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Abstract

The objective of the thesis is to develop a numerical tool to describe how the concen-
tration of one or more substances distributed in a fluid environment changes under the
effect of three transport processes: advection, diffusion and absorption. For that pur-
pose, it is essential to know the interaction of the transported substance with the fluid
medium.

The thesis aims to develop stabilized numerical methods for solving the transport and
fluid flow equations in a coupled manner for greater accuracy, efficiency and speed when
predicting the motion of the transported substances in the fluid. Emphasis is put in the
transport of substances in fluids at high Péclet numbers.

The practical motivation of the work is predicting the transport of a pollutant in air in
urban environments.

The thesis document summarizes the research published in three papers published in
JCR journals of high impact. The author of the thesis is also the first author in the
three papers. The papers are attached to the document in the corresponding chapters.

The description of the thesis developments has been organized as follows. First, we
present the research carried out in the thesis for the development of a generalized sta-
bilized Finite Increment Calculus-Finite Element Method (FIC–FEM) formulation for
solving the multidimensional transient advection-diffusion-absorption equation. The
starting point of the developments are the governing equations for the multidimen-
sional steady advection-diffusion-absorption and the unidimensional transient advection-
diffusion-absorption problems obtained via the FIC procedure. The good behaviour of
the new FIC–FEM formulation is shown in several examples of application. This work
was published in the first of the three papers mentioned.
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In the following chapter we present an innovative numerical method for solving transport
problems with high values of advection and / or absorption. A Lagrangian approach
based on the updated version of the classical Particle Finite Element Method (PFEM)
has been developed to calculate the advection of substances in fluids, while a Eulerian
strategy based on the stabilized FIC–FEM formulation is adopted to compute diffusion
and absorption effects. The new semi-Lagrangian approach has been validated in its
application of a series of academic examples of transport of substances for different
values of the Péclet and Damköhler numbers.

Finally, we derive a procedure for coupling the fluid and transport equations to model
the distribution of a pollutant in a street canyon. In our case, we have considered
black carbon (BC) as the pollutant. The evolution of the fluid flow is calculated with a
standard stabilized finite element method using the Quasi-Static Variational Multiscale
(QS-VMS) technique. For the temperature and pollutant transport we use the semi-
Lagrangian procedure developed in the thesis.

Several examples of application have been solved to illustrate the accuracy and prac-
ticability of the proposed numerical tool for predicting the transport of a pollutant in
air in urban environments. One of the examples are presented in the third paper, while
another academic one is presented in the appendix of this document.



Resumen

El objetivo de la tesis es desarrollar una herramienta numérica para describir cómo
cambia la concentración de una o más sustancias distribuidas en un medio fluido bajo
el efecto de tres procesos de transporte: advección, difusión y absorción. Para ello, es
fundamental conocer la interacción de la sustancia transportada con el medio fluido.

La tesis pretende extender métodos numéricos estabilizados para resolver las ecuaciones
de transporte y flujo de fluidos de manera acoplada para una mayor precisión, eficiencia
y velocidad a la hora de predecir el movimiento de las sustancias transportadas en el
fluido. Se hace hincapié en el transporte de sustancias en fluidos con números de Péclet
elevados.

La motivación práctica del trabajo es predecir el transporte de un contaminante en el
aire en entornos urbanos.

El documento de tesis resume la investigación publicada en tres artículos publicados en
revistas de alto impacto del JCR en los cuales el autor de la tesis también es el primer
autor. Los trabajos se adjuntan al documento en los capítulos correspondientes.

La descripción de los desarrollos de tesis se ha organizado de la siguiente manera. En
primer lugar, presentamos la investigación realizada en la tesis para el desarrollo de
una formulación generalizada estabilizada de cálculo de incrementos finitos - método
de elementos finitos (FIC–FEM) para resolver la ecuación transitoria multidimensional
advección-difusión-absorción. El punto de partida son las ecuaciones que gobiernan los
problemas multidimensionales estacionarios de advección-difusión-absorción y los pro-
blemas de advección-difusión-absorción unidimensionales transitorios obtenidos median-
te el procedimiento FIC. El buen comportamiento de la nueva formulación FIC–FEM
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se muestra en varios ejemplos de aplicación. Este trabajo fue publicado en el primero
de los tres artículos mencionados.

En el siguiente capítulo presentamos un método numérico innovador para resolver pro-
blemas de transporte con altos valores de advección y / o absorción. Se ha desarrollado
un enfoque lagrangiano basado en la versión actualizada del método clásico de elementos
finitos de partículas (PFEM) para calcular la advección de sustancias en fluidos, mientras
que se adopta una estrategia euleriana basada en la formulación estabilizada FIC–FEM
para calcular los efectos de difusión y absorción. El nuevo enfoque semilagrangiano ha
sido validado mediante su aplicación en una serie de ejemplos académicos de transporte
de sustancias para diferentes valores de los números de Péclet y Damköhler.

Finalmente, derivamos un procedimiento para acoplar las ecuaciones de fluido y trans-
porte para modelar la distribución de un contaminante en una calle. En nuestro caso,
hemos considerado el carbono negro (BC) como contaminante. La evolución del flujo de
fluido se calcula con un método estándar de elementos finitos estabilizados utilizando la
técnica Quasi-Static Variational Multiscale (QS-VMS). Para la temperatura y el trans-
porte de contaminantes utilizamos el procedimiento semilagrangiano desarrollado en la
tesis.

Se han resuelto varios ejemplos de aplicación para ilustrar la precisión y viabilidad de la
herramienta numérica propuesta para predecir el transporte de un contaminante en el
aire en entornos urbanos. Uno de los ejemplos se presenta en el tercer artículo, mientras
que otro académico se presenta en el apéndice de este documento.



"Todos los hombres desean por naturaleza saber."
Aristóteles, Metafísica, I, 1, 980a 21
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Chapter 1
Introduction

1.1 Motivation of the thesis

Outdoor air pollution is linked to an estimated 4.2 million premature deaths worldwide
every year [32]. Over 80% of people living in urban areas are exposed to levels of
pollution above the limits established by the World Health Organization [101].

The increasing concern to improve sustainability and air quality in urban areas has
made numerical prediction increasingly important for helping take decisions on how
to build and design cities. Mathematical modeling and numerical simulation of the
dispersion of pollutants in the atmosphere are fundamental tools for supporting an
adequate management of air quality in urban areas. Such numerical tool provides the
necessary information to be able to carry out actions that reduce the impact of pollution
on pedestrians. Also, it can be used to assess the suitability of new urban development
projects to fit pollution standards.

Traffic emissions are one of the most important sources of pollution in cities where
streets are narrow and the configuration of the buildings create the so-called "street
canyons" in which pollutants accumulate. The accurate prediction of the transport of
these pollutants is basic for the design of solutions to minimize the exposure of citizens
to traffic pollution.

Pollutants come mainly from the exhaust pipes of the vehicles moving on the street and
are dispersed through air by means of advection, diffusion and absorption. There are
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different factors to consider in predicting these effects. First, the temperature of the
facades of buildings and the street cause thermal effects that affect the wind speed field
[102]. Secondly, the importance of thermal effects versus the diffusivity induced by air
turbulence must be studied. The wind speed and its direction plays an important role
in the dispersion of a pollutant in air. Finally, the mathematical and computational
models and the numerical parameters chosen are a key factor when simulating these air
transport processes.

The numerical prediction of the distribution of a pollutant in a street canyon is an
important and complex environmental problem, as well as an architectural one. The
construction of more efficient cities in terms of environmental pollution has architectural
difficulties in the sense that the requirements for these constructions can be difficult to
meet. The transport of pollutant particles in air has been studied by several authors
[14, 42, 50, 90]. Finite Element Methods (FEM) have been used mainly for air pollution
simulations at a microscale range (i.e. for street canyons) [14, 42, 50, 90]. In these kind
of problems, microscale – that is the street scale – processes dominate the numerical
solution [59].

The equations that govern the dynamics of a substance transported by a fluid cannot
be solved by analytical methods for practical cases and, hence, numerical methods are
needed to find useful solutions. One of the main problems with using these tools is the
fact that many of them only work for a specific range of situations and parameters. In
this thesis we have aimed to develop an accurate tool, as general as possible, that is
capable of carrying out simulations for pollution transport in fluids, for a wide range of
the physical parameters, without introducing instabilities.

Improvements in current mathematical modeling and computational capabilities allow
addressing the solution of complex coupled fluid flow-transport problems,incorporating
different physical phenomena into the governing equations.

The numerical modelling of the transport of substances in fluids has several applications
of practical interest. Among these we note:

• Study of the environmental impact of a pollutant in air in a metropolitan area in
order to identify the main contributors to existing air pollution problems, manage
existing focus of emissions or forecasting pollution episodes.

• Study of environmental pollution, be it the quality of air or of water in rivers and
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aquifers.

• Study of the dispersion of dissolved substances in estuaries and coastal seas.

The above applications are examples of the several possibilities of the numerical methods
developed in the thesis.

1.2 Objectives

The main objective of the thesis is to develop an accurate and robust numerical tool
to describe how the concentration of one or more substances distributed in a fluid envi-
ronment changes under the effect of three transport processes: advection, diffusion and
absorption. To this end, the thesis has successfully addressed the following goals:

• Improvement of an existing stabilized finite element method (FEM) based on the
Finite Increment Calculus procedure (hereafter called the FIC–FEM technique)
for solving the advection-diffusion-absorption equations in two-dimensional (2D)
and 3D stationary cases.

• Generalization of the stabilized FIC–FEM procedure to 2D and 3D transient
advection-diffusion-absorption problems. For this purpose, we have developed and
validated with existing numerical solutions two different numerical strategies:

– A transient Eulerian formulation based on the stabilized FIC–FEM technique.

– A transient semi-Lagrangian formulation combining a stabilized FIC–FEM
procedure and an innovative particle-based method (PFEM2).

• Development of the necessary numerical tools for the coupled solution of the
advection-diffusion-absorption equations with the Navier-Stokes equations for an
incompressible fluid. The goal has been the combined resolution of thermal fluid
flows and the transport of substances in the fluid.

• Application of the stabilized numerical methods developed in the thesis to practical
problems of transport of pollution substances in air in order to show the practical
capabilities of the methods.
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1.3 State of the art

The solution of advection-diffusion-absorption problems with numerical methods has
been a challenge for researchers in this field. It is well known that in solving advection
dominated situations the numerical solutions suffer from inherent negative diffusions
when a centered finite difference discretization of the convective terms (or a Galerkin
FEM) is used [33, 74, 106]. This lack of stability can be partially overcome with a
refinement of the mesh/grid used for the computations. Unfortunately, this approach is
not viable for practical 3D problems due to the simulation cost that it introduces.

It is also known that the numerical solutions of the advection-diffusion-absorption prob-
lem with the Galerkin FEM tend to show global, Gibbs and dispersive oscillations
[22, 106]. The stationary solution with the FEM exhibits spurious global oscillations for
the convection dominant case. Local Gibbs oscillations are also displayed along the char-
acteristic layers for 2D/3D convective problems. For the case of dominant absorption,
on the other hand, Gibbs oscillations can be found near the Dirichlet conditions and in
regions where the source term is not distributed regularly. In addition, the solution of
the transient problem can show dispersive oscillations when the initial solution and / or
the source term are irregularly distributed.

Considerable effort has been invested in recent years to derive stabilized FEM that
overcome the above-mentioned misbehaviours in order to accurately solve advection-
diffusion-absorption problems. Among these we highlight Artificial Diffusion [33, 74,
106], Taylor-Galerkin [22],Streamline-Upwind Petrov-Galerkin (SUPG) [7, 34, 37], Char-
acteristic Galerkin (CG) [23, 52], Galerkin Least Squares (GLS) [36], Bubble Functions
[5, 6], Variational Multiscale (VMS) [30, 35, 76] and Finite Increment Calculus (FIC)
[61, 65–67, 69, 73] procedures.

The developments in this thesis are focused on extensions of the FIC–FEM procedure
developed in recent years by one of the thesis supervisors and his research team [67–70].
The FIC–FEM procedure allows to reinterpret and derive most stabilized numerical
methods using physical arguments. The FIC–FEM approach has also proved to be
efficient in the finite element solution of steady-state and transient advection-diffusion-
absorption and fluid flow problems [61, 65–70, 73].

In the last decades, various authors have investigated ways of solving transient problems
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for advection-dominant (i.e. high-Péclet numbers) problems. For instance, Sevilla et al.
[83] studied the influence of the number of integration points in the accuracy of the
computation, using high-order curved stabilized FEM and proved that they were one
order of magnitude more accurate than classical isoparametric FEM.

However, these numerical techniques, which can all be seen as the addition of artificial
diffusion terms to the discretized form of the governing equations, tend to spoil the accu-
racy of the numerical solution in highly advective cases where the physical diffusion plays
almost no role. This difficulty needs to be faced, as problems involving high-Péclet num-
bers (Pe) are common in many practical situations, namely the study of environmental
pollution [8], the simulation of microfluidic channels [92] or some electrohydrodynamics
phenomena [87], among others. Idelsohn et al. [38] have recently developed a method
which gets rid of these numerical instabilities calculating several scales although it can
be too costly with large domains.

Lagrangian, Eulerian-Lagrangian and other combined formula-
tions

Numerical methods based on fully Lagrangian formulations have been developed for
high-Péclet flows. For instance, in [79] good results for the convection-diffusion equa-
tions coupled to the incompressible flow equations were obtained using two Lagrangian
methods. Although Lagrangian methods are less time consuming than Eulerian ones,
they can only transport a substance along a single trajectory per particle. Lagrangian
methods are used primarily for long-range calculations and they require the addition of
a large number of particles over the analysis domain for higher accuracy in diffusive and
absorptive problems.

A third option that exploits the benefits of a combined Eulerian-Lagrangian procedure
has been studied to solve the advection-diffusion equation [9, 10, 58]. Many of these
studies have proved that a splitting of the numerical solution into a Eulerian and a La-
grangian one can overcome the problem of the excessive numerical diffusion observed in
stabilized Eulerian methods for high Péclet numbers. The Eulerian-Lagrangian splitting
can accurately solve the advective part of the transport equation using a Lagrangian
method and then calculate the diffusion (or diffusion-absorption) problem via a Eulerian
numerical technique.
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Several numerical techniques have been developed within the context of combined meth-
ods, such as the Eulerian-Lagrangian method mentioned in the previous lines. For in-
stance, a combination of the Backward Method of Characteristics with various Eulerian
methods such as finite differences or the FEM was studied in [3]. Good results were
obtained for high Courant numbers, but no clear conclusion was reached on stability
and convergence. Cady [9] used a Modified Method of Characteristics together with
finite differences and the Galerkin method but found accuracy problems.

In the following years, the problem of global mass conservation due to time integration
was addressed. In 1998, Healy and Russell [31] proposed the finite volume Eulerian-
Lagrangian localized method with a forward tracking of the characteristics that lead to
better results in comparison with previous methods. The performance of four Eulerian-
Lagrangian solvers that relied on different interpolators was studied in [80], where it was
found that a taut spline interpolator yielded accurate solutions for high-Péclet numbers.
This approach, based on a forward tracking algorithm, proved to be more efficient than
other methods such as the Petrov-Galerkin technique, for this kind of problems. The
accuracy of the Petrov-Galerkin method was improved with the FIC–FEM approach in
[68, 70, 77]. Other combined schemes based on Eulerian-Lagrangian localized adjoint
methods have been proposed to solve the advection-reaction equations with different
tracking algorithms such as the Euler and Runge-Kutta [94].

In the early 2000’s, Young et al. studied several Eulerian-Lagrangian methods such as
the Eulerian-Lagrangian Boundary Element Method [104], which provided the solution
for low numerical diffusion and the Eulerian-Lagrangian method of fundamental solu-
tions [103], which is a mesh-free method that combines the simplicity of a Eulerian solu-
tion on a fixed cloud of points and the computational power of the Lagrangian method.
More recently, Wang et al. have studied a Eulerian-Lagrangian Discontinuous Galerkin
Method [95, 97] and a Modified Method of Characteristics with an adjusted advection
procedure [96] for the transient advection-diffusion equations. In 2012, Al-Lawatia [1]
developed a mass conservative Eulerian-Lagrangian control volume scheme for solving
the same equations in two dimensions (2D), based on the Eulerian-Lagrangian local-
ized adjoint method [31]. In [60], a method for the solution of the advection-diffusion-
absorption equations was presented. In 2019, a high-order parallel Eulerian-Lagrangian
algorithm for advection-diffusion problems on unstructured meshes was proposed [88]. In
2020, another combined numerical technique based on an explicit, discontinuous spectral
element method (DSEM) discretization of the Eulerian equations was developed [57].
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In the thesis we have used this bakckground knowledge for deriving a new Eulerian-
Lagrangian procedure for solving the advection-diffusion-absorption of a scalar field
(either the temperature of a pollution field) and for coupling this numerical technique
with the solution of the Navier-Stokes equations for an incompressible thermal flow.
As previously mentioned, the practical goal of the work is the accurate modelling and
simulation of the transport of pollution substances in air.

The importance of accurately predicting air pollution transport

The increasing awareness recently seen in many cities around the world to reduce green-
house emissions and, therefore, improve their air quality has made numerical prediction
methods take on more and more relevance when designing and building these areas.
FEM methods have been used mainly for air pollution simulations at a microscale range
(i.e. for street canyons) [14, 43, 51, 90].

Both Lagrangian and Eulerian methods (instead of Gaussian models) have been used
for these smaller scale simulations. The Micro Scale Air Pollution Model (MISCAM)
[24], for instance, is a Eulerian model used to study dispersion of pollutants in dense
urban areas. GEOS-Chem is another Eulerian model which can be used to solve mixing
of chemical components in the atmosphere on a regional scale [4]. Yet another Eulerian
modelling system is the WRF-Chem which takes into account chemical reactions, tur-
bulence, emissions and the meteorological data at urban and regional scales [27]. The
Community Multi-scale Air Quality (CMAQ) is another Eulerian model used for air
quality simulations at small and large space scales [98]. Although these models work for
different space scales, most of them focus on larger domains than the microscale. Two
examples of Lagrangian methods are the NAME and the FLEXPART models, used for
smoke tracking and epidemic evolution predictions [81, 85].

Various mathematical models have been used in the past to study air quality in urban
areas and can be classified in three main family models: Gaussian, Lagrangian and
Eulerian dispersion models. Gaussian parametrical models are based on the well known
analytical solution for the Gaussian plume distribution [54] and they provide reliable
results at the mesoscale. Gaussian models include AERMOD [16], CTDM [75] and
ADMS [11–13], among others. AERMOD is a steady-state dispersion model developed
by the US Environmental Protection Agency (EPA) and is generally used to simulate
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plumes in the mesoscale. The EPA also developed the Complex Terrain Dispersion
Model (CTDM), which is able to get rid of the simulation cost of the mesoscale wind
computation. ADMS is a British atmospheric dispersion modeling system which can
take into account different locations (urban, coastal or mountain areas) and is able
to calculate the interaction of several plumes in an urban area accounting for chemical
processes. Since Gaussian plume models are not based on the fluid mechanics equations,
they do not provide accurate results for more complex problems [89]. Also, they provide
poor results in situations in which the Péclet number is low i.e. diffusive dominant [47]
and they cannot account for chemical reactions [53]. As the geometry gets more complex
at the microscale range, other models based on the numerical solution of the fluid flow
equations at the street level have appeared.

Lagrangian and Eulerian methods are generally used for smaller scale numerical simu-
lations. Eulerian methods aim to solve the fluid transport equations in a fixed reference
frame. The Micro Scale Air Pollution Model (MISCAM) [24], for instance, is an Eule-
rian model used to study dispersion of pollutants in dense urban areas. GEOS-Chem is
an Eulerian model which can be used to solve mixing of chemical components in the at-
mosphere at a regional scale [4]. Another Eulerian modeling system is the WRF-Chem,
which takes into account chemical reactions, turbulence, emissions and the meteoro-
logical data at urban and regional scales [28]. The Comunity Multi-scale Air Quality
(CMAQ) is yet another model used to predict air quality simulations at urban and
regional scales [99]. Although these models work on various scales, most of them fo-
cus on larger domains than the microscale. Lagrangian methods, on the other hand,
transport a property using single point particles, which simplifies and reduces numerical
diffusion in advection-dominant processes, many times at the expense of increasing the
computational cost. They are used primarily for long-range calculations. Two exam-
ples of Lagrangian methods are the NAME and the FLEXPART models, used in smoke
tracking and epidemic situations [82, 86].

A more extensive classification of dispersion models can be found in [93].

In the thesis we have developed a new Eulerian-Lagrangian numerical procedure for
tracking the transport of substances in air. The resulting method does not require
adding stabilization terms for dealing with high advective effects while providing stable
and accurate numerical solutions for transport problems at high Péclet and Damköhler
numbers.



Organization 9

Kratos framework

The software implementation of the formulation has been done by the author of the thesis
in Kratos Multiphysics [21, 44], which is an Open-Source framework for building parallel
multi-disciplinary simulation software. Modularity, extensibility and High Performance
Computing (HPC) are some of its main objectives. Kratos has BSD licence and is
written in C++ with extensive Python interface.

Kratos provides a core which defines the common framework (databases, linear algebra,
solvers, etc.) and several applications which work like plug-ins that can be extended in
diverse fields.

The implementations of this thesis have given as a result the "FluidTransport Applica-
tion".

The main features of the numerical approach to be developed in the thesis are outlined
in the next section.

1.4 Organization

The thesis is organized as follows.

In Chapter 2 we present the stabilized FIC–FEM formulation for the multidimensional
advection-diffusion-absorption transient equation. The new formulation is validated
through various transient advection-diffusion-absorption problems.

In Chapter 3 we present the numerical method developed in the thesis for solving
advection-diffusion-absorption problems with high advection and/or absorption values
to overcome the numerical diffusivity of those cases. Several examples are shown to
assess the robustness and accuracy of the new numerical procedure.

In Chapter 4 we present a procedure for coupling the fluid and transport equations to
model the distribution of a pollutant in a street in Barcelona. This represents a practical
application of the semi-Lagrangian method presented in the second article coupled with
fluid equations.

Finally, Chapter 5 summarizes the most relevant conclusions of this work, pointing out
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the main achievements of the thesis. In the end, the future lines of work are outlined.

In Appendix A we present an application of the numerical formulation developed in the
thesis to validate it through an academic example. This study has been made in parallel
with the third paper, presented in Chapter 4.



Chapter 2
FIC–FEM formulation for the
multidimensional transient
advection-diffusion-absorption equation

2.1 Article data

Title: FIC–FEM formulation for the multidimensional transient advection-diffusion-
absorption equation.

Authors: A. Puigferrat, I. de-Pouplana and E. Oñate

Journal: Computer Methods in Applied Mechanics and Engineering 365 (2020) 112984

Received: 2 October 2019 / Accepted: 1 March 2020 / Available online: 21 March 2020

DOI: 10.1016/j.cma.2020.112984

2.2 Introduction

The numerical solution to the advection, diffusion and absorption problem is prone to
exhibit global, Gibbs and dispersive oscillations, which require the application of specific
stabilization techniques to control instabilities. The local Gibbs oscillations appear along

https://doi.org/10.1016/j.cma.2020.112984
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the characteristic layers in advection-dominated problems. For absorption-dominated
cases, Gibbs oscillations can be found near the Dirichlet boundaries and in regions where
the distributed source term is nonregular. Also, the solution of the transient problem
may exhibit dispersive oscillations when the initial solution and/or the distributed source
term are nonregular [70].

Various techniques for solving these problems can be found in literature, such as the
Petrov-Galerkin method [7, 34, 37, 41, 52], the Galerkin Least Squares (GLS) method
[25, 36], the Variational Multiscale (VMS) method [35] or the characteristic split proce-
dure [105, 106].

In this paper we have chosen the Finite Increment Calculus (FIC) stabilization technique
which has been widely used to solve problems involving quasi and fully incompressible
fluids and solids with the FEM [15, 61–64, 71, 72]. The FIC technique is based on
expressing the equations of balance of mass and momentum in a space/time domain of
finite size and retaining higher-order terms in the Taylor series expansion used for ex-
pressing the change in the transported variables within the balance domain. In addition
to the standard terms of infinitesimal theory, the FIC form of the balance equations
contains derivatives of the classical differential equations multiplied by characteristic
distances in space and/or time [61–64, 71, 72].

Therefore, the objective of this part of the thesis is the improvement of an existing
stabilized finite element method (FEM) based on Finite Increment Calculus for solving
the advection-diffusion-absorption equations in two-dimensional (2D) and 3D stationary
cases and the generalization and extension of the stabilized FIC–FEM procedure to 2D
and 3D transient advection-diffusion-absorption problems. These objectives have been
successfully achieved. Details of the mathematical and numerical models developed are
given in the paper attached to this chapter.

The content of the paper has been organized as follows. In the first section we for-
mulate the FIC form of the equations governing multidimensional transient convection-
diffusion-absorption problems. The finite element discretization is then presented. The
stabilization parameters are obtained as an extension of the expression for the station-
ary case [68]. The accuracy of the multidimensional transient FIC-FEM formulation is
finally verified in the solution of a number of 2D transient advection-diffusion-absorption
problems using uniform meshes of 3-noded triangles and 4-noded quadrilateral elements.
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First we solve a transient advection-diffusion-absorption problem to show the capabilities
of the method and validate the results, then three validation problems that result in
a steady state are run. After these examples, a purely convective problem with no
concentration loss is solved with an explicit scheme and, finally, the advection-diffusion
of a concentration drop is calculated in the last example.

2.3 Scientific contribution

This chapter of the compendium presents a novel stabilized FIC–FEM formulation for
the multidimensional transient advection-diffusion-absorption equation.

The stabilized variational expression has the standard residual form typical of the FIC–
FEM procedure. The stabilized terms introduced by the FIC approach depend on a char-
acteristic element length and two stabilization parameters whose expression is obtained
as an extension of the transient 1D form presented in [68] and the multidimensional
steady-state forms presented in [70].

A shock capturing term is introduced to account for the Gibbs oscillations across inter-
nal/boundary layers. The good behavior of the FIC–FEM formulation has been verified
for transient advection-diffusion-absorption problems with numerical solutions evolving
to a steady-state, as well as to two fully transient problems.

The results obtained in this part of the thesis are a very first step towards the final
objective of the thesis. More specifically, the outcomes of this research have been the
starting point for the developments in following chapters.
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Abstract

In this paper we present a stabilized FIC–FEM formulation for the multidimensional transient advection–diffusion–absorption
equation. The starting point is the non-local form of the governing equations for the multidimensional transient advection–
diffusion–absorption problems obtained via the Finite Increment Calculus (FIC) procedure. The FIC governing equations have
a residual form that introduces a characteristic length vector that depends on streamline, absorption and shock capturing
stabilization parameters, as well as on a characteristic element size that ensures a stabilized numerical solution using a standard
Galerkin FEM. The value of the stabilization parameters is obtained as an extension of the steady-state form. The accuracy of
the FIC–FEM formulation is verified in the solution of several transient advection–diffusion–absorption problems using regular
meshes of 3-noded triangles and 4-noded quadrilaterals.
c⃝ 2020 Elsevier B.V. All rights reserved.

Keywords: Advection–diffusion–absorption; Transient solution; Multidimensional; Finite element method; Finite increment calculus; FIC

1. Introduction

The numerical solution of the advection–diffusion–absorption equation by the Galerkin FEM can exhibit
oscillations due to a number of reasons. For the stationary convection-dominated case global oscillations in the
analysis can be found, as well as local Gibbs oscillations along the characteristic layers for 2D and 3D problems.
Gibbs oscillations near the Dirichlet boundaries and in regions where the source term has an irregular distribution
can also appear for stationary absorption-dominated problems. For transient problems dispersive oscillations can
appear when the initial solution and/or the distributed source term are non regular [1,2].

A number of numerical procedures has been derived in recent decades aiming to overcome the above limitations
of Galerkin FEM for solving advection–diffusion–absorption problems. The goal in all cases has been to obtain
“stabilized” numerical solution that is free of spurious oscillations and has a physical meaning. Among the many
procedures we can mention the family of streamline-upward Petrov–Galerkin (SUPG) methods. The original SUPG
methods for advection–diffusion problems [3–7] where enhanced with the addition of non linear shock-capturing
terms aiming to control the Gibbs oscillations across internal/boundary layers for advection–diffusion problems

∗ Corresponding author at: Universitat Politècnica de Catalunya (UPC), Barcelona, Spain.
E-mail address: onate@cimne.upc.edu (E. Oñate).
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[8–16]. Other families of stabilized methods for this type of problems were based on Galerkin Least Squares
(GLS) [17], Variational Multiscale (VMS) [18] and Characteristic split procedures [2,19]. Many of these methods
are reviewed in [20].

Control over the dispersive oscillations for transient advection–diffusion problems via SUPG methods and
space–time FEM were reported in [21] and [22], respectively.

Extensions of the SUPG method for advection–diffusion–reaction problems were reported in [23–25]. Other
stabilization techniques for these problems were based in the GLS method [26,27], the addition of internal
bubbles [28–33] and on variations of VMS procedures [34–38]. A review of some of these methods is presented
in [39].

Oñate et al. [40,41] derived a non linear stabilization procedure for the steady state advection–diffusion–
absorption problem using a single stabilization parameter via a Finite Increment Calculus (FIC) approach. Oñate
and Felippa [42] used the variational FIC method for obtaining exact nodal solutions for 1D diffusion–reaction
problems (including Helmholtz problems) using also a single linear stabilization parameter.

The homogeneous steady advection–diffusion–reaction equation has typically two fundamental solutions. This
has led the way to the derivation of linear stabilized methods that provide nodally exact solutions in 1D using two
stabilization parameters via internal bubbles [31], SUPG [27] and VMS [37] procedures.

A particular class of two-parameter stabilized models for 1D and multidimensional steady and transient
advection–diffusion production problems using the FIC approach and the FEM was presented by Nadukandi, Oñate
and Garcı́a-Espinosa [43,44].

Starting from a different perspective, but still within the FIC framework, Oñate, Miquel and Nadukandi [45]
presented a FIC–FEM formulation for the 1D steady-state and transient advection–diffusion–absorption equations
using two linear stabilization parameters. The FIC–FEM formulation yielded exact nodal solution for 1D steady-state
problems using regular meshes of 2-noded linear elements. Very accurate results were also obtained in [45] for 1D
stationary problems solved with irregular meshes, as well as for 1D transient problems. The FIC–FEM formulation
presented in [45] was extended by the same authors in [46] to multidimensional steady-state advection–diffusion–
absorption problems. Good results were obtained for the problems analyzed using linear 3-noded triangles and
bilinear 4-noded quadrilaterals.

In this work we extend to the multidimensional transient case the 1D FIC–FEM formulation presented in [46].
The lay-out of the paper is the following. In the next section we formulate the FIC form of the equations
governing multidimensional transient convection–diffusion–absorption problems. The finite element discretization
is then presented. The stabilization parameters are obtained as an extension of the expression for the stationary
case [45]. The accuracy of the multidimensional transient FIC–FEM formulation is verified in the solution of a
number of 2D transient advection–diffusion–absorption problems using uniform meshes of 3-noded triangles and
4-noded quadrilateral elements. Accurate solutions are obtained in all cases.

2. The multidimensional transient advection–diffusion–reaction problem

2.1. Governing equations

Transport balance
The transport balance equation in a domain of area/volume Ω can be expressed as

rt = 0 in Ω (1a)

with

rt := ρc
(

∂φ

∂t
+ vT

∇∇∇φ

)
− ∇∇∇

T D∇∇∇φ + sφ − Q (1b)

For 3D problems,

v = [v1 , v2 , v3]T , D =

⎡⎣ k1 0 0
0 k2 0
0 0 k3

⎤⎦ , ∇∇∇ =

[
∂

∂x1
,

∂

∂x2
,

∂

∂x3

]T

(2)

In Eqs. (1a)–(1b) φ is the transported variable (i.e., the temperature in a heat transfer problem or the concentration
in a mass transfer problem), vi is the i th component of the velocity vector v; ρ, c and ki are the density, the specific
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flux parameter and the conductivity of the material along the i th global direction, respectively and s is the reaction
parameter. In the following, and unless otherwise specified, we will assume that the velocity field is solenoidal and
that the problem parameters (ρ, c, k, s) are constant over the analysis domain Ω .

Boundary conditions

φ − φ p
= 0 on Γφ (3)

rΓ = 0 on Γq (4)

with

rΓ := −qn + q p
n (5)

where

qn = qT n , q = −D∇∇∇φ (6)

In Eqs. (3)–(6) φ p and q p are the prescribed values of the transported variable and the outgoing diffusive flux
at the Dirichlet and Neumann boundaries Γφ and Γq , respectively, with Γφ ∪ Γq = Γ , Γ being the total boundary
of the domain and n is the unit vector normal to the boundary.

The definition of the problem is completed with the initial conditions

φ(x, t0) = φ0(x) (7)

where φ0(x) is the value of the transported variable at time t = t0.
In this work we will consider cases for which s ≥ 0 only. This includes the following particular problems:

(i) Advection–diffusion–absorption (|v| ̸= 0, K ̸= 0, s > 0).
(ii) Advection–diffusion (|v| ̸= 0, K ̸= 0, s = 0).

(iii) Diffusion–absorption (|v| = 0, K ̸= 0, s > 0).
(iv) Advection–absorption (|v| ̸= 0, K = 0, s > 0).

In the above K is the average diffusion given by K =

[
1

nd

∑nd
i=1(ki )2

]1/2
, where nd is the number of space

dimensions (i.e. nd = 2 for 2D problems).

2.2. Finite increment calculus (FIC) expressions

The governing equations (1a) and (1b) and the boundary conditions (3)–(6) are expressed using the FIC theory
as [41].

Transport balance

rt −
1
2

hT
∇∇∇rt = 0 in Ω (8)

with h = [h1, h2, h3]T in 3D.

Boundary conditions

φ − φ p
= 0 on Γφ (9a)

rΓ +
1
2

hnrt = 0 on Γq , with hn = hT n (9b)

Eqs. (8) and (9b) are obtained by expressing the balance of fluxes in an arbitrary prismatic space domain of
size h1 × h2 × h3 within the global problem domain and at the Neumann boundary, respectively. The distances hi
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are termed characteristic lengths of the FIC method. The variations of the transported variable within the balance
domain are approximated by Taylor series expansions retaining one order higher terms than in the infinitesimal
theory [47]. This higher order expansions lead to the underlined terms in Eqs. (8) and (9). These terms lead naturally
to stabilized numerical schemes.

Note that as the characteristic length vector h tends to zero the FIC governing equations gradually recover the
standard infinitesimal form, giving in the limit (for h = 0) rt = 0 in Ω and rΓ = 0 on Γq .

The stability and accuracy of the numerical solution depends on the components of the characteristic length vector
h. At the discretization level the length of h is usually expressed as a proportion of a typical grid dimension [47].

The FIC equations are the starting point for deriving different stabilized numerical methods. Combining the FIC
equations with the Galerkin FEM leads to the so-called FIC–FEM procedure that has been successfully applied to
the solution of many problems in convective transport, fluid and solid mechanics such as advection–diffusion [16,
47–49], diffusion–absorption and Helmholtz [42], advection–diffusion–absorption [40,41], advection–diffusion–
reaction [45], incompressible fluid flow [50–54], fluid–structure-interaction [55–57], particle–laden flows and
standard and incompressible solid mechanics [58–60]. The FIC approach has also been applied to the solution
of a variety of problems in mechanics using the meshless finite point method [61–64].

3. Definition of the characteristic length vector

The characteristic length vector h is designed so that the expression for all the stabilization matrices and vectors
reduces to those given for the 1D case as reported in [45].

With this objective in mind the following expression for the characteristic length vector has been chosen in this
work

h = hv + hr + hsc (10)

The characteristic length vectors in the r.h.s. of Eq. (10) are defined as follows.

Streamline characteristic length vector, hv

In Eq. (10) hv is a length vector along the velocity direction defined as

hv = αvlv
v
|v|

= αvlv v̂ (11)

where αv is a streamline stabilization parameter, lv is a characteristic element dimension and v̂ is a unit velocity
vector.

Absorption characteristic length vector, hr

In Eq. (10) hr is a characteristic length vector induced by absorption effects and defined as

hr = Hr∇∇∇φ with Hr =
2sgn(rt )

rs

[
Ds + αr Dv̂v̂T ] (12a)

where αr is an absorption stabilization parameter, D = v̂T Dv̂ and rs is the space residual defined as

rs := rt − ρc
∂φ

∂t
(12b)

Matrix Ds in Eq. (12a) is defined for different element types as follows.

3-noded triangles and 4-noded tetrahedra

Ds =
s

(n + 1)

n∑
i=1

li lT
i (13)

where li is the vector joining the baricenter of the element and the i th node, and n is the number of nodes of the
element.

The diffusion introduced by matrix Ds takes care of the instabilities induced by the irregularity of the triangular
mesh near boundaries that develop parabolic layers [46].
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Any other element Ds = [0]

Shock capturing characteristic length vector hsc

In Eq. (10) hsc is a shock-capturing characteristic length vector in the direction of the gradient of the solution.
This vector accounts for the Gibbs oscillations across characteristic internal/boundary layers in the numerical
solution for advection–diffusion problems. It is defined as

hsc = hsc∇̂∇∇φ (14a)

where ∇̂∇∇φ =
∇∇∇φ

|∇∇∇φ|
is the unit gradient vector, and

hsc = (1 − β2)
[

lscsgn(rs) −
2|∇∇∇φ|

rs
(D + Ds) : (I − v̂v̂T )

]
(14b)

In Eq. (14b) β is a non linear parameter that depends on the angle θ between the velocity vector and the gradient
vector. It is defined as

β =

{
1 if θ < θc

v̂T
∇̂∇∇φ if θ ≥ θc

(14c)

where θc is a critical angle. In this work we have taken θc = 20◦.
The parameter β controls the amount of shock-capturing nonlinear diffusion active at any point of the

domain [46]. When the gradient vector is parallel to the velocity vector then β = 1, hsc vanishes and the linear
stabilization terms suffice to diminish spurious numerical oscillations about the layers. The term 1−β2 in Eq. (14b)
gradually increases the magnitude of the shock-capturing term from zero, when the gradient vector is aligned to
velocity vector, to a maximum value when the layer gradient is orthogonal to the velocity.

The shock capturing term is neglected in fully transient problems in which the transported variable has space
gradients that move in time within the analysis domain. Examples are the convection of a temperature plateau
(Section 7.5) or the advection–diffusion of a concentration field (Section 7.6). Introducing shock capturing effects
in these cases leads to an excessive and unrealistic numerical diffusion.

4. FIC-FEM formulation for the multidimensional transient advection–diffusion–absorption problem

4.1. Weighted residual form of the FIC equations

The weighted residual form of the FIC governing equations (8) and (9) is written as∫
Ω

W (rt −
1
2

hT
∇∇∇rt )dΩ +

∫
Γq

W (−qn + q p
n +

1
2

hnrt )dΓ = 0 (15)

where W are arbitrary weighting functions.
Integrating by parts the FIC term in the first integral of (15) gives∫

Ω

(
W +

1
2

(∇∇∇T W )h
)

rt dΩ +

∮
Γq

W (−qn + q p
n )dΓ = 0 (16)

Note that the FIC term has vanished from the boundary integral, as it is usual in the FIC–FEM approach [47,65].
Let us substitute the expression for the characteristic vector h of Eq. (10) into Eq. (16). This gives (using

Eqs. (11), (12a) and (14a))∫
Ω

[
Wrt +

1
2

(∇∇∇T W )
(

αvlv v̂ + Hr∇∇∇φ + hsc
∇∇∇φ

|∇∇∇φ|

)
rt

]
dΩ +

∮
Γq

W (−qn + q p
n )dΓ = 0 (17)

The final step is the integration by parts of the diffusive term in the expression of rt in the first term of the
first integral of Eq. (17). This gives, after replacing the definition of Hr in Eq. (17) and grouping some terms, the
following expression for the weak variational form of the FIC governing equations∫

Ω

[
ρcW̄

∂φ

∂t
+ ρcW vT

∇∇∇φ + (∇∇∇T W )DT∇∇∇φ + W sφ +
1
2

(∇∇∇T W )hvsφ
]

dΩ +∫
Ω

1
2

(∇∇∇T W )h
[
−∇∇∇

T (D∇∇∇φ) − Q
]

dΩ −

∫
Ω

W QdΩ +

∮
Γq

Wq p
n dΓ = 0 (18)
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The space weighting function W̄ in Eq. (18) is given by

W̄ = W +
1
2

hT
v ∇∇∇W (19)

The expression of the total diffusivity matrix DT in Eq. (18) is

DT = D + αvDv + Ds + αr Dv̂v̂T
+ DscI (20)

where D and Ds are defined in Eqs. (2) and (13), respectively, I is the unit matrix and

Dv =
lv
2

v̂vT (21a)

Dsc =

(
1
2

lsc

|rt |

|∇∇∇φ|
− (D + Ds) : (I − v̂v̂T )

)
(1 − β2) (21b)

4.2. FIC-FEM Equations

We interpolate the transported variable φ in the standard FEM fashion over a mesh of elements with n
nodes [2,66] as

φ ≃ φ̂ =

n∑
i=1

Niφi (22)

where Ni denotes the usual shape function associated to the nodal global point i , φi is the value of φ at the nodal
global point i (hereafter denoted as nodal variables) and n denotes the number of points of the mesh.

Introducing Eq. (22) into the FIC variational form (18) and using a Galerkin approach (Wi = Ni ) gives the final
system of discretized equations as

Mφ̇φφ + [K + C + S]φφφ = f (23)

where φφφ = [φ1, φ2, . . . , φN ]T is the vector of nodal unknowns, with N being total number of nodes in the mesh.
The rest of matrices and vector f in Eq. (23) are obtained in the standard FEM fashion by assembling the element

contribution given by

Me
i j =

∫
Ωe

ρcNi N j dΩ +

∫
Ωe

ρc
1
2

(∇∇∇T Ni )hv N j dΩ (24)

Ke
i j =

∫
Ωe

(∇∇∇T Ni )DT∇∇∇N j dΩ −

∫
Ωe

1
2

(∇∇∇T Ni )h∇∇∇
T (D∇∇∇N j )dΩ (25)

Ce
i j =

∫
Ωe

ρcNi vT
∇∇∇N j dΩ (26)

Se
i j =

∫
Ωe

s Ni N j dΩ +

∫
Ωe

1
2

(∇∇∇T Ni )hvs N j dΩ (27)

fe
i =

∫
Ωe

(
Ni +

1
2

(∇∇∇T Ni )h
)

QdΩ −

∮
Γ e

q

Ni q p
n dΓ (28)

We note that the second integral in Eq. (25) vanishes for linear finite element approximations, such as those used
in this work.

Good results have been obtained for the solution of the problems presented in this paper using a lumped form of
matrix M. An exception is the problem of the evolution of a concentration field presented in Section 7.6 for which
using the consistent form of matrix M given in Eq. (24) was essential to reduce excessive diffusion.

5. Transient solution scheme

5.1. Implicit time integration scheme

We discretize in time the system of Eq. (23) using a Generalized Trapezoidal rule [66,67]. The solution for the
nodal values at a time instant is found using an incremental iterative strategy as

i Hn∆φφφ = −
i rn

t (29)
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i Hn
=

1
θ∆t

M +
i Kn

+ C + S (30)

i rn
t := Mφ̇φφ + [i Kn

+ C + S]iφφφn+θ
−

i fn (31)

where ∆φφφ is the increment of the nodal variables, θ is a non dimensional time parameter with 0 ≤ θ ≤ 1. A value
of θ > 0.5 is required for the integration scheme to be unconditionally stable [2,66,67], (·)n denotes values at time
t = tn and i (·) denotes values at the i th iteration.

In Eq. (31) we define φ̇φφ =
φφφn+θ

−φφφn

θ∆t .
From the value of ∆φφφ obtained from solving Eq. (29) we compute the value of φφφn+θ at the i + 1 iteration as

i+1φφφn+θ
=

iφφφn+θ
+ ∆φφφ (32)

The iterative solution at tn+1, i+1φφφn+1, is obtained as

i+1φφφn+1
=

1
θ

i+1φφφn+θ
+

(
1 −

1
θ

)
φφφn (33)

The non-linearity in the expression of matrix H in Eq. (30) is due to the dependence of the shock-capturing term
in matrix K via matrix Dsc (see Eq. (21b)).

The iterations proceed until convergence is achieved for both the unknown φ and the residual measured in a L2
norm. In the transient problems solved in this work, convergence within each time step was typically achieved in
2–3 iterations.

5.2. Explicit time integration scheme

If we rewrite the residual in Eq. (31) choosing θ = 0 and defining now φ̇φφ as φφφn+1
−φφφn

∆t leads to the following
explicit solution scheme

φφφn+1
= φφφn

+ ∆tM−1
d

[
fn

− (Kn
+ C − S)φφφn] (34)

where Md denotes the lumped diagonal form of matrix M.
In the expression of K of Eq. (34) the shock-capturing terms are taken as constant within a time step.

6. Computation of the stabilization parameters

6.1. General expression of the stabilization parameters

The optimal value of the stabilization parameters αv and αr giving nodally exact solutions is quite difficult in
the transient case due to the multiple forms that the solution can take as it evolves in time. We present a procedure
for computing a quasi-optimal value of αv and αr that has proved to yield accurate results for transient advection–
diffusion–absorption problems evolving towards a steady state solution, as well as for solutions involving the pure
advection of a discontinuous function. The method is an extension of the approach proposed and successfully tested
for 1D transient problems in [45].

The transient equation (1b) can be written as follows

ρcvT
∇∇∇φ − ∇∇∇

T (D∇∇∇φ) + s̄φ − Q = 0 (35)

where

s̄ = s + st with st = ρc
φ̇

φ
(36)

Eq. (35) defines a pseudo-stationary problem in which a non linear reaction term has been introduced.
The non linear reaction term st can be approximated as

st =
ρc
θ∆t

f (κ) (37)

with

f (κ) ≥ 0 and κ =
φn+θ

− φn

φn+θ
(38)
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The value of st in Eq. (37) has been limited in this work to a ten percent of the value of the actual absorption
parameter s. st has been taken as zero for advective–diffusive problems.

From Eq. (36) we can define an equivalent Damköhler number σ̄ as

σ̄ = σ + σt with σt =
ρc
θC

f (κ) (39)

where σ is the Damköhler number defined in Eq. (44) and C =
v∆t

le is the element Courant number where le is the
characteristic element length. For 1D problems le is taken as the element length. For 2D problems we have chosen
le

=
√

2Ω e where Ω e is the area of the element.
The following definition for f (κ) has been chosen in the examples solved in this work

f (κ) =
2

tanh 1
tanh

(
δ

⏐⏐φn
− φn−1

⏐⏐e
∞⏐⏐φn + φn−1
⏐⏐e
∞

)
(40)

where |a|
e
∞

denotes the maximum value of a within an element and δ is a positive number that controls the slope
of the function tanh(·) that ranges from zero to one.

Function f (κ) has been designed so that f (κ) = 0 (and σt = 0) for a steady-state problem (or in zones where
φ̇ = 0), and f (κ) =

2
tanh 1 (and σt =

2
θC ) for cases when φ(x, t) suddenly changes from a zero value to a finite

value at a node.
Good results were obtained in the transient problems solved using Eq. (40) with δ = 1. The optimal choice of

δ in terms of the nature of the transient solution is a matter that deserves further research.
We highlight that for the explicit time integration scheme we have used θ = 1 in the definition of st and σt .
The stabilization parameters αv and αr in Eqs. (11) and (12a) for the transient convection–diffusion-radiation

problem are defined as follows

αv =

⎧⎪⎪⎨⎪⎪⎩
2
σ̄

(
1 −

σ̄ tanh γ

ξ − 1

)
, σ̄ ≥ 2−12

σ̄

3
+ ᾱv

(
1 −

σ̄

γ

)
, σ̄ < 2−12

(41)

with

ᾱv = coth γ −
1
γ

(42)

and

αr = γ

[
σ

ϕ

(
ξ − 1 + ϕ

ξ − 1

)
− αv

]
− 1 −

1
D

v̂T Ds v̂ (43)

In the above expressions

ξ =
cosh λ

cosh γ
with λ =

(
γ 2

+ w
)1/2

γ =
ρc|v|lv

2D
, w =

ρcs(lv)2

D
, σ =

slv
|v|

=
w

2γ

(44)

The expressions of αv and αr in Eqs. (41) and (43) are an extension of the values for the steady-state problem
presented in [46].

In Eq. (43) ϕ is a constant such that 2 ≤ ϕ ≤ 3. The “exact” expression of αr for 1D problems requires choosing
ϕ = 3 [46]. In our computations for 2D problems we have obtained good results using ϕ = 2.

The characteristic length lv is defined as the size of the element in the direction of the velocity v. Representing
the element’s edge joining nodes a and b with the vector lab, lv is computed as

lv = max
edges

{
vT lab

}
(45)

The characteristic length lsc is generally defined as

lsc =
√

2Ω e (46)
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Fig. 1. Transient advection–diffusion–absorption problem. Square domain with linear velocity and zero source.

where Ω e is the element area. For elements belonging to the boundary in meshes of 3-noded triangles we have
chosen

lsc = 2
√
Ω e (47)

The expression of lsc in Eq. (47) introduces a higher value of the shock-capturing term at the boundaries where
sharp gradients exist in directions different from the velocity directions.

7. Examples

In the examples shown next the density ρ and the specific flux c are chosen such that ρc = 1. We have also
assumed an isotropic diffusion of value k.

7.1. Transient advection–diffusion–absorption problem

The analysis domain (x, y) = [0, 8] × [0, 8] is discretized into a regular mesh of (2 × 8) × (2 × 8) 3-noded
triangles of unit rectangular side (lv = 1) (Fig. 1). The advection, diffusion and reaction coefficients are chosen as
v1 = 8, k = 2 and s = 2. The transported variable is the temperature. The schematics of the problem can be seen
in Fig. 1. The problem data yields the dimensionless numbers γv = 2 and ωv = 1.

The Dirichlet boundary conditions φ(x = 0) = 3 and φ(x = 8) = 8 are employed. The initial solution is chosen
to have a linear profile. The transient solution was obtained iteratively using the implicit scheme of Eqs. (29)–(33)
with θ = 1.0 and a time step of ∆t = 0.0625 s (Fig. 2). This corresponds to an element Courant number C = 0.5.
An exponential layer gradually develops at the right boundary which triggers a global instability in the Galerkin
FEM. As there is not significant dispersive phenomena this global instability is successfully controlled by the SUPG
method (well-known result) and the FIC–FEM method developed in this work. Fig. 3 shows a perspective view of
the quasi-steady-state solution for the temperature for t = 2 s. The steady state solution matches the 1D result
reported in [45].

Next, the same problem is run with a non-uniform mesh. Fig. 4 shows the schematics of the case. The transient
solution is also obtained iteratively using the implicit scheme of Eqs. (29)–(33) with θ = 1.0 and a time step of
∆t = 0.0625 s (Fig. 5). Results show a good behavior of the numerical scheme for non-uniform meshes. The lowest
value at t = 2 s is virtually the same in both cases.

Fig. 6 shows a perspective view of the quasi-steady-state solution for the temperature for t = 2 s.
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Fig. 2. Transient advection–diffusion–absorption problem. Transient FIC–FEM solution obtained with a structured mesh of 2 × 8 × 8
three-noded triangles. The transient solutions are plotted along line A-A’ at times 0.0 s, 0.125 s, 0.25 s, 0.5 s, 1 s and 2 s.

Fig. 3. Transient advection–diffusion–absorption problem. Solution obtained att = 2 s.

7.2. Skewed flow in a square domain with non-uniform boundary conditions

The domain is (x, y) = [0, 1] × [0, 1]. The problem data is: v = [−5 · 106, −9 · 106]T , k = 1, ρc = 1,
s = 0 and Q = 0. The transported variable is again the temperature. The boundary conditions are: φ = 1 on
(x = 1, y > 0.7) ∪ (x < 1, y = 1), φ = 0.5 at (x = 1, y = 0.7) and φ = 0 on the rest of the boundary
(Fig. 7). The transient solution was obtained using the implicit scheme here presented with θ = 0.8 and a time
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Fig. 4. Transient advection–diffusion–absorption problem with a non-uniform mesh. Square domain with linear velocity and zero source.

Fig. 5. Transient advection–diffusion–absorption problem. Transient FIC–FEM solution obtained with a non-uniform mesh of three-noded
triangles. The transient solutions are plotted along line A-A’ at times 0.0 s, 0.125 s, 0.25 s, 0.5 s, 1 s and 2 s.

step of ∆t = 1e-09 s. Convergence within each time step was found in 2–3 iterations. The solution develops an
exponential boundary layer at the outflow boundary and an internal characteristic layer (parabolic) which is skewed
to the mesh and the boundary. Both layers are subgrid phenomena for the considered mesh resolution. Both the
exponential and characteristic layers are reproduced in the FIC–FEM solution without spurious oscillations near the
layers. The FIC–FEM result of the evolution of the solution in time towards steady state is shown in Fig. 8. Fig. 9
shows a perspective view of the quasi steady-state solution for t = 2e−07 s. The steady-state solution agrees with
that reported in [16,41,46].
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Fig. 6. Transient advection–diffusion–absorption problem with a non-uniform mesh. Solution obtained at t = 2 s.

Fig. 7. Square domain with non-uniform Dirichlet conditions, downwards diagonal velocity and zero source. Mesh of 2 × 20 × 20
three-noded triangles.

7.3. Uniform advection problem with constant source

We study the uniform advection of a temperature field with a constant source term. The problem data is:
v = [1, 0]T , k = 10−8, ρc = 1, s = 0 and Q = 1. The homogeneous boundary condition φ = 0 is imposed
everywhere as shown in Fig. 10. The solution develops an exponential layer at the outflow boundary x = 1 and
parabolic layers at the boundaries y = 0 and y = 1. The FIC–FEM results of the transient solution towards steady-
state are shown in Fig. 11. A perspective of the quasi steady-state solution at time t = 1.5 s is shown in Fig. 12. Both
layers are subgrid phenomena for the considered mesh resolution. The transient solution was obtained iteratively
using the implicit scheme presented in the paper with θ = 0.8 and a time step of ∆t = 0.005 s. Convergence within
each time step was found in 2–3 iterations. The steady-state solution agrees with that reported in [46].
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Fig. 8. Square domain with non-uniform Dirichlet conditions. FIC–FEM solution along line A-A’. The transient solutions are plotted at
times 5e−08 s, 6e−08 s, 7e−08 s, 1e−07 s and 2e−07 s.

Fig. 9. Square domain with non-uniform Dirichlet conditions. Solution at time 2e−07 s.

7.4. Advective–diffusive transport of the temperature in a rectangular domain with Neumann and non-uniform
Dirichlet conditions, rotational velocity field and zero source

The rectangular domain of sides 1 × 2 units and the boundary conditions are shown in Fig. 13. The rotational
velocity field is defined as u = 104

× [y(1 − x2), −x(1 − y2)]T . A unit isotropic diffusion is assumed. The value
of the temperature (φ) is prescribed at part of the domain sides as shown in Fig. 13. In the rest of the sides, the
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Fig. 10. Square domain with linear velocity and constant source. Structured mesh of 2 × 20 × 20 three-noded triangles.

Fig. 11. Square domain with linear velocity and constant source. FIC solution obtained along line A-A’. The transient solutions are plotted
at times 0.25 s, 0.5 s, 0.75 s, 1 s and 1.5 s.

Neumann condition (q p
n = 0) is imposed. The problem was solved with the uniform mesh of 3-noded triangles

shown in Fig. 13. The correct solution is a uniform plateau of φ = 100 with a boundary layer at the right hand
side where the solution drops towards the prescribed value of φ = 0 and a circular sharp gradient region around the
lower circular zone where the solution takes a zero value. The FIC–FEM results of the transient solution towards
steady-state are shown in Fig. 14. A perspective of the quasi steady-state solution at time t = 1e−03 s is shown
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Fig. 12. Square domain with linear velocity and constant source. Solution at time 1.5 s.

Fig. 13. Advective–diffusive transport of the temperature in a rectangular domain with Neumann and non-uniform Dirichlet conditions,
rotational velocity and zero source. Structured mesh of 2 × 40 × 20 three-noded triangles.

Fig. 14. FIC solution of the problem in Fig. 13. The transient solutions are plotted along line A-A’ at times 5e−05 s, 1e−04 s, 3e−04 s,
4e−04, 5e−04 and 1e−03 s.
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Fig. 15. Solution at 1e−03 s.

Fig. 16. Pure convection of a temperature plateau in a square domain with horizontal velocity. Structured mesh of 50 × 50 4-noded
quadrilaterals.

in Fig. 15. The transient solution was obtained using the implicit scheme presented in this work with θ = 0.8 and
a time step of ∆t = 1e−05 s. Convergence within each time step was found in 2–3 iterations. The steady-state
solution agrees with that reported in [16].

7.5. Pure convection of a temperature plateau

We study the pure convection of an initial temperature plateau. The domain dimensions are (x, y) = [0, 1]×[0, 1].
The problem data is: v = [1, 0]T , k = 0, s = 0, ρc = 1 and Q = 0. The homogeneous boundary condition φ = 0
is imposed at the left wall as shown in Fig. 16. The temperature plateau is generated by imposing a value of the
temperature φ = 1.0 from x = 0.1 to x = 0.2. The problem has been solved using a regular mesh of 50 × 50 four-
noded quadrilateral elements. Shock capturing effects have not been taken into account in this case, as mentioned
in the last part of Section 3. Figs. 17 and 18 show that the initial solution maintains its shape through the domain.
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Fig. 17. Pure convection of a temperature plateau. FIC–FEM solution plotted along line A-A’ at times 0 s, 0.2 s and 0.7 s.

Fig. 18. Pure convective case. FIC–FEM solution at time 0.7 s.

The transient solution was obtained using the explicit scheme given in Eq. (34) and a time step of ∆t = 0.2 s,
giving an element Courant number of C = 1.

7.6. Advection–diffusion of a concentration field

In this problem we study the advection and diffusion of a concentration that is instantaneously released as a
Dirac source in a point of a stream. This problem is generally known as the plume transport problem [68].

The domain dimensions are (x, y) = [0, 35] × [0, 10]. The problem data is: v = [1, 0]T , ρc = 1, k = 0.1, s = 0
and Q = 0. The homogeneous boundary condition φ = 0 is imposed on the left wall as shown in Fig. 19. The
value φ0 = 1000 is imposed as an initial value of the concentration at the node (x, y) = (2, 5).

The analytical solution for this 2D problem is [68]

φ(x, y, t) =
φ0

L34π Dt
e−A (48a)
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Fig. 19. Advection–diffusion of a concentration field. Rectangular domain with horizontal velocity. Structured mesh of 2 × 70 × 20
three-noded triangles.

Fig. 20. Advection–diffusion of a concentration field. FIC–FEM solution along line A-A’ obtained with the mesh of Fig. 19. Structured
mesh of 2 × 70 × 20 three-noded triangles. Solution at times 0 s, 0.25 s, 0.5 s, 0.75 s, 1.0 s, 1.25 s, 1.5 s, 1.75 s, 2.0 s, 4.5 s and 5.5 s.

with

A = −
1

4Dt

{
[x1 − (x0

1 + v1t)]2
+ [x2 − (x0

2 + v2t)]2} (48b)

In Eqs. (48) φ is the initial value of the concentration that is dropped at the point with coordinates x0
= [x0

1 , x0
2 ]T ,

L3 is the vertical dimension of the analysis domain (in this problem we have taken L3 = 1), v1 and v2 are the
horizontal and vertical components of the velocity vector, respectively and D =

K
ρc where K is the average diffusion

defined in Section 2.1.
The transient solution was obtained using an implicit scheme with θ = 0.5 and a time step of ∆t = 0.25 s,

giving a Courant number of C = 0.5. Once again, the shock-capturing terms were not taken into account for solving
this problem following the argument given at the end of Section 3. On the other hand, the use of the consistent
form of the mass matrix was essential for obtaining good results for this problem. Fig. 20 shows how the solution
is advected and diffuses as time increases. The numerical results for the distribution of the contraction along line
A-A’ are in agreement with the analytical solution shown in Fig. 21. The graphs are taken along the A-A’ line,
which goes from (0, 5) to (10, 5). A comparison of the contours of the numerical and analytical distributions of
the concentration at t = 15 s can be seen in Figs. 22 and 23, respectively.
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Fig. 21. Advection–diffusion of a concentration field. Analytical solution along line A-A’ plotted on the structured mesh of Fig. 19. Solution
at times 0 s, 0.25 s, 0.5 s, 0.75 s, 1.0 s, 1.25 s, 1.5 s, 1.75 s, 2.0 s, 4.5 s and 5.5 s.

Fig. 22. Advection–diffusion of a concentration field. Contours of the FIC–FEM results at t = 15 s.

Fig. 23. Advection–diffusion of a concentration field. Contours of the analytical results at t = 15 s.
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8. Concluding remarks

In this work we have extended the steady-state multidimensional FIC–FEM formulation reported in [46] to
the transient case. The stabilized variational expression has the standard residual form typical of the FIC–FEM
procedure. The stabilized terms introduced by the FIC approach depend on a characteristic element length and two
stabilization parameters whose expression is obtained as an extension of the steady-state forms presented in [46].
A shock capturing term is introduced to account for the Gibbs oscillations across internal/boundary layers.

The good behavior of the FIC–FEM formulation has been verified for transient advection–diffusion–absorption
problems with numerical solutions evolving to a steady-state, as well as to two fully transient problems.

The numerical results were obtained in most cases using an implicit scheme. An exception is the pure convection
problem (Section 7.5) that was solved with an explicit scheme and a Courant number of C = 1. The shock capturing
terms were not taken into account in the solution of the fully transient problems (Sections 7.5 and 7.6). We also
remark the importance of using a consistent stabilized mass matrix in the concentration field example.
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3.2 Introduction

Standard FEM techniques for solving convective transport problems based on the Eu-
lerian description of the continuum suffer from instabilities if not endowed with the
appropriate stabilization techniques [7, 34, 41]. These techniques, which are based on
the addition of artificial diffusion terms, tend to spoil the accuracy of the numerical
solution in cases where there is a (relatively small) physical diffusion. Thus, one is
faced with a trade-off between stability and accuracy that is particularly restrictive for
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high-Péclet flows.

Transport problems involving high-Péclet numbers (Pe) are common in many practical
situations. Among these, we note the study of environmental pollution, either related to
the quality of air or water [8], or the simulation of advection-diffusion in a microfluidics
channel [92], just to name a few. High-Damköhler (Da) numbers arise in the study of
flames [46] and other fast-reacting systems.

The convective transport of a physical quantity such as heat or a chemical concentration
accounting for diffusion and absorption effects is a phenomenon that plays a central role
in many applications of interest. Such phenomenon is well described by a differential
equation of an advection-diffusion-absorption type. A large volume of scientific work has
been devoted to the study of this equation and, in particular, to its solution by numerical
means. The problem is well-studied for a variety of methods like finite differences [23],
finite volumes [45] and the finite element method (FEM) [17, 18, 26, 29, 55, 56], among
others.

The results obtained using the formulation developed in the thesis showed good be-
havior in the different chosen examples. Nonetheless, certain difficulties were observed:
excessive diffusion was introduced for problems involving high-Péclet numbers. Also,
some numerical instabilities were obtained for high-Damköhler numbers.

In order to overcome these difficulties in the thesis we have developed a new Lagrangian-
Eulerian procedure. The combined method uses a Lagrangian approach based on the
updated version of the classical Particle Finite Element Method (PFEM) [39, 40] is used
to calculate advection effects. The Lagrangian approach is combined with a standard
Eulerian strategy based on the Finite Element Method (FEM) in order to compute
diffusion and absorption effects. The Eulerian FEM procedure is based on a FIC–FEM
stabilized formulation explained in Chapter 2 [68, 70, 77].

The attached paper describes the most relevant features of each of the two computational
approaches and the coupling scheme is explained. The semi-Lagrangian approach ben-
efits from the FIC–FEM stabilized Eulerian method and the Lagrangian PFEM2 one.
More specifically, the content of the paper is organized as follows. First, the Eulerian
solution scheme using a FIC–FEM procedure is introduced. Next, the PFEM2 technique
is described and the Eulerian-Lagrangian splitting strategy is detailed. Several exam-
ples are presented in order to show the advantages of using the new semi-Lagrangian
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formulation versus the standard Eulerian approach: the evolution of a concentration
field in a high-Péclet flow (no absorption) in 2D and in 3D and five other advective-
diffusive-absorptive problems in 2D and 3D to validate the formulation. Among these
we highlight the low and high-Damköhler numbers problems and the high Péclet 3D
transport of a concentration.

3.3 Scientific contribution

In this chapter we explain the most relevant features of each computational approach
and the coupling scheme is explained. Also, several problems are solved to validate the
method: the evolution of a localized concentration field in two dimensions (2D), the
evolution of a spherical field in 3D and three benchmark problems from the literature
with high absorption.

Overall, the semi-Lagrangian approach benefits from the FIC–FEM stabilized Eulerian
method and the Lagrangian PFEM2 one and simplifies the one explained in Chapter 2.
It can be understood as a splitting method, which uses a set of particles to solve the
pure convective transport problem (via the PFEM2 technique) and a stabilized FEM
for solving the diffusive-reactive terms of the transport equations. The same fixed mesh
is used for solving both the Lagrangian and Eulerian solution steps.

The results obtained with the semi-Lagrangian formulation have been validated with
previous results for advection or absorption dominated problems. The goal was to show
the noticeable improvement against the results obtained with the FIC–FEM Eulerian
formulation, particularly in cases with a high Péclet and/or high Damköhler numbers.
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Abstract

We present a numerical method for solving advective–diffusive–absorptive problems with high values of advection and
absorption. A Lagrangian approach based on the updated version of the classical Particle Finite Element Method (PFEM)
is used to calculate advection, while a Eulerian strategy based on the Finite Element Method (FEM) is adopted to compute
diffusion and absorption. The Eulerian FEM procedure is based on a Finite Increment Calculus (FIC) stabilized formulation
recently developed by the authors. The most relevant features of each computational approach are outlined and the coupling
scheme is explained. Several problems are solved to validate the method: the evolution of a localized concentration field in
two dimensions (2D), the evolution of a spherical field in 3D and three benchmark problems from the literature with high
absorption.
c⃝ 2021 Published by Elsevier B.V.
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1. Introduction

The convective transport of a physical quantity such as heat or a chemical concentration accounting for diffusion
and absorption effects is a phenomenon that plays a central role in many applications of interest. Such phenomenon
is well described by a differential equation of an advection–diffusion–absorption type. A large volume of scientific
work has been devoted to the study of this equation and, in particular, to its solution by numerical means. The
problem is well-studied for a variety of methods like finite differences [1], finite volumes [2] and the finite element
method (FEM) [3–8], among others. Nonetheless, this numerical problem remains a challenging one, especially
for high Péclet or Damköhler numbers, due to the numerical difficulties that arise as the highest-derivative term
becomes overwhelmed by the other two.

Transport problems involving high-Péclet numbers (Pe) are common in many practical situations. Among these,
we note the study of environmental pollution, either related to the quality of air or water [9], or the simulation of
advection–diffusion in a microfluidics channel [10], just to name a few. High-Damköhler (Da) numbers arise in the
study of flames [11] and other fast-reacting systems.
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Standard FEM techniques for solving convective transport problems based on the Eulerian description of the
continuum suffer from instabilities if not endowed with the appropriate stabilization techniques [12–14]. These
techniques, which are based on the addition of artificial diffusion terms, tend to spoil the accuracy of the numerical
solution in cases where there is a (relatively small) physical diffusion. Thus, one is faced with a trade-off between
stability and accuracy that is particularly restrictive for high-Péclet flows.

Moreover, the numerical solution to the advection, diffusion and absorption problem is prone to exhibit global,
Gibbs and dispersive oscillations, which require the application of specific stabilization techniques to control
instabilities. The local Gibbs oscillations appear along the characteristic layers in advection-dominated problems. For
absorption-dominated cases, Gibbs oscillations can be found near the Dirichlet boundaries and in regions where the
distributed source term is nonregular. Also, the solution of the transient problem may exhibit dispersive oscillations
when the initial solution and/or the distributed source term are nonregular [15]. Various techniques for solving these
problems can be found in literature, such as the Petrov–Galerkin method [12–14,16,17], the Galerkin Least Squares
(GLS) method [18,19], the Variational Multiscale (VMS) method [20] or the characteristic split procedure [21,22].
In this paper we will use the Finite Increment Calculus (FIC) stabilization technique which has been widely used to
solve problems involving quasi and fully incompressible fluids and solids with the FEM [23–29]. The FIC technique
is based on expressing the equations of balance of mass and momentum in a space/time domain of finite size and
retaining higher-order terms in the Taylor series expansion used for expressing the change in the transported variables
within the balance domain. In addition to the standard terms of infinitesimal theory, the FIC form of the balance
equations contains derivatives of the classical differential equations multiplied by characteristic distances in space
and/or time [23,24,26–29].

In the last decades, various authors have investigated ways of solving transient problems for high-Péclet numbers.
For instance, Sevilla et al. [30] studied the influence of the number of integration points in the accuracy of the
computations, using high-order curved finite elements and proved that they were one order of magnitude more
precise than classical isoparametric FEM. In [31], the simulation of dispersing plumes and puffs was studied using
a second-order closure model and a parameterized Eulerian approach.

From a different perspective, fully Lagrangian methods have been used for high-Péclet flows. For instance, in [32]
good results for the convection–diffusion equations coupled to the incompressible flow equations were obtained
using two Lagrangian methods.

A third option that exploits the benefits of a combined Eulerian–Lagrangian method has been studied by
other authors to solve problems such as advection–diffusion [33–35], the solute transport in heterogeneous porous
media [36] or the nanoparticle distribution in nanofluids [37]. Many of these studies have proved that a splitting
of a Eulerian and a Lagrangian solution can solve the excessive numerical diffusion observed in Eulerian methods.
These splittings aim to accurately solve the advective part of the transport equation using a Lagrangian method and
then calculate the diffusion problem via a Eulerian technique.

A combination of the Backwards Method of Characteristics with various Eulerian methods such as finite
differences or finite elements was studied in [38]. Good results were obtained for high Courant numbers but no
clear conclusion was reached on the stability and convergence of the methods. Cady [34] used a Modified Method
of Characteristics together with finite differences and the Galerkin method but found accuracy problems. In the
following years, the problem of global mass conservation due to the integration of the mass balance equation
was addressed. In 1998, Healy and Russell [39] proposed the finite volume Eulerian–Lagrangian localized method
with a forward tracking of the characteristics that lead to better results in comparison with previous methods. The
performance of four Eulerian–Lagrangian solvers that relied on different interpolators was studied in [36]. It was
found that the taut spline interpolator was able to yield accurate solutions for high-Péclet numbers. This method,
based on a forward tracking algorithm, proved to be more efficient than other methods, such as the Petrov–Galerkin
technique, for this kind of problems. The accuracy of the Petrov–Galerkin method can however be improved with
the FIC stabilization technique [15,40,41]. In 2000 and 2006, respectively, Young et al. studied several Eulerian–
Lagrangian methods such as the Eulerian–Lagrangian Boundary Element Method [42], which provided the solution
for low numerical diffusion, and the Eulerian–Lagrangian method of fundamental solutions [43], which is a mesh-
free method that has the simplicity of a fixed grid from the Eulerian method and the computational power of
the Lagrangian method. More recently, Wang et al. have studied a Eulerian–Lagrangian Discontinuous Galerkin
Method [44,45] and a Modified Method of Characteristics with an adjusted advection procedure [46] for the transient
advection–diffusion equations. In 2012, Al-Lawatia [47] developed a mass conservative Eulerian–Lagrangian control
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volume scheme for the solution of the same equations in two dimensions (2D), based on the Eulerian–Lagrangian
localized adjoint method [39].

In this work we present an alternative Eulerian–Lagrangian split formulation, termed semi-Lagrangian formu-
lation, for the advection–diffusion–absorption equation that leads to accurate and stable results, and has neither
convergence nor grid orientation problems. The Lagrangian part of the method is based on the Particle Finite Element
Method — second generation (termed from here onwards PFEM2) [48,49], which has been successfully used to
simulate problems of sediment transport [50], diffusion dominant problems [51] and free surface flows [52], while
the Eulerian formulation follows the FIC–FEM procedure presented in [41].

The idea of combining a fixed mesh with particles moving for solving the advection–diffusion equation is not
new, as shown in some of the works cited above [33–35]. One can even find in the literature works that also use
the PFEM2 for the advective part of the advection–diffusion equation [48,49,51]. None of the above, however,
include the absorption in the transport equations and thus, the main novelty of this paper is the derivation of a
general semi-Lagrangian formulation for the solution of multi-dimensional transient advection–diffusion–absorption
problems. The resulting numerical technique provides a general and straightforward procedure applicable to a wide
range of problems, both from low to high Péclet and Damköhler numbers.

The semi-Lagrangian approach benefits from the FIC–FEM stabilized Eulerian method and the Lagrangian
PFEM2 one. In this work we compare the benefits of the semi-Lagrangian method versus the standard Eulerian
procedure for solving advection–diffusion–absorption problems.

The paper is organized as follows. First, the Eulerian solution scheme using a FIC–FEM procedure is introduced.
Next, the PFEM2 technique is described and the Eulerian–Lagrangian splitting strategy is detailed. Several examples
are presented in order to show the advantages of using the new semi-Lagrangian formulation versus the standard
Eulerian approach: the evolution of a concentration field in a high-Péclet flow (no absorption) in 2D and in 3D and
five other advective–diffusive–absorptive problems in 2D and 3D.

2. Eulerian approach

In this section, we present the Eulerian FIC–FEM formulation for solving the multidimensional advection–
diffusion–absorption equations. The procedure follows the recent work of the authors [41].

2.1. Governing equations

Transport balance
The transport balance equation in a domain of area/volume Ω is expressed as

rt = 0 in Ω (1a)

with

rt : = ρc
(

∂φ

∂t
+ vT

∇φ

)
− ∇

T D∇φ + sφ − Q (1b)

For 3D problems,

v =

⎡⎣v1
v2
v3

⎤⎦ , D =

⎡⎣k1 0 0
0 k2 0
0 0 k3

⎤⎦ , ∇ =

⎡⎣∂/∂x1
∂/∂x2
∂/∂x3

⎤⎦ (2)

In Eqs. (1a)–(1b)–(2) φ is the transported variable (i.e., the temperature in a heat transfer problem or the
concentration in a mass transfer problem), vi is the i th cartesian component of the velocity vector v; ρ, c and
ki are the density, the specific flux parameter and the conductivity of the material along the i th global direction,
respectively and s is the reaction parameter. In the following, and unless otherwise specified, we will assume that
the problem parameters (ρ, c, k, s) are constant over the analysis domain Ω . In our work we define D = k/(ρc) as
the normalized diffusivity, and R = s/(ρc) as the normalized absorption.

Boundary and initial conditions
The boundary conditions of the aforementioned equations are

φ − φ p
= 0 on Γφ (3)
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rΓ = 0 on Γq (4)

with

rΓ : = −qn + q p
n (5)

where

qn = qT n , q = −D∇φ (6)

In Eqs. (3)–(6) φ p and q p are the prescribed boundary fields of the transported variable and the outgoing diffusive
flux at the Dirichlet and Neumann boundaries Γφ and Γq , respectively, with Γφ ∪ Γq = Γ , Γφ ∩ Γq = ∅, with Γ
being the boundary of Ω and n its exterior unit normal.

The definition of the problem is completed with the initial conditions

φ(x, t0) = φ0(x) (7)

where φ0 is a known field.

2.2. Finite increment calculus (FIC) expressions

The governing Eqs. (1a) and (1b) and the boundary conditions (3)–(6) are expressed using the FIC theory as [53].

Transport balance

rt −
1
2

hT
∇rt = 0 in Ω (8)

with h = [h1, h2, h3]T in 3D.

Boundary conditions

φ − φ p
= 0 on Γφ (9a)

rΓ +
1
2

hnrt = 0 on Γq , with hn = hT n (9b)

Eqs. (8) and (9b) are obtained by expressing the balance of fluxes in an arbitrary prismatic space domain of
size h1 × h2 × h3 within the global problem domain and at the Neumann boundary, respectively. The distances hi
are termed characteristic lengths of the FIC method. The variations of the transported variable within the balance
domain are approximated by Taylor series expansions retaining one order higher terms than in the infinitesimal
theory [23]. This higher-order expansions produce the underlined terms in Eqs. (8) and (9), which provide the
necessary stability for the corresponding discretized equations.

Note that, as the characteristic length vector h tends to zero, the FIC governing equations tend to the standard
infinitesimal form; that is, rt → 0 in Ω and rΓ → 0 on Γq as h → 0.

The characteristic lengths are small quantities which are defined in the context of the discrete problem and
whose value influences the stability and accuracy of the FIC method. In practice, they are expressed as a proportion
of a typical grid dimension [23]. The characteristic length vector is defined in [41] as the sum of the streamline
characteristic vector hv , the absorption characteristic length vector hr and the shock capturing characteristic length
vector hsc , i.e.

h = hv + hr + hsc (10)

The FIC equations are the starting point for deriving different stabilized numerical methods. In combination with
the Galerkin FEM, they yield the so-called FIC–FEM procedure [15,40] which has been successfully applied to prob-
lems of convective transport, fluid and solid mechanics such as advection–diffusion [23,54–56], diffusion–absorption
and Helmholtz [57], advection–diffusion–absorption [53,58], advection–diffusion–reaction [40], incompressible
fluid flow [59–63], fluid–structure-interaction [64–66], particle-laden flows and standard and incompressible solid
mechanics [26,27,67]. The FIC approach has also been applied to a variety of problems in mechanics using the
meshless finite point method [68–71].
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2.3. Space and time integration

The system of Eqs. (8)–(9) has been discretized in space with the FEM and in time using an implicit Generalized
Trapezoidal rule [72,73]. Details about the finite element matrices and vectors of the discretized problem can be
found in [41]. The solution for the nodal values at a time instant is found using an incremental iterative strategy as

i Hn∆φ = −
i rn

t (11)

where ∆φ is the increment of the nodal variables, (·)n denotes values at time t = tn , i (·) denotes values at the i th
iteration and

i Hn
=

1
θ∆t

M +
i Kn

+ C + S (12)

i rn
t : = Mφ̇ + [i Kn

+ C + S]iφn+θ
−

i fn (13)

In Eqs. (12) and (13), θ is a non dimensional time parameter (0.5 < θ ≤ 1 is required for the integration scheme
to be unconditionally stable [22,72,73]).

The non-linearity of K is due to its dependence with φ when the equations are stabilized with the FIC
procedure [41].

In Eq. (13) we define φ̇ =
φn+θ

−φn

θ∆t .
From the value of ∆φ obtained from Eq. (11) we compute the value of φn+θ at the i + 1 iteration as

i+1φn+θ
=

iφn+θ
+ ∆φ (14)

The iterative solution at tn+1 is obtained as

i+1φn+1
=

1
θ

i+1φn+θ
+

(
1 −

1
θ

)
φn (15)

The iterations proceed until convergence is achieved for both the unknown field φ and the residual rt measured in
a L2 norm. A detailed explanation of each component of Eqs. (12) and (13) can be found in [41].

3. Semi-Lagrangian approach

Although good results were obtained in [41] when solving the advection–diffusion–absorption equations with
the Eulerian FIC–FEM procedure, it was observed that excessive diffusion was obtained for problems involving
high-Péclet numbers. This was the motivation for using the Lagrangian PFEM2 [49] to solve this type of problems,
in view of its particular feature of non adding numerical diffusion for the advective problem. The PFEM2 technique
can be understood as a splitting method, which uses a set of particles to solve the pure convective transport problem
and a finite element mesh to solve the rest of the transport equations. In our work the PFEM2 is used to solve
the advection equation. Following that, the diffusion–absorption equations are solved with the Eulerian FIC–FEM
strategy.

Let us start by rewriting the transport balance Eq. (1b) using the total time derivative as

rt : = ρc
Dφ

Dt
− ∇

T D∇φ + sφ − Q = 0 (16a)

Dx
Dt

= v (16b)

Eq. (16a) can be integrated using the trapezoidal rule explained in Section 2.3. Due to the dependence with
Eq. (16b), a coupling between the time integration of both equations shall be defined.

3.1. Advection step

Let us consider a finite set of (point)-particles with which we uniformly seed the computational domain, such
that their positions do not necessarily coincide with the locations of the finite element mesh nodes.
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Remark 1. In this work the computational domain is initially seeded with fifteen to twenty particles per element,
depending on whether it is 2D or 3D. This number does not remain constant during the simulation because particles
can freely enter and exit finite elements as they move through the domain. Thereby, in order to properly perform
the advection stage, every time step the domain is reseed with particles so as to ensure that a minimum number is
present within each finite element. This number of particles was chosen to be four in 2D and six in 3D. Particles
can also be eliminated from each finite element in order to limit the computational cost. In this case, the maximum
number of particles allowed per finite element is sixteen in 2D and twenty-four in 3D. These particle thresholds
were chosen as they have proven to give accurate results in previous works [49].

Let us assume that the particles move as material points and that each one stores the point concentration of the
property φp = φ(xp). Since the variables are not known for any arbitrary time t , but only for the discrete time
steps 1, 2 . . . n, n + 1 . . . defined in Section 2.3, the advection of a particle can be approximated using a θ -family
discretization as:

xn+1
p = xp

n + (1 − θ )
∫ tn+1

tn
vn(xt

p)dt + θ

∫ tn+1

tn
vn+1(xt

p)dt (17)

If the velocity field is known, the system becomes explicit and the problem is reduced to moving the particles
along the streamlines. The problem is solved using an explicit forward integration (θ = 0) with substepping [48].
This method, also known as XIVAS [74,75], was initially applied to a variable velocity field.

After the particles are moved, the ones that leave the domain are removed.

3.2. Projection

When solving the advective step in Eq. (16a), the particles concentration at xn+1
p is the same as at the onset of

the time step (xn
p). This is equivalent to saying that the advective step assumes Dφ

Dt = 0. This modification in the
field described by the particles needs to be transferred onto the finite element space. As usual in particle-based
techniques, such as PFEM, a projection procedure is used to transfer the information from the particles to the finite
elements in the underlying mesh. In our work we use

φ∗
= L(φp) (18)

where L is the projection operator from the particles to the finite element space and φ∗ is the result of the advection
at the time step n +1. In this case, a first order explicit projection has been used and all the particles in the elements
surrounding a node contribute to that node, i.e.

φ∗

i =
ΣeΣpewpφp

ΣeΣpewp
with wp = Nei (xp) (19)

where the index i runs over all the mesh nodes, where e runs over the elements sharing node i and where pe runs
over the particles contained in element e.

3.3. Diffusion–absorption stage

Once the advection problem is solved explicitly in the particles and the results are transferred to the mesh nodes,
the Lagrangian residual (Eq. (16a)) is solved in a fixed grid with a Eulerian FIC–FEM technique. The spatial
discretization and the time integration scheme follows the procedure explained in Section 2.3. Details are given
in [41].

Note that the advective term C from Eq. (13) vanishes as advection is modelled with the Lagrangian approach
and the time derivative φ̇ denotes now the total derivative (Eq. (16a)).

The total time derivative is computed as

φ̇ =
φn+θ

− φ∗

θ∆t
(20)

Eq. (20) includes the contribution of the advection computed with the particles.
As explained in Section 3.1, the advection is calculated separately from the diffusion and the absorption with

the PFEM2 procedure. As the equations solved with a Eulerian approach are free from advective instabilities, this
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Fig. 1. Illustration of the two main steps of the PFEM2 framework.

splitting simplifies the equations in the following way. The parameter hv , which helps solving global advective
instabilities is set to zero as the advection is calculated through a particles method. hsc, which is used to attenuate
Gibbs oscillations that appear along characteristic layers is also set to zero as these oscillations do not appear in the
PFEM2 method. Finally, the advective components of hr , are set to zero as the velocity is computed in previous
steps and does not intervene in the diffusion–absorption stage. The characteristic length parameter from Eq. (10)
needed for the FIC–FEM Eulerian solution is then computed as

h = hr =
2
rt

Ds∇φ (21)

where matrix Ds takes care of the instabilities induced by the irregularity of the triangular mesh near boundaries
that develop parabolic layers for high values of the absorption parameter [15].

The new characteristic length (Eq. (21)) leads to the disappearance of the non-linearity seen in Eqs. (12) and
(13), which simplifies the resolution of the advection–diffusion–absorption equation.

3.4. Particles update

The last step of the PFEM2 algorithm is to add the contribution of the solution of Eq. (16a) to the particles. To
avoid the accumulation of projection errors and additional diffusion, the information from the particles is updated
using an incremental scheme. This step only involves the evaluation of the unknown at each particle position in the
finite element mesh as:

φn+1
p = φn

p + φ(xn+1
p ) − φ(x∗

p) (22)

The basic steps of the PFEM2 procedure can be seen in Fig. 1.

Properties of the PFEM2 procedure
Apart from removing the numerical diffusion added from the FEM Eulerian approach, PFEM2 has proven to

be very accurate when large time-steps and/or coarse meshes are used [49]. However, due to the projection of the
information, as well as the updating of the particles, the method does not guarantee conservation of the transported
variable. In Section 4.1 we have evaluated the evolution in time of the concentration value in order to assess the
conservation features of the algorithm after 15 s of simulation. Negligible concentration changes were observed for
this problem. This is a distinct feature of PFEM [29] and will be studied in more detail in further work.

4. Examples

We present seven examples of application of the semi-Lagrangian formulation: the transport of a concentration
of a solute in a fluid domain (both in 2D and 3D), a high-Damköhler number example (both in 2D and 3D), one
low-Dämkohler number example in 3D and two other advective–diffusive–absorptive problems with a manufactured
solution. These examples are used to validate the method both high-Péclet and high-Damköhler number cases as
well as those complex ones with a manufactured solution.

7
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Fig. 2. 2D transport of a concentration. Finite element mesh. The initial concentration is depicted in red at point (2, 5).

4.1. 2D transport of a concentration

4.1.1. Introduction
We study the evolution of an initially point-like concentration of solute as it is transported and diffused from

a point source in a fluid with a known velocity field. The main interest is to compare the accuracy of a purely
Eulerian approach versus the semi-Lagrangian method previously described from low to very high Péclet numbers.

We consider a uniform velocity field parallel to the x-axis of 1 m/s. Two different values are considered for the
diffusivity: D = 0.1 m2/s for the low-Péclet (Pe = 2.5) example and D = 0 for the high-Péclet one (Pe → ∞).
The Péclet number is defined as follows: Pe =

ul
2D , where u is the horizontal velocity, l is the characteristic length

and D is the normalized diffusivity. In this and in the following 3D example we have considered ρc = 1 J/m3K.
The analysis domain (x, y)∈ [0, 35] × [0, 10] m is discretized into a regular mesh of 3-noded triangles with a mesh
size h = 0.5 m, which gives a domain of 2 × (70 × 20) elements.

The Dirichlet boundary condition φ = 0 at x = 0 m and the initial concentration φ(x0, y0, 0) = 1000 kg/m2

at x0
= (2, 5) m are considered. Fig. 2 shows a diagram of the whole set-up (note that the point (2, 5) is made to

coincide with a mesh node).
For the numerical solution, the initial condition is defined by the value of the concentration at a single node

(φ0 = 1000 kg/m2 at node (2, 5), 0 everywhere else) as a single shape function whose maximum concentration
coincides with φ0. This corresponds to a total mass of 250 kg for the numerical simulation.

The numerical solution is compared to an analytical one that consists in the transport and diffusion of a Gaussian
density distribution [76]. The initial conditions in this case are defined as

φ(x, y, t) =
φ0

L34π Dt̂
e−A (23a)

with

A =
1

4Dt̂

{
[x1 − (x0

1 + u1(t̂ − t0))]2
+ [x2 − (x0

2 + u2(t̂ − t0))]2} (23b)

where t0 is calculated such that at t̂ = t0, φ corresponds to a Gaussian whose height is equal to 1000 kg/m2 and is
centred at the node (2, 5) and such that the initial total mass coincides with the one imposed as the initial condition
in the numerical solution.

We have an initial error that comes from the idealized representation of a concentrated mass. We are simply
comparing a Gauss bell to a pyramid with the same total mass and height and how they evolve in time.

L3 is the vertical dimension of the analysis domain (we have taken L3 = 1), u1 and u2 are the horizontal and
vertical components of the velocity vector and D is the normalized diffusivity. In all cases, the density ρ and the
specific flux c are chosen such that ρc = 1 J/m3K. We have also assumed isotropic diffusion. Several cases have
been studied to see the effect of the advective and diffusive terms on the result.

The time-integration parameters are θ = 0.5 and ∆t = 0.5 s. Taking into account these parameters the Courant
number is C = 1.
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Fig. 3. 2D transport of a concentration. Eulerian, semi-Lagrangian and analytical results compared at t = 15 s.

4.1.2. Results
The results obtained with the Eulerian and the semi-Lagrangian methods are presented next.

• Eulerian and semi-Lagrangian solutions for Pe = 2.5
We have compared the Eulerian and semi-Lagrangian solutions with the analytical one. Numerical results
show a slight difference of concentration versus the analytical values. While in the Eulerian method a
maximum concentration value of 13.234 kg/m2 is obtained, using the semi-Lagrangian approach this value
is 13.085 kg/m2. The maximum analytical value for the same case at t = 15 s is φ = 13.089 kg/m2 (Fig. 3e),
which represents a percentual gain of 1.11% in the Eulerian case (Fig. 3a) and 0.03% loss in the semi-
Lagrangian one (Fig. 3c). In both cases, the concentration difference is small and thus we can conclude that
both methods work well for this Péclet number but the semi-Lagrangian shows a substantially higher accuracy.
Looking at the concentration contour at Fig. 3a, we can observe a small deformation of the resulting shape
for the Eulerian case due to the slightly higher numerical diffusion.

• Eulerian and semi-Lagrangian solutions for Pe → ∞

In this case, the effect of the diffusive component vanishes. The Eulerian result in Fig. 3b shows a solution
which is not representative of the analytical one and keeps on diffusing as the simulation advances. On the
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Table 1
2D transport of a concentration. Maximum concentration values of each method for different
Péclet numbers.

Maximum concentration value [kg/m2]

Analytical Semi-Lagrangian Eulerian

Pe

→ ∞ 1000.00 626.55 129.92
2.5e06 999.92 626.53 129.92
2.5e05 999.25 626.36 129.90
2.5e04 992.52 624.61 129.73
2.5e03 929.89 607.60 128.03
2.5e02 570.131 470.390 113.910
2.5e01 117.098 118.130 65.081
4.55 23.570 25.835 24.687
3.33 17.360 17.372 17.410
2.50 13.089 13.085 13.234

other hand, the semi-Lagrangian result in Fig. 3d, shows no loss of the amount of concentration transport as
it evolves in time, similarly as in the analytical solution for the same Pe (Fig. 3f). The maximum value of the
semi-Lagrangian method is 626.55 kg/m2, which corresponds to the projection of the maximum concentration
from the particles to the mesh. Hence, as expected, there is a slight concentration loss (due to the projection
from the particles to the mesh nodes) towards the adjacent elements from the point where the concentration is
assigned. The sum of the concentrations on these adjacent elements coincides with the initial maximum value
of 1000 kg/m2. While in this case the interpolation error is 0, the first projection smoothens out completely
the spike, since no particle coincides with the spike position exactly.

4.1.3. Sensitivity analysis
In this section we run several cases varying the value of the diffusivity between the lowest and highest Péclet

number of the examples (from Pe = 2.5 to Pe → ∞).
Table 1 presents the maximum concentration values for each of the methods with different diffusivities. The

reference values obtained with the analytical solutions are included for comparison.
Clearly, the semi-Lagrangian approach, which benefits from the particle Lagrangian motion, works very well for

purely advective situations, as well as for the range of Péclet numbers considered in this study.
On the other hand, we observe that the Eulerian FIC–FEM method solves stability problems, especially in the

most diffusive cases. The solutions coincide with the semi-Lagrangian results.
Fig. 4 shows the maximum concentration in terms of the Péclet number. Note how the Eulerian approach presents

a huge numerical diffusion for high-Péclet numbers. The semi-Lagrangian approach yields more accurate results.
The difference between the analytical solution and the semi-Lagrangian results is assessed in Section 4.1.4.

Note that for Pe ≲ 2.5, the Eulerian solution begins to gain relevance and the results are comparable to those
obtained with the semi-Lagrangian approach.

4.1.4. Numerical diffusion analysis
This section studies the examples of Section 4.1.2, which are now plotted along time to see their relative impact

in the numerical diffusion.
Fig. 5 shows that, although the first four seconds of the example differ slightly, the results are quite identical at

t = 15 s.
The case for Pe → ∞ is shown in (Fig. 6). We can see that the semi-Lagrangian method presents no diffusion

loss whatsoever in the maximum transported value, except from that introduced by the projection of the nodal
concentration from the particles to the adjacent elements.

4.2. Transient advection–diffusion–absorption problem with sharp boundary layers

The analysis domain (x, y) ∈ [0, 8] × [0, 8] is discretized into a regular mesh of 2 × (8 × 8) 3-noded triangles of
unit rectangular side (l = 1) (Fig. 7). The advection, diffusion and absorption coefficients are u = 8 m/s, D = 2
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Fig. 4. 2D transport of a concentration. Comparison of the analytical, semi-Lagrangian and Eulerian methods in terms of the Péclet number.

Fig. 5. 2D transport of a concentration. Comparison of the maximum transported value from t = 0 s to t = 15 s using the semi-Lagrangian
and Eulerian methods (Pe = 2.5).

m2/s and R = 2000.0 s−1. The transported variable is the mass, in Kg and ρc = 1 J/m3K. The schematics of the
problem can be seen in Fig. 7. The problem data yields a Péclet number of Pe = 2.0 and a Damköhler number
of Da = 250.0. The Damköhler number is defined as Da =

sl
u , where s is the reaction parameter (or absorption

coefficient R, as ρc equals 1.0), l is the characteristic length and u the velocity.
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Fig. 6. 2D transport of a concentration. Comparison of the maximum transported value from t = 0 s to t = 15 s using the semi-Lagrangian
and Eulerian methods (Pe → ∞).

Fig. 7. Transient advection–diffusion–absorption problem. Square domain with constant velocity and zero source.

The Dirichlet boundary conditions φ(x = 0) = 3 and φ(x = 8) = 8 kg/m2 are employed. The initial solution is
chosen to have a linear profile. The transient solution was obtained with the implicit iterative scheme explained in
Section 2.3 with θ = 1.0 and a time step of ∆t = 0.0625 s. This corresponds to an element Courant number of
C = 0.5. An exponential layer gradually develops at the right boundary which is attenuated thanks to the absorptive
stabilization features introduced by the FIC–FEM procedure (Fig. 8).
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Fig. 8. Transient advection–diffusion–absorption with sharp boundary layer. Results at t = 2 s.

Table 2
Manufactured advective–diffusive–absorptive problem. Damköhler and Péclet numbers for
each of the cases studied.

Damköhler numbers Péclet numbers

R = 100 1/s R = 1000 1/s R = 10 000 1/s

l = 1/32 m 3.13 31.25 312.50 1.56
l = 1/64 m 1.56 15.63 156.25 0.78
l = 1/128 m 0.78 7.81 78.13 0.39
l = 1/256 m 0.39 3.91 39.06 0.20

4.3. Transient advection–diffusion–absorption problem with a manufactured solution

This example consists in solving a low-diffusive advective–absorptive problem using the manufactured solution
stated in Eq. (24). This problem was solved by Duan et al. [77,78].

φ(x, y) =

(
x2

2u1
+

Dx
u2

1

(
1

2u1
+

D
u2

1

)
exp −u1

D − exp
[

−u1
D (1 − x)

]
1 − exp −u1

D

)
×(

y2

2u2
+

Dy
u2

2

(
1

2u2
+

D
u2

2

)
exp −u2

D − exp
[

−u2
D (1 − y)

]
1 − exp −u2

D

) (24)

Introducing Eq. (24) into Eq. (1b) yields the non-homogeneous source-like term Q that is used, in turn, to solve
the advective–diffusive–absorptive equation with the semi-Lagrangian procedure.

We will consider a uniform velocity field of u = (u1, u2)T
: = (1/2,

√
3/2)T . A value of D = 1e-2 m2/s and R

= s/ρc = 10i 1/s with i = 2, 3, 4 have been taken.
These cases have been run with ρc = 1 J/m3K. The analysis domain Ω : = (x, y) ∈ [0, 1]×[0, 1] m is discretized

in a regular mesh of 2× (1/2i
×1/2i ) 3-noded triangles with a characteristic length l = 1/2i m, being i = 5, 6, 7, 8.

A Dirichlet boundary condition of φ = 0 kg at the whole boundary is considered. The time-integration parameters
are chosen as: θ = 1.0 and ∆t = 1e-4 s.

An image of the numerical result and the exact solution can be seen in Fig. 10. Excellent agreement is obtained.
Table 2 shows the Damköhler numbers corresponding to each of the cases considered in the study.
Table 3 shows the root-mean-square error for each case analysed. Taking the last two values (belonging to the

finest mesh examples), the convergence has also been calculated.
Fig. 9 displays a graph of the results of Table 3.
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Table 3
Manufactured advective–diffusive–absorptive problem. Root-mean-square error
(RMSE) and order of convergence for different values of R = s/(ρc).

RMSE

R = 100 1/s R = 1000 1/s R = 10 000 1/s

l = 1/32 m 0.00906573 0.00842561 0.00836711
l = 1/64 m 0.00420981 0.00370434 0.00362029
l = 1/128 m 0.00153896 0.00127547 0.00122659
l = 1/256 m 0.00056077 0.00038503 0.00036025
Convergence order 1.46 1.73 1.77

Fig. 9. Manufactured advective–diffusive–absorptive problem. Root-mean-square error versus the characteristic length l. Lines with slope =

1 and 2 are plotted for reference.

4.4. Manufactured transient advection–diffusion–absorption hump problem

This last example, taken from [77], consists in a hump moving in a domain changing its height periodically
leading to the appearance of a strong interior layer adjacent to the hump walls. The exact solution is given by
Eq. (25). This solution is introduced into Eq. (1b) to yield the manufactured unhomogeneous source-like function
Q used for solving the advection–diffusion–absorption equation with the semi-Lagrangian procedure.

φ(t, x, y) = 16 sin(π t)x(1 − x)y(1 − y)×(
1
2

+
arctan[2ε−1/2(0.252

− (x − 0.5)2
− (y − 0.5)2)]

π

)
(25)

We have considered a uniform velocity field of u = (2, 3)T . A value of D = 1e-6 m2/s has been chosen for the
normalized diffusivity and R = 1000 1/s for the normalized absorption.

These cases have been run with ρc = 1 J/m3K. The analysis domain Ω : = (x, y) ∈ [0, 1]×[0, 1] m is discretized
in a regular mesh of 2 × (64 × 64) 3-noded triangles with a characteristic length l = 1/64 m.
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Fig. 10. Advective–diffusive–absorptive problem with manufactured solution. Elevation plot at t = 0.08 s with a h = 1/256, D = 1e-2
m2/s and a R = 104 1/s giving Pe = 0.20 and Da = 39.06.

A Dirichlet boundary condition φ = 0 kg at ∂Ω has been considered. The initial condition is φ = 0 kg at t = 0
s. The time-integration parameters are chosen as: θ = 0.8 and ∆t = 1e-3 s.

Results of the simulation can be seen in Fig. 11.
The results show that the solution is stable and does not exhibit spurious oscillations near the interior layer

region. Some minor oscillations – ≈ 2% of the maximum value — can be spotted on the top-right side of the
domain.

A qualitative comparison with the examples in [77] shows that the semi-Lagrangian procedure is highly
competitive with the best methods in that paper.

4.5. 3D advection–diffusion–absorption problem for a low Damköhler number

The analysis domain (x, y, z) ∈ [0, 8] × [0, 8] × [0, 8] is discretized into a regular mesh of 2 × (16 × 16 × 16)
4-noded tetrahedra of rectangular side l = 0.5. The advection, diffusion and absorption coefficients are chosen as
u = 8 m/s, D = 2 m2/s and R = 2.0 s−1. The transported variable is the mass, in Kg and ρc = 1 J/m3K. The
schematics of the problem are shown in Fig. 12. The problem data yields a Péclet number of Pe = 1.0 and a
Damköhler number of Da = 0.125.

The Dirichlet boundary conditions of φ = 100 kg/m3 on the surfaces AA′ B ′ B, BCC ′ B ′ and C DD′C ′ and
φ = 0 kg/m3 on the surfaces DD′E ′E and E E ′ A′ A are employed. The initial solution is chosen to have a linear
profile (Fig. 13). The transient solution was obtained with the implicit iterative scheme explained in Section 2.3
with θ = 1.0 and a time step of ∆t = 0.0625 s. This corresponds to an element Courant number C = 1.0.

Fig. 14 shows the evolution of the solution on a plane at y = 4 and Fig. 15 a perspective view of the quasi-
steady-state solution for the transported variable for t = 2 s. Accurate stabilized results are obtained, thanks to the
stabilization features of the FIC–FEM approach.

4.6. 3D advection–diffusion–absorption problem for a high Damköhler number

The analysis domain (x, y, z) ∈ [0, 8]×[0, 8]×[0, 8] is, again, discretized into a regular mesh of 2×(16×16×16)
4-noded tetrahedra of rectangular side l = 0.5. The advection, diffusion and absorption coefficients are chosen as
u = 8 m/s, D = 2 m2/s and R = 2000.0 s−1. The transported variable is the mass, in Kg and ρc = 1 J/m3K. The
schematics of the problem can be seen in Fig. 16. The problem data yields a Péclet number of Pe = 1.0 and a
high Damköhler number of Da = 125.

The Dirichlet boundary conditions of φ = 3 and φ = 8 kg/m3 are imposed on the surfaces x = 0 and x = 8,
respectively. The initial solution is chosen to have a linear profile (Fig. 17). The transient solution was obtained
with the implicit iterative scheme explained in Section 2.3 with θ = 1.0 and a time step of ∆t = 1e − 4 s. This
corresponds to an element Courant number C = 8e − 4.
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Fig. 11. Manufactured hump problem. Hump geometry at t = 0.5 s with h = 1/64, D = 1e-6 m2/s and R = 1000 1/s, which corresponds
to Pe = 1.56e4 and Da = 15.63.

Fig. 18 shows the cubic domain along with two slices of it at the final time step (t = 5e−3s), it can be seen that
the values in the central part of the domain are quickly absorbed. The steady state solution is free from boundary
unstabilities.

Fig. 19 shows the evolution of the solution on a line from (0, 4, 4) to (8, 4, 4). A stable steady state is reached
quickly and corresponds to the 1D and 2D solution.

4.7. Pure 3D advection of a spherical concentration

A 3D problem similar to the point concentration in 2D has been studied in this section. It consists in the pure
advective transport (Pe → ∞) of a uniform spherical blob with a concentration φ = 100 kg/m3. The spherical
blob has a radius of 1.0 m and is initially centred at (x, y, z) = (1.25, 2.5, 1.25). A helicoidal velocity field
of u = (0.5, 0.5(z − 2.5), 0.5(y − 2.5)) m/s is prescribed on the domain. For this problem we have chosen a
normalized diffusivity D = 0.0 (pure advection) and a normalized absorption R = 0.0. The analysed domain
(x, y, z) ∈ [0, 15]× [0, 5]× [0, 5] m is discretized into a regular mesh of (150 ×50×50) 4-noded linear tetrahedra.
The Courant number in the x direction is C = 2.5. The schematics of the problem are shown in Fig. 20.

In Fig. 21 a typical streamline that the spherical blob follows during the simulation is shown.
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A. Puigferrat, M. Masó, I. de-Pouplana et al. Computer Methods in Applied Mechanics and Engineering 380 (2021) 113807

Fig. 12. Transient 3D advection–diffusion–absorption problem. Cubic domain with constant velocity and zero source.

Fig. 13. Transient 3D advection–diffusion–absorption problem. Mesh of the cubic domain with the initial boundary conditions.

In Fig. 22 a 3D view of the transported sphere can be seen. Several time steps have been overlayed for the
reader’s ease. The results show no concentration loss except from the one derived from the projection of the initial
conditions from the particles to the adjacent elements, which is ≈ 6.5%. This can be quantified by averaging the
values of the concentration in the transported sphere of radius 1 m (Fig. 23). The projection loss in this case is
directly related to the surface-to-volume ratio of a sphere, which is proportional to the inverse of the radius like 3/r ,
with r denoting the radius. Therefore, such loss could be reduced either by increasing the radius of the spherical
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Fig. 14. Transient 3D advection–diffusion–absorption evolution on a middle cut of the domain (y = 4).
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Fig. 15. Transient 3D advection–diffusion–absorption solution at t = 2 s: full domain and slices of it.

Fig. 16. Transient 3D sharp advection–diffusion–absorption problem. Cubic domain with constant velocity and zero source.

blob, or by decreasing the size of the finite element discretization. Here we have a combination of interpolation
error and projection error. In this case, the mass loss error is due to the initial interpolation of the spherical shape
onto the finite element mesh, which dominates all other sources of error. Note how consequently, after the first step,
no significant losses are observed in Fig. 23.
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Fig. 17. Transient 3D sharp advection–diffusion–absorption problem. Cubic domain with initial conditions.

Fig. 18. Transient 3D sharp advection–diffusion–absorption solution at t = 5e − 3s: full domain and slices of it.

5. Concluding remarks

We have presented numerical method that combines a FIC–FEM stabilized Eulerian procedure with a semi-
Lagrangian PFEM2-based approach that splits the advection–diffusion–absorption equation into a combination of a
pure advective problem and a diffusive–absorptive one. The goal is the solution of advection–diffusion–absorption
transport problems at high-Péclet and high-Damköhler numbers.

The presented method involves a more complex algorithm than the one in [41] but removes the non-linearity
introduced by the previous stabilization. Low numerical diffusion is achieved due to the use of a Lagrangian method
in the advection step. However, mass conservation in the domain is not guaranteed.
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Fig. 19. Transient 3D sharp advection–diffusion–absorption problem. Concentration evolution on a middle point.

Fig. 20. Sphere advection problem set-up.

We first solved a 2D pure transport example to assess the behaviour of the mixed formulation when compared
to a Eulerian one from advection-dominated cases to highly diffusive ones. The results show that, although the
Eulerian base formulation behaves well for highly diffusive problems, it fails to accurately transport the heat/mass
concentration in problems with high-Péclet numbers (Pe > 5.0) due to the high numerical diffusion introduced by
the formulation. In contrast, the semi-Lagrangian approach remains accurate, without any numerical loss, even for
Pe → ∞.

We also have solved the transport of a sphere of heat/mass concentration and verified that the semi-Lagrangian
approach is just as accurate for 3D problems.

After that, we studied three problems with higher Damköhler numbers in order to verify that the semi-Lagrangian
method gives accurate and stable results for highly absorptive problems.

The first of these examples showed the benefits of the absorption stabilization in a problem where a boundary
layer develops at the boundary due to the effect of absorption. Furthermore, our proposed algorithm was
tested using two complex benchmarks from the literature with known analytical solutions. Its performance was
satisfactory in both cases, indicating that it is a very robust method, suitable for its use for the solution of general
advection–diffusion–absorption problems.
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Fig. 21. Streamline that the spherical blob follows in the simulation.

Fig. 22. 3D view of the sphere at several time steps.
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Fig. 23. 3D average of concentration values in the moving sphere at several time steps.
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4.2 Introduction

The objective of this section of the thesis is to bring the procedure implemented in the
previous chapters to the practical field. To do this, a coupling method for the fluid and
the transport equations has been developed. The coupling algorithm has been validated
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using an academic study and a practical case. This chapter describes the coupling
strategy as well as the results obtained when the method has been applied to a practical
situation.

The academic study is shown in Appendix A. The evolution of the velocity vectors and
the distribution of an inert pollutant in a street canyon with a height / width ratio of 1
has been seen. The results have been compared with those obtained in [49, 100] among
others with good agreement.

The attached paper describes the coupling strategy developed and its application to the
transport of black carbon (BC) in a street canyon. More specifically the content of the
paper is organized as follows. First, the general procedure for coupling the fluid and
transport equations is introduced. Next, the overall solution strategy for the flow and
transport equations is outlined. Details of the fluid flow solution using the stabilized
FEM and the solution of the transport problem using the semi-Lagrangian method are
given. In the last part of the paper, the coupled formulation is applied to the prediction
of the transport of BC in a street canyon in Barcelona. First, a simulation in 2D with
good results is presented. Then a 3D simulation, which corresponds to a 2D extrusion,
is shown to demonstrate that three-dimensional phenomena are captured correctly with
the proposed semi-Lagrangian formulation.

4.3 Scientific contribution

Having validated the semi-Lagrangian formulation in Chapter 3, the last part of the
thesis’ work has focussed on the development and validation of a procedure for coupling
the fluid and transport equations. The coupled formulation has been used to model the
distribution of a pollutant in a street in Barcelona.

The presented method implies coupling the equations for advection-diffusion-absorption
transport of a substance with those of a fluid (the air), accounting for temperature effects
in the flow. For the numerical solution of the fluid flow problem, we have used standard
stabilized FEM procedures. More specifically, the Quasi-Static Variational Multiscale
(QS-VMS) technique has been used for the numerical solution of the fluid equations
with the FEM. This residual-based stabilization procedures allows the modelling of
high gradients in the fluid flow (such as those induced by turbulence) in a simple and
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effective way [19, 20]. Thermal effects in the flow have been modelled via the Boussinesq
assumption. A one-way coupling of the thermal and flow effects has been considered in
this research work.

The air velocities obtained in the fluid flow problem are used as input data for solving
the transport of both the temperature and the pollution substances in air using the
semi-Lagrangian procedure explained in Chapter 3.

We note that the transport of substances in turbulent air flows can be a computationally
intense problem, especially when the domain of analysis is of large dimensions.

After the implementation of the coupling between the fluid flow for the air and the
transport equations for the substances, several examples of transport of a pollutant in
air have been run to show the capability of the model for solving practical problems. A
problem chosen in the thesis is the air transport of a pollutant (black carbon) in a street
canyon. Experimental results for this problem are available [2] and have been used to
validate the numerical methods developed in the thesis.

The good results obtained in the validation examples have demonstrated the accuracy
and applicability of the numerical methods developed in the thesis for solving prob-
lems related to the transport of pollutants in fluids and, more specifically, air pollution
transport problems in urban environments.
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A B S T R A C T

We present a procedure for coupling the fluid and transport equations to model the distribution of a pollutant
in a street canyon, in this case, black carbon (BC). The fluid flow is calculated with a stabilized finite
element method using the Quasi-Static Variational Multiscale (QS-VMS) technique. For the temperature and
pollutant transport we use a semi-Lagrangian procedure, based on the Particle Finite Element Method (PFEM)
combined with an Eulerian method based on a Finite Increment Calculus (FIC) formulation. Both methods are
implemented on the open-source KRATOS Multiphysics platform. The coupled numerical formulation is applied
to the prediction of the transport of BC in a street canyon, which can be a useful tool to lessen the impact
of pollutants on pedestrians. Two test cases have been studied: a 2D simplified case and a more complex 3D
one. The main goal of this study is to propose a useful tool to study the effect of pollution on pedestrians in
a street-level scale. Good comparison with experimental results is obtained.

1. Introduction

Outdoor air pollution is linked to an estimated 4.2 million pre-
mature deaths worldwide every year [1]. Over 80% of people living
in urban areas are exposed to levels of pollution above the limits
established by the World Health Organization [2].

The growing concern to improve sustainability and air quality in
urban areas has made numerical prediction of pollution transport in-
creasingly important in deciding how to build and design these areas.
Knowing how a pollutant is distributed in a street canyon over hours,
days or months will help to design or re-think the streets so that
pedestrians, terraces and windows suffer the least possible impact from
city pollution [3,4].

One of the main pollutants in the air is the fine particle matter
(PM2.5) which measures less than 2.5 micrometres. More specifically,
black carbon (BC) is a fraction of PM2.5 closely related to traffic emis-
sions and linked to adverse health effects. Several studies show that BC
causes tissue irritation and the release of toxic chemical intermediates
from scavenger cells. Soot particles also act as carriers for the organic
compounds that can be allergens, mutagens, or carcinogens [5].

The formation of urban airflows in a street canyon is essential
for human health as well as for the thermal comfort of the different
buildings and their efficiency. The distribution of these buildings, as
well as their geometry, can vary the temperature within the street

∗ Corresponding author at: Centre Internacional de Mètodes Numèrics en Enginyeria CIMNE, Barcelona, Spain.
E-mail address: onate@cimne.upc.edu (E. Oñate).

canyon up to around 1 ◦C [6,7]. These temperature changes and
the wind highly affect the natural ventilation that occurs within the
street canyon, influencing, this way, the concentration of pollutants in
air [6,7]. The street temperature, which is generally higher than the
ambient temperature due to the sunlight and the traffic on it, creates
buoyancy effects that modify the velocity field within the street canyon
and, therefore, affects the distribution of the pollutants [8–10].

Traffic emissions are one of the most important sources of pollution
in cities where streets are narrow and the configuration of the buildings
create street canyons in which pollutants accumulate. The accurate
prediction of the transport of these pollutants is basic for the design
of solutions to minimize the exposure of citizens to traffic pollution.

The numerical prediction of the distribution of a pollutant in a
street canyon is an important and complex environmental problem,
as well as an architectural one. The transport of pollutant particles in
air has been studied by several authors [8,9,11,12]. In these kind of
problems microscale – that is the street scale – processes dominate the
solution [13].

Pollutants come mainly from the exhaust pipes of the vehicles
moving on the street and are dispersed through air by means of advec-
tion, diffusion and absorption. There are different factors to consider
in predicting these effects. First, the temperature of the facades of
buildings and the street cause thermal effects that affect the wind
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Nomenclature

𝛼 Thermal expansion coefficient
�̇�𝑠 Small scale acceleration
𝝈 Stress tensor
𝒇 External forces acting on the domain
𝒈′ Reduced gravity
𝒈 Gravity
𝒏 Domain outer vector
𝒕 Prescribed surface traction
𝒖 Velocity vector
𝒖0 Initial velocity
𝒖𝐷 Imposed velocity
𝛤𝐷 Dirichlet boundary
𝛤𝑁 Neumann boundary
𝜇 Dynamic viscosity of air
𝛺 Domain of area/volume
𝜙 Transported variable
𝜙𝑝 Prescribed transported variable
𝜙0 Initial value of the transported variable
𝜙𝑝 Transported variable on the particle
𝜌𝒈 Gravitational body force
𝜌 Air density
𝜏𝑝 Pressure stabilization parameter
𝜏𝑢 Velocity stabilization parameter
𝐶 Courant number
𝑐 Specific flux parameter
𝑒𝑟𝑟𝑖 Relative error
ℎ Characteristic length
𝐻∕𝑊 Height-to-width ratio
𝑘𝑖 Thermal conductivity in the 𝑖th space

direction
𝑞𝑝 Outgoing diffusive flux
𝑠 Reaction parameter
𝑇 Temperature
𝑡0 Initial value of time
𝑇𝑎𝑚𝑏 Ambient temperature
D Diagonal thermal conductivity matrix
BC Black Carbon
D Diffusivity
DNS Direct Numerical Simulation
FEM Finite Element Method
FIC Finite Increment Calculus
l Mesh size
LES Large Eddy Simulation
MAPE Mean Absolute Percentage Error
PFEM Particle Finite Element Method

speed field [14]. Secondly, the importance of thermal effects versus the
diffusivity induced by air turbulence must be studied. The relationship
between thermal effects and turbulence is taken into account by the
Richardson’s number [8,15]. The wind speed and its direction plays an
important role in the dispersion of a pollutant. Finally, the mathemat-
ical and computational models used are an important decision when
simulating these processes.

Various mathematical models have been used in the past to study
air quality in urban areas and can be classified in three main family
models: Gaussian, Lagrangian and Eulerian dispersion models. Gaus-
sian parametrical models are based on the well known analytical

PFEM2 Particle Finite Element Method - second
generation

PM2.5 Fine Particle Matter
Q-ASGS Quasi-Static Algebraic Sub-Grid Scales
QS-VMS Quasi-Static Variational Multi- scale
R Absorption
RANS Reynolds-Averaged Numerical simulations
VMS Variational Multiscale
�̂�𝑖|𝑠𝑖𝑚 Simulated value at each point
�̂�𝑖|𝑒𝑥𝑝 Experimental value at each point

solution for the Gaussian plume distribution [16] and they provide re-
liable results at the mesoscale. Gaussian models include AERMOD [17],
CTDM [18] and ADMS [19–21], among others. AERMOD is a steady-
state dispersion model developed by the US Environmental Protec-
tion Agency (EPA) and is generally used to simulate plumes in the
mesoscale. The EPA also developed the Complex Terrain Dispersion
Model (CTDM), which is able to get rid of the simulation cost of the
mesoscale wind computation. ADMS is a British atmospheric disper-
sion modelling system which can take into account different locations
(urban, coastal or mountain areas) and is able to calculate the inter-
action of several plumes in an urban area accounting for chemical
processes. Since Gaussian plume models are not based on the fluid
mechanics equations, they do not provide accurate results for more
complex problems [22]. Also, they provide poor results in situations in
which the Péclet number is low i.e. diffusive dominant [23] and they
cannot account for chemical reactions [24]. As the geometry gets more
complex at the microscale range, other models based on the numerical
solution of the fluid flow equations at the street level have appeared.

Lagrangian and Eulerian methods are generally used for smaller
scale numerical simulations. Eulerian methods aim to solve the fluid
transport equations in a fixed reference frame. The Micro Scale Air
Pollution Model (MISCAM) [25], for instance, is an Eulerian model
used to study dispersion of pollutants in dense urban areas. GEOS-
Chem is an Eulerian model which can be used to solve mixing of
chemical components in the atmosphere at a regional scale [26]. An-
other Eulerian modelling system is the WRF-Chem, which takes into
account chemical reactions, turbulence, emissions and the meteorolog-
ical data at urban and regional scales [27]. The Community Multi-scale
Air Quality (CMAQ) is yet another model used to predict air quality
simulations at urban and regional scales [28]. Although these models
work on various scales, most of them focus on larger domains than
the microscale. Lagrangian methods, on the other hand, transport a
property using single point particles, which simplifies and reduces
numerical diffusion in advection-dominant processes, many times at the
expense of increasing the computational cost. They are used primarily
for long-range calculations. Two examples of Lagrangian methods are
the NAME and the FLEXPART models, used in smoke tracking and
epidemic situations [29,30].

A more extensive classification of dispersion models can be found
in [31].

In this work we first calculate the turbulent fluid equations using
a stabilized Eulerian Finite Element Method (FEM) based on a Quasi-
Static Variational Multiscale (QS-VMS) procedure [32]. This method
decomposes the variables into a large and a small scale and resem-
bles a Large Eddy Simulation (LES) procedure. Then the calculated
velocity field is exported to an Eulerian–Lagrangian split formula-
tion, termed here semi-Lagrangian formulation, for solving the temper-
ature evolution and the pollution transport problems accounting for
advection–diffusion–absorption effects. The resulting coupled numeri-
cal procedure leads to accurate and stable results [33]. The Lagrangian
part of the pollution transport solution (i.e. the advective part) is
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based on the Particle Finite Element Method — second generation
(PFEM2) [34,35]. For the solution of the Eulerian diffusion–absorption
transport equation, we use a stabilized FEM using a Finite Increment
Calculus (FIC) procedure recently developed by the authors [36–38].
The semi-Lagrangian approach therefore benefits from the best features
of a combined Eulerian and Lagrangian FEM-type formulation: low
numerical diffusion is achieved thanks to the use of a Lagrangian
method in the advection step and the formulation only needs absorp-
tion stabilization. Thus, this method has proven to be accurate for
solving the transport equation, particularly in high-Péclet cases, which
are the ones we want to tackle [33].

The paper is organized as follows. First, the general procedure
for coupling the fluid and transport equations is introduced. Next,
the overall solution strategy for the flow and transport equations is
outlined. Details of the fluid flow solution using the stabilized FEM
and the solution of the transport problem using the semi-Lagrangian
method are given. In the last part of the paper, the coupled formulation
is applied to the prediction of the transport of an inert tracer (black
carbon) in a street canyon in Barcelona. Good results are obtained in
agreement with experimental data.

2. Modelling and simulation of air pollution transport

When simulating the movement in air of an inert tracer in a street
canyon, one must take into account the different phenomena that occur
in the transport of this tracer. This tracer is transported in several ways,
namely due to advection, diffusion and absorption effects. Chemical
reaction effects are neglected in this work, as black carbon is an inert
pollutant. Depending on the conditions, the tracer will be forced by the
air buoyancy caused by the temperature difference [8,10], or turbulent
diffusivity will prevail over the other effects. Turbulent diffusivity is
due to the eddy motion of a fluid. It is a parametrization of the diffusion
that appears from fluid turbulence at that scale [9,39–41].

While a uniform fluid transports a scalar without any distortion,
a non-uniform fluid can produce important effects on transport. The
cause of this change between both types of fluid is the differential
advection: as soon as a fluid presents turbulence, it brings parts of
the fluid close to others with different concentrations of pollutant.
This causes concentration gradients to intensify and induces additional
diffusion [40].

In the case of a direct numerical simulation (DNS), in which the
Navier–Stokes equations are solved without any turbulent model [42],
all ranges of turbulence, whether spatial or temporal, are computed. In
the case of the Reynolds-Averaged Numerical simulations (RANS), on
the other hand, the turbulence is fully modelled. The kinetic energy
modelled with the RANS procedure is much higher than the kinetic
energy modelled by a Large Eddy Simulation (LES) method. The DNS
procedure needs no additional terms to be added in the transport equa-
tion. However, for RANS modelling, additional turbulent diffusivity is
required to be considered in the transport equation as all turbulent
effects are modelled [43].

Given the previous considerations, the approach followed in this
paper uses a Quasi-Static Variational Multiscale model to gauge the ve-
locity field in which the sub-grid turbulence is calculated with a Quasi-
Static Algebraic Sub-grid Scales formulation [44]. This model provides
very accurate results without the need of the mesh resolution of DNS.
The QS-VMS and the semi-Lagrangian formulation are implemented
on the open-source platform KRATOS Multiphysics, which allows an
easy coupling. Thermal effects due to buoyancy have been taken into
account in the flow using the Boussinesq approximation [45]. The
velocity, thus, is affected by the difference of temperature given by
the ambient temperature and the street one. In this work we have
not considered addition of a turbulent diffusivity in the BC transport
equation [12,43,46].

Fig. 1. Flowchart for the numerical solution strategy.

3. Numerical solution strategy

Fig. 1 shows a flowchart of the numerical solution strategy used for
solving the transport of an inert substance, such as BC, in an air flow
accounting for temperature effects.

The first step is the discretization of the air domain in a mesh
of finite elements. In our work we use standard three-noded linear
triangles and four-noded linear tetrahedra for 2D and 3D problems,
respectively. Then the boundary and inlet conditions for the air flow,
the temperature and the transported BC field are imposed.

Starting from a known initial field at time 𝑡 = 𝑡𝑛 of velocity and
pressure in the air and the distribution of temperature and BC in the
air domain, the following computations are performed.

The velocity and pressure fields in the air at time 𝑡𝑛+1 are computed
using a stabilized Eulerian FEM based on a VMS formulation. The
temperature field in the air is assumed to be constant during the air
flow computations.

The air velocities obtained at time 𝑡𝑛+1 are used for computing the
distribution of temperature and BC at 𝑡𝑛+1 using a semi-Lagrangian
method. This is based on the advection of the transported variables
using a particle-based Lagrangian technique (the PFEM2). The com-
putation of the diffusion and absorption effects is carried out using a
stabilized FEM based on a Finite Calculus procedure. Both the advection
and diffusion–absorption steps are performed in the same fixed mesh
used for the air flow computations.

Details of the different steps for computing the air flow and trans-
ported variables (temperature and BC) are given in the next section.
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Fig. 2. Main steps of the semi-Lagrangian procedure.

Fig. 3. Satellite and map of the studied region (in red) and neighbourhood.

4. Governing equations

4.1. Air flow equations

Air motion is described by the incompressible Navier–Stokes equa-
tions. They state the balance of linear momentum (1) and the mass
balance (2) in the air domain 𝛺 as

𝜌𝜕𝑡𝒖 + 𝜌𝒖 ⋅ ∇𝒖 − ∇ ⋅ 𝝈 =𝒇 in 𝛺 × [0, 𝑇 ) (1)

∇ ⋅ 𝒖 =0 in 𝛺 × [0, 𝑇 ) (2)

where 𝜌 is the air density, 𝒖 is the velocity vector, 𝝈 is the stress tensor
and 𝒇 contains any external force acting on the domain, such as the
gravitational body force 𝜌𝒈.

The effect of temperature variations on the air is accounted for via
the Boussinesq approximation [47]. It states that the density variation
only affects the buoyancy term, i.e. in the body force term 𝜌𝒈. Con-
sequently, Eqs. (1) and (2) are solved using a constant density 𝜌 and
replacing the gravity 𝒈 by a reduced gravity 𝒈′ as

𝒈′ = 𝒈
[
1 − 𝛼

(
𝑇 − 𝑇𝑎𝑚𝑏

)]
(3)

where 𝛼 is the coefficient of thermal expansion, 𝑇 is the temperature
at any point in the domain, and 𝑇𝑎𝑚𝑏 is the ambient temperature. The
coefficient of thermal expansion has been taken as 𝛼 = 1∕𝑇𝑎𝑚𝑏, the
definition for ideal gases. In this work the temperature is assumed to be
constant during the computation of the air velocity and pressure fields
within each time step.

The stress tensor 𝝈 for Newtonian fluids reads

𝝈 = −𝑝𝟏 + 2𝜇
[
∇𝑠𝒖 − 1

3
(∇ ⋅ 𝒖) 𝟏

]
(4)

with 𝟏 being the second order identity tensor, 𝜇 is the dynamic viscosity
of the air, and where ∇𝑠𝒖 is the symmetric gradient of the velocity.

The Navier–Stokes equations are completed with suitable initial and
boundary conditions, namely,

𝒖 =𝒖0 in 𝛺 × [0] (5)

𝒖 =𝒖𝐷 on 𝛤𝐷 × [0, 𝑇 ) (6)

𝝈 ⋅ 𝒏 =𝒕 on 𝛤𝑁 × [0, 𝑇 ) (7)

where 𝒖0 is the initial velocity, 𝒖𝐷 is the velocity imposed on the
Dirichlet boundary 𝛤𝐷, 𝒏 is the outer normal vector to the analysis
domain and 𝒕 is the prescribed surface traction acting on the Neumann
boundary 𝛤𝑁 .

4.2. Temperature and pollutant transport equations

The transport balance equation in a domain of area/volume 𝛺 is
expressed in a Lagrangian frame as

𝑟𝑡 = 0 in 𝛺 (8a)

with

𝑟𝑡 ∶= 𝜌𝑐
𝐷𝜙
𝐷𝑡

− 𝛁𝑇𝐃𝛁𝜙 + 𝑠𝜙 −𝑄 = 0 (8b)
𝐷𝐱
𝐷𝑡

= 𝐮 (8c)

In Eq. (8), 𝜙 is the transported variable (i.e., the BC in the problem
considered in this work), 𝑢𝑖 is the 𝑖th cartesian component of the
velocity vector 𝐮; 𝜌, 𝑐 and 𝑠 are the density, the specific flux parameter,
the reaction parameter, respectively, and 𝐃 is a diagonal thermal con-
ductivity matrix with 𝐷𝑖𝑖 = 𝑘𝑖, with 𝑘𝑖 being the thermal conductivity in
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Fig. 4. AE-51 micro-aethalometers (Aethlabs) used for BC measurements [48].

Fig. 5. Temperature in a nearby station in the studied period of time [49].

the 𝑖th space direction. In the following, and unless otherwise specified,
we will assume that the problem parameters (𝜌, 𝑐, 𝑘𝑖, 𝑠) are constant
over the analysis domain 𝛺. In our work we define D = k/(𝜌𝑐) as the
diffusivity, and R = s/(𝜌𝑐) as the absorption. These parameters depend
on the transported variable and are chosen according to its nature. For
instance, in a mass transport problem we would say carbon dioxide in
air has a mass diffusivity (D) of 16 mm2/s.

The time derivative in Eq. (8b) is the total derivative which is
computed as 𝐷𝜙

𝐷𝑡 = 𝜙𝑛+1−𝜙𝑛
𝛥𝑡 , as typically done in Lagrangian schemes.

Eq. (8c) defines the velocity field in the Lagrangian frame. This
equation is used for computing the trajectory of a set of particles
representing the temperature and pollutant fields in the air domain
following the air streamlines.

The boundary conditions of the aforementioned equations are

𝜙 − 𝜙𝑝 = 0 on 𝛤𝐷 (9a)

𝑟𝛤 = 0 on 𝛤𝑁 (9b)

with

𝑟𝛤 ∶= −𝑞𝑛 + 𝑞𝑝𝑛 (9c)

where

𝑞𝑛 = 𝐪𝑇 𝐧 , 𝐪 = −𝐃𝛁𝜙 (10)

In Eqs. (9) and (10), 𝜙𝑝 and 𝑞𝑝 are the prescribed boundary fields
of the transported variable and the outgoing diffusive flux at the
Dirichlet and Neumann boundaries 𝛤𝐷 and 𝛤𝑁 of the analysed domain,
respectively, and n its exterior unit normal. Eq. (9b) allows us to impose
a face heat flux on the street surface.

The definition of the problem is completed with the initial condi-
tions

𝜙(𝐱, 𝑡0) = 𝜙0(𝐱) (11)

where 𝜙0 is a known field at time 𝑡0.

5. Air flow solution using a stabilized FEM formulation

The solution for the velocity and pressure fields in the air is coupled
using a stabilized Eulerian FEM. Among the different choices for stabi-
lized FEM we have chosen in this work a Variational Multiscale (VMS)
approach.

The VMS technique [50,51] has been widely used to stabilize finite
element formulations in fluid dynamics [52,53] and in solid mechan-
ics [54,55]. The method is based on the hypothesis that the velocity and
pressure fields can be separated into two different components: one for
the large scale (⋅)ℎ, and the other for the small scale (⋅)𝑠, also referred
as subscale as

𝒖 = 𝒖ℎ + 𝒖𝑠 (12)

𝑝 = 𝑝ℎ + 𝑝𝑠 (13)

The large scale (⋅)ℎ corresponds to the part of the solution that
can be described in the finite element space, whereas the subscale (⋅)𝑠
stands for the small nuances of the solution that cannot be captured by
the discrete finite element interpolation. Both spaces are complemen-
tary and conform the whole space of solutions. Since the large scale is
represented by a finite space, the subscale space is infinite and must be
approximated in order to obtain a feasible solution. The choice of the
approximate subscale space leads to the final form of the stabilization
method.

In this work we consider the Quasi-Static Algebraic Sub-Grid Scales
(Q-ASGS) variant of the VMS approach [44,51] which neglects all terms
involving the small scale acceleration �̇�𝑠.

After discretizing the system of Eqs. (1) and (2) in the standard
finite element fashion [56] and applying the aforementioned Q-ASGS
method, the following system of equations in matrix form is obtained

𝑴
(
𝜏𝑢, 𝒖

)
�̇� +𝑲

(
𝜏𝑢, 𝜏𝑝, 𝒖

)
+𝑮

(
𝜏𝑢, 𝒖

)
𝑷 = 𝑭

(
𝜏𝑢, 𝒖

)
(14)

𝑸𝑚
(
𝜏𝑢
)
�̇� +𝑫

(
𝜏𝑢, 𝒖

)
𝑼 +𝑸𝑝

(
𝜏𝑢
)
𝑷 = 𝑸𝑓

(
𝜏𝑢
)

(15)

where 𝜏𝑢 and 𝜏𝑝 are stabilization parameters defined as

𝜏𝑢 =
(
8𝜇
ℎ2

+ 2𝜌‖𝒖‖
ℎ

)−1
, 𝜏𝑝 = 𝜇 + ‖𝒖‖ℎ

4

and ℎ is a characteristic length of each finite element in the mesh.
The description of all the matrices and vectors in Eqs. (14) and (15)

can be found in [44].
The resulting discrete problem does not suffer from the numerical

instabilities that affect the Galerkin problem [57] and allows us to work
with linear finite elements interpolators for both the velocity and the
pressure.

Eqs. (14) and (15) are integrated in time using a standard Bossak
scheme [58]. The output of the computation are the air velocity and
pressure fields at 𝑡𝑛+1. These values are used for computing the trans-
port of temperature and BC using the semi-Lagrangian technique de-
scribed below.
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Fig. 6. 2D section of the street canyon. View from Google Maps.

Fig. 7. Schematics of the 2D street canyon geometry.

6. Semi-Lagrangian solution of the transport equation

The numerical method used to solve the transport of the tempera-
ture and pollutant fields is based on the semi-Lagrangian formulation
developed by Puigferrat et al. [33]. This procedure calculates advection
effect first using a Lagrangian approach based on the PFEM2 tech-
nique [34,35]. An Eulerian strategy based on the FEM is adopted to
compute the diffusion and absorption effects in a second step. The
Eulerian numerical solution is based on a stabilized FEM using a Finite
Increment Calculus (FIC) technique [38].

The Semi-Lagrangian approach can be understood as a splitting
method which uses a set of particles for transporting the advected
variables within a fixed mesh and a FEM to solve the rest of the
transport effects (diffusion and absorption) in the same fixed mesh.

Fig. 8. Wind speed and direction in a nearby station in the studied period of time.

The semi-Lagrangian procedure was originally introduced in [33]
for solving the transient advection–diffusion–absorption equation for
high Péclet numbers.

We outline below the main steps of the semi-Lagrangian procedure.

6.1. Solution steps of the semi-Lagrangian procedure

Once the air velocities have been obtained using the stabilized FEM,
as described in Section 4.1, the transport of the temperature and the
pollutant fields is computed using the following steps:

Step 1. Advection. Eq. (8c) is solved to transport the motion of a set
of particles along the air streamlines. Each particle carries with
itself the point concentration of the transported field (i.e. either
the temperature or the concentration of BC) 𝜙𝑝 = 𝜙(𝐱𝑝) .

Step 2. Projection. The values of the transported field at time 𝑡𝑛+1 are
transferred from the particles to the nodes of the finite element
mesh.
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Fig. 9. Main directions of the wind in a nearby station.

Step 3. Diffusion–absorption. The diffusion and/or absorption of the
pollutant is computed by solving the standard diffusion–reaction
transport equation in a fixed grid with the FIC-FEM technique
described in Section 6.2.

Step 4. Particles update. The values of the transported field are
transferred from the nodes of the finite element mesh to the
particles.

The steps of the Semi-Lagrangian procedure are shown in Fig. 2.

6.2. Computation of diffusion–absorption transport using a FIC-FEM tech-
nique

Eq. (8) and the boundary conditions (Eqs. (9) and (10)) are ex-
pressed in the fixed mesh using the FIC approach as [59].

Transport balance.

𝑟𝑡 −
1
2
𝐡𝑇𝛁𝑟𝑡 = 0 in 𝛺 (16)

where 𝐡 = [ℎ1, ℎ2, ℎ3]𝑇 is a characteristic length vector.

Boundary conditions.

𝜙 − 𝜙𝑝 = 0 on 𝛤𝐷 (17a)

𝑟𝛤 + 1
2
ℎ𝑛𝑟𝑡 = 0 on 𝛤𝑁 , with ℎ𝑛 = 𝐡𝑇 𝐧 (17b)

Eqs. (16) and (17b) are obtained by expressing the balance of fluxes
in an arbitrary prismatic space domain of size ℎ1 × ℎ2 × ℎ3 within
the global domain and at the Neumann boundary, respectively. The
distances ℎ𝑖 are termed characteristic lengths of the FIC method. The
underlined terms in Eqs. (16) and (17) introduced by the FIC technique
provide the necessary stability for the numerical solution.

The characteristic lengths are expressed as a proportion of a typical
grid dimension [60]. Note that, as the characteristic length vector
𝐡 tends to zero, the FIC governing equations tend to the standard
infinitesimal form; that is, 𝑟𝑡 → 0 in 𝛺 and 𝑟𝛤 → 0 on 𝛤𝑁 as 𝐡 → 𝟎.
For details of the FIC method see [60].

In the semi-Lagrangian formulation, the effect of advection is ne-
glected in the diffusion–absorption step. Consequently, vector 𝐡 is
defined to account for boundary instabilities due to absorption effects
only as [33]

𝐡 = 𝐡𝑟 =
2
𝑟𝑡
𝐃𝐬∇𝜙 (18)

The system of Eqs. (16)–(17) is discretized in space with the FEM
and in time using an implicit Generalized Trapezoidal rule [61,62].
Detail of the matrices and vectors of the FIC-FEM formulation can be

Fig. 10. 2D street canyon problem. Coarse and fine mesh in the area of study.
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Fig. 11. 3D problem. Schematics of the 3D street canyon geometry.

found in [38]. The solution for the nodal values at a time instant is
found using an incremental strategy as

𝐇𝑛𝛥𝝓 = −𝐫𝑛𝑡 (19)

where 𝛥𝝓 is the increment of the nodal variables, (⋅)𝑛 denotes values at
time 𝑡 = 𝑡𝑛 and

𝐇𝑛 = 1
𝛥𝑡

𝐌 +𝐊𝑛 + 𝐒 (20)

𝐫𝑛𝑡 ∶= 𝐌�̇� + [𝐊𝑛 + 𝐒]𝝓𝑛 − 𝐟𝑛 (21)

In Eq. (21) we define �̇� = 𝝓𝑛−𝝓𝑛−1

𝛥𝑡 .
From the value of 𝛥𝝓 obtained from Eq. (19) we compute the value

of 𝝓𝑛+1 as

𝝓𝑛+1 = 𝝓𝑛 + 𝛥𝝓 (22)

Details of the above matrices and vectors and of the transient
solution scheme can be found in [38].

7. Results and discussion

7.1. Case study

Microclimatic changes in a street canyon occur mainly due to its
geometry parameters (height-to-width ratio (𝐻∕𝑊 )) and the street
orientation [7,10,63,64].

The chosen geometry in this work is a street canyon in Barcelona,
Spain, specifically the Torrent de l’Olla street, around the number 218
(See Fig. 3). The simulation makes use of the boundary conditions from
the days that Amato et al. [48] measured the BC concentration during
November 2015. Measurements were taken by means of AE-51 micro-
aethalometers (Aethlabs, Fig. 4), every 5 min during a period of four
days. The data used for the validation was taken in the afternoon, from
around 17.30h until 20.30h.

In both the 2D and 3D simulation the effect of trees has been
disregarded because the experimental values were taken in a street
section in which there were no trees significant for the simulation (the
dense trees that can be seen in Fig. 6 are more than 5 m behind the
studied section). We have not taken into account cars as it is one of the
lowest traffic neighbourhood in Barcelona [65].

Fig. 12. 3D problem. Mesh on the street canyon geometry.

An ambient temperature of 14 ◦C has been taken, which corre-
sponds to the average temperature of the three hour period of time in
the days when the measurements were taken. The variation of temper-
ature during that period can be seen in Fig. 5. The street temperature
considered in this work is 20 ◦C (the average of the measured values).

Different simulations have been carried out to assess the effect of
several variables on the BC concentration such as the street tempera-
ture, the mesh size and the time increment for solving the air flow and
the transport equations.

Fig. 6 shows the studied two-dimensional (2D) section of the street
canyon.

The height of the buildings in both sides of the canyon is 20 m and
the width of the street is approximately 11 m, which gives 𝐻∕𝑊 ≈ 1.82.

A simplified 2D case has been studied first with a geometry shown
in Fig. 7

where the segments 𝐴𝐵𝐶𝐷 represent the air domain over the build-
ings. This domain is chosen so it can be affected by the inwards and
outwards velocity fluxes in the street canyon. It is also extended to
avoid backflows on its outlets. It has an inlet velocity of 3.5 m/s parallel
to the street, in the 𝑥 direction. The wind direction was predominant
on a South-West direction (see Figs. 3 and 8).

The wind rose of a nearby meteorological station can be seen in
Fig. 9. It can be seen that the direction taken corresponds to one of the
predominant directions on the wind rose. The value of this velocity is
taken as the average of the wind speed in that station during the days
of the measurements [49]. The segment 𝐻𝐺 of length 4 m represents
the street section, which has an imposed heat source of 100 W/m2.
This value was chosen based on the calculations and experiments made
in [66]. This corresponds to an average that can be found on an asphalt
street during daytime and represents the captured solar heat by the
asphalt. The walls have been considered to have low to no difference
in temperature with the ambient air because they are mainly painted
with clear colours and solar irradiation was low during the days the
experimental data was taken (around 2 kWh/m2 [49], which is among
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Fig. 13. 2D street canyon analysis. Measurements taken during a period of three hours for three different heights (a = 5 m, b = 15 m and c = 20 m) at 0.2 m from the wall.
All analysis were carried out for a Courant number (C ≈ 1)

Fig. 14. 2D street canyon study. Measurements taken at two distances from the wall during three hours with a coarse mesh (l = 0.4 m) and a C ≈ 1. The ambient temperature
is 14 ◦C and the street temperature is 20 ◦C.

lowest monthly values of the year [67]). Also, as the sun in November
sets in Barcelona around 17:45h, there were no sun/shade walls.

The street canyon domain is discretized in two regular finite element
meshes of 2.8k and 44k 3-noded triangles with two mesh sizes of l =
0.4 m and l = 0.1 m, respectively, for comparison purposes. The two
meshes can be seen in Fig. 10. The mesh size effect has been assessed
with several simulations for the same Courant number (𝐶 = 𝑢𝛥𝑡∕𝛥𝑥),
namely C ≈ 1 and C ≈ 3, taking into account that the average velocity
inside the canyon is around 1 m/s. Other Courant numbers have been
used to assess its effect in the same mesh.

Several simulations were run with the coarse mesh to study the
effect of the street temperature and the ambient temperature on the
distribution of the pollutant (Table 1). The rest of the cases were run
with an ambient temperature of 14 ◦C and a street temperature of
20 ◦C.

The Dirichlet boundary conditions for the BC transport were chosen
as 𝜙 = 100 kg/m2 along the segment 𝐻𝐺 and 𝜙 = 70 kg/m2 on the

Table 1
Temperature combinations.
Ambient temperature [◦C] Street temperature [◦C]

14
14 20

25

segments 𝐴𝐵𝐶𝐷. The ambient concentration of BC was chosen to be
70% of the concentration found in the street level, which corresponds
to the measurements not affected by local sources [31].

A simplified three-dimensional (3D) case has been also studied with
a geometry shown in Fig. 11

where the area 𝐴𝐵𝐶𝐷𝐷′𝐶 ′𝐵′𝐴′ represents the air domain over the
buildings. Note that the section is the same as in Fig. 7. A depth of
10 m has been added to the previous model via an extrusion in the 𝑦
direction.
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Fig. 15. 2D street canyon study. Effect of the mesh size on the concentration fraction during 3 h with the same Courant numbers. The ambient temperature is 14 ◦C and the
street temperature is 20 ◦C.

Fig. 16. 2D street canyon. Velocity vectors for the same Courant number (C ≈ 1.0) and different mesh sizes.

The 3D domain was chosen so it could be affected by the inwards
and outwards velocity fluxes in the street canyon. It has an inlet veloc-
ity section of 3.5 m/s parallel to the street, in the 𝑥 direction. The value
of this velocity was taken, again, as the average of the wind speed in
a nearby meteorological station during the days of the measurements.
The area 𝐻𝐺𝐺′𝐻 ′, of length 4 m and depth 10 m, represents the
street section, which has an imposed heat source of 100 W/m2 [66].
This represents the captured solar heat by the asphalt. The walls have
been considered to have low to no difference in temperature with the
ambient air, because they are mainly painted with clear colours.

The Dirichlet boundary conditions chosen for the BC transport were
𝜙 = 100 kg/m2 along the street section 𝐻𝐺𝐺′𝐻 ′ and 𝜙 = 70 kg/m2 on
the top section 𝐴𝐵𝐶𝐷𝐷′𝐶 ′𝐵′𝐴′. The ambient concentration of BC was
chosen to be 70% of the concentration found in the street level, which
corresponds to the measurements not affected by local sources [31].

The street canyon domain is discretized in a regular finite element
mesh of 154k 4-noded linear tetrahedra with a mesh size of 𝑙𝑥 = 0.2
m, 𝑙𝑦 = 1.4 m and 𝑙𝑧 = 0.3 m approximately, which gives an average
Courant number close to 5 in the velocity direction, taking into account
that the average velocity inside the canyon is around 1.5 m/s and the
𝛥𝑡 = 1 s. Details of the mesh can be seen in Fig. 12.

The transient solution has been obtained with various time steps
(𝛥𝑡), depending on the Courant number considered in each case.

7.2. 2D results

Fig. 13 shows the time evolution of the concentration obtained at
the heights 5, 15 and 20 m for a period of 3 h and 0.2 m away from
the most affected wall, which is the one first reached by the pollutant
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Fig. 17. 2D street canyon study. Velocity vectors at different time steps with a fine mesh and C ≈ 1.0. The ambient temperature is 14 ◦C and the street temperature is 20 ◦C.

depending on the eddies distribution. For instance, if there is a strong
eddy in the lower part of the street canyon and it is rotating clockwise
during the simulation, the most affected wall will be the upstream one.

The normalized concentration values shown in this section corre-
spond to the distribution of the concentration of BC at different heights
normalized with the average value of the concentration at 5.5 m. These
values are averaged during the first, second and third hour in the street
canyon and are taken at heights of 5.5, 6, 8.5, 11, 13.5, 16, 17.5 and

20 m and at a distance of 0.2 m from the wall, be it the downstream
or the upstream one, as shown in Fig. 7.

We took these heights in order to compare the numerical results
with the experimental ones reported in [48]. In the experiments, mea-
surements of the BC concentration were taken every 5 min during a
period of four days. As we use an average temperature and run three
hours of simulations only, the data taken from [48] is the average in
a daytime. The distance from the wall corresponds to an approximated
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Fig. 18. Comparison of simulations with different street temperatures and an ambient temperature of 14 ◦C (C ≈ 1.0). Experimental results [48] are shown in a dashed line.

Fig. 19. 2D problem. Concentration contours of BC at different time steps with a fine mesh and a C ≈ 1.0. The ambient temperature is 14 ◦C and the street temperature is 20 ◦C.
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Fig. 20. 3D problem. Slices of the 3D street canyon model.

size of the BC sensor. Other simulations were run to determine whether
the distance to the wall had effect on the normalized concentration
curves. The computations showed that if we measure the values at short
distance from the wall (between 0.2 and 0.5 m), the result has minimal
differences (Fig. 14).

Fig. 15 shows the effect of the mesh size on the normalized BC
concentration value during the three hours, using the same Courant
number (C ≈ 1). The difference in the normalized concentration frac-
tion in Fig. 15(b) is due to the creation of stronger eddies in the lower
part of the street canyon as the fine mesh captures better the velocity
gradients in the air. A smoother distribution of the velocity fields in
the case of Fig. 15(a) is found. The fact that a stronger lower eddy
is created prevents the pollutant from leaving it, which means that a
higher normalized concentration will be found in the region from 5 to
10 m of height.

Fig. 16 shows two snapshots of the solution at the same time for
the coarse and fine meshes, and the same Courant number (C ≈ 1).
Although results show high similarity, it can be seen that the fine mesh
results (Fig. 16(b)) capture better the high gradients in the air flow
those of the coarse mesh (Fig. 16(a)).

Fig. 22. 3D street canyon analysis. Concentration fraction on the 3 h with a Courant
number of around 5. The ambient temperature is 14 ◦C and the street temperature is
20 ◦C.

Different simulations using the temperatures in Table 1 were carried
out to assess the influence of the street temperature in the concentration
distribution of BC for C ≈ 1.0.

Fig. 17 shows the eddies that appear when the ambient temperature
is 14 ◦C and the street temperature is 20 ◦C using the fine mesh and a
Courant number of ≈ 1.0. Note that at𝑡 = 150 s, when the velocity from
the wind has still not influenced the lower part of the street canyon,
small eddies appear due to the effect of the buoyancy induced by the
difference of temperature between the street and the ambient.

Different eddies appear for cases in which street or ambient temper-
ature vary and is one of the reasons why the BC distribution depends
on the street temperature.

The normalized concentration is plotted in Fig. 18 against the height
of the measurements. The numerical results obtained have been plotted
together with the experimental ones obtained by Amato et al. [48].

Good correlation between numerical and experimental results is
obtained.

Fig. 18 also shows that the street temperature has a slight effect
on the normalized concentration values. All three configurations tend
to create a strong eddy that stays during a relatively long time and
increases the concentration in the lower part of the street canyon,
which accumulates in the first 8–9 m and then decreases slowly until
the 20 m of height. The authors’ interpretation of the gap at 20 m is
due to the simplifications made in the paper, most likely the one made
on the geometry and the constant air speed. We believe the effects of

Fig. 21. 3D street canyon study. Measurements taken during a period of three hours for three different heights (a = 5 m, b = 15 m and c = 20 m) at 0.2 m from the wall. The
analysis was carried out for a Courant number (C ≈ 5).
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Fig. 23. 3D street canyon problem. Velocity vectors for a Courant number (C ≈ 5.0) on different slices at𝑡 = 5000 s. The street temperature and ambient temperature are 20 ◦C
and 14 ◦C, respectively.

Table 2
Comparison of numerical and experimental values of BC concentration at different heights.

Coarse mesh Fine mesh Experimental

C = 0.5 C = 1.0 C = 2.5 C = 3.0 C = 1.0 C = 3.0 C = 5.0

5.5 m 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.00000.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

6 m 0.9985 0.9999 1.0045 1.0034 1.0094 0.9957 0.9656 0.95304.78% 4.92% 5.40% 5.29% 5.92% 4.48% 1.33%

8.5 m 0.9977 1.0024 1.0308 1.0326 1.0099 0.9892 0.8676 0.94775.28% 5.77% 8.77% 8.97% 6.57% 4.38% −8.45%

11 m 0.9856 0.9969 0.8778 0.8872 0.8545 0.9865 0.8802 0.94953.80% 4.99% −7.55% −6.56% −10.01% 3.89% −7.30%

13.5 m 0.9452 0.9788 0.8774 0.8811 0.8634 0.9895 0.8788 0.92222.49% 6.14% −4.85% −4.46% −6.37% 7.30% −4.71%

16 m 0.9293 0.9657 0.8764 0.8818 0.8609 1.0522 0.8797 0.9683−4.03% −0.27% −9.49% −8.94% −11.09% 8.66% −9.15%

17.5 m 0.9229 0.9597 0.8759 0.8825 0.8559 1.0529 0.8771 0.92250.05% 4.04% −5.05% −4.33% −7.22% 14.14% −4.92%

20 m 0.9063 0.9478 0.8456 0.8441 0.8330 0.8711 0.8171 0.731523.90% 29.57% 15.60% 15.39% 13.88% 19.08% 11.71%
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Fig. 24. 3D street canyon problem. BC concentration contours for a Courant number (C ≈ 5.0) at𝑡 = 2500 s and𝑡 = 5000 s. The street temperature and ambient temperature are
20 ◦C and 14 ◦C, respectively.

Fig. 25. Vertically distributed graph from Table 2.

such simplification are magnified at higher heights, far from the source
of pollutant.

Fig. 19 shows different snapshots of BC concentration at several
time steps for the case in which the street temperature is 20 ◦C and
the ambient temperature is 14 ◦C.

7.3. 3D results

The 3D case we show in this paper corresponds to a 2D extrusion to
demonstrate that three-dimensional phenomena are captured correctly
with the proposed semi-Lagrangian formulation. The ultimate goal
would be to run more elaborated simulations to get more detailed re-
sults. For this example we used the conditions which were more similar
to the case study ran in Section 7.2, namely an ambient temperature of

14 ◦C, a street temperature of 20 ◦C with an imposed heat source of
100 W/m2 and an imposed inlet velocity of 3.5 m/s.

Fig. 20 shows the three cuts chosen in the 3D domain in order to
show the 3D results.

Fig. 21 shows the time evolution of the concentration obtained at
the heights 5, 15 and 20 m for a period of 3 h and 0.2 m away from
the most affected wall at the slice situated in the middle (Fig. 20).

Fig. 22 shows the normalized BC concentration value during the
three hours, using the same Courant number (C ≈ 5).

In Fig. 23 we can see the different velocity vectors after𝑡 = 5000 s.
These vectors are much more chaotic than the ones shown in Fig. 17
due to the effect of the third component of the air velocity. However,
a large clockwise eddy can be seen along the whole street canyon.

Snapshots of the BC concentration contours at𝑡 = 2500 s and𝑡 = 5000
s are shown in Fig. 24.
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Table 3
MAPE of BC concentration for different computations.

Coarse mesh Fine mesh

C = 0.5 C = 1.0 C = 2.5 C = 3.0 C = 1.0 C = 3.0 C = 5.0

MAPE 5.54% 6.96% 7.09% 6.74% 7.63% 7.74% 5.94%

Table 4
Numerical and experimental values of BC concentration at
different heights for the 3D problem.

3D Experimental

C = 5.0 C = 10.0

5.5 m 1.0000 1.0000 1.00000.00% 0.00%

6 m 0.9989 0.9969 0.95304.82% 4.61%

8.5 m 0.9947 0.9906 0.94774.96% 4.53%

11 m 0.9912 0.9884 0.94954.39% 4.10%

13.5 m 0.9884 0.9880 0.92227.18% 7.14%

16 m 0.9869 0.9876 0.96831.92% 1.25%

17.5 m 0.9871 0.9880 0.92257.01% 7.11%

20 m 0.957 0.9763 0.731530.83% 34.70%

7.4. Comparison of results

In this section we compare in more detail the numerical results
obtained in this work with the experimental data.

Table 2 presents the different normalized BC concentration values
for the studied heights obtained in the simulations as well as a column
with the concentrations obtained experimentally for the 2D problem.
We show the relative error for each simulation values, calculated as

𝑒𝑟𝑟𝑖 =
�̂�𝑖|𝑠𝑖𝑚 − �̂�𝑖|𝑒𝑥𝑝

�̂�𝑖|𝑒𝑥𝑝 (23)

where �̂�𝑖|𝑠𝑖𝑚 represents the simulated value at each point and �̂�𝑖|𝑒𝑥𝑝 is
the experimental value at the same height point.

Fig. 25 shows the results from Table 2 as a vertically distributed
graph.

Table 3 shows the Mean Absolute Percentage Error (MAPE) of BC
concentration for every simulation computed as

𝑀𝐴𝑃𝐸 = 1
𝑛

𝑛∑
𝑖=1

|𝑒𝑟𝑟𝑖| (24)

The MAPE value for each Courant number stays within 5%–8%.
These results show that, although having simplified the problem in
several aspects, the semi-Lagrangian formulation presented can predict
the pollutant transport with a good range of accuracy.

Table 4 presents the different normalized BC concentration values
for the studied heights obtained in the 3D simulations as well as a
column with the experimental concentrations. Fig. 26 shows a vertically
distributed graph for the readers’ ease. Table 5 shows the MAPE for the
same case. The MAPE values are higher than in the 2D case, presumably
due to the higher Courant number used for the 3D simulations.

8. Concluding remarks

The semi-Lagrangian finite element formulation presented has
proven to be a useful tool to predict the distribution of BC in a street
canyon using a short time resolution (scale of seconds). Although

Table 5
MAPE of BC concentration for the 3D problem.

3D

C = 5.0 C = 10.0

MAPE 7.64% 7.87%

Fig. 26. Vertically distributed graph from Table 4.

several simplifications were made in the problem, these have led to
reasonably low differences between the calculated results and the
ones obtained experimentally. In 2D, the effects of the velocity in
the longitudinal direction have been neglected and in 3D, the effect
of cars has not been taken into account. The authors are aware of
the limitations of the simplifications that have been made but these
can be partially overcome with the use of more detailed geometries.
A more detailed configuration could explain, closely, how pollutants
affect pedestrians.

An important feature of the coupled numerical method presented
is its ability for transient predictions and the possibility of studying
microscale problems in a city, not only in several points like in the
experimental case here considered, but in the whole street canyon area.

We highlight the importance of choosing the proper initial and
boundary conditions as small street or ambient temperature differences
can yield different BC concentration distributions.

The simulation tool here proposed can also be used to reduce the
impact of pollutants on pedestrians as well as to design street canyons
to lessen the pollution effect in urban areas either studying the direct
impact of the pollutants, or the accumulated normalized values.

Planned extensions of the method presented are the addition of
obstacles on the street, such as trees, cars or even pedestrians, the
modification of the wind velocity at different times using weather
models, the addition of chemical reactions and adapting the street fixed
concentration of BC at street level using traffic data as input, among
others. Also, for longer simulations one should carry out an unsteady
radiation and conduction simulation in walls which are in contact
with the air, as it can introduce buoyancy effects. For a better more
accurate validation, experimental data throughout the whole street
canyon would be desirable.
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Chapter 5
Conclusions

The aim of this chapter is to summarize all the work done in the thesis, pointing out its
innovative points and main contributions. The parallel and future lines of research that
appear as a consequence of this work are given in the last section of this chapter.

The main goal of this thesis was to obtain a new stabilized numerical solving tool for
complex environmental problems involving the transport of substances in fluids. The
practical aim the thesis was that the tool could be used to help better understand the
transport of air pollution parts of a city.

The main scientific contribution of this work has been the development of a robust
and accurate numerical method for the solution of general transient advection-diffusion-
absorption transport problems. Subsequently, this numerical formulation has been cou-
pled with stabilized FEM methods for solving the fluid equations and practical problems
have been successfully solved.

5.1 Achievements

We highlight below the main results obtained during the development of the thesis:

• Derivation and validation of a new stabilization procedure based on the Finite In-
crement Calculus (FIC) and the FEM for solving the transient transport equation
in multidimensional cases.
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• A second relevant result is a new semi-Lagrangian procedure for solving transient
advection dominated problems, accounting for the effect of diffusion and absorp-
tion effects. The semi-Lagrangian procedure has been validated with existing
numerical results.

• The third key contribution of the thesis is a new procedure to couple the FEM
solution of the Navier-Stokes for a thermal incompressible fluids with the semi-
Lagrangian procedure for solving advection and/or absorption dominated trans-
port problems, accounting for other transport effects. The practical aim has been
the accurate prediction of the transport of contaminants in air.

• The applicability of the semi-Lagrangian procedure developed in the thesis has
been proved in the solution of several problems of air pollution transport. In
particular, we have successfully modelled the transport of black carbon in a city
canyon for which experimental results are available.

5.2 Lines of future work

Several simplifications were made in the thesis for solving the problem of transporting
a pollutant in an urban area. This results in certain inaccuracies that can be overcome
by developing more detailed models.

In this respect, extensions of the method developed in the thesis are planned in order
to obtain more accurate results. These possible improvements include to add obstacles
in the geometry, to take into account modifications of the initial conditions such as the
wind speed at different times, the modification of the wind direction using information
obtained by meteorological models, the addition of chemical reactions to be able to
model a greater number of pollutants and the introduction of traffic information, among
others.

Currently, work is being done in a project to simulate the transport of pollutants in large
areas of cities by coupling a shallow water-type method for the transport of pollutant
in air at pedestrian level with the "FluidTransport Application" for local simulations of
the transport of pollution in street canyons in a specific street.

Another line of future work is to adapt the code to perform simulations in porous media
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in order to broaden the range of applicability of the current formulation.

When it comes to code optimization, there is still room for cleaning the implemented
procedures to make them more efficient. However, the first aspect that should be ad-
dressed is: the parallel programming.

As commented in Chapter 1, the code has been implemented in the Kratos program-
ming framework based on C++ language. Kratos is prepared for parallel computing us-
ing OpenMP (Open Multiprocessing) and MPI (Message Passing Interface) procedures.
However, certain features of the code, such as the Lagrangian advective transport, are
currently designed to work only in OpenMP, but not in MPI. In order to develop a
computational technology that can solve efficiently large 3D problems, the extension of
the code to MPI is a priority task in the near future.





Appendix A
Academic street canyon

A.1 Introduction

This simulation aims to study the effect of heating in the lower part of the street canyon
on the distribution of the wind velocity vectors as well as on the distribution of a
pollutant emitted from its lower part.

The mathematical model is the one exposed in Chapter 3 of the thesis and is composed
of the Navier-Stokes equations for incompressible fluids and the transport equations
calculated with the semi-Lagrangian method [78]. The simulation has been carried out
in the Kratos Multiphysics platform [44].

The wind speed is imposed constant over time perpendicular to the cavity, in the x
direction. The geometry represents a street with a height / width (H/W) ratio of 1.
Figure A.1 shows a schematic of the model used for this simulation.

This represents an idealized street canyon. The width and the height of the canyon are
taken as H/W = 1. A line source of pollutant is set in the middle of the street canyon.
The Dirichlet boundary conditions for the pollutant’s transport are chosen as φ = 100

kg/m2 on the source point and φ = 0 kg/m2 over the top of the free flow.

The buoyancy forces have been taken into account in the simulation for the transport of
temperature, since its variation makes a force gradient appear that modifies the velocity
field [14, 84].
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Figure A.1: Schematics of the domain used for the fluid and transport simulation in the
street canyon.

The spatial domain has been discretized into 43k elements and 21k nodes. Surfaces of
the buildings and the street have been defined as no-slip boundary conditions.

The Reynolds number Re = Uh/ν for this problem is ∼ 2000, depending on the case.
The street canyon domain (H/W = 1) is discretized in a regular finite element mesh of
50x50x2 three-noded triangles. A Courant number (C = U∆t/∆x) of 2 has been used,
taking into account that the velocity U over the street canyon domain is around 0.5
m/s. The results are compared when a steady state is reached.

Three scenarios of ground heating for the same H/W ratio have been investigated: no
heating, normal heating and strong heating. The thermal effects are quantified by the
bulk Richardson number (Equation (A.1)).

Rb = − gh

U2

∆θ

θa
(A.1)

The bulk Richardson numbers chosen for this study are 0, -0.05 and -0.2, respectively.
The temperature at the top of the domain is set equal to the ambient temperature (θa)
and the floor temperature is defined as θf = θa + ∆θ.
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A.2 Results

The results obtained in the Rb ≈ −0.2 scenario are compared with the ones obtained
experimentally by Uehara et al. [91]. Figure A.2 shows the obtained normalized hor-
izontal velocity along the vertical centerline of the street canyon compared with the
experimental results. The results obtained in the simulation present a good agreement
with the measurements inside the wind tunnel, which suggests that the model used is
valid for practical simulations. Some differences can be found between both of them
which may be due to the imposed boundary conditions (such as a different imposed
velocity profile), the measurements of the experimental values (as the velocity on the
floor should be 0 m/s) or uncertainties from the fluid calculating model.

Figure A.2: Normalized horizontal velocity along the center line of the street canyon.

A.2.1 Flow study

In the three scenarios, one main vortex appears in the street canyon when it reaches an
steady state. Also, other smaller vortices appear, two on the leeward wall and one on
the windward wall, as seen in Figure A.3. The main streamlines can be also seen in this
figure. These results agree well with the ones obtained by other authors [48, 49, 100].
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Figure A.4 shows the normalized horizontal and vertical velocities. The effect of the
ground heating can be seen on the different scenarios and the results show good agree-
ment with the ones done previously by other authors [48, 49]. The ground heating affects
the main eddy giving it a higher rotation. It also makes the lower windward eddy grow.

A.2.2 Pollutant dispersion

In this section the distribution of the pollutant has been calculated for the different
scenarios. It can be seen that its distribution is similar in all the cases, however, the
concentration distribution is slightly different with higher thermal effects, as can be seen
in Figure A.5.

A higher ∆θ incurs in a higher global energy in the street canyon, which translates into
a higher transport of pollutant from the source. Therefore, it can be seen in Figure A.6d
that the concentration drops faster with higher thermal effects as it is transported to
the leeward wall due to a faster eddy.

Three different cuts at 0.25 W, 0.5 W and 0.75 W (AA′, BB′ and CC ′, respectively) are
shown to assess the concentration of pollutant inside the street canyon and can be used
for future comparison. Figure A.6 shows the values of the normalized concentration
along the height of the street canyon. Figures A.6b, A.6d and A.6f show a zoom of the
different cuts for a clearer understanding of the results.

A.3 Conclusion

The semi-Lagrangian finite element formulation presented in Chapter 3 has proven to
be a useful tool to predict the distribution of a pollutant in a street canyon using a short
time resolution (scale of seconds). This on-going study shows that the results obtained
in simulations when using the semi-Lagrangian approach are accurate and can be used
for practical applications. The comparison between experimental and simulated values
shows a good agreement.

Buoyancy effects must be considered when predicting the distribution of pollutants in
street canyons. The results obtained in this study have potential for urban planners
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working on air pollution in cities as well as remodelling of these areas to lessen the
pollution effect in urban areas either studying the direct impact of the pollutants.

This study has been made in parallel with the paper in Chapter 4. An important feature
of the coupled numerical method presented is its ability for transient predictions and
the possibility of studying microscale problems in a city, not only in several points like
in the experimental case here considered, but in the whole street canyon area.

Planned extensions of the method are the addition of obstacles on the street, such as
trees, cars or even pedestrians, the modification of the wind velocity at different times
using weather models, the addition of chemical reactions and adapting the street fixed
concentration of pollutants at street level using traffic data as input, among others.
Also, for longer simulations one should carry out an unsteady radiation and conduction
simulation in walls which are in contact with the air, as it can introduce buoyancy
effects. For a better more accurate validation, experimental data throughout the whole
street canyon would be desirable.
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(a) No floor heating

(b) Floor heating, Rb ≈ −0.05

(c) Floor heating, Rb ≈ −0.2

Figure A.3: Distribution of the eddies in the street canyon with different floor heatings
when an steady state has been reached.
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(a) Normalized x velocity, no floor
heating

(b) Normalized z velocity, no floor
heating

(c) Normalized x velocity, floor heat-
ing, Rb ≈ −0.05

(d) Normalized z velocity, floor heat-
ing, Rb ≈ −0.05

(e) Normalized x velocity, floor heat-
ing, Rb ≈ −0.2

(f) Normalized z velocity, floor heat-
ing, Rb ≈ −0.2

Figure A.4: Normalized x and z velocities in the street canyon.
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(a) No floor heating

(b) Floor heating, Rb ≈ −0.05

(c) Floor heating, Rb ≈ −0.2

Figure A.5: Distribution of the pollutant in the street canyon with different floor heatings
when an steady state has been reached.
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(a) AA′ (b) AA′ zoom

(c) BB′ (d) BB′ zoom

(e) CC ′ (f) CC ′ zoom

Figure A.6: Normalized concentration in different cuts inside the street canyon. On the
right side we show a zoom for a clearer view.
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