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ABSTRACT 
 

This thesis includes contributions to statistical methodologies and practical applications in 

situations where data has been obtained as a result of repeated measures. 

The first block includes a first article where different resampling methods in mixed linear models 

are evaluated by simulation against deviations from the assumptions of symmetry and Gaussian kurtosis 

of the variance components. One of these methods constitutes our proposal, designed and implemented 

in R. 

The result of the previous simulations shows that the misspecifications induced by the simulation 

scenarios do not have the same properties if they affect random effects or residuals. Taking into account 

that both components of the variance tend to have different sample sizes, an exploration of the impact 

of the misspecification of the Gaussian distribution implemented in the simulation of scenarios is 

proposed, as a function of the sample size. 

The second article of this block proposes a visualization of the type II error in goodness-of-fit test 

to the normal distribution, where the alternatives considered correspond to unimodal distributions with 

different asymmetry and kurtosis. In this article, a mosaic visualization is proposed to assess the capability 

to reject the hypothesis of normality of the test, taking into account the type of misspecification 

considered and the sample size. 

The third article compares different normality tests based on the type II error represented in the 

previously designed mosaic. Considering as a set of alternative distributions those included in the 

unimodal parametric family included in the mosaic, the graphic representation obtained gives an idea of 

the ability of the tests to distinguish deviations from normality. It would be as an equivalent to the power 

curves obtained in tests with numerical parameter space. 

The fourth article presents the application of the goodness-of-fit test to the distribution that 

represents each mosaic cell for a specific sample and the representation of the p-value of the test 

according to a gray scale. This last article aims to reflect the set of distributions of the family considered 

to be compatible with the sample evaluated, as a result of the concurrent application of the set of tests 

associated with the mosaic cells. 

The second part of the thesis includes four publications resulting from the collaboration with Dr. 

Basem Aljoumani on applied topics of hydrology. The inclusion of these articles in this thesis is justified 

mainly by the statistical contributions to the analysis of hydrological data. 
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The fifth article focuses on the extension of ARIMA models in the context of prediction of water 

content in the field, including intervention analysis (scheduled irrigation), atypical detection (rainfall) and 

transfer function (temperature information and water content to predict salinity). 

The sixth and seventh articles propose an extension of a classical deterministic model for the 

evaluation of salinity in the field to incorporate a stochastic component that allows the model to be 

adjusted to the data based on statistical criteria. The transformation of the model allows formulating it in 

a linear and Gaussian state space and applying the Kalman filter for its treatment. The difference between 

the two articles is based on the fact that in the first one the data is obtained in the field, while in the other 

one a laboratory experiment is performed. 

The eighth article analyzes data on the contents of contaminating metals on a roadside near a 

highway based on a series of covariates. Linear mixed additive models is the technique applied in this 

context. 
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RESUMEN 
 

Esta tesis incluye aportaciones a metodologías estadísticas y aplicaciones prácticas en situaciones 

donde los datos se han obtenido como resultado de medidas repetidas. 

El primer bloque incluye un primer artículo donde se evalúan mediante simulación diferentes 

métodos de remuestreo en modelos lineales mixtos frente a desviaciones de los supuestos de simetría y 

curtosis gaussianas de las componentes de varianza. Uno de esos métodos constituye nuestra propuesta, 

diseñada e implementada en R. 

El resultado de las simulaciones anteriores pone de manifiesto que las especificaciones erróneas 

inducidas por los escenarios de simulación no presentan las mismas propiedades si afectan a efectos 

aleatorios o a residuos. Teniendo en cuenta que ambas componentes de la varianza suelen presentar 

diferente tamaño de muestra, se plantea una exploración del impacto de la especificación errónea de la 

distribución gaussiana implementada en la simulación de escenarios, como función del tamaño de 

muestra. 

El segundo artículo de este bloque propone una visualización del error de tipos II en test de 

bondad de ajuste a la normal, donde las alternativas consideradas corresponden a distribuciones 

unimodales con diferente asimetría y curtosis. En este artículo se propone una visualización en forma de 

mosaico para valorar la capacidad de rechazar la hipótesis de normalidad del test, atendiendo al tipo de 

especificación errónea considerada y el tamaño de la muestra. 

El tercer artículo compara diferentes tests de normalidad en base al error de tipo II representado 

en el mosaico diseñado previamente. Considerando como conjunto de distribuciones alternativas las 

incluidas en la familia paramétrica unimodal que conforma el mosaico, la representación gráfica obtenida 

da una idea de la capacidad de los tests para distinguir las desviaciones de la normalidad. Sería como un 

equivalente a las curvas de potencias obtenidas en tests con espacio de parámetros numéricos. 

El cuarto artículo plantea la aplicación del test de bondad de ajuste a la distribución que 

representa cada celda del mosaico para una muestra concreta y la representación del p-valor del test 

según una escala de grises. Este último artículo pretende reflejar el conjunto de distribuciones de la familia 

considerada que son compatibles con la muestra evaluada, como resultado de la aplicación concurrente 

del conjunto de tests asociado las celdas del mosaico. 

La segunda parte de la tesis incluye cuatro publicaciones resultados de la colaboración con el Dr. 

Basem Aljoumani en temas aplicados de hidrología. La inclusión de estos artículos en esta tesis se justifica 

principalmente por las aportaciones estadísticas al análisis de datos de datos hidrológicos. 
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El quinto artículo se centra en la extensión de los modelos ARIMA en el contexto de la predicción 

del contenido de agua en el terreno, incluyendo análisis de intervención (riegos programados), detección 

de atípicos (lluvias puntuales) y función de transferencia (información de temperatura y contenido de 

agua para predecir la salinidad). 

El sexto y séptimo artículos proponen una extensión de un modelo clásico determinista para la 

evaluación de la salinidad en el terreno para incorporar una componente estocástica que permita ajustar 

el modelo a los datos en base a criterios estadísticos. La transformación del modelo permite formularlo 

en espacio de estado lineal y gaussiano y aplicar el filtro de Kalman para su tratamiento. La diferencia 

entre ambos artículos se basa en que en el primero de ellos los datos son obtenidos en el terreno, mientras 

que en el otro se realiza un experimento en laboratorio. 

El octavo artículo analiza datos de contenidos de metales contaminantes en los bordes de una 

autopista en base a una serie de covariables. Los modelos lineales aditivos mixtos es la técnica aplicada 

en este contexto. 
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1 
Introducción 
La estadística es una disciplina de ámbito claramente transversal a muchas áreas. Es una potente 

herramienta de análisis de datos que se aplica en diferentes campos como, por citar algunos, biología, 

medicina, economía, industria y en muchos otros. Este carácter instrumental permite que a la hora de 

realizar contribuciones en estadística se puedan considerar dos tipos de aportaciones: las centradas en 

desarrollar, implementar y evaluar mejoras en las metodologías estadísticas y las que corresponden a una 

aplicación de técnicas estadísticas para la resolución de problemas concretos.  

El primer tipo de contribuciones permite extender las capacidades de la propia herramienta, 

dotándola de métodos robustos, innovadores y mejorados para análisis concretos. Las publicaciones de 

este tipo suelen incorporar el desarrollo teórico donde se enmarca la técnica y se completa con ejercicios 

de simulación y la aplicación casos reales, lo cual pretende habilitar el método para ser aplicado en 

situaciones similares a las presentadas.  

En el segundo tipo de contribuciones se parte de un problema concreto que se presenta en un 

ámbito donde la estadística actúa como instrumento. La aplicación de la técnica estadística apropiada 

permite el análisis y la interpretación de los resultados de forma práctica. Las publicaciones aplicadas 

suelen incorporar la descripción de las técnicas estadísticas y sus especificidades en apartados que 

describen los “Materiales y Métodos”. 

En esta tesis se incluyen publicaciones de ambos tipos. El primer bloque contiene cuatro artículos 

en los que se pretende aportar extensiones metodológicas de carácter estadístico de forma genérica. El 

planteamiento original de esta parte se centra en mejorar las técnicas de inferencia en modelos mixtos 

como herramienta de análisis de medidas repetidas. Se proponen extensiones de tipo Bootstrap, que 

utilizan computación intensiva, para la obtención de intervalos de confianza y resolución de tests de 

hipótesis. Si bien existen múltiples contribuciones de este tipo en el contexto de los modelos lineales y 

lineales generalizados, donde sólo hay una componente aleatoria, la inclusión de efectos aleatorios en el 

predictor lineal implica la existencia de más de una componente de variabilidad. En este contexto, los 

métodos de remuestreo no son tan directos. El principal interés de disponer de técnicas alternativas a las 

clásicas, que suelen basarse en resultados asintóticos, es la posibilidad de analizar su rendimiento en 

situaciones donde no se cumplen de forma clara las condiciones de aplicación. Por ejemplo, si la muestra 
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es pequeña o la distribución de las componentes de variabilidad está incorrectamente especificada los 

resultados asintóticos pueden ser cuestionados. Por ello, en presencia de no normalidad de efectos 

aleatorios y residuos se plantean métodos de remuestreo alternativos en modelos lineales mixtos y se 

analiza la inferencia resultante, principalmente sobre los parámetros que describen las componentes de 

variabilidad. 

El resto de las publicaciones de este bloque surgen del análisis de los resultados del primer 

artículo. En dicho artículo, la incorrecta especificación de la distribución de efectos aleatorios y residuos 

se concreta en modificaciones de su tercer y cuarto momento (asimetría y Kurtosis) respeto a la 

distribución Normal. En concreto, las simulaciones incluidas en el artículo utilizan como modelo teórico 

un ejemplo clásico y se sustituye la distribución Normal de efectos aleatorios y residuos por distribuciones 

con asimetría y Kurtosis diferente, Exponencial y Uniforme respectivamente. El efecto producido por estas 

desviaciones en los intervalos de confianza asintóticos da lugar a observar infrarecubrimiento si hay 

asimetría y sobrerecubrimento en presencia de baja kurtosis. Este comportamiento no se observa de igual 

manera en la inferencia para los parámetros de los efectos aleatorios y de los residuos. Por ello, tiene 

sentido plantearse el efecto del tamaño de muestra en los resultados. Para el modelo simulado, el número 

de valores para los efectos aleatorios es menor que el número de residuos.  

El objetivo de los tres artículos se centra en usar una representación visual original para el análisis 

de bondad de ajuste ante especificaciones de una familia de distribuciones que incluyen cambios en la 

asimetría y Kurtosis. El segundo artículo presenta la representación gráfica correspondiente a un mosaico 

donde cada posición está asociada una distribución de la familia de distribuciones de Potencia Exponencial 

y Asimétrica (SEPD, Skewed Exponential Power Distribution). Esta familia incluye como casos particulares 

la distribución Normal (punto interior) y las distribuciones Exponencial y Uniforme (puntos frontera), 

entre otras. Se incluye la representación del error de tipo 2, obtenido mediante simulación a partir del 

tamaño de muestra, en forma de mancha sobre el gráfico. El tercer artículo incluye la posibilidad de 

dibujar sobre el mosaico descrito las curvas de nivel para el error de tipo 2 correspondiente a diferentes 

tests de Normalidad. Se incluyen un total de 9 tests diferentes de Normalidad sobre los que se analiza la 

potencia en base al tamaño muestral. Finalmente, el tercer artículo plantea, dada una muestra concreta 

y para cada distribución representada en el mosaico, el test de bondad de ajuste a dicha distribución. De 

esta manera, en este último artículo la mancha sobre el mosaico representa el conjunto de distribuciones 

de la familia SEPD con las que la muestra es compatible y que no permitirían rechazar la hipótesis nula de 

bondad de ajuste a aquella distribución. La conclusión más evidente establece que un incremento del 

tamaño de muestra suele implicar una reducción de la superficie representada en el mosaico por parte 

de las distribuciones compatibles con la muestra. La inclusión de la distribución Normal en este conjunto 

implica que no se rechace la hipótesis de normalidad para la muestra. Para tamaños de muestra 

pequeños, es frecuente que se produzca esta situación. Como conclusión de este análisis, aunque el 
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escenario de simulación sea diferente de la distribución Normal, en situaciones de tamaño de muestra 

pequeña las muestras generadas podrían ser consideradas generadas por esta distribución. 

El segundo bloque se centra en la aplicación de técnicas estadísticas para la resolución de 

problemáticas concretas. Se incluyen 4 artículos que son el resultado de la colaboración con un grupo de 

investigación experimental del ámbito de la hidrología. La colaboración se inicia con el investigador del 

Parc Agrari del Baix Llobregat, Basem Aljoumani, el cual cursó la asignatura de Series Temporales del 

Máster de Estadística e Investigación Operativa. El objetivo era aplicar técnicas de predicción basadas en 

modelos ARIMA para el contenido de agua y la salinidad del terreno de cultivo, medidas de forma 

secuencial. A partir de las predicciones obtenidas se planteaba la configuración de riego automático que 

compensara la reducción de agua en el terreno e incremento de salinidad. El principal problema para 

aplicar la metodología estándar consiste en la presencia de eventos que alteran la evolución natural del 

fenómeno que se registra. En concreto, tanto los riegos que se realizan como los episodios de lluvia 

suponen una ruptura de la estructura de autocorrelación. Esta situación implica una reducción de la 

eficiencia en el proceso de estimación y predicción del modelo ARIMA clásico. Sin embargo, es posible 

extender los modelos ARIMA incluyendo el tratamiento de atípicos para eventos no programados y 

análisis de intervención para eventos programados. Además, la medición de las variables de interés 

(contenido de agua y salinidad) se realizan a diferentes profundidades, con lo que resulta natural 

introducir los modelos con función de transferencia que suponen una mejora de los procesos de 

predicción. La extensión de estos modelos fue presentada en la tesis doctoral del Dr. Aljoumani “Soil water 

management. Evaluation of infiltration systems, assessing water and salt content spatially and temporally 

in the Parc Agrari del Baix Llobregat area” (2012).  

Respecto a la medición de la salinidad, aparece la problemática de que la señal medida no es 

directamente la salinidad del terreno, sino que el sensor registra una señal que se halla relacionada 

mediante un modelo físico teórico con la serie de interés (modelo de Hilhorst). En esta ecuación aparece 

un parámetro que no está determinado. Debido a que los terrenos de cultivo son heterogéneos en su 

composición y propiedades, el valor de este parámetro varía. Existen estudios que incluyen 

experimentación en laboratorio que permiten realizar una imputación aproximada para este parámetro 

con lo que la señal medida se puede transformar en la señal de interés. Una de las aportaciones realizadas 

y descritas en los tres primeros artículos de este bloque consiste en la utilización de modelos lineales 

dinámicos para obtener una imputación de este parámetro basada en los datos recogidos. La idea consiste 

en linealizar la ecuación del modelo de Hilhorst e incluir como variables de estado del modelo lineal 

dinámico tanto el parámetro como la serie de interés (salinidad). La estimación por máxima verosimilitud 

hace posible obtener los valores del parámetro específico y de los valores más verosímiles para la serie 

de salinidad. Los artículos incluidos presentan esta aproximación tanto con datos de campo como datos 

experimentales de laboratorio. 
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Finalmente, el último artículo incluido en la presente tesis supone una nueva línea de 

investigación, en colaboración con el departamento de Ecología y Conservación del Suelo de la 

Universidad Técnica de Berlín (TU Berlin).  A partir de un diseño experimental, se dispone de información 

recogida de la presencia de metales en el suelo en puntos cercanos a una autopista en Alemania. Los 

datos recogidos no presentan la estructura de series temporales (los períodos entre observaciones no son 

constantes) y además, el interés del estudio es relacionar la cantidad de metales encuentro con variables 

ambientales. En este caso, se plantea la metodología de los modelos aditivos generalizados mixtos, donde 

los flexibiliza la relación de la respuesta con las variables explicativas para incorporar dependencias no 

paramétricas. Como las medidas se hacen el largo del tiempo en una serie de puntos concretos es 

necesario también incluir efectos aleatorios para las localizaciones, haciendo que los modelos que se 

utilizan deban tener la extensión a modelos mixtos para medidas repetidas. 

1.1 Esquema de la tesis 

Como se ha comentado, los artículos aparecen agrupados en dos bloques que corresponden a las dos 

partes en que se clasifica la presente tesis. La primera parte se centra en aportaciones de tipo 

metodológico en estadística. Concretamente para el análisis de medidas repetidas mediante modelos 

mixtos, se proponen y analizan extensiones de las técnicas inferenciales clásicas usando métodos 

Bootstrap. El primer artículo (capítulo 2) describe esta aproximación mediante la aplicación, entre otras, 

de la técnica Wild Bootstrap para el caso de remuestreo de los componentes de la varianza (Residual 

Resampling). Las siguientes publicaciones (capítulos 3 a 5) profundizan en el análisis de la potencia de 

tests de bondad de ajuste cuando aplicamos desviaciones de normalidad a la hora de realizar las 

simulaciones para evaluar métodos inferenciales como los descritos en la primera publicación. 

En la segunda parte de la tesis se ilustra la aplicación de técnicas estadísticas para analizar medidas 

repetidas en el ámbito de la hidrología. Estas publicaciones son el resultado de la colaboración con un 

equipo del Departamento de Ingeniería Alimentaría y Biotecnología (UPC) y del Departamento de Ecología 

y Conservación del suelo (TU Berlin). La primera publicación de esta parte (capítulo 6) ilustra la aplicación 

de técnicas avanzadas de series temporales para analizar mediciones repetidas de contenido de agua y 

salinidad en el suelo. Las dos publicaciones siguientes profundizan en la determinación de la salinidad 

mediante el uso de modelos lineales dinámicos y el filtro de Kalman con datos de campo (capítulo 7) y 

con datos de experimentación en laboratorio (capítulo 8). Finalmente, la última publicación (capítulo 9) 

describe la aplicación de modelos GAMM para datos longitudinales. En este caso consiste en el análisis 

del contenido de metales pesados en zonas próximas a autopistas, en función de factores climatológicos 

y medioambientales. 

El último capítulo (capítulo 10) sumariza las aportaciones presentadas y futuras extensiones del trabajo 

realizado. 
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2. Semiparametric Bootstrap in Linear Mixed Models 
with Misspecified Skewness and Kurtosis 

José A. Sánchez-Espigares1, Jordi Ocaña2 
1Department of Statistics and Operations Research  

Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain 
2Departament of Genetics, Microbiology and Statistics, University of Barcelona, Spain 

 

ABSTRACT 

Standard inferential procedures for Linear Mixed Models (namely, asymptotic inference and 

parametric bootstrap) rely on normality assumptions for random effects estimates. Even if their 

distributions’ first and second moments are properly specified, skewness and kurtosis misspecification 

can lead to unsuitable inferences, e.g., insufficient or excessive coverage of confidence intervals. Several 

forms of semi-parametric bootstrap (adjusted and Wild bootstrap, among them) have been proposed to 

improve the estimates. This paper shows, using simulation, that when the misspecification tends to be 

exponential-like (asymmetry, high kurtosis) the Wild bootstrap over-performs the adjusted; when the 

misspecification tends to be uniform-like (symmetry, low kurtosis) the adjusted semi-parametric 

bootstrap should be preferred over the Wild. It is also shown that when the two sources of variability 

(random effects and residual variance) have contrasting ways of misspecification, the choice between 

Wild and adjusted is not clear and involves a trade-off, but any of the two options are better than the 

parametric bootstrap with the normality assumption. 

KEYWORDS: linear mixed model, parametric bootstrap, semi-parametric bootstrap, simulation  

 

2.1. Introduction 

It is well known that the violation of statistical assumptions is not always assessed in statistical 

practice. A common example of this apparently widespread phenomenon occurs when confidence 

intervals are assumed to have the expected coverage even when key assumptions for their computation 

do not hold. Typically, assumptions relate to the probability distributions of some terms in a model. 
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Dubious actual coverages due to unfulfilled distributional assumptions can affect both asymptotically 

justified confidence intervals and confidence intervals obtained using parametric bootstrap. 

The versatility of Linear Mixed Models (LMMs) to analyze various kinds of data comes from the 

fact that they allow more random terms beyond the single residual error found in Linear Models (LMs). 

Since each random term involves the specification of a distribution, LMMs pose particular challenges 

concerning how to deal with misspecification. 

LMMs strongly rely on normality assumptions for the estimation of the covariance matrix of 

random effects and the residual variance (Schützenmeister and Piepho 2011; Laird and Ware 1982); such 

assumptions are mostly made for the convenience of getting an analytic treatment of the marginal density 

of the response variable. 

The extent to which the normality assumption can lead to wrong conclusions when one or more 

than one of the sources of variability (random effects or residual errors) are misspecified, largely depends 

on the study objectives. For instance, it is well established that the maximum-likelihood estimation of 

fixed effects is robust to random-effects misspecification (Butler and Louis 1992; Agresti, Caffo, and 

Ohman-Strickland 2004; Charles E McCulloch and Neuhaus 2011; Geert Verbeke and Lesaffre 1997; D. 

Zhang and Davidian 2001); in most situations (except, for instance, when the residual variance depends 

on time-varying covariates), they are robust not only to non-normality but also to heteroscedasticity 

(Jacqmin-Gadda et al. 2007). Similar results have been found for fixed effects estimates obtained by 

Generalised Estimating Equations (GEE) (Liang and Zeger 1986) and, at least asymptotically, for robust 

sandwich variance estimators (Royall 1986). Since research objectives frequently focus on fixed effects 

estimates and random effects are only included to improve the inference on them, misspecification is not 

necessarily problematic in all cases. 

Furthermore, asymptotic consistency results are well established for maximum likelihood 

estimators not only of fixed effects but also of variance components, even when their distribution is not 

normal: under general regularity conditions, the maximum likelihood estimates of fixed effects, random 

effects and residual variance are strongly consistent estimators when the number of observations tends 

to infinity, as shown in (Geert Verbeke and Lesaffre 1997). 

When sample sizes are not large enough, misspecification can have several consequences on the 

estimation of random effects (Agresti, Caffo, and Ohman-Strickland 2004). Empirical Bayes estimates of 

random effects have been shown to be sensitive to non-normality (Ghidey, Lesaffre, and Verbeke 2010). 

It is also well established that the normal model can be inefficient in the case of binary or mixture random-

effects distributions (Agresti, Caffo, and Ohman-Strickland 2004). Bimodal distribution of the random 

effects may indicate that subject-specific covariates have not been taken into account. McCulloch and 

Neuhaus (Charles E McCulloch and Neuhaus 2011) further study the impact of the shape of random-
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effects distribution on the estimation of random intercept coefficients, a topic closely related to the 

present paper, which focus on asymmetry and skewness misspecification in the case unimodal 

distributions. 

Such problems are relevant in practice because LMMs are widely used for the analysis of 

longitudinal and repeated measurements data, for instance in growth curve models including random 

effects for intercept and slope (Nguyen and McLachlan 2016; C. E. McCulloch and Searle 2001; J. C. 

Pinheiro and Bates 2000; G. Verbeke and Molenberghs 2000). In behavioral or medical research, repeated 

measures and split-plot designs are frequently used because they require less subjects (Davis 2002; 

Hedeker and Gibbons 2006; Howell 2013; Stevens 2012; Friedrich, Konietschke, and Pauly 2016). Indeed, 

the cost considerations or subject availability reasons behind the use of this family of clustered designs 

do not play in favor of the widespread reliance on asymptotic results, either in the context of multivariate 

ANOVA methods, repeated measures ANOVA, or LMMs (Davis 2002; Hedeker and Gibbons 2006; Johnson 

and Wichern 2007). The required parametric assumptions (which are crucial when asymptotic 

considerations are not reliable) are not always met for this kind of data (Kherad-Pajouh and Renaud 2014; 

Konietschke et al. 2015; Suo et al. 2013; Xu and Cui 2008). 

Several practical applications are exposed to misspecification problems. Again in behavioral and 

medical research, measurements of interest can be assessed by differents observers or diagnostic 

methods; such measurements can involve nominal, ordinal, count or continuous scales that not always 

are going to satisfy stringent distributional assumptions. But nevertheless it is important to assess the 

agreement among observers or the reproducibility of replicated measures of a single method (Tsai and 

Lin 2017). The Intraclass Correlation Coefficient (ICC), the proportion of the total variance due to the 

between-subjects variance, can be used for assessing the agreement between different observers taking 

quantitative measures (Bartko 1966; Shrout and Fleiss 1979; Tsai 2015). ICC can be analyzed via LMMs 

with serial correlation for inter-observer, intra-observer, and absolute agreement, with observer and time 

as random effects (Vangeneugden et al. 2005; Chen and Barnhart 2013). 

The Concordance Correlation Coefficient (CCC), proposed by Lin (L. Lin 1989), was shown to be 

equivalent with the ICC by Carrasco and Jover (Carrasco and Jover 2004) for a two-way linear mixed model 

without interaction; both can be estimated through variance components (in addition to other methods 

such as GEE and U-statistics). When repeated measurements are assessed from different observers over 

time, a longitudinal version can be obtained by similar methods (Carrasco, King, and Chinchilli 2009). 

Another example of relevant application of LMM sensitive to misspecification is the prediction of 

vectors of small area quantities based on a multivariate Fay-Herriot model (González-Manteiga et al. 

2008). In this case, an empirical best linear unbiased predictor (EBLUP) of the target vector can obtained 

either analytically and using bootstrap. Small sample properties of bootstrap estimators have been 
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compared to the analytical approximation under non-normality, showing that empirical mean square 

errors (MSEs) may increase considerably (González-Manteiga et al. 2008). 

The diagnosis of misspecification problems in LMM can be done with generalized weighted 

normal plots with weights depending on the sampling variances of the estimated random effects (Lange 

and Ryan 1989), even though Verbeke and Molenberghs found that these plots are sensitive to the choice 

of covariates and distributional assumptions on random effects or residual variance (G. Verbeke and 

Molenberghs 2000). Pinheiro and Bates (J. C. Pinheiro and Bates 2000) suggest to assess the normality of 

residual errors and random effects with quantile-quantile plots. 

Proposed solutions to the problems of misspecification in LMM include analytic methods using 𝑡𝑡-

distributed random-effects and residuals (José C. Pinheiro, Liu, and Wu 2001; Song, Zhang, and Qu 2007), 

or using the skew normal distribution (Arellano-Valle, Bolfarine, and Lachos 2005; Lachos, Ghosh, and 

Arellano-Valle 2010; Ho and Lin 2010). Non-parametric maximum likelihood (NPML) densities (Laird 1978) 

can be shown to provide more efficient estimates of random-effects parameters compared to parametric 

inference when the true densities are not as assumed (Agresti, Caffo, and Ohman-Strickland 2004). Kernel 

density methods for mixture modeling with symmetric components are proposed in (Chee and Wang 

2013). 

Bootstrap methods have been also considered (Field and Welsh 2007; O’Shaughnessy and Welsh 

2018), and they are the main focus in the present paper. Field et al. (Field, Pang, and Welsh 2008) 

considered semiparametric bootstraps for unbalanced clustered data. Several forms of generalized 

bootstrap techniques have been obtained applying bootstrap weights into GEE (Chatterjee and Bose 2005; 

Field, Pang, and Welsh 2010). These methods have been used in the analysis of clustered data with 

multiple levels of random effects (Field, Pang, and Welsh 2010), both in balanced and unbalanced cases 

(Samanta and Welsh 2013). O’Shaughnessy and Welsh (O’Shaughnessy and Welsh 2018) use bootstrap 

inference for the correlation between random effects under non-normality. 

This paper also considers bootstrap methods in the case of misspecification of LMMs. 

Misspecification is understood here in terms of the shape of the distribution of random effects and 

residuals, namely in terms of their asymmetry and skewness. 

In section 2 we introduce the notation together with the description of the model and its 

hypotheses. We discuss asymptotic inference for the model’s parameters and we summarize three 

distinct forms of bootstrap resampling: parametric bootstrap, adjusted semi-parametric bootstrap, and 

Wild bootstrap. In section 3 we introduce a simulation experiment aimed at showing how the parametric 

bootstrap fails in the case of misspecification and in which scenarios the adjusted and Wild bootstraps are 

preferable. Simulation results are shown in section 4 and the corresponding appendix, and discussed in 

section 5. 
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2.2. Inference for Linear mixed models 

2.2.1. Model and hypotheses 

The general specification of LMMs using Laird and Ware’s (Laird and Ware 1982) notation (with 

minor variabilitys) is: 

𝐘𝐘𝑖𝑖 = 𝐗𝐗𝑖𝑖𝛃𝛃 + 𝐙𝐙𝑖𝑖𝐛𝐛𝑖𝑖 + 𝛆𝛆𝑖𝑖
𝐛𝐛𝑖𝑖 ∼ 𝒩𝒩(𝟎𝟎,𝐃𝐃)
𝛆𝛆𝑖𝑖 ∼ 𝒩𝒩(𝟎𝟎,𝐑𝐑𝑖𝑖)

 

where 𝑖𝑖 ranges from 1 to 𝑀𝑀 experimental units. In contrast to classical Linear Models, each 𝐘𝐘𝑖𝑖 is a 

vector of 𝐷𝐷𝑖𝑖 random variables: 

𝐘𝐘𝑖𝑖 = �
𝑌𝑌𝑖𝑖1
⋮
𝑌𝑌𝑖𝑖𝑛𝑛𝑖𝑖

� 

For observations 𝐘𝐘𝑖𝑖 = 𝐲𝐲𝑖𝑖  we use the notation 𝐲𝐲𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖)
𝑇𝑇. 

Fixed factors have a known 𝐷𝐷𝑖𝑖 × 𝑝𝑝 design matrix 𝐗𝐗𝑖𝑖 and an unknown parameter vector 𝛃𝛃 of 

dimension 𝑝𝑝 × 1 common to all experimental units: 

𝐗𝐗𝑖𝑖 = �
𝑋𝑋𝑖𝑖1

(1) … 𝑋𝑋𝑖𝑖1
(𝑝𝑝)

⋮
𝑋𝑋𝑖𝑖𝑛𝑛𝑖𝑖

(1) … 𝑋𝑋𝑖𝑖𝑛𝑛𝑖𝑖
(𝑝𝑝)
� , 𝛃𝛃 = �

𝛽𝛽1
⋮
𝛽𝛽𝑝𝑝
� 

Random factors have a known 𝐷𝐷𝑖𝑖 × 𝑘𝑘 design matrix and an unknown parameter vector 𝐛𝐛𝑖𝑖 of 

dimension 𝑘𝑘 × 1 assumed to be normally distributed around the zero vector: 

𝐙𝐙𝑖𝑖 = �
𝑍𝑍𝑖𝑖1

(1) … 𝑍𝑍𝑖𝑖1
(𝑘𝑘)

⋮
𝑍𝑍𝑖𝑖𝑛𝑛𝑖𝑖

(1) … 𝑍𝑍𝑖𝑖𝑛𝑛𝑖𝑖
(𝑘𝑘)
� , 𝐛𝐛𝑖𝑖 = �

𝑏𝑏𝑖𝑖1
⋮
𝑏𝑏𝑖𝑖𝑘𝑘

� ∼ 𝒩𝒩(𝟎𝟎,𝐃𝐃) 

Here 𝐃𝐃 is a 𝑘𝑘 × 𝑘𝑘 positive semi-definite (thus symmetric) matrix to be interpreted as the variance-

covariance matrix 

𝐃𝐃 =

⎝

⎛
𝜎𝜎12 𝜎𝜎12 … 𝜎𝜎1𝑘𝑘
𝜎𝜎12 𝜎𝜎22 … 𝜎𝜎2𝑘𝑘
⋮ ⋮ ⋱ ⋮
𝜎𝜎1𝑘𝑘 𝜎𝜎2𝑘𝑘 … 𝜎𝜎𝑘𝑘2 ⎠

⎞ 

Notice that 𝐃𝐃 does not depend on the individual 𝑖𝑖, the subscript in 𝐛𝐛𝑖𝑖 (just like in 𝛆𝛆𝑖𝑖) meaning that 

each individual has a particular realization of the random variable. Accordingly, in the random part of the 

model only 𝐙𝐙𝑖𝑖  is specific to the individual. 
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Each experimental unit has a 𝐷𝐷𝑖𝑖 × 1 residuals vector also taken to be normally distributed around 

the zero vector: 

𝛆𝛆𝑖𝑖 = �
𝜀𝜀𝑖𝑖1
⋮
𝜀𝜀𝑖𝑖𝑛𝑛𝑖𝑖

� ∼ 𝒩𝒩(𝟎𝟎,𝐑𝐑𝑖𝑖) 

In this paper we shall assume that 𝐑𝐑𝑖𝑖 = 𝜎𝜎2𝐈𝐈𝑛𝑛𝑖𝑖, where 𝐈𝐈𝑛𝑛𝑖𝑖 is the 𝐷𝐷𝑖𝑖 × 𝐷𝐷𝑖𝑖 identity matrix. The matrix 

𝜎𝜎2𝐈𝐈𝑛𝑛𝑖𝑖 only depends on the individual 𝑖𝑖 through its dimension, and 𝜎𝜎2 is common to all the experimental 

units. 

According to the last remark, every pair of residuals 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑖𝑖𝑖𝑖′ of any individual 𝑖𝑖 are 

uncorrelated. In addition, for any two individuals 𝑖𝑖 and 𝑗𝑗, any pair of errors 𝜀𝜀𝑖𝑖𝑖𝑖 and 𝜀𝜀𝑗𝑗𝑖𝑖′ are independent. 

Any two 𝑏𝑏𝑙𝑙 and 𝑏𝑏𝑙𝑙′ in 𝐛𝐛 are tipically correlated, but any 𝑏𝑏𝑙𝑙 and 𝜀𝜀𝑖𝑖𝑖𝑖 are independent. 

Let 𝛉𝛉 be a 𝑘𝑘 × 1 vector of the variance and covariance parameters in 𝐃𝐃, thus 

𝛉𝛉 = (𝜎𝜎12,𝜎𝜎22, … ,𝜎𝜎𝑘𝑘2,𝜎𝜎12,𝜎𝜎13, … ,𝜎𝜎𝑘𝑘(𝑘𝑘−1))𝑇𝑇 

We denote by 𝛇𝛇 the vector of the parameters for the whole model, which include 𝛃𝛃 (fixed effects) 

and 𝛩𝛩 = (𝛉𝛉,𝜎𝜎2) (variance components), so 

𝛇𝛇 = (𝛽𝛽1, … ,𝛽𝛽𝑝𝑝,𝜎𝜎12,𝜎𝜎22, … ,𝜎𝜎𝑘𝑘2,𝜎𝜎12,𝜎𝜎13, … ,𝜎𝜎𝑘𝑘(𝑘𝑘−1),𝜎𝜎2)𝑇𝑇 

When appropriate, standard deviations and correlations will be used instead of variances and 

covariances. For instance, in the particular case of 𝑝𝑝 = 𝑘𝑘 = 2 and 

𝐃𝐃 = �
𝜎𝜎12 𝜎𝜎12
𝜎𝜎12 𝜎𝜎22

� 

we have 𝛉𝛉 = (𝜎𝜎12,𝜎𝜎22,𝜎𝜎12)𝑇𝑇 but we may use 𝛇𝛇 = (𝛽𝛽1,𝛽𝛽2,𝜎𝜎1,𝜎𝜎2,𝜌𝜌,𝜎𝜎)𝑇𝑇, with 𝜌𝜌 = 𝜎𝜎12
𝜎𝜎1𝜎𝜎2

, as the 

parametrization for the whole model. 

2.2.2. Point estimation from data 

Once a realization 𝐘𝐘𝑖𝑖 = 𝐲𝐲𝑖𝑖, with 𝐲𝐲𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖)
𝑇𝑇, has been obtained for each 𝑖𝑖 = 1, … ,𝑀𝑀, the 

observed response variable is 

𝐲𝐲 = (𝑦𝑦11, … ,𝑦𝑦1𝑛𝑛1 ,𝑦𝑦21, … ,𝑦𝑦2𝑛𝑛2 , … ,𝑦𝑦𝑀𝑀1, … ,𝑦𝑦𝑀𝑀𝑛𝑛𝑀𝑀)𝑇𝑇 

of dimension 𝑁𝑁 × 1, with 𝑁𝑁 = ∑ 𝐷𝐷𝑖𝑖𝑀𝑀
𝑖𝑖=1 . Let 𝐗𝐗 be the 𝑁𝑁 × 𝑝𝑝 matrix 

𝐗𝐗 = �
𝐗𝐗1
⋮
𝐗𝐗𝑀𝑀

� 

and let 𝐙𝐙 be the 𝑁𝑁 × 𝑘𝑘𝑀𝑀 matrix 
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𝐙𝐙 = �

𝐙𝐙1 𝟎𝟎 … 𝟎𝟎
𝟎𝟎 𝐙𝐙2 … 𝟎𝟎
⋮ ⋮ ⋱ ⋮
𝟎𝟎 𝟎𝟎 … 𝐙𝐙𝑀𝑀

� 

Assuming the model [lmmodel]–[mod_resid_dist], from 𝐲𝐲, 𝐗𝐗 and 𝐙𝐙 one can get a point estimate 

𝛇𝛇� = (𝛽𝛽�1 , … ,𝛽𝛽�𝑝𝑝 ,𝜎𝜎�1
2 ,𝜎𝜎�2

2 , … ,𝜎𝜎�𝑘𝑘
2 ,𝜎𝜎�12 ,𝜎𝜎�13 , … ,𝜎𝜎�𝑘𝑘(𝑘𝑘−1) ,𝜎𝜎�2)𝑇𝑇 

of the model parameters. 

As Pinheiro and Bates (J. C. Pinheiro and Bates 2000) recall, technically the random effects 𝐛𝐛𝑖𝑖 are 

not parameters for the statistical model, but sometimes it is convenient to get their predicted values given 

the observed 𝐲𝐲. The conditional modes of the random effects, evaluated at the conditional estimate of 𝛃𝛃, 

are the Best Linear Unbiased Predictors (BLUP) of the 𝐛𝐛𝑖𝑖, 𝑖𝑖 = 1, … ,𝑀𝑀. Accordingly, as usual in the 

literature, 𝐛𝐛�𝑖𝑖 = (𝑏𝑏�𝑖𝑖1 , … , 𝑏𝑏�𝑖𝑖𝑘𝑘)𝑇𝑇 denotes the prediction of 𝐛𝐛𝑖𝑖 and 𝐛𝐛� is the 𝑘𝑘𝑀𝑀 × 1 vector 

𝐛𝐛� = (𝑏𝑏�11 , … , 𝑏𝑏�1𝑘𝑘 , 𝑏𝑏�21 , … , 𝑏𝑏�2𝑘𝑘 , … , 𝑏𝑏�𝑀𝑀1 , … , 𝑏𝑏�𝑀𝑀𝑘𝑘)𝑇𝑇 

In a similar abuse of notation, given an observation 𝐘𝐘𝑖𝑖 = 𝐲𝐲𝑖𝑖, with 𝐲𝐲𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … ,𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖)
𝑇𝑇, the 

conditional residual is defined as 𝛆𝛆�𝑖𝑖 = 𝐲𝐲𝑖𝑖 − 𝐗𝐗𝑖𝑖 𝛃𝛃� − 𝐙𝐙𝑖𝑖 𝐛𝐛𝑖𝑖� , so we have 𝛆𝛆�𝑖𝑖 = (𝜀𝜀�𝑖𝑖1 , … , 𝜀𝜀�𝑖𝑖𝑛𝑛𝑖𝑖)
𝑇𝑇. Let 𝛆𝛆� be the 

𝑁𝑁 × 1 vector 

𝛆𝛆� = (𝜀𝜀�11 , … , 𝜀𝜀�1𝑛𝑛1 , 𝜀𝜀�21 , … , 𝜀𝜀�2𝑛𝑛2 , … , 𝜀𝜀�𝑀𝑀1 , … , 𝜀𝜀�𝑀𝑀𝑛𝑛𝑀𝑀)𝑇𝑇 

It can be checked that 

𝐲𝐲 = 𝐗𝐗𝛃𝛃� + 𝐙𝐙𝐛𝐛� + 𝛆𝛆� 

2.2.3. Asymptotic inference 

Throughout this manuscript, inference shall mean confidence interval estimation of 𝛇𝛇. 

Asymptotic confidence intervals are based on Wald’s test, since the standard error of the 

maximum likelihood (ML) estimates is computed from the inverse of Fisher’s information matrix ℐ, since 

(𝛃𝛃� ,𝐃𝐃� ,𝜎𝜎�2) →
𝑑𝑑
𝒩𝒩((𝛃𝛃,𝐃𝐃,𝛔𝛔), ℐ−1(𝛃𝛃,𝐃𝐃,𝜎𝜎2)) 

where →
𝑑𝑑

 means convergence in distribution. Though asymptotically efficient, ML estimates of 𝐃𝐃 

and 𝜎𝜎2 are biased for finite samples. More precisely, 𝜎𝜎2 and the diagonal of 𝐃𝐃 are underestimated (𝜎𝜎�2 

and 𝐃𝐃�  are downward biased) because of the loss of degrees of freedom due to the estimation of 𝛃𝛃 at the 

same time. 

Restricted maximum likelihood (REML) gets unbiased estimates of 𝐃𝐃 and 𝜎𝜎2 by decoupling the 

estimation of variance components from the estimation of 𝛃𝛃. That is, it maximizes a modified version of 
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the likelihood function which does not contain information about the fixed effects but only about the 

marginal residuals 𝐲𝐲𝑖𝑖 − 𝐗𝐗𝑖𝑖 𝛃𝛃� = 𝐙𝐙𝑖𝑖 𝐛𝐛�𝑖𝑖 + 𝛆𝛆�𝑖𝑖, so the necessary degrees of freedom are regained for the 

estimation of the variance components. 

2.2.4. Bootstrap 

In resampling, it turns out to be particularly relevant that 𝐃𝐃 can be decomposed as 𝐃𝐃 = 𝚲𝚲𝚲𝚲𝑇𝑇, 

where 𝚲𝚲 is a lower triangular matrix with positive diagonal. Such decomposition (the Cholesky 

decomposition) satisfies 

𝚲𝚲−1𝐛𝐛𝑖𝑖 = 𝐮𝐮𝑖𝑖 ∼ 𝒩𝒩(𝟎𝟎, 𝐈𝐈𝑘𝑘) 

where 𝐈𝐈𝑘𝑘 is the 𝑘𝑘 × 𝑘𝑘 identity matrix. Therefore, 𝐮𝐮𝑖𝑖  is a 𝑘𝑘 × 1 vector of uncorrelated parameters 

from which we can retrieve the original correlated parameters, since 𝐛𝐛𝑖𝑖 = 𝚲𝚲𝐮𝐮𝑖𝑖. The model [lmmodel] can 

thus be written as 𝐘𝐘𝑖𝑖 = 𝐗𝐗𝑖𝑖𝛃𝛃 + 𝐙𝐙𝑖𝑖𝚲𝚲𝐮𝐮𝑖𝑖 + 𝛆𝛆𝑖𝑖 with 𝐮𝐮𝑖𝑖 ∼ 𝒩𝒩(𝟎𝟎, 𝐈𝐈𝑘𝑘) and 𝛆𝛆𝑖𝑖 ∼ 𝒩𝒩(𝟎𝟎,𝐑𝐑𝑖𝑖). Using this setting, it is 

possible to resample from the estimations 𝐮𝐮�𝑖𝑖  from the data, which makes more sense than resampling 

from the presumably correlated 𝐛𝐛�𝑖𝑖. 

When a realization 𝐘𝐘𝑖𝑖 = 𝐲𝐲𝑖𝑖 is obtained for each one of the 𝑁𝑁 individuals, we denote by 𝐲𝐲� the 

vector of all 𝑁𝑁 observations 𝐲𝐲𝑖𝑖 = (𝑦𝑦𝑖𝑖1, … , 𝑦𝑦𝑖𝑖𝑛𝑛𝑖𝑖)
𝑇𝑇. Since each 𝐗𝐗𝑖𝑖 and 𝐙𝐙𝑖𝑖  are assumed to be known, 𝐲𝐲� can be 

used to compute estimates 𝐛𝐛�𝑖𝑖 (for each individual) and 𝛃𝛃�, thus observed residuals 𝛆𝛆�𝑖𝑖 can be obtained for 

each individual. 

Bootstrap methods are based on generating new observations either using an underlying model 

(parametric bootstrap) or the empirical distribution function of the parameters (semi-parametric 

bootstrap). Both sorts of bootstrap are based on so-called “residual resampling”—or, more generally, in 

a terminology adapted to LMMs, variance components resampling. 

The strictly non-parametric bootstrap based on “case resampling” is not suitable for LMMs 

because either experimental units should have to be resampled with all their measures or measures 

should have to be resampled in disregard of the experimental units; in either case the design matrix would 

not be respected. In this manuscript, non-parametric bootstrap is not taken into account, since we assume 

that design matrices are determined. 

Given any bootstrap procedure, resamples 𝐛𝐛𝑖𝑖∗ and 𝛆𝛆𝑖𝑖∗ are obtained. The number of resamples is 

typically denoted by 𝐵𝐵. Details on the three ways considered here to obtain such resamples (parametric, 

adjusted semi-parametric, and semi-parametric Wild bootstrap) are explained below. Each bootstrap 

sample has the same size 𝑁𝑁 = ∑ 𝐷𝐷𝑖𝑖𝑀𝑀
𝑖𝑖=1  as the original sample, and 𝐛𝐛𝑖𝑖∗ and 𝛆𝛆𝑖𝑖∗ have the same dimension as 

𝐛𝐛�𝑖𝑖 and 𝛆𝛆�𝑖𝑖, respectively.  
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There are three kinds of bootstrap confidence intervals which can be computed with the 

resamples: normal, basic, and percentile (Davison and Hinkley 1997). In this study, percentile confidence 

intervals (𝜃𝜃�𝛼𝛼 2� �
∗ ,𝜃𝜃(1−𝛼𝛼 2� )

∗ ) are used, which simply consist of taking the 𝛼𝛼 2� -th percentile of the 𝐵𝐵 

estimations of the parameter 𝜃𝜃 as lower limit, and the 1 − 𝛼𝛼
2� -th percentile as upper limit. 

The assessment of confidence interval estimations can be done via simulation. If the simulation is 

repeated nsim times, so that 𝐵𝐵 resamples of sample size 𝑁𝑁 = ∑ 𝐷𝐷𝑖𝑖𝑀𝑀
𝑖𝑖=1  are obtained nsim times, then we 

obtain nsim percentile confidence intervals. The empirical coverage is defined as the proportion of the 

nsim intervals which effectively include the value of the parameter used in their respective simulation 

instances. Below [above] rates can be defined as the proportion of the nsim intervals for which the 

parameter value used in the simulation instances falls below [above] the lower [upper] limit. 

The simplest way to obtain resamples is the parametric bootstrap, which assumes the family of 

distributions of random effects and residuals to be known, and just simulates resamples according to such 

families. That is, if the model [lmmodel]–[mod_resid_dist] holds, 𝐛𝐛𝑖𝑖 and 𝛆𝛆𝑖𝑖 are random variables assumed 

to be normal with zero means and covariance matrices 𝐃𝐃 and 𝜎𝜎2𝐈𝐈𝑛𝑛𝑖𝑖, respectively. When data is available, 

this model can be fitted, yielding estimates 𝐃𝐃�  and 𝜎𝜎2� . This makes it possible to compute an arbitrary 

number 𝐵𝐵 of resamples 𝐛𝐛𝑖𝑖∗ and 𝜀𝜀𝑖𝑖∗ just simulating from 

𝐛𝐛𝑖𝑖∗ ∼ 𝒩𝒩(𝟎𝟎,𝐃𝐃�)
𝛆𝛆𝑖𝑖∗ ∼ 𝒩𝒩(𝟎𝟎,𝜎𝜎�2 𝐈𝐈𝑛𝑛𝑖𝑖)

 

so obtaining fitted values 

𝐲𝐲�𝑖𝑖
∗ = 𝑋𝑋𝑖𝑖 𝛃𝛃� + 𝐙𝐙𝑖𝑖𝐛𝐛𝑖𝑖∗ + 𝛆𝛆𝑖𝑖∗ 

A resample is a vector (𝐲𝐲�1
∗ , … , 𝐲𝐲�𝑁𝑁

∗ )𝑇𝑇. 

2.2.5. Adjusted semi-parametric bootstrap 

If the model [lmmodel]–[mod_resid_dist] cannot be assumed, the empirical distribution of the 

parameters can be used: 

𝐛𝐛𝑖𝑖∗ ∼ 𝐹𝐹𝑛𝑛(𝐛𝐛�𝑖𝑖)
𝛆𝛆𝑖𝑖∗ ∼ 𝐹𝐹𝑛𝑛(𝛆𝛆�𝑖𝑖)

 

Estimates 𝐃𝐃�  and 𝜎𝜎�2 can be shown to be biased. In order to avoid the bias, the following 

adjustment can be used (Davison and Hinkley 1997): 
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𝐛𝐛𝑖𝑖∗ ∼ 𝐹𝐹𝑛𝑛(𝐃𝐃�
𝐛𝐛�𝑖𝑖
𝑠𝑠𝐛𝐛𝑖𝑖

)

𝛆𝛆𝑖𝑖∗ ∼ 𝐹𝐹𝑛𝑛(𝜎𝜎�
𝑒𝑒𝑖𝑖∗

𝑠𝑠𝑒𝑒𝑖𝑖∗
)

 

where 𝑒𝑒𝑖𝑖 = 𝛆𝛆�𝑖𝑖. 

2.2.6. Semi-parametric bootstrap: Wild bootstrap 

In the Wild boostrap each resampled residual is randomly multiplied by 1 or -1. That is, resampled 

residuals are 𝑒𝑒′𝑖𝑖 = 𝑤𝑤𝑖𝑖𝑒𝑒𝑖𝑖 where 𝑤𝑤𝑖𝑖 is the Rademacher distribution (Davison and Hinkley 1997).: 

𝑤𝑤𝑖𝑖 = �1 with probability 0.5
−1 with probability 0.5 

The Wild bootstrap was proposed by Davidson and Flachaire (Davidson and Flachaire 2008) and, 

even though it may increase variability and impose symmetry on the empirical distribution, it can capture 

other features of the underlying density. An alternative approach can be obtained using Mammen’s two-

point distribution (Mammen 1993) (Mammen 1993): 

𝑤𝑤𝑖𝑖 = �
−(√5 − 1)/2 with probability (√5 + 1)/(2√5)
(√5 + 1)/2 with probability (√5− 1)/(2√5)

 

Both the Rademacher and Mammen distributions fix the third and fourth moments, so can be 

suitable to some kinds of misspecifications of skewness and kurtosis, but not others. 

2.3. Simulation Study 

2.3.1. Simulation settings 

Three distributions are used in the simulation study for both the random effects and the residuals: 

normal (symmetric, reference kurtosis), uniform (symmetric, platykurtic), and exponential (assymetric, 

leptokurtic). 

Depending of the distribution of each source of variability (random effects or r.e. - residuals or 

res.), we have the following 9 scenarios: 

• Normal r.e. - Normal res. 

• Uniform r.e. - Normal res. 

• Exponential r.e. - Normal res. 

• Uniform r.e. - Uniform res. 

• Exponential r.e. - Exponential res. 
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• Exponential r.e. - Uniform res. 

• Uniform r.e. - Exponential res. 

In order to make the simulation, the model from the Oxboys data is assumed. It is a dataset about 

the height growth of boys in Oxford, initially studied in (Harrison and Brush 1990) and then described in 

(Goldstein 2011); it is included (J. Pinheiro et al. 2019). The following variables are used in this paper: 

• height : height of the boy (cm). 

• age : standardized age (dimensionless). 

• Subject : a unique identifier for each boy in the experiment. 

The response variable 𝐲𝐲𝑖𝑖 is the height of 𝑀𝑀 = 26 boys in each of 𝐷𝐷𝑖𝑖 = 9 measures, thus 𝑁𝑁 = 234. 

The matrix 𝐙𝐙𝑖𝑖 = 𝐗𝐗𝑖𝑖 has dimension 26 × 2, corresponding to the variables Intercept and Age. The 

parameters for fixed effects are 𝛽𝛽0 (intercept) and 𝛽𝛽𝐴𝐴 (age), and we have variance components 

(𝜎𝜎0,𝜎𝜎𝐴𝐴,𝜌𝜌,𝜎𝜎), where 𝜌𝜌 is the correlation between (random) intercept and age. The theoretical model is on 

the adjusted model for the Oxboys data, taken here to be a suitable model for simulation: 

• 𝛽𝛽0 = 149.37175 

• 𝛽𝛽𝐴𝐴 = 6.52547 

• 𝜎𝜎0 = 8.081077 

• 𝜎𝜎𝐴𝐴 = 1.680717 

• 𝜌𝜌 = 0.641 

• 𝜎𝜎 = 0.659889 

The simulation consists of nsim = 30000 simulation replicates for each scenario. In each simulation 

replicate B = 200 resamples have been drawn. 

2.4. Results and discussion 

The Appendix shows the simulation results for three confidences (90%, 95% and 99%) and the 

nine scenarios. In each one of the 27 settings, the results from using parametric, semi-parametric and 

Wild bootstrap, together with the reference result of bootstrapping from the true distribution (known in 

the simulation) are shown. 

In each case we provide the following information for each one of the six parameters 

(𝛽𝛽0,𝛽𝛽𝐴𝐴,𝜎𝜎0,𝜎𝜎𝐴𝐴,𝜌𝜌,𝜎𝜎): 

• Below rate. Proportion of confidence intervals in which the true parameter is below the lower limit. 
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• Cover rate. Proportion of confidence intervals in which the true parameter falls within the limits. 

• Above rate. Proportion of confidence intervals in which the true parameter is above the upper limit. 

• Mean width. Average of the confidence intervals’ widths. 

• Width SD. Standard deviation of the confidence intervals’ widths. 

Among the obtained results, the most expected one it that the fixed effects estimation is robust 

to misspecification: misspecification in random effects and/or residuals does not corrupt the fixed effects 

estimates. 

On the other hand, random effects and residuals show a relatively independent behavior. If 

random effects are normal but residuals are misspecified, the random effects’ estimates do not seem to 

be wrong in any obvious way. Likewise, if residuals are normal but random effects misspecified, the 

residuals’ estimates seem to be correct. Even if one source is misspecified in some way (say, towards the 

uniform distribution) and the other source in the contrary way (towards the exponential), their behavior 

does not interact in any clear way. 

Another conclusion mostly independent of the estimation method is that when a source of 

variability has an exponential behavior, the confidence interval for its standard deviation presents clear 

under-coverage: for a 95% confidence, it ranges from about 70% in the worst case (parametric bootstrap) 

to at most 90% for the best option (the Wild bootstrap), through the 85% in the adjusted semi-parametric 

bootstrap.  In all these cases the Above Rate is clearly larger than the Below Rate, so the fact that the true 

parameter tends to fall above the upper limit accounts for most of the reduced coverage. The under-

coverage for the correlation between random effects does not seem to be as pronounced as in the case 

of the standard deviations.  

Contrariwise, when a source of variability has a uniform behavior, the confidence intervals for its 

parameters (including the correlation between random effects) presents over-coverage. Of course, the 

over-coverage is upper bounded, so not strictly comparable with the magnitude of the under-coverage in 

the exponential case, but for a 95% confidence it can rise as high as 99.0 - 99.5% (standard deviation of 

the residual error in the parametric and Wild bootstraps).  

Of course, another expected result is that, neither the Wild nor the semi-parametric bootstrap 

outperform the parametric bootstrap if the model is correctly specified. In the exponential-exponential 

scenario (asymmetry, higher kurtosis), the Wild bootstrap seems to be preferable over the adjusted (and 

of course over the parametric bootstrap); this is also the case when only one source is misspecified 

towards the exponential. A possible reason is that the Wild bootstrap introduces bias, which (by the 

asymmetry of the exponential) may “artificially” increase the coverage. As noted, the exponential 
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distribution essentially generates under-coverage, so anything increasing the coverage appears as better-

behaved.  

In the uniform case less or no bias is generated, so the Wild bootstrap does not take advantage 

of an artificial impact on coverage, and in the uniform-uniform scenario (symmetry, lower kurtosis), the 

semi-parametric bootstrap seems to be preferable. It is also preferable if only one source is misspecified 

towards the uniform. If both sources are misspecified, but in different ways (one towards the uniform 

distribution and the other towards the exponential), the results are not conclusive: when choosing 

between semi-parametric and Wild bootstrap there is a tradeoff between getting a better estimation of 

the random effects or a better estimate of the residual variance. But, crucially, both the semi-parametric 

and the Wild bootstrap are better than the parametric bootstrap (which tends to be the most prevalent 

choice). In fact, the parametric bootstrap never outperforms the Wild nor the semi-parametric bootstraps 

in the presence of any misspecified source of variability. 

2.5. Conclusions 

Taking the results into account, a heuristic for bootstrap method selection based on sample 

estimates of skewness and kurtosis could be easily designed and implemented. The parametric bootstrap 

should be preferable only under normality. Further research can improve the criteria proposed for each 

of the considered scenarios, in particular resolving what is the best choice if random effects and residuals 

have different kinds of misspecification (namely, exponential-like and uniform-like). 

Of course, the methodology adopted in this study has its limitations. Crucially, it has been 

assumed that the same bootstrap method is performed in random effects and residuals; allowing separate 

methods presumably would improve the results and the possible heuristics. On the other hand, only one 

simulation study (assuming a particular model) has been carried out; therefore, other findings could 

possibly emerge in models with other characteristics. For instance, if in the characterization of residuals 

𝛆𝛆𝑖𝑖 ∼ 𝒩𝒩(𝟎𝟎,𝐑𝐑𝑖𝑖) the assumption that 𝐑𝐑𝑖𝑖 = 𝜎𝜎2𝐈𝐈𝑛𝑛𝑖𝑖  is relaxed, some conclusions could conceivably change. 

The main line of future research lays on the development of efficient misspecification diagnostic 

methods with sample size considerations in mind. Small sample sizes may impact on the ability to identify 

misspecification; e.g., small samples of uniform or exponential populations might appear as acceptable 

under the normal model. This is especially relevant in the case of LMMs because the number of 

observations available for the estimation of variance components differs: samples of random effects and 

residuals for a given dataset have different sizes (necessarily larger for the random effects). Therefore, it 

is desirable to be able (1) to assess the “distance” between distributions with the same mean and variance 

but different skewness and kurtosis, and (2) to understand how these distinct distributions can be 

correctly identified as different depending on the sample size.   
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The simulation shown in this paper has been carried out using the R library merboot, based on 

the package lme4 and still under development and documentation. The library already implements all the 

bootstrap methods used here, and the simulation engine, but future work may include modifications 

based on the experience and findings of the presented simulations.  

Additional future work can include research on (and implementation of) other bootstrap 

methods, such as a version of the Wild bootstrap using a kernel density estimation to draw resamples, or 

quantiles semi-parametric bootstrap. The generalization of the current research to Generalized Linear 

Mixed Models (GLMMs) could also be explored. 
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2.7. Annex 

 

Normal-Normal scenario, 90% confidence. 

Method Statistic       

  𝛽𝛽int 𝛽𝛽age 𝜎𝜎int 𝜎𝜎age 𝜌𝜌 𝜎𝜎resid 

Parametric bootstrap Below rate 0.0610 0.0576 0.0134 0.0154 0.0652 0.0372 

 Cover rate 0.8804 0.8880 0.8818 0.8844 0.8972 0.8960 

 Above rate 0.0586 0.0544 0.1048 0.1002 0.0376 0.0668 

 Mean width 5.2064 1.1055 3.7449 0.8142 0.4151 0.1149 

 Width SD 0.8092 0.1701 0.5776 0.1211 0.1047 0.0094 

Semi-parametric bootstrap Below rate 0.0566 0.0582 0.0188 0.0158 0.0714 0.0360 

 Cover rate 0.8832 0.8856 0.8470 0.8656 0.8948 0.8950 

 Above rate 0.0602 0.0562 0.1342 0.1186 0.0338 0.0690 

 Mean width 5.1587 1.0951 3.5198 0.7864 0.4098 0.1146 

 Width SD 0.7919 0.1706 0.7101 0.1259 0.1080 0.0116 

Wild bootstrap Below rate 0.0536 0.0560 0.0074 0.0094 0.0762 0.0232 

 Cover rate 0.8896 0.8866 0.9260 0.8850 0.8916 0.9462 

 Above rate 0.0568 0.0574 0.0666 0.1056 0.0322 0.0306 

 Mean width 5.2607 1.0918 4.3458 0.8639 0.4206 0.1376 

 Width SD 0.8144 0.1720 0.7722 0.1442 0.1079 0.0130 

True Distribution Below rate 0.0570 0.0556 0.0134 0.0156 0.0662 0.0358 

 Cover rate 0.8842 0.8906 0.8830 0.8798 0.8986 0.9004 

 Above rate 0.0588 0.0538 0.1036 0.1046 0.0352 0.0638 

 Mean width 5.2078 1.1060 3.7379 0.8120 0.4151 0.1148 

 Width SD 0.8080 0.1706 0.5652 0.1206 0.1045 0.0092 
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Uniform-Uniform scenario, 90% confidence. 

Method Statistic       

  𝛽𝛽int 𝛽𝛽age 𝜎𝜎int 𝜎𝜎age 𝜌𝜌 𝜎𝜎resid 

Parametric bootstrap Below rate 0.0560 0.0576 0.0004 0.0078 0.0448 0.0064 

 Cover rate 0.8874 0.8842 0.9694 0.9226 0.9302 0.9726 

 Above rate 0.0566 0.0582 0.0302 0.0696 0.0250 0.0210 

 Mean width 5.2695 1.1152 3.7822 0.8183 0.4152 0.1148 

 Width SD 0.5972 0.1549 0.4216 0.1090 0.0973 0.0084 

Semi-parametric bootstrap Below rate 0.0578 0.0596 0.0148 0.0144 0.0774 0.0172 

 Cover rate 0.8824 0.8838 0.9044 0.8836 0.8946 0.9392 

 Above rate 0.0598 0.0566 0.0808 0.1020 0.0280 0.0436 

 Mean width 5.2115 1.1030 2.6893 0.7087 0.3776 0.0956 

 Width SD 0.5869 0.1526 0.3277 0.0949 0.1035 0.0069 

Wild bootstrap Below rate 0.0508 0.0584 0.0030 0.0064 0.0766 0.0082 

 Cover rate 0.8966 0.8822 0.9752 0.9084 0.8994 0.9806 

 Above rate 0.0526 0.0594 0.0218 0.0852 0.0240 0.0112 

 Mean width 5.3171 1.1005 3.7132 0.8025 0.3972 0.1200 

 Width SD 0.5894 0.1549 0.3350 0.1065 0.0991 0.0083 

True Distribution Below rate 0.0578 0.0556 0.0162 0.0170 0.0840 0.0342 

 Cover rate 0.8842 0.8862 0.8886 0.8798 0.8862 0.8960 

 Above rate 0.0580 0.0582 0.0952 0.1032 0.0298 0.0698 

 Mean width 5.2687 1.1140 2.5018 0.6962 0.3700 0.0835 

 Width SD 0.5962 0.1555 0.2805 0.0969 0.1031 0.0060 
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Exponential-Exponential scenario, 90% confidence. 

Method Statistic       

  𝛽𝛽int 𝛽𝛽age 𝜎𝜎int 𝜎𝜎age 𝜌𝜌 𝜎𝜎resid 

Parametric bootstrap Below rate 0.0290 0.0320 0.0968 0.0682 0.1512 0.1438 

 Cover rate 0.8564 0.8728 0.6064 0.7154 0.7604 0.6352 

 Above rate 0.1146 0.0952 0.2968 0.2164 0.0884 0.2210 

 Mean width 5.0712 1.0948 3.6455 0.8031 0.4124 0.1144 

 Width SD 1.3893 0.2411 1.0041 0.1670 0.1351 0.0129 

Semi-parametric bootstrap Below rate 0.0348 0.0386 0.0224 0.0194 0.1022 0.0360 

 Cover rate 0.8544 0.8714 0.7096 0.7800 0.8354 0.8124 

 Above rate 0.1108 0.0900 0.2680 0.2006 0.0624 0.1516 

 Mean width 5.0133 1.0820 4.9466 0.9662 0.4713 0.1715 

 Width SD 1.3650 0.2384 2.0690 0.3105 0.1352 0.0460 

Wild bootstrap Below rate 0.0328 0.0416 0.0528 0.0182 0.1288 0.0404 

 Cover rate 0.8666 0.8684 0.7310 0.7928 0.7926 0.8564 

 Above rate 0.1006 0.0900 0.2162 0.1890 0.0786 0.1032 

 Mean width 5.1015 1.0774 4.9715 1.0142 0.4440 0.1899 

 Width SD 1.3687 0.2365 1.8458 0.3090 0.1269 0.0442 

True Distribution Below rate 0.0388 0.0388 0.0154 0.0132 0.0548 0.0314 

 Cover rate 0.8592 0.8766 0.8492 0.8762 0.8964 0.8940 

 Above rate 0.1020 0.0846 0.1354 0.1106 0.0488 0.0746 

 Mean width 5.0442 1.0918 6.5112 1.1965 0.5291 0.2063 

 Width SD 1.3912 0.2398 1.8057 0.2736 0.1193 0.0239 

 



 
 

3 
Artículo 2 

 



 
 

  



 

3. Visualizing Type II Error in Normality Tests 
José A. Sánchez-Espigares, Pere Grima, Lluís Marco-Almagro 

Department of Statistics and Operations Research  
Universitat Politècnica de Catalunya-BarcelonaTech, Barcelona, Spain 

 

The American Statician 2018, Vol. 72, No.2, 158-162 

Published online: 26 Jan 2018 

DOI: 10.1080/00031305.2016.1278035 

 
ABSTRACT 

A Skewed Exponential Power Distribution, with parameters defining kurtosis and skewness, is 

introduced as a way to visualize Type II error in normality tests. By varying these parameters a mosaic of 

distributions is built, ranging from double exponential to uniform or from positive to negative exponential; 

the normal distribution is a particular case located in the center of the mosaic. Using a sequential color 

scheme, a different color is assigned to each distribution in the mosaic depending on the probability of 

committing a Type II error. This graph gives a visual representation of the power of the performed test. 

This way of representing results facilitates the comparison of the power of various tests and the influence 

of sample size. A script to perform this graphical representation, programmed in the R statistical software, 

is available online as supplementary material.  

KEYWORDS: Normality test, Type II error, Visualizing information, Teaching statistics, SEPD Distributions 

3.1. Introduction 

Generally in hypothesis testing, what we want to verify has the burden of proof. Nevertheless, 

this is not the case in normality tests, where what we want to prove (the distribution is normal) is assumed 

as true. Moreover, not having an alternative distribution, the discussion on Type II error (considering the 

distribution is normal when it is not) is frequently skipped or at least minimized in general statistics 

courses, although this Type II error can be high. 

This problem has been widely discussed in the statistical literature, and several studies on the 

power of existing tests have been published. For example, Farrell and Rogers-Stewart (2006), Yacini and 

Yolacan (2007) and Yap and Sim (2011) compare the power of different normality tests against a set of 

alternative distributions. Results are shown in tables or power curves based on sample size, and a 

discussion of the most appropriate test depending on the kind of deviation from normality for each of the 

alternative distributions is included.  

https://doi.org/10.1080/00031305.2016.1278035
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Other papers emphasize the interest of having a visual representation of the test, facilitating the 

observation of departures from normality. This happens with the Kolmogorov-Smirnov test (KS), which is 

easy to understand and visualize, and still remains common in both textbooks and software packages 

(although its power is worse than that of other normality tests). In this regard, Rosenkrantz (2000) derives 

bounds for the theoretical quantile function suggesting a test that has the same visual representation 

advantages of the KS test. In a similar manner, Aldor-Noiman et al. (2013) propose a new method which 

provides simultaneous confidence bands for a normal quantile-quantile plot that are narrower in the 

extremes than those associated with the KS test, so higher powers are obtained, keeping the visualization 

benefit.  

This paper presents a visual and easy to understand way to show Type II error in normality tests. 

A graph shows a set of alternative distributions in a grid – a kind of mosaic of distributions – with the 

normal distribution in the center, and changing asymmetry as we move left and right, and changing 

kurtosis as we move up and down. A wide range of alternatives is then visible, and it is possible to test the 

hypothesis of normality for samples generated from each distribution. A sequential color scheme is then 

used to represent the probability of declaring normality, giving a visual representation of the power of 

the normality test used.  

The following sections develop in detail the construction of the graph, together with an example 

showing its practical application. 

3.2. Mosaic of Distributions 

Zhu and Zinde-Walsh (2009) show (as a particular case of a more general distribution) a version 

of the Skewed Exponential Power Distribution (SEPD) that can be adapted to our needs:  

 

𝑓𝑓(𝑥𝑥 | 𝜇𝜇∗,𝜎𝜎∗,𝛼𝛼,𝑝𝑝) =

⎩
⎪
⎨

⎪
⎧     

1
𝜎𝜎∗
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝 �
𝑥𝑥 − 𝜇𝜇∗

2𝛼𝛼𝜎𝜎∗ �
𝑝𝑝

�                     if 𝑥𝑥 ≤ 𝜇𝜇∗   

 
1
𝜎𝜎∗
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝 �

𝑥𝑥 − 𝜇𝜇∗

2(1− 𝛼𝛼)𝜎𝜎∗�
𝑝𝑝

�           if 𝑥𝑥 > 𝜇𝜇∗

 

 (1) 

We say that 𝑋𝑋~𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷 (𝜇𝜇∗,𝜎𝜎∗,𝛼𝛼, 𝑝𝑝), where 𝜇𝜇∗ and 𝜎𝜎∗ are respectively the location and scale 

parameters, and correspond to the mean and standard deviation in the case of the Normal distribution, 

𝑝𝑝 ≥ 0 is the parameter related to kurtosis, 𝛼𝛼 ∈ [0, 1] is related to skewness and 𝐾𝐾(𝑝𝑝) is the normalization 

constant, 𝐾𝐾(𝑝𝑝) = 1 �2𝑝𝑝1 𝑝𝑝⁄ Γ(1 + 1 𝑝𝑝⁄ )�⁄ . Values 𝑝𝑝 = 2 and 𝛼𝛼 = 0.5 correspond to the Normal 

distribution.  

The kurtosis changes when moving 𝑝𝑝 and keeping all other parameters constant. Analogously, the 

skewness changes when varying 𝛼𝛼 (Figure 1). 
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Figure 3.1: pdf of SEPD with 𝜇𝜇∗ = 0 and 𝜎𝜎∗ = 1, with different values of p keeping 𝛼𝛼 = 0.5 (upper row) and 

different values of 𝛼𝛼 keeping 𝑝𝑝 = 2 (lower row) 

 

As we want all distributions to have the same values of 𝜇𝜇 and 𝜎𝜎, consider 𝑋𝑋𝑧𝑧~𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷 (0; 1;𝛼𝛼;𝑝𝑝). 

From the expressions obtained by Zhu and Zinde-Walsh (2009) for 𝑆𝑆(𝑋𝑋) and 𝑉𝑉(𝑋𝑋) follows that:  

  
𝑆𝑆(𝑋𝑋𝑧𝑧) =

1
𝐾𝐾(𝑝𝑝) �

(1 − 2𝛼𝛼)
𝑝𝑝Γ(2 𝑝𝑝⁄ )
Γ2(1 𝑝𝑝⁄ )� (2) 

 
                  𝑉𝑉(𝑋𝑋𝑧𝑧) =

1
[𝐾𝐾(𝑝𝑝)]2 �(3𝛼𝛼2 − 3𝛼𝛼 + 1)

𝑝𝑝2Γ(3 𝑝𝑝⁄ )
Γ3(1 𝑝𝑝⁄ ) �

−
1

[𝐾𝐾(𝑝𝑝)]2 �(1 − 2𝛼𝛼)
𝑝𝑝Γ(2 𝑝𝑝⁄ )
Γ2(1 𝑝𝑝⁄ )�

2

 

(3) 

 

We write 𝑆𝑆(𝑋𝑋𝑧𝑧) = 𝐴𝐴 and 𝑉𝑉(𝑋𝑋𝑧𝑧) = 𝐵𝐵2 to lighten the notation and define: 

 𝑌𝑌 ≡ 𝑔𝑔(𝑋𝑋𝑍𝑍) =  𝜇𝜇 + 𝜎𝜎 �
𝑋𝑋𝑧𝑧 − 𝐴𝐴
𝐵𝐵

� (4) 

One can check that 𝑆𝑆(𝑌𝑌) = 𝜇𝜇 and 𝑉𝑉(𝑌𝑌) = 𝜎𝜎2. In order to define the probability density function 

(pdf) of 𝑌𝑌, a change of variable is applied:  

𝑓𝑓𝑌𝑌(𝑦𝑦) = 𝑓𝑓𝑋𝑋[𝑔𝑔−1(𝑦𝑦)] �
𝑑𝑑
𝑑𝑑𝑦𝑦

𝑔𝑔−1(𝑦𝑦)� 
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with:  

𝑓𝑓𝑋𝑋(𝑥𝑥𝑧𝑧|0, 1,𝑝𝑝,𝛼𝛼) =

⎩
⎪
⎨

⎪
⎧     𝐾𝐾(𝑝𝑝) exp �−

1
𝑝𝑝 �
𝑥𝑥𝑧𝑧
2𝛼𝛼�

𝑝𝑝
�                     if 𝑥𝑥 ≤ 0   

𝐾𝐾(𝑝𝑝) exp �−
1
𝑝𝑝 �

𝑥𝑥𝑧𝑧
2(1 − 𝛼𝛼)�

𝑝𝑝
�           if 𝑥𝑥 > 0

  

 

Isolating 𝑋𝑋𝑧𝑧 in (4) we obtain: 

𝑔𝑔−1(𝑦𝑦) =
𝑦𝑦 − 𝜇𝜇
𝜎𝜎

𝐵𝐵 + 𝐴𝐴 

Therefore, we have: 

 

𝑓𝑓(𝑦𝑦) =

⎩
⎪⎪
⎨

⎪⎪
⎧

     
𝐵𝐵
𝜎𝜎
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝 �
𝐴𝐴 + 𝐵𝐵 �𝑦𝑦 − 𝜇𝜇

𝜎𝜎 �
2𝛼𝛼 �

𝑝𝑝

�             if 𝑦𝑦 ≤ 𝜇𝜇 −
𝐴𝐴
𝐵𝐵
𝜎𝜎   

 

  
𝐵𝐵
𝜎𝜎
𝐾𝐾(𝑝𝑝) exp�−

1
𝑝𝑝 �
𝐴𝐴 + 𝐵𝐵 �𝑦𝑦 − 𝜇𝜇

𝜎𝜎 �
2(1 − 𝛼𝛼) �

𝑝𝑝

�             if 𝑦𝑦 > 𝜇𝜇 −
𝐴𝐴
𝐵𝐵
𝜎𝜎

 (5) 

 

In order to draw the mosaic of distributions, values of 𝑝𝑝 between 1 (double exponential) and 50 

(almost an uniform distribution) are used. The normal distribution (𝑝𝑝 = 2) is placed in the center. Each 

value of 𝑝𝑝 is equal to the previous one raised to a certain value 𝑗𝑗, except for the second, which will always 

be equal to 21 𝑗𝑗�
𝑚𝑚
2 −1.5�⁄ , where 𝑚𝑚 is the number of distributions on each side of the mosaic. For instance, 

for a 7x7 mosaic, these values will be: 1, 21 𝑗𝑗2⁄ ,  21 𝑗𝑗⁄ ,  2,  2𝑗𝑗,  2𝑗𝑗2 ,  2𝑗𝑗3 . As the highest value of 𝑝𝑝 is equal 

to 50, in this case of 𝑚𝑚 = 7 it can be deduced that 𝑗𝑗 = �log 50
log 2

3 . In order to have the Normal distribution 

in the center, 𝑚𝑚 must be an odd number; therefore, in general, 𝑗𝑗 = �log50
log2

𝑚𝑚
2−0.5

. 

For 𝛼𝛼 we take equidistant values between 0 and 1 (inclusive). Therefore, if we have 𝐷𝐷 values, the 

𝑖𝑖-th position will be  𝛼𝛼 = 𝑖𝑖−1
𝑛𝑛−1

 

With these criteria it is possible to obtain mosaics of distributions that vary in a reasonably 

equidistant way between the negative (𝛼𝛼 = 0) and positive (𝛼𝛼 = 1) exponential distributions, and from 

the double exponential (𝑝𝑝 = 1) to an almost uniform distribution (𝑝𝑝 = 50). Figures 2 and 3 show 7x7 and 

25x25 mosaics made with the statistical software R. 
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Figure 3.2: Mosaic of distributions (7x7) with 𝜇𝜇 = 0, 𝜎𝜎 = 1 

 

 

Figure 3.3: Mosaic of distributions (25x25) 
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3.3. Visualizing the Probability of Declaring Normality 

Given a sample of size 𝐷𝐷, 𝑁𝑁 samples of each of the distributions in the mosaic are generated. The 

values of 𝜇𝜇 and 𝜎𝜎 do not affect the appearance of the mosaic as the distributions do not have a scale in 

the axis. The random number generation for each distribution is done by a procedure analogous to that 

used by Zhu and Zinde-Walsh (2009). Values following 𝑌𝑌~𝑆𝑆𝑆𝑆𝑆𝑆𝐷𝐷 (0; 1;𝛼𝛼;𝑝𝑝) are generated from a random 

number 𝑈𝑈 from a uniform distribution 𝑈𝑈(0, 1), and another random number 𝑊𝑊 from a gamma 

distribution with shape parameter 𝑘𝑘 = 1/𝑝𝑝 and scale parameter 𝜃𝜃 = 1, in the form:  

𝑌𝑌 =  

⎩
⎪⎪
⎨

⎪⎪
⎧ −𝛼𝛼𝑊𝑊1/𝑝𝑝

Γ �1 + 1
𝑝𝑝�

    if  𝑈𝑈 < 𝛼𝛼

  
(1 − 𝛼𝛼)𝑊𝑊1/𝑝𝑝

Γ �1 + 1
𝑝𝑝�

   if  𝑈𝑈 ≥ 𝛼𝛼
 

A normality test is performed for each of the 𝑁𝑁 samples of each distribution, and each 𝑝𝑝-value is 

recorded. Given a certain level of significance, we assign a value to each distribution equal to the 

proportion of samples (out of 𝑁𝑁) for which the assumption of normality is not rejected.  

Figure 4 shows 7x7 mosaics with the probability (for each distribution) of declaring normality 

when using the Shapiro-Wilk test. These values are based on simulation of N = 10000 samples for each 

distribution. A level of significance of 5% is used. The calculations were performed with the R statistical 

software, using the 'nortest' package (Gross, 2013). Obviously, the power of the test increases with the 

sample size 𝐷𝐷. 

A sequential gray scale is used to display results more clearly. From lighter to darker colors the 

ranges are 0-0.05, 0.05-0.25, 0.25-0.50 and 0.50-1. 

Figure 5 shows the results obtained using the following normality tests: Kolmogorov-Smirnov-

Lilliefords, Anderson-Darling and Shapiro-Wilk, with samples of size 𝐷𝐷 = 25, 50 and 100. Dark areas in the 

mosaics are basically symmetric about the vertical axis crossing the center of the mosaic, due to the fact 

that distribution shapes are also symmetric about this axis.  At the lower lines of the mosaic the 

distribution is almost uniform, so it changes scarcely from left to right. Therefore, the test either declares 

or not normality for all distributions in that line. On the contrary, skewness is relevant in the upper lines 

of the mosaic, with very asymmetric distributions on the left and the right parts of the graph, so the test 

only declares normality, at most, in the central distributions. These behaviors give the candle flare shape 

that can be seen in the graphs. 
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𝐷𝐷 = 25 

 
𝐷𝐷 = 50 

  
𝐷𝐷 = 100 𝐷𝐷 = 500 

  
Figure 3.4: Mosaic of distributions including the proportion of times that the hypothesis of normality is not rejected 

(with 0.05 as significance level) using the Shapiro-Wilk test for the sample sizes shown 

 

The smaller the dark area in the graph, the more powerful the test is. Obviously, when the sample 

size is increased, the dark area becomes smaller. Looking at Figure 5 we can also conclude that Anderson-

Darling test works better than KS-Lillefords test, and Shapiro-Wilk test better than Anderson-Darling. The 

ideal situation –unattainable when working with samples – would be having only dark black in the center, 

where the normal distribution is located.  
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 KS-Lillefords Anderson-Darling Shapiro-Wilk 

𝒏𝒏= 
25 

   

𝒏𝒏= 
50 

   

𝒏𝒏= 
100 

   
Figure 3.5: 35x35 mosaic of distributions for comparing the results using three different normality tests with three 

sample sizes.  

 

In our experience, the existence and importance of Type II error in normality tests is often 

neglected both in academic and business settings. The graphs shown in this paper allow the visualization 

of Type II error and, in this way, help in understanding the limitations of these kind of tests. Also, the 

mosaic facilitates the comparison among normality tests and the impact of sample size in a visual manner.  

Supplementary Materials 

An R script named “Visualizing Type II Error.R” is attached as supplementary material. The script 

allows graphical representations as those shown in this paper. Instructions on how to use the script are 

contained in the script code.  
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3.6. Supplementary Materials 

VisualizingTypeIIError.R 
######################################################### 

# Supplementary material that accompanies the article:  # 

#    Visualizing Type II Error in Normality Tests       # 

######################################################### 

 

# You can change the values of the following parameters: 

siz=50      # sample size  

nsig=0.05   # significance level 

n=7         # mosaic size (nxn), with 1<n<50. If n is even, then n=n+1 

nsim=1000   # number of simulations 

test="SW"   # Type of test, AD=Anderson-Darling,SW=Shapiro-Wilks,KS=Kolmogorov-Smirno

v 

label=T     # T= type II error is shown in each cell; F= type II error is not shown 

Opt=0       # 0: Standard; 1: Curve always black; 2: Only mosaic (without test) 

######################################################### 

 

library(nortest) 

####Random generation for SEPD 

rsepd=function(n,mu=0,sigma=1,alpha=0.5,p=2){ 

  kp=1/(2*gamma(1+1/p)*p^(1/p)) 

  u=runif(n) 

  w=rgamma(n,shape=1/p,scale=1) 

  y=ifelse(u>alpha,1-alpha,-alpha)*(w^(1/p))/gamma(1+1/p) 

  y=y/kp 

  A=2*p^(1/p)*((1-alpha)^2-alpha^2)*gamma(2/p)/gamma(1/p) 

  A2=(2*p^(1/p))^2*((1-alpha)^3+alpha^3)*gamma(3/p)/gamma(1/p) 

  B=sqrt(A2-A^2) 

  mu+sigma*(y-A)/B 

} 

 

####Density function for SEPD 

dsepd=function(x,mu=0,sigma=1,alpha=0.5,p=2){ 

  A=2*p^(1/p)*((1-alpha)^2-alpha^2)*gamma(2/p)/gamma(1/p) 

  A2=(2*p^(1/p))^2*((1-alpha)^3+alpha^3)*gamma(3/p)/gamma(1/p) 

  B=sqrt(A2-A^2) 

  y=A+B*(x-mu)/sigma 
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  kp=1/(gamma(1+1/p)*(2*p^(1/p))) 

  kp*exp(-(abs(y/(2*ifelse(x<mu-sigma*A/B,alpha,1-alpha)))^p)/p)*B/sigma 

} 

 

###Monte Carlo p-value for godness-of-fit statistics 

et2_MC=function(siz,nsim,mu,sigma,alpha,p,nsig,test){ 

  ysim=matrix(rsepd(siz*nsim,mu=mu,sigma=sigma,alpha=alpha,p=p),nc=siz) 

  prova=switch(test, 

         AD = function(el) ad.test(el)$p.value, 

         SW = function(el) shapiro.test(el)$p.value, 

         KS = function(el) lillie.test(el)$p.value) 

  res=apply(ysim,1,prova) 

  length(res[res>nsig])/nsim 

} 

 

#### Mosaic function 

mosaic=function(siz,n,nsim=499,nsig=0.05,test="AD",label=F,Opt=0){ 

  if (n<=1 | n>=50) { 

    stop("n must be a value between 2 and 49\n") 

  } 

  mu=0 

  sigma=1 

  if (n%%2==0) n=n+1 

  cex1=c(1.2,1,0.8,0.7,0.6) 

  old.par = par(mfrow = c(n,n), xaxt="n", yaxt="n", mar=c(0,0,0,0), cex=cex1[findInte

rval(n,c(1,5,10,15,25,9999))], xaxs="i", yaxs="i") 

  s=3.5    

  ymax=c(0,1/sigma)   

  j=(log10(50)/log10(2))^(1/(n/2-0.5)) 

  alfa=(0:(n-1))/(n-1) 

  alfa[alfa==0]=1e-12 

  alfa[alfa==1]=1-1e-12 

  p=c(1,2,50) 

  if (n>3) p=c(1,2^(1/(j^(((n-3)/2):1))),2,2^(j^((1:(n/2-0.5))))) 

  graf1=function(param,label){ 

    x=seq(from=mu-s*sigma,to=mu+s*sigma,length.out=101) 

    plot(0,0,xlim=c(mu-s*sigma,mu+s*sigma),ylim=ymax,type="n",axes=F) 

    pvalue=round(et2_MC(siz=siz,nsim=nsim,mu=mu,sigma=sigma,alpha=param[1],p=param[2]

,nsig=nsig,test=test),2) 

    id=findInterval(pvalue,c(0,0.05,0.25,0.5,1)) 

    colo=gray(c(0.9,0.85,0.4,0.2,0))[id] 
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    if(id>1) rect(mu-s*sigma,0,mu+s*sigma,ymax[2],col=colo) 

    coline=switch(Opt+1, ifelse(id>2,"white","black"),"black","black") 

    curve(dsepd(x,mu=mu,sigma=sigma,alpha=param[1],p=param[2]),col=coline,add=T) 

    if (param[1]==0.5 & param[2]==2) box(lwd=2,col="white") else box() 

    if (label) text(mu,ymax[2]*0.5,round(pvalue,2),col=ifelse(id>2,"white","black")) 

  } 

  graf2=function(param,label){ 

    x=seq(from=mu-s*sigma,to=mu+s*sigma,length.out=101) 

    plot(0,0,xlim=c(mu-s*sigma,mu+s*sigma),ylim=ymax,type="n",axes=F) 

    curve(dsepd(x,mu=mu,sigma=sigma,alpha=param[1],p=param[2]),col="black",add=T) 

    box() 

  } 

  if (Opt==2) graf=graf2 else graf=graf1 

  apply(expand.grid(alfa,p),1,graf,label=label) 

  par(old.par) 

} 

mosaic(siz,n,nsim,nsig,test,label,Opt) 
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ABSTRACT 

A methodology is proposed to compare the power of normality tests with a wide variety of 

alternative unimodal distributions. It is based on the representation of a distribution mosaic in which 

kurtosis varies vertically and skewness horizontally. The mosaic includes distributions such as exponential, 

Laplace or uniform, with normal occupying the center. Simulation is used to determine the probability of 

a sample from each distribution in the mosaic being accepted as normal. We demonstrate our proposal 

by applying it to the analysis and comparison of some of the most well-known tests.  

  

KEYWORDS: Goodness-of-Fit, Test Power, Graphical Techniques, Comparing Normality Tests, Anderson-

Darling, Shapiro-Wilk 

  

4.1. Introduction 

There are a wide variety of normality tests, from the classic Kolmogorov-Smirnov to the widely 

used Shapiro-Wilk and Anderson-Darling tests. Books are dedicated exclusively to normality tests, such as 

Thode [1], who describes dozens of them. The problem is not yet closed, as new tests and modifications 

of existing ones continue to emerge (see, for example, Desgagné and de Micheaux [2]).  

The fact that so many exist surely indicates that not one is better than all the others in all 

circumstances. The comparison of normality tests has been addressed in articles such as Farell and Rogers-

Stewart [3], where 14 test types are compared to 48 possible alternative distributions and the results are 

presented in a table with the power of the test indicated against each alternative for a significance level 

of 0.10 and a sample size of n=20. Yacini and Yolocan [4] compare 12 tests against 5 alternative 

distributions and present the results also in a table where the power of the test is indicated according to 

https://doi.org/10.1080/00949655.2018.1539085
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the alternative distribution for α=0.05 and sample sizes of n=20, 30, 40 and 50. Romão et al. [5] present 

an exhaustive study in which they describe and analyze the performance of 33 normality tests against 

data from a wide variety of distributions, presenting the power obtained in tables but also with line charts 

in which the horizontal axis indicates which test was performed. In a similar manner, Yap and Sim [6] 

compare 8 types of tests against 9 alternative distributions, presenting the results in tables as well as 

graphs, where for each alternative distribution the power curves are presented according to the size of 

the sample.  

Our work proposes a methodology for comparing the power of normality tests to a wide variety 

of alternative unimodal distributions in a highly visual manner and with a single graph. It is based on the 

representation suggested by Sánchez-Espigares et al. [7], who builds a distribution mosaic in which the 

kurtosis varies vertically and the skewness horizontally. The mosaic includes distributions such as 

exponential, Laplace and uniform, with normal occupying the center. Simulation is used to determine the 

probability of a sample from each of the distributions in the mosaic being accepted as normal.  

The next section describes the tests to be compared. Next, we describe the characteristics of the 

distribution mosaic, how the power of the tests is represented in the mosaic and, finally, the studied tests 

are analyzed and compared.  

4.2. Test Selection 

To demonstrate the possibilities of the proposed procedure and also compare some of the most 

well-known tests, we have chosen three from each of the strategies in which normality tests can be 

grouped: regression tests, tests based on the empirical distribution function (EDF) and tests based on 

moments.  

Regression tests are based on the fact that the distribution function 𝐹𝐹(𝑥𝑥) of a random variable 

𝑋𝑋~𝑁𝑁(𝜇𝜇,𝜎𝜎) is a straight line when represented on a normal probability plot (Q-Q plot). Therefore, given 

an ordered sample of values 𝑥𝑥(1)⋯𝑥𝑥(𝑛𝑛) with 𝐹𝐹�𝑥𝑥(𝑖𝑖)�,⋯𝐹𝐹�𝑥𝑥(𝑛𝑛)� values of their distribution function, 

points �𝑥𝑥(𝑖𝑖),𝐹𝐹(𝑥𝑥(𝑖𝑖))� should align approximately according to a straight line in a Q-Q plot, and any 

departure from that alignment indicates the data’s lack of normality. From among the tests based on this 

idea, we have selected: 

• Shapiro-Wilk (SW) is probably the best known and most often used (a detailed description can be 

found, for instance, in Thode [1]). The original version [8] has some computational limitations, 

especially for large sample sizes. Royston [9] suggested a transformation of the original statistic that 

allows it to be applied to sample sizes of up to 𝐷𝐷 = 2000 without any demand for great computational 

resources.  
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• Shapiro-France (SF) (see Thode [1]) is a variant of SW. When it appeared in 1972 [10], its main 

advantage was the demand for fewer computational resources than the original SW. This advantage 

has ceased to be of interest, especially after Royston’s contributions to the SW test; but it continues 

to be among the most representative of this group of tests that are based on correlation.  

• Filliben [11] uses the correlation between the sample order statistics and the estimated median values 

of the theoretical order statistics. Its main advantage is that the calculations are very easy because 

there is no need to calculate the expected values of the normal order statistics.  

The test statistic in tests based on the EDF is a measure of the discrepancy between the EDF and 

the theoretical distribution function. The most typical is that of Kolmogorov-Smirnov (KS), which uses the 

maximum distance – in absolute value – between both distributions. The tests of this type that we analyze 

here are: 

• Lilliefors. This uses the same test statistic as that of KS, but with a different reference distribution, due 

to the fact that the KS test requires knowledge of the population parameters, while Lilliefors bases its 

estimation on the sample. Lilliefors deduced the critical values through simulation, but analytical 

methods for determining them have also been published [12].  

• Cramer-von Mises (CvM). The test statistic is determined from the discrepancy between the 

theoretical distribution function 𝐹𝐹 and the empirical function 𝐹𝐹𝑛𝑛 accumulated throughout all the 

variation space of 𝑥𝑥. It is specified in a relatively simple formula (see, for example, [13]). The critical 

values depend on the size of the sample and the number of known population parameters.  

• Anderson-Darling (AD). This is surely the most commonly used of this group. It is similar to the CvM 

but gives more weight to the discrepancy in the tails of the distribution (see, for example, [13]).  

Finally, we have the group that uses a test statistic based on the difference between, on the one 

hand, the kurtosis and the skewness of the data (third and fourth moment) and, on the other, their 

theoretical values. For this group, we have selected: 

• D’Agostino-Pearson 𝐾𝐾2 (DA). The test statistic is a function of the kurtosis and skewness of the 

sample. It follows a Chi-square distribution with 2 degrees of freedom if the hypothesis of normality 

is true [14].  

• Jarque-Bera (JB). Conceptually similar to the one above. The test statistic is also calculated from the 

kurtosis and skewness of the sample. Thus, it is also distributed as a Chi-square with 2 degrees of 

freedom; but when 𝐷𝐷 <  2000, the p-value is determined by simulation [15].  

• Adjusted Jarque-Bera (AJB). It uses a new test statistic computed from the first four moments about 

the origin. The p-values are determined by simulation [16].  
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To apply these tests and analyze their performance, we have used functions that have already 

been developed and implemented in R statistical software packages [17]. Table 1 indicates which package 

and function were used for each test.  

Table 4.1 Tests analyzed and the R packages and functions that were used to apply them. 

Test Package Function 
Shapiro-Wilk stats, R Core Team [17] shapiro.test(x) 
Shapiro-Francia nortest, Gross and Ligges [18] sf.test(x) 
Filliben’s ppcc, Pohlert [19] ppccTest(x, “qnorm”) 

Lilliefords nortest, Gross and Ligges [18] lillie.test(x) 

Cramer-von Mises nortest, Gross and Ligges [18] cvm.test(x) 

Anderson-Darling nortest, Gross and Ligges [18] ad.test(x) 

D’Agostino-Pearson 𝐾𝐾𝑠𝑠2 fBasics, Wuertz et al. [20] dagoTest(x) 

Jarque-Bera normtest, Gavrilov and Pusev [21] jb.norm.test(x) 
Adjusted Jarque-Bera normtest, Gavrilov and Pusev [21] ajb.norm.test(x) 

 

4.3. Distribution mosaic. Representation of the power of a test  

Based on a Skewed Exponential Power Distribution (SEPD) used by Zhu and Zinde-Walsh [22], 

Sánchez-Espigares et al. [7] consider the probability density function that is used to create the mosaic 

distributions. This function is characterized by the mean and variance of the variable considered and also 

a third parameter, 𝑝𝑝, which is related to kurtosis and varies between 1 (double exponential distribution) 

and 50 (practically a uniform distribution). It also employs a fourth parameter, 𝛼𝛼, which is related to the 

asymmetry that varies between 0 (very asymmetric distribution with tail to the right) and 1 (with tail to 

the left). The values 𝑝𝑝 = 2 and 𝛼𝛼 = 0.5  correspond to a normal distribution.  

We want the number of distributions on each side of the mosaic to be odd so that the normal 

distribution remains exactly in the center. It is easily deduced that for 𝛼𝛼 to vary between 0 and 1 in 

equidistant intervals and for 𝛼𝛼 = 0.5 to remain in the center, it is sufficient that the i-th position has the 

value 𝛼𝛼 = 𝑖𝑖−1
𝑚𝑚−1

, with 𝑚𝑚 being the number of distributions on each side of the mosaic. Regarding the values 

of 𝑝𝑝, their determination is not so immediate. Each value must be equal to the previous one raised to a 

power of 𝑗𝑗 = �log50
log 2

𝑚𝑚
2−0.5

, except for the second one, which always equals 21 𝑗𝑗�
𝑚𝑚
2 −1.5�⁄  [7]. For example, if 

the mosaic is of size 11x11 (𝑚𝑚 = 11), we have 𝑗𝑗 = 1.4136 and the values of 𝛼𝛼 and 𝑝𝑝 will be:  

𝑖𝑖 1 2 3 4 5 6 7 8 9 10 11 
𝛼𝛼 0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1 
𝑝𝑝 1 .19 .28 .41 .63 2 2.66 3.99 7.08 15.92 50 
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Figure 1 shows an 11x11 mosaic. The values of 𝜇𝜇 and 𝜎𝜎 are the same for all distributions and do 

not affect their shape but only the scale of the axes, which we do not consider here. Each distribution 

corresponds to the values of 𝛼𝛼 and 𝑝𝑝 that are indicated. In [¡Error! Marcador no definido.], the R code is 

included to create mosaics as large as 49x49, although it can easily be changed to obtain larger mosaics.  

 

 

  

 Figure 4.1: Mosaic of 11x11 distributions with the p and 𝛼𝛼 values that correspond to each one 

 

From each of the distributions that appear in the mosaic, a random sample of size 𝐷𝐷 can be 

obtained and contrasted against the normal distribution by means of the test whose power we want to 

analyze. We chose, for example, the Anderson-Darling test and generate 10000 samples of size n=100 

from each of the distributions that appear in the mosaic of Figure 1. We consider that the hypothesis of 

normality is not rejected if the 𝑝𝑝-value obtained is greater than 0.05; and we annotate on each distribution 

the proportion of times that the hypothesis of normality would not be rejected with samples from that 

distribution. The values obtained are indicated in Figure 2. The area is outlined for the distributions with 

values of this proportion greater than 0.5. In this figure, it can be observed that, if the population from 

which the sample comes is exponential, the probability of not rejecting the hypothesis of normality is 

practically null with a sample size of n=100 when applying the AD test. The probability of not rejecting is 

approximately 18% if the sample comes from a Laplace distribution and around 5-6% if it comes from a 

uniform distribution.  

𝛼𝛼 
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 Figure 4.2: The box corresponding to each distribution indicates the proportion of times that the hypothesis of 

normality is not rejected when applying the Anderson-Darling test to samples of size n=100. The area where this 

proportion is greater than 0.5 is outlined.  

 

Naturally, a larger mosaic can be constructed. Figure 3 shows one with 101 distributions on each 

side, with curves outlining the distributions in which normality is not rejected for the proportion of times 

indicated. The thickest line corresponds to the proportion p=0.5. The appearance of these curves can also 

be compared when the sample size is varied.  

  

 Figure 4.3: Curves on a 101x101 mosaic that indicate the proportion of times that the hypothesis of normality is 

not rejected when applying the Anderson-Darling test to samples of size n=100.  
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Figure 4 shows the curves that delimit the areas in which normality is not rejected with a 

probability of 50%, depending on the sample size, which is indicated on the curve itself. The curve that 

corresponds to 𝐷𝐷 = 10 does not appear in the figure because any of the mosaic distributions for that 

sample size would be accepted with a probability greater than 50%. If the distribution from which the 

data come is uniform, a sample of 𝐷𝐷 = 20 observations will also result in a greater than 50% probability 

of not rejecting the hypothesis of normality.   

 
Figure 4.4: Curves that delimit the distributions for which normality is not rejected more than 50% of the time with 

the Anderson-Darling test for the sample sizes indicated 

 

4.4. Comparison of tests 

As an example of the possibilities of our method, 10000 samples of 𝐷𝐷 = 20, 50 and 100 

observations have been generated from each of the distributions that appear in the mosaic. The figures 

indicate the curves that enclose the distributions for which the hypothesis of normality is not rejected 

more than 50% of the time. The smaller the surface this curve encloses, that is, the fewer distributions it 

includes, the better the test is. This is because it is then more likely to reject the hypothesis of normality 

of a greater number of distributions that are not actually normal (those that are outside the curve). 

Looking at the distributions in group 1 (Figure 5), based on correlation and regression measures, 

we observe that the Shapiro-France and Filliben tests have practically identical performance. With sample 

sizes of 𝐷𝐷 = 20, the curve corresponding to the Shapiro-Wilk test is not very different either. For 𝐷𝐷 = 50, 

and much more clearly for 𝐷𝐷 = 100, the Shapiro-Wilk test shows greater power with regard to low 
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kurtosis distributions, since its curve moves away from the lower zone. However, it extends somewhat 

further into the zone of symmetrical distributions with high kurtosis (towards the Laplace distribution). 

Overall, and taking the area enclosed by the curves as a measure of the performance of the test, we can 

say that SW produces the best performance.  

Regarding the distributions of group 2 (Figure 6), their ranking is clear. The one that performs best 

for the 3 sample sizes considered is AD. It is noteworthy that if the Lilliefors test is applied with sample 

size 𝐷𝐷 = 20, the probability of rejecting the null hypothesis for data coming from a uniform distribution 

is greater than 50%, and only slightly lower if they come from an exponential distribution.  

In group 3 (Figure 7), the d’Agostino test clearly performs better when the sample size is n=100, 

whereas Jarque-Bera test performs slighthly better for n=20. The performance of both is very similar when 

n=50. Keeping in mind that we generally work with small samples, Jarque-Bera test is best for us, although 

it is a debatable point since it depends on the sample size. Figure 8 compares those that have been 

considered the best from each group, and in this case it is very clear that for any of the sample sizes 

considered the test that performs best is Shapiro-Wilk.  

Interested readers can find in GitHub: https://github.com/PereGrima/Graphical-Comparison-

Normality-Tests an R Markdown file (TestsComparison.Rmd) with the explanations and the R code to draw 

the curves that allow comparing the Lilliefords, Cramer-Von Misses and Anderson-Darling tests with n = 

100 (Figure 6, right). The probabilities of rejecting the hypothesis of normality are calculated separately 

since the computation time is long. The file (CalculationTypeIIError.Rmd) contains the explanations and 

the code to calculate these probabilities. We also include three txt files with data, one for each test 

considered, so that you will be able to quickly see the curves drawn by the R program. 

 

 

 

https://github.com/PereGrima/Graphical-Comparison-Normality-Tests
https://github.com/PereGrima/Graphical-Comparison-Normality-Tests
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Figure 4.5: Tests based on correlation measures. If the sample comes from one of the distributions enclosed by the 

curve, the probability of not rejecting the hypothesis of normality is greater than 50% 

   

Figure 4.6: Tests based on EDF. If the sample comes from one of the distributions enclosed by the curve, the 

probability of not rejecting the hypothesis of normality is greater than 50%.  

   

Figure 4.7: Tests based on moments. If the sample comes from one of the distributions enclosed by the curve, the 

probability of not rejecting the hypothesis of normality is greater than 50%.  
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Figure 4.8: Comparison of the tests considered best for each group.  

4.5. Final remarks 

The proposed method allows visualizing the power of a normality test in comparison to a wide 

range of unimodal distributions. This procedure is especially useful for graphically comparing the power 

of different tests as well as the influence of the sample size.  

This way of visualizing the results allows us to consider the difference between a statistically 

significant difference and an important difference in the context of normality tests. When a statistical 

method is valid only under the hypothesis of normality of the data, it is worth asking what deviation from 

normality is tolerable. For example, if the data belongs to one of the distributions that are next to the 

normal in a mosaic of 101x101 distributions, would the method be good? The answer is surely yes, but at 

n = 20 n = 50

n = 100

__ Shapiro-Wilk
__ Anderson-Darling
__ Jarque-Bera
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what distance from normal would that no longer be true? And if we know the answer to this question, 

then what sample size is necessary for a high probability of rejecting the normality hypothesis if the data 

come from that distribution? Furthermore, what test performs best for that objective? 

The proposed graphics naturally give rise to questions of this type, and they also allow a clearer 

view of the possibilities and limitations of normality tests. 
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4.8. Supplementary Materials 

CalculationTypeIIError.Rmd 

Calculation of Type II Error for a given test and sample size 

You can set the sample size in the n variable. The variable m is the dimension of the mosaic (i.e. the 

number of squares in each row and column). You can change the number of simulation iterations to 

calculate the type II error in each cell by changing nsim. By default, the significance level to solve the test, 

siglevel, is set to 0.05 

We use here a mosaic size m = 11. With this size it takes about 4.25 minutes to produce the file 

(using a computer with an Intel i7 @ 3.50GHz processor). With m = 101, the size used for files like the 

ones attached, the time is about 6 hours. 

n = 100         # Sample size 

m = 11          # n: mosaic size (nxn) 

nsim = 10000    # nsim: number of simulations in each cell 

siglevel = 0.05 # siglevel: significance level of the normality test 

There are several possibilities for the test to use in the calculations. Some options with their 

implementation are listed below. 

# Lillefords Test library(nortest)  nomtest = “LI”  test = function(x) lillie.test(x)$p.value  

# Cramer-Von Mises Test library(nortest)  nomtest = “CVM”  test = function(x) cvm.test(x)$p.value  

# Shapiro-Wilks library(fBasics)  nomtest = “SW”  test = function(x) shapiroTest(x)@test$p.value  

#Kolmogorov-Smirnov Test library(fBasics)  nomtest = “KS”  test = function(x) 

ksnormTest(x)@test$p.value [1]  

# Jarque-Bera Test library(fBasics)  nomtest = “JB”  test = function(x) jarqueberaTest(x)@test$p.value  

# Chi-Square Test library(fBasics)  nomtest = “CSQ”  test = function(x) pchiTest(x)@test$p.value [1]  

# D’Agostino-Pearson Test library(fBasics)  nomtest = “DP”  test = function(x) dagoTest(x)@test$p.value 

[1]  

# Your own test You only have to implement a function named test that calculates the p-value given the 

sample. You also need to specify an acronym nomtest, to identifie this new test. nomtest = “NewTest”… 

(identifier of the test, prefix of the file) test = function(x) … (function implementing the test, given a sample 

must return the p-value from the normality test) 
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Example with the Anderson-Darling Test 

Calculation of the type II errors for each cell in the mosaic. The values are saved in a file with the 

same structure as the mosaic. Each value represents the percentatge of times in the simulation for that 

cell in which the null hypothesis has not been refused (i.e. type II error) 

library(nortest) 

nomtest="AD" 

test=function(x) ad.test(x)$p.value 

####Random generation for SEPD 

rsepd=function(n,mu=0,sigma=1,alpha=0.5,p=2){ 

  kp=1/(2*gamma(1+1/p)*p^(1/p)) 

  u=runif(n) 

  w=rgamma(n,shape=1/p,scale=1) 

  y=ifelse(u>alpha,1-alpha,-alpha)*(w^(1/p))/gamma(1+1/p) 

  y=y/kp 

  A=2*p^(1/p)*((1-alpha)^2-alpha^2)*gamma(2/p)/gamma(1/p) 

  A2=(2*p^(1/p))^2*((1-alpha)^3+alpha^3)*gamma(3/p)/gamma(1/p) 

  B=sqrt(A2-A^2) 

  mu+sigma*(y-A)/B 

} 

 

alpha=(0:(m-1))/(m-1) 

j=(log10(50)/log10(2))^(1/(m/2-0.5)) 

p=c(1,2^(1/(j^(((m-3)/2):1))),2,2^(j^((1:(m/2-0.5))))) 

 

ftypeIIerror=function(i){ 

  ysim=matrix(rsepd(n*nsim,mu=0,sigma=1,alpha=alpha[i[1]],p=p[i[2]]),nc=n) 

  setTxtProgressBar(pb, ((i[2]-1)*m+i[1])/(m*m)) 

  mean(apply(ysim,1,function(el) test(el)>siglevel)) 

} 

 

pb <- txtProgressBar(style=3) 

typeIIerror=matrix(apply(expand.grid(1:m,1:m),1,ftypeIIerror),nc=m,byrow=T) 

write.table(typeIIerror, paste0(nomtest,"_m",m,"_n",n,".txt"),row.names=F,col.names=F

) 
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TestsComparison.Rmd 

Drawing the curves for the tests comparison 

In general, type II errors for each distribution must be previously calculated and saved in a file 

with the name: 

**[Test acronym]_m[mosaic size]_n[sample size].txt** 

This is not included in this program because the computing time is very long. Here we use three 

files previously created that are included in the supplemental online material: 

- LI_m101_n100.txt (Lillieford test in 101x101 mosaic and for samples of size n = 100) 

- CVM_m101_n100.txt (Cramer- Vom Misses test in 101x101 mosaic and for samples of size n = 100) 

- AD_m101_n100.txt (Anderson-Darling test in 101x101 mosaic and for samples of size n = 100) 

These files or other similar for other tests, mosaic size or sample size can be created with the code 

included in the file “Calculing type II errors.html”, which can also be found in the supplemental online 

material. 

The mosaic size (m) and the sample size (n) are needed to identify these files. 

m = 101    # Mosaic size 

n = 100    # Sample size 

Also, it is necessary to indicate which tests are to be represented. The acronym of the test is 

included in the array tests. The description to be included in the legend must be included in the legends 

array. The color used for this test is specified in the co array. Any of these values can be changed for other 

tests. 

tests=c("LI","CVM","AD") 

legends=c("Lillefords","Cramer-Von Mises","Anderson-Darling") 

co=c("magenta4","coral2","darkgreen") 

The variable typeIIerrorlevel indicates the value of the type II error to draw in the mosaic. Cells 

inside this line have a type II error greater than this value. In our paper we use typeIIerrorlevel=0.5, but 

this value can be changed if desired. 

typeIIerrorlevel=0.5 

Below is the rest of the code. This part should not be changed. 

Copying all the code lines and executing them as an R script will produce the figure at the end. Do 

not forget to correctly specify the directory where the .txt files are located 
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par(mar=c(3,0.1,3,0.1), oma=c(0,0,0,0), mfrow=c(1,1)) 

plot (NULL, xlim=c(0.5,m+0.5), ylim=c(0.5,m+0.5), yaxs="i", xaxs="i", xaxt='n', yaxt=

'n', xlab="",ylab="") 

grid(m,m,lwd=1) 

title(paste0('n = ',n), line = 1, cex.main=1.8, font.main=1) 

legend("topleft",legend=legends,col=co,lty=1,lwd=2) 

 

typeIIerrorCurve=function(typeIIerror,co,typeIIerrorlevel,m){ 

  for (i in 1:m) { 

    for (j in 1:m) { 

      if (i<m) { 

        if ((typeIIerror[i,j] < typeIIerrorlevel) & (typeIIerror[i+1,j] >= typ

eIIerrorlevel)) segments(j-0.5, m+1-i-0.5, j+0.5, m+1-i-0.5, lty=1, col=co, lw

d=2) 

        if ((typeIIerror[i,j] >= typeIIerrorlevel) & (typeIIerror[i+1,j] < typ

eIIerrorlevel)) segments(j-0.5, m+1-i-0.5, j+0.5, m+1-i-0.5, lty=1, col=co, lw

d=2) 

      } 

      if (j<m) { 

        if (typeIIerror[i,j] < typeIIerrorlevel & typeIIerror[i,j+1] >= typeII

errorlevel) segments(j+0.5,m+1-i-0.5,j+0.5,m+1-i+0.5, lty=1, col=co, lwd=2) 

        if (typeIIerror[i,j] >= typeIIerrorlevel & typeIIerror[i,j+1] < typeII

errorlevel) segments(j+0.5,m+1-i+0.5,j+0.5,m+1-i-0.5, lty=1, col=co, lwd=2) 

        } 

      } 

  } 

  segments(m/2, m/2, m/2+1, m/2,col="black", lty="solid", lwd=1) 

  segments(m/2, m/2, m/2, m/2+1,col="black", lty="solid", lwd=1) 

  segments(m/2, m/2+1, m/2+1, m/2+1,col="black", lty="solid", lwd=1) 

  segments(m/2+1, m/2, m/2+1, m/2+1,col="black", lty="solid", lwd=1) 

} 

for (i in 1:length(tests)){ 

    typeIIerror <- read.table(paste0(tests[i],"_m",m,"_n",n,".txt"), header=FA

LSE) 

    typeIIerrorCurve(typeIIerror,co[i],typeIIerrorlevel,m) 

} 
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ABSTRACT  

A procedure is proposed here for jointly visualizing the compatibility of a sample with a family of 

Skewed Exponential Power Distributions, of which the distributions known as Normal, Exponential, 

Laplace and Uniform are particular cases. The procedure involves constructing a mosaic that contains 

these distributions in such a way that the asymmetry varies from left to right and the kurtosis varies from 

top to bottom. The null hypothesis that the sample belongs to each of the mosaic distributions is tested, 

with the corresponding box for each distribution being shaded in a gray scale according to the p-value 

obtained. The location and shape of the shaded area that appears on the mosaic facilitates not only 

identifying which distributions are compatible with the sample, but also assessing the power of the test 

performed. All the parameters that define the distribution are considered to be known. The problem 

remains open for expanding the procedure to cases in which these parameters are not known but must 

be estimated from the sample. As additional material, a code written in R that carries out the proposed 

test is included.  

KEYWORDS: Normality tests, Goodness-of-Fit Methods, Power test, Graphical Methods 

5.1. Introduction 

There are a great variety of tests and procedures to check the normality of the data, so many that 

it may seem unnecessary to create one more. Thode (2002) lists an exhaustive series of tests and 

procedures that can be used for assessing normality. These procedures can be divided between those that 

use graphic techniques and those that use analytical techniques. Graphical methods such as the 

representation of values in Normal Probability Plot (NPP) allow visualizing the degree of discrepancy 

compared to the theoretical distribution together with the specific values that stand apart, but they do 

not offer an objective measure of that discrepancy. Analytical tests do measure this discrepancy, but it is 

advisable to complement them with some type of graphic representation that allows observing possible 

anomalous values that could affect the test result.  

https://doi.org/10.1080/03610926.2020.1734828
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The analytical methods use different criteria to assess the discrepancy between the available data 

and the theoretical distribution. Regardless of which criterion is used, they are all based on the same 

reasoning schema: 

1) The null hypothesis states that the data do indeed come from a Normal distribution.  

2) A measure of the discrepancy between the data and the theoretical distribution is calculated. This 

measure can be gathered in various ways, such as: the regression and correlation techniques of 

Shapiro-Wilk and Shapiro-Francia; the difference between the theoretical and empirical distribution, 

as in the techniques used by Kolmogorv-Smirnov and Anderson-Darling; and estimating moments, like 

the methods of D’Agostino and Jarque-Bera.  

3) The distribution of this discrepancy measure is known when the data actually come from a normal 

distribution. This distribution is called the “reference distribution” and may have been obtained either 

analytically or by simulation.  

4) The discrepancy measure is compared with its reference distribution and the p-value 𝑝𝑝 is determined. 

The hypothesis of normality is rejected if 𝑝𝑝 < α, with α being the level of significance chosen for the 

test.  

This is actually the typical schema of hypothesis testing. However, even though general practice 

places the burden of proof on demonstrating a particular matter of interest (for example, that a certain 

drug is more effective than a placebo), testing normality assumes that the null hypothesis is true by 

default. This leads to paradoxes such as: the less data one has, the better it is to pass the test and be able 

to work with the normality assumption.  

On the other hand, when a hypothesis test is carried out, it is usual to test a value that will serve 

as the parameter of the null hypothesis, such that by varying this value the probability of type II error can 

be continuously calculated and, thus, the power curve of the test can be drawn. However, this is not 

possible when testing normality, since the null hypothesis does not refer to the value of a parameter but 

to a type of distribution. Some works – such as those by Yacini and Yolacan (2007), Romão et al. (2010) 

and Yap and Sim (2011) – compute the probability of type II error for different normality tests using 

simulated data from different alternative distributions. This information helps in choosing the most 

convenient test in each case; although, when the test is performed, it is not easy to visualize what its 

power curve would be. This difficulty can lead to the probability of type II error going unnoticed and its 

value being much greater than what the analyst would assume.  
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5.1.1. Visualizing type II error in Normality Tests 

Sánchez-Espigares et al. (2018) propose a procedure for visualizing this type II error probability in 

a normality test. It is based on representing a mosaic comprised of 𝑚𝑚 ×𝑚𝑚 boxes, each box having a 

different distribution. Based on the Skewed Exponential Power Distribution (SEPD) used by Zhu and Zinde-

Walsh (2009), they propose the following probability density function to create the distributions of the 

mosaic: 
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⎪
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 . 

This function is characterized by the mean (𝜇𝜇) and the variance (𝜎𝜎2) of the variable under 

consideration, as well as two more parameters: 𝑝𝑝, which is related to kurtosis and can vary between 1 

(maximum kurtosis) and infinity (uniform distribution); and 𝛼𝛼, which is related to asymmetry and varies 

between 0 (very asymmetric distribution with a tail to the right) and 1 (with a tail to the left). The values 

𝑝𝑝 = 2  and 𝛼𝛼 = 0.5 correspond to the Normal distribution. 

For constructing the mosaic, the value of 𝑝𝑝 is varied between 1 and 50 because it is necessary that 

the maximum value is finite; and when 𝑝𝑝 = 50, the distribution is already practically uniform. The number 

of distributions on each side of the mosaic should be an odd number so that the Normal distribution 

remains directly in the center. In order for the values of 𝛼𝛼 to cover their entire range of variation, the i-th 

value of 𝛼𝛼 must be 𝛼𝛼𝑖𝑖 = 𝑖𝑖−1
𝑚𝑚−1

 , where 𝑚𝑚 is the number of distributions on each side of the mosaic. 

Regarding the values of 𝑝𝑝, we begin with 𝑝𝑝 = 1; and then each value is equal to the previous one 

raised to the power of 𝑗𝑗 = �log50
log 2

𝑚𝑚
2−0.5

, except for the second one, which is always equal to 21 𝑗𝑗�
𝑚𝑚
2 −1.5�⁄ . For 

example, if 𝑚𝑚 = 9 (9 × 9 mosaic), the values of 𝛼𝛼 and 𝑝𝑝 are those indicated in Figure 1, which also shows 

the shape that each of the distributions will have. The first row includes the exponential distribution (𝑝𝑝 =
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1, 𝛼𝛼 = 0) and also the Laplace distribution (𝑝𝑝 = 1, 𝛼𝛼 = 0.5). The Normal distribution has been boxed in 

the center. In the last row, the distributions are practically uniform. 

 

 

 

 
Figure 5.1: Mosaic of 9x9 distributions, with values of p (vertical) and 𝛼𝛼 (horizontal).  

Each distribution in the mosaic is used to generate 𝑘𝑘 random samples of size 𝐷𝐷, and the normality 

of each of them is tested. Based on a level of significance that has been previously established (normally 

equal to 0.05), we calculate the proportion of times that the hypothesis of normality in each of the 

distributions is not rejected. Finally, each mosaic box (distribution) is shaded in a scale of gray according 

to the value of that proportion.  

For example, upon generating 𝑘𝑘 = 1000 samples of size 𝐷𝐷 = 50 for each of the distributions that 

appear in the 9x9 mosaic in Figure 2, the number that appears in each box indicates the proportion of 

times that the null hypothesis of normality has not been rejected (using the Kolmogorov test). It can be 

seen that this proportion drops below 5% only for the exponential distributions in the upper corners, 

showing that the power of the test is low even with a sample that we could consider large (50 

observations). A sequential gray scale is used to display the results more clearly. From lighter to darker 

shades, the ranges are 0-0.05, 0.05-0.25, 0.25-0.50 and 0.50-1.  
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Figure 5.2: Each box shows the proportion of times that the hypothesis of normality is not rejected (𝛼𝛼=0.05) when 

using the Kolmogorov test on samples of size n=50 coming from the given distributions.  

 

5.1.2. Our proposal 

We propose using the mosaic of distributions not only to visualize the probability of type II error 

but also to provide a new approach to normality tests. To test the normality of a sample, we propose 

testing if it fits in each of the distributions that appear in the mosaic and giving a dark color to those boxes 

(distributions) in which the fitting hypothesis cannot be rejected. In this way, a dark area on the mosaic 

covers all the distributions that are compatible with the available sample. If the box corresponding to the 

Normal distribution is within the dark area, the normality hypothesis cannot be rejected. This procedure 

can be easily incorporated into statistical software packages and has the additional advantage to provide 

an idea about the power of the test, which is impossible to observe when using conventional tests. Indeed, 

it is different for a sample to pass the normality test with a small or a large dark area on the mosaic. 

Clearly, in the first case there are few possible alternatives to normality, while in the second there are 

many alternatives and with very different characteristics. 

In the next sections we discuss some of the goodness of fit measures that can be used in our test. 

We describe the possibilities of using the graphic representation that we propose as well as its 

implementation with the statistical software R (R Core Team 2017). After that, we present two case 

studies in which the advantages of our suggested methodology will be apparent. Finally, we summarize 

the most relevant aspects of the proposed procedure, highlight its limitations, and suggest some possible 

improvements.  
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5.2. Goodness of fit criteria 

We need goodness-of-fit tests that can be applied to any of the distributions that appear in the 

mosaic. For instance, even though the Shapiro-Wilk test gives excellent results for testing normality, it 

would not be useful for the remaining distributions. We can use tests based on measuring the discrepancy 

between the empirical distribution function of the sample, 𝐹𝐹𝑛𝑛(𝑥𝑥), and the theoretical distribution function 

that is proposed as the null hypothesis, 𝐹𝐹(𝑥𝑥). The values of 𝐹𝐹(𝑥𝑥) can be considered values of a uniform 

distribution 𝑈𝑈(0,1) regardless of the original distribution of 𝑋𝑋, as long as it is continuous. Therefore, 

whatever the distribution in question, we measure the difference between the values of the empirical 

distribution of the sample distribution being tested and another sample that is always a random sample 

of a distribution 𝑈𝑈(0,1).  

In turn, the criterion of Stephens (1986) establishes that adjustment tests based on the Empirical 

Distribution Function (EDF) can be divided into two classes: the supremum class and the quadratic class. 

The most typical of each group are the Kolmogorov-Smirnov test (supremum) and the Anderson-Darling 

test (quadratic). These are the ones we will use. Below, we describe the general characteristics of each.  

 

5.2.1. Kolmogorov-Smirnov 

Given 𝐷𝐷 data points 𝑋𝑋1,𝑋𝑋2, ⋯ ,𝑋𝑋𝑛𝑛, ordered from the smallest to largest value, the EDF is defined 

as 𝐹𝐹𝑛𝑛(𝑋𝑋𝑖𝑖) = 𝑘𝑘(𝑖𝑖)/𝐷𝐷, where 𝑘𝑘(𝑖𝑖) is the number of points less than 𝑋𝑋𝑖𝑖. This is a step function that increases 

the value of each ordered data point by 1/𝐷𝐷 . The Kolmogorov-Smirnov test statistic is defined as:  

𝐷𝐷𝑛𝑛 = max
1≤𝑖𝑖≤𝑛𝑛

�𝐹𝐹(𝑋𝑋𝑖𝑖) −
𝑖𝑖 − 1
𝐷𝐷

, .
𝑖𝑖
𝐷𝐷
− 𝐹𝐹(𝑋𝑋𝑖𝑖) � 

Note that 𝐷𝐷𝑛𝑛 is the maximum distance between both distributions. Let us take, for example, a 

sample of 15 random values of a distribution 𝑁𝑁(0,1) generated with R (seed=1). Figure 3 shows its EDF 

(stepped form) and the theoretical cumulative distribution (solid line), and highlights the value of the test 

statistic 𝐷𝐷𝑛𝑛.  
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 Figure 5.3: Kolmogorov-Smirnov statistic test (𝐷𝐷𝑛𝑛): Maximum difference between theoretical and empirical 

distribution function 

As we have said, the distribution of 𝐷𝐷𝑛𝑛 does not depend on the distribution 𝐹𝐹, but it does depend 

on 𝐷𝐷. Using the same form suggested by Kolmogorov (see, for example, Gibbons and Chakraborti 2003), 

its asymptotic expression is:   

  
lim
𝑛𝑛→∞

𝑆𝑆�𝐷𝐷𝑛𝑛√𝐷𝐷 ≤ 𝑥𝑥� = 1 − 2�(−1)𝑖𝑖−1𝑒𝑒−2𝑖𝑖2𝑥𝑥2
∞

𝑖𝑖=1

   

Marsaglia et al. (2003) detail a procedure for determining p-values with a precision of at least 13 

digits for values of 𝐷𝐷, from 2 up to at least 16000. This procedure is used in the ks.test function, which 

is included in the stats package (R Core Team 2017) of the statistical software R.  

5.2.2. Anderson-Darling test 

This is based on the Cramer-von Mises test, which quantifies the difference between 𝐹𝐹 and 𝐹𝐹𝑛𝑛 

through the expression: 

𝑄𝑄 = 𝐷𝐷� [𝐹𝐹𝑛𝑛(𝑥𝑥)− 𝐹𝐹(𝑥𝑥)]2𝑑𝑑𝐹𝐹(𝑥𝑥)
∞

−∞
 

Anderson and Darling (1954) added the weighting factor 1
[𝐹𝐹(𝑥𝑥)(1−𝐹𝐹(𝑥𝑥)]

, which gives more weight to 

the values located at the extremes of the sample. In this way, the test is more powerful and, in addition, 

the critical values do not depend on 𝐷𝐷 for 𝐷𝐷 > 5. The discrepancy measure, including the weighting factor, 

can be expressed as (see, for example, Marsaglia and Marsaglia 2004): 

𝐴𝐴2 = −𝐷𝐷 −�
2𝑖𝑖 − 1
𝐷𝐷

𝑛𝑛

𝑖𝑖=1

�ln�𝐹𝐹(𝑋𝑋𝑖𝑖)� + ln (1 − 𝐹𝐹(𝑋𝑋𝑛𝑛+1−𝑖𝑖))� 
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where 𝑋𝑋1 < ⋯ < 𝑋𝑋𝑛𝑛 are the values of the ordered sample. As in the Kolmogorov-Smirnov test, 

the values of 𝐹𝐹(𝑋𝑋𝑖𝑖) can be understood as a random sample of a distribution 𝑈𝑈(0,1). Marsaglia and 

Marsaglia (2004) present several methods for deducing the probability 𝑆𝑆(𝐴𝐴2 <  𝑘𝑘). The most practical 

one offers an approximation that has greater than 0.000002 accuracy for probabilities that are less than 

0.9, and 0.0000008 accuracy for those that are above. The ADGofTest package (Gil Bellosta 2011) of the 

statistical software R includes the ad.test function, which gives p-values for the Anderson-Darling test 

that are calculated according to one of the methods proposed by Marsaglia and Marsaglia. The manual 

for this package does not clarify which of the paper’s proposed methods is applied, but the accuracy of 

even the most quick-and-easy one is more than enough.  

5.3. Normality Test using the mosaic of distributions 

As said before, given a sample on which we wish to test the normality, our proposal is testing 

whether it pertains not only to the Normal distribution but to all the distributions that appear in the 

mosaic. To show the results visually, each box in the mosaic is given a color that is a function of the p-

value obtained by testing the distribution contained in it. These colors are: 

p-value Color 
< 0.01 White 
0.01 – 0.05 Light gray 
0.05 – 0.10 Gray 
> 0.10 Dark gray 

In order to carry this out, we have created a program with the statistical software package R, 

which is available to interested readers as additional material to this article. The program allows you to 

choose: 

• The size of the mosaic, up to a size of 49 × 49 (which would be easy to expand).  

• Aspects related to the presentation, such as the cut-off points of the p-value in gray scale or whether 

or not the p-values are shown in each cell.  

• The criterion for measuring the discrepancy. As we have mentioned, this may be that of Kolmogorov-

Smirnov (KS) or of Anderson-Darling (AD).  

• The sample to test. This may be a dataset whose normality we wish to test, or we can also use a 

randomly generated sample of a Normal, uniform or exponential distribution in order to observe the 

behavior of the program. In the first case, it is necessary to introduce the population parameters, 

which are presumably known.  

If the criterion for measuring the discrepancy is that of KS, the p-value is calculated with the 

ks.test function of the stats package, which is already loaded by default. If the AD criterion is applied, 
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the ADGofTest package is used (it is necessary to install the library beforehand). These functions are 

based on Marsaglia et al. (2003) as well as Marsaglia and Marsaglia (2004). Furthermore, as we have 

mentioned previously, they provide a more than adequate approximation for our objectives.  

Below, we will see some examples, all of which are reproducible using the seed indicated in each 

case. Let us take a sample of 𝐷𝐷 = 100 observations of a distribution 𝑁𝑁(0,1) generated with seed=1. Using 

the AD criteria, we obtain the mosaic in Figure 4 (right). Naturally, the null hypothesis of normality is not 

rejected, but neither will be the Laplace distribution (double exponential) located in the first row of the 

mosaic and in the same column as the normal distribution. However, the exponential distribution (both 

right- and left-skewed) would be rejected, as well as the uniform distribution. If the KS criterion is used, 

we have the mosaic in Figure 4 (left). It is clear that this test has less power than that of AD.  

Unsurprisingly, the size of the shaded area on the mosaic tends to decrease as the sample size 

increases. This can be seen in Figure 5, where we represent the mosaics obtained using randomly 

generated samples (seed=1) of a distribution N (0,1) and with the indicated sample sizes.  

This procedure can also be used to test whether the sample comes from any of the distributions 

that appear in the mosaic. It is enough to observe in which interval can be found the p-value of the box 

corresponding to the null hypothesis. For example, Figure 6 shows the shaded area obtained from a 

sample of 100 randomly generated observations (seed=1) from an exponential distribution (top) and a 

uniform distribution (bottom). Both cases include the histogram representing the distribution of the data.  

5.4. Case Studies 

5.4.1. Leghorn Chick Data 

To illustrate normality tests based on EDF statistics, Stephens (1986, p. 98) uses data from Bliss 

(1946) on the weight in grams of twenty 21-day-old leghorn chicks (Table 5.1).  

Table 5.1: Leghorn Chick Data (from Bliss, 1946) 

156 162 168 182 186 190 190 196 202 210 
214 220 226 230 230 236 236 242 246 270 

 

Stephens states that – obviously – the data have been rounded, so in a strict sense the population 

is discrete. However, with values of this magnitude, the obtained approximation shows a negligible 

difference from the unrounded values. The values of 𝜇𝜇 and 𝜎𝜎 are assumed to be known, and we use those 

that are proposed by Stephens: 𝜇𝜇 = 200 and 𝜎𝜎 = 35. Applying KS to test normality obtains a test statistic 

of 𝐷𝐷 = 0.171, with a p-value = 0.60. An analogous result is obtained when applying the AD test: in this 



72 | Capítulo 5.4 

case, the test statistic is 𝐴𝐴2 = 1.017 and the p-value is 0.35. Therefore, we would assume that these data 

come from a normal distribution.  

 

 

Figure 5.4: Mosaic test applied to a sample of 100 random numbers of N(0,1) generated with R (seed=1), using the 

criteria of Kolmogorov-Smirnov (left) and Anderson-Darling (right).  

 

 

   

   
Figure 5.5: Results obtained using the AD criteria with samples of the indicated size, obtained randomly (with R, 

seed=1) from a population of N(0,1) 

n=25 n=50 n=100 

n=250 n=500 n=1000 
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Figure 5.6: Results obtained using the AD criteria with a sample of n=100 from an exponential distribution (λ=1) 

(top) and uniform distribution (0,1) (bottom), using R (seed=1). The histogram corresponding to the data is 

attached.  

However, when we test whether or not our sample comes from each of the distributions in the 

mosaic, all boxes take on a darker color when using the KS test, meaning that the obtained p-values are 

greater than 0.10 for all the distributions. Therefore, using the KS test at this level of significance precludes 

rejecting the hypothesis of normality, although neither can we reject that the data come from any of the 

other distributions in the mosaic (which, as we have seen, may be exponential, uniform or Laplace). This 

situation shows the low value of the KS test when using small sample sizes.  

Using the AD test to these same data, we obtain a mosaic with distributions that would be rejected 

at the usual level of significance 𝛼𝛼 = 0.05, although all of them are very far from the normal distribution 

(Figure 7, left). 
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5.4.2. Chest circumferences of Scottish soldiers 

Stigler (1986, p. 207) reproduces the famous dataset of chest circumferences of 5758 Scottish 

soldiers analyzed by Quetelet. Unfortunately, the original data were not preserved, and we have only the 

tabulated data (Table 5.2).  

We have transformed each of the values in the table (𝑋𝑋) into continuous values by replacing them 

with: 

𝑋𝑋 − 0.5 + 1
𝑓𝑓𝑋𝑋+1

  ,   𝑋𝑋 − 0.5 + 2
𝑓𝑓𝑋𝑋+1

  ,  ⋯ ,  𝑋𝑋 − 0.5 + 𝑓𝑓𝑋𝑋
𝑓𝑓𝑋𝑋+1

 

where 𝑓𝑓𝑋𝑋 is the observed frequency for the value 𝑋𝑋. Rounding to the nearest integer, the table’s original 

values are once again obtained. 

In this case, the data also pass the normality tests of both KS (𝐷𝐷 = 0.009, p-value= 0.74) and AD 

(𝐴𝐴2 = 0.47; p-value = 0.48). 

Table 5.2 Quetelet’s data on the chest circumferences of 5738 Scottish soldiers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Circumference of chest. 
English inches (X) 

Frequency 

33 3  
34 18  
35 81  
36 185  
37 420  
38 749  
39 1073  
40 1079  
41 934  
42 658  
43 370  
44 92  
45 50  
46 21  
47 4  
48 1  
Total 5738  
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For each distribution in the mosaic, we test the null hypothesis that our dataset pertains to that 

distribution, and it is rejected for all of them except for the normal distribution and those very close to it. 

Only a small spot surrounds the normal distribution in the center. Figure 7 (right) shows the spot obtained 

by applying the AD test. If the KS test is used, the spot is somewhat larger.  

 

Figure 5.7: Mosaic obtained by applying the AD test to Bliss data (left) and Quetelet data (right) 

Consequently, the result is unlike the previous example and we can state with certainty that these 

data come from a normal distribution, because we can definitively reject that the data come from 

distributions that are even very close to the normal. Applying a conventional normality test does not 

distinguish between the two analyzed cases. However, when using the mosaic of distributions, the two 

situations are shown to be clearly different.  

5.5. Final remarks 

The mosaic of distributions provides a clear idea of whether or not the sample is compatible not 

only with the distribution being tested as the null hypothesis, but also with all the unimodal distributions 

around it. A large shaded area on the mosaic (which occurs with small or moderately sized samples) shows 

that the sample could also come from other distributions that are far away from those being tested, and 

this is something that is generally not taken into account by analysts.  

Note that, although the mosaics used to visualize the type II error (Sánchez-Espigares et al., 2018) 

and those we propose here are visually similar, their objectives and the information they represent are 

different. Table 3 summarizes the characteristics of each type of representation.  

The proposed procedure requires knowing the parameters that define the population considered 

in the null hypothesis. For practical purposes, being able to use the estimates of those parameters 
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obtained from the available sample would be more useful. However, using these estimates changes the 

shape of the reference distributions, and we do not have their analytical expressions. Simulation 

techniques are necessary for deducing these expressions and/or calculating the critical values.  

Deducing analytical expressions is not an easy task, and simulation requires great computational 

effort. The critical values depend on the values of 𝛼𝛼 and 𝑝𝑝 that are linked to the distribution, and also on 

the size of the sample 𝐷𝐷. Obtaining these critical values at a precision of 4 digits for each of the 

distributions in the mosaic is, for the moment, beyond our range of possibilities. Nevertheless, we believe 

this can be addressed in the near future.  

Table 5.3 Comparison of mosaics for visualizing type II error and goodness of fit tests 

Type II error display   Goodness of fit test 

In each mosaic box, we generate 𝑘𝑘 

random samples of the distribution that 

appears in that box.  

  There is only one sample.  

In each box, a normality test is carried out 

for each of the 𝑘𝑘 generated samples.  

  The sample is tested to determine if it 

comes from each of the distributions in 

the mosaic.  

Using a set level of significance for each 

test, the normality of the sample is or is 

not rejected. The proportion of times that 

the hypothesis of normality is not rejected 

is assigned to each box.  

  The p-value obtained by testing whether 

or not the sample comes from the 

distribution that appears in this box is 

assigned to that box.  

Optionally, the proportion of times that 

the normality hypothesis has not been 

rejected is indicated over each box 

(distribution).  

  Optionally, the p-value obtained in the 

test is indicated over each box 

(distribution).  

The boxes are colored in gray scale 

according to the proportion of times that 

the normality hypothesis is rejected.  

  The boxes are colored in gray scale 

according to the p-value obtained by 

testing whether the sample data come 

from the distribution of the box.  
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5.7. Supplementary Materials 

TestMosaic.Rmd 
######################################################### 

# Supplementary material that accompanies the article:  # 

#               Mosaic Normality Test                   # 

######################################################### 

# The ADGofTest package must be installed 

library(ADGofTest) 

# You can change the values of the following parameters: 

n=49         # n: mosaic size (nxn), with 1<n<50. If n is even, then n=n+1 

color=c(0.01,0.05,0.10)  # P-value cut points for gray scale 

label=F      # label: T=Shows p-value in each cell; F=don't show 

bell=0       # 1: Draw the distribution in each box. 0: Do not draw the distribution 

 

sample="NOR" # sample: SAM=from file, NOR=Random Normal(0,1), UNI=Random Uniform(0,1)

, EXP=Random Exponential(1) 

 

# If sample="SAM" The sample has to be in an ASCCI file with all the values in a colu

mn without header and named sample.dat) 

mu0=0        # Mean hipotized when data are from a file (sample="SAM"). For Quetelet 

Data: mean = 40.332  

sigma0=1     # Standard deviation hipotized when data are from a file (sample="SAM"). 

For Quetelet Data: sd = 2.070 

 

# If sample !="SAM" The data are randomly generated 

size=100     # Size for random samples 

#set.seed(1)  # You can change the seed (or eliminate it) for random samples 

test="AD"    # test: Type of test, AD=Anderson-Darling, KS=Kolmogorov-Smirnov 

######################################################### 

 

# The following functions are needed 

#### Density function for the skewed power exponential distribution 

dsepd=function(x,mu=0,sigma=1,alpha=0.5,p=2){ 

  A=2*p^(1/p)*((1-alpha)^2-alpha^2)*gamma(2/p)/gamma(1/p) 

  A2=(2*p^(1/p))^2*((1-alpha)^3+alpha^3)*gamma(3/p)/gamma(1/p) 

  B=sqrt(A2-A^2) 

  y=A+B*(x-mu)/sigma 

  kp=1/(gamma(1+1/p)*(2*p^(1/p))) 
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  kp*exp(-(abs(y/(2*ifelse(x<mu-sigma*A/B,alpha,1-alpha)))^p)/p)*B/sigma 

} 

#### Distribution function for the skewed power exponential distrib. 

psepd=function(x,mu=0,sigma=1,alpha=0.5,p=2){ 

  A=2*p^(1/p)*((1-alpha)^2-alpha^2)*gamma(2/p)/gamma(1/p) 

  A2=(2*p^(1/p))^2*((1-alpha)^3+alpha^3)*gamma(3/p)/gamma(1/p) 

  B=sqrt(A2-A^2) 

  x=A+B*(x-mu)/sigma 

  alpaux=ifelse(x<0,alpha,1-alpha) 

  alpha+sign(x)*alpaux*pgamma(((abs(x)/(2*alpaux))^p)/p,shape=1/p) 

} 

sam=switch(sample, 

  SAM = list(values=unlist(read.table("sample.dat",header=F)),mu0=mu0,sigma0=sigma0), 

  NOR = list(values=rnorm(size,0,1),mu0=0,sigma0=1),  

  UNI = list(values=runif(size,0,1),mu0=0.5,sigma0=1/sqrt(12)),  

  EXP = list(values=rexp(size,1),mu0=1,sigma0=1) 

) 

#### Mosaic function 

mosaic=function(sam,n,mu,sigma,label=F){ 

  siz=length(sam)     

  if (n<=1 | n>=50) { 

    stop("n must be a value between 2 and 49\n") 

  } 

  pval=switch(test, 

              AD = function(samp,mu=mu,sigma=sigma,alpha=alpha,p=p) ad.test(samp,dist

r.fun=psepd,mu=mu,sigma=sigma,alpha=alpha,p=p)$p.value, 

              KS = function(samp,mu=mu,sigma=sigma,alpha=alpha,p=p) ks.test(samp,psep

d,mu=mu,sigma=sigma,alpha=alpha,p=p)$p.value 

  ) 

  if (n%%2==0) n=n+1 

  cex1=c(1.2,1,0.8,0.7,0.6) 

  old.par=par(mfrow = c(n,n), xaxt="n", yaxt="n", mar=c(0,0,0,0), cex=cex1[findInterv

al(n,c(1,5,10,15,25,9999))], xaxs="i", yaxs="i") 

  s=3.5    

  ymax=c(0,1/sigma)   

  j=(log10(50)/log10(2))^(1/(n/2-0.5)) 

  alfa=(0:(n-1))/(n-1) 

  alfa[alfa==0]=1e-12 

  alfa[alfa==1]=1-1e-12 

  p=c(1,2,50) 

  if (n>3) p=c(1,2^(1/(j^(((n-3)/2):1))),2,2^(j^((1:(n/2-0.5))))) 
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  graf=function(param,label){ 

    x=seq(from=mu-s*sigma,to=mu+s*sigma,length.out=101) 

    plot(0,0,xlim=c(mu-s*sigma,mu+s*sigma),ylim=ymax,type="n",axes=F) 

 

    pvalue=round(pval(samp=sam,mu=mu,sigma=sigma,alpha=param[1],p=param[2]),2) 

    id=findInterval(pvalue,c(0,color,1)) 

    colo=gray(c(0.9,0.85,0.4,0.2,0))[id] 

    if(id>1) rect(mu-s*sigma,0,mu+s*sigma,ymax[2],col=colo) 

    if (bell==1) curve(dsepd(x,mu=mu,sigma=sigma,alpha=param[1],p=param[2]),col="blac

k",add=T) 

    if (param[1]==0.5 & param[2]==2) box(lwd=2,col="white") else box() 

    if (label) text(mu,ymax[2]*0.5,round(pvalue,2),col=ifelse(id>2,"white","black")) 

  } 

  apply(expand.grid(alfa,p),1,graf,label=label) 

  par(old.par) 

} 

mosaic(sam$values,n,sam$mu0,sam$sigma0,label) 
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ABSTRACT 

In variable interval irrigation, simply including soil salinity data in the soil salinity model is not valid 

for making predictions, because changes in irrigation frequency must also be taken into account. This 

study on variable interval irrigation used capacitance soil sensors simultaneously to obtain hourly 

measurements of bulk electrical conductivity (σb), soil temperature (t) and soil water content (θ). 

Observations of σb were converted so that the electrical conductivity of the pore water (σp) could be 

estimated as an indicator of soil salinity. Values of θ, t and σp were used to test a mathematical model for 

studying how σp cross-correlates with t and θ  to predict soil salinity at a given depth. These predictions 

were based on measurements of σp, t, and θ at a shallow depth. As a result, prediction at shallow depth 

was successful after integrating intervention analysis and outlier detection into the seasonal 

autoregressive integrated moving average (ARIMA) model. We then used the (multiple–input/one-

output) transfer function models to logically predict soil salinity at the depths of interest. The model could 

also correctly determine the effect of the irrigation event on soil salinity. 

KEYWORDS: capacitance device; pore water electrical conductivity; autoregressive integrated moving 

average (ARIMA) model; outlier detection; transfer function model. 

https://doi.org/10.1002/ird.2187
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6.1. Introduction 

Salinity is shown to have a large impact on plants by reducing their ability to take up water. This 

creates an imbalance of plant nutrients, which ultimately leads to the degradation of land. Munns (2002) 

demonstrated that when salts accumulate excessively in older leaves, premature senescence occurs, 

causing a reduction in the leaf area available for photosynthesis and thus rendering the plant less able to 

sustain growth.  

Determining the electrical conductivity of soil pore water (σp) conventionally requires extraction 

of the water from the soil by suction or measurement of saturated paste conductivity, both of which are 

labour-intensive methods. Also, there is always uncertainty as to whether all ions have been collected in 

the extract sample (Hilhorst, 2000). 

A more recent method for temporally and spatially evaluating the σp is to convert the bulk 

electrical conductivity (σb) to σp by using methods, models and estimates like those described by Rhoades 

et al. (1990) or Mualem and Friedman (1991). 

6.2. Soil salinity measurement 

New sensors have been developed to measure σb, such as time-domain reflectometry (TDR) and 

frequency-domain reflectometry (FDR). 

Temperature and water content significantly affect the accuracy of determining σp. Therefore, a 

precise real-time measurement of σp depends on electrical conductivity sensors being able to 

simultaneously measure three variables: water content (θ), soil temperature (t) and σb. 

The σb of the soil system is determined by estimating the conductance pathways in the system, 

namely: i) solid-liquid interphase; ii) solid phase; iii) liquid phase. In agricultural practices, it is beneficial 

to recognise the level of electrical conductivity of the liquid phase (σp) that is contained in the soil pores, 

as it provides a sound indicator of the solute concentration contained within the soil. A strong linear 

correlation between the values of the dielectric soil constant (εb) and σb in most soil types was discovered 

by Malicki et al. (1994). This discovery was further developed by Hilhorst (2000), whereby a successful 

conversion of σb to σp was made possible by applying a theoretical model that outlined the linear 

relationship between σb and εb. 

σp was estimated by Hilhorst (2000) using the equation: 

0=−
=
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where σp is the pore water electrical conductivity (dS m-1); εp is the real portion of the soil pore water's 

dielectric permittivity (unitless); σb represents the bulk electrical conductivity (dS m-1); εb is the real 

portion of the bulk soil's dielectric permittivity (unitless); εσb=0 is the real portion of the soil's dielectric 

permittivity when the bulk electrical conductivity has a value of 0 (unitless). It should be noted that εσb=0 

is an offset of the linear relationship between εb and σb. In the soils used for Hilhorst's study (2000), εσb=0 

depended on the soil type and it varied between 1.9 and 7.6. So, he recommended 4.1 as a generic offset. 

Having simultaneous data on σp, t and θ enabled us to properly build models that could precisely 

predict soil salinity by taking into account the changes in θ and t. 

6.2.1. Soil salinity movement models 

In predicting solute transport between the land surface and groundwater table, deterministic 

convection-dispersion equations based on Fickian diffusion are convenient tools for describing solute 

movement, as they allow a limited number of field studies to be extracted to various soils, crops and 

climates, as well as to differing tillage and water management regimes (van Genuchten, 1991). 

However, questions have been raised in the literature as to the utility of these equations when 

describing solute transport in structured soils where there exist large continuous voids, for example: 

natural inter-aggregate pores, inter-pedal voids, earthworm tunnels and gopher holes. The movements 

of solutes in these voids can be very different from those that occur through materials that are fairly 

homogeneous (Beven and Germann, 1982; White, 1985). Because most soils are heterogeneous, specific 

methods are required for simulating heterogeneous field-scale transport processes (van Genuchten, 

1991). 

As a way of managing the heterogeneous nature of soil and predicting the evolution of soil solutes, 

some experimenters prefer to adopt stochastic models instead of using constant values to describe the 

possible future evolution of soil solutes. These models assume that solute transport has random variables, 

and each variable is assigned a discrete value in accordance with a specified probability distribution. 

The use of stochastic models has increased significantly over the last decade. For example, they 

have been employed in: artificial neural networks (ANN) (Huang et al., 2010); agronomic applications that 

model crop development (Zhang et al., 2009; Fortin et al., 2010); and predicting crop yields (Park et al., 

2005; Green et al., 2007; Khazaei et al., 2008). Zou et al. (2010) collected silt loam soil profile data on a 

monthly basis from 2001 to 2006 and used it to compare the back propagation neural network (BPNN) 

model and the autoregressive integrated moving average (ARIMA) model. Their objective was to predict 

(1) the average moisture content in the top 1-meter profile by using the moisture content measured at 

0.60 m depth, and (2) the average salt content measured at various depths of the soil profile (0.10, 0.20 

and 0.45 m). Mishra and Desai (2005) used ARIMA and seasonal ARIMA models to forecast droughts. 
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Sarangi et al. (2006) used artificial neural networks (ANNs) to model root zone soil salinity and the salinity 

of subsurface drainage effluent in the coastal clay soils of rice fields in Andhra Pradesh, India. They found 

that drainage effluent salinity could be predicted better by feeding the input values to the ANNs after a 

time lag rather than by using the conceptual SALTMOD model. 

In irrigated agriculture, the ARIMA model has the potential to predict soil salinity, in that it uses 

past observations as a means of predicting future patterns. Previous models assumed a fixed spacing 

between irrigation events and that therefore the ARIMA model could be applied suitably. One example 

could be that of a farmer who irrigates a field every ten days with the expectation that the field data set 

will provide an ARIMA model in which there is a decrease in soil salinity on the tenth day. This is known 

as a post-irrigation event. However, if the farmer decides to apply variable interval irrigation and thus 

uses a spacing of 9 days between irrigation events, the ARIMA models will not be capable of effective 

predictions in this case. In this instance, the previously identified ARIMA model would show a decrease in 

soil salinity after ten days instead of after 9 days. Wei (1989) states that –in order to successfully apply an 

ARIMA model to time series datasets with outliers– it is necessary to incorporate intervention analysis 

models and outlier detection. 

Aljoumani et al. (2012) explained why the ARIMA models cannot predict soil water content in 

cases of variable interval irrigation. By including intervention analysis and outlier detection in the ARIMA 

model, they were able to predict the water content of the soil. 

6.2.2. Outliers versus intervention variables 

When considering the time series of soil salinity, soil moisture and soil temperature, a key 

distinction is made between outliers and intervention variables. If a situation arises where a priori 

information relating to a special event (in this case, an irrigation event) proves to cause possible abnormal 

observations, the effect of this event should be captured through intervention analysis. In this study, the 

abnormal observations of the soil salinity caused by irrigation events are captured through intervention 

analysis. 

Conversely, if anomalies in the observations are represented without a priori information on their 

occurrence or on the dynamic patterns of their effects (i.e., a precipitation event), this represents an 

outlier. To predict soil salinity, we incorporated variable interval irrigation into the ARIMA model as a 

means of examining the effectiveness of the irrigation event by capturing, with intervention analysis, the 

abnormal observations of soil salinity time series caused by irrigation events. For this to be possible, it 

was necessary to perform two procedures. First, we detected and removed the outliers, which therefore 

caused an upward trend in soil salinity forecasts due to an absence of effect from the irrigation events 

(outliers). Second, we assessed the intervention effects of the irrigation event and included them in the 
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model, which thus resulted in a decrease of soil salinity at the time of irrigation. In this second procedure, 

the weight of the irrigation coefficient determined the extent of the decrease. This complementary 

analysis provides an advantage that can be attributed to the likelihood of having a well-realized irrigation 

schedule (which is based on a short duration of one day or even one hour) combined with the knowledge 

of its effect on the soil salinity. Therefore, the next irrigation event will be determined at the point where 

the prediction for soil salinity exceeds the plant's tolerance to salts. For example, to predict σp in a lettuce 

field, we determine the time of irrigation when the predicted value of σp exceeds 2 ds/m, even though 

the soil moisture value is at field capacity. This is because lettuce crops are sensitive to salinity. 

Aljoumani et al. (2014) showed that it is important to capture the effect of irrigation events on 

bulk electrical conductivity and to then use the effect as an outlier for improving the fitted model. For the 

same reasons explained in those references, intervention analysis and outlier detection should 

complement the ARIMA model when modelling soil salinity in variable interval irrigation. 

For the purpose of describing soil salinity fluctuations, incorporating the time series outlier and 

intervention analysis into the ARIMA model provides two advantages. First, if we employ intervention 

analysis results in the input series that is represented by a simple pulse or step indicator function, this will 

indicate whether or not an irrigation event is in fact present. This further improves the efficiency of 

irrigation scheduling and its effect on soil salinity by including the irrigation event's effectiveness in the 

ARIMA model. Outlier correction is employed primarily to modify the data in a way that accepts the 

normality hypothesis of the ARIMA model (Box et al., 1994). 

The second advantage results from including the outlier analysis in the ARIMA model. This 

provides more precision from reducing the residual variance of the model. 

Many studies have confirmed the effects of soil moisture and temperature when estimating soil 

salinity. However, McKenzie et al. (1989) and Slavich and Petterson (1990) found that soil texture, θ and 

t all affect the calibration measurements of electromagnetic (EM) induction when predicting σb. Sarangi 

et al. (2006) found that soil salinity correlates both with the content of soil water and with temperature. 

However, we found no studies that developed models for predicting soil salinity by taking into account 

future changes in soil water content and soil temperature. 

This study seeks to fulfil the general objective of modelling soil salinity for predictive purposes 

while also considering future variations in soil water and soil temperature. The specific objectives of this 

study are as follows: 

• to study the autocorrelation as well as the partial correlation functions of the estimated σp, θ and t, 

specifically when they are measured at shallow depths; the cross-correlation function between θ, σp, 
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and t at 0.10 m depth; the estimated σp at an interested depth (0.10 m); and the average soil salinity 

in the top 0.60 m of the soil profile; 

• to develop models for predicting the soil salinity at various greater depths by measuring σp, θ and t at 

a single shallow depth; 

• to employ outlier analysis and intervention analysis in examining how irrigation events affect soil 

salinity. 

6.3. Materials and Methods 

6.3.1. Hourly field observations of bulk electrical conductivity (σb), soil 

temperature (t), and soil water content (θ) 

Commencing on 23 April 2010, the observations were carried out over a period of fifty-five days 

in the Agricultural Park of Baix Llobregat, which is situated five kilometers south of Barcelona, Spain. The 

set-up comprised an experimental field area on 275m2 (55m x 5m) of land with planted lettuce (Lactuca 

sativa) and which was irrigated by means of a furrow system. Four irrigation events were applied, with 

each irrigation dose set at 26 mm applied over a period of twenty to twenty-six minutes. The site's soil 

was fairly uniform, silty loam, and the bulk density ranged between 1.4 and 1.5 g cm-3as far down as 0.75 

m of depth. The water table lay 4 m below the surface of the soil. We measured the distributions of σb, t 

and θ across the soil profile in the test furrow by using capacitance soil moisture sensors (5TE, Decagon 

Devices, Inc., Pullman, WA), which were installed at depths of 0.10, 0.20, 0.35, 0.50 and 0.60 m below the 

surface of the soil. Then, in order to convert σb to σp, we used the Hilhorst model (2000). To define the 

models for predicting σp, we used: a total of 1318 observations of estimated σp; measurements of t and θ 

at a depth of 0.10 m; and the σp averages for the upper 0.60 m. These were then validated by using an 

additional 659 observations. All the details about field observations and the data plot were described in 

the publications Aljoumani et al. (2012) and Aljoumani et al. (2014). 

6.3.2. Model identification and forecast 

The time series analysis of σp, t and θ was carried out in three steps. The first involved applying 

the Box-Jenkins method (Box et al., 1994) in order to identify an appropriate univariate model for the time 

series of σp, t and θ at 0.10 m depth. This was done using the seasonal ARIMA model: 

(p, d, q) × (P, D, Q)S  (2) 
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where p and q are the regular autoregressive and moving average orders; and P and Q are the seasonal 

autoregressive and moving average factors; d and D are the orders of differencing for the regular and 

seasonal part; and, finally, sub-index S represents the seasonal period, which in this study is 24 hours. 

In the second step, we included irrigation duration in the model as an intervention analysis in 

order to evaluate its effects. Then, we conducted a search to establish whether or not the univariate series 

contains any outliers. In the third step, we modelled the linear system in order to identify the appropriate 

transfer function. This was done by using, as input, the time series of t and θ at a depth of 0.10 m, with 

the outputs being the time series of σp at a depth of 0.10 m and the average σp calculated for the top 

0.60m of soil. 

 

6.3.3. Univariate time series analysis 

For elucidating the patterns of the σp, t and θ data at 0.10 m depth, and for finding the average σp 

in the top 0.60 m of soil, we implemented univariate seasonal (ARIMA) (p, d, q) x (P, D, Q)S modelling 

techniques. Moreover, for the purpose of identifying and fitting the ARIMA models, four phase 

approaches were adopted, namely: model identification, model parameter estimation, diagnostic 

checking, and forecasting. As part of the autoregressive (AR) process, each value of a time series was 

dependent on the preceding value, in addition to a random shock. The AR model for a centred time series 

with order p can be defined as: 

 

tptpttt aXXXX ++++= −−− φφφ ...2211  

or    

tt
p

p aXBBB =−−−− )...1( 2
21 φφφ   (3) 

 

where jφ denotes the jth AR parameter, ta the Gaussian white-noise error, and B the backshift operator 

in which ptt
p XXB −= . The errors for the moving average (MA) model are the average of the random 

errors for this period and previously. We define the MA time series of order q by means of: 

 

qtqtttt aaaaX −−− ++++= θθθ ..2211  ,  

or 

t
q

qt aBBBX )..1( 2
21 θθθ ++++=   (4) 
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where qθ is the qth MA parameter. 

Identifying AR and MA models requires a stationary time series. Although this implies that the 

variance and mean values are constant, some transformation is needed in order to identify the model. 

Successive differences of the data's regular and seasonal components were taken to ensure no 

trend in mean. The required numbers of differences for the stationary time series were denoted by d and 

D. Moreover, in applying the logarithmic transformation that is usually used, no trend in variance is 

obtained (Soebiyanto et al., 2010; Quinn, 1985; Vandaele, 1983). 

In any time series, tX , the ARIMA(p, d, q) × (P, D, Q)S of tX  is: 

t
s

Qqt
Dsds

Pp aBΘBXBBBΦB )()()1()1)(()( θφ =−−   (5) 

where )(Bpφ  and )(Bqθ  are the regular autoregressive and moving average factors, and )( s
P BΦ  and 

)( s
Q BΘ are the seasonal autoregressive and moving average factors. 

The autocorrelation function (ACF) and the partial autocorrelation function (PACF) were used to 

identify time series models (McCleary and Hay, 1980; Pankratz, 1983; Hoff, 1983). ACF measures the 

relation between tX and KtX + , where K is the time lag. We used PACF in order to take into account any 

dependence on intermediate elements (i.e., those inside the lag) (Box et al., 1994; McDowall et al., 1980; 

Wei, 1989). 

The maximum likelihood method was chosen for this study in order to estimate the model 

parameters. In addition, by constructing the Wald test statistic, we were able to determine the 

significance of these parameters. 

Diagnostic checking tests were used to ascertain whether the residuals showed any 

autocorrelation at any lags. The assumptions would be satisfied if the ACF and PACF of the residuals were 

non-significant at all lags. 

6.3.4. Intervention analysis and outlier detection 

Outliers in the σp, t and θ data refer to soil at 0.10 m depth and to the average σp in the top 0.60 

m. They were removed using Grubbs' test for detecting outliers (Grubbs, 1969): 

SD
VMZ // −

=  (6) 

where Z is the test statistic, M is the mean of the values, V is the value being tested, and SD is the standard 

deviation of the values. A total of 1318 observations of σp, t and θ were available. Assuming an outlier 
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probability of 5%, we set the outlier test statistic at 4 (Grubbs, 1969). The values of σp, t and θ that yielded 

test statistics greater than or equal to 4 were eliminated from the data set. In order to properly assess 

how precipitation and other observed irregularities impacted the time series of σp, t and θ, two types of 

outliers were considered: additive outliers (AO) and temporary changes (TC). At the same time, level shift 

(LS) was used as an intervention analysis to assess the impact of the irrigation event on the time series of 

σp, t and θ. AO is a pulse that affects the time series at one period only. TC is an event that decays 

exponentially, according to a pre-specified dampening factor. LS is an event that permanently affects the 

subsequent level of a series (Chen and Liu, 1993). 

Let tZ  denote the underlying time series process, which is free of the impact of outliers and 

occurs prior to the irrigation event; and let tX  denote the observed time series.  We assume that tZ  

follows the seasonal ARIMA(p,d,q)(P,D,Q)S model t
s

Qqt
Dsds

Pp aBΘBZBBBΦB )()()1()1)(()( θφ =−− . 

Based on these assumptions, the appropriate model for assessing the impact of the control is: 
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where rω is permanent change in the mean level following the intervention (i.e., the irrigation event), and

)(LS
Tr

S is a step indicator at the time of irrigation rT , where: 

 





≥
<

r

rLS
T Tt

Tt
S

r 1
0)(   (8) 

 

In this study, the level shift (LS) in the soil salinity time series is produced by the irrigation events; 

and, since the date of these events is known a priori, we were able to assess how irrigation events affect 

soil salinity by completing the ARIMA model with intervention analysis 

iω is the transitory change in the mean level following any unusual observations (e.g., precipitation);

)(TC
Ti

P  and )( AO
Tj

P are pulse indicators taken at unusual observation times iT and jT , respectively, where: 
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δ is a dampening factor with the default value of 0.7 (Chen and Liu, 1993). 

The exploratory method of visualizing the outliers in time series analyses has been well-

established in other fields, and this seasonal-trend decomposition (commonly known as 'STL') uses locally-

weighted regression (loess) (Cleveland et al., 1990; Hafen et al., 2009). The STL method is straightforward 

and flexible for specifying the amount of variation in the seasonal components and trends of time-series; 

furthermore, it provides robust estimates without any distortions resulting from transient outliers 

(Cleveland et al., 1990). STL was utilized to model the 24h-prevalant soil salinity, soil water and soil 

temperature time-series. STL is a filtering procedure for decomposing a time series into additive 

components of variation (trend, seasonality and the remainder); and it does so by applying loess 

smoothing models (Cleveland et al., 1990; Chaloupka, 2001). 

6.3.5. Transfer function approach 

We can use the observations and predictions from two-time series (input tX1 and tX 2 ) to 

estimate the outcome of another time series (output tG ). This is done by a relatively small number of 

parameters to model the linear system, which takes the form: 

tbtbtt aX
BC
BAX

BC
BAG ++= −− 22

2

2
1

1

1 ,
)(
)(,

)(
)(

1
  (11) 

where )(BA and C(B) are, respectively, the polynomials of the s and r orders: 

)...()( 2
210

s
s BABABAABA −−−−=  (12) 

)...1()( 2
21

r
r BCBCBCBC −−−−=  (13) 

where A0, A1, A2, …, As and C1, C2, …, Cr are the parameters of the model, b is the latent parameter, 

B is the backshift operator, and ta  is a disturbance (noise). 

)(/)( BCBA is the system's designated transfer function. In modelling a transfer function, the 

procedure involves three steps: a) identification, b) estimation and c) checking the model. The same filter 

can be applied to the output series Gt (pre-whitening) by employing a univariate model for the inputs of
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tX1 and tX 2 while using white noise residuals. Cross-correlating the two residuals identifies the transfer 

function form. 

The transfer function in this study uses the soil water (θ) and soil temperature (t) that were 

observed at 0.10 m depth for the primary series ( tX1 and tX 2 ).We chose the output series ( tG ) from 

the time series of soil salinity (σp) that were observed at a depth of 0.10 m, as well as the average soil 

salinity (σp) from the upper 0.60 m of the soil profile. The formula used by Wu et al. (1997) was adopted 

for calculating the average soil salinity (σp) in the upper 0.60 m of the soil profile. 

The software R, version 2.15.1 (R Development Core Team, 2012), executed all model 

identifications and subsequently predicted soil salinity at various depths (Cryer and Chan, 2008; Shumway 

and Stoffer, 2006). 

6.4. Results and discussion 

Figure 1 shows the variation of θ, t, and σp at 0.10 m depth over time. Decreases in σp signalled 

the significant effects of irrigation events that occurred on days 4.29, 27.20, 32.04 and 46.33, as well as 

from precipitation events on days 9.33, 20.50 and 52.54. Figure 1 also shows that t increased after 

irrigation, due to the irrigation water being warmer than the soil before irrigation. 

 
Figure 6.1 Variation of soil water content (θ  m3m-3), soil temperature (t °C) and soil salinity(σP dS m-1) at 0.10 m 

depth with time IR1, IR2, IR3 and  IR4 are the irrigation events applied on days 4.29, 27.20, 32.04 and 46.33. Pre1, 

Pre2, and Pre3 are the precipitation event on days 9.33, 20.50 and 52.54. 

m3 m-3 

°C 

ds/m 
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The opposite occurred with precipitation: Figure 1 shows that t decreased after precipitation; 

acknowledgement of these fluctuations will help in modelling σp as a function of θ and t, as explained 

below. Later, we developed the ARIMA model for σp time series at 0.10 m depth and completed it by 

including the irrigation event as an intervention and the precipitation as outlier detection. 

6.4.1. Univariate time series modelling of soil salinity at 0.10 m depth 

We can see that the time series is non-stationary, as indicated by the significant slow convergence 

of ACF in the original σp time series at 0.10m depth (Figure 2.A). As a means for obtaining a stationary 

time series, we differentiated the original series (first-order difference and seasonal first-order 

difference). There is no requirement for applying a logarithmic transformation in this case, as there is no 

trend in variance observed in the series. 

 

Figure 6.2 (A) Autocorrelation function (ACF) of the original data, (B) autocorrelation function, and (C) partial 

autocorrelation function (PACF) of the transformed time series of σp at 0.10 m depth. The ACF of the original data 

indicates that the series is not stationary. The dotted lines mark 2 x standard errors. 

The ACF and PACF of the differentiated time series found that the regular component of the series 

was approximately AR(3) and that the seasonal component was MA(1). This is because the ACF (Figure 

2.B) found significant correlations only at the first three lags of PACF and the 24th lag of ACF. 
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The ARIMA (p, d, q) (P, D, Q)S model of the σp time series at a depth of 0.10 m resulted in ARIMA 

(3, 1, 0) (0, 1, 1)24. The model is expressed with the usual notation by: 

t24t aBXBBBBB )1()1)(1)(1( 24243
3

2
21 θφφφ +=−−−−−   (14) 

where ta  is a white noise term that is independent and identically distributed with zero mean, and the 

variance = 2.8 × 10-7, 1φ  = 0.2088, 2φ = -0.0468. 3φ = -0.0883 are AR parameters. The 24θ = 0.99 parameter 

of the seasonal MA part indicates that the model is almost non-invertible. Therefore, it is inadequate and 

needs to be improved in structure.  

By using a seasonal-trend decomposition (STL method), the large outliers of the remainder 

(random) return to the irrigation events. Because we already know the timing of the irrigation event, the 

model can be completed using intervention analysis (irrigation events) and outlier detection (model 10); 

in this way it becomes invertible and thus reduces its residual variance (Wei, 1989). 

 

6.4.2. Outlier and intervention analysis in the σp time series of the ARIMA 

model at 0.10 m depth: Measuring the effect of the irrigation event on 

σp 

We applied intervention analysis and automatic outlier detection to the previous ARIMA (3, 1, 0) 

(1, 0, 0)24 model in order to improve it and measure the effects of irrigation events on σp at 0.10 m depth. 

With Grubb's test (Eq. 6), 15 outliers were detected (Table I) for the time series of soil water content at 

0.10 m depth.  

Including the outlier detection and intervention analysis (effect of irrigation), the observed value 

of time series of σp at 0.10 m depth can be described according to Eq. 7 as: 

t
AO

T
j

j
TC

T
i

i
tttt

rt ZPPSSSSX
ji

++++++= ∑∑
==

)(
5

1

)(
23

1

)(
33.46

)(
04.32

)(
20.27

)(
29.4 )( ωωω  (15) 

Xt is the observed time series; Zt is the time series free of outliers; and rω =-0.759 represents the 

permanent change in the mean level after the irrigation event, which characterizes the effectiveness of 

the irrigation event on the soil salinity. In this study, the flow rate and cut-off time for the four applied 

irrigations were almost equal; therefore an average coefficient for 𝜔𝜔𝑟𝑟 was used for estimating the 

irrigation event's impact. In the )( )(
33.46

)(
04.32

)(
20.27

)(
29.4

tttt SSSS +++ part of the equation, the step indicator is 

represented for four irrigation times rT (days 4.29, 27.20, 32.04, and 46.33). 
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Table 6.1 Outlier detection and parameter estimation for time series of soil salinity at 0.10 m 

Observation time (hour) type ω  

103 AO  0.185 7.97 

106 TC  0.125 4.55 

153 AO  0.098 4.56 

494 TC -0.170 6.04 

653 AO  0.300 12.20 

654 AO -0.111 5.146 

770 TC -0.231 7.88 

919 TC -0.111 4.18 

962 TC -0.110 4.18 

1001 TC -0.118 4.32 

1029 TC -0.109 4.16 

1089 TC  0.114 4.216 

1112 TC -0.286 9.32 

1113 TC -0.146 5.21 

1262 TC -0.207 7.22 

 

The )( )(
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)(
04.32

)(
20.27

)(
29.4

tttt
r SSSS +++ω  part of the equation of a time series for soil salinity ( tX ) 

shows that, at the time of irrigation, the evolution of soil salinity will decrease, and the coefficient rω will 

determine the degree to which it decreases. Moreover, the effects of the 15 detected outliers are 

represented by the )(
5

1
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+ ωω part of the equation. 

Applying a Box-Jenkins method to the time series of the soil salinity (σp)
tt

Z from Eq. 15, we 

determine the ARIMA (3, 1, 0) (0, 1, 1)24. In the usual notation, the model is written as: 

t24t aBΘZBBBBB )1()1()1()1( 24243
3

2
21 +=−−−−− φφφ   (16) 

This model (16) is free of outliers and is invertible, with non-significant ACF and PACF of residuals 

at all lags. Table 2 provides the comparison of statistical parameters of the two models (14) and (16). 

 After modelling σp at a depth of 0.10 m, our next step is to model the θ and t time series at a 

depth of 0.10 m as well as the average soil salinity in the top0.60 m of soil. Table 3 shows the ARIMA 

models for θ and t and the average soil salinity in top upper 0.60 m of soil; these resulted from following 

the same steps applied to model σp at a depth of 0.10 m. The effects of the irrigation events on the time 

series of θ and t at 0.10 m were 0.0843 and 0.288, respectively. 

After having identified all the models and estimating the parameters, diagnostic checks are then 

applied to the fitted model to verify whether the model is adequate.  
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6.4.1. Transfer function method 

Looking at the cross-correlation between the pre-whitened, primary time series (soil water and 

temperature at a depth of 0.10 m) and target soil salinity (0.10 m depth and the average), we see an effect 

from the primary series on the target series, but not vice-versa. Figure 3 indicates that the current values 

of soil water, content and temperature at 0.10 m have a significant effect on the current soil salinity values 

at a depth of 0.10 m and on the average soil salinity in the top 0.60 m of soil. 

Models were identified for predicting soil salinity based on soil water content and soil 

temperature at a depth of 0.10 m (Table 4). The coefficients of tX in Table 4's equations indicate that 

the current values of soil water content and soil temperature at 0.10 m have effects, respectively, of -7.82 

and -0.050 on the current values of soil salinity at a depth of 0.10 m. Furthermore, the current values of 

soil water content and soil temperature at 0.10 m depth have effects, respectively, of -1.68 and -0.004 on 

the current values of the average soil salinity in the soil's top 0.60 m. 

 

  
Figure 6.3 Cross-correlation function for soil water content and soil temperature hourly time series at 0.10 m  and 

soil salinity at 0.10 m depth. Cross-correlation function for soil water content and soil temperature 0.10 m and soil 

salinity in the top 0.60 m of soil profile, respectively. Dashed lines indicate 95% confident limits. 
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Table 6.2 Comparison of the two models for soil salinity at 0.10 m depth in terms of statistical parameters (one based on observed data Xt and the second based on outlier-

free data Zt) 

Model 
1φ  2φ  3φ  24θ  

2σ  

Model based on observed data tX  (10) -0.0114 -0.0684   1.38 ×10-4 

Model based on Outlier free data tZ  (12) -0.0467 -0.0108 0.0273 -0.923 7.43 × 10-5 

 

 

 

Table 6.3 Models of soil water content (θ), (t) at 0.10 m and soil salinity in the upper 0.60 m of soil 

Model 
1φ  2φ  3φ  4φ  5φ  Θ1 24θ  

2σ  

Soil water -0.03 -0.019      1.06 × 10-5 

Soil temperature 1.55 -0.641 0.027   -0.87 -0.88 1.83 × 10-5 

Soil salinity in the upper 0.60 m of soil 0.07 0.158 0.11 0.05 -0. 04 -0.54  1.56 × 10-5 



 

Table 6.4 Time series transfer function model for soil salinity at 0.10 m depth and in the top of 0.60 m of the soil 

profile  

Soil water content X1,t, soil temperature X2,t at 0.10 m and  soil salinity Yt at 0.10 m: 
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Soil water content X1,t, soil temperature X2,t at 0.10 m and  average soil salinity Yt  
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6.4.2. Forecasting 

Figure 4 shows the calibration of the model as well as its predictions of average soil salinity and 

soil salinity at 0.10 m depth. The first 659 observations of each time series were used to define the model. 

The output of the calibrated model corresponded very well to the values before 659 for each depth. The 

predicted and observed values after the 659 observations agreed reasonably. There were sometimes large 

relative differences between the values that were predicted and those that were observed. However, the 

absolute difference between prediction and measurement never exceeded 0.27 dS m-1. 

Figure 5 provides an example of using the transfer function model presented in Table IV to predict 

soil salinity over two days at a depth of 0.10 m and in the top 0.60 m of soil. Soil salinity was observed at 

55 days, and the prediction is for the 56th and 57th days (48h). It includes the effect of the next irrigation 

if the farmer chooses to irrigate after 36h. The figure shows how the irrigation event at day 57.5 affects 

soil salinity evolution, this effect is determined by the rω from the equation (15). 

However, in this study, the 48-hour predicted value decreases, while the lead-time increases but 

still remains within the confidence interval (95%). 
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Figure 6.4 Measured and predicted soil salinity versus time at 0.10 m depth and in the top 0.60 m of soil profile. 

Prediction was based on the identified transfer function models for each one. The curve before the vertical dashed 

line refers to model calibration and after the vertical dashed line to model prediction. 
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Figure 6.5 Prediction models for soil salinity at 0.10 m depth(A) and average soil salinity in the top 0.60 m of soil 

profile (B). Prediction was based on the indentified transfer function. We have observed data for 55 days, the model 

predicts the 56th and 57th days taking into account the effect of next irrigation if the farmer choose to irrigate on 

57.5th day (* is the irrigation time at 57.5th day). 
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6.5. Conclusion 

Modelling and predicting salinity in soils under variable interval irrigation are not valid if changes 

in irrigation frequency are not taken into account. We studied the time series under such a regime, 

specifically for soil salinity (σp), soil water content (θ) and soil temperature (t) –all of them at a depth of 

0.10 m in a lettuce field of silty loam soil. Each time series was transformed into a stationary series; then, 

we constructed ARIMA models for studying each time series and for making predictions. The ARIMA 

model with an underlying normality assumption could not properly predict soil salinity. Therefore, the 

model was completed by means of intervention analysis (with the interventions being irrigation events) 

as well as outlier detection (in order to identify unusual observations). We then used transfer function 

models (multiple-input/one-output) to predict σp at our depths of interest (0.10 m and the average σp in 

the upper 0.60 m of soil); this was done using the measured water θ and tat 0.10 m depth and produced 

rational predictions. The subsequent irrigation and decrease in σp after that irrigation event were correctly 

estimated. Since the irrigation doses for the four irrigation events in this study were almost the same, we 

used an average mean level ( rω = 0.087) to show an irrigation event's effectiveness on the soil salinity 

time series. In cases involving variable doses of irrigation, our suggestion is to study the effect of each 

irrigation event and to then include each effect separately in the model. Moreover, the time series analysis 

in our study applies mathematical models to one soil profile at different depths in order to find certain 

relationships among the observed variables (σp, θ and t). However, in order to validate the model we used 

for the whole area of study, we recommend using additional measurements of σp, θ and t from different 

soil profiles to take into account the spatial variability of the study area. Lastly, future studies should look 

toward further consideration of how these sensors and their data can be positioned in a way that makes 

them more accessible for practical use. At present, capacitance sensors of this type are available on the 

commercial market; however they are limited almost exclusively to use in scientific experiments. This can 

be attributed to the process involved, whereby the technician is required to travel to the field with a 

computer in order to transfer the sensor data from the datalogger to an Excel spreadsheet. From this, 

mathematics is then applied for studying the relationship between the variables. As an alternative, an 

electronic unit could be designed to be included in the sensor datalogger, which may result from 

telecommunication technicians incorporating our stochastic models. This would allow for the provision of 

a visual indication of the electrical conductivity of the soil solution. Our study finds that, with the proper 

programming, this low-cost sensor could be expanded in a way that provides further beneficial 

capabilities, such as allowing a normal farmer the opportunity to ascertain salt levels in the root zone. 
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Notation 

σb bulk electrical conductivity (dS m-1) )(Bpφ  regular autoregressive factor 

T soil temperature )(Bqθ  regular moving average factor 

Θ soil water content )( s
P BΦ  seasonal autoregressive factor 

σp electrical conductivity of the pore 
water (dS m-1) 

)( s
Q BΘ  seasonal moving average factor 

ARIMA seasonal autoregressive integrated 
moving average 

ACF autocorrelation function 

εp real portion of the soil pore water's 
dielectric permittivity (unitless) 

PACF partial autocorrelation function 

εb real portion of the bulk soil's dielectric 
permittivity (unitless) 

Z test statistic 

εσb=0 Offset of σp ~ εb relationship M mean of the value 

P regular autoregressive factor V value being tested 

Q Regular moving average order SD standard deviation of the values 

P seasonal autoregressive order AO additive outliers 

Q seasonal moving average order TC temporary changes 

D orders of differencing for the regular 
part 

LS level shift 

D orders of differencing for the seasonal 
part rω   permanent change in the mean level 

following the irrigation event 

S sub-index represents the seasonal 
period 

)(LS
Tr

S  step indicator at the time of irrigation Tr 

AR part of the autoregressive process 
iω  transitory change in the mean level following 

any unusual observations 

jφ  denotes the jth AR parameter )(TC
Ti

P  pulse indicators taken at unusual 
observation times Ti 

ta  Gaussian white-noise error )( AO
Tj

P  pulse indicators taken at unusual 
observation times Tj 

B backshift operator in which 

ptt
p XXB −= . 

δ  dampening factor with the default value of 
0.7 

MA moving average process STL seasonal-trend decomposition  

qθ   qth MA parameter )(/)( BCBA  system's designated transfer function 

qθ   qth MA parameter Zt  time series free of outliers 
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ABSTRACT  

The Hilhorst (2000) model was able to convert σb to pore water electrical conductivity (σp) under 

laboratory conditions by using the linear relationship between the soil dielectric constant (εb) and bulk 

electrical conductivity (σb). In the present study, applying the linear relationship εb- σb to data obtained 

from field capacitance sensors resulted in strong positive autocorrelations between the residuals of that 

regression. We were able to derive an accurate offset of the relationship εb-σb and to estimate the 

evolution of σp over time by including a stochastic component to the linear model, rearranging it to a 

Time-varying Dynamic Linear Model (DLM), and using Kalman filtering and smoothing. The offset proved 

to vary for each depth in the same soil profile. A reason for this might be the changes in soil temperature 

along the soil profile. 

KEYWORDS: capacitance sensor; soil dielectric; time-varying Linear Dynamic Model (LDM); Kalman 

filtering; offset. Pore water EC 

7.1. Introduction 

Salinization is a significant cause of land degradation and nutrient deficiency. Munns (2002) 

showed that if excessive amounts of salt enter a plant, salt will eventually rise to toxic levels in the older 

transpiring leaves, causing premature senescence, and reduce the photosynthetic leaf area of the plant 

to a level that cannot sustain growth. Thiruchelvam and Pathmarajah (1999), who studied the salinity 

problems in Sri Lanka’s Mahaweli River System “H” Irrigation Project, showed that salinity can lead to the 

following agricultural problems if left uncorrected: a) reduced crop intensity; b) decreased profitability 

and; c) land scarcity. Salinity is most commonly measured with an electrical conductivity (EC) meter that 

https://doi.org/10.1080/02626667.2014.932053
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estimates the concentration of soluble salts in soil slurry or a water solution by how well an electrical 

current passes through the medium. The ability of a solution to conduct electricity increases with a higher 

salt content; therefore, a high EC value corresponds to high amounts of soluble salts, and vice versa.  

Determining the electrical conductivity of soil pore water (σp) requires extraction of the pore 

water from the soil by suction or measurement of the saturated paste conductivity, two conventional 

methods that are labour- intensive. Still, it is not certain that all ions are collected in the extracted sample 

(Hilhorst, 2000). Many other studies on soil salinity assessment concluded that it is important to assess 

soil salinity temporally and spatially in order to correctly evaluate its evolution and reasonably predict its 

values (Hajrasuliha et al. 1980, Mahmut et al. 2003, Rhoades et al. 1997, Shouse et al. 2010, Xiaoming et 

al. 2012). New devices have been developed, such as time-domain reflectometry (TDR) and frequency-

domain reflectometry (FDR), which are able to measure bulk electrical conductivity (σb) temporally and 

spatially before converting σb to σp by using methods, models and estimates such as those described by 

Rhoades et al. (1990),  Mualem and Friedman (1991) and Hilhorst (2000). The weakness of these methods 

is that they are applied in laboratory conditions with homogenous soil samples.  

A soil water system’s bulk electrical conductivity (σb) is ascertained by measuring three 

conductance pathways in the system. They are: (1) solid–liquid interphase; (2) solid phase; and (3) liquid 

phase. In agricultural application, it is advantageous to know the electrical conductivity of the liquid phase 

(σp) contained in the soil pores, which is a good indicator of the solute concentration in the soil. The σb of 

the soil depends on both the σp and water content (θ) (Persson, 2002). Thus, the σp can only be predicted 

if θ is constant, or if the relationship between σp, σb, and θ is determined. Several different models of the 

σp-σb-θ relationship have been developed (Rhoades et al. 1976, Mualem and Friedman 1991, Malicki and 

Walczak 1999). Malicki et al. (1994) discovered a high linear correlation between the dielectric constant 

(εb) and σb values by using time domain reflectometry for most soil types. Hilhorst (2000) took advantage 

of this relationship and was able to convert σb to σp by using a theoretical model describing a linear 

relationship between σb and εb. 

Due to soil profile heterogeneity, some experimenters have found it more desirable to use 

stochastic models rather than constant values in describing the future evolution of soil water and soil 

solutes, where the parameters of stochastic transport models are treated as random variables with 

discrete values assigned according to a given probability distribution (Beven and Germann 1982, White 

1985, Van Genuchten 1991). A stochastic process amounts to a sequence of random variables known as 

a time series. The time series method has been applied in several agricultural and hydrologic studies. 

During the last decade, there has been a significant increase in stochastic models for agronomic 

applications. Zou et al. (2010) worked on silt loam soil profile data, collected monthly from 2001 to 2006, 

to compare two mathematical models: the back propagation neural network (BPNN) model and the 
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autoregressive integrated moving average (ARIMA) model. The objective was to predict both the average 

water content in the top 1-meter profile by measuring water content at a 0.60 m depth, and also by 

measuring the average salt content at various depths of the soil profile (0.10, 0.20 and 0.45 m). Hoeben 

and Troch (2000) applied the Kalman filter to predict the soil moisture profile by using satellite data in a 

theoretical case. Their use of a Kalman filter improved the prediction of soil moisture profiles from surface 

measurements. Wendroth et al. (1999) described the temporal process of soil water content in different 

soil layers of a sandy loam soil using a simple transport equation in combination with the state-space 

theorem. The so-called Kalman filter (Kalman 1960, Katul et al. 1993, Parlange et al. 1993, Wendroth et 

al. 1993, Nielsen et al. 1994) is a stochastic term that weighs observations and model predictions via the 

Kalman gain (Gelb 1974) and it provides the variance-time behavior of predictions. 

 In this study, we will utilize capacitance soil sensors 5TE (Decagon Devices, Inc., Pullman, WA) to 

measure σb in field conditions. These types of sensors are commercially available and they use the Hilhorst 

(2000) model to convert σb to σp. Subsequently, we will show the weakness of applying the deterministic 

Hilhorst (2000) model to heterogeneous soil conditions, and then we will develop that model into a 

stochastic model capable of precisely estimating the σp in field conditions. In other words, the Hilhorst 

model used a deterministic linear relationship between σb and εb to estimate σp, while we will apply that 

relationship to field conditions by converting it to a stochastic model for precisely estimating σp and taking 

into account soil heterogeneity. 

7.2. Materials and methods 

7.2.1. The Linear σp-θ-σb Model: 

According to Hilhorst (2000), σp can be determined from the equation  

0=−
=

bb

bp
p

σεε
σε

σ
 

where σp is the pore water electrical conductivity (dS m-1); εp is the real portion of the dielectric 

permittivity of the soil pore water (unitless); σb is the bulk electrical conductivity (dS m-1); εb is the real 

portion of the dielectric permittivity of the bulk soil (unitless); εσb=0 is the real portion of the dielectric 

permittivity of the soil when bulk electrical conductivity is 0 (unitless). However, εσb=0 appears as an offset 

of the linear relationship between εb and σb. Hilhorst (2000) found that εσb=0 depended on the soil type 

and varied between 1.9 and 7.6 in the soils used in his study. So he recommended 4.1 as a generic offset. 

Many studies applied the Hilhorst (2000) model in their experiments to convert σb into σp. Persson 

(2002) applied it in time domain reflectometry (TDR) measurements for laboratory experiments using soil 

(1) 
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columns with different θ and σp. By rearranging Eq. 1, the slope can be calculated theoretically                                

0)/( =+=
bbppb σεσσεε , i.e., slope = εp / σp . The value of the offset εσb=0 was obtained as a fitting 

parameter when the slope was fixed, assuming that εp equals the dielectric constant of free water at the 

specific temperature. He concluded his work by using different offsets (within the range of 3.67 to 6.38) 

according to the soil type. Moreover, the manufactured capacitance soil moisture sensors 5TE (Decagon 

Devices, Inc., Pullman, WA) also use the Hilhorst (2000) model to convert σb into σp. They recommend 

using offset εσb=0 = 6 for all agricultural soils. Arquedas-Rodriguez (2009) used 5TE sensors in his study and 

found that offset εσb=0 = 6 did not represent a very good the linear relationship between εb and σb. The 

WET sensor (Delta-T Device Ltd, Cambridge, UK) is a frequency domain dielectric sensor and designed for 

use with the standard offset εσb=0 = 4.1 of the Hilhorst (2000) model. Bouksila et al. (2008) worked with a 

saline gypsiferous soil and found that the accuracy of the WET sensor in predicting σp was very poor when 

using the standard value of εσb=0 =4.1. Despite the importance of computing σp from σb, it still has not 

been worked out very well (G. Campbell, Decagon Devices, personal communication, 2010). Moreover, 

we did not find studies used sensor techniques to estimate σp from measuring σb by using stochastic 

models in field conditions. 

7.2.2. Field observations 

Hourly field observations of bulk electrical conductivity (σb), soil dielectric (εb) and soil water 

dielectric (εp), as well as distributions of soil temperature (t) and soil water content (θ) were carried out 

for 55 days during the vegetative stage of lettuce (Lactuca sativa), starting on 23 April 2010 in the 

Agricultural Park of Baix Llobregat, 5 km south of Barcelona, Spain. A typical Mediterranean climate 

prevails in the region. Average annual rainfall is 629 mm. Evaporation exceeds rainfall throughout the year 

except during the rainy months. The dominant soil texture is silty loam. The field was irrigated by a furrow 

system in an experimental area of 275 m2 (55 m x 5 m). Four irrigation events were applied, with each 

irrigation dose at nearly 26 L m-2, and an application time ranging between 20-26 minutes. The site had 

a fairly uniform, bulk density ranging between 1.4 and 1.5 g cm-3 to a depth of 0.75 m, and the water 

table was 4 m below the soil surface. In the test furrow, we used capacitance soil moisture sensors (5TE, 

Decagon Devices, Inc., Pullman, WA) to measure the bulk electrical conductivity (σb), soil dielectric (εb) 

and soil water dielectric (εp) as well as the distributions of soil temperature (t) and soil water content (θ) 

in the soil profile. The installation depths were at 0.10, 0.20, 0.35, 0.50 and 0.60 m from the soil surface. 

The study focused on the root zone.  

A total of 1318 observations were made of the bulk electrical conductivity (σb), soil water dielectric 

(εp) and soil dielectric (εb) for each depth, and these were used to estimate the offset εσb=0 and evolution 
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of pore water EC (σp) at its corresponding depth, of which 659 observations were used to validate its 

forecast. 

Bulk electrical conductivity (σb) responded at the interested depths –i.e., within the root zone of 

the test site, in the top of 0.60 m soil profile-- during the first hour of the irrigation event. Therefore, 

hourly capacitance sensor outputs (σb, soil water dielectric (εp) and soil dielectric (εb)) were measured in 

order to achieve the study objective. The observational experiment in this study is similar to the work 

done by Wu et al. (1997). They installed TDR sensors at different depths within the root zone and 

measured soil water content hourly for 55 days to predict soil water content at the interested depth by 

measuring the shallower depths. In our observational experiment, we use time series analysis of 

capacitance sensor data (σb, t, εp, εb, and θ) to apply mathematical models that find a certain relationship 

between σb and εb for estimating σp and offsetting εσb=0 in field conditions. Because meteorological and 

precipitation data implicitly affect the values of sensor observations, we did not include them in our 

model. 

7.2.3. Kalman Filter 

The Kalman filter is a set of mathematical equations that provide an efficient computational 

(recursive) means for estimating the state of a process in a way that minimizes the mean of the squared 

error. The filter is very powerful in several aspects: it supports estimations of past, present, and even 

future states; and it can do so even when the precise nature of the modeled system is unknown. The 

purpose of the Kalman filter is to provide an estimate of the unobservable state vector based on model 

information and measurement information, balancing out the errors of both. It is a sequential algorithm 

for minimising the state error variance. 

In this study, we will use capacitance soil sensor data (σb, εp, εb) and a Kalman filter statistical 

estimation technique that we apply on the Hilhorst (2000) model to estimate its unknown variables (σp, 

and εσb=0). A Kalman filter soil state model is used to merge available soil physics data (σp, and εσb=0) with 

data from capacitance sensors (εb). In order to obtain suitable σp and εσb=0 for the study area, the model 

makes continuous estimates of σp, and εσb=0, and it weights εb observations according to input and model-

propagated error covariances. 

The state-space model has three parts: unobservable data (σp and εσb=0), observations (εb), and a 

Kalman filter that updates the unobservable data by assimilating observations into the dynamic soil state 

estimate. In this study, when observations of εb are available (observed by capacitance sensor), the 

Kalman filter uses the propagated state estimate (σp and εσb=0) and a record of the propagation steps to 

adjust the state in a way that is proportional to the difference between the observed and the predicted 

value. The ratio of proportionality (the Kalman gain) is calculated from a propagated model state error 
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covariance matrix (for σp and εσb=0 and an estimate of εb measurement error). Together, these models 

produce continuous estimates of σp and εσb=0 states, as well as their error covariances. 

7.2.4. Time-varying dynamic linear model 

Being linear and Gaussian, the Dynamic Linear Model (DLM) is presented as a special case of a 

general state space model. For dynamic linear models, estimation and forecasting can be recursively 

obtained by the well-known Kalman filter. Estimating unknown parameters in a DLM requires numerical 

techniques, but the Kalman filter can be used in this case as a building block for evaluating the likelihood 

function or for simulating the unobservable states. 

The R (R Development Core Team 2010) package dlm (Petris 2010) provides an integrated 

environment for Bayesian inference using DLM, and the package includes functions for Kalman filtering 

and smoothing, as well as for maximum likelihood estimation.  

7.2.5. Model identification 

A time-varying DLM can be modelled as 

 

 

 

 

Here 𝑦𝑦𝑖𝑖 is an m-dimensional vector, representing the observation at time t; in our study it 

represents εb observations. 𝑥𝑥𝑖𝑖 is an m.m-dimensional matrix of covariates. While 𝛼𝛼𝑖𝑖 and 𝛽𝛽𝑖𝑖 are 

unobservable m-dimensional vectors presenting the state of the system at time t, in our study they 

represent εσb=0 and σp, respectively. 𝑣𝑣𝑖𝑖 , 𝑤𝑤𝛼𝛼,𝑖𝑖 and 𝑤𝑤𝛽𝛽,𝑖𝑖 are the Gaussian white-noise errors. The only 

parameters of the model are the observations and evolution variances 𝑉𝑉𝑖𝑖,𝑤𝑤𝛼𝛼,𝑖𝑖 and 𝑤𝑤𝛽𝛽,𝑖𝑖. These are usually 

estimated from available data using maximum likelihood or Bayesian techniques. 

7.2.6. Seasonality 

When the model has a seasonal component, it is usual to include a DLM to describe this 

component. In the state-space expression, the seasonal component may have a stochastic error that 

allows changes for the seasonal pattern over time.  

So Eq. 2 may have a seasonal component (𝒔𝒔𝒕𝒕) and may be written as: 

𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖 + 𝑆𝑆𝑖𝑖+𝑣𝑣𝑖𝑖                                                (4) 

𝑦𝑦𝑖𝑖 = 𝛼𝛼𝑖𝑖 + 𝑥𝑥𝑖𝑖𝛽𝛽𝑖𝑖 + 𝑣𝑣𝑖𝑖 Observation equation 𝑣𝑣𝑖𝑖~𝒩𝒩(0,𝑉𝑉𝑖𝑖)            (2) 

 

 

 
𝛼𝛼𝑖𝑖 = 𝛼𝛼𝑖𝑖−1 + 𝑤𝑤𝛼𝛼,𝑖𝑖 
𝛽𝛽𝑖𝑖 = 𝛽𝛽𝑖𝑖−1 + 𝑤𝑤𝛽𝛽,𝑖𝑖 
 

Unobservable State equation  
𝑤𝑤𝒹𝒹,𝑖𝑖~𝒩𝒩�0,𝑤𝑤𝛼𝛼,𝑖𝑖�     (3) 
𝑤𝑤𝛽𝛽,𝑖𝑖~𝒩𝒩(0,𝑤𝑤𝛽𝛽,𝑖𝑖) 
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Where yt represents the dielectric observation (εb);  αt and βt   represent the offset (εσb=0) and 

the pore water (σp), respectively; and St  represents the seasonal component.  

7.3. Results and discussion 

7.3.1. Soil characterization 

Table 1 shows the soil characterization of the study field beneath the furrow and ridge at various 

depths. It shows that the soil particles for clay, silt and sand have few variations in the root zone. The 

organic matter in the study field is representative of the area. 

Table 7.1 Soil characterization. 

Depth 
(m) 

Clay 
(<0.002 mm ) 
% 

Silt 
(0.05–0.002 mm) 
% 

Sand 
(2–0.05 mm ) 
% 

0.10 16.60 54.89 28.51 
0.35 13.12 55.25 31.63 
0.65 22.30 61.16 16.54 

 

Figure 1 and figure 2 show the importance of hourly bulk electrical conductivity measurements. 

Figure 1 shows the soil water content at five depths over time (measured by capacitance sensor). 

Fluctuations in soil water content at deeper layers correspond to changing water content in the upper 

layers; this fluctuation diminishes as the layer becomes deeper. Irrigation events had significant effects 

on soil water content fluctuations when applied at 4.29, 27.20, 32.04 and 46.33 days, with precipitation 

occurring at 9.33, 20.50 and 52.54 days. Figure 2 shows the significant effect of soil water on bulk electrical 

conductivity at the time of irrigation, where the depths responded to the first hour of the irrigation event. 

7.3.1. Deterministic model  

We derive the offset using the method of Persson (2002), in which the Hilhorst (2000) model is 

rearranged as follows: 

                                       (5) 

 

 After using hourly field measurements of εb and σb (1318 observation of each in Field 1), we can 

see in Table 2 the coefficients of the linear relationship between εb -σb. The offset of this relationship is 

4.97 and the slope is 1/σp= 0.33, so σp=5 dSm-1 is the average for all observations. After applying the 

Durbin–Watson test to see if there is an autocorrelation between the residuals of that regression, we can 

see in Table 3 that there is an extremely strong and positive autocorrelation, which indicates that the 

0)/( =+=
bbppb σεσσεε
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result of that regression is not valid. Moreover, the linear model does not take into account the evolution 

of the unobservable variable over time. For this reason, it is reasonable to think that σp  evolves with a 

stochastic component.  

 

 

Figure 7.1 Measured soil volumetric water content, rainfall and irrigation at various depths 
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Figure 7.2 Bulk electrical conductivity (σb) at four depths versus time. * indicates the irrigation time.  

 

Table 7.2 Estimated parameters from the linear regression  εb - σb , 
 Estimate Std. Error t Pr(>|t|)     
εσb=0 4.978923 0.088208 56.45 <2 e-16 *** 
1/ σp 0.354256 0.002546 139.15 <2 e-16 *** 
Significance: * P < 0.05, ** P < 0.01, *** P < 0.001. 

 

Table 7.3  Durbin–Watson test for linear regression εb - σb 

lag Autocorrelation D-W Statistic p-value 
1 0.9524539 0.09079999 0 
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The known parameters for the Hilhorst (2000) model are: εb, σb and εp. They are simultaneously 

and hourly measured by capacitance sensors, while σb is obtained directly from the data logger. For εb 

and εp, we applied the equations provided by the manufacturer (Decagon Devices 2008) as follows: 

50
raw

b
εε =                                                                (6) 

)20(37.03.80 −−= soilp Tε                               (7) 

where εraw represents the raw data output values from the datalogger (raw soil water content 

counts), and Tsoil is the soil temperature measured by the sensor directly. 

 Figure 3 shows the evolution of the soil dielectric constant (εb), the water dielectric constant εp 

and the soil bulk electrical conductivity (σb ) at 0.10 m depth. It also shows that the irrigation events have 

a significant effect on σb and εb.  

 
Figure 7.3 Known variables for the Hilhorst model (σb, εb and εp); IR1, IR2, IR3 and IR4 are the times of the irrigation 

events (0.10m depth). 

7.3.2. Time-varying Linear Dynamic Model (LDM) 

The deterministic equation 5 can be modified into the time-varying DLM for observation and 

unobservable (state) models. In this case, the observation data is the soil dielectric constant εb observed 

by the capacitance sensor, while the unobservable data are offset (εσb=0) and pore water electrical 

conductivity (σp). Equation 5 can be modified to the time-varying DLM as follows: 
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• The observation equation can be obtained by modifying the Hilhorst (2000) model (written in 

equation 5) into a stochastic equation, in accordance with equation 4. This is achieved by adding the 

seasonal component for each 24 h (st) and the Gaussian white-noise errors (vt): 

(𝜺𝜺𝒃𝒃)𝒕𝒕 = � 0=bσε �
𝒕𝒕

+ � bp σε * �
𝒕𝒕
� 𝟏𝟏

pσ
�

𝒕𝒕

+ 𝒔𝒔𝒕𝒕 + 𝒗𝒗𝒕𝒕          𝑣𝑣𝑖𝑖~𝒩𝒩(0,𝜎𝜎𝑣𝑣2)  (8) 

where εb ,εp and σb are observed by capacitance sensors, as mentioned above.  

• Unobservable data in Equation 8 are εσb=0, and the slope 1/σp can be converted to the unobservable 

state equation of the time-varying DLM according to equation 3. The unobservable state equation can 

be arranged as follows: 

⎩
⎪
⎨

⎪
⎧( 0=bσε )𝒕𝒕 = ( 0=bσε )𝒕𝒕−𝟏𝟏                                                              

 ( 𝟏𝟏

pσ
)𝒕𝒕 = ( 𝟏𝟏

pσ
)𝒕𝒕−𝟏𝟏 + 𝑤𝑤𝑖𝑖                         𝑤𝑤𝑖𝑖~𝒩𝒩(0, (𝜎𝜎𝑤𝑤)𝑖𝑖2)         

𝒔𝒔𝒕𝒕 + 𝒔𝒔𝒕𝒕−𝟏𝟏 + 𝒔𝒔𝒕𝒕−𝟐𝟐 … … + 𝒔𝒔𝒕𝒕−𝟐𝟐𝟐𝟐 = 𝟎𝟎                                      

                            (9) 

Here we consider εσb=0 as a constant and its present value is related only to its past value. The 

slope 1/σp changes over time, and its present value is related to its past value plus the Gaussian white-

noise errors (𝑤𝑤𝑖𝑖). st is the seasonal component (every 24 h), which changes over time. 

 In a study by Aljoumani et al. (2012), we used the same experimental data to show that irrigation 

events have a significant effect on the behaviour of soil water content and should be captured as outliers 

to improve the fitted model. Figure 1 shows that irrigation events also have a significant effect on the 

behaviour of εb. To capture the time of irrigation event as an outlier, we increase the state variance (𝜎𝜎𝑤𝑤)𝑖𝑖2  

by a constant factor (k>1) at hours 103, 654, 770, and 1112 h, which are the times of irrigation. This change 

in the model gives better estimates of how irrigation time affects the state values. Once we estimate the 

parameters, we apply the Kalman filter to get the offset εσb=0 and the slope  𝟏𝟏

pσ
 .  

For the Kalman filter discussed in this paper, the state equation (equation 3 and its application in 

this study are included in equation 9) consists of two terms: (1) the constant offset (εσb=0) of the Hilhorst 

(2000) model, with its present value related to its past value; and (2) the pore water EC (σp), which is a 

stochastic difference equation that incorporates a random component for noise in the system. The 

measurement equations (equations 2, 4 and their application in this study are included in equation 8) are 

defined so that they can handle indirect measurements, gaps in the sequence of measurements, and 

measurement errors. In this study, the measurements correspond to soil dielectric (εb), bulk electrical 

conductivity (σb), water dielectric (εp) and a random component for noise in the system. The Kalman filter 

operates recursively to predict forward the state of the system one step at a time, based on the previously 
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predicted state and the next measurement. Its predictions are optimal in the sense that they have 

minimum variance among all unbiased predictors. In this respect, the filter is similar to kriging. Moreover, 

in this study, we add a seasonal component (every 24 h) to the stochastic equations for state and 

measurement. 

The equations can also be applied in reverse order to estimate the state variable at all time points 

from a complete series of measurements, including past, present and future measurements. We applied 

this in our study to estimate the state variables (εσb=0 and σp) at all time points from a complete series of 

the soil dielectric constant (εb). This process is known as smoothing. 

7.3.3. DLM validation 

After using equation 8, we can see in Figure 4 the observed and predicted time series of the soil 

dielectric constant εb at 0.10 m depth. The predicted and observed values agreed reasonably after 1318 

observations.  

 
Figure 7.4 Observed and predicted data of soil dielectric constant at 0.10 m depth (furrow, lettuce). 

 

The performance of all models for each depth was tested by two tools, by using the mean absolute 

prediction error (MAPE) and by estimating the coefficient of determination R2 between the predicted 

versus the observed values. The mean absolute prediction error (MAPE) of the model for the time series 

never exceeded 0.02. The predicted values, for both the fit and forecast periods, were compared to the 

observed ones and the estimated adjusted R2 varied between 0.96 and 0.99 (Fig. 5).  
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Figure 7.5 Measured versus Predicted soil dielectric constant 

Since prediction of the soil dielectric constant εb is valid, then the estimation of electrical 

conductivity is also valid for the soil pore water σp; and offset εσb=0 (equation 9) is also valid because it is 

used in predicting the dielectric constant εb.  Figure 6 shows the electrical conductivity values of the soil 

pore water σp, and offset εσb=0 after applying the time-varying DLM to the data at 0.10 m depth. At this 

depth, the offset is 3.8 and σp varies over time. The figure shows a clear decrease in σp at the time of 

irrigation, which is expected since irrigation leaches the salts downward.  

7.3.1. Field estimation of εσb=0 and σp 

By applying the time-varying DLM to the observed data at the various depths (field conditions), 

the values of εσb=0 were within the range of 3.8 to 8.5 needed to estimate the evolution of σp over time at 

each depth. Figure 7 shows the values of σp and εσb=0 for 0.20 m and 0.60 m depths, respectively. The 

following questions arise. Why do these differences exist between the offset values at different depths? 

Are these differences statistically significant? While investigating these questions, many studies found 

that calibration measurements of electromagnetic induction for predicting σb are affected by soil texture, 

water content, and soil temperature (McKenzie et al. 1989, Slavich and Petterson 1993). Yuanshi et al. 

(2003) showed that εb changes when soil compaction and temperature vary. 
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Figure 7.6 Estimation of the unobservable data (εσb=0  and σp) by applying the Time-varying DLM to data (lettuce, 

furrow, 0.10 m depth). 

In this study, the value of the εσb=0 was derived from the εb observations. Since temperature affects 

εb, we can consider the null hypothesis, which states: the soil temperature has no effect on the εσb=0 value. 

The alternative hypothesis states: the soil temperature has an effect on the εσb=0 values.  

For this analysis, we took 30 measurements of soil temperature three days after one irrigation 

event. All data were subjected to analysis of variance (ANOVA) procedures using R (R Development Core 

Team 2010). Table 4 shows that the univariate ANOVA produced statistically significant results. Since we 

estimate a constant offset at shallow depths, it is difficult to determine the effect of temperature on the 

offset value, due to the high variability of the temperature at those depths. But in the deeper depths, the 

soil temperature affected the offset values, and we can see that the offset increases when the 

temperature increases.  

Table 7.4  Effect of  the mean soil temperature (ºC) on the offset  at various depths. 

Mean soil 
temperature (ºC) 

Depth 

 0.10 m 0.20 m 0.35 m 0.50 m 0.60 m 
18.14 3.8     
16.25     5.8 
16.94    7.1  
18.04  7.8    
17.36   8.2   
significance * * * * * 

Significance: * P < 0.05, ** P < 0.01, *** P < 0.001. 
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Figure 7.7 Estimation of the unobservable data (εσb=0  and σp) by applying the Time-varying DLM to data  (lettuce, 

furrow, 0.20 m and 0.60 m depth). 

 

In their empirical σb-σp- 0=bσε  model, Malicki et al. (1994) and Malicki and Walczak (1999) included 

sand content in % by weight. Table 1 shows that there is different sand content (%) at each depth in Field 

1, but this study could not conclude that the sand content has an effect on the value of εσb=0  because 

more data would be required to statistically confirm this effect. Moreover, due to the fact that most soils 

are heterogeneous, this could indicate a need to adapt an offset for each depth. 

7.4. Conclusions 

Several models have been studied to assess σp from the εb -σb relationship (Rhoades et al. 1976, 

Mualem and Friedman1991, Malicki and Walczak 1999). Recently, Hilhorst (2000) presented a theoretical 
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model describing a linear relationship between σb and εb in moist soil. By using this linear relationship, 

Hilhorst (2000) found that σp can be measured in a wide range of soil types without soil-specific 

calibrations.  

In this present study, we applied the εb-σb linear relationship to the field condition data obtained 

from capacitance sensors and found an extremely strong positive autocorrelation between the residuals 

of that regression. By including a stochastic component to the linear model and rearranging it to a time-

varying Dynamic Linear Model (DLM), combined with Kalman filtering and smoothing, we were able to 

derive an accurate offset of the relationship εb-σb and to estimate the evolution of σp over time. The offset 

was shown to vary for each depth in the same soil profile.  A reason for this might be changes in soil 

temperature throughout the soil profile.  

In our work, we have shown the limitations of using one generic offset in the Hilhorst (2000) model 

when applying it to field conditions. We confirmed our hypothesis by taking just one soil profile in the 

same soil type. However, we recommend additional measurements in different soil types, taking into 

account the spatial variability to validate the model which we have developed. In our work, we studied in 

more detail the relationship of εb-σb to estimate σp. Moreover, to enhance our findings, it could be useful 

to compare the estimated σp (obtained by our stochastic form of the Hilhorst (2000) model) with other 

independent methods, such as measurements of soil solution EC (EC-sol) σp collected in ceramic suction 

cups (SCs) installed at each depth near the sensor. Finally, future studies should consider how to make 

these sensors and their data more accessible for practical use. Currently, these types of capacitance 

sensors are commercially available, but they are limited almost exclusively to scientific experiments 

because of the process involved: the technician must go to the field with a computer to transfer the sensor 

data from the datalogger to an Excel sheet, and then apply mathematics to study the relationship between 

the variables. Alternatively, our stochastic models could be programmed in collaboration with 

telecommunications technicians, and an electronic unit could be designed for inclusion in the sensor 

datalogger in order to provide a visual indication of the electrical conductivity of the soil solution. With a 

device such as this, these types of low-cost sensors could be expanded so that a normal farmer can 

ascertain salt levels in the root zone. 
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ABSTRACT 

Despite the importance of computing soil pore water electrical conductivity (σp) from soil bulk 

electrical conductivity (σb) in ecological and hydrological applications, it still has not been worked out very 

well. The Hilhorst concept offers a theoretical model describing a linear relationship between σb, and 

relative dielectric permittivity (εb) in moist soil. The reciprocal of pore water electrical conductivity (1/σp) 

appears as a slope of the Hilhorst model and the ordinary least squares (OLS) of this linear relationship 

yields in a single estimate (1/𝜎𝜎𝑝𝑝� ) of the regression parameter vector (σp) for the entire data. 

This study was carried out on a sandy soil under laboratory conditions. We used a time-varying 

dynamic linear model (DLM) and the Kalman filter (KF) to estimate the evolution of σp over time. Time 

series of soil relative dielectric permittivity (εb) and σb were measured using Time domain reflectometry 

(TDR) at different depths in a soil column to transform the deterministic Hilhorst model into a stochastic 

model and evaluate the linear relationship between εb and σb in order to capture deterministic changes 

to (1/σp).  

Applying the Hilhorst model, strong positive autocorrelations between the residuals could be 

found. By using and modifying them to DLM, the observed and modeled data of εb match much better 

and the estimated evolution of σp converged to its true value. Moreover, the offset of this linear relation 

varies for each soil depth. 

KEYWORDS: Electrical conductivity; Relative dielectric permittivity; Time Domain Reflectometry; Kalman 

Filter; Dynamic linear model 
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8.1. Introduction  

Salinization reduces crop productivity, decreases profitability and causes land scarcity [1]. Thus, it 

decreases the world's agricultural productivity and cause a global income loss by US$12 billion per year 

[2]. Extracting soil solution by suction or using saturated paste conductivity measurement are the 

common methods to determine the electrical conductivity of soil pore water (σp) as an indicator of the 

soil salinity, but they are labour- and cost intensive. There is no evidence that all ions are collected in the 

extract sample [3]. For soil salinity assessment it is important to look for practical methods allowing to 

evaluate the soil salinity state temporally and spatially. These methods help for correctly evaluating its 

evolution and for reasonably predicting its values [4-9]. In recent times, soil electromagnetic sensors are 

used to estimate bulk electrical conductivity (σb). Then, methods are required to transform σb to σp 

[3,6,10]. 

 

Figure 8.1 Three conductance pathways for the σb measurements, inspired byWyllie and Southwick [11] 

According to Wyllie and Southwick [11], three conductance pathways (Fig. 1) contribute to the σb 

of a soil: (i) solid phase pathway through soil particles that are continuously contacted, (ii) liquid phase 

pathway through dissolved ions in the soil water inhabiting the large pores, and (iii) liquid-solid interphase 

pathway through exchangeable cations like surfaces of clay minerals. Electrical conductivity (EC) in the 

liquid phase (σp) is used to estimate the soil salinity, high EC refers to high concentration of soluble salts, 

and vice versa. The σp could be estimated if the relationship between σp, σb and water content (θ) is fixed 

[12-14]. The discovered linear correlation between the soil relative dielectric permittivity (εb) and σb 

values [15] enabled Hilhorst [3] to convert σb to σp by using a theoretical model. According to Hilhorst, σp 

can be determined from the equation: 
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Where σp is the pore water electrical conductivity (dS/m); εp is the relative dielectric permittivity 

of the soil pore water (dimensionless), εb is the relative dielectric permittivity of the bulk soil 

(dimensionless, relative dielectric permittivity is dimensionless since it is a ratio of permittivity of medium 

to the permittivity of free space), σb is the bulk electrical conductivity (dS/m), εσb=0 is the relative dielectric 

permittivity of the soil when bulk electrical conductivity is 0 (dimensionless). However, εσb=0 appears as an 

offset of the linear relationship between εb and σb. Hilhorst model [3] concluded that his method could 

be validated for water contents between 0.10 and saturation and for the conductivity of the pore water 

up to 0.3 S m−1. He found that εσb=0 depends on soil type and varies between 1.9 and 7.6. He 

recommended using 4.1 as a generic offset. Many studies applied the deterministic Hilhorst model [3] in 

their experiments to convert σb into σp, but they did not use the same offset to achieve their study 

objective. For example, some studies concluded their work by using different offsets (within the range of 

3.67 to 6.38) according to the soil type [10]. The producer of capacitance soil moisture sensors 5TE [16] 

recommend to use an offset εσb=0 of 6, another study found that an offset εσb=0 = 6 does not present a 

good linear relationship between εb and σb [17]. The WET sensor (Delta-T Device Ltd, Cambridge, UK) is a 

frequency domain dielectric sensor and has been designed to estimate the σp based on Hilhorst model [3] 

and incorporate the standard offset εσb=0 = 4.1 of the model in the software of the device. By applying the 

Hilhorst model [3] in a saline gypsum influenced soil, the accuracy of the WET sensor in predicting σp was 

very poor when using the offset model = 4.1 [18]. Another study used WET sensor for experimental 

measurements in the laboratory using four different soils (sand, sandy loam, loam, and clay) [9], they 

found that the offset depends on both soil type and σp where it becomes larger for larger σp. Moreover, 

oscillator frequency and sensor circuitry could affect the estimation of εb and water content (𝜃𝜃) [19]. 

There are three elementary causes why deterministic system and control theories do not produce 

a totally sufficient means of performing this analysis and design:  

(i) many effects are left unknown since the objective of the model is to represent the main modes 

of system response,  

(ii) deterministic models are driven not by only our own control inputs, but also disturbances 

which we can neither control nor model deterministically, and 

(iii) sensors do not offer exact readings of chosen quantities, but present their own system 

dynamics and distortions as well and these devices are noise corrupted [20]. Despite the importance of 

computing σp from σb, it still has not been worked out very well (G. Campbell [16], personal 

communication) 
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Solute transport and water flow in the unsaturated zone are normally derived from the classical 

Richard and the convection-dispersion equations. Deterministic. deterministic explanations of these 

equations are important implements in research, due to soil heterogeneity at a variety of spatial scales, 

these equations for predicting actual field- scale processes are increasingly being questioned [26]. Some 

researchers working on soil heterogeneity therefore concluded that for the evolution of soil water and 

solutes, it is more desired to use stochastic models rather than constant values, where the parameters of 

stochastic transport models are treated as random variables with discrete values assigned according to a 

given probability distribution [21-26]. Among stochastic models, many studies used Kalman filtering in 

hydrological applications. Kalman filter is an optimal recursive data processing algorithm, that recursively 

couples the most recent measurements into the linear model to update the model state output [27]. 

Under the assumption that the linear system is a stochastic process with Gaussian noises, it produces the 

best estimation with minimum mean square error and it has been widely used in hydrological models to 

optimally merge information from the model simulations and the independent observations with 

appropriate modeling [28-32]. 

In previous work, we installed frequency domain reflectometry (FDR) sensors (5 TE), which are 

commercially available from METER Group, Inc. USA, in field conditions at different depths where the soil 

is heterogeneous to estimate σp [22]. We used εb and σb observations to modify the Hilhorst deterministic 

model [3] to stochastic model using time varying dynamic linear model and Klaman filter and study the 

linear relationship between them. 

In this study, we used Time Domain Reflectometry (TDR) sensors (FP/mts), which are 

commercially available from Easy Test, Poland, to measure εb and σb in laboratory conditions where the 

soil is homogeneous. Then, we tried to use the Hilhorst model [3] to convert σb to σp. Later, we could show 

the weakness of applying the deterministic Hilhorst model [3] even in homogenous soils. Thus, we are 

aiming to adapt this approach into a stochastic model under laboratory conditions. Thus we used one 

homogeneous soil type to estimate precisely the changes in σp over time, and to conclude whether the 

model offset is constant or it changes in one soil profile. 

8.2. Material and methods 

8.2.1. The column experiment 

To achieve the objective of this study, we used two soil columns with a height of 55cm provided 

by sprinkler (Fig. 2). The lower boundary was controlled using vacuum pump at a constant pressure head 

of -30hPa. The columns were packed with a density of 1.4 g/cm3. The substrate is a sand with 80% of fine 

sand. The water content during packing was approximately 4 m3/m3 . The TDR and soil temperatures 
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sensors were installed in four depths: 7, 21, 35 and 48 cm. Since the soil is a sand, soil relative dielectric 

permittivity (εb), bulk electrical conductivity (σb) and temperature were measured each 5 minutes to get 

enough observations needed for modeling  

 
Figure 8.2 Measurement set. 

Additionally, porous suction cups for taking soil solution samples were installed at each depth to 

validate the results of our model. The lower boundary of the column uses a membrane to let the water 

drain. Drainage water was collected in a bottle under -30hPa vacuum, which is supplied in the range from 

-20 to -30 hPa. The sprinkler is 5cm above the soil surface lets water dropping through small nozzles. Five 

irrigation events with KCl solution with different electrical conductivity were applied. The first three 

events irrigated with 20 dS/m of KCl, then the fourth, and fifth events with 30 dS/m of KCl. The flux was 

approximately 1l/h. The columns were free of salt at the beginning and before the irrigations events 

started. The TDR probes are FP/mts commercially available from Easy Test, Poland, have been calibrated 

in air and deionized water. The temperature probes are Thermistors of the type 2k252 (type fenewal UUA 

32J3) with a range of -20 up to 60 °C. Soil temperature data (Tsoil) used to estimate the relative dielectric 

permittivity of the soil pore water directly (εp):  

𝜀𝜀𝑝𝑝 = 80.3− 0.37(𝑇𝑇𝑠𝑠𝑠𝑠𝑖𝑖𝑙𝑙 − 20) (1) 

To apply dynamic linear model and the Kalman filter, time series of interested variable is needed 

[27]. In our study, time series of εb, σb and εp are required to estimate σp. Therefore, we used five irrigation 

events with two level of KCL solution to get variation of these interested variables over time for each 
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depth. In total, 289 observations were made of σb, εp and εb for each soil depth, and these were used to 

estimate both, the offset εσb=0 of the our modified Hilhorst model [3], and the evolution of σp at its 

corresponding depth, of which 144 observations were used to validate their forecasts.  

8.2.2. Time-varying dynamic linear model 

In general, the state space model is identified by two assumptions, (i) there is a hidden or latent 

process xt  called the state process. The state process is assumed to be a Markov process, where past and 

future values of xt are independent conditional on the present xt, ({xs, S > t}, and {xs, S< t} are independent 

on the xt), (ii) the observations, yt are independent given the states xt. This means that the dependence 

among the observations is generated by states. The dynamic linear model (DLM) or linear Gaussian state 

space model, in its simple form, employs an order one, p-dimensional vector autoregression as the state 

equation: 

𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−1 + 𝑤𝑤𝑖𝑖             𝑤𝑤𝑖𝑖~𝒩𝒩(0,𝑊𝑊𝑖𝑖) (2) 

We do not observe the state vector xt directly, but only a linear transformed version of them with 

noise added, say: 

𝑦𝑦𝑖𝑖 = 𝐴𝐴𝑖𝑖𝑥𝑥𝑖𝑖 + 𝑣𝑣𝑖𝑖            𝑣𝑣𝑖𝑖~𝒩𝒩(0,𝑉𝑉𝑖𝑖)  (3) 

yt is an m-dimensional vector, representing the observation at time t, 𝐴𝐴𝑖𝑖 is a q×p measurement 

or observation matrix. Equation (4) is called as observation equation, in which 𝑣𝑣𝑖𝑖 ,𝑤𝑤𝑖𝑖 and are the Gaussian 

white-noise errors. The evolution variances 𝑉𝑉𝑖𝑖,𝑊𝑊𝑖𝑖 and can be estimated from available data using 

maximum likelihood or Bayesian techniques. 

In this study, we modified the deterministic Hihlorst model (1) to a stochastic one. The model (1) 

has the variables σb, εp, σp, εb and εσb=0. The σp and εσb=0 are unobserved and they need to be estimated by 

the state equation (3) as xt , while σb, εp and εb are observed by the sensors (εp calculated from equation 

(2) using soil temperature sensor data) and represent by observation equation (4) as yt. 

The R [33] and package dlm [34] provide an integrated environment for Bayesian inference using 

DLM, and the package includes functions for Kalman filtering and smoothing, as well as for maximum 

likelihood estimation. 

8.3. Results and discussion 

8.3.1. Deterministic model: 

The offset of Hilhorst model [3] can be calculated from the equation (1):  
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We derived the offset (εσb=0) from this linear model after using measurements of εb and σb . For 

example, applying the ordinary least squares (OLS) on measurements of εb and σb obtained from soil 

column 2 data during the third irrigation at depth 21 cm, Table 1 shows that the offset of the linear 

relationship between εb-σb is 9.41. Further, the single estimate of the slope (1/𝜎𝜎𝑝𝑝� ) of the regression 

parameter vector (1/σp) for the entire data set is very small. Thus, the estimated soil pore water electrical 

conductivity (σp ) is to high compared with the EC meter value (Table 2). Afterwards we applyed the 

Durbin–Watson in order to test if there is any autocorrelation between the residuals of the regression. 

Table 3 shows that there is an extremely strong and positive autocorrelation, meaning, that the result of 

that regression is not valid. 

Table 8.1 Estimated parameters gained from the linear regression analysis. 

 Estimate Std. Error t value Pr(>|t|)     

εσb=0 9.411 8.591e-03 1095.4 <2e-16 *** 

1/σp 6.963e-04 4.461e-06 156.1 <2e-16 *** 

Significance:  * P < 0.05, ** P < 0.01, *** P < 0.001. 

Table 8.2 Electrical conductivity of the soil solution (dS/m) according to soil column number, irrigation event and 

depth (cm), it is collected by porous suction cups and measured by EC meter device. 

 

For each irrigation event we got one solution sample at each depth by using porous suction cups. 

Unfortunately, some samples did not have enough solution to measure its electrical conductivity by EC 

meter device. Table 2 shows the values of EC measured by EC meter device. The Table shows 8 EC values 

from EC meter according to the depth and irrigations event number for each soil column. Due to the 

variability in water flow in unsaturated soil, we observed in our experiment a variation in the time needed 

to collect the solution sample, more time required to collect enough solution for EC meter device more 

amount of ions gathered in the sample and as a result high EC value of the sample. Therefore, there is a 

difference in the EC values between the soil columns at the same depth (table 2). We applied modified 

Hilhorst model on the 8 times series data corresponding to table 2 (depth, irrigation event and soil 

Soil column 1 Soil column 2 

Irrigation event 3 Irrigation event 4 Irrigation event 3 Irrigation event 4 

Dep.21cm Dep.35cm Dep.21cm Dep.35cm Dep.21cm Dep.35cm Dep.21cm Dep.35cm 

15.96 18 21.89 22.35 18.61 14.97 25.67 22 
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column). The reason for that is to compare our finding of σp obtained from our modified model to the 

values of σp obtained by EC meter device (Table 2). 

Table 8.3 Durbin-Watson test for linear regression εb–σb. 

lag Autocorrelation D-W Statistic p-value 
1 0.852 0.278 0 

 

 The reason for choosing 1l/h for irrigation rate and 5 minutes for irrigation interval is visualized in figure 

3.  At each depth we could see how the bulk electrical conductivity responds to the irrigation event. 

 

 
Figure 8.3 Bulk electrical conductivity (σb) in the two soil columns, for two irrigation events (N°.3 and N°.4) at two 

depths (21cm and 35cm). Series peaks related to time irrigation. 

 

 

8.3.2. Time-varying Linear Dynamic Model (LDM) 

The deterministic (Eq.5) can be modified into the time-varying DLM for observation and 

unobservable (state) models. In this case, the observation data are the soil relative dielectric permittivity 

(εb), bulk electrical conductivity (σb) and the relative dielectric permittivity (εp), while the unobservable 

data are the offset (εσb=0) and pore water electrical conductivity (σp). Equation 4 can be modified to the 

time-varying DLM as follows: 
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• The observation equation can be obtained by modifying the Hilhorst model [3] (written in 

equation 5) into a stochastic equation, in accordance with equation 4 as following: 
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• The state equation (unobservable data) in Eq.3 are εσb=0, and the slope 1/σp. They can be 

converted to the unobservable state equation of the time-varying DLM according to equation 

3. The unobservable state equation can be arranged as follows: 
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       (7) 

Here, we consider εσb=0 as a constant. The actual value is related only to its past value. The slope 

1/σp changes over time, and its actual value is related to its past value plus the Gaussian white-noise errors 

(𝑤𝑤𝑖𝑖). We applied the equation in reverse order to estimate the state variables (εσb=0 and σp) at all-time 

points from a complete series of the soil relative dielectric permittivity (εb). This process is known as 

smoothing.  

An example of the evolution of εb, εp, and σb data needed for Hilhorst model [3] is shown in figure 

4. Applying the equation (6) and (7) using DLM and the Kalman filter on the 8-time series data, we see in 

Fig. 5 the observed and predicted time series of the soil relative dielectric permittivity (εb). The predicted 

and observed values of εb agree reasonably well. The mean absolute prediction error (MAPE) for the time 

series never exceeded 0.02. 
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Figure 8.4 Known variables for the Hilhorst model (σb, εb and εp); data form soil column 2, depth 35cm and 

irrigation event N°4. 

 

Since prediction of the soil relative dielectric permittivity (εb) is valid, the estimation of electrical 

conductivity of pore water (σp) and the offset εσb=0 (equation 7) are also valid because they are used in the 

prediction the soil relative dielectric permittivity (εb) and they are converged to their true values. The 

evolution of σp over time obtained by DLM presented in figure 6, it shows the importance of using DLM 

since it obtained all the changes of σp over time and not a single value for entire data set. Another 

interesting aspect is that the figure 6 shows the changes in model offset for each irrigation event at each 

depth. This finding is very important since it shows that the offset does not depend on soil type [10,14,15, 

16,] neither on soil type and salinity [17] where in this study we used two columns with the same type 

soil. Moreover, in Figure 6 we put the corresponding value of σp measured by EC meter device for each 

depth according the irrigation event and soil column number a.  

Comparing the mean evolution of σp values obtained from our modified Hilhorst model (Fig. 6) 

with the single corresponding EC value obtained from porous suction cups and measured by EC meter 

device (Table 2), we found that they agree very well (R2= 72%). 

From these results, three advantages of using DLM and Kalman filter to estimate σp in two 

homogenous soil columns, first, we observed that the offset value of Hilhorst model does not depend on 

the soil type and σp and it changes in the same soil profile. Secondly, we obtained the changes in the 

estimated σp over time and not just a single value as a coefficient for the entire data set. Third, the 

estimated changes in σp occur instantly and save time and labor costs.  
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col.1, dep.21cm, 3rd irg. event col.1, dep.21cm, 4th irg. event 

  
col.2, dep.21cm, 3rd irg. event col.2, dep.21cm, 4th irg. event 

  
col.1, dep.35cm, 3rd irg. event col.1, dep.35cm, 4th irg. event 

  

col.2, dep.35cm, 3rd irg. event col.2, dep.35cm, 4th irg. event 

  
Figure 8.5 Observed and predicted soil relative dielectric permittivity according to the soil column number, depth 

and irrigation event. 
col.1, dep.21cm, 3rd irg. Event col.1, dep.21cm, 4th irg. Event col.2, dep.35cm, 3rd irg. Event 
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σp by EC meter =15.96 dS/m σp by EC meter =21.89 dS/m σp by EC meter =14.97 dS/m 

   

col.2, dep.21cm, 3rd irg. Event 
σp by EC meter =18.61 dS/m 

col.2, dep.21cm, 4th irg. Event 
σp by EC meter =25.67 dS/m 

col.2, dep.35cm, 4th irg. Event 
σp by EC meter =22 dS/m 

   

col.1, dep.35cm, 3rd irg. Event 
σp by EC meter =18 dS/m 

col.1, dep.35cm, 4th irg. Event 
σp by EC meter =22.35 dS/m 

 

  

 

Figure 8.6 Estimation of the unobservable data (εσb=0 and σp) by applying the time-varying DLM and the Kalman 

filter on the data according to the soil column number (col), depth (dep) and irrigation event (irg. Event, the 

corresponding of σp by EC meter device is given for each estimated σp. 
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8.4. Conclusion 

In this study we applied the εb-σb linear relationship to homogeneous soil columns data obtained 

from TDR sensors. We found an extremely strong positive autocorrelation between the residuals of the 

regression analysis. When residuals are correlated, the least squares method is not the most efficient 

model coefficient estimator. By modifying the regression by a time varying-dynamic linear model (DLM), 

the observed and modeled data of εb match much better, and the estimated evolution of σp converges to 

its true value. Moreover, in this study we used two homogeneous soil columns with the same condition 

to show that the offset of the Hilhorst model [3] is not constant as suggested for all moist soil or as others 

suggested that it is soil type depended [10, 14, 15, 16] or soil type and salinity depended [17], we repeat 

the experiment to show that the offset changes even in the same soil type and the same conditions. 

Dynamic linear model enables to capture the offset changes and it shows the importance to calculate it 

simultaneously when estimating σp by Hilhorst model. The next promising step would be programing and 

inserting these models into the TDR software in order to estimate directly the soil pore water electrical 

conductivity (σp) from senor records.  
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ABSTRACT 

Assessing metal-concentrations in roadside soils requires a better understanding of the extent to 

which they are affected by different environmental factors such as soil-texture, depth, pH, runoff 

concentration and precipitation Monthly data of dissolved Cd, Ni, Cr, Pb, Cu and Zn concentrations in 

three different roadside soils (sandy loam, gravel (0-32 mm) and a mixture of sandy loam and gravel) were 

measured during a two-year lysimeter field study at different depths. The data was used to assess the 

variation of trace elements and how they were affected by environmental factors. For data interpretation, 

generalized additive mixed models (GAMMs) were used to explore the complex behavior of metals in 

heterogeneous soils by detecting linear and nonlinear trends of metal concentrations in the soil solution. 

As a result, the modeling approach showed that Cd, Ni, Cr, Pb, Cu and Zn concentrations are functions of 

different environmental variables, which have either linear or nonlinear behavior. All investigated metals 

showed that pH could explain their variation.  With exception of precipitation, Ni and Cr variations can 

nearly be explained by the same environmental factors used in this study (time, pH, infiltration volume, 

roadside soil type, runoff concentrations and depth). During the study period, we found that Zn variation 

can be explained by its nonlinear relationship with all the significant studied environmental factors. As 

the depth increases from the surface to 30 cm of depth, the metal concentration of Cd, Ni, Cr, Pb, and Zn 

increases. Surprisingly, the roadside soil consisting of gravel has the lowest organic carbon and showed 

https://doi.org/10.1007/s11270-019-4137-6
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the lowest median concentration of Cd, Ni, Pb, Cu and Zn at 30 cm. Moreover, the model showed that the 

surface runoff volume has no effect on the metal variation in the soil solution. 

KEYWORDS: metals, roadside soil, generalized additive mixed models (GAMMs), environmental factors  

Capsule: We were able to explore the complex behavior of metals in heterogeneous soil systems by 

detecting the linear and nonlinear dynamics of metals in soil solutions. 

9.1. Introduction 

Road traffic has long been known to be a major source of pollutants in the environment. The 

worldwide growth in traffic volume (OECD, 2013) has led to increasing emission rates, which in turn result 

in increasing accumulation rates, especially in road dust, runoff water and in roadside soils (Monks et al., 

2009; Werkenthin et al. 2014, Padoan et al. 2017). The distribution and amount of pollutants introduced 

in the environment is determined by different factors, such as traffic intensity (Ward, 1990; Arslan and 

Gizir, 2006), climatic conditions and events, vegetation cover and highway design (Barbosa and Hvitved-

Jacobsen, 1999; Pagotto et al., 2001; Huber et al., 2016, Liu et al., 2016). Moreover, galvanized crash 

barriers, traffic control devices and road signs release a considerable amount of pollutants due to 

splashing and rainwater (Van Bohemen and Van de Laak, 2003; Kluge et al. 2014). The composition of 

traffic-derived pollutants is various and multifaceted. The most well-known pollutants emitted are carbon 

monoxide, nitrogen oxide, hydrocarbon, sulfur dioxide, polycyclic aromatic hydrocarbons and metals 

(Kayhanian et al., 2012).  

Of the traffic-derived pollutants, metals are those that have the utmost importance because they 

are not degradable and have particularly high toxicity for plants, microorganisms, animals and humans 

(Wuana and Okieimen, 2011). Among other metals, Zn, Cd, Pb, Cu, Cr and Ni are the most well-known and 

studied metals in roadside soils (Münch, 1993; Folkeson et al., 2009; Kayhanian et al., 2012; Men et al., 

2018). The metal concentrations in roadside soils decrease mostly with distance from the road edge and 

at increasingly greater soil depth (e.g., Harrison et al., 1985; Pagotto et al., 2001; Modrzewska and 

Wyszkowski, 2014; Werkenthin et al., 2014; Huber et al., 2016). The mobility of metals depends greatly 

on soil pH and organic matter content, as has been noted in many studies (e.g., Turer and Maynard, 2003; 

Walraven et al., 2014). Turer and Maynard (2003) showed a strong positive correlation between soil 

organic matter and certain metal concentrations. Hjortenkrans et al. (2008) estimated a mobilization of 

the easily exchangeable metal fraction after extreme climatic conditions, such as dry periods in connection 

with oxidation or intensive rain events with reducing processes. Furthermore, the application of de-icing 

salts in the winter often leads to higher dissolution, dispersion and leaching of organic matter in roadside 

soils, which in turn causes an increase in metal mobilization rates in roadside soils (Bäckström et al., 2004; 

Ramakrishna and Viraraghavan, 2005, Fay and Shi, 2012). High metal accumulation and leaching by the 
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previously described processes may lead to high concentrations in roadside soil solutions (Pagotto et al. 

2010; Werkenthin et al. 2014), which in turn could result in contamination of groundwater and/or 

receiving waters, with all the corresponding harmful effects on the environment. 

From an ecological and hydrological point of view, it is therefore highly important to evaluate the 

road runoff metal concentrations and soil solution concentrations of roadside environments, but this is a 

complex task because the transport mechanisms are potentially nonlinear. To the best of our knowledge, 

only a few studies have dealt with the on-site soil solution concentrations beside the affected roads and 

highways (Reinirkens, 1996; Dierkes and Geiger, 1999; Bäckström et al., 2004; Kocher et al., 2005; Kluge 

and Wessolek, 2012; Kluge et al., 2014; Werkenthin et al., 2016). All these studies used classical summary 

statistics to present the variability of dissolved metal concentrations in soil solutions, and they did not at 

all address the temporal dependencies and multivariate environmental effects.  

Varied methods have been used to predict the metal concentrations in road runoff, sediments 

and soils. These have included classical summary statistics (Wang et al., 2013; Pal et al., 2011), regression 

models (Yanet al., 2013), geospatial analysis (Guo et al., 2012; Raulinaitis et al., 2012; Ignatavičius et al., 

2017). Sauvé et al. (2000) collected different soil-liquid partitioning coefficients (Kd) in soils for the metals 

cadmium, copper, lead, nickel, and zinc, which they derived from over 70 studies of various origins. They 

used multiple linear regression models and showed that the Kd Coefficients are a function of soil solution 

pH, -organic matter, and -total metal concentrations. However, the R2 values of their model were low. 

One reason for this might be the nonlinear behavior of some metals.   

Casey et al. (2006) compared mean invertebrate metal concentration between two periods to 

capture the temporal trend of trace metals, using mixed models to compare sediment metal levels across 

years and land-use types. However, their models did not mention the nature of nonlinear patterns of trace 

metals. Wen et al. (2012) studied the temporal variation of dissolved heavy metal concentrations by using 

only the effects of rainfall events. Moreover, most previous studies did not include the influence of other 

environmental variables like soil properties, which could also contribute to the variability of dissolved 

metals in soil. Recently, Lequy et al. (2017) assessed the temporal trends of trace metal concentrations in 

mosses by using a generalized additive mixed model (GAMMs) approach that included the sampling 

protocol (sampling period, collector and moss species) to describe the variability of the concentrations in 

mosses. As they mentioned, it was the first attempt to analyze the temporal trend and variability of metal 

concentrations by using GAMMs. The authors highlighted the importance of accounting for nonlinear 

temporal variations in metal concentrations, but only the parameters of time, collector, and moss species 

were used as explanatory variables in their models. 

The objective of this study is to identify the environmental data used in this study that could 

explain the variation of dissolved heavy metal concentrations in roadside soil solutions. To achieve this 
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objective, we use as response variables mixed modeling on repeated measurements of concentrations 

over two years while basing the explanatory variables on different environmental variables such as soil 

properties and meteorological factors.   

9.2. Material and Methods 

9.2.1.  Study area 

In this study, data from a section of the Highway BAB A115 near the city of Berlin, Germany (52° 

23′ 27.5″ N, 13° 09′ 42.8″ E) is selected as an example. The highway has an established speed limit of 

120km/h and is surrounded by a mixed pine-oak forest stand on sandy soil beginning at a distance of 

about 15 m from the road. The traffic volume ranges from 63,000 to 80,000 vehicles per day, with 6-7% 

of them constituting heavy traffic (Fitschen and Nordmann, 2012)  

Along this section, the highway is 34 m wide (including the central reservation) and has three 

concrete lanes in each direction. The sealed road surface has a width of 15 m in each direction and is 

drained across the adjacent embankment. The relative elevation of the highway is about 2 m; the 

longitudinal inclination is 1% and no crash barriers are installed. Annual average temperature is 8°C and 

precipitation is 580 mm (see also the Supplementary Data in Fig. 1.).  

9.2.2.  Highway Lysimeter  

9.2.2.1. Soil solution, road runoff and climate data 

At this section of the highway were installed three lysimeters of polyethylene (PE), each with a 

length of 150 cm, a width of 100 cm and a height of 60 cm, together with three runoff lysimeters.  

The lysimeters were placed directly beside the road edge and filled with different soil materials 

that were recently used for embankment construction in Germany: 

Sm1:   Reference embankment material (surrounding topsoil of arable land) – Sandy loam  

Sm2: Mixture of Sm2 with 15% of Sm1 – Gravel (0-32 mm) mixed with sandy loam 

Sm3:  Base course construction material from natural broken rock and sand – Gravel (0-32 mm) 

The investigated embankment soils were obtained from a nearby highway construction site. The 

thickness of the embankment layer was 20 cm, equivalent to a soil volume of 0.3 m3. The lysimeters had 

three discharges: one for collecting the surface runoff and two for collecting the soil solution at depths of 

15 cm and 30 cm (Fig.1). The water volume was measured by tipping buckets (type: V2A, UP- GmbH). 

Aliquots were collected as composite samples in PE vessels. The runoff lysimeter had the same surface 
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area as the embankment lysimeters (1.5 m²); but they were only 15 cm high (length: 150 cm, width: 100 

cm, height: 15 cm) and were filled with lime-free, washed pebble gravel (Ø 5.6-8 mm) to meet the road 

safety regulations. They had only one discharge at the bottom and were placed between the embankment 

lysimeters SM1-SM3 to quantify the variability of runoff quantity. Water volumes of road runoff were also 

measured by pre-described tipping buckets for automatic recording. In addition, a weather station was 

installed to measure precipitation, temperature, humidity and potential evaporation at 15 min. intervals. 

For more details of the lysimeter study site and construction of the highway lysimeters, please see 

Werkenthin et al., 2016. 

 

Sampling of soil solution at three depths for each embankment lysimeter and runoff lysimeter 

was conducted once a month from November 2012 to December 2014. Samples were analyzed in the 

laboratory for Cadmium (Cd), Copper (Cu), Zinc (Zn), lead (Pb), Nickel (Ni), Chromium (Cr), pH, electrical 

conductivity (EC) and dissolved organic carbon (DOC). Part of the data (July 2013 to July 2014) is already 

published (Werkenthin et al., 2016).  

 
Figure 9.1 Schematic sketch of the embankment lysimeter and view of the monitoring site at the Highway A115, 

Germany  

9.2.3. Laboratory analysis 

Dissolved concentrations of Cd, Cu, Cr, Ni, Pb and Zn were determined in the soil solution and 

road runoff. The samples were filtered through a 0.45 µm filter (Satorius; cellulose-acetate) and acidified 

with 5M HNO3 to pH < 2. All samples were measured with ICP-OES (Thermo Fisher ICAP 6000) in 

accordance with DIN EN ISO 11885. Limits of quantification (LOQ) were 0.09 (Cd), 0.3 (Cr), 0.8 (Cu), 0.8 

(Ni), 2 (Pb) and 0.1 (Zn) µg L-1. In order to ensure good measurement quality, the maximum permissible 

deviation for individual metal recovery from the reference material (BRM 06C, Germany) was set to ± 8% 

(Kluge et al.2014).   
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9.2.4. Methodology 

9.2.4.1. Nonparametric models  

Monthly repeated measurements for two years on sampling lysimeters induces a structure in the 

data that violates the assumption of independence between samples. Therefore, we used generalized 

additive mixed models (GAMMs), which allow for dependence between samples and for the nonlinearity 

of covariants (Zuur et al., 2009). GAMMs are an extension of generalized additive models (GLMs) that 

allow the predictor function to also include random effects.  

The GAMM could be described as: 

𝑔𝑔(𝜇𝜇𝑖𝑖𝑖𝑖) = 𝑋𝑋𝑖𝑖𝑖𝑖𝑇𝑇𝛽𝛽 + �𝛼𝛼(𝑗𝑗)�𝑢𝑢𝑖𝑖𝑖𝑖𝑗𝑗�
𝑚𝑚

𝑗𝑗=1

+ 𝑍𝑍𝑖𝑖𝑖𝑖𝑇𝑇𝑏𝑏𝑖𝑖 

where 𝑔𝑔 is a link function,  𝑋𝑋𝑖𝑖𝑖𝑖𝑇𝑇𝛽𝛽 is a linear parametric term with the parameter vector 𝛽𝛽𝑇𝑇 =

(𝛽𝛽0,  𝛽𝛽1,  … ,𝛽𝛽𝑝𝑝) that includes the intercept; ∑ 𝛼𝛼(𝑗𝑗)(𝑢𝑢𝑖𝑖𝑖𝑖𝑗𝑗)  𝑚𝑚
𝑗𝑗=1 represents the smooth and nonlinear 

function, it is an additive term with unspecified influence functions 𝑎𝑎(1),  … . ,  𝑎𝑎(𝑚𝑚); and 𝑍𝑍𝑖𝑖𝑖𝑖𝑇𝑇𝑏𝑏𝑖𝑖 contains the 

cluster-specific random effects. 

If no linear component is included, the model is considered to be nonparametric. A model whose 

predictions consist of both linear and unspecified nonlinear functions of predictor variables is considered 

to be a semi parametric model. 

For GAMM, we used the metal concentrations (log scale) as a response variable and the following 

predictors as fixed effects: time (represented by a numeric vector from 0 to 743 days after 2012-11-21); 

EC (microSiemens/cm); pH; rainfall (mm); soil temperature (C°); ; infiltration (l); soil moisture (mm-3/mm-

3); surface runoff volume (l); and runoff concentration (microgram/l). The factors of soil type (Sm1, Sm2, 

and Sm3) and soil depth are also included as fixed effects. While the random variables refer to the points 

at which the repeated measurements were taken. These points are identified by the combination of soil 

depth and soil type. Visual inspection of residual plots did not reveal any major deviations from 

homoscedasticity or normality. Specifically, the metal data was log-transformed to meet the demand for 

residual normality and homoscedasticity. In all the models, the time covariant was kept to adjust time 

trends, even when this predictor was not significant. 

In the first run of the model, we hypothesized that the response of metal concentrations would 

have nonlinear relationships with the predictors, as we mentioned above. Using the GAMMs of the MGCV 

package (Wood, 2006) implemented in R version 3.3.0 (R Core Team, 2017), the GAMM model for the first 

run could be expressed as: 



157 

𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚 = 𝑎𝑎𝑠𝑠.𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚𝑢𝑢𝑓𝑓𝑎𝑎(log(𝑚𝑚𝑒𝑒𝑡𝑡𝑎𝑎𝑓𝑓 𝑐𝑐𝑓𝑓𝐷𝐷𝑐𝑐𝑒𝑒𝐷𝐷𝑡𝑡𝑓𝑓𝑎𝑎𝑖𝑖𝑓𝑓𝐷𝐷))~(𝑡𝑡𝑖𝑖𝑚𝑚𝑒𝑒 )
+𝑚𝑚𝑎𝑎𝑡𝑡𝑒𝑒𝑓𝑓𝑖𝑖𝑓𝑓𝑎𝑎 ∗ 𝑑𝑑𝑒𝑒𝑝𝑝𝑡𝑡ℎ + 𝑠𝑠(𝑆𝑆𝐸𝐸) + 𝑠𝑠(𝑝𝑝𝑝𝑝) + 𝑠𝑠(𝑝𝑝𝑓𝑓𝑒𝑒𝑐𝑐𝑖𝑖𝑝𝑝𝑖𝑖𝑡𝑡𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝐷𝐷)

+𝑠𝑠(𝑠𝑠𝑓𝑓𝑖𝑖𝑓𝑓 𝑡𝑡𝑒𝑒𝑚𝑚𝑝𝑝𝑒𝑒𝑓𝑓𝑎𝑎𝑡𝑡𝑢𝑢𝑓𝑓𝑒𝑒)  + 𝑠𝑠(𝑖𝑖𝐷𝐷𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝐷𝐷15𝑐𝑐𝑚𝑚)
+𝑠𝑠(𝑖𝑖𝐷𝐷𝑓𝑓𝑖𝑖𝑓𝑓𝑡𝑡𝑓𝑓𝑎𝑎𝑡𝑡𝑖𝑖𝑓𝑓𝐷𝐷30𝑐𝑐𝑚𝑚) + 𝑠𝑠(𝑠𝑠𝑓𝑓𝑖𝑖𝑓𝑓 𝑚𝑚𝑓𝑓𝑖𝑖𝑠𝑠𝑡𝑡𝑢𝑢𝑓𝑓𝑒𝑒)

+𝑠𝑠(𝑠𝑠𝑢𝑢𝑓𝑓𝑓𝑓𝑎𝑎𝑐𝑐𝑒𝑒 𝑓𝑓𝑢𝑢𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓 𝑣𝑣𝑓𝑓𝑓𝑓𝑢𝑢𝑚𝑚𝑒𝑒) + 𝑠𝑠(𝑓𝑓𝑢𝑢𝐷𝐷𝑓𝑓𝑓𝑓𝑓𝑓 𝑐𝑐𝑓𝑓𝐷𝐷𝑐𝑐𝑒𝑒𝐷𝐷𝑡𝑡𝑓𝑓𝑎𝑎𝑡𝑡𝑓𝑓𝑖𝑖𝐷𝐷)

𝑚𝑚𝑓𝑓𝑑𝑑 < −𝑔𝑔𝑎𝑎𝑚𝑚𝑚𝑚4(𝑓𝑓𝑓𝑓𝑓𝑓𝑚𝑚,𝑑𝑑𝑎𝑎𝑡𝑡𝑎𝑎, 𝑓𝑓𝑎𝑎𝐷𝐷𝑑𝑑𝑓𝑓𝑚𝑚 = ~(1/𝐼𝐼𝐷𝐷)) ⎭
⎪
⎪
⎬

⎪⎪
⎫

         (1) 

 

where ID refers to the point where we obtain the sample from either the runoff or the soil solution 

according to the soil type and depth. The s() represents the spline functions that allow the curve to bend 

in order to describe the observed metal data. We also hypothesize that the metal variation is explained 

by the depth for each soil type. Therefore, we show in the model the interaction between soil type 

(material) and depth.  

The p-value is used to determine which nonlinear relationship in model (1) can be considered 

linear and which explanatory variables should be excluded from model (1).  When these processes are 

accompanied by a decrease in the Akaike information criterion (AIC), then the model is preferred. We 

choose the model when the lower AIC is obtained with significant explanatory variables (Burnham and 

Anderson, 2004).  

9.3. Results  

9.3.1. Descriptive analyses of the dissolved concentrations at the different 

highway embankments 

The raw data of the dissolved soil solution concentrations of the three embankment soils and the runoff 

concentrations during the measurement period is presented in fig. 2. The concentrations at 30 cm depths 

of the three different embankment soils often show higher ranges than at shallow depths (Fig. 2). 

The soil solution concentrations of SM1 show the highest range at 15 cm and decrease at 30 cm, 

while the concentration range at SM2 increases with depth (Tab.1). The median dissolved metal 

concentrations in soil solution are highest in the SM1 embankment at soil depths of 15 and 30 cm when 

compared with SM2 and SM3, with the exception of Cd (Tab. 1). SM3 has the lowest median metal 

concentration at 30 cm, except for Cr, where it is slightly higher than SM2. The runoff concentrations of 

Pb, Cd and Ni are mostly lower than the concentrations in the soil solution at 15 and 30 cm of the three 

different embankment soils (Fig. 2), but they are nearly in the same range for SM2 and SM3. 

The metal concentrations of all lysimeters at 30 cm show an increase during the wintertime, 

whereas the concentrations decrease in spring before increasing again in summertime (Fig.2). Comparing 
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the three different embankment soil types, the SM1 embankment soil type seems to react as a source for 

these metals.  

 

 

 
Figure 9.2 Raw data of the dissolved soil solution concentrations of the three different embankment soils and the 

runoff concentrations during the measurement period 

 

The descriptive analysis mentioned above visually confirms the existence of variation in metal 

concentration according to soil type and depth over time. To understand these metal variations and the 

influence of other environmental factors, an advanced statistical method will be used: the generalized 

additive mixed model (GAMM), which we are going to explain in the following sections. 
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Table 9.1 Median, min and max dissolved metal concentrations for three embankment soils at three different 

depths during the measurement period 

 
Depth  
(cm) Cd Cr Cu Ni Pb Zn 

SM1 
 
  

0 0.13            
(0.01-0.53) 

3.360            
(1.33-15.03) 

15.88         
(7.55-45.70) 

1.40          
(0.71-4.97) 

0.80          
(0.01-3.80) 

30.35               
(6.55-233.90) 

15 0.15          
(0.01-0.66) 

4.55          
(1.31-12.75) 

35.85    
(7.10-163.40) 

2.60  
(0.01-24.97) 

3.80   
(0.30-52.80) 

24.45   
(4.45-387.55) 

30 0.30   
(0.01-4.06) 

7.01   
(0.1-19.05) 

73.60    
(9.60-393.60) 

3.94   
(1.38-35.20) 

11.20   
(0.01-59.84) 

42.40           
(9.50-96.65) 

SM2 
 
  

0 0.10 
 (0.01-1.75) 

4.77   
(1.90-9.20) 

16.90    
(5.55-123.20) 

1.80    
 (0.01-8.10) 

1.02    
(0.01-3.80) 

41.55  
 (17.40-151.35) 

15 0.14    
(0.01-0.55) 

4.23   
 (1.20-12.06) 

13.43   
(6.70-50.30) 

2.53    
 (0.01-22.42) 

0.74    
 (0.01-5.10) 

25.18     
(5.95-72.30) 

30 0.22   
(0.01-1.34) 

4.12    
(1.30-18.15) 

6.55   
(0.10-26.36) 

3.20   
 (0.01-16.32) 

1.89    
(0.01-8.20) 

6.60     
(0.20-49.30) 

 
SM3 

 
  

0 0.08   
(0.01-0.36) 

3.60   
(0.71-13.31) 

12.50    
(7.10-44.90) 

1.80     
(0.82-10.73) 

0.57   
(0.01-4.50) 

27  
 (6.40-412.10) 

15 0.30   
(0.01-2.15) 

3.65   
(1.59-13.55) 

13.90   
(4.50-83.80) 

3.88   
(0.01-50.60) 

2.25   
 (0.01-9.50) 

12.30   
(3.75-55.95) 

30 0.30    
 (0.01-1.75) 

3.61   
(1.25-24.60) 

11.80  
(3.35-90.70) 

5.82    
 (1.09-29.10) 

2.27    
(0.01-9.90) 

10.70  
 (0.45-95.55) 

 

9.3.2. Effects of environmental factors on metal variations according to 

GAMM 

An assessment of the effects from environmental factors on the variation of dissolved metals at 

the roadside was conducted for each metal by selecting the best GAMM  for each one. The significance 

analysis of the model shows the explanatory variables for each metal to be the following: time for Cr, Cu, 

Pb, Ni and Zn; pH for Cd, Cr, Cu, Pb, Ni and Zn; depth for Cd, Cr, Pb, Ni and Zn, EC for Cd and Cu; 

precipitation for Cu, Ni and Zn; soil type for Cr, Cu and Ni; soil temperature for Pb; soil moisture for Zn; 

infiltration for Pb, Ni, Cu, Cr and Cd; and runoff concentration for Ni and Cr (Table 3). For all metals, the 

model showed no significance in the interaction between soil type and depth. Moreover, the surface 

runoff volume could not explain the metal variation in the soil solution. 

The following provides more details about the how the explanatory variables could explain the 

metal variation investigated in this study over the experiment period.  
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Figure 9.3 Explanatory variables that explain the variation of dissolved metal concentration used 
in GAMM 
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9.3.2.1. Time  

Taking into account that the constructed embankment needs time to settle, we 

observed that the concentrations of Cu and Cr somehow decreased linearly after two years of 

the field experiment when compared with the initial concentrations (Tab. 2). This might be an 

effect of leaching from the soil matrix (see Tab.3 and Fig.3). On the other hand, the time variable 

showed a nonlinear effect on the dissolved Pb and Zn concentrations in the soil solutions of the 

roadside embankments. Pb and Zn have higher solution concentrations at the beginning and 

lower ends of the sampling period (Fig. 3). In this study, only the Cd variation could not be 

explained by the time variable.  

Table 9.2 Metal concentrations of the embankment soils at the beginning of the field study  

 Cd Cr Cu Ni Pb Zn pH C org 

mg*kg-1                       _           M.% 

Sm1 < 0.2 5 20 <5 25 33 7.67 0.88 

Sm2 < 0.2 < 5 5 5 5 19 7.57 0.40 

Sm3 < 0.2 < 5 11 6 13 30 7.63 0.13 

9.3.2.2. pH 

The pH shows linear effects on Cu and Cr concentrations. It is generally agreed that pH 

is the key factor that affects concentrations of soluble and plant-available metals (Brallier et al., 

1996). The metal solubility in soils is inclined to increase at lower pH and decrease at higher pH 

values, as has been demonstrated in numerous laboratory studies (Tills and Alloway, 1983, 

Sanchez-Camazano et al., 1994 and Rieuwerts et al., 1998), but this is only partially true for our 

data, which was generated from a lysimeter field study. We can see in Table 3 that the 

coefficients of Cr and Cu with pH are positive. The Cu concentrations increase with increasing 

pH within the range of 6.5 to 9.0. This finding could be explained by soluble metal-organic 

complexes forming above pH 6 (Brümmer et al. 1986). The organic matter preferably 

immobilizes Cu in soils. The solid and dissolved fraction of organic matter can substantially affect 

mobility (Temminghoff, 1997). A calculation by Tipping and Woof (1990) shows that increasing 

soil pH by 0.5 units could lead to an increase in approximately 50% in the mobilized organic 

matter. We therefore assume that increase in the Cu increasing with the pH is related to 

enhanced leaching of DOC. Sauvé et al. (2000) showed that total Cu, pH, and DOC are the most 
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significant variables controlling Cu solubility in soils. Adsorption of Cr characteristically 

decreases with increasing pH due to the decrease in the positive surface charge of the soils (Rai 

et al., 1986; Zachara, 1989; Khaodhiar et al., 2000). Moreover, the influence of pH on the 

concentrations shows a nonlinear trend for Cd, Zn, Ni and Pb (Fig. 3). In the case of Cd, no 

changes in the concentrations were observed when pH ranges between 7.0 and 8.2. The 

concentrations of Pb decrease with increasing pH. Brümmer et al. (1986) showed the strong 

relationship between Pb concentrations and soil pH. They described a strong decrease in soil 

solution concentrations with increasing pH. The correlation was even higher when the 

concentrations were higher. The Ni concentrations decrease sharply when the pH value is higher 

than 8.5 (Fig. 3). This may be associated with the start of the hydroxide precipitation reactions 

with the Ni2+ and NiOH+ species (Sen Gupta and Bhattacharyya, 2006). Zn decreased drastically 

under alkaline conditions and then increased after pH > 8, because soluble metal-organic 

complexes are formed in this pH range (Brümmer et al. 1986). 

It is interesting to see that metals which have a nonlinear relationship with pH also have 

a nonlinear relationship with the time covariant. pH varies over the year due to rainfall events. 

Häring et al. (2017) reported that water quantity significantly affected pH over time. 

9.3.2.3. Precipitation 

The increase in Cu and Ni concentrations with precipitation (Tab. 3 and Fig. 3) might be 

explained by temporal and spatial variations of dissolved organic carbon (DOC) in runoff water 

and higher rates of microbial decomposition of organic compounds. High pH (in our study 6-9) 

and DOC increases the mobility of Cd, Ni, and Zn (Impellitteri et al., 2002). Orlović-Leko et al. 

(2009) and Pan et al. (2010) reported strong seasonal variations of organic carbon in rainwater 

samples and explained these findings through a combination of different climatic conditions, 

i.e.: the amount of precipitation, temperature, humidity, site specific parameters and proximity 

to anthropogenic and/or biogenic emission sources. Only Zn shows nonlinear behavior with the 

amount of rainfall. Runoff concentrations of Zn increase during intensive rainfall events (Fig. 2). 

Explanation: Metal road installations such as crash barriers are generally galvanized with Zinc. 

Due to corrosion by rain and spray water, Zn in particular as well as Cd and Cu are released into 

roadside soils (Dierkes and Geiger, 1999; Barbosa and Hvitved-Jacobsen, 1999; Kluge and 

Wessolek, 2012. They all reported higher Zn concentrations in runoff and soils as a result of the 

corrosion of crash barriers.  

https://link.springer.com/article/10.1007/s11356-015-4356-3#CR17
https://link.springer.com/article/10.1007/s11356-015-4356-3#CR18
https://link.springer.com/article/10.1007/s10661-011-2433-8#CR9
https://link.springer.com/article/10.1007/s10661-011-2433-8#CR5
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Table 9.3 Best selection GAMMs for each element according to AIC including its coefficient estimates for linear and non-linear (nl), with: Time(T), depth (D), 
EC (E), pH (P), humidity (H), soil material (S), evapotranspiration (Ev), runoff concentration (R), precipitation (Pr), soil temperature (St), soil moisture (sm). s() 

refers to spline function (non-linear), i15 and i30 are infiltration rates at 15 cm and 30 cm respectively. The term n.l. refers to non-linear relationship. 

 Cd Cr Cu Ni Pb Zn 
  

Fixed effect: 
s(T)+s(P)+D+H+E 
+i30 
 
Random effect: 
1/S_D 

 
Fixed effect: 
T+P+D+S+Ev+s(R) 
+s(i30) 
 
Random effect: 
1/S_D 

 
Fixed effect: 
T+P+S+s(E)+Pr+s(H)
+i30 
 
Random effect: 
1/S_D 

 
Fixed effect: 
s(T)+s(P)+D+S+Pr 
+s(R)+i30 
 
Random effect: 
1/S_D 

 
Fixed effect: 
s(T)+s(P)+D+s(St) 
+i15 
 
Random effect: 
1/S_D 

 
Fixed effect: 
s(T)+s(P)+D+s(Ev) 
+s(Pr)+s(sm)+s(i30) 
 
Random effect: 
1/S_D 

(Intercept) 0.6416 -0.8517 1.137 1.040 -0.9389 3.511 
Time  -0.0003 -0.0005 -0.0014 n.l. n.l. 
EC 0.0721  n.l.    
pH n.l. 0.2983 0.3587 n.l. n.l. n.l. 
Precipitation   0.1595 0.2457  n.l. 
Soil.temperature     n.l.  
Infiltration_15cm     -0.0638  
Infiltration_30cm -0.6792 n.l. -0.4817 -0.4432  n.l. 
Soil.moisture      n.l. 
SurfaceRunoff       
Runoff.concentration  n.l.  n.l.   
Soil.materialSm2  -0.397 -1.332 -0.3761   
Soil.materialSm3  -0.3162 -1.566 -0.7541   
Depth15 0.9511 0.1228  0.5519 1.411 -0.5298 
Depth30 1.273 0.2924  1.046 1.851 -0.8094 

 



165 

9.3.2.4. EC 

The variable EC shows linear effects on the soil solution concentrations of Cd. This is easily 

explained by the strong increase in EC concentrations in runoff and the extended time during the winter 

period the when the soil solution was exposed to de-icing salts (Fig. 2). The presence of high Cl 

concentrations leads to a strong decrease in the adsorption of Cd ions in soils (Doner, 1978; Boekhold et 

al., 1993; Lumsdon et al., 1995). The strong influence of salt concentration on the mobilization of metals 

has already been observed by many other authors dealing with the topic of road runoff and roadside soils 

(e.g., Bauske & Goetz, 1993; Amrhein and Strong, 1990, Amrhein et al., 1992; Bäckström et al., 2004, 

Ramakrishna and Viraraghavan, 2005). Li et al. (2015) determined an extensive mobilization of Cd soil 

leachate by salts, accounting for about 21% of the total Cd in the soil. Bauske & Goetz (1993) examined 

concentrations of Cd and Zn that had increased by a factor of 20 in highway soil solutions during the 

utilization of de-icing salts in winter. Salimi et al. (2015) found that the Cl- ion formed complex ions with 

Cd to CdCl+, CdCl3-, and CaCl4-. The application of Cl- might dissolve the adsorbed soil Cd to form complex 

ions. The regular relationship between EC and metals concentration is positively linear. In this study, the 

GAMM model shows a nonlinear relationship between EC and Cu (Fig 3).  The use of road salt may result 

in an increased mobilization of Cu due to complexion with chloride ions (Doner, 1978; Lumsdon et al., 

1995). An increase in soluble Cu by extraction tests with calcium magnesium acetate solutions has been 

reported by Elliott and Linn (1987). 

The nonlinear findings here between Cu and EC also agree well with Makarychev et al. (2013). 

They used a conductometric and potentiometric titration of water extracts (Cu, Al and Pb). A nonlinear 

dependence of electrical conductivity on water extracts was observed with the added concentration of 

metals. They explained their findings by metal organic complexes forming with the participation of metal 

ions. Our results show that the highway runoff in wintertime combined with high amounts of road de-

icing agents (high EC) might lead to a higher release of sorbed metals from the organic matter of the SM1 

and SM2 (Fig.2;Tab.2). 

9.3.2.5. Depth  

The positive coefficients of Cd, Cr, Ni and Pb at greater depth indicate an increase in the 

concentration with soil depth, and the negative coefficient of Zn indicates a decrease in Zn concentration 

with soil depth (Table 3 and Fig. 3). Cd is the most mobile metal in soils because a large proportion is 

associated with easily exchangeable and carbonated chemical fractions, as several studies have pointed 

out (Harrison et al., 1981; Gibson and Farmer, 1984; Chlopecka et al., 1996).  
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9.3.2.6. Soil Type  

The coefficients in Table 3 indicate how much the concentrations of Cr, Cu and Ni decrease from 

Sm1 to Sm2 and from Sm1 to Sm3. This is because the Sm1 has higher organic matter than Sm2 and Sm3 

(Table 2), and thus the dissolved Cu concentrations are higher as we explained above. Cu in soils is known 

to be dominant in the organic and residual phases (Harrison et al., 1981, Gibson and Farmer, 1984; 

Hamilton et al., 1984; Ramos et al., 1994; Ma and Rao, 1997).  

The results in Table 3 regarding soil material agree well with the results found by Turer et al. 

(2003). They concluded that the mobility of Ni and Cr appears to be controlled by the original soil material 

rather than by anthropogenic sources. 

9.3.2.7. Infiltration volume  

There is a negative relationship between Cd, Cu, Ni and Pb and the infiltration volume (Tab. 3 and 

Fig. 3).  Pb was largely associated with particles (90%), as reported in the previous study on the same data 

(Werkenthin et al., 2016). The dilution could be one reason for a decrease in dissolved Pb concentrations 

with infiltration volumes at 15 cm. 

9.3.2.8. Soil temperature  

The soil temperature has a significant nonlinear effect on the Pb, the concentration of Pb 

increases from 0 to 15 with an increase in temperature and then decreases (Fig. 3). A decrease in dissolved 

Pb at higher temperatures could be explained by Cornu et al. (2016), who found that the affinity that 

dissolved organic matter (DOM) has for metals was indeed suspected to increase with soil temperature.  

9.3.2.9. Runoff concentration  

Runoff concentration has a nonlinear effect on the dissolved Cr and Ni concentrations (Fig.3). The 

concentrations increase sharply at the beginning, and then continue to increase but slowly. The pH and 

ionic strength (the total ion concentration in the solution) affect the Ni adsorption. Scheidegger et al. 

(1996) observed an increasing Ni adsorption at pH values lower than 7, with a decrease in the ionic 

strength. At pH > 7.0, Ni adsorption also seems to be affected by the ionic strength. This finding could 

explain the nonlinear relationship that Ni and Cr have with runoff concentration. Moreover, as Turer et 

al. (2003) reported that soil material has a significant effect on dissolved Ni and Cr, the runoff 

concentrations of dissolved Ni and Cr affect the mobility of dissolved Ni and Cr in roadside soils. 

In general, the results show that time and pH explanatory variables have the most significant 

effects on the variation of dissolved metal concentrations in the soil solutions studied here. Regarding the 

issue of choosing an adequate embankment soil that provides enough safety and metal retardation to 
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prevent groundwater contamination, GAMM allows distinguishing between three roadside soil types in 

order to establish which has the best possible retardation. The model demonstrated that the 

embankment soils with higher OM show higher dissolved soil solution concentrations of Ni and Cr than 

the embankment soils with lower OM. Therefore, the OM content of the embankment soils affect the 

solubility of Ni, Cr and Cu, because they are mostly bounded at the OM fraction and thus might be more 

easily remobilized. The higher Cu concentrations in our study might be due to the higher initial 

concentrations of the soil at the time when we began setting up the field lysimeter experiment (Table 2). 

Moreover, the runoff concentrations do not significantly affect Cd, Pb, Cu and Zn concentrations in the 

soil solution; only the Ni and Cr concentrations in runoff correlated with the dissolved Ni and Cr 

concentrations in roadside soil solutions. In addition, the modeling approach shows that the metal 

variation can be explained by the depth: as the depth increases from 0 to 30 cm, the concentration of 

dissolved metals increases (Fig. 3). Table 1 shows that, with the exception of Cr, the SM3 at 30 cm depth 

has the lowest concentration of dissolved metals.  

Our model results mostly agree with other studies that used controlled laboratory experiments 

to investigate individual metal behaviors. Furthermore, partially higher Ni, Pb and Cr concentrations in 

soil solutions at increasing soil depths suggest that a metal translocation occurs from the upper to the 

lower horizons within the soil profiles, thus leading also to the assumption that transport hot spots exist. 

9.4. Conclusions  

This study assesses the effects of different environmental factors on the variation of dissolved 

metals in roadside soils. Monthly data of dissolved Cd, Ni, Cr, Pb, Cu and Zn in the soil solution 

concentrations of three different roadside soils were measured at different depths over a two-year period 

in a lysimeter field study. 

Generalized Additive Mixed Models (GAMMs) have been used to interpret the multiple data 

derived from a lysimeter field study at a roadside. The chosen approach enabled us to explore the complex 

behavior of metals in heterogeneous soil systems by detecting the linear and nonlinear dynamics of 

metals in soil solutions. 

Regarding the EC, the GAMM model allows us to show only a nonlinear relationship between EC 

and Cu. Generally, metal solubility tends to increase at lower pH and decrease at higher pH values. 

However, this is only partly true for our data, which are gained from a lysimeter field study. The GAMM 

model results show only that Cu and Cr soil solution concentrations have a positive linear relationship 

with pH. In our case, the modeling approach showed that pH and soil material composition play the most 

important roles in terms of metal release in roadside soil. The study shows that variations of metal 

concentrations can be explained by the depth: as the depth increases from the surface to 30 cm, the metal 
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concentrations increase, with SM3 having the lowest median of dissolved concentrations of Cd, Ni, Pb, Cu 

and Zn at 30 cm. In our case, SM3 has the lowest content of organic carbon and is the most effective 

embankment material for reducing soil water pollution from dissolved metal concentrations. This is a 

surprising finding, because existing recommendations suggest using twenty or more centimeters of thick 

topsoil with a high ratio of organic carbon to ensure high sorption capacity for infiltrated runoff. The 

highway runoff in wintertime and high amounts of road de-icing agents might lead to a higher release of 

sorbed metals from the organic carbon of the SM1 and SM2 when combined with higher amounts of 

organic matter. 

One interesting matter shown by the model is that the surface runoff volume does not affect the 

metal variation in soil solutions. 

Using the GAMM for interpreting heterogeneous roadside soil solution data has two main 

strengths. First, the mixed part of the model takes into account the dependencies in the data. This is 

because our measurements were repeated and thus induced a structure in the data that would violate 

the assumption of independence between samples. Second, due to the nature of the irregular fluctuations 

of metal concentrations over time, polynomials fail to describe the observed curvature in the data. By 

including smoothing functions for the explanatory variables, e.g., spline functions, the additive part of the 

model allows the curve to bend in order to describe the observed data. 

Overall, when using GAMM to analyze environmental data such as soil solution concentrations at 

the field scale, it gives a strong advantage to assessing the variation of metal translocation that is affected 

by different environmental factors.  
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10 
Conclusiones 
Las principales contribuciones de la presente tesis se pueden agrupar   en dos bloques, 

correspondientes a las dos partes en que está estructurada: 

 

Aportaciones metodológicas a la estadística 

• En el contexto de los modelos mixtos, se explora la eficiencia de métodos de remuestreo 

para mejorar la inferencia sobre los parámetros, principalmente ligados a la estructura 

de varianzas. 

• En concreto, se consideran métodos de remuestreo semiparamétricos (residual 

resampling), ajustado a la estimación y la variante Wild Bootstrap. Se realiza un 

escenario de simulación en que se aplican especificaciones no gaussianas tanto para los 

efectos aleatorios como para los residuos. Se consideran distribuciones alternativas en 

asimetría y Kurtosis. Los principales resultados indican que no parece existir un método 

de remuestreo mejor en todos los escenarios. 

• Como consecuencia del análisis de los resultados de la anterior simulación, se plantea 

el desarrollo de una herramienta visual que permita explorar el efecto del tamaño de 

muestra en la potencia de los tests de bondad de ajuste. Se define e implementa un 

mosaico gráfico en que las celdas se asimilan a distribuciones de una familia de 

distribuciones parametrizadas según los parámetros de asimetría y Kurtosis.  

• En base a esta herramienta, se aplica inicialmente en la representación del error de tipo 

2 asociado a tests de bondad de ajuste a la distribución Normal.  

• Como segunda contribución de esta herramienta, se compara la potencia de diferentes 

alternativas clásicas para la realización de los tests de normalidad. Respecto a la familia 

de distribuciones considerada, el test que presenta una mayor potencia es el de Shapiro-

Wilks. 
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• El siguiente desarrollo se centra en el objetivo inicial para el que fue diseñado, que 

consiste en visualizar el conjunto de distribuciones del mosaico compatibles con una 

muestra dada. Se observa que el tamaño de la muestra es claramente determinante de 

la extensión en el mosaico de las distribuciones compatibles con la muestra. 

 

Aplicaciones de técnicas estadísticas en hidrología  

Como resultado de una colaboración con un grupo de expertos en el ámbito de la 

hidrología, se plantea la aplicación de técnicas estadísticas avanzadas para resolver 

problemáticas concretas de los datos que analizan. 

Inicialmente, ante la necesidad de obtener predicciones del contenido de agua y 

salinidad de terrenos de regadío, se plantea la utilización de modelos de series temporales 

ARIMA pero incluyendo extensiones por tratamiento de atípicos, análisis de intervención y 

función de transferencia. El objetivo es conseguir modelos válidos que permitan obtener 

predicciones de contenido de agua en el terreno para automatizar el riego.  

• Los modelos ARIMA se basan en reproducir con modelos matemáticos la estructura de 

autocorrelación.  

• El tratamiento de atípicos permite mejorar los modelos incorporando componentes 

asociados a eventos no esperados (episodios de lluvia).  

• El análisis de intervención permite evaluar e incorporar en el modelo componentes 

correspondientes a diseños experimentales (eventos de riego).  

• Finalmente, la relación espacial de las series medidas a diferentes profundidades 

permite mejorar la precisión de las predicciones mediante la incorporación de funciones 

de transferencia en el modelo.  

• El desarrollo de estos métodos fue objeto de un curso impartido en la conferencia EGU 

2016 (European Geosciences Union 2016, Viena) “Modelling soil water time series data 

using R program” 

 Otro problema tratado se basa en la obtención de la serie temporal de salinidad 

(conductividad aparente) a partir de la medición de la conductividad de la componente acuosa 

del terreno. Habitualmente los sensores utilizan una relación física entre ambas variables 

(modelo de Hilhorst) que precisa de la imputación de un parámetro denominado offset. Este 
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parámetro depende de la composición y estado del terreno, por lo que se suele utilizar un valor 

estándar   resultante de experimentación en laboratorio.  

• Se propone la definición de un espacio de estado para el sistema, que incluye el offset y 

la salinidad como variables de estado no observadas, siendo la conductividad del agua 

la serie observada. El modelo resultante es un modelo lineal dinámico. 

• El filtro de Kalman permite evaluar la verosimilitud del modelo a partir de la serie 

observada y por tanto, en combinación con un método numérico de optimización es 

posible obtener el valor de los parámetros del modelo de máxima verosimilitud. 

• Una vez estimado el modelo, la aplicación del alisado procedente del filtro de Kalman 

permite obtener el valor del offset y la serie de salinidad de mayor verosimilitud. 

• Este procedimiento está actualmente en proceso de patente 

Por último, se dispone de datos provenientes de un diseño experimental que recoge 

datos de contenido de metales pesados en la proximidad de una autopista en Alemania. Así 

mismo, se recogen variables climatológicas y ambientales de la zona. La recogida de datos no se 

realiza de forma equiespaciada y el objetivo del estudio se centra en la influencia de las 

covariables en la abundancia de dichos metales. 

• En este caso, la técnica propuesta para el análisis de las medidas repetidas no se basa 

en modelos de serie temporal sino que se proponen el ajuste mediante modelos GAMM. 

• Los modelos GAM permiten relaciones flexibles entre covariables y la respuesta. 

• Es habitual incluir una componente temporal para ajustar la autocorrelación de los 

datos. 

• Puesto que se recogen datos en diferentes puntos, es conveniente añadir una 

componente aleatoria para trabajar con los datos agrupados por la localización (modelo 

mixto). 
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Futuras extensiones 
• Se pretende avanzar en la implementación y evaluación de métodos bootstrap tanto en 

modelos lineales mixtos como en modelos lineales generalizados mixtos.  

• En estos momentos está en fase de revisión un cuarto artículo sobre el mosaico de 

distribuciones unimodales, en el que los parámetros de localización y escala se estiman 

a partir de la muestra (en el artículo incluido en la presente tesis, estos parámetros se 

consideraban conocidos). 

• La colaboración con el equipo de la Universidad Técnica de Berlín continua con el análisis 

de nuevos conjuntos de datos. En concreto, el siguiente problema se basa en la 

modelización del proceso de evaporación de agua en función del tipo de pavimento.
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