpg, growing at rate rz. The death rate of cell type Co
can be increased by means of a cytotoxic therapy, so that
r9 = by — dy could shift from be positive to negative (Fig.
3A), and be labeled Cg, with rg = bg —ds < 0. The
sensitive-resistant system now writes

dcC
Tf = (TR*wRS)CR+wSRCS (11)
dcC
7: = (7”5 — wSR)CS 4+ wrsCr (12)

Stability analysis of the tumor-free attractor results in
a threshold replication rate for Cr (see SM),

WRS
1+ (wSR>
rs]

If Cg replicates faster than this threshold level, it will
repopulate the tumor and maintain the sensitive popula-
tion Cs (Fig. 3). This is consistent with recent analyti-
cal results from [26] for the progression of a tumor in the
presence of a drug-tolerant phenotype.

This result uncovers several potential therapeutic im-

plications. In the setting that Cr is a drug-tolerant phe-
notype, therapy could focus on increasing dg, the death

ri = (13)

rate of the sensitive phenotype [32], decreasing wgg, the
rate at which the sensitive phenotype becomes resistant
[33], or increasing wgrg, the rate at which the resistant
phenotype transdifferentiates into drug-sensitivity [29].
All approaches could potentially drive tumor extinction
(Fig. 3).

However, if the drug-tolerant phenotype replicates
faster than its transition rate (rg > wgs), which is a
plausible setting considering measured w;; rates in some
cellular substates [13], any efforts on dg or wgr will fail
at eliminating the tumor (Fig. 3B, 3C). Mathematically,
equation (11) implies a minimal resistant-sensitive tran-
sition rate, below which the resistant population persists:

Whs = rr (1+05) (14)
with 0s = wgr/|rs| being the transition-to-death ratio
of the sensitive population. In very effective therapy set-
tings,  ~ 0 and wjg = rr. The only path to eliminating
the drug-resistant tumor is by increasing its transition
rate beyond the threshold cycling rate.

This threshold has potential implications on switch-
ing inhibition, in that therapies targeting inhibition of
sensitive-resistant transitions (wgg ~ 0) are likely to fail
unless the same drug alters rgp or wgrg. This is a key
result regarding therapeutic options targeting EMT in-
hibition to prevent metastases [34,35].

Another particular example here is provided by the
discovery of sensitive transient states in chemotherapy
experiments on breast cancer [29]. In them, resistance
to first-line chemotherapy implies a transition to a tran-
sient phenotype T that can be resensitized by a sec-
ond drug. Initial chemotherapy increases wgrr, while
the second drug resensitizes this transient state to initial
chemotherapy, inducing wrg. The overall effect is that of
a combination scheme that increases wgrg. In the specific
setting of Goldman et al., the measured transition rates



from stem-cells to the induced state is wrr ~ 0.96day !,

while 7 ~ 0.5day !, so that therapeutic efficacy corre-
lates with the transition threshold condition (14). To
which extent is this specific therapeutic approach robust
across cancer types?

Our results highlight the potential limitation to be ac-
counted for when designing such PHS therapeutic strate-
gies: increasing wgg, the rate at which Cr switches to
Cg, can drain the replicative phenotype into the one we
can kill by cytotoxic therapy (Fig. 3D), only if it over-
comes Cr replication. Transition to a sensitive state will
only be effective if the resistant state cannot persist and
maintain the PHS architecture.

A therapeutic corollary of this is that a most effective
combination therapy in a sensitive-tolerant setting would
contemplate increasing wrg while also decreasing rr to
facilitate the threshold condition. Even if initial cyto-
toxic efforts might not slow down Cp replication, other
specific microenvironmental cues, in the form of antian-
giogenic [36] or dormancy-inducing [37] drugs targeting
cell cycling rate are likely to help the overall transition
therapy scheme.

C. Targeting PHS in larger architectures (N > 2)

We have used the N = 2 case to illustrate the con-
cept of cancer growth with switching and how differ-
ent growth-transition trade-offs can influence therapeutic
outcome in simple Sensitive-Resistant scenarios. But tu-
mor architectures often include more than two coexisting
phenotypes [12,13] beyond the effects of chemotherapy.
Given a larger system with N phenotypes that switch
stochastically, can our mathematical framework define
the limits of PHS resilience? The analytical approach for
N > 2 independent phenotypes becomes harder as we
add dimensions, and results now depend on N? param-
eters. However, certain average effects of given therapy
schemes can be predicted under symmetry assumptions.

Let us here suppose a common therapeutic scheme,
where certain phenotypes are sensitive to a first drug,
while others tolerate it. This could be the scenario en-
countered in the development of adaptive resistance to
docetaxel (DTX) in breast cancer (N=3, [13,29]) or the
targeting of either EGFR, PDGFRA, or CDK4 only af-
fecting one out of four phenotypes in Glioblastoma (N=4,
[12]).

The problem can be tackled as follows. Let us first
consider the N = 3 case, as indicated in figure 3a. In
order to reduce the complexity of our calculations, we
consider a coarse-graining assumption: all resistant and
sensitive cells do so at equal rates, rg and rg respectively,
and transition rates between replicating and dying cells
are also homogeneous. This is summarized in figure 3b.

In this scenario, suppose a system with two phenotypes
that replicate at rg > 0 and hold a sensitive phenotype

FIG. 4 Transitions for N=3 phenotypes. For a N = 3
case study, the flow diagram (a) indicates all the transition
and replication rates. In order to determine the requirements
for successful therapy when a cytotoxic drug is used against
(3, a homogeneous model (b) is used. + subscripts refer to
therapy tolerant or resistant phenotypes C'r, while — indicate
those phenotypes with negative effective replication under the
action of a drug.

rs < 0:
% = (rr — wrr — Wrs)C1 + wWrRrC: + wsrC3 (15)
% = (rr —wgrr — wWgrs)Ca + wrrCi + wsrCs (16)
% = (rs —2wsr)Cs + wrs(C1 + C2) (17)

Let us now indicate by or the total population of re-
sistant cells, I. e. o = C; + Cs (figure 3b). In this case,
the system reduces to

d

% = oprp — opWgs + 2wsrCs (18)
dC

7; = C3rg — 2C3wsRr + WRSOR (19)

For this two-compartment system, it can be shown that
the minimal threshold for the resistant population repli-
cation rate is:

WRS

T*R = — .
(1 + 2“’SR>
|75

(20)

This calculation, under our homogeneity assumptions,
can be done in a systematic way for a switching popula-
tion with of N cell types (see SM). Specifically, we can
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therapy in PHS.

consider np replicators with a positive effective growth
rate rg and ng sensitive cell types targeted by ther-
apy, so that their death rate increases beyond birth and
bs —dg =15 <0.

By aggregating the two different populations in o and
og compartments, the problem of a tumor with N switch-
ing phenotypes can be studied (see SM). It can be shown
that the minimal growth rate for the positive replicators
to sustain the tumor is

s . (2

LHN—nQW%)

rr(Wgrs,ns) = ng
( =

Complete cancer eradication can happen if all phenotypes
are targeted. Targeting less than four phenotypes can
prove useless if the other cell types maintain diversity by
replicating faster than (3) (Figure 5). Through sequen-
tially targeting several phenotypes, we can increase ng
and decrease ngp = N — Ng accordingly. This results in
a nonlinear increase in the pressure to maintain diversity
and growth (Fig. 5A).

The existence of a threshold relating replication (i.e
drug sensitivity), targeted phenotypes and phenotypic
transitions to overall therapy effectivity is consistent
with results in [19], where several combinations of drugs
inhibiting plasticity-mediated resistance are tested in
BRAF mutant melanoma. There is direct correlation be-
tween the effect of drugs on transition rates and overall
cellular growth, with failure of vemurafenib-only ther-

apy related with rg overcoming the threshold (21) for all
plastic populations [19].

For a GBM setting, the threshold could be potentially
exploited by a multi-gene, multi-drug approach able to
target the 3 main genetic pathways of the AC-like, OPC-
like and NPC-like populations through EGFR, PDGFRA
and CDK4 respectively [12]. Each novel target is likely
to induce a strong pressure for replication to resistant
phenotypes or, eventually resulting in the mesenchymal
phenotype alone bearing the pressure of the replication
threshold (ng = 3, Fig. 5A). This is a specially rel-
evant result, since it provides a rough estimate of the
potential obstacles to replication-oriented therapy posed
by the presence of N-dimensional switching.

What is the role of transition rates in therapeutic
schemes for N > 27 We know from the smaller system
(11)-(12) that increasing C'r draining beyond wgrs > rr
is a necessary condition for tumor eradication. When
N phenotypes are at place, the condition for Transition
therapy to success writes:

WSR

TR Wsr
]

WRS > " 1+ (N — TLS) (22)

The multiple phenotypes architecture threshold differs
from equation (14) when ng is considered. This result
implies a novel combination therapy landscape, able to

characterize overall therapeutic effectivity as a function
of the parameter changes occurring after each drug hit



(Fig. 5B). The landscape offers the possibility of com-
puting the gradients (Fig. 5B), dark arrows) that indi-
cate the pressure on r exerted by either increasing wrgs
or ng. In given therapy settings, computing this land-
scape and its gradients result in a preliminary indicator
on choosing if the next drug should focus on draining the
untargeted phenotype (wgrs) or targeting a novel sensi-
tive phenotype (ng). Overall, this could improve target-
ing of multi-phenotype plastic networks where w;; is only
targeted so far through inhibition and not increase [19].

The gradients of Oy, ,s7* and 0, 4r* therefore indicate a
key evolutionary ingredient for combination therapeutic
designs

G(ZR - = w ’ (23)
R (TR
" WRS 1—|—NwSR
oy _ rs] =
87’LS WSR 2"

With given parameters, adding single agents should
follow from which gradient of both is larger. If not, using
drugs that induce small gradient effects on 7% is likely to
allow resistant phenotypes a window to explore escape
mechanisms in the lack of strong drug activity [38].

I1l. DISCUSSION

Several considerations on therapy design arise directly
from the previous results (and our simplifying assump-
tions). A well-adapted population can maintain non-
adapted cell types, provided replication and transition
rates are tuned accordingly. Evidence for skewness in ex-
perimental transition rate values [13, 19] could indicate
the evolution of PHS networks towards enhancing well-
adapted phenotypes. PHS offers therefore an alternative
pathway to cancer heterogeneity and consequent drug re-
sistance [39]. In this context, single-phenotype strategies
are likely to fail, steering tumor evolution towards other
phenotypes instead of providing a cure. Our mathemat-
ical framework provides a qualitative understanding of
such failure for N-dimensional PHS architectures.

In them, what is to be tackled is diversity itself: if
only one phenotype can be targeted, the model indicates
that others can be drained by increasing the rates at
which they transition to the dying one. A key implication
here is that inhibition of resistant-phenotype transitions
is not necessarily a successful approach if drug-tolerant
cell types are not specifically drained towards sensitivity.

Therapeutic strategies that target differentiation path-
ways are already in place [40], and much is known about
dedifferentiation and reprogramming across cell types
[40,42]. Clinical and experimental evidence points to

differentiation-regulating genes as potential targets of
transition therapy. Potential examples are TBX3 affect-
ing inter-phenotype switching [13] or SFK/Hck regulat-
ing chemotolerance [29] in breast cancer cell lines. Epige-
netic drugs targeting DNA methylation are nowadays an-
other therapeutic opportunity [43,44], and combinatorial
antibody libraries as regulators of cell fate [45] or stem
cell transdifferentation [46] might provide further options
to induce phenotypic transdifferentation as a therapeu-
tic strategy. Recent evidence indicates the relevance of
obtaining a clear portrait of the underlying Gene Reg-
ulatory Networks (GRNSs) driving plasticity in order to
target possible feedback loops or hysteresis mechanisms
of PHS [33,47]. Furthermore, the possibility that pheno-
typic switching can be targeted beyond oncogenic phe-
notypes [48] opens up the Waddington landscape to be
explored by transition therapy [49].

When more than two phenotypes coexist it is likely
that several cell types have evolved oncogenic advantage
[12,19]. Our approach indicates that targeting of several
phenotypes increases non-linearly the pressure for tumor
survival. Drug combination targeting multiple cell types
together with transition rates to drain non-targeted phe-
notypes could result in increased benefits for patient sur-
vival if specific PHS threshold conditions are fulfilled.

Sequential therapy schemes are known to drive tumor
evolution by inducing pressures that drive clonal selec-
tion [50]. Even in tumors where phenotypes show self-
renewal capacity after cytotoxic therapy, our modeling
approach is a predictive tool for the resulting phenotypic
trajectories. Since we can compute the stable phenotypic
composition for any combination of parameters, knowing
how they change after therapy results in a quantitative
prediction of the new tumor state.

This can prove helpful to understand tumor evolution
after each drug [29,51]. It has been studied for clonal
evolution tumor schemes [52], but accumulated knowl-
edge indicates that epigenetic plasticity introduces novel
conditions for eradication of resistant cell types [39]. The
ability to push the system towards equilibria predicted by
our model puts forward the opportunity of directing evo-
lution to pre-sensitize the tumor to a second drug [53].
Following the notion of cancer attractors and combina-
tion therapy [54], increasing (instead of only inhibiting)
transition rates offers new ways of thinking in how to
tackle PHS-driven heterogeneity under a more ”develop-
mental” perspective. Future extensions might need to be
considered, including gene network regulation, spatially
explicit structure, niche architecture and tissue hierar-
chy. Each extra layer will undoubtedly modify our basic
bounds, but we conjecture that the ways PHS influences
tumor responses will be basically the same.
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4 Discussion

The work presented here has tried to shed some light across several open problems in
cancer progression. We have seen how cancer is, among all, an ecological, evolution-
ary and developmental process, and that complexity abounds along these three axes. In
the light of pervasive therapy resistance in advanced tumors there is an urgent need to
use the mathematical models of complex biological systems to understand cancer adapta-
tion. As presented along the Objectives and Results sections, we have focused on a wide
range of different problems that span the fields of immunology, genome architecture,
cancer-microenvironment interactions or epigenetic plasticity. The general framework to
approach these issues, however, has departed from the same goal of using minimal models
able to capture universal patterns observed in the clinics. Furthermore, the resulting time-
line of scientific research has followed a relatively linear process, in which each specific
modeling result eventually led to the formulation of new questions.

In a general sense, we can separate the two major research lines of the thesis —and the
presented results— in two: the study of genetic instability and its implications on neoanti-
gen landscapes and immune surveillance, and the approach to developmental issues in
cancer through the use of ecological models (Fig. 13). These fields, namely immunother-
apy and cancer epigenetics, are two main research areas in today’s oncology, and it is
likely that related therapeutical opportunities arise in the immediate future. In this context,
mathematical approaches are needed as a conceptual background for treatment design and
prognosis prediction.

By the end of the PhD funding period, we have focused on finding a way to under-
stand how ecology, evolution and development are intertwined while shaping malignant
transformation. In particular, we know that cancer is a heterogeneous disease, but the
extent of this heterogeneity is somehow vague and spans across different metrics. Cancer
is heterogeneous at the genome level, in the corresponding microenvironmental organi-
zation or in the way it uses different epigenetic hierarchies to progress [Marusyk et al.,
2012]. Are there well-defined motifs behind inter-cancer heterogeneity? And if so, can
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we provide a cartography to map the possible pathways of tumor progression? To ana-
lyze this, we are building a morphospace of human cancers, able to characterize them by
how they explore aberrant complexity across ecological, evolutionary and developmental
paths (unpublished Results).

4.1 Genetic instability and immune surveillance

We know nowadays that cancer does not make sense except in the light of evolution
[Dobzhansky, 2013, Greaves and Maley, 2012]. Within this context, evolutionary dy-
namics follow from the random accumulation of genome alterations that eventually result
in a phenotype with differential fitness. A sufficient rate at which individual replicators
accumulate changes at the DNA level is, therefore, a key parameter for evolution to take
place, and so genome instability is considered nowadays as a basic enabling characteristic
for tumorigenesis [Hanahan and Weinberg, 2011]. However, early studies on the so-called
Quasispecies model established that there are limits, constrained by overall genome size,
to the maximum mutation rate for a replicator to stay in place and do not loose self-
identity [Eigen and Schuster, 1977]. A prominent example here is that of viruses, entities
with minimum genome size that are known to live close to their critical instability levels
[Solé and Elena, 2018].

Many cancers are known to present mutational rates surprisingly higher than those of
healthy cells [Loeb, 2001]. In this context, research of the early 2000s was able to pos-
tulate the possibility that, as for viruses, cancer cells evolved towards critical instability
levels, optimizing an eventual trade-off between fast evolution and genome maintainance
[Solé and Deisboeck, 2004]. In the lack of recombination mechanisms (except for rare
evidence of cell fusion events [Duelli and Lazebnik, 2003]), the effect of the Muller’s
Ratchet should pervade both the accumulation of deleterious mutations and deleterious
instability levels. In this scenario, as tumors progress and more genome stability and
repair mechanisms are lost, the question arises on how do tumor cells avoid the error
catastrophe.

To understand this, we have used the formalism of adaptive dynamics (AD) [Diek-
mann, 2002], that captures the evolutionary dynamics of stochastic phenotypic traits as
a fitness landscape is explored. The crucible of the problem here is that genetic instabil-
ity, an otherwise fixed parameter in AD models, becomes the evolving phenotypic trait.
Mutations in genes accounting for DNA stability result in an increased mutation rate. To
understand this nonlinear process, we modify the so-called canonical equation of AD to
establish a dynamical description of instability rates in cancer, and how these evolve as
a function of the underlying mutational landscape involved [Aguadé-Gorgorié and Solé,
2018]. Two potential results arise from solving the canonical equation in different land-
scape settings. On the one hand, even at high instability levels, sufficient selection for op-
timal instability values can maintain tumor populations away from the error catastrophe.
On the other hand, the equation provides insight into possible mutagenic therapies, and
captures basic dynamical differences before and beyond the threshold that indicate possi-
ble benefits of mutagenic therapy against trying to hamper instability [Aguadé-Gorgorid
and Solé, 2018].
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Figure 13: Research lines within the present thesis. Mathematical models have been used to
approach two major fields in oncology: genetic instability and its implications in immune surveil-
lance, and the role of ecological interactions in epigenetic-related phenomena such as cancer stem
cell differentiation therapy or phenotypic switching. By the end of the research period, a com-
prehensive perspective on the complete eco-evo-devo picture of oncology is being developed, by
means of constructing a morphospace for human cancer classification.

As I was presenting the AD research project at the Cancer ecology and evolution 2018
summer school, a hallway discussion was the evidence that neoantigens played a key role
in the immune surveillance of tumors [Schumacher and Schreiber, 2015]. Neoantigens are
mutated surface proteins that allow for T cell recognition of cancer cells as nonself. As
so, the amount of neoantigens in a tumor is in direct correlation with its mutational load,
and therefore the underlying genetic instability. This opened up the possibility of another
basic trade-off in cancer instability: the same mutations that lead to cancer evolution are
targeted by immune cells. How could this translate to a mathematical model?

To face the present question, we used existing research of basic predator-prey ap-
proaches that model cancer-T cell interactions [Eftimie et al., 2011]. As for the Lotka-
Volterra model, the system here is made of a prey, cancer cells, that explores replication
parameters through modulating its instability levels. On the other hand, the predator T
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cells recognize cancer cells as these increase their mutation rate [Aguadé-Gorgorié and
Solé, 2019]. Taken together, the system shows a set of multiple attractors, out of which
we studied cancer clearance, cancer control (by T cells) and large cancer masses. Two
main results arise from the model. First, critical transitions from cancer growth to cancer
control happen at a mutation rate consistent with experiments of immune surveillance af-
ter MMR knockout. This means that T cell efficiency could be enhanced with mutagenic
agents. Second, total cancer eradication cannot happen at realistic instability values, and
other agents need to be used in combination. A possibility here is that mutagenic com-
pounds are used together with adoptive cell therapy, increasing both T cell efficiency and
overall number [Aguadé-Gorgorié and Solé, 2019].

Despite consistent in several settings, the instability-neoantigens-recognition pathway
might be overly simple in account of cancer complexity. A landmark clinical finding here
is that heterogeneity plays a key role in T cell efficiency [McGranahan et al., 2016].
This means that it is not only neoantigens, but the way they are distributed across the
tumor, that elicits a sufficient immune response. To study this, we developed a multi-
faceted research project that could capture together how neoantigen landscapes evolve,
and how does their distribution affect T cell recognition. To understand the first, and
provided that cancer cells generally escape immune surveillance [Hanahan and Weinberg,
2011, Sharma et al., 2017], we used models of neutral evolution [Kimura, 1983, Williams
et al., 2016] and identified a fast decay of neoantigen clonality [Aguadé-Gorgorié and
Solé, 2020]. For the second, we used previous research on HIV diversity limits [Nowak
et al.,, 1991] and found the existence of a potential threshold beyond which neoantigens
are so heterogenous that T cells fail at providing a specialized response [Aguadé-Gorgorid
and Solé, 2020]. Furthermore, this threshold was found to be consistent with clinical data
of immunotherapy prognosis in melanoma [Aguadé-Gorgorié and Solé, 2020]. To solve
the problem of neoantigen heterogeneity, we propose a combination therapy scheduling
where a targeted agent is used in order to induce selection for a resistant subclone, thus
enforcing neoantigen homogeneization.

Several open questions arise from our study of immune surveillance in unstable tu-
mors. In particular, current knowledge of the cancer microenvironment tells us that
the immune system does not always play an anti-tumor response. What is the role of
macrophages here? Evidence indicates that tumors secrete molecules that polarize them
towards a pro-tumor (type-2) phenotype (Fig. 3d). How does the whole cancer-lymphocyte
picture that we have studied change? A key element here could be that of ecological com-
plex networks [Sole and Montoya, 2001]. As in complex ecosystems (Fig. 3a), immune
interactions are so diverse and multi-layered that a network approach is necessary. Could
such framework help us compare the possible network states with pro- and anti-tumor im-
mune responses, and detect the therapeutic interventions able to modulate such response?

4.2 Ecological interactions in cancer development

As discussed along the introductory chapter, experimental evidence regarding epigenetic
phenomena confronts several aspects of the clonal selection model in cancer [Meacham
and Morrison, 2013]. Two main relevant points have been risen here: the existence of
Cancer Stem Cells (CSC) at the top of tumor hierarchies [Clarke and Hass, 2006] and
the experimental evidence that these hierarchies are in turn highly plastic [Flavahan et al.,
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2017]. After the initial research projects on genetic instability and immunotherapy, we
have focused on studying how mathematical models could help in understanding aberrant
cancer development (Fig. 13.

Interestingly enough, when targeting both issues, we have found ourselves dealing
with the mathematical models natural to ecological population dynamics. In this con-
text, it appears that the dynamics of both CSC-fueled cellular hierarchies (Fig. 11) and
more plastic architectures (Fig. 12) are grounded on ecological interactions. A consistent
body of mathematical models has already been developed for the study of CSCs (see e.g.
[Dingli and Michor, 2006]). In them, the main approach recalls using ODEs or PDEs
to capture universal patterns of CSC-driven tumors, such as their response to therapy (as
compared to that of a clonal evolution tumor) [Dingli and Michor, 2006] or their propen-
sity to reach predictable equilibria between cell compartments [Werner et al., 2016].

As discussed along the introduction, the possibility that many cancers are structured
in a maturation hierarchy has reopened the door to differentiation therapy (DTH) [de Thé
et al., 2018]. DTH success in APL, a genetically-simple and hierarchically (but homoge-
neously) organized leukemia [Meng-Er et al., 1988], was not followed by a similar trend
in other malignancies, and solid tumors remain a possible candidate for DTH [de Thé
et al., 2018]. Within this context, we asked ourselves if there are spatial constraints that
play previously unadverted roles in DTH-treated tumors.

The starting point of our DTH model is relatively straightforward: in a spatially-
constrained tumor, cells that are not in a replicating compartment still occupy space [Solé
and Aguadé-Gorgorio, 2021]. As learned in /.3.1 Space and resources in tumor growth,
this alone is sufficient to change the overall dynamics of a system, and there is extense lit-
erature on the nonlinear effects of habitat loss and fragmentation in complex ecosystems
[Huxel and Hastings, 1999]. Within this picture, we outline a minimal hierarchical model,
with normal and differentiated cells, and define DTH as affecting the cancer compartment
both by differentiating it and affecting the amount of invadable habitat [Bascompte and
Solé, 1996]. A key result of the model, consistent with clinical evidence on APL, is
that molecular agents that only induce differentiation without cytotoxicity cannot totally
eradicate a tumor [de Thé et al., 2018]. What happens when CSCs are introduced? An
important element here is that CSC do not, in general, inhabit the same microenvironment
as the rest of the tumor [Plaks et al., 2015]. As so, they do not perceive habitat loss in
the same manner. This translates into CSC replication obeying softer density-dependent
growth constraints, as opposed to those of simple logistic growing populations (Eq. 7).
The resulting dynamics of the niche model imply that only extreme (and possibly unreal-
istic) doses of DTH agents would amount for CSC (and whole tumor) clearance [Solé and
Aguadé-Gorgorid, 2021]. Our model introduces a novel framework to understand this ef-
fect, pointing towards possible combination treatment options that specifically target the
CSC niche and its sensitivity to spatial constraints.

Phenotypic switching (PHS) is a more recent discovery in cancer. Following exten-
sive studies on CSC characterization, it appeared clear that hierarchies, and therefore
phenotypic maturation, where not as hard-wired as expected [Chaffer et al., 2011, Batlle
and Clevers, 2017]. These initial findings have been followed by extensive literature
that demonstrates the existence of epigenetic (non-mutational) phenotypic plasticity as a
mechanism for drug tolerance [Sharma et al., 2010], EMT heterogeneity [Kalluri et al.,
2009] or overall cancer evolution through the coexistence and cooperation of complex
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switching phenotypes [Gupta et al., 2011, Neftel et al., 2019]. As so, phenotypic plasticity
is a dynamical mechanism maintaining heterogeneity beyond the clonal selection model.
Knowing the relevance of heterogeneity in fueling cancer therapy resistance, there is an
urgent need to understand how PHS maintains cellular diversity and growth, and if it pro-
vides predictable patterns of tumor evolution different from those of Darwinian evolution.

For this purpose, we have built a simple mathematical framework inspired in math-
ematical modeling of PHS in drug-tolerant bacteria [Balaban et al., 2004]. During dis-
cussions with Stuart Kauffman at the Santa Fe Institute in December 2019, it appeared
obvious that even the simplest models where able to capture how PHS maintains cellu-
lar heterogeneity. Even in the case where one of the phenotypes is targeted by therapy,
the rest of the tumor is likely to hold it in place through stochastic switching [Aguadé-
Gorgori6 et al., 2020]. This means that any single-agent therapy will fail if PHS is in
place.

Furthermore, we were able to extend previous 2-population systems to larger archi-
tectures by grouping self-similar populations. This results in a novel tool to understand
high-dimensional PHS systems such as Glioblastomas [Neftel et al., 2019] or breast can-
cers [Gupta et al., 2011]. The N > 2 model indicates that there are, again, thresholds
that limit the effect of therapies targeting replication. All in all, the model explores the
feasibility of so-called Transition Therapy, a hypothetical treatment rationale based on
combining drugs that increase stochastic switching to drain replicative phenotypes into
drug-sensitive ones.

Many questions remain open in the field of cancer epigenetics. A basic point here
would be to understand why do some tumors evolve through somatic mutations, others
are fueled by CSCs, and others explore their landscape through PHS. Is this a tissue-
specific constraint, or do they represent alternative adaptive pathways to choose from? As
for the CIN vs MIN issue of genome instability, creating an evolutionary framework able
to understand this pattern is a difficult task. However, predicting the evolutionary pathway
—and the evolutionary footprints involved— taken by a given cancer would render a major
tool for treatment design.

4.3 Merging ecology, evolution and development to understand cancer
complexity

So far, we have presented results within the evolution of neoantigens as a key element
in the cancer-immune ecology [Aguadé-Gorgori6 and Solé, 2019, Aguadé-Gorgorié and
Solé, 2020], or the role of ecological dynamics in the development of aberrant tissue
hierarchies in tumors [Solé and Aguadé-Gorgorio, 2021]. Interestingly, all the dynamical
approaches to cancer complexity and therapy studied along the present thesis involve
theoretical aspects of ecology, evolution and development, and cancer progression appears
to make sense only in the light of the three.

As discussed along the present work, a major issue in cancer drug resistance is the
pervasive heterogeneity across tumor sites [Marusyk et al., 2012]. Cancers are diverse
among all possible levels. As a final step in the research scope of the thesis (Fig. 13, we
sought to find a conceptual framework to understand cancer heterogeneity at the tissue
level. Why are some cancer types rapidly growing and aggressive, while others take
decades to progress? Why do some evolve unstable phenotypes and others progress with
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Figure 14: A toy morphospace for the research projects involved in this thesis. To under-
stand the conceptual basis of the so-called morphospaces [Mitteroecker and Huttegger, 2009],
we present a minimal classification scheme capturing which fields of research have been tackled
for each Results article (black — published, grey — under revision, white — under development).
As expected from the original objectives, ecology, evolution and development are correlated and
needed to understand cancer complexity. Only [Aguadé-Gorgorié and Solé, 2018] has studied
cancer phenomena through targeting one axis of complexity only (here evolution).

virtually untouched genomes? And more importantly, are there universal motifs across
cancer types, implying limits to this heterogeneity? Could we provide a cartography of
these?

To address these questions we have made use of the so-called morphospace. Mor-
phospaces are tools from evolutionary developmental morphology that provide a geomet-
rical object to organize the heterogeneous forms of individual species or entities [McGhee,
2006]. This is often done through the construction of a 3-dimensional space, not neces-
sarily Euclidean’, where each axes refers to a given property or quantity of the studied
agents. To present a toy example of a conceptual morphospace, it is possible to orga-
nize the research articles in the present thesis (Fig. 13) by considering (in a qualitative
manner) the extent of ecology, evolution and development involved in their mathemati-
cal results (Fig. 14). Despite the present morphospace is obviously metaphoric, it does
indicate, for example, that no research has been done considering modeling within the
Evolution-Development (and no Ecology) axes.

With Josep Costa from Yale university we started to discuss what happens when can-

"Morphospaces can range from strictly euclidean mathematical objects to qualitative metaphors. Despite
there is no constraint involved, it is relevant to understand the nature of a given space to understand the
validity of the results it presents. A key example here is that of non-euclidean spaces that result from axes
built on different metrics. This spaces do not have a proper definition for distance, but other objects such as
lines connecting entities remain well-defined [Mitteroecker and Huttegger, 2009].
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cers are organized following their degree of complex alterations at the three axes. A
minimal measure is being studied able to quantify, to a certain extent, the degree of alter-
ation at each complexity axis. It is obviously difficult to gather data that is consistently
captured for different tumor types, but some cancer types can be used as a preliminary
proof of concept [Guinney et al., 2015].

The resulting geometry of cancer subtype classification is likely to provide clues re-
garding their possible progression pathways and heterogeneity. Adenoma-carcinoma se-
quences will often organize as linear trends in space, meaning that one could possibly
characterize a tumor only by its position within one or the other regions (and without the
need of obtaining genome-specific information on mutational signatures). The most rele-
vant aspect of the cancer morphospace approach regards the existence of empty volums,
indicating the possibility that voids in the morphospace characterize non-attainable evolu-
tionary regions. If so, treatment design could benefit from the morphospace cartography
by designing therapies able to nudge tumors towards these voids, a result that is being
studied at the time of the thesis presentation.

The conceptual approach of the cancer morphospace is likely to produce similar in-
sight into many cancer types. Furthermore, spatial geometries and clustering in the
morphospace carry relevant and straightforward meaning, as opposed to data-driven ap-
proaches built upon a vast set of genomic variables. Gathering simple Eco-Evo-Devo data
for different cancer types to built a 3D classification will yield interesting tumor progres-
sion trajectories and, hopefully, universal patterns in the way cancers explore complexity
that can help us in better understanding the disease.

4.4 The space of possible combination therapies

Another interesting outcome of the present thesis is that all the mathematical frameworks
developed here result in the proposal of combination treatment approaches. Following
evidence indicating that single-agent therapies are likely to fail in a variety of settings
[Bozic et al., 2013, de Thé et al., 2018, Aguadé-Gorgorio et al., 2020], combining drugs
in a rationale that considers tumor complexity is likely our best opportunity of finding
durable remissions. To summarize the space of studied therapy designs, we can build
a table for the pairwise combination of a set of basic available treatments (Fig. 15).
These involve chemotherapy, targeted agents, mutagenesis, epigenetic approaches and
immunotherapy.

One interesting result of the present table is the relevance of unfilled spaces. They
indicate combination therapies that we have not discussed or have not appeared as feasi-
ble solutions for the studied models. In particular, they can be separated in two: options
that comprise widely used or redundant strategies (chemotherapy or targeted agents) and
options that point towards unknown regions of cancer therapy, mostly epigenetics and
its possible combination with immunotherapy or DNA damaging agents (Fig. 15). Re-
garding the first, the possible role of epigenetic plasticity in immunotherapy remains
an open question. However, evidence on immune edition in given CRC subtypes in-
dicates that some tumors could maintain immune-evading phenotypes in place through
PHS, something that could be targeted by transition therapy approaches [Guinney et al.,
2015, Aguadé-Gorgori6 et al., 2020]. On the other hand, the unknown possibility that the
Waddington landscape involves limits to phenotypic plasticity (as fitness landscapes do

106



suondo 3)ad1e,
Auew ‘Oryroadsun PAISIEL
(ozoz (610C
20DJ423ug) SPIOYSY} | DLIf) IDUB[[ISAINS S—
£)19ua801939Y UNWIWI JO IIALP B
U9SnUeOaU INOWN], | Se AJ[IQeISul d1I9UID)
(TZ0z *ssa4d ur)
fiopserd ordfjouoyd | (rzoz g.Lr) Adesay
JJ9 UMOUNU) | UOTIENIUSISJJIP I9dUed nauwagidyg
jo A301023 3 Surppel 10 £S0[09 Ay,
:Ade1ay uonisuely,
mu&;m:mmmm%osmmpﬁ (rzoz g.Lr) Adesy
uowruion) UOIIENJURISJJIP 190UED | JUSIDIINSUL OISSe[D) Adexapowdy D
Asuagorsiay 10 £307033 AU,
U3agNUBO3U Jnownf,
(610C (810 1ddy
(sAemiped adeosa) D.LIf) 9JUE[[I2AINS sonsumng Juepunpay [04a7) suonemndod
snorgue UNWIWI JO IIALP B JI9DUBD I[qeisun jo sraSenpy
Se AJI[IqeIsur J1IaUaD) sorweuAp aandepy
paiesie], uUNUIUIY nauagidyg Adexaypourdy) JrudgeIny

A_u
]
=

I
Q

=
<
=
Q

=
=
<
=
(5]
=

T

z
72}
)

=
~—
~—
=
%)
)
B
=¥
]

=
~—
o0
=
=}

—
5]

=

&

=
=
=
wv
|72}
~—
=
]
£
~—
]
@
|
=
=
=

=
]
=

o

=
g
=

@)

w

—
[0
S
=

.20

8%

els developed along the thesis (and subsequent published articles) have provided a table of which
combination treatment options are available, which are interesting to study and which refer to
unfeasible or unknown therapeutic methods. In doing so, this table provides hints towards unstud-

ied areas of research indicating potential treatment opportunities. Examples of this are epigenetic

treatment in immunotherapy-targeted cancers and combining mutagenic and epigenetic agents to

address the possibility of instability thresholds.
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for genetic instability [Solé and Deisboeck, 2004]) highlights the opportunity of designing
epigenetic-mutagenic approaches able to hamper cell viability in a consistent, multi-scale
approach.
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5 Conclusions

The conclusions that arise after the present research project can be presented as findings
related to the original thesis questions (see Objectives):

Cancer evolution

If there are viability limits to genetic instability [Solé and Deisboeck, 2004], how can
cancer cells survive them? In this context, what is the dynamical nature underlying muta-
tion rate evolution? Do cancer cells live at the critical mutation rate, as viruses do [Solé
and Elena, 2018]? If so, can lethal mutagenesis be applied as a therapeutic approach to
unstable tumors?

* As an extension to the adaptive dynamics framework, we have built a mathemati-
cal model where genetic instability is itself a stochastic trait that can evolve. This
provides a tool to understand how cancer cells navigate adaptive landscapes by mu-
tating their mutation rates [Aguadé-Gorgori6 and Solé, 2018].

* The model captures how cancer cells evolve their instability rates to rapidly explore
the landscape they are in. It shows the conditions under which purifying selection
maintains cancer populations within the critical instability region without trespass-
ing the boundaries of the error catastrophe [Solé and Deisboeck, 2004]. This puts
back in place the possibility that mutagenic agents could be used to push cells be-
yond criticality. Within this therapeutic hypothesis, the model establishes a limit to
the viability of treatment related to the capacity of surviving cells to reattain optimal
mutation rates [Aguadé-Gorgori6 and Solé, 2018].

How does chromosomal instability (CIN) modulate the adaptive landscape of cancer
cells? Why do many cancers organize around an average ploidy of ~3.3? Is this an
optimal evolutionary value, or a physiological constraint? Are there error thresholds to
chromosomal instability?
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* The genotype-to-phenotype-to-fitness map is relatively easy to visualize for genomes
of fixed size, either through Sewall Wright’s fitness landscapes [Wright, 1932] or
with Kauffman’s Boolean networks [Kauffman, 1969] and the underlying cancer
attractors theory [Huang et al., 2009].

* We have tried, departing from mathematical models of gene duplication [Wagner,
1994], to understand how the evolutionary landscape of cancer cells unfolds when
not only genes but chromosome copy numbers are altered. The complexity of both
the genetic background and the involved mathematical shape of GRNs hampered us
from obtaining simple and relevant results. However, we believe that intuition for
possible error thresholds in chromosomal instability could maybe result from this
(unfinished) mathematical approach.

* Neutral models of chromosome missegregation have also been developed during the
PhD period. In them, optimal ploidy values only result from applying physiological
limits in our model (mostly, that cells with more than n copies of a given chromo-
some are unlikely to survive). Since we do not have experimental data corroborating
this, models remain incomplete. We have studied other possible approaches to un-
derstand if there exists indeed an evolutionary trade-off justifying optimal ploidy
levels (see below).

What is the relation of Whole Genome Doubling (WGD) with the previous question? Why
is WGD such a common event in cancer, despite being apparently detrimental to fast
cellular proliferation?

* We are currently studying with UPF student Quim Marti the possibility that the
pervasiveness of WGD, and the existence of optimal ploidy values could be under-
stood by means of probabilistic models. Within this framework, chromosome copy
numbers could have evolved to optimize the equilibria between mutating Tumor
Suppressor genes but maintaining House-Keeping genes in place. This project will
be part of his TFG as well as a research article.

Why do CIN and micro-satellite instability pathways appear as mutually-exclusive evolu-
tionary mechanisms in cancer [Guinney et al., 2015]

* I believe that CIN is a deleterious pathway for diploid genomes, meaning that exten-
sive copy number aberrations might lead to unbearable genetic loss. However, after
WGD events protecting the genome from these events, chromosomal instability is
likely to provide a much faster and complex way to explore fitness landscapes. We
have not yet been able to fully translate this perspective into a mathematical model.

* However, this buffering effect would not totally explain why cancers that have un-
dergone WGD events do not show mutator phenotypes at the single-nucleotide level
(Microsatellite Instability, MIN) [Bielski et al., 2018], but only at the CIN level.
Building a mathematical framework able to capture why CIN and MIN appear as
mutually exclusive remains an open question that needs further extensive research
both at the genetic and mathematical levels.
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Cancer ecology

What is the role of genetic instability in the cancer-immune (predator-prey) interaction?
If T cells recognize cancer neoantigens, and these result from accumulated mutations, is
there a trade-off balancing cancer evolution and immune recognition? Can mutagenic
therapies be combined to checkpoint blockade inhibitors to enhance immune surveil-
lance? (an Eco-Evo question)

* Mutation rates govern a trade-off between cancer adaptation and immune recog-
nition that could explain why some cancers progress and others remit after im-
munotherapy.

* Departing from previous predator-prey systems [Kuznetsov et al., 1994], genetic in-
stability has been introduced as a variable affecting both cancer exploration of onco-
genic mutations and production of neoantigens eliciting immune recognition. The
model shows that there is indeed a critical transition between (roughly put) cancer-
wins and immune-wins stable states, and that this trade-off is consistent with experi-
mental values for genetic instability levels after Mismatch Repair (MMR) knockout
[Aguadé-Gorgorio and Sol€é, 2019], explaining observations on the role of MMR in
immunotherapy efficiency in mice [Germano et al., 2017].

Furthermore, the model postulates that only tumor dormancy (and not total eradica-
tion states) can be achieved by MMR knockout, putting forward the need to combine
mutagenic agents with adoptive cell transfer strategies for complete therapeutic suc-
cess.

How does heterogeneity in neoantigen landscapes affect the previous question? Can a
mathematical model capture why (and how) increased neoantigen diversity correlates
with immunotherapy failure? Are there specific limits to neoantigen heterogeneity, and
can therapy take advantage of them? (another Eco-Evo question)

* To study the role of neoantigen heterogeneity in immune surveillance, a multi-
layered mathematical model has been developed that is able to capture how T cell
attack on cancer cells depends on both the immunogenic effect of neoantigens and
their distribution [Aguadé-Gorgori6é and Solé, 2020]. Models and computational
simulations have been build to study each.

* A probabilistic approach proves that, in early tumor growth, production of more
immunogenic neoantigens grows linear with mutation accumulation.

* In turn, modeling based on foraging strategies in animal movement [Krummel et al.,
2016] predicts that immune search efficiency scales linearly with neoantigen clon-
ality, i.e. the fraction of the tumor harboring the given antigen.

* As tumors grow, clonal immunogeneicity increases with time, while neoantigen
clonality decreases. Combination of both effects in a model of cancer growth under
T cell surveillance indicates the presence of a threshold level to neoantigen hetero-
geneity, similar to that governing HIV progression [Nowak and May, 1991], beyond
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which tumor epitopes are so diverse that T cells fail at specializing and targeting
them. This is consistent with evidence on neoantigen heterogeneity as a marker for
immunotherapy prognosis.

* Inclusion of the model’s results on the immunogeneicity—clonality threshold adds
predictive value to the prognosis of anti-CTLA-4 therapy in a cohort of melanoma
patients [Aguadé-Gorgori6 and Solé, 2020]. This reinforces a possible novel biomarker
to predict how cancer heterogeneity will affect immunotherapy.

* To avoid the likelihood of tumor escape, a combination therapy approach is de-
signed, where a targeted agent is given prior to immunotherapy to homogeneize the
neoantigen landscape. Analytical modeling captures the dynamical tempos of this
process, thus providing a framework for therapeutic scheduling.

Is the Warburg effect (the use of inefficient glycolytic metabolism even in the presence of
oxygen) an example of a critical transition with hysteresis?

* Apparently not. We have developed mathematical models of population dynamics
and game theory to understand the conditions under which glycolytic phenotypes
would remain even in the presence of oxygen. The Warburg effect (WE) did not
appear as a transition with hysteresis, and our models only justified WE resilience
under two possible scenarios that have already been studied: either due to envi-
ronmental fluctuations in oxygen levels or else because of the acidification of the
environment that results in a fitness advantage to surrounding cancer subclones.

Can mathematical modeling help us understand the ecosystem coengineering nature of
cancer and type-2 macrophages [Myers et al., 2020]? Provided that M1-M?2 equilibria
can be restored by therapy, can we predict the conditions under which the immune system
will transit from a pro-tumor to an anti-tumor response?

* A mathematical model was developed (see Fig. 7d) to study Th-1 and Th-2 immune
responses. The model did show how macrophage polarization could change under
certain therapeutic effects, such as inhibition of efferocytosis®.

* However, the complexity of the population dynamics involved (cancer cells, M1
and M2, and cytotoxic or effector cells) made the model unapproachable by analyt-
ical means. This means that the conditions for treatment success are only obtained
by computational simulations, and no simple bifurcation landscape can be drawn.
Consistent with the overall scope of the thesis, we have not valued complex compu-
tational modeling if it does not provide simple and comprehensive results.

What is the ecological nature of Concomitant Resistance? Why do tumors apparently
secrete molecular compounds that do not allow secondary tumors to grow? Can a math-
ematical model capture this apparently indirect competition process? If surgery is suc-
cessful for small tumors, but awakens large metastatic burdens in large tumor excisions,
can we predict the presence of a threshold tumor size with potential therapeutic value?

8Efferocytosis is the process by which (type-2) macrophages phagocytize the remnants of apoptotic
cancer cells. It has been proposed that blocking this process would led to the damping of cancer compounds
to the bloodstream, thus activating a Th-1 response [Myers et al., 2020]
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* This project started at the SFI in 2019 with Ricard Solé and is under development
with UPF student June Monge-Lorenzo. We believe that a simple mean-field ap-
proach of a tumor-tumor interaction is able to capture Concomitant Resistance (CR)
dynamics. This follows from understanding how tumors secrete growth-inhibiting
molecules to the bloodstream, while produce other compounds that counteract them.
Complex diffusion dynamics might justify the local-distant interactions between
compounds.

* Once a minimal tumor-tumor model has been used to consistently capture the func-
tional shape of CR, a more complex model will include metastatic seeding and
growth. A key question here will be to understand how metastatic dynamics are
affected by CR, and how their outgrowth after surgery depends on primary tumor
size. This will be part of June’s TFG as well as a research article.

Cancer development

What is the dynamical nature of Differentiation Therapy (DTH) in solid tumors, and why
does it usually fail? What role does the CSC niche play here? Can we use spatial eco-
logical models to understand why DTH affects differently each cellular compartment in a
hierarchy? (an Eco-Devo question)

* Following early models of habitat loss and fragmentation, we have developed a
mathematical model that captures how differentiated cells affect cancer progression
by occupying otherwise invadable habitat in the tumor ecosystem [Solé and Aguadé-
Gorgorid, 2021]. The model is able to reproduce clinical findings of DTH in APL
and other leukemias, while providing interesting insight into the minimal signaling
conditions underlying replication—differentiation decisions.

* The model explicitly captures the role of the stem cell niche in DTH, by analyz-
ing how different density-dependent signaling dynamics in cancer stem cells alter
the decay of tumor growth under maturation agents. In doing so, we point out to-
wards the relevance of not only using DTH+chemotherapy approaches, but actually
targeting the CSC niche itself by disrupting resource consumption or angiogenesis.

If tumors adapt through stochastic phenotypic switching (PHS) instead of somatic muta-
tion accumulation, what is the nature of therapeutic resistance? Can a simple analytical
framework inform about the adaptive potential of PHS versus the clonal evolution model?
Would it provide clues for the treatment of multi-phenotype structures such as those of
Glioblastomas? (another Eco-Devo question)

* A mathematical framework has been developed to capture the ecological dynamics
of phenotypic switching populations (see Fig. 12d) [Aguadé-Gorgorio et al., 2020].
The model demonstrates how therapy resistance obeys different (and much more
resilient) pathways than in clonal evolution or CSC-driven tumors.

* In particular, we have been able to demonstrate why single-drug therapies fail in the
presence of PHS. This in turn points towards the need to take into account switching
rates as a relevant anti-cancer target, opening the possibility of draining replicative
phenotypes into drug-sensitive ones (transition therapy).
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* The analytical approach is extended to larger PHS architectures (N > 2). This
is relevant to study growth conditions in breast cancer or glioblastoma where PHS
expands beyond sensitive-resistant structures. In particular, we derive analytical
expressions for treatment efficiency thresholds in complex PHS systems, with direct
implications for therapy design. Model results provide clues on which combination
treatment (targeting replication or PHS rates) will yield the highest benefit in terms
of tumor arrest rates.

Is it possible to develop a mathematical framework that unites Waddington’s landscape
and Kauffman’s cancer attractors to capture the dynamical limits of epigenetic plastic-
ity? Can it account for why (and how) PHS strategies evolve in the first place? Can we
understand if PHS architectures have evolved de novo or from an aberrant —but already
existing— tissue hierarchy?

* This is an ambitious field of research. By the time of the present thesis, and con-
sistent with our previous research on the role of CIN on unfolding of evolutionary
landscapes, it appears clear that the mathematical framework that would capture the
nature of epigenetic instability is not a simple object.

* On the other hand, understanding if PHS architectures evolve by creating novel
canals in Waddington landscape, or by taking advantage of previously existing ones
is probably a question more related to the field of evolutionary genetics, as the mod-
els developed so far do not show any dependency on the pathways towards PHS.
The fact that many cancers evolve PHS strategies points out to an evolutionary mo-
tif, but the patterns of PHS seem unique to each cancer type, meaning they probably
respond to tissue-of-origin developmental possibilities and not to landscape-based
universal laws.

Overall

Is it possible to build a conceptual framework to understand how ecology, evolution and
development are intertwined in cancer? Can we map how different cancers explore com-
plexity along each of these axes? Does this provide a cartography of alternative tumori-
genic pathways?

* We have used the notion of morphospaces to create a conceptual tool where ecology,
evolution and development are merged into a single framework. The final research
project is still under development at the time of the publication of this PhD thesis.
As a proof of concept, we aim at characterizing the degree of Evo, Eco and Devo
across colorectal cancer subtypes. This is likely to result in a 3-dimensional mor-
phospace that captures the complex nature of each cancer subtype together with a
map of mutually-exclusive oncogenic pathways that could allow for simple disease
classification.

* The so-called Cancer Morphospace is likely to provide consistent hints on the possi-
bilities of therapeutic design. In some cancers, a comprehensive review on treatment
options for each subtype indicates that therapy could focus on pushing tumors to-
wards the empty regions of the morphospace not explored by other subtypes. These,
in turn, probably indicate unviable carcinogenic configurations.
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* Developing morphospace classifications for other cancer types, or one that is able to
concentrate all possible cancers, is likely to result in novel insight on the topology
of disease progression and the extent and boundaries of its heterogeneity.
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